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Executive Summary

The description and characterization of parametric uncertainty in the modeling process is
a required component of risk assessment and is of paramount importance for Tier 3 Risk
Based Corrective Action (RBCA) of petroleum-contaminated sites. The parametric
uncertainty associated with the modeling process is propagated through the risk
assessment computations and failure to characterize this uncertainty in multi-phase multi­
component flow and transport modeling outputs results in an inaccurate risk assessment.

The primary aim of this study was to improve quantification of parametric uncertainties
by developing a comprehensive framework for the uncertainty and sensitivity analysis of
a fate and transport model that has wide spread application in Tier 3 RBCA of petroleum
contaminated sites. The fate and transport model selected for this study was the u.s. EPA
two-dimensional multi-phase multi-component fate and transport model- MOFAT. It is
one of the few finite element models available from the U.S. EPA to model multi-phase
and multi-component fate and transport. MOFAT was selected after screening Tier 3
RBCA numerical models against four criteria that required the selected model to be a
finite element multi-phase multi-component fate and transport model; a public domain
code with detailed documentation; peer reviewed and validated; and identified as a Tier 3
RBCA code by the American Society ofTesting and Materials.

The specific 0 bjectives 0 f t his research were: ( 1) to conduct a bench mark parametric
uncertainty analysis of MOFAT using Random Sampling based Monte Carlo and to
evaluate the applicability and performance of various uncertainty analysis techniques to
MOFAT; (2) to develop the computational tools required to undertake an uncertainty
analysis of MOFAT; (3) to quantify the uncertainty in estimates of exposure due to
variability in input parameters; (4) to evaluate the applicability and performance of
various sensitivity analysis techniques to M OFAT; (5) to identify sensitive parameters
and issues that need to be addressed when using MOFAT; (6) to use the information
gained from the previous five objectives to develop a framework for uncertainty and
sensitivity analysis of MOFAT and; (7) to identify areas of additional research so that
uncertainty in MOFAT estimates can be better understood and quantified.

To ensure that the objectives of this research study were met, a comprehensive parametric
uncertainty analysis study was formulated and implemented. T he uncertainty analysis
techniques evaluated were Random Sampling based Monte Carlo (RS-MC), Monte Carlo
with Latin Hypercube sampling (LHS-MC), Monte Carlo using a Response Surface
Methodology (RSM-MC) based replacement model and Monte Carlo using a Neural
Network (NN-MC) based replacement model. LHS-MC was able to accurately replicate
the cumulative distribution function (cdj)generated by RS-MC with greater efficiency.
RSM-MC and NN-MC were not able to accurately approximate MOFAT outputs for
uncertainty analysis.

A set of computational tools required to undertake an uncertainty analysis of MOFAT
were also developed as a part of this study. A Monte Carlo version of MOFAT called
MC-MOFAT was also developed by modifying the original FORTRAN code for



MOFAT. A pre-processing FORTRAN tool was developed to allow automated
generation ofMOFAT input files from text files listing all MC or LHS samples. Similarly
a Visual Basic based post-processing tool was developed to automatically extract the
results for a specified node and time step from MC-MOFAT output files.

An extensive sensitivity analysis of MOFAT was also accomplished. Sensitive
parameters were identified through the application of sampling based statistical measures
on the set of LHS-MC inputs and outputs. Scatter plots of each of the twelve MOFAT
outputs versus the probabilistic input parameters indicated that all the outputs displayed a
monotonic dependence on the input parameters; saturated conductivity, K sw, and the van
Genuchten retention parameters, a, and n. A slight dependence between all the outputs
and the input parameter, apparent irreducible water saturation, Sm was also apparent.
Dependencies between input parameters and MOFAT outputs were also evaluated using
four different measures of correlation (pearson's r, Spearman's p, Partial Correlation
Coefficient and Partial Rank Correlation Coefficient). While all the tests do not always
concur, in general all the outputs are correlated with K sw, a, n and to a lesser degree Sm.
The variation in correlations as detected by the four different tests is a function of the
different testing powers of the tests, complexity of MOFAT and the correlations between
the probabilistic input parameters (where K sw is positively correlated with S m, a and n.)

Interactions between the input parameters were identified using RSM models. For all
phases of Benzene, Toluene, Ethyl benzene, and Xylene, interactions were identified
between K sw and $ and between $ and a. For the gas phases of Benzene and Toluene and
all phases of Ethyl-benzene and Xylene an additional interaction was identified between
K sw and a.

To assign priorities to the input variables for reducing uncertainties, MOFAT input
variables were ranked on the relative size of the absolute value of the Partial Rank
Correlation Coefficients (PRCC). They were also grouped into three categories of
decreasing significance based on critical values of the PRCC analysis. Using a new
approach developed in this study the input variables were first grouped into four groups
on the basis of the critical values of the PRCe and then within each g roup they were
relatively ranked based on the relative size of absolute value of the PRCC. The higher
ranked inputs within the lower critical value groups will have the most influence on the
calibration and predictions and should be the focus of field investigation and calibration
efforts.

Drawing on the results of the uncertainty and sensitivity analysis, a comprehensive six­
step framework for uncertainty and sensitivity analysis of MOFAT was developed. This
study has provided the community of MOFAT users with a comprehensive framework
for uncertainty and sensitivity analysis of MOFAT. This framework not only lays out a
methodology for uncertainty and sensitivity analysis of MOFAT but it also provides the
tools required to conduct such an analysis.

Within the context of Tier 3 RBCA the framework and supporting tools developed will
make it possible for MOFAT users to conduct comprehensive uncertainty and sensitivity
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analysis of their simulation scenarios. The framework is also crucial for undertaking any
further uncertainty or sensitivity research on MOFAT. Additional areas of research
identified in this study to address uncertainty in Tier 3 RBCA fate and transport modeling
were: improving the input covariance matrix to better account for input parameter
correlations; incorporating component properties as probabilistic inputs in the uncertainty
analysis; evaluating the applicability of SRSM-ADIFOR as an uncertainty analysis
technique for MOFAT; further study of interactions between ~ and a and between K sw

and a; extending the uncertainty analysis in this study to other Tier 3 RBCA Models; and
studying the effect of scaling up of input parameters in the context of uncertainty analysis
ofMOFAT.

111



Acknowledgements

I thank God Almighty, the most Gracious, the most Merciful for his blessings and

guidance.

I thank my supervisor Dr. Tahir Husain for his supervision; his patience, help and

support; and for introducing me to the world of risk assessment. I thank my co-supervisor

Dr. Leonard Lye for his enlightening guidance on statistical issues and for initiating me

to the world of simulation statistics. I also thank Dr. Cynthia Coles of my supervisory

committee for her review ofmy thesis.

I also thank Dr. Mahmoud Haddara for his help, support and advice. Many thanks are

also extended to Ed Gellately of the Department of Computing Sciences for his guidance

on VMS machine constants; Dr. A. K. Katyal for sharing with me some valuable insights

into MOFAT; MJ. Shortencarier for help on the LHS code; and R. F Carse! for help in

trying to locate his soil database.

I thank the School of Graduate Studies and the Faculty of Engineering and Applied

Science, Memorial University of Newfoundland for the financial support extended to me

in the earlier years 0 f this research work. N SERC funding in the initial stages 0 f this

research is also appreciated.

IV



I thank the staff of the computing section of the Faculty of Engineering and Applied

Science for the extensive computing resources and support that were extended to me,

especially the unbridled use of the Unix workstation CRUNCH without which this work

would not have been possible. I particularly thank Philip van Ulden for his help in setting

up the all-critical back up system for my simulations. I also thank Randy Dodge at

University Computing Services for use of the Unix workstation PLATO for some of the

simulations.

I thank the Newfoundland and Labrador Department of Environment and Conservation

for allowing me to pursue this research and for accommodating my research needs. I

particularly thank my colleagues for their support.

I thank all my friends, who are too many to name individually here, for their support,

company and advice over the years.

Lastly, but not the least, sincere thanks are due to my wife Baasra for her love, support

and patience; my parents for their love and support; my son Faris for being an amazingly

quiet infant; and my daughter Mahiba who sacrificed the most for this work.

v



Table of Contents

.Executive Summary i

Acknowledgements iv

Table ofContents vi

List ofTables x

List ofFigures xii

List ofAppendices xv

List ofAcronyms and Abbreviations xvi

List ofSymbols x'ix.

Chapter 1. Introduction 1

1.1 Background to Study 1

1.2 Scope and Purpose of the Research 7

1.3 Outline of the Thesis 11

Chapter 2. Literature Review 13

2.1 Introduction 13

2.2 Transport-Transformation Models In Tier 3 RBCA 13

2.3 Uncertainty 16
2.3.1 Types of Uncertainty in Transport-Transformation Models 16
2.3.2 Uncertainty and the RBCA Process 20
2.3.3 Incorporating Parameter Uncertainties 25

2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5

2.5
2.5.1

Uncertainty Analysis 29
Monte Carlo (MC) 29
Latin Hypercube Sampling (LHS) 35
Response Surface Model (RSM) 38
Neural Network (NN) 42
Selecting Uncertainty Analysis Techniques 47

Sensitivity Analysis 48
Techniques 49

VI



2.5.2 Selecting Sensitivity Analysis Techniques 53

Chapter 3. Study Formulation and Implementation 56

3.1 Introduction 56

3.2 Model Selection 57

3.3 Development and Validation History of MOFAT 63

3.4 Identifying Uncertainty 65
3.4.1 Governing Equations for Multi-Phase Flow 66
3.4.2 Governing Equations for Multi-Component Transport 72
3.4.3 Solution Approach 79

3.5 Parameter Selection 81

3.6 Defining Parameter Uncertainties and Correlations 84

3.7 Code Modification ~ 89

3.8 Processing Tools 91

3.9 Defining Simulation Scenario and Boundary Conditions 95

Chapter 4. Uncertainty Analysis 100

4.1 Introduction 100

4.2 Random Sampling Monte Carlo (RS-MC) 103
4.2.1 Generating Correlated Random Samples 103
4.2.2 Execution and Convergence of Simulations 107
4.2.3 RS-MC Outputs 108

4.3 Latin Hypercube Sampling Monte Carlo (LHS-MC) 115
4.3.1 Generating Correlated LHS Samples 115
4.3.2 Execution and Convergence of Simulations 121
4.3.3 LHS-MC Outputs 121

4.4 Response Surface Methodology (RSM) 124
4.4.1 Response Surface Model Design 124
4.4.2 Evaluation of Response Surface Models 129

4.4.2.1 Examining the statistical significance ofthe fitted models 130
4.4.2.2 Verifying the least squares regression assumptions 133

4.4.3 Monte Carlo Analysis of Response Surface Models 138
4.4.4 Identifying Interactions 141

4.5
4.5.1
4.5.2

Neural Networks (NN) 146
Training and Evaluation of Neural Network Models 146
Monte Carlo Analysis of Neural Network Models 153

4.6 Comparison and Evaluation of Uncertainty Analysis
Techniques 154

Vll



Chapter 5. Sensitivity Analysis 165

5.1 Introduction 165

5.2 Identifying Relationships between Inputs and Outputs 170
5.2.1 Scatter Plots 170
5.2.2 Measures of Correlation 172
5.2.3 Interactions 179
5.2.4 Effects of Input Parameter Correlations on Sensitivity Analysis 182

5.3
5.3.1
5.3.2
5.3.3

Ranking and Grouping of Input Parameters 183
Ranking Based on the Absolute Value of the PRCC 183
Grouping Based on Critical "p" Values 184
Combined Grouping and Ranking 187

5.4 Sensitivity to Additional Correlations between Input
Parameters 188

5.4.1 Maximum Residual Oil Saturation 190
5.4.2 Porosity 197

5.5 Sensitivity to Anisotropy 200

Chapter 6. A Framework for Uncertainty and Sensitivity Analysis
ofMOFAT 210

6.1 Introduction 210

6.2 A Six Step Framework for Uncertainty and Sensitivity
Analysis of MOFAT 218

6.2.1 Step 1: Specification of Parameter Uncertainty 219
6.2.2 Step 2: Selecting an Uncertainty Analysis Method 223
6.2.3 Step 3: Generating Correlated Probabilistic Samples and Assembling
Input Files 226
6.2.4 Step 4: Propagating Parameter Uncertainty through MC-MOFAT 228
6.2.5 Step 5: Post Processing of MOFAT Output Files 229
6.2.6 Step 6: Sensitivity Analysis 229

Chapter 7. Conclusions and Recommendations 233

7.1 Conclusions 233

7.2 Recommendations · 240
7.2.1 Improvements to Input Covariance Matrix 240
7.2.2 Incorporation of Component Properties as Probabilistic Inputs 241
7.2.3 Applicability of SRSM-ADIFOR 241
7.2.4 Study of Interactions 242
7.2.5 Extension to Other Tier 3 RBCA Models 242
7.2.6 Scaling Up ofInput Parameters and Uncertainty Analysis 243

Chapter 8. Statement ofOriginality 244

Vlll



References 248

IX



List of Tables

Table 2.1. Common Numerical Solution Techniques for Fate and Transport Models
(Adaptedfrom National Research Council, 1990) 15

Table 2.2. Numerical Fate and Transport Modelsfor Tier 3 RBCA 17

Table 2.3. Categorization of Variance Reduction Techniques 33

Table 3.1. Criteria for Selecting a NAPL Simulation Model 60

Table 3.2. Summary Results ofthe Model Evaluation 62

Table 3.3 Categorization ofMOFAT Input Parameters as Probabilistic or
Deterministic and Listing ofany Associated Assumptions Used in this Study 85

Table 3.4 Input parameters, probability distributions and the distribution statistics 88

Table 3.5 Pearson Product Moment Correlation Matrix 90

Table 3.6 Comparison ofSimulation Scenarios 98

Table 4.1 Pearson Product Moment Correlation Matrix 106

Table 4.2 Adjusted Rank Correlation Matrix 106

Table 4.3 Simulation Means and Standard Deviations 114

Table 4.4 ANOVA and RSM Summary 132

Table 4.5 Summary ofApplication ofa Standard Back Propagation Neural Network
......................................................................................................................................... 149

Table 4.6 Summary ofApplication ofa Ward Back Propagation Neural Network 149

Table 4.7 Summary ofApplication ofa GRNNNeural Network 149

Table 5.1 Pearson Correlations between Inputs and Outputs 174

Table 5.2 Spearman Correlations between Inputs and Outputs 175

Table 5.3 Partial Correlations between Inputs and Outputs 177

Table 5.4 Partial Rank Correlations between Inputs and Outputs 178

Table 5.5 Summary ofCorrelations 180

Table 5.6 Ranking ofInputs Based on the Absolute Value ofthe PRCC 185

Table 5.7 Grouping ofInputs Based on the Basis ofCritical Values ofPRCC* 186

Table 5.8 Grouping and Ranking ofInputs Based on PRCC* 189

Table 5.9 Pearson Product Moment Correlation Matrix 191

Table 5.10 Adjusted Rank Correlation Matrix 191

x



Table 5.11 Pearson Product Moment Correlation Matrix 198

Table 5.12 Adjusted Rank Correlation Matrix 198

Xl



List of Figures

Figure 1.1 Study Flow Chart 10

Figure 2.1 Neural Network Structure (adapted from Ward Systems Group Inc., 1993)
........................................................................................................................................... 44

Figure 3.1 MOFAT Input Parameters 73

Figure 3.2 Sample Control File....•.............•......•..........•..............................•................... 92

Figure 3.3 MOFAT Pre Processor Flow Chart.....•...•..........................••.•...................... 94

Figure 3.4 MOFAT Post Processor Macro Flow Chart 96

Figure 3.5 Finite Element Mesh Representation ofthe Physical Domain Used For
Simulations in This Study 98

Figure 4.1 Uncertainty Analysis Flow Chart.•..•..........................................•..........•..... 101

Figure 4.2 Means for Untransformed RS-MC Benzene 109

Figure 4.3 Means for Untransformed RS-MC Toluene....................................•......•..• 109

Figure 4.4 Means for Untransformed RS-MC Ethyl Benzene 110

Figure 4.5 Meansfor Untransformed RS-MCXylene 110

Figure 4.6 Standard Deviationsfor Untransformed RS-MC Benzene 111

Figure 4.7 Standard Deviations for Untransformed RS-MC Toluene 111

Figure 4.8 Standard Deviations for Untransformed RS-MC Ethyl Benzene......•....... 112

Figure 4.9 Standard Deviations for Untransformed RS-MC Xylene 112

Figure 4.10 Boxplots ofBTEX Concentrations for RS-MC Simulations ......•........... 113

Figure 4.11 Histograms of10,000 RS- MC Benzene (B) Outputs 116

Figure 4.12 Histograms of10,000 RS- MC Toluene (T) Outputs 117

Figure 4.13 Histograms of10,000 RS- MC Ethyl Benzene (E) Outputs 118

Figure 4.14 Histograms of10,000 RS- MC Xylene (X) Outputs 119

Figure 4.15 Box plots ofBTEX Concentrations for LHS and LHS-s Simulations 122

Figure 4.16 Normal Probability Plot and 95 % Confidence Intervalsfor Water, Gas
and Solid Phase Concentrations ofBenzene from LHS Outputs 125

Figure 4.17 Normal Probability Plot and 95 % Confidence Intervalsfor Water, Gas
and Solid Phase Concentrations ofToluene from LHS Outputs..............•.........•......•. 126

Xll



Figure 4.18 Normal Probability Plot and 95 % Confidence Intervalsfor Water, Gas
and Solid Phase Concentrations ofEthyl Benzene from LHS Outputs 127

Figure 4.19 Normal Probability Plot and 95 % Confidence Intervals for Water, Gas
and Solid Phase Concentrations ofXylene from LHS Outputs 128

Figure 4.20 Normal Probability Plot ofResiduals 134

Figure 4.21 Normal Probability Plot ofResiduals for Transformed Responses.....•..• 135

Figure 4.22 Plot ofResiduals versus Predicted Responses 136

Figure 4.23 Plot ofResiduals versus Transformed Predicted Responses 137

Figure 4.24 Plot ofResiduals versus Run order..•.............•.................•...••..................• 139

Figure 4.25 Plot ofResiduals versus Independent Factor C 140

Figure 4.26 K sw and ¢ Interaction Graph for Gas Phase Concentrations ofBenzene
......................................................................................................................................... 142

Figure 4.27 3-D Surface Plot ofthe K sw and ¢Interaction 142

Figure 4.28 t/J and a Interaction Graph for Water Phase Concentrations ofToluene 144

Figure 4.29 3-D Surface Plot ofthe ¢and aInteraction 144

Figure 4.30 K sw and a Interaction Graph for Gas Phase Concentrations ofToluene
......................................................................................................................................... 145

Figure 4.31 3-D Surface Plot ofthe K sw and aInteraction 145

Figure 4.32 Structure ofStandard BPNN........•.........................................•................. 151

Figure 4.33 Structure of Ward BPNN.....................•...•.....................................•......•..• 151

Figure 4.34 Structure ofGRNN.............•...•.................................................................• 152

Figure 4.35 Empirical cdfPlots ofUncertainty in Benzene Concentrations - MC, LHS,
and LHS-s Runs 155

Figure 4.36 Empirical cdfPlots ofUncertainty in Benzene Concentrations -MC,
LHS300, and LHS500 Runs.....•.....•.............................................................................. 156

Figure 4.3 7Empirical cdfPlots ofUncertainty in Toluene Concentrations - MC, LHS,
and LHS-s Runs................................................................•............................................ 157

Figure 4.38 Empirical cdfPlots ofUncertainty in Toluene Concentrations - MC,
LHS300, and LHS500 Runs ..........................................•......................•........................ 158

Figure 4.39 Empirical cdfPlots ofUncertainty in Ethyl benzene Concentrations - MC,
LHS, and LHS-s Runs ..............................•........................................................•........... 159

Figure 4.40 Empirical cdfPlots ofUncertainty in Ethyl benzene Concentrations - MC,
LHS300, and LHS500 Runs 160

Figure 4.41 Empirical cdfPlots ofUncertainty in Xylene Concentrations - MC, LHS,
and LHS-s Runs.....................•...........................................................................•........... 161

Xlll



Figure 4.42 Empirical cdfPlots ofUncertainty in Xylene Concentrations - MC,
LHS300, andLHS500Runs 162

Figure 5.1 The Sensitivity Analysis Process 167

Figure 5.2 Scatter Plots for the Water Phase Concentration ofBenzene Plotted against
the Input Parameters K sw (K), t/J (Porosity), S m (Max s), S or (Mtheta), a (alpha), and
n(N) 171

Figure 5.3 LHS and LHS-c cdfcomparison for Water, Gas and Solid Phase
Concentrations ofBenzene 192

Figure 5.4 LHS and LHS-c cdfcomparison for Water, Gas and Solid Phase
Concentrations ofToluene 194

Figure 5.5 LHS and LHS-c cdfcomparison for Water, Gas and Solid Phase
Concentrations ofEthyl benzene 195

Figure 5.6 LHS and LHS-c cdfcomparison for Water, Gas and Solid Phase
Concentrations ofXylene 196

Figure 5.7 LHS and LHS-p cdfcomparison for Water, Gas and Solid Phase
Concentrations of Benzene 199

Figure 5.8 LHS and LHS-p cdfcomparison for Water, Gas and Solid Phase
Concentrations of Toluene 201

Figure 5.9 LHS and LHS-p cdfcomparison for Water, Gas and Solid Phase
Concentrations of Ethyl benzene 202

Figure 5.10 LHS and LHS-p cdfcomparison for Water, Gas and Solid Phase
Concentrations ofXylene 203

Figure 5.11 LHS and LHS-K cdfcomparison for Water, Gas and Solid Phase
Concentrations ofBenzene 205

Figure 5.12 LHS and LHS-K cdfcomparisonfor Water, Gas and Solid Phase
Concentrations ofToluene 206

Figure 5.13 LHS and LHS-K cdfcomparison for Water, Gas and Solid Phase
Concentrations ofEthyl benzene 208

Figure 5.14 LHS and LHS-K cdfcomparison for Water, Gas and Solid Phase
Concentrations ofXylene 209

Figure 6.1 A Framework for the Uncertainty and Sensitivity Analysis ofMOFAT 215

Figure 6.2 Step 1 ofFramework - Specification ofParameter Uncertainty 220

Figure 6.3 Step 2 ofFramework - Selecting an Uncertainty Analysis Method 224

Figure 6.4 Steps 3, 4 and 5 ofFramework - Generating Correlated Probabilistic
Samples and Assembling Input Files; Propagating Parameter Uncertainty through
MC-MOFAT; and Post Processing ofMOFAT Output Files 227

Figure 6.5 Step 6 ofFramework - Sensitivity Analysis 230

XIV



List of Appendices

Appendix A. Summary Statistics 269
Appendix B. Compact Disc (CDROM) 275
Appendix C. Scatter Plots 276

xv



2D

3D

3MRA

alpha

ANOVA

ASTM

BPNN

BTEX

CCD

cd!

FAST

FORM

G

GRNN

K

LHS

LHS300

LHS500

LHS-c

LHS-K

List of Acronyms and Abbreviations

Two Dimensional

Three Dimensional

Multimedia, Multipathway, and Multireceptor Risk Assessment

van Genuchten air-water capillary retention parameter, a

Analysis ofVariance

American Society for Testing and Materials

Back Propagation Neural Network

Benzene, Toluene, Ethyl-Benzene and Xylene

Central Composite Design

Cumulative Distribution Function Plot

Fourier Amplitude Sensitivity Test

First Order Reliability Method

Gas Phase

General Regression Neural Network

Hydraulic Conductivity, K sw

Latin Hypercube Sampling. Also used to designate the 100 sample
Latin Hypercube Sample used in this study

300 sample Latin Hypercube Sample

500 sample Latin Hypercube Sample

100 sample Latin Hypercube Sample with induced correlation
between Hydraulic conductivity and maximum residual oil saturation
for water, S or

100 sample Latin Hypercube Sample with vertical to horizontal
Hydraulic conductivity ratio of 1:2

XVI



LHS-MC

LHS-p

LHS-s

LNAPL

Maxs

MC

MC-MOFAT

Mtheta

N

NAPL

NN

NN-MC

o

PC

PCC

PRCC

PRZM

RBCA

RI-FS

RSM

RS-MC

RSM-MC

S

SCS

Latin Hypercube Sampling Monte Carlo

100 sample Latin Hypercube Sample with induced correlation
between Hydraulic conductivity and porosity,

35 sample Latin Hypercube Sample

Light Non Aqueous Phase Liquid

Apparent irreducible water saturation, S m

Monte Carlo

Monte Carlo Version ofMOFAT developed in this study

Maximum residual oil saturation for water, S or

van Genuchten air-water capillary retention parameter, n

Non Aqueous Phase Liquid

Neural Network

Monte Carlo Neural Network

Oil Phase

Personal Computer

Partial Rank Correlation Coefficient

Partial Rank Correlation Coefficient

Pesticide Root Zone Model

Risk Based Corrective Action

Remedial Investigation - Feasibility Study remediation approach

Response Surface Modell Response Surface Methodology

Random Sampling Monte Carlo

Response Surface Model Monte Carlo

Solid Phase

Soil Conservation Service

XVll



SORM

SRSM-ADIFOR

U.S. EPA

VBA

W

Second Order Reliability Method

Stochatic Response Surface Method - Automatic DIfferentiation of
FORtran

United States Environmental Protection Agency

Visual Basic for Applications

Water Phase

XV111



llrp

hao

haw

~ap

~aa

~ao

~as

~aw

Pp

p'w

Sot

z

List of Symbols

Absolute magnitude of the p phase velocity

Absolute viscosity ratio between phase p and water

Air-Oil capillary pressure head

Air-Water capillary pressure head

Apparent first-order decay rate coefficient in phase p

Apparent first-order decay rate coefficient in the gaseous phase

Apparent first-order decay rate coefficient in the oil phase

Apparent first-order decay rate coefficient in the solid phase

Apparent first-order decay rate coefficient in the water phase

Apparent irreducible water saturation,

Apparent water saturation

Cartesian spatial coordinates (i,j = 1,2)

Concentration of the non inert component a in p-phase

Darcy velocity ofphase p in the i-direction

Density of phase p

Density ofpure water

Diffusion coefficient of a in the bulk p-phase

Effective total liquid saturation

Effective trapped oil saturation

Effective water saturation

Elevation

XIX



g

S or

rap

Equilibrium partition coefficient for species a between air-water
phases

Equilibrium partition coefficient for species a between oil-water
phases

Equilibrium partition coefficient for species a between solid-water
phases

Equilibrium partition coefficient for species a between water and
organic liquid (Raoult's constant), gas (dimensionless Henry's
constant), and solid phases

Gravitational acceleration

Irreducible water saturation

Kronecker's delta

Longitudinal dispersivity

Mass flux density of a in p-phase per porous medium cross-section
in the i-direction

Maximum residual oil saturation for water

Maximum water content

Mechanical dispersion coefficient

Molecular diffusion coefficient ofcomponent a in the porous medium

Net mass transfer per unit porous media volume into (+) or out of (-)
phasep

Net mass transfer rate per porous medium volume of species a into
or out of the p-phase

Net production or decay ofcomponent a within p-phase per porous
medium volume due to reactions within the p-phase.

Non dilute solution correction factor

Oil phase saturation

Oil-Water capillary pressure head

xx



Prp

K sw

Kswx

Kswz

K
sWij

~ao

~ow

t

AT

a

n

p- phase saturation

p- phase saturation

Porosity

p-phase hydraulic conductivity tensor

p-phase pressure

p-phase specific gravity

Relative penneability of phase p

Residual water content

Saturated hydraulic conductivity to water

Saturated hydraulic conductivity to water in the horizontal direction

Saturated hydraulic conductivity to water in the vertical direction

Saturated hydraulic conductivity tensor for water

Scaling coefficient approximated by the ratio of water surface tension
to oil surface tension

Scaling coefficient approximated by the ratio of water surface tension
to oil-water interfacial tension

Solid phase concentration expressed as mass of adsorbed component
a per porous medium volume

Time

Transverse dispersivity

Unit gravitational vector measured positive upwards

van Genuchten air-water capillary retention parameter

van Genuchten air-water capillary retention parameter

Water height-equivalent pressure head ofphase

Water phase saturation

XXI



Chapter 1. Introduction

1.1 Background to Study

Numerous releases of petroleum hydrocarbons have occurred at sites all over the world.

The myriad nature of the contaminants found at these sites and the lack of detailed

knowledge about the contaminants poses a challenge to remediating these sites

successfully and economically.

Traditionally the goal of remediation under the Remedial Investigation - Feasibility Study

(RI-FS) approach has been to return contaminant levels to background, pristine or

regulatory levels. The regulatory guidelines are "conservative" in their approach and in

many cases are probably extreme, and over protective (Moore and Elliott, 1996; U.S.

EPA, 2003). As a consequence, the enormous costs associated with the attaining of these

goals have led to a rethinking of the appropriateness of the traditional goals and

approaches.
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Now risk based cleanups of sites based on the intended purpose of use are looked upon as

being more appropriate to save time, resources and money. Risk Based Corrective Action

(RBCA) involves deriving c lean up goals based on risk calculations. It not only helps

derive cleanup guidelines that are scientifically sound, it also offers a means of

translating the risk posed into actual numbers which can be used for communicating the

risk to concerned people (risk managers, regulatory agencies and the public).

There are three tiers of risk evaluation for petroleum release sites. As defined by the

ASTM (1995) a Tier 1 evaluation is a risk-based analysis to develop non-site specific

values for direct and indirect exposure pathways utilizing conservative exposure factors.

A Tier 2 evaluation is more site specific. It applies the direct exposure values established

under a Tier 1 evaluation at the points of exposure for a specific site and develops values

for potential indirect exposure pathways at the points of exposure based on site-specific

conditions. In contrast, a Tier 3 evaluation is a risk analysis to develop values for

potential direct and indirect exposure pathways at the points of exposure based on site­

specific conditions.

Essentially, in Tier 3 RBCA, less constrained assumptions are used than in Tier 2 RBCA

since actual site exposure and risk scenarios are used rather than using simplified general

exposure scenarios. To derive site-specific cleanup levels, sophisticated fate and transport

models are used to quantify exposure concentrations and these are in turn used as input

2



into pathway models to derive risk estimates. These fate and transport models are often

numerical models.

An aspect of fate and transport modeling that has traditionally been ignored is the

uncertainty inherent in the numerical models used. This uncertainty is particularly

important as all simulations are subject to uncertainty. In particular, numerical models are

almost always subject to numerical errors and this introduces an element of uncertainty in

the results of any fate and transport calculation (Zheng and Bennett, 1995).

Input parameters themselves are a source of uncertainty III model outputs. The

uncertainty in model outputs could be due to a lack of knowledge about an input

parameter, and is called uncertainty of input parameter. The uncertainty could also be due

to natural variability in an input parameter. As a result, input parameters might be either

largely variable or largely uncertain or subject to both. The collective effect of this

variability and uncertainty is uncertainty in the fate and transport modeling output. This

resultant uncertainty can significantly influence the accuracy of risk calculations and in

turn result in an inappropriate and mismatched risk management program.

While most risk managers are aware of this uncertainty in the fate and transport

modeling, in the absence of any quantification of it, they use safety factors to try to

account for it. The safety factors are not assigned on any scientific basis and could often

be over protective. Thus, in order to design more accurate risk management programs an
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emerging need is to quantify uncertainty in the RBCA process. This is particularly

relevant to the fate and transport-modeling component of the RBCA process since

uncertainties of this component are further propagated through the subsequent

components of the RBCA process.

The current U.S. EPA policy for risk characterization also reqmres that all risk

assessment should have the core values of transparency, clarity, consistency, and

reasonableness. To attain these core values, agency risk assessors and risk managers are

required to have a full and open discussion of uncertainties in the body of each risk

assessment, including a prominent display of critical uncertainties (U.S. EPA, 2003).

The uncertainties in the RBCA process can be formally evaluated by conducting an

uncertainty analysis. A systematic uncertainty and sensitivity analysis provides insight

into the level of confidence in model estimates, and can aid in assessing how model

estimates should be weighed (IsukapalIi, 1999). It helps identify the significant input

parameters so that resources can be concentrated appropriately on the significant

parameters in the data gathering process. It also identifies data and knowledge gap that

help determine researc,h priorities. For risk managers, increased confidence in the results

of the modeling is important in evaluating various regulatory options. More confidence

on the part of risk managers in the results of modeling outputs results in the use.of less

extreme safety factors and more realistic cleanup guidelines (Reckhow, 1994; Finkel,

1994).
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The fate and transport models used in the Tier 3 RBCA process are typically complex

numerical models that are not amenable to simple analytical uncertainty and sensitivity

analysis techniques. There is limited guidance available on the selection and application

of uncertainty and sensitivity analysis techniques for the uncertainty and sensitivity

analysis of these models. Any guidance available (such as the 1995 ASTM" Standard

Guide for Risk Based Corrective Action Applied at Petroleum Release Sites, ASTM E

1739-95"; 1997 U.S. EPA "Policy for Use of Probabilistic Analysis in Risk Assessment

at the U.S. Environmental Protection Agency"; 1997 U.S. EPA" Guiding Principles for

Monte Carlo Analysis. EPA 630-R-97-001"; and the 2003 U.S. EPA "Multimedia,

MuItipathway, and Multireceptor Risk Assessment Modeling System. Volume IV:

Evaluating Uncertainty and Sensitivity. EPA 530-D-03-001d") is general in nature and

not model specific.

Modelers can, in theory, use the benchmark Random Sampling based Monte Carlo (RS­

MC) analysis for uncertainty analysis but this is seldom practical. RS-MC typically

requires 10,000 (or more) simulations, which for a complex model can mean over 10,000

hours (approximately 417 days) in just simulation time (if each simulation is assumed to

take an hour on average to assemble and execute). This is a very conservative estimate,

the actual time required to assemble input files, execute and to process the outputs can be

expected to be much higher especially if appropriate pre-processing and post processing

tools are not available to assemble 10,000 input files and to process 10,000 output files
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respectively. Due to the complexity of these models the applicability of other uncertainty

techniques (such as more efficient sampling techniques with MC or replacement models

with MC) are very model specific and RBCA modelers cannot directly use these

techniques without model specific testing of these techniques against RS-MC to verify

their accuracy and efficiency.

To execute an uncertainty analysis of a Tier 3 RBCA fate and transport model, model

specific guidance is also required on variable and uncertain input parameters; significant

parameters; and input parameter interactions.

Model specific guidance, such as listed in the previous two paragraphs, can only be

generated by conducting a comprehensive parametric uncertainty and sensitivity analysis

with the specific goal of generating a framework that can be used by all users of the

model. However the analysis of parametric uncertainty and sensitivity in multi-phase

multi-component numerical finite element fate and transport models used in the Tier 3

RBCA of petroleum-contaminated sites has not been explored by any published research

to date.

This research study will fill that gap in the body of knowledge. This research study,

entitled "Evaluation of Uncertainties in MOFAT for Tier 3 RBCA", presents a

comprehensive parametric uncertainty and sensitivity analysis of the two dimensional

multi-phase multi-component fate and transport model MOFAT. The objective of this
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uncertainty and sensitivity analysis is not to conduct an uncertainty and sensitivity

analysis of anyone given site specific simulation scenario but rather the primary aim is to

improve quantification of parametric uncertainties by developing a comprehensive

framework for the uncertainty and sensitivity analysis of MOFAT that will provide

guidance to all MOFAT users. MOFAT is one of the few finite element models available

from the U.S. EPA to model multi-phase multi-component fate and transport and was

chosen for its applicability to petroleum release sites. Other models that could be used for

Tier 3 RBCA and the selection of MOFAT are discussed in more detail in Sections 2.2

and 3.2 respectively.

1.2 Scope and Purpose of the Research

The aim of this research study, entitled "Evaluation of Uncertainties in MOFAT for Tier

3 RBCA", is to better quantify parametric uncertainties by conducting a parametric

uncertainty and sensitivity analysis of a multi-phase multi-component fate and transport

model for the purpose of developing a comprehensive uncertainty and sensitivity analysis

framework to be used in Tier 3 R BCA 0 f petroleum contaminated sites. The fate and

transport model that has been selected for this study is the U.S. EPA two-dimensional

multi-phase multi-component fate and transport model- MOFAT (Katyal et. aI., 1991).
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The pnmary aim of this research study is to improve quantification of parametric

uncertainties by developing a comprehensive framework for the uncertainty and

sensitivity analysis ofMOFAT.

The specific objectives of this research are:

(1) to conduct a bench mark parametric uncertainty analysis of MOFAT usmg

Random Sampling based Monte Carlo and to evaluate the applicability and

performance of various uncertainty analysis techniques to MOFAT.

(2) to develop the computational tools required to undertake an uncertainty analysis

ofMOFAT.

(3) to quantify the uncertainty in estimates 0 f exposure due to variability in input

parameters.

(4) to evaluate the applicability and performance of various sensitivity analysis

techniques to MOFAT.

(5) to identify sensitive parameters and issues that need to be addressed when using

MOFAT.
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(6) to use the information gained from the prevIOus objectives to develop a

framework for uncertainty and sensitivity analysis of MOFAT.

(7) to identify areas of additional research so that uncertainty in MOFAT estimates

can be better understood and quantified.

