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Abstract

Pool fire s and explos ions are amon g the mo st frequent accidents inproccssfa cilitics.Forpo ol

tires, name impingement and thermal radiation are main hazardous characteristic . Whereas,

overpre ssure and negati ve pul se duration are the main treat s to human and assets in the case o f

explos ions. Environmental variables signifi cantly affect the beha vior of fi res and explosions.

However , the effect of environmental parameters in the cold regions like arctic has not been

sullic iently studied. Thi s study presents two new model s. A steady state and full y devel oped

pool fire model that take s into account the effects of all environm enta l variables like

temperature. the presence of droplets and surface reflexivit y on the thcnnal radiation and

subsequently on the tire con sequenc e assess ment. Anot her mode l has been propo sed to account

the effect of snow layers on explosion overpressure. A detailed description of model

de velopment and solution methodo logy are present ed in the thes is.
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Chapter I: Introduction

1.1 Mot ivati on and Scope

Risk-based desi gn is a widel y used and yet gro wing practice in most of indu stri es .

Consequence assessment of the dcsircd fire or explosion scenarios is among the most crucial

steps in the risk ass ess ment, There are dilTerent methods and models available to prcfonn

conscqucncc analysis. These methods and models have bccn developed anduscd ovcr yearsfor

temperate conditi ons. Fire or expl osion in the arctic region is a unique ex amp le of

cnvironmcntally contro llcd consequence that has not been studied adcqu atcly. The reason is lack

of model s to incl ude environmental parameters whic h control the impact propagat ion. Snow /Icc

covered surfaces and the presence of waterlice droplets int hcai rare such parameters that have

not been considered in previous methods and models.

These environmental parameters could sign ifi cantly affec t the consequence of an accidcnt:

therefore, the contribution of these parameters must be taken into account especially when

consequence is estimated tor the arctic region. Hence, studying the effects of environmental

parameters and developing new models tor tire and explosion consequence assessment are the

scope of this thesis. Figure 1.1 illustrates risk assessment diagram and the focus of this study.



FiJ:ure l . I: Th e area of focusfor thisth esis.

Chapter 2 provides a brief description about the arctic region and its main characteristics

parameters. Consequence assessment is discussed genera lly in chaptcr3 . This chaptc rcxplains

theproc(.-durcof estimatingandconvcrtingthecons(.~uenceof an accident. DifTercntcategories

of fire and difTcrent methods for fire consequence assessment havebecn discussed in details in

chapter 4. This chapter discusses different method s, compares them and points out their

limitations and applications. Chapter 5 presents lhe proposed modcl for poo l fire modeling in the



arctic rcgion. This chapter includes the mathematical formulation of the proposed model and

literature review of the previous works on the pool fire. Chapter 6 presents available methods

and models for explosion conseq uence assessment. This chapter discusses the advantages and

shortcomings of ditTerent models. Chapter 7 presents the new modei for explosion overpressure

calculation in the arctic region .Tn this chapter, jump equation has been coupled with Baker-

Strehlow model , This coupling resulted into order four partial dilTerential equations which have

bL'Cn solvL-dusingtinitedifTerence teehniques.Finally,thecontributions of thesis have been

summarizl-d in chapter 8. This chapter includcs thcs uggcstions for future works.



Chapter 2: Arctic Characteristics

As ShOWl~ in Figure 1.1, environm enta l and workplace know ledge is a vital step for

conseque nce assessmen t. This knowledge contributes to hazard ident ification and scenario

maki ng and subscqucntlyaffects the consequence assessment. Variation in the environmen tal

paramctcrsmayrcsultinto significan tconsequcnceditTcrcncl.-s. For examplec thermal radiation

ofapooltire significantly altenuatesdue toprc'Senccofwatcrlicedroplets in the air. Th is chap ter

briefly indicates the main characteristics of arctic region which make this region diffe rent

compared to modcratcorwa nn regions.

The Arctic regio n is the region that surrounds the North Pole which is located within the

Arctic Circle (66.5 N) [ I] . When defin ed this way. the most fundamental charac teristic of the

Arctic region is 24-hour daylight in summer and 24-hour darkncss duringwintcr.ln sprin g and

autum n. duration of day highly depen ds on the latitude. During almost all the year, Arctic is

extremely cold with much of its land covered with snow, icc, and many areas of perm afrost, The

environment ranges from large elevated mountains to tlatplains, spacioustundra lands and large

bodies of wate r, snow, and ice.
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Figur e 2.1: Arctic Circle. a major part of Canada and Alaska are in Arctic Circle. Retrieved Dec

13, 20 10, from htlp://www.dom.de/acircle/acircle.htm.

Much of the Arctic environment is covered in cnonn ous masses of ice. The Arctic Ocean is

over 1000 meters in depth. and the surface continuously coaled withice[I] . The thickness of the

icc usually ranges between I to 10 meters with a surface area of approximately 9 to 12 million

km'. About 30 percent of the Arctic Ocean has very shallow water; these parts arc known as the

contincntal shcU:lce shcets arefoundth roughoutthc ocean surfacca II year round. but during

summer and the end of spring, the icc usually melts at the continental shelf.

Inccrtain arcas ofArc tic. wann oceancurrcntsin crcaseh.mperature andmoisture contcnt of

the atmosphere. causing the amountsofprccipitation to increase as well. Some regions can



receive more than 3000 millimeters of prec ipitation per year such as the Norwegian coast,

southern Icel and and Alaska. In other part s o f the Arctic whe re the re is no intlu enee ofheat , the

tempe ratures are much lower, therefore receiving less than 150 millimeters per year.

W ith in the cen tra l areas of the Arcti c Oce an where it is isol ated from surro und ing in tluene es

that may affe ct the clim ate, the majo rity of the precipit ation occurs as snow. A ltho ugh there is

rainf all throu ghout the year, the most rain falls in the warrnermonth s sueh as in Ju ne, Jul y, and

Augus t.

Figure 2.2: Snow and ice co vered waters. Arctic region. Ret rieved Dec 13. 20 10. from

httn ://gall crv .usgs .gov/vid co tal!s1seatl oo r/li st/55/1 .

2.3 Te mperatu re

The air tem perature of the Arctic region is depend ent on the solar radiationt hat itr eccive s

from the sun. At locations with higher latitudes. solar radiation is very weak and does not

provide too m uch heat to the en vironm ent [2]. Te mper ature'S amo ng locat ion s va ry becau se of

the di fferences in radiation and also from surrounding influences. Usually as the sun rises during

the mo rning, the ea rth' s surface heats up . So me time s the weather pattern can a ffec t the

tempe rature due to draft s of cold air during the heating process. Th e cold air fl ow may cause the



morning temperature to rise slowly. remain the same, or even decreases. The oppos ite effec t can

happen as we ll when drafts o fwa nn air flow results in increase of air temperatures.

When solar radiation interacts with bare land,soil in the ground absorbs it and radiates heat

which then warms the surrounding air. In the Arctic region most of the energy is spent for

melting large areas that are cove red with ice and snow . Especially in the Arctic Ocean, all the

solar radiation isu scd to melt the glaciers; so, the temperature remains freezing cold throughout

the day. During the night when there is no influence of solar radiation. the air temperature is

manipulated by the amount of cloud cover present. It has been concluded that the temperature is

colder during clear conditions and wanne r during cloudy conditions.

The annual average of incoming solar radiation in the northern part 0 fthe Arctic Circle is

approximated to be 100W/m' and the areas located at mid latitudereceivearangeof l50 t0200

W/m' . Overa ll, the Arctic region averaged out to be -34 degrees Celsius in the winter and a

range between 3-12 degrees Celsius in the summer seasons.

Surface air temperatures (SATs, approximately 2m above the surface) exhibit remarkable

regional and seasonal variability [ I, 3]. January average SATs less than - 40 -C characte rizes

parts o f Siberia. Over the central Arctic Ocean, winter temperatures are somewhat moderated by

heat fluxes through the icc cover. January mean valuesof -25 -C to - 32 -C are typical [1-3].

During July, mean values over snow-free land surfaces are typically 10 -C to 20 -C [1-3]. Over

the central Arctic Ocean. the presence of a melting ice surface keeps summer temperatures close



Fig ure 2.3 : Temp eratur e variation during a year in plus 80 N, Retrieved Dec l 3,2 0 10 from

https://climatcsanity.wordprcss.com/catc!Jory/arctic/ .

During winter the Arctic region is known to have high winds with snowstorms betwe en

calmed period s [I , 4]. With high velocitie s, the Arctic winds gather snow as it flows throu gh

large open spaces and depo sits it in sheltered areas. Winter wind speeds are usually slower than

summer wind speeds due to frequently occurring inversions, and surface winds are separated by

the inversion layer from the strong upper layer winds. Wind speeds that blow from the west are

also nonmally slower than the winds that blow from the east.

Arctic winds usually blow in from the west as part of the westerlies. Depending on the

topography, there arc influences among wind strength, direction, and temperature.



flows through coastal channels or mountain passes, its strength can be increased. Katabatic

winds flow downward which can be warm or cool according to the situation. forming over

glaciers in mountainous areas from high to low grounds, accelerating on the way down.

Anabatic winds are usually warm as it flows upward due to the rising of air, frequently forming

as air flows off a body of water. Anabatic winds are usually very light, more known as a

Ncar-surface winds are typically light in the central Arctic with mean annual speeds

averaging 4-6 m/s [I , 4]. The NP observations show mean speeds of about 5m/s year round. At

stations in the Canadian Arctic, mean wind speeds arc typically less than in the Russian Arctic

due to the lower frequency of cyclone activity. Nevertheless, when they occur, they may last

several days with extremely high speeds exeeeding 25 mls [1, 4].

I
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Fi~urc2.4 : Frcqueneyof wind veloeities in Barents Sea. Retrieved Dee 13, 20 10 from

http://www.barentssea.no/.!n=barentssea&l=en .



2.5 Fog and Visibility

Fog cau ses a major visibility prob lem in the Arctic . There arc dilTcrcnt type s and some of

them are known as advection. radiation. and icc fog. Fog is most often found along the coast

parallel to the shore. Duri ng the win ter seaso n. the land is much wanner than the surrounding

water. As wann air from the water flow s over the cool land . the air of oppos ite tem peratures mix

to form fog. In the summer season, the same thing occ urs except the air from wanner lands and

coo ler wate rs mix instead . Ice fog crea tes fog the same way except that it con sists o f ice crysta Is

rathcr than watcr dro plcls. usuallyoccurringat tcmpera turcs bc low-45 dcgrccsCclsius.

Cold air inab ility to hold moisture causes sea smoke during winter seasons. Th e temper ature

of air is sign ifica ntly lowcr than water and causes steam to risco A blanket of water droplets is

forme..-d by the steam which is considered to bc sea smoke. Sell smoke is known to be another

type of fog. formed in a similar fashi on and having the same visibility effects,

Anot her visibili ty problem in the Arctic regio n is ca lled Arct ic haze. Charac teristics of

Arctic haze consist of limited visibility in the horizontal directions but clear visibility in the

vertical dircctions. It is known to be formed from vcry small ice particles since it rctlccts many

d ilTcrcnt colors as light inte racts with thc hazc. As sunligh t shines thro ugh the haze, it is known

as diamond dust becau se of all the rock-like part icles, but ncar the ground it appea rs to be mist or

smoke [ 1-3].

2.6 Humidity

Arctic air is expressed to have very low temperatures and moisture content. During the

winter, air is significantly colder andd ryer overl andt hani t is ovcr water. Since water is wanner

than land in thc wintcr. thc air abovc picksup watcr partick'S as itllows across thc surface and



retains its higher temper ature values and moisture content [5]. On average the Arctic relative

humidity found at the surface is ranged from 50 to 60 percent. Ncar the surface, mean specific

humidity (mass of water vapor per unit mass of air. including the water vapor) lor winte r as

ave raged for the region north of 70· N is only about I g kg' com pared to about j to a g kg" in

summe r [I] .



Chapter 3: Consequenc e Assessment

Previous chapter bric tly pointed out the ma in charac teristics of the arctic regio n. Accor ding

to these charac teristic s and workplacecharactcr isticslgco mctries. scenarios arc defined . O nce

scenario are defi ned. they arc ana lyzed for conseq uence and likelihoodassessmcnt.Consl'qucncc

asses sment re fers to attempts tow ard quantification of hazard intensity. Among hazardous

event s; tire and ex plos ion are the most common accidents in oi l and gas industries. Fire is more

frequent; in co ntrast explosion has higher da mage potentia l and commonl y leads to fata lity.

injuryand propc rty loss.Thcconsequcnccsarcusuallycalculatcd intcnn sof prod uction loss.

hum an health loss. assets loss, and environmental dam ages.

Co nsequence ass essment helps to dctcnn inc the potenti al damage due to hazardous

occas ions; however, but docs not account for how frcqucnt the ace ident occu rs. If the result s of

con sequence assessment are not dire ctl y quantifiable, then it has to be con verted to somc

measurab le impact s (mo netary term s usually).

Inlegralion o f all identili ediosses (e.g. produclionloss, assel loss. human health and sa fely

)oss, cnviro nmcnt loss, infonn ation and knowlcdgc loss) to obtain the ovcrall consl'q ucncc o f a

hazardous event require s spec ial treatment [6-8j . Figure 3. 1 shows the flow chart lor an overall

conseq uence with differ ent catego ries.



Fi~u re3 . 1:0verallconscquentwithdi fferent categories.

3. 1 J\1cthodsfor Consequcn ccA ssessment

Scenarios are identified accordin g to the conseq uences of hazards, in terms of the probab le

fatalities, injuries, damages, and fai lures that can bedetennined in three different ways [6-9}.

Available methods can vary from highly subjective method s like engi neering judgment to highl y

comput ational methods using computational tluiddynamic( CFD)tools.

Historical data can be used to evaluate consequences . The scenario can be compared to

accidents of the past that had similar hazards. For example. reviewin g the last accidents will

help to show the trend of consequence and its intensity. Moreover, it helps for a better

understandingof theco nscquencesfors pccificevents,a nd brcaksd own the damage outcome of

each conseq uential effec t, Historical data may be spccitic to the environment of the incident.

spL~ific tostructurcsofas imi lar typesharing thesamegencral location or owner.



There are advantages and disadvantages tor estima ting co nseque nces with historical data

The data hclps support the values given in a speci fic accide nt tocalculatetheconseq uences , if

they are sufficient enough to give preci se result s, data from these past incident scan be uscd to

make a reasona ble risk assessment. Tho ugh this mayb e practical for average valued results that

have a set number of varia bles, experiments that have a large number of variab les are not

accounted for. and output s a sign ifi cant ditTerence in data . The incident s used in compari son

should have very similar structures for the best results . Another probl em that may arise is the

errors or change in data over time which discourages the use of the inform ation previously

The size of databases is a major contribution in consequence estimation, more duta is

avai lable as it increases in size. Though there maybesumcientdata. the in tonnation nc(...~cd to

be accurate. Often, the details provided arc nol all the details required for consequence

estimation. Historical data is rarely complete because minor incidents that co uld have led to

maj or incide nts arc not always recorded . to usc historica l data, the relev ancy of the data must be

determined and ifit is suitable to be studied. (If applicable, Ihen apply, if partially, apply

judgme nt to modify data, and if not, usc another method)

Enginee ring j udgme nt is another useful way to evaluate consequences. This method is

Iimitcdtoju dgmentsor opinions thatarcof enginccringcx pertise.i no rder to have consis tency in

results. Engineering judgments may be based from the previous experience of another

practiti oner or from the use of an organized and reliable proc ess sueh asthe Dclphi meth od. This

proces s is very practica l b(...~auseit providcseslimationthatiscompletcly inexistentor lack in

other methods, The Delphi method causes problems for most practitioners as it requires skill and

experie nce to be used .



