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Abstract: 

The geophysical response of any target is dependent upon the physical properties of the 

body and the surrounding host rock. The objective of this study is to develop an 

understanding of the physical properties of the kimberlites and host rocks at the Diavik 

Diamond Mine. Physical property data were collected at the Diavik Diamond Mine 

during a Mathematics of Information Technology and Complex Systems (MITACS) 

internship with Diavik. Data was collected using equipment supplied by Aurora 

Geosciences Ltd. The physical properties measured include density, resistivity, magnetic 

susceptibility and remanent magnetization. Samples were collected from drill core from 

previous drill programs that took place on Diavik property. In total, 400 kimberlite and 

surrounding host rock samples were collected from 16 kimberlite pipes. Pipes were 

selected based on core quality and pipe location. 

The physical property data was statistically analyzed. Then, magnetic and gravity 

forward models of pipe A154N were made using GRAV3D (UBC-GIF 2002) and 

MAG3D (UBC-GIF 2002) software packages. These models were based on the data 

collected, along with a constrained geometric model of kimberlite pipe A154N given by 

Diavik. These forward models were compared to collected total magnetic field and 

gravity ground data which underwent a regional/residual separation using Li and 

Oldenburg's Method (1998). MAG 3D and GRA V3D inversion software was then used 

to invert the residual data. The resulting subsurface models created by the inversion were 

then compared to the known moflel of pipe A154N. 

After studying the physical properties and modeled geophysical signatures of pipe 

A154N, airborne total magnetic field data over the pipe was reviewed. Directional filters 

and edge detection techniques were tested to see how successful these methods were in 

helping to define the pipe Al54N anomaly both on a large-scale map and in profiles over 

the pipe. 
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1.1 Introduction 

Now that diamonds have been discovered in Canada's North and mines are in operation, 

the pressure to find more diamonds is rising. Kimberlite, an intrusive volcanic rock, is the 

main source rock for diamonds. Geophysical techniques have been at the heart of the 

Canadian kimberlite exploration industry from the beginning, and continue to remain one 

of the primary techniques for kimberlite exploration. During the history of the Diavik 

Diamonds Mine, the mine site and exploration properties have been extensively explored; 

with this comes the need for more effective and thorough exploration techniques. It is 

believed that these new techniques will only come from a more careful investigation into 

previously discovered kimberlite pipes. It is only by the study of known cases that we can 

learn how to discover the undiscovered cases. Since geophysical surveys respond to 

variations in the physical properties of the subsurface, knowing more about the physical 

properties of Diavik's kimberlites and their host rocks will lead to an increase in the 

interpretation accuracy of geophysical models which in turn will lead to an increase in 

exploration success. 

The objective of this thesis was to collect a full suite of physical property data to be used 

in conjunction with data from previously conducted geophysical surveys to increase the 

understanding of the relationship between physical properties and kimberlite pipe 

geophysical signatures. These relationships were defined by using forward modeling and 

inversion techniques. This data was then used to isolate pipes in airborne total magnetic 

field data. 
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The data for this project was collected during a Mathematics of Information Technology 

and Complex Systems (MITACS) internship at Diavik Diamond Mines from June to 

October 2006. The measured properties include magnetic susceptibility, remanent 

magnetization, density, and resistivity. All laboratory equipment was provided by Aurora 

Geosciences Ltd. The details of the laboratory equipment and procedures will be 

discussed in Chapter 3. 

Physical properties from the major kimberlite zones and host rock units were measured 

using 400 samples from 16 kimberlites pipes of the Lac de Gras kimberlite field on 

Diavik property. Chapter 4 will discuss statistical techniques used to define physical 

property inter relationships and representative values for the collected kimberlite and host 

rocks samples. Investigating Canadian kimberlite physical properties is not a new idea; 

others authors including Mwenifumbo, Hunter, and Killeen (1996) and Katsube and 

Kjarsjaard (1996) have previously published studies on the topic. Neither study 

concentrated on the Diavik area or sampled a large population of kimberlites and host 

rocks. The conclusions of these authors will be compared to the conclusions of this study 

in Chapter 4. 

Inversion and forward modeling was performed using collected physical property values, 

along with an accurate geometric model of a kimberlite pipe. This investigation is 

presented in Chapter 5. 
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A study using edge detection techniques on airborne total magnetic field data is presented 

in Chapter 6. It relies upon the information learned from the inversion and forward 

modeling of pipe A154N. The potential of using pattern recognition techniques is also 

discussed. 

1.2 A Brief Introduction to Diavik Kimberlites 

There are three economic pipes on Diavik property (Al54N, A154S and A418) which are 

Eocene in age (Graham et al. 1999). These pipes are located within a few kilometers of 

each other and are considered to be from the same cluster. These pipes have been 

investigated thoroughly. In contrast, there is little documentation about the more than 60 

non-economic pipes that are distributed throughout Diavik properties. 

As a result of glaciation the majority of kimberlite pipes at Diavik are found beneath 

lakes. Since kimberlite is a weak rock, retreating glaciers removed the top layers of the 

kimberlite pipes making ideal depressions for water to collect. 

The diameter of a Diavik kimberlite pipe ranges from approximately 75m tol50m. The 

pipe walls have mean estimated dip between 78° and 84° that tend to converge at depth. 

However, the shapes and sizes ofthe pipes vary (Graham et al. 1999). 
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1.2. I Magnetic Signatures 

Kimberlite magnetic signatures detected in magne1ic sur\'eys originate from the contrast 

in mag11elizalion belween kimberliles and host rocks. By reviewing airborne total 

magnetic field data which was collected between 1992 -1997 and complied by Aurora 

Geosciences. various magnetic signatures can be observed (Figure 1.1 ). Kimberlite pipes 

have been found with positive, negative and neutral anomalies. 

N 500m 

J. ·--- ·: :· wra· v··anrrsssiTs rnrrn rr '& rurn m = 

•'iWJre 1.1: Examples of the different magntt1c rtSJ>Onses round on Oia\ ik property with arrows 
pc>1ntlng lO kJml)et'lllt pipes. A) A typlc:al kimberlite pipe dustu with n~gatiY~ anomaJie.o;. 8) A 
k:h:nberUte pipe c:lusrer wllh neutral to high positive anomali~s. Note due- to io;sues or oonfldential XY 
UT\\1 c»ordi.rrulcs lire noC gin'll. 

Kimberlite pipes can be spatially and t.emporally associated with diabase dykes. regional 

fauiLS, and geological contacts (Power et al. 2004). Pipes tend to be found in c lusters. and 

in generaJ these clusters are of similar ages and possess similar magnetic signatures. Due 

to these intimate age relationships. it can be assumed that each cluster has a similar 
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intensity and direction of remanent magnetization, as this is locked in during the cooling 

process (Power et al. 2004). This is a generalization, and exceptions to the previous 

statement have been found. The varying remanent magnetization of a kimberlite can 

either produce a negative magnetic anomaly that is easily recognized (remanent field is 

opposing present field) or produce a positive magnetic anomaly that is often obscured 

and difficult to recognize (remanent field is in the general direction of the present field). 

To date, the majority of kimberlites discovered using magnetic surveys have been 

negative magnetic anomalies. These small, circular, negative anomalies are easy to pick 

out in the comparatively positive magnetic background. It is assumed that there are still 

many kimberlites that have not yet been discovered due to their neutral or positive 

magnetic responses. 

1.2.2 Electromagnetics 

Both ground and airborne EM systems have been successful in finding kimberlites in the 

Northwest Territories. Airborne surveys consist of multicoil helicopter-borne EM 

systems and less frequently fixed wing time domain EM systems. Relevant ground 

surveys include HLEM, and coincident loop TDEM. By reviewing an airborne apparent 

resistivity map (56kHz) that was collected in 1997 and complied by Aurora Geosciences, 

the relationship between pipe cluster and apparent resistivity response can be explored 

(Figure 1.2). Unlike magnetic data, pipes within a cluster do not generally possess similar 

apparent resistivity responses. 
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Gravuy i~ u"iuolly used during the secondary pha\C of ldrnberlite exploration. after a 

pmcntiul t:lrgct hall been found and funher infom11Uion h needed. Ground gravity surveys 

are not COihidercd the fa..<~test or most cost effective way for looking for kimberlite pipes. 

Gravity dmo i~ \'CC)' sensitive to elevation changell and since the majority of kimberlites 

arc foond beneath lakes. a careful removal of bathymetric effech i\ ncccs~ary in order to 

holatt the kimberlite response. 
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Chapter 2: Introduction to Project Area 

2.1 Background 

Located in Northwest Territories, Diavik Diamond Mine (Diavik) is situated on East 

Island in Lac De Gras, approximately 300 km northeast of Yellowknife (Figure 2.1). The 

mine is accessed by air, or ice road during winter months. In 1994, diamondiferous 

kimberlite pipes were discovered here by a joint venture of Aber Resources ( 40%) and 

Kennecott (60%). In 1996, Rio Tinto assumed Kennecott' s 60% interest in the joint 

venture and established Diavik Diamonds Mines Inc. 

Figure 2.1: Map of North America showing the location of the Diavik Diamond Mine. A yellow star 
notes the location of Eastern Island. 
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Lac de Gras is approximately 60 km long and averages 16 km wide, with a shoreline 

length of 740 km. The lake has an average depth of 12m and a maximum depth of 56 m 

and the water quality of this lake is close to distilled water (Diavik 2007). Surrounding 

Lac de Gras is rolling tundra with very few trees, numerous lakes, bedrock outcrops and 

glacial deposits of boulders, till and eskers. Permafrost occurs within 1-2m of the surface 

and continues to an undefined depth (Diavik 2007). 

At the moment, pipe A154S and pipe A154N are open pit mines, and are in the process of 

transitioning into underground mines whereas pipe A418 will begin mining Fall 2007. 

The estimated reserve of the three ore bodies is 29.8 million tonnes at 3.2 carats/tonne 

(diluted). Excluding any new discoveries, the mine life is estimated to be 10 to 15 years. 

Diamond production began in January 2003. (Diavik 2007) 

2.2 Regional Geology 

Diavik is located in the Archean Slave Craton in the northwestern section of the Canadian 

Shield (Figure 2.2) (King and Helmstaedt 1997). 
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D Cordillera 
D Phanerozoic Cover 
D Proterozoic Cover 

Proterozoic (>1 .5 Ga) 
Archean (>2.5 Ga) 

(Adapted from Armstrong and Kjar9Jand , 2003) 

Figure 2.2: Map showing the location of the Slave Craton which straddles the boarder between the 
Northwest Territories and Nunavut. 

The surface exposure of the provmce consists of approximately 65% late-Archean 

granitoids (2.7 to 2.55 Ga) and 35% late-Archean supracrustal rocks (2.72 to 2.66 Ga) of 

the Yellowknife Supergroup (Graham et al. 1999). The Yellowknife Supergroup 

dominates the central and eastern parts of this province. It is dominantly comprised of 

volcanic and turbiditic sedimentary rocks (King and Helmstaedt 1997). 

The Yellowknife Supergroup overlies the middle-Archean Central Slave Basement 

Complex (CSBC), which has only been identified in the west and central portions of the 

Slave Craton (Davis et al. 2001). The CSBC dips to the east and underlies the central 

part of the craton at depth (Davis et al. 2001). However, there has been no observation of 
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basement in the eastern portion of the craton (Bleeker et al. 2001). The absence of the 

CSBC is supported by isotopic data (Bleeker et al. 2001). 

2.2.1 Regional Structural Setting 

The Slave Province is bounded in the east by the Thelon Orogen (-2.2 Ga), to the west 

by the Wopmay Orogen (1.9-2.1 Ga), to the south by the Great Slave Lake Shear Zone, to 

the north by the overlapping Proterozoic and younger supracrustals rocks of the Bear 

Province and Artie Platform (Griffin et al. 1999), to the southeast by the McDonald 

Faults and to the northeast by the Bathurst Fault (Graham et al. 1999) 

2.2.2 Regional Tectonic History 

The tectonomagmatic evolution of the area remains controversial, with evidence for two 

tectonic models (Kjarsgaard 1996) including an intracratonic model, supported by 

Henderson (1988) and a subduction-type model, supported by King et. al (1992). 

The following is a summary of the intracratonic tectonic model (Henderson 1988): The 

Slave Province has undergone no major changes other than faulting over the past 2.5 Ga. 

Henderson has proposed that the tectonic history of the central Slave craton can be 

explained using a completely ensialic model in which subduction mechanisms do not 

occur. The supracrustal rocks show the results of events occurring within a silicious 

terrain on a hypothetical plate. It is evident that the volcanics and sediments were 

deposited over -10 -15 million years in fault bounded basins. If the sedimentation and 
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volcanism took place in similar environments over the same period time, then a tectonic 

mechanism involving regional extension of the crust is required. It would have been 

active over the entire province at approximately the same period of time. Such a tectonic 

mechanism may have been the interaction between hypothetical Archean plates, although 

Henderson admits that there are a variety of processes that can result in regional crustal 

extension. 

Alternatively, King et al. (1992) believes that there is evidence that subduction has taken 

place. The best model to explain the geology of the Contwoyto Lake area (located in the 

central Slave Craton) is one of progressive arc - continent collision. King et al. (1992) 

summarized this model as: 

1. Early construction of an arc or arcs 

2. Lateral accretion of arc components to an ancient western craton 

Ongoing deformation of accreted assemblages during emplacement of 

suprasubduction-zone magmas, 

3. Regional elevation of the geothem, 

4. Massive crustal melting during uplift and cooling. 

Both King et al. (1992) and Henderson (1988) admit that it is difficult to determine the 

complete history of this craton due to the lack of remaining geological evidence. This 

controversy is not an isolated case. Bleeker (2002) believes that the controversy over 

Archean tectonic models exists because most of the world's Archean crust is too small 

(only 7- 11 million km2 in total), too fragmented, and too complex. He also adds that the 

Slave carton in particular is characterized by complex depositional and volcanic histories 
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that have been overprinted by polyphase deformation and multiple intrusive granitoid 

events (Bleeker 2002). It is unlikely we will ever know what exactly occurred in this area 

during Archean time. 

2.3 Local Geology 

2.3.1 Local Host Rocks 

Kimberlite pipes are hosted in a complex of Archean granitoids and micaceous meta 

sediments of the Slave Structural Province. The host rocks for the Diavik kimberlites 

consist of the Yellowknife Supergroup and two types of granitoids (Graham et al. 1999) 

(Figure 2.3). One type of granitoid consists of a suite of 2610-2600 Ma syn- to late­

deformational monzodiorite, granodiorites and trondhjemites, whereas the other suite of 

granitoids consists of 2599-2580 Ma post-deformation mica granites (Graham et al. 

1999). A magnetic survey can easily distinguish the two types of granitoids: the post­

deformation mica granites are slightly more magnetic than the potassic (pink) granitoids 

(Graham et al. 1999). The Yellowknife Supergroup as described earlier consists of 

volcanic and turbiditic sedimentary rocks. 
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Figure 2.3: A simplified geological map of Eastern Island, Lac de Gras, NWT. 

i>nai~e to Quartz Diorite 
and Abundant R!gmatite 
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Fau~ 

Kim berlne Ape 

There are three dominant sets of diabase dykes of Proterozoic age cutting the Slave 

craton including the Mally (ca. 2.23 Ga) trending to the northeast, the Lac de Gras (ca. 

2.02 Ga) trending to the north-northeast and the Mackenzie dykes (ca. 1.27 Ga) trending 

to the northwest (Bryan and Bonner 2003). These dykes correlate with Proterozoic dyke 

swarms in the central Slave Province (Stubley 1998). Individual dykes are irregular in 

width, strike, and dip and are texturally indistinguishable. (Stubley 1998) 
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Glacial till deposits in the area are associated with the retreat of the Laurentide ice sheet 

between 14 ka and 8.4 ka. Eskers have developed in the area as a result (Bryan and 

Bonner 2003 and Graham et al. 1999). 

2.4 Kimberlites 

2.4.1 Diamond Stability 

Temperatures and pressures in the Earth's lower lithosphere are extremely high. The 

diamond-bearing region can only exist in the diamond stability field (Figure 2.4). 

Throughout the Earth's crust are fractures and zones of weakness along which magma 

from the mantle can be forced to flow. In a kimberlite eruption, magma transports 

diamonds from the diamond stability field in the lower lithosphere to the surface. 

Diamond content of kimberlite pipes depends highly on the amount of diamond bearing 

mantle material encountered by the kimberlite magma during ascent (Kjarsgaard 1996). 

The catalyst of kimberlite eruptions is unknown 
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the lithosphere with near surface ven1 velocities estimated at speeds or a rew hundred 

km/hr (Kjarsgaard 1996). 
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f'igu~ 2.5: Cartoon of the diaotOoc.l .slability window (Adapted rrom Co" et al. 2004). 

2.4.2 Kimb,lir~ Zones 

The vioJem erupliOrl causes debris to explode oul of the pipe leaving tt crater which 

overtime is backfilled with a mixture or rnarerial. This may incJude kimberlite blown 001 

during the eruJ>tion and host rock and organic materiaJ from llle surrounding area. This 

heterogeneous mixture causes unique zones and layering to fonn in the pipe. (lorenz and 

Kurszlaukis 2003) (Figure 2.6) 
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The three major zones in a typical kimberlite (figure 2.6) include the crater. diau-eme and 

root zones. These kjmberlite zones are composed of various types of kimberlite. The 

crater zone is interpreted as lhe region of backfill after the klmbcrlite eruption. ll 

includes both pryroclastic kimberlite (PK) and resedimented volcaniclastic kirnberlite 

(RVK). The naming system that is commonly used utilizes the tenn volcaniclastic 

kirnberlite (VK) when textures that distinguish RVK and PK are not clear (Graham et al. 