To ensure that the objectives of this research study were accomplished, a comprehensive

parametric uncertainty and sensitivity analysis study was formulated and implemented.

Figure 1.1 summarizes the key components of this study, each of these components are

further described and addressed in the associated chapters.
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1.3 Outline of the Thesis

Chapter 1 presents a brief background to the RI-FS remediation approach, the RBCA

approach and the role of uncertainty in the Tier 3 RBCA ofpetroleum-contaminated sites.

It also presents the Scope and Purpose of the Research.

Chapter 2 presents and discusses the current state of knowledge in the four areas of

transport-transformation models in RBCA; uncertainty; uncertainty analysis; and

sensitivity analysis.

Chapter 3 presents the formulation and the implementation of the sensitivity and

uncertainty analysis. It describes in detail the selection of the MOFAT model; the

governing equations of MOFAT; identification of parameter variability; selection of input

parameter database; definition of simulation scenario; modification of MOFAT; and the

development of processing tools.

Chapter 4 presents the results of the uncertainty analysis ofMOFAT using RS-MC, LHS­

MC, RSM-MC and NN-MC. The results of 10,000 RS-MC and 935 LHS-MC

simulations are summarized through cumulative distribution function (cdj) plots of

BTEX concentrations in various phases. These cd! plots were used to compare the

different uncertainty analysis techniques from the perspective of accuracy and efficiency.
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Chapter 5 presents the results of the sensitivity analysis. To help assign priorities to the

input parameters for reducing uncertainties it presents: an evaluation of relationships

between input and output parameters using scatter plots and correlation analysis; a

discussion of interaction effects; and a comprehensive ranking and grouping of input

parameters using three different methods, including one developed as a part of this study.

It also presents an evaluation of the sensitivity of the uncertainty analysis to anisotropy

and to additional correlations between input parameters.

Chapter 6 presents a comprehensive six-step framework for the uncertainty and

sensitivity analysis of MOFAT that is based on the results of the uncertainty and

sensitivity analysis presented in Chapters 3 to 5. This provides model specific guidance

on; specification of parameter uncertainty; selecting an uncertainty analysis method;

generating correlated probabilistic samples and assembling input files; propagating

parameter uncertainty through MC-MOFAT; post processing of MOFAT output files;

and sensitivity analysis.

Chapter 7 summarizes the results of this study in the form of conclusions and presents

recommendations for future research.

Chapter 8 presents a statement of originality. It presents eight aspects that define the

originality of this research work.
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Chapter 2. Literature Review

2. 1 Introduction

This research study covers four different areas: transport-transformation models in

RBCA; uncertainty in the RBCA process and in transport-transformation models;

uncertainty analysis; and sensitivity analysis. This chapter reviews relevant published

literature under these four areas.

2.2 Transport-Transformation Models In Tier 3 RBCA

A Tier 3 RBCA assessment is usually carried out when the results of a Tier 2 modeling

exercise using an analytical model shows the existence of contaminant pathways to at­

risk receptors (Zhang et. aI., 2001). As a result, Tier 3 RBCA involves the derivation of

site-specific target levels using relatively sophisticated statistical and contaminant

transport transformation models and risk assessment models. Since petroleum release

situations involve the flow of more than one contaminant or fluid and are complex, the

fate and transport models used are typically numerical models.
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In Tier 3 RBCA numerical methods are preferred over analytical methods smce

numerical methods are better at accounting for parameters that vary in space and time and

are better able to describe complicated site and boundary conditions. This allows detailed

replications of complex geologic and hydrologic conditions that exist in nature (National

Research Council, 1990). A more detailed discussion of the advantages and limitations of

analytical and numerical methods is presented in ASTM (1998). A very brief description

of some numerical solution techniques is presented in Table 2.1.

The two primary numerical solution techniques are the finite difference method and the

finite element method. The finite difference method requires the model domain to be

discretized into blocks using an orthogonal grid whereas in the finite element method the

model domain can be discretized using an irregular triangular or quadrilateral grid. This

makes finite element models better suited for solving some flow and transport as they can

accurately model irregular physical boundaries (ASTM, 1998). Other advantages of finite

element models over finite difference models are:

• Using the flexibility in grid discretization, the grid can be oriented along the flow

direction. This eliminates numerical dispersion transverse to the flow and gives

the model user better control on numerical errors (Spitz and Moreno, 1996).
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Table 2.1. Common Numerical Solution Techniques for Fate and Transport Models

(Adapted from National Research Council, 1990)

Solution Technique Description of Method
Finite Difference Method Involves the use of differential equations to

approximate derivatives, resulting in a series of
algebraic equations. These equations are then solved
for vanous blocks m a finite difference grid
representation of the site.

Finite Element Method Creates an integral form of the differential equation:
agam discretization provides a system of linear
algebraic equations. These equations are then solved
for vanous nodes m a finite element mesh
representation of the site. It is particularly useful to
represent irregular shaped aquifer or geologic units.

Boundary Elements or Boundary Integral Creates integral form of the governing flow equation
Method relying on boundary rather than areal integrals. By

working with the boundaries of aquifers or units this
method avoids internal discretization, and thus a
small number of large elements can be used instead
of the finite element method.

Method of Characteristics Breaks the advection-dispersion equation into two
parts, one accounting for advection and the other
accounting for dispersion. It requires the transport of
reference particles.

Random Walk Method One of the few techniques not involving a solution
of the advection-dispersion equation.
Simulates the migration of contaminants by moving
a set of reference particles.

Integrated Finite Difference Method A variant of the Finite Difference method, based on
the concept of multi cell models, that allows for non-
rectangular discretization. An efficient method used
when computational time IS at a premIUm and
detailed hydraulic head information is not needed.
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• The finite element formulation boundary conditions follow directly from the finite

element theory (Spitz and Moreno, 1996).

• In finite element models the model user has the ability to refine the space

discretization in areas where contaminant transport occurs and to maintain a

coarse discretization in areas without transport (Spitz and Moreno, 1996).

A wide variety of public and proprietary models could be used in the Tier 3 RBCA

modeling process. A complete description of all models is beyond the scope of this work

but some numerical fate and transport m ode1s that could b e used for Tier 3 R BCA at

petroleum release sites are summarized in Table 2.2. Some of these are finite difference

models (e.g. MODFLOW), however for the reasons presented earlier finite element

models are more appropriate than finite difference models for Tier 3 RBCA.

2.3 Uncertainty

2.3.1 Types of Uncertainty in Transport-Transformation Models

Uncertainty is classified differently by different researchers (Morgan and Henrion, 1990;

Isukapalli, 1999; Yen, 2002; U.S. EPA, 2003). Uncertainty may be classified as:

• Scenario Uncertainty

• Parameter Variability
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Table 2.2. Numerical Fate and Transport Models/or Tier 3 RBCA

Model Description
Bioplume III Public domain 2 D model for simulating

multiple hydrocarbon species.
Windows based only. Cannot be run on
Unix. Cannot simulate flow or transport in
vadose zone.

MODFLOW Public domain finite difference 2 D, 3 D
flow model.

MT3D Public domain 3 D single species transport
model
Requires MODFLOW for simulating flow

RT3D Public domain 3 D multiple speCIes
transport model
Requires MODFLOW for simulating flow

MOFAT Public domain 2 D coupled multi-phase
flow and multi-component transport model

NAPL Simulator Public domain 2 D, 3 D coupled multi-
phase flow and multi-component transport
model

MARS Proprietary 2 n coupled multi-phase areal
flow and LNAPL remediation simulator

Moe Public domain 2 D solute transport finite
difference model. Uses the method of
Characteristics to solve the solute transport
equation.

TMVOe Public domain three-phase non-isothermal
flow of water, soil gas, and a multi-
component mixture of volatile orgamc
chemical model. Uses the Integrated Finite
Difference Method.
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• Parameter Uncertainty

• Model Uncertainty

Scenario uncertainty is the uncertainty associated with the process of applying a model

wherein a petroleum release situation is reduced to a scenario that can be modeled by a

numerical model. The uncertainty is introduced by the assumptions that are made for the

scenario description. Errors in specifying the boundary and initial conditions also

contribute to scenario uncertainty (Isukapalli, 1999; U.S. EPA, 2003).

Parameter variability is also referred to as natural uncertainty. Many quantities are

variable over time, space or number of samples and variability refers to this inherent

statistical variance. Variability is sometimes referred to as "type A uncertainty". All other

uncertainty is referred to as "type B uncertainty". A variable may reflect primarily

variability, primarily uncertainty, or both variability and uncertainty (U.S. EPA, 1996).

Parameter uncertainty is the uncertainty due to parameter estimation. These include what

are typically called data uncertainties, which are: (a) measurement errors; (b)

inconsistency and non-homogeneity of data; (c) data handling and transcription errors;

and (d) inadequate representativeness of data sample due to time and space limitations

(Yen, 2002). Huang and Meyer (1996) state that although measurement imprecision
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contributes to uncertainty, it is usually negligible relative to parameter uncertainty and

variability. Another key source of parameter uncertainty is upscaling of measurements.

Uncertainty is introduced when in numerical models soil parameters have to be upscaled

(homogenized) to the grid or block size used by the model. Scaling can also affect the

correlations between soil parameters (Dobermann et. aI., 1997). Undertaking a field

investigation program and appropriate review of published literature on the parameters

can help reduce and quantify both parameter uncertainty and variability.

Model uncertainty is the term used to collectively describe uncertainties associated with

the use of a model and is sometimes extended to include scenario uncertainty. Models are

representation of processes being modeled and are based on a set of assumptions. The

very process of reducing a process so as to allow it to be modeled is a source of

uncertainty as no model is ever perfect. Model uncertainty thus reflects the inability of

the simulation model to represent precisely the systems true physical behavior (Yen,

2002). Uncertainties include errors in model structure and errors in linking models or

processes that work at different spatial and temporal scales (U.S. EPA, 2003). Numerical

errors, grid size resolution and the applicability of the model at the selected grid size

resolution are also contributors to uncertainty. Other sources of uncertainty are

extrapolation beyond a model's intended application domain, and interpolation between

point estimates of model output (Isukapalli, 1999; U.S. EPA, 2003).
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Model uncertainty is generally hard to quantify. Uncertainty due to grid resolution can be

analyzed by comparing the model results for different grid resolutions and can generally

be kept to a minimum by using an appropriate fine grid resolution. Uncertainties in model

structure can best be understood by validating the model against field studies. Model

validation and peer review of models is important for ensuring model structure

uncertainties are minimized. Ensuring that a model is applied within its intended domain

also minimizes uncertainty.

Uncertainty may also be classified as reducible and irreducible. The irreducible

uncertainty is typically the natural uncertainty. Model and parameter uncertainty consists

of both reducible and irreducible components. The reducible components of model

uncertainty may be reduced to an extent by improving the model resolution, ensuring the

model assumptions are valid, boundary conditions are appropriate, and by sacrificing

computational efficiency for precision. Parameter uncertainty may be reduced by

improving sampling techniques, improving the calibration of sampling equipment,

collecting representative samples, ensuring an adequate sample size, accounting for

correlations and acquiring more knowledge about poorly understood parameters.

2.3.2 Uncertainty and the RBCA Process

The RBCA methodology is based on the analysis of transport and exposure between the

source of contamination and the receptor (Connor et aI., 1996; ASTM, 1995; U.S. EPA,

1991a; U.S. EPA, 1991b; U.S. EPA, 1989a; U.S. EPA, 1989b). However when any
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analysis of transport and exposure is done usmg simulation models, an element of

uncertainty is automatically introduced into the results due to scenario, parameter and

model uncertainty and parameter variability. This makes uncertainty an intrinsic part of

the RBCA process and cannot be separated from it. Various researchers (Anderson and·

Woessner, 1992; Konikow and Bredehoeft, 1992; Zheng and Bennett, 1995) have noted

the effects of this uncertainty in post audit studies. For example, Zheng and Bennett

(1995) note that the effects of uncertainty are evident in the results of post-audit studies,

that compared actual field conditions with model predictions made years earlier.

The traditional approach to dealing with uncertainties has been to make the modeling

exercise conservative through the use of extreme assumptions and point estimates, or

large safety factors. There are, however, costs to this approach as the use of extreme

assumptions and factors of safety is not without its negative consequences. An

overprotective RBCA can lead to a waste of resources. Moore and Elliott (1996) observe

that in regulatory programs in which worst-case assumptions are the norm, expensive risk

mitigation measures may be enacted for chemicals that pose little threat to human health

or the environment. Harter (1998) and the U.S. EPA (2003) also note that costly cleanup

decisions could result from umealistic or highly conservative risk assessments.

Conversely, in programs that rely on best-guess values or so-called reasonable

conservative values, chemicals having low likelihood of causing effects may be ignored.

Maxim (1989) echoes a similar observation, "the analysis of risk involves numerous

assumptions and input parameters, and if overly conservative assumptions are made for
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each parameter, the result can be a grossly exaggerated risk which defies the very essence

of risk assessment."

A better and increasingly popular approach to dealing with uncertainties is to formally

evaluate the uncertainties in the RBCA process by conducting an uncertainty analysis.

The evaluation of uncertainties does not reduce the inherent uncertainty in the modeling

process but it allows for a more accurate and realistic description of risk levels. The

ASTM (ASTM, 1995) guide for RBCA applied at Petroleum Release Sites lists the

assessment ofmodel accuracy and uncertainty as being one of the key steps in evaluating

model results. Knowledge of the expected uncertainties in the model predictions is

needed so that the risk managers can adjust their responses accordingly. More confidence

on the part of risk managers in the results of modeling outputs results in the use of less

extreme safety factors and more realistic cleanup guidelines (Reckhow, 1994; Finkel,

1994). Also an uncertainty analysis allows for the characterization of the impact of the

variability of the relevant parameters on the estimate of risk (Hamed and Bedient, 1997).

This insight and knowledge leads to a better understanding of the role of various input

parameters in the modeling process and thereby helps identify avenues for reducing the

uncertainty in the results. Thus, quantifying the uncertainty and accounting for it in the

RBCA process allows for a more consistent RBCA process that better reflects the ground

realities.

Other compelling reasons to conduct an uncertainty analysis are:
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• In environmental decision-making, uncertainty analysis is needed to avoid the

mistaken impression that model results are precise and well understood. The use

of safety factors obscures the real issues and areas of knowledge and uncertainty.

The result can be misuse of conclusions by a decision-maker who does not

understand the basis of the analysis (Raiffa, 1982). Quantification of the

uncertainty in a model will clearly outline the strengths and limitations of the

model being used and thus prevent any wrongful interpretation of its results.

• An uncertainty analysis can highlight and pinpoint the priorities for obtaining new

information, so that uncertainty can be reduced, and the decision-maker can have

increased confidence in the decision ultimately taken (Reckhow, 1994; Finkel,

1994).

The need for work in this area has been reiterated repeatedly. The National Research

Council, USA (1990) stated "the scope of research in the future must be broadened to

formalize methods of recording subjective inputs and quantifying accuracy within the

modeling process". Zheng and Bennett (1995) note that for results of predictive

simulations to be of value, uncertainties must be considered and when possible their

consequences should be addressed. The U.S. EPA has emphasized the importance of

adequately characterizing variability and uncertainty in risk assessments in several

science and policy documents. These include the 1992 U.S. Environmental Protection

Agency (EPA) Exposure Assessment Guidelines, the 1992 EPA Risk Assessment
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Council (RAC) Guidance, the 1995 EPA Policy for Risk Characterization, the EPA

Proposed Guidelines for Ecological Risk Assessment, the EPA Region 3 Technical

Guidance Manual on Risk Assessment, the EPA Region 8 Superfund Technical

Guidance, the 1994 National Academy of Sciences "Science and Judgment in Risk

Assessment," and the report by the Commission on Risk Assessment and Risk

Management (US. EPA, 1997a).

As a follow up to these activities the US. EPA issued the "Guiding Principles for Monte

Carlo Analysis" (US. EPA, 1997b). This is a policy and preliminary guidance on using

probabilistic analysis. The policy documents the US. EPA's position "that such

probabilistic analysis techniques as MC analysis, given adequate supporting data and

credible assumptions, can be viable statistical tools for analyzing variability and

uncertainty in risk assessments." The policy establishes conditions that are to be satisfied

by risk assessments that use probabilistic techniques. These conditions relate to the good

scientific practices of clarity, consistency, transparency, reproducibility, and the use of

sound methods (U.S. EPA, 1997b).

It needs to be mentioned that, though there is the need to quantify uncertainty, it is not

possible to quantitatively measure all the uncertainties associated with models and data.

The U.S. EPA recognizes this and states, "the analyst should attempt to identify the full

range of types of uncertainty impinging on an analysis and clearly disclose what set of

uncertainties the analysis attempts to represent and what it does not. Qualitative
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evaluations of uncertainty including relative ranking of the sources of uncertainty may be

an acceptable approach to uncertainty evaluation, especially when objective quantitative

measures are not available" (U.S. EPA, 1997b).

2.3.3 Incorporating Parameter Uncertainties

The issue of uncertainty analysis also has its origins in how fate and transport models are

used. There are two approaches to using models, the deterministic and the probabilistic.

The deterministic approach, also known as the point estimates approach, involves

representing model inputs as a single value. The single value used to represent data could

be its mean, median, highest value, lowest value or some other measure that might be

deemed to be representative of the parameter.

In contrast, in the probabilistic approach an attempt is made to more thoroughly

represent each data set by capturing the variability in it. Representing the input variability

as a distribution captures the data variability.

The deterministic approach to modeling is easy to implement and has been the traditional

approach to modeling. However the process of representing data by a single descriptor

results in a loss of information. The probabilistic approach on the other hand is harder to

implement as the input distributions have to be known, but the output is a better

representation of the situation being modeled. This output gives an estimate of the
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uncertainty associated with using the model. Thus the probabilistic approach to

representing data sets is intrinsically linked to uncertainty analysis.

In the published literature there ism uch comparison 0 f deterministic and probabilistic

approaches. Various researchers have emphasized the need for a probabilistic approach to

RBCA. Amongst them Paustenbach (1989), Finkel (1990) and Burmastar and Lehr

(1991) have suggested that the exposure assessment procedure could be refined if

probability density functions rather than point exposure estimates were incorporated into

the exposure analysis. Similarly Anderson and Woessner (1992) conclude that post audits

of modeling projects clearly point to the need for simulations of many different possible

scenarios. This is because the probabilistic approach places the point estimate into a full

and proper context, and provides more information to the risk managers and the public

(Finley et aI., 1992).

At the U.S. EPA workshop on MC analysis (U.S. EPA, 1996), panelists speculated that

the results of probabilistic risk assessment could conceivably lead to reduced risk

management costs. For example, when a full distribution of risk is available to risk

managers, they may be able to establish more cost-effective cleanup levels. Incremental

improvements in decision-making provided by probabilistic risk assessment versus

deterministic risk assessment could sometimes make a big difference in the real world

(U.S. EPA, 1996).
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The differences between the deterministic and probabilistic approaches are highlighted in

the following points:

• A dataset can be represented by several different point· "best estimates" (e.g.

mean, median etc.). Representing data by "best estimates" always results in a loss

of information. The loss of information is different for different "best estimates"

so "best estimates" can differ markedly from each other. This can lead to

diametrically different choices (Finkel, 1994). In contrast, probability density

outputs from a probabilistic approach present a more complete picture because no

"best estimates" are used to represent the input data.

• Point estimates are derived from combinations of exposure factors that sometimes

may be unrealistic. In contrast, in probabilistic analysis the impact of assumptions

is explicit as a full description of exposure is provided (U.S. EPA, 1996).

• Deterministic risk assessment does not account for the dependency structure

between the model input parameters. Whereas, probabilistic risk assessment not

only provides distribution shapes, but also takes into account the dependency

structure between the model input parameters (U.S. EPA, 1996).

• Deterministic risk assessment tends to focus on known data and ignore other

influential factors. A probabilistic risk assessment, on the other hand, ideally will
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at least consider, clearly acknowledge, and attempt to capture as many influential

factors as possible (U.S. EPA, 1996).

• Probabilistic methods also have an advantage over deterministic methods in the

ranking of sites according to risk. The ranking of waste areas using deterministic

methods yields disparate rankings because risk assessment results are very user­

specific and depend on the user's selection of models, parameter values and

uncertainty about important model parameters. This results in large

inconsistencies in the amount of conservatism used to quantify model parameters

for specific contaminant and exposure pathways. Through the use of uncertainty

analyses on the risk assessment of the waste sites, it is possible to rank the waste

areas in a more reliable manner (Shevenell and Hoffman, 1993).

The probabilistic approach is not without its shortcomings. There is the potential for

misuse and errors. A possible error can be inaccurate characterization of the input data.

This can lead to a faulty probabilistic analysis. Another possible source of error is when

correlations between input variables are ignored and modelers assume independence

between variables that are mechanistically related for the sake of mathematical

convenience (Scott and Tucker, 2003). Conversely it is important for risk managers to be

wary of attaching a false sense of certainty to the results of a probabilistic analysis (U.S.

EPA, 1996).
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The probabilistic approach is generally harder to implement and is computationally more

intensive. This is especially true for complex fate and transport models. Typically a large

amount of data is required to characterize properly the distribution of the input

parameters. This kind of data is not always available for all inputs especially in the

environmental engineering area. Deriving from this is the concern that the value added by

probabilistic analysis techniques may not always be enough to justify the additional costs

compared to point estimates (U.S. EPA, 1996). In recognition of this the U.S. EPA

(2003) recommends that uncertainty analysis be used only on projects where the risk

estimates are at or slightly below the acceptable level of risk and where remedial actions

may require substantial resources. This makes Tier 3 RBCA situations appropriate

candidates for uncertainty analysis.

2.4 Uncertainty Analysis

2.4.1 Monte Carlo (MC)

Uncertainty analysis techniques can be broadly classified into two groups; analytical

techniques and Monte Carlo (MC) simulation based techniques.

Analytical methods are very popular because they are easy to implement and are not

computationally intensive. Hamed and Bedient (1997) evaluated the performance of

computational methods for the assessment of risk from ground water contamination and

they noted that first and second order reliability methods could be of major benefit in
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probabilistic analysis in risk assessment. However the application of moment techniques

is limited to linear or nearly linear systems, for which the coefficient of variation of

model parameters is much less than one (Peck et aI., 1988). Thus when the transport

equations are complex and non-linear, first and second order reliability methods (FORM

and SORM) and other analytical methods cannot be applied in some cases and in other

cases are not very easy to apply because the problem becomes computationally complex.

MC refers to the traditional method of sampling random variables in simulation

modeling. Samples are chosen completely randomly across the range of the distribution,

thus necessitating large numbers of samples for convergence for highly skewed or long

tailed distributions (Palisade, 1992). The earliest documented uses of random sampling

occurred in the late 1700s, when French scientists used the technique to define a solution

to an integral (U.S. EPA, 1996). The term "Monte Carlo" was introduced by von

Neumann and Ulam during World War II, as a code word for secret work at Los Alamos.

The MC method was then applied to problems related to the atomic bomb (Rubinstein,

1981 ).

In contrast to analytical methods, the MC analysis method is not limited by the non­

linearity of the transport equations. It is a robust method and has been proposed by many

as the method of choice. Examples include the work of Finkel (1990), Meeks and

Salhotra (1990), Ahlfeld (1991), Burmaster and Lehr (1991), Paustenbach et aL (1991),

Salhotra et ai. (1991), McKone and Bogen (1991), Finley et al. (1992), Thompson et al.

30



(1992), Keenan et ai. (1994), Goodrich and McCord (1995), Bright et. ai. (2002) and

Brewer et. ai. (2003). As a result random sampling based MC (RS-MC) simulation is one

of the most widely used methodologies to account for parameter variability in

groundwater flow and contaminant transport. It is easy to program and apply, amenable

to analytical and numerical models, and it is theoretically convergent (i.e. RS-MC output

statistics will converge if a sufficiently large sample RS size is used). A statistical

advantage of random sampling is that it produces unbiased estimates of the mean and

variance of the output variables (Saltelli et. aI., 2004).

A major disadvantage of RS-MC, however, is that it is very computationally intensive

when the simulated event is of very low probability (Hamed and Bedient, 1997). It is this

computational intensiveness of RS-MC that has lead to a lot of research into examining

whether the results of the RS-MC method could be achieved by less intensive analytical

methods. However where analytical methods cannot be used, RS-MC is usually the

method ofchoice.

Another shortcoming of RS-MC is that for complex transport problems in large

heterogeneous domains (Freeze et aI., 1990) or for high order systems (Helton and Davis,

2000) RS-MC analysis may be computationally prohibitive especially since it is

important to ensure that the RS-MC simulations converge. If the number of RS-MC

simulations are less than those needed for convergence RS-MC simulation can potentially

over and under sample from various points of the distribution (U.S. EPA, 2003).
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There are various modifications of the RS-MC technique that have been developed over

the years with the aim of reducing the computational effort of the RS-MC technique.

These modifications work on modifying the simulation procedure. Modifying the

sampling techniques that are used to select realizations (possible values) of the various

parameters from their probabilistic distributions can reduce the computational intensity of

the RS-MC method by minimizing the required sample size. The procedures are

generally c aIled variance reduction techniques. Variance reduction can b e viewed as a

means to use the known characteristics of a situation to reduce the required sample size.

This makes the efficiency of variance reduction techniques directly proportional to what

is known about a problem (Rubinstein, 1981). Since the various variance reduction

techniques are related they are not always distinct and there is a lot of overlapping. They

have been classified in many different ways by different researchers. McGrath and Irving

(1975) have classified the various variance reduction techniques as listed in Table 2.3.

In addition to the above techniques some other techniques have been suggested for

reducing the number of realizations required by the MC method. Among them are the

Rackwitz-fiessler algorithm (Veneziano et al., 1989) and the Gauss-Hermite Scheme

(Levy, 1993).

Ofthe above listed techniques one of the best-known techniques is stratified sampling. It

has been recommended, amongst others, by Hillier and Lieberman (1990), and it has been

described as a combination of the systematic and importance sampling schemes. The
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Table 2.3. Categorization of Variance Reduction Techniques

Category Category Narne Variance Reduction Techniques

1 Modification of the Sampling Process Importance sampling

Russian roulette and splitting

Systematic sampling

Stratified sampling

2 Use of Analytical Equivalence Expected values

Statistical estimation

Correlated sampling

History reanalysis

Control variates

Antithetic variates

Regression

3 Specialized Techniques Sequential sampling

Adjoint function

Transformations

Orthonormal functions

Conditional Monte Carlo
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systematic sampling technique works by modifying the selection from the sample space

in a structured manner. The importance sampling technique works by concentrating the

distribution of the sample points in the parts of the region that are of most "importance"

instead of spreading them out evenly (Marshall, 1956). Under this scheme the sampling

distributions that would be used in the direct simulation are replaced with ones that force

the sampling into more interesting or important regions. Thus the sampling is structured

such that the more important regions 0 f interest are sampled more frequently. Lu and

Zhang (2003) have shown when an importance density function is chosen appropriately,

importance sampling techniques may be orders of magnitude more efficient than RS-MC

simulations for flow and transport modeling in porous media. However importance

sampling is more appropriate for r are events (i.e. high quantiles) and requires detailed

prior knowledge of a model's sensitivity. The stratified sampling technique does not

require detailed prior knowledge of a model's sensitivity and works by first dividing the

input distribution space into strata and then directs the sampling to these strata. This

works to ensure that the input distribution space is covered more quickly.

Alternatively stratified sampling may also be viewed as a special case of systematic

sampling where optimal distribution of each distribution of samples is attempted. It tends

to force convergence of a sampled distribution in fewer samples (Palisade, 1992).
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2.4.2 Latin Hypercube Sampling (LHS)

One stratified sampling technique that has been very successfully used is Latin

Hypercube Sampling (LHS). LHS is a relatively new stratified sampling technique used

in simulation modeling (Palisade, 1992). It was developed by McKay, Conover, and

Beckman (1979). It uses stratified sampling without replacement to reduce variance

(Helton and Davis, 2003). A detailed description of the method and its application for

uncertainty analysis of complex systems, which has been in use in Sandia National

Laboratories since 1975, is available in Helton and Davis (2003).

Using stratified sampling techniques like LHS instead of random sampling, can reduce

the computational intensity 0 fMC a nalysis, as fewer samples are needed to cover the

whole range of possible realizations. Helton and Davis (2000) state that compared to

random sampling which may require 1000's or 1O,000's of samples, LHS can often be

completed using only 10's to 100's of samples. LHS is generally recommended over

simple random sampling when the model is complex or when time and resource

constraints are an issue (U.S. EPA, 1997b). The LHS forces the MC sampling to select

values over the whole range of a model parameter, thereby reducing the total number of

MC samples required to preserve the probability distributions. This significantly

improves the computational efficiency of the MC analysis. There is much discussion to

be found in published literature on the benefits of using LHS-MC versus RS-MC

sampling. The U.S. EPA (2003) draws upon various sources to offer the following points

regarding the benefits and limitations ofLHS from a computational efficiency viewpoint:
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• A primary benefit of LHS is that the technique ensures each of the inputs is

represented in a fully stratified manner, no matter which might tum out to be

important (Campolongo et aI., 2000; Helton and Davis, 2003; Saltelli et. aI.,

2004).

• Desirable features of LHS include [comparatively] unbiased estimates of means

and distribution functions [for small sample sizes] (McKay et aI., 1979; Helton

and Davis, 2000, 2003).

• When the output is a monotonic function of its inputs, LHS is proven to be better

than random sampling in describing the mean and the population distribution

function (McKay et aI., 1979; Campolongo et aI., 2000; Helton and Davis, 2003).

• Asymptotically, LHS is proven to be better than random sampling in that it

provides an estimator (of the expectation of the output function) with lower

variance. The closer the output function is to being additive (i.e. linear) in its

input quantities, the greater is the reduction in variance (Stein, 1987; Campolongo

et aI., 2000; Helton and Davis, 2003; Saltelli et. aI., 2004).

• Although LHS can sometimes still be more efficient, in cases dealing with non ­

additive and non-monotonic input functions, LHS has been shown to be

36



equivalent to or worse than random sampling (Stein, 1987; Camoplongo et aI.,

2000).

• LHS is particularly practical and useful in dealing with the aspect of

computational limitations in performing random sampling for long running

models (e.g. single model run of hours, days, etc.). If computational capacity is

sufficient to handle random sampling, there is little reason to use LHS (Helton

and Davis, 2003).

• Due to their computational complexity and expense, long-running models do not

constitute convenient vehicles for comparing differences between random

sampling and LHS (Helton and Davis, 2003).

• Another aspect of LHS is that it performs better than random sampling when the

output is dominated by a few components of the input factors (Camoplongo et aI.,

2000; Saltelli et. aI., 2004).

While LHS can impart bias in estimates of output distribution statistics (U.S. EPA, 2003;

Saltelli et. aI., 2004), in many cases the bias maybe found to be insignificant (Helton and

Davis, 2003). Further, LHS is typically not to be used when the estimation of high

fractiles (e.g. 0.99, 0.999 etc) is required. The more subjective stratified sampling
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technique" importance sampling" is used for such situations (Helton and Davis, 2 000;

Helton and Davis, 2003).

While no comprehensive RS-MC or LHS-MC uncertainty study of a complex Tier 3

RBCA multi-phase and multi-component fate and transport model or scenario has been

reported in literature, a RS-MC uncertainty analysis using MODFLOW, MODPATH and

MT3DMS of two plumes (a trichloroethene (TCE) plume and a strontium-90 plume) in

South Carolina has been reported by Brewer et. al. (2003). The uncertainty analyses of

the two plumes are the most comprehensive RS-MC uncertainty analyses of groundwater

fate and transport model reported in published literature. However the study does not

advance scientific knowledge as the study is specific to the Savannah River Site being

studied; does not account for correlations between input parameters; and does not

evaluate any realization reducing techniques. Consequently while the analyses for the two

plumes were both successful at assisting project decision in managing uncertainty for the

specific sites, the results do not add to scientific knowledge and cannot be used to

develop any general framework that will help better quantify parametric uncertainties.

2.4.3 Response Surface Model (RSM)

For computationally complex models it is sometimes useful to replace the model with an

approximate version just for the purpose of uncertainty analysis. In this "Replacement

Model" technique, a replacement model is used as a proxy for the original model and is

then subjected to the uncertainty analysis that the original model would have been
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subjected to. This approach of uncertainty analysis helps to overcome the computational

intensity and complexity of applying the Me approach to the original model. For

complex models with outputs that have spatial and temporal components the replacement

models are usually only valid for a specific spatial location and a specific time and are

used for the uncertainty analysis ofmodel results for only that specific location and time.

A Response Surface Model (RSM) is a commonly used replacement model. RSM is a

collection of mathematical and statistical techniques that are useful for modeling and

analysis ofproblems in which a response of interest is influenced by several variables and

the objective is to optimize this response (Montgomery, 2001). The mathematical

expression that models the response of interest is called the response surface (RS) model.

The use ofRSM in the uncertainty and sensitivity analysis of complex models is aimed at

deriving a RS model to be used as a substitute for the complex model. Responses surfaces

are fitted on the responses generated by a few selected simulations ofthe complex model.

If a fitted surface is an adequate approximation of the true response function, then

analysis of the fitted surface will be approximately equivalent to analysis of the actual

system (Montgomery, 2001).

To ensure the effective computation of model parameters for the RS the model

simulations are planned using experimental design based RS designs. The RS designs are

typically factorial designs as factorial designs are widely used in experiments involving
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several factors where it is necessary to investigate the joint effects of the factors on a

response variable.

The most popular RS design is the central composite design (CCD), which was

introduced by Box and Wilson (1951). The CCD is an efficient design that is ideal for

sequential experimentation and allows a reasonable amount for testing lack of fit while

not involving an unusually large number of design points (Montgomery, 2001).

There are two parameters that need to be specified in the design: the distance of the axial

points and the number of center points. For computer simulation experiments, only one

center point is specified since simulated responses are always the same. The choice of the

axial distance depends on the degree of rotatability desired in the design. A rotatable

design is one in which the variance of the predicted response is the same at all points that

are the same distance from the design center (Montgomery, 2001). Designs with

complete rotatability are called spherical CCD. A spherical CCD requires each factor to

be varied over five levels; two axial points, two factorial points and one center point.

While rotatability is usually a desired property, exact rotatability is not important for

having a good design and there are situations when the region of interest is cuboidal

rather than spherical (Montgomery, 2001). A cuboidal CCD, where the axial distance is

equal to one, is called the face centered CCD. It is a non-rotatable design and requires

only three levels of each factor.
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The CCD may use full factorial or fractional factorial (ofresolution V) design points.

Fractional factorial designs are used when resources or the complexity of a model limit

the number of experiments or simulations that can be executed. They are however

efficient and can be used to obtain information on the main effects and low order

interactions.

After a RS model is fitted on the responses generated by selected simulations of the

complex model, the RS model is evaluated to meet parametric requirements;

(a) Compliance with least squares regression assumptions. Examining the normal

probability plot of the residuals checks the normality assumption. The residuals

are also plotted against the predicted responses to verify that the variance of the

original observations is constant. Residuals are similarly plotted against the run

order and each of the independent variables. These are examined for non­

randomness, as non-randomness would indicate model inadequacy (Myers and

Montgomery, 1995).

(b) Statistical significance using ANOVA. In addition to the ANOVA, other model

diagnostic statistics (R2
, adjusted R2

, Predicted R2 and Adequate Precision

statistic) are used to evaluate the fit and appropriateness of the RS.

41



The RSM approach has been used for uncertainty analysis of some very large computer

codes in the nuclear reactor field (Vario, 1982). No attempt to replace a complex multi­

phase and multi-component fate and transport model by a response surface model for the

purpose ofuncertainty analysis has been reported in literature.

When dealing with complex models t hat are computationally intensive replacing them

with a RS has several advantages. There is some literature available (Cox and

Baybutt,1981; Iman and Helton, 1988) on the comparison of RS-MC or LHS-MC and

RSM-MC. Due to the different models used in the studies, Cox and Baybutt (1981)

concluded that in comparison to RS-MC the RSM-MC is more general and flexible while

Iman and Helton (1988) rated LHS-MC as being more flexible and adaptable. This

demonstrates that while the two methods have their distinct advantages and

disadvantages the applicability of the two methods is model specific.

2.4.4 Neural Network (NN)

Another replacement model could be a Neural Network (NN) derived replacement model.

NNs have their origins in 1940s, when the first mathematical model of a biological

neuron was published by Warren McCulloch and Walter Pitts in 1943 (Picton, 1994).

NNs are an attempt at modeling the information processing capabilities of nervous

systems (Rojas, 1996). NNs work on the principle of pattern recognition and

classification and the basic function of NNs is to produce an output pattern when

presented with an input pattern (Picton, 1994). A NN learns from a set of input and
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output patterns (called the training set) and generalizes this training to gIVe correct

responses for other similar input pattern sets that the NN has not been shown before.

NN are called a network because it is a network of interconnected elements. The basic

building block of neural network technology is the simulated neuron, which is depicted in

Figure 2.1 as a black circle. The neurons are connected by weights, depicted as lines in

Figure 2.1, which are applied to values passed from one neuron to the next. A group of

neurons is called a slab. Neurons are also grouped into input or output layers on the basis

of whether they are connected to the input or output patterns. Neurons in between the

input and output layers are in the hidden layer (s). A layer may contain one or more slabs

of neurons (Ward Systems Group Inc., 1993).

