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Abstract 

Coumarin-fused 1-azadienes were prepared via a condensation between 3-

formylcoumarin and a variety of amines. Coumarin-fused 2-azadienes were prepared via 

a condensation of 3-aminocoumarin and a variety of aldehydes. A new synthesis of 3-

aminocoumarin was developed. 

1,2-Imine addition products were observed when 1-azadiene 184 was reacted with 

enamine 134. This reaction resulted in the formation of reduced aldol condensation 

product 242 (37%) and the desired Diels-Alder adduct 243 (1% yield). When 1-azadienes 

186 and 187 were reacted with enamine 134, aldol condensation product 250 was formed 

(53% yield with 186 and 77% yield with 187). When 2-azadiene 222 was reacted with 

enamine 134, compound 252 (95%), which is also the result of 1,2-addition, was formed. 

Using modified Povarov reaction conditions with the 2-azadienes, cycloaddition 

products were isolated. Two procedures were employed. The first one involved the use of 

a preformed 2-azadiene, a catalytic amount of Yb(OTf)3, a non-enamine dienophile in 

acetonitrile. The other procedure was a three-component (in situ generated diene) method 

that entailed the combination of 3-aminocoumarin 212, a catalytic amount of Yb(OTf)3, a 

non-enamine dienophile and an aldehyde. An endo and exo isomer was obtained in most 

cases with selectivity ranging from >95 : 5 in favor or exo to >95 : 5 in favor of endo. 

Two of the Povarov adducts were oxidized with bromine to produce pyrido[2,3-

c ]coumarins. 
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Chapter 1: Introduction 

1.1 The Early History of the Diels-Alder Reaction 

A scientific discovery is both a finding and the recognition of that observation. 

When a researcher does not fulfill both criteria, this leaves the door open for someone 

else to "appropriate" the discovery at a later date. A perfect example of this can be found 

in the experience of Dr. Johannes Thiele, one of the most distinguished and well-rounded 

chemists of the late 1800s and early 1900s. Thiele was fully invested in the synthesis and 

study of fulvene chemistry. Fulvenes were known to be highly reactive and a new class of 

colored compounds, which could be used as synthetic building blocks in the preparation 

of new dyes. During that time, fulvenes were also being used to understand color and its 

relationship to chemical constitution. The most common approach at the time for the 

construction of fulvenes, 3, was the condensation of cyclopentadiene with aldehydes or 

ketones, neat or in non-polar solvents (Scheme 1.1). 1 

0 
1 

Scheme 1.1 

1 Berson, J. A. Tetrahedron 1992,48,3-17. 
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It is conceivable, if not quite likely, that the synthesis of a "double fulvene" (e.g. 

5) by the condensation of two molecules of cyclopentadiene with a conjugated diketone, 

such asp-benzoquinone, would have been of significant interest to Thiele (Scheme 1.2). 

However, no publications containing this molecule, even a passing reference to, or any 

related molecule were ever published under his name. 1 

0 + o=O=o + 0 
1 4 

NaOEt ~ -H20 

0=0=0 --:; 

5 

Scheme 1.2 

In 1906, W. Albrecht, a former student of Thiele, 1 reported a thermal reaction 

between cyclopentadiene and p-benzoquinone that formed both a 1 : 1 adduct 6 and a 2 : 

1 adduct 7.2 Albrecht was very definite about the structure he proposed for the products 

(vide infra) (Scheme 1.3). From the examination of the original paper, it can be seen that 

no reason is given as to why the reaction between cyclopentadiene and p-benzoquinone 

was studied in the first place. Even more interesting is that the paper itself does not reveal 

the date it was received or where the research was done, which was common practice at 

that time. Following Albrecht's original paper, no other papers were ever published with 

2 



his name again. Could it be that Thiele gave Albrecht a project that was aimed at the 

construction of the "double fulvene"? It is known that bases decompose quinones and it 

would not have been unreasonable for the cyclopentadiene and p-benzoquinone to be 

mixed before base was added, thus giving the mysterious products. In Albrecht's thesis, it 

is stated that only quinones do not eliminate water when combined with cyclopentadiene 

under the standard conditions of the fulvene synthesis.3 

Though there is no evidence, Thiele most likely viewed Albrecht's work as 

disappointing and wanted nothing more to do with the project and hence gave permission 

for Albrecht to publish the facts, but without his name appearing on the paper. It is 

unclear whether or not Thiele and Albrecht realized the significance of this 

unprecedented observation, but their failure to study it further suggests they did not. 

It was not until 1928 that a pair of researchers took a giant leap backwards and 

comprehended the findings of Thiele and Albrecht. This keen insight of Otto Diels and 

his student, Kurt Alder, led to the correct identification of the products arising from the 

reaction reported by Albrecht.4 A key part of the structural determination was the 

demonstration that the 1 : 1 adduct 8 and 2: 1 adduct 9 each had only two C=C, rather 

than three and four, respectively, as suggested by Albrecht (Scheme 1.3). This was 

demostrated by derivatization of the unknown products. 

2 Albrecht, W. Justus Liebigs Ann. Chern. 1906,348, 31-49. 
3 Albrecht, W. Uber Cyclopentadienchinone. 1902, Inaugural Dissertation, Munich. 
4 Diels, 0.; Alder, K. Justus Liebigs Ann. Chern. 1928, 460, 98-122. 
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0 

¢ 
0 

4 

Albrecht's proposed reaction 

0 0 

¢~a¢ 
0 0 
4 8 

Diels' and Alder's proposed reaction 

Scheme 1.3 

0 

0 
9 

Diels and Alder also referenced the work of von Euler and Josephson, who 

reported an unusual and unexpected reaction between p-benzoquinone and isoprene.5 

Von Euler and Josephson were unable to identify the products of this reaction, but were 

confident that the product was a 2 : 1 adduct of isoprene and p-benzoquinone (Scheme 

1.4). The formation of a dioxime and a tetrabromide spoke convincingly for the 2: 1 

ratio. Full identification of the structure was not completed due to the fact that there was 

no straightforward way at the time to assign the proper relative regiochemistry. Von 

Euler and Josephson concluded their findings by saying that future work would be done 

to complete the identification and in the end it never materialized.5 With the benefit of 

hindsight, it seems quite amazing that they did not pursue this work more vigorously. 

They not only had successfully reacted a diene with a dienophile (eight years before Diels 

5 Von Euler, H.; Josephson, K. 0. Ber. Dtsch. Chern. Ges. 1920,53, 822-826. 

4 



and Alder), but they also appeared to have had a sufficient understanding of what was 

occurring. The most likely explanation for von Euler not pursuing what would now be 

known as the "von Euler-Josephen (VEJ) reaction" was his groundbreaking research into 

fermentation, which ultimately earned him and A. Harden the Nobel Prize in 1929. 

0 

0 

z'( ¢ 0 

+ 11 
]Ill' + 

0 

0 
10 4 

0 

12 

Scheme 1.4 

Diels and Alder also cited Lebedev's work6 for recognizing that 4-vinylcyclohexene was 

a dimer of butadiene, and Zincke' s observation of the self -dimerization of 

tetrachlorocyclopentadienone.7 Examining all of these experimental observations together 

revealed the characteristic pattern. Finally, the demonstration of the parent reaction, i.e. 

the formation of cyclohexene from butadiene and ethene by Joshel and Bunz in 1941 

6 a) Lebedev, S. V. J. Russ. Phys. Chem. Soc. 1910,42,949-952. b) Lebedev, S. V. Chem. Abstr. 1912,6, 
2009. 
7 a) Zincke, T.; Gunther, H. Justus Liebigs Ann. Chem. 1892, 272, 243-270. b) Zincke, T.; Bergmann, F.; 
Francke, B.; Prenntzell, W. Justus Liebigs Ann. Chem. 1897,296, 135-158. c) Zincke, T.; Meyer, K. H. 
Justus Liebigs Ann. Chem. 1909,367, 1-13. d) Zincke, T. Pfaffendorf, W. Justus Liebigs Ann. Chem. 1909, 
394,3-22. 

5 



(Scheme 1.5), 8 solidified all of these reactions into one family of reactions, which is 

known commonly as the Diels-Alder reaction. 

200 oc 

(+ 
200-400 atm 

0 II 
13 14a 15a 

Scheme 1.5 

Diels and Alder immediately recognized the potential significance of their work 

in total synthesis and other applications. Apparently they jealously guarded their new-

found discovery, commanding all others not to pursue what they viewed as "their" work. 

They wrote in their paper, "We explicitly reserve for ourselves the application of the 

reaction discovered by us to the solution of problems."4 

Fortunately, few heeded their warnings and cycloaddition experiments were used 

and studied without Diels' and Alder's blessing. Over the last eighty or so years, the 

Diels-Alder reaction, has become one of the most studied organic reactions of all time. 

There seems to be no end to the academic debate over the Diels-Alder reaction from its 

mechanism to its variants and to its application in total synthesis. 

8 a) Joshel, L. M.; Butz, L. W. J. Am. Chem. Soc. 1941, 63, 3350-3351. b) Houk, K. N.; Lin, Y. T.; Brown, 

6 



1.2 Mechanism and Theory of the Diels-Alder Reaction 

The Diels-Alder reaction is far more than its end result of ring formation. The 

reaction is introduced as early as the introductory undergraduate level, which underscores 

its importance in the field of organic chemistry. Beyond the fundamental aspects of the 

reaction, there are many other facets, variants and nuances that are introduced at higher 

levels. A tremendous body of literature on the Diels-Alder reaction has been compiled. 

Only selected aspects of Diels-Alder chemistry that are relevant to this work will be 

discussed below. For more detailed discussion, the reader is referred to textbooks, 

monographs, etc in the vast literature on the Diels-Alder reaction.9 

The Diels-Alder reaction (a [ 4n: + 2n:] cycloaddition) falls under the general 

heading of pericyclic reactions. It takes place between a 1,3-diene (the 4n: component: the 

diene) and an alkene or alkyne (the 2n: component: the dienophile) with simultaneous 

reaction at both ends of both components to afford a cyclohexene or 1 ,4-cyclohexadiene 

15c (Scheme 1.6). Each component undergoes reaction on only one face, which is 

formally described as the reaction being suprafacial in both components. This feature is 

F. K. J. Am. Chem. Soc. 1986, 108, 554-556. 
9 For a small selection, see a) Norton, J. A. Chem. Rev. 1942,31,319-523. b) Martin, J. G.; Hill, R. K. 
Chem. Rev. 1961,61,537-562. c) Sauer, J. Angew. Chem. Int. Ed. Engl. 1966,5,211-230. d) Sauer, J. 
Angew. Chem. Int. Ed. Engl. 1967, 6, 16-33. e) Kwart, H.; King, K. Chem. Rev. 1968, 68, 415-477. f) 
Sauer, J.; Sustmann, R. Angew. Chem. Int. Ed. Engl. 1980, 19,779-807. g) Pancir, J. J. Am. Chem. Soc. 
1982, 104, 7424-7430. h) Gleiter, R.; Bohm, M. C. Pure Appl. Chem. 1983,55,237-244. i) Paquette, L.A.; 
In Asymmetric Synthesis Vol. 3, Morrison, J.D., Ed., Academic Press: New York, 1984, Ch. 4. j) 
Desimoni, G.; Tacconi, G.; Bario, A.; Pollini, G. P. In Natural Product Synthesis through Pericyclic 
Reactions. ACS Monograph; American Chemical Society, Washington D. C. 1984. Ch. 5. k) Helmchen, G.; 
Karge, R.; Weetman, J. In Modern Synthetic Methods. Scheffold. R., Ed., Springer Verlag: New York, 
1986, pp261. 1) Francesco, F.; Taticchi, A. In Dienes in the Diels-Alder Reaction .Ed., Wiley: England, 
2002. m) Corey, E. J.; Nicolaou, K. C.; Synder, S. A.; Montagon, T.; Vassilikogiannakis, G. Angew. Chern. 
Int. Ed. Engl. 2002,41, 1668-1698. n) Corey, E. J. Angew. Chem. Int. Ed. Engl. 2002,41, 1650-1667. 
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responsible for the stereospecificity of the reaction, whereby the relative stereochemistry 

within both the diene and the dienophile is preserved (Scheme 1.7). 

( + IIi 
13 14b 15b 15c 

Scheme 1.6 

The Diels-Alder reaction is often described as being concerted, meaning that the 

two new sigma bonds are formed at the same time. In the case of the parent reaction 

(Scheme 1.5) and other reactions between two symmetrical components, the degree of 

bond formation of the two incipient bonds at the transition state should be equal. Such a 

reaction can be described as being concerted and synchronous. When the placement 

and/or nature of the substitutuents of either or both of the components lowers the 

symmetry of the transition state, differences in the electronic and steric effects associated 

with the two forming bonds will produce different degrees of bond formation at the 

transition state. Reactions of this type can be said to be concerted and asynchronous. 

When the two reaction components are strongly biased electronically, such that 

developing charges at the transition state can be stabilized, a stepwise mechanism can 

come into effect (Scheme 1.7). A consequence of this mechanism is the possibility of the 

loss of the stereospecificity alluded to earlier. This will take place when bond rotation (X 

~ Y) occurs more quickly than (X~ Z) (Scheme 1.8). 
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The three scenarios described above may be viewed as three regions on a 

continuum. Energy profiles corresponding to (A) a concerted synchronous, (B) a 

concerted asynchronous and (C) a stepwise Diels-Alder reaction are presented in Figure 

1.1. As with any concerted reaction, there is no energy minimum between the reactants 
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and the product(s) in concerted synchronous and synchronous reactions. The same is true 

for the concerted asynchronous reaction, but as the degree of asynchronicity increases, a 

feature becomes increasingly prominent in the energy profile. Eventually this feature 

develops into an energy minimum that corresponds to a zwitterionic intermediate and the 

reaction is stepwise. A shallow energy well for this intermediate will corresponding to a 

short-lived intermediate, which may move on to product(s) before stereospecificity is 

lost. A deeper energy well will impart a longer lifetime to the intermediate, such that 

stereospecificity cannot be assured. 

E 

RC 

Concerted 
Synchronous 

E 

RC 

Limit of the 
Concerted 
Asynchronous 

Figure 1.1 

E 

RC 

Non -Concerted 
(two-step) 

The factors influencing the rate, stereoselectivity, regioselectivity, and 

enantioselectivity of the Diels-Alder reaction have been the subjects of extensive 

(C) 
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study. 10
• 

11 Diels-Alder reactions can be classified into one of three processes: neutral, 

normal (electron demand), and inverse electron demand Diels-Alder reactions. The much 

more extensively studied normal Diels-Alder reaction involves electron rich dienes and 

electron deficient dienophiles, whereas the roles of the diene and the dienophile are 

reversed in inverse electron demand Diels-Alder (IEDDA) reactions (Scheme 1.9). 

a. 

b. 

c. 

(+II 0 
13 14a 15a 
EDG EDG 

ED)~+ ~EWG DEWG 
EDG 

23 24 25 
EWG EWG 

~EDG EWG~ + EWG 

DEDG 
26 27 

a= neutral Diels-Alder reaction 
b = normal Diels-Alder reaction 

28 

c =inverse electron demand Diels-Alder reaction 
EDG = electron donating group 
EWG = electron withdrawing group 

Scheme 1.9 

10 a) Woodward, R. B.; The conversation of orbital symmetry; Academic Press: New York, 1970. b) Horn, 
B.A.; Horek, S. L.; Zewail, A. H. J. Am. Chern. Soc. 1996, 118, 8755-8756. c) Houk, K. N.; Gonzalez, J. Et 
al. Ace. Chern. Res. 1995, 28, 81-90. 
11 a) Oppolzer, W. Angew. Chern., Int. Ed. Engl. 1984, 23, 876-889. b) Sauer, J.; Sustmann, R. Angew. 
Chern., Int. Ed. Engl. 1980, 19, 779-807. c) Houk, K. N.J. Am. Chern. Soc. 1973, 95,4092-4094. d) 
Burnier, J. S.; Jorgensen, W. L. J. Org. Chem.1983, 48,3923-3941. 
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According to the frontier molecular orbital (FMO) theory, 12 the rate of the Diels-

Alder reaction is directly related to the magnitude of the smallest HOMO-LUMO energy 

separation (,6.E) of the reacting diene/ dienophile components: HOMOctiene-LUMOctienophile 

or LUMOdiene-HOMOctienophile· For normal Diels-Alder reactions, the electron releasing 

groups on the diene unit raise the diene orbitals in energy relative to those of neutral 

systems. The addition of electron withdrawing groups on the dienophile lowers the 

energy of the dienophile orbitals (Scheme 1.10). Thus the key interaction for normal 

reactions is HOMOdiene-LUMOdienophile· In inverse demand Diels-Alder reactions, the 

presence of electron donating groups on the dienophile and electron withdrawing groups 

on the diene cause the HOMOdienophile-LUMOctiene interaction to become more important 

(Scheme 1.10). In the neutral Diels-Alder reactions, both HOMO-LUMO interactions are 

possible, but the energy gaps are large compared to those of the normal and inverse 

electron demand versions. For this reason, require very forcing conditions. 

--LUMO 11 ,-- LUMO 

LUMO __ \_ ,/1( HOMO -~- ,.-·· 1~ 

HOMO n /\._ ll _H 
_1_~ '-_HOMO 

LUMO_ 11 
1~ ~-... -~-HOMO 

diene dienophile 

a. Neutral D-A 
system 

diene dienophile 

b. Normal D-A 
system 

Scheme 1.10 

_1~ 
diene dienophile 

c. Inverse electron 
demandD-A 

system 

12 



One of the main reasons why the Diels-Alder reaction has such great utility is that 

the regio- and stereochemical outcome of the reaction can easily be predicted. When 

there is an electron-donating group in either the 1- or 2- position of the diene, this results 

in a polarization of the molecular orbitals. This electronic biasing of the diene can be 

explained in terms of orbital coefficient, but is perhaps more easily visualized using the 

simple valence bond description shown in Scheme 1.11. In any event, an electron 

donating substituent at the 1-position leads to a charge build-up at the 4-position and an 

electron donating substitutent at the 2-position leads to a charge build-up at the 1-

position. Similar arguments can be used to explain the electronic bias of a dienophile 

bearing an electron-withdrawing group. Preferred interaction between the more charged 

ends of the two components then forms the basis for explanations of the observed 

regiochemical outcome, which is commonly known as the "ortho" and "para" rules 

(Scheme 1.12). 

A: diene B : dienophile 

te~l 
EWG EWG 

24 

Scheme 1.11 

13 



(a) Ortho 

(b) Para 
® e EDGt 

30 

31 
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32 

Scheme 1.12 

Diels-Alder reactions can proceed via either an endo or exo transition state 

(Scheme 1.13). However, it was recognized early that most reactions prefer to proceed 

via an endo transition state and this is known as the Alder rule (Scheme 1.13). 12 As stated 

by Martin and Hill, "Endo addition involves the tendency for the dienophile substituents 

to be so oriented in the favored transition state that they lie directly above the residual 

unsaturation of the diene .... The transition state is best stabilized by spatial orbital 

overlap and simultaneously least destabilized by unfavorable steric repulsion has the 

lowest free energy of all possible transition states, and consequently predominates in the 

kinetically determined product". 13 Secondary orbital interactions have often been invoked 

to explain this phenomenon although there does not appear to be any strong evidence to 

12 Alder, K.; Stein, G. Angew. Chern. 1937,50,510-519. 
13 Martin, J. G.; Hill, R.K. Chern. Rev.1961, 61, 537-562 
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support it. 14 In fact, some researchers have concluded that this theory does not hold 

true. 15 

R R 

~R Cf <lR = X 
I .. I .. cr R ,:;; R'rx 

= - -R R 
33 34 35 36 

endo addition exo addition 

Scheme 1.13 

Other theories regarding the source of the endo preference involve cr/ n orbital 

interactions in the ground state of an asymmetric diene, 16 as well as molecular orbital 

symmetry considerations. 17 As with most rules, they are made to be broken, and there are 

many cases where no selectivity, or even predominately the exo product, is seen. 18
•
19 

1.3 Inverse Electron Demand Diels-Alder (IEDDA) Reactions. 

14 Ginsburg, D. Tetrahedron 1983, 39, 2095-2135. 
15 a) Xidos, J.D.; Gosse, T. L.; Burke, D. E.; Poirier, R. A.; Burnell, D. J. J. Am. Chern. Soc.2001, 123, 
5482-5488. b) Xidos, J.D.; Poirier, R. A.; Burnell, D. J. J. Org. Chem.1998, 63, 105-112. 
16 a) Paquette, L. A.; Schaefer, A. G.; Blount, J. F. J. Am. Chern. Soc. 1983, 105, 3642-3649. b) Gleiter, R.; 
Paquette, L.A. Ace. Chern. Res. 1983, 16, 328-334. 
17 Hoffmann, R.; Woodward, R. B. J. Am. Chern. Soc. 1965, 87, 4388-4389. 
18 a) Alder, K.; Glinzl, W. Chern. Ber. 1960,93, 809-825. b) Stockmann, H. J. Org. Chem.1961, 26,2025-
2029. c) Smith, J. R. L.; Norman, R. 0. C.; Stillings, M. R. Tetrahedron 1978,34, 1381-1383. 
19 a) Sodupe, M. J. Am. Chern,. Soc. 1997, 119, 4232-4238. b) Suarez, D.; Sordo, J. A. Chern. Commun. 
1998,385-386. c) Oikawa, H.; Kobayashi, T.; Katayama, K.; Suzuki, Y.; Ichihara, A. J. Org. Chern. 1998, 
63, 8748-8756. 
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IEDDA reactions require an electron deficient 1,3-diene. Dienes can be rendered 

electron deficient (i.e. the LUMO energy can be lowered) by the attachment of an 

electron-withdrawing group, by the replacement of one or more of the diene sp2 carbon 

atoms by nitrogen or (at the termini) oxygen or both. In particularly electron deficient 

systems, the low-lying LUMO can cause the diene to be unstable. Embedding the diene 

in an aromatic system can counteract this. In such cases, the IEDDA reaction is generally 

followed by a retro Diels-Alder reaction, in which one or two of the original nitrogen 

atoms are expelled as RCN or N2, respectively. A series of heteroaromatic dienes and 

their IEDDA behaviors are listed below (Figure 1.2). 

370 
380 

N 

390 

----JJia~not an IEDDA diene. 

----J)Ia~A highly unreactive IEDDA diene. 

----J)Ia~low reactivity- needs electron withdrawing groups 
and temperature forcing conditions and a reactive dienophile. N 

N 
40 ( ) .. moderatively reactive, electron withdrawing groups 

llw usually employed and moderate forcing conditions. 
,.:;:::N, 

41 (' N ----JJia~very reactive an electron withdrawing groups 
N~ ) are not necessary an requires mild reaction conditions. 

N 

Figure 1.2 

Since the initial discovery of the Diels-Alder reaction, the vast majority of study 

has been in the area of normal Diels-Alder reaction. Considerably less attention has been 

paid to the IEDDA reaction, although a substantial body of literature on the subject has 
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been complied. Perhaps the major reason for the comparatively small amount of IEDDA 

work on the reaction is the lack of ready access to a broad range of stable IEDDA-active 

electron deficient dienes. As alluded to above, this may well have its origin in the 

instability of many simple electron deficient dienes. 

1.3.1 Heteroaromatic Azadienes Dienes 

The first class of heteroaromatic azadienes to be used in the IEDDA reaction were 

tetrazines.20 The heteroaromatic azadienes have since enjoyed widespread use and in the 

IEDDA reaction, they have found considerable application in the total synthesis of 

natural products.21 3,6-Bis(1,2,2,2-tetrafluoroethyl)-1,2,4,5-tetrazine (42) was the first 

system to be successfully applied in the IEDDA reaction (Scheme 1.14).22 This and 

related azadienes undergo subsequent retro-Diels-Alder reactions, eliminating nitrogen, 

to afford dihydropyridazines or pyridazines. 

20 a) Boger, D. L.; Weimeb, S.M. Hetero Diels-Alder Methodolgy in Organic Synthesis; Academic Press, 
Inc.: San Diego, 1987. b) Fringuelli, F.; Taticchi, A. Dienes In The Diels-Alder Reaction; Wiley 
Interscience: New York, 1990. c) Weimeb, S.M.; Staib, R. R. Tetrahedron 1982,38,3087-3128. d) Boger, 
D. L. Tetrahedron 1986,39,2869-2939. 
21 Boger, D. L. Chern. Rev. 1986, 86,781-793. 
22 Carboni, R. A.; Lindsey, R. V., Jr. J. Am. Chern. Soc.1959, 81, 4342-4346. 
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Scheme 1.14 

As expected, decreasing the number of nitrogen atoms in the heteroaromatic 

azadiene decreases the reactivity. 1,2,4-Triazines are typically less reactive than 1,2,4,5-

tetrazines, but more reactive than 1,2-diazines (pyridazines). For example, 1,2,4-triazine 

47 readily reacts in an intramolecular fashion at room temperature with enamine 48 to 

afford 49 (Scheme 1.15),23 but 1,2-diazine 50 requires far more forcing conditions to 

react in an intramolecular fashion (Scheme 1.16).24 

23 Boger, D. L.; Panek, J. S. Tetrahedron Lett. 1984,25,3175-3182. 
24 Boger, D. L.; Coleman, J. S. J. Org. Chern. 1984, 49, 2240-2245. 
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Scheme 1.15 
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50 

Scheme 1.16 

More recently, 1,3,5-triazines have emerged as useful dienes. Like their 1,2,4-

isomers, these aromatic systems have also been used in the total synthesis of natural 

products.25 For example, the reaction of triester 52 with N-substituted 5-aminoimidazoles 

53 (generated in situ by decarboxylation of 4-hydroxycarbonyl-5-aminoimidazole) gave 

purine derivatives 56. The products presumably arose via an IEDDA reaction to give 54, 

followed by the loss of ethyl cyanoformate to give 55 and then elimination of ammonia to 

give 56 (Scheme 1.17). 