1999). The diatreme zone is composed mostly of tuffisitic kimberfjce. The root ronc is 

comprised of hypabyssal kimberlite (HK). It should be emphasizcxl that this model is a 
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generalization. At times kimberlite types from a kimberlite zone can be found in another 

zone. 

The majority of core logs on record at Diavik use the generalized term VK, instead of 

distinguishing between RVK and PK. The VK unit comprises somewhat massive beds, 

which are altered and have difficult to discern textures (Graham et al. 1999). Sedimentary 

sorting and bedding are common in these units, along with clay minerals, xenoliths of 

host rock, vegetation, and fossils of terrestrial organisms (Graham et al. 1999). The added 

material tends to make the rock of this facies structurally weak compared to kimberlite 

found in the root zone. The presence of the diatreme facies in Diavik kimberlite is 

currently being debated among Diavik geologists, and has not yet been recognized in drill 

samples from the area (Graham et al. 1999). Therefore, it is assumed for the purpose of 

this thesis that a diatreme kimberlite zone does not exist in Diavik kimberlites. HK is 

formed by the crystallization of volatile rich kimberlite magmas and occurs as a system 

of dykes and sills, which fed the eruption. 

2.4.3 Rock Type Classification 

Rock types were organized into the following three groups: host rock, crater zone and 

root zone. The host rock group includes metaturbidties, tonalite-quartz diorite and two­

mica granite. The kimberlite types VK, RVK, and PK have all been placed under the 

umbrella term of the crater zone, the HK were grouped in a separate group called the root 

zone. 
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Chapter 3: Physical Properties Laboratory Measurements 

Basic physical rock property data is important information required for interpreting 

geophysical data. It provides an opportunity for further development and refinement of 

geophysical models and methods (Katsube and Scromeda 1994). The main objective of 

this chapter is to review the principles behind the physical property being measured, 

along with the precautions used during data collection to avoid laboratory bias. As noted 

in Chapter 1, the physical rock property data types measured during this thesis include 

density, remanent magnetization, magnetic susceptibility, and resistivity. 

There is debate over the relationship between the properties obtained by laboratory 

measurements and in situ properties. Once out of the ground, samples used in laboratory 

experiments can become weathered, fragmented, dehydrated, or altered in the process of 

being obtained (Telford et al. 1990). As a result, the physical property value collected 

may not be representative of the in situ value of the sample. Due to the timing and budget 

of this project, data collection using borehole-logging equipment was not feasible. All 

data was collected from core stored at the Diavik mine site and was obtained from 

previous drill programs. The core used for this study was stored outside in wooden core 

boxes and was exposed to the extreme weather conditions of the area. As a result, some 

core had become weathered and deteriorated. Great efforts were made to ensure that 

physical property measurements were collected as accurately as was reasonably possible. 
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3.1 Density 

The physical property affecting gravity anomalies is the local variation in density 

(Telford et al. 1990). Density can be measured in situ by borehole logging tools, 

estimated from seismic velocity, or more commonly, measured in a laboratory using 

small samples. Density of a rock sample depends on the density of the constituent 

minerals in combination with the porosity and nature of the pore fluid within the rock 

(Telford et al. 1990). The rock samples that were used during this thesis had generally 

been stored for many years in core boxes; samples were often dehydrated and weathered. 

Since the saturation percentage of a sample is a major factor in bulk density 

measurements all samples were re-saturated in a vacuum chamber. It was assumed that 

the samples were originally saturated in the subsurface. This is a realistic assumption 

since most kimberlite pipes are commonly found beneath or close to bodies of water, and 

the water table in the tundra is commonly very close to the surface. There is the issue of 

permafrost that does extend to an unknown depth in the area. However, since most 

kimberlite pipes are found under bodies of water it is not thought that permafrost is an 

issue. 

The nature of the pore fluid also plays a role in the bulk density of a sample, therefore 

consideration was given to using water with compositional properties similar to those of 

water found in the area. Lac de Gras, under which several pipes have been discovered, 

has a water composition that has been described as close to distilled. However, it is 

unknown how the water properties and composition changes as it flows through the 
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groundwate1· systems under tl1e lake. ln addition. some samples came from localities near 

bodies of water of unknown water properties. After considering these factors. it was 

decided that water from the Diavik mine site water station would be distilled using a 

reverse osmosis water purific-.ation system and used to re·saturate the samples. This 

substitution of distilled water will shifc the bulk density of the samples by an unknown 

amount. however it is fell that this change will probably be negligible. 

Density is defined in equation (1): 

m 
p=­

v 

where: m= the mass of the sample (g) 
v= the volume of the sample (cm3) 

p =density (glcm') 

(I) 

The density measurements for this project were collected using an Alfa Mirage Electronic 

Densimeter MD-300S (Figure 3.1). 

f igure 3.1: Picture of the AJfa Mjr age Electrort.i<: Densimeter ftl0·300S. 
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The instrument measures density based on Archimedes' principle, which is the standard 

practice of measuring density in a laboratory environment. After saturation, the sample is 

weighed in air, and then weighed in water. By using equation (1), the density of the rock 

can be determined by the following equation (2): 

P = p [ wrockinair J 
rock water 

wrock in air -wrack in water 

where: Prock = density of the rock (g/cm3
) 

Pwater =density of the water (g/cm3
) 

wrack in mr = weight of the rock in air (g) 

wrack in water = weight of the rock in water (g) 

(2) 

It is importation to note that the density of water will change depending on the 

temperature: 

Water Temperature Density 

0 (liquid) 0.9999 
r------

4 1.0000 
~--~------ ~---~--

___ j 

20 0.9982 

40 0.9922 
r-----~--

60 0.9832 

80 0.9718 

Table 1: The variation of water density with temperature (Physical Geography.net 2004) 
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All density values are based on the density of water at 4°C (lg/cm3
). The electronic 

densimeter used has a compensating water temperature feature allowing for the 

measurement to be taken at any measured temperature, after which instrument will 

automatically convert the reading to one taken at 4 °C. 

The densimeter has a minimum density resolution of 0.001g/cm3 and can measure a 

sample of up to 300 grams. It also calculates volume, allowing samples of various shapes 

to be used. 

3.2 Magnetic Susceptibility 

Magnetic susceptibility of a rock sample is determined by the amounts and 

susceptibilities of various magnetic materials the sample, and is primarily controlled by 

the amount of ferromagnetic minerals (Parasnis 1996). Magnetic susceptibility can only 

be measured on outcrops or on rock samples. It is not homogenous throughout the entire 

rock, therefore point measurements do not always give the bulk susceptibility of the rock 

(Telford et al. 1990). 

Induced magnetization is defined by Telford et al (1990) as Eqn. 3: 

I= HK (3) 

where: H = geomagnetic field (Nm) 

K = the susceptibility of the sample (unitless) 

I= induced magnetization (Nm) 
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A KT-9 Kappameter by Exploranium was used to measure magnetic susceptibility. The 

Kappameter uses a 10kHz LC oscillator and an inductive coil (Exploranium 1997). The 

Kappameter manual outlines the steps taken by the unit during a measurement 

(Exploranium 1997): 

The frequency of the oscillator is measured in free space. 

The oscillator frequency is next measured when the coil is placed on a material 

of unknown susceptibility. 

A frequency difference is measured that is directly proportional to the material's 

susceptibility. 

The susceptibility is calculated from this frequency difference 

As stated earlier, the magnetic susceptibility of a material is not homogenous; therefore 

10 measurements were taken at random locations on each sample. These readings are 

then automatically averaged and results are displayed in 10-3 Sl units. 

3.3 Remanent Magnetization 

The geomagnetic field of the Earth has changed throughout the planet's history. The 

geomagnetic field can cause a small bias in the distribution of magnetic moments of 

ferromagnetic grains (Butler 1992). As a mineral is cooled through its Curie point, this 

bias in the magnetic moment is frozen into the mineral and can be retained over time. 

When measuring remanent magnetization we are in effect measuring the Earth's 

historical geomagnetic field. There are both primary and secondary types of remanent 

magnetization. 
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Primary effects occur during the formation/cooling of the rock and secondary effects 

occur after rock formation. In the case of kimberlites, the primary type of remanent 

magnetization is thermoremanent magnetization, which occurs during the cooling of 

kimberlite magmas from elevated temperatures. However, there are secondary effects that 

can alter the primary remanent magnetization (Butler 1992). These effects include 

exposure to lightning strikes, prolonged exposure to other geomagnetic fields, or 

chemical changes. These effects may change the primary remanent magnetization of the 

ferromagnetic mineral grains and affect their magnetic moments (Bulter 1992). 

Techniques for measuring remanent magnetization were first developed in the 1950's and 

continue to progress. The spinner magnetometer became the most widely used 

magnetometer in the late 1960's and is still in widespread use today. There are a variety 

of different types of spinner magnetometer, but all share common components (Butler 

1992). A spinning shaft rotates the rock sample, and a magnetic field sensor is used to 

detect the oscillating magnetic field that is produced by the rotating magnetic moment of 

the sample (Butler 1992). The sensor sends out a signal, which is then passed to a phase 

sensitive detector that is designed to amplify signals at the rotation frequency of the 

spinning shaft (Butler 1992). For this project a spinner magnetometer called the MolSpin 

BigSpin was used to collect remanent magnetization values (Figure 3.2). 
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A- Power switch F- Fluxl!Jlte and samolc holder 
B- Banery charger hook up G= Lever to move the sample 

holder 
C- Cable pon to connect to H= Fluxgate ring 
comoUler 
D- Switch to Local if not using I- Three screw thal lock the 
computer, Switch to R.S. 232 if flux. gate ring in place 
usina computer 
E AuenuatOr dial 

Figure 3.2: Picrure or the BIJ:Spin by Mol8pin with a location key. 

The BigSpin requires that all samples be securely filled inside a 5 ern by 5 em by 5 em 

glass cube. This cube is placed on a cradle located inside a flux. gate. The sample is then 

spun. The 13igSpin measures the magnetic moment of each of the three axes of a sample 

twice. In total. 6 spins arc nocdcd. The measurements have an accuracy of 0.035 mAim. 

Since samples are small and or various shapes. their volumes were caJculatcd using the 

densimeter described in Section 3.1. By using the mag•letic moment data and the 

volume. the remanent magnetization as defined by Butler (1992) was calculated (Eqn. 4): 
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l=M 
v 

where: M = total magnetic moment (Am2
) 

v = the volume of the sample (m3
) 

1= remanent magnetization (Aim) 

(4) 

Due to a lack of core orientation during the time of drilling, the direction of the remanent 

magnetization could not be found. This information would have been valuable to this 

project. However, the magnetic intensity of the remanent magnetization can be used 

along with the magnetic susceptibility of each sample to find the Koenigsberger ratio. 

3.3.1 Koenigsberger Ratio 

To explore the effect of remanent magnetization in the area, the Koenigsberger ratio was 

evaluated. The Koenigsberger ratio is the ratio of remanent magnetization to induced 

magnetization in a rock sample (Eqn.5): 

Q=_!_ 
HK 

where: J =remanent magnetization (Aim) 
H = Earths geomagnetic field (Aim) 
K =magnetic susceptibility (unitless) 
Q = Koenigsberger Ratio (unitless) 

(5) 
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A Koenigsberger ratio or Q-factor result greater than 1.0 suggests that remanent 

magnetization is at least just as important as the induced magnetization in a sample's 

resultant field in situ magnetization. 

3.4 Resistivity 

Resistivity defines a material's ability to resist the flow of an electric current and is 

measured in SI units of Ohm-m. Since conductivity is the inverse of resistivity, a 

conductor is defined as a material through which an electric current can easily flow 

(Telford et al. 1990). Resistivity is affected by the amount of water saturation, 

permeability and porosity of a rock. Ground water often contains a substantial ionic 

content and is much more conductive than an average rock sample so even minor 

amounts of saturation can greatly change a rock's resistivity. Temperature and pressure 

can also effect the measurement of resistivity. The relationship has not been accurately 

defined for most rocks but resistivity tends to decrease with burial depth as temperature 

and pressure increases (Telford et al. 1990). To reduce the temperature/saturation effects 

the collected samples were kept at a constant temperature and were saturated using a 

vacuum chamber. Once again, physical properties of the in situ water of each kimberlite 

pipe are unknown and distilled water from the Diavik mine site water system was used. 

Distilled water may not accurately reflect the in situ water composition but in the absence 

of any other data it is the fluid of choice. 
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The conductivity of the distilled water was measured using a Model 73 Engineered 

Systems & Designs Inc Conductivitytremperature meter. Water input to the vacuum 

chamber measured at 0 J..L-Siemens/meter, after saturating the samples the conductivity 

varied between 20 to 30 J..LS/m. It is believed that this change is caused by ions freed from 

the rocks during the saturation possess. Each rock type was saturated separately to ensure 

that increase in water conductivity did not contaminate different rock types. 

Resistivity of a cylinder of core is defined by Telford et al. (1990) and as Eqn. 5: 

R= VA 
/1 

where: R= resistivity (ohm-m) 
1 = length of core (m) 
V= voltage across the sample (v) 

(5) 

A= cross-sectional area of the cylindrical core (n radius2
) (m2

) 

I= current (amps) 

Resistivity was measured in the laboratory using the following circuit described by 

Telford et al. (1990) and seen in Figure 3.3. 
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E 
t-----1 

S:tmple 

I I \ ~ngth/ 
Copper 
Rates 

hlapted from e~old et al. 1990 

Figure 3.3: Circuit design that was used to measure the resistivity across a cylindrical core sample of 
a defined length. Note E represents the electricity source, I represents a function generator, V 
represents a voltmeter, and A represents an ammeter. 

A BK Precision sweep function generator provided a DC power source, which was 

connected in series to a Trek high-voltage power amplifier (Figure 3.4 ). An ammeter set 

in series was used to measure current. To send current through the sample, copper plates 

were used as electrodes and were placed on the cut edges of the sample. Other conductors 

such as clay were also tried as electrodes. This method was ineffective as clay was very 

messy and not time efficient to apply or remove. Copper plates, in the end, were the most 

effective electrodes. All rock samples were cut using a rock saw, however, the faces of 
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ohc rock sample"~ 1101 IOO'J \mooth causing small.,, B•P' hel~>een ohc rock and lhe 

copper electrodes which mcrcal\cd the contact resi~tancc. To reduce thi" re'\i.stancc. thin 

ltlponges soaked in copper bUifalc solution were placed between 1he copper plates and 

rock sample. The copper phUC\. ~pon&es and rock sample were thon ~ondwiched together 

u ... ing a large plastic clamp. The "ohage across the sample ~:1\ mca.,ured u~ing a Circuit· 

Tcso Elecuonics >'Ohmel<r ""han ompedonce of 10~1 Ohm>. ouachcd on paralleloo lhe 

copper plates. An image of lh1\ cucuil nn be scc:o in Figure 3.S 

•1curr l..a: BK Predsioll l'~~~tq) n.ll(tlon ~IM aad tht Tftlt b'&IHolt:al'f pow« a.mpfinH' II5Cd 

lo n't'alr t.ht power *K!I'U ltiiM drru:IL 
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fla•l"t' J...5: ResistiTit) IDtt'Jun.mnt ~•P ""'•in& tbt col"t'.samplir qncf•kMd bd•tta tbl' damp 
~l'l#b soaktct in C"'ppn" su:lf•t~ liOiudon •ncl ropptr pbtts. C.l'f'NI Is wnl lhrouc,h tJw sample '"a. 
aiHplor dips thai are •tta.mtd to tht ropptr plates. Tbt Hlltl!tt b nxu:u~ by connetel:nl tM 
,oflmt'lft' In pa.ral~ at:rost lhe copptr pl•lts. 
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Chapter 4: Physical Properties Data Analysis 

In total, 400 samples were collected for analysis from 16 different kimberlite pipes. The 

locations of these pipes can be seen in Figure 4.1. These samples represent a subset of the 

host rock and kimberlite population of the Diavik area. Core availability and quality, 

along with time and money constraints, played large roles in which pipes and specific 

samples were selected. The objective of this chapter is to define physical property values 

that will be used to represent the Diavik area, and will be used to define and constrain 

forward models and inversions of magnetics and gravity data in Chapter 5. 

4.1 Previous Kimberlite Physical Property Studies 

Mwenifumbo et al. (1996) used borehole techniques to measure the geophysical 

characteristics of the Fort a la Come Kimberlite in Saskatchewan and four kimberlites in 

Kirkland Lake area in Ontario. They concluded that even though the physical properties 

are variable within a pipe and also between pipes, geophysical data could be used to 

classify differences in zones and source material of kimberlites. They noted that the 

density and magnetic susceptibility values in kimberlites are higher then the surrounding 

host sediments (Mwenifumbo et al. 1996). 

Katsube and Kjarsgaard's study in 1996 included 41 kimberlite samples from Northwest 

Territories, Saskatchewan, and Ontario. They measured density, porosity, resistivity, and 

magnetic susceptibility. They classified the samples into crater facies and hypabyssal 

facies, which throughout this thesis are referred to as crater and root zone. They 

33 



concluded that the hypabyssal facies had high bulk density and electrical resistivity, 

while the crater facies had low density and resistivity. They also found that magnetic 

susceptibility showed no relation to kimberlite facies. However, they did find a 

relationship between porosity and magnetic susceptibility for each facies. 