A network "learns" by adjusting the interconnection weights between layers. The

answers the network is producing are repeatedly compared with the testing set, and each

time the connecting weights are adjusted slightly in the direction of the correct answers.

Eventually, if the problem can be learned, a stable set of weights adaptively evolves and

will produce good answers for all of the sample decisions or predictions (Ward Systems

Group Inc., 1993).

NNs can be implemented using different architectures or algorithms. A learning

algorithm is an adaptive method by which a network of computing units self organizes to

implement desired behavior (Rojas, 1996). Some examples ofNN architectures are Back
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Figure 2.1 Neural Network Structure (adapted from Ward Systems Group Inc.,

1993)
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propagation Neural Networks (BPNN) and General Regression Neural Networks

(GRNN).

Back propagation is a gradient descent system that tries to minimize the mean squared

error of the system by moving down the gradient of the error curve (Rojas, 1996). BPNN

are used for the vast majority of working neural network applications and are known for

their ability to generalize well on a wide variety of problems (Ward Systems Group Inc.,

1993). NeuroShell 2 offers several different variations of back propagation networks: (a)

each layer connected to the immediately previous layer (with either 3, 4, or 5 layers); (b)

each layer connected to every previous layer (with either 3, 4, or 5 layers); (c) recurrent

networks with dampened feedback; and (d) Ward Networks. Ward Networks are three

different BPNN architectures with multiple hidden layers invented by Ward Systems

Group (Ward Systems Group Inc., 1993). In Ward Networks different hidden slabs are

given different activation functions.

GRNN are known for their ability to train quickly on sparse data sets. GRNN is a type of

supervised network that is useful for continuous function approximation and is able to

produce continuous valued outputs. GRNN networks evaluate each output independently

of the other outputs and thus may be more accurate than BPNN when there are multiple

outputs. GRNN is a three-layer network where there must be one hidden neuron for each

training pattern (Ward Systems Group Inc., 1993).
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NN have been used by a number of researchers for a variety of groundwater applications.

Najjar and Basheer (1995) successfully used NN with backpropagation to contour map

the spatial distribution ofboron in an aquifer due to contamination from a chemical waste

site. Morshed and Kaluarachchi (1998) developed a one dimensional unsaturated flow

and transport scenario and used backpropagation NN to simulate the effects of specific

input parameters. Tansel et. al. (1999) also used NN to develop subsurface contaminant

profiles with limited data from monitoring studies conducted for small potable water

wells in Dade County, Florida. Krom and Rosjerg (2000) investigated the use of

backpropagation NN as a tool for the simulation of contaminant loss and recovery in

three-dimensional heterogeneous groundwater flow and contaminant transport. Variable

pumping withdrawal rates were used as inputs to the NN. Hassan and Hamed (2001) used

NN to map the relationship between particle trajectories in a two dimensional domain and

the physical properties of the domain. Solute mass flux and mean concentrations

predicted by the trained network agreed closely with results from RS-MC simulations.

NN have also been used to identify non-point (from farming) contamination flux to

groundwater inversely from monitored data (Hiramatsu et. aI., 2001).

However no attempt to replace a complex multi-phase and multi-component fate and

transport model by a NN model for the purpose of uncertainty analysis has been reported

in published literature. The use of NN to replace a model for the purposes of uncertainty

analysis has been reported by Zou et. aI. (2002) but this application was for uncertainty
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and risk analysis of a phosphorous water quality m ode! for the Tridelphia reservoir in

Maryland.

2.4.5 Selecting Uncertainty Analysis Techniques

The review presented in the previous section illustrates that the choice of which

probabilistic approach is appropriate is clearly model specific. While generalizations can

be made as to which approach would be best for a given model based on the model type

(linear, complex, periodic etc.) the performance of any given uncertainty analysis

technique for complex models cannot be evaluated until the technique is actually applied

to the model.

Analytical methods cannot be implemented for non-linear and relatively complex models

such as MOFAT. Model runs of MOFAT can run into hours so a RS-MC exercise with

10,000 random samples is neither practical nor feasible for most Tier 3 RBCA

investigations. In the interest of computational efficiency, the pairing of MC with

stratified sampling (LHS) or with a replacement model (RSM or NN) needs to be

evaluated for the development of an uncertainty analysis framework for MOFAT. This

evaluation will be from the twin perspectives of accuracy and efficiency. Based on this

literature review the applicable uncertainty analysis techniques for this study are RS­

MC, LHS-MC, RSM-MC or NN-MC. Within NN-MC both BPNN and GRNN are

applicable architectures for this study.
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A detailed elaboration of the implementation and evaluation of these uncertainty analysis

techniques within this research study is presented in Chapter 4.

2.5 Sensitivity Analysis

Sensitivity analysis is the study ofhow the variation in the 0 utput 0 f a model can b e

apportioned either qualitatively or quantitatively to different sources of variation (Saltelli,

2000). Sensitivity analysis are conducted for various reasons including the need to

determine (Hamby, 1994; Saltelli et. aI., 2004):

1. Which inputs correlate highly with other inputs.

2. Which inputs contribute most to output variability.

3. Which parameters require additional research for strengthening the knowledge

base thereby reducing output uncertainty.

4. Once the model is in use what consequence result from changing a given input

parameter.

S. Which inputs interact with each other.

Sensitivity analysis is closely linked to uncertainty analysis. By providing an

understanding of how a model responds to changes in input parameters, sensitivity

analysis helps to foster an increased level of confidence in the model and its predictions

(Saltelli, 2000). Conversely, it also identifies parameters for uncertainty analysis (Spitz
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and Moreno, 1996). The identification of important input parameters driving most of the

variation in the output is also a means of quality assurance (Saltelli et. aI., 2004). From a

calibration perspective, sensitivity analysis is important for identifying the elements that

are mostly responsible for model realizations in the acceptable range (Saltelli et. aI.,

2004).

2.5.1 Techniques

There are several publications on sensitivity analysis techniques. Hamby's (1994) review

of techniques for parameter sensitivity analysis for environmental models is a

comprehensive review of more than a dozen techniques. The U.S. EPA's workshop (U.S.

EPA, 1996) on Me analysis also reviewed some sensitivity analysis techniques. Saltelli

et. aI. (2000) present a comprehensive guide to sensitivity analysis techniques and

applications, while Saltelli et. aI. (2004) present a practitioners guide to sensitivity

analysis of scientific models.

Sensitivity analysis techniques are classified in different ways by different researchers.

They may be generally grouped into the following categories:

• Differential Sensitivity Analysis

• Reliability Techniques

• Variance Based Methods

• Response Surface Methodology
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• Sampling Based Methods

Differential sensitivity analysis methods are ideally suited for homogeneous systems and

they work on the principle of approximating a model by a Taylor series that is then used

as a surrogate for the original model in sensitivity studies (Campolongo et aI., 2000).

Differential sensitivity analysis techniques are only valid for small variability in

parameter values and require that the partials be recalculated for each change in the base­

case scenario (U.S. EPA, 1997b).

Reliability techniques are approximate methods. First Order and Second Order reliability

methods (FORM and SORM) seek to find a point in the space of all possible realizations

of the uncertain variables that defines the likely p oint of failure. Once the most likely

failure point has been determined using an optimization scheme, a first or second order

surface is fitted to that point to evaluate a probability of failure (Cawlfield, 2000).

Variance based methods work on the principle of using variance as an indicator of input

parameter importance. These include the methods of correlation ratio, Sobol, and Fourier

amplitude sensitivity test (FAST). The concept of variance also underlies other

techniques such as standardized regression coefficients and correlation coefficients (Chan

et. aI., 2000).
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Response surface methodology methods work on the principle of approximating a model

by a response surface. These methods usually also include factorial designs, design of

experiments and regression analysis as these are often used in conjunction with response

surfaces. Regression analysis is commonly used to investigate parameter sensitivity and

to build response surfaces that approximate complex models (Hamby, 1994).

Sampling based methods, also known as Monte Carlo analysis techniques, are based on

generating multiple realizations of model outputs and then using the outputs for

sensitivity analysis. A number of sensitivity analysis procedures can be used to examine

the outputs from the sampling based technique. These include scatter plots, pattern

identification, correlation coefficients, and regression analysis. A detailed comparison of

10 sampling based statistical measures for sensitivity analysis is presented in Helton and

Davis (2002). The methods compared are linear (correlation coefficients, partial

correlation coefficients and standardized regression coefficients), rank transformation

based (rank correlation coefficients, partial rank correlation coefficients, standardized

rank regression coefficients), and non-random pattern detection (common means,

common locations, common medians, and statistical independence) based methods.

Scatter plots are the simplest sensitivity analysis technique (Saltelli et. aI., 2004). When

the relationships are nonlinear, scatter plots of the output against each of the model inputs

are a very effective tool for identifying sensitivities (U.S. EPA, 1997b). Patterns and

dependencies in scatter plots are usually identified visually. However Kleijnen and
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Helton (1999a) present a reVIew and companson of statistical techniques that are

particularly relevant for identifying patterns in scatter plots generated in LHS-MC and

RS-MC sensitivity analyses. These pattern identification techniques are based on

attempts to detect increasingly complex patterns in scatter plots and correlations between

input and output through the identification of:

• Linear relationships with correlation coefficients,

• Monotonic relationships with rank correlation coefficients,

• Trends in central tendency as defined by means, medians and the Kruskal Wallace

statistic,

• Trends in variability as defined by variances and inter-quartile ranges, and

• Deviations from randomness as defined by the chi-square statistic.

Kleijnen and Helton (1999a, 1999b) recommend using a sequence of the above tests as

there is a high probability that at least one of the above tests will be appropriate for a

given dependent variable and will correctly identify the factors affecting this variable.

They further conclude that the smaller samples associated with LHS-MC are better for

identifying important variables as with increasing sample size there is a greater resolution

of the effects associated with less important variables.

Widely used measures for correlation analysis include the linear correlation coefficient

(also called the product-moment correlation coefficient or Pearson's correlation
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coefficient), and such non-parametric measures as Spearman rank-order correlation

coefficient, and Kendall's tau. When input parameters are correlated the correlation

analysis of outputs is usually done using the Partial Correlation Coefficient (PCC). The

PCC gives the strength of relationship between the inputs and outputs after adjusting for

the effect of correlations between the input parameters (Saltelli et. aI., 2004). The non­

parametric equivalent of the PCC is the Partial Rank Correlation Coefficient (PRCC).

The PRCC is the PCC test computed on ranks (Saltelli et. aI., 2004). When the data are

nonlinear, non-parametric correlation is generally considered to be more robust than

linear correlation (U.S. EPA, 1997a).

2.5.2 Selecting Sensitivity Analysis Techniques

The different sensitivity analysis techniques presented in the previous section are valid

for different situations. Each technique has its strengths and weaknesses and the choice of

which technique to use is a function of the problem that is being addressed, the

characteristics of the model under study, and the computational cost that the investigator

can afford (Saltelli, 2000).

In this research study, the problem being addressed is the development of a framework

for uncertainty and sensitivity analysis of MOFAT in the context of Tier 3 RBCA of

petroleum release sites. M OFAT is a complex model that is computationally intensive

and has correlated inputs (e.g. hydraulic conductivity is positively correlated with the van

Genuchten water retention parameters a and n). Correlation between input parameters is
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a critical issue in sensitivity analysis (Uhl and Sullivan, 1982). Correlation between input

parameters strongly affects the applicability of many sensitivity analysis techniques and

this has to be taken into account when selecting an appropriate technique.

Practitioners involved in the analysis of risk most often use sampling based MC methods

in conjunction with various sampling strategies for sensitivity analysis (Saltelli et. aI.,

2004). Me procedure results are ideally suited for sensitivity studies. They are widely

used as a part of sensitivity studies to develop a mapping (scatter plot) between uncertain

model inputs and the associated model results that then can be analyzed to identify

dependencies between the inputs and outputs (Kleijnen and Helton, 1999a). As discussed

in Section 2.4.2, and with these considerations, sampling based sensitivity analysis was

chosen for this research study.

A major advantage of sampling based sensitivity analysis is that when used with

sampling based uncertainty analysis the same simulations can be used for both the

uncertainty and sensitivity analysis. Other advantages are (Helton and Davis, 2000):

1. Conceptual simplicity

2. Ease and flexibility in adaptation to different analysis

3. Stratification over the range of each uncertain variable

4. Direct estimation of model uncertainty through cdfs. Can be used directly for

uncertainty analysis.
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5. Availability of a wide variety of sensitivity analysis techniques such as scatter

plots and correlation coefficients

6. The correlation structure of the inputs is incorporated into the sampling process

A detailed elaboration of the implementation of sampling based sensitivity analysis

within this research study is presented in Chapter 5.
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Chapter 3. Study Formulation and Implementation

3.1 Introduction

A parametric uncertainty analysis simulation study is as complex and intricate as any

field or laboratory study and requires careful planning and implementation to ensure that

the study objectives are met. The computer workstation used for this study was a Compaq

Alphaserver DSIO running TRu64 Unix 5.1.

This chapter presents the formulation and implementation of this study. The components

of the study have been presented earlier in Figure 1.1. This chapter includes a description

of the screening and selection of the numerical fate and transport model. The model

selected for this study is described along with its development and validation history. The

governing equations of the selected model are presented to identify input parameters and

to identify the type and degree of uncertainty associated with each of these input

parameters. The use of this analysis to identify input parameters that were to be modeled

as variable inputs in the parametric uncertainty study is also described.
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The chapter describes in detail how parametric variability and correlations, for

parameters being modeled as variable inputs, were defined using the best available data.

A comprehensive soil properties database was used to ensure that parametric uncertainty

was at a minimum and that consequently parametric variability and correlations were

accurately captured. Similarly a parametric uncertainty analysis requires meticulous

design of a simulation scenario that minimizes other sources of variability and

uncertainty. The design of such a simulation scenario based on a review of the model's

validation studies is also described.

Random Sampling based Monte Carlo (RS-MC) of a complex model is a computationally

intensive task and is typically very time intensive. The manual execution of a RS-MC

uncertainty analysis is neither practical nor is it efficient. R S-MC uncertainty analysis

requires the ability to process input files in a semi automated mode using batch

processing. It also requires the use of appropriate pre and post-processing tools to

assemble input files and to process output files. To accomplish this, the modification of

the selected model code for Monte Carlo simulation was undertaken and a set of pre and

post processing tools were developed. These are described in this chapter.

3.2 Model Selection

When selecting a model for a study or application, the primary features of the model such

as the type of contaminants to be modeled and the transport mechanism, need to be
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examined to ensure that the model is appropriate (Clark and Richardson, 1998). To select

a model for this study, four criteria were used to screen models. The first criterion was

that the model was to be applicable to petroleum release sites. For a model to be

applicable for petroleum release it should be a finite element code capable of simulating

multi-phase multi-component flow and transport. Johnson and Marx (2003) have

demonstrated that the simulation of a mixture through the use of pure component

modeling will not always provide accurate predictions. T hey a Iso note that 0 ne 0 f the

most difficult problems in consequence modeling is the prediction of the multi-phase

behavior of a multi-component mixture like petroleum. Thus, the use of a multi-phase

multi-component flow and transport model for petroleum release sites is crucial for

ensuring accurate exposure assessments. The preference 0 f finite element models 0 ver

finite difference models is based on the strengths that finite element models have over

finite difference models for fate and transport modeling. These have been explained

earlier in Section 2.2.

The second criterion was that the model was to be a public domain code with detailed

documentation. A public domain code allows scientific scrutiny of the model since public

domain codes are reviewed and studied by many researchers. This ensures that models

have been reviewed for coding and numerical errors. The second criterion was also

necessary to allow the model's input and output modules to be modified so as to develop

a MC version of the model to allow Me analysis of the model. Most numerical models

are compiled with input and output modules that are not suitable for MC analysis. For
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public domain codes model documentation tends to be more detailed since there is no

effort to protect proprietary components. Model documentation is crucial for

understanding of the input parameters and how they are used within the model (Clark and

Richardson, 1998).

The third criterion required the model to be both peer reviewed and validated so that

experts had screened the model for any errors in model concepts, model structure and

theory. This was aimed at ensuring that there were no mathematical and conceptual

errors associated with the model. Conceptual errors are the most difficult to identify

(Spitz and Moreno, 1996) and review by peers is the most efficient way to identify them.

Similarly code errors are the most difficult to solve (Spitz and Moreno, 1996) and

validation studies are the most efficient way to identify them. Validation has been

described by Spitz and Moreno (1996) as " a shortcut to gaining greater confidence in

model predictions in the absence of uncertainty analysis". These criteria are summarized

in Table 3.1.

The fourth criterion was that the model had been identified as a Tier 3 RBCA fate and

transport model in the 1998 "ASTM RBCA Fate and Transport Models: Compendium

and S election Guidance". This comprehensive screening a fmodels u sed in the RBCA

process was utilized to ensure that the model selected for this study was a model that was

actually being used as a Tier 3 RBCA model. At the time of initiation of this study this

was the most comprehensive model selection guidance available.
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Table 3.1. Criteria for Selecting a NAPL Simulation Model

Criteria Remarks
Applicability to Petroleum Contaminated The model should be a fInite element code
sites capable of simulating multi-phase multi-

component flow and transport.
Public Domain Code with Detailed The model should have an open source
Documentation code available for scientifIc scrutiny and

possible modifIcation if needed.
Validated and Peer Reviewed The model should have been validated and

the results published III peer-reviewed
publications.

IdentifIed as a Tier RBCA model in ASTM The model should have established use as a
RBCA Fate and Transport Models: Tier 3 RBCA model.
Compendium and Selection Guidance
(ASTM, 1998).
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Following a preliminary literature review (Figure 1.1), many candidate models were

screened and evaluated against the criteria in Table 3.1. The results of the evaluation are

summarized in Table 3.2. Based on the evaluation presented in Table 3.2, MOFAT was

selected as the candidate model for this study. MOFAT is a two-dimensional finite

element U.S. EPA model for coupled multi-phase flow and multi-component transport in

planar or radially symmetric vertical sections.

The program can simulate flow only or coupled flow and transport. The flow module can

be used to analyze two-phase flow of water and NAPL or explicit three-phase flow of

water, NAPL and gas at variable pressure. The transport module can handle up to five

non-inert chemical components which partition among water, NAPL, gas and solid

phases. Governing equations are solved using an efficient upstream- weighted finite

element scheme. MOFAT achieves a high degree of computational efficiency by using an

adaptive solution domain algorithm that confines the mathematical solution domain to a

sub-domain within which transient oil flow occurs. Three phase permeability-saturation­

capillary pressure relations are defined by an extension of the van Genuchten model,

which considers effects of oil entrapment (Katyal et. aI., 1991).

Required input for flow analyses consists of initial conditions, soil hydraulic properties,

fluid properties, time integration parameters, boundary condition data and mesh

geometry. For transport analyses, additional input data are porous media dispersivities,

initial water phase concentrations, equilibrium partition coefficients, component
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Table 3.2. Summary Results ofthe Model Evaluation

Model Results Primary Reason for Screening Out
Bioplume III Screened Out Did not meet Criterion 2. It is Windows based

only and cannot be modified to run on Unix for
MC analysis.

BioSVE Screened Out Did not meet Criterion 2 and 4. Limited
simulation capability m terms of simulating
multi-phase multi-component flow and transport.

MT3D Screened Out Did not meet Criterion 2. Limited simulation
capability in terms of simulating multi-phase
multi-component flow and transport.

MARS Screened Out Did not meet Criterion 2 and 4. Code IS not
available in the public domain.

BIOSLURP Screened Out Did not meet Criterion 2 and 4. Code IS not
available in the public domain.

MODFLOW Screened Out Did not meet Criterion 1 and 4. RT3D (1999) was
coupled with publicly released after the ASTM model selection
RT3D guidance was published In 1998. While a

promising model, when this study was initiated in
1999 RT3D was a recently released model and
was in a state of improvement as a revised
version was anticipated. Consequently this was
screened out. However, as of the time of writing
this thesis in 2005, MODFLOW with RT3D -is a
recognized international standard for ground
water modeling at petroleum release sites.

MOFAT Was Not Meets all Criteria
Screened Out

NAPL Simulator Screened Out Did not fully meet Criterion 3. Also did not meet
Criterion 4. A promlSlng candidate model.
However at the time of initiation of this study the
model was undergoing revision to improve its
computational efficiency and had yet to be tested
at field scale.

MOC Screened Out Did not meet Criterion 1. It is not applicable for
all complex boundary situations due to its being a
finite difference model.

T2VOC Screened Out Did not meet Criterion 4. Belongs to the TOUGH
family of codes. A new TOUGH code TMVOC
was released in 2002. TOUGH codes can be used
for non-rectangular discretization as they use the
Integrated Finite Difference Method.
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diffusion coefficients, first-order decay coefficients, mass transfer coefficients (for non

equilibrium analyses) and boundary condition data.

Time-dependent boundary conditions for the flow analysis may involve user-specified

phase heads at nodes 0 r phase fluxes a long a boundary se gment with z ero-flux as the

default condition. For transport analyses, initial conditions are specified in terms of

equilibrium water phase concentrations of each partitionable component. Time-dependent

boundary conditions may be stipulated as equilibrium water phase concentrations in the

porous medium as prescribed fluxes defined in terms of a specified concentration in the

influent liquid, or with zero dispersive flux specified.

Program output consists ofbasic information on input parameters, mesh details and initial

conditions plus pressure heads, saturation and velocities for each phase at every node for

specified output intervals. For transport analyses, the phase concentrations at each node

are output at each print-out interval.

3.3 Development and Validation History of MOFA T

MOFAT was initially developed as a multi-phase flow code. The initial development and

testing of MOFAT is described in Kaluarachchi and Parker (1989). Kaluarachchi and

Parker (1989) presented a formulation for liquid flow in a three fluid phase porous media

system and tested the effect of different iteration schemes on the formulation using
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different numerical experiments to validate the model and demonstrate the effects of the

iteration schemes on efficiency. Picard and Newton-Raphson iteration schemes were

tested. While both schemes demonstrated similar accuracy, the Picard method was more

efficient. The governing equations were solved using an upstream finite element

implementation, developed by Huyakorn and Nikuha (1979), that has been demonstrated

to be better than the standard Galerkin technique from the perspective of accuracy and

stability of simulations.

In Kaluarachchi and Parker (1990) this multi-phase flow model was extended to include

multi-component constituent transport. The transport model utilizes a parametric model

developed by Parker et. al. (1987) for relative permeability-saturation-pressure

relationships in three fluid phase systems. These have been modified to account for

NAPL entrapment. The relationships can be calculated using measurements of two-phase

pressure-saturation relations.

MOFAT and its constitutive components have been tested, validated and presented in a

series of studies by Parker et. al. (1987), Parker (1989), Lenhard et. al. (1988),

Kaluarachchi and Parker (1989), Kaluarachchi and Parker (1990), and Kaluarachchi and

Parker (1992). Helweg (1992) successfully used MOFAT to study the impact of an oil

pipeline rupture in the recharge area of a West Tennessee aquifer. Similarly Tyagi and

Martell (1993) successfully used MOFAT to predict the plume migration of p-cymene.

Lenhard et. al. (1995) used MOFAT to test STOMP, a subsurface flow and transport
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simulator for investigating remediation technologies. Steffy et al. (1998) successfully

tested modifications to MOFAT to improve its simulation of LNAPL displacement and

entrapment in response to a fluctuating water table. The modifications include a linear

LNAPL trapping estimate and a new scaling technique for the· inhibition portion of the

fluctuation (water table rise).

3.4 Identifying Uncertainty

The identification of uncertain and variable input parameters is an integral component of

parametric uncertainty analysis. It identifies those parameters that would need to be

modeled as probabilistic inputs rather than deterministic inputs.

The identification of uncertain input parameters for MOFAT reqUIres a careful

examination of its mathematical formulation. The mathematical formulation for MOFAT

consists of governing equations for describing multi-phase flow and governing equations

for describing multi-component transport. These equations are presented in the next two

sub-sections with the intention of identifying the input parameters and for categorizing

the type of uncertainty associated with each input parameter. As new input parameters are

encountered in the formulation they are underlined and the level of variability associated

with the input parameter is discussed.
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3.4.1 Governing Equations for Multi-Phase Flow

The mass conservation equations for water (w), organic liquid (0) and air (a), assuming

an incompressible porous medium, incompressible liquid phases and compressible gas

phase, may be written in summation convention for a two dimensional Cartesian domain

as (Parker, 1989):

Where

cI» = porosity. Porosity is a soil property that is inherently variable.

Sp = p- phase saturation

Xi (andxj) = Cartesian spatial coordinates (i,j =1,2)

qpi = Darcy velocity of phase p in the i-direction

PP = density ofphase p

[1]

Rp = net mass transfer per unit porous media volume into (+) or out of (-)

phase p

t = time

Darcy velocities in the p-phase are defined by:

{
8h }--K _P + U

qPi - Pij 8x
j

Prp j

Where

[2]
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Kp is the p -phase conductivity tensor. Hydraulic conductivity is a soil property

that is also inherently variable. The vertical hydraulic conductivity is a function of

soil type. Typically horizontal conductivities are higher than vertical

conductivities (Spitz and Moreno, 1996). The horizontal hydraulic conductivity

however is a function of soil fonnation and can vary from being equal to the

vertical hydraulic conductivity to being up an order of magnitude or more higher

than the vertical hydraulic conductivity.

hp =Pp /gp'w is the water height-equivalent pressure head of phase p

Where

Pp = p-phase pressure

g = gravitational acceleration

p'w = density ofpure water

PP = density ofphase p

Prp = P12~W is the p-phase specific gravity. Specific gravities are fluid

properties, are constants by definition and do not display variability. The bulk

fluid density is however dependent on fluid composition.

Uj = az /ax j is a unit gravitational vector ill easured positive upwards

where z is elevation.
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Combining [1] and [2] yields

[3]

If fluid saturations are treated as implicit functions of the phase pressures, equations [3]

may be solved directly with phase pressures as primary variables. To solve equation 3 the

following constitutive relations were described by Parker et aI. (1987), Kaluarachchi and

Parker (1989) and Katyal et. aI. (1991):

P- Phase Saturations

Water and oil saturations may be calculated as follows (Parker et aI., 1987):

Where

So = Oil phase saturation

Sw = Water phase saturation

[4]

[5]

Sm = Irreducible water saturation. This is the water content at which no

additional water will flow. This is also known as the residual water

saturation.

Sw = Apparent water saturation

Sot = Effective trapped oil saturation

S t = Effective total liquid saturation
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Apparent Water Saturation

Relationships between phase penneabilities, saturations and pressures are described by a

3-phase extension of the van Genuchten model that takes into account effects of NAPL

entrapment (Parker et aI., 1987):

[6]

Where

l30w = Scaling coefficient approximated by the ratio of water surface

tension to oil-water interfacial tension. This is a fluid property. It is the

ratio of two constants and thus does not display variability.

how = Oil-Water capillary pressure head = ho-hw

a = van Genuchten porous medium parameter. This is a soil property and

like most soil properties is inherently variable.

n = van Genuchten porous medium parameter. This is a soil property and

like most soil properties is inherently variable. van Genuchten parameters

can be estimated fairly accurately from grain size distribution data as

described by Mishra et. aI. (1989). However, analyses of laboratory core

samples are desirable for more accurate detenninations (Katyal et. aI.,

1991).

1
m= 1--

n
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Sw = Sw +SOI

Where

sw =Effective Water Saturation

Effective Water Saturation

Prior to the occurrence of oil at a given location, the system is treated as a two-phase air­

water system described by the van Genuchten (1980) function:

[7]

Where

ex and n = van Genuchten porous medium parameters

haw = Air-Water capillary pressure head = ha-hw

Effective Total Liquid Saturation

[8]

Where

~ao = Scaling coefficient approximated by the ratio of water surface

tension to oil surface tension. This is a fluid property. It is the ratio of two

constants and thus does not display variability.

haa = Air-Oil capillary pressure head = ha-ha

ex and n = van Genuchten porous medium parameters.
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Effective Trapped Oil Saturation

The effective trapped oil saturation is estimated using an empirical equation given by

Land (1968). The empirical equation relates the effective trapped oil saturation to the

maximum effective residual oil saturation S or. The maximum effective residual oil

saturation S or varies from 0.3 to 0.5 (Katyal et. aI., 1991).

The P-Phase Conductivity Tensors

Phase conductivities are described by Kaluarachchi and Parker (1989) as:

7Jrp

k KK = rp sWij

PiJ

Where

K = Saturated tensor for water
sWij

krp = relative permeability ofphase p

[9]

TJrp = absolute viscosity ratio between phase p and water. This is a fluid

property that is dependent on fluid composition. It is the ratio of two constants

and thus does not display variability for a given fluid composition.

Kaluarachchi and Parker (1989) assumed that the coordinate system is oriented with the

conductivity tensor, or otherwise that off-diagonal components may be disregarded, so

that K sw =0 for i :t:- j .
lj
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Relative penneability relationships corresponding to the 3-phase van Genuchten model

have been derived by Parker et al. (1987). These may be modified to account for effects

ofNAPL entrapment:

-os -11m
krw=S~ (1-(l-S w )m)2

- = =l/m -11m
kro =(SI -Sw)O.5[(1-Sw )m -(1-S1 )m]2

- -11m
k

ra
=(1-St)0.5(1-S1 )2m

[10-12]

Based on a review of equations 1-12 the MOFAT input parameters for multi-phase flow

are the soil properties and bulk fluid properties shown in Figure 3.1.

3.4.2 Governing Equations for Multi-Component Transport

The MOFAT multi-component transport model is based on the work ofParker (1989)

and Kaluarachchi and Parker (1990). Kaluarachchi and Parker (1990) state that the mass

conservation of species a in the p phase requires that:

Where

Cap = concentration of the non inert component a in p-phase

Sp = p- phase saturation

[13]

J ap; = mass flux density of a in p-phase per porous medium cross-section

in the i-direction

72



Figure 3.1 MOFAT Input Parameters

Soil Properties

For Flow

1. Saturated conductivity to water in the vertical direction, K swz,

2. Saturated conductivity to water in the horizontal direction, K swx ,

3. Soil porosity, ~,

4. Apparent irreducible water saturation, Sm,

5. Maximum residual oil saturation for water, Sor,

6. van Genuchten air-water capillary retention parameter, U,

7. van Genuchten air-water capillary retention parameter, n

For Transport

1. Longitudinal Dispersivity, AL

2. Transverse Dispersivity, AT

Component Properties

For Transport

1. the diffusion coefficients in bulk water, oil and air (DOaw, DO0.0,

and DOaa ),
2. the oil-water, air-water and solid-water partition coefficients

(r0.0, r aa, and r as),
3. the first-order decay coefficients (llaw, llao, llaa, and llas).

For Non -Equilibrium Phase Partitioning

1. Non equilibrium mass transfer coefficients, koa,kwa, kow and kws

Bulk Fluid Properties

For Flow

1. The scaling coefficients,
13ao and 130w

2. Specific gravities of the
NAPL, Pro and gas phases

3. Relative viscosities of the
NAPL and gas phases

......

......

r r ,

MOFAT
(2 D MULTIPHASE FLOW &

MULTICOMPONENT
TRANSPORT)
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Rap = net mass transfer rate per porous medium volume ofspecies a into

or out of the p-phase

rap = - flxpcap = net production or decay of a within p-phase per porous

medium volume due to reactions within the p-phase.

Where

flxp is an apparent first-order decay rate coefficient. This is called

a component property, as it is required for each of the NAPL

components being simulated. This is called an apparent decay rate

coefficient, as it is representative of the decay due to a number of

chemical and biological processes. As a result this parameter is

difficult to quantify and is associated with significant uncertainty.

This is essentially a parameter that needs to be calibrated for each

individual site. Without calibration at a site these would be subject

to considerable uncertainty (Katyal et. aI., 1991).

Kaluarachchi and Parker (1990) describe the mass flux density of component a in p-

phase due to convection, diffusion and mechanical dispersion as:

aCap
J =c q -"'8 D -

ap; ap p; 'F p apij ax.
}

where D ap .. is a dispersion tensor given by:
u

[14]
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D =g (Ddif + DhY~)
apij sp ap PlJ

Where

D;; = molecular diffusion coefficient of a in the porous medium

D';;d = mechanical dispersion coefficient

g sp = non dilute solution correction factor

[15]

The molecular diffusion coefficient of a. in the porous medium is described by Millington

and Quirk (1959) as

Where

[16]

D~ = diffusion coefficient of a. in the bulk p-phase. This is a component

property. This has been tabulated for many common industrial chemicals

or may be estimated using semi-empirical estimation methods (Katyal et.

aI., 1991). This is not associated with any significant variability.

The mechanical dispersion coefficient, D';;d, has the form (Bear, 1972):

Dhy~ =_1 [A - g.. + (A _A)IqPiqPJ']
PlJ AS TqP lJ L T -

~ P qp

Where

[17]

AL and AT = longitudinal and transverse dispersivities. The dispersivities

are soil properties. The dispersivities are controlled largely by porous
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media heterogeneity that typically increases with the scale of observation

(Katyal et. aI., 1991). Katyal et. al. (1991) note that AL is typically on the

order of 1-10% of the scale of the maximum plume dimension and AT is

several times smaller than AL.

qpi and qpj = p-phase Darcy velocities

qp = absolute magnitude of the p phase velocity

bij = Kronecker's delta

Combining equations [13] and [14] yields:

acapsp a [ OCap] aCapqpi
¢ =- ¢S D - - +R -Jl Cat ax. p apij ox. ax. ap ap ap

I ) I

[18]

Expanding the first and third terms, employing the bulk p phase continuity equation and

assuming density derivative terms to be of second order importance yields:

[19]

The following continuity equation is required to describe the adsorption of a by the solid

phase:

aCas =Ras - Jlascasat [20]
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Where

)

Cas = Solid phase concentration expressed as mass of adsorbed component

a per porous medium volume

lias = First-order decay term in the solid phase.

Ras = Mass transfer rate per porous medium volume

Inter-phase transfer terms provide coupling between the phase transport equations. To

avoid the explicit consideration of inter-phase transfer kinetics, Kaluarachchi and Parker

(1990) assume phase transfer to be equilibrium controlled and introduced the following

thermodynamic relation:

[21]

Where

r GYp = equilibrium partition coefficient for species a between water and

organic liquid (Raoult's constant), gas (dimensionless Henry's constant),

and solid phases. These are component properties and are constants. They

do not exhibit significant parameter variability.

The water-air partition coefficient is also known as Henry's Law Constant.

It is the ratio of the aqueous solubility of substance to the saturated vapor

concentration of the pure phase of the substance (Baehr, 1987).

Compounds such as the BTEX compounds which have a high water-air
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partition coefficient favor the aqueous phase. This selective partitioning

allows the BTEX compounds to reach the water table via infiltration of

capillary water before other components of a gasoline spill (Fetter, 1992).

This is why the BTEX compounds are of concern during an oil spill.

Using the equilibrium relations in equation 21 to eliminate oil, gas and solid phase

concentrations from equation 19 and sumnllng the equations so

that Raw + Rao + Rao + Ras =0 , leads tot he following phase-summed transport equation

for species a :

[22]

Where

L(caw)= Differential operator describing phased-summed transport.

For non-equilibrium transport, apparent equilibrium partition coefficients are used instead

of the equilibrium partition coefficients used in equation 21. These are dependent on

concentration and non-equilibrium mass transfer rate coefficients, koa, kwa, kow and kws .
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This introduces non-linearity in the phase summed transport equation and an iterative

solution procedure described in section 3.4.3 is required to solve this.

Based on a review of equations 13-22 the MOFAT input parameters for multi-component

transport are the component properties shown in Figure 3.1. Soil properties and bulk fluid

properties are primarily input parameters for multi-phase flow simulation while

component properties are input parameters for modeling multi-component transport.

3.4.3 Solution Approach

The solution of the governing equations for flow and those for transport impacts how

uncertainty is propagated through MOFAT. An understanding of the solution approach

further helps identify which input parameters should be modeled as probabilistic inputs.

In MOFAT the fluid flow equations are highly coupled with each other due to the

dependence of saturation and permeability of each phase on pressures in other phases.

The inter phase mass transfer terms couple the flow equations with the transport

equations. There is also coupling due to the dependence of fluid density and viscosity on

fluid composition. While the dependence 0 f t he flow equations 0 n transport is limited

over short time spans the transport equations are highly dependent on the solution of the

flow equations due to the occurrence of fluid velocity and phase saturation terms directly

in the transport equations and in the functional fonus for the dispersion coefficients

(Kaluarachchi and Parker, 1990). Kaluarachchi and Parker (1990) present the following
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solution approach in which the transport equations are solved serially with the flow

equations for equilibrium mass transfer conditions:

• Solve the fluid flow equations simultaneously for the current time step using time

lagged densities and inter-phase mass transfer rates.

• Solve phase summed transport equations serially for species 1, 2...n using time

lagged phase densities and inter-phase mass-transfer rates for the same time step.

• Back calculate inter-phase mass transfer rates and update phase densities for

current time step.

• Proceed to the next time step.