25 Dang, Q.; Liu, Y.; Erion, M. D. J. Am. Chern. Soc. 1999, 121, 5833-5834. 
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Scheme 1.17 

1.3.2 a, P-Unsaturated Keto Esters] 

a,B-Unsaturated carbonyl compounds (1-oxadienes) have also been found to 

participate in the IEDDA reaction.26 The most common reactions are those with alkyl 

vinyl ethers, to afford 2-alkoxy-3,4-dihydro-2H-pyrans, which are important in 

carbohydrate synthesis.27 An example of this type of reaction is the one between 57 with 

ethyl vinyl ether (Scheme 1.18). 28 This reaction produces a mixture of the endo adduct 

59a and the exo adduct 59b. Enhanced yields and higher selectivity could be obtained by 

26 Desimoni, G.; Tacconi, G. Chern. Rev. 1975, 75,651-692. 
27 a) Schmidt, R. R. Pure Appl. Chern. 1987,59, 15-424. b) Schmidt, R. R.; Apparao, S.; Maier, M. E. 
Synthesis 1987, 10,900-904. c) Maier, M. Tetrahedron. Lett. 1985,26,2065-2068. d) Tietze, L. F.; Voss, 
E. Tetrahedron. Lett. 1986,27,6181-6184. 
28 MacDonald, S. J. F.; Huizinga, W. B.; McKenzie, T. C. J. Org. Chern. 1988,53, 3373-3377. 
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increasing the pressure and through the use of a Lewis acid (ethylaluminum dichloride). 

The two diastereomers could be isolated. It was also observed, using 59a, when the 

temperature and amount of Lewis acid increased more endo adduct 59a epimerized to the 

more stable exo adduct 59b. 

n-0Et 

H3co2c~ #' 58 H3C02CYIOY0Et H3C02CI(O"l"'0Et y+ y 
OCH3 

57 

Conditions 

a) neat, 13 kba, 24 °C, 65 h 
b) toulene, 110 °C, 29 h 
c) CH2Cl2, EtAlC12 (0.1 eq), -78 °C 

OCH3 OCH3 
59a 59b 

~ 
-78°C, 5 min 

Yields 

82% 
48% 
75% 

Scheme 1.18 

1.3.3 2-Pyrone 

A:B 

(5.7 : 1.0) 
(1.8 : 1.0) 
(0.8: 1.0) 

2-Pyrones undergo IEDDA reactions with a variety of electron rich dienophiles. 

For example, the reaction of the parent 2-pyrone with alkynes forms strained 

bicyclooctadienes that readily undergo extrusion of C02 (retro hetero Diels-Alder) to 

form aromatic products (Scheme 1.19). The uses of alkenes as dienophiles initially give 

rise to more stable and sometimes isolable bicyclooctenes. These can also give aromatic 

products upon heating via loss of C02 followed by elimination. However, these reactions 
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tend to require harsh conditions (up to 200 °C). As before, the substitution of the pyrone 

with an electron-withdrawing group (especially at the 3-position) renders the system 

more reactive. 

"' 0 
FR ""o1 

EDG64 ~X 

R 

-CO~~x-~0 
~R ~R 

65 66 67 

Scheme 1.19 

Since the dienophile in the first (intermolecular, IEDDA) cycloaddition is 

unactivated, the initial Diels-Alder reaction is slow to proceed and high pressure is 

required to induce the desired transformation. Adduct 69 is also isolable and required 

high temperatures (usually 200-220 °C) for the explusion of C02 and the subsequent 

intramolecular Diels-Alder cycloaddition (Scheme 1.20). The explusion of C02 from 65 

affords a new diene 66, which opens the door to the possibility of performing sequential 

Diels-Alder reactions. This has indeed been accomplished. Reaction of 2-pyrone 60 with 

a,co-diene 68 gave rise to tricyclic compound 71 (Scheme 1.20).29 
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71 70 

Scheme 1.20 

The first natural product to be synthesized through the intermediacy of a 2-pyrone 

was juncusol, a marsh plant constituent that has potent antimicrobial and cytotoxic 

properties. The key step in this synthesis was the reaction of a multi-ringed 2-pyrone with 

1,1-dimethoxyethylene at 140 °C, which formed the aromatized product in 75% yield. As 

before, the new aromatic ring is the result of a domino IEDDA (C02 extrusion) 

elimination sequence (Scheme 1.21).30 

29 Swarbrick, T. M.; Marko, I. E.; Kennard, L. Tetrahedron. Lett. 1991,32,2549-2552. 
30 a) Boger, D. L.; Mullican, M.D. Tetrahedron. Lett. 1982, 23, 4555-4558. b) Boger, D. L.; Mullican, M. 
D. J. Org. Chern. 1984, 49, 4045-4050. 

23 



72 

OCH3 

lOeq. ~OCH3 
73 

140 °C, 22 h, 75% 

Scheme 1.21 

H3CO 

75 

One of the more recent applications of 2-pyrones has been the recognition that the 

initially formed cycloadducts could be used as versatile precursors to a variety of 

multifunctional six-membered rings. The control of the relative stereochemistry that 

comes with the Diels-Alder reaction is one of the main advantages of this approach.31 

Two groups, those of Posner and Marko in particular, have contributed a significant 

amount to this area. They demonstrated separately that the 2-pyrone cycloaddition 

adducts formed can be turned into various enantiopure and biologically active 

compounds. This was accomplished by using chiral auxiliaries on either the diene or 

dienophile and through the use of chiral Lewis acids (Scheme 1.22). 

31 a) Afarinkia, K.; Vinader, V.; Nelson, T. D.; Posner, G. H. Tetrahedron 1992,48,9111-9171. b) Kalinin, 
V. N.; Shilova, 0. S. Russ. Chem. Rev. 1994,63,661-666. 
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Scheme 1.22 

Posner and coworkers found that a tartrate-derived TADDOL-complexed titanium 

(IV) (TADDOL is a,a,a',a'-tetraaryl-1,3-dioxolan-4,5-dimethanol) species catalyses the 

cycloaddition of 3-carbonmethoxypyrone (CMP) 79 with benzyl vinyl ether under very 

mild conditions to produce the endo bicycloadduct as a single diastereomer in 55% 

enantiomeric excess (Scheme 1.23).32 

32 Posner, G. H.; Carry, J. C.; Lee, J. K.; Bull, D. S.; Dai, H. Tetrahedron. Lett. 1994, 35, 1321-1324. 
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Scheme 1.23 

A more impressive result (86% yield, 95% ee) was obtained when a, (R)-(+)-

binol-titanium Lewis acid complex was used to promote the cycloaddition of 3-CMP and 

benzyl vinyl ether. 33 The use of an ytterbium-based Lewis acid in combination with under 

high-pressure, has also been shown to afford high regioselectivity, and 

stereoselecti vi ty. 34
'
35 

1.3.4 Other Electron Deficient Dienes 

In the IEDDA literature, there are relatively few examples of all-carbon electron 

deficient dienes. Heterodienes have found much broader application than all-carbon 

electron deficient dienes as discussed above. Other than the 2-pyrones, all carbon dienes 

are not common. Other all-carbon systems that have found limited application include 

33 a) Posner, G. H.; Eydoux, F.; Lee, J. K.; Bull, D. S. Tetrahedron. Lett. 1994,.35, 7541-7544. b) Posner, 
G. H.; Dai, H.; Lee, J. K.; Bull, D. S.; Eydoux, F.; Lee, J. K. J. Org. Chem. 1996, 61, 671-676. 
34 Posner, G. H.; Ishihara, Y. Tetrahedron. Lett. 1994,35,7545-7548. 
35 Marko, I. E.; Evans, G. R. Tetrahedron. Lett. 1994, 35, 2771-2774. 
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cyclopentadienes, 36 cyclopentadienones, 37 and thiophene-!, 1-dioxides. 38 Other systems 

that have been used sporadically include systems such as 2,3-bis(ethoxycarbonyl)-1,3-

butenediene, 8539
,4° (Scheme 1.24). 

180 oc 90% ... 

86 87 88 

Scheme 1.24 

1.3.5 The Identification of a Potentially Useful Class of Electron Deficient Dienes 

and the Bodwell Group's Involvement in IEDDA Chemistry. 

Danishefsky's diene (1-methoxy-3-trimethylsilyloxy-1,3-butadiene) was first 

reported in 1974 (Scheme 1.25). This is the parent compound of what has become one of 

the most widely used classes of dienes in the realm of the normal Diels-Alder reaction. 

36 Burry, L. C.; Bridson, J. N.; Burnell, D. J. J. Org. Chern. 1995,60,5931-5934. 
37 Harano, K.; Yasuda, M.; Kanematsu, K. J. Org. Chern. 1982,47, 3736-3743. 
38 a) Bluestone, H.; Bimber, R.; Berkey, R.; Mandel, Z. J. Org. Chern. 1961,26,346-351. b) Raasch, M.S. 
]. Org. Chern. 1980,45, 856-867. 
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This popularity can be attributed to broad synthetic utility and ease of preparation.41 As 

such, many dienes related to Danishefsky's diene have been prepared and applied to 

synthetic problems (Scheme 1.25). Rawal recently reported a similar diene 94, but it has 

not yet been embraced by the synthetic community to the same extent as Danishefsky's 

diene (Scheme 1.26). 42 

91 

Et3N, ZnC12 

Me3SiCl 

Me3s;o~ 

OCH3 

90 

Danishefsky's Diene 

Scheme 1.25 

KHMDS, THF 
-78 octo -40 oc 
R3SiCl, -78 oc tort 

92% 
93 

TBSO~ 

NMe2 
94 

Rawal's Diene 

Scheme 1.26 

The electron-donating groups at the 1 and 3 positions of Danishefsky' s and 

Rawal's dienes are responsible for their high reactivity towards a wide range of electron 

39 a) Grundke, C.; Hoffmann, H. M. R. Chern. Ber. 1987, 120, 1461-1462. b) Tarnchompoo, B.; 
Thebtaranonth, C.; Thebtaranonth, Y. Tetrahedron. Lett. 1987, 28, 6671-6674. 
40 Prinzbach, H.; Auge, W.; Basbudak, M. Helv. Chim. Acta. 1971,54,759-764. 
41 Danishefsky, S.; Kitahara, T. J. Am. Chern. Soc. 1974,96,7807-7808. 
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deficient dienophiles. In both dienes, the two electron-donating groups work together to 

electronically bias the two termini of the diene unit. This is directly translated into the 

high degree of predictable regiochemical control that is observed during reactions with 

electronically biased dienophiles. The functionality present in the resulting Diels-Alder 

adducts can be manipulated in a variety of different ways to build more complex systems. 

Rapid access to relatively complex systems is synonymous with potential application in 

synthesis, and this has indeed been realized on many occasions.43 

Using Danishefsky's and Rawal's dienes as models, and replacing the electron 

donating groups with electron withdrawing ones would conceivably give rise to a 

reactive electron deficient diene that exhibits high and predictable regioselectivity in 

IEDDA reactions with electron rich dienophiles. Provided that such dienes could be 

prepared easily and in quantity, such electron deficient dienes would have the potential to 

be as useful synthetically as Danishefsky' s diene. 

Early in the 1980s, Ahn and Hall44 reported the synthesis of four acyclic electron 

deficient dienes (Figure 1.3). These dienes were prepared through Diels Alder reaction of 

cyclopentadiene with either methyl acrylate or acrylonitrile ether (Scheme 1.27). The 

resulting adducts 100 were then formylated and the resulting aldehydes 101 were then 

subjected to Wittig reactions to afford "protected" dienes 95-98. Thermolysis (400-600 

°C) induced retro-Diels-Alder reactions, which liberated the free dienes (Scheme 1.27). 

42 Kozmin, S. A.; Janey, J. M.; Rawal, V. H. J. Org. Chern. 1999, 64,3039-3052. 
43 Danishefsky, S. Ace. Chern. Res. 1981, 14, 400-406. 
44 Ahn, K. -D.; Hall, H. K. J. Polyrn. Sci., Polyrn. Chern .. 1981, 19, 629-644. 
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These dienes polymerized readily (as was the goal of this work) and their Diels-Alder 

chemistry was not investigated. 

CN CN C02CHs 

NC~ 
C02CHs 

NC~ H3co2c~ H,co,c~ 
95 96 97 98 

Figure 1.3 

1. LiNR2 

~X ~ 2. HC02Et ~ 
99 • 'I -----1~ 'I CHO X = CN 

X=C02Me 0 
X X 

1 100 101 

X=CN I 
X = C02Me t Ph3P=CH-Y 

X 400-600oC 
~y..,_ __ kry 

X 

103 102 

X=Y=CN X=Y=CN 
X=CN, Y=C02Me 
X=C02Me, Y=CN 
X=Y=C02Me 

X=CN, Y=C02Me 
X = C02Me, Y = CN 
X=Y=C02Me 

Scheme 1.27 

In the late 1980s and early 1990s, the Padwa group reported the synthesis of 1,3-

bis(phenylsulfonyl)butadiene and its lEDDA reactions with several dienophiles (Scheme 
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1.28 & 1.29).45 This work originated from the unexpected observation of the 

isomerization of 2,3-bis(phenylsulfonyl)butadiene, which was the original diene of 

interest (Scheme 1.28).46 A targeted synthesis of 110 was then developed (Scheme 

1.28).47 The trisulfone 109 was prepared from a condensation of sulphone 104 with 

formaldehyde followed by a Knoevenagel-type condensation with the appropriate 

aldehyde (Scheme 1.28). Reaction of trisulfone 109 with triethyl amine resulted in the 

formation of 110, which presumably arose from dimerization of diene 110. Performing 

the reaction of 110, in the presence of a selection of dienophiles 111-113 gave rise to 

products 114-116. The initial IEDDA adducts were not observed or isolated, having 

apparently undergone (not surprisingly) further transformations, such as eliminations and 

isomerizations (Scheme 1.29). 

0 
H 

Ph02S 0 106 ~S02Ph ) + )l 
methanol 

Ph02S 
Ph02S H H 

104 105 107 ! PhSCHO 
Dean-Stark 

CH2S02Ph 

Ph02S~ 
30% H20 2 

CH2SPh 

Ph02S~ 
S02Ph S02Ph 

109 108 

45 Padwa, A.; Gareau, Y.; Harrison, B.; Rodriguez, A. J. Org. Chern. 1992,57, 3540-3545. 
46 a) Norman, B. H.; Gareau, Y.; Padwa, A. J. Org. Chern. 1991, 56, 2154-2161. b) Padwa, A.; Harrison, 
B.; Norman, B. H. Tetrahedron. Lett. 1989, 30, 3259-3262. c) Padwa, A.; Norman, B. H. Tetrahedron. Lett. 
1988,29,2417-2420. 
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Scheme 1.28 
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Scheme 1.29 

1.3.6 The Bodwell group's involvement in IEDDA chemistry. 

The main focus of the Bodwell group has been the synthesis of cyclophanes, 

especially metacyclophanes, for which isophthalates are important precursors. 

Unfortunately, there does not appear to be a widely applicable method for their synthesis. 

47 Maskyama, Y.; Sato, H.; Kurusu, Y. Tetrahedron Lett. 1985,26, 67-68. 

32 



Current methods rely on the elaboration of commercially available isophthalate systems, 

and/or aromatic substitution and functional group interconversions of various aromatic 

precursors. With this in mind, research in the Bodwell group aimed at using electron 

deficient 1,3-subsituted dienes as potentially general isophthalate progenitors was 

initiated. With the knowledge that known 1,3-disubstituted electron deficient dienes were 

not very stable (vide supra), annulated systems were targeted for initial study. It was 

envisaged that cycloalkane fusion, as in 117-120 (Figure 1.4 ), would provide some 

kinetic and thermodynamic stability, while still maintaining access to the reactive s-cis 

conformation. 

Figure 1.4 

Based on synthetic considerations, diene 120 was the first choice for investigation. The 

preliminary system explored in the Bodwell group was 121 (Scheme 1.30). This was 

synthesized in 5 steps from 2-cyclohexene. 48 

The electron deficient diene 121 was stable at -20 oc for several weeks and 

readily reacted with 1,1-diethoxyethylene at reflux in benzene. The bicyclic product 122 

was obtained in 81% yield. The presence of only one diastereomer is consistent with a 
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concerted process. Diene 121 underwent cycloaddition with a variety of other 

dienophiles, including styrene and ethyl vinyl ether. In the case of styrene, two 

diastereomers arising from endo and exo addition were obtained in a 78 : 22 ratio. The 

endo adduct 125 was observed to epimerize during flash chromatography. Epimerization 

during flash chromatography was also observed for the adduct 127 of diene 121 and ethyl 

vinyl ether. This reaction proceeded quantitatively and gave only one diastereomer 

(Scheme 1.30). The results described above were also consistent with a concerted IEDDA 

reaction. A series of other dienes 129-132 related to 121 have also been prepared and 

studied (Figure 1.5).49 

48 Bodwell, G. J.; Pi, Z. Tetrahedron. Lett. 1997,38, 309-312. 
49 Results from Zulan Pi thesis, Memorial University Newfoundland, 1996. 

34 



0 

J~Et ~~ ~ C0
2
Et 

73 U.,.. ~ 0 121 ~·--benzene toluene, 123 o 

:-,C0
2
Et reflux, 16 h reflux, 3d Cr:x co 81% , ;:>'oEt 74% ,:- ,,,co,Et 

2Et SS 

H CO Et 
(±) 

2 
80-90"C H Ph 

122 24 h, >95% (±) 
(sealed tube) 124 0 + 

Scheme 1.30 

0 0 

~co2Bn ~CN 
129 

0 

~CO,Et 

131 

130 

0 

Figure 1.5 

0 

132 

C:r::r,c""E' 
H ''1Ph 

(±) 

125 

o ~~ Si02 

c]:xco2Et 
H Ph 
t±) 

126 

35 



A coumarin-based system 133 was the next step in the evolution of electron 

deficient dienes in the Bodwell group (Scheme 1.31). The coumarin-based diene 133, 

which was prepared in a single step and in high yield, was found to be much more stable 

than the cyclohexanone-based dienes, presumably due to the partial aromatic nature of 

the pyrone ring. 

The increase in stability inevitably caused a decrease in the IEDDA reactivity. 

Some electron rich dienophiles that reacted with the diene 121, e.g. ethyl vinyl ether, 

failed to react with diene 133, even under more forcing conditions. Most of the work in 

this area was conducted using 133b, but some other dienes (133a, 133c, 133d) were also 

prepared and found to exhibit a similar lack of reactivity to that of 133. 

When dienes 133a-133d were reacted with enamines they gave rise to aromatic 

products. In no case was the initial Diels-Alder adducts observed. Thus no comment 

could be made regarding the mechanism (1 vs. 2 steps). An IEDDA-driven domino 

reaction was postulated to explain the formation of the observed products. Following an 

initial IEDDA reaction to give rise to adduct 135, elimination of pyrolidine to give a new 

diene 136 can occur. Dehydrogenation of this diene then gives the observed aromatized 

product 137 (Scheme 1.31).50 The mechanism of dehydrogenation has not been fully 

investigated and is not completely understood. Excess enamine appears to be at least 

partly responsible for accepting H2. 

50 Bodwell, G. J.; Pi, Z. Pottie, I. R. Synlett. 1999, 4, 477-479. 
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In work aimed at further exploiting the new IEDDA-driven domino reaction 

described above, a chromone-based system 140 was synthesized (Scheme 1.40). The goal 

of this research was to see if it was possible to provide access to functionalized 

xanthones. Xanthones are naturally occurring compounds that have shown great potential 

in treatments for various diseases, such as HIV51 and cancer. 52 

51 Groweiss, A.; Cardellina, J. H.; Boyd, M. R.; J. Nat. Prod. 2000, 63, 1537-1539. 
52 Decantini, M.; Bisi, A.; Cavalli, A.; Belluti, F.; Gobbi, S.; Rampa, A.; Valentia, P.; Palzer, M.; 
Palusczak, A.; Hartmann, R. W. J. Med. Chern. 2001,44,672-680. 
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Akiba et al. first reported a chromone-based diene similar to the coumarin 133.53 

The synthesis of this diene was accomplished by with the reaction of 3-formylchromone 

with diethyl malonate, TBSOTf, and 2,6-lutidine, to give 139. It was later discovered in 

the Bodwell group that using the Horner-Wadsworth-Emmons modification of the Wittig 

reaction could give the same product with similar yields (Scheme 1.32).54 If reactions of 

this diene with enamines were to follow a mechanism analogous to that of the coumarin-

based diene (Scheme 1.33), functionalized xanthones would result. However, this was not 

the case. Instead, 2-hydroxybenzophenones were the exclusive products. An 

intramolecular elimination apparently replaces the dehydrogenation step at the end of the 

domino sequence (Scheme 1.34).55 Related dienes 140b and 140c bearing electron-

withdrawing groups other then an ethyl ester have also been reported and these behave in 

a similar fashion to 139. However, the key discovery was the demonstration that the 2-

hydroxybenzophenones could be converted into isophthalates. Dakin reaction of 146 

afforded isophthalate mono-ester 147, which was esterified to afford diethyl isophthalate 

148 (Scheme 1.34).56 

53 Iwasaki, H.; Kum, T.; Yamaoto, Y.; Akiba, K. Heterocycles 1988,27, 1599-1606. 
54 Bodwell, G. J.; Hawco, K. M.; da Silva, R. P. Synlett. 2003, 179-182. 
55 Unpublished results, Krista Hawco. 
56 Bodwell, G. J.; Hawco, K. M.; Satou, T. Synlett 2003, 879-881. 
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The original goal of preparing xanthones could be achieved by using an 

appropriate dienophile (Scheme 1.35). This was accomplished by replacing the ~-H 

required for the intramolecular elimination with an alkoxy group. Thus the use of the 
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enamine derived from dimethoxyacetaldehyde and pyrrolidine gave rise to xanthone 153 

(82%) (Scheme 1.35). 
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Although initially aimed solely at the synthesis and study of all-carbon dienes, an 

obvious extension of the IEDDA chemistry described above is the use of analogous 

heterodienes. Coumarin-based dienes 154 and 155 can therefore be identified as targets 

for synthesis and study (Scheme 1.36). The presence of the nitrogen atom would be 

expected to lower the LUMO energy (relative to coumarin-fused diene 133b), thus 

rendering dienes 154 and 155 more reactive to electron rich dienophiles than 133b, which 

was found to be unreactive towards ethyl vinyl ether. The decision to incorporate 

nitrogen only in the side chain is based on (perceived) synthetic considerations. If 154 

and 155 undergo IEDDA-driven domino processes similar to those of 133b, then the 

products obtained would be pyrido[3,4-c]coumarins 156 and pyrido[2,3-c]coumarins 157 

(Scheme 1.36). 
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Examples of pyrido[3,4-c]coumarins 157 are rare in the literature. 57 However, 

Boger has previously reported 1-azadiene precursors.58 This particular diene readily 

participates in the IEDDA reaction, producing unaromatized products 159 and 160 

(Scheme 1.37). These compounds were not aromatized, but, related compounds (also 

reported by Boger) were efficiently aromatized by double elimination (Scheme 1.38).59 

Furthermore coumarin-based azadiene 158 was used by Boger in the total synthesis of 

57 a) Koelsch, C. F.; Sundet, S. A. J. Am. Chern. Soc. 1952, 72, 1681-. b) Courts, A.; Petrow, V. J. Chern. 
Soc. 1952, 334-337. c) Reynolds, G.; VanAllan, J. A.; Petropolous J. Heterocyclic Chern. 1970, 7, 1061-
1069. d) VanAllan, J. A.; Chang, S.C.; Reynolds J. Heterocyclic Chern. 1972, 9, 1245-1249. e) Reid, W.; 
Nyiondi-Bonguen Justus Liebigs Ann. Der Chern. 1973, 1-4. f) Fujimoto, A.; Sakurai, A.; Midorikawa, H.; 
Iwase, E. Nippon Kagaku Zasshi 1974, 1- g) Sakurai, A.; Midorikawa, H. J. Chern. Soc., Perkin Trans. 
1975, 1, 2025-2028. h) Fujimoto, A.; Sakurai, A.; Iwase, E. Bull. Chern. Soc. Japan 1976, 49, 809-810. 
58 a) Boger, D. L.; Corbett, W. L.; Curran, T. T.; Kasper, A.M. J. Am. Chern. Soc. 1991,113, 1713-1729. 
b) Boger, D. L.; Nakahara, S. J. Org. Chern. 1991,56, 880-884. 
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Streptonigrone C.60 Diels-Alder reaction with ketene acetal164 gave adduct HiS, which 

was subsequently transformed into 166 and ultimately Streptonigrone C 167 (Scheme 

1.39). 
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59 Boger, D. L.; Zhang, M. J. Org. Chern. 1992,57, 3974-3977. 
60 a) Boger, D. L.; Nakahara, S. J. Org. Chem.1991, 56, 880-884. b) Boger, D. L.; Cassidy, K. C.; 
Nakahara, S. J. Am. Chern. Soc. 1993, 115, 10733-10741. 
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In the literature, there are very few examples of pyrido[2,3-c]coumarins 157.61 

The Yamanaka group prepared one example of this system using an intramolecular 

IEDDA reaction of a triazine with a pendent dienophile (Scheme 1.40).56
c Recently, 

Guillaumet prepared a series of pyrido[2,3-c]coumarins by the condensation of 3-

hydroxycoumarin 170 with various ~-aminoketones 171. This was then followed by an 

intramolecular cyclization (Scheme 1.41). This aromatic system has previously been 

found in the backbone of one natural product, Santiagonamine 174. This is an alkaloid, 

61 a) Khan, M.A.; Gemal, A. L. J. Heterocyclic. Chern. 1977, 14, 1009- b) Tabakovic, K.; Tabakovic, I.; 
Juric, A. J. Heterocycl. Chern. 1980, 17, 801- c) Sagi, M.; Wada, K.; Konno, S.; Yamanaka, H. 
Heterocylces 1990, 30, 1009-1021. 
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which was isolated from Berberis Darwinii (Berberidacea), and has found to exhibit 

interesting wound healing properties (Figure 1.6).62 

~ mesitylene 

O~N,N Ph 0 
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Ph N Ph 
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Scheme 1.40 

Scheme 1.41 

62 a) Pave, G.; Chalard, P.; Viaud-Massuard, M.; Train, Y.; Guillaumet, G. Synlett. 2003, 987-990. b) 
Lewis, W. H.; Stronard, R. J.; Porras-Reyes, B.; Mustoe, T. A.; Thomas, A. US Patent 5156847, 1992. 
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1.4 Goals of This Work 

OCH3 

174 

Figure 1.6 

The goal of this work was to synthesize 1- and 2-azadienes corresponding to 154 

and 155, and to explore their behavior in IEDDA reactions, with an eye toward the 

synthesis of pyridocoumarins 156 and 157 (Scheme 1.36). It was also envisaged that the 

biological and physical properties of the azadienes and their aromatic counterparts could 

be investigated in collaboration with other groups. 