Another disadvantage from the usc of engineering jud gment is bias opinions; they arise from

various indiv idua ls according to what has happe ned in the past. Thu s always the op inion of

several expert s must be asked and an individual opinion eannot berelied on lonel y. Sub sequenll y

this result s in a range of estimations and potenti al outco mes. Alth ough this meth od does not

provide a point value , sometimes the inaccu racy is fine when a range of values is of intere st

insteadofa spcciticestimation.

Model s havebccn developed to evaluate accident con sequenc es ; theyean calcul ate the

number of de aths or injurie s. loss , cos t of downtime or busines s interruptions, and also any

en vironmental damage s. Fire models are norm al ly capable of evaluating fire de velopment,

smo ke movement, structural respon se, and evacuation respon se, while estimatin g the time it

take s to reach its critica l dam age thresh old . Likewi se explo sion model s arc able to est imate

dispers ion, tlame prop agation and generated overpressure, The se model s are used for

quanti tative estimate s based on rationa lized methods and any chan ges in the de sign are related to

the consequence results ; therefore , allowi ng designers to acknowledge whe re change s should be

Accurat e input valu es are sometim es hard to acquire due to uncertainti es . Dependin g on

how comp lex the problem may be, one simple mode l cannot provide all the required results and

need to be combi ned with other models . When using one model at a time, the result s of one ma y

be used as input data for another as a seq uence, and if mistake s are mad e inthebeginnin g,thc

cntire proccss will beincorrcct. Fif::,'Ure 3.2 shows available met hods forc onsequence asscss me nt

and their adva ntage s and disadvantages.



Fi~ure3.2 :Availablemethodstorconsl.'quence asscssmcnt

3.2 Conver ting Consequence to I\leasur ab le Im pacts

ConSl.'qucnccscaused froma ccidental tires andexplosions arcmeasurl.~ indifferent\Vays.

This includes the measure of health and safety impacts, loss of property, business disturbance

costs. or environmen tal damages. The consequences can be subjective or objective. and can be

caused bydirect or indircct factors and must be identified during the risk assessrnent to do a

Evaluating conseq uence is morediflicult compared to cvaluatinghazards, ina way that the

value of loss or hann may be unclear and hard todctennine. \Vhile life safety conscquenccs are



estimated, injuricsand loss of human life are included in thccri teria but a 101ofthc time othc r

import ant factors are not included . Facto rs such as lower qua lity of Iife, pain and suffering,

rehabilitation after a tire relatedincident. inabilityto work after an accident. and effects on

family support. There are other longtcnn concerns that include loss of image and market shares

fora spec ific busiru..zss. Such impact s are very compli cated and in most cascs arc not considcn .."d

as a part ofcon scquence assessment.



Chapter 4: Fire Modeling

As discu ssed in previou s chapter , there arc severa l method s to est imatc consequence of an

accident. Amon g those method s, mathematical modelin g is reco gn ized to be the most powerful

meth od due to its llexib iJity and abi lity to handle different level o f complex ity and deta ils.

Avai lable methods may be divided into two main categories based on their outputs: physical

models and effect mode ls. Physical mode ls calc ulate variables which are dir ec t outcomes o f a

hazardous event. For example they may estimate parameters like temperature, radiation, toxi c

gas concentration. Effect models convert the outcomes of physical model s to more sensible

impacts like fata lities, inju ry or loss of propert y.

Models may be c1assili ed as empirical and co mputationa l. Empirica l tool s est ima te

parameters based on ex perimentally obtained co rrelations; thus, a short time is nc...xlcd for

calculati ons. The ass umptions and limitin g condit ions durin g the dcrivation ofthc sc corrclations,

limit the application to simple geometries. In contrast to empirical too ls. computationa l too ls take

adv antage o f governi ng equations in es timating desired parameters. Although it takes a much

longer computatio nal time to run these model s, the result is expcct cd to be moreaccurateand

reasonab le. Th ese models have the abi lity be applied for com plex geometri es whe re the

applica tion of simple empirical model s might be meaningless .

Although there are numerous mode ls avai lable for conseque nce modeling . selecting the most

suitable model is not an easy task . In selecting a model all workp lace• environment conditi on and

dilTerent seen ariomustbe considered andthe selectedmodelmusthavethe ability to take into

acco unt these conditions. For exam ple the FRED may be used to estim ate impa cts ofa hazard ous

event in a simple geo metry ; howe ver. it is not applicable ifretlective sur faces such as snow



presen t. Fire, Release, Explosion and Dispersion (FRE D) is a softwa re developcd by She ll for

qui ck cstimut ions basc d on thc expcriment al data.

4.1 Fire Ca tcgor tes

The main cause o f injury or damage from a large open hydrocarbon lire is thennal radiation.

Th e differe nt types of tires beh ave differe ntly and exhib it markedly different radiat ion

characteri stic s. Radiation and convect ion are the princi pa l mec hanismsfortransferringheatfrorn

a lire to a structure. The radiation is usually the dominant mode of heat lransfer , although

convective heat transfer become s an important mode for structures directly impinged or

engulfed. Ty pica lly, fire s can be classified into four categories : pool tires, je t tires, tireba llsand

tlash tires. lnapoollire,thepoolof vaporizingfuelformsbuoyaneyeontro lledturb ulent tlame

where the fucl vapor has negligible initial momentum. Pool fires occur from the accidental

release of liquid fuel during loading of tank s or due to ruptu re and!or frac ture in pipes and tank s.

The probability of occ urrence for this type of lire depends on the type off u els and environmenta l

condi tions. Heavy fuels arc most likcly to produce pool tire while light fue l may eva porate and

produces vapo r cloud . In warm environments fuel will mostly evaporate while the same fuel may

generate a poo l fire in co ld environme nts like the Arctic.

Jet tires occur due to immediate or quick ignition of pressuri zed fuel. Thi s fue l co uld be a

single phase of gas, gas and liquid and even sometimes liquid [10- 12]. Jet tires arc much more

dangerous than pool lire because of the radii of its impacts. Depending on the scenario

spt-cification (rcleased phase and angle of rclease)jet tires can be horizontal or vertical.

Horizontal jet tires are more hazardous espec ially downwind. Jet fires may lead to impingement

of structures, equi pment and vesse ls, ruptur e of pipes and secon dary failures.



Since j et fires have high radi i o f impact, scenarios which incl udc je t fires should be spec ified

prL~iselybccause ofdominoetfects. Thcdominocffectis the si tuation when an accidental fire

triggers and exp ands tires to the other parts wo rkplace. Thi s is an extremity hazardous even t

when theinsta llalion is high ly conges tcd duc to limitationofs pacc likc offshore structures and

ships. ln thosc placcs, j ct fircs lcad to avcry high ralc of hcat transfcrandrapid

The dornino etfect s of poo l fircsorjct tires may increase the pressure inside a tank which

contains flamm able compounds. Th e increases in temp erature and pressure may ft ...esult in tank

failure duc toboi ling liquid expansio nvapor cxplosio n (BLEVEl[13, 14]. ln lhissitua lion, duc

to a sudden pressure drop, liquid evaporatcs and ignites. This results in anoverpn...-ssurc and

missile hazards. Furthermore. thi s results in a higherthennal radia tion compared to jet and poo l

Due to the therm al radiation, overp ressure and missile hazards. BLEVE co uld be more

hazardous than other types of fires. If the tank contains gas, this may result ina very large and

rapid fireb all. Such a fireball has the high cst thermal radiation pro lile among all diffe rent type s

of tires . Th e fireb all shapc, bchaviora nds izeare strictly relatcd to type of fuel. failure mode and

A tlashfire is a type of fire in which thcrei s a short delay bctwecn the releasc and ignition

times. In this category of fire, the gas or vapor cloud is released and then is ignited ; thus. there

will be a negligible overpressure. Flash fires are transient and result in a temporary heat

radiation . However it could trigger other types of tire especially iftlametumsb ack to the source.

Figure 4.1 summarizes the categories of tires.
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Figure -t.I : DitTerentfirecate gories and theirh azards.

4.2 i\l od elin g

After unde rstanding of the scenario's requirements. specifications and characteristics.

mathematical modeling is used to estimate the possible scenario consequences. A variety of tools

and models are available to perf orm consequence asses sme nt. Selecting the optimal model

requires an understanding of their strength and limitations.

In tire modeling the object ive is to understand fire behavior and its outeomes.Dependingon

required accuracy, complexity o f system and required time there arc numerous mathematical

mod els whi ch could be used for lire mod eling . Based on the emp loyed mat hem atical techn iques



and solution methods, mathematical models can be divided in three main categories: empirical

correlations, zone models and CFD models.

4.3.1 Empir ical Cor re lat ions

Empirical correla tions based models are the simplest models. They are based on empirical

relations which have been developed considering the algebraic reiation betweeni nput parameters

and outcomes of fires. Since in fire modeling especially in open area thermal radiation and

convection are the most important parameters, these models are mostly devoted to estimate

thermal radiation, temperature profile and convection. For example in je t tire modelin g,

parumcters Iike type off uel, fuel mass rate and discharge diameter is used to estimate thennal

radiation, conve ction and the visible length of the tlame.

Although these models are fast and user friendly, there are several limitations which

restricting their application. Firstof all,mo stof these models areo n the base oftinite number of

experiments constrained with experimental conditions. Secondly, there are inherent error

associate with fitting corrclations to a restricted data set. Furthennorc, most of the experiments

have been carried out for open spaces or very simple and not congested enclosures. So these

model s may not be applied for highl y conges ted work places like o ITshore struetures .

Th e application o f zone model s started in mid-1950 with introdu ction of one zone model s for

study ofpost-tlashovcr and specially movement of toxic gases in other compartments. Later two

zone modcls weredevclopcd for pre-tlashover behavior estimations. The concept behind zone

models is to divide compartmen ts or enclosures into two or more spatially homogenous volumes

(zoncsj . Thc modcl has bee n observed to takeplaee in real cases and experiments [ 15, 16J. ln



thcsemodel s, the upper layer has higher temperature and temperature dropsi ns ubscquent lower

layers. In these model s, the plume concept is used to take into account smoke and hot air

For each spatial volume (zone), physical parameters such as species concentrati on.

temperature and density arc assumed to bcunifonn . This means that all thep articlcs in a specific

zone have same properti es and these properties change only with lime. Although the results from

experiments show some perturb ations and variations from these assumptions, in general the

results of these modc1s are in good agreement with experiments .

Mass. momentum and energy conservation equations result in a sct o f Ordinar y Differenti al

Equations (ODE). The conservation equations arc coupled with gas laws (lypiea lly the idea l gas

assumption) for calc ulatio ns. In zone models the physical propertie s in a zone considered

homogenous; thus. conservation laws are applied to estimate energy. mass and momentum

transport between adjacent zones. Calculations arc conducted bymodeling sub-fircproccsscs:

Thc momentum conservation law is not applied explicitly as not all the required information

for pressure and velocity is available in the model. The application of momentum conservation

law is governed by the mass movement from plume fire to zones and from adjacent zones to

ventilation and open areas.

Zone models maybe classified based on the number of zones in each compartment: one

zone, two zone and multi zone models. In onc zone models the entire compartment has the same

properties like temperature and species concentrati on. Due to plume rising and fire turbulent

behavior, these types of models are not appropriate where there is a fire. Such a one zone model



has been developed and used for analysis and estimation of smoke movement in other

Two zone models divide the volume of enclosure to two volumes where the upper zone is at

high temperature and the lower zone at lower temperature. This layering is due to buoyanc y

effect and the rise of hot gases from plume. These models are more realistic in comparison to one

zone models even when only the smoke movement in remote compartments is studied. This is

due to presence of colder air in remote compartment. buoyancyetTectandfinally stratification .

I3ccauseoflwu zonemodelabililies,lheycouldbcusc't!forprc-llashoverandpost-t1a shovcrfirc

modeling. Figure 4.2 presents control volumes for two zone models.

+-Q••It /mu, Tu, Vu. I Physicalprupertiesofgasinside
Eu,R! thefire compartment:

E isthe intErnalenergy of gas
Upper layer _ m u m isthemasstErms

LO\'Ier laye~\ ( ~ _ m'l1. ~nr:~ ~ ~~~~:~:s
m,tt,h+- : Q }-mfi , «,l. ~ :~ ~ ;~u~:P3rature

p isthegasdensity

Figure ~.2 : Contro l volumes and zones for a two zone model. Retrieved 12 January 2011

from:http://www.mace.manchcster .ac.uklprojt..Ctlrcsearch!structurcslstruetireJDesign/perfonnanc

c/fireModelling/zoneModelsllwoZoneModel.hlm



Finally multi zone model s wered evclopcd to improve accuracy and also predict vertical

temperature varia tions and toxic gas concentrations [17, 18]. In this method. the compartme nt

space is divided into an arbi trary number of zones and the physical properticsofeach layc ra re

assumed to be uniform , The tire plume now docs not mix with adjacent layers and tire plume

flow is upwa rd until it reaches the cei ling. Therefore, in these model s the assumpt ion is that all

the heat is transferred to the top layer.

Conservations laws are solved in the boundary of layers to estimate the average values of

parameters such as temperature in layers. Due to the presence of multiple zones. computational

time is longer than two zone models. Figure4.3 shows segments of a multizone model.

i-th layer

2nd layer

Ist Iayer ... ...._ .....iiiiIiiii...

Fil:u re 4.J: Layers of amulti zonemodeI.



Although different zone mode ls app ly differe nt methodology and technique s lor

calculations, they have some ass umptions in common wh ich distingui sh them from CFD model s:

Uni form physical properti es inside each zone.

Diffusion can occur between zones and the enclosure wall. Although in most modeled it

is neglected (due to very small value).

Plume tlow rises to the ceiling continuously.

Plume tlowdocs not mix ora fTect moder ate level zones in its rising .

In mo st of mode ls, the hori zont al cros s sec tion (area) of the compa rtmenti scon stant.

Numerous zone models have been developed and validated with experimental results. The

be low tab le presents mo st com monly used models.

TabI04.I : List o f zone modeis with a brief descri tion 19, 20.
Model Country Description

ARGOS Denmark Multi-compartment zo ne model

AS ET US One roorn zone, no venti lation

AS ET-B US ASET in BAS IC Ian zua '0 instead of FORTRAN lanuua re
BRA NZF IRE New Multi room zone model, including flame speed, multi fire and

Zealand mechanical ventil ation
BR I-2 Japa n/US Two layerzone model for multistory, multi compartmentsmoke

CALTEC H US ~:~:~over zone model
CCF M.VENT S US Multi roorn zo ne with ventilation
C FIRE-X German Com artmentfire, s eciall Ii uidh drocarbon poo l fire
CiFi France Multi room zone rnodcl
COMPBRN-III US Com artment zoncfire
FFM US Pre-fl ashover zone model
FIRA C US Include com lex vent s stems



FIR EWI ND Australia Multi room zo ne model with several smaller sub-model
MRF C Germany ~~~t~~o~::t:~~smodcl for smoke movementand temperature

NAT France Single comp artment zo ne model with attention to respo nse of
structures

OZONE Bel uium Zone model witha ttention tos tructure resoonse
RFIR ES US Pre-flashovcr zoncm odcl
SF IRE-4 Sweden Post-flashover zonc modcl
WPI FIRE US Mul ti room zone fire

Zonc modclsarc limitcd duc toassumptions during dcrivation. ronnulation and application.

One of the most important assumptions in these models is that a compartment is to be divided

into small numbcr ofunifonned property zones and calculations arc to be done with in each

layer. Since in each layer all the physical properties arc the same, there is no temperature or

concentration gradients in the layer. This means that in whole layer, temperature and gas

concentration is the same regardle ss to the location of fire or vent. Thi s is problem atic when the

gas concentration or temperature at a speci fic location is critica l, for examp le when determining

thc oplim all ocationof smok edctcclOrs.