For non-equilibrium mass transfer a modified solution approach is used (Katyal et. aI.,

1991):

• Solve the fluid flow equations simultaneously for the current time step using time

lagged phase densities and inter-phase mass transfer rates.

• Solve the phase summed transport equation using current values of apparent

partition coefficients, inter-phase mass transfer rates and phase densities.

• Back calculate inter-phase mass transfer rates, update phase densities and

apparent partition coefficients and repeat step 2 until transport solution converges.

• Proceed to the next time step.
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The numerical implementation for the above solution approaches is presented and

described in detail in Kaluarachchi and Parker (1989), Kaluarachchi and Parker (1990)

and Katyal et. al (1991).

An examination of the solution approaches clearly illustrates that the solution of the

multi-component transport equations is highly dependent on the solution of the flow

equations. The uncertainty in soil properties also directly affects the solution of the multi­

component transport equations as the p-phase Darcy velocities are required for the

solution of the mechanical dispersion equation (Equation 14). Consequently the input

parameters associated with the flow component would be expected to have a greater

impact than the input parameters associated with the transport component, on the

propagation of uncertainty through MOFAT.

3.5 Parameter Selection

Based on the discussion presented in Sections 3.4.1 and 3.4.2, the soil properties are the

primary source of parameter variability in the model inputs and hence are the primary

source of uncertainty in model outputs. Spitz and Moreno (1996) note that in a hydro

geological context uncertainty in the model predictions is largely related to heterogeneity

in the system.
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Heterogeneity primarily affects soil properties and this is why they are the primary

source of parameter variability in the model inputs. Conductivity in the vertical and

horizontal directions are affected by heterogeneity and are subject to ahigh degree of

variability. The ratio of horizontal conductivity to vertical conductivity can vary from 1

to 10. However, the relative ratio is a function of geological formation of the sub strata

and hence i s a site-specific factor. For this study the soil medium was assumed to be

isotropic throughout the simulated domain i.e. conductivity in the vertical and horizontal

direction were assumed to be equal for this study. Dispersivity is a soil property that is

important for modeling transport. The need to model dispersivity as an input subject to

uncertainty was emphasized by Medina et aI. (1989) though it was not attempted by

them. Dispersivities are site-specific properties that are controlled largely by porous

media heterogeneity that typically increases with the scale of observation (Katyal et. aI.,

1991). There are few methods to predict the magnitude ofdispersion for a previously

unstudied field situation. These are typically sourced from tracer tests or other field­

tested models and are fitted values in most model applications (Spitz and Moreno, 1996).

Thus, while dispersitivities are subject to a high degree of uncertainty, in the absence of

more detailed information on longitudinal and transverse dispersivities these are best

modeled as deterministic point inputs in this study.

The bulk fluid properties are also generally not a major source of variability as they are

mostly constants by definition. Moreover when simulating coupled flow and transport,

MOFAT computes the phase specific gravities internally as a function of the current
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phase compositions. NAPL viscosity also vanes with fluid composition. MOFAT

assumes these effects are comparatively minor and does not update viscosity for temporal

phase composition changes. Bulk phase viscosity may be determined experimentally for

the fluid of concern, or an estimate may be made from the phase composition (Katyal et.

aI., 1991). Capillary pressure curve scaling parameters can be estimated from surface

tension and interfacial tension data however Katyal et. aI. (1991) also present other

approaches for computing the scaling parameters from NAPL composition or NAPL

specific gravity. Since the NAPL composition can be known accurately, bulk phase

viscosity and scaling coefficients can be determined relatively accurately. The results of a

literature review did not identify any studies in which the bulk fluid properties exhibited a

high coefficient of variation. Consequently the bulk fluid properties were modeled as

deterministic inputs (fixed values).

Most component properties a re generally not a major source 0 f variability as t hey are

mostly constants by definition, e.g. air-water partition coefficient (Henry's constant), oil­

water partition coefficient (Raoult's constant), etc. The apparent first-order decay rate

coefficient is subjective to considerable uncertainty for reasons presented earlier in

section 3.4.2. However this is not a well-defined parameter as it is representative of the

decay due to a number of chemical and biological processes. It needs specific calibration

at a site. In the absence of more detailed information on first-order decay rate coefficient

in the parametric uncertainty study these are best modeled as being equal to zero. The

component properties were thus modeled as deterministic point inputs. This screened the
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list of probabilistic parameters required for simulating multi-phase multi-component flow

down to the seven soil parameters listed in Table 3.3. Table 3.3 also lists how each of the

MOFAT input parameters was modeled in this parametric uncertainty study.

3.6 Defining Parameter Uncertainties and Correlations

A parametric uncertainty analysis is the process of propagating parameter variability

through a model to quantify the uncertainty introduced in the model output by input

parameter variability. Input parameter variability is described by statistical distributions.

The variability in model output, also called uncertainty, is typically captured through a

statistical representation (typically c4fplot) ofthe model output.

It is important that the parameter database used to quantify parameter variability be as

extensive as possible to ensure that the parameter variability has been accurately

determined from as large a sample set as possible. This reduces parameter uncertainty. A

second requirement for the parameter database is the documentation of correlations

between the input parameters. One of the goals of this study being the development of a

framework for uncertainty analysis that would be widely applicable, a third requirement

for the parameter database was coverage of as many soil types as possible.
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Table 3.3 Categorization of MOFAT Input Parameters as Probabilistic or

Deterministic and Listing ofany Associated Assumptions Used in this Study

MOFAT Input Parameters Input Type Assumptions
Soil Parameters
For Flow
Saturated conductivity to water in the vertical direction, Probabilistic Isotropy
Kswz, Probabilistic Isotropy
Saturated conductivity to water in the horizontal Probabilistic
direction, K sWx , Probabilistic
Soil porosity, ~, Probabilistic
Apparent irreducible water saturation, S m, Probabilistic
Maximum residual oil saturation for water, S or, Probabilistic
van Genuchten air-water capillary retention parameter, U,

van Genuchten air-water capillary retention parameter, n
For Transport
Longitudinal Dispersivity, AL Deterministic
Transverse Dispersivity, AT Deterministic
Bulk Fluid Properties
For Flow
The scaling coefficients,

~ao Deterministic

~ow Deterministic

Specific gravities of the NAPL, Pro and gas phases Deterministic

Relative viscosities of the NAPL and gas phases Deterministic

Component Properties
For Transport
Diffusion coefficients in bulk water, oil and air (DOaw, Deterministic
DOao, and nOaa ),
Oil-water, air-water and solid-water partition coefficients Deterministic

(rao, r aa, and r as),
First-order decay coefficients (Ilaw, Ilao, Ilaa, and Ilas ). Deterministic Modeled as

being equal
to zero

For Non -Equilibrium Phase Partitioning
Non equilibrium mass transfer coefficients, koa,kwa, kow Deterministic Not
and kws applicable
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Keeping these three requirements in sight, a search was made for an extensive database

of soil distributional and correlational properties that had all or most of the soil properties

selected in Table 3.3. A database that met all three requirements was found to have been

compiled by Robert Carsel of the U.S. EPA. This database was compiled using SCS Soil

Survey Information reports from 42 states and was used to characterize input parameters

for a Monte Carlo uncertainty analysis of pesticide leaching using the unsaturated zone

Pesticide Root Zone Model (PRZM) (Carsel et. aI., 1988).

The SCS Soil Survey Information reports were used to obtain bulk density, sand and clay

contents for the 12 SCS textural classifications (Carsel and Parrish, 1988). The saturated

water contents, the sand contents and the clay contents reported for each of the SCS

classifications were used to compute saturated hydraulic conductivity and water retention

parameters for the van Genuchten model using a multiple regression equation developed

by Rawls and Brakensiek (1985).

The computed saturated hydraulic conductivity and van Genuchten water retention

parameters for each of the 12 soil textural classifications was then used as the basis for

characterization of probability distributions for these variables. Empirical cd! were

derived for all of these variables and hypothesized distributions were fitted (Carsel and

Parrish, 1988).
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Within each of the 12 different SCS soil textural classifications, after Johnson family

transformations to normal distribution were selected and distributions were fitted for all

variables, sample Pearson product-moment correlations and covariances were calculated

for saturated hydraulic conductivity, residual water content and van Genuchten water

retention parameters a and n. This database has also been incorporated into commercial

software SOILPARA (Scientific Software Group, 2005) that is used to estimate hydraulic

parameters in the van Genuchten constitutive model for variably saturated soils.

For this study, joint probability distributions published by Carsel and Parrish (1988) were

used to model K sw, Sr, a and n. Table 3.4 summarizes the probability distributions and

the distribution parameters used to describe the variability ofKsw , Sr, a and n for the SCS

textural classification "loam". The "loam" soil classification was selected as an

illustration for this study

The apparent irreducible water saturation, S m, was calculated from the maximum water

content, em, and residual water content, Sr, as follows (Katyal et. aI, 1991):

S=~
m e

m

87



Table 3.4 Input parameters, probability distributions and the distribution statistics

Parameter Distribution Distribution Statistics Source

K sw Nonnal Johnson Transfonned Carsel and Parrish (1988)
Variable
0.001 quantile -9.2106
0.999 quantile 1.7906

~ Unifonn Untransfonned Variable Katyal et. al. (1991)
Minimum 0.15
Maximum 0.35

Sf (used to Nonnal Johnson Transfonned Carsel and Parrish (1988)
calculate 8m) Variable

0.001 quantile -0.8659
0.999 quantile 2.1439

8 or Unifonn Untransfonned Variable Katyal et. al. (1991)
Minimum 0.3
Maximum 0.5

a Nonnal Johnson Transfonned Carsel and Parrish (1988)
Variable
0.001 quantile -3.6989
0.999 quantile 1.1589

n Nonnal Johnson Transfonned Carsel and Parrish (1988)
Variable
0.00 Iquantile 0.2261
0.999 quantile 0.8379
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The maximum residual oil saturation for water, S or, and soil porosity, $, were modeled as

uniform distributions based on the ranges presented in the users manual for MOFAT

(Katyal et. al., 1991).

The Pearson product-moment correlations for the "loam" SCS soil textural classification

are presented in Table 3.5. K sw is positively correlated with 8r , a and n. The correlations

between K swand the van Genuchten water retention parameters a and n are especially

strong. K sw and a are also empirically related as follows:

(
K )0.5

a::::::~
0.5

8r shows a strong negative correlation with n. It is also negatively correlated with a but

the correlation coefficient is a mere -0.0860. a and n show a strong positive correlation.

3.7 Code Modification

To accomplish a Monte Carlo based uncertainty analysis of any model it is important to

have the ability to run the model in a batch mode where the model sequentially processes

different input files and directs the output to different output files. MOFAT as distributed

by the U.S. EPA and other commercial vendors does not allow batch processing of input

files. It requires a single input file that defines the initial conditions, boundary conditions,

soil hydraulic properties, fluid properties, time integration parameters, and mesh
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Table 3.5 Pearson Product Moment Correlation Matrix

Ksw 1.0000
Sf 0.2040 1.0000

a- 0.9820 -0.0860 1.0000
n 0.6320 -0.7480 0.5910 1.0000

Ksw Sf a- n
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geometry. Program output consists of an output file and an auxiliary data file that defines

the conditions for a restart problem. For restart problems MOFAT requires this auxiliary

data file in addition to the input file.

To execute this study the FORTRAN code for MOFAT was modified and the code was

compiled to run in a Unix environment to accept batch inputs. The code is attached in

Appendix B. This code shall henceforth be referred to as the MC-MOFAT code in this

study. The MC-MOFAT code reads in the names of input files and their corresponding

output and auxiliary data files from a text file called "control". Figure 3.2 shows a sample

control file. The first column lists the name of the input file, the second column lists the

name of the output file, the third column lists the name of the auxiliary restart file to use

if this is a restart simulation and the last column lists the name of the auxiliary data file to

be created.

3.8 Processing Tools

In addition to modifying the FORTRAN code for MOFAT to allow batch processing, a

set of pre and post processing tools were developed as a part of this research.
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Figure 3.2 Sample Control File

Ihshc090
Ihshc091
Ihshc092
Ihshc093
Ihshc094
Ihshc095
Ihshc096
Ihshc097
Ihshc098
Ihshc099

Ihshc090.o
Ihshc091.o
Ihshc092.o
Ihshc093.o
Ihshc094.o
Ihshc095.o
Ihshc096.o
Ihshc097.o
Ihshc098.o
Ihshc099.o

Ihs090.x
Ihs091.x
Ihs092.x
Ihs093.x
Ihs094.x
Ihs095.x
Ihs096.x
Ihs097.x
Ihs098.x
Ihs099.x

Ihshc090.x
Ihshc091.x
Ihshc092.x
Ihshc093.x
Ihshc094.x
Ihshc095.x
Ihshc096.x
Ihshc097.x
Ihshc098.x
Ihshc099.x
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MC analysis requires the generation of several thousand input files that represent

parameter variability. The manual generation of these input files for MOFAT is very

tasking and can be a source of formatting errors that would cause the data to be misread

from the input file. To alleviate this a pre-processing tool was developed as a part of this

research. This FORTRAN pre-processing tool allows the automated generation of

MOFAT input files from a text file listing all MC or LHS samples. The tool reads in a

text file that lists all MC or LHS samples and then searches for and replaces the

corresponding data line in a MOFAT input file to sequentially create a new MOFAT

input file for each MC or LHS sample. This tool is able to create 10,000 MOFAT input

files in minutes. If done manually this task would take months. The process flow chart for

this tool is shown in Figure 3.3.

When the several thousand input files generated for MC analysis are processed through

the model the end result are an equal number of output files. To represent the variability

of output parameters as a cdf, the output results for a user specified time step and node

have to be extracted from each ofthese output files. MOFAT output files may be as large

as 50 MB and several hundred pages long. To manually extract the output results for any

given node and time step is time consuming so a post processing tool had to be developed

to automatically extract the results for a specified node and time step from MOFAT

output files.
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Figure 3.3 MOFAT Pre Processor Flow Chart
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The post-processing tool is a Visual Basics for Applications (VBA) code that runs from

within Microsoft Word. It sequentially opens all MOFAT output files in a specified

folder, extracts the output results for the user specified time step and node and then

copies the results to a text file. The text file is formatted so that it can be opened in any

spreadsheet or statistical program for further analysis and plotting of cdfs. This tool is

able to accurately extract the output results for 10,000 MOFAT output files in

approximately a fortnight. I f done manually this task would take months. The process

flow chart for this tool is shown in Figure 3.4.

3.9 Defining Simulation Scenario and Boundary Conditions

To undertake a parametric uncertainty analysis ofMOFAT a simulation scenario with

appropriate boundary conditions is required to be the simulation domain for the

simulation runs. This scenario could be based on an actual site specific spill scenario or a

hypothetical spill scenario.

For a parametric uncertainty analysis it is also important that scenano and model

uncertainties are kept at a minimum. The best way of ensuring this is to use a simulation

scenario that has been validated for the model. ill using a validated scenario there is

assurance that the initial and boundary conditions are appropriate. The initial and

boundary conditions describe the distribution of heads and concentrations in the model

domain (Spitz and Moreno, 1996) and errors in these significantly affect all simulations.
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Figure 3.4 MOFAT Post Processor Macro Flow Chart
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In using a validated scenario there is also added assurance that the model is being used in

its intended application domain; model theory errors are at a minimum; code errors are

not a factor; and that sources of model uncertainties such as numerical errors and grid

size resolution are being kept at a minimum or an acceptable level.

To ensure that scenario and model uncertainties are kept at a minimum the site scenario

developed for this study is bas~d on hypothetical site scenarios used in the peer reviewed

validation studies (Parker, 1989; Kaluarachchi and Parker, 1989; Kaluarachchi and

Parker, 1990; and Kaluarachchi and Parker, 1992) for MOFAT. The scenarios used by

Sleep and Sykes (1989) to model the transport of volatile organics in variably saturated

media were also part of the comparison group used to develop the site scenario for this

study. That these validation studies, and hence the hypothetical spill scenarios used in

them, have been peer reviewed makes them more appropriate than any other actual spill

scenario for use in the parametric uncertainty analysis of MOFAT.

The spill scenario used in this study and those used in the validation studies are compared

in Table 3.6. The physical domain simulated is a 24 m long vertical slice through an

aquifer with a distance of 10m from the soil surface to the aquifer bottom. As depicted in

Figure 3.5, a finite element mesh of 1029 nodes with an inter-nodal spacing of 0.5 m

represents it. A slightly finer grid resolution, as opposed to the coarser ones used in the

validation studies, was adopted to further minimize any potential contributions to model

uncertainties due to the grid size.

97



Figure 3.5 Finite Element Mesh Representation of the Physical Domain Used For

Simulations in This Study

9.5 m

Infiltration Strip
Hydrocarbon Spill

4m
Node 605 (14 ill, 8.5m)

Water Table

24m

Table 3.6 Comparison ojSimulation Scenarios

No. of No. of Length Depth No. of Oil Infiltration
Elements Nodes* (m) (m) Components Strip

Width (m)
Kaluarachchi and 232 270 17 4 1 0.5
Parker (1992)
Kaluarachchi and 513 25 12 3 3
Parker (1990)
Kaluarachchi and 308 345 23 10 4 5
Parker (1989)
Parker (1989) 23 15 4 5
Sleep and Sykes 640 10 6
(1989)
This Study 930 1029 24 10 4 4
* The maximum number of nodes ill MOFAT must not exceed 1500 and the maximum difference between
node numbers ofadjacent nodes must not exceed 50.
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Aspects of this scenano and the validation scenarios that contribute to minimizing

numerical errors are: orienting the discretization grid along the main flow direction; using

constant space discretization; and keeping cell aspect ratio within the same order of

magnitude.

A water table occurs at a depth of five metres on the left boundary and a depth of three

metres on the right boundary, which is maintained throughout the simulation, resulting in

continuous groundwater flow to the right. A hydrocarbon spill on a four metre wide strip

source at the upper surface is simulated by permitting infiltration of a prescribed volume

of one cubic meter under a head of 0.1 m. Once the hydrocarbon has infiltrated into the

soil (infiltration stage), the inter-phase mass transfer and transport (re-distribution stage)

of the hydrocarbon is simulated while subject to zero boundary flux. The hydrocarbon

simulated is a Benzene, Toluene, Ethyl benzene and Xylene (BTEX) mixture consisting

of equal volumes of each component.

The results were evaluated at node 605, which is located at a X coordinate of 14 m and a

Y coordinate of8.5 m. The origin (coordinates 0 m, 0 m) of the coordinate system is the

lower left comer of the grid. The results were evaluated at node 605 at time step of 3.1

days, as it was the most common time for the maximum number of simulations. The

effect of parametric variability was reflected in the simulation time steps, which varied

from 0.6 day to 57.8 days for the infiltration stage and from 1 day to 28.4 days for the re­

distribution stage.
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Chapter 4. Uncertainty Analysis

4. 1 Introduction

The uncertainty analysis ofMOFAT consisted of several stages. While the general layout

of the study has been presented earlier in Figure 1.1, the stages specific to the uncertainty

analysis component are expanded and illustrated in Figure 4.1. The preliminary stages of

spill scenario selection, code modification, identification of variable inputs and

compilation of the input parameter database have been described earlier in Chapter 3.

The first stage of the uncertainty analysis itself was the execution of a Monte Carlo

analysis of MOFAT using random sampling (RS-MC). RS-MC refers to the traditional

method of sampling variables in simulation modeling where samples for each input

parameter are chosen completely randomly across the range of each distribution. RS-MC

is considered the benchmark of uncertainty analysis and all other techniques are

compared to the results of RS-MC to establish their accuracy and effectiveness. The aim

of this exercise was to establish the uncertainty in model outputs that results from the
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Figure 4.1 Uncertainty Analysis Flow Chart
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propagation of parameter variability through MOFAT. cd/plots for each of the 12 model

outputs (concentrations of Benzene, Toluene, Ethyl benzene and Xylene in the soil, water

and gaseous phases) were plotted to capture the uncertainty in model outputs.

The second stage was the execution of an uncertainty analysis using the more economical .

Latin Hypercube Sampling (LHS) with MC to evaluate if LHS-MC could be used as a

replacement for RS-MC. LHS- MC was significantly more economical than the RS-MC

simulations; RS-MC simulations consisted of 10,000 simulations whereas the simulation

required for LHS-MC were only 35. The uncertainty analysis was conducted using four

different LHS sample sizes of 35, 100, 300 and 500 to evaluate the effect of sample size.

The third stage was the evaluation of the two model replacement techniques to evaluate if

an alternate model, for the purpose of uncertainty analysis, could replace MOFAT. Two

model replacement techniques; Response Surface Methodology (RSM) and Neural

Networks (NN) were evaluated. As discussed earlier in Section 2.4.1, for complex

models with outputs that have spatial and temporal components the replacement models

are usually only valid for a specific spatial location and a specific time. Consequently, the

two replacement models were evaluated at the finite element mesh node 605 (X

coordinate of 14 m,Y coordinate of 8.5 m) at time step of 3.1 days. The rationale for

selecting this node location and time step has been presented earlier in Section 3.9.
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If a RSM based or a NN based model could successfully replace MOFAT, the next step

was to use the replacement model to conduct an uncertainty analysis using RS-MC.

Replacement models can be programmed into spreadsheets so the advantage of using a

replacement model is that RS-MC analysis 0 fthe replacement model can b e executed

more efficiently.

The final stage of this analysis was a comparison of the various uncertainty analysis

techniques with RS-MC from the perspective of accuracy and efficiency. This was to

evaluate if any of the alternate uncertainty analysis techniques (LHS-MC, RSM-MC or

NN-MC) could be used in lieu of RS-MC for any uncertainty analysis ofMOFAT. This

would be possible only if any of the alternate uncertainty analysis techniques are able to

accurately replicate the results ofRS-MC uncertainty analysis with greater efficiency.

4.2 Random Sampling Monte Carlo (RS-MC)

4.2.1 Generating Correlated Random Samples

The first task in executing a RS-MC is the generation of random samples of the input

parameters. When correlations exist between the input parameters then the random

samples need to reflect the correlations.

Random samples of correlated input parameters were generated using the !man and

Shortencarier's (1984) LHS program presented in the report entitled "Fortran 77 program
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and User's Guide for the Generation of Latin Hypercube and Random Samples for use

with Computer Models". This LHS program can generate both LHS and random samples.

The primary reason for selecting Iman and Shortencarier's (1984) LHS program is that it

is a public domain code that includes a unique restricted pairing technique that protects

the samples from undesirable pair wise correlations in the sample. Due to the random

pairing in the sample generation process there is the possibility of inducing undesirable

pair wise correlations among some of the variables in the sample. The restricted pairing

technique developed by Iman and Conover (1982) and implemented in Iman and

Shortencarier's LHS computer program avoids this by restricting the interval pairings so

that all the pair wise rank correlations among the input variables are very close to zero.

This ensures no unwanted large pair wise correlations will exist between input variables.

Conversely, this technique also allows the user to induce any desired rank correlation

among the variables. It is a distribution free technique that maintains the original

structure of the underlying sampling scheme (U.S. EPA, 2003). For many uncertainty

and sensitivity analysis problems rank correlation is probably a more natural measure of

congruent model input behavior than is the more traditional sample correlation (U.S. EPA

2003). A more detailed discussion of the restricted pair wise correlation technique, the

LHS program and LHS method is found in !man and Conover (1982), Iman and

Shortencarier (1984) and Iman and Helton (1985) respectively.

Iman and Shortencarier's LHS program was written for a VMS environment and has

random number generator sub routines that are dependent on the machine as well as
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machine dependent constants. Various setting of its machine code dependent sub routines

had to be tested to ensure that LHS samples generated, on the Compaq Alphaserver DS10

running TRu64 Unix 5.1 used in this study, were accurate. The reconfigured code was

compiled and run on the Unix system to generate random and LHS samples for this

study. The modified code is attached as Appendix B. The Pearson product-moment

correlations for the "loam" SCS soil textural classification, presented earlier in Table 3.2,

was used to generate the correlated random samples. Table 3.2 has been reproduced in

Table 4.1.

The input rank correlation matrix generated usmg the Pearson Product Moment

correlation matrix presented in Table 4.1 was not "positive definite" so Iman and

Shortencarier's (1984) LHS program used an iterative procedure to produce a substitute

rank correlation matrix listed in Table 4.2. This compares well to the matrix in Table 4.1.

A matrix is positive definite if all its eigenvalues are positive. A positive definite matrix

has exactly one matrix square root and is of computational importance since a linear

system of equations with a positive definite matrix can be efficiently solved using the

Cholesky decomposition (Weisstein, 1999).

The LHS program generated 10,000 random correlated samples of the input parameters

Ksw , ~, S m, S or, a and n listed as parameters 2 to 7 in Table 3.3. Isotropy was assumed

and consequently the vertical hydraulic conductivity was assumed to be equal to the

horizontal conductivity. These samples were processed using the FORTRAN pre-

105



Table 4.1 Pearson Product Moment Correlation Matrix

Ksw 1.0000
Sr 0.2040 1.0000

a 0.9820 -0.0860 1.0000
n 0.6320 -0.7480 0.5910 1.0000

Ksw Sr a n

Table 4.2 Adjusted Rank Correlation Matrix

K sw 1.0000
Sr 0.1441 1.0000

a 0.9373 -0.0544 1.0000
n 0.5688 -0.7035 0.6243 1.0000

K sw Sr a n
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processor tool (described earlier in Section 3.8) to assemble MOFAT input files for each

random sample.

4.2.2 Execution and Convergence of Simulations

Each RS-MC MOFAT input file was sequentially used as an input in the MC-MOFAT

code (described earlier in Section 3.7) and executed.

In RS-MC simulations since the random sampling process is unsupervised it is important

to ensure an adequate number of random samples have been used. As discussed earlier in

Section 2.4 if the number of RS-MC simulations is less than those needed for

convergence, RS-MC simulation can potentially over and under sample from various

points of the distribution (U.S. EPA, 2003). Since the statistics of simulation outputs start

to converge when the random samples have adequately sampled the complete range of

the input probabilities, convergence of the RS-MC simulations was manually tracked by

comparing the mean and standard deviation for all the simulation outputs after each

simulation with the same statistics for the previous simulation using a 1% convergence

criterion. Summary statistics for the RS-MC outputs are presented in Appendix A.

As can be seen from the flat lining of the curves in Figures 4.2, the means for Benzene

started to converge after approximately 2500 RS-MC simulations. The means for

Toluene, Ethyl benzene and Xylene (Figures 4.3,4.4, and 4.5 respectively) converged

earlier after approximately 1000 RS-MC simulations Similarly the standard deviations for
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Benzene (Figures 4 .6) sh owed a much higher degree 0 f variability a nd took longer to

converge. They started to converge after approximately 2500 RS-MC simulations. The

standard deviations for Toluene (Figures 4.7) started to converge after approximately

2000 RS-MC simulations while the Ethyl benzene and Xylene standard deviations

converged earlier after approximately 1000 RS-MC simulations (Figures 4.8 and 4.9

respectively). Figures 4.2 to 4.9 illustrate that the random sample size of 10,000 used in

this study was adequate.

4.2.3 RS-MC Outputs

The concentrations of the various components (BTEX) in the water, gas, and solid phases

as computed by MC-MOFAT for the 10,000 RS-MC input samples are summarized using

logged box plots in Figure 4.10.

The means and standard deviations for the RS-MC simulations are presented in Table

4.3. Further summary statistics for the RS-MC simulations are presented in Appendix A.

For the RS-MC simulations the Benzene concentration for the water and gas phases

displays the highest standard deviation with the standard deviation for the water phase

being an order of magnitude higher than the corresponding standard deviation for the

water phase concentration of Toluene and two orders of magnitude higher than

corresponding standard deviations for the water phases concentrations of Ethyl benzene

and Xylene. The standard deviations for the solid phase concentrations of all BTEX

components are the same order ofmagnitude. The standard deviations for the water, gas
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Figure 4.2 Means for Untransformed RS-MC Benzene
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Figure 4.4 Means for Untransformed RS-MC Ethyl Benzene
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Figure 4.6 Standard Deviations for Untransformed RS-MC Benzene
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Figure 4.8 Standard Deviations for Untransformed RS-MC Ethyl Benzene
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Figure 4.9 Standard Deviations for Untransformed RS-MC Xylene
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Figure 4.10 Box plots ofBTEX Concentrations for RS-MC Simulations
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Table 4.3 Simulation Means and Standard Deviations

Component Phase Statistics RS-MC* LHS* LHS-s*

Benzene Water Mean 2.41 E-03 2.33E-03 2.36E-03

Benzene Standard Deviation 2.27E-03 1.47E-03 1.38E-03

Benzene Gas Mean 5.43E-04 5.24E-04 5.33E-04

Benzene Standard Deviation 5.10E-04 3.31 E-04 3.10E-04
Benzene Solid Mean 3.33E-03 3.21 E-03 3.27E-03

Benzene Standard Deviation 3.13E-03 2.03E-03 1.90E-03

Toluene Water Mean 6.73E-04 6.54E-04 6.55E-04
Toluene Standard Deviation 5.59E-04 5.65E-04 4.84E-04

Toluene Gas Mean 1.84E-04 1.79E-04 1.79E-04
Toluene Standard Deviation 1.53E-04 1.54E-04 1.32E-04

Toluene Solid Mean 2.67E-03 2.60E-03 2.60E-03
Toluene Standard Deviation 2.22E-03 2.24E-03 1.92E-03

Ethyl-Benzene Water Mean 2.27E-04 2.38E-04 2.14E-04
Ethyl-Benzene Standard Deviation 2.03E-04 2.37E-04 1.71 E-04
Ethyl-Benzene Gas Mean 8.15E-05 8.43E-05 7.67E-05
Ethyl-Benzene Standard Deviation 7.28E-05 8.05E-05 6.12E-05
Ethyl-Benzene Solid Mean 2.07E-03 2.11 E-03 1.95E-03
Ethyl-Benzene Standard Deviation 1.85E-03 1.95E-03 1.56E-03

Xylene Water Mean 1.90E-04 1.88E-04 1.81 E-04

Xylene Standard Deviation 2.44E-04 2.48E-04 2.02E-04
Xylene Gas Mean 4.80E-05 4.80E-05 4.57E-05
Xylene Standard Deviation 6.16E-05 6.37E-05 5.09E-05
Xylene Solid Mean 1.90E-03 1.87E-03 1.81 E-03
Xylene Standard Deviation 2.43E-03 2.46E-03 2.01 E-03

* Units = 1000 mg/L = 1 Kg/m3
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and solid phase concentrations 0 f Ethyl benzene a nd X ylene are 0 f t he same 0 rder 0 f

magnitude.

To understand if parametric statistics can be used to analyze and summarize the RS-MC

outputs the RS-MC simulation outputs were tested for normality. Environmental

parameters and outputs of computer simulations rarely follow the normal distribution and

the RS-MC simulation results echo this. The concentrations of the various components

(BTEX) in the water, gas, and solid phases are positively skewed and do not follow the

normal distribution. This ish ighlighted in the histograms 0 f Benzene, Toluene, E thyl­

benzene and Xylene concentrations presented in Figures 4.11 to 4.14. Consequently non­

parametric statistics are more appropriate for analyzing RS-MC outputs.

4.3 Latin Hypercube Sampling Monte Carlo (LHS-MC)

4.3.1 Generating Correlated LHS Samples

As discussed earlier in Section 2.4.1 one stratified sampling technique that has been very

successful is a relatively new technique called Latin Hypercube Sampling (LHS).

Developed by McKay, Conover and Beckman (1979) it is a variance reduction technique

that works by modifying the MC sampling process.

In the LHS-MC sampling process, n different values are selected from each ofk variables

Xl, ... Xk by dividing the range of each variable into n overlapping intervals on the basis
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Figure 4.11 Histograms of 10,000 RS- Me Benzene (B) Outputs
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Figure 4.12 Histograms of 10,000 RS- Me Toluene (T) Outputs
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Figure 4.13 Histograms of 10,000 RS- Me Ethyl Benzene (E) Outputs

Gas Phase-E

450

300

150

600.

Water Phase-E

200

o
0.0 1.2 2.4 3.6 4.8 6.0 7.2 8.4

ConcentratiOn (mgIL)

400

600

800

200

400

600

800

~
ij 0 0
;. 0.00 0.14 0.28 0.42 0.56 0.70 0.84 0.98 0.00 0;05 0.10 0.15 0.20 0.25 0.30 0.35
CII Solid Phase-E
d:

118



Figure 4.14 Histograms of 10,000 RS- Me Xylene (X) Outputs
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of equal probability. One value of variable from each interval is selected at random with

respect to the probability density in the interval. The n values thus obtained for Xl are

paired in random order with the n values of X2. These n pairs are combined in a random

manner with the n values ofX3 to form n triplets, and so on, until n k-tuplets are formed.

This is the LHS sample. The LHS-MC method is described in detail by !man and

Shortencarier (1984) and !man and Helton (1985).

When the number of variables is large, !man and Helton (1985) recommend that good

results can be obtained if the LHS-MC sample size is between (4/3)*(number of

variables) to 5*(number ofvariables). The appropriate LHS-MC sample size to be used in

an uncertainty analysis also depends on the quantiles that are to be estimated in the

uncertainty analysis. For estimating the 0.95 quantile, which is the quantile of interest in

risk assessment studies, a LHS-MC sample size of at least 20 is required. A sample size

of 20 ensures that each variable is divided into 20 intervals having a probability of 0.05

each. As discussed earlier in Section 2.4.1, LHS is not to be used when the estimation of

very high quantiles is required, the more subjective stratified sampling technique

"importance sampling" is used for such situations (Helton and Davis, 2000; Helton and

Davis, 2003).

Using the recommended sample size of 5*(number of variables), a sample size of 35 was

selected for this study since we have seven probabilistic variables. A sample size of 35 is

adequately large to estimate the 0.95 quantile. This LHS-MC sample was designated as
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LHS-s. To evaluate the effect of LHS-MC sample size, three more sample sizes of 100,

300 and 500 were also selected. These samples were designated as LHS, LHS300 and

LHS500 respectively. The correlated LHS-MC samples (LHS-s, LHS, LHS300 and

LHS500) were generated using Iman and Shortencarier's (1984) LHS program. The

sample correlations specified earlier in Table 4.1 were induced in the samples.

These samples were processed using the FORTRAN pre-processor tool (described earlier

in Section 3.8) to assemble MOFAT input files for each LHS-s, LHS, LHS300 and

LHS500 sample.

4.3.2 Execution and Convergence of Simulations

Each LHS-s, LHS, LHS300 and LHS500 MOFAT input file, assembled using the LHS-s,

LHS, LHS300 and LHS500 samples generated in the previous section, was sequentially

used as an input in the MC-MOFAT code (described earlier in Section 3.7) and executed.

In LHS-MC simulations since the sampling process is supervised and is designed to

cover the range of each input variable the convergence of simulations is not tracked.

4.3.3 LHS·MC Outputs

The concentrations of the various components (BTEX) in the water, gas, and solid phases

for the LHS and LHS-s simulation outputs are summarized using log box plots in Figure

4.15. The results from the LHS and LHS-s simulations for each BTEX component within
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Figure 4.15 Box plots ofBTEX Concentrations for LHS and LHS-s Simulations

*'

4

2
c
.Q... 0III
I-...
C
CD -2uc
8 -4....
0
tn
.9 ~6

III
I-
::::I -8...
:l!

-10

: * .; .• .. it ~ f.
*' *'*' * *' ~*' *' *'*' *' *'*'

~ *' *'

*'
BTEX BTEX

LHS LHS-s
Solid Phase

BTEX BTEX
LHS LHS~s

Gas Phase

BTEX BTEX
LHS LHS-s

Water Phase

-12 """"-....--,--,----,-....--,--,--,--,-....--,--,--,-....--,---r--r--1r-T--'--"'-"-....-'

Component
Simulation

122



each phase are similar but the LHS simulations display a higher number of outliers in

each case. The LHS300 and LHS500 simulation outputs displayed a similar trend with

the number of outliers increasing with sample size.

The means and standard deviations for the LHS and LHS-s LHS-MC simulations have

been presented earlier in Table 4.3. Further summary statistics for the LHS and LHS-s

LHS-MC simulations are presented in Appendix A. Echoing the trend observed in the

RS-MC simulations, in the LHS and LHS-s simulations the Benzene concentration for

the water and gas phases displays the highest standard deviation with the standard

deviation for the water phase being an order of magnitude higher than the corresponding
,

standard deviation for the water phase concentration of Toluene. This is similarly two

orders of magnitude higher than corresponding standard deviations for the water phases

concentrations of Ethyl benzene and Xylene. The standard deviations for the solid phase

concentrations of all BTEX components are the same order of magnitude. The standard

deviations for the water, gas and solid phase concentrations of Ethyl benzene and Xylene

are of the same order of magnitude.

To understand if parametric statistics can be used to analyze and summarize the LHS-MC

outputs, the LHS-MC simulation outputs were tested for normality. However, in keeping

with the earlier noted observation that environmental parameters and outputs of computer

simulations rarely follow the normal distribution, the concentrations of the various

components (BTEX) in the water, gas, and solid phases for the LHS-MC simulations do
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not follow the normal distribution. This is highlighted in the normal probability plots for

untransfonned LHS output data (i.e. Sample size is 100) presented in Figures 4.16 to

4.19. Probability plots for untransformed LHS-s, LHS300 and LHS500 output data have

not been presented but are similar. Consequently non-parametric statistics should be used

to analyze all LHS-MC outputs.