46 



Chapter 2: The Synthesis of the 1- and 2-Azadienes 

2.1 Synthesis of 3-Formylcoumarin 

A retrosynthetic analysis of 1-azadienes reveals a simple retrosynthetic cut of the 

imine to produce 3-formylcoumarin 176 and an amine (Scheme 2.1). Very broad ranges 

of 1 o amines are commercially available or can be prepared in short order. However, 3-

formylcoumarin 176 is not commercially available. The Triggle group devised the first 

rational synthesis of 3-formylcoumarin 176. 1 This was accomplished in two steps. 

Knoevenegal condensation, 2 which has been used in coumarin synthesis, between diethyl 

glutaconate and salicylaldehyde afforded 133b in modest yield (40%). Oxidative 

cleavage of the exocyclic double bond afforded 176 (70%) (Scheme 2.2). 

N""R 0 

-. ' CC(condensation 

0 0 

==~> ~H + H2N-R 

~oAo 
175 176 

Scheme 2.1 

1 Padmanabhan, S.; Peri, R.; Triggle, D. J. Synth. Comm. 1996,26, 827-831. 
2 Jones, G. The Knoevenegal Condensation. In Organic Recations, John Wiley & Sons, Inc.: New York, 
1967; 15,204-600. 
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The Bodwell group developed a very similar synthesis of 3-formylcoumarin. The 

Triggle method involved the Knoevenegal condensation of salicyaldehyde with dimethyl 

glutaconate using benzene as the solvent to afford electron deficient 133b in 92% yield. 

Selective oxidative cleavage of the exocyclic double bond by ozone to give 3-

formylcoumarin 176 was accomplished in 79% yield.3 This was then used as a common 

starting material for the synthesis of electron deficient dienes related to 133b. Using the 

Bodwell synthesis, diene 133b was routinely prepared on a 30 g scale and 3-

formylcoumarin 176 was routinely prepared on a 5 g scale (Scheme 2.3). 

3 Pottie, L P.hD. Thesis, 2002, Memorial University of Newfoundland. 
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2.2 The Condensation of 3-Formylcoumarin with Amines. 

To promote IEDDA behavior, it was envisaged that the 1-azadienes should 

contain electron-withdrawing groups. The carbonyl group of the coumarin will eventually 

manifest itself as an electron-withdrawing group at the 3-position (of the electron 

deficient diene unit), so other electron-withdrawing groups (and ideally also good leaving 

groups) may be installed at the 1-position by way of the primary amine (Scheme 2.4 ). A 

series of 1-azadienes was prepared by using two methods. The first method involved 

refluxing the amine and 3-formylcoumarin together in a non-polar solvent, such as 

benzene or toluene, using Dean-Stark conditions. The second method involved refluxing 

both the amine and 3-formylcoumarin together in toluene in the presence of anhydrous 

magnesium sulfate. Using these methods, seven 1-azadienes, shown in Table 2.1, were 

prepared. Yields ranged from 66-97% on a 1 g scale. The dienes prepared have a variety 
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of groups in the 1-position that could influence the Diels-Alder reaction. In 1-azadienes 

182, 183, and 186, theN-substituent is a nitrogen atom bonded to one or two electron 

withdrawing groups. As such these substituents are expected not to be strongly donating. 

At least for 183, this is probably a reasonably assumption because the value of the 

substituent parameter O"p 
0 for the -NHS02Me substituent is 0.03 and that of NHAc is 

0.01. Thus the N-substituents of 182, 183, and 186 were not expected to strongly 

deactivate the azadiene towards IEDDA reaction. On the other hand, these groups are 

relatively good leaving groups, which may facilitate the planned post-IEDDA 

aromatizations. The N-substituents of 184 and 185 are both electron donating (cf O"p
0 = 

0.73 for S02Me). This diene was expected to be the most reactive and have the additional 

benefit of the leaving group ability of RS02". Diene 188 has anN-substituent that is 

electron donating and has very poor leaving group ability. However, t-butyl groups on 

nitrogen can be removed under acidic conditions. The bulky nature of the t-butyl group 

was also of interest for reasons that will be discussed in Chapter 3. 
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Compound 1-azadiene yield 
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Ar 

,..Phth 
186 

N 
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Ar)l 
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Ar 

188 N'>< 97% ) 
Ar 

Ar = coumann 
Table 2.1-1-azadiene from 3-formylcoumarin and R-NH2• 

Oxime 189, which was prepared in 88% yield by the reaction of 3-

formylcoumarin 176 with hydroxylamine (Scheme 2.5), was envisioned as being a 

progenitor of several other 1-azadienes. Thus, acylation of oxime 189, itself a 1-azadiene, 

gave rise to 1-azadiene 190.4 However, attempted tosylation of 189 resulted in the 

4 Bashiardes, G.; Bodwell, G. J.; Davies, S. G. J. Chern. Soc. Perkin Trans. 11993,459-469. 
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formation of 3-cyanocoumarin 192. Presumably tosylate 191 is formed, but undergoes 

elimination of tosic acid under the reaction conditions (Scheme 2.5). 

0 NOH NOAc 

co:> HONH3Cl co:> Ac20 co:> 0 0 CH3C02Na 0 0 
py 

0 0 
176 1 :1 THF: H20 189 53% 190 

88% 
TsCl, 

py 

NOTs 

cc(H -TsOH CC(N 
0 0 84% 0 0 

191 192 

Scheme 2.5 

To circumvent nitrile formation, 3-acetylcoumarin 193a and 3-

benzoylcoumarin 193b were prepared (Scheme 2.6). This was accomplished by 

subjecting salicylaldehyde to the Knoevenagel reaction conditions in the presence of 

ethylacetoacetate (94% yield) and benzoylacetone (78% yield), respectively. These 

compounds proved to be unreactive towards hydroxylamine under the conditions used for 

the synthesis of 189, but performing these reactions at reflux in glacial acetic acid led to 

the formation of 194a (67%) and 194b (60% ). However, all attempts to prepare 

derivatives of 190 and 191 were unsuccessful, complex mixtures typically being 

produced. 
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Implicit in the proposed conversion of 1-azadiene 154 to pyridocoumarins 156 is 

the removal of the EWG at some point. For several of the 1-azadienes described above, it 

is conceivable that theN-substituent could function not only as an electron withdrawing 

group to activate the diene towards the IEDDA reaction, but as a leaving group that could 

participate in an elimination reaction leading to an aromatic product 156 (Scheme 2.7). 
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~ ~EDG 
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15~ 0 
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Scheme 2.7 
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______.,... ~ 
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156 

Because a -S02R group is both strongly electron withdrawing and can function as 

a leaving group, 1-azadiene 187 was deemed to be one of the most promising candidates. 

Since sulfoxides are known to undergo the aptly named sulfoxide elimination, diene 197 
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was identified as an equally desirable diene. Furthermore, the chiral sulfur atom attached 

directly to the azadiene unit also opens the door to the possibility of performing 

asymmetric IEDDA reactions. 

Since sulfoxides are generally not readily available, the syntheses are envisioned 

as proceeding through the condensation of 3-formylcoumarin 176 with sulfenamides 199 

to afford 1-azadienes 198, followed by oxidation (Scheme 2.8).5 Sulfenamides 199 can be 

prepared from the reaction of ammonia and silver chloride with diaryl disulfides,5
b and 

there is precedent for their oxidation to the corresponding sulfoxamides 200.5
b 

N 
.,..SOAr 

N 
.,..SAr 

ccX > ccC 0 0 0 0 
197 198 

' \ 
CCXCHO 0 CCXCHO II 

+ s s 
H2N"" 'Ar + H2N"" 'Ar 

0 0 0 0 
176 200 176 199 

Scheme 2.8 

5 a) Davis, F. A.; Friedman, A. J.; Kluger, E. W. J. Am. Chern. Soc. 1974, 96, 5000-5001. b) Davis, F. A.; 
Slegeir, W. A.; Evans, S.; Schwartz, A.; Goff, D. L.; Palmer, R. J. Org. Chern. 1973,38,2809-2813. c) 
Davis, F. A.; Rajarathnam, E. R.; Szewczk, J. M.; Reddy, V.; Portonvo, P. S.; Zhang, H.; Fanelli, D.; 
Reddy, R. T.; Zhou, P.; Carroll, P.J. J. Org. Chern. 1997, 62, 2555-2563. d) Davis, F. A.; Lamendola, J. Jr.; 
Nadir, U.; Kluger, E. W.; Sedergran, T. C.; Panunto, T. W.; Billmers, R.; Jenkins, R. Jr.; Turchi, I. J.; 
Waston, W. H.; Chen, J. S.; Kimura, M. J. Am. Chern. Soc. 1980, 102,2000-2005. 
5 Trost, B. M.; Curran, D.P. Tetrahedron Lett. 1981,22, 1287-1290. 
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Reaction of disulfide 201 with ammonia afforded sulfenamide 203 in 95% yield. 

This sulfenamide was chosen since it was prepared in high yield in comparison to other 

sulfenamides and gave high yields when condensed with ketones and aldehydes. 

Attempts to prepare sulfenamides with electron withdrawing groups, using 4-

nitrophenyldisulfide 204, resulted in complex mixtures. The reaction of 203 with 3-

formylcoumarin 176 gave rise to 1-azadiene 198, but only in 30% yield, which is low in 

comparison with known reactions of other aldehydes and ketones. Attempts to oxidize 

this compound to the corresponding sulfoxamide 197 using either hydrogen peroxide3
d or 

Ox one ™ 6 resulted in the return of starting material or the formation of a complex 

mixture. In light of these difficulties, no further work was done in this area (Scheme 2.9). 

6 Trost, B. M.; Curran, D.P. Tetrahedron Lett. 1981,22, 1287-1290. 
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Boger et al. previously demonstrated that sulfonylimine 158, which was prepared 

by the TiC14-mediated condensation of 3-benzoylcoumarin 193b and 

benzene/toluenesulfonamide, reacted with ethyl vinyl ether to afford IEDDA adduct 159 

(89%) (Scheme 2.10).7 However, no aromatized product was obtained. 

7 a) Boger, D. L.; Corbett, W. L.; Curran, T. T.; Kasper, A.M. J. Am. Chern. Soc. 1991,113, 1713-1729. b) 
Boger, D. L.; Nakahara, S. J. Org. Chern. 1991, 56, 880-884. 
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Since 1,2-imine addition of enamines to the 1-azadiene emerged as a serious 

problem (see Chapter 3), the synthesis of substituted dienes such as 207 and 208 was 

investigated (Scheme 2.11). However, attempts to apply the TiC14-mediated condensation 

methodology to 3-formylcoumarin and 3-acetylcoumarin failed. 3-formylcoumarin was 

recovered when subjected to these reaction condensations and a complex mixture formed 

when used with 3-acetylcoumarin. When 193a forms a complex mixture, this may be due 

to the preferential formation of titanium enolates8 (Scheme 2.12). The use of a milder 

Lewis acid, ZnClz, also failed, possibly for the same reason (Scheme 2.12).9 As an 

alternative, the tosylhydrazane 210 was prepared from with 3-acetylcoumarin using the 

same conditions as in the preparation of 183 (Scheme 2.13). 

8 Holba, A. G. and Premasager, V. Tetrahedron Lett. 1985,26,571-574. 
9 Brake, G. M. and Matthews, R. S. J. Fluorine Chern. 1988,40, 109-117. 
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For the synthesis of the targeted 2-azadienes, 3-aminocoumarin 212 was required 

as a common starting material. It is a compound with a long history and has been 

reported to exhibit many interesting biological and photochemical properties. 10 

The first reported synthesis of 3-aminocoumarin was by Linch, 11 who prepared 3-

aminocoumarin easily in three steps starting from 3-acetylcoumarin (Scheme 2.14). This 

involved conversion of 3-acetylcoumarin into its oxime 194a (yield not reported), 

followed by Beckmann rearrangement12 to give 3-acetamidocoumarin 211 (75%) and 

hydrolysis to afford 3-aminocoumarin (65% ). It was said to be critical that the hydrolysis 

had to be performed under these conditions (refluxing 212 in concentrated hydrochloric 

acid and absolute ethanol). If this was not the case, significant amounts of 3-

hydroxycoumarin were formed and the yield of 212 was affected dramatically and 

resulted in a poor yield. Due to the absence of spectroscopic methods at the time of 

Linch's experiments, only an elemental analysis and a melting point were reported for the 

putative 3-aminocoumarin 212. 

10 a) Kokotos, G.; Tzougraki, C. J. Heterocyclic Chern. 1986,23, 87-92 b) Kokotos, G.; Tzougraki C. J. 
Chern. Soc. Perkin Trans. ll1991, 4, 495-499. 
11 a) Linch, F. W. Proc. Chern. Soc. 1912,28, 144. b) Linch, F. W. J. Chern. Soc. 1912, 101, 1755-1759. c) 
Linch, F. W. J. Chern. Soc. 1912,101, 1759-1765. 
12 a) Blatt, H. Chern. Rev. 1933, 12, 215-260. b) Jones, B. Chern. Rev. 1944, 35, 335-350. 
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Attempts in the 1950s and 1960s by other investigators to repeat the reported 

hydrolysis of 3-acetamidocoumarin 211 and its derivatives resulted in the formation of 3-

hydroxycoumarin and its derivatives. 13 This presumably occurs by a mechanism 

analogous to that of the hydrolysis of enamines. 14 

In the 1980s and 1990s, several groups successively repeated the synthesis of 3-

aminocoumarin 212 using Linch's procedures. 11
•
15 During that time, other methods were 

explored for the expedient synthesis of 3-aminocoumarin, but these met with limited 

success. 16
a It was not until1998 that Bonsignore's group reported a new and dramatically 

improved route to 3-aminocoumarin (Scheme 2.15). 16 The Boc-protected 3-

aminocoumarin 215 was produced from commercially available coumarin-3-carboxylic 

13 a) Shaw, K. N. F.; McMillan, A.; Armstrong, M.D. J. Org. Chern. 1956,21,601-604. b) Trivedi, K. N.; 
Sethna, S. J. Org. Chern. 1960,25, 1817-1819. 
14 In The Chemistry of the Carbon-Nitrogen Double Bond. Patai. S., Ed., Wiley: New York, 1970, pp 465-
504. 
15 a) Kokotos, G.; Tzougraki, C. J. Heterocyclic Chern. 1986,23, 87-92. b) Kumar, P.; Mukerjee, A. K. 
Indian J. Chern. 1980, 19B, 704-707. c) Tripathy, P. K. and Mukerjee, A. K. Indian J. Chern. 1987, 26B, 
61-62. d) Kulkarni, Y. D.; Srivastava, D.; Bishnoi, A.; Dua, P.R. J. Indian Chern. Soc. 1996, 73, 173-175. 
16 Bonsignore, L.; Loy, G. J. Heterocyclic Chern. 1998,35, 117-119. 
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acid 213 using a method reported by the Yamada group. 17 This presumably proceeds via 

condenversion of the carboxylic acid to the corresponding acyl azide followed by Curti us 

rearrangement and trapping of the resulting isocyanate with t-BuOH. The Boc group was 

then removed upon treatment with gaseous hydrochloric acid. 18 

0 
Ph-~-N 

/ 3 

0 Ph214 H 0 

~ Et3N ~N'< 
~0A0 OH t-butanol, reflux ~oAo ~bu 

213 82% 215 

Scheme 2.15 

I HCl gas 
t 100% 

CCX
NH2 

0 0 
212 

2.4 A Straightforward and Efficient Synthesis of 3-Aminocoumarin. 

The first attempts synthesize of 3-aminocoumarin 212 was preformed by 

following the work of Linch and others. 11
• 

13
• 

15 3-Acetamidocoumarin 211 is 

commercially available and can be easily prepared in large quantities in one step by the 

reaction of salicylaldehyde and acetyl glycine (Scheme 2.16). 19 However, attempts to 

prepare 3-arninocoumarin by refluxing 3-acetamidocoumarin with cone. sulfuric acid in 

17 Shioiri, T.; Ninomiya, K.; Yamada, S. J. Am. Chern. Soc. 1972,94,6203-6205. 
18 Stahl, G. L.; Walter, R.; Smith, C. W. J. Org. Chern. 1978, 43, 2285-2286. 
19 a) For the preparation of 3-acetylcoumarin. Herbst, R. M.; Shemin, D. Org. Syn. 1943, Coil. Vol. 2, 11-
12. b) Kenneth, N. F.; McMillan, A.; Armstrong, M.D. J. Org. Chern. 1956,21,601-604. c) Sethna, S.; 
Trivedi, K. N.J. Org. Chern. 1960, 25, 1807-1830. 
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ethanol failed and starting material was recovered. Several experiments were carried out 

with results consistent with those reported previously by others.13 This route was 

consequently abandoned. 

~H+ fOH 
~~w HN-..../ 

1770H II 
0 

216 

Scheme 2.16 

The synthesis of 3-aminocoumarin 212 by Bosignore's route16 was then 

attempted. Both the starting material, coumarin-3-carboxylic acid 213, and the first 

reagent, diphenylphosphoroyl azide 214 (DPPA), are commercially available. However, 

due to Transport Canada regulations, DPPA could not be obtained commercially. Instead, 

it was easily prepared in multigram quantities by the reaction of diphenylphosphoroyl 

chloride and sodium azide?0 Disappointingly, the reaction of DPPA with 213 in t-BuOH 

failed to afford 215. No reaction was evident after 24 h. Longer reaction time led to the 

formation of coumarin-3-carboxylic acid t-butyl ester. Variations in the number of 

equivalents ofDPPA and the mode of addition were fruitless. This route was also 

discarded. 

The failure to reproduce the literature procedures led to the investigation of the 

following sequence, which takes advantage of chemistry developed by the groups of 
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Burk21 and Bonsignore. 16 Burk developed a procedure in which an acetyl group on an 

amine can be converted into a Boc-protected secondary amine in one pot and in high 

yield. This involves an acylation-deacylation sequence. When this methodology was 

applied to 3-acetamidocoumarin, which was abundantly available (vide supra), this 

resulted in the production of the desired Boc protected compound in 91% yield (Scheme 

2.17). 

DMAP, Boc20, 
[ COCH, ] H THF (dry), reflux. I 

CC(\0 ~ ~ NYO 

Wo 0
'
8

" 0 0 
211 216 

l hydrazine hydrate 
methanol 
(2 steps 91%) 

TFA 
(15% volin CH2Cl2) 

H 

CCXNH, CC(Yo 
Ot-Bu 

0 0 100% (99.8%) 0 0 
212 215 

Scheme 2.17 

Following a procedure reported by Bonsignore, 16 exposure of 215 to anhydrous 

trifluoroacetic acid (15% by volume in anhydrous chloroform) led to the formation of 3-

aminocoumarin in 99.8% yield after chromatography. From a practical perspective, 3-

aminocoumarin can be used directly after the solvent is removed and, if desired, the slight 

discoloration of the crude product can be removed by crystallization from 

20 Boyer, J. H.; Mack, C. H.; Morgan, L. R. Jr. J. Org. Chern. 1958,28, 1051-1053. 
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chloroform/hexane (Scheme 2.17). This synthetic route was used to prepare up to 5 g 

batches of 3-aminocoumarin in an overall yield of 91% in two steps from commercially 

available or easily prepared starting material. This may very well be the most convenient 

synthesis of 3-aminocoumarin. 

2.5 The Synthesis of the 2-Azadienes. 

Linch achieved the first synthesis of an electron deficient azadiene11 a decade 

prior to the discovery of the Diels-Alder reaction. The most likely explanation for the 

preparation of this compound was to provide evidence for the proposed structure of 3-

aminocoumarin by making a derivative. Linch carried out this synthesis by gently 

warming a 1 : 1 mixture of benzaldehyde and 3-aminocoumarin until a clear liquid was 

formed (Scheme 2.18). When the mixture cooled, a "white cake" was formed, which was 

then boiled several times in alcohol to remove any unreacted starting materials. 218 was 

then characterized by elemental analysis and melting point. 

0 

H~ 
217 

heat 

lp 
~N 

~oAo 
218 

Scheme 2.18 

21 Burk, M. J.; Allen, J. G. J. Org. Chern. 1997, 62,7054-7057. 

64 



The only other reported condensations of 3-aminocoumarin with aldehydes were 

by Mukerjee and Bishnoi. lSb-d These authors reported a series of condensations of 3-

aminocoumarin with aromatic aldehydes in refluxing absolute alcohol containing traces 

of glacial acetic acid. The reported yields were 68-85 % (Scheme 2.19). 

0 

H~R i(R 

CCX
N 

abs. ethanol, 
acetic acid, ~20 o o 
reflux 

Scheme 2.19 

The first attempt to synthesize a series of electron deficient dienes using Mukerjee 

and Bishnoi conditions15
b-d resulted in formation of the desired diene and the recovery of 

significant amounts of starting material. Using Dean-Stark conditions, refluxing of 3-

aminocoumarin and p-nitrobenzaldehyde in toluene containing traces of acetic acid 

produced a bright yellow solid, which was identified as the desired electron deficient 

diene 222 (Scheme 2.20). However, applying this method to other aldehydes resulted in 

the recovery of starting materials. Revisiting the Mukerjee's and Bishnoi's conditions, 

the simple addition of 4 A molecular sieves produced the desired diene and traces of 

starting material, which could be removed by crystallization (Scheme 2.20). Attempts to 

purify the dienes by chromatography resulted in the hydrolysis and recovery of the initial 
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starting material. With this slightly modified procedure a series of 2-azadienes were 

produced (Table 2.2). 

Method A (lrN02 

OHC~N02 I~ 

CCXNH2 221 r(YYN 

~ --------------· ~~~ 
2120 0 t 1 . 'd fl 0 0 o uene, acetic act , re ux, 222 

Dean-Stark conditions 
79% 

MethodB 

0 I(R CCXNH, ____ H_~_19_R __ ~CCXN 
212

o o abs. ethanol, 
2200 0 

acetic acid, 
reflux 
4AMs 
39-87% 

Scheme 2.20 
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Rxn 
proc. 

Aldehyde Time 
(A, B, C) 

(hours) 

ONO, 
4 A 

OHC 

o:tOH 16 B -
CHO 

OHC J7 18 c 
OH 

D 14 B 
OHC 

OOCH, 
12 B 

OHC 

)[) 14 B 
OHC S 

JO-_ 16 B 
OHC S Br 

a - using Dean stark conditions 
b - using molecular sieves 

Yield 
Aldehyde 

(%) 

n 79 
(222) OHC NO 

39 J7 (223) OHC 

N02 

~OCH 79 
(224) OHC 

OH 
Br 

65 ~ (225) 
OHC 

OH 

o· 87 
(226) 

OHC 

83 OCI 
(227) 

OHC 

48 C>< (228) 

c - condensation of salicylaldehyde and glycine 

Rxn 
Time 

proc. 
(A, B, C) 

(hours) 

14 B 

14 B 

14 B 

14 B 

14 B 

14 B 

~ X 
Table 2.2- 2-azadiene from 3-aminocoumarin and RCHO. 

Yield 
(%) 

57 
(229) 

62 
(230) 

32 
(231) 

64 
(232) 

72 
(233) 

72 
(234) 

~ 

In summary, a formal synthesis of 3-aminocoumarin has been achieved. The route 

to 3-aminocoumarin is high yielding and easily reproducible. In addition, 3-
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aminocoumarin has been more fully characterized. A simple and effective route to the l­

and 2-azadienes has been established and improved over previous syntheses. As a result, 

23 new electron deficient azadienes have been prepared. 

2.6 Experimental 

General Procedure 

All reactions were carried out without inert gas protection, unless otherwise 

noted. Tetrahydrofuran, THF, was distilled from Na!benzophenone. Dichloromethane 

was dried over CaCiz and distilled. All other commercially available chemicals, including 

solvents, were used as received without further purification. Thin layer chromatography 

(tlc) was performed on E. Merck 60 F254 precoated silica plates using UV visualization. 

Column chromatography was carried out on silica gel 60 (E. Merck, 230-400 mesh). 

Melting points were obtained either on a Thomas Hoover apparatus and/or Fisher-Johns 

apparatus and are uncorrected. Infrared spectra were obtained on a Mattson Polaris or a 

Bruker tensor 27 spectrometer using NaCl, KBr, or ZnSe plates with nujol unless 

otherwise noted. 1H and 13C nuclear magnetic resonance (NMR) spectra were recorded 

on a Bruker A VANCE spectrometer operating at 500.133 MHz and 125.770 MHz, 

respectively. NMR spectra were obtained using CDCh solutions unless otherwise 

specified. Peaks reported are relative to internal standards: (CH3)4Si (8 0.00 ppm) for 1H 

spectra and CDCh (8 77.23 ppm) for 13C spectra. Assignments were made on the basis of 

'H,'H-COSY, HMQC, HMBC, etc experiments. For carbon signals, the number of 

68 



attached protons, as determined by Dept and HMBC experiments, is indicated in 

brackets. Mass spectra were obtained using electron ionization at 70 electron volts, unless 

otherwise noted. Combustion analyses were carried out by the Microanalytical Services 

Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta, 

Canada. High-resolution mass spectra were carried out by the Mass Spectrometry Center, 

Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada. 

(E)-3-(2-0xo-2H-chromen-3-yl)acrylic Acid Methyl Ester (133b) 

To a room temperature solution of salicylaldehyde (17.5 mL, 20.0 g, 0.164 mol) 

and dimethyl glutaconate (23.0 mL, 25.9 g, 0.164 mol) in benzene (300 mL) was added 

dropwise piperidine (3.20 mL, 2.81 g, 33.0 mmol). The resulting mixture was stirred for 

3 h under reflux using a Dean-Stark apparatus. The clear and colorless solution became a 

clear pale orange over the course of the reaction. The reaction mixture was cooled to 

room temperature and concentrated to approximately 40 mL under reduced pressure and 

a white precipitate formed. The resulting mixture was then suction filtered and the solids 

were washed with cold benzene to give 133b, 22.7 g (98.6 mmol, 67% ). The filtrate was 

then concentrated under reduced pressure to afford a brown oil. This was then subjected 

to flash chromatography (2% ethyl acetate/dichloromethane), which afforded 133b (7.50 

g, 32.6 mmol, 20%) as a white solid. Combined yield= 30.2 g (32.6 mmol, 80% ). 
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R1 = 0.42 (2% ethyl acetate/dichloromethane). Mp 195-196 oe (chloroform/hexane) (Lit.1 

115-117 oe). 1H NMR (500 MHz, eDeh): 8 = 7.18 (s, 1H, H-4), 6.90-6.85 (m, 3H), 6.66 

(d, 1H, J = 8.3 Hz), 6.63 (t, 1H, J = 7.5 Hz), 6.42 (d, 1H, J = 16.3 Hz), 3.12 (s, 3H, H-4'). 