4.2 Repeatability 

Before conducting any statistical analysis on the collected data, it is important to ensure 

that measurements are repeatable. In a hypothetically perfect experiment, subsequent 

readings of the same physical property using the same equipment would give exactly the 

same results. In practice, small errors often creep into an experiment and change the 

values of subsequent repeated measurements. Errors in observations can be divided into 

the two groups: accidental and systematic errors (Topping 1969). Accidental errors are 

often due to small, random mistakes made by the observer, and these effects can be 

reduced by repeating measurements (Topping 1969). To help alleviate accidental errors 

great care and time was allowed to ensure each measurement was taken using the same 

systematic approach. The experimental controls used included constant air and water 

temperatures, vacuum and soaking times, and copper sulfate concentrations. Systematic 

errors can arise from the observer or the instrument. These errors have to do with 

observational procedure, and cannot be alleviated by repeating measurements (Topping, 

1969). It is often very difficult to distinguish between these two types of error since any 

data error may be a combination of both types. 
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In order to test repeatability, 10 samples of each of the three rock types were measured 

twice. To compare repeated readings, the percent difference between two measurements 

was found by: 

1. Calculating the absolute difference between each pair of readings 

2. Dividing the absolute difference by the higher reading in each pair 

3. Multiplying the result by 100 to express it as a percentage 
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4.2. 1 Pert:f!nl dijfereut:e$ for Deusi1y 

Property ~= Measure~~nts Diff~~~nee 

2.634 2 .635 ).O:EL:: 
2.661 2 .661 0 

~.684 1.682 

Host ~ ~ ~ Rock ,.702 
24 ,.729 

~ ,.738 
2.661 2.66 

~~ I 
0 

Density ~ ~.844 

Cmtcr 1.819 1.821 

~ ; ~ Zone 
1.584 0.1546 
~.416 1.417 
1.552 1.568 
2.572 2.58 0.3100 
2.862 1.872 
2.797 1.806 
3 .05 1.051 

ROOI .714 2.715 
2.875 2.877 ,;,:: Zone 1.951 2.95 
1.691 1.692 
2.879 1.878 

~ 1.846 1.849 
2 .859 2.853 

Table 2: The repeattd denshy measurement ''alues and the pe.r~nt difference for each pair. The 
mean pel"t'e.nt dllfe.ren('(' In den.,.lty ror all rock t)'pes ts ut.remcly low at approximately 0.15~. 
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4.2.2 Ptrctnt Difftrtncts for Magntllc Swctpllbilll} 

Property 

Ma.,gnetic 

Suscepllb1lity 

Type 

Ho-.1 

Rod 

Root 

Zone 

Ta .. J: TM rtpnttd nwasu.rt:mr:DI Q)uc:os aDd pt:rttDI diiTtftn« rbulb for ncoh pair ol maptk 
JUJftpcJbiHI) mttiU.rtmmb kStm._ Tk puttDI ditfft"t'na '" .-lndk M~S«ptibifity for aD rod; 
I) pet Is~ tlul.a 10fl6o for most tadirtp. T'he ,._. rork and""'"' MM han a larter pe:rttn-. 
d11fU't'nu 1han tht root zone. As. dlsc••d ln St<tloo J.l ot (."Jaaptn- ~ ~ibilit) is: 
inbol'l'IGttMOU"t thr"'O.lghoullbor: tnlift roeS. This inbomot:t'ndt) ('OUtd bt mort dominaol in host rock 
and cnt.tr lOM Ampks tban lM rool Zoot' samp~ dut to thttr dYratttristkaU) inbo~ 
mmpot.hlonL Based on tbr nsults ol the' J"t1)Httd !OI.mpl6. all daca measunmtnts art t"Onsidered 
~tJHI•blof \II llhln lOll>. 

37 



4.2.3 P~runt Difl~"nc~-' for R~man~nt Magn~ti~liCHr 

Property Type 

Ho~l 

Rock 

Zone 

Root 

Zone 

Tablt 4: Tht rtptattd mnsu:.rt'mtot '...turs and tM ptt'ftnt dilftt'f'ftft f'Hiltu: ol nO pak of 
~ma.Mftl mt&MtlUdM mtaSUft.mtnt ttsttd. ~ ptf'ftft.l dltftrfftft" hi rnrta"'"'t ~fta~ndi2aliou ror 
all redt I) 1M3 h n tha.n. 2S f.l . 
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4.2.4 Percem Differences for Resistivity 

Property Type 

Rock 

Cr.tlcr 

Zone 

Root 

Zone 

Table S: The f'el>e.·ued meaScn·tnltnt H'llues a.od the J>eretnt dUTert:nce ~suJts or ca<"-h pair of 
reslstiYity measurements. Sln<:e the ptrtent differen« In rcsislh•ily samples n~easured is 16S than 
10% for mo .. o;t readlnscs, all resfstlvlly measurements will be <:Ort.Stdered 10 be rept111tabte " 'ilhi.o I (I% 
ofca<"-h othu. 
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4.2.5 Repeatability Discussion: 

From the percent difference results (Table 6), the measurements taken during this project 

are believed to be repeatable within reasonable error. The remanent magnetization results 

are the least repeatable, the cause of which is believed to be slight movements by the 

sample while spinning. Efforts were made to avoid this, however, it was difficult to 

ensure all samples were 100% secure. The low variance in the repeatability of density, 

(the most repeatable of all measurements) and the magnetic susceptibility and resistivity 

measurements, are believed to be caused by a combination of the accuracy of the 

instrument used and the systematic approach followed during data collection. 

Measurement Percent 
Difference 

Density 0.15% 

Remanent Magnetization Less than 25% 
Magnetic Susceptibility Less than 1 0% 

Resistivity Less than 1 0% 

Table 6: Representative repeatability results for each measurement 

4.3 Physical Property Values: Initial Conclusions 

The raw data collected can be seen in table form in Appendix A. All collected data are 

shown as histograms with normal curves in Figures 4.2 to 4.5 and includes data collected 

from all16 pipes. 

By inspecting the trends in the histograms for density (Figure 4.2), remanent 

magnetization (Figure 4.3) and magnetic susceptibility (Figure 4.4), it can be seen that 
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the range of data is larger for the kimberlite zones than that of the host rock zone. It is 

assumed that this increased range is caused by heterogeneous mineral distributions within 

the kimberlite zones, and the heterogeneous inclusions of foreign material introduced to 

the kimberlite crater zone during the eruption process and subsequent resedimentation. 

By inspecting the ranges on the resistivity histograms (Figure 4.5) an opposite trend can 

be seen; the host rock zone has a larger range than that of the kimberlite zones. This 

could be an effect of the three local rock types which are all included in the host rock 

classification system. Each rock type likely has a different resistivity range. The degree 

of weathering of the host rocks could also cause this range difference. An increase in 

weathering throughout the host rocks samples would increase the amount of fractures 

causing an increase in porosity and saturation. As discussed in Section 3.4, porosity, 

permeability, and saturation can dramatically affect resistivity. This increased weathering 

is unlikely to be homogenous throughout the area, and may explain the variable in the 

resistivity values from sample to sample. 

The results in Table 7 display the mean values of each physical property for each rock 

type for all 16 kimberlite pipes. Whether rock types zones can be distinguished from one 

another during a geophysical survey is predominantly due to their physical property 

contrasts. In general, the larger the contrast between two rock types the easier their 

signatures will be to differentiate in survey data. The densities of the host rock and root 

zone are very similar, while the crater zone density is comparatively lower. It is assumed 
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from this density contrast and from the usual location of the crater zone (close to the 

surface) that there is potential to distinguish between host rock and crater zone during a 

gravity survey. However, it is not felt that the contrast between the root zone and host 

rock shows the same potential. Both remanent magnetization and magnetic susceptibility 

show an order of magnitude difference between each rock type and therefore show great 

potential for differentiating the different rock groups. In addition, resistivity 

measurements also show a variation between each rock type with a large difference 

between host and kimberlite values. 

187 0.0565 2.67 98 0.1271 2.51 
Remanent 

Magnetization 175 0.382 0.0497 96 0.801 0.538 

Magnetic 
Susceptibility 190 3.043e-4 1.497e-4 136 0.005 0.0027 

Resistivity 
(ohm-meters) 86 9021.72 8994.32 32 1671.53 

Table 7: Statistical summary of the physical property values for all kimberlite pipes, where N 
represents sample size and Std. Dev represents standard deviation. 

4.4 Comparing Pipe A154N to All Other Pipes 

Pipe Al54N, one of the 16 pipes used during data collection, is currently being mined. 

Due to its economic nature, it has been the subject of many drill programs it order to 

construct mining plans. As a result of this drilling the geometry of this pipes is well 

defined and Diavik has constructed a geology model of this pipe. This model, along with 
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collected physical property data can be used to perform inversions and forward models. 

Pipe A154N will be the focus of an investigation into the relationship between physical 

properties and geophysical signatures, in Chapter 5. Before using the physical properties 

of pipe A154N, statistical analysis was carried out on this and the other 15-kimberlite 

pipe to show that the physical property values of pipe A154N are considered 

representative of all pipes in the Diavik area. This was performed by constructing 

histograms for each rock type and physical property for pipe A154N and all other pipes 

(as seen in Figures 4.6 to 4.9) and by comparing the mean values for each histogram. 

4.4.1 Comparison: Discussion and Conclusions 

The physical property results for each of the kimberlite pipes excluding A154N will not 

be discussed independently during this thesis due to small sample sizes. Instead they will 

be considered as representative samples of all the Diavik kimberlites and will be analyzed 

together as one data group. Attention should be drawn to the fact that approximately 50% 

of all samples collected came from pipe A154N due to the availability of core from this 

pipe. Sample sizes of less than 10 will not be considered statically relevant therefore will 

not be used for comparison. It should be noted that the values for the combination of all 

other pipes will have larger data ranges in the data than the values in the pipe A154N 

category since this data was collected from multiple pipes located throughout the Diavik 

area (Figure 4.1). 
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By comparing the density, remanent magnetization, and magnetic susceptibility results 

seen in Figures 4.6, 4.7 and 4.8 respectively, it can be concluded that physical property 

values for pipe A154N are within similar orders of magnitude to those from all other 

pipes. There are three exceptions to this statement, including the density of the root zone, 

and the remanent magnetization and magnetic susceptibility of the host rock. The density 

differences seen in the root zone were unexpected. The average value for pipe A154N is 

2.80 g/cm3 but the average of the other pipes is 2.66 g/cm3
. This results in a much lower 

density contrast between host rock and root zone kimberlite for all other pipes. 

The differences seen in both magnetic properties for host rock are considered to be 

caused by three different rock types being lumped together into the host rock group. Two 

of the three rock types included in this group (Section 2.3.1) have distinct magnetic 

signatures. The distribution of these three rock types throughout the survey area may 

lead to the observed widely varying magnetic properties for host rock. 

Due to the small sample sizes of the kimberlite zones, no conclusions can be drawn from 

the comparison of kimberlite resistivity values. This is a major problem for root zone 

resistivity measures as it was difficult to find core samples which were the appropriate 

shape in order to measure. The host rock resistivity samples show an order of magnitude 

difference between pipe A154N and the other 15 pipes. This difference is once again 

suspected to be caused by the three independent rock types included in the host rock 
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group, and (Subsection 4.3.1). Inhomogeneous weathering may also be contributing to 

this difference. 

Based on the previous companson, and with several noted exceptions, the physical 

property values of pipe A154N are comparable to the values of the 15 other kimberlite 

pipes sampled in the Diavik area. The A154N values have distinct advantages over the 

combined data from all other sampled pipes: they are taken from a large number of 

samples, posses a smaller range of values, and appear to be closer to normally distributed. 

Consequently, the physical property values for pipe A154N will be used throughout the 

following investigation to represent mean values for host rock, crater zone, and root zone 

physical properties. 

4.5 Testing Correlations 

The correlation of both density and depth with various physical properties was tested for 

all rock types. Data from all samples was divided into two categories: those samples from 

pipe A154N and those samples from all other pipes. This was done to help compare 

dependence ratios in pipe A154N with the other kimberlite pipes in the area. Correlations 

are used to measure how strongly related two parameters are to one another (Devore 

2004 ). There are several different methods available to calculate correlations, with each 

method generating slightly different results. Two standard methods are the Pearson and 

Spearman. The Pearson is used only if data is normally distributed as it relies on the 

mean of the dataset. When the mean is used, anomalous or extreme values can bias the 
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results. The Spearman method, in contrast, works on normally and non-normally 

distributed datasets because it does not take the mean into account (Davis 2002). This 

method separates both sets of data by numerically ranking and then correlates these ranks 

(Davis 2002). Since not all of the physical property measurements taken for pipe A154N 

and the other 15 pipes are considered normally distributed, the Spearmen method was 

used. 

The Spearman method is based upon Spearman's ranking correlation coefficient test, 

which indicates the monotonic correlation/dependence of ranked bivariate datasets (Hays 

and Winkler 1970) It is given in Eqn 6 (Davis 2002): 

n 2 

6~] R(Zz)- R(y,)] 
p = 1- ---=-'-==!;__ _____ _ 

n(n2 -1) 

where : R(xi) and R(yi) = the ranking of each dataset 

n= number of data variables in each dataset 

p = ranking coefficient 

(6) 

In general, positive values indicate that the bivariate relationship is monotonically-

increasing and negative values indicate the relation is monotonically-decreasing (Hay and 

Winkler 1970). The Spearman correlation coefficient, p, ranges from 1 to -1, with 1 or -1 

indicating a perfect positive or negative correlation and zero indicating no correlation. 

The strength of the relationship can be broken down into three groups: weak correlation 

(p< 0.4), medium correlation (0.4 < p < 0.7) and strong correlation (p > 0.7). The same 
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categories exist for the negative relationships except that the ranges are negative. Please 

note that these groupings are intended only as "rule of thumb" ranges for correlation 

strength. 

A confidence interval, or level of confidence, can also be associated with the correlation 

coefficient. A confidence interval reports an interval within which the calculated value is 

plausible (Davis 2002). In general, the higher the confidence interval value, the more like 

the result will be repeated. The statistical program Statistics Package for the Social 

Sciences graduate package 15.0 (SPSS 2006) was used to conduct Spearman correlation 

test on all datasets. This program marks values with a confidence level of 95% with an 

asterix (*)and 99% with double asterices (**). The same symbols will be used here. 

4.5.1 Correlation Testing: Density vs. Physical Properties 

The Spearman correlation test was used to test the monotonic function dependence of 

each physical property against density for data from Pipe A154N, along with the other 15 

sampled kimberlite pipes. The data relating to each test was also plotted to gain a visual 

understanding into each relationship (Figures 4.10, 4.11 and 4.12). 

The relationship between density and remanent magnetization (Figure 4.1 0) for all rock 

types is one of weak dependence. Both the host rock cases have positive dependencies 

and have a confidence level of 99% and 95% respectively. The crater zone results 

indicate a positive dependence with a 95% confidence for pipe A154N, but a negative 
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dependence with no assigned confidence level for the other pipes. The root zone results 

show a negative weak dependence without an assigned confidence level for both 

categories. 

The correlation between density and magnetic susceptibility (Figure 4.11 ), shows the host 

rock as having a medium positive dependence with a confidence level of 99% for both 

pipe Al54N and the other 15 pipes categories. Both kimberlite zones for pipe Al54N 

have a medium positive correlation with density; the associated confidence level for the 

crater zone is 99%. The results for the other 15 pipes are somewhat different with both 

kimberlite zones showing a weak correlation with density, though the crater zone 

dependence is positive and the root zone dependence is negative. 

The last property to be tested against density was resistivity (Figure 4.12). Both pipe 

Al54N and the other 15 pipe categories show the host rock as having a weak positive 

correlation. The crater zone results for pipe A154N predict a positive weak correlation, 

however, for the other 15 pipes category, the sample size for the crater zone was too 

small to draw conclusions about correlation. As seen in Subsection 4.4.1, the sample 

sizes for the root zone kimberlite are also too low to be considered significant for both 

categories. 
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In general, .staliSJic:al ~ult~ wuh a confidence le\iel or 95 to 99'l are considered 

~tmi~tically significant. It i~ lb\Utncd that tc.s.t rcS-ults with theM: levels accurately 

represenr 1he true re la1ion.ship~ between density and 1he other physical propenies (Table 

8). 

Resistivity 

T•bh- 8: Summary ot the Spr•rnwn rank te..U resuJts for lht rtlalloA.\hlp btllllttft density and •II 
ollwr pbyskal propert~ Mttrb.M lnd.intt tbe ti50C'ia.tfli mnf\ckn« It'd. •kf'to OM .sterisk 
equh 95§ tonlklftlft ltul •nd t•!Mbt~ tqual 99~ C'OIIfidtntt k'tl. n.t Cl'ft'll hicbJ-ichttd 
l"batts indicatt t.bt ~tioo 4kd6td ror net~ (Mlt. 

By reviewing Table 8. there are \C\eral cases where the 1wo p1pe caregories !!>how 

different results. When thi~ occurs-, the case with a higher 3..\'IOCittled confidence interval 

b. chcxert as the correlmiun rc~ult . F'or example. in the ca~ or 1hc cnttcr zone remaneot 

m~gnetil.ation. the pipe A 1 S4N caregory display~ a posithc weak: result with a 

confidence le'"'' or 951t "hen"'-' the ether 15 pipes cat<JOry de\cnt>e' the n:lationship as 

a negarhe weak one: ¥ollh no confidence Je\el. Sinoc the p1pc AIS4N has a higher 

confidence le,·eJ this result v.lll be cho:;.en as the rcprescntatJ\·e correlation. ln cases were 

neither categoric~ has an O\l'JOCirucd confidence intel'\'al, the dllta scaner plot.~ were 

reviewed. The c;ttcgory with rhc smallest dispersion is choM:n to represent the correlation 
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relationship. An example of this is seen with the relationship between density and 

magnetic susceptibility for the root zone. By reviewing Figure 4.11, it is clear that the 

scatter of the other 15 pipes values are much more dispersed than the pipe A154N values, 

therefore the correlation result for pipe A154N was chosen. 