The other limitation is due to zo ne transparenc y and radiation . Th e radi ation magnitud e is

di rectly a function of surrounding environme nt speciesconccntra tion . abso rption coefficient and

temper ature . Th e ass umption ofa uniform hot layer abov e the co ld Iayerov crestimates radiative

heat from hot layer to co ld layer. Thi s in tum could result in under est imatingthetemperature of

the hot layer.

One of the mai n shortcomings o f zo ne models is the inability to acco unt for turbulent plum e

behavior. Especia lly in multi zone models where there arc severa l layers. the assumption that hot



gases move upward towards the ceiling with out any effect on intenn ediate layers. This result in

an underest imation for lower layers temperatures and overestimation for upper layers

Most of zo ne model s need the rate ofheat release before sta rting the simul ation proce ss. The

rateof heat release isa functiono f combustionc fficiencywhich in tum is rela ted to air to fuel

rates. For example when oxygen concentration decreases, fora solid fuel, flame length may

decrease and change to a smoldering process. Since theh eatr elease rate cha nges with time and

space . using it as an input parameter will impact the model accuracy .

4.3.4 Com puta tiona I Fluid Dynam ic (C FD) l\Iod els

Rapid growth of both hardware and software com puter knowledge and technology have

mov ed models from corre lation based to com pute based on the govern ing equa tions (CF D

models). Although desc ription ofCFD is behind the seopc ofthis thesis , a briefdescription is

helpful. A CPD model is a determi nis tic tool for simulating real time scenarios. CPD models

approximate the solution of a set of algebraic and differential equations. However here,

eq uations are so lved based on local approx ima tion of differe ntiaI equations.

In these models a set of non-line ar, time and spatial depend ent equations (Navier-Stokes) are

so lved over the do ma in of interest. These mode ls can captureturbulen ce throu gh introduction of

turbulent equations. The way in whi ch turbul ence is taken into accou nt is important; basically

CF D models arc class ified base on the method of describ ing turbulent.

Turbulence is a state of flow motion that involves three dimensional random vortices, higher

energy diss ipation, mixing and drag effec ts. CF D models have diff erent methods for turbulent

modelin g: Reynolds Ave raged Navier -S tokes (RANS), Large Eddy Simulation (LES ). Direc t



Numerical Simulation (DNS), Detached Eddy Simulation (D ES) and Turbulen ce ncar wall

modeling. The first and seco nd methods arc the most popular, appli cable and frequency used.

It is not surprising that the DNS is the most accurate model [2 1-24J. The DNS model was

introduced in 1970 to model isentrop ic turbul ence up to Re = 35. This model solves Navier-

Stokcs cquations in a very fine gri d and a very small time steps to capturc the turbulence. vortex

and fluctuations. The reason why DNS model s are not used in most of engineering applications

is due to their very long computational requirement time. Furthermor e, DNS arc needed lo be

solved in three dimensional spaces where turbulence and vortices exist. B t.-c 3U SC of these

limitat ions, DNS arc mostly used as a research tool to understand the fundamental turbulence

The purpose ofRANS isto esti mate Reynolds stresses. This may be done by three di fferent

method s: Linear Eddy Viscosity model s, Nonlinear Eddy Viscosity model s and Reynolds Stress

model s (RSM) . In linear eddy viscosity model s, the Reyno lds stress is modeled throu gh

introducin g a linear constitut ive relation ship with main tlow strain field. However . linear eddy

viscos ity model s arc known to fail in a number of flow situations. For example these model s

over-predict turbulence energy level in stagnant regions. More..zovcr these models usually over-

predict K (Kinem atic energy) near the walls where actually K can be neglected. Because of thcse

shortcomings, at prcsen t,lineareddy viscositymodels are rapidly rcplaced by nonlin ear eddy

viscosity modcls in engineerin g applications.

With respect to accuracy and compl exity, LES lies betwe en RANS and DNS models. In this

model , small eddie s arc removed and modeled by Sub-Grid-Sca le (SGS) model s. Kolmogro v's

theory (self-simi larity theo ry) states in turbulent now large eddies are dependent on geo metry



wh ile sma ll eddie s arc universal wh ich allows for an exp licit so lution of large edd ies and implicit

so lution o f sma ll eddies by SG S model s. Thi s fi ltration enables higher Reynolds numb er (mor e

turbu lent tlows) to be modeled . Howe ver this tiltratio n may result in low er acc uracy especia lly

ncar wall boundaries . To co mpensate this situation, a much fincr mesh is required.

For most of engineering applica tion s the accuracy ofRANS mode ls is suffici ent, Recen tly

hyb rid mod els have been introduced . Th ese models arc a com bination of LES and RANS

methods. These mod els have the adva ntages o f bo th ca tegories of mode Is: spl'<.'dof RANS and

accuracyofLES.

4.3.5 CF l> i\Io dc ls Rcq uirc mc nl

Lots of engineering problems are addressed by CFD models; however, for fire modeling

applica tions, a mode l should have cert ain feature s to be used . Turbulcnce modelin g is one o f the

most important features. This is more important for jet fire modeling since the flow is highly

turbulent. One other important criterion is heat release and radiation mode ling. Inctli cicnt

modelin g of soot may result in completely different outputs; thus, espec ial treatment of soo t

particles is mandatory. Combustion modeling is of importance due to its direct effe cts on

combustion process outputs such as heat rclcase and smoke. Bound ary and initi al cond ition arc

empl oyed to obtain unique so lution. Beside all of these. a model should be able to intake

co mplex geo metries with out restrictions on space or time steps.

Fir es and espec ially j et tires arc highl y turbulence phen omen a. After the com bustion

process.numerous cddics in variable si zes are generatL~.\Vhileinili allyeddies are on large size .

they breakdown into sma ller eddies and vortices as the initial cncrgy dissipates. To take into

acco unt such behaviors. the turbul ence model plays a critica l rule . Most ofCFD too ls em ploy



RANS turbu lence modelin g (especiall y K-c and K-w). Resu lts are reliable and less

computationa l tim e is required in co mpariso n to LES based CF D model s. For more congeste d

areas like engine roo ms, due to high turbulenc e tlow in the case of firc, LES based modeis may

In general radiation modcling of a liquid fuel tire is easier than gas fucl tiresbecause gas

fuel tir es more co mplex, turbul ent and unpr edictab le. Th e radiation equatio n is a combination of

inte gral and differential term s (inte gro -diITercntial equation) which makes so lving more diffi cul t.

Rad iation depends on parame ters like temp erature and compos ition. therefo re, to so lve rad iation

equation, assumptions for radiative properties of medium arc needed . Typical models for

radiation modeling arc point source and solid frarne modcls. Tnpoint source modclsv the total

release d heat of fire and fraction which is converted to radiation arc required. Point source

models arc accurate for far distances but over-predict for near distances due to the fact that the

thermal radiation is emitted from a single point. In contrast, in solid frame models heat is emitted

from an idealized shape (e.g. cone or cylind er). Although this model is simple. it require s the

estimation of flame height and diameter. In co nventional so lid frame models, all the height o f

tlame was considered to participate in radiation. However modified so lid tlame model s has been

developcdth at onlyth elum inoustl ame zonep articipatesin calculations.

Where in models such as ISIS-3D , the only tlame edge zone radiates and hot gases and soo t

outside the tlame do not co ntribute in the radi ation . ISIS-3D is able to accura tely ca lculate the

charactcristics ofcngulfed objcctsa nd hasa rcIativelys hort computational time. This assumption

may result in under-prediction of radiation calculations and heat load on human or structure due

the neglecting of hot gases radiation above the tlame.



Ot her models ma yemployditTerent radiation lransport algorithms Iike ray trac ing. This is a

simple methodwhich uses randomly generatedrays between source and targets to represent the

radiation phenomenon. Such a simple model is not able to rcprc..escnt thcetTect of surrounding

enviro nmcntand the effect s of hot gases , wall s and equipmen t arc negIccted in such modcls.

Another more adva nced mod els to handle radia tion are Radi ati ve Transport Equation(RT E)

models.Although in practica l s imulations this model cannot be so lved acc urate ly, the acc uracy is

much better than ray tracing, point source and solid frame models. RTE models estimate

radiation inten sity based on wavelength bandin g. Here. the radiat ion spec trum is divided to small

number of bands and a separate RTE is solved lor each band . The who le intcn sityis obt ained by

summation of all bands; as the number o f bands increases. accuracy increases and also the

computational time incre ases . In thi s mode l, the limits of band s arc selec ted carefu lly to

repre sent the most important radiat ion band s of impo rtant com ponents, rnostly Cfh and 11,0 .

Finally its hould bc notcd that radiation fraction in rcal firc sccnarios depend s on fucl type . soot

and oxyge n conce ntration and tempe ratur e. Hen ce, using a consta nt value (default value of too l)

Combustionistheprocessinwhichspl.~iesarefonnedanddcstroyedbychemical react ion .

For most of cascs which have been discussed in this thesis. combustion is non- premixed

phenomenon like a jet fire. pool fire or fire ball. Combustion consists of two coupled

phenomena: therma l and chemical. The chemi stry of comb ustion ishighlyexothermie(high

release rate of hcat). Therefore combustion is a self-accelerating process, in most models is

considered as an irreversible phen omenon. The chemica l reactions arc dependent on the type of

fuel. Thi s is even more complex when the fucl is in a liquid phase which need s to eva pora te,

diffuse and finally react. Combustion of fuels results in gene ration of numerous produ cts from



stable com pounds to less stable radica ls. To simplify the combustio n process, the on ly majo r

product s (stable) arc con sidered ; CO" H,O and CO. The classical approach for combustion

modeling is based on probabili ty de nsity functions wbic h allow the determination of mean

reac tion rate. A morcadvanccd rcp rcscntationofcombustionrclics on Flamclct conccpt.

To uniquely de fine a problem using CFD . a set of bound ary and initial values arc needed .

Boundar y condi tio ns speci fy the limit ation s on the space and init ial valucsd etincp ropcrticsin

the beginning of simu latio n. Genera lly there arc two types of boundary conditions: thermal and

velocity. Thcnnal boundary condition s incl ude cons tant tem peratur e whe re the tem pera ture o f

wall assumed constant, adiabatic where a zero heat flux is assumed. Other boundary conditions

like constant heat tluxm ayb cu scd also. Settin g the appropria te thcnn al bound ary condition is

impo rtant since it direct ly affect s the tem peratu re profi le, smoke bchavior and final conscqucncc.

Velocit y boundary co ndit ions include as no slip, slip. no penetratio n and penetratio n boundaries.

All CFD models discrct ize time and space into finite number of meshes and estimate

parameter s in the center or edges of meshes. The accuracy of approximation depend s on the size

of mcs hes and to a certai n level. as mcs h is finer. the result is more accurate. The refore, to obtain

accurate results. users may need to reduce the size of m esh es and time steps. As the number of

meshes increases, computational time increases as well. Space discretizing must be based on the

geometry and complexity of scenario. While most of tools usually apply a Cartesian

discretization. radial is rcquired in some geo metries . More adva nced tool s may use body fitt ed

coordi nate (BFC) : as the objec t deform s, the gri d deform . Applic ation of BFC improves the

accuracy and may save computational time since the onl y part which is needed is calculated.



Tab le 4.2 shows the most comm only used CFD tools and a brief description . It is user

responsibility to comprehensively be familiar with a tool . be aware of assumptions and

Model Country Dcscrioti on
ALO FT- FT US
CFX UK,
FDS US SIT e;;dhot

FIRE Australia fa

FLACS US
FLOW3D
FLUENT/AirP ak US
JASMINE UK movement
KAM ELEON Norwa
KOBRA·3D German
MEF E Portugal

ments'omi

OpenFoam UK

PHOENICS UK
RMF IRE Canada
SMARTF IRE UK
SOFIE US/Sweden

1O0 1 ions
SO LVENT US
SPLASH UK ra
STAR -CD UK General uroosetool
UNDSAFE US/Ja an

The most significant limitation in CFD model ing is computational lime. Detailed modelin g

may take from hours to days depending on the complexit y of geometry and used so flwarc.

Moreo ver. some limitations arc related to the methodology which has been applied . For example .



UNDSAFE has been developed based on a finite diffe rence scheme. Thus, this mod el has an

inherent ditli culty for com plex geomet ries .

Sub-mode ls which have been used in a model usually have limit ations and affec t the result s.

For exam ple if a thermal element sub-model has been used tor combustion model ing, the

outcome is sign ifi cantly ditTerent from a Flamcle t sub-model. The comp lexity of the combu stion

process has a direct effect on both n ..esults and com putational time. Species considered in the

simulation impact radia tion and calcu lated heat load on thc struc ture. Furthe rmore , the genera l

technique tor turbulence modelin g resu lts in diverse outcomes. Dctcnnin ation oni f a boundary

has a constant temp erature or a consta nt heat nux is a comp licated task. For exa mple in tire

modeiing inside an enclosure, the wall may show constant heat flux at the beginning and then

switch into a constant temperature boundary as the temperature increases . This is more

complicated when the prope rties of wall and its behavio r is not known comp lete ly. The othe r

limitationmay arisedue to requircdd ata andt raining. Some so llware needs specia l training to

acquire the ability to wo rk with its sub-models, inter-connecti on of sub-modcis and obtain

The main limitation emerges when the appropriate sub-models to simulate the spec ifications

are not prese nt . For instan t, snow and ice have great capaci ty to absorb convccti onaI heat and

refl ect radiation. Thus me lting and evapora tio n of snowlice have sig nificant effec ts on the near

field due to heat absorption. The presence of more vapors in the near field affec ts the

conce ntration of spec ies, stoichiometry of reactions, hot gases heat capacity and radiation

parametcrs ofmcdia. For farfield,thereareopposing faclors: snow/icc refcction may increase

the radia tion inten sity, however, tran spa rency of the near field air, and radiation index of fire

may have dec reased due to presen ce of more vapo r and less tempera ture.



Zone modcl s were devel oped and osedto inve stigate the tire and smoke behavio r inside an

enclo sure . In thes e model s whole compartment is divided into two or more zones and average

paramctcrscalculatcd for each zone. As the numbcr of zoncs increases. the results improve if

geo metry is simple. Howe ver, as the geo metry bec ome s more complex , the accuracy is lost. In

contr ast . CFDmodcl s are abletotakeinto accountmorcdctails and the solution changes based

on the varia tion of dctail inputted . Thi s genera lity and ada ptation for diff erent cases and

scenarios make C FDs as very usefu llools [25J. Moreover, the application dom ain for zone

model s is limited to compartments where dividing of space into severa l separa te volume s could

bedone.ln eonl rast CFDmodelsco uldbeapplic'd loopcn space s.

Zone mode ls are easy to learn and also required very short computational time in

co mpa rison to C FD models. Zone mode ls arc effect ive when the objective is the understanding

of phenomena, and genera l behavior. Thus, they maybe applied for quick approx imation and in

the begi nning of design . In contras t, CF D model s require long compu tatio nal tim e and thus co uld

be used in the fina l steps of design : whe n delai led designis nel'dl'd . Ta ble 4 .3 compares Zo ne

Accur acy Acceptable for some Depend ing on the reso lution of me sh ,

~:~~~~~~:2~~;::~~del ~~~I:~~~:r~~~~~~~~ ~~~;delS;
Appli cations Indoo r fire beh avior and

smoke movementsuitable
tor preliminary ca lculation s
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Chapter 5: Mod eling of Pool Fires in Arctic Region

In the previou s chapter , difTercnt type s of tire s and mode ling mctho dwercdiscusscd. Fires

and espec ially pool fires arc among the most frequent accidents in process faci lities, Flame

impin gement and therm al radiation arc the main hazardous charac teristic ofpool fires . Pool fires

have been the subject of numerous modclingsand experiment studies covering verity of areas

such as tire and tlame structure ,cmissivitypowcr , tem perature distribution and f rcdistinction.