13e NMR (126 MHz, eDeb): 8 = 167.6 (0), 159.2 (0), 153.8 (0), 143.7 (1), 138.6 (1), 

133.1 (1), 128.7 (1), 125.0 (1), 123.5 (1), 122.6 (0), 119.2 (0), 116.9 (d), 52.1 (3, e-4'). 

2-0xo-2H -chromene-3-carbaldehyde (176) 

0 

Ozone-rich air was bubbled through a magnetically stirred -55 oe solution of 

133b (5.00g, 21.7 mmol) in chloroform (300 mL) for 1 h, at which point the solution had 

become a deep blue. Nitrogen was then bubbled through the solution until the deep blue 

color disappeared and dimethyl sulfide (3.36 g, 54.2 mol, 4.00 mL) was added. The 

solution was then stirred overnight under nitrogen to afford a clear pale yellow solution. 

The solvent was removed under reduced pressure to give a pale yellow solid. This was 

subjected to flash chromatography (2% ethyl acetate/dichloromethane), which gave 176 

(2.97 g, 17.1 mmol, 79%) as a pure white solid. Rr = 0.63 (2 % ethyl 

acetate/dichloromethane ). 

Mp = 131-132 oe (chloroform/hexane) (Lit. 1 125-126 oe). 1H NMR (500 MHz, eDeh): 

8 = 10.26 (s, 1H, H-1'), 8.42 (s, 1H, H-4), 7.71-7.68 (m, 2H), 7.41-7.36 (m, 2H). 13e 
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NMR (126 MHz, CDCh): 8 = 188.0 (1, C-1 '), 160.3 (0), 155.8 (0), 145.8 (1), 135.3 (1), 

131.0 (1), 125.5 (1), 122.0 (0), 118.4 (0), 117.4 (1). 

(E)g3g(2,4g Din:itropheny lhydrazonomethy l)g 2H gchromen g 2gone (182) 

To a room temperature solution of deionized water (12 mL) and concentrated 

sulfuric acid (8 mL) was added 2,4-dinitrophenylhydrazine (1.60 g, 8.08 mmol). To a 

solution 176 (1.00 g, 5.74 mmol) in 95% ethanol (30 mL) the 2,4-dinitrophenylhydrazine 

solution, described above, was added dropwise. The clear colorless solution went to a 

dark orange solution containing a thick orange precipitate over the course of the reaction. 

After the addition was complete, the solution was allowed to react at room temperature 

for 2 h and the solution was then cooled to 6 °C. The solution was then suction filtered 

and the solid was washed with deionized water, absolute ethanol (50 mL) and diethyl 

ether (100 mL), which afforded 182 (1.54 g, 4.36 mmol, 76%) as a dark orange solid. 

Mp 300-301 °C (glacial acetic acid/concentrated sulfuric acid). 1H NMR (500 MHz, 

D2S04): 8 = 8.79 (d, 1H, J = 2.0 Hz), 8.75 (s, 1H), 8.67 (s, 1H), 8.20 (dd, 1H, J = 9.8, 2.4 

Hz), 7.74 (t, 1H, J = 7.9 Hz), 7.63 (d, 1H, J = 7.1 Hz), 7.30 (t, 1H, J = 8.2 Hz), 7.27 (d, 

1H, J = 8.6 Hz), 7.01 (d, 1H, J = 9.1 Hz). IR (nujol, NaCl): Umax = 3280 (w), 1725 (m), 

1610 (m), 1518 (w), 763 (w) cm-1
; MS (EI) m/z (%) 354 (M+, 68), 172 (60), 306 (39), 
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337 (37). Anal. Calcd for C16H10N406: C 54.24, H 2.84, N 15.81; found; C 53.76, H 2.82, 

N 15.76. 

General Procedures for the Preparation for the 1~Azadienes 

Procedure 1: Use of Dean-Stark conditions in the preparation of the 1-azadienes. 

To a solution of 176 in dry benzene, was added the amine (3.0 equivalents). The 

mixture was reacted under reflux under nitrogen using a Dean-Stark apparatus. The 

reaction was monitored using TLC and worked up shortly after the aldehyde had been 

consumed. The reaction mixture was then cooled to 6 oc. The precipitate was collected 

by suction filtration and washed with cold benzene. 

Procedure 2: Condensation of 3-formylcoumarin with amines using non-Dean-Stark 

conditions. 

To a solution of 176 in dry toluene, amine (1.1 equivalents) and anhydrous 

MgS04 (2 g/mmol of aldehyde) were added. The solution was reacted under reflux 

conditions under N2 overnight. The solution was then cooled to room temperature and 

filtered. The resulting cake was then washed with dichloromethane. The solvent was 

removed under reduced pressure and the resulting residue was then subjected to silica 

flash column chromatography. The product was crystallized from the appropriate solvent. 
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(E)-3-(Tosylhydrazonomethyl)-2H-chromen-2-one (183) 

Using general procedure 1,176 (1.00 g, 5.74 mmol) andp­

toluenesulfonylhydrazine (3.21 g, 17.2 mmol) were reacted in benzene (50 mL) for 4 h. 

The clear colorless solution went to a thick cloudy yellow suspension over the course of 

the reaction. 183 (1.64 g, 4.79 mmol, 82%) was obtained as a pale yellow solid. 

Mp = 191-192 °C (chloroform/hexane). 1H NMR (500 MHz, CDC13): 8 = 8.31 (s, 1H), 

8.19 (s, 1H), 7.97 (s, 1H), 7.88 (d, 2H, J = 8.6 Hz), 7.61-7.56 (m, 2H), 7.35-7.33 (m, 4H), 

2.43 (s, 3H, H-7'). 13C NMR (126 MHz, CDCh): 8 = 160.8 (0), 154.2 (0), 144.9 (0), 

140.6 (1), 139.2 (1), 135.7 (0), 133.2 (1), 130.3 (1), 129.5 (1), 128.3 (1), 125.5 (1), 121.0 

(0), 119.3 (0), 117.2 (1), 22.0 (3, C-7'). IR (nujol, NaCl) 'Umax = 3260 (w), 1735 (s), 1690 

(m), 1605 (m), 1565 (w), 1355 (w), 1170 (m), 1050 (w), 670 (w) cm-1
. MS (EI) m/z (%) = 

342 (M+, 1), 317 (38), 289 (10), 159 (100), 131 (20), 91 (38). Anal. Calcd for 

C17H14N20 4S: C 59.63, H 4.12, N 8.18; found; C 59.15, H 3.99, N 8.05. 

(E)-3-(Phenylhydrazonomethyl)-2H-chromen-2-one (184) 
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Using general procedure 1, 176 (0.75 g, 4.3 mmol), phenylhydrazine (1.72 g, 15.9 

mmol) were reacted in benzene (100 mL) for 4 h. The clear colorless solution went to a 

thick dark orange suspension over the course of the reaction. 184 (0.75 g, 2.8 mmol, 

66%) was obtained as an orange solid. 

Mp 210-211 °C (ethyl acetate/hexane). 1H NMR (500 MHz, CDCh): 8 = 8.30 (s, lH), 

8.33 (s, lH, H-2'), 7.91 (s, lH, H-4), 7.59 (dd, lH, J = 7.7, 1.1 Hz), 7.51 (td, lH, J = 7.6, 

1.7 Hz), 7.37-7.30 (m, 5H), 7.17 (d, lH, J = 8.0 Hz), 6.94 (t, lH, J = 7.3 Hz). 13C NMR 

(126 MHz, CDCb): 8 = 161.2 (0), 153.5 (0), 144.1 (0), 134.7 (1), 131.4 (1), 130.2 (1), 

129.6 (1), 128.4 (1), 125.0 (1), 122.8 (0), 121.2 (1), 120.0 (0), 116.8 (1), 113.2 (1). IR 

(nujol, NaCl): 'Umax = 3287 (m), 1705 (s), 1600 (m), 1567 (w), 1538 (w), 1495 (w), 1258 

(w), 1179 (w), 1062 (m), 926 (w), 759 (w), 688 (w) cm-1
• MS (EI) mlz (%) = 264 (M+, 

100), 219 (7), 172 (31), 130 (27), 77 (51), 65 (41). HRMS mlz [M+] Calcd for 

C16H12Nz02 264.0898, found 264.0899. 

(E)-3-(N, N-Dimethylhydrazonomethyl)-2H-chromen-2-one (185) 
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Using general procedure 1, 176 (3.50 g, 20.1 mmol), 1,1-dimethylhydrazine (1.33 

g, 22.1 mrnol, 1.68 mL), and benzene (50 mL) were reacted for 4 h. The clear colorless 

solution went to a clear yellow over the course of the reaction. The solvent was removed 

under reduced pressure to give a dark yellow solid. The residue was then subjected to 

flash chromatography (dichloromethane), which afforded 185 (3.10 g, 14.3 mmol, 71 %) 

as a yellow solid. 

~f = 0.71 (dichloromethane). Mp 118-119 °C (ethyl acetate/hexane). 1H NMR (500 

MHz, CDCb): 8 = 8.08 (s, 1H), 7.50 (d, 1H, J = 7.7 Hz), 7.43 (t, 1H, J = 8.0 Hz), 7.31 (d, 

1H, J = 8.2 Hz), 7.27-7.23 (m, 1H), 3.08 (s, 6H, H-2'). 13C NMR (126 MHz, CDCb): 8 = 

161.7 (0), 152.9 (0), 131.8 (1), 130.4 (1), 128.0 (1), 124.7 (1), 124.2 (0), 123.6 (1), 120.3 

(0), 116.6 (1), 42.9 (3, C-2'). IR (nujol, NaCl) Umax = 1709 (m), 1539 (w), 1051 (w) cm-1
. 

MS (EI) mlz (%) 216 (M+, 60), 172 (52), 146 (17), 89 (22), 44 (100). AnaL Calcd for 

C12H12N20 2: C 66.65, H 5.59, N 12.95; found; C 66.71, H 5.57, N 12.91. 

(E)-2-[ (2-0xo-2H -chromen-3-ylmethyl)amino ]isoindole-1,3-dione (186) 

Using general procedure 1, 176 (2.00 g, 11.5 mmol), N-aminophthalimide (2.05 g, 

12.6 mmol), and benzene (100 mL) were reacted for 4 h. The clear colorless solution 
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went to a thick yellow suspension over the course of the reaction. 186 (3.20 g, 10.1 

mmol, 87%) was obtained as a yellow solid. 

Mp 270-271 oc (glacial acetic acid). 1H NMR (500 MHz, D2S04): 8 = 9.67 (s, 1H), 8.97 

(s, 1H), 8.01-7.99 (m, 2H), 7.90-7.88 (m, 2H), 7.80 (t, 2H, J = 7.5 Hz), 7.52-7.46 (m, 

2H). IR (nujol, NaCl): Drnax = 1727 (s), 1606 (w), 1560 (w), 1309 (m), 1286 (w), 1213 

(w), 1178 (w), 1113 (m), 1084 (w), 1057 (w), 958 (m), 879 (w), 750 (m), 704 (m) cm-1
. 

MS (EI) mlz (%) = 318 (M+, 9), 290 (4), 171 (100), 143 (25), 104 (58), 76 (52). Anal. 

Calcd for C18H10N20 4: C 67.92, H 3.17, N 8.80; found; C 67.77, H 3.26, N 8.73. 

(E)-4-Methyl-N -(2-oxo-2H -chromen-3-ylmethylene )benzenesulfonamide (187) 

Using general procedure 2,176 (2.00 g, 11.5 mmol),p-toulenesulfonamide (2.16 

g, 12.6 mmol), anhydrous magnesium sulfate (25 g) were reacted in toluene (100 mL) for 

24 h. The thick white suspension went to a thick pale yellow suspension over the course 

of the reaction. The pale yellow residue was then subjected to flash chromatography (2% 

ethyl acetate/dichloromethane), which afforded 187 (3.16 g, 9.66 mmol, 84%) as a pale 

yellow solid. 

R1 = 0.72 (2% ethyl acetate/dichloromethane). Mp 196-197 °C (chloroform/hexane). 1H 

NMR (500 MHz, CDCh): 8 = 9.20 (s, 1H, H-1'), 8.72 (s, 1H, H-4), 7.90 (d, 2H, J = 8.5 

76 



Hz), 7.70 (td, 1H, J = 8.0, 1.6 Hz), 7.64 (dd, 1H, J = 7.1, 1.4 Hz), 7.41-7.36 (m, 4H), 2.47 

(s, 3H, H-5'). 13C NMR (126 MHz, CDCh): 8 = 164.5 (1, C-1'), 159.8 (0), 155.8 (0), 

146.5 (1, H-4'), 145.4 (0), 135.6 (1), 134.3 (0), 130.7 (1), 130.2 (1, 2C), 128.7 (1, 2C), 

125.7 (1), 120.0 (0), 118.5 (0), 117.4 (1), 21.9 (3, H-5'). IR (nujol, KBr): 'Umax = 1725 (s), 

1609 (m), 1318 (m), 1283 (m), 1152 (s), 1090 (w), 923 (w), 765 (m), 666 (m) cm-1
. MS 

(EI) m!z (%) = 327 (M+, 1), 172 (96), 155 (24), 91 (100), 65 (19). HRMS m/z [M+] Calcd 

for C17H13N04S 327.0564, found 327.0562. 

(E)-3-(tert· Butyliminomethyl)-2H -chromen-2-one (188) 

Using general procedure 1, 176 (1.00 g, 5.8 mmol), tert-butylamine (0.46 g, 6.4 

mmol, 0.60 mL) were reacted in benzene (30 mL) for 4 h. The clear colorless solution 

went to a clear pale yellow solution over the course of the reaction. The solvent was 

removed under reduced pressure, which afforded 188 (1.29 g, 5.63 mmol, 97%) as a 

white solid. 

Mp 106-107 °C (chloroform/hexane). 1H NMR (500 MHz, CDCh): 8 = 8.50 (s, 1H), 8.44 

(s, 1H), 7.61 (dd, 1H, J = 7.6, 1.4 Hz), 7.56 (td, lH, J = 8.0, 1.6 Hz), 7.37 (d, 1H, J = 7.7 

Hz), 7.31 (td, 1H, J = 7.4, 1.3 Hz), 1.33 (s, 9H, H-1'). 13C NMR (126 MHz, CDCh): 8 = 

161.5 (0), 154.4 (0), 149.7 (1), 139.3 (1), 132.5 (1), 129.3 (1), 124.9 (1), 123.8 (0), 119.5 
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(0), 116.8 (1), 58.7 (0, C-2'), 29.8 (3, C-3'); IR (nujol, KBr): Urnax = 3076 (w), 1707 (s), 

1646 (m), 1605 (s), 1596 (m), 1284 (m), 1217 (m), 1164 (s), 1120 (w), 1049 (m), 752 (s) 

cm-1• MS (EI) mlz (%) = 229 (M+, 24), 214 (41), 173 (100), 146 (88), 118 (m), 88 (18), 

63 (12), 56 (18), 41 (49). HRMS m/z [M+] Calcd for C14H1sNOz 229.1101, found 

229.1101. 

3-(Hydroxyiminomethyl)-2H-chromen-2-one (189) 

To a room temperature solution of 176 (2.00 g, 11.4 mmol) and hydroxylamine 

hydrochloride (1.34 g, 19.3 mmol) in 1:1 water/THF (150 mL), was added sodium 

acetate (1.36 g, 16.6 mmol). The solution was reacted at room temperature for 3 h. The 

clear colorless solution went to a thick white suspension over the course of the reaction. 

The mixture was suction filtered and washed the solid with deionized water, which 

afforded 189 (1.89 g, 9.78 mmol, 88%) as a white solid. 

Mp 219-220 oc (95% ethanol). 1H NMR (500 MHz, DMSO-d6): 8 = 11.79 (s, 1H, H-2'), 

8.37 (s, 1H, H-4), 8.08 (s, 1H, H-1'), 7.84 (d, 1H, J = 7.7 Hz, H-5), 7.64 (t, 1H, J = 7.8 

Hz), 7.43 (d, 1H, J= 8.2 Hz, H-8), 7.38 (t, 1H, J= 7.5 Hz, H-7). 13C NMR (126 MHz, 

DMSO-d6): 8 = 159.2 (0), 153.1 (0), 142.3 (1, C-4), 137.6 (1, C-1'), 132.3 (1, C-6), 129.1 

(1, C-5), 124.8 (1, C-7), 119.9 (0), 118.8 (0), 116.1 (1, C-8). IR (nujol, NaCl): Urnax = 

3190 (m), 1725 (vs), 1606 (w), 1595 (w), 1295 (w), 970 (w~, 955 (w), 745 (m). MS (EI) 
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m/z (%) = 189 (M+, 96), 172 (54), 118 (90), 89 (100) cm-1
. Anal. CalcdforC10H7N03: C 

63.49, H 3.73, N 7.40; found; C 63.07, H 3.86, N 7.30. 

3-Acetyl-2H-chromen-2-one (193a)22 

0 

1' 
CH3 

To a room temperature solution of salicyaldehyde (65.30 g, 0.535 mol, 56.0 mL), 

ethyl acetoacetate (73.00 g, 0.56 mol, 71.0 mL) in ethanol (700 mL) was added dropwise 

piperidine (4.55 g, 53.4 mmol, 5.0 mL). The resulting mixture was stirred at room 

temperature for 10 h. The clear colorless solution went to a clear thick bright yellow 

suspension over the course of the reaction. The solution was suction filtered and washed 

with pentane, which afforded 193a (94.32 g, 0.501 mol, 94%) as a pale yellow solid. 

Mp 119-120 °C (95% ethanol) (Lit. 22 123 °C). 1H NMR (500 MHz, CDCh): 8 = 8.52 (s, 

1H, H-4), 7.68-7.65 (m, 2H), 7.39 (d, 1H, J = 9.4 Hz), 7.36 (t, 1H, J = 7.7 Hz), 2.74 (s, 

3H, H-1'). 13C NMR (126 MHz, CDCh): 8 = 195.7 (0), 159.4 (0), 155.5 (0), 147.7 (1), 

134.6 (1), 130.4 (1), 125.2 (1), 124.8 (0), 118.5 (0), 116.9 (1), 30.8 (3). IR (nujol, KBr) 

Umax = 3029 (w), 1742 (s), 1678 (s), 1613 (w), 1558 (m), 1296 (w), 1211 (m), 1158 (w), 

1123 (w), 978 (m), 922 (w), 759 (s), 639 (m), 552 (w), 457 (w) cm-1
• MS (EI) m/z (%) = 

188 (M+, 53), 173 (100), 145 (12), 101 (11), 63 (13), 43 (45). 

22 Pandya, K. R.; Pandya, K. C. Arga. Uni. J. Res. 1955, IV, 305-315. 
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To a room temperature solution of salicyaldehyde (50.00 g, 0.409 mol, 44.0 mL), 

ethyl benzoylacetate (82.60 g, 0.430 mol, 75.0 mL) in 95 % ethanol (700 mL) was added 

dropwise piperidine (3.49 g, 41.0 mmol, 4.0 mL). The resulting mixture was reacted at 

room temperature for 7 h. The clear colorless solution went to a thick pale yellow 

suspension over the course of the reaction. The mixture was filtered and washed with 

pentane, which afforded 193b (80.20 g, 0.321 mol, 78%) as a pale yellow solid. 

Mp 133-134 oc (95% ethanol) (Lit. 23 130 °C). 1H NMR (500 MHz, CDCb): 8 = 8.08 (s, 

1H, H-4), 7.89 (d, 2H, J = 7.9 Hz), 7.67-7.60 (m, 3H), 7.49 (t, 2H, J = 7.6 Hz), 7.41 (d, 

1H, J = 8.4 Hz), 7.36 (t, 1H, J = 8.3 Hz). 13C NMR (126 MHz, CDCb): 8 = 158.6 (0), 

155.0 (0), 145.6 (1), 136.5 (0), 134.0 (1), 133.8 (1), 129.8 (1), 129.4 (1), 128.8 (1), 127.3 

(0), 125.2 (1), 118.4 (0), 117.2 (1). IR (nujol, KBr): Umax = 1718 (s), 1657 (w), 1609 (m), 

1562 (m), 1241 (m), 1165 (w), 922 (w), 760 (m), 699 (w), 564 (w) cm-1
. MS (EI) m/z (%) 

= 250 (M+, 30), 221 (19), 173 (10), 145 (4), 105 (90), 89 (17), 77 (100), 63 (16), 81 (39). 

HRMS m/z [M+] Calcd for C16H1003 250.0629, found 250.0617. 

3-(Hydroxyiminoethyl)-2H-chromen-2-one (194a)22 

23 Pandya, K. R.; Pandya, K. C. Arga. Uni. J. Res. 1955, IV, 345-353. 
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To a room temperature solution of 193a (3.00 g, 15.9 mmol) in glacial acetic acid 

(25 mL) was added hydroxylamine hydrochloride (1.66 g, 23.9 mmol). The mixture was 

reacted under reflux for 2.5 h. The clear colorless solution went to a clear brown over the 

course of the reaction. The solution was allowed to cool to room temperature and crystals 

formed. The solution was then suction filtered, which afforded 194a as a white solid 

(2.16 g, 10.6 mmol, 67%). 

Mp 201-202 °C (chloroform) (Lit.22 209 °C). 1H NMR (500 MHz, CDCh): 8 = 7.88 (s, 

1H, H-4), 7.84 (s, 1H, H-2'), 7.57-7.53 (m, 2H), 7.35 (d, 1H, J = 8.8 Hz), 7.30 (t, 1H, J = 

7.6 Hz), 2.29 (s, 3H, H-1'). 13C NMR (126 MHz, CDCh): 8 = 159.6 (0), 154.9 (0), 154.2 

(0), 141.3 (1, C-4), 132.5 (1), 128.7 (1), 125.2 (0), 124.9 (1), 119.1 (0), 116.8 (1), 13.5 (3, 

C-1'). IR (nujol, KBr): 'Umax = 3300 (s), 3057 (w), 1720 (s), 1698 (m), 1610 (w), 1248 (w), 

1136 (w), 914 (m), 757 (m), 632 (w) cm-1
. MS (EI) m/z (%) = 203 (M+, 28), 186 (100), 

159 (7), 115 (20), 102 (11), 63 (23). HRMS mlz [M+] Calcd for C11H9N03 203.0581, 

found 203.0559. 

3-(Hydroxyiminophenylmethyl)-2H-chromen-2-one (194b)23 
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To a room temperature solution of 193b (3.00 g, 12.0 mmol) in glacial acetic acid 

(25 mL) was added hydroxylamine hydrochloride (1.25 g, 18.0 mmol). The mixture was 

reacted under reflux for 7 h. The clear colorless solution went to a clear bright yellow 

over the course of the reaction. The solution was allowed to cool to room temperature and 

crystals formed. The mixture was suction filtered, which afforded 194b (1.90 g, 7.17 

mmol, 60%) as a pale yellow solid. 

Mp 248-249°C (chlorofonnfhexane) (Lit.23 148-150 °C). 1H NMR (500 MHz, CDCb): 8 

= 10.84 (s, 1H, H-1'), 9.04 (s, 1H, H-4), 7.76 (d, 2H, J = 7.6 Hz), 7.72 (t, 1H, J = 7.9 Hz), 

7.43-7.38 (m, 4H), 7.18 (t, 1H, J = 7.8 Hz). 13C NMR (126 MHz, CDCb): 8 = 162.0 (0), 

159.5 (0), 154.8 (0), 149.1 (1), 137.9 (0), 134.6 (1), 130.2 (1), 129.3 (1, 2C), 125.7 (1), 

125.0 (1), 120.81 (1), 120.80 (1), 118.9 (0), 116.9 (1). IR (nujol, KBr): Umax = 3278 (m), 

1712 (s), 1595 (s), 1551 (s), 1318 (w), 1250 (w), 1202 (m), 1032 (w), 971 (w), 791 (m), 

741 (s), 688 (m), 535 (w) cm-1
. MS (EI) mlz (%) = 265 (M+, 37), 173 (100), 120 (56), 105 

(88), 43 (97). HRMS mlz [M+] Calcd for C16H11N03 265.0713, found 265.0720. 

(E)-0-acetyl-3-(Hyd:roxyiminomethyl)-2H-ch:romen-2-one (190) 
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To a room temperature solution of 189 (0.50 g, 2.6 mmol), acetic anhydride (0.32 

g, 3.1 mmol, 0.30 mL) in THF (25 mL) was added pyridine (0.22 g, 2.8 mmol, 0.23 mL). 

The mixture was reacted for 8 h. The clear colorless solution went to a pale clear yellow 

over the course of the reaction. The solvent was removed under reduced pressure to give 

a pale yellow solid and the residue was subjected to flash chromatography (5% ethyl 

acetate/dichloromethane), which afforded 190 (0.32 g, 1.3 mmol, 53%) as a pure white 

solid. 

~f = 0.61 (5% ethyl acetate/dichloromethane). Mp 116-117 °C (ethyl acetate/hexane). 1H 

NMR (500 MHz, CDCh): 8 = 8.60 (s, 1H), 8.56 (s, 1H), 7.64-7.60 (m, 2H), 7.39-7.33 

(m, 2H), 2.25 (s, 3H, H-3'). 13C NMR (126 MHz, CDCb): 8 = 168.2 (0), 159.8 (0), 154.7 

(0), 150.4 (1), 141.6 (1), 133.8 (1), 129.6 (1), 125.4 (1), 118.7 (0), 118.1 (0), 117.2 (1), 

19.6 (3, C-3'). IR (nujol, NaCl): Umax = 1778 (m), 1727 (s), 1226 (m), 1190 (m), 917 (w), 

764 (w) cm-1
• MS (EI) m/z (%) = 231 (M+, 2), 189 (38), 171 (49), 143 (44), 115 (24), 89 

(16), 43 (100). Anal. Calc. For C12H9N04: C 62.34, H 3.92, N 6.06; found; C 62.23, H 

4.15, N 6.09. 