The Spearman correlation results predict a weak positive correlation for both remanent 

magnetization and resistivity against density for both the host rock and crater zone. There 

is a negative weak dependence predicted for the root zone remanent magnetization. The 

relationship of all rocks for magnetic susceptibility vs. density is predicted as being a 

medium positive dependence. This correlation is related to the magnetic minerals that are 

causing the magnetic susceptibility response. Mafic rocks trend to be denser and more 

magnetic which maybe the reason for this correlation. 

4.5.3 Correlation Testing: Depth vs. Physical Properties 

All samples were collected from various depths, making it possible to ascertain whether 

any of the physical properties correlate with depth. If a physical property shows a strong 

dependence with depth it will play an important role in assigning values to any 

geophysical model. All depth measurements were taken relative to the depth below the 

surface in meters. It should be noted that according to core logs there is crater zone rock 

type found deeper than the root zone in pipe A154N. It was decided to keep these 

samples as crater zone. Recall that the kimberlite model seen in Section 2.4.2 is a 

50 



generalized model and the in sections of these zones are not as clear cut as shown in 

Figure 2.6. 

Test results for the ranking of density and depth show a slight negative correlation for 

host rock, crater zone and root zone for both categories. One notable exception is the root 

zone in the other pipes category, which shows a medium negative correlation (Figure 

4.13). The host rock correlation between depth and remanent magnetization (Figure 4.14) 

shows a medium negative correlation with a confidence level of 99% for pipe Al54N, 

however, the 15 other pipes indicate a weak negative correlation with no confidence 

level. The crater zone results for both categories predict a negative medium correlation. 

On the other hand, the root zone results indicate that the density of pipe A154N has a 

weak negative correlation with depth while the other 15 pipes predict a medium positive 

depth dependence with a confidence level of 95%. 

The results of the test between depth and magnetic susceptibility (Figure 4.15) reveals the 

host rock of pipe A154N as having a negative medium dependence with a confidence 

level of 99% and a host rock in the 15 other pipes category as having a weak negative 

dependence. The crater zone also displays a medium negative correlation for pipe A154N 

with a confidence level of 99%. The other 15 pipes category displays a positive weak 

correlation. The root zone results show a medium positive correlation with depth for all 

other pipes with a confidence level of 99%. The relationship between depth and 

resistivity shows a medium positive dependence with a confidence level of 99% for both 

host rock and crater zone for pipe A154N (Figure 4.16). The root zone results for both 
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c--ategories and the crater zone for the other 15 pipes both have a non·significant number 

of samples and therefore arc not (..'Onsidercd to be relevant, 

4.5.4 Depllr Correlations Conclusimrs: 

llle same requirements for statistic-al relevance used in Subsection 4.5.2 apply here. The 

relationships between depth and each physical propeny are listc<l in Table 9. 

Table 9: Rtlttdbi by correlation strt.ngth for each physical property and rode type. Asterisks lndkate 
the associated confidence level. whtrt one asterisk indiattf'S a 95% confidcntt level and two--asterict:oi 
i.ndkatt"S a 99% t:onfidcntt ltnl. l'bt g_n.~n highlightt:d results indkatt: the corrdation d«idcd upon 
ror tilth eM\'. 

Once again. when both c-ategories for lhe same rock lype show differe.nl re-sults the case 

with a larger assigned confidence level is considered to represent the more accurate 

result. From the resultc: of the Spearman rank tests between dept1l and physic-al properties 

it is expected that there is no correlation between depth and density for both the host 

rock aJld crnter zone. The rom zone displays differing te.llultS for each cmegory; since 

neither result has an associated confidence level o visuaJ inspcc:1ion of their scaucr ploc.s 

(Figure 4.1 3) was performed. The root zone values for pipe A 154N are more clustered 
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than the other 15 pipes and therefore its result of a weak negative correlation is taken as 

correct. Remanent magnetization vs. depth is expected to have a medium negative 

relationship for host rock, a weak negative correlation for the crater zone and a medium 

positive correlation for the root zone due to their respective confidence intervals. 

Magnetic susceptibility is predicted to have a medium positive dependence for both host 

rock and crater zone and a medium negative dependence for the root zone. Due to small 

sample sizes, the correlation for root zone vs. resistivity is unknown. However, resistivity 

correlation vs. depth for host rock and crater zone is a positive medium one. 

4.5.5 Final Note on Correlation Testing 

By comparing the results of both correlation tests it can be concluded that the majority of 

correlation results are drawn from pipe A154N. As seen in Section 4.4 combined data 

from the other 15 pipes in the area has a larger range in values. The larger range causes a 

larger dispersion in the data, making it harder for the Spearman rank test to assign 

confidence levels. There is one exception where a correlation value was taken from the of 

the other 15 pipes category over the pipe A154N category. This was the correlation 

between depth and remanent magnetization in the root zone. Since the bulk of the 

conclusions were based on A154N it is felt that this strengthens the argument that this 

pipe is representative of all sampled pipes in the Diavik area. 

It should be noted that the medium strength predictions suggest that there is dependence 

between those aforementioned physical properties. This will be kept in mind when 
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making models for pipe A154N. It should be stressed, however, that there is no evidence 

to support a "strong" correlation between any of the measured physical properties with 

depth or density. 

4.6 Comparison of Previous Studies to this Study 

The results from pipe A154N from this study can be generalized in a few sentences; the 

kimberlite zones have a higher remanent magnetization, higher magnetic susceptibility 

and higher resistivity values than host rock, while the density for host rock is lower than 

root zone kimberlite and higher than crater zone kimberlite. By comparing the kimberlite 

zones, the zones can be classified: the crater zone has a lower density, lower remanent 

magnetization, and lower magnetic susceptibility. The resistivity could not be compared 

between zones due to low sample sizes in the root zone. 

The results of this study, compared to the previous studies conducted by Mwenifumbo et 

al. (1996) and Katsube and Kjarsgaard (1996), show similarities between the analysis for 

all three rock groups. Since the exact values for the previous studies were not listed the 

values measured cannot be compared, however the relative values of each study can be. 

This comparison is performed in the following tables: 
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Kimberlite vs. Host Rock 

Kennedy Mwenifumbo et 
al. 

Density Lower Crater Higher 
Higher Root 

Magnetic Higher Higher 
Susceptibility 

Table 10: The relative relationships between physical properties of kimberlite and host rock in 
Mwenifumbo et al. (1996) were found to be similar to those presented during this study. 

Crater Zone vs. Root Zone 

Kennedy Katsube and 
Kjars2aard 

Density Lower Lower 
Magnetic Lower No relation 

Susceptibility 
Resistivity N/A Lower 

Table 11: The relative relationship between the physical properties of the two kimberlite zones 
collected in this study seems to agree with Katsube and Kjarsgaard (1996) results. They however 
found that there was no relation between the magnetic susceptibility of the crater and root zone, 
which was not case during this study. The resistivity relationship could not be defined due to the 
small sample size. 

4.6.1 Previous Results: Discussion and Conclusions 

By comparing the pervious results from studies performed by Mwenifumbo et al. (1996) 

and Katsube and Kjarsgaard (1996) to this study the results do vary somewhat. The 

density differences seen when comparing kimberlites with host rocks could be related to 

the different host rock present at each location. Also the lack of distinction between the 

magnetic susceptibility values of the crater and root zone kimberlites in Katsube and 
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Kjarsgaard's study may simply be due to a difference due to differences in kimberlite 

magma with each location. 

It is believed that the physical property values given in this thesis are accurate values for 

the Diavik area. Each kimberlite field is different and should be considered independent 

of other kimberlite fields. 
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Figure 4.1: Map with locations of the 16-kimberlite pipes used for data collection. Red diamonds indicate the locations of kimberlite pipes. 

57 



60 

40 

20 

0 

60 

~ c 
~40 

i 
.t20 

0 

60 

40 

20 

0 
2.00 2.20 2.40 2.60 2.80 3.00 

Density g/cm 3 

1-bst 
R>ck 

R>ot 
Zone 

Crater 
Zone 

Figure 4.2: Density measurements for each rock type with normal distribution curves. The host rock 
and crater zone values are normally distributed whereas the root zone data is not. 
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Figure 4.3: Remanent magnetization measurements for each rock type with normal distribution 
curves. None of the histograms show normally distributed data. 
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Figure 4.4: Magnetic Susceptibility measurements for each rock type with normal distribution 
curves. It appears that none of the magnetic susceptibility data is normally distributed. 

60 



00 00 

F€sistivity (ohm -m) 

Host 
R>ck 

R>ot 
Zone 

Crater 
Zone 

Figure 4.5: Resistivity measurements for each rock type displayed on histograms with normal 
distribution curves. The host rock, root zone and crater zone data seems to be somewhat normally 
distributed 
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that art lndud«l in the host rndl: 11.n•up. 
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Susceptibility 

Tabl~ 12: Values used to rt-prtsc-nlthe magnrtic .!>"Usctptibility and densily models ror pipe A 154!'i. 

As previously Slated. pipe A 154N was discovered under Lac de Gras. The thickness or 

the lake sediment over the pipe is unspecified: Diavik s taff es1im:ued it to be 

approximately 5m. Fun her assumptions are !hat the magnetic susceptibility of this 

sediment is negligible or at most the same as 1hat of the host rock. and that the density of 

the sediment is equivaJent to that found in the density table in Telford ct al. (1990) for 

wet overburden: J.97glcm3. ll could be argued that it is unlikely that the sediment layer 

would be of uniform thickness throughout the area. due to the slight bowl shape in the 

topography of an average kimberlite pipe. However. the sediment thickness in t1le area is 

unk.nown and il was fell that if a thicker layer of sediment was arbitrarily placed on top of 

the pipe it mighl significantly affect the size and shape of the resultam magnetic and 

gravity anomalies. To 1hat end. aU models used a 5m thick homogenous sediment layer 

throughout the survey area. 

5.2 Forward Modeling 

Physical propeny models of pipe A 154N were used 10 generate gravily and magnetic 

fon ... ard models. These forward models represent the eXJ:>eC-ted magnetic and gnwilalional 

signatures of the A 154N pipe and were used 10 investigate the conlributions of each 
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kimberlite zone to the geophysical anomaly over the pipe. The forward models were 

generated using GRA V3D version 3.1 (UBC-GIF 2002) and MAG3D version 2.0 (UBC­

GIF 2002) software packages. 

GRA V3D and MAG3D software packages use a mesh that discretized the subsurface and 

share similar forward modeling techniques. They are both based on formulae for 

gravitational and magnetic responses of a rectangular prism (Li and Oldenburg 1996). 

They operate using a principle of superposition, whereby every cell throughout the mesh 

is cycled through, adding their cumulative effects together to compute the forward model 

response at a signal observation point (Li and Oldenburg 1996). This is performed at 

every observation point on a grid. 

MAG3D software package has noteworthy limitations. When using MAG3D there is an 

assumption made that the magnetic data is only caused by induced magnetization and 

there is no effect from remanent magnetization or demagnetization (Li and Oldenburg 

1996). Since MAG3D is only designed to handle susceptibility and not remanent 

magnetization, it cannot handle large negative reduced to pole data making positivity an 

issue. 

The subsurface mesh used for gravity and magnetic forward models is defined using a 

left handed coordinate system. During this thesis the mesh used was as 33 cells in the x 

direction, 29 cells in the y direction and 32 cells in the z direction. The cells in the x and 
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y directions are 25m wide, whereas the first layer of cells in the z direction are 5 m wide 

with the remaining 31 cells being 25m wide. The southwest comer of the mesh starts at 

the UTM coordinate 536328N, 7152421N (NAD 27). Both physical property models 

were made to fit inside this mesh. 

As seen in Figures 5.3, the model of pipe Al54N is confined to a box. This box is made 

up of a 3D mesh with each cell in the mesh equaling a finite relative density value, 

however the area outside the box is equal to zero. When the forward modeling process 

tries to evaluate the values at the edges of the box large gravitational anomalies are 

generated due to the sharp density discontinuity. To avoid this problem (as seen in Figure 

5.3) the host rock value was set to zero and all kimberlite densities are given as densities 

relative to the average host rock value. These density contrast values are presented in 

Table 14 in Section 5.4. 

5.3 Forward Modeling- Magnetic Field 

The size of a kimberlite anomaly depends, in many cases, upon the relative strength and 

direction of remanent magnetization. This phenomenon is believed to be caused by the 

reversal of magnetic polarity in the region during the time of the kimberlite eruptions, 

that is if the total field magnetic response of the kimberlite pipe is dominated by 

remanent magnetization (Lockhart et al. 2004). As stated in the Section 5.2, MAG3D 

software does not account for remanent magnetization. However, remanent 

magnetization intensity data was collected for many of the physical property samples, 
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and a brief investigation into the importance of remanent magnetization in relation to 

magnetic modeling was conducted. 

5.3.1 Investigation into Remanent Magnetization 

The influence of reversed polarity remanent magnetization on a kimberlite pipe in the 

Northwest Territories was summarized by Keating and Sailhac (2004). If a kimberlite 

possesses remanent magnetization of sufficient strength, oriented in opposition to the 

present day field, the kimberlite anomaly will stand out as a negative anomaly against a 

background field (Keating and Sailhac 2004). However, if the remanent magnetization is 

oriented roughly parallel to the present field, the kimberlite anomaly will be positive 

relative to the background. 

The Koenigsberger ratio for the samples of pipe A154N (Section 3.3, Eqn. 5) was 

calculated using a geomagnetic field of 47.77 Aim (60043nT) and the respective 

remanent magnetization intensity and magnetic susceptibility that was collected for each 

rock sample for pipe A154N. The Koenigsberger ratios for each rock type are shown as 

histograms for each rock type in Figure 5.4. By reviewing this figure it can be seen that 

each rock type shows ratios both below and above 1.0. The majority of the host rock 

samples are characterized by a value lower then 1.0. Remanent magnetization is therefore 

not considered to be important for most host rocks. Conversely, the two kimberlite zones 

(crater and root) show a higher percentage of samples with a ratio greater than 1.0. The 

kimberlite zones are therefore considered to posses a remanent magnetization that has a 
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significant effect on the magnetic anomaly. The small number of samples available for 

the root zone (N=14) may bias this result, however, the number of crater zone samples 

(N=52) is considered large enough to produce an accurate result. The Koenigsberger 

ratios of the crater zone samples seem to have a larger range than the root zone and 

should perhaps be considered more predominated by remanent magnetization than the 

root zone. 

The results of this brief investigation into remanent magnetization has shown that the 

effects of remanent magnetization in Diavik kimberlites should not be ignored. 

Unfortunately, no other 3D inversion software package was available therefore MAG3D 

was used even with its limitations. 

5.3.2 Magnetic Forward Modeling Discussion 

The magnetic forward modeling processes require background information about the 

local geomagnetic field values. These values in the area of pipe A154N at the time of 

data collection were (Table 13): 

Geomagnetic Field Values 

Inclination 84 decimal degrees 

Declination 26 decimal degrees 

Geomagnetic Total Field 60043 nT 

(Geological Survey of Canada 2007) 

Table 13: Geomagnetic field values for the location of A154N in 1994. These values were used during 
the magnetic forward modeling processes to account for location. 

78 



The forward modeling of pipe A154N generated a positive magnetic anomaly that is 

centered over the pipe location (Figure 5.5). The magnetic susceptibility model seen in 

Figure 5.2 was dissected into two separate models: a model of the crater zone (Figure 

5.6) and a model of the root zone (Figure 5.8). The corresponding forward modeling 

results for each zone are seen in Figure 5.7 and 5.9 respectively. 

The magnitude of the magnetic signature of a body is dependent on the depth at which 

the body is buried. The magnetic field strength of a dipole decreases at a rate of l/r3
, 

where r is equal to the separation distance between an observer and the dipole source 

(Telford et al. 1990). This dependence on depth can be seen in pipe A154N when 

comparing the signature of the crater zone (Figure 5.7) to the signature of the deeply 

buried root zone (Figure 5.9). It should be noted that the magnetic response of the root 

zone is not centered over the pipe location; this is believed to be caused by an effect of 

the depth of burial in combination with the magnetic inclination in the area. The crater 

zone, root zone and full model signatures are displayed as profiles (Figure 5.10). For pipe 

A154N, the shallow crater zone has a magnetic susceptibility that is much smaller than 

the more deeply buried root zone however, the magnetic dipole dependence with depth 

(1/r3
) drastically reduces the effect of the root zone. 

The full model profile seen in Figure 5.10 displays a peak approximately 175m in width 

across the center of the pipe that reaches a maximum strength of 40nT. The crater zone 

profile displays a peak in the same area. This anomaly ramps slightly faster than the full 
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model profile, is about 175m wide, and reaches a maximum strength of 38nT. In contrast 

the root zone profile shows a 400m wide, elongate response, with a maximum value of 

2nT. While the full model response is indeed a combination of the crater and root zone 

responses, the crater zone contributes the overwhelming majority of the full model 

response. 

Recall in Section 5.3.1, the Koenigsberger ratio shows that the crater zone samples are 

predominated by remanent magnetization when compared to the root zone. Forward 

modeling has shown that the observed magnetic anomaly is mainly due to the crater zone 

which implies that remanence is considered as important as magnetic susceptibility in 

modeling the anomaly. Since the pipe A154N is considered to be from the Cenozoic Eon 

the remanence direction would be expected to be steep (Per. Comm., Hodych, 2007). 

The strength of the anomaly could be taken in to question since the forward modeling 

program does not take remanent magnetism in to consideration. This issue will also play 

a role in the inversion which will follow in a late section. 