The effects o f enviro nmental paramete rs such as wind velocity, humidit y and water/ice dropl ets

inthc airhavcnotbcen studil~cxtcnsivcly.Furthcr.thectTcct of SUITOunding surface rctl ectiv ity

has not bee n studicd .This issue is very importa nt for cold regio ns like the arc tic where ou tdoor

surfaccsarc covcrt,,~ wi thsnowand icc forsevcral months of thcycar. Furthennore,thereisno

comprehensive tire consequence modeling tool that includes pool fire development.

environmental characteristics effects and thermal radiation. This study proposes a new

comp rehe nsive mod el for steady state and fully deve loped pool fire. Th is new mod el take s into

accoun t the effect s of env ironme ntal variables such as temperature. the presence of droplcts and

surface re tlexivityo n the thermal radiation and subsequentlyo n thetireconsequcnce assessmcnt.

In storage facilities. the design and imp lement of surround ing syste ms which collect and

drain acc identa l released liqu id hydro carbon is a usual practice [26 ]. Ignitio n o f theeollee ted

and dra ined liquid resu lts in a pool fire. A pool lire is de fined as a turbulence diffu sion l1ame

co ntro lled by buoyanc y forces [27-29] . Here the com bus tio n phenom eno n is characteri zed by

low momentum diffu sion l1ames . A pool fire is divided into three ditTerent regions: l1ame base



(persistenl zone), inlermitten t zone andfinaJly plume zone[ 28-30]. The persistent region is rich

in flammable vapors and flow is laminar and as a result it maintains its shape and structure. The

interm ittent zone is charact erized with lluctuatingand turbulent 11ameandllow. In this zone, fuel

vapors arc consumed completely and due to turbulcncc,thctcmpcraturcand radiation arc higher

compared to the persistent zone [31] . In the plume zone no reaction 0 ccurs , Turbulentllowand

smoke characteri ze the zone. Due to presence of smoke and soot. radiation Icvcl is lower.

Thebebaviorofapoolfireistigbtlyboundtothepoolsi ze[32].The sizeofpooleontrols

thehcightofdilTcrcnt zones, thermal radiation and temperature; therefore. extrapola tion of these

paramete rs may result into large err ors. Temperat ure, therma l radia tion and duratio n arc the most

important parameters in consequence assessment of pool fire [33] . Depending of these

parameters. consequence of fire may be immcdiate(e .g. the personals are exposed to radiation)

or delayed (c.g. heating up the struct ures and domino effects). The hazards assoc iated with pool

fires arc related to Ihethermalradiation [34]. The thennal radiation depends on the type of fucl,

soot yield and flame temper ature s [35]. Numerous studies have been conducted to investigate the

radiation phenomenon of pool fires. Modak [36] presented a theor etical study for therma l

radiation of horizo ntal and axisym metric pool tires. Orloff [37J introdu ced a simple model 10

calc ulate the radiatio n of poo l tires by simplifying non-homogenous and non- isothermal fires to

equiva lent isothermal and homoge nous tires. Haminsetal. [38] conducted a set of experiments

forditTerent fuels to develo p and modify methodologies for thermal radiation measurements.

Later, Rew et aJ. [28]proposcdascmi-empirica lcorrclatio nforlhermalra diation of hydroearbon

pool fires. Chun et aJ. [34] have conducted both experime nts and CF D simulation to study

radiation of poo l fires. Jensen et aJ. [35] and Krishnamoorthy[39]studieddi fferent approaches 10

radiation modelin g, etTectsofsoot and smoke cfTccts on the estimated radiatio n level. Howeve r,



environmental variables like surface reflexivity or the presence of waterlice droplets were not

Kim et al. [40] experimentally investigated variables such as the etfeet s of direc t-downw ard

water/ice spray on the burnin g rate, behavior and extinction of pool fires. They have reported

that small water/ice dropl ets are ineffec tive and may inversely increase the burningr ate. Later

studics suggcstcd that direct-downward spray is not the optimum dircction and the etli cienc y of

extinction increases as spray direction goes loward horizontal [4 1]. Chen et al. [42] studied the

effect of initial fuel tempe rature on the burn ing rate and bumin g statesof pool lires. Thei r

expcrimentals tudys hows that the durationofsteady burning decreases as initial temper ature of

fuel increases. Furthermore, if initial fuel temperature reaches the boili ng temperature, there

would not be steady bum ing period . Raviguru rajan[43] has proposed a method to calculate the

etfec tofwater/ice dropletso nt he thcrnlalradiationatt enuation.

Despite numerou s works investigat ing pool tires, the eff ect of environ mental variables has

not been comprehensively studied. In most o f studies j ust asi ngle environmentalp arameterh as

bccn considercd. The combination ofth csecn vironmcntal variableswill atTect the consequcnce

of any pool tire especially in arctic region as these parameters coexist and affect the behavior and

thennal radiation of pool tire. In this study a new model is developed which takes into account

environmental parameters including temperature, wind, the presence of drop lets and surface

re llectivity. The Fay model [33] was used as the base for the mode l. Thi s model has the

advantage of a continuous temperature distribution. Furthcnn ore,it also incl udes the effect of

water/ice droplets and surface reflexivity. Therefore, the proposed model accounts for all



5.2 Poo l Ftrc Mode ling

The tlame ofpool ti res is typicall y nonuni form in tempe rature and species conce ntra tion

dist ribu tion in term s of three dimensional calcul ations; theref ore , mode ling o f pool tires is

challenging. Pool tire models are generally classifi ed into two groups. The simplest model

assumes therm al radiat ion contro ls fucl evaporation. The se models do not accou nt for

combustion and air entrainme nt in their ca lculations rathercalculating rad iat ionbased onflame

tempe rature. size and shape. OrlotT[3 7] presented such a model to calculate the radiation of pool

tire s. In contra st to simple models, funda mental models prescribe the tire behavior based on air

entrainment, mixing, com bustion , flow and plum e rising. Fay [33] has recentl y proposed such a

model for a wide variety of pool sizes and wind vclocit ies.

5.2.1 T he Fayl\lodel

This model is a two zone pool fire model which describ es flam e properties, combustion and

plum e zones . The combustion zone begins from the base of fire and goes up to the end o f visible

tlame.lnthis zonethe cvaporatcd fuel vapor reacts with air in stoichiometric proportions and

fonn s combustion product s. When fuel evaporate s from pool surface, it enters a circulation

region . Fuel vapor flows radially toward the edges of pool fire; then, moves upward and inward

towa rd the n ame tilt in the center line. A porti on of fuel va por moves downward toward the

liquid surface and hence the circulation is completed. Thi s fuel circu lation provide s fuel vapor

fortlame surface.F uel vapor and air di ffuserespe ctively ou tward and inwa rd and intersect each

temper ature increase and density redu ction and subsequently upward diffu sio n and bulk

move me nt of product s. The low den sity and high temp eratu re produ cts enter plume zone. The



plume zone is above combu stion zone and rises until temperature signifi cantlydecrea..o;;es and

product gases dilute s.

Temperature and fuel concentration distribution are functions of the mixing proces s. If

mixing isdifTusion driven and laminar, oxyge n and fucl vapor difTusc and reaction occ urs . For

this case. the name surface is thin and temperature is almost equal to adiabatic flame

temperature. Since the phenomenon is laminar, the changes of temperature and combustion

products concen tration is sudden where both tempe rature and combu stion products concentration

increase rapidly in a thin layer. In contrast to lamin ar and d iffusive flames, the rapid mixing

ensures the temperature change is smooth due to turbulence. Hence the flame surface

temperature is less and flame surface thickness is greater compared to the laminar regime.

Takin g a horizontal plancwithcross sectionA at a height z above pooI fire and considerin g the

vertical velocity 10 be equal 10 oi; mass (M), momentum (1') and ener gy (E) can be written as

(1)

p = {(PW)WdA

E = f (pw) Cp (T - Ta)dA = CpT fw(P a - p)dA

(2)

(3 )

\Vhcre. Cp.p andp aarec onstant specificheat.fl owden sityand ambient aird ensity respt.."Clively.

Mass flux growth depend s on the air enlrainment which is related to diameter and height o f

combustion and plume zones. Hence mass flux variations for these zones may be shown by Eqs,

(4 and 5) respect ively.



(4)

(5)

Where Ueand U p arc d imensionless con stants tor com bustion and piume zone respec tivcly and D

is the poo l diameter. Eq. (4) shows that the rate of mass flux growth decreases rapidly as mass

tluxi ncrcascsin combustion zone . ln contrast, mass tlux growth isju stex plicitlyproport ional to

momentum in the plume zone. Due to buoyant force and growth o f mass flux, it is expec ted that

vertical mome ntum increases with height as shown by Eqs. (6 and 7) for combustion and plume

zones respective ly.

~ =fgt»;- p) dA = ~c (c!r.)(~) (6)

(7)

Where . 11.: and llr arc dimen sion less con stants. Th ese equations arc simil arand on ly vary in their

constant s. Finally variation o f ene rgy with hei ght can be shown by Eqs . (8 and 9) for

combu stion and plum e zones respectively.

(8)

(9)

Whe...e,h.o,f, ritand 0 c are fuel hea ting value per mass o f fuel. mass ratio of products to fucl in

a stoichiome tric mix ture, fuel burni ng rate per uni t and the combustion zone equiva lence ratio ,



Eq. (9) shows that energy is constan t in plume zone and is directly rclatedtopoollirebuming

ratc.lnthiscquation,F ,rcp resentsthefuclFroudcnurnbcr andi s shown as

(10)

In the integrat ion of Eqs. (4, 6 and 8), it has been assumed that mass fl ux, momentum and

energy arc zero at the base of pool fire. This assumption is valid since released energy and

vertical velocity are very small in the base of fi re compared to the top of combustion zone.

Integrated form of mass. momentumand energy equati ons in the combustion zone arc

( 11)

(12)

( 13)

P, and Ec in Eqs. (12 and 13) are functions of Me. however. the scaling relatio n tor Pc and E,

versus zcanbefoundtobe2andI.5 respec tivcly.BascdonEqs.( I I-13) , averagevertical

velocity and temperature are estimated as

( 14)

( 15)



Where , w'e and T ", are average tempera ture and vertica l velocity in combu st ion zonc. While w·e

is proporti ona l to zo.
s
• 'I ", is independ ent of z in comb ustion zone and is constant. Flow area at

any he ight is obtained using:

(16)

Finally the heightofcombuSl ion zone can beobtained replacingE =Epat z~L"as

( 17)

For the plume zone, Eqs . (5 and 7) arc integrated to achieve mass flux . momentum and

encr gyrclation s respe ctivel y. To integrate and solve these equat ions, initia l condition cab be set

equal to values at the end of com bustion zone. Thi s results in a new set of unk nown coetlicicnts.

Thealtemativemethod isto introduce an imaginary source at Zo bclo wt he poo lfire andtindt he

plume solution for this location. This ini tial condition results into discontinui ty o f solution at

Z=L",this is theonlypract ica l met hod to get reaso nable equa tionsand resu lts. Eqs.( 18and 19)

present the integrated fonn to r mass n ux and momen tum in plume zone, respec tivel y.

Mp= [~~pp~:~apT33 ( Z + ZO)1 66 ( 18)

( 19)

Based on thes e equati ons aver age velocit y, temp erature and area of the plume zone arc



(20)

(2 1)

(22)

The se set of cquations revea l that temperature decreases rapidl y in the plume zone as plume

area increases due to air entrainm ent. To compl ete the above equationsc a formul a which relates

l11assbumingratctothetire andfucl charactcri sticsi s ncL~ . Thcfucl buming ratc has bccn usL-d

in the fuel Froudc numbcr. Fayprcscntt-d.a sct of simp lccquationsfor two different cases.Tf' thc

therm al radiation is small compared to heat convection. then the burnin g rate can be expressed

m =(1±0.19) 1.30 x W3 (~:~;)) (23)

Where, h. und hearc heat of evaporat ion and fuel heating value respectively. (±) shows the

unccrtainty ofu singthe sccquations .F or largcp oo llirc swhicharc usuall y turbulent , radiation is

the main mechanism of heat transfer from flame and hot gases into the liquid surface. The

burnin g rate can be expre ssed as Eq. (24) under these conditions.

m = 1.0 x 1O-3(~) (24)

Unit of' the burn ing rate is (kg/m' s) in Eqs. (23 and 24). When pool fireeharacteristics Iike

l1amc temperatur e. diameter . burnin g rate , visible height arc known, the thcrmalra diationo f thc



pool lire can be simu lated . Gray gas mode l [17] and surface emissive power are tbe most widely

used model s. Fay has used a gray gas sub-model in his pool lire model. The main assumption in

this model is that soot concentration is proporti ona l to the local conccntration ofproduct s.

For large pool tires. due to signifi cant generated soots, only the base of tire maybe assumed

to contributc intothennal radiati on. The height of this region isinvcrscly proport ional to soot

emissivity (k) . Considering a cylindri cal and untilted lire, the therm al nux to a receiver at

distance x from the edgc of a pool fire can be ca lculated as

4 X ( 2 y2+1 ~+l ~-!)q = yaT f - - -+ - ar ctan - -arctan -
rry ~ y 2_ 1 y-! y+! (25)

!
x '" kii;

D
R '" '2 (26)

Atmospheric instability has been considered by including a crosswind sub-model. Although

the cross wind usually does not change the size of visible flame, it causes the flame to tilt

through an angle 0 from the vertical axis. Therefore in the case of wind the height of visible

(27)

include both vertical and horizontal motions of the plume gas with respect to the crosswind .

Therefore, mass flux and momentum for the plume zone can be rewritten as



(28)

(29)

\Vhcrc. s ist hc ccntcriine oft he piumc. Forthccascofaxis)mmctricplumes,thevaluesofpv

and Bh havc bc'Cn rcportcd to be O.5and O.l rcspcclivcly [24]. By inlegratingE qs. (28 and 29)

ncwcquationsforthcplumczonecanbe obtaim..'lI.Fi gurc5 .1 present s the solution steps ofthe

Faymodc l.

Fil(ureS . I: Steps which must bc followc-d in the Fay model.



As Figure 5.1 illustrates, the Fay modcl is a simple, quick and dircct approach for poo l lirc

modeling. This model requires fuel properti es like heating value and heat o f evapora tion.

stoichiometric ratios, pool size, wind and the environ ment temperature. Although this mode l has

been verified and calibrated against thcrcsuh s ofli cld tests and has acecptablc accuracy,thcrc

arc some limitat ions which if overcome. a better and more compr ehensive model is achieved.

5.2.2 Pro posed ~Iodel

In thcFay rnodef. temperatu re is constant over the height of the combustion zonc up to L .

Thi s does not retl cet reality where temperature at the edge of pool base is close to air

tem perature and in the center of pool base is clo se to fuel boiling tem perature. At thecdge of

poo l base. temperat ure is controlled by the entrainment flow and at the center temperature is

contro lled by fuel evapora tion. In other words. this model will ovcrprcdic t the temperature at

ncar ground and subscquently overprcd icts the thennal radiation from this section of tire .

Neglecting of heat losses is the main cause ofoverpredietion. Heat losses are import ant in

therm ally thin layers like the base of pool fi re, To take into account these losses of thcnna l

cncrgy,energy conservat ion equations Eqs.(3 and 8)are rl.~ui red to be rewritten. To obtain the

temperature pro tile to r the combustion zone we have assumed that poo l tire is axisymmetric and

fuel burni ng rate per unit volume is the same over the entire combustion zone. This burning rate

per unit volume can be obtaincd as :

(30)

(3 1)



Where, m' is fuel burnin g rate per volume (kg/nr' s) and the other paramete rs arc as outlined

above . Energy conservation equation is written as:

(32)

Whcrc q. , q,.• and ql+..uarc combustion released energy , inletJoutlet energy at (z) and inletJoutlet

energy at (z+dz) .

(33)

Where, w is the width of the grid and we show later that it will be canceled out from the

equation. Vertical heat transfer can be wri tten as

(3 4)

Wherew 'i s avcrage vert ical vclocity at (z) andTg is avcragctemperature.