4.4 Response Surface Methodology (RSM)

As described earlier in Section 2.4.1, the use of RSM in the uncertainty and sensitivity

analysis of complex models is aimed at deriving a RSM to be used as a substitute for the

complex model. A RSM is fitted on the responses generated by a few selected

simulations of the complex model and then this RSM is evaluated as a proxy for the

original model.

4.4.1 Response Surface Model Design

To develop a RS model for MOFAT the RS design selected was a SIX factor half

fractional factorial face centered central composite design (FC-CCD). The design

consists of 45 model runs with one center point run. A half fractional factorial was

selected to conserve the number of model runs. A six factor full factorial CCD design

would have consisted of 86 model runs.
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Figure 4.16 Normal Probability Plot and 95 % Confidence Intervals for Water, Gas

and Solid Phase Concentrations of Benzene from LHS Outputs
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Figure 4.17 Normal Probability Plot and 95 % Confidence Intervals for Water, Gas

and Solid Phase Concentrations of Toluene from LHS Outputs
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Figure 4.18 Normal Probability Plot and 95 % Confidence Intervals for Water, Gas

and Solid Phase Concentrations of Ethyl Benzene from LHS Outputs
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Figure 4.19 Normal Probability Plot and 95 % Confidence Intervals for Water, Gas

and Solid Phase Concentrations of Xylene from LHS Outputs
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The FC-CCD design was selected because it only requires three levels of each factor. The

design is not rotatable but as discussed in Section 2.4.1, while rotatability is usually a

desired property, rotatability is not important for having a good design

The CCD design like all RS designs is orthogonal, that is they are based on the

assumption that the input parameters are not correlated. Hence the correlations between

the six input parameters could not be accommodated in the RS design.

The input files corresponding to the 45 CCD runs were assembled and simulated using

MC-MOFAT. The input parameters and the corresponding responses were analyzed

using the Design Expert 6 software from Stat-Ease Inc. The input parameters K sw, ~,

S m, S or , cr, and n were coded as A, B, C, D, E and F respectively. Separate response

surfaces were fitted for all phases of Benzene, Toluene, Ethyl benzene and Xylene.

4.4.2 Evaluation of Response Surface Models

As described by Montgomery (2001), response surfaces are evaluated by:

1. Examining the statistical significance of the fitted models to ensure that they

provide an adequate representation of the system being modeled (i.e. no

difference is expected between the fitted model and the system being modeled).

2. Verifying that none of the least squares regression assumptions are violated.
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4.4.2.1 Examining the statistical significance of the fitted models

All 12 response surfaces (one for each of the three phases of each BTEX component)

were e valuated for statistical significance using ANOVA. In addition tot he A NOVA,

other model diagnostic statistics (R2
, adjusted R2

, Predicted R2 and Adequate Precision

statistic) were used to evaluate the fit and appropriateness of the responses surfaces.

The R2 statistic is a measure of the fit of the model. It quantifies the percentage of the

total variability that can be explained by the ANOVA model. The R2 statistic is sensitive

to the number of factors and is increased merely by increasing the number of factors

(Montgomery, 2001).

The adjusted R2 statistic is a variation of the R2 statistic that desensitizes the statistic to

the number of factors as it takes into account the number of factors in the model

(Montgomery, 2001). The predicted R2 is a measure of how well the model will predict

the responses in a new experiment. It is based on the Prediction Error Sum of Squares

(PRESS) (Montgomery, 2001).

The Adequate Precision is another measure of the predictive accuracy of the RS model. It

is computed by dividing the difference between the maximum predicted response and the

minimum predicted response by the average standard deviation of all predicted responses

(Montgomery, 2001). Models with an Adequate Precision statistic greater than four

perform well in prediction and can be used to navigate the design space.
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The Adjusted R-Squared and Predicted R-Squared should be within approximately 0.20

of each other to be in "reasonable agreement." If they are not, this indicates a possible

problem with either the data or the model (Montgomery, 2001).

A summary of the ANOVA, RS model statistics and the significant variables for the

water, gas and solid phases of all four BTEX components are presented in Table 4.4.

For all three phases of all BTEX components the Model F-values imply that the

respective RS models are significant since the "Prob > F" values are less than 0.001.

The "Pred R-Squared" statistic is in reasonable agreement with the "Adj R-Squared"

statistic for 11 responses surfaces, the exception being the RS model for the solid phase

of Ethyl-benzene. The "adequate precision" statistic for all 12 RS models is above four

indicating the designs can be used to navigate the design space. In general the significant

model terms are A, B and E, (i.e. K swz, ~, and u) and their interactions.

The "Pred R-Squared" statistic range from 0.4496 to 0.7277. This indicates that while the

RS models are generally good approximations of the design space they can at best

account for up to only 72.77 % of the total variability. Consequently, while the RS

models can be used to study the effeCts of various factors they cannot be used as

replacement models for the uncertainty analysis of MOFAT.
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Table 4.4 ANOVA and RSM Summary

Component Phase Transformation F Prob> R- Adjusted Pred Adeq Significant Model
Value F Squared R- R- IPrecision Terms*

Squared Squared

Benzene Water Inverse sqrt 9.53 <.0001 0.6007 10·5377 0.4496 11.195 A,B,AB,BE

Benzene Gas Inverse sqrt 22.02 <.0001 0.7766 10.7414 0.6732 17.258 A, B, E, AB, AE,
BE

Benzene Solid Inverse sqrt 9.90 1<.0001 0.6098 10.5482 P.4618 11.468 A,B,AB,BE

Toluene Water Inverse 11.23 <.0001 0.6799 10·6193 10·5493 10.093 A, B, A2, AB, BE

Toluene Gas Inverse sqrt 20.82 <.0001 0.8223 10.7828 10.7065 16.574 A, B, E, AB, AE,
BE

Toluene Solid Inverse sqrt 12.73 1<.0001 0.7388 10·6808 p.5832 12.607 lA, B, A2, AB, BE

~thyl-BenzeneWater Inverse 24.55 <.0001 0.7949 10.7625 p.7075 18.114 lA, B, E, AB, AE,
tHE

IEthyl-Benzene Gas Inverse 20.67 <.0001 0.8212 p.7815 p.7078 16.704 ~, B, E, AB, AE,
lBE

[Ethyl-Benzene Solid Inverse 8.98 1<.0001 0.7711 p.6853 10.4577 9.515 lA, B, A2, C2, E2,
iAB,AE,BE

Xylene Water Inverse sqrt 26.98 <.0001 0.8099 0.7799 0.7277 18.711 A, B, E, AB, AE,
~E

Xylene Gas Inverse sqrt ~2.35 I< .0001 0.8324 0.7952 0.7231 17.062 A, B, E, AB, AE,
BE

Xylene Solid Inverse 13.74 I< .0001 0.8375 0.7765 0.6179 10.197 A, B, A2, C2, D2,

E2, AB, AE, BE.

* input parameters K sw , ~ , S m , S or , ct, and n have been coded as A, B, C, D, E and F
respectively.
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4.4.2.2 Verifying the least squares regression assumptions

All 12 RS models were evaluated for compliance with least squares regressIOn

assumptions. Normal probability plots of the residuals were used to check the validity of

the normality assumption. All 0 f t he normal probability plots indicated problems with

normality. As ani llustration the normal probability plot 0 f t he residuals for the water

phase ofB enzene is shown in Figure 4.20. Normal probability plots of residuals were

similar for other phases and other BTEX components. Transformations (inverse, inverse

square root, log, and exponential) to the response variables do not remedy the problems

with normality. Figure 4.21 shows the normal probability plot of the residuals for water

phase of Benzene after the responses were transformed using an inverse transformation.

The residuals were also plotted against the predicted responses to verify that the variance

of the original observations is constant. These residual plots indicated that the variance of

the original observations was not constant for all responses. As an illustration Figure 4.22

shows the plot of residuals versus predicted responses for the water phase of Toluene.

The residuals are not randomly scattered and this indicates that the variance of the

original observations is not constant for all responses. Plot of residuals versus predicted

responses were similar for other phases and other BTEX components. Transformation of

the response variables does not remedy the problems with normality. Figure 4.23 shows

the plot of residuals versus the transformed predicted responses for the water phase of

Toluene. Despite the transformation the residuals are still not randomly scattered.
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Figure 4.20 Normal Probability Plot of Residuals
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Figure 4.21 Normal Probability Plot of Residuals for Transformed Responses
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Figure 4.22 Plot of Residuals versus Predicted Responses
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Figure 4.23 Plot of Residuals versus Transformed Predicted Responses
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Residuals were similarly plotted against the run order and each of the independent

variables. All of these plots for all phases of all the BTEX components exhibited the

expected randomness. As an illustration the plot of residuals against run order for the gas

phase of Ethyl-benzene is shown in Figure 4.24. Similarly, as an illustration, the plot of

residuals versus the independent variable C (i.e. S m) for the solid phase 0 f Xylene is

presented in Figure 4.25. Both these plots highlight the randomness of the residuals and

indicate that there are no problems with model adequacy.

The problems with normality observed in the normal probability plots of the residuals

and the non-constant variance observed in the plots of residuals versus predicted

responses clearly establishes that the least squares regression assumptions were violated.

4.4.3 Monte Carlo Analysis of Response Surface Models

As discussed in the previous sections 4.4.2.1 and 4.4.2.2, the RS models fitted for the

BTEX components can at best account for only 72.77 % of the total variability and they

violated the least squares assumptions. Consequently, the RS models cannot be used as

replacement models for MOFAT.

The response surface models still provide valuable qualitative information for MOFAT

users on the interactions between the input variables. This is discussed in greater detail in

the next section.

138



Figure 4.24 Plot of Residuals versus Run order
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Figure 4.25 Plot of Residuals versus Independent Factor C
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4.4.4 Identifying Interactions

An interaction is the failure of one factor to produce the same effect on the response at

different levels of another factor (Montgomery, 2001). Simulation based methods like

RS-MC and LHS-MC do not provide any information on interactions between input

variables, however the fractional factorial design used for fitting the response surfaces

does identify and provide information on interactions. This is because the fractional

factorial design tests the effects of a factor at several levels of the other factors.

From the list of significant model terms presented in Table 4.4, it is apparent that for all

phases 0 f t he BTEX components t he A B and BE interactions are significant. T he A E

interaction is significant for the gas phases ofB enzene and Toluene and all phases of

Ethyl-benzene and Xylene.

The AB interaction is the interaction between K sw and $. The AB interaction for the gas

phase of Benzene is presented in Figure 4.26. Though the RS model was fitted on an

inverse square root transformed response (gas phase concentrations of Benzene), the

responses have been shown in original scale in Figure 4.26. The AB interaction is

qualitatively the same for all other 11 responses (BTEX concentrations) i.e. the

magnitude of the effect on the response varies but the interaction is the same. The effect

of the AB interaction on the response (water phase concentrations of Benzene) is best

illustrated through the 3-D response surface plot shown in Figure 4.27. At the high levels

of $, the level ofK sw does not have an effect. However at the low levels of $, there is a
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Figure 4.26 K sw and ~ Interaction Graph for Gas Phase Concentrations of Benzene
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positive interaction between K sw and ~, i.e. as the level of K sw increases the response

increases. The physical significance of this interaction is explained in Section 5.2.3.

The BE interaction is the interaction between ~ and a. The BE interaction for the water

phase of Toluene is presented in Figure 4.28. Again the response has been shown in

original scale. The BE interaction is qualitatively the same for all other 11 responses. At

the high levels of a, the level of ~ does not have an effect. However at the low levels of

a, there is a negative interaction between ~ and a, i.e. as the level of ~ increases the

response decreases. Figure 4.29 shows the 3-D response surface plot. The physical

significance ofthis interaction is explained in Section 5.2.3.

The AE interaction is the interaction between K sw and a. The AE interaction for the gas

phase of Toluene is presented in Figure 4.30. Again the response has been shown in

original scale. The AE interaction is qualitatively the same for other responses. At the

high levels of a, the level ofK sw does not have an effect. However at the low levels of a,

there is a positive interaction between K sw and a, i.e. as the level of K sw increases the

responses increases. The effect of the AE interaction on the response (gas phase

concentrations of Toluene) is best illustrated through the 3-D response surface plot shown

in Figure 4.31. The physical significance of this interaction is explained in Section 5.2.3.
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Figure 4.28 ~ and a. Interaction Graph for Water Phase Concentrations of Toluene
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Figure 4.30 K sw and a. Interaction Graph for Gas Phase Concentrations of Toluene
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4.5 Neural Networks (NN)

The NeuroShell 2 program (Ward Systems Group Inc., 1993) was used as the Neural

Networks (NN) training software. Since it is important for a training set to span the total

range of input patterns sufficiently well so that the trained network can generalize from

the training set (Rojas, 1996), LHS-MC sets were used as the training sets. To test the

effect of the training set size the NN were trained using two different training set sample

sizes. The LHS-MC sets LHS (sample size 100) and LHS300 were used as the training

sets. NeuroShell 2 further splits each training set into a training and a test set. Another

LHS-MC set consisting of 100 LHS samples was generated and used as an alternate test

set.

4.5.1 Training and Evaluation of Neural Network Models

Both Back Propagation and General Regression based Neural Networks were evaluated

in this study. As discussed earlier in Section 2.4.1, Back Propagation Neural Networks

(BPNN) are used for the vast majority of working neural network applications and are

known for their ability to generalize well on a wide variety of problems (Ward Systems

Group Inc., 1993). The General Regression based Neural Networks (GRNN) is a type of

supervised network that is useful for continuous function approximation and is known for

its ability to train quickly on sparse data sets.

NeuroShe1l2 offers several different variations ofBPNN:
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(a) each 1ayer connected tot he immediately previous 1ayer (with either 3, 4, 0 r 5

layers);

(b) each layer connected to every previous layer (with either 3, 4, or 5 layers);

(c) recurrent networks with dampened feedback; and

(d) Ward Networks. Ward Networks are three different BPNN architectures with

multiple hidden layers invented by Ward Systems Group (Ward Systems Group

Inc., 1993). In Ward Networks different hidden slabs are given different

activation functions.

GRNN is a three-layer network where there must be one hidden neuron for each training

pattern (Ward Systems Group Inc., 1993).

All four variations of the BPNN available in the NeuroShell 2 software and the GRNN

were applied to the training set using with various combinations of scale functions,

activation factors, learning rates, number of hidden layers and neurons. NeuroShell 2's

NET-PERFECT was used ins orne schemes too ptimize the network and prevent 0 ver

training of the neural network. NeuroShell 2 uses NET-PERFECT to optimize the

network by applying the current network to an independent test set during training. NET­

PERFECT finds the optimum network for the data in the test set by computing the mean

squared error between actual and predicted for all outputs over all patterns (Ward

Systems Group Inc., 1993).
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For all NN schemes tested and for both training set sample sizes while excellent

correlations were obtained on the training set, correlation coefficients for the test set were

poor for the smaller training set of 100 LHS simulations. The correlation coefficient r is a

statistical measure of the strength of the relationship between the actual versus predicted

outputs. The r coefficient can range from -1 to +1. The closer r is to 1, the stronger the

positive linear relationship, and the closer r is to -1, the stronger the negative linear

relationship.

A better predictor is the statistic; R squared (Ward Systems Group Inc., 1993), the

coefficient of multiple determination, which is a statistical indicator usually applied to

multiple regression analysis. It compares the accuracy of the model to the accuracy of a

trivial benchmark model wherein the prediction is simply the mean of all of the samples.

A perfect fit would result in an R squared value of 1, a very good fit near 1, and a very

poor fit near 0 (Ward Systems Group Inc., 1993). A R squared value of 0.00 indicates

that the neural model predictions are worse than that would predicted by just using the

mean of the test set outputs. For the test set, the R squared values for the NN schemes

were again poor for the smaller training set of 100 LHS simulations.

As an illustration, Tables 4.5,4.6 and 4.7 summarize the results of the application of two

different BPNN and a GRNN respectively. The networks configurations are illustrated in

Figures 4.32 to 4.34 respectively.
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Table 4.5 Summary ofApplication ofa Standard Back Propagation Neural Network

Training Evaluation Training Test Complete 100 Sample
Set Size Statistic Portion of Portion of Training LHS Test

Training Set Training Set Set Set
RSquared 0.6168 0.4863 0.5874 0.0796

100LHS
Samples Correlation 0.785 0.728 0.767 0.520

Coefficient r
RSquared 0.6643 0.7906 0.6773 0.6293

300 LHS
Samples Correlation 0.816 0.900 0.824 0.794

Coefficient r

Table 4.6 Summary ofApplication ofa Ward Back Propagation Neural Network

Training Evaluation Training Test Complete 100 Sample·
Set Size Statistic Portion of Portion of Training LHS Test

Training Set Training Set Set Set
RSquared 0.6992 0.8044 0.7231 0.1133

100LHS
Samples Correlation 0.862 0.899 0.866 0.644

Coefficient r
R Squared 0.8124 0.8334 0.8145 0.7106

300 LHS
Samples Correlation 0.902 0.918 0.903 0.847

Coefficient r

Table 4.7 Summary ofApplication ofa GRNN Neural Network

Training Evaluation Training Test Complete 100 Sample
Set Size Statistic Portion of Portion of Training LHS Test

Training Set Training Set Set Set
R Squared 0.9756 0.2962 0.7529 0.4563

100LHS
Samples Correlation 0.990 0.564 0.868 0.687

Coefficient r
R Squared 0.9636 0.7419 0.9408 0.4928

300LHS
Samples Correlation 0.984 0.872 0.971 0.707

Coefficient r
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As shown in Figure 4.32, the first BPNN used consists of five layers with standard

connections, i.e. each layer is connected to only the previous layer. Each layer has only

one slab. The five slabs have 6,4,4,4 and 1 neurons respectively. Neurons are depicted as

black circles. T he learning rate, momentum and initial weights were 0.1,0.1 and 0.3

respectively. The scaling function for slab 1 is linear. The activation function for slabs 2,

3, 4 and 5 are logistic.

As shown in Figure 4.33, the second BPNN used is a Ward network and it consists of

four layers with a variety of connections. The second layer has two slabs, while all the

other layers have only 1 slab each. The five slabs have 6,4,4,4 and 1 neurons respectively.

The learning rate, momentum and initial weights were 0.1, 0.1 and 0.3 respectively. The

scaling function for slab 1 is linear. The activation function for slabs 2, 3, 4 and 5 are

gaussian, tanh, gaussion and logistic respectively.

As shown in Figure 4.34, the GRNN used consists of three layers with a single slab in

each layer. The slabs have 1, 100 (300 for 300 sample training set) and 6 neurons

respectively. The second slab has 100/300 neurons as in GRNN there must be one

hidden neuron for each training pattern. The scaling function for slab 1 is linear.

For all three neural networks applications it is clear from Tables 4.5, 4.6 and 4.7 that for

the smaller training set of 100 LHS simulations, the neural networks are able to train well
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Figure 4.32 Structure of Standard BPNN
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Figure 4.34 Structure of GRNN
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on the training sets (R Squared ranged from 0.5874 to 0.7529) but are not able to predict

well on the alternate test set (R Squared ranged from 0.0796 to 0.4563). However using

the larger training set of 300 LHS simulations, the neural networks are able to predict

better on the alternate test set (R Squared ranged from 0.4928 to 0.7106). The best

prediction was obtained using the Ward BPNN. This indicates that the MOFAT outputs

are highly non linear and consequently the neural networks in general need bigger

training sets to learn the non-linear patterns.

The objective of this study was to evaluate if a neural network model for the purpose of

efficiently conducting an uncertainty analysis could replace MOFAT. In keeping with

this objective the neural networks were not retrained using larger training sets since the

results presented in the next section (Section 4.6) indicate that an uncertainty analysis of

MOFAT could be executed more efficiently (i.e. with fewer simulations) using Latin

Hypercube Sampling based Monte Carlo.

4.5.2 Monte Carlo Analysis of Neural Network Models

The results of the application ofNN to test files clearly demonstrated that the NN models

could not efficiently replicate the output results of MOFAT. The highly non-linear

outputs of MOFAT require large (i.e. greater than 300 LHS simulations) training sets to

train. Consequently Me analysis ofthe NN models was not undertaken.
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4.6 Comparison and Evaluation of Uncertainty Analysis

Techniques

As stated earlier in the introduction to this chapter, uncertainty analysis techniques are

evaluated by comparing the outputs of each uncertainty analysis technique with the

outputs of RS-MC from the perspective of accuracy of convergence of cdfs and

efficiency of the convergence.

Figures 4.35, 4.37, 4.39 and 4.41 present the empirical cdfs of BTEX concentrations for

the water, gas and solid phases as estimated from the outputs of the RS-MC, LHS and

LHS-s simulations. Figures 4.36, 4.38,4.10 and 4.42 present the empirical cdfs ofBTEX

concentrations for the water, gas and solid phases as estimated from the outputs of the

RS-MC, and the larger sample LHS300 and LHS500 simulations. The Cunane plotting

position was used to plot the cdfs.

In Figures 4.35, 4.37, 4.39 and 4.41, the LHS cdfs and LHS-s cdfs converge well with the

RS-MC cdfs for all oil components and all phases. The LHS cdfs display a slightly higher

degree of convergence to the RS-MC cdfs than the LHS-s cdfs. This is especially so at the

higher quantiles. While the RS-MC, LHS and LHS-s cdfs converge, the LHS and LHS-s

cd! estimates were generated with greater efficiency using only 100 and 35 simulations

respectively against the 10,000 simulations used for the RS-MC cdfs.
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Figure 4.35 Empirical cdf Plots of Uncertainty in Benzene Concentrations - Me,

LHS, and LHS-s Runs
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Figure 4.36 Empirical cdf Plots of Uncertainty in Benzene Concentrations - Me,

LHS300, and LHSSOO Runs
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Figure 4.37 Empirical cdf Plots of Uncertainty in Toluene Concentrations - MC,

LHS, and LHS-s Runs
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Figure 4.38 Empirical cdf Plots of Uncertainty in Toluene Concentrations - MC,

LHS300, and LHS500 Runs
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Figure 4.39 Empirical cdf Plots of Uncertainty in Ethyl benzene Concentrations ­

Me, LHS, and LHS-s Runs
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Figure 4.40 Empirical cdf Plots of Uncertainty in Ethyl benzene Concentrations ­

MC, LHS300, and LHSSOO Runs
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Figure 4.41 Empirical cdfPlots of Uncertainty in Xylene Concentrations - MC,

LHS, and LHS-s Runs
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Figure 4.42 Empirical cdf Plots of Uncertainty in Xylene Concentrations - MC,

LHS300, and LHS500 Runs
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In Figures 4.36, 4.38, 4.10 and 4.42, the LHS300 cdfs and LHS500 cdfs converge very

closely with the RS-MC cdfs for all oil components and all phases. The LHS-300 and the

LHS-500 cdfs in Figures 4.36, 4.38, 4.10 and 4.42, display a much higher degree of

convergence to the RS-MC cdfs than the LHS-I00 cdfs in Figures 4.35, 4.37, 4.39 and

4.41. Since the convergence of both the LHS300 and LHS500 sample sizes to the RS-MC

cdfs is excellent, improvement in convergence when moving from the LHS300 sample to

the LHS500 sample is not significant. The LHS300 and LHS500 cdfs are almost identical

for the water and gas phase concentrations. For the solid phase concentrations the

LHS300 and LHS500 cdfs are not identical but the differences between them are

negligible.

Based on the analysis presented in this chapter it can be concluded that a parametric

uncertainty analysis of MOFAT can be accurately and efficiently undertaken using

Monte Carlo with LHS sampling. As demonstrated in this study the recommended Iman

and Helton (1985) LHS sample size of 5*(number ofvariables) would be able to replicate

the RS-MC cdfs, however a larger sample size of up to 15 *(number of variables) would

be more accurate at the higher probabilities. For yet higher accuracies an LHS sample

size of 45*(number of variables) can be used. However using an LHS sample size greater

than 45*(number of variables) will not provide any appreciable increase in convergence

as the cdfs produced using an LHS sample size of 45*(number of variables) are already

very similar to the RS-MC cdfs.
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The model replacement techniques ofNN and RSM were not able to successfully replace

MOFAT for the purpose of uncertainty analysis.
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Chapter 5. Sensitivity Analysis

5. 1 Introduction

This chapter describes the sensitivity analysis of MOFAT. Sensitivity analysis is an

essential component of model assessment and application (Kleijnen and Helton, 1999a).

Amongst the many aims of sensitivity analysis are priority setting, the determination of

which factors needs better quantification and the identification of variance propagating

weak links in the assessment chain (Saltelli et. ai., 2004).

The selection of sampling based Monte Carlo sensitivity analysis as the sensitivity

analysis technique for this study has been presented earlier in Section 2.5.2. As discussed,

sampling based MC methods are ideally suited for sensitivity studies and practitioners

involved in the analysis of risk most often use them for sensitivity analysis (Saltelli et. ai.,

2004).

For this sensitivity analysis the LHS-MC simulation results were used instead of the RS­

MC simulation results. The smaller samples associated with LHS-MC are better for
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identifying important variables since with the increasing sample sizes associated with the

RS-MC simulation there is a greater resolution of the effects associated with less

important variables (Kleijnen and Helton 1999a, 1999b).

The staging of the sensitivity analysis process within this research study has been

presented earlier in Figure 1.1. The steps of the sensitivity analysis component are further

expanded and illustrated in Figure 5.1.

As presented earlier in Section 2.5, while the primary aim of sensitivity studies is to

identify key input variables other reasons include the need to determine (Hamby, 1994;

Saltelli et. aI., 2004):

1. Which inputs correlate highly with other inputs.

2. Which inputs contribute most to output variability.

3. Which parameters require additional research for strengthening the knowledge

base thereby reducing output uncertainty.

4. Once the model is in use what consequence result from changing a given input

parameter.

5. Which inputs interact with each other.
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Figure 5.1 The Sensitivity Analysis Process
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Of these five sensitivity goals, since the first sensitivity goal "Which inputs correlate

highly with other inputs" is already known (See Table 3.5), the aim of this study was to

primarily determine the latter four goals.

To accomplish the second sensitivity analysis goal of determining "which inputs

contribute most to output variability", the first step was to identify relationships

(correlations and interactions) between input parameters and the output parameters.

These were examined using scatter plots, four different types of correlation coefficients

and regression analysis. The second step was to gauge the relative contribution of input

parameters to the model's output parameters. This was accomplished by using two

different methods to respectively rank and group the input parameters based on the

relative contribution of input parameters to the model's output parameters. The two

methods were further amalgamated to create a new approach for ranking and grouping

the input parameters.

This ranking and grouping of the input parameters based on the their relative contribution

to output variability also accomplished the third sensitivity analysis goal of identifying

"Which parameters require additional research for strengthening the knowledge base

thereby reducing output uncertainty". The higher ranked parameters should be the focus

of additional research since these parameters contribute the most to output variability and

reducing uncertainty in the higher ranked parameters will reduce output uncertainty.
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The fourth sensitivity goal of determining "Once the model is in use what consequence

result from changing a given input parameter" cannot be explicitly determined for

complex models where the input parameters are correlated. The correlated structure of

the inputs does not allow the modeler to independently change input parameters one at a

time while the complex structure prevents the application of first order sensitivity

techniques. An attempt has been made to address this sensitivity analysis goal through the

computation of partial correlation coefficients, partial rank: correlation coefficients and an

examination of the results of the regression analysis that was used to build response

surfaces approximations of the MOFAT model.

The fifth sensitivity analysis goal of "Which inputs interact with each other" was

accomplished by using the RSM models, developed earlier in Section 4.4, to identify

interactions between input parameters.

Another aim of the sensitivity analysis was to evaluate the sensitivity of the uncertainty

analysis undertaken in this study to:

• correlations between input parameters that were not addressed in the Pearson

Product Moment Correlation Matrix presented in Table 3.5, and

• anisotropy (ratio of vertical and horizontal hydraulic conductivities).
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5.2 Identifying Relationships between Inputs and Outputs

5.2.1 Scatter Plots

Scatter plots are an effective means of visually identifying sensitivities in simulation data.

Scatter plots of each of the twelve MOFAT outputs (three phases of each of the BTEX

components) versus the probabilistic input parameters were plotted to identify any

obvious dependence between the input and output parameters and to identify the type of

dependence between the parameters. The scatter plot for the water phase concentration of

Benzene is shown in Figure 5.2. The remaining scatter plots are provided in Appendix C.

Dependencies are identified by visually screening scatter plots for some form of deviation

from randomness. Deviations from randomness in scatter plots indicate the presence of

dependences. Where dependences were apparent from the scatter plots these were

examined to determine if the dependences were monotonic or non-monotonic. Monotonic

dependencies being those in which there are no reversals in slope. Monotonic

dependencies were further scrutinized to identify if they were linear or non-linear. Linear

dependences being those monotonic dependences that have a constant slope. The nature

of dependence between the input and output variables is an important factor in

quantifying correlations as it determines the applicability of various correlation measures.

Examination of the scatter plots, indicates that in general all the outputs display a

monotonic dependence on the inputs K sw, U, and n. The relationships between the inputs
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Figure 5.2 Scatter Plots for the Water Phase Concentration of Benzene Plotted

against the Input Parameters K sw (K), «\> (Porosity), S m (Max s), S or (Mtheta), a.

(alpha), and n(N)
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(K sw, a, and n) and the outputs seem to be linear at the lower concentrations with

increasing non-linearity at higher concentrations. There also seems to be a slight

dependence between all the outputs and the input Sm.

5.2.2 Measures of Correlation

Correlation is a quantification of the strength of the relationship between two variables.

There are several measures of correlation however they are all scaled to report in the -1

to 1 range.

Pearson's r, one of the most widely used measures of correlation, is a measure of linear

correlation. Spearman's p is a measure of correlation that is calculated on the ranks of the

data for the two variables and not on the actual data unlike the Pearson's r. This makes

the Spearman's p more robust as it makes it less sensitive to linearity.

When input parameters are correlated to each other LHS-MC simulation runs are made

with many input variables changing simultaneously and this makes it difficult to isolate

the sensitivity of the output variables to specific individual variables (Iman and Helton,

1985). Irnan and Helton (1985) suggest that one way of quantifying such sensitivity can

be by calculating another measure of correlation called partial correlation coefficient

(PCC).
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The PCC is a measure of correlation between two variables after accounting for the

influence of other variables. The PCC does not provide a reliable measure of sensitivity

when the relationship between the variables is monotonic but non linear or if there are

outliers present. By using the ranks in the PCC test the PCC becomes less sensitive to

linearity and outliers in a manner similar to the Spearman's p. This is called the Partial

Rank Correlation Coefficient (PRCC).

Based on the analysis presented in the previous section all four measures of correlations

can be applied to the results of the LHS-MC simulation. However due to indications of

non-linearity at higher concentrations, the Spearman's p and PRCC seem to be more

applicable. Each of the correlation measures provides a different perspective on the

correlations between the parameters. As a result correlations between input and outputs

of the LHS runs were measured by computing Pearson's r, Spearman's p, PCC, and

PRCC. The Pearson's r and Spearman's p are presented in Tables 5.1 and 5.2.

From the results presented in Tables 5.1 and 5.2, at a 5% significance level both the

Pearson and Spearman correlation coefficients indicate there is significant positive

correlation between the simulated oil components and K sw, a, and n. The Pearson's r for

K sw, a, and n are slightly higher for Toluene, and even higher forE thyl benzene and

Xylene than they are for Benzene. They however do not show any significant variation

between the water, gas and solid phases for each BTEX component. The Spearman's p
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Table 5.1 Pearson Correlations between Inputs and Outputs

Component Phase K sw tl> Sm S or ex n
Benzene Water Pearson's r 0.31 -0.002 0.091 -0.001 0.521 0.379
Benzene p 0.002 0.987 0.366 0.995 0 0
Benzene Gas Pearson's r 0.31 -0.001 0.092 -0.001 0.521 0.379
Benzene p 0.002 0.99 0.364 0.992 0 0
Benzene Solid Pearson's r 0.31 -0.002 0.092 -0.001 0.521 0.379
Benzene p 0.002 0.985 0.364 0.993 0 0
Toluene Water Pearson's r 0.543 0.011 0.046 -0.032 0.636 0.503
Toluene p 0 0.911 0.646 0.753 0 0
Toluene Gas Pearson's r 0.543 0.011 0.046 -0.032 0.636 0.503
Toluene p 0 0.912 0.647 0.749 0 0
Toluene Solid Pearson's r 0.543 0.011 0.046 -0.032 0.636 0.503
Toluene p 0 0.912 0.647 0.75 0 0

Ethyl-Benzene Water Pearson's r 0.652 -0.008 0.113 -0.12 0.603 0.471
Ethyl-Benzene p 0 0.933 0.264 0.236 0 0
Ethyl-Benzene Gas Pearson's r 0.65 -0.025 0.12 -0.107 0.616 0.473
Ethyl-Benzene p 0 0.807 0.234 0.29 0 0
Ethyl-Benzene Solid Pearson's r 0.626 -0.049 0.129 -0.085 0.618 0.461
Ethyl-Benzene p 0 0.627 0.202 0.401 0 0

Xylene Water Pearson's r 0.652 -0.008 0.113 -0.12 0.603 0.471
Xylene p 0 0.933 0.264 0.236 0 0
Xylene Gas Pearson's r 0.65 -0.025 0.12 -0.107 0.616 0.473
Xylene p 0 0.807 0.234 0.29 0 0
Xylene Solid Pearson's r 0.626 -0.049 0.129 -0.085 0.618 0.461
Xylene p 0 0.627 0.202 0.401 0 0
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Table 5.2 Spearman Correlations between Inputs and Outputs

Component Phase K sw ell Sm S or a n

Benzene Water Spearman's p 0.725 0.078 -0.006 0.044 0.679 0.515
Benzene p 0 0.439 0.955 0.661 0 0
Benzene Gas Speannan's p 0.725 0.078 -0.005 0.044 0.679 0.515
Benzene p 0 0.441 0.961 0.665 0 0
Benzene Solid Speannan's p 0.725 0.078 -0.006 0.044 0.679 0.515
Benzene p 0 0.442 0.957 0.667 0 0
Toluene Water Speannan's p 0.836 0.091 -0.096 0.002 0.788' 0.655
Toluene p 0 0.37 0.341 0.987 0 0
Toluene Gas Speannan's p 0.836 0.091 -0.096 0.001 0.788 0.654
Toluene p 0 0.367 0.343 0.989 0 0
Toluene Solid Speannan's p 0.835 0.091 -0.097 0.002 0.788 0.655
Toluene D 0 0.369 0.339 0.988 0 0

Ethyl-Benzene Water Speannan's p 0.93 0.037 -0.031 -0.04 0.854 0.673
Ethyl-Benzene D 0 0.718 0.761 0.692 0 0
Ethyl-Benzene Gas Speannan's p 0.93 0.037 -0.031 -0.04 0.854 0.673
Ethyl-Benzene D 0 0.718 0.759 0.694 0 0
Ethyl-Benzene Solid Speannan's p 0.928 0.031 -0.029 -0.036 0.852 0.669
Ethyl-Benzene p 0 0.763 0.777 0.722 0 0

Xylene Water Speannan's p 0.93 0.037 -0.031 -0.04 0.854 0.673
Xylene p 0 0.718 0.761 0.692 0 0
Xylene Gas Speannan's p 0.93 0.037 -0.031 -0.04 0.854 0.673
Xylene p 0 0.718 0.759 0.694 0 0
Xylene Solid Speannan's p 0.928 0.031 -0.029 -0.036 0.852 0.669
Xylene p 0 0.763 0.777 0.722 0 0
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for K sw, a, and n are similarly slightly higher for Toluene, and even higher for Ethyl

benzene and Xylene than they are for Benzene. The Spearman's p coefficients are

however higher than the Pearson's r coefficients for all BTEX components.

The PCC and PRCC are presented in Tables 5.3 and 5.4 respectively. After adjusting for

the effects of other variables, through the computation of PCC, the correlation

coefficients change significantly. From the results presented in Table 5.3, at a 5%

significance level there is significant positive correlation between all BTEX components

and 8m and n. There is also significant negative correlation between K sw and Benzene and

significant positive correlation between a and Benzene. The water and gas phase

concentrations of Ethyl benzene and Xylene are also positively correlated with K sw.

When the PCC are made less sensitive to non-linearity through the computation of the

PRCC, as shown in Table 5.4, at a 5% significance level there are significant correlations

between a and n and all phases ofthe oil components Ethyl benzene and Xylene.

The correlations with a are negative. There is also significant positive correlation

between K sw and all phases of the oil components Toluene, Ethyl benzene and Xylene.