5.4 Forward Modeling - Gravity 

As noted in section 5.2, the density models are constructed using density contrast values 

relative to the average density of the host rock (Table 14): 
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Rock Type Mea>ured Contrast 
(ll/cml) (J!Icm3) 

Ho>! Roc·k 2.66 () 

Crater Zone 2.52 .0.138 --

Roo!Zooe 2.8 0.14 

. LID St 'iii*MI ·,:. ·.• 1.!12 -am 
Table 14: Density contrast values u.'itd to rcpresrnt tbt' density pro~rtk-s or Pipe Al54N. ""The lake 
sediment values where not measur«< and are from Telford d al. (1990) 

The forward model of the density data for pipe AI54N generated a negative anomaly 

(Figure 5.11 ). Similar to the magnetic forward models (Section 5.1 .1) the density contrast 

model (Figure 5.3) was spiJt into two sections. the crater ZOile (Figure 5.12) and the root 

zone (Figure 5.l4). wilh the corresponding forward modeling results shown in Figures 

5.13 and 5.15. 

5.4. 1 Gravity Fonvard Modeling Discussion 

The gravitational field strength of a point mass source decreases with burial depth 

accordi11g 10 an invetSe square relationship when direclly overtop the source (Telford ct 

al. 1990). As seen in magnetic forward modeling (Section 5.1.1 ). this depth dependence 

is apparen1 when comparing the gravitational signature of the crater zone to that of root 

zone. The majorily of 1he gravitationaJ response from pipe A 154N comes from the 

shaJiow cmtcr zone and not the deeply buried root zone. The relative density contrast 

between root zone and host rock (0.14 g/cm3) is much less than that of the crater z.one and 

host rock ( -0.1 38 g/cm3), further reducing the root zone response. 
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The full model profile (Figure 5.16) displays a low across the pipe, which reaches a 

strength of -0.35 mGals. The crater zone profile in this figure displays a low that 

shadows the full model profile in width and strength. In contrast, the root zone profile 

shows a response that only differs from background the by +0.01 mGals. It is a wide 

response and does not seem to respond directly to the presence of the pipe. As in Section 

5.1.1 for magnetics, if the gravity forward model maps are reviewed (Figures 5.11, 5.13, 

and 5.15) it can be concluded that the majority of the full model response is due to the 

contribution of the crater zone. This conclusion is reinforced by the profiles seen in 

Figure 5 .16. It is due to the large density contrast between the host rock and the crater 

zone, and its relatively shallow burial depth. The root zone has only a slight density 

contrast to the host rock; combined with its greater burial it has very little impact on the 

gravity signature of the pipe. 

5.5 Forward Modeling Conclusions 

The magnetic and gravity forward modeling results for pipe A154N show the crater zone 

as contributing much more to the geophysical signature of the pipe than the root zone. If 

the physical properties in another pipe are similar to those seen in A154N, and the crater 

zone/root zone interface is as deep, then exploration should focus on finding the crater 

zone. However, the root zone may play a more important role in the discovery of other 

kimberlite pipes if the crater zone \root zone intersection is shallower. 
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From these rorward modeling investigations. the size of the geophysical responses for 

various models can be estimated. Table l 5 shows the size of each anomaly for the cases 

prc\•iously described for pipe A 154N in Sections 5.3 and 5.4. 

Model Maximum Magnetic Ma.:<irnurn gravitational 
Anomaly Intensity Anomaly Intensity 

(nTI (mGals) 
Full Pipe 40 ·0.35 

Crater Zone 3ft -0.35 

RQOlZoae 2 . ..1) 

Table IS: The si:u.os or the anomalies Sl'tn in the forward ltl()dtls: ror nwgnelic: neld and g_ravit)' dUUt. 

It is proposed thm the kimberlite signature or pipe A154N in survey dma should be close 

in size to the forward modeling results. It should be emphasized thnt none or the forward 

models included noise and are simplified models of a complex area. Recall once again 

that remanent magnetization has not been properly accounted for during the forward 

modeling of magnetks data. This may bias; the magnetic foJWard model response. 

5.6 Observed Geophysical Ground l)ata 

Diavik provided ground total magnetic field data and gravity data collected over pipe 

A 154N in 1994 and 1995. Since A 154N is located under Lac de Gras, the survey data 

was collected over the lake while il was frozen. providing a Oat and relatively stable 

surface upon which to collect data. 
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5.6.1 Total Magnetic Field Data 

Total magnetic field data over A154N was collected at a 50m-line spacing and lOrn­

station spacing by a contracted company (Figure 5.17). A visual inspection of the data 

leads to the conclusion that there is no clear anomaly present over the location of pipe 

A154N. The pipe signature could be hidden, either due to a strong regional field effect or 

a predominating remanent field. Unfortunately, the latter case cannot be fully explored 

since the direction for the remanent magnetization was not measured in the area due to a 

lack of oriented core samples. However since the location, magnetic susceptibly and 

geometry of pipe A154N are known, it provides an opportunity to explore methods that 

may be used to find pipes signatures that are masked by a strong regional field. 

5.6.2 Gravity Data 

The forward modeling results and the density data collected provide evidence to support 

the existence of a strong enough density contrast to differentiate between the host rock 

and the crater zone of the kimberlite in pipe A154N. Gravity data was collected on a 50m 

by 50m grid and all gravity corrections were completed at the time of collection by the 

contracted company (Figure 5.18). These corrections include drift, latitude, elevation and 

terrain. Since the diameter for a typical kimberlite pipe in the Diavik area varies from 75 

to 150m, a grid spacing of a maximum of 25m by 25m would have been preferable. It is 

easier to constrain the maximal value of the pipe anomaly using a finer grid as opposed to 

a coarser grid. Spatial aliasing may also become a problem if any spectral filtering or 

analysis is performed on data collected using large grid spacing. 

84 



Gravity data is highly effected by topography (Telford et al. 1990), therefore bathymetry 

data were collected at the locations of each gravity data point in order to properly correct 

gravity data obtained over water (Figure 5.19). For quality control reasons, a colour map 

of the gravity data was overlain by contoured bathymetric data (Figure 5.20). To illustrate 

this point further, a profile was taken running west to east across line 7152950N (Figure 

5.21). From Figures 5.20 and 5.21, it should be obvious that the bathymetry correlates too 

closely with the gravity data. Bathymetry corrections are absent from this dataset. In 

order to properly correct the gravity data, an infinite slab Bouguer correction was applied 

to the data using the following equation from Telford et al. (1990): 

flg = (0.04192mGal)pl d 

where: p = density contrast ( glcm3
) 

d =bathymetric depth (m) 

(8) 

For the area over pipe A154N the density contrast between water (lg/cm3
) and host rock 

(2.67 g/cm3
) is 1.67 g/cm3

• The correction was performed and added to the gravity dataset 

at each point. The results of this correction are displayed in map view in Figure 5.22, and 

in profile view in Figure 5.23. From Figure 5.22 it can be seen that the gravity data has 

been corrected over the bathymetric low centered at -536800E/7152950N. However, by 

inspecting the profiles in Figure 5.23, it is argued that the Bouguer correction may have 

over-corrected the data. By reviewing the bathymetry measurements, it was found that 

there are only two points (50m apart) that define the extreme low in the lake. Coarse 

gridding of the data, in addition to the infinite slab assumptions associated with the 

Bouguer correction may be responsible for this over-correction. 
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To solve this problem it is suggested that by forward modeling an accurate subsurface 

model with appropriate bathymetry, a detailed bathymetry correction could be generated 

which would then remove the bathymetry effect more effectively (Personal Comm. 

Farquharson 2007). 

A model of the bathymetry data was created (Figure 5.24) with the density of the host 

rock set at Og/cm3 and the density of the water set at -1.67g/cm3
· The lake model was 

used to generate a forward model; the results the forward modeling were then added to 

the gravity dataset. The results of this correction can be seen as a map in Figure 5.25, and 

as profiles in Figure 5.26. As seen in the map view of the corrected data a gravity low 

(Figure 5.25) is now located roughly over the top of pipe Al54N. The lake model 

corrected data profile seen in Figure 5.26 shows a gentler correction over the deepest part 

of the lake when compared with the Bouguer corrected data. This method appears to give 

a more accurate bathymetry correction than the Bouguer slab method, and therefore it is 

the preferred method used to correct the dataset. 

5. 7 Regional Residual Separation 

Most magnetic and gravity surveys are used to find near surface features. The effects of 

deep masses and regional variations in rock types are called regional effects and can 

mask the effect of these near surface bodies. The problem comes in separating the 

anomalies of interest from the overlapping effects of the regional features (Telford et al. 

1990). There are various techniques that can be used to remove regional effects, 
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classified as regional-residual removal techniques. Three removal techniques were used 

during this thesis to remove the regional effects. These include: upward continuation, low 

order polynomial removal and Li and Oldenburg regional/residual separation. 

5. 7.1 Upward Continuation 

Upward continuation is a digital filtering method based on removing certain wavelengths 

from the data. The concept of upward continuation comes from the fact that the higher up 

the survey is taken, the less effect a small near surface body will have on a reading, 

leaving only the effects from deeper bodies. Long wavelengths are associated with 

regional fields and short wavelengths are associated with near surface bodies (Telford et 

al. 1990). Upward continuation is effectively a smoothing of the data where short 

wavelength anomalies are removed (Telford et al. 1990). After data has had an upward 

continuation applied, these results are then subtracted from the dataset producing a 

residual data set. Removal of long wavelengths from the data means the residual data is 

(in general) less smooth than raw data. For both gravity and magnetics data, the regional 

field was approximated using an upward continuation algorithm to a elevation of 25m, 

50m, 1OOm and 150m . . 

5. 7.2 Second Order Polynomial 

This method involves the estimation of the regional field by a least squares fitting of a 

second order polynomial to the collected data (Telford et al. 1990). Polynomials fitting to 

the 1st to 3rd order was used on both magnetic and gravity data to approximate the 
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regional field which was then removed to leave a residual considered to be due to the 

kimberlite. 

5. 7.3 Li and Oldenburg Separation Method 

Unlike other methods, the Li and Oldenburg method does not assume that the regional 

field is smooth. When data is collected over a topographic surface then the regional field 

would not be smooth and this assumption would be inaccurate (Li and Oldenburg 1998b). 

This method will be discussed in more detail in a Subsection 5.7.4. 

Inversions are performed on residual data (Section 5.4), therefore the reliability of any 

subsequent interpretations and models depends highly on the accuracy of the 

regional/residual separation technique (Li and Oldenburg 1998b). Note that no matter 

which technique is used, the separation will never be 100% effective because both 

regional and residual are distorted by each other's effect (Telford et al. 1990). 

All methods produced reasonable regional fields, however, it was felt that after analyzing 

the results of all methods that the Li and Oldenburg (1998b) produced the regional field 

that allowed for the best isolation of the pipe A154N anomaly. The Li and Oldenburg 

regional residual removal method and results will be displayed and discussed here for 

both magnetics and gravity. 
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5. 7.4 Magnetics: Regional/Residual Removal Method 

The Li and Oldenburg method applies both the method of stripping and their 3D 

inversion algorithm to a dataset. To begin with, the average geomagnetic field in the area 

at the time of collection must be determined. The geomagnetic field in this area at the 

time of data collection, as stated earlier in Section 5.1.1, was 60043nT. This value was 

removed from all data points as the MAG3D program requires a base line magnetic field 

value to be removed before the inversion will run (Figure 5.27). More detail about the 

inversion process will be discussed in Section 5.4. For now it is asked that it be accepted 

that the magnetic inversion process generates a model of the magnetic susceptibility 

characteristics of the subsurface beneath a given observed dataset. The Li and Oldenburg 

removal was performed using the following steps: 

1) The observed magnetic dataset seen in (Figure 5.27) was used to perform a 

default inversion. 

2) From this inversion a susceptibility model of the subsurface was generated. 

3) The susceptibilities values in the area of pipe A154N, from the surface down to 

the bottom of the model, were set to zero (Figure 5.28). This process is referred 

to by Li and Oldenburg (1998b) as stripping. 

4) A forward model is then run over this stripped model. The resulting dataset 

produced by the forward model is considered to be the regional field of the area 

(Figure 5.29). 

5) The regional field was then subtracted from the observed dataset, resulting in the 

residual dataset for pipe A154N (Figure 5.30) 
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5.7.5 Comparing Magnetic Residual Results with Forward Modeling 

The forward model of the magnetic susceptibility of the full pipe model (Figure 5.5) 

appears to have a sharper anomaly than the residual data (Figure 5.30), however the 

widths of the anomalies are consistent with each other (at approximately 150m). As seen 

in Table 15 (Section 5.1.4), the maximum anomaly magnitude for the full model is 40nT, 

whereas the maximum magnitude of the anomaly in the residual data is 55nT (Figure 

5.30). However, the shape of both anomalies are similar. The difference in anomaly 

magnitudes could be caused by the strong kimberlite remanent magnetization in the 

kimberlite, which was discussed in Section 5.1.2. It is felt that since remanent 

magnetization is not taken into account, and since no noise was added to the forward 

model, that the differences between the residual and forward model are acceptable. 

The process of removing the regional field by way of the Li and Oldenburg method 

(1998b) could have some questionable implications, particularly "stripping", which are 

presented in three parts in Figure 5 .31. Figure 5.31 (part a) represents a subsurface 

magnetic model with a constant magnetic susceptibility that is greater than zero. When 

the area of interest is stripped out and set to zero (part b) the total field over the stripped 

area drops. The resulting residual field is plotted (part c). The total magnetic field is zero 

everywhere except over the stripped region. This resulting anomaly is due to the stripping 

process. However, going back to the discussion of the magnetic results, since the data 

shown in the forward model is an acceptable match with the residual data given the lack 

of data on remanent magnetization direction, the Li and Oldenburg removal was still used 
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to generate residual data. This residual data will be used during inversions presented in 

Section 5.7. 

5.7.6 Gravity: Regional/Residual Removal 

Similar steps to the regional/residual separation for magnetics data were carried out on 

the gravity data for pipe Al54N. First, a constant value of 57mGal was removed from all 

data points (Figure 5.32). This value was chosen, as it is the minimum value over the 

corrected dataset. The stripped area is shown in Figure 5.33. From this, a forward model 

was generated creating a dataset considered to be the regional field of the area (Figure 

5.34). This regional data set was then subtracted from the corrected gravity dataset. The 

result is the residual gravity data for the Al54N gravity dataset (Figure 5.35). 

5. 7. 7 Comparing Residual Results with Gravity Forward Model 

The forward model of the full pipe density contrast model (Figure 5.11) shows a sharper, 

rounded anomaly over the pipe than the residual data (Figure 5.35). The forward model 

predicts a pipe anomaly of -0.58mGals, with the residual data showing a pipe anomaly of 

-0.35 mGals. This difference may be caused by the lack of noise in the forward model, 

plus average values are being used to represent the kimberlite zones and host rock. These 

averages values are representative of a wide range of values, which were measured for 

each rock type. Even though there was no monotonically correlation found between the 

density values and depth during the Spearman test (Section 4.5.4) it is reasonable to think 

that the density values will change somewhat throughout the pipe. The same questions 
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The objective function is broken down into two parts as defined by Farquharson (2006) in 

Eqn. 9: 

where: f/Jd =measure of data misfit 

¢m = measure of the amount of structure in the model 

J1 = regularization or trade-off parameter that controls the contributions of the 
data misfit and model complexity terms. 

5.8.1 Data Misfit 

The first part of the objective function is the data misfit, which is the measure of error 

between the predicted data and the observed data (Eqn. 1 0): 

where: dobs = data vector 
d = predicted data vector 

Wd = diag { 1 I a" ... , 11 aN} and <1"; is error standard deviation of the error 

associated with the i1
h datum 

f/Jd = data misfit 

II 11
2 = L2 Norm of a vector 

5.8.2 Measure of Structure in the Model 

The second part of the objective function is the model objective function (Eqn. 11), a key 

component in the inversion process as it works to reduce the structural complexity of the 

model (Li and Oldenburg 1998). The model objective function is problem dependent, is 
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relatively smooth m three dimensions, and is flexible enough to construct different 

models. 

where: ws , wx, wY , and wz = spatially dependent weighting functions 

as , ax , ay, and az = coefficients that affect the relative importance of different 

components in the objective function 
m0 = reference model 

w(z) =depth weighting 

A reference model can also play an important role in the objective function (termm0 ). A 

reference model is a mesh of physical property values provided by the interpreter based 

upon known geological features and appropriate estimates of physical property values. 

Note that an initial model is used as a starting point for the inversion, and the reference 

model is compared to the inversion at each iteration. When a reference model is 

introduced, the nonuniqueness of the model is decreased because it works to constrain the 

inversion (Li and Oldenburg 1998). 

As previously stated, potential field data have no inherent depth resolution; for example a 

dense (susceptible), deeply buried object or a less dense (less susceptible), near surface 

lens of material can in the right circumstances produce similar anomalies. Inversions tend 

to favor the latter; therefore structures tend to concentrate near the surface without regard 

to the true depth of the body (Li and Oldenburg 1998). To overcome this problem, a 
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posed concerning the Li and Oldenburg regionaVresidual separation discussed in the 

magnetic forward modeling section can be raised here. Once again, since the forward 

model and residual results are of comparable shapes and magnitudes, the regional 

removal is considered to have been correctly performed. 

5.8 Inversions 

Inversions are an important geophysical tool used to generate models of the subsurface 

under a selected dataset. Inversions were performed using the UBC-GIF inversion 

software on the residual data presented in Section 5.6. An initial model composed of a set 

of rectangular cells comprising an orthogonal 3D mesh is used to represent the 

subsurface. Each cell has a uniform magnetic susceptibility or density and the anomaly is 

located on the surface formed by the mesh. The same mesh that was used during forward 

modeling (Section 5.2) was used during the inversions. 

The primary problem facing the inversion of potential fields data is its inherent 

nonuniqueness. In other words, there are an infinite number of subsurface solutions that 

could generate the known anomaly. MAG3D and GRA V3D use an objective function to 

minimize this problem. The objective function is defined as a combination of how well 

observations are reproduced, and a measure of how complicated the model is 

(Farquharson 2006). 
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depth weighting function ( w(z)) is introduced to the objective function (Li and 

Oldenburg 1998) given as (Eqn 12): 

1 
w(z) = PI (12) 

(z+ Zo )12 

where (z + z0 )% is used to approximate the decay of the inversion kernel with depth 

directly under the observation point. The fJ term depends upon the inversion. 