3-Cyano-2H-chromen-2-one (192) 
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5 4 1' 
6ro4a 3 CN 

I ~~ 7 Q 2 

8 
Sa 0 0 

To a room temperature solution of 189 (1.00 g, 5.3 mmol) p-toluenesulfonyl 

chloride (3.02 g, 15.9 mmol) in dichloromethane (20 rnL) was added dropwise 

triethylamine (1.71 g, 15.9 mmol) in dichloromethane (10 rnL). The mixture was stirred 

for 3 h at 0 °C under nitrogen. The solution was allowed to warm to room temperature 

and allowed to react for an additional for 4 h. The solvent was removed under reduced 

pressure to give a thick pale yellow oil that was subjected to flash chromatography 

(dichloromethane), which afforded 192 (0.63 g, 4.5 mmol, 84%) as a white solid. 

R1 = 0.52 (dichloromethane). Mp 188-189 °C (ethyl acetate/hexane) (Lit.24 182 °C). 1H 

NMR (500 MHz, CDCh): 8 = 8.30 (s, 1H, H-4), 7.74 (td, 1H, J = 7.2, 1.4 Hz), 7.64 (dd, 

1H, J = 7 .3, 1.5 Hz), 7.44-7.42 (m, 2H). 13C NMR (126 MHz, CDCh): 8 = 156.6 (0), 

154.8 (0), 152.0 (1), 135.8 (1), 129.5 (1), 125.9 (1), 117.6 (1), 117.3 (0), 113.7 (0), 103.6 

(0). IR (nujol, NaCl): Umax = 2942 (m), 2923 (m), 2212 (m), 1730 (s), 1601 (s), 1550 (w), 

1450 (w) cm-1
. MS (EI) mlz (%) = 171 (M+, 69), 143 (100), 115 (70), 89 (11), 63 (35), 39 

(29). 

2-Benzothiazolesulfenamide (203ib 

24 Baker. W.; Howe, C. S. J. Chern. Soc. 1953, 119-124. 
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Through a room temperature solution of 2,2'-dithiobis(benzothiazole) (5.00 g, 

15.0 mmol) and silver nitrate (2.60 g, 15.3 mmol) in dry methanol (250 mL) was bubbled 

ammonia for 15 min. The clear colorless solution went to a thick yellow suspension 

during this time. The mixture was suction filtered and the solvent was removed under 

reduced pressure. The resulting white precipitate was then dissolved in diethyl ether (100 

mL) and filtered. The solvent collected was removed under reduced pressure, which 

afforded 203 (2.61 g, 14.3 mmol, 95%) as a white solid. 

Mp 122-123 °C (chloroform/hexane) (Lit.5
b 123-124 °C). 1H NMR (500 MHz, CDCh): 8 

= 7.84 (d, 1H, J = 7.9 Hz), 7.82 (d, 1H, J = 8.5 Hz), 7.42 (td, 1H, J = 7.7, 1.2 Hz), 7.29 (t, 

1H, J = 8.2 Hz), 3.28 (s, 2H). 13C NMR (126 MHz, CDCh): 8 = 178.6 (0), 154.8 (0), 

135.2 (0), 126.2 (1), 123.9 (1), 121.7 (1), 121.3 (1). IR (nujol, NaCl): 'Umax = 3323 (m), 

3194 (w), 1431 (m), 1313 (w), 1088 (w), 1031 (m), 920 (m), 751 (m), 721 (w), 693 (w) 

cm-1
. MS (EI) mlz (%) = 182 (M+, 100), 149 (48), 108 (30), 82 (9), 69 (19). 

(E)-2-[ (2-0xo-2H -chromen-3-ylmethylidene )amino ]benzothiazole (198) 

s:o3~4' 
;:s~ \ # s· 

N N 
I 1' 6' 

To a room temperature solution of 176 (2.00 g, 11.5 mmol), 2.14 g (11.7 mmol) 

of 2-benzothiazolesulfenamide in absolute ethanol (25 mL) was added potassium 

hydroxide (0.04 g, 0.7 mmol). The mixture was reacted at room temperature under 
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nitrogen for 18 h. The clear colorless solution went to a bright thick yellow suspension 

over the course of the reaction. The solvent removed under reduced pressure and the 

residue was subjected to flash chromatography (dichloromethane), which afforded 198 

(1.36 g, 4.02 mmol, 35%) a bright yellow solid. 

Mp 135-136 °C (chloroform/hexane). 1H NMR (500 MHz, CDCh): 8 = 8.88 (s, 1H), 8.43 

(s, 1H), 7.92 (d, 1H, J = 7.6 Hz), 7.88 (d, 1H, J = 8.2 Hz), 7.73 (dd, 1H, J = 7.7, 1.3 Hz), 

7.63 (td, 1H, J = 8.0, 1.4 Hz), 7.46 (t, 1H, J = 7.6 Hz), 7.40-7.33 (m, 3H). 13C NMR (126 

MHz, CDCh): 8 = 171.1 (0), 160.2 (0), 154.5 (0), 154.3 (0), 154.2 (1), 140.3 (1), 135.2 

(0), 133.5 (1), 129.8 (1), 126.5 (1), 125.4 (1), 124.5 (1), 122.6 (0), 122.4 (1), 121.2 (1), 

119.1 (0), 117.2 (1). IR (nujol, NaCl): Umax = 1722 (s), 1597 (m), 1568 (w), 1178 (w), 

112 (w), 1062 (w), 1029 (w), 1011 (w), 955 (w), 746 (w), 718 (w) cm-1
. MS (EI) m/z (%) 

= 338 (M+, 7), 332 (13), 268 (3), 167 (100), 145 (4), 108 (15), 89 (11), 39 (7). HRMS m/z 

[M+] Calcd for C17H10N20 2S2 338.0183, found 338.0224. 

(E)-4-Methyl-N- [ (2-oxo-2H -chromen-3-yl)phenylmethylene ]benzenesulfonamide 

(207) 

To a room temperature solution of 193b (5.00 g, 20.0 mmol), p­

toluenesulfonamide ( 4.10 g, 24.0 mmol), triethylamine (8.50 mL, 6.06 g, 60.0 mmol), 
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and 4A molecular sieves (20 g) in dry dichloromethane (150 mL) was added dropwise 

titanium(IV) chloride (1.10 mL, 1.89 g, 10.0 mmol) over a 30 minute period at 0 °C, 

under nitrogen. The mixture was reacted for 3 h. The clear colorless solution went to a 

thick dark red suspension over the course of the reaction. The red precipitate redissolved 

back into the solution and the mixture was then filtered through Celite and the cake was 

washed with dichloromethane (50 mL). The solvent of the filtrate was removed under 

reduced pressure, which afforded an orange solid. The residue was then subjected to flash 

chromatography (2% ethyl acetate/dichloromethane), which afforded 207 (5.77 g, 14.3 

mmol, 72%) as a white solid. 

R1 = 0.83 (2% ethyl acetate/dichloromethane). Mp 190-191 °C (chloroform/hexane). 1H 

NMR (500 MHz, CDCh): 8 = 7.93 (d, 2H, J = 8.1 Hz, H-4), 7.90 (s, 1H), 7.88 (d, 2H, J = 

7.6 Hz), 7.66 (td, 1H, J = 7.6, 1.6 Hz), 7.63 (dd, 1H, J = 7.0, 1.5 Hz), 7.59 (t, 1H, J = 7.4 

Hz), 7.46-7.42 (m, 2H), 7.38 (t, 1H, J = 7.8 Hz), 7.34 (d, 2H, J = 8.0 Hz), 2.46 (s, 3H, H-

6'). 13C NMR (126 MHz, CDCh): 8 = 172.4 (0), 157.8 (0), 154.5 (0), 144.4 (0), 142.7 (1, 

C-4), 137.2 (0), 135.5 (0), 134.4 (1), 133.2 (1), 130.0 (2C, 1), 129.8 (1), 129.8 (1), 129.1 

(2C, 1), 128.0 (1), 125.2 (1), 125.0 (0), 118.2 (0), 117.3 (1), 21.8 (3, C-6'). IR (nujol, 

KBr): 'Umax = 3054 (w), 1726 (s), 1608 (w), 1558 (m), 1154 (m), 1088 (w), 803 (w), 752 

(m), 689 (m) cm-1
• MS (EI) mlz (%) = 403 (M+, 21), 248 (100), 236 (9), 194 (3), 155 

(29), 91 (86), 77 (27). HRMS m/z [M+] Calcd for C23H17N04S 403.0877, found 

403.0852. 

(E)-3-(Tosylhydrazono-1-ethyl)-2H -chromen-2-one (210) 
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Using general procedure 2, 193a (2.00 g, 10.6 mmol), p-toluenesulfonamide (2.08 

g, 11.2 mmol), and anhydrous magnesium sulfate (22.0 g) in toluene (100 mL) were 

reacted for 48 h. The clear colorless solution went to a bright yellow over the course of 

the reaction. The dichloromethane solution was then washed with 1 M HCl (50 mL) and 

was dried with anhydrous magnesium sulfate. The dichloromethane solution was gravity 

filtered and the solvent was removed under reduced pressure, which afforded 210 (3.34 g, 

9.38 mmol, 88%) as a pale yellow solid. 

Mp 157-158 °C (chloroform/hexane). 1H NMR (500 MHz, CDCb): 8 = 7.96 (s, 1H, H-4), 

7.86 (d, 2H, J = 8.6 Hz), 7.57-7.54 (m, 2H), 7.34-7.30 (m, 4H), 2.44 (s, 1H, H-2'), 2.42 (s, 

3H, H-1'), 2.18 (s, 3H, H-7'). 13C NMR (126 MHz, CDCh): 8 = 160.0 (0), 154.3 (0), 

150.3 (0), 144.6 (0), 142.2 (1), 135.5 (0), 132.7 (1), 129.9 (1), 129.0 (1), 128.2 (1), 126.1 

(0), 125.6 (1), 119.1 (0), 116.7 (1), 21.8 (3), 15.3 (3). IR (nujol, KBr) Umax = 3226 (m), 

3021 (w), 1718 (m), 1607 (w), 1600 (w), 1342 (m), 1161 (s), 754 (m) cm-1
. MS (APCI) 

mlz (%) = 357 (M+ +1). MS (EI) mlz (%) 200 (100), 172 (58), 144 (18), 115 (30), 91 (59), 

89 (11). HRMS mlz [M+] Calcd for C1sHt6N20 4S 356.0829, found 356.0851. 

Diphenylphosphoryl azide20 (214) 
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To a room temperature solution of diphenyl chlorophosphate (3.00 g, 11.2 mmol) 

in dry acetone (50 mL) was added sodium azide (0.76 g, 11.7 mmol). The mixture was 

reacted at room temperature for 3 h. The clear colorless solution went to a thick white 

suspension over the course of the reaction. The mixture was gravity filtered and the 

solvent removed under reduced pressure and the residue was then subjected to flash 

chromatography (dichloromethane), which afforded 214 (2.86 g, 10.4 mmol, 93%) as a 

thick clear colorless oil. 

1H NMR (500 MHz, CDCh): 8 = 7.42-7.37 (m, 5H), 7.32-7.18 (m, 5H). 13C NMR (126 

MHz, CDCb): 8 = 150.1 (0, d, lc-P = 4.8 Hz), 150.0 (0, d, lc-P = 5.4 Hz), 130.3 (1), 126.6 

(1), 126.3 (1), 120.6 (1, d, J = 4.8 Hz), 120.4 (1, d, J = 5.4 Hz). IR (nujol, NaCl): Umax = 

3432 (w), 3066 (m), 2522 (w), 2174 (vs), 1590 (s), 1489 (s), 1457 (m), 1300 (s), 1275 (s), 

1202 (s), 1025 (m), 946 (s), 781 (s), 688 (m), 598 (w) cm-1
. MS (EI) m/z (%) = 275 (M+, 

100), 215 (11), 167 (73), 154 (31), 126 (26), 94 (28), 77 (77), 65 (55), 51 (36). 

Acetylglycine (216) 
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To a room temperature solution of glycine (75.00 g, 1.00 mol) in deionized (300.0 

mL) was added acetic anhydride (215.00 g, 2.1 mol, 198.7 mL). The mixture reacted at 

room temperature for 5 h. The clear colorless solution went to a thick white suspension 

over the course of the reaction. The solution was then cooled to 6 °C and the solution was 

then filtered and washed with cold deionized water (300 mL), which afforded 216 as a 

white solid (98.51 g, 0.64 mol, 85%). 

3-Acetamido-2H -chromen-2-one (211 )21 

5 4 H1' 6C!Ji4a 3 Nio 
I ~ ~ 2' 

7 ~ 2 
3' 

8 
Sa 0 0 

To a room temperature solution of salicylaldehyde (61.10 g, 0.50 mol), anhydrous 

sodium acetate (41.00g, 0.50 mol) in acetic anhydride (255.26 g, 2.50 mol, 250.0 ml) was 

added acetylglycine (58.6 g, 0.38 mol) and mixture was heated to 100 °C for 90 min. The 

clear colorless solution went to a dark clear red over the course of the reaction. The 

solution was cooled to room temperature and was diluted with ice water (300 mL) and 

cooled to 6 °C. The suspension produced was then filtered, which afforded 211 as a 

yellow solid (40.00 g, 0.20 mol). The solid was twice crystallized from ethanol, which 

afforded 211 (27.00 g, 0.13 mol, 27%) as a white solid. 

Mp 195-196 oc (Lit.21 203-204 °C). 1H NMR (500 MHz, CDCh): 8 = 8.69 (s, 1H, H-4), 

8.10 (s, 1H, H-1'), 7.52 (dd, 1H, J = 7.4, 1.2 Hz), 7.46 (td, 1H, J = 7.9, 1.4 Hz), 7.34-7.30 

(m, 2H), 2.26 (s, 3H, H-3'). 13C NMR (126 MHz, CDCh): 8 = 169.7 (0), 159.0 (0), 150.1 
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(0), 129.9 (1), 128.0 (1), 125.4 (1), 124.2 (0), 123.6 (1, C-4), 120.0 (0), 116.6 (1), 24.9 (3, 

C-3'). IR (nujol, NaCl): Umax = 3331 (s), 1710 (s), 1683 (s), 1605 (m), 1530 (m), 1145 

(m), 766 (w), 708 (w) cm-1
• MS (EI) m/z (%) = 203 (M+, 18), 161 (100), 133 (37), 106 

(8), 78 (10), 51 (9). 

(2-0xo-2H-chromen-3-yl)carbamic add tert-butyl ester (215) 

To a room temperature solution of 211 (5.00 g, 24.6 mmol), 4-

(dimethylamino)pyridine (0.60 g, 49.1 mmol) in freshly distilled THF (120 mL) was 

added di-tert-butyl dicarbonate (22.48 g, 0.103 mol). The mixture was reacted under 

reflux for 4 h under nitrogen. The clear colorless solution went to a clear pale yellow over 

the course of the reaction. The solution was cooled to room temperature and was added 

hydrazine hydrate (3.94 g, 0.123 mol, 3.83 mL) and freshly distilled methanol (100 mL) 

in one portion. The solution was allowed to react at room temperature for an additional 4 

h. The solution was then diluted with dichloromethane (200 mL) and was washed with 1 

M HCl (aq.) (100 mL), 1M CuS04 (aq.) (100 mL), and 1M NaHC03 (aq.) (100 mL). 

The solution was then dried over anhydrous MgS04 filtered and the solvent was removed 

under reduced pressure to give a white solid. The residue was then subjected to silica 

flash column chromatography (dichloromethane), which afforded 215 (5.82 g, 22.3 

mmol, 91 %) as a white solid. 
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Rj = 0.86 (dichloromethane). Mp 85-86 °C (chloroform/hexane) (Lit. 16 85-86 °C). 1H 

NMR (500 MHz, CDCh): & = 8.29 (s, 1H, H-4), 7.47 (dd, 1H, J = 7.6, 1.0 Hz), 7.42 (td, 

1H, J = 7.9, 1.8 Hz), 7.33-7.28 (m, 2H), 1.55 (s, 9H, H-4'). 13C NMR (126 MHz, CDCh): 

8 = 158.8 (0), 152.7 (0), 149.7 (0), 129.2 (1), 127.5 (1), 125.2 (1), 124.8 (0), 120.6 (1, C-

4), 120.3 (0), 116.5 (1), 81.9 (0, C-3'), 28.4 (3, C-4'). IR (nujol, NaCl): Umax = 3322 (m), 

1700 (s), 1304 (w), 1238 (m), 1159 (m), 1042 (w), 1013 (w), 904 (w), 692 (w) cm-1
. MS 

(EI) mlz (%) = 261 (M+,10), 205 (8), 187 (100), 161 (75), 133 (24), 103 (44), 57 (65). 

3-Amino-2H-chromen-2-one (212) 

5 4 1' 
6m4a 3 NH2 

I
~~ 

7 .b 2 

8 
Sa 0 0 

1 

To a room temperature 15% TFA/chloroform solution by volume (50 mL), was 

added 215 (0.500 g, 19.1 mmol). The mixture was reacted at room temperature under 

nitrogen for 24 h. The solvent was removed under reduced pressure to produce a thick 

clear brown oil and the residue was subjected to flash chromatography (5 %ethyl acetate/ 

dichloromethane), which afforded 212 (0.307 g, 1.91 mmol, 99.7%) as a white solid. R1 = 

0.61 (5 %ethyl acetate/ dichloromethane). 

Mp 135-136 °C (chloroform/hexane) (Lit. 16 132-135 °C). 1H NMR (500 MHz, CDCh): 8 

= 7.31-7.26 (m, 3H), 7.24-7.19 (m, 1H), 6.71 (s, 1H, H-4'), 4.15 (s, 1H, H-1'). 13C NMR 

(126 MHz, CDCh): 8 = 159.6 (0), 149.3 (0), 132.2 (0), 126.8 (1), 125.3 (1), 124.8 (1), 

121.4 (0), 116.4 (1), 111.1 (1, C-4). IR (nujol, NaCl): Umax = 3428 (w), 3324 (w), 1705 
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(s), 1647 (w), 1590 (w), 1227 (w), 1170 (w), 889 (w), 742 (m) cm-1
. MS (EI) m/z (%) = 

161 (M+, 100), 133 (49), 106 (21), 78 (35), 51 (13). HRMS mlz [M+] Calcd for C9H7NOz 

161.0463, found 161.0498. 

General Procedure for the Preparation of the 2mAzadienes 

Procedure 3: Use of Dean-Stark conditions in the preparation of the 2-azadienes. 

To a room temperature solution of 212 in toluene containing glacial acetic acid 

(0.10 rnL), was added the aromatic aldehyde (1.05 equivalents) and the mixture was 

heated under reflux using a Dean-Stark apparatus under nitrogen. The reaction was 

monitored by TLC until 3-aminocoumarin was consumed. The solution was cooled to 6 

oc and the resulting precipitate was then collected by suction filtration and washed with 

pentane. The product was crystallized from chloroform/hexane. 

Procedure 4: Using non Dean-Stark conditions. 

To a room temperature solution of 212 in absolute ethanol containing glacial 

acetic acid (0.10 mL) and 4 A. molecular sieves was added the aromatic aldehyde (1.05 

equivalents) and the mixture was reacted overnight using reflux conditions under 

nitrogen. The solution was then cooled to room temperature and filtered. The solvent was 
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removed under reduced pressure and the residue was then crystallized from 

chloroform/hexane. 

(E)=3-[ ( 4-nitrobenzylidene )amino ]=2H =chromen-2=one (222) 

4' 

P
I 5'N02 

I 
1' 

s 4 I 6ro4a 3 N 
I
~~ 

7 ~ 2 

8 Sa 0 0 

Using general procedure 3, 212 (1.00 g, 6.2 mmol), of 4-nitrobenzaldehyde (1.13 

g, 7.47 mmol), 4 A molecular sieves (-20 g), and absolute ethanol (25 mL) were reacted 

for 4 h. The pale yellow solution went to a thick yellow suspension over the course of the 

reaction. The solution was then filtered and washed with cold pentane (50.0 mL x 3), 

which afforded 222 (1.45 g, 4.93 mmol, 79%) as a yellow solid. 

Mp 238-239 °C (chloroform/hexane). 1H NMR (500 MHz, CDCb): 8 = 9.49 (s, 1H, H-

1 '), 8.33 (d, 2H, J = 9.3 Hz), 8.11 (d, 2H, J = 8.7 Hz), 7.83 (s, 1H, H-4), 7.60-7.55 (m, 

2H), 7.39 (d, 1H, J = 8.3 Hz), 7.35 (t, 1H, J = 7.6 Hz). 13C NMR (126 MHz, CDCh): 8 = 

161.7 (1, C-1'), 158.2 (0), 152.6 (0), 149.8 (0), 141.9 (0), 136.8 (1, C-4), 133.6 (0), 132.0 

(1), 129.9 (1), 128.5 (1), 125.1 (1), 124.2 (1), 119.9 (0), 116.7 (1). IR (nujol, NaCl): 'Umax 

= 1705 (s), 1618 (w), 1597 (w), 1520 (m), 1344 (m), 1288 (w), 1081 (m), 950 (w), 837 

(w), 748 (w) cm-1
. MS (EI) m/z (%) = 294 (M+, 77), 204 (5), 191 (7), 146 (100), 118 (35), 
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(E)=3=[ (2= Hydroxynaphthalen= 1 = ylmethylene )amino]= 2H =chromen-2-one (223) 

Using general procedure 4, 212 (0.80 g, 5.0 rnmol), 2-hydroxy-1-naphthaldehyde 

(0.95 g, 5.2 rnmol), 4 A molecular sieves (-20 g), and absolute ethanol (25.0 mL) were 

reacted for 16 h. The yellow solution went to a thick dark orange suspension over the 

course of the reaction. The solvent was removed under reduced pressure and the residue 

was crystallized, which afforded 223 (0.61 g, 1.8 mmol, 39%) a dark orange solid. 

Mp 224-225 °C. 1H NMR (500 MHz, CDCb): 8 = 10.19 (s, 1H, H-2'), 8.19 (d, 1H, J = 

7.8 Hz), 7.84 (d, 1H, J = 9.4 Hz), 7.73 (d, 1H, J = 7.1 Hz), 7.70 (s, 1H), 7.64-7.53 (m, 

3H), 7.45-7.33 (m, 4H), 7.12 (d, 1H, J = 9.8 Hz). 13C NMR (126 MHz, CDCh): 8 = 167.8 

(0), 159.6 (1), 158.1 (0), 152.1 (0), 137.1 (1), 133.4 (0), 131.4 (1), 131.3 (1), 131.0 (0), 

129.5 (1), 128.5 (1), 128.0 (1), 127.9 (0), 125.2 (1), 124.2 (1), 121.2 (1), 119.9 (1), 119.8 

(0), 116.7 (1), 110.1 (0). IR (nujol, KBr): 'Umax = 1725 (s), 1619 (m), 1326 (m), 1289 (w), 

1195 (w), 1063 (m), 1034 (w), 820 (m), 750 (s), 468 (w). MS (EI) m/z (%) = 315 (M+, 

100), 270 (5), 146 (27), 118 (22), 114 (5), 77 (10). M+, found 315.0888, C20H13N03 

requires M+, 315.0894. 

(E)-3=[ (2-Hydroxybenzylidene )amino ]=2H=chromen=2=one (224) IS a 
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To a room temperature solution of glycine ethyl ester hydrochloride (8.35 g, 59.9 

mmol), of triethylamine (9.0 mL, 6.53 g, 64.6 mmol) in deionized water (40.0 mL), was 

added salicylaldehyde (13.7 mL, 16.0 g, 131.0 mmol). The mixture was stirred 

vigorously for 18 h. The clear colorless solution went to a thick orange suspension over 

the course of the reaction. The solution was suction filtered, which afforded 224 (12.56 g, 

47.3 mmol, 79%) as an orange solid. 

Mp 177-178 °C (water/DMF) (Lit. 15
a 189-190 °C). 1HNMR (500 MHz, CDCh): 8 = 

12.93 (s, 1H, H-8'), 9.48 (s, 1H, H-1'), 7.71 (s, 1H, H-4), 7.67-7.61 (m, 2H), 7.46-7.28 

(m, 4H), 7.03-6.85 (m, 2H). 13C NMR (126 MHz, CDCb): 8 = 167.5 (1, C-1'), 161.7 (0), 

158.1 (0), 152.4 (0), 134.4 (1, C-4), 134.2 (1), 133.5 (1), 132.0 (0), 131.7 (1), 128.3 (1), 

125.1 (1), 119.8 (0), 119.6 (1), 119.5 (0), 117.6 (1), 116.7 (1). IR (nujol, KBr): Dmax = 

3398 (w), 3038 (w), 1729 (s), 1611 (s), 1571 (m), 1294 (m), 1228 (w), 1147 (w), 1074 

(m), 923 (w), 745 (s) cm-1
. MS (EI) mlz (%) = 265 (M+, 83), 220 (7), 146 (100), 118 (33), 

77 (24). HRMS mlz [M+] Calcd for C16H11N03 265.0738, found 265.0728. 

(E)-3-(Benzylidene )amino-2H -chromen-2-one (225) 
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Using general procedure 4, 212 (0.65 g, 4.0 mmol), benzaldehyde (0.60 mL, 0.64 

g, 6.0 mmol), 4 A molecular sieves (~20 g), and absolute ethanol (20 mL) were reacted 

for 14 h. The clear colorless solution went to a clear pale yellow over the course of the 

reaction. The solvent was removed under reduced pressure, which afforded 225 (0.66 g, 

2.7 mmol, 68%) as a pale yellow solid. 

Mp 141-142 oc (Lit.25 140-150 °C). 1H NMR (500 MHz, CDCh): 8 = 9.16 (s, 1H, H-1'), 

7.95 (dd, 2H, J = 6.9, 2.2 Hz), 7.61 (s, 1H, H-4), 7.55-7.45 (m, 5H), 7.37 (d, 1H, J = 8.2 

Hz), 7.27 (t, 1H, J = 7.4 Hz). 13C NMR (126 MHz, CDCh): 8 = 164.5 (1, C-1'), 158.6 (0), 

152.4 (0), 136.3 (0), 135.9 (0), 132.31 (1), 132.28 (1), 131.0 (1), 129.4 (1), 129.0 (1), 

128.0 (1), 124.7 (1), 120.2 (0), 116.6 (1). IR (nujol, KBr): Umax = 3034 (w), 1715 (s), 

1611 (m), 1574 (m), 1288 (m), 1218 (w), 1122 (w), 1061 (s), 998 (m), 915 (m), 750 (s), 

693 (m) cm-1. MS (EI) m/z (%) 249 (M+, 22), 220 (4), 161 (100), 146 (31), 133 (34), 106 

(14), 78 (26). HRMS m/z [M+] Calcd for C16H11N02 249.0789, found 249.0783. 