At the 5 % significance none 0 f t he input parameters are significantly correlated with

Benzene. However at the 10 % significance level there is an additional significant

positive correlation between K sw and all Benzene phases and also significant negative

correlation between a and Toluene.
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Table 5.3 Partial Correlations between Inputs and Outputs

Component Phase K sw d> Sm S or a. n

Benzene Water pee -0.383 0.023 0.485 0.008 0.304 0.452

Benzene p 0 0.824 0 0.934 0.002 0
Benzene Gas pee -0.383 0.023 0.485 0.008 0.304 0.452

Benzene p 0 0.82 0 0.938 0.002 0

Benzene Solid pee -0.383 0.022 0.485 0.008 0.304 0.452

Benzene p 0 0.827 0 0.936 0.002 0
Toluene Water pee -0.071 -0.014 0.487 -0.009 0.131 0.505

Toluene 0 0.48 0.887 0 0.93 0.192 0
Toluene Gas pee -0.071 -0.015 0.487 -0.01 0.131 0.505

Toluene p 0.481 0.885 0 0.925 0.193 0

Toluene Solid pee -0.071 -0.015 0.487 -0.009 0.131 0.505
Toluene p 0.481 0.885 0 0.925 0.193 0

Ethyl-Benzene Water pee 0.284 -0.088 0.552 -0.116 -0.172 0.566
Ethyl-Benzene p 0.004 0.386 0 0.249 0.087 0
Ethyl-Benzene Gas pee 0.253 -0.112 0.564 -0.099 -0.139 0.572
Ethyl-Benzene p 0.011 0.267 0 0.327 0.169 0
Ethyl-Benzene Solid pee 0.185 -0.141 0.556 -0.066 -0.078 0.554

Ethvl-Benzene p 0.065 0.163 0 0.511 0.441 0
Xylene Water pee 0.284 -0.088 0.552 -0.116 -0.172 0.566
Xylene p 0.004 0.386 0 0.249 0.087 0
Xylene Gas pee 0.253 -0.112 0.564 -0.099 -0.139 0.572
Xylene D 0.011 0.267 0 0.327 0.169 0
Xylene Solid pee 0.185 -0.141 0.556 -0.066 -0.078 0.554
Xylene D 0.065 0.163 0 0.511 0.441 0
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Table 5.4 Partial Rank Correlations between Inputs and Outputs

Component Phase K sw dl Sm S or a n
Benzene Water prcc 0.166 0.080 0.070 0.070 -0.033 0.150
Benzene p 0.099 0.426 0.489 0.488 0.741 0.136
Benzene Gas prcc 0.167 0.080 0.069 0.070 -0.034 0.149
Benzene p 0.096 0.429 0.495 0.492 0.737 0.139
Benzene Solid prcc 0.166 0.080 0.070 0.069 -0.033 0.150
Benzene p 0.098 0.430 0.492 0.495 0.744 0.138
Toluene Water prcc 0.379 0.120 -0.064 0.020 -0.176 0.132
Toluene p 0.000 0.235 0.528 0.846 0.079 0.191
Toluene Gas prcc 0.378 0.121 -0.063 0.019 -0.175 0.133
Toluene p 0.000 0.229 0.536 0.851 0.081 0.188
Toluene Solid prcc 0.377 0.120 -0.062 0.019 -0.175 0.134
Toluene p 0.000 0.232 0.542 0.848 0.082 0.183

Ethyl-Benzene Water prcc 0.657 0.005 -0.060 -0.112 -0.414 0.257
Ethyl-Benzene D 0.000 0.958 0.555 0.267 0.000 0.010
Ethyl-Benzene Gas prcc 0.656 0.005 -0.060 -0.111 -0.413 0.257
Ethyl-Benzene D 0.000 0.958 0.554 0.272 0.000 0.010
Ethyl-Benzene Solid prcc 0.652 -0.017 -0.070 -0.093 -0.412 0.237
Ethyl-Benzene p 0.000 0.866 0.489 0.355 0.000 0.018

Xylene Water prcc 0.657 0.005 -0.060 -0.112 -0.414 0.257
Xylene p 0.000 0.958 0.555 0.267 0.000 0.010
Xylene Gas prcc 0.656 0.005 -0.060 -0.111 -0.413 0.257
Xylene p 0.000 0.958 0.554 0.272 0.000 0.010
Xylene Solid prcc 0.652 -0.017 -0.070 -0.093 -0.412 0.237
Xylene p 0.000 0.866 0.489 0.355 0.000 0.018
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The variation in correlations as detected by the four different tests is a function of the

different testing powers of the tests and also of the complexity of MOFAT. The signage

of the correlations presented in Tables 5.1 to 5.4 is summarized in Table 5.5. While all

the tests do not always concur, in general all the outputs are correlated with K sw, a, n and

to a lesser degree S m. These correlations correspond with the dependences that were

observed in the scatter plots.

5.2.3 Interactions

When used as screening tools the RS models developed earlier in Section 4.4 provide

valuable qualitative information on the interactions between the input parameters. The

RS models don ot incorporate the correlation structure 0 f t he inputs b ut for screening

purposes it is advantageous to drop the correlation structure to avoid needless complexity

in the analysis (Saltelli et. aI., 2004).

As presented in Section. 4.4.4, for all phases of the BTEX components there are

interactions between K sw and ~ and between ~ and a. The interaction between K sw and a

is significant for the gas phases of Benzene and Toluene and all phases of Ethyl-benzene

and Xylene.

At high levels of ~, the level of K sw does not have an effect on the responses (BTEX

concentrations). However at the low levels of ~, there is a positive interaction between

K sw and ~. The physical significance ofthis interaction is that at low porosities the
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Table 5.5 Summary ofCorrelations

Component Phase K sw ( Sm S or a. n
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Benzene Water + + - + + + + + + + +
Benzene Gas + + - + + + + + + + +
Benzene Solid + + - + + + + + + + +
Toluene Water + + + + + + - + + +
Toluene Gas + + + + + + - + + +
Toluene Solid + + + + + + - + + +

Ethyl-Benzene Water + + + + + + + - + + + +
Ethyl-Benzene Gas + + + + + + + - + + + +
Ethyl-Benzene Solid + + + + + + + - + + + +

Xylene Water + + + + + + + - + + + +
Xylene Gas + + + + + + + - + + + +
Xylene Solid + + + + + + + - + + + +

+/- =Positive or negative correlation at the 10 % significance level
+/- = Positive or negative correlation at the 5 % significance level
Blank = No significant correlations at either of the 5 % and 10 % significance levels
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hydraulic conductivity has a positive effect on the responses since porosity is playing a

limiting role in mass conservation (Equation 1, Section 3.4.1). This interaction however

will not be applicable in an actual Tier 3 RBCA scenario since low porosities with high

hydraulic conductivity are a characteristic of porous media with fractures. MOFAT is not

applicable for simulating in a fractured media environment and would not be used for

Tier 3 RBCA scenarios involving fractured media.

At the high levels of ex, the level of ~ does not have an effect on the responses. However

at low levels of ex, there is a negative interaction between ~ and ex. The van Genuchtan ex

affects the p phase saturations (Equations 4,5,6 and 7, Section 3.4.1), which affect the

governing equations for both flow and transport at several levels (Equations 4, 5, 6 and 7,

in Section 3.4.1, equations 13, 14, 16, 17, 18 and 19 in Section 3.4.2). Due to the

complexity of the equations it is not possible to explicitly describe why this interaction

occurs.

At the high levels of ex, the level of K sw does not have an effect on the responses.

However at the low levels of ex, there is a positive interaction between K sw and ex, i.e. as

the level of K sw increases the responses increases. Again, since van Genuchtan ex affects

the governing equations for both flow and transport at several levels it is not possible to

explicitly describe why this interaction occurs due to the complexity of the equations.
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5.2.4 Effects of Input Parameter Correlations on Sensitivity Analysis

The presence of correlations between probabilistic input parameters can greatly

complicate the interpretation of sensitivity analysis results (Helton and Davis, 2000). To

correctly interpret the results of the correlations presented in Tables 5.1 to 5.5 the results

should be reviewed in conjunction with information on the correlations between the

probabilistic input parameters. The U.S. EPA guidelines on MC analysis recommends

that the presence or absence of moderate to strong correlations or dependencies between

the input variables is to be discussed and accounted for in sensitivity analysis, along with

the effects that these have on the output distribution (U.S. EPA, 1997b).

Information on the correlations between the probabilistic input parameters has been

presented earlier in Table 3.5 and discussed earlier in Section 3.6. K sw is positively

correlated with Sf (and hence S m), a and n. These are the same input parameters that are

in general correlated with all of the outputs as seen in Tables 5.1 to 5.5. It was also noted

earlier that these correlations correspond with the dependences that were observed in the

scatter plots.

The correlations between K sw and the van Genuchten water retention parameters a and n

are especially strong. This explains why the output parameters in general were distinctly

correlated with K sw. a and n. Sf (and hence S m) shows a strong correlation with n. This

might be the explanatory cause as to why in the PCC test, S m showed a significant

correlation with all outputs.
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5.3 Ranking and Grouping of Input Parameters

An aim of sensitivity studies is to obtain a ranking of the input parameters based on their

contribution to the output variance. This is primarily for the purpose of identifying the

inputs that contribute most to output variability and to consequently identify which

parameters require additional research or more focus for reducing output uncertainty. The

aim of the ranking is not to obtain an absolute ranking of parameter importance. This is

more a prioritization exercise to provide model users with guidance on relative parameter

importance. This ranking is important for assigning priorities to variables for reducing

uncertainties. These higher ranked inputs typically have the most influence on the

calibration and predictions and should be the focus of field investigation and calibration

efforts.

5.3.1 Ranking Based on the Absolute Value of the PRCC

One approach for identifying important input variables is to rank the input parameters on

the relative size of the absolute value of the PRCC (Iman and Helton, 1985). The PRCC

have been presented earlier in Table 5.4. The absolute value of the PRCC is a

quantification of the strength of the relationship between two parameters. The higher the

absolute value of the PRCC the greater is the strength of the correlation between the input

and output parameter. As the strength of the correlation increases the importance of the

input parameter increases so the absolute value of the PRCC can be used to rank input

183



parameters. The input parameters have been ranked on the relative size of the absolute

value of the PRCC as shown in Table 5.6.

5.3.2 Grouping Based on Critical "p" Values

Another approach for identifying important input variables is to divide the variables into

groups on the basis of critical values (Kleijnen and Helton, 1999a). The p values are a

useful tool for distinguishing between parameters that appear to have a substantial effect

on predicted parameters and parameters that appear to have little or no effect (Kleijnen

and Helton, 1999a). The critical values or p values are the probability that a larger

coefficient value would occur owing to chance variation. A small critical value indicates

that under the assumptions of the test, an outcome equal to or greater than the observed

value of the statistic is unlikely to occur owing to chance (Kleijnen and Helton, 1999a).

The importance of a parameter goes up as the p value goes down so the p value can be

used to rank input parameters. The p values are a function of sample size and it is

important to compare p values based on the same sample size. Since the LHS-MC

simulation results were used for this sensitivity study, the sample size used in this study is

100. Using the critical values of the PRCC the input variables have been grouped in

Table 5.7 into three groups in decreasing order of significance as follows:

Group 1 Variables with p less than 0.01

Group 2 Variables with p equal to or greater than 0.01 but less than 0.05

Group 3 Variables with p equal to or greater than 0.05
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Table 5.6 Ranking ofInputs Based on the Absolute Value ofthe PRCC

Component Phase K sw cb Sm S or (X n

Benzene Water 1 3 4 4 6 2
Benzene Gas 1 3 5 4 6 2
Benzene Solid 1 3 4 5 6 2
Toluene Water 1 4 5 6 2 3
Toluene Gas 1 4 5 6 2 3
Toluene Solid 1 4 5 6 2 3

Ethyl-Benzene Water 1 6 5 4 2 3
Ethyl-Benzene Gas 1 6 5 4 2 3
Ethyl-Benzene Solid 1 6 5 4 2 3

Xylene Water 1 6 5 4 2 3
Xylene Gas 1 6 5 4 2 3
Xylene Solid 1 6 5 4 2 3
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Table 5.7 Grouping ofInputs Based on the Basis ofCritical Values ofPRCC*

Component Phase K sw cb Sm S or a n
Benzene Water 3 3 3 3 3 3
Benzene Gas 3 3 3 3 3 3
Benzene Solid 3 3 3 3 3 3
Toluene Water 1 3 3 3 3 3
Toluene Gas 1 3 3 3 3 3
Toluene Solid 1 3 3 3 3 3

Ethyl-Benzene Water 1 3 3 3 1 2
Ethyl-Benzene Gas 1 3 3 3 1 2
Ethyl-Benzene Solid 1 3 3 3 1 2

Xylene Water 1 3 3 3 1 2
Xylene Gas 1 3 3 3 1 2
Xylene Solid 1 3 3 3 1 2

*based on a sample size of 100.
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5.3.3 Combined Grouping and Ranking

The two previous approaches both use the PRCC results for identifying important input

variables. The ranking approach is based on a measure of absolute correlation while the

grouping approach is based on the significance of results. A shortcoming with the

measure of absolute correlation approach is that even those correlations that are not

significant are included in the ranking. Similarly while the grouping approach takes into

account the significance of a correlation it does not provide an indication of the absolute

value of the correlation coefficient. Moreover the grouping presented in Table 5.7 is not

very useful for prioritizing variables since too many of the variables have the same rank.

A more relevant approach for identifying important input variables would be to merge the

two approaches so that the input variables are first grouped on the basis of the critical

values of the PRCC and are then ranked within each group based on the relative size of

the absolute value of the PRCC. The grouping can be further improved by including a

fourth category based on the 10% significance level as shown below:

Group A

Group B

Group C

Group D

Variables with p less than 0.01

Variables with p equal to or greater than 0.01 but less than 0.05

Variables with p equal to or greater than 0.05 but less than 0.1

Variables with p equal to or greater than 0.1
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The addition of a fourth category essentially presents four groups based on the 1%, 5%

and 10 % significance levels. This approach has been implemented on the PRCC results

and the resulting grouping and ranking are presented in Table 5.8. An alphanumeric

character indicates the significance of each variable for each phase of each BTEX

component. The alphabetic character indicates the group based on the critical p values of

the PRCC while the numeric portion indicates the relative rank within that group based

the absolute value of the PRCe.

5.4 Sensitivity to Additional Correlations between Input

Parameters

Of the seven probabilistic input parameters the Pearson Product Moment Correlation

Matrix used for this study accounted for correlations between' four of the input

parameters; K sw, Sn a and n. The correlation matrix was developed by Carsel and Parrish

(1988) for use in the uncertainty analysis of the leaching potential of the pesticide

aldicarb using the PRZM model. Consequently, S or and $ were not included in the

correlation matrix as they are not inputs for the PRZM model.

The sensitivity analysis presented earlier in Section 5.2 showed that the MOFAT outputs

parameters are not significantly correlated to either S or or $. To further test the

sensitivity of the uncertainty analysis conducted in Chapter 4, to the omission ofthe S or
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Table 5.8 Grouping and Ranking ofInputs Based on PRCC*

Component Phase K sw cI> Sm S or (X. n
Benzene Water LHS C1 02 04 03 05 01
Benzene Gas LHS C1 02 04 03 05 01
Benzene Solid LHS C1 02 03 04 05 01
Toluene Water LHS A1 02 03 04 C1 01
Toluene Gas LHS A1 02 03 04 C1 01
Toluene Solid LHS A1 02 03 04 C1 01

Ethyl-Benzene Water LHS A1 03 02 01 A2 B1
Ethyl-Benzene Gas LHS A1 03 02 01 A2 B1
Ethyl-Benzene Solid LHS A1 03 02 01 A2 B1

Xylene Water LHS A1 03 02 01 A2 81
Xvlene Gas LHS A1 03 02 01 A2 81
Xylene Solid LHS A1 03 02 01 A2 81

*based on a sample size of 100.
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and ~ from the correlation matrix, the next two sections test the effect 0 f individually

incorporating S or and ~ into the correlation matrix.

5.4.1 Maximum Residual Oil Saturation

A LHS-MC sample consisting of 100 simulations was generated and simulated to test the

sensitivity of the uncertainty analysis to correlation between saturated conductivity, K sw,

and maximum residual oil saturation for water, S or.

As listed in Table 5.9, in the absence of any information on the magnitude of correlation

between K sw and S or a correlation of 0.5 was assumed between the two parameters for

this LHS-MC sample. The sample was labeled as LHS-c. The adjusted rank correlation

matrix generated by the LHS program is presented in Table 5.10. The empirical cdfs for

the 12 MOFAT responses were plotted against the corresponding cdfs from LHS-MC

simulation LHS set (described earlier in Section 4.3) to evaluate the sensitivity 0 fthe

uncertainty analysis.

Figure 5.3 shows that the cdfs for Benzene generated using the LHS and the LHS-c

samples match up very closely for the water and gas phases. There is a slight deviation

between the cd!plots for the water and solid phases at the higher probabilities starting at

the 95% probability level.
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Table 5.9 Pearson Product Moment Correlation Matrix

K sw 1.0000
ST 0.2040 1.0000

a 0.9820 -0.0860 1.0000
n 0.6320 -0.7480 0.5910 1.0000

S or 0.5000 0.0000 0.0000 0.0000 1.0000
K sw Sr a n S or

Table 5.10 Adjusted Rank Correlation Matrix

K sw 1.0000
ST 0.1175 1.0000

a 0.8907 -0.0373 1.0000
n 0.5417 -0.6995 0.6418 1.0000

S or 0.4353 0.0346 0.0365 0.0361 1.0000
K sw ST a n S or
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Figure 5.3 LHS and LHS-c cdf comparison for Water, Gas and Solid Phase

Concentrations of Benzene
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Figure 5.4 shows that the cdfs for Toluene generated using the LHS and the LHS-c

samples match up very closely for the water and gas phases. There is a slight deviation

between the cdfplots for the solid phases at the higher probabilities starting at the 85%

probability level.

Figure 5.5 shows that the cdfs for Ethyl benzene generated using the LHS and the LHS-c

samples match up very closely for the water and gas phases. There is a slight deviation

between the cdf plots for the solid phase at the higher probabilities starting at the 90 %

probability level.

Figure 5.6 shows that the cdfs for Xylene generated using the LHS and the LHS-c

samples match up very closely for all three phases. In Figures 5.3 to 5.6, the closeness of

the LHS and LHS-c cdfplots, especially for the water and gas phases of all four BTEX

components, implies that the output responses are not sensitive to S or values. The

deviation between the cdfplots for the solid phase for all BTEX components at the higher

probabilities are largely negligible and it can be reasonably concluded that the exclusion

of S or from the correlation matrix does not significantly affect the accuracy of the

uncertainty analysis.
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Figure 5.4 LHS and LHS-c cdf comparison for Water, Gas and Solid Phase

Concentrations of Toluene

t ,.jII+ .... -; ..
0.95 f--~--t~;f""'_C'----------"'-/~~~.-----'-'::---------i

0.9 f--I'----$.:p~--------~,""..•--------------------I
"fI' ,•..... ;:•• -

0.85 f-4F-----i'~,.'-------;-..~.-...=.--I.F-----------------j

00;: "=1--'-----I-=cd~'''--..--------------------1

>. 00.6.75 ±-±-:=::========:I:.:.=========================================:
~. 0.6 ~--:"t'-------c"'~"::::------------------------I
<II J"
~ 0.55 H---:'I;-----I','-----------------------__1

~ 0.5 H--:f£---~I_-------------------------1

~ 0.45 H-:if---,-.J'P---------------------------I
:;e 0.4 '3-!f---~/~--------------------------I

8 0.35 ~fi----,_.iI_----------------------_I

0.3 ••t~-Jf~---------------------------1

0.25.1----1""slJ."-----------------------------I

0.2 'f
0.15 f'

0.1 .,..------------------------------1

LHS-Water

:I: LHS-Gas

• LHS-Solid

+ LHS-c-Water

• LHS-c-Gas

LHS-c-Solid

1.20E-021.00E-028.00E-036.00E-034.00E-032.00E-03

0.05 :1:--------------------------------1

O+-----~~---__,----_..----._----.__---__I

O.OOE+OO

Toluene Concentration (1000 mg/I)

194



Figure 5.5 LHS and LHS-c cdf comparison for Water, Gas and Solid Phase

Concentrations of Ethyl benzene
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Figure 5.6 LHS and LHS-c cdf comparison for Water, Gas and Solid Phase

Concentrations of Xylene
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5.4.2 Porosity

A LHS-MC sample consisting of 100 simulations was generated and simulated to test the

sensitivity of the uncertainty analysis to correlation between saturated hydraulic

conductivity, K sw and porosity, ~..

These two parameters are generally correlated. There is no strict relationship between

porosity and saturated hydraulic conductivity but generally as long as the influence of

molecular attraction is on the second order, hydraulic conductivity increases with an

increase in porosity (Spitz and Moreno, 1996). As listed in Table 5.11, in the absence of

any information on the magnitude of correlation between K sw and, ~ a correlation of 0.5

was assumed between the two parameters for this LHS sample. The sample was labeled

as LHS-p.

The adjusted rank correlation matrix generated by the LHS program is presented in Table

5.12. The empirical cdfs for the 12 responses were plotted against the corresponding cdfs

to evaluate the sensitivity of the uncertainty analysis.

Figure 5.7 shows that the cdfs for Benzene generated using the LHS and the LHS-p

samples match up very closely for the gas phase. There is a very slight deviation between

the cd!plots for the water and solid phases at the higher probabilities.
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Table 5.11 Pearson Product Moment Correlation Matrix

Ksw 1.0000
Sr 0.2040 1.0000

a- 0.9820 -0.0860 1.0000
n 0.6320 -0.7480 0.5910 1.0000

<l> 0.5000 0.0000 0.0000 0.0000 1.0000
Ksw Sr a- n <l>

Table 5.12 Adjusted Rank Correlation Matrix

Ksw 1.0000

Sr 0.1175 1.0000

a- 0.8907 -0.0373 1.0000
n 0.5417 -0.6995 0.6418 1.0000

<l> 0.4353 0.0346 0.0365 0.0361 1.0000
Ksw Sr a- n <l>
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Figure 5.7 LHS and LHS-p cdf comparison for Water, Gas and Solid Phase

Concentrations of Benzene
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Figure 5.8 shows that the cdfs for Toluene generated using the LHS and the LHS-p

samples match up very closely for all three phases.

Figure 5.9 shows that the cdfs for Ethyl benzene generated using the LHS and the LHS-p

samples match up very closely for the water and gas phases. There is a slight deviation

between the cd!plots for the solid phase at the higher probabilities.

Figure 5.10 shows that the cdfs for Xylene generated using the LHS and the LHS-p

samples match up very closely for all three phases.

In Figures 5.7 to 5.1 0, the closeness of the LHS and LHS-p cd! plots, especially for the

water and gas phases of all four BTEX components, implies that the output responses are

not sensitive to the inclusion of $ in the correlation matrix. The deviation between the cd!

plots for the solid phase for all BTEX components at the higher probabilities are largely

negligible and it can be reasonably concluded that the exclusion of $ from the correlation

matrix does not significantly affect the accuracy of the uncertainty analysis.

5.5 Sensitivity to Anisotropy

For anisotropic soil mediums the ratio of horizontal to vertical hydraulic conductivity can

vary from one to much higher values like 10. Typically horizontal conductivities are
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Figure 5.8 LHS and LHS-p cdf comparison for Water, Gas and Solid Phase

Concentrations of Toluene
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Figure 5.9 LHS and LHS-p cdf comparison for Water, Gas and Solid Phase

Concentrations of Ethyl benzene
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Figure 5.10 LHS and LHS-p cdf comparison for Water, Gas and Solid Phase

Concentrations of Xylene
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higher than vertical conductivities (Spitz and Moreno, 1996). For the uncertainty analysis

presented in this study isotropic conditions were assumed and the vertical and horizontal

hydraulic conductivity were assumed to be equal for the RS-MC, LHS, LHS-s, LHS-c,

and LHS-p simulations. To test the sensitivity of the uncertainty analysis to the ratio of

horizontal to vertical hydraulic conductivity, a sixth LHS-MC sample was generated.

This sample was labeled as LHS-K. For this LHS sample the horizontal hydraulic

conductivity was assumed to be twice the vertical conductivity.

The empirical cdfs for the 12 responses were plotted against the corresponding cdfs to

evaluate the sensitivity of the uncertainty analysis.

Figure 5.11 shows that the cd!s for Benzene generated using the LHS and the LHS-K

samples match up very closely for the gas phase. There is a clear deviation between the

cd!plots for the water and solid phase starting right at the lower probabilities. However at

the higher probabilities the LHS and the LHS-K cd!plots for the water and solid phase

match very closely.

Figure 5.12 shows that the cdfs for Toluene generated using the LHS and the LHS-K

samples match up very closely for the water and gas phases. There is a slight deviation

between the cd!plots for the solid phase starting right at the lower probabilities but again

at the higher probabilities the LHS and the LHS-K cd! plots for the solid phase match

very closely.
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Figure 5.11 LHS and LHS-K cdf comparison for Water, Gas and Solid Phase

Concentrations of Benzene
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Figure 5.12 LHS and LHS-K cdf comparison for Water, Gas and Solid Phase

Concentrations of Toluene
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Figure 5.13 shows that the cdfs for Ethyl benzene generated using the LHS and the LHS­

K samples match up very closely for. the water and gas phases. There is a slight deviation

between the cd/plots for the solid phase at the higher probabilities.

Figure 5.14 shows that the cdfs for Xylene generated using the LHS and the LHS-K

samples match up very closely for all three phases. In Figures 5.11 to 5.14, the closeness

of the LHS and LHS-p cd/plots, especially for the water and gas phases of all four BTEX

components, implies that the output responses are not overtly sensitive to the ratio of

horizontal to vertical hydraulic conductivity. While there is slight sensitivity in the solid

phase concentrations of all four BTEX components to the ratio of horizontal to vertical

hydraulic conductivity these results establish that the uncertainty analysis presented

earlier in Chapter 4 was not significantly affected by the ratio of horizontal to vertical

hydraulic conductivity.
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Figure 5.13 LHS and LHS-K cdC comparison for Water, Gas and Solid Phase

Concentrations of Ethyl benzene
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Figure 5.14 LHS and LHS-K cdf comparison for Water, Gas and Solid Phase

Concentrations of Xylene
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Chapter 6. A Framework for Uncertainty and Sensitivity

Analysis of MOFAT

6. 1 Introduction

Saltelli et. al. (2004) note "uncertainty and sensitivity analysis are more often mentioned

than practiced". This is reflected in that when this research study was initiated no

published guidance was available (and is still not available) on the parametric

uncertainties associated with MOFAT or for that matter any multi-phase multi­

component fate and transport model that could be used for Tier 3 RBCA of petroleum

release sites. Similarly no published framework was available (and is still not available)

on how to undertake an uncertainty and sensitivity analysis of MOFAT (or other any

multi-phase multi-component fate and transport model that could be used for Tier 3

RBCA of petroleum release sites) to estimate parametric uncertainties and identify

sensitive parameters.
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One reason for the absence of quantification of parametric uncertainties (and an

associated framework) is that the area of quantitative uncertainty analysis for RBCA is a

relatively recent development that has primarily come of age in the last decade.

Institutional and regulatory policy and guidance, which is a strong impetus for

development, in the form of the 1995 ASTM "Standard Guide for Risk Based Corrective

Action Applied at Petroleum Release Sites, ASTM E 1739-95"; 1997 US. EPA "Policy

for Use of Probabilistic Analysis in Risk Assessment at the US. Environmental

Protection Agency"; 1997 US. EPA" Guiding Principles for Monte Carlo Analysis. EPA

630-R-97-001" and the 2003 US. EPA "Multimedia, Multipathway, and Multireceptor

Risk Assessment (3MRA) Modeling System. Volume IV: Evaluating Uncertainty and

Sensitivity. EPA 530-D-03-001d" have only become available in the last decade. More

over it is only in the more recent of these documents that the impetus has shifted from a

qualitative to a quantitative assessment ofuncertainty and sensitivity.

Another reason for the absence of such a framework is that development of such a

framework for a complex model is in itself a complex and resource intensive endeavor

that essentially requires comparison of various uncertainty analysis techniques with the

benchmark Random Sampling Monte Carlo technique (RS-MC). Due to their

computational complexity and expense, complex models like MOFAT do not constitute

convenient vehicles for comparing differences between benchmark RS-MC and other

more computationally efficient uncertainty analysis techniques. As discussed in Section

1.1 the simulation time itself for RS-MC could be prohibitive. Another restricting factor
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is that specialized processing tools (a MC version of model, a pre processor and a post

processor) are required. The 10,000 RS-MC simulations conducted in this research study

took approximately two years to complete. This was using the MC-MOFAT version

developed in this study, which allowed batch processing. Without the batch processing

abilities of the MC-MOFAT code this would have taken significantly longer. Similarly

the manual compilation of 10,000 MOFAT input files is time consuming task. The pre­

processing tool developed as a part of this study allowed the assembly of 10,000 MOFAT

input files in minutes. If done manually this task would take at least 20.8 days if done

continuously without a break. This is based on the assumption that to manually assemble

one MOFAT input file it would take approximately three minutes and hence 30,000

minutes (20.8 days) to assemble 10,000 input files.

The processing of the 10,000 output data files generated due to RS-MC is also an

overwhelming task. The post-processing tool developed as a part of this study is able to

accurately extract the output results for 10,000 MOPAT output files in approximately a

fortnight. If done manually this task would take at least 41.6 days if done continuously

without a break. This is based on the assumption that to manually extract the results of

one MOFAT output file to a text file it would take on an average six minutes and hence

60,000 minutes (41.6 days) to manually extract the output results for 10,000 MOFAT

output files.
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As presented in Chapter 1, with an aim of addressing this gap in published literature the

objectives of this research study were; (1) to conduct a benchmark uncertainty analysis of

MOFAT using Random Sampling based Monte Carlo and to evaluate the applicability

and performance of various uncertainty analysis techniques to MOFAT. The uncertainty

analysis techniques evaluated were Random Sampling based Monte Carlo (RS-MC),

Monte Carlo with Latin Hypercube sampling (LHS-MC), Monte Carlo using a Response

Surface Methodology (RSM-MC) based replacement model and Monte Carlo using a

Neural Network (NN-MC) based replacement model; (2) to develop the computational

tools required to undertake an uncertainty analysis ofMOFAT. These tools were a Monte

Carlo version of MOFAT called MC-MOFAT, a pre processing tool to compile MC­

MOFAT input files and a post processing tool to process MC-MOFAT output files; (3) to

quantify the uncertainty in estimates of exposure due to variability in input parameters;

(4) to evaluate the applicability and performance of various sensitivity analysis

techniques to MOFAT; (5) to identify sensitive parameters and issues that need to be

addressed when using MOFAT; (6) to use the information gained from the previous

objectives to develop a framework for uncertainty and sensitivity analysis ofMOFAT (7)

to identify areas of additional research so that uncertainty in MOFAT estimates can be

better understood and quantified.

This chapter presents the sixth objective. This chapter draws on the experiences acquired

in conducting the uncertainty and sensitivity analysis ofMOFAT, presented in Chapters 3

to 5, to formulate a framework designed specifically for undertaking an uncertainty and

213



sensitivity analysis ofMOFAT. As illustrated in Figure 6.1, this is a six-step framework

consisting of the following steps, which are discussed in further detail in Section 6.2:

Step 1: Specification of Parameter Uncertainty

This component of the framework provides guidance on which parameters to give

particular attention to when specifying parameter uncertainty and in developing a

field investigation program. It also provides guidance on how to use, for

preliminary and planning level model runs and uncertainty analysis, Robert

Carsel's database of soil properties to establish good approximations to empirical

distributions for many soil parameters and to account for correlations between

input parameters.

Step 2: Selecting an Uncertainty Analysis Method

This component of the framework provides guidance on which uncertainty

analysis technique to use and the appropriate sample size to use.

Step 3: Generating Correlated Probabilistic Samples and Assembling Input

Files

This component of the framework provides guidance on how to incorporate

dependencies when generating probabilistic (LHS-MC or RS-MC) samples. It

also provides guidance on assembling MOFAT input files from these samples

using the pre-processing tool developed in this study.
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Figure 6.1 A Framework for the Uncertainty and Sensitivity Analysis of MOFAT
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Step 4: Propagating Parameter Uncertainty through MC-MOFAT

This component of the framework provides guidance on the processing of the

MOFAT input files using MC-MOFAT.

Step 5: Post Processing of MOFAT Output Files

This component of the framework provides guidance on the post processing of the

MOFAT output files using the post-processing tool developed in this study.

Step 6: Sensitivity Analysis

This component of the framework provides guidance on how to conduct a

sensitivity analysis of the uncertainty analysis results. For identifying important

input parameters, it provides guidance on techniques for ranking and grouping

input parameters.

The uncertainty analysis techniques (RS-MC, LHS-MC, RSM-MC, and NN-MC) that

comprise the framework are not new but prior to this research study they had never been

tested and benchmarked for MOFAT or for any multi-phase multi-component fate and

transport model that could be used for Tier 3 RBCA of petroleum release sites. The need

for this MOFAT specific framework arises from the discussion presented earlier in

Section 1.1 and the literature review presented earlier in Section 2.4 where it was

observed that for complex models like MOFAT the applicability and performance of

various uncertainty analysis techniques is very model specific.
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The framework not only lays out a methodology for uncertainty and sensitivity analysis

for MOFAT that can be used by all users of MOFAT, it also provides the tools required

to conduct such an analysis. Tools developed to support this methodology include a pre­

processor to generate MOFAT input files, a MC version ofMOFAT (MC-MOFAT) and a

post processor to automatically extract results from a batch of MOFAT output files. The

framework and supporting tools will for the first time enable MOFAT users to conduct

comprehensive uncertainty and sensitivity analysis of their simulation scenarios. This

will provide them with invaluable insight into the uncertainty associated with their

simulations and will help them meet growing regulatory requirements for uncertainty and

sensitivity analysis. It will also be invaluable in helping MOFAT users study the impact

of various input parameters on their simulations and help them direct field resources to

where they would most useful in reducing uncertainty in model outputs. For preliminary

and planning level model runs and uncertainty analysis the framework also directs the

modeler to a comprehensive database of soil properties and correlation coefficients. The

use of this comprehensive soil database compiled from soil survey reports from 42 states

in the United States to define parametric variability and correlations ensures that

uncertainty in defining parameter variability and correlations is kept at a minimum.

The primary strength of the framework is that it is based on a comprehensive evaluation

of uncertainty analysis techniques using a simulation scenario based on MOFAT's

validation studies. This ensured that various sources of model uncertainty were kept at a

minimum and that the uncertainty analysis was not carried for a site-specific problem.
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The use 0 f t he comprehensive soil database mentioned in the previous paragraph also

ensured that uncertainty in defining parameter variability was kept at a minimum. The

framework provides detailed guidance on which uncertainty analysis technique best

replicates the results of the benchmark uncertainty analysis technique RS-MC with

greater efficiency. It also alerts the MOFAT user to problems associated with using any

Replacement model based MC uncertainty analysis technique. It further provides

guidance on the effect ofvarious LHS sample sizes.

This framework was developed specifically for MOFAT but the steps in this framework

may b e used in developing a framework for 0 ther complex fate and transport m ode1s.

This framework is also of direct use for further research and can be used to further extend

the uncertainty and sensitivity analysis presented earlier in Chapter 4.

6.2 A Six Step Framework for Uncertainty and Sensitivity
Analysis of MOFAT

While a brief outline of the framework and a discussion of its highlights have been

presented in the previous section, a detailed description of the specific steps of the

framework is presented in the following sections:
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6.2.1 Step 1: Specification of Parameter Uncertainty

The first step of this six step framework is illustrated in Figure 6.2. In specifying

parameter uncertainty and in developing a field investigation program it is very important

to give particular attention to those parameters that were closely correlated to the outputs

and those that were identified as being significant in the sensitivity analysis. Based on

the results of this study, the model was most sensitive to the soil properties; saturated

conductivity to water, Ksw, van Genuchten air-water capillary retention parameter, a, and

van Genuchten air-water capillary retention parameter, n. The model also displayed a

lesser degree of sensitivity to the apparent irreducible water saturation, S m' These have

been highlighted in Chapter 5.

Also fundamental to the use of Monte Carlo numerical simulations in the flow and solute

transport area is the need to establish good approximations to empirical distributions for

many soil parameters and to account for the correlation between input parameters. As

discussed earlier in Section 3.6, the most comprehensive published source for

specification of parameter uncertainty and correlations is a database of soil properties

compiled by Robert Carsel of the U.S. EPA using SCS Soil Survey Information reports

from 42 states. Consequently this is being sold as a commercial package SOILPARA.
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Figure 6.2 Step 1 of Framework - Specification of Parameter Uncertainty
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The distribution approximations and factored covariance matrices developed by Carsel

and Parrish (1988) can be used directly for preliminary and planning level model runs

and uncertainty analysis to gauge the sensitivity of the simulation scenario. The results

can then be used to direct the field investigation and sampling program to focus on those

parameters that would reduce uncertainty most.

Following an extensive field investigation and sampling program the approach used by

Carsel and Parrish (1988) can be used to cross check and develop distribution

approximations and obtain a site-specific covariance matrix. The SCS classification is

widely used in soil survey reports across the world (including Canada) so the approach

can be easily extended to other soil survey databases.