Gravitational effects of a point mass decay with distance according to an inverse distance 

square relationship, in which cases the default value for fJ is 2. In contrast, the 

magnitude of a magnetic dipole decays according to an inverse cubic relationship; 

therefore the default value for fJ is 3. The default value of z0 is 0 for both gravity and 

magnetic inversions. By adjusting the values of z0 and fJ, a good match between this 

depth weighting function and the decay of the kernel for a given mesh and observation 

height can be achieved. Appropriate values used for z0 and fJ will be discussed in further 

detail below. 

5.8.3 Depth Weighting 

To decide on model appropriate values for z0 and fJ, an experiment was performed by 

varying both parameters independently and testing their effects upon the results of the 

inversion. This test was performed for both magnetics and gravity data and Figure 5.36 

demonstrates the results. Values were assessed by running a magnetic and gravity 

inversion of the data using all program defaults. This produced a fuzzy blob near the top 
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of the subsurface model. Varying the depth parameters elongated the fuzzy blob so that it 

looked closer to the shape of a kimberlite pipe and was centered at a more appropriate 

depth. For magnetics it was decided that a z0 value of 150 and fJ value of 3 should be 

used, whereas for gravity a z0 value of 50 and fJ value of 3 should be used instead of the 

default values. 

In conclusion, only when all steps of the inversion have been carefully considered will a 

physically realistic result be generated. More information about the inversion process can 

be found in Li and Oldenburg (1996/1998) and the manuals for UBC MAG3D and 

GRA V3D inversion software. 

5.9 Gravity and Magnetic Inversion 

Two inversions were performed for each dataset, including a default mode inversion 

using no user-defined parameters and all program defaults, and a model mode inversion 

where an initial and reference model, and appropriate depth weighting are used with all 

other parameters equal to default values. Both methods produced a dataset that was then 

compared to the residual dataset. The discussion of the results will be broken down into a 

section describing gravity and a section describing magnetics, with a general conclusion 

to follow describing the combined results. Note that the colour scales of all predicted 

models were changed to the same scale as that of the measured physical property models, 

in order to aid in comparison between models. 
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5.9.1 Gravity Inversion 

Gravity inversion was first performed using the default mode and in this mode no 

problems were experienced. The predicted dataset (Figure 5.37) generated by the 

inversion is similar to the residual data (Figure 5.35). The density contrast subsurface 

model produced by this inversion can be seen in Figure 5.38. The figure is a depth slice 

of the inverted 3D density model along line 7152900N, which cuts across the location of 

pipe Al54N. The model does show a lower-density body in the same area as the pipe. 

The width of this body is approximately lOOm across and extends to a depth of 

approximately 200m. 

In the model mode inversion, an initial model and reference model were input at the 

beginning of the inversion process. Both the initial and reference models are the same as 

those used in the gravity forward models of the previous section (Figure 5.3). The density 

contrast model produced by this inversion can be seen in Figure 5.40. This model bears a 

resemblance to the model seen in Figure 5.3. The density contrast of this model displays 

a low density layer extending down -5m, and a low density pipe structure (crater zone) 

sitting in a background of relatively high density material (host rock). This pipe-like 

structure extends to a depth of approximately 400m, with a diameter of approximately 

150m. The root zone appears at a depth of 400m with a homogenous density contrast 

value of 0.14 g/cm3
. The heterogeneous density structure of the crater zone is obviously 

quite different from the reference model. However, if the pipe anomaly in the residual 

data (Figure 5.35) is reviewed, the anomaly is lopsided, with the eastern edge being much 
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more negative than the western edge. It is believed that this sharp change in the residual 

anomaly is forcing the east west dichotomy in the inverted subsurface density model 

(Figure 5.40). This change lopsided anomaly is indicating that there are variations in the 

density values of the crater zone. The variation in crater density with depth was not 

predicted in Subsection 4.5.3 to be depended as a monotonic function however, since 

mean density values were used to represent each rock types it is reasonable to expect that 

there are variations in the density of the crater zone. Especially since it is composed of 

backfill material, which causes inhomogeneity in the crater zone. From the model mode 

inversion a better understanding of the variation in crater density can be predicted. There 

is denser material located on the eastern half of the pipe, this variation in density 

continues to a depth of approximately 250m. Under this denser material less density 

material is found. It seems, however, that the depth weighting parameters and the initial 

and reference models were successful in constraining the pipe model more accurately 

when compared with the results of the default mode inversion (Figure 5.38). 

5.9.2 Magnetic Inversion 

The data used for the magnetic inversions were trimmed to remove areas of extreme 

values that were causing errors during the inversion process (Figure 5.41). These areas 

were not related to the pipe, but to other geological features in the area. However, certain 

data points in Figure 5.41 that are adjacent to the pipe anomaly have extremely low 

values ( -20 to -35nT) compared with average pipe anomaly values of approximately 

35nT. These points were not considered to be related to the pipe signature but rather with 
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some extremely near surlace feature and it caused positivity problems for the inversion. It 

was decided to set the value of the points to zero (Figure 5.42). The trimmed and zeroed 

map was used for the subsequent magnetic inversions. 

Inversion in this mode was perlormed without problems. The predicted dataset (Figure 

5.43) appeared similar to the residual data (Figure 5.42). The magnetic susceptibility 

model produced by this inversion can be seen in Figure 5.43 as a depth slice that was 

taken along line 7152900N, which crosses the location of pipe A154N. The model shows 

a body of high susceptibility in the same area as the pipe. The diameter of this body is 

approximately 100 m, with high magnetic susceptibility that extends to a depth of 

approximately 200m. The area of extremely high magnetic susceptibility on the western 

edge of the model is either an artifact of the inversion, or some large-scale geological 

feature. 

Running an inversion in the model mode consisted of inputting an initial model and 

reference model at the beginning of the inversion process to help constrain the inversion. 

Depth weighting was also applied as discussed in Section 5.4 ( z0 = 150 and f3 = 3). 

Both the initial and reference models were the same model as that used for the forward 

models of the previous section (Figure 5.2). The predicted dataset (Figure 5.45) appeared 

similar to the residual data (Figure 5.41 ). The magnetic susceptibility model created 

during the model mode (Figure 5.46) bears a close resemblance to the susceptibility 

model of the pipe seen in Figure 5.2 except that the top zone is discontinuous. This 
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inverted model displays a pipe structure that possesses high magnetic susceptibility to a 

depth of approximately 400m; at approximately 400m a material of higher magnetic 

susceptibility is seen that extends to a depth of approximately 750m. The inversion has 

broken the pipe into two zones: the top, or crater zone, and the bottom, or root zone. The 

crater zone here is discontinuous, which is believed to be caused by the slight lopsided 

magnetic anomaly (Figure 5.30) similar to that seen in the gravity model mode inversion. 

Once again this sharp change in the residual anomaly is forcing the east west change in 

the inverted subsurface model, the effects of which can be seen at depth. In Subsection 

4.5.3 there was a medium decreasing monotonic function dependence found between 

magnetic susceptibility with all rock types. This relationship with depth supports the 

changes in magnetic susceptibility with depth. Once again the crater zone is predicted to 

be more susceptible to these changes due to the nature of its composition. It appears, 

however that the initial and reference models and the depth weighting parameters have 

accurately constrained the size and magnitudes of the kimberlite pipe. 

5.9.3 Inversion Discussion and Conclusions 

As with all inversions, there are an infinite number of subsurface models that can give 

rise to a dataset. It is felt that the two different inversions modes (default and model) 

performed on the gravity and magnetic data reinforce this point. For the gravity inversion 

processes, the predicted data for the default mode inversion (Figure 5.37) and the model 

mode inversion (Figure 5.39) are very similar, however their respective subsurface 

models are markedly different (Figure 5.38 and 5.40). This is also seen during the 
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magnetics data inversion processes (compare Figure 5.41 and 5.45 with Figure 5.44 and 

5.46). The model mode models were generated using parameters that were specifically 

chosen to isolate pipe A154N after experimenting with the z0 and f3 terms of the 

weighting function. The initial and reference models of pipe A154N played an essential 

role in constraining the inversion results. 

It is felt that even though the inverted default mode models for both gravity and 

magnetics data do not show the same level of detail as the model mode models, they do 

show similar physical property patterns. This similarity consists for gravity data as a 

lower density material in the same location as the pipe, and for magnetics as a higher 

susceptibility material in the same location as the pipe. This means that results from 

default models cannot be completely dismissed. However, the model mode result is the 

preferred inversion since it takes into account the true physical properties and geometry 

of pipe A154N. The model mode also maps the variations in density and magnetic 

susceptibility in the crater zone. In this thesis there has been no mention of diamond 

content being related to the density or magnetic susceptibility however if there was a 

correlation found relating density or magnetic susceptibility to the percentage of diamond 

content this model mode inversion would prove to be useful. 

5.10 Resistivity 

The main focus of the investigation into the correlation between physical properties and 

geophysical signatures was spent on magnetization and gravitational fields. This detailed 
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investigation did not allow for a full investigation into resistivity signatures. Plus there 

was no access to a 3D EM forward modeling program. Despite this, it is felt that since 

resistivity data was collected, some comments should be made about the resistivity 

properties of each rock type. Resistivity data for pipe A154N does show a slight 

difference between host rock (average of 4969 ohm-m), crater zone (average of 1858 

ohm-m) and root zone (unknown). 

There has been debate amongst the geology staff at Diavik as to whether the resistivity 

signature of a kimberlite pipe is caused by the physical properties of the pipe itself, or by 

the lake sediment that is present on top of a pipe when found under a lake. The resistivity 

values measured do suggest that a kimberlite pipe could give rise to an EM anomaly. 

Unfortunately, no lake sediment samples were available for measurement. It has, 

however, been suggested that the resistivity of the sediments may be much lower than the 

surrounding host rocks due to assumptions about the lake sediment's composition (i.e. 

clay rich, water saturated) This issue that cannot be confirmed without direct 

measurements of the resistivity of lake sediments. 
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f'ijturt S.l:Geometrie geology model or pipe AI54N (south face). lbt Jteology layers used io thjs 
detailed model are n-oE the same as thost used in thi.s thl':'iis. The two kimberlite tOnes (Caler and n>ol) 
a~ m:uked on this model. 
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Fi&ure 5.12: Ot'nsity contrast model or the crater 20ne ror Pipe Al54N. The pipe i.s rompldcly 
surroundl-d by lht' bosl rock a:rnup in pink. There ls a 5m thick l:ayer or bke sedimt'nt on top or the 
enter wnc (dark blu€'), which extends 10 a depth or approxin\l'&ltly 400m. 
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Figure S.14: Oensily oontra!it model of the root zone ror Pipe- AIS4N. The" pipe i:s oomplttdy 
surrounded by the~~ roc·k group in pink with a Sm thkk Layer of lakt' sedime-nt on top or the host 
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•·igure 5.16: Gra\-ity resportw or pipe A 154N along 7152910N. The run model response shown in 
blue, the crater 'lOne mcxlclln green and the root zone In red. AU responses taken w.n from the 
respetth'e forward mOdtl rtsuiiS. 
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Figurt 5.21: PronJcs of gnt~'ily data and lab bathymecry running wesllo C"a'il acr~ line 71529SON. 
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Figure 5.31: Cartoon to dt.roon:slrat~ th<" Li and Oldenburg rq:ionallr~klual removaL A) The brown 
box represents a subsurface magnetic model with a constant magnetic susceptibllhy (X) or gn.'flltr 
than zero. The resulling total magnttic neld (T) is repn:stnt by lht blue li.nt. ~·h.ich is con.'"'-ant in A. 
8) The nn.-a or inte-rest has btt.n rtmovcd or "stripJM'd" out with a su.o;ceptibllity \':due equal zel"(). 
The rcsuJting total magntUc field shows a drop o\'er the stripped area. (..j The box In A has been 
rrubtrac:ted from the box i·n R. The result of thls removal shows the s:triJ))>td surface " 'ith 
s:uscepdblllty greau:r then ttro and lht surrounding •reas are zero. Tht total magnetic rtcJd shows 
the resuJting anomaly. The ~ulting anomaly is in-part due to tb(' strippinJ: prncess. 
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Figure 5.33: A d\"pth slkc- or the J:ravity .subsorfac:t model running west to ust across 7152900N wlch 
the location of pipe A 154N zerotd or ··scripped". This model will be used lO produce a forward 
model or the regional neld. 
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model produced by the df'faull mode lm·erslon. 
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Chapter 6: Exploration for Kimberlite Pipes 

After investigating physical properties and their correspondence with geophysical 

signatures, it is felt that there is great potential in the proper filtering of airborne 

magnetic, resistivity and gravity surveys to isolate kimberlite targets. This is not a new 

idea; airborne surveys are extensively used in the exploration for kimberlites, but the 

analyses of these results are encumbered by having to manually inspect a dataset to find 

potential targets. Detection of kimberlite pipes is at times complicated due to competing 

signals from random and diverse geological features. Due to available data the following 

airborne investigation will focus on total magnetic field data. An airborne total magnetic 

field map complied by Aurora Geosciences Ltd was provided by Diavik. The map 

contains data that was collected along a line spacing of 50 mat unknown flight altitudes 

by various companies from 1992 to 1997. 

In the Diavik area, diabase dykes have large positive magnetic signatures making pipes 

located close to these dykes difficult to detect. There is also the issue of remanent 

magnetization obscuring magnetic signatures as was discussed in Chapter 5. 

6.1 Airborne Magnetic Investigation 

The airborne total magnetic field map seen in Figure 6.1 was taken over the area of two 

know pipes: A154N and A154S. The locations of these pipes are marked on this map. 

There is a small positive anomaly present over the location of pipe A154N and a large 

positive anomaly over pipe A154S. The focus of this investigation will be on pipe 
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A154N. Since pipe A154S is in the same area, comments will be made about this pipe 

throughout. By reviewing the profile taken across pipe A154N (Figure 6.2), the magnetic 

signature of the pipe can be seen as a small peak between two large peaks associated with 

diabase dykes. The pipes small magnetic high is difficult to see in a large-scale map, 

suggesting that majority of the pipe's signature is hidden in the background field. It is 

proposed that by using directional filters and edge detection techniques, the signature 

over pipe A154N will be better defined and easier to detect in map view. The following 

investigation will test this hypothesis. 

6.1.1 Directional Filters 

A trend removal filter works by rejecting responses that are aligned with a specified trend 

direction. The trend direction can be given as a single angle or a range of angles. This 

filter was used to remove the effects of the dykes. There are three dykes seen in Figure 

70. These dykes include two that are trending between 0° and 25° and one trending 

between 340° and 360°. Before running any edge detection filters, all three dykes were 

removed. The results are seen in map view in Figure 6.3, and in profile in Figure 6.4. 

Pipe A154N and Pipe A154S are still isolated in map view. By reviewing the profile over 

pipe A154N, the anomaly can be still present but the dyke responses have been largely 

attenuated. This dataset will be used during the investigation into edge detection 

techniques. 
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6.1.2 Edge Detection Techniques 

The maximum horizontal gradient can be used to highlight the edges of an anomaly 

(Telford et al. 1990). It is equal to the sum of the squares of the x andy field derivatives 

(Eqn.1). As generalized by Miller and Singh (1994), the horizontal gradient peaks over 

the edges of a source body and is zero over the top of the source body. 

The horizontal gradient approach uses the following equation: 

Where: df = magnitude horizontal gradient 
dh 

df and df =gradients in the x andy directions respectively. 
dx dy 

The analytical signal approach is similar to the horizontal gradient approach, except that 

it includes the vertical derivative (Roest et al 1992) (Eqn. 14): 

Where: jA(x, y )j = the absolute value of the analytical signal 

df , df , and df =represents gradients in the x, y, and z directions respectively 
dx dy dz 
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The first vertical derivative is positive over the top of the center of a body, is zero over 

the edge of a body and is negative outside of a vertical body (Miller and Singh 1994). By 

introducing the vertical (z) derivative the analytical signal reveals maximums directly 

overtop of the body in addition to the edges of the body (Roest et al. 1992). In 

combination with the horizontal derivative, the analytical signal technique will transform 

a circular anomaly into a sharper high making it easier to identify. As kimberlite 

anomalies are generally circular in shape, this technique should be advantages for their 

detection. 

6.1.3 Discussion and Conclusions 

The results of horizontal gradient and analytical signal filtering can be seen in Figures 6.5 

and 6.6 respectively. The edges of kimberlite pipe A154N are located along 7152925N at 

536850E and 536950E. The profiles for each technique are seen in Figure 6.7, with the 

pipe edges marked along the profile. 

Both the horizontal gradient and analytical signal techniques aid in the isolation of 

kimberlite pipe anomalies. The analytical signal technique highlights the signature of 

pipe A154N more clearly than the horizontal gradient method. By design, the horizontal 

gradient only detects the edges of an anomaly. By reviewing the profile it can be seen 

that the edges were in fact detected, however, this did not make the anomaly easy to 

isolate in map view. In contrast, the analytical signal is designed to detect the edges and 
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the center of the source body. By reviewing its profile it can be seen that the edges and 

center were indeed detected. Comparing the profiles and map views of both techniques it 

appears that the advantage of analytical signal's detection of the center of the source body 

makes it easier to isolated pipe Al54N. Pipe Al54S was also isolated during this process, 

however, this pipe seems to respond to both the analytical signal and the horizontal 

gradient techniques. By reviewing the north-west area of Figure 6.5 and 6.6, there are 

anomalies present that are the correct size and shape to be undiscovered kimberlite pipes, 

however, it cannot be ruled out that these techniques are causing false anomalies. These 

techniques appear to work for both pipes A154N and A154S. 