By using Eqs. (30-34),thetemperaturcprotile in the combu stion zone can be determined . As

the temperature in the combu stion zone chan ges, Eqs. (25 and 26) cannot be used to predict

therm al radiation. Furthermore , these equations arc limited to the combustion zone and the

contribution of plume zone in the radiation is not taken into aceount. In Eqs . (l8 to22 )variablcs

such as mass, momentum and temperature arc discontinu ous in Z = L. In addition paramet ers

like temper ature and mass flux are incorrectly modeled ncar the combustion zone. These

paramete rs become accurate when Z » L, and in this situation the temperature is too low and

radiation is negligible. To maintain cont inuity and accuracy of variab les in the plume zone. we

may rewrite Eqs.(18and 19) as

(35)



(36)

Th e other equations can simply be written as

(3 7)

(38)

(3 9)

The variable temperature in combustion zone and rewritin g of the plume zone eq uations

imply that we need new equations to calcu late thcnnal radia tion to a target. For the radia tion of

outer boundary. conservation of energy fora scgrncnt can be wri tten as

q"4A= i Aq"ldidA ; A =2rr d;' (40)

Where , q" is emissive power at a segment of outer boundary with arca6A. q"ldii s thcrccciving

thcnn al radiation at distance (di) from this segment. Eq. (40) canbcrcwrittcn as

(41)

Where, ii is the normal ofthe6A and di is the radiation direction veetor. Eq. (4 J) assures that

the utmost ofthcnna l radiation is in the direction of 6.A normal, Therefo re we can say that for

any distance from thctJ. A scgmcnt q" ldi is constant for all the directions and the differen ce in



rcccivingthcnnal radiat ion is controllcd by ~. Thcrctoreqlll d i tor any distance can be

calculated as (see the proof at Appendix A)

(4 2)

Ih crcforc thc thcrm al radiation which target receive s from 6A scgmcnti s

(43)

Fina lly,thcnnal rad iation from the outer boundary can bc obtained by integrating Eq. (43)

ove r the entir e combustion and plume zones

" Af'b rJ A
4(ii.ili )

q=ao ~dA

Where, A llh is the boundar y of the pool tire.

(44)

Now we can further expand the proposed model to include the efTect ofs urface emissivity

on the therm al radiation. Surface emissivity is important. especi ally in regions like the Arctic

where the reflection index of the ground is very high in comparison to temperate or wanner

climates due to the presence of snow and ice cove red surfaces. These surfaces have higher

rctlcct ion index and subsequently magnify the thermal radiat ion which the target receives. For

each radiative section acco rding to the target location. there is one spcc itic angle which results in

thermal radiat ion rell cclion.Th ereforcwc havcc xtcnded Eq. (44) as

(45)



Where. di,i s the travelin g distance vector ofr eflected beam and (rt)isretlcctivityindex ofthe

di, is always greater then di particularly i f the target is close to the pool tire. Another

important issue which has not been co nsidered in the previous studies is the absorption

co ctlici cntofair whichhas been takenas zcroinabovc t."'quatio ns. This isvalid for most cases

since the air absorption coc tlicient is very low , 5x lO-Om ' l [4 5]. How ever, the presence of

water/icc droplets in the air can significantly increase the absorption co efficient of air and

subseq uently redu ce the intensity of radiation . Temperature, W 3 VC length , size and the mass per

volume of the droplet s are the main parame ters which affect the absorptioneoetli cient [46. 47].

As the emis sion from water/ice drop let is much smaller than the energy that they absorb [48].

thcnnalmdiation fromt hcdrop lctsh asnotbccn takcnin to calculatioos.

Absorption cocllicicnt and retlection index of icc and water/icc droplets for a variety of

temperatures and wave lengths have been provided in Ref [47.49-51]. The absorp tion

coc llicic ntsofiecandwatcr/ieedroplctsvary sign iticantlywithwavelength. On the other hand

and wavelength also dctenni nes radiation ene rgy.

(46)

Where. h. e and k ' are Planck 's constant (6.62 x IO·" J-S). the speed of light (3xtO' mls) and

Boltzmann cons tant (1.38xIO·"JIKjR-spcctivcly.AdilTerentiationI'rom this equation Eq. (45)

determines which wavelengths more contributes into cncrg ytran sfcr.

he! 2897
Amax =Sk"f; AmaxCPm) =--r (47)



In the present model, the interval of thermal radiation wavelength, 1 0~8 - 1 0~] m, is divided

not equal and reduce as wavelen gth is closer to Ama... For each wavelength band. one need s to

calculate absorption coc fticient of the air. Assuming that mass per volurneofdroplcts inthca ir

is J11d and droplets have a Gaussian distributio n wi th mcan and variance value s J.l and ci

respec tively; then. any wave band like the j'" with average wave length A;. the corresponded

absorption cocffic ient kj is

(48)

Where,kd"k. and Ad arc the absorption coellicient of drople t related to j't wavc bandpurc air

absorption coctlic icnt and the relat ive area of dro plets. Th is rclat ive area is direc tly rclated to m,

and is invcrsc ly rclatcdto droplct diamctc rrc spcc tivc ly. lfa2 is mathematically equal to O, then

relation ship between Ad, m, and ~ becomes (sec App endix II for proof)

(49)

Where, PJ is particle density (kg/rrr') . For the cases in which cr2 is not zero, one needs to integrate

A
d

= ~l Cdf(r +dr)d~ Cdf(r)dr; cdf(r) = O.5 ( l + erf (~)} (SO)

P" rd r+ T

Where, (cdf) is cumulative distributi on function and rd and ro determine the interva l of

integration. Thcsevaluesare symmel ricrcsJX'-Ct to ~ and lhc sizcofintcrval depends on ci . For

thej'hband. thcth ennal encrgy afterp assing ad istancc (x) in air is givcn as



(5 1)

Whcre. Ajisth c average wavclenl,1h of thc j' h band.H cncc.th c total lhcnn al cnc-rgy which passcs

through the media (air and droplets) is

(52)

Thisc'quationcanbcrcplaccd intoEq.(45) toobtain thctinal lonnofthenna lradiation

equation

Aob --. --

q" = ~ [ e(di, T) (~) + r] X e(di" T) :~~r)dA

Figure 5.2 presents the sequence of stcp s for the propo sed model.

(53)



Fi~u re5.2:So1ution steps ortheproposedpoolliremode1.

So far a mode l has been developed which is capab le of including the environrncnt alparamctc rs

effects un the behavior of pool tires. Th e main environmental paramete rs for the Arctic region

arc snow/icc covered surfaces and drop lets. In the next section we will sec how these two

paramete rs can affect the thermal radiation intensity from a pool fire. The quant itative

compati son between theproposcd method and the Fay model isexplaincd through a pool lire

modeling case study. Here, we use a pool fire of gasoline with 1.4 m diamete r to illustrate these

mode ls. The assumption is that there isno wind.



5.3. 1 Proposed Mod el ve rsus FayModel

The Faymodcl was revised and exte nded to include the e tTeet of environmentalparameters

like surface rctlc cti vity and the presence o f water /icc part icles . As ment ioned by Fay [33 ]. his

model is disco ntinuousat Z = L . An example of this discontinuity has been shown in Figure 5.3

for the purpo se o f illustration. Th e main reason of this discontinuit y is that vertical ener gy

transport due to mass movement has not been considered in the combustion zone and

subscqucntly this zone has a constant temperature. The initial temp er atur e of the plum e zone

depen ds on the coeffici ents. particula rly 111"0 Figure 5.3 shows tempcrature in the plum e zone tor

thre e different '1p. The major issue of using Fay rnodcl is that the re is no a spec ific value or

method to obtain llp and as Figure 5.3 shows that temper ature highlyd ependson this parame ter .

Figu re 5.3 : Temperature distribu tion for Fay mod el ; very small ~p ( I). small ~p (2) and medium

'lp( 3) . Temper ature is discontinu ous in the intersec tion of zones.

Fo avc id these issues. discontinu ity in the tempera ture and not having thc exa ct va luc o fq s,

the temperatu re profile in the com bustio n zone has bee n modi lied (Figu re 5.4). The new



distributi on of temper ature is the result of considerin g heat transfer betw een different height s in

thecombustion zone. As temperatureis continue..'S , the initial temperature of the plumezone is set

equ al to the tempe rature at the end of combustion zone.

In Figure 5.4 the integra l of temperat ure curve s for both mode ls, the Fay model and the

present modcl, arcthe same and thet otal released energy is the same for both cases. However in

the present mode l,l he tempera tureis low near the poo l surface and it increases with height as the

released energy rate increases and energy is transferred upward due to hot gases movement.

Furthermore, the radiation equation whi ch has been USL"d in the Fay model uses an average

tempera ture and ult imatelyundcrpr cdi cts the radiation tlu x. Thcnn al radiation fl uxes for bo th

models have been compared in Figure 5.5. The diffe rence is higher near the pool lire and as the

Figure 5.~ : Te mperature distribut ion for differe nt model s, Fay model (I) and new model (2) .

The rmal radiation tl uxes for both model s havebcencomp ared in Figure 5.5. Th e di fference

is high er ncar the poo l tire and as the radia l distance increases this d itTcrcncer cduces.



Fig ure 5.5: Co mpa riso n of predi cted therm al radi ations: Fay model ( lj and the proposcd modcl

(2) athcight I.Omclcr.

An other major lim itation in the Fay model is not considerin g radi ation from the plume zo ne

as it cannot acco unt for radi ation wh ere the temp erat ure profile is not constant. Neg lecting the

plum e zone might be reasonab le when the hei ght of combu stio n zone is large or when the target

is ncar gro und. However , forthccaseswhcrcthctargctis high,radiation from the plu me zone

cannot he neglected. The thermal rad iation tlu x of plume zone whic h has been calc ulated by the

proposed model is shown in Figure 5.6. This tigurcclcarlyi llustratcs the plume zone co ntribute s

more at higher height s; although , the total radiation from this zone migh t be small compared to

the combustion zone. Figure 5.7 demonstrates the percentage of plume zone contribution

compared to total radiation nux which a target receives. This figure shows that plume zone

contribution for higher heights is more important compared to lower heights. Therefore.

neglc..'Cting radiationtromtheplume zoneresults into scvcrcundcrcstimatingofradiation tlux in

the high height s.
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Fig ure 5.6: Conlrib utio n of plume zone in thermal radial ion llux(Kw1m' ).

Figure 5.7: Percentage of plume zone co ntribution in the total radiationtlux.

Figure 5.7 also illustratcs that as the radial distance increases, the intlucncc of plume zone

decre ases and combustion zo ne domin ates thcthcnnal radiation tlux . At large radial distances.

eve n for high heights, the radiation from the plume zone become s negligible comp ared to

co mbustio n zone. In this case , the radiation angle and thc distancct othctargetb ccomcs almost

same for bot h plume and combu stion zones.



5.3.2 SurfaccRcllcc tiv ily

Although the plume zone share in the thermal radiation is small compared to the combustion

zone, neglecting it results into undcrcstimating ofthcrrnal hazards. Therefore, the plume zone

radiation has been considered in all subsequent sect ions. After correcting temperature

distribution and including the plume zone in therma l radiation, wcmay investiga te the effect of

surface reflec tivity on the thermal radiation. The Fay model docs not uccount for this parameter

orwc can say that the surface retlcctivityis Ofor this model. ln snow and ice covered surface,

the surface rellectivi ty may be as high as 0.93.

I iii]

Fi~u rc5 .8 :Difference(proposedmodcl - Faymodcl) inthe recei vingthermal radiation at

heightI.Om ; surtace with rell ectivity indexO.9(1),r ell ectivity indexO.7 (2),rell ectivity index

0.5( 3).

In Figure 5.8, the difference in thermal radiation llux predicted by the Fay modcl and the

proposed model is show n and illustrates as surface retlectivity increases, the Fay model

underestimates radiation. Furthcnn orc, surtace rcflcctivityh as small contribution to thcth cnn al



radia tion for very close dis tances or far away from the poo l ti re. The reason of this small

contribution is that at short distances the reflection has a very Iargeangle and the seco nd part of

Eq.( 45)bc'Comc'Snegl igible.Fi nallyt hed itlcre ncerc'<luccsasradia ld istancci ncrcasc'S.

\Ve expL~tcd that the contribution of retl ect ion rL'duce as height increases. The reason of this

behavior is that both reflec tion angle and distance increases with height. However. this is not

always the case and ncar the surface at approximate height o f 0.4 to 0.7 m, as shown in Figure

5.9,t herellcctio n contribution increases slightly . Thisbchavior is duc to the radiation from the

top of combu stion zone, from the bottom of plume zone and the reflec ted thermal radiati on .

Except the slight growth in the refl ect ed therm al radiation, reflection contribution reduces as

height increases. A comparison between Figure 5.10.a and Figure 5.10.b shows that thc thennal

radiationdistributionchangL~ signilicant ly wi threnection .

':i/ .
E':rI ,
t ' : ~ .
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Fi~u re5.9: Retlcctio nco ntribution in thethenn al radiat ion.
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Fi~u re 5. IO: Thennal radiat iontlux ; a : surtacc rctlcct i vily i ndcx i s O .O and b : surtace retketi vi ty

5.3.3 Drop lets Effects

The proposed mode l was further extended to include the effect of water /ice drop lets. The

introductionofdropletsintothe air reducestransparcncyofair.increasesthccxtinction

coc tlic ient of the air and subsequently results into higher attcnu ationofthcnna l radiation tlux.

The attenuation depends on parameters such as pool tire tem perature , wavelength and droplet

kind, size. distribution and mass conce ntration in the air. Here the effect of' droplet size,

distribution. mass concentration and drople t kind (water or icc) has bcen examined .

Figure 5.11 prcsentsthcthcnnal radiation tlux for several cases. In this figure. variance is

considered zero (all droplets have the same size in each case). Th em ass conccntration for cases

2-4 is the same. As shown in Figure 5.1 1, large droplets have negligible effec t on the thenna l

radiat ion (com paringcascs I and 2). However. as droplet s i zcreduces thc attcnuat ion incrcast.~

and for sma ll droplets the attenuation of radiation is rapid (case 4).



Fil:ure S. I I : Attenuation of thermal radiation llux for diffcrcnt droplets sizes;n od roplet inth e

air ( I). very large droplets (D = 400Jl) (2). large droplets (D = 100 u) (3) and medium droplets (D

= 20 (1)( 4).

Figure 5. 12 demo nstrates the e fTcct o fdro plcts size distribution on thcnnal radiation. As the

variance increascs. thcnna l radiation rcduccs more due to thc prcsc nee of smaller particles in the

air. It must be noted that as the mean size of droplets reduces, variance become s more important.

l.!~ I

Figure 5.12: Thc ctTcct of droplet diameter distribution on thcnna l radiation cxtinctionr for all

eases themeandiameteri s5 Jla nd distributioni sGa ussian;0 ' =0 .0(1) (alJ droplets have the

same diameter), 0' = 1.0 (2), 0' =2 .0 (3) and 0' = 5.0 (4).



The relationship between attenuation coefficie nt and the mean size 0 fd roplets is observed to

be aninverserei ationship. Eq. (50) indica tes a direct rclat ionbetween mass conce ntra tion and

attenuationcoetlicient.Figure5 .13 showsth at asma ss conccntration increa ses, thermal radiation

Fi~u re5. 13: Effect of droplet mass concentratio n on the attenuatio n oft hennal radiat ion; Il1J = 5

grim' (J) . rna = J0 grim' (2), ma = 20 gr / rn'' (3). md = 40 grim' (4) and m d = 80 grim' (5).

Figure 5.14 shows the impac t o f water droplet on thethennal radiati on. Case I refers to the

presence of water droplet s in the air while in Case 2 there is no watcr droplet . At each hcight.jh c

difference increases gradually with the radial distance until rcaching a peak and then dec reas ing.

Over longdistanecs the difference reduces since the therm al radiation of both cases decreases

significantly.