While a detailed description of Carsel and Parrish's approach can be found in their paper

(Carsel and Parrish, 1988), the approach can be summarized as follows:

Using Carsel's database to obtain bulk density, sand and clay contents for the 12

SCS textural classifications, Carsel and Parrish (1988) have estimated the

covariance matrix for saturated hydraulic conductivity, residual water content and

van Genuchten water retention parameters a and n for 12 different SCS soil

textural classifications. The saturated water contents, the sand contents and the

clay contents reported for each of the SCS classifications were used to compute

saturated hydraulic conductivity and water retention parameters for the van
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Genuchten model using a multiple regression equation developed by Rawls and

Brakensiek (1985). This database 0 f computed sa turated hydraulic conductivity

and van Genuchten water retention parameters for each of the 12 soil textural

classifications was then used as the basis for characterization of probability

distributions for these variables. Empirical cd! were derived for all of these

variables and hypothesized distributions were fitted. Within each soil textural

class, after Johnson family transformations to normal were selected and

distributions were fitted for all variables, sample Pearson product-moment

correlations and covariances were calculated for the transformed variables.

If Carsel and Parrish's approach is used to develop distribution approximations and

obtain a site-specific covariance matrix, the approach can potentially be improved in two

ways:

• Including porosity in the covariance matrices could strengthen the covariance

matrices. Porosity is one of the fundamental soil characteristics that affects flow

and solute transport in the soil. By its very nature porosity is generally correlated

to other parameters such as saturated hydraulic conductivity and is a key source of

uncertainty in groundwater modeling.

• The Carsel and Parrish approach could also be further improved if an attempt is

made to use a transformation to normal that does not need the estimation of the
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ranges of variation for each water retention parameter as was needed by the

Johnson family of distribution. The estimation of the limits of variation, as needed

in the Carsel and Parrish (1988) study, via initial screening and theoretical

considerations is time consuming and is a possible source of error. The use of a

normal transformation such as the Box-Cox transformation could potentially avert

this problem.

6.2.2 Step 2: Selecting an Uncertainty Analysis Method

This step of the framework is illustrated in Figure 6.3. As demonstrated in Chapter 4 an

uncertainty analysis of MOFAT can be accurately and efficiently conducted using LHS­

MC. Cdfs ofMOFAT outputs generated using LHS-MC were able to accurately converge

with cdfs generated using the benchmark RS-MC. The efficiency of the LHS-MC

sampling method over RS-MC has been demonstrated in this study. Model replacement

techniques RSM and NN were evaluated in this study and were found not to be suitable

for uncertainty analysis ofMOFAT.

The Iman and Helton (1985) recommended LHS-MC sample size of 5*(number of

variables) has been demonstrated in this study to accurately converge to the RS-MC cdfs.

However, it has also been demonstrated in this study that a LHS-MC sample size that is

approximately three times the recommended LHS-MC sample size of 5*(number of

variables) displays a slightly higher degree of convergence to the RS-MC cdfs. A yet

higher degree of convergence to the RS-MC cdfs is achieved by using an LHS-MC
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Figure 6.3 Step 2 of Framework - Selecting an Uncertainty Analysis Method

Use a LHS-MC Sample
Size of 15*(Number of
variable)

Use a RS-MC
Sample Size of at
least 5000

No

YesWant to
use

RS-MC?

Is simulation
scenarIO very

sensitive?

Final Analvsis

Yes

Is this a
Preliminary or a
Final analysis?

Use a LHS-MC Sample
Size of 45*(Number of
variable)

Use a LHS-MC Sample
Size of 5*(Number of
variable)

Preliminar

224



sample size of 45*(number of variables). However using an LHS-MC sample size greater

than 45*(number of variables) does not result in any significant increase in convergence

since the convergence of the 45*(number of variables) LHS-MC samples is already

excellent.

Based on the results of this study the ideal LHS-MC sample size is one with l5*(number

of variables) runs. However for preliminary or screening level uncertainty and sensitivity

analysis it would be more efficient to use the smaller LHS-MC sample size of 5*(number

of variables). For highly sensitivity scenarios an LHS-MC sample size equal to

45*(number of variables) may be used to ensure an excellent convergence to RS-MC

outputs. The use of an LHS-MC sample size greater than 45*(number of variables) will

not result in any significant additional gain in convergence.

If a RS-MC uncertainty analysis of MOFAT isto be conducted then a sample size of

greater than 3000 random samples would be sufficient for convergence 0 f the RS-MC

outputs. However it is highly recommended that a sample size of at least 5000 be used.

As described in section 4.2.2 the means and standard deviations for all components had

converged after approximately 2500 simulations.
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6.2.3 Step 3: Generating Correlated Probabilistic Samples and Assembling

Input Files

This step of the framework is illustrated in Figure 6.4. A key component of generating

probabilistic (LHS-MC or RS-MC) samples is accounting for dependencies between the

probabilistic inputs. Typically analysts and modelers assume independence between

variables that are mechanistically related for the sake of mathematical convenience and

this makes the resulting risk assessments umeliable (Scott and Tucker, 2003). The Iman

and Shortencarier (1984) FORTRAN LHS code is an excellent tool for accounting for

dependencies and it does so by using a restricted pairing technique to generate rank

correlated samples for LHS-MC and RS-MC simulations. Iman and Conover's restricted

pairing technique has been explained in Chapter 3. The code has been configured for

Unix and is available on the compact disc in Appendix B. If being compiled for a PC the

results would need to be verified against the sample files provided by Iman and

Shortencarier (1984).

Once LHS-MC (or RS-MC) samples have been generated, MOFAT input files have to be

compiled for each sample. A FORTRAN program for automatically compiling MOFAT

input files for the various LHS-MC (or RS-MC) samples was developed as a part of this

study. The code is attached as Appendix B. This can be compiled in either a Unix or PC

environment. Further details about the code are available in Appendix B.
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Figure 6.4 Steps 3, 4 and 5 of Framework - Generating Correlated Probabilistic

Samples and Assembling Input Files; Propagating Parameter Uncertainty through

MC-MOFAT; and Post Processing of MOFAT Output Files
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For dependencies between the probabilistic inputs it is best to acquire these from site­

specific studies. In the absence of site-specific data, for preliminary and planning level

uncertainty analysis, Carsel and Parrish (1988) provide an excellent source for these

correlations. This is better than assuming independence between probabilistic inputs that

are mechanistically related. As described in Section 3.6 and 6.2.1, Carsel and Parrish

(1988) have estimated the covariance matrix for saturated hydraulic conductivity,

residual water content and van Genuchten water retention parameters a and n for 12

different SCS soil textural classifications. The comprehensiveness of this soil database

ensures that the uncertainty in defining dependencies between the probabilistic inputs

parameter is kept at a minimum. To use Carsel and Parrish's covariance matrix, the

initial fieldwork should be focused on identifying the SCS classifications of the soil

media at the study site.

Where the contaminant travel path crosses different soil types probabilistic correlated

samples of the soil properties would have to be generated for all soil types. MOFAT

allows the user to designate a maximum of 10 soil types.

6.2.4 Step 4: Propagating Parameter Uncertainty through MC-MOFAT

This step of the framework is illustrated in Figure 6.4. For LHS-MC and RS-MC

simulations it is necessary to have the ability to process input files through MOFAT as a

batch. As a part of this study the MOFAT code was modified to allow batch input and is

attached as MC-MOFAT in Appendix B. This allows the batch processing of specified
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input files through MOFAT with the output directed to user-defined files. The modified

code can be compiled in either a Unix or PC environment. Further details about the code

are available in Appendix B.

6.2.5 Step 5: Post Processing of MOFAT Output Files

This step of the framework is illustrated in Figure 6.4. Post processing primarily involves

extracting specific information from the output files to allow analysis of the information.

MOFAT output files can be quite large and the manual extraction of data from these files

is time consuming. As described in Section 3.8 an automated post-processing tool

developed as part of this study sequentially copies from MOFAT output files the results

for a specified time step and node number to a text file. This file can then be opened in

any spreadsheet or statistical program for subsequent data analysis and plotting of cdfs.

This tool is able to accurately extract the output results for 10,000 MOFAT input files in

approximately a fortnight. If done manually this task would take months. The automated

post-processing tool is attached in Appendix B.

6.2.6 Step 6: Sensitivity Analysis

This step of the framework is illustrated in Figure 6.5. As described in Chapter 5, MC

procedure results are ideally suited for sensitivity studies. In uncertainty analysis the use

of LHS-MC as a substitute for RS-MC also positively impacts the sensitivity analysis

process. The smaller samples associated with LHS-MC simulation are better for

identifying important input parameter as with the increasing sample sizes associated with
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Figure 6.5 Step 6 of Framework - Sensitivity Analysis
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the RS-MC simulation there is a greater resolution of the effects associated with less

important parameters (Kleijnen and Helton 1999a, I999b).

In addition to scatter plots, for identifying important input parameters two techniques for

ranking and grouping input parameters based on the Partial Rank Correlation Coefficient

(PRCC) proposed by Iman and Helton (1985) and Kleijnen and Helton (l999a)

respectively can be used directly with LHS-MC simulation results.

!man and Helton's (1985) technique ranks the input parameters on the relative size of the

absolute value of the PRCe. The absolute value of the PRCC is a quantification of the

strength of the relationship between two parameters. The higher the absolute value of the

PRCC the greater is the strength of the correlation between the input and output

parameter. Since the importance of the input parameter increases as the strength of the

correlation increases the absolute value of the PRCC is used to rank input parameters.

Kleijnen and Helton's (1999a) technique identifies important input variables by dividing

the variables into groups on the basis of critical values of the PRCC test statistic. The

critical values or p values are the probability that a larger coefficient value would occur

owing to chance variation. This can used to group input parameters into those that appear

to have a significant effect on predicted parameters and those that appear to have little or

no effect.
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A third technique that draws on the strengths of these two ranking and groupmg

techniques to collectively group and rank input parameters has been proposed and used in

this study. This is a more relevant approach for identifying important input variables that

first groups input parameters on the basis of the critical values of the PRCC and then

within each group relatively ranks the input parameters based on the relative size of

absolute value of the PRCC.
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Chapter 7. Conclusions and Recommendations

7. 1 Conclusions

To quantity parametric uncertainties, to address an area of increasing concern in the use

of numerical models for Tier 3 RBCA of petroleum contaminated sites and to address a

significant gap in the published literature, a comprehensive parametric uncertainty and

sensitivity analysis ofthe multi-phase multi-component fate and transport model MOFAT

was successfully accomplished in this research study. The research examined the

applicability 0 f various uncertainty and sensitivity analysis techniques toM OFAT and

developed a comprehensive framework for the uncertainty and sensitivity analysis of

MOFAT.

This uncertainty analysis ofMOFAT provides a quantification of output variability over a

whole range 0 f possible inputs. I tallows confidence limits to be placed 0 n the 0 utput

results and this helps place the results of MOFAT in correct perspective. The sensitivity

analysis improves the understanding ofwhich parameters are most important for reducing
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uncertainty in the simulation results. This pinpoints the priorities for obtaining new

information and helps devise more appropriate field sampling programs.

A distinguishing feature of this research study is that it is extensive in its scope in terms

of the number of input parameters that have been reviewed in it. Most published

groundwater studies have concentrated primarily on the variability of hydraulic

conductivity while this study examined the variability of seven soil parameters.

Undertaking an uncertainty analysis simulation study is as complex and intricate as any

field 0 r 1aboratory study and requires careful planning and implementation. Toe nsure

that the objectives of this research study were met a comprehensive uncertainty analysis

study was formulated and implemented. The tools required to undertake this study were

also developed. The original FORTRAN code for MOFAT was modified as MC-MOFAT

to allow compilation of the MOFAT model to accept batch inputs, a feature that is needed

to undertake MC analysis of the model. A pre-processing FORTRAN tool was developed

to allow automated generation of MOFAT input files from a text file listing all MC

samples. A VBA based post-processing tool was also developed to automatically extract

the results for a specified step and time step from MOFAT output files. In this study, the

machine constants in the original VAXll1780 based LHS sub routines have been

adjusted to run in an Unix operating environment.
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The governing equations ofMOFAT were used to identify seven input parameters subject

to variability. These were the soil properties; saturated conductivity to water in the

vertical direction (K sw,J; saturated conductivity to water in the horizontal direction (K

sw.J; soil porosity (</»; apparent irreducible water saturation (8 m); maximum residual oil

saturation for water (8 or); van Genuchten air-water capillary retention parameter (a); and

van Genuchten air-water capillary retention parameter (n). These were modeled as

probabilistic inputs to propagate the effect of parameter variability through MOFAT. For

these parameters, with the intent of minimizing parameter uncertainty, a comprehensive

input parameter database was used to define parameter variability and correlations.

Similarly to minimize scenario and model uncertainty an innovative site scenario based

on sites scenarios used in the MOFAT validation studies was developed. The governing

equations of MOFAT, input parameter database, simulation scenario, simulation setup

and tools are presented in Chapter 3.

The applicability of various uncertainty analysis techniques for the uncertainty analysis

of MOFAT was evaluated in this research. The complexity of MOFAT restricted the

techniques that could be used to "simulation based" uncertainty analysis techniques. In

addition to the benchmark Random Sampling Monte Carlo (RS-MC) technique, stratified

sampling based and model replacement based techniques (Monte Carlo using Latin

Hypercube sampling (LHS-MC), Monte Carlo u sing a Response Surface Methodology

(RSM-MC) based replacement model and Monte Carlo u sing aN eural Network (NN­

MC) based replacement model) were evaluated to test their efficiency and accuracy
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against the benchmark RS-MC technique, which in itself required two years to execute.

The effect of using different LHS sample sizes was also evaluated through the use of four

different LHS samples of 35, 100, 300 and 500 respectively.

Cumulative density function (cd./) plots were used to assess the accuracy with which the

uncertainty analysis techniques being evaluated were able to replicate the results of the

benchmark RS-MC analysis. RS-MC and LHS-MC outputs were used to generate

cumulative density function (cd./) plots for all 12 MOFAT outputs, which are the BTEX

concentrations in the water, gas and solid phases. These cdfs have been presented in

Chapter 4.

All four LHS-MC sample sizes were able to accurately replicate the cdfs generated by

10,000 RS-MC samples and thus LHS-MC analysis can be used as an accurate and

extremely efficient (35 versus 10,000 samples) substitute for RS-MC uncertainty analysis

of MOFAT. For higher cumulative probabilities the cdfs generated using the 100 sample

LHS were more accurate than the cdfs generated using the smaller 35 sample LHS. Using

a 300 sample LHS produces cdfs that display a much higher degree of convergence to the

RS-MC cdfs than the 100 sample LHS cdfs. The use of a yet larger LHS sample size

(such as the LHS sample size of 500 used in this study) over the LHS sample size of 300

does not provide any appreciable increase in convergence as the cdfs produced using a

300 sample LHS are already very similar to the RS-MC cdfs. The RSM and NN

replacement models were not able to accurately and efficiently replace MOFAT for the
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purpose ofuncertainty analysis. RSM replacement models are not suitable for MOFAT as

the factorial design is not able to accommodate the correlations between input

parameters. Similarly NN replacement models are not efficient in replicating the results

ofRS-MC.

An extensive sensitivity analysis of MOFAT was also accomplished and is presented in

Chapter 5. The use of LHS-MC as a substitute for RS-MC in uncertainty analysis

positively impacts the sensitivity analysis process since the smaller samples associated

with LHS-MC simulation are better for identifying important variables t han the 1arger

sample sizes associated with the RS-MC simulation.

Sensitive parameters were identified through the application of sampling based statistical

measures on the set of LHS inputs and outputs. Scatter plots of each of the twelve

MOFAT outputs versus the probabilistic input parameters indicated that all the outputs

displayed a monotonic dependence on the inputs K sw, a, and n. A slight dependence

between all the outputs and the input S m was also apparent. Since correlation is a

quantification of the strength of the relationship between two variables, dependencies

between input parameters and MOFAT outputs were also evaluated using four different

measures 0 f correlation (Pearson's r, Spearman's p, Partial Correlation Coefficient and

Partial Rank Correlation Coefficient). While all the tests do not always concur, in general

all the outputs are correlated with K sw, a, n and to a lesser degree S m. The variation in

correlations as detected by the four different tests is a function of the different testing
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powers of the tests, the complexity of MOFAT and the correlations between the

probabilistic input parameters (where K sw is positively correlated with S m, a and n.)

As a part of the sensitivity analysis, the RSM models developed earlier for uncertainty

analysis were used to provide valuable information on the interactions between the input

parameters. As presented in Section 4.4.4, for all phases of the BTEX components there

are interactions between K sw and ~ and between ~ and a. The interaction between K sw

and a is significant for the gas phases of Benzene and Toluene and all phases of Ethyl­

benzene and Xylene.

To assign priorities to the input variables for reducing uncertainties, the input variables

were ranked on the relative size of the absolute value of the Partial Rank Correlation

Coefficients (PRCC). They were also grouped into three categories of decreasing

significance based on critical values of the PRCC analysis. Additionally, using a new

approach developed in this study the input variables were first grouped into four groups

on the basis of the critical values of the PRCC and then within each g roup they were

relatively ranked based on the relative size of absolute value of the PRCC. The higher

ranked inputs within the lower critical value groups will have the most influence on the

calibration and predictions and should be the focus of field investigation and calibration

efforts. The ranking and categorizations are presented in Chapter 5.

238



Drawing on the results of Chapter 3, 4 and 5 a comprehensive six-step framework for

uncertainty and sensitivity analysis of MOFAT was developed and has been presented in

Chapter 6. The six steps are:

Step l: Specification ofParameter Uncertainty

Step 2: Selecting an Uncertainty Analysis Method

Step 3: Generating Correlated Probabilistic Samples and Assembling Input Files

Step 4: Propagating Parameter Uncertainty through MC-MOFAT

Step 5: Post Processing ofMOFAT Output Files

Step 6: Sensitivity Analysis

The need for this MOFAT specific framework arises from the fact that for complex

models like MOFAT the applicability and performance of various uncertainty analysis

techniques is very model specific. A distinguishing feature of this framework is that not

only does it layout a methodology for uncertainty and sensitivity analysis for MOFAT

but it also provides the tools required to conduct such an analysis. The framework and

supporting tools developed will be very enabling for MOFAT users and will allow them

to conduct comprehensive parametric uncertainty and sensitivity analysis of their

simulation scenarios. This will provide them with better quantification of parametric

uncertainties, with invaluable insight into the uncertainty associated with their

simulations, and will help them meet growing regulatory requirements for uncertainty

and sensitivity analysis. The framework developed is specific to MOFAT but can be
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applied as a starting point for developing similar frameworks for other computationally

demanding models.

7.2 Recommendations

The research presented in this research study is an important first step in filling the

existing gap in the body of knowledge. The completion of this study and the tools

developed in this study are important for undertaking further research on parametric

uncertainties. The following recommendations with respect to further research are drawn

from the experiences gained in executing this study:

7.2.1 Improvements to Input Covariance Matrix

As recommended in Section 6.1 including porosity in the input covariance matrices could

strengthen the covariance matrices used to incorporate correlation between input

parameters.

The Carsel and Parrish (1988) covariance matrices could be further improved if an

attempt is made to use a transformation to obtain a normal distribution that does not need

the estimation of the ranges of variation for each water retention parameter as was needed

by the Johnson family of distributions!.

I An attempt was made to implement this recommendation prior to the start of this research and R. F Carsel
was contacted to obtain a copy of the soil database used to derive the covariance matrices. Unfortunately
the database could not be located
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7.2.2 Incorporation of Component Properties as Probabilistic Inputs

While the primary contributors to parameter variability are the soil properties, the

variability of component properties should be researched further. This will help to better

quantify and understand the contribution of the transport component input parameters to

the uncertainty of MOFAT

Some of the components properties (such as the adsorption coe~ficients) are dependent on

site-specific factors such as the organic mass fraction in the soil. This should be taken

into account when planning the parametric study.

7.2.3 Applicability of SRSM-ADIFOR

An uncertainty technique that has been recently used for the uncertainty analysis of

transport-transformation models is Stochastic Response Surface Method (SRSM). SRSM

approximates uncertainties in model outputs through a series expansion in normal

random variable. The unknown coefficients in the series expansions are calculated using

a limited number ofmodel simulations (Isukapalli, 1999; Isukapalli et. aI., 2004). Further

computational efficiency can be achieved by coupling the SRSM with Automatic

DIfferentiation of FORtran (ADIFOR). ADIFOR is a computer algebra based method

that reads the FORTRAN source code of a transport-transformation model and constructs

the code that c alculates first order partial derivatives of model outputs with respect to

model inputs (Isukapalli, 1999; Isukapalli et. aI., 2004).

241



Since MOFAT is implemented in a FORTRAN code this technique might be applicable

and its efficiency and accuracy in comparison to LHS-MC should be researched further.

7.2.4 Study of Interactions

As presented in Section 4.4.4, for all phases of the BTEX components there are

interactions between K sw and ~ and between ~ and a. The interaction between K sw and a

is significant for the gas phases of Benzene and Toluene and all phases of Ethyl-benzene

and Xylene.

An attempt to discuss the physical significance of these interactions was made in section

in Section 5.2.3, but the physical significance of the negative interaction between ~ and a

and the positive interaction between K sw and a, could not be analyzed due to the

complexity of the governing equations of MOFAT. These interactions need to be

researched further to understand these interactions and their physical significance.

7.2.5 Extension to Other Tier 3 RBCA Models

The parametric uncertainty analysis presented in this study should be extended to other

multi-phase and multi-component fate and transport models that are being used in the

Tier 3 RBCA of petroleum release sites. Candidate models for extending this study are

MODFLOW coupled with RT3D and the TOUGH code TMVOC.
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If the same simulation scenario, soil parameter database and assumptions are used for the

parametric uncertainty studies with MODFLOW coupled with RT3D and the TOUGH

code TMVOC, then these parametric uncertainty studies can be used as the basis for

comparing these numerical models with MOFAT from the perspective of parametric

uncertainty.

7.2.6 Scaling Up of Input Parameters and Uncertainty Analysis

This study has not looked at how scaling up of input parameters in the use of numerical

models contributes to model output uncertainty. The effect of scaling up in the context of

uncertainty analysis of MOFAT should be researched further.

The research could be planned by adapting the approach adopted by Wang and Bright

(2004) to study the effect of small scale spatial variability of aquifer hydraulic

conductivity on solute transport. They compared point concentrations from fine grid

Monte Carlo s irnulations 0 fa sy nthetic h eterogeneous aquifer ( representing actual soil

heterogeneity) to those from coarse grid deterministic simulations of an equivalent

homogeneous aquifer (representing numerical scaling up and deterministic modeling).

For an uncertainty analysis of scaling up the coarse grid simulations would also be Monte

Carlo based.
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Chapter 8. Statement of Originality

Originality of the work presented in this research study can be viewed from the following

accounts:

1. To allow for better quantification of parametric uncertainties, a comprehensive

parametric uncertainty study on a complex Tier 3 RBCA multi-phase and multi­

component fate and transport model has been undertaken in this research. This

includes:

a. a benchmark uncertainty analysis of MOFAT using Random Sampling

based Monte Carlo.

b. an uncertainty analysis of MOFAT usmg Latin Hypercube Sampling

based Monte Carlo. The effect of LHS sample size was also simulated.

No similar quantification of parametric uncertainties has been found in published

literature. The tools used in this uncertainty study are not new but it is the first
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comparative application of these tools to a complex multi-phase and multi­

component petroleum release fate and transport model.

2. To identify sensitive parameters and to help prioritize input parameters for

uncertainty analysis, a sensitivity study on a complex multi-phase and multi­

component fate and transport finite element model that is used in the Tier 3

RBCA process has been undertaken in this study. No similar sensitivity study has

been found in published literature. To prioritize input parameters for uncertainty

analysis a new technique for grouping and ranking input parameters has been

developed as a part of this study.

3. To provide guidance on how to undertake a parametric uncertainty and sensitivity

analysis of MOFAT, a comprehensive framework has been developed in this

study. No similar framework has been found in published literature.

4. In the course of undertaking this study a MC version of MOFAT was developed

by modifying the FORTRAN code for MOFAT to allow batch processing. A set

of pre and post processing tools were also developed as a part of this research. A

FORTRAN pre-processing tool has been developed to allow automated

generation of MOFAT input files from a text file listing all MC or LHS samples.

A VBA based post-processing tool was also developed to automatically extract

the results for a specified step and time step from MOFAT output files. These
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tools had to be developed, as they were not found in literature. The MC version of

MOFAT and the pre and post processing tools developed in this study are

invaluable aids for MOFAT users wishing to undertake uncertainty and sensitivity

analysis of their simulation scenarios.

5. To achieve better and more efficient quantification of parametric uncertainties, an

attempt was made to replace a complex multi-phase and multi-component fate

and transport model by a response surface model for the purpose of uncertainty

analysis. No such application has been found in literature. The attempt to replace

MOFAT by a response surface model successfully demonstrated that due to the

correlated nature of MOFAT inputs and the non-linear behavior of MOFAT,

MOFAT cannot be accurately replaced by a response surface model for the

purpose of uncertainty analysis.

6. To achieve better and more efficient quantification of parametric uncertainties, an

attempt was made to replace a complex multi-phase and multi-component fate

and transport model by a neural network model for the purpose of uncertainty

analysis. No such application has been found in literature. The attempt to replace

MOFAT by a neural network model successfully demonstrated that due to the

non-linear behavior of MOFAT, MOFAT cannot be efficiently (especially when

compared to the efficiency of Latin Hypercube Sampling based Monte Carlo)

replaced by a neural network model for the purpose of uncertainty analysis.
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7. This is the first known study on MOFAT that has attempted to identify areas of

additional research from the perspective of uncertainty so that uncertainty in

MOFAT estimates can be better quantified.

8. This is the only known uncertainty analysis of a numerical fate and transport

finite element model to study the effect of variability in seven soil properties

while preserving t heir correlation structure. Studies 0 n sensitive parameters are

unfortunately limited in scope and most of the sensitivity studies reported in

literature mainly concentrate on hydraulic conductivity. Amongst the various

groundwater researchers who have studied the sensitivity of hydraulic

conductivity and have modeled the hydraulic conductivity as input subject to

uncertainty are Medina et al. (1989), Ahlfe1d (1991), McLaughlin et al. (1993),

and Huang and Mayer (1996). This is because, as stated by Freeze et al. (1990), in

most advective transport analyses the input parameter with the largest uncertainty

is the hydraulic conductivity.

247



References

Ahlfeld, D. 1991. Reliability of Model Prediction for Pump and Treat Strategies,

Proceedings of Water Resources Planning and Management and Urban Water Resources,

ASCE, NY, pp. 847-851.

Anderson, M.P., and W.W. Woessner. 1992. Applied Groundwater Modeling: Simulation

ofFlow and Advective Transport, Academic Press, San Diego, 381pp.

ASTM. 1995. Standard Guide for Risk Based Corrective Action Applied at Petroleum

Release Sites, ASTM E 1739-95.

ASTM. 1998. RBCA Fate and Transport Models: Compendium and Selection Guidance.

American Society for Testing and Materials, PA.

248



Baehr, A. L. 1987. Selective Transport of Hydrocarbons in the Unsaturated Zone due to

Aqueous and Vapor Phase Partitioning, Water Resources Research, Vol. 23, No. 10,

pp.1926-1938.

Bear, J. 1972. Dynamics of Fluids in Porous Media. American Elsevier publishing

company Inc., New York.

Box, G.E,P., and K.G. Wilson. 1951. On Experimental Attainment of Optimum

Conditions, Journal of the Royal Statistical Society, B, Vol. 13, pp. 1-45.

Brewer, K., T. Fogle, A. Stieve, and C. Barr. 2003. Uncertainty Analysis with Specific

Groundwater Models: Experiences and Observations, ERD-EN-2003-0126, July 15,

2003, U,S. Department of Energy, Office of Scientific and Technical Information, TN, 6

pp.

Bright, 1., F. Wang, and M. Close. 2002. Influence of the Amount ofAvailable K Data on

Uncertainty About Contaminant Transport Prediction, Ground Water, Vol. 40, No.5, pp.

529-534.

Burmaster, D.E., and lH. Lehr. 1991. It's Time to Make Risk Assessments Science,

Groundwater Monit. Rev., X Summer Issue.

249



Campolongo, F., A Saltelli, T. Sorenson, and S. Tarantola. 2000. Hitchhiker's Guide to

Sensitivity Analysis. In Sensitivity Analysis (Saltelli, A, Chan, K., Scott, E.M., eds.),

John Wiley & Sons: West Sussex, England, pp. 15-47.

Carsel, R. F., and R. S. Parrish. 1988. Developing Joint Probability Distributions of Soil

Water Retention Characteristics, Water Resources Research, Vol. 24, No.5, pp.755-769.

Carsel, R.F., RS. Parrish, RL. Jones, J.L. Hansen, and RL. Lamb. 1988. Characterizing

the Uncertainty of Pesticide Leaching in Agricultural Soils. Journal of Contaminant

Hydrology, Vol. 2, No.2, pp. 111-124.

Cawlfield, J. D. 2000. Reliability Algorithms: FORM and SORM Methods. In Sensitivity

Analysis (Saltelli, A., Chan, K., Scott, E.M., e ds.), Jo hn Wiley & Sons: West Sussex,

England, pp. 155-165.

Chan, K., S. Tarantola, A Saltelli, and I. M. Sobol. 2000. Variance Based Methods. In

Sensitivity Analysis (Saltelli, A., Chan, K., Scott, E.M., eds.), John Wiley & Sons: West

Sussex, England, pp. 167-197.

Clark, K. E., and M. G. Richardson. 1998. Fate and Exposure Models: Selecting the

Appropriate Model for a Specific Application- Introduction, Journal of Soil

Contamination, Vol. 7, No.3, pp. 267-274.

250



Connor, J. A, J.P. Nevin, M. Malander, C. Stanley, and G. DeVaull. 1996. Tier 2 RBCA

Guidance Manual for Risk-Based Corrective Action, Groundwater Services, Inc.,

Houston, Texas.

Cox, D. C., and P. Baybutt. 1981. Methods for Uncertainty Analysis: A Comparative

Survey, Risk Analysis, Vol. 1, No.4.

Dobermann, A., P. Goovaerts, and H.U. Neue. 1997. Scale-Dependent Correlations

Among Soil Properties In Two Tropical Lowland Rice Fields, Soil Science Society of

America Journal, Vol. 61, No.5.

Fetter, C. W. 1992. Contaminant Hydrogeology, Macmillan Publishing Company, New

York, New York.

Finkel, AM. 1990. Confronting Uncertainty in Risk Management: A Guide for Decision­

Makers, Center for Risk Management, Resources for the Future, Washington, DC.

Finkel, AM. 1994. Stepping Out of Your Own Shadow: A Didactic Example of How

Facing Uncertainty Can Improve Decision-Making, Risk Analysis, Vol. 14, pp. 751-761.

251



Finley B., V. Lau, and D. Paustenbach. 1992. Using an Uncertainty Analysis of Direct

and Indirect Exposure to Contaminated Groundwater to Evaluate EPA's MeL and

Health-Based Cleanup Goals, Journal ofHazardous Materials, Vol. 32, pp. 263-274.

Freeze, R. A., J. Massmann, L. Smith, T. Sperling, and B. James. 1990. Hydrogeological

Decision Analysis 1. A Framework, Ground Water, Vol. 28, No.5, pp. 739-766.

Goodrich, M. T., and J. T. McCord. 1995. Quantification of Uncertainty in Exposure

Assessments at Hazardous Waste Sites, Ground Water, Vol. 33, No.5, pp. 727-732.

Hamby, D. M. 1994. A Review of Techniques for Parameter Sensitivity Analysis of

Environmental Models, Environmental Monitoring and Assessment, Vol. 32, pp. 135­

154.

Hamed, M. M., and P. B. Bedient. 1997. On the Performance of Computational Methods

for the Assessment of Risk from Ground-water Contamination, Ground Water, Vol. 35,

No.4, pp. 639-646.

Harter, T. 1998. Uncertainty and Risk Analysis of Contaminant Transport, California

Water Resources Center Report, Vol. 95, University of Califomia, Davis, pp. 97-107.

252



Hassan, A.B., and K. H. Hamed. 2001. Prediction of Plume Migration in Heterogeneous

Media using Artificial Neural Networks, Water Resources Research, Vol. 37, No.3, pp.

605-623.

Helton, IC., and F.I Davis. 2000. Sampling Based Methods. In Sensitivity Analysis

(Saltelli, A., Chan, K., Scott, E.M., eds.), John Wiley & Sons: West Sussex, England, pp.

101-153.

Helton, IC., and F.J. Davis. 2002. Illustration of Sampling Based Methods for

Uncertainty and Sensitivity Analysis, Risk Analysis, Vol. 22, No.3, pp. 591-622.

Helton, J. c., and F .1. Davis. 2003. Latin Hypercube Sampling and t he Propagation 0 f

Uncertainty in Analyses of Complex Systems, Reliability Engineering and System

Safety, Vol. 81, No.1, pp. 23-69.

Helweg, O. J. 1992. Migration of Spilled Oil from Ruptured Underground Crude Oil

Pipelines in the Memphis area, in proceedings of Lifeline Earthquake Engineering in the

Central and Eastern US Conference, Nov 1992, n TCLEE5, pp. 140-152.

Hillier, F.S., and G.1. Lieberman. 1990. Introduction to Operation Research, 5th edition.

McGraw-Hill, New York.

253



Hiramatsu, K., E. Ichion, T. Kawachi, and 1 Takeuchi. 2001. ANN and GA Methods to

Identify the Non-Point Contamination Flux to Groundwater, Progress in Water

Resources, First International Conference on Water Resources Management, Sept. 24-26,

Haldiki, Greece, pp. 291-299.

Huang, c., and A.S. Meyer. 1996. The Role of Uncertainty in the Optimization of

Groundwater Remediation Systems, 11th International Conference on Computational

Methods in Water Resources. Southampton, pp. 359-366.

Huyakorn, P. S., and Nikuha. 1979. Solution of Transient Transport Equation using an

Upstream Finite Element Scheme, Applied Math. Modeling, Vol. 3, pp. 7-17.

Iman, R. L., and W.J. Conover. 1982. A Distribution Free Approach to Inducing Rank

Correlations among Input Variables, Communications in Statistics, B11(3), pp. 311-334.

Iman, R. L., and M.l Shortencarier. 1984. A FORTRAN 77 program and User's Guide

for the Generation of Latin Hypercube and Random Samples for Use with Computer

Models, Technical Report SAND83-2365. Sandia National Laboratories. NUREG/CR­

3624.

254



Iman, R. L., and J. C. Helton. 1985. A Comparison of Uncertainty and Sensitivity

Analysis Techniques for Computer Models, Technical Report SAND84-1461. Sandia

National Laboratories. NUREG/CR-3904.

Iman R. L., and J. e. Helton. 1988. An investigation of Uncertainty and Sensitivity

Analysis Techniques for Computer Models, Risk Analysis, Vol. 8, No.1.

Isukapalli, S. S. 1999. Uncertainty Analysis of Transport-Transformation Models. Ph.D.

Thesis, The State University of New Jersey.

Isukapalli, S. S., S. Balakrishnana, and P. G. Georgopoulos. 2004. Computationally

Efficient Uncertainty Propagation and Reduction using the Stochastic Response Surface

Method, Proceedings of the 2004 43rd IEEE Conference on Decision and Control,

December 14-17,2004, Bahamas, Vol. 2, pp. 2237-2243.

Johnson, D. W., and J. D. Marx. 2003. The Importance of Multiphase and

Multicomponent Modeling in Consequence and Risk Analysis, Journal of Hazardous

Materials, Vol. 104, No. 1-3, pp. 51-64.

Kaluarachchi, ll, and J.e. Parker. 1989. An Efficient Finite Element Method for

Modeling Multiphase Flow in Porous Media, Water Resources Research. Vol. 25, pp. 43­

54.

255



Kaluarachchi, ll, and le. Parker. 1990. Modeling Multi-Component Organic Chemical

Transport in Three Fluid Phase Porous Media, Journal of Contaminant Hydrology, Vol.

5, pp. 349-374.

Kaluarachchi, ll, and J.e. Parker. 1992. Multiphase Flow with a Simplified Model for

Oil Entrapment, Transport in Porous Media, Vol. 7, No.1, pp. 1-14.

Katyal, A.K., lJ. Kaluarachchi, and J.C. Parker. 1991. MOFAT: A Two Dimensional

Finite Element Program for Multi-phase Flow and Multi-component Transport, Program

Documentation and User's Guide, Robert S. Kerr Environmental research Laboratory,

Office ofResearch and Development, U.S. EPA, Ada, Oklahoma.EPA-600-2-91-020.

Keenan, R. E., RL. Finley, and P.S. Price. 1994. Exposure assessment: Then, Now, and

Quantum Leaps in the Future. Risk Analysis, Vol. 14, No.3, pp. 225-230.

Kleijnen, J.P.e., and lC. Helton. 1999a. Statistical Analysis of Scatterplots to Identify

Important Factors in Large-Scale Simulations, 1: Review and Comparison of Techniques,

Reliability Engineering and System Safety, Vol. 65, pp. 147-185.

256



Kleijnen, lP.e., and J.e. Helton. 1999b. Statistical Analysis of Scatterplots to Identify

Important Factors in Large-Scale Simulations, 2: Robustness of Techniques, Reliability

Engineering and System Safety, Vol. 65, pp. 187-197.