6.2 Other Kimberlite Detection Techniques 

The future of kimberlite exploration seems to be headed in the direction of using pattern 

recognition techniques on survey data. A pattern recognition algorithm can be utilized to 

automatically pick out kimberlite anomalies from a dataset. One such technique was 

developed by Keating and Sailhac (2004). Their technique uses pattern recognition; 

patterns based on typical theoretical anomalies which are then swept through a grid in 

search of an anomaly defined by a specific pattern. Their implementation is restricted and 

considers generalized models based on vertical cylindrical pipes. Not all kimberlite pipes 

can be defined as vertical cylindrical bodies and therefore neither can their signatures. It 

is proposed that the patterns should be defined by the shape and size of anomalies 

resulting from forward models constrained by accurate physical property data and 

geometries. For example the magnetic forward model of pipe A154N (Figure 5.5, 

153 



Chapter 5). This anomaly has its own specific shape, size, and signature, in theory it can 

be used to define a pattern that will locate pipe A154N in a dataset and pipes with similar 

signatures. Using known pipe anomalies like this one, not theoretical anomalies, should 

provide a greater degree of accuracy to this technique. 

An extensive study into this technique was beyond the time available for this thesis. It 

does however present an interesting case that could make use of the physical property 

data that was collected throughout this project, not only for pipe A154N but also for the 

other pipes on Diavik property. 
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Chapter 7: Conclusions 

The preceding investigations have provided information used to understand the 

relationship between physical properties and kimberlite pipe geometry with 

corresponding geophysical signatures, particularly in the case of pipe A154N. 

By using reliable laboratory equipment and by developing a systematized methodology, 

physical property data was collected on a total of 400 rock samples from 16 kimberlite 

pipes. Correct physical property from the Diavik area was essential to the accuracy of this 

investigation. It is strongly recommended that physical property information be collected 

from the area of interest as opposed to using values from a standardized table. 

Statistical analysis proved that each physical property measurement was repeatable. The 

physical property data collected was split into two categories: data from pipe A154N and 

data from the remaining 15 pipes. A comparison was performed between these two 

categories to show that pipe A154N has physical properties which are representative of 

the Diavik area. It specifically showed that the average kimberlite properties of pipe 

A154N are similar to those properties for the other 15-kimberlite pipes in the area, with 

one exception being the density of the root zone. However, as seen in the forward 

modeling results, the majority of the gravitational response for pipe A154N is generated 

by the crater zone, therefore, this difference in root density is not an issue when dealing 

with pipes with deep crater/root zone interfaces. It was also found that the host rock 

properties were quite variable throughout the area. 
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The physical property values of pipe A154N from this study were compared to previous 

studies performed on kimberlite pipes from various locations throughout Canada, 

(Mwenifumbo et al 1996~ Katsube and Kjargaard 1996). There are some differences 

between the previous collected data and the data collected in thesis for pipe A154N. 

Showing once again the importance of collecting data for the area that is being study. 

These differences could be caused by the differences in kimberlite magma from different 

kimberlite fields. 

A Spearman rank test was used to investigate the dependence of each physical property 

with density and depth. Both tests were preformed on two categories: pipe A154N data 

and data from the other 15 pipes. It was found that the rank test results for pipe A154N 

generally had higher levels of confidence associated with them and were therefore used 

as the representative correlation values. The results of this test conclude that there is no 

strong monotonic relationship between any physical property with depth or density. 

There were, however, some medium correlations found. These include positive 

correlation between density and magnetic susceptibility for all rock types, depth and 

remanent magnetization for host rock and root zone, depth and magnetic susceptibility 

for all rock types and depth and resistivity for both the host rock and crater zone. These 

results indicate that the respective properties have a small dependence upon each other. 

The physical property values measured during this thesis, along with a constrained pipe 

model of A154N provided by Diavik, allowed for the construction of realistic subsurface 
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models. From these models, gravity and magnetic forward models were generated. This 

investigation involved running forward models over the two kimberlite zones and 

comparing those results to the full pipe model. One of the major outcomes was the 

conclusion that the largest contributor to the magnetic and gravity responses in pipe 

A154N comes from the kimberlite crater zone, not the root zone. When exploring for 

kimberlite pipes with similar structure to pipe A154N the focus should be on the crater 

zone. Forward models can also be used to aid in kimberlite detection techniques such as 

pattern recognition. These forward modeling signatures for pipe A154N compared well 

with residual observed data. 

Residual data, along with physical property models, were also used to constrain gravity 

and magnetic inversions for pipe A154N. Two modes of inversion were used. These are a 

default mode and model mode. The default mode used only default setting whereas the 

model mode inversion used defined depth weighting parameters and the physical property 

models. It was concluded that constrained inversions performed much better than 

unconstrained inversions. There are, however, limitations to the forward models and 

inversions of pipe Al54N. These include nonuniqueness, and in the case of magnetics 

data inversion, a lack of remanent magnetic information. Remanent magnetization within 

the kimberlite zones is often of the same order of magnitude, or greater than induced 

magnetization. In subsequent inversions of this data, a model that takes remanence into 

account should provide a more accurate inversion. It is unfortunate that the core samples 
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measured where not orientated and therefore the direction of remanent magnetism could 

not be measured. 

The information gained by forward modeling and inversions was applied to airborne data. 

Given the circular shape of the kimberlite magnetic signature of pipe Al54N, it was 

decided that edge detecting techniques would be used isolated pipe signatures. These 

include horizontal gradient and analytical signal techniques. However, due to the high 

background fields caused by local diabase dykes, directional filters were first applied 

which was mostly successful in attenuating the dykes. The result of both edge detecting 

techniques work well at isolating a pipe signature however, it was felt that false 

anomalies were also generated in the area. The process of isolating a kimberlite signature 

depends on the nature of the signal in the region; there seems to be no simple and 

widespread solution. Another method that could be used to find kimberlite pipes in a 

large-scale magnetic map is pattern recognition. Signature patterns, like those generated 

using forward models in this thesis, can be used to sweep through a dataset looking for 

this specific signature. This method was suggested by Keating and Sailhac (2004), 

however, their method used theoretical anomalies not known pipe anomalies. 

Once a potential pipe target has been isolated, the area should be investigated with 

ground surveys (total magnetic field, HLEM, gravity, etc.), which help pinpoint the 

potential pipe in order to locate a drilling program. Since the physical properties of the 

pipes in the Diavik area have been found during this thesis, inversions of the potential 
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target can also help define potential drill locations. By using only field data, the default 

mode inversions will only generate a fuzzy blob close to the surface. Using model mode 

depth weighting parameters defined during this thesis and the magnetic susceptibility and 

density models for pipe A154N a better inverted subsurface was created and 

consequently better constraints for any drill programs. It is noted that the geometry of 

pipe A154N may or may not be similar to any given potential target pipe, however, it will 

give the inversion a good starting point. After the first inversion, a better idea of pipe 

geometry will be generated and the model can be changed to fit a new pipe's geometry. 

For example the crater zone root zone interface may be shallower, and the pipe diameter 

may be larger. 

By using the techniques outlined in this thesis, more information was gained about pipe 

A154N. What is even more, these techniques and physical property values can be applied 

to aid in the exploration of unknown kimberlites in the Diavik area. 
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Remanent Magnetic 
Sample Rock Density Magnetization Susceptibility Resistivity 
Number Type (g/cm3

) (Aim) (unitless) (ohm-m) 
1.00 Host Rock 2.60 0.00161 -0.00040 N/A 
2.00 Host Rock 2.70 0.00061 0.00005 N/A 
3.00 Host Rock 2.63 0.00031 -0.00009 N/A 
4.00 Host Rock 2.63 N/A -0.00008 N/A 
5.00 Host Rock N/A N/A 0.00025 N/A 
6.00 Host Rock 2.58 0.00074 0.00002 N/A 
7.00 Host Rock 2.67 0.00128 -0.00032 N/A 
8.00 Host Rock 2.73 N/A N/A N/A 
9.00 Host Rock 2.74 0.02588 N/A N/A 
10.00 Host Rock 2.69 0.00120 N/A N/A 
11.00 Host Rock 2.62 0.00083 -0.00026 N/A 
12.00 Host Rock 2.66 N/A 0.00008 N/A 
13.00 Host Rock 2.64 0.00050 N/A N/A 
14.00 Host Rock 2.63 0.00081 -0.00028 N/A 
15.00 Host Rock 2.66 0.00107 0.00011 N/A 
16.00 Host Rock 2.64 0.00063 N/A N/A 
17.00 Host Rock 2.69 0.00054 N/A N/A 
18.00 Host Rock 2.66 0.00167 -0.00006 N/A 
19.00 Host Rock 2.65 0.00035 -0.00036 N/A 
20.00 Host Rock 2.70 0.00286 0.00022 N/A 
21.00 Host Rock 2.62 0.00068 -0.00006 N/A 
22.00 Host Rock 2.58 0.00078 -0.00021 N/A 
23.00 Host Rock 2.73 0.00104 0.00021 N/A 
24.00 Host Rock 2.60 0.00098 -0.00009 N/A 
25.00 Host Rock 2.78 0.00106 0.00026 N/A 
26.00 Host Rock 2.71 0.00116 -0.00001 N/A 
27.00 Host Rock 2.72 0.00010 0.00017 N/A 
28.00 Host Rock 2.66 0.00056 N/A N/A 
29.00 Host Rock 2.61 0.00147 -0.00006 N/A 
30.00 Host Rock 2.64 0.00140 0.00005 N/A 
31.00 Host Rock 2.66 0.00403 -0.00013 N/A 
32.00 Host Rock N/A N/A N/A N/A 
33.00 Host Rock N/A N/A -0.00010 N/A 
34.00 Host Rock 2.70 0.00224 0.00017 N/A 
35.00 Host Rock 2.66 0.00080 -0.00002 N/A 
36.00 Host Rock 2.68 0.00090 0.00000 N/A 
37.00 Host Rock N/A N/A -0.00014 N/A 
38.00 Host Rock 2.61 0.00088 -0.00008 N/A 
39.00 Host Rock 2.62 0.00218 -0.00015 N/A 
40.00 Host Rock 2.68 0.00216 -0.00011 N/A 
41.00 Host Rock 2.67 0.00106 -0.00037 N/A 
42.00 Host Rock 2.73 0.00066 0.00040 N/A 
43.00 Host Rock 2.62 0.00092 0.00001 N/A 
44.00 Host Rock N/A N/A -0.00016 N/A 
45.00 Host Rock 2.76 0.00277 0.00034 N/A 
46.00 Host Rock 2.66 0.00026 0.00001 N/A 
47.00 Host Rock 2.66 N/A 0.00002 N/A 
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Remanent Magnetic 
Sample Rock Density Magnetization Susceptibility Resistivity 
Number Type Ca/cm3

) CAlm) (unitless) (ohm-m) 
48.00 Host Rock 2.72 N/A 0.00023 N/A 
49.00 Host Rock N/A N/A 0.00055 N/A 
50.00 Host Rock 2.74 0.03760 0.00023 N/A 

51.00 Host Rock N/A N/A 0.00050 9,075.12 
52.00 Host Rock 2.62 0.00080 -0.00009 N/A 
53.00 Host Rock 2.66 0.00572 0.00008 11,572.21 
54.00 Host Rock 2.60 0.00089 0.00009 N/A 
55.00 Host Rock 2.61 0.00030 0.00013 17,755.27 
56.00 Host Rock 2.68 0.00114 0.00002 N/A 
57.00 Host Rock 2.69 0.00281 0.00009 4,096.56 
58.00 Host Rock 2.65 0.00057 0.00007 3,877.47 
59.00 Host Rock 2.67 0.01251 0.00020 11,734.34 
60.00 Host Rock N/A N/A 0.00009 N/A 
61.00 Host Rock 2.69 0.00138 0.00004 12,404.07 
62.00 Host Rock 2.60 0.00317 -0.00003 19,898.40 
63.00 Host Rock 2.69 0.00109 0.00010 N/A 
64.00 Host Rock 2.65 N/A 0.00013 N/A 
65.00 Root Zone 2.87 0.32427 0.01400 1,124.57 
66.00 Root Zone 2.71 3.12209 0.00554 N/A 
67.00 Root Zone 2.81 0.33051 N/A N/A 
68.00 Root Zone 2.86 0.60721 0.01780 731.25 
69.00 Root Zone 2.82 3.37052 0.01310 534.27 
70.00 Root Zone N/A 0.89050 0.01580 N/A 
71.00 Root Zone 2.85 0.57745 0.01330 232.74 
72.00 Root Zone 2.72 2.21861 0.00726 N/A 
73.00 Root Zone 2.73 0.83523 N/A 204.97 
74.00 Crater Zone 2.58 0.29894 0.00078 N/A 
75.00 Crater Zone N/A 1.19820 0.00304 5,414.00 
76.00 Host Rock 2.59 0.00290 0.00005 N/A 
77.00 Host Rock N/A 0.00297 0.00002 N/A 
78.00 Host Rock N/A 0.00086 -0.00001 N/A 
79.00 Host Rock 2.60 0.00066 -0.00001 566.48 
80.00 Crater Zone 2.71 0.78800 0.00286 N/A 
81.00 Crater Zone N/A N/A N/A N/A 
82.00 Crater Zone 2.64 N/A 0.00428 325.86 
83.00 Crater Zone N/A 0.57105 N/A 133.62 
84.00 Root Zone 2.88 2.20339 0.00982 691.99 
85.00 Root Zone 2.64 0.61901 0.00762 N/A 
86.00 Root Zone N/A N/A N/A N/A 
87.00 Crater Zone 2.64 0.60316 N/A N/A 
88.00 Root Zone 2.83 N/A 0.00932 N/A 
89.00 Root Zone 2.95 N/A 0.00826 N/A 
90.00 Root Zone 2.69 3.00343 0.00534 474.53 
91.00 Crater Zone N/A 0.84537 N/A N/A 
92.00 Root Zone 2.88 1.75293 0.00694 670.52 
93.00 Crater Zone N/A N/A 0.00557 626.53 
94.00 Crater Zone 2.41 0.28260 0.00056 N/A 
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) (Aim) (unitless) (ohm-m) 
95.00 Crater Zone 2.54 1.32973 0.00388 288.73 
96.00 Crater Zone 2.46 1.88757 0.00211 N/A 
97.00 Host Rock 2.63 0.03538 0.00003 608.22 
98.00 Host Rock 2.73 0.06924 0.00035 1,358.74 
99.00 Host Rock N/A N/A 0.00004 N/A 
100.00 Host Rock 2.78 0.08148 0.00039 N/A 

101.00 Host Rock 2.59 0.00119 -0.00011 4,084.51 
102.00 Host Rock N/A N/A 0.00029 N/A 
103.00 Host Rock 2.60 N/A 0.00000 465.83 
104.00 Host Rock 2.56 N/A -0.00002 508.75 
105.00 Root Zone N/A 0.74993 N/A N/A 
106.00 Root Zone N/A N/A N/A N/A 
107.00 Host Rock 2.65 N/A 0.00013 1,503.52 
108.00 Crater Zone 2.39 0.28805 0.00047 N/A 
109.00 Crater Zone N/A N/A 0.00237 N/A 
110.00 Crater Zone 2.38 0.19254 0.00050 N/A 
111.00 Crater Zone N/A N/A 0.00077 N/A 
112.00 Crater Zone 2.66 N/A 0.00294 N/A 
113.00 Crater Zone N/A 0.00148 0.00430 935.83 
114.00 Crater Zone N/A N/A 0.00119 284.37 
115.00 Crater Zone 2.51 0.09911 0.00122 1,882.33 
116.00 Host Rock N/A N/A 0.00062 1,930.71 
117.00 Host Rock 2.69 0.02384 0.00043 N/A 
118.00 Host Rock 2.68 0.04102 0.00044 1,128.52 
119.00 Host Rock 2.71 0.02889 0.00013 758.03 
120.00 Host Rock 2.68 0.04080 0.00049 619.20 
121.00 Host Rock 2.58 0.00152 0.00001 N/A 
122.00 Host Rock 2.75 0.02771 0.00068 4,312.29 
123.00 Host Rock 2.57 0.00167 0.00004 N/A 
124.00 Host Rock 2.66 0.00125 0.00046 N/A 
125.00 Host Rock 2.69 0.03024 -0.00002 662.68 
126.00 Host Rock 2.82 0.05754 0.00059 3,541.87 
127.00 Host Rock 2.83 N/A 0.00050 N/A 
128.00 Host Rock 2.60 0.00114 N/A 471.53 
129.00 Host Rock 2.75 0.03764 0.00040 1,078.17 
130.00 Host Rock 2.67 0.02250 0.00028 2,303.99 
131.00 Host Rock 2.61 0.00075 0.00004 1,142.16 
132.00 Crater Zone 2.44 0.01483 0.00053 N/A 
133.00 Host Rock 2.61 N/A -0.00006 4,568.32 
134.00 Host Rock 2.59 0.00328 -0.00005 N/A 
135.00 Crater Zone N/A 0.00107 0.00041 N/A 
136.00 Crater Zone 2.54 0.00913 0.00034 N/A 
137.00 Crater Zone N/A N/A 0.00033 N/A 
138.00 Crater Zone 2.43 0.01267 0.00033 N/A 
139.00 Crater Zone N/A N/A 0.00038 N/A 
140.00 Crater Zone 2.40 0.00875 0.00043 N/A 
141.00 Crater Zone N/A N/A 0.00048 N/A 
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142.00 Crater Zone N/A N/A 0.00025 N/A 
143.00 Crater Zone N/A N/A 0.00028 N/A 
144.00 Crater Zone N/A N/A N/A N/A 
145.00 Crater Zone N/A N/A 0.00032 N/A 
146.00 Crater Zone 2.36 0.01786 0.00038 N/A 
147.00 Host Rock N/A 0.00299 0.00018 2,041.07 
148.00 Crater Zone N/A N/A 0.00031 N/A 
149.00 Crater Zone 2.52 0.45555 0.00096 N/A 
150.00 Crater Zone 2.36 0.34919 0.00101 N/A 