(E)-3-[ ( 4-Methoxybenzylidene )amino ]-2H -chromen-2-one (226) 

25 Kulkarni, Y. D.; Srivastava, D. S.; Bishnoi, A.; Dva, P.R. J. Indian Chern. Soc. 1996, 73, 173-175. 
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Using general procedure 4, 212 (0.50 g, 3.1 mmol), p-anisaldehyde (0.40 mL, 

0.43 g, 3.2 mmol), 4 A molecular sieves ( ~20 g), and absolute ethanol (30 mL) were 

reacted for 12 h. The clear colorless solution went a clear pale yellow over the course of 

the reaction. The solvent was removed under reduced pressure, which afforded 226 (0.63 

g, 2.3 mmol, 87%) as a pale yellow solid. 

Mp 150-151 °C. 1H NMR (500 MHz, CDCh): 8 = 9.02 (s, 1H, H-1'), 7.89 (d, 2H, J = 9.0 

Hz), 7.52-7.46 (m, 3H), 7.35 (d, 1H, J = 8.1 Hz), 7.28 (t, 1H, J = 8.1 Hz), 6.98 (d, 2H, J = 

9.0 Hz), 3.88 (s, 3H, H-5'). 13C NMR (126 MHz, CDCh): 8 = 163.6 (1, C-1'), 163.2 (0), 

158.9 (0), 152.3 (0), 136.5 (0), 131.3 (1), 131.1 (1), 130.6 (1), 129.2 (0), 127.8 (1), 124.8 

(1), 120.4 (0), 116.5 (1), 114.5 (1), 55.6 (3, H-5'). IR (nujol, NaCl): Umax = 1713 (s), 1604 

(m), 1570 (m), 1300 (w), 1252 (s), 1170 (m), 1057 (m), 1020 (w), 835 (w), 751 (w) cm-1
. 

MS (EI) mlz (%) = 279 (M+, 86), 236 (4), 207 (10), 146 (100), 77 (25), 69 (29). HRMS 

mlz [M+] Calcd for C17H13N03 279.0894, found 279.0885. 

(E)-3-[(Thiophen-2-ylmethylene)amino]-2H-chromen-2-one (227) 
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Using general procedure 4, 212 (1.60 g, 3.1 mmol), 2-thiophenecarboxaldehyde 

(0.90 mL, 1.14 g, 10.1 mmol), 4 A molecular sieves (~20 g), and absolute ethanol (30 

mL) were reacted for 14 h. The clear colorless solution went to a clear pale yellow over 

the course of the reaction. The solvent was removed under reduced pressure, which 

afforded 227 (2.11 g, 8.27 mmol, 83%) as a pale yellow solid. 

Mp 152-153 °C. 1H NMR (500 MHz, CDCh): 8 = 9.50 (s, lH), 7.71 (s, lH), 7.57-7.48 

(m, 4H), 7.36 (d, lH, J = 7.7 Hz), 7.30 (t, lH, J = 7.4 Hz), 7.16 (t, lH, J = 4.2 Hz). 13C 

NMR (126 MHz, CDCh): 8 = 158.6 (0), 157.4 (1), 152.2 (0), 143.5 (0), 134.7 (1, H-4), 

134.0 (0), 133.8 (1), 131.6 (1), 131.1 (1), 128.3 (1), 128.0 (1), 124.9 (1), 120.3 (0), 116.5 

(1). IR (nujol, NaCl): Umax = 3099 (w), 3078 (w), 1720 (s), 1606 (m), 1591 (s), 1559 (w), 

1290 (w), 1224 (w), 1078 (m), 912 (w), 754 (m), 726 (w) cm-1. MS (EI) m/z (%) = 255 

(M+, 94), 226 (21), 146 (100), 118 (34), 96 (25), 51 (16). HRMS m/z [M+] Calcd for 

C14H9NOzS 255.0353, found 255.0359. 

(E)-3-[ ( 5-Bromothiophen -2-ylmethylene )amino]-2H -chromen-2-one (228) 
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Using general procedure 4, 212 (0.60 g, 3.7 mmol), 5-bromo-2-

thiophenecarboxaldehyde (0.50 mL, 0.75 g, 3.9 mmol), 4 A molecular sieves (-20 g), and 

absolute ethanol (30 mL) were reacted for 16 h. The clear colorless solution went to a 

clear dark yellow over the course of the reaction. The solvent was removed under 

reduced pressure, which afforded 228 (0.60 g, 1.8 mmol, 48%) as a pale yellow solid. 

Mp 201-202 °C. 1H NMR (500 MHz, CDCb): 8 = 9.44 (s, 1H, H-1'), 7.72 (s, 1H, H-4'), 

7.54-7.49 (m, 2H), 7.34 (d, 1H, J = 8.5 Hz), 7.30 (t, 1H, J = 8.2 Hz), 7.26 (d, 1H, J = 3.9 

Hz), 7.11 (d, 1H, J = 3.8 Hz). 13C NMR (126 MHz, CDCb): 8 = 158.4 (0), 156.3 (1, C-

1'), 152.2 (0), 145.2 (0), 135.9 (1, C-4), 133.7 (1), 133.2 (0), 131.3 (1), 128.2 (1), 125.0 

(1), 120.211 (0), 120.207 (0), 116.5 (1). IR (neat, KBr): Umax = 2945 (vw), 2923 (vw), 

2866 (vw), 1959 (w), 1720 (vs), 1610 (m), 1578 (m), 1557 (w), 1453 (w), 1422 (s), 1284 

(w), 1227 (w), 1059 (s), 968 (w), 920 (w), 803 (m), 749 (s), 460 (m). MS (EI) m/z (%) = 

333 (M+, 48), 304 (2), 226 (3), 189 (2), 146 (100), 118 (23), 95 (50), 45 (20). M+, found 

332.9469, C14HsBrNOzS requires M+, 332.9458. 

(E)-3-[ (3-Nitro benzylidene )amino ]-2H -chromen-2-one (229) 
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Using general procedure 4, 212 (1.40 g, 8.7 mmol), 3-nitrobenzaldehyde (1.34 g, 

8.9 mmol), 4 A molecular sieves (~20 g), and absolute ethanol (30.0 mL) were reacted 

for 14 h. The clear colorless solution went to a clear dark yellow over the course of the 

reaction. The solvent was removed under reduced pressure, which afforded 229 (0.60 g, 

1.8 mmol, 57%) as a dark yellow solid. 

Mp 224-225 °C. 1H NMR (500 MHz, CDCh): 8 = 9.54 (s, 1H), 8.35 (dd, 1H, J = 8.5, 1.6 

Hz), 8.24 (d, 1H, J = 7.7 Hz), 7.75 (t, 1H, J = 7.8 Hz), 7.60 (d, 1H, J = 7.7 Hz), 7.56 (td, 

1H, J = 8.3, 1.9 Hz), 7.40 (d, 1H, J = 8.3 Hz), 7.34 (t, 1H, J = 7.4 Hz). 13C NMR (126 

MHz, CDCh): 8 = 161.6 (1), 158.3 (0), 152.6 (0), 149.0 (0), 138.3 (0), 136.4 (1), 133.5 

(0), 131.8 (1), 130.0 (1), 128.4 (1), 126.2 (1), 125.1 (1), 124.8 (1), 123.5 (1), 119.9 (0), 

116.7 (1). IR (nujol, NaCl): Umax = 1726 (s), 1619 (m), 1568 (w), 1522 (s), 1218 (w), 

1155 (w), 1123 (w), 1083 (w), 1063 (m), 909 (w), 749 (m) cm-1. MS (EI) m/z = (%) 294 

(M+, 13), 190.4 (4), 146 (100), 118 (3), 89 (21). HRMS m/z [M+] Calcd for C16H10Nz04 

294.0646, found 294.0639. 

(E)-3-[(2-Nitrobenzylidene)amino]-2H-chromen-2-one (230) 
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Using general procedure 4, 212 (1.40 g, 8.7 mmol), 2-nitrobenzaldehyde (1.34 g, 

8.9 mmol), 4 A molecular sieves (~20 g), and absolute ethanol (30 mL) were reacted for 

14 h. The clear colorless solution went to a clear dark yellow over the course of the 

reaction. The solvent was removed under reduced pressure, which afforded 230 (1.58 g, 

5.37 mmol, 62%) as a dark yellow solid. 

Mp 224-225 °C. 1H NMR (500 MHz, CDCh): 8 = 9.54 (s, 1H, H-1'), 8.29 (dd, 1H, J = 

7.0, 1.3 Hz), 8.08 (dd, 1H, J = 7.8, 1.2 Hz), 7.75 (t, 1H, J = 7.5 Hz), 7.67-7.64 (m, 2H), 

7.58-7.52 (m, 2H), 7.38 (d, 1H, J = 8.2 Hz), 7.32 (t, 1H, J = 8.0 Hz). 13C NMR (126 

MHz, CDCh): 8 = 160.1 (1), 158.2 (0), 152.7 (0), 149.6 (0), 135.6 (0), 133.8 (1), 133.0 

(1), 132.0 (1), 131.6 (1), 131.0 (0), 130.2 (1), 128.3 (1), 125.0 (1), 124.8 (1), 119.8 (0), 

116.7 (1). IR (nujol, NaCl): 'Umax = 1726 (s), 1619 (m), 1568 (w), 1522 (s), 1218 (w), 

1155 (w), 1123 (w), 1083 (w), 1063 (m), 909 (w), 749 (m) cm-1. MS (EI) m/z (%) = 294 

(M+, 8), 249 (11), 190 (7), 160 (65), 132 (100), 104 (36), 77 (24). HRMS m/z [M+] Calcd 

for C16HwNz04 294.0639, found 294.0635. 

(E)-3-[ (2-Hydroxy-4-methoxybenzylidene )amino]-2H -chromen-2-one (231) 
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Using general procedure 4, 212 (0.60 g, 3.7 mmol), 4-methoxysalicylaldehyde 

(0.59 g, 3.9 mmol), 4 A molecular sieves (~20 g), and absolute ethanol (30 mL) were 

reacted for 14 h. The clear colorless solution went to a clear dark yellow over the course 

of the reaction. The solvent was removed under reduced pressure, which afforded 231 

(0.35 g, 1.8 mmol, 32%) as a dark yellow solid. 

Mp 195-196 °C. 1H NMR (500 MHz, CDCb): 8 = 13.40 (s, 1H, H-6'), 9.33 (s, 1H), 7.61 

(s, 1H), 7.54-7.50 (m, 2H), 7.36 (d, lH, 1= 8.3 Hz), 7.33-7.29 (m, 2H), 6.52-6.48 (m, 

2H), 3.85 (s, 3H, H-6'). 13C NMR (126 MHz, CDCb): 8 = 166.0 (1), 164.9 (0), 164.3 (0), 

158.3 (0), 152.2 (0), 134.8 (1), 132.8 (1), 132.4 (0), 131.2 (1), 128.0 (1), 125.0 (1), 120.0 

(0), 116.6 (1), 113.4 (0), 107.8 (1), 101.3 (1), 55.7 (3, C-6'). IR (nujol, NaCl): Umax = 

1716 (s), 1608 (m), 1554 (m), 1289 (w), 1221 (w), 1119 (m), 1074 (m), 1024 (w), 965 

(w), 926 (w), 825 (w), 751 (m), 723 (w) cm-1
. MS (EI) mlz (%) = 295 (M+, 100), 266 (4), 

224 (3), 146 (58), 118 (20), 77 (7), 39 (7). HRMS mlz [M+] Calcd for C17H13N04 

295.0843, found 295.0848. 

(E)~3~[ (5-Bromo-2-hydroxybenzylidene)amino ]-2H -chromen~2-one (232) 
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Using general procedure 4, 212 (0.50 g, 3.1 mmol), 5-bromo-salicylaldehyde 

(0.65 g, 3.3 mmol), 4 A molecular sieves (~20 g), and absolute ethanol (30 mL) were 

reacted for 14 h. The clear colorless solution went to a clear bright yellow over the course 

of the reaction. The solvent was removed under reduced pressure, which afforded 232 

(0.66 g, 1.9 mmol, 64%) as a bright yellow solid. 

Mp 251-252 °C. 1H NMR (500 MHz, CDCb): 8 = 12.98 (s, 1H, H-8'), 9.47 (s, 1H, H-1'), 

7.75 (s, 1H, H-4), 7.59-7.56 (m, 3H), 7.48 (dd, 1H, J = 8.6, 2.3 Hz), 7.40 (d, 1H, J = 8.8 

Hz), 7.35 (td, 1H, J = 7.4, 1.4 Hz), 6.92 (d, 1H, J = 9.3 Hz). 13C NMR (126 MHz, 

CDC13): 8 = 166.1 (1), 160.6 (0), 157.9 (0), 152.5 (0), 136.7 (1), 135.5 (1), 135.4 (1), 

132.1 (1), 131.3 (0), 128.4 (1), 125.2 (1), 120.9 (0), 119.6 (1), 116.7 (1), 111.0 (0), 96.3 

(0). IR (nujol, KBr): Drnax = 3415 (w), 3154 (w), 1716 (s), 1614 (m), 1275 (s), 1170 (m), 

1063 (w), 952 (w), 751 (w) cm-1. MS (EI) m/z (%) = 343 (M+, 50), 298 (3), 146 (100), 

118 (33), 77 (16). HRMS m/z [M+] Calcd for C16H10BrN03 342.9843, found 342.9792. 

(E)-3-[(4-Fluorobenzylidene)amino]-2H-chromen-2-one (233) 
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Using general procedure 4, 212 (0.60 g, 3.7 mmol), 4-fluorobenzaldehyde (0.40 

mL, 0.48 g, 3.3 mmol), 4 A molecular sieves (~20 g), and absolute ethanol (30 mL) were 

reacted for 14 h. The clear colorless solution went to a clear pale yellow over the course 

of the reaction. The solvent was removed under reduced pressure, which afforded 233 

(0.72 g, 1.9 mmol, 72%) as a pale yellow solid. 

Mp 131-132 °C. 1H NMR (500 MHz, CDCh): 8 = 9.16 (s, 1H), 7.97-7.94 (m, 2H), 7.62 

(s, 1H), 7.55-7.51 (m, 2H), 7.38 (d, 1H, J = 8.5 Hz), 7.33-7.29 (m, 2H), 7.18 (t, 1H, J = 

8.3 Hz). 13C NMR (126 MHz, CDCh): 8 = 165.4 (0, d, 1
lc-F =253Hz, C-5'), 162.9 (1), 

158.6 (0), 152.3 (0), 135.4 (0), 132.8 (1), 132.7 (0, d, 4
lc-F =3Hz, C-2'), 131.5 (1, d, 3 lc-F 

=9Hz, C-3'), 131.1 (1), 128.0 (1), 124.9 (1), 120.2 (0), 116.6 (1), 116.2 (1, d, 2Jc-F = 22 

Hz). IR (nujol, KBr): 'Dmax = 1717 (s), 1210 (m), 1161 (w), 1101 (w), 1057 (m), 947 (w), 

923 (w), 836 (w), 752 (s) cm-1
. MS (EI) m/z (%) = 267 (M+, 70), 238 (14), 222 (3), 183 

(7), 161 (64), 146 (100), 133 (36), 118 (28), 78 (26). HRMS m/z [M+] Calcd for 

C16HwFNOz 267.0694, found 267.0701. 

(E)-3-[ ( 4-Chlorobenzylidene )amino]-2H -chromen-2-one (234) 
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Using general procedure 4, 212 (0.60 g, 3.7 mmol), 4-chlorobenzaldehyde (0.40 

mL, 0.48 g, 3.3 mmol), 4 A molecular sieves (~20 g), and absolute ethanol (25.0 mL) 

were reacted for 14 h. The clear colorless solution went to a clear pale yellow over the 

course of the reaction. The solvent was removed under reduced pressure, which afforded 

234 (0.76 g, 1.9 mmol, 72%) as a pale yellow solid. 

Mp 183-184 °C. 1H NMR (500 MHz, CDCh): 8 = 9.22 (s, 1H), 7.91 (d, 2H, J = 8.4 Hz), 

7.67 (s, 1H), 7.58-7.53 (m, 2H), 7.49 (d, 2H, J = 9.0 Hz), 7.40 (d, 1H, J = 9.0 Hz), 7.34 

(t, 1H, J = 7.0 Hz). 13C NMR (126 MHz, CDCh): 8 = 163.0 (1), 158.5 (0), 152.4 (0), 

138.3 (0), 135.1 (0), 134.8 (0), 133.5 (1), 131.2 (1), 130.5 (1), 129.3 (1), 128.1 (1), 124.9 

(1), 120.1 (0), 116.6 (1). IR (nujol, KBr): Umax = 1725 (s), 1623 (m), 1586 (w), 1216 (w), 

1151 (w), 1096 (m), 923 (w), 828 (w), 752 (m) cm-1
. MS (EI) m/z (%) = 283 (M+, 43), 

254 (6), 190 (2), 146 (100), 89 (38), 63 (16). HRMS m/z [M+] Calcd for C16HwClN02 

283.0399, found 283.0393. 
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Chapter 3: Results and Discussion 

3.1 Attempted Inverse Electron Demand DielsaAlder Reactions of the 

1-Azadienes. 

Previous work in the Bodwell group resulted in the discovery that "all-carbon" 

diene 133b underwent an IEDDA-driven domino reaction to give benzocoumarins. 

However, the use of enamines derived from six-membered ketones 236 gave a mixture of 

nonaromatized products 237 and 238, which could be aromatized upon treatment with an 

oxidant such as DDQ. It was suggested that the reluctance of these systems to 

dehydrogenate resulted from more severe nonbonded interactions in 239 compared to 235 

(Scheme 3.1).1 

1 Pottie, I. Thesis, The Memorial University of Newfoundland, 2002. 
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Scheme 3.1 

The enamine derived from cyclopentanone and pyrrolidine was selected for initial 

studies of the IEDDA chemistry of the 1-azadienes. Not only is this enamine easily 

prepared and stable, but also it had been found to react reliably with other electron 

deficient dienes prepared previously in the Bodwell group. 

Diene 183 reacted with enamine 134 to afford ketone 242 (37%), and the desired 

pyridocoumarin 243, but only in 1% yield (Scheme 3.2). The formation of 243 can be 

explained by an IEDDA reaction between 183 and 134 to afford adduct 240, followed by 
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successive elimination of p-toluenesulfonamide and pyrrolidine. It seems more likely that 

the elimination of p-toluenesulfonamide would occur first because it not only involves a 

more acidic proton and a better leaving group, but also leads to restoration of the partial 

aromaticity of the pyrene ring. Despite the very poor yield, the formation of 243 was an 

encouraging result (Scheme 3.2). 

~~2NHTs -HNTs c&N 
I~~ 

0 0 ~ 0 
240 241° 

IEDDAI C;j] ~ -HNTs 

0 
+ 

0 0 0 0 
183 243 

1 
or-No 

(':B 

"="' qs r/H 
e·N-:NH 0 N~N 

~N$ _..~N~2 

llAo~o V llAo~o V 
244 244 

Scheme3.2 

The formation of 242 can be rationalized by an initial 1,2-addition of the enamine 

134 to the imine unit of 183. The resulting adduct 244 can expel the conjugate base of p-

tolenesulfonamide to afford 245, which can collapse to zwitterions 246 with the loss of 
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N2• A 1,2 H-shift (or some other process) could then give 247, hydrolysis of which 

provides the observed product 242. Other plausible mechanisms to account for the 

formation of A can be postulated, but the lack of information about the nature of the 

intermediates renders this discussion academic. The key conclusion of this experiment is 

that the introduction of the nitrogen atom into the diene system has brought with it a 1,2-

imine addition pathway that can compete with the desired cycloaddition (concerted) or 

stepwise (1,4-addition) pathway (Scheme 3.2). 

An important feature of diene 183 is that the substituent on the diene nitrogen 

atom (NHTs) is not very electron withdrawing, if at all. This being the case, it was hoped 

that dienes 186 and 187, which have electron-withdrawing N-substituents (phth and tosyl, 

respectively) would result in the formation of greater proportions of the pyridocouamrin 

product 243. However, this was not the case. Both dienes reacted to afford a,B­

unsaturated ketone 250 in moderate to good yield (Scheme 3.3). No trace of 243 was 

observed in either reaction. This product 250 also appears to be the end result of 1,2 

addition to the imine moiety of 186 or 187. Formation of this product can be explained 

via a intramolecular (or intermolecular) proton transfer in zwitterionic intermediate 246 

affords enamine 247. Hydrolysis and elimination of RNH2 provide the observed product 

250. Interestingly, this is the product of an aldol condensation between cylcopentanone 

and 3-formylcoumarin, which are the direct precursors of 186 and 187. The double bond 

geometry of 250 was established unambiguously by 1H NOE experiments. 
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The reactions of dienes 182, 184, 185, 188, 190, 207, 208, and 210 with enamine 

134 resulted in the complete consumption of the dienes, but no pure products could be 

isolated (except in the case of diene 185 where >95% of the diene was isolated). The low 

reactivity 185 is likely due to the dimethylamino group, which is very electron donating. 

The 1H NMR spectra of the crude reaction mixtures indicated that complex mixtures had 

formed. 

The observation that Ian Pattie's diene 133b undergoes 1,4-addition, but the 1-

azadienes described above undergo 1,2-addition can be explained using the energy 

profiles presented in Figure 3.1. Presumably, both systems can react either in a 1,2 or a 

1,4 sense. In the case of all-carbon 133b, its behavior suggests that ~G+ for reaction in a 

1,2-fashion is significantly higher than that for reaction in a 1,4-fashion. The replacement 
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of carbon with nitrogen at the !-position would thus appear to have the effect of reversing 

the relative heights of the energy barriers for the two processes. The introduction of a 

nitrogen atom at the !-position surely lowers the energy barrier to the desired 1,4-

addition, but had the unforeseen effect of lowering the energy barrier to 1,2-addition to a 

much greater extent. The isolation of trace amount of desired product 243 supports the 

notion of such a competition. If only from an intuitive perspective, the presence of an 

electron deficient imine unit (as opposed to a Michael acceptor) in the side chain of the 1-

azadiene also appears to be consistent with the above argument. 
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In an attempt to block 1,2-addition of the dienophile to the imine unit in 207, 

dienes 208 (which is known to react with ethyl vinyl ether and diethyl ketene acetal)2 and 

188 were reacted with enamine 134. Disappointingly, these reactions also resulted in the 

formation of complex mixtures. In light of the very discouraging results with the 1-

azadienes, work in this area was suspended. 

The reason(s) why the 1-azadienes do not react in the desired fashion are not 

immediately obvious. Diels-Alder reactivity has been linked to the HOMO-LUMO gap 

between the reacting species, but this does not appear to be relevant here. Calculated 

(AM1) HOMO and LUMO energies of dienes 158, 187,251,252 and dienophiles 58 and 

134 are presented in Table 3.1 along with the respective HOMO-LUMO gaps. Looking at 

the HOMO-LUMO gaps there is little differences between the all-carbon and nitrogen 

containing 1-azadienes. This would seem to lend credence to the scenario proposed in 

Figure 3.1, in which the IEDDA reactions of 251 and 252 are shown to be nearly 

degenerate. However, this situation is severely more complicated than the simple 

HOMO-LUMO based argument would suggest. According to the calculated HOMO-

LUMO gaps, 251 and 158 should be equally reactive towards ethyl vinyl ether. In fact 

133b (the methyl ester of 251) was found to be unreactive toward ethyl vinyl ether at 140 

°C, whereas 158 was reported to react with ethyl vinyl ether at in a sealed tube at 100 oc 

with the vinyl ether dissolved in dioxane under 12 kbar of pressure? 

2 a) Boger, D. L.; Corbett, W. L.; Curran, T. T.; Kasper, A.M. J. Am. Chern. Soc. 1991, 113, 1713-1729. b) 
Boger, D. L.; Kasper, A.M. J. Am. Chern. Soc. 1989,111, 1517-1519. 
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~ 

251° 0 
252° 

0 187° 0 158° 0 

LUMO = =1.62 eV LUMO = -1.68 eV LUMO = -1.89 eV LUMO = -1.64 eV 

==-'OEt 

58 
7.74 7.68 7.47 7.72 

HOMO= 
-9.36 eV 

Q 
6 6.44 6.38 6.17 6.42 
134 

HOMO= 
-8.06 eV 

Table 3.1- Calculated HOMO-LUMO gaps (eV) for selected 1-azadienes and 

dienophiles 58 and 134. 

Another consideration is the accessibility of the s-cis conformation of the 1-

azadiene. Access to the s-cis conformation is requirement for the Diels-Alder reaction to 

occur. AM1 calculations indicates that the 1-azadiene is 3.3 kcal/mol higher in energy 

than the corresponding s-trans conformers, so the reactive s-cis conformer would be 

expected to predominate. By comparison, the s-cis and s-trans conformers of 251 were 

calculated to be roughly equal energy. An unfavorable dipole-dipole interaction in s-trans 

252 can be used to explain why this conformer is disfavored. The large dihedral angle 

(45.1 ° compared to 0 o for s-cis) is consistent with this explanation. (Table 3.2). 
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s-cis 
X= N X=CH X= N X= CH 
(251) (251) (252) (251) 

~H,C) (kl:::a1':mol) -88.93 ·1 05.8 -85.62 -105.7 

dihedreal angle -0.3 178.5 -45.1 178.9 

Table 3.2 - Calculated heats of formation and dihedral angles for s-cis and s-trans 

conformers of selected dienes and 1-azadienes. 

3.1 Attempted Inverse Electron Demand Diels-Alder Reactions Using the 2-

Azadienes. 

Subjection of 2-azadiene 222 to reaction with enamine 134 under the same 

conditions employed for the reactions with the 1-azadienes also resulted in 1,2-addition. 

In this case, however, ketone 252 was obtained in 95% yield as a 2: 1 mixture of 

diastereomers (Scheme 3.4). No other products were isolated. The two diastereomers 

were not separable and no attempts were made to assign their relative stereochemistries. 