Konikow, L.F., and J.D. Bredehoeft. 1992. Ground-Water Models Cannot Be Validated,

Advances in Water Resources, Vol. 19, pp.75-83.

Krom, T.D., and D. Rosbjerg. 2000. Artificial neural networks: Development and

Application in Groundwater pollution Remediation Design, Proceedings of

ModelCARE'99 Conference, Sept. 20 -23, IAHS publication No. 265, pp. 34-40.

Land, C. S. 1 968. Calculation 0 f Imbibition Relative P enneability forT wo and Three

Phase Flow from Rock Properties, Trans. Am. Inst. Min. Metall. Pet. Eng., Vol. 243, pp.

149-156.

Lenhard R. 1., M. Oostrom, and M.D. White. 1995. Modeling Fluid Flow and Transport

in Variably Saturated Porous Media with the STOMP Simulator. 2. Verification and

Validation, Advances in Water Resources, Vol. 18, No.6, pp. 356-373.

Lenhard, R. J., J.C. Parker, and J.J. Kaluarachchi. 1988. ,Measurement and Simulation of

One-Dimensional Transient Three-Phase Flow for Monotonic Liquid Drainage, Water

Resources Research, Vol. 24, pp. 853-863.

257



Levy, J., 1993. A Field and Modeling Study of Atrazine Transport and Fate in Ground

Water. PhD. Thesis, University of Wisconsin-Madison, Madison, WI, 561pp.

Lu, Z., and D. Zhang. 2003. On Importance Sampling Monte Carlo Approach to

Uncertainty Analysis for Flow and Transport in Porous Media, Advances in Water

Resources, Vol. 26, No. 11, pp. 1177-1188.

Maxim, L.D. 1989. Problems Associated with the Use of Conservative Assumptions in

Exposure and Risk Analyis. in; D.J. Paustenbach (Ed.), The Risk Assessment of

Environment and Human Health Hazards: A Textbook of Case Studies. Wiley. New

York. Chapter 4.

McGrath, E.J., and D.C. Irving. 1975. Techniques for Efficient Monte Carlo Simulation

Volume III: Variance Reduction, SAI-72-590-LJ, Oak Ridge National Laboratory,

Tennessee.

McKay, M.D., Conover, W.J., and R.J. Beckman. 1979. A comparison of Three Methods

for Selecting values of Input Variables in the Analysis of Output from a Computer Code,

Technometrics, Vol. 21, No.2, pp. 239-245.

258



McKone, T.E., and K. T. Bogen. 1991. Predicting the Uncertainties in Risk Assessment.

Environmental Science and Technology, Vol. 25, No. 10, pp. 1674-1681.

McLaughlin, D., B. R. Lynn, L. Shu-Guang, and J. Hyman. 1993. A Stochastic Method

for Characterizing Ground-Water Contamination, Ground Water, Vol. 31, No.2, pp. 237­

249.

Medina M. A. Jr, J. B. Butcher, and e. M. Martin.1989. Monte Carlo Analyses and

Bayesian Decision Theory for Assessing the Effects of Waste Sites on Groundwater, II:

Applications, Journal of Contaminant Hydrology, Vol. 5, pp. 15-31.

Meeks, Y. J., and A.M. Salhotra. 1990. Monte Carlo Approach to Exposure Assessment,

in: Proceedings of the Specialty Conference on Environmental Engineering,

Environmental Engineering Div., ASCE, NY, pp. 775-782.

Millington, R. J., and J.P. Quirk. 1959. Gas Diffusion In Porous Media, Science, Vol.

130, pp. 100-102.

Mishra, S., J.e. Parker, and N. Singha1.1989. Estimation of Soil Hydraulics Properties

and their Uncertainty from Particle Size Distribution Data. Journal of Hydrology, Vol.

108, pp. 1-18.

259



Montgomery, D. C. 2001. Design and Analysis of Experiments, 5th Edition, John Wiley

& Sons Ltd.

Moore, D.R.J., and B.J. Elliott. 1996. Should Uncertainty Be Quantified in Human and

Ecological Risk Assessments Used for Decision-Making? Hum. Ecol. Risk Assessment,

Vol. 2, pp. 11-24.

Morgan, M.G., and M. Henrion. 1990. Uncertainty: A Guide to Dealing with Uncertainty

in Quantitative Risk and Policy Analysis, Cambridge University Press. 332 pp.

Morshed, J., and J. J. Kaluarachchi. 1998. Application of Neural Network and Genetic

Algorithm in Flow and Transport Simulations, Advances in Water Resources, Vol. 22,

No.2, pp. 145-158.

Myers, R., and D. C. Montgomery. 1995. Response Surface Methodology: Process and

Product Optimization Using Designed Experiments, John Wiley & Sons Inc.

National Research Council. 1990. Ground Water Models: Scientific and Regulatory

Applications, National Academy Press, Washington, DC.252 pp.

Najjar, T. M., and 1. A. Basheer. 1995. Spatial Mapping of Groundwater Contamination

Using Neuronets, Intelligent Engineering Systems Through Artificial Neural Network,

260



Proceedings of the 1995 Artificial Neural Networks in Engineering, ANNIE'95, Vol. 5,

pp. 817-822.

Palisade. 1992. @ RISK Risk Analysis and Simulation Ad-In For Microsoft Excel,

Release 1.1 User's Guide, Palisade Corporation. NY USA 14867

Parker, J.e. 1989. Multi-phase Flow and Transport III Porous Media, Reviews of

Geophysics, Vol. 27, pp. 311-328.

Parker, J.C., R.l. Lenhard, and T. Kuppusamy. 1987. A Parametric Model for

Constitutive Properties Governing Multi-phase Flow in Porous Media, Water Resources

Research. Vol. 23, pp.618-624.

Paustenbach, D.l (Ed.). 1989. The risk assessment of Environmental and Human health

Hazards: A Textbook of Case Studies, Wiley, New York.

Paustenbach, D.l, D.M. Meyer, PJ. Sheehan, and V. Lau. 1991. An Assessment and

Quantitative Uncertainty Analysis of the Health Risk to Workers Exposed to Chromium

Contaminated Soils, Toxicol. Ind. Health, Vol. 7, pp. 159-196.

Picton, P. 1994. Introduction to Neural Networks, Macmillan Press Ltd., London.

261



Peck, A., S. Gorelick, G. de Marsily, S. Foster, and V. Kovalevsky. 1988. Consequences

of Spatial Variability in Aquifer Properties and Data Limitations for Groundwater

Modeling Practice, Intern. Assoc. Sci. Hydrology. Publ. No. 175.

Reckhow, K.H. 1994. Water Quality Simulation Modeling and Uncertainty Analysis for

Risk Assessment and Decision-Making, Ecol. Model., Vol. 72, pp. 1-20.

Raiffa, H. 1982. Science and Policy: Their Separation and Integration in Risk Analysis.

American Statistician, Vol. 36, pp. 225-231.

Rawls, WJ., and D.L. Brankensick. 1985. Prediction of Soil Water Properties for

Hydrologic Modeling. Proceedings of Symposium on Watershed Management. American

Society ofCivil Engineers. New York. pp. 293-299.

Rojas, R 1996. Neural networks: A Systematic Introduction, Springer-Verlag Berlin

Heidelberg.

Rubinstein, RY. 1981. Simulation and The Monte Carlo Method, Wiley Series III

Probability and Mathematical Statistics. 278pp.

Salhotra, A.M., YJ. Meeks, RT. Thorpe, T. McKone, and K. Bogen. 1991. Application

of Monte Carlo Simulation To Estimate Probabilities Of Exposure And Human Health

262



Risks, In: Proceedings of the National Research and Development Conference on the

Control of Hazardous Materials, Anaheim, CA, pp. 107-111.

Saltelli, A. 2000. What is Sensitivity Analysis? In Sensitivity Analysis (Saltelli, A., Chan,

K., Scott, E.M., eds.), John Wiley & Sons: West Sussex, England, pp. 3-13.

Saltelli, A., T. Stefano, F. Carnpo1ongo, and M. Ratto. 2004. Sensitivity In Practice: A

Guide To Assessing Scientific Models, John Wiley & Sons Ltd, West Sussex, England.

Scientific Software Group. 2005. Soi1Para. www.scientificsoftwaregroup.com

Scott, F., and W. T. Tucker. 2003. Reliability of Risk Analyses for Contaminated

Groundwater, Groundwater Quality Modeling and Management under Uncertainty,

Proceeding of the Symposium on Groundwater Management Under Uncertainty, June 23,

Philadelphia, pp. 226-235.

Shevenell, L., and F.O. Hoffinan. 1993. Necessity of Uncertainty Analyses in Risk

Assessment, Journal ofHazardous Materials, Vol. 35, pp. 369-385.

Sleep, RE., and J.F. Sykes. 1989. Modeling the Transport of Volatile Organics In

Variably Saturated Media, Water Resources Research, Vol. 25, pp. 81-92.

263



Spitz, K., and J. Moreno. 1996. A Practical Guide to Groundwater and Solute Transport

Modeling. John Wiley & Sons Inc.

Steffy, D.A., C. D. Johnston, and D.A. Barry. 1998. Numerical Simulations and Long­

Column Tests of LNAPL Displacement and Trapping by a Fluctuating Water Table,

Journal of Soil Contamination, Vol. 7, Issue 3, pp. 325-356.

Stein, M. 1987. Large Sample Properties of Simulations Using Latin Hypercube

Sampling, Technometrics, Vol. 29, pp. 143-151.

Tansel, R, C. Jordahl, and 1. Tansel. 1999. Mapping of Subsurface Contaminant Profiles

by Neural Networks, Civil Engineering and Environmental Systems, Vol. 16, No.1, pp.

37-50.

Thompson, K. M., D. E. Burmaster, and E.A. Crouch. 1992. Monte Carlo Techniques for

Quantitative Uncertainty Analysis in Public Health Risk Assessment, Risk Analysis, Vol.

12, No.1, pp. 53-63.

Tyagi, A. K., and J. Martell. 1993. Fate/transport Modeling of Immiscible LNAPL in

Unsaturated Aquifers. Proceedings of the Symposium on Engineering Hydrology, San

Francisco, CA, USA, pp. 701-705.

264



UW, V.W., and S.T. Sullivan. 1982. Uncertainty Analysis in the Appraisal of Capital

Investment Projects. In Uncertainty Analysis for Engineers. V.W Uhl and W.E.

Lowthian, eds., AlChE Symposium Series, Vol. 78, No. 220, American Institute of

Chemical Engineers, New York, pp. 10-22.

US. EPA. 1989a. Risk Assessment Guidance for Superfund, Volume 11, Environmental

Evaluation Manual, Washington, DC. EPA 540-1-89.

US. EPA. 1989b. Risk Assessment Guidance for Superfund, Volume 1, Human Health

Evaluation Manual, Part A, Interim Final. Washington, DC. EPA 540-R-92-003.

US. EPA. 1991a. Risk Assessment Guidance for Superfund, Volume 1, Human Health

Evaluation Manual; Supplemental Guidance Standard Default Exposure Factors,

Washington, DC. OSWER Directive: 9285.6-03.

US. EPA. 1991b. Risk Assessment Guidance for Superfund, Volume 1, Human Health

Evaluation Manual, Part B: Development of Risk-Based Preliminary Remediation Goals.

Washington, DC. EPA 540-R-92-003.

US. EPA. 1996. Summary report for the Workshop on Monte Carlo Analysis, Superfund

Today, September. EPA 630-R-96-010, 1-1.

265



U.S. EPA. 1997a. Policy for Use ofProbabilistic Analysis in Risk Assessment at the US.

Environmental Protection Agency, May 15.

US. EPA. 1997b. Guiding Principles for Monte Carlo Analysis. EPA 630-R-97-001.

US. EPA. 2003. Multimedia, Multipathway, and Multireceptor Risk Assessment

(3MRA) Modeling System. Volume IV: Evaluating Uncertainty and Sensitivity. EPA

530-D-03-001d. July 2003.

van Genuchten, M. Th. 1980. A Closed Form Equation for Predicting the Hydraulic

Conductivity ofUnsaturated Soils, Soil Sci. Soc. Am., Vol. 44, pp. 892-898.

Vario, J.K. 1982. Statistical Determination of Effective Input Variables. Reactor Analysis

and Safety Division, ANL-82-57, Argonne National laboratory, Argonne, Illinois.

Veneziano, D., R. Kulkarni, G. Luster, G. Rao, and A. Salhotra. 1989. Improving The

Efficiency of Monte Carlo Simulation for Groundwater Transport. Proceedings of the

conference on Geostatistical, Sensitivity, and Uncertainty Modeling. RE. Buxton, ed.,

Battelle Press, Columbus, OH, pp. 155-172.

Walker, D.D., Z. Hubao, D. M. Peterson, and R. G. Knowlton, JI. 1996. Probabilistic

Screening Model of Volatile Contaminant Transport in the Saturated and Unsaturated

266



Zones. Proceedings of the ModelCARE 96 Conference. lARS Publ. No. 237, pp. 597­

606.

Wang, F., and J. Bright. 2004. Scale Effect and Calibration of Contaminant Transport

Models, Ground Water, Vol. 42, No.5, pp. 760-766.

Ward Systems Group, Inc. 1993. NeuroShell 2 - Users Manual. 2nd Edition, Frederick,

MD

Weisstein, E. W. 1999. Positive Definite Matrix, from MathWorld ~A Wolfram Web

Resource. http://mathworld.wolfram.comIPositiveDefiniteMatrix.html

Yen, B. C. 2002. System and Component Uncertainties in Water Resources.In Risk,

Reliability, Uncertainty and Robustness of Water Resources Systems (Bogardi, Janos J.,

Kundzewicz, Zbigniew W., eds), Cambridge University Press, Cambridge, pp. 133-142.

Zhang, Y, B. Seo, N. LoVanh, P. lJ. Alvarez, and R. Heathcote. 2001. Final Report­

Evaluation of Computer Software Packages for RBCA Tier 3 Analysis, Submitted to

Iowa Comprehensive Petroleum Underground Storage Tank Fund Board.

Zheng, c., and G. D. Bennett. 1995. Applied Contaminant Transport Modeling: Theory

and Practice, van Nostrand Reinhold, New York.

267



Zou, R., W. Lung, and H. Guo. 2002. Neural Network Embedded Monte Carlo Approach

for Water Quality Modeling under Input Information Uncertainty, Journal of Computing

in Civil Engineering, Vol. 16, No.2, pp. 135-142.

268



Appendix A. Summary Statistics
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Units = 1000 mg/L
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MC with LHS

Benzene
water
Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
Confidence Level(95.0%}

Toluene
water
Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
Confidence Level(95.0%}

Ethylbenzene
water
Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
Confidence Level(95.0%}

Xylene
water
Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
Confidence Level(95.0%}

gas
0.00233102 Mean

0.000147122 Standard Error
0.002259 Median

o Mode
0.001471218 Standard Deviation
2.16448E-06 Sample Variance
0.879677858 Kurtosis
0.596361526 Skewness

0.007112 Range
o Minimum

0.007112 Maximum
0.23310195 Sum

100 Count
0.000291922 Confidence Level(95.0%}

gas
0.000654769 Mean
5.65216E-05 Standard Error
0.00053975 Median

o Mode
0.000565216 Standard Deviation

3.1947E-07 Sample Variance
1.266615393 Kurtosis
1.234844442 Skewness

0.002501 Range
o Minimum

0.002501 Maximum
0.06547694 Sum

100 Count
0.000112151 Confidence Level(95.0%}

gas
0.000238793 Mean
2.37032E-05 Standard Error
0.00016675 Median

o Mode
0.000237032 Standard Deviation
5.61843E-08 Sample Variance
4.742029474 Kurtosis
2.091990816 Skewness

0.0013 Range
o Minimum

0.0013 Maximum
0.023879268 Sum

100 Count
4.70324E-05 Confidence Level(95.0%}

gas
0.000188504 Mean
2,48274E-05 Standard Error
0.00009673 Median

o Mode
0.000248274 Standard Deviation

6.164E-08 Sample Variance
2.602331966 Kurtosis
1.882900338 Skewness

0.001003 Range
o Minimum

0.001003 Maximum
0.018850439 Sum

100 Count
4.9263E-05 Confidence Level(95.0%}

solid
0.000524477 Mean
3.31014E-05 Standard Error

0.0005082 Median
o Mode

0.000331014 Standard Deviation
1.0957E-07 Sample Variance

0.879382208 Kurtosis
0.596219175 Skewness

0.0016 Range
o Minimum

0.0016 Maximum
0.05244765 Sum

100 Count
6.56804E-05 Confidence Level(95.0%}

solid
0.000179406 Mean
1.54866E-05 Standard Error

0.0001479 Median
o Mode

0.000154866 Standard Deviation
2.39834E-08 Sample Variance
1.266459756 Kurtosis
1.234789287 Skewness

0.0006852 Range
o Minimum

0.0006852 Maximum
0.017940588 Sum

100 Count
3.07287E-05 Confidence Level(95.0%}

solid
8,4397E-05 Mean

8.05124E-06 Standard Error
0.000059695 Median

o Mode
8.05124E-05 Standard Deviation
6,48225E-09 Sample Variance
2.727596387 Kurtosis
1.799827641 Skewness

0.0003563 Range
o Minimum

0.0003563 Maximum
0.008439704 Sum

100 Count
1.59754E-05 Confidence Level(95.0%}

solid
4.80971E-05 Mean
6.37347E-06 Standard Error
0.000024375 Median

o Mode
6.37347E-05 Standard Deviation
4.06212E-09 Sample Variance
2,430536975 Kurtosis
1.862801037 Skewness

0.0002528 Range
o Minimum

0.0002528 Maximum
0.004809711 Sum

100 Count
1.26464E-05 Confidence Level(95.0%}

0.003217781
0.000203095

0.003118
o

0.00203095
4.12476E-06
0.879997432
0.596518613

0.009818
o

0.009818
0.32177812

100
0.000402985

0.002604598
0.000224836

0.002147
o

0.002248363
5.05514E-06
1.266474039
1.234818232

0.009948
o

0.009948
0.26045976

100
0.000446124

0.002112956
0.00019545

0.001522
o

0.001954497
3.82006E-06
2,497675267
1.725519081

0.008857
o

0.008857
0.21129559

100
0.000387815

0.001874179
0.000246799

0.00096415
o

0.002467995
6.091E-06

2.656755433
1.892471392

0.009998
o

0.009998
0.187417882

100
0.000489704

Units =1000 mg/L
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Me with LHS-s

Benzene
water

Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
Confidence level(95.0%)

Toluene
water

Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
Confidence level{95.0%)

Elhylbenzene
water

Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
Confidence level{95.0%)

Xylene
water

Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
Confidence level(95.0%)

gas

0.002369 Mean
0.000234 Standard Error
0.002564 Median

o Mode
0.001382 Standard Deviation
1.91 E-06 Sample Variance

-0.782024 Kurtosis
-0.207073 Skewness
0.004614 Range

o Minimum
0.004614 Maximum
0.082924 Sum

35 Count
0.000475 Confidence level(95.0%)

gas

0.000655 Mean
8.2E-05 Standard Error
0.00061 Median

o Mode
0.000485 Standard Deviation
2.35E-07 Sample Variance

-0.449609 Kurtosis
0.535421 Skewness
0.001725 Range

o Minimum
0.001725 Maximum
0.022925 Sum

35 Count
0.000167 Confidence level(95.0%)

gas

0.000214 Mean
2.89E-05 Standard Error
0.00018 Median

0.000236 Mode
0.000171 Standard Deviation
2.93E-08 Sample Variance
0.895186 Kurtosis

1.19737 Skewness
0.000679 Range

o Minimum
0.000679 Maximum
0.007499 Sum

35 Count
5.88E-05 Confidence level(95.0%)

gas

0.000182 Mean
3.42E-05 Standard Error
0.000109 Median

o Mode
0.000202 Standard Deviation
4.09E-08 Sample Variance
0.649564 Kurtosis
1.314676 Skewness
0.000678 Range

o Minimum
0.000678 Maximum
0.006356 Sum

35 Count
6.95E-05 Confidence level(95.0%)

solid

0.000533 Mean
5.26E-05 Standard Error
0.000577 Median

o Mode
0.000311 Standard Deviation
9.67E-08 Sample Variance

-0.782124 Kurtosis
-0.207398 Skewness
0.001038 Range

o Minimum
0.001038 Maximum
0.018657 Sum

35 Count
0.000107 Confidence level{95.0%)

solid

0.000179 Mean
2.25E-05 Standard Error
0.000167 Median

o Mode
0.000133 Standard Deviation
1.77E-08 Sample Variance

-0.449536 Kurtosis
0.535658 Skewness
0.000473 Range

o Minimum
0.000473 Maximum
0.006282 Sum

35 Count
4.56E-05 Confidence level(95.0%)

solid

7.67E-05 Mean
1.04E-05 Standard Error
6.43E-05 Median

o Mode
6.13E-05 Standard Deviation
3.76E-09 Sample Variance
0.896225 Kurtosis
1.197636 Skewness
0.000243 Range

o Minimum
0.000243 Maximum
0.002685 Sum

35 Count
2.11 E-05 Confidence level(95.0%)

solid

4.58E-05 Mean
8.62E-06 Standard Error
2.75E-05 Median

o Mode
5.1 E-05 Standard Deviation
2.6E-09 Sam pie Variance
0.65023 Kurtosis

1.314732 Skewness
0.000171 Range

o Minimum
0.000171 Maximum
0.001602 Sum

35 Count
1.75E-05 Confidence level(95.0%)

0.003271
0.000322
0.003539

o
0.001908
3.64E-06

-0.781844
-0.207038
0.006369

o
0.006369
0.114468

35
0.000655

0.002606
0.000326
0.002428

o
0.001929
3.72E-06

-0.450102
0.53539

0.006862
o

0.006862
0.091198

35
0.000663

0.001956
0.000264
0.001639

o
0.001563
2.44E-06
0.895267
1.197295
0.006198

o
0.006198

0.06846
35

0.000537

0.00181
0.000341
0.001088

o
0.002017
4.07E-06
0.649556
1.314667

0.00676
o

0.00676
0.063352

35
0.000693

Units =1000 mg/L
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Me with LHS-c

Benzene
water gas solid
Mean 0.002251445 Mean 0.000506577 Mean 0.003107868
Standard Error 0.00014108 Standard Error 3. 17442E-05 Standard Error 0.000194743
Median 0.002374 Median 0.0005342 Median 0.003277
Mode o Mode o Mode 0
Standard Deviation 0.001410799 Standard Deviation 0.000317442 Standard Deviation 0.001947429
Sample Variance 1.99035E-06 Sample Variance 1.0077E-07 Sample Variance 3.79248E-06
Kurtosis 0.062336921 Kurtosis 0.062932709 Kurtosis 0.062219827
Skewness 0.174275951 Skewness 0.174588731 Skewness 0.174240035
Range 0.008631 Range 0.001492 Range 0.009153
Minimum o Minimum a Minimum 0
Maximum 0.006631 Maximum 0.001492 Maximum 0.009153
Sum 0.22514445 Sum 0.050657736 Sum 0.31078682
Count 100 Count 100 Count 100
Largest(l ) 0.006631 Largest(l) 0.001492 Largest(l) 0.009153
Smallest(l) o Smallest(l) o Smallest(l) 0
Confidence Level(95.0%) 0.000279933 Confidence Level(95.0%) 6.29875E-05 Confidence Level(95.0%) 0.000386412

Toluene
water gas solid
Mean 0.00065208 Mean 0.000177202 Mean 0.002515739
Standard Error 5.59313E-05 Standard Error 1.47559E-05 Standard Error 0.000201929
Median 0.0005335 Median 0.0001462 Median 0.0021225
Mode o Mode o Mode 0
Standard Deviation 0.000559313 Standard Deviation 0.000147559 Standard Deviation 0.002019294
Sample Variance 3.12831E-07 Sample Variance 2.17736E-08 Sample Variance 4.07755E-06
Kurtosis 3.067905225 Kurtosis 1.563227151 Kurtosis 1.130033816
Skewness 1.507377934 Skewness 1.249248867 Skewness 1.101849334
Range 0.003014 Range 0.000678 Range 0.009089
Minimum o Minimum o Minimum 0
Maximum 0.003014 Maximum 0.000678 Maximum 0.009089
Sum 0.06520796 Sum 0.017720211 Sum 0.25157394
Count 100 Count 100 Count 100
Largest(l ) 0.003014 Largest(l) 0.000678 Largest(l) 0.009089
Smallest(l) o Smallest(l) o Smallest(l) 0
Confidence Level(95.0%) 0.00011098 Confidence Level(95.0%) 2.92789E-05 Confidence Level(95.0%) 0.000400672

Ethylbenzene
water gas solid
Mean 0.000234467 Mean 8.20526E-05 Mean 0.00202461
Standard Error 2.28252E-05 Standard Error 7.49716E·06 Standard Error 0.000175544
Median 0.00016895 Median 0.00006049 Median 0.001542
Mode o Mode o Mode 0
Standard Deviation 0.000228252 Standard Deviation 7.49716E-05 Standard Deviation 0.001755436
Sample Variance 5.20989E-08 Sample Variance 5.62074E-09 Sample Variance 3.08158E-06
Kurtosis 4.837988595 Kurtosis 2.343917896 Kurtosis 2.012710817
Skewness 2.075358197 Skewness 1.673625345 Skewness 1.553152021
Range 0.001255 Range 0.000344 Range 0.007965
Minimum o Minimum o Minimum 0
Maximum 0.001255 Maximum 0.000344 Maximum 0.007965
Sum 0.02344673 Sum 0.008205263 Sum 0.202461
Count 100 Count 100 Count 100
Largest(l) 0.001255 Largest(l) 0.000344 Largest(l) 0.007965
Smallest(l ) o Smallest(l) o Smallest(l) 0
Confidence LeveI195.0%) 4.52901E-05 Confidence Level(95.0%) 1.4876E-05 Confidence Level(95.0%) 0.000348317
Xylene
water gas solid
Mean 0.000180177 Mean 4.61369E-05 Mean 0.001790147
Standard Error 2.36352E-05 Standard Error 6.03517E-06 Standard Error 0.000235178
Median 0.00009816 Median 0.000024735 Median 0.0009784
Mode o Mode o Mode 0
Standard Deviation 0.000236352 Standard Deviation 6.03517E-05 Standard Deviation 0.002351783
Sample Variance 5.58622E-08 Sample Variance 3.64232E-09 Sample Variance 5.53089E-06
Kurtosis 2.806182223 Kurtosis 2.499496569 Kurtosis 2.861236037
Skewness 1.90528425 Skewness 1.843145301 Skewness 1.918362936
Range 0.0009517 Range 0.0002398 Range 0.009486
Minimum o Minimum o Minimum 0
Maximum 0.0009517 Maximum 0.0002398 Maximum 0.009486
Sum 0.018017719 Sum 0.004613689 Sum 0.179014686
Count 100 Count 100 Count 100
Largest(l ) 0.0009517 Largest(l) 0.0002398 Largest(l) 0.009486
Smallest(l) o Smallest(l) o Smallest(l) 0
Confidence Level(9S.0%) 4.68973E-05 Confidence Level(95.0%) 1.19751 E-05 Confidence Level(9S.0%) 0.000466645

Units = 1000 mg/L
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Me with LHS-p
Benzene
water
Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
Confidence Level(95.0%)

Toluene
water
Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
Confidence Level(95.0%)

Ethylbenzene
water
Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
Confidence Level(95.0%)

Xylene
water
Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count
Confidence Level(95.0%)

gas
0.002261998 Mean

0.00014417 Standard Error
0.002383 Median

o Mode
0.001441703 Standard Deviation
2.07851E-{)6 Sample Variance
0.84226785 Kurtosis

0.519676147 Skewness
0.007204 Range

o Minimum
0.007204 Maximum

0.22619981 Sum
100 Count

0.000286065 Confidence Level(95.0%)

gas
0.000640146 Mean
5.51442E-{)5 Standard Error
0.00056465 Median

o Mode
0.000551442 Standard Deviation
3.04088E-{)7 Sample Variance
1.659235719 Kurtosis
1.302579251 Skewness

0.002556 Range
o Minimum

0.002556 Maximum
0.064014636 Sum

100 Count
0.000109418 Confidence Level(95.0%)

gas
0.000218377 Mean
2.02767E-{)5 Standard Error

0.0001704 Median
o Mode

0.000202767 Standard Deviation
4.11145E-{)8 Sample Variance
3.222135768 Kurtosis
1.825618166 Skewness

0.0009883 Range
o Minimum

0.0009883 Maximum
0.02183765 Sum

100 Count
4.02334E-{)5 Confidence Level(95.0%)

gas
0.000182648 Mean
2.48616E-{)5 Standard Error
0.00010235 Median

o Mode
0.000248616 Standard Deviation
6.18098E-{)8 Sample Variance
3.054709141 Kurtosis
2.000725241 Skewness

0.001035 Range
o Minimum

0.001035 Maximum
0.018264813 Sum

100 Count
4.93308E-{)5 Confidence Level(95.0%)

solid
0.000508951 Mean
3.24373E-{)5 Standard Error
0.00053615 Median

o Mode
0.000324373 Standard Deviation
1.05218E-07 Sample Variance
0.841759263 Kurtosis
0.519465346 Skewness

0.001621 Range
o Minimum

0.001621 Maximum
0.050895146 Sum

100 Count
6.43627E-{)5 Confidence Level(95.0%)

solid
0.000175394 Mean

1.5108E-{)5 Standard Error
0.0001547 Median

o Mode
0.00015108 Standard Deviation

2.28253E-08 Sample Variance
1.659253894 Kurtosis
1.302505506 Skewness

0.0007003 Range
o Minimum

0.0007003 Maximum
0.017539352 Sum

100 Count
2.99776E-{)5 Confidence Level(95.0%)

solid
7.8177E-Q5 Mean

7.25877E-Q6 Standard Error
0.000061 Median

o Mode
7.25877E-Q5 Standard Deviation
5.26898E-09 Sample Variance
3.221939492 Kurtosis
1.825525865 Skewness

0.0003538 Range
o Minimum

0.0003538 Maximum
0.007817698 Sum

100 Count
1.4403E-Q5 Confidence Level(95.0%)

solid
4.60264E-Q5 Mean
6.26487E-06 Standard Error
0.00002579 Median

o Mode
6.26487E-05 Standard Deviation
3.92486E-Q9 Sample Variance
3.054179264 Kurtosis
2.000642624 Skewness

0.0002608 Range
o Minimum

0.0002608 Maximum
0.004602644 Sum

100 Count
1.24309E-Q5 Confidence Level(95.0%)

0.003122506
0.000199011

0.0032895
o

0.001990111
3.96054E-{)6
0.841935075
0.519579324

0.009944
o

0.009944
0.31225064

100
0.000394881

0.002546438
0.000219358

0.002246
o

0.00219358
4.81179E-{)6
1.660682695
1.302839639

0.01017
o

0.01017
0.25464377

100
0.000435254

0.001993511
0.000185106

0.0015555
o

0.001851061
3.42643E-Q6
3.221890099
1.825584834

0.009022
o

0.009022
0.1993511

100
0.000367291

0.001820555
0.000247814

0.00102
o

0.002478136
6.14116E-Q6
3.055916824
2.000911489

0.01032
o

0.01032
0.182055495

100
0.000491716

Units = 1000 mg/L
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Appendix B. Compact Disc (CDROM)

Contents

1. MC-MOFAT Code (Code modified to allow batch processing)

2. LHS code used (Ready for compiling on a Unix system)

3. Pre-Processor: - Fortran Code for Creating MC and LHS Input Files

4. Post-Processor: - Microsoft Word File with Visual Basic for Applications (VBA)

Macro for Extracting Concentrations from Output Files
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Appendix C. Scatter Plots
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Scatter Plots for LHS Simulations
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Seatterplot of K, Porosity, MTheta, Max s, Alpha, N vs Water Phase Cone.
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Seatterplot of K, Porosity, MTheta, Max s, Alpha, N vs Solid Phase Cone.
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Seatterplot of K, Porosity, MTheta, Max s, Alpha, N vs Water Phase Cone.

0.000 0.001 0.002

0.0020.001

MTheta

•• • •
~.. • ,·..,... •
~. :-!t., •••
• • •tI•• ••• '#

'- •• •
N

•
•

";#';~ ••• • .,
• •

•

1.8

1.6

1.2
0.000

1.4

0.10

2.0

0.20

0.25

0.15

Porosity

~••• • /ea.... ,..""' ..a. - •",... ...
•• I. .:• • •··A'I'..': •

--A'. • ••
Aloha

•
• ••••• tfA: .:t:.... •• •• • • •

;r-~ •2.5

5.0

0.0

7.5

10.0

0.30

0.35

0.40

0.45

0.50

0.0020.001

K

•

•
• •• •• •••

lilt •.JIII,# ~, ••
Maxs"...~. • •..."". • •

~. I •
'It'l1-••\ •• •.'.. .....~., .b'. ..... . .
• • •

o

2

3

1

0.25

0.15

0.000

0.20

0.35

0.30

Toluene

Seatterplot of K,porosity,MTheta, Max s, Alpha, N vs Gas Phase C()nc.
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scatterplotofK, Porosity, IVlTiheta, Maxs, Alpha, N vsSolld Phase Cone.

0.000 0.005 0.010

•

0.010

•.,
•

,
•

•

•

•

•
J~;.. :
~y· :-
~~. ..·.r :.. ·, .

1.2......,.---~- -~--'

0.000

0.20

0.101-__--=·:....- -1

2.0.J------:.;N:...-----l

MTheta
0.25-1-----..:...:...:..:..:...:.:::----1

0.15

Porosity

~... ~I
• ..... l-
• ...f#~ •••
(,I. - ••• •: I. .:..~, •

•,~ ..: • ••'-"..
Aloha

•
• ••••• •· ~ ... ••ft. .. •, .. •

•2.5

7.5

5.0

0.0

0.35

10.0

0.30

0.45

0.40

0.50

0.0100.005

K

•

•
• •• •• •• • .. .
~" ••

Maxs

(-... • •, r· • •·.~ •~~ •Ii ..\• • •• •• 1 ••·"'.1b'. ...... .
• • •

o

2

3

1

0.25

0.20

0.15

0.000

0.30

0.35

Toluene

281



Seatterplot of K, Porosity, MTheta, Max s, Alpha, N vs Water Phase Cone.
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Scatterplot ()fK, Porosity, MTheta, Max s, Alpha, N vs Gas Phase Cone.
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Seatterplot of K, Porosity, MTheta, Max s, Alpha, N vs Solid Phase Cone.
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Scatterplot ofK, Porosity,MTheta, Maxs, Alpha, N vSWater Phase Cone.
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S.c:atterplot ofK, PoroSity, M'J"heta, Max s, Alpha, N v.s Solid Phase Cone.
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Scatter Plots for LHS-c Simulations
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Scatterplot of K, POroSity, M'Theta, Max s, Alpha, N vs WaterPha.seGonc.
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Seatterplot of K, Porosity, MTheta, Max s, Alpha, N vs Solid Phase Cone.
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Scatterplot of K, Porosity,MTheta, Max s, Alpha, N vs Water Phase Cphe.
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Sc::atterplot of K, porO$ity,MTheta, Max s, Alpha, N vs Gas PhaseC:ol1c.
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Seatterplot of K, Porosity, MTheta, Max s, Alpha, N vs Water Phase Cone.
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Seatterplot of K, Porosity, MTheta, Max 5, Alpha, N vs Solid Phase Cone.
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Scatterplot of K, Porosity, MTheta, Max s, Alpha, N vs Gas Phase Conc.

0.0000 0.0001 0.0002

• 0.40

• •• •••
o .Iii.';'. ·

Maxs

0.00020.0001

MTheta

l· · · ••I .- •,.... •• • ••
~ ... •••,: .

•• •• •
N

•
•••• • •

F·~'
• ,

•• • •-. .. •
• • •

•1.2
0.0000

1.6

1.4

1.8

0.15

0.20

0.10

2.0

0.25
Porosity

t fII, •• •• •., ..' • •

f: • ••, .
• • •••

II
Aloha

•
••• • •p..~' ..:

•••• •
0.0

2.5

7.5

0.35

0.30

0.45

10.0

0.50

•

•
••

• • ••
•••••

K

•

• •

2

3

0.35 t~~.. ,.
0.30 • .,._

\-:.: .
0.25 f'!

~."'.' I0.20
••

0.15 •
0.0000 0.0001 0.0002

Xylene
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Scatter Plots for LHS-p Simulations
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Scatterplot of K, Porosity, MTheta, Max s, Alpha, N vs Water Phase Conc.
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Scatterplot ofI<,POrosit:y, MTheta, MaXs, Alpha,N V$ Solid PhaseConc.
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Seatterplot of K, Porosity, MTheta, Max s, Alpha, N vs Gas Phase Cone.
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Seatterplot of K, Porosity, MTheta, Max s, Alpha, N vs Water Phase Cone.
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Seatterplot of K, Porosity, MTheta, Max 5, Alpha, N vs Solid Phase Cone.
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Seatterplot of K, Porosity, MTheta, Max s, Alpha, N vs Gas Phase Cone.
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