Fi!(urc5. 14: Dincrcnceinreceivingthennalradiation(Casel -Case2).md ~ IOgr/mJ. D = 50

~l. For this case the surface reflexivity has not been considered.

5.3.4 Arctic Region Conditions

Figure 5.8 to Figure 5.14 indicate that surface rctl cctivity and the presence ufwa tcr droplcts

havc significantandoppositccffcctsonthethcnn alradiationtlux. While surface rctlc ctivity

amp lifies thcnnal radiation, the presence of water droplet s results into a faster attenu ation of

radiation. Therefore, it is expected that the interaction betweenthe setwoparametersre sultinto a

more comp licated pattern . Figure 5.15 demonstrates an example of this interaction . Thi s figure

shows the difference between Cases 1 and 2. Cas e I refers to arcti c condition where a high

surface rctlcctivitya ndwatcr droplcts cocxist. lnc ontrast,C ase2 is for a scenario where surface

rellecti vity is low(O .I) and there is no droplet in the air.



Figure 5.15: Differcnceinreceivingthcnnalrudi ationtor arctic conditions K' asc l-eCasc Zj. rn,

= IO gr/mJ,D = 50~ andref ~ O.9for Case I.

As shown in Figure 5.15, the thenna l radiation tlux is higher in Case I tor short distances

and low heights. The distance and the height at which thermal radiation of Case I is higher

depend on the pool fire diameter and fuel type. For short distances and low heights, retlecti on

compen satest ortheeffect ofwaterdropletsb ecauseof smallre tlcctio n angle. For largcrh eights,

theretlection angle is large and subsequently water droplet becomes the dominant parameter. It

is to be mentioned that these result also depends on the wavelengths which depends on the pool

tire temperature. Hence. for a different temperature distribution of the pool tire, the results might

be significantly different as the absorption coetlicientofwaterdroplets highly depends on the

wavelength.



Figure 5.16: Effeetof ditTerent type of dropl ets on the therma l radia tion extinction , water

dropl ets (I) and icc droplets (2).

Fi~urc 5. 17 : Difference in receiving therma l radiation at the presence of ice drop lets( Case 1-

Case2), md = IOg r/m'. D = 50 l' and ref = O.9 forCase l.

The effect of ice droplet s versus water droplets has also been modeled and compared in

Figure 5.16. The mean value, variance and mass concentration are the same for both ice and

watcr droplcts int his figure. For thcs pcciti cd poo l tirc with itss pcciti c tempe rature distribution .

ice droplets result in less therma l radiation reduction compared to water droplets. As such,

surface rctlcctivity bccomes the dominant affecting parameter upto a larger radial distance and

heigbt as shown in Figure 5.17. In this figure. all the parameter s are the same as Figure 5.15



except the absorption coetlicient which is the absorption coetlicie ntofice.lngcneralwecan say

that for the Arctic compared toa more temperate region, thethcnnal radiation is higher for short

distances and is lower for large distances.



Chapter 6: Explosion Modeling

Thi s chaptcr prov idcs required inform ation about exp losion hazard anditsconscqucncc

ass ess ment. Explos ion is the second most frequent acc ident in both off shore and onshore

facilities . In expl osion modelin g, gener ated overpres sure is the most important parameter which

determines the level of accide nt and its consequenc es. Man ydifTerent type s of explo sion s may

occur . ThL'SC explosions categorized as uncontined (overpressure is mostly related to the

presen ee of obstaclcs) ,eontioed(overpr cssureisrelatedtoeontincment and obstac les level) ,

physical explos ion (failin g ofp ress urized vess el ) and so lid explosionFor oil and gas indu stries ,

gas ex plosions arc the major hazard .

Thi s chapter divide s ex plosion mod el ing into three main cate gorie s: Empi rical models ,

Phe nome nological mode ls and Cf' Ds. Empirical model s arc the easiest and quickest model s to

predict overpre ssure . These models estimate genera ted overpress ureb ased on corr clat ions which

have been obta ined from large sca le ex perime nts. Th ese corre latio ns simply relate generated

overp ressure into paramet ers like distance and relea sed energy . Therefore, there is no or less

exp losio n physic in these model s. In contra st, phenomeno logica l model s repr esent the physics o f

explo sio n in its simplest way. On the other hand, CFD models describe and emp loy a detailed

physic s through solving explosion governi ng equatio ns. Therefore, these CFD mod els prov ide

the mo st accurate and detai led result for exp losion phenom eno n.

6.1 Explos ion

Explos ion is defined as a sudden release o f ene rgy associa ted with an increaseinpressure

and tcmpcraturc{52] . Gas explosio n are generally defined as either con fined or unconfinedFor

examp le explo sion inside a vessel or building is a confined exp losion. For fully confined



exp losions (no ventilation, opening and heat loss) theregenerated ove rpress ure could be up to

eight times of initia l pressure. However. generate d overp ressure is mainly determ ined by the

temperature ratio of burned gas tou nburncd gas.

Explosion in low congested confined places has low initial turbulence and therefo re low

tlame spc...-d.ln thepresenceofobstaclcs.l1owwould be more turbulen t and result in higher

combustion rate and l1ame acceleration and hence higher l1ame spec-d. If l1ame and combu stion

zone propagate in a speed higher than sound velocit y in comparison to unburned front gases ,

dctonationoccurs. Detonation is a self-driven shockwave where reaction zone and overpres sure

pulse arc coup led and propagate toget her. In this case. the reaction initiates by compres sion

heating of shockwave. Although the possibility of occurrc nce for this kind of overpres sure is

relative ly low, it is the most hazardous accid ent, Detonation overpress ure and its propagation

speed could reach up to 20 bars and 5 Mach respeclivcly. lf the rclalives pec-d of reaction zone to

unburne d gas is less then sound velocity, then dcflagration occ urs. In this ease reaction zone

propagate due to molecular andlo r turbulent di ffusion .

In exp losion modeling turbulence is the main factor which cont rols flame speed, shock

speed and gene rated overp ressure. Tu rbulence is produced and contro lled by obsta cles; thus,

generate d overp res sure is very low when there arc no obstacles orobstacle density is low. As

flow passes through obstacles. turbulence grows and results in more flame area and therefore

higher comb ustion rate due to higher diffusi on and convectio n. Growt h of comb ustion rate

increascstheexplosion tlowand hence the turbulence is magni fied again. This cycle provides

high comb ustion rate and gcncratcdoverprcssure .



6.2 Effect i\'cParametersinExplosions

The consequence of an explosion depends on generated overpressure, during ofs hockwave

interaction with objects, duration of negative pulse after shockwave and etc. These characters of

explosions depend on several parameters: blockage ratio, confinement and ventilation,

congestion and geometry, fuel type, ignition source and location, ignition time and fuel-air

mixture stoichiometryan di nitia l turbulcnce level[52].

Blockage ratio is criterion which dctenn incs how and up to what level a structure is

congested. Typica lly larger blockage ratio results in higher generated overpressure. However,

size, shape and location of objects also have a significant effect on the outcome of an explosion.

For instance, for similar size and blockage ratio smaller obstacles provides more overpressure.

Genera lly as the flame passway becomes narrower and more tortuous, overpressure is expected

to be higher. This is mainly due to flame area expans ion and highcrturbulenttlow.

Fuel type plays a critical role in explosion phenomenon. Ast hc reactivity offuel increased,

generated overp ressure would be higher. For example, hydrogen explosion generates a much

higher overpressure than Methane and ethane. Ignition source also has a significant rule. For

example, source point ignition point results in lower overpressure in comparison to jet-type

explosion.

6.3 Mode ling

There are three different approaches for modeling an explosion scenario: using empirical

correlations, phenomenological models and CFD models. Among these three categories,

empirical correlations are the simplest which do not carcof thc cxplesion physic; therefore, they

arc easy and quick models. In contras t CF D modeling is the most complicated and detailed



approach which requires larger preparation and computational time. Phenomenological models

are somewhere between CFOs and empirical correlations.

6.3.1 Empir ica lMo dcls

These models have mostly been developed base on experimental data. They share

characteristics like being fast, calculation overpressure for a distance from the center of

explosion and etc. They simply relate the generated overpressure to parameters like scaled

distance, released energy, flame speed, fuel reactivity and etc. widely used empirical models

have been described brietlyin below.

The main assumption of this method is that gas explosion is somehow similar to high charge

and solid explosives like TNT. The TNT equivalency model employs scaled distance-scaled

pressure curve to estimate pick of overpressure. In this method, TNT mass equivalent to the

hydrocarbon mass in vapor cloud is calculated. Moreover, an experimental factor is used to

compensate for differences in the physic of explosion. This experirnental factor was initially sct

to beO.3-0.5andas the modcJwas later modified. O.2wasassignedfor thefac tor. Furthermore,

the model was moditied to take into account the geometry.

The main weakness of this model is that gas explosion nature is extremely differ ent from

solid explosion. For example, detonation of TNT shockwave is much more rapid than vapor

cloud explosion. As a result TNT near tiled overpressure is much higher in comparison to

generated overpressure of gas explosion. Subsequently, incl ose distances from explosion center.

this model predicts very high values for overpressure pick [52. 53]. Moreover, determining



exp losion center is difficult since in most of cases hydrocarbon mass center is not the explosion

cen tcLFurthcrmo rc,t hismode lj ustprovidesin lorma tionforposi tive phase.

6.3,1.2l\l ulti-E nergyl\ let hod

Multi-en ergy meth od has been used widel y to estima te explosions overpress ure. The model

was developed based on the numerical simulationo fc cntrally ign ition of a spherica l vapor cloud

[52-55]. Th is model ca lculates ove rpress ure based on the portion of gas which has been co nfi ned

orb lock cd byobstaeles . Th c behind conccpt forsucha consideration ist hat partof elo udwhich

is unco nfi ned will generate a slight ove rpressure ifignitcd.

Thismcthod rcquirestwo paramctcrs:cncrgy scak"ddistanccandcxplosion strcngth. This

energy scaled distance somehow determi nes how much of released energy contrib utes into

overp ress ure generatio n in a des ired distance . Explos ions trengthi s anumber from Otol Owh cre

10 represe nt detonation and 0-9 arc used ford ctlagration. Alt er findin g energy sca led distance

and explos ionstrcngth, asct of curvcs arc uscd to detcnn incscalcd overpress urcand pos itive

phase du ration .

The main advantage of this method over TNT is that explos ion strength has been considcn•.xl

as a variab le param eter whic h could difTcr from a scenario to ano thcrone. Morcover, thc results

are more realistic es pecia lly for ncar field where TNT overestima tes extremely. However,

dctcnn iningexplosio n strength is a ditli cult issue. Furthenno rc, it fails to accu rately repres ent a

co mplex geometry. The re is not a uniqu e and clear way to deal with several congested areas,

multip le blast wave s or multip le ignition sources.



Baker-S treh low (BS) model is similar to multi -energy mod el. In both meth ods, presence of

obstacles res ults into higher intensity explosions. While in multi-energy model explos ion

strength is dominant parameter, flame speed is the main parameter which dctcnnin cs

ove rpress ure in BS model. Energy sca led distance is similar for both of these model s. Flame

propa gation speed is determined through BSmatrix [56-59] .There are three qualit ati ve fac tors

which spec ify the l1ame speed of a scenario: the ways or dom ain s in which flume front co uld

prop agate(ID, 2D or 3D) , fuel reacti vity and density of obstacles . Then, sealcd overpr cssurc is

This modcl is casy to usca nda lso considcrs omcgco mctricalas pccts of struct ure specially

conges tion. Moreover, it could handle multi-ignition explosions. Since this method has been

developed based on ex perimental data. it is expected to be more reliable and realistic in

co mparison to multi-energy method. Neve rtheless, this mode l is overconscrvativc and moreover,

obstacle density is a subje ctive issue,

6.3. 1.4 Co nges tion Assess me nt M eth od (CAM)

The Congestion Assessment Method (CAM) take s into acco unt plant layout (congestion and

eontincment) and fuel type to predi ct ovcrprcss ureofexplos ions [52J. This model has been

developed by Shell Thom ton Research Centre based on wide variet y of expe rimental results. The

accuracy of this model is fai rly acceptable, although it has bee n developed toobtainco nservative

results. The first step in this method is to determ ine a reference pressure Prcris congested area.

Thi s Prcri s an estimation of pick overpre ssure which an explos ion cou ld genera te. After that fuel

is taken into account through a fuel factor which is multiplied into Prcrto determine source



pressure for selected type of fuel. Finally, overpressure for vario us distances is estimated by a

pressure decay curve.

This model has been furth er modifi ed and impro ved based on large scalc to sma ll scale

experiments to address problems like non-symmetric plants, plants which are much longer in one

direction in co mparison to the other two directions, when gas volume is smaller than co ngested

volume (parti al filling] and how to deal with sharp edge objec ts . Beeause of these modifi cations.

this model is the best empi rical model especia lly when it is applied tor layout s on which model

The most challenging part is determin ation of congestion level. Although, there are

guidelines for congestion and confinement assessment, this yet a subjec tive engineering practice.

If two ind ividuals attempt to determine congestion level and generated ove rpressure, while they

may get similar results for simple plants; tor complex plants the results could be signific antly

This model predicts bette r than other empirica l models since has been calibrated ove r

numerous different scale ex periment. Furtherm or e, it is easy to use and permit s for 110n-

symmetric or long narrow plants. How ever, like other empirical models, it cannot take the

det ail s of plants. Tabl e 9.1 represe nts the list of empirical modeIs and a brief descript ion

CO MEX. CO Mpiled EXplosi on model has been developed tor overpre ssure ca lculation in

parti ally confined areas. The model is onl y applicable tor prop ane [60] . FiveditTerenl models

have been implem ented in the code: two of them for ovcrpressure prediction inco nfined spaces

and the other three for spaces with venting. The code is an Excc1s preadsheet and will run on PCs



into account the shape and direction of obstacles. However, all defined obstacles must have

identical size and shape. Furthenno re, this model is limited to vapor cloud explosion of propane.

Table6. l presents the summary of empirical models.