The apparent 1,2-addition can be explained in the same way as those to the 1-azadienes. 
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Scheme 3.4 

Not only was the excellent yield of 252 encouraging, but there also appeared to be 

the possibility for a "plan B" ring closure. An enamine (nucleophilic, albeit tempered by 

the C=O group of the coumarin moiety) and a ketone (electrophilic) are present. C-C 

bond formation between these two functional groups would lead to the formation of a six-

membered ring (i.e. 253), which was, in a sense, the goal of the reaction. The tertiary 

alcohol in 253 looks to be a likely candidate for elimination, which would be a useful 

step in the direction of aromatization, which is another objective of the chemistry 

(Scheme 3.5). 
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Several attempts were made to induce 252 to undergo ring closure. The use of 

oxophilic Lewis acids (10 mol % AlCh, BiC13, and Yb(OTf)3) resulted in no reaction 

either at room temperature or at reflux in tetralin. The use of the protic acid catalyst p-

TsOH ( 10 mol %) at reflux in dichloromethane gave rise to the formation of three new 

products 259 (15%), 212 (56%), and 260 (85%) (Scheme 3.6 and Scheme 3.7). The most 

interesting product 259 was tentatively assigned on the basis of its mass spectrum, NOE 

and various 2-dimensional NMR experiments. Due to some ambiguity, a conclusive 

assignment could not be made. A proposed mechanism for the formation of 259 is given 

in Scheme 3.6. The other two products were 3-aminocoumarin 212 and a,p-unsaturated 

ketone 260. An acid-catalyzed elimination mechanism can account for the formation of 

these products (Scheme 3.7 and Scheme 3.8). 
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tautomerization 

Scheme 3.6 

Scheme 3.7 

An attempt to bring about cyclization under basic conditions (NaH/THF) gave 

only 3-aminocoumarin 212 and elimination product 260 as observed from 1H NMR. 

Simply heating 252 in toluene was also investigated, but, although this led to the 
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complete consumption of the starting material, 3-aminocoumarin 212 was the only 

product isolated. None of the elimination product 260 was observed. 

Scheme 3.8 

In an attempt to disfavor 1,2-addition, chloroimine 263 was synthesized from 

amide 262, which was prepared from 3-aminocoumarin and benzoyl chloride followed by 

treatment with PC15 (84% 2 steps) (Scheme 3.9). However, reaction of 263 with enamine 

134 led to the formation of a complex mixture. 
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Scheme 3.9 

The situation for the 2-azadienes is similar to that of the 1-azadienes. As with the 

1-azadienes, the calculated HOMO-LUMO gaps for the 2-azadienes show no clear 

trends. However, the s-trans conformer of 222 is now calculated to be lower in energy 

(by 3.2 kcal/mol) than the corresponding s-cis conformer. An unfavorable alignment of 

the dipoles in s-cis can be invoked to explain this preference. 
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,.....oEt 

58 

HOMO= 
-9.36 eV 

0 
6 

134 

HOMO= 
-8.06 eV 

LUMO = -1.62 eV 

7.74 

6.44 

LUMO = -1.64 eV 

7.72 

6.42 

IPNO, 
occ: 

222 

LUMO = -1.80 eV 

7.56 

6.26 

Table 3.3- Calculated HOMO-LUMO gaps (eV) for selected 2-azadienes and 
dienophiles 58 and 134. 

Again, the other consideration is the accessibility of the s-cis conformation of the 

2-azadiene. The s-cis conformation is an essential requirement for the Diels-Alder 

reaction to occur. AM1 calculations suggested that the 2-azadiene 222 is 3.2 kcal/mol 

more stable in the s-trans conformation than it is the desired s-cis conformation. However 

this energy difference is small enough for an appreciable proportion of the s-cis 

conformer to be present in solution. The s-cis confomer of all carbon diene 251 was 

calculated to be 0.4 kcal/mollower in energy that the corresponding s-trans confomer. 

Evidently, the presence of the N atom serves to disfavor the s-cis conformation. 
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ll.H,~ (kl:alfm.ol) -88.93 11.8 -85.62 12.2 

dihedral angle -0.3 178.5 -45.1 179 

Table 3.4 - Calculated heats of formation and dihedral angles for s-cis and s-trans 

conformers of selected dienes and 2-azadienes. 

3.2 The Povarov Reaction 

Benzannulated 2-azadienes are known to undergo Lewis acid-catalyzed IEDDA 

reactions to give reduced quinolines. In recognition of the pioneering work of Povarov in 

this area, 3 such reactions have been referred to as the Povarov reaction. A typical 

example is the reaction between imine 265, which is the condensation product of aniline 

and 4-nitrobenzaldehyde, and ethyl vinyl ether in the presence of BF3·0Et2 (Scheme 

3.10). This presumably affords adduct 266, tautomerism of which restores the aromaticity 

of an aromatic sextet and delivers the observed product 267. 

3 Povarov, L. S. Russ. Chem. Rev. 1967,36, 656-670. 
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Scheme 3.10 

The Nagayama group demonstrated that other Lewis acids, e.g. M(OTf)3, 

Sc(OTf)3, and Yb(OTf)3, effectively catalyzed the Povarov reaction and the azadiene (the 

imine) could be formed in situ (Scheme 3.11).4 The latter development rendered the 

Povarov reaction a three-component reaction. A broad range of reduced quinolines has 

been prepared using the Povarov reaction. 5 

+ d"' 0 R3 

cat. M(OTfh ro R1CHO + or + 
R2"'\ b MgS04, CH3CN, rt 

~R3 R2 N R1 

268 270H 

Scheme 3.11 

Since reduced quinolines are present in a wide variety of natural products, the 

Povarov reaction seems well suited to natural product synthesis. One particular elegant 

4 a) Kobayashi, S.; Ishitani, H.; Nagayama, S. Chern. Lett. 1995, 423-424. b) Kobayashi, S.; Ishitani, H.; 
Nagayama, S. Synthesis 1995, 1195-1202. c) Kobayashi, S.; Nagayama, S. J. Am. Chern. Soc. 1996, 118, 
8977-8978. 
5 Nomura, Y.; Kimura, M.; Takeuchi, Y. and Tomoda, S. Chern. Lett. 1978,267-270. b) Kametani, T.; 
Takeda, H.; Suzuki, Y.; Honda, T. Syn. Commun. 1985, 15,499-505. c) Suzuki, Y.; Honda, T. J. 
Heterocycloc Chern. 1986,23, 185-187. d) Lucchini, V.; Prato, M.; Scorrano, G.; Stivanello, M. J. Chern. 
Soc. Prekin Trans 2 1992, 259-266. 
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example is Batey's syntheses of martinelline and martinellic acid (Scheme 3.12).6 The 

key step of both syntheses was a Dy(OTf)3-catalysed three-component Povarov reaction 

between aniline 271 and dihydropyrrole 272, which functioned both as the aldehyde 

component and the dienophile (Scheme 3.12). 

QCHs+ 

NH2 
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0 
N 
I 
Boc 

272 

Dy(OTf)3 

1 
7 steps to 275 c(YN 
8 steps to 276 

N ~NHBoc 

H 

274 
275 R = H 

Scheme 3.12 

Mechanistically, the Povarov reaction could proceed by a concerted asynchronous 

pathway, or by a two-step mechanism (See. Chapter.! p. 10, Figure 1.1) (Scheme 3.13). 

6 a) Powell, D. A.; Batey, R. A. Org. Lett. 2002, 4, 2913-2916. b) Batey, R. A.; Simonic, P. D.; Lin, D.; 
Smyj, R. P. Lough, A. J. Chern. Comm. 1999, 651-652. 
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There does not appear to be any conclusive evidence in the literature to support or refute 

either of these possible mechanisms. 

(OEt NO,'Q M(OTf)3 
NO,'Q ~ 
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N 

e M(OTt) I 

27911 278 
tautomerize 
-M(OTf)3 

OR ro No 267 H I ~ 

Scheme 3.13 

3.3 Application of the Povarov reaction to 2-azadienes. 

The similarity in structure between the 2-azadienes described in Chapter 2, e.g. 

222, and typical Povarov dienes, e.g. 265, prompted the investigation of using Povarov 
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conditions to achieve cycloadditions of the 2-azadienes. Yb(OTf)3 was chosen as the 

Lewis acid and general reaction conditions described by the Batey group4
b were chosen 

for initial studies. Enamines are conspicuously absent as dienophile for the Povarov 

reaction, so 2,3-dihydo-2H-pyran (DHP) was chosen as the dienophile. Thus the reaction 

of diene 222 with DHP in the presence of Yb(OTf)3 afforded adduct 280 as a mixture of 

two diastereomers in a ratio of 1 : 1.8. The combined yield was 96% (Scheme 3.14). 

Concerns that the partial aromaticity of the pyrone ring would not provide enough of an 

incentive for the tautomerization step were apparently unfounded. 

Scheme 3.14 

endo: exo 
1 : 1.8 

The two diastereomers were formally the products of endo and exo addition in an 

IEDDA reaction followed by migration of the double bond into the pyrone ring. This was 

determined using standard 1 and 2D NMR experiments as well as NOE experiments. The 

key indicators that were used to assign the relative stereochemistry of the endo 280a and 

exo 280b (and the other Povarov adducts stereochemistry below) were the magnitude of 

the coupling constant between H4a and H5 and the observation of an NOE between H12c 

and H5. In endo 280a H4a and H5 are cis to one another and consequently will have an 
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approximate gauche relationship. The coupling constant is accordingly low (2.5 Hz in 

endo 280a. Significant NOE effects (3.4% - 5.9%) were observed between each of H12c, 

H4a, and H5), which is consistent with an all-cis arrangement of these protons. The 

enhancement observed between H12c and H5 is only possible via a 1,3-diaxial 

interaction. In exo 280b the coupling constant between H4a and H5 is 11.5 Hz, which is 

strongly indicative of a trans-diaxial arrangement. As expected, no NOE was observed 

between H12c and H5. However, an enhancement of 4.5% was observed between H12c 

and H4a (Figure 3.2). For both endo 280a and exo 280b (the major isomer) a small 

coupling constant was observed between H12c and H4a, which is consistent with a cis 

(gauche) arrangement. Although the NMR based assignments of the relative 

stereochemistry were quite compelling, attempts to grow crystals of both diastereomers 

of 280 were performed, but these did not provide crystals of sufficient quality for X-ray 

crystallography. 

J = 2.5 HzH-5 J = 11.5 Hz H-5 
J = 4.5 Hz H-12c J = 3.5 Hz H-12c 

Figure 3.2 
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Following the successful reaction between diene 222 and DHP, a series of other 

dienophiles were reacted with 222 (Table 3.5). Reactions were run initially at room 

temperature and those that showed no signs of progress after several hours were heated at 

reflux. Those dienophiles that afforded Povarov adducts generally did so in good yield. 

The exo-adducts were generally preferred, with the exceptions of the reactions of indene, 

4-bromostyrene, and acenaphthylene, which gave endo adducts with high selectivity 

(>95: 5). Assuming that the NMR-based assignments are correct, the anomalous 

selectivity of these reactions is surprising. No obvious explanation for the reversal in 

selectivity is apparent. 

The identification of endo and exo diastereomers was accomplished using the 

NMR techniques described above. Some consistent chemical shift differences between 

endo and exo isomers were also observed, which on occasion also proved to be helpful in 

assigning the relative stereochemistry. Tabulated NMR data for all Povarov adducts are 

present in Appendix (Table A.l, Table A.2). 
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Dienophile 
Rxn 

Yield endo: exo Dienophile 
Rxn 

Yield endo: exo 
Time Time 

0 20 1 : 1.8 ~ 1 : 11.8 
min 

90 
(280a: 280b) I. 4.5 h 82 

(285a: 285b) 

CJ 10 
72 

1 : 1.3 ~ 18 h 1 
>95: 5 

min (281a: 281b) (286) 
~ 

co 8h 
85 

>95: 5 

~ 
5min 

82 
>95: 5 

reflux (282) Br reflux (287) 
.o 

~N_y 7h 
61 

1 : 3 -t[Y 20min 82 
3: 1 

reflux (283a: 283b) H3CO (288a: 288b) 

60 
81 

1.8: 1 
25 min 76 

1 : 1.7 
Ph ... 5 Y min (284a: 284b) EtoY (289a: 289b) 

Table 3.5 - Dienophiles that reacted successfully with diene 222. 

Several dienophiles that were reacted with 222 did not provide Povarov adducts. 

The reaction with 1-methylindole proceeded very quickly to afford 291 (99% ), which 

consists of the aldehyde-desired portion of azadienes 222 and two units of the dienophile 

(Scheme 3.15). Surprisingly, the coumarin portion of 222 was not present in the product 

(1,2-addition of 1-methylindole to diene 222 would afford 292). Lewis acid-catalyzed 

SN1 reaction of 292 with another equivalent of 1-methylindole leads to the observed 

product 291 via 293 and donor/acceptor-stabilized diarylcation 294. 
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Curiously, the reactions between diene 222 and each of the dienophiles vinyl 

acetate, 2,3-benzofuran and ethyl ethynyl ether led to the formation of 3-aminocoumarin 

and 4-nitrobenzaldehyde, i.e. hydrolysis of azadiene 222 (Scheme 3.16). The reactions 

were monitored by tic and 1H NMR until the diene was consumed. The reason(s) why the 
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Povarov reaction does not occur and the mechanism by which hydrolyse take place are 

not immediately obvious. In situ generation of the dienophile 1-(2-propenyl)pyrrolidine 

from the reaction of acetone and pyrrolidine (a tactic that has been used successfully with 

diene 1407
) led to the formation of a complex mixture. Again, enarnines appear to be 

unsuitable dienophiles for the azadienes of interest. Finally, the attempted reaction of 

diene 222 with caffeine did not proceed to any appreciable extent after 7 hours at reflux. 

P
N02 

I 
I 

~N 

~oAo 
222 

Complex 
Mixture 

~OAc 
or 

()) 
= OEt 

No Reaction 

Scheme 3.16 

0
N02 

+ ::::::,.... 
OHC 

221 

The possibility of performing three-component Povarov reactions, i.e. generating 

the azadiene 222 in situ, was then investigated. Reaction of 3-aminocoumarin 212, 

benzaldehyde 221 and DHP gave adduct 280 with a similar ratio to that observed in the 

7 Bodwell, G.; Hawco, K. The Memorial University of Newfoundland, Unpublished Results. 
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reaction of diene 222 with DHP (Scheme 3.17). However, the yield was only 40%, which 

compares quite unfavorable to the 90% yield obtained with the preformed diene 222. 

CCXNH2 -o-
+ OHC ~ ;} N02 

0 0 
212 221 

Scheme 3.17 

Variation of the aldehyde component was investigated (Table 3.6). The use of 4-

acetoxybenzaldehyde proved to be successful in reactions with 3-aminocoumarin and 

both DHP and DHF. The yields for these reactions (55% and 30%, respectively) are 

comparable to those obtained using 4-nitrobenzaldehyde. Similar results were obtained 

using methyl4-formylbenzoate and methyl glyoxalate. 
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aldehyde dienophile endo: exo rxn time yield 

OHC-©-N02 0 1 : 1.6 
24 h 40 

(280a : 280b) 

- 0 >95: 5 2.5 d 
OHC /, 0 

(298) reflux 
55 

~COCH3 

OHC-©-0~ G 1 : 1 2.5 d 
15 

COCH3 (299a: 299b) reflux 

~0 0 >95: 5 
OHC 

(300) 
7d 31 

OCH3 

(0]1 >95: 5 2.5 d 
26 

oHc-co.,cH., (301) reflux 

Table 3.6 - The use of different aldehydes in the three-component Povarov reaction. 

Gratifyingly, X-ray quality crystals of the product that has been assigned as exo 

299b by NMR were obtained and its structure was determined crystallographically 

(Figure 3.3). This unambiguously confirmed the NMR-based assignments. The trans-

diaxial relationship between H-11 and H-14 (crystallographic numbering) that was one of 

the key elements of the NMR-based assignments and can be seen clearly. Thus the NMR-

based assignments can be viewed with a good level of confidence. 
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Figure 3.3 - Ortep representation of the exo adduct 299b. {The compound 

numbering is not the same as shown in the experimental section). 

With the ultimate goal of this work being the generation of pyridocoumarins, 

attempts were made to aromatize some of the Povarov adducts. Treatment of adducts 285 

and 281 produced pyridocoumarins 302 (72% yield) 303 (93% yield), respectively 

(Scheme 3.18). In the former case, a series of additions and eliminations reactions 

involving two equivalents of Br2 leads to the observed product. In the case of 285, the 

intramolecular elimination of the alcohol means that only one equivalent of Br2 is 

required to bring about aromatization. Attempts to aromatize indene adduct 282 (Scheme 

3.18) using Br2 did not give the desired pyridocoumarin, but rather a mixture of several 

products. Attempted chromatographic separation of this mixture afforded what appears 

(by 1H NMR) to be a mixture of brominated pyridocoumarins 304a and 304b. Clearly, 

other ways of aromatizing the Povarov adducts will have to be developed. 
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3.4 Summary and Outlook 

A series of coumarin-fused 1- and 2-azadiene were prepared as substrates for 

IEDDA-driven domino reactions with enamines. However, their reactions with enamine 

134 consistently failed to afford the desired products. 1,2-addition to the imine unit of the 

side chain emerged as the preferred mode of reaction. The use of Yb(OTf)3 as a catalyst 

(Povarov reaction) and non-enamine dienophiles ultimately gave products consistent with 

the goals. Three-component Povarov reactions gave adducts in modest (<50%) yield, 

while the use of a preformed azadiene 222 typically gave yields in excess of 60%. Two 

adducts were successfully aromatized to give the desired pyridocoumarins. 

There is much room for continuation of this work. Reasonable avenues of 

investigation include, but are not limited to 

• careful optimization of both the two- and three- component Povarov reactions 

involving coumarin-fused azadienes. 

• further investigation of the scope and limitations of the Povarov reactions 

• the search for general and high-yielding methods for the aromatization of the 

Povarov adducts. 

Accomplishment of these goals would provide the means for the expedient 

synthesis of a broad range of pyridocoumarins. The application of this methodology in 

the total synthesis of natural products, e.g. 174, may also prove to be fruitful (Figure 3.4). 
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Experimental 

General Procedures 

OCH3 

174 

Figure 3.4 

For general procedures refer to the corresponding section in Chapter 2. 

3-(2-0xocyclopentylmethyl)-2H-chromen-2-one (242) and 2,3-dihydro-7 H -1 -oxa-4-

aza-cyclopenta[c ]phenanthren-6-one (243) 

4' 5' 

6' 

To a solution of 3-(tosyl-hydrazonomethyl)-2H-chromen-2-one 183 (6.00 g, 17.5 

mmol) in dry dichloromethane (20 mL) was added 1-(cyclopent-1-enyl)-pyrrolidine (7.21 

g, 52.6 mmol, 7.67 mL) and the mixture was stirred under nitrogen at room temperature 

for 4 h. The initial pale yellow slurry went to a clear pale yellow solution and then to a 
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dark clear orange solution over the course of the reaction. The reaction was monitored by 

TLC and worked-up was initiated once the diene had been fully consumed. The solvent 

was removed under reduced pressure and the thick brown oily residue was subjected to 

flash chromatography (gradient: dichloromethane to 15% ethyl acetate/dichloromethane), 

which afforded 242 as a white solid (1.55 g, 6.54 mmol, 37%) and 243 as a white solid 

(0.05 g, 0.21 mmol, 1 %). 

242: R1 = 0.50 (dichloromethane). Mp = 73-74 oc (ethyl acetate/hexane). 1H NMR (500 

MHz, CDCb): 8 = 7.60 (s, 1H, H-4), 7.49 (t, 1H, J = 7.6 Hz), 7.46 (d, 1H, J = 8.2 Hz), 

7.35 (d, 1H, J = 8.2 Hz), 7.27 (t, 1H, J = 7.4 Hz), 3.05 (dd, 1H, J= 13.3, 5.2 Hz), 2.62-

2.51 (m, 2H), 2.39-2.34 (m, 1H), 2.25-2.11 (m, 2H), 2.06-2.00 (m, 1H), 1.85-1.75 (m, 

1H), 1.63-1.55 (m, 1H). 13C NMR (126 MHz, CDCh): 8 = 219.8 (0, C-3'), 161.9 (0), 

153.5 (0), 140.5 (1, C-4), 131.1 (1), 12.8 (0), 127.6 (1), 124.5 (1), 119.6 (0), 116.7 (1), 

48.2 (2), 38.0 (2), 31.2 (1, C-2'), 29.8 (2), 20.7 (2). IR (nujol, NaCl): Umax = 1721 (m), 

1702 (s), 758 (2) cm-1
. MS (EI) mlz (%) = 242 (M+, 35), 224 (10), 186 (73), 171 (17), 147 

(100), 115 (41), 77 (31), 28 (60). Anal. Calc. For C15H140 3: C 74.36, H 5.82; found; C 

73.39, H 5.88. 

243: R1 = 0.36 (15% ethyl acetate/dichloromethane). Mp = >208 °C (dec.) (ethyl 

acetate/hexane); 1H NMR (500 MHz, CDCh): 8 = 9.41 (s, 1H), 8.15 (d, 1H, J = 8.1 Hz), 

7.59 (t, 1H, J = 7.8 Hz), 7.42-7.37 (m, 2H), 3.51 (t, 2H, J = 7.2 Hz, H-3), 3.22 (t, 2H, J = 

7.9 Hz, H-1), 2.35 (quint, 2H, 1= 7.8 Hz, H-2). 13C NMR (126 MHz, CDCh): 8 = 173.1 

(0), 160.8 (0), 153.0 (0), 152.2 (1, C-4), 138.1 (0), 132.2 (1), 130.6 (0), 127.3 (0), 124.8 

(1), 118.3 (1), 117.9 (0), 115.0 (0), 34.8 (2, C-1), 33.2 (2, C-3), 22.8 (2, C-2). IR (nujol, 
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NaCl): 'Umax = 1726 (s), 1605 (w), 1575 (w), 1546 (w), 1287 (w), 1105 (m), 1086 (m), 

765 (m) cm-1
. MS (EI) mlz (%) = 237 (M+, 106), 208 (30), 180 (10), 152 (8), 126 (4), 63 

(8), 28 (80). HRMS m/z [M+] calcd for C1sH11NOz237.0789, found 237.0785. 

(E)-3-(2-0xocydopentylidenemethyl)-2H-chromen-2-one (250) (from diene 186) 

0 

5' 

250 

To a solution of 186 (1.50 g, 4.70 mmol) in dry THF (30 mL) was added 1-

(cyclopent-1-enyl)-pyrrolidine 134 (2.06 mL, 14.1 mmol, 1.94 g) and the reaction 

mixture was stirred under nitrogen at room temperature for 3 h. The initial yellow slurry 

change to a bright clear orange solution over the course of the reaction. The reaction was 

monitored by TLC and was worked up once the diene had been fully consumed. The 

solvent was removed under reduced pressure and the dark clear brown oily residue was 

then subjected to flash chromatography (dichloromethane), which afforded 250 as a white 

solid (0.60 g, 2.5 mmol, 53%). 

250: R1 = 0.91 (dichloromethane). Mp = 247-248 °C (chloroform/hexane). 1H NMR (500 

MHz, CDCb): 8 = 7.84 (s, 1H, H-4), 7.57-7.53 (m, 3H), 7.35 (d, 1H, J = 8.2 Hz), 7.32 (t, 

1H, J= 7.7 Hz), 2.96 (td, 2H, J= 7.2, 2.7 Hz, H-1'), 2.44 (t, 2H, J= 7.4 Hz, H-6'), 2.07 

(quint, 2H, J = 7.4 Hz, H-5'). NOE-D (CDCiJ): 8 = 7.84 (7.57-7.53, 1.8 %; 2.96, 2.7 %), 

2.96 (7.84, 1.5 %; 2.44, 1.2 %; 2.07, 0.6 %). 13C NMR (126 MHz, CDCh): 8 = 206.8 (0, 
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C-3'), 160.6 (0), 153.9 (0), 141.6 (1, C-4), 140.5 (0), 132.8 (1), 128.8 (1), 125.1 (1), 124.8 

(1), 124.7 (0), 119.4 (0), 117.2 (1), 38.0 (2, C-4'), 30.3 (2, C-6'), 20.5 (2, C-5'). IR (nujol, 

NaCl): 'Umax = 3070 (w), 1712 (s), 1633 (w), 1597 (m), 1563 (w), 1293 (w), 1076 (w), 768 

(m) cm-1
. MS (EI) m/z 240 (M+, 32), 211 (4), 197 (7), 184 (100), 115 (6), 77 (5). HRMS 

m/z [M+] calcd for C15H120 3 240.0786, found 264.0777. 

3-(2-0xocyclopentylidenemethyl)-2H-chromen-2-one (250) (from diene 187) 

0 

4' 

5' 

250 

To a solution of 187 (1.00 g, 3.10 mmol) in dry dichloromethane (30 mL) was 

added 1-(cyclopent-1-enyl)-pyrrolidine (1.34 mL, 9.20 mmol, 1.26 g) and the mixture 

was stirred under nitrogen at room temperature for 30 min. The clear colorless solution 

went to a bright clear orange solution over the course of the reaction. The reaction was 

monitored by TLC and work-up was initiated once the diene had been fully consumed. 

The solvent was removed under reduced pressure and the dark clear brown oily residue 

was then subjected to flash chromatography (dichloromethane), which afforded 250 as a 

white solid (0.56 g, 2.3 mmol, 77% ). The product was crystallized from 

chloroform/hexane. See previous experiment for characterization data. 
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(2'R * ,3'R *)-3-{[ 4-Nitrophenyl)(2-oxocydopentyl)methyl]amino }-2H -chromen-2-one 

(252a) and (2'R * ,3 'S*)-3-{[ 4-Nitrophenyl)(2-oxocydopentyl)methyl]amino }-2H-

chromen-2-one (252b) 

To a solution of 222 (0.50 g, 1.7 mmol) in dry dichloromethane (50 mL) was 

added 1-(cyclopent-1-enyl)pyrrolidine 134 (0.70 g, 5.1 mmol, 0.74 mL) and the mixture 

was stirred under nitrogen for 1 h. The pale clear orange solution change to a dark clear 

orange over the course of the reaction. The solvent was removed under reduced pressure 

and the resulting dark brown oil was subjected to flash chromatography 

(dichloromethane), which afforded 252a and 252b as a pale yellow solid (0.61 g, 1.6 

mmol, 95%). The dr was determined to be 2: 1. 