151.00 Crater Zone 2.49 0.27116 0.00080 1 '136.70 
152.00 Crater Zone 2.47 0.22075 0.00078 819.23 
153.00 Crater Zone 2.39 0.45839 0.00127 N/A 
154.00 Crater Zone 2.62 0.11421 0.00077 N/A 
155.00 Host Rock 2.65 0.00019 -0.00001 1,571.01 
156.00 Host Rock 2.63 0.00246 N/A N/A 
157.00 Crater Zone 2.47 0.03858 0.00066 N/A 
158.00 Crater Zone N/A N/A 0.00038 N/A 
159.00 Crater Zone 2.54 0.02370 0.00066 N/A 
160.00 Crater Zone 2.54 0.03745 0.00053 370.63 
161.00 Crater Zone 2.56 0.67995 0.00223 N/A 
162.00 Crater Zone 2.52 0.90612 0.00227 1,860.08 
163.00 Crater Zone 2.61 0.44455 0.00188 1,376.12 
164.00 Crater Zone 2.48 0.13482 0.00060 N/A 
165.00 Crater Zone 2.59 0.20584 0.00094 N/A 
166.00 Crater Zone 2.49 0.22838 0.00095 N/A 
167.00 Crater Zone 2.55 0.08354 0.00084 1,713.68 
168.00 Crater Zone 2.42 0.74130 0.00235 894.88 
169.00 Crater Zone 2.58 0.33951 0.00104 854.69 
170.00 Crater Zone 2.53 0.52609 0.00221 762.92 
171.00 Crater Zone 2.57 0.17098 0.00103 171.67 
172.00 Host Rock 2.66 0.00136 0.00006 7,305.93 
173.00 Host Rock 2.70 0.02480 0.00011 12,587.50 
174.00 Host Rock 2.70 0.00121 -0.00002 4,332.28 
175.00 Host Rock 2.73 0.06061 0.00030 N/A 
176.00 Crater Zone 2.59 0.40860 0.00126 N/A 
177.00 Crater Zone 2.48 0.63718 0.00188 1 '113.46 
180.00 Crater Zone 2.41 0.00393 0.00028 N/A 
181.00 Crater Zone 2.47 0.62887 0.00207 N/A 
182.00 Crater Zone 2.60 0.72547 0.00284 3,810.85 
183.00 Crater Zone 2.54 0.44339 0.00280 2,286.90 
184.00 Crater Zone 2.61 0.81257 N/A 2,974.04 
185.00 Host Rock 2.67 0.00077 -0.00004 N/A 
186.00 Host Rock 2.62 0.00055 -0.00001 14,131.90 
187.00 Crater Zone N/A N/A 0.00031 N/A 
188.00 Crater Zone N/A N/A 0.00047 N/A 
189.00 Crater Zone N/A N/A 0.00026 N/A 
190.00 Crater Zone N/A N/A 0.00046 N/A 
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191.00 Crater Zone 2.68 1.05915 0.00216 4,124.35 
192.00 Crater Zone 2.67 1.62823 0.00290 3,368.33 
193.00 Crater Zone 2.51 1.07055 0.00327 4,564.02 
194.00 Crater Zone 2.58 0.08931 0.00563 N/A 
195.00 Crater Zone 2.43 0.14837 0.00105 1,542.60 
196.00 Crater Zone 2.62 0.03668 0.00041 6,534.78 
197.00 Crater Zone N/A N/A 0.00041 N/A 
200.00 Crater Zone 2.35 0.03373 0.00008 N/A 
201.00 Crater Zone N/A N/A N/A N/A 
202.00 Crater Zone N/A N/A 0.00000 N/A 
203.00 Crater Zone 2.34 0.00778 0.00008 N/A 

204.00 Root Zone 2.85 1.46940 0.00173 N/A 
205.00 Root Zone 2.64 0.07517 0.00032 N/A 
206.00 Host Rock 2.63 0.00133 -0.00004 N/A 
207.00 Host Rock 2.73 0.00092 0.00011 N/A 
208.00 Host Rock 2.58 0.00202 -0.00010 N/A 
209.00 Host Rock 2.67 0.00162 0.00000 N/A 
210.00 Host Rock 2.67 N/A 0.00006 N/A 
211.00 Host Rock 2.75 N/A N/A N/A 
212.00 Crater Zone 2.40 0.05689 0.00046 N/A 
213.00 Crater Zone 2.15 0.01054 N/A N/A 
214.00 Crater Zone 2.54 0.06349 0.00036 N/A 
215.00 Host Rock N/A N/A 0.00032 N/A 
216.00 Host Rock 2.63 0.00065 0.00016 N/A 
217.00 Host Rock 2.64 0.00085 -0.00001 N/A 
218.00 Host Rock 2.65 0.00085 -0.00002 N/A 
219.00 Host Rock 2.67 0.00044 -0.00004 N/A 
220.00 Host Rock 2.74 0.00033 0.00023 N/A 
221.00 Host Rock 2.64 0.00215 -0.00004 N/A 
222.00 Crater Zone 2.81 N/A N/A N/A 
224.00 Root Zone N/A N/A N/A N/A 
225.00 Host Rock 2.68 N/A 0.00013 N/A 
226.00 Host Rock 2.63 0.00170 -0.00004 N/A 
227.00 Crater Zone 2.40 0.05499 0.00025 N/A 
228.00 Crater Zone 2.52 0.05446 -0.00028 N/A 
229.00 Crater Zone 2.27 0.03740 0.00030 N/A 
230.00 Crater Zone N/A N/A N/A N/A 
231.00 Crater Zone 2.64 N/A 0.00003 N/A 
232.00 Crater Zone N/A N/A N/A N/A 
233.00 Crater Zone 2.39 0.02829 0.00017 N/A 
234.00 Crater Zone N/A N/A N/A N/A 
235.00 Host Rock 2.64 0.00388 -0.00008 N/A 
236.00 Host Rock 2.61 0.00069 -0.00008 N/A 
237.00 Host Rock 2.57 0.00149 -0.00004 N/A 
238.00 Root Zone 2.90 1.23297 0.00130 N/A 
239.00 Crater Zone 2.37 0.07674 0.00030 N/A 
240.00 Crater Zone 2.75 N/A N/A N/A 
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241.00 Crater Zone 2.69 N/A N/A N/A 
242.00 Host Rock N/A N/A 0.00047 N/A 
243.00 Host Rock 2.64 0.00351 0.00001 N/A 
244.00 Host Rock N/A N/A N/A N/A 
245.00 Host Rock 2.60 0.00107 -0.00002 N/A 
246.00 Crater Zone N/A N/A 0.00019 N/A 
247.00 Host Rock 2.68 0.00138 -0.00004 N/A 
248.00 Host Rock 2.62 0.00024 -0.00012 N/A 
249.00 Host Rock 2.70 0.00194 N/A 9,834.01 
250.00 Host Rock 2.63 0.00007 N/A 13,034.11 
251.00 Host Rock 2.72 0.00007 0.00000 N/A 
252.00 Host Rock 2.71 0.00199 N/A 10,457.16 
253.00 Host Rock N/A N/A -0.00007 N/A 
254.00 Host Rock 2.77 0.00010 N/A 8,234.06 

255.00 Crater Zone N/A N/A 0.00207 N/A 
256.00 Crater Zone N/A N/A 0.00017 N/A 
257.00 Host Rock 2.71 0.00016 N/A 10,315.90 
258.00 Host Rock 2.62 0.00209 N/A 7,494.83 
259.00 Host Rock 2.71 0.00022 N/A N/A 
260.00 Root Zone 2.55 0.01105 0.00049 N/A 
261.00 Host Rock N/A 0.00028 N/A 15,868.46 
262.00 Host Rock 2.66 0.00006 0.00000 N/A 
263.00 Host Rock 2.74 0.02254 0.00035 N/A 
264.00 Host Rock 2.77 0.00021 0.00014 N/A 
265.00 Host Rock 2.63 0.00016 -0.00001 N/A 
266.00 Host Rock 2.79 0.00019 0.00015 N/A 
267.00 Host Rock 2.71 0.00074 0.00000 N/A 
268.00 Host Rock N/A N/A N/A N/A 
269.00 Host Rock 2.64 0.00011 -0.00004 N/A 
270.00 Host Rock 2.63 0.00037 -0.00002 N/A 
271.00 Crater Zone N/A N/A 0.00021 N/A 
272.00 Crater Zone 2.74 0.20369 N/A N/A 
272.50 Host Rock 2.64 0.00030 N/A 17,611.93 
273.00 Crater Zone N/A N/A 0.00008 N/A 
274.00 Crater Zone 2.56 0.00097 0.00050 603.88 
275.00 Crater Zone 2.47 0.00045 0.00052 N/A 
276.00 Crater Zone 2.40 0.00147 N/A N/A 
277.00 Crater Zone N/A N/A 0.00144 N/A 
278.00 Crater Zone 2.39 0.00070 0.00052 N/A 
279.00 Crater Zone 2.47 0.00100 0.00050 261.94 
280.00 Crater Zone 2.58 0.00053 0.00053 N/A 
281.00 Crater Zone 2.58 0.00012 N/A N/A 
282.00 Crater Zone N/A N/A 0.00055 N/A 
283.00 Crater Zone 2.47 0.00140 0.00093 233.07 
284.00 Host Rock 2.64 0.00010 0.00003 8,984.85 
285.00 Host Rock 2.63 0.00010 0.00005 N/A 
286.00 Host Rock 2.62 0.00031 0.00000 48,535.04 
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287.00 Host Rock 2.62 0.00006 0.00000 18,586.88 
288.00 Host Rock 2.72 0.00012 0.00025 N/A 
289.00 Host Rock 2.65 0.00011 0.00001 22,195.17 
290.00 Host Rock 2.65 0.00005 0.00007 N/A 
291.00 Crater Zone N/A N/A 0.00055 N/A 
292.00 Crater Zone N/A N/A 0.00060 N/A 
293.00 Crater Zone N/A N/A 0.00070 N/A 
294.00 Crater Zone N/A N/A 0.00070 N/A 
295.00 Crater Zone 2.66 0.00055 0.00061 N/A 
296.00 Host Rock 2.66 0.00025 0.00004 8,622.92 
297.00 Host Rock 2.70 0.00016 0.00012 N/A 
298.00 Host Rock 2.74 N/A 0.00073 N/A 
299.00 Root Zone 2.65 0.12491 0.01140 N/A 
300.00 Root Zone 2.31 0.06651 0.00642 N/A 
301.00 Root Zone N/A N/A 0.01520 N/A 
302.00 Crater Zone 2.47 0.01058 0.00170 N/A 
303.00 Host Rock 2.77 0.00232 0.00018 N/A 

304.00 Root Zone N/A N/A 0.00128 N/A 
305.00 Crater Zone N/A N/A 0.00067 197.20 
306.00 Crater Zone 2.41 0.00723 0.00029 N/A 
307.00 Host Rock 2.75 0.00600 0.00054 15,250.98 
308.00 Crater Zone 2.41 0.00470 0.00031 N/A 
309.00 Root Zone N/A N/A 0.00133 N/A 
310.00 Root Zone 2.87 0.22996 0.00175 N/A 
311.00 Crater Zone 2.64 0.00227 0.00048 N/A 
312.00 Root Zone 2.70 0.00211 0.00045 11,292.79 
313.00 Root Zone N/A N/A 0.00095 2,495.45 
314.00 Host Rock 2.64 0.00296 0.00000 17,260.59 
315.00 Host Rock 2.69 0.00347 0.00025 2,313.89 
316.00 Crater Zone 2.28 0.46245 0.00234 N/A 
317.00 Root Zone 2.78 1.94778 0.01480 N/A 
318.00 Crater Zone 2.66 0.59502 0.02700 952.77 
319.00 Host Rock N/A N/A 0.00047 15,225.64 
320.00 Host Rock 2.67 0.00079 0.00040 N/A 
321.00 Host Rock 2.68 0.00191 0.00005 N/A 
322.00 Host Rock 2.59 0.00137 0.00001 N/A 
323.00 Host Rock 2.61 0.00131 0.00034 259.77 
325.00 Crater Zone 2.38 0.10831 0.00064 N/A 
326.00 Host Rock N/A N/A 0.00034 N/A 
327.00 Host Rock 2.57 4.86058 0.00248 N/A 
328.00 Crater Zone N/A N/A 0.00040 N/A 
329.00 Crater Zone N/A N/A 0.00020 N/A 
330.00 Crater Zone N/A N/A 0.00032 N/A 
331.00 Crater Zone N/A N/A 0.00062 N/A 
332.00 Host Rock 2.72 0.63474 0.00090 3,882.78 
333.00 Host Rock 2.72 0.00655 0.00024 34,113.84 
334.00 Host Rock 2.72 0.06517 0.00035 10,881.88 
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335.00 Host Rock 2.72 0.05446 0.00037 9,573.94 
336.00 Crater Zone N/A N/A 0.01760 N/A 
337.00 Crater Zone 2.24 0.98391 0.01750 N/A 
338.00 Crater Zone N/A N/A N/A N/A 
339.00 Crater Zone 2.38 3.26027 0.02270 N/A 
340.00 Crater Zone N/A N/A 0.01720 N/A 
341.00 Crater Zone 2.59 1.58224 0.01180 N/A 
342.00 Host Rock 2.73 0.08657 0.00051 6,376.89 
343.00 Host Rock 2.72 0.52894 0.00039 9,508.05 
344.00 Crater Zone 2.29 1.74927 0.01790 N/A 
345.00 Crater Zone 2.57 1.39994 0.02070 N/A 
346.00 Host Rock 2.73 0.00362 0.00017 N/A 
347.00 Host Rock N/A N/A N/A N/A 
348.00 Host Rock 2.71 0.00349 0.00009 N/A 
349.00 Host Rock N/A N/A 0.00016 N/A 
350.00 Host Rock 2.65 0.00460 0.00003 N/A 
351.00 Crater Zone 2.85 1.13414 0.01080 N/A 
352.00 Crater Zone 2.54 1.77913 0.00400 N/A 
353.00 Root Zone 2.64 5.47868 0.02860 6,378.70 
354.00 Root Zone 2.60 1.84680 0.04300 1,939.03 
355.00 Crater Zone 2.72 N/A 0.00047 N/A 
356.00 Host Rock 2.70 0.01022 0.00022 N/A 
357.00 Host Rock 2.73 0.00179 0.00020 9,881.79 
358.00 Host Rock N/A N/A 0.00019 16,599.50 
359.00 Host Rock 2.72 0.00236 0.00017 10,669.86 
360.00 Host Rock 2.73 0.00177 0.00005 N/A 
361.00 Host Rock N/A N/A 0.00000 N/A 
362.00 Crater Zone 2.49 0.08012 0.00096 N/A 
363.00 Crater Zone 2.59 1.60330 0.01760 N/A 
364.00 Host Rock 2.71 0.00075 0.00018 2,276.78 
365.00 Crater Zone N/A N/A 0.00333 N/A 
366.00 Host Rock 2.62 0.00585 0.00003 2,063.45 
367.00 Crater Zone N/A N/A 0.00063 N/A 
368.00 Crater Zone N/A N/A 0.00107 N/A 
369.00 Crater Zone N/A N/A 0.00019 N/A 
370.00 Crater Zone 2.42 0.06532 0.00068 N/A 
371.00 Crater Zone 2.58 0.07162 0.00032 N/A 
372.00 Crater Zone 2.44 0.04644 0.00041 N/A 
373.00 Host Rock 2.70 0.00192 0.00023 1,975.05 
374.00 Host Rock 2.65 0.00200 0.00003 12,783.04 
375.00 Host Rock 2.72 0.00497 0.00024 5,803.08 
376.00 Host Rock 2.64 0.00377 0.00003 9,794.97 
377.00 Root Zone N/A N/A 0.00551 N/A 
378.00 Root Zone N/A N/A 0.00318 N/A 
379.00 Host Rock 2.62 0.00539 0.00029 1,393.13 
380.00 Host Rock 2.78 0.02765 0.00053 3,856.03 
381.00 Host Rock 2.74 0.02897 0.00035 26,155.14 
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382.00 Root Zone N/A N/A 0.00531 N/A 
383.00 Root Zone N/A N/A 0.00494 N/A 
384.00 Host Rock 2.72 0.00710 0.00026 12,400.61 
385.00 Host Rock 2.72 0.00855 0.00021 32,670.71 
386.00 Crater Zone N/A N/A 0.00177 N/A 
387.00 Crater Zone 2.50 2.37660 0.00504 N/A 
388.00 Crater Zone 2.51 1.63531 0.00364 N/A 
389.00 Crater Zone 2.35 3.16034 0.01010 N/A 
390.00 Crater Zone N/A N/A 0.00889 N/A 
391.00 Crater Zone 2.35 4.55893 0.00885 N/A 
392.00 Host Rock 2.67 0.00324 0.00012 2,198.26 
393.00 Host Rock 2.78 0.00368 0.00023 12,290.89 
394.00 Host Rock 2.59 0.00273 0.00000 16,208.15 
395.00 Host Rock 2.66 0.00599 0.00000 14,268.99 
396.00 Root Zone N/A N/A 0.02070 N/A 
397.00 Root Zone 2.58 6.30515 0.02780 N/A 
398.00 Root Zone 2.29 5.10851 0.01940 N/A 
399.00 Root Zone 2.51 N/A 0.03380 N/A 
400.00 Root Zone 2.53 3.82177 0.02200 N/A 
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