Tab le 6.1: List of selected em irical modelsw ith brief descri tions.
Model Description

TNT n»u ,," c, 'U"' .1;"' CAP.'V >Ov u "v n ;nn

geometry.
TNO similar to multi-energy method, assumes that all gas vapor

Multi-Energy Method

Baker-Str ehlow

~~~~~~~~t Method

~:~~~~~nt Method done.
COMEX

6.3.2 Phenomenological Models

The physics of explosion could be described either empirically or theoretically. While

empirica l model s attempt to represent the physic of explos ion by eorrelation and curves which

have been developed based on experiments; CFD models employ mathematically gove rning

equations to illustrate the physics [52]. Phenomenological models arc somewhere between CFD



models and empirica l model s. On the other word, they empl oy the physic as simple as possibl e

and only include essential physics. The major simplific ation is in geometry representation.

lndee..d . the ae lually geome try of scenario is not modelcdand a simpliti cd and ideali zcd geomet ry

is used. This ideali zation provides accurate approximations tor simple cases. ho wcve rv for morc

complex geometriesphenomenological models fail to provideaccurateoutcomes.

Since phen omenological mode ls impleme nt simple physics and geometry, the y arc fast in

calculation and run-time is usually in the order ofsc.."Cond. This characteristic makes them

suitablc foro ptimization practice. A large numbcro f prcl iminary desi gns and situations could be

modeled quickly to achieve a limited number of preliminary acceptable situations. Then a

detailed analysis could be done either by performing experime nt or C FD modeling.

The SCO PE (Sh ell Code for Overpre ssure Predicti on in gas Explos ions) model has been

developed in Shell Thornto n Research Centre [52]. This model has initiall y bcen dcvclopcd for

gas explosion mode ling in offs hore structures. Thi s is a one dimen siona l model whic h simply

takes geo metry as a vented vessel with some obstacle grids. The obstacle grids determine the

turbulence and turbulent combustion. Since SCOPE is one dimensional. it may be USl.-U

wherever . tlam c passway is single andlo r one dim ensional.

This model takes into account the length and volume o f compartment. Mor eo ver , size,

location and shape of vent have been considered in calculations. Standard cornpn ..essible vent

flow equations have been used to consider flow from vents. Also the effect o f external explosion

from vented unburned gas has been taken into acco unt. For vented gas . the assumption is that it

forrns a mushroom shape vapo r clo ud.



This model predicts overpressure for the worst case by putting the ignition point in the

Flame is assumed to be semi-spherical until it reaches the walls of compartment. In order to

correctly estimate the generated overpressure and vented gas, flame position, unburned and

burned gas masses arc calculated by two simplified differential equations along with several

other equations for turbulent velocity and etc.

SCOPE has been valida ted and calibrated aga inst large numberof expcrimcnts with differ cnt

size, congestion and fuel type. Moreover, it could simply handle geometryand ventilation.Th ese

propertie s make SCOPE a suitable model for initial phasesof strueturc dcsign. However,these

idealizations cease deviation tor modeling a complex scenario. Moreover.Jt only rnodels a single

enclosure and possible external explosion related to the enclosure. Therefo re, it could not be used

for the cases in which ignition happens outside the compartment.

6.3.2.2 CLICIIE

The CLICHE (Confined Linked CHamber Explosion) has been developed by Advanti ca

Technolo gies Ltd to simulate gas explosion in confined structures. The idea is based on the

vented vessels which are connected. The reason is that plants could be considered as semi-

confined and congested areas which are connected together . Therefore , C LICHE is a

generalization of interconnectcd confined areas

CLICHE solves a set of ordinar y differential equation s which describe chambers.

Conservation low for unburned and burned gas is applied in each chamber. Inside each chamber,

the assumption is that properties are uniform and momentum changes 0 nlyintheboundarics of

connection links. This assumption docs not permit flow distribution and flame distortion in



chambers. Therefore, tlame distortion isdetenn ined by applying empirical corre lation based on

chamber volume and bum ed gas.

Since this model utilizes a numerically generate d flame area. ignition point could be set for

any desired location. Moreover, rate of flame growth is calculated based on unburned gas

velocity. As tlame intersects an obstacle, it becomes turbulent. Turbulence parameters are

dete rmined based on tlow veloeity and obstacles. CLICHE can also handlee xtemal exp losions.

NVBANG is used to calculate the generated overpressure as a function of time for partially

confi ned volume [60]. Th is model has no sub-model for overpressure generation; thus, it is used

along with other models which could provide overpressure. The procedure is to adjust the

NVBANG parameters so that NVBANG generate same overpressure. If COMEX has been used

along with NVBANG, a set of para meter could be changed so that NVBANG be applicable tor

Ventilation could be obtained by pressure relief panels. The pressure rcliefpanelscould be

specified on any wall and there is no restriction on the area else vent area exceeds the wall area.

NVBANG could not handle obstacle s or extema l explosions directly; therefore, feedback fa ctor

is calibrated after inputting data from another model. Moreover, feedback factor is used for

calibration of burnin g veloc ity in turbulent flows. Burning velocity in turbulent tlows has been

defined as lamin ar burnin g velocity times the feedback factor.Therefore,pr esence of obstacles

calibrates and increases feedback factor and this feedback factor is used to correct burning

velocity.



Thi smodelassumesth atth e shape oftlamei s sphericalunti litrcachcs the bound aries where

it transitions to a semi spherical zone. The other assumption is that the released energy is

distributed uniforml y in the volume of burnt gas and the burnt gas expands adiabatically.

This model is easy to use, and the computational time is comparatively low. Moreover,

venting and connecte d modu les could be simulated with this model. The main drawback of this

model is that it requires another model forovcrp rcssurc generat ion. In add ition, there is no clear

method to deal with input parameter s, particularl y the feedback factor which controls the burnin g

velocity. The model also assumes that the energy is distributed unifonnl yin volumcofbumt gas

and the burnt gas has an adiabatic expansion. This results in a unrcalistic uniform overpressure

Computational Fluid Dynamic (CFD) models approximate the solution of a set of partial

differential. Navicr-Stokes equations which describe now and sub-models (e.g. combustion and

turbu lence) are solved simultaneously [52, 61 and 62]. Domains (both time and space) are

discrctizcd and coup led algebraic equations are solved itcratively.

CFD model s predict temperature, pressure, velocity, density and spec ies concentration in

detail. This is the main advantage of CFO model s over two previous models. In addition, CFO

modelin g can provide precise information where conducting ex periment is impossible or

impractical. The other main advantage ofCF O models is that they are sensitive to details and

there fore allow slight design or scenario modifi cation and simulation. The main limitation of

CFO models is their computational time. For example . it is impractical to simulate a small sca led



turbulence in explosion process. Therefore, turbulent sub-models have been developed to

simplify the turbulence phenomcnona nd reduceco mputational time.

AutoReaGas has been developed by TNO and Century Dynami c Ltd. This model utilizes

ReaGas sub-models for gas explosio n solving and BLAST for shockwave propagation. ReaGas

is a three dimensional tinite volume code which employs Cartesian grid. First order schemes

have been used tor both time and space discrctizing.TheTurbulenee modeling is performed by

class ical k-e model and the SIMPLE algorithm is used for pressure correction. While large

obstacles arc usually resolved by grids, small obstacles arc taken into account through a porosity

distributed resistance. Small obstacles are considered as extra sourcc ofturbu lenceinthc systcm.

The combustion is assumed to occur as a single step reaction where the reaction rate is

obtained from empirical correlations fordifTerent flame speeds. The transition from laminar to

turbulent combustion is controlled by local flow conditions. To account for the reality that the

gas-air mixtureis not unifonn, a mixture fraction has been introduccd. Thereforec equations are

approximated for mixture traction and fuel mass traction.

One of the mos t important strength of this model is that it has been calibrated over small to

large scale experiments. Furthennore. BLASTcanbeusedt o studyfartieldeftects and al arge

number of objec ts can be introduced in the model. Also a water deluge sub-model is included.

However, this model uses first order schemes for solution approximation.



CFX is a general purpose finite volume code which used for explosion model ing of

complex geometries as the model generates multi-bl ock and non-orth ogonal grids. A variety of

solvers and sub-models are available among which user can select the appropria te one. For

example,ti rstorder or second order schemesco uld be selectcd; k-Eor Reynolds stress turbulence

model may bc cbosco tor turbulence modeling.

Tem pora l differ entiating schemes are either fi rst order accurate(backward Euler or implicit

Euler) or second order accurate (Cra nk-Nicolson ). The Euler scheme is positive definite and can

be used with relatively large time interva ls. Thetenn "pos itive definit e" is referr ed to a scheme

whichconvergeswithoutany restrictiono n thc stepsizes. lnc ontrast, Crank-Nicolson scheme is

not bound ed for positive definite variable; therefore, small timc steps are required. CFX also

provides higher order temporal differenti ation by employing baekward differenti ation methods,

These schemes are used to improve the drawbacks of previously mentioned schemes.

The main advantage of using CFX is the flexibilit y offe red from the variety of diserctizing

schemes. The mult i-block meshing offers a much better control over mesh generation. The

model has also been tested and calibrated against experiments especially to r methane and

hydrogen explosion modelin g. However, for other gases, the model shows poor agreement with

cxpcrimcnlal rcsults[52 ].

COBRA is a finite volume code which empl oys adaptive mesh generation algorithm. This

model applies an unstructured meshing which could be refined and de-retin ed automaticallyto

insure efficiency and accuracy of solution. The grid is updated after cach time step to maintain



an acce ptable resolution of tlow characteristics. Employed mash structure could be either

Cartes ian or cyl ind rica l. Although gri ds are refined in eac h lime step, CO BRA uses Porosity

Distributed Resislance (PDR) for obslacles which have not been reso lved by gri d. Th e

inlegralio nschemeissccondorder bolh lemporallyandspalially. Th crefor e,all flow prope rties

are approxima ted in the center o f computational cell s. However. for some studies, the model

outputs have signi ficant difference with experiments. Moreo ver, it employs two- layer-k -e

turbulence model. The main disadvantage of this turbulence model is that it uses algebraic

equ ations for near-wall domains. Finally, there is no sub-model to account tor flow transition

EXS IM is a lin ite vo lume code which has been dev eloped by She ll Global So lutio n and

Tclemark Technolo gical Centre. Structured Cartes ian gridding is employed with PDR to capture

the effe cls of small obslacle s which may have not been resolved by grid . Like mode ls whieh

have been presented previously, EXS lM uses the k-c mode l for turbulence model ing. The time

discretizing scheme ; the space discretizing scheme could be either first order or second order

The results of computations have been compared with numerous experiments. The model is

appropriate fora variety of congestion and confinement seenarios up toa completcly uncon fincd

geometry. The major weakness of model is using low order accurate schemes (mainly first order

schemes) and mesh refinement! de-refi nement has not bee n co nsidered for this model.



FLACS (FLame ACc eleration Simul ator) is also a structured Cartesian grid, finit e volume,

k-s turbu lence based model like EXSIM. The general discretizing schcmeisa tirstor der ccntral

scheme and a second order scheme has been used for reaction progress. The combustion model

used is a II name model that uses correlations of turbulent hum ing velocities. The II model

assumcs tlame thickncssan d buming vclociticsa sc onstanta nd the tlamc curvaturcis adjustcd

by correct ion functions.

FLACS has been compa red and calibrated versus a number of small to large scale

experiments and results arc reported to be in good agreement with experiments (± 30% error in

overpressure approximation). FLACS contains a water deluge model. The main drawback of

FLACS is the absence of an adaptive gridding algorithm. Thus, the user needs to modi fy mesh

sizes after the run is completed and run again. Furthermore, the scheme is first order and

therefore , smaller computational cells arc requir ed to obtain reasonable result. This may increase

computational time dramatically.

NEWT is finite volume code with adaptive unstructured mesh which makes it suitable tor

modelin g of complex geometries . A fo urth order Runge-K utta integration method is used to r

temporal integration. This high order scheme allow s for choosing larger time steps and

subsequently less computational time is required. Acomb ination of second and fourth order is

usedt o r spatialdi scrctizing. Fortu rbulencem odeling, am odifiedk-Emodclisu sed.

The combu stion sub-model is an eddy break up or laminar Flamelet mode!' The eddy break

up model may result into wrong predict ions tor gases ignition ahead of the flame. This is



corrected by suppress ion of the leadi ng edge of the tlam e at the end of eac h time step. In

contrast, the laminar Flamclct model docs not need corrections and shows betteragreement with

experimentaldata. However. using laminarFlamclctmodel increases thecomputationaltime.

Thi s model incorporates an adapti ve and automatic mesh algori thm which cou ld be used

easily for complex geometries. Howeve r, model outcomes are not in good agreement with

experiments results. These deviations arc mostly related to implement of inaccurate ignition

model, inaccuratemodeling of the initialdevelopmentofl aminarflow, inaccuratetransition from

laminar into turbulen t flow and final ly using simple k-c model.

REACFLOW is a fi nite vo lume code which has been developed for gas tlow with chemical

reaction sim ulat ions . Like NE\VT, it utilizes an unstructured mesh algorithm which is suitable

for co mplex geometries. Thcdiscrc tizing scheme is either tirst 0 r sccond order accurate spatially

and lirst order acc urate tempora lly. In REAFLOW , there arc two di fferent sub-models It"

combustion modeling: finite rate chemistry and eddy break-up model. Finite rate chemistry is

used when the turbulence effects arc neg ligib le e.g. laminar flame. For turbulent combus tion.

eddy brea k-up model is used. The main drawback of this model is related to imp lemen tatio n of

these simple combustion models. Moreo ver, the integration schemes are low order accurate,

thcrcforc. smallcrtcmporal step sizcsand spatialcomputationaltim<..'Surcrcquin..'t1 .



Chapter 7: Explosion Consequence Modeling in Arctic Region

Previous chapter covere d different methods and models for explosion consequence

assess ment. However in the arctic regions, the presence of snow and ice covered surfaces adds

complexity to the explosion phenomenon. Snow may compact, displace and absorb considerable

portion of explos ion energy and impacts the generated overpressure, shock wave protil e and its

propagation, calculated risk and finally decision making. Although there are numerous CF D

(Computational Fluid Dynamics) models which could be used for exp losion modeling, most of

them could not take into account the presence of snow and approxirnate its behavior. Moreover.

coupling governing equations of explosion ami governing equations of snow is computationally

challenging. These challenges raise both in implementation and computation cos ts. There are

empirica l model s which could be used; however, none of them have been tested and calibrated

tor explosion over snow. This chapter makes an attempt to integrate an empirical explosion

model with snow model. Baker-Strehl ow is used as the explosion model along with snow model ,

called jump equat ions, to modi fy and adopt Baker-Strehlow over snow cove red surfaces. Risk

has been calculated and compared with similar scenarios in the absence of snow covered

Vapor cloud explos ions are a major haza rd in most of oil and gas facilities [63, 64]. The

vapor cloud generated shockwave is the most important characteristic of an explos ion which

determin es the Icvcl of damage. Thus, in explosion modelin g, the goal is to provide generated

overpressure and then convert it into measureable losses in term of damage or fatality. For

explosion modelin g, empirical model s are widely used [65]. However , most of these model s and



tools are not suitable for explosion modelin g in Arctic regions due to snow and ice covered

surfaces. In addition to snow and ice covered surfaces, high levc Is of humidity and the presence

of snow and icepartic1 es in the air are the main characteri stics of arctic regions [I] . \Vhilethe

ctlcclsorwa tcrvapora nd dropletson lhc explosion havc bccn wcllstudicd [66-6 8]: the impact

o f snow covered surfaces on the explos ion behavior is Icss known and not beens tudieds pecia lly

in the case of risk assessment. The behavior of snow and its coupling with overpressure blasts

have been mostly studicd in avalanche related researches [69J and isa newlyo pencdarea forrisk

assessment studies. Brown has shown that Jump cquationscan preci sely describe the behav ior of

snow sur faces subjected to overpre ssure and shockwave [70, 71]. Later, Johnson et al,

experiment s confirmed Brown 's methodo logy and showed that shockwave attenuates rapid ly in

snow duc to momentum dissipation in snow and the compaction of snow [72J. The compa ction