252a and 252b: R1 = 0.50 (dichloromethane). Mp = 190-191 oc (chloroform/hexane). 1H 

NMR (500 MHz, CDCb): 8 = 8.22 (t, 1.5H, J = 8.2 Hz), 7.54 (t, 1.5H, J = 8.2 Hz), 7.27-

7.21 (m, 4.5H), 7.18-7.11 (m, 4.5H), 6.13 (s, 0.5H, H-4), 5.98 (s, 1H, H-4), 5.85 (d, 0.5H, 

J = 8.3 Hz), 5.82 (d, 1H, J = 5.5 Hz), 5.00 (q, 0.5H, J = 3.8 Hz), 4.96 (t, 1H, J = 5.0 Hz), 

2.76-2.70 (m, 1.5H), 2.45-2.36 (m, 1.5H), 2.18-1.74 (m, 6H), 1.59-1.52 (m, 1H), 1.31-

1.26 (m, 0.5H). 13C NMR (126 MHz, CDCb): 8 = 217.1 (0), 216.9 (0), 159.6 (0), 148.34 

(0), 148.28 (0), 148.0 (0), 147.8 (0), 147.8 (0), 146.5 (0), 131.0 (0), 131.4 (0), 128.5 (0), 

128.4 (1), 127.8 (1), 126.83 (1), 126.78 (1), 125.63 (1), 125.60 (1), 124.9 (1), 124.4 (1), 
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124.3 (1), 121.1 (0), 121.0 (0), 116.3 (1), 108.4 (1), 108.0 (1), 57.0 (1), 55.9 (1), 54.63 

(1), 54.62 (1), 39.0 (2), 38.8 (2), 25.4 (2), 24.6 (2), 20.50 (2), 20.59 (2). IR (nujol, NaCl): 

'Umax = 3389 (m), 3061 (w), 1736 (m), 1695 (s), 1629 (m), 1602 (w), 1575 (w), 1509 (m), 

1293 (w), 1216 (m), 1171 (m), 1109 (w), 1067 (w), 930 (w), 859 (w), 760 (m), 709 (w) 

cm-1
. MS (EI) mlz (%) = 379 (M++1, 79), 359 (15), 295 (100), 218 (14), 162 (38). 

HRMS mlz [M+] calcd for C21H18N20s 378.1214, found 378.1225. 

4-( 4-Nitrophenyl)-3,3a,4,5-tetrahydro-7 H -7 -oxa-5-azacyclopenta[c ]phenanthren-6-

one (259) and (E)-2-(4-nitrobenzylidene)cydopentanone (260) 

2 

260 

To a solution of 252 (0.50 g,1.3 mmol) in dry dichloromethane (30 mL) was 

added p-toluenesulfonic acid monohydrate (0.05 g, 0.26 mmol) and the mixture was 

heated reacted under reflux for 8 h. The initial clear faint yellow solution became a dark 

orange suspension over the course of the reaction. The solvent was removed under 

reduced pressure the orange residue was subjected to flash chromatography 

(dichloromethane), which afforded 259 as an orange solid (0.07 g, 0.19 mmol, 15%), 260 

as a white solid (0.16 g, 0.75 mmol, 56%), and 3-amino-2H-chromen-2-one 212 as a 

white solid (0.18 g, 1.1 mmol, 85%). 
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259: R1 = 0.81 (dichloromethane). Mp = 211-212 °C (chloroform/hexane). 1H NMR (500 

MHz, CDCb): 8 = 8.25 (d, 2H, J = 8.3 Hz), 7.56 (d, 2H, J = 8.2 Hz), 7.48 (d, 1H, J = 8.3 

Hz), 7.38 (d, 1H, J = 7.5 Hz), 7.34 (d, 2H, J = 3.7 Hz), 7.08 (s, 1H), 6.71 (s, 1H), 6.47 (s, 

1H), 6.15 (s, 1H), 3.03-3.02 (m, 2H), 2.804-2.797 (m, 2H). NOE-D (CDCh): 8 = 6.71 

(6.15, 7.4%), 6.47 (7.56, 2.6%; 6.71, 5.7%), 6.15 (7.08, 3.5%; 2.804-2.797, 3.0%), 3.03-

3.02 (7.56, 4.2%; 2.804-2.797, 3.0%), 2.804-2.797 (6.15, 2.3%; 3.03-3.02, 2.6%). 13C 

NMR (126 MHz, CDCh): 8 = 160.0 (0), 148.6 (0), 148.6 (0), 144.5 (0), 140.2 (0), 128.9 

(1, 2C), 127.5 (1), 126.1 (1), 125.2 (1), 124.1 (1, 2C), 121.0 (0), 120.4 (1), 116.5 (1), 

114.9 (1), 111.6 (1), 29.4 (2), 29.2 (2). IR (nujol, KBr): Dmax = 3370 (m), 1698 (s), 1633 

(w), 1606 (w), 1581 (m), 1509 (s), 1343 (s), 1319 (w), 1156 (w), 1106 (w), 1064 (w), 874 

(w), 848 (w), 776 (w), 756 (m), 508 (w) cm-1
. MS (EI) m/z (%) = 360 (M+, 100), 343 

(40), 313 (64), 285 (7), 224 (23), 152 (12). HRMS m/z [M+] calcd for C21H16N20 4 

360.1109, found 360.1154. 

260: R1 = 0.70 (dichloromethane). Mp = 239-240 °C (chloroform/hexane). 1H NMR (500 

MHz, CDCb): 8 = 8.27 (d, 2H, J = 9.5 Hz, H-4'), 7.68 (d, 2H, J = 8.6 Hz, H-3'), 7.40 (t, 

1H, J = 2.7 Hz, H-1'), 3.02 (td, 2H, J = 7.4, 3.0 Hz, H-4), 2.47 (t, 2H, J = 7.7 Hz, H-2), 

2.10 (quint, 2H, J = 7.5 Hz, H-3). NOE-D (CDCb): 8 = 7.68 (8.27, 2.4%; 7.40, 1.6%; 

3.02, 2.5%), 7.40 (7.69, 2.2%; 2.47, 0.6%), 3.02 (7.68, 2.7%; 2.47, 1.4%; 2.10, 2.1 %), 

2.47 (3.02, 1.8%; 2.10, 2.1 %), 2.10 (3.02, 2.2%, 2.47, 2.4%). 13C NMR (126 MHz, 

CDCb): 8 = 207.5 (0, C-1), 147.8 (0), 142.2 (0), 140.1 (0), 131.0 (1, C-4'), 129.5 (1, C-

1'), 124.1 (1, C-3'), 37.9 (2, C-2), 29.6 (2, C-4), 20.3 (2, C-3). IR (nujol, KBr) Dmax = 

1710 (s), 1626 (m), 1594 (w), 1510 (s), 1340 (s), 1318 (w), 1221 (w), 1174 (m), 1107 
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(m), 911 (w), 860 (w), 842 (w), 810 (w), 748 (w), 689 (w) cm-1
. MS (El) m/z (%) = 217 

(M+, 67), 206 (100), 170 (51), 161 (44), 158 (15), 142 (21), 128 (53), 115 (71), 77 (19), 

39 (25). HRMS m/z [M+] calcd for C12H11N03 217.0738, found 217.0733. 

N-(2-0xo-2H-chromen-3-yl)benzamide (262) 

To a solution of 3-aminocoumarin 212 (1.40 g, 8.68 mmol) and benzoyl chloride 

(1.34 g, 9.53 mmol, 1.10 mL) in THF (50 mL) was added pyridine (0.72 g, 9.1 mmol, 

0.75 mL) and the mixture was stirred at room temperature for 3 h. The clear colorless 

solution became a thick white suspension over the course of the reaction. The reaction 

was monitored by TLC and work-up was initiated once the diene had been fully 

consumed. The mixture was diluted with chloroform until the white precipitate had 

dissolved. The chloroform solution was then washed with aqueous 3 M HCl solution (50 

mL) and then washed with 3 M NaOH solution (50 mL). The organic layer was dried 

with MgS04 and the solvent was removed under reduced pressure. The residue was then 

subjected to flash chromatography (dichloromethane), which afforded 262 as a white 

solid (1.85 g, 7.0 mmol, 81 %). 

262: R1 = 0.85 (dichloromethane). Mp = 174-175 oc (chloroform/hexane). 1H NMR (500 

MHz, CDCh): 8 = 8.86 (s, 1H, H-4), 8.84 (s, lH, H-1'), 7.92 (d, 2H, J = 8.5 Hz), 7.61-
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7.45 (m, 4H), 7.46 (t, lH, J = 7.8 Hz), 7.36-7.31 (2H, m). 13C NMR (126 MHz, CDCb) 8 

166.3 (0), 159.2 (0), 150.2 (0), 133.8 (0), 132.8 (1), 130.0 (1), 129.175 (1), 129.2 (1), 

128.1 (1), 127.375 (1), 127.371 (1), 125.5 (1), 124.4 (0), 123.6 (1, C-4), 120.1 (0), 116.6 

(1). IR (nujol, KBr): 'Umax = 3367 (m), 3089 (w), 3069 (w), 1789 (s), 1716 (s), 1663 (s), 

1601 (s), 1536 (m), 1255 (m), 1212 (s), 996 (m), 857 (w), 756 (s), 703 (s), 615 (s), 518 

(w), 472 (w) cm-1. MS (EI) m/z (%) = 265 (M+, 20), 105 (100), 77 (48), 51 (13). HRMS 

mlz [M+] calcd for C16HnN03 265.0738, found 265.0757. 

N-(2-0xo-2H-chromen-3-yl)benzimidoyl chloride (263) 

To a solution of 262 (0.40 g, 1.5 mmol) in dry chloroform (30 mL) was added 

phosphorus pentachloride (3.10 g, 14.9 mmol) and the mixture was stirred under reflux 

for 3 h. The clear colorless solution went to a clear pale yellow solution and a white gas 

was produced over the course of the reaction. When no more gas was observed, the 

reaction mixture was poured onto ice water. The resulting mixture was extracted with 

ether and the organic layer was washed with deionized water until it was pH neutral. The 

organic layer was dried with MgS04 and the solvent was removed under reduced 

pressure to afford 263 as a pale yellow solid (0.38 g, 1.3 mmol, 89% ). 
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263: Mp = 144-145°C (chloroform/hexane). 1H NMR (500 MHz, CDCh): 8 = 8.19 (d, 

2H, J = 7.5 Hz), 7.58 (t, 1H, J = 7.4 Hz), 7.55-7.47 (m, 4H), 7.38 (d, 1H, J = 9.3 Hz), 

7.31 (t, 1H, J = 7.7 Hz), 7.26 (s, 1H, H-4). 13C NMR (126 MHz, CDCh): 8 = 156.4 (0), 

152.3 (0), 149.6 (0), 134.8 (0), 134.4 (0), 133.1 (1), 130.6 (1), 130.000 (1), 29.995 (1), 

128.752 (1), 128.748 (1), 127.8 (1), 127.6 (1), 125.0 (1), 119.5 (0), 116.8 (1). IR (nujol, 

KBr): 'Umax = 1711 (s), 1666 (m), 1534 (s), 1257 (w), 1176 (w), 1157 (w), 755 (m), 702 

(m), 615 (w) cm-1. MS (EI) m/z (%) = 283 (M+ 35Cl, 26), 248 (100), 220 (13), 190 (2), 

145 (3), 105 (14), 89 (27), 77 (16), 63 (11). HRMS mlz [M+] calcd for C16H10ClN02 

283.0399, found 283.0416. 

General Procedure 1: Preparation of Povarov adducts using the preformed diene. 

To a solution of diene and Yb(OTf)3 (5 mol%) in acetonitrile was added 

dienophile (3.0 equivalents). The reaction was monitored by TLC and work-up was 

initiated once the diene had been fully consumed. The solvent was removed under 

reduced pressure and the residue was subjected to flash chromatography. The isolated 

product(s) were then crystallized from the appropriate solvent(s). The dr was determined 

from 1H NMR analysis of the crude reaction mixture. 
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General Procedure 2: Preparation of Povarov adducts using the three-component 

reaction. 

To a solution of 3-aminocoumarin 212, the appropriate aldehyde (1.05 

equivalents), and Yb(0Tf)3 (5 mol%) in acetonitrile was added dienophile (3.0 

equivalents). The reaction was monitored by tlc and work-up was initiated once the 212 

had been fully consumed. The solvent was removed under reduced pressure and the 

residue was subjected to flash chromatography. The isolated product was then 

crystallized from the appropriate solvent(s). The dr was determined from 1H NMR 

analysis of crude reaction mixture. 

( 4aS* ,SR* ,12aR*)-5-( 4-Nitrophenyl)-3,4,4a,5,6,12c-hexahydro-7 H -1,8-dioxa-6-aza-

2H -pyrano[5,6-c ]phenanthren-7 -one (280a) and ( 4aS* ,SS* ,12aR*)-5-( 4-nitrophenyl)-

3,4,4a,5,6,12c-hexahydro-7H-1,8-dioxa-6-aza-2H-pyrano[5,6-c]phenanthren-7-one 

(280b) 
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Using general procedure 1, 222 (0.50 g, 1.7 mmol), 3,4-dihydro-2H-pyran (0.50 

mL, 5.1 mmol, 0.43 g), Yb(0Tf)3 (0.05 g) and acetonitrile (10 mL) were reacted for 20 

min. The thick yellow suspension went to bright yellow suspension over the course of the 

reaction. A yellow residue was obtained and the dr was determined to be 1 : 1.8 in favor 

of 280b by NMR. This residue was subjected to flash chromatography 

(dichloromethane), which afforded 280a (0.15 g, 0.40 mmol, 25%), 280b as a yellow 

solid (0.39 g, 1.1 mmol, 65%). Combined yield= 0.62 g, 1.6 mmol, 90%. 

280a: R1 = 0.90 (dichloromethane). Mp = 228-229 °C (chloroforrnfhexane). 1H NMR 

(500 MHz, CDCh): 8 = 8.27 (d, 2H, J = 9.1 Hz, H -3'), 8.21 (d, 1H, J = 7.6 Hz, H-12), 

7.63 (d, 2H, J = 8.7 Hz, H-2'), 7.37-7.34 (m, 2H), 7.30-7.28 (m, 1H), 5.50 (d, 1H, J = 4.7 

Hz, H-12c), 5.07 (s, 1H, H-6), 4.81 (d, 1H, J = 2.5 Hz, H-5), 3.65-3.64 (m, 1H, H-2a), 

3.25 (td, 1H, J = 11.0, 1.2 Hz, H-2p), 2.38-2.35 (m, 1H, H-4a), 1.76-1.67 (m, 1H), 1.59-

1.48 (m, 1H), 1.43-1.41 (m, 2H). NOE-D (CDCh): 8 = 8.55 (7.63, 4.1 %), 8.21 (5.50, 

3.2%), 7.63 (8.55, 4.6%; 5.07, 2.2%; 4.81, 2.6 %), 5.50 (8.21, 3.5%; 4.81, 3.5%; 2.38-

2.35, 5.9%), 5.07 (7.63, 4.2%; 4.81, 7.0%), 4.81 (7.63, 4.4%; 5.50, 3.0%; 5.07, 2.5%; 

2.38-2.35, 3.4%), 3.65-3.64 (5.50, 3.7%; 3.25, 20.6%), 3.25 (3.65-3.64, 20.0%; 1.76-

1.67, 5.7%; 1.59-1.48, 4.8%), 1.43-1.41 (7.63, 2.9%; 5.50, 5.0%; 4.81, 3.8%), 2.38-2.35 

(1.76-1.67, 1.0%; 1.59-1.48, 2.0%;1.43-1.41, 2.8%). 13C NMR (126 MHz, CDCh): 8 = 

158.5 (0), 148.5 (0), 147.9 (0), 147.2 (0), 130.7 (0), 128.0 (1, C-3'), 127.1 (1), 125.1 (1), 

124.8 (1, C-12), 124.1 (1, C-2'), 120.3 (0), 116.7 (1), 116.6 (0), 71.8 (1, C-12c), 62.9 (2, 

C-2), 58.9 (1, C-5), 38.3 (1, C-4a), 24.3 (2), 19.7 (2); IR (neat, ZnSe): 'Umax = 3340 (w), 

148 



2854 (w), 1722 (s), 1618 (w), 1598 (w), 1516 (rn), 1348 (s), 1181 (rn), 1091 (s), 857 (rn), 

752 (s) cm-1
. HRMS m/z [M+] calcd for C21H18N20 5 378.1214, found 378.1225. 

280b: R1 = 0.80 (dichlorornethane). Mp = 263-264 °C (chloroform/hexane). 1H NMR 

(500 MHz, CDCh): 8 = 8.27 (d, 2H, J = 9.4 Hz, H-3'), 7.62 (d, 2H, J = 8.2 Hz, H-2'), 

7.57-7.55 (rn, 1H, H-12), 7.29-7.27 (rn, 3H), 5.09 (s, 1H, H-6), 4.87 (d, 1H, 1=11.4 Hz, 

H-5), 4.71 (d, 1H, J = 3.5 Hz, H-12c), 4.20-4.17 (rn, lH, H-2a), 3.82 (td, lH, J = 11.6, 

1.7 Hz, H-2~), 2.12-2.08 (rn, lH, H-4a), 1.94-1.78 (rn, 2H), 1.48-1.46 (rn, 2H). NOE-D 

(CDCh): 8 = 8.27 (7.62, 5.6%), 7.62 (8.27, 3.6%; 5.09, 1.5%, 4.87, 2.9%; 2.12-2.08, 

1.7%; 1.94-1.78, 1.6%; 1.48-1.46, 1.4%), 5.09 (7.62, 2.4%; 4.87, 1.0%); 4.87 (7.62, 

5.2%; 5.09, 1.6%; 2.12-2.08, 1.0%; 1.94-1.78, 3.4%; 1.48-1.46, 1.3%), 4.71 (7.57-7.55, 

7.6%; 3.82, 3.6%; 2.12-2.08, 4.5%; 1.94-1.78, 3.0%); 4.20-4.17 (3.82, 14.2%; 1.94-1.78, 

4.2%; 1.48-1.46, 3.3%), 3.82 (4.71, 3.8%; 4.20-4.17, 14.8%; 1.94-1.78, 2.8%; 1.48-1.46, 

3.5%), 2.12-2.08 (7.62, 3.9%; 5.09, 1.0%; 4.87, 1.6%; 4.71, 4.8%; 1.94-1.78, 2.6%; 1.48-

1.46, 2.4%); 13C NMR (126 MHz, CDCh): 8 = 158.9 (0), 148.6 (0), 148.3 (0), 147.9 (0), 

130.0 (0, C-2'), 129.0 (1), 126.8 (1), 125.1 (1), 124.3 (1, C-3'), 122.0 (1), 120.3 (0), 116.8 

(1), 115.4 (0), 69.7 (1, C-12c), 69.3 (2, C-2), 54.2 (1, C-5), 38.9 (1, C-4a), 23.6 (2), 22.0 

(2). IR (neat, ZnSe): Umax = 3389 (w), 2946 (w), 1710 (s), 1633 (rn), 1509 (s), 1341 (s), 

1186 (rn), 1090 (rn), 752 (s) crn-1
. HRMS m/z [M+] calcd for C21H 18N20 5 378.1214, found 

378.1230. 

Using general procedure 2, 3-arninocournarin 212 (0.25 g, 1.6 mrnol), 4-

nitrobenzaldehyde (0.25 g, 1.6 mrnol), and 3,4-dihydro-2H-pyran (0.42 rnL, 4.6 rnrnol, 

0.39 g), Yb(OTf)3 (0.05 g), and acetonitrile (30 mL) were reacted for 24 h. The bright 
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yellow suspension went to a thick bright yellow suspension over the course of the 

reaction. A yellow residue was obtained and the dr was determined to be 1 : 1.6 in the 

favor of 280b by NMR. The residue subjected to flash chromatography 

(dichloromethane), which afforded 280 as a yellow solid (0.23 g, 0.61 mmol, 40%). The 

final product was crystallized from chloroform/hexane. 

(3aS*,4R*,11cS*)-4-(4-Nitrophenyl)-2,3,3a,4,5,11c-hexahydro-2H-1,7-dioxa-6-aza-

6H-furano[4,5-c]phenanthren-6-one (281a) and (3aS*, 4S*, 11cS*)-4-(4-

nitrophenyl)-2,3,3a,4,5,11c-hexahydro-2H-1, 7 -dioxa-6-aza-6H-furano[ 4,5-

c ]phenanthren-6-one (281b) 

Using general procedure 1, 222 (0.50 g, 1.7 mmol), 3,4-dihydro-2H-furan (0.40 

mL, 5.1 mmol, 0.36 g), Yb(OTf)3 (0.05 g), and acetonitrile (10 mL) were reacted for 10 

min. The bright yellow suspension went to a clear bright yellow over the course of the 

reaction. A yellow residue was obtained and the dr was determined to be 1 : 1.3, in favor 

of 281b by NMR. The residue was subjected flash chromatography (dichloromethane), 

which afforded 281a (0.11 g, 0.30 mmol, 18%) as a yellow solid, 281b (0.21 g, 0.58 

mmol, 34%) as a yellow solid, and mixed fraction (0.12 g, 0.33 mmol, 19%) as a yellow 

solid. Combined yield= 0.44 g, 1.2 mmol, 72%. 
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281a: R1 = 0.40 (dichloromethane). Mp = 251-252 oc (chloroform/hexane). 1H NMR 

(500 MHz, CDCb): 8 = 8.31 (d, 2H, J = 7.9 Hz, H-3'), 7.85 (dd, 1H, J = 7.4, 1.5 Hz, H-

11), 7.71 (d, 2H, J = 9.0 Hz, H-2'), 7.39-7.28 (m, 3H), 5.53 (d, 1H, J = 7.4 Hz, H-llc), 

4.99 (s, 1H, H-5), 4.86 (d, 1H, J = 2.3 Hz, H-4), 3.92 (td, 1H, J = 8.3, 2.8 Hz, H-2), 3.82 

(ddd, 1H, J = 9.3, 9.3, 6.7 Hz, H-2), 3.00-2.97 (m, 1H, H-3a), 2.20 (m, 1H, H-3~), 1.50-

1.54 (m, 1H, H-3a). NOE-D (CDCb): 8 = 8.31 (7.71, 4.4%), 7.85 (7.39-7.28, 5.1 %; 5.53, 

4.4%), 7.71 (8.31, 6.6%; 4.99, 2.4%; 4.86, 2.1 %), 5.53 (7.85, 4.0%; 4.86, 2.0%; 3.00-

2.97, 5.3%), 4.99 (7.71, 3.6%; 4.86, 1.0%), 4.86 (7.71, 4.6%; 5.53, 2.5%; 4.99, 2.5%; 

3.00-2.97, 3.7%), 3.92 (3.82, 2.9%; 2.20, 2.8%; 1.60-.154, 1.2%), 3.82 (3.92, 9.5%; 2.20, 

1.3%; 1.60-1.54, 1.3%); 3.00-2.97 (7.71, 2.6%; 5.53, 3.2%; 4.86, 3.6%; 1.60-1.54, 3.4%). 

13C NMR (126 MHz, CDCh): 8 = 158.8 (0), 149.0 (0), 147.9 (0), 147.0 (0), 129.3 (0), 

127.6 (1, C-2'), 127.5 (1), 125.0 (1), 124.6 (1, C-11), 124.4 (1, C-3'), 120.0 (0), 119.4 (0), 

116.7 (1), 72.9 (1, C-2), 67.5 (2, C-2), 56.9 (1, C-4), 45.8 (1, C-3a), 25.2 (2, C-3). IR 

(neat, ZnSe): Umax = 334 (w), 1714 (s), 1636 (m), 1594 (m), 1347 (s), 1322 (w), 1184 (s), 

1048 (m), 763 (s) cm-1
. HRMS m/z [M+] calcd for C20H16N20 5 364.1058, found 

364.0974. 

281b: R1 = 0.25 (dichloromethane). Mp = 208-209 °C (chloroform/hexane). 1H NMR 

(500 MHz, CDCh): 8 = 8.30 (d, J = 8.1 Hz, H-3'), 7.78-7.76 (m, 1H, H-11), 7.66 (d, 2H, 

J = 8.6 Hz, H-2'), 7.36-7.30 (m, 3H), 5.26 (s, lH, H-5), 4.76 (d, 1H, J = 5.2 Hz, H-llc), 

4.13 (ddd, 1H, J = 8.4, 8.4, 6.4 Hz, H-2a), 3.98 (ddd, 1H, J = 8.8, 8.8, 5.9 Hz, H-2~), 

3.95 (d, 1H, J= 11.2 Hz, H-4), 2.55-2.49 (m, lH, H-3a), 2.18-2.11 (m, lH, H-3a), 1.79-

1.73 (m, lH, H-3~). NOE-D (CDCh): 8 = 8.30 (7.66, 4.7%), 7.78-7.76 (7.36-7.30, 4.6%; 
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4.76, 5.7%), 7.66 (8.30, 4.9%; 5.26, 2.2%; 3.95, 3.5%; 2.55-2.49, 3.0%; 1.79-1.73, 

1.7%), 5.26 (7.66, 2.1 %; 3.95, 2.9%), 4.76 (7.78-7.76, 5.4%; 3.98, 2.9%; 2.55-2.49, 

5.0%; 2.18-2.11, 2.4%); 4.13 (4.76, 0.5%; 3.98, 7.9%; 2.18-2.11, 2.8%; 1.79-1.73, 4.0%), 

2.55-2.49 (7.66, 4.1 %; 4.76, 5.6%; 2.18-2.11, 2.8%; 1.79-1.73, 1.9%), 2.18-2.11 (4.76, 

1.7%; 4.13, 1.4%; 3.98, 3.8%; 2.55-2.49, 3.0%; 1.79-1.73, 11.0%), 1.79-1.73 (7.66, 

1.7%; 4.13, 3.1 %; 3.95, 4.3%; 2.55-2.49, 1.9%; 2.18-2.11, 12.3%). 13C NMR (126 MHz, 

CDCh): 8 = 158.8 (0), 148.6 (0), 148.4 (0), 147.4 (0), 130.5 (0), 129.4 (1, C-2'), 127.3 

(1), 125.3 (1), 124.4 (1, C-3'), 123.3 (1, C-11), 120.8 (0), 116.8 (0), 116.7 (1), 72.7 (1, C­

llc), 65.8 (2, C-2), 57.3 (1, C-4), 43.2 (1, C-3c), 28.4 (2, C-3). IR (neat, ZnSe): Dmax = 

3397 (w), 1712 (s), 1653 (m), 1640 (m), 1516 (s), 1507 (s), 1388 (m), 1339 (s), 1189 (m), 

1045 (m), 860 