of snow and snow surface displacement highly depends on the snow density and its initial

propcrt ics[70, 71].

Despitcth e availubilit y ofthemodclsdescribedin chapter 5,th crc are certain scenarios and

situations which requi re the model to be modi tied. An example of such situation is explosion

hazards in a process industryorplatfonn in arctic region . If the ground is cove red with snow

layer, exp losion phenomena and subseq uently generated overp ressure diffe r compared to

unco vered surfaces. For thcse cases if a snow layer is new and has low density, aconside rabIe

portion of energy is dissipated in snow. Simu ltaneou sly the snow is compacted and deformed

due to the generatcd overpressure and the shock wave losses a portion of itscnergy. Couplin g of

transport phenomen a and solid defonna tion isrequircd tor the case of explosion in arctie regions.

However, coupli ng also introduces new sources ofuneertaint y into modeling[73].



jump equation s to predict the response of snow to shockwave and to modify overpressure protile .

The propo sed method is a new and simple approach to model explosion in arctic conditions.

7.2 i\l odel i n~

In the Buker-Streh low model, the first step is to determine the fuel activity, obstruction

density and flame expansion. Fuel activitydcpends on the flammab le vapor, as fuel activity

increases, the intensity of explosion increases. In the Baker-Strehlow model there are three levels

of fuel reactivity: low, medium and high. For example, methane has a low fuel activity while

hydrogen has a high fuel activity. Obstruction density depend s on the congestion and

confinemen t of scenario and has a direct effect on the intensity of explosion. Like fuel activity,

there are three different levels of obstruction density: tow, medium and high. The confinement

and congestion also determine s flame expansion modes on the spatial directions in which flame

can expand. There are three modes of flame expansion: to , 20 and 3D. For example if

explo sion occur s in a long tunnel, tlame expansion is 10 , propagating along the length of the

tunne l. In contrast, a comp letely uncon fined vapor cloud exp losiontlameexpansioni s 30 .F lame

expansion is reversely proportion al to the intensity o f explosion : as tlameha s more ways for

expansion, the generated overpre ssure is less. Explosion efficiencyand ambient pressure are the

other parameters which impact the consequence. For most practices, an efficiency of 30% is

considered sufficient for conservative calcu lations. The explosion efticiency factor is includ ed



for the fact that not all tlammable gas contribute to explosion; not all the released energy is

The next step ist o dctcnnin cth c size of vapor cloud and released encrgy. The size of vapor

cloud depends on the confined and co nges ted areas, while the released energy is determined

based on the co mbustion energy of fuel. Environment; climatic co nditions will also impact

conditions the released energy. For example for a partially confi ned area in a high wind. the

concentra tion and subse quently mass fraction of fue l in the clou d will be very different thana

Baker-Strehlow model est imates sca led over pressure as a function of scaled distance for

differe nt flame speeds. Flamespeed is determined basedo n the tlame expansion, fucl reaetivity

and congestion. For each parameter, there arc three different categorics; thus,to tally thcreare27

different tlame speeds. Eqs (54 and 55) shuw the distance and overpressure scaled relations

respec tive ly :

(54)

£-1
X' =x(p,;J3 (55)

Where Ps, Po, Pa, Xs, x and Estand for scaled overpressure, generated overpressure, ambient

pressure, scaled distance, distance and released encrgyrc spcctivcly. After determining the flame

speed, and released energy, the generated overpressure is estimated by graphs or corresponding

Eq. (56) shows these correlations and related coefficients arc listcd in Table 7. 1.



{
0 u x, < Xo }

Ps = AB(I/x,le x, ifXs~ Xo
(56)

Figure 7. 1 outlines the overpressure calc ulation using Baker -Strehlow model illustratin g its

quick and direct approach. However, this model is unable to account the impacts of

env ironmental condi tion s e.g. a snow layer ; tbcrcforecmodifica tions are n•.equircd in th is model.

In this study, thc rclcascd energy decreases as the shoc kwave or ovcrp rcssurepul scpro pagatcsin

enviro nme nt due to energy dissipation by snow. There fore the actual energy which contributes

into genera tion of ove rpress ure decreases with distance. This dissipated ener gy is in the form of

therm al and mec han ica l energy; however, s ince the explos ion is a rapid phenom enon , thennal

energy is considere d ncgligiblc comp arcd to mechan ica l energy . There tor e the dissipa ted energ y

in this rnodcl is mechanical energy due to movement and defonnation of snow. Eq.(57) prcscnts

the modified relation for released energy .

E(x) = Eo-d(x) (5 7)

WhereE(x), Eoand d(x) arecorrcctcd rcleascdenergy for dis tancetx) , initially releascd cner gy

and dissipatcd encrgy until distance x from the center of explosion respectively.



Fil(ure7 . I : Flow chart for overpressure ealculation byB aker-Strehlow model.



Thcdissipatc'dcncrgyiscalculalcd through thc application of Jump equations (Eqs. (58-65)) .

Jump equation s represent snow asa rate sensitive and nonlinear material. For overpressure which

causes the inelastic behavior. snow response could be written as:

2y}exp (-0fio) a r( a'a (*)' JP.=-- -In(-)+- --f(a)+-g(a)
o 3a a -I a at' 6

a o'
r=Pm--,

3(a - l)3

rca) = (a- l)~-(a)~

g(a) = (a- l) T-(a)T

(58)

(59 )

(60)

(61)

In these equations y, J and 0 are snow constants and aois the initial mean void radius

cons idered 0.1 mminthi sstu dY.Pmist hcicc dcnsityan d the density ratio (a) is dctincd as:

Pm

P

1 = 3' 10' pa,J ~ 3 .07,0 ~5.85, Pm~ 1000 kg/mJ

lIerc ao is the initial density ratio o f snow and p is the snow density.

(62)



Brown has shown that Eqs. (58-6 1) accurately model snow responses to avaricty of prcssurc

shockwavcs and densitie s. The mass and momentum equation can be written as;

(63)

(6 4)

Dill"ercnt iation of Eq.(64) withrcspectt otimc and substitutin g in Eq. (63) results in-

- 1a' po 1 a'a
P;;iJX2 = -;;;;at' (65)

This cquation isthc familiar form ofa wave equation and was used along with Eqs.(58-62)

to investigate the response of soow to applied external overpressures. It could be done by

substitutiono fE q. (58) into Eq. (65) to have a forth order non-lincar partial differential equation

foru . X is the direct ion of wave propagation and the direction of snow depth .

a,(2YJeXP (- 0;i!';) 1(~)+! (- ~f()+ (%'f) ' (»))3a n a-1 a at' a 6 9 a

-1 1 a'a

ax ' ao at '
(66)

Figure 7.2 illustratcst hc algorithm ofthcproposcd method . In each stcp, j umpcquationsarc

used to calculate the dissipated energy. Based ondissipatedenergy, released energy is mod ified

and subsequently used in the Baker-Strehlo w mode l to calculate corr ectcd overpressure. Each



step of these calculations is computationally expensive espccially in comparison to thesimple
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Fi~ure7.2 : Flowchartfor ovcrprcssure calculation usingthencwmodel.



To quantit avely compare the result s o f new approac h. the risk ise alcul ated whi ch isd etined as:

(67)

Where Du is the desired distance.P, is the peak overpr essur e for anydi stancc x and R(D d) is the

cumulative overp ressure whic h causes dam ages up to desired distance ,

Th e so lut ion of Jump equ ation s provides unique inform ation rcgardin g the snow behav ior.

The se equations arc able to co rrectly repre sent both local and globa l behav iors of snow with

respec t to its depth and de nsity e.g. den sity changes, co rnpactionv dcfo rma tion and energy

diss ipation. The local beh avior captures how snow den sity changes in the directionofitsdcpth

while global behavior indi cates how snow surface is displaced with respect to the di rcction( s) of

ove rp ress ure prop agation and its effect s on energy dissipation .

Figures 7.3 and 7.4 present the variation of snow density in depth ax is for initial density

equ al to 125 and 250 kg/rrr' respecti vely. A qu ick comparison bet ween these cases revea ls thatas

the den sity increases , the rate of compaction decre ases. Figure 7.5 shows such a compariso n.

Thi s tigure comp ares the variation of den sit y when the ini tial den sity has been redu ced by from

250 kg/m '' to 125k glm 3.F orthistigure , appliedoverprc ssureisthe sam c as appli cd overp ressur e

for Figures 7.3 and 7.4. The hu lk of defnrma tion and displacement is higher earl y. Furthermore.

it is ex pected that up to a certa in value as snow density decr eases, more ener gy is dissipated .

Moreover for any case, after a while den sity growth and snow displacem ent become s negligibl e.

For instance, a fter 0.5 secon d the re is no signitic ant snow compaction atd epth o fO.95m.
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Figure 7.3: Snow compaction in depth, initial snow density > 125 kg/m' and applied

overpressure = lOb ar.
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Figure 7.4: Snow compa ction in depth, initial snow density = 250 kg/nr' and applied

overpressure = lOb ar.
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Ftgurc 7.5: Comparison of the rate o f density change (In itial snow density ~ 125 kg/rn'' - Initial

snow density = 250 kg/m' ).

It is logical to expect that as applied load (overpressure) decreases, the rate of compaction

changes and displacement decreases: therefore. the dissipated energy decreases as well, Figure

7.6 illustrates snow behavior for a lower applied overpressure. In comparison toF igurc 7.3. just

app l iL~ ovcrprcssurc has decreascd . This figure confirms that as overpressure decreases, rate of

densily ehangesr edllees dramatieaJly.
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Figure 7.6 : Snow compaction in depth when the applied ovcrpressure is equal to I bar. initial

snow density = 125 k&,m' .

The effect of depth on the local behavior o f snow has been shown in Figures 7.7 and 7.8. For

these figures, all paramete rs arc similar to the paramet ers in Figure 7.3 except the depth of snow.

Asdcpthof snowdccrc ascs,withthc sarnc conditions,t hc shockwave faster reaches to the hard

and incompatible hard surface which is below snow layer. This results into a higher rate of

compaction and also a shorter stability time. For instance. the density ofl ast 5 cm of snow docs

not changea ller OA second when depth iscqu al to 25 cm.
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FiJ:ure7 .7: Local behavior of snow whcn snow dcpth = O.5 m.
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Fi~ure7.8 : Local behavior of snow whcndcplh =O.25 m.

The application of proposed method is shown through a case study and thcrcsu Its arc shown

in Fig 7.9·7 .13. In this case the assumption is that there is no wind. Moreover, there is a



homogenous layer of snow with the depth of 0.5 m. Furthermore , this case assumes that there is

enough fuel concentration and congestion to create a highoverpressure in the center of

explosion.

As the shockwave propagates, it loses a portion of its energy due to snow deform ation,

Therefore, the overpressure for far fields is expected to be less than what a simplemodel like

Baker-Strehlow predicts. fn thc ccntcr und ncar fields. ener gy dissipation is larger because of

generationof largero vcrprcssure. Figure 7.9 shows snow displacement and its final depth for

severa l different initial densitie s. Asdensitydecreases.thcdisplacement ofthe snO\\' surtaceis

larger and subsequently, energy dissipation is larger.

Figure7 .9: Snow surtaee displacement duct o shockwave interaction.

Although , snow may deformed severely in distances close 10 the explosion center , the

dissipated energy is relatively small in compari son to the initia l explo sion released energ y. This



is mainl y because in nea r fie ld the surfaceofdisplaccd snow is low and in the far field snow is

not affec ted significantly. However. the snow layer results in lower generated overpressure.

Figures 7. 10-7. 12eompare generated overpress ure for diffe rent cases in elo sed distances « 4 .0

rn), medium distance s « 25.0 m) and far field « 250 .0 m) respec tively .

-BSmod. l
....... . Snow density = lOOkg m'
-- -- Snow density = 115kgm 3

- - Snow den sity = ~OO klit'm3

Figure 7. 10: Compa riso n bet ween overpressure of sever al cases tor close distances
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Figur e 7.11: Pick overpressure over snow for several diffe rent snow densities in comparison to
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Figur e 7.12: Comparison bctwccn ovcrpressure of sevcral cascs in far distances.



A comparison between result of Baker-Strehlow method and this new method reveals that

there is a considerable difference in the calculated overpressure. Figures 7.10-7. 12 show that

generated overpressure over snow covered surfaces is less than nos now covered surfaces at any

distance. Moreover, these figures illustrate that as snow density increases, dilTercnccs betwccn

lheBaker-Strehlowmodela nd theproposedmethoddeereases. lnot herword, as the density of

snow increases, the results of proposed method become closer to the results of the Baker-

Strehlow method. The reason of such behaviors is that as snow density increases, compac tion

and subsequently dissipated energy becomes less significant comparedtoinitialrc lcascdcncrgy.

Figure 7.13 presents risk comparison for different cascsba scdo n thedetinitionw hich is given in

methodology section. Results show reduction in risk, although the di fference s may not be

significant. Moreover, this tigure illustrates that presence of snow layer docs no significant

effects on the overpressure and risk level of near tields.1t is mainiybccausc the dissipated

cnergyi srclatively smallincomparisontoreleascdcnc rgy.
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Figure 7.13: Risk level versus distance for different cases.



Chapter 8: Conclusions

Th is chapter consists of two parts. In the fi rst part. the summary and conclusion of the thesis

is prcscntcd. The next part inciudes suggestions and rec omm endation s for future works.

8.1 Summary and Co nclusion

This thesis was focused on the Arctic region. Due to unique environmental characteristics o f

the Arctic region. the usuall y practiced models cannot be used forthis region. Therefore, in this

study two models were revised and developed to account for thc environmcntaluniqucncss.

A new methodolo gy was proposed to model poo l fi res in the arctic region. The Fay model is

rcviscrl and cxtcndl.'tl toa ccount tors urface rctlcctivitya ndt hc prcscncc ofw3 tcr/icc particlcs in

the air . As a rcsulr.th e rcvised model is effective in a region like arctic where surface rctl cctivity

and the presence of drop lets arc the mai n environmental parameters. Furthermore , the revised

model is extended to accou nt for the radiat ion from the plume zone. Although , the thermal

radiation from this zone is small com pared to the combu stion zone; plume zone still has an

import ant role especially for large hcights . The results of the reviscd modc l show that thcnna l

radiation profile in arctic region is signiticantly difTerent compared to moderate regions. This

difTcrenee eould signilieantl yaffeettheeonsc'quenee and subscquentlythclinal outeome s and

A new model is presented fore alcul atingexplosion overprcs sureinthe arctic region. In this

new model , the Baker-Str ehlow model has been coupled with jump equat ions to calculate energy

dissipating due to snow compa ction . Finite difference schemes arc used to solve the partial

differential equat ions resultin g from this coupl ing. The results show that overpressure in the



arctic region is lower compared to temperate climat es . The reason is snow compa ction and

energ y dissipation due to snow deformat ion , Furthermore, as the sno w layer density increases,

ene rgy dissipation becomes negligible . Thi s mean s that the differ en ce in the genera ted

overpress ures between arctic region and temperate regio ns dec rea ses.

M.2 Suggestions for Futu re \Vor ks

The poo l tire mode l proposed in this the sis is applicable to steady state situation when the

tire is fully developed but not appropriate for the initia l growt hs or final quen chin g. Although the

steady state step is the most hazardou s phase durin g the bumin gofa fuel , it is worthwh ile to

further extendt his mod cl toi nclude tiregrowtha nd quenching.

Therm al radiatio n has not been included in the ener gy conservation equat ions for the

prop osed pool tire model. Including therm al radiation in the energy con servati on ca Iculati ons

wou ld requ ire an iterative me thod to reach a solution. Although this result s into a longer

simulation time. it would impr ove the accuracyofca1culation s.

Unlike the poo l tire mode l, the pro posed explosion mode l on ly accoun ts for snow

compaction and ignores environmental variables like temperature and the presen ce of droplet in

the air. Thi s limit ation goes back to the Baker-Strehl ow model as it does not acco unt for

environment temperature or the presen ce o f droplets in the air. Ther efore the proposed model for

the explo sion could be further exp anded by includin g the effect of other en vironmental

parameters on the explo sion inten sity .

Models lor other accide ntal tires like je t tire and BLEVE should be developed based on the

unique characteri stic s of the Arctic region.
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A ppendix A

(A - 1)

AsqU ldi is constant, wc nccdt o calculalclh c tighl sidc intcgral.l fwctransform this intcgralt o

spherical coordination. this integral can be written as

LA~ dA= L ACOS(O)COS(rp) dA (A -2)

Where, oand <parc azimuthal and polar angels respectively. Thc (dA) inthi s intcgrali s cqual to

dA = di sin (dO) di sin(drp) = di Zsin(d O) sin(drp)

~i.!:'J sin (x) = x

-4)

Using (Eq. A-4)in(Eq. A-3) and substituting into (Eq. A-2) rcsuIts in

(A - 3)

(11

L A cos(O) cos('I') dll = d i Z f~f~ co s( O) cos('I') d Odip = 4d i z (A - 5)

Rcplacing (Eq. A-5) into( Eq.A-I) rcsultsint o

(A-6)



•

Appendix B

For a Gaussian distribution, Probability Dcnsity Function (PFD) can be shown as

(8- 1)

Where J.lpresents the mean value and cidclcmlincsthc width of distribution. "ol l"qual to O"

mathematically means that all the droplets have a same diameter (II). Then we have

(8 -2)

Wher e, Va is occupicd volume by drople ts and N is the number of droplet s per unit volume.

Finally

(8 - 3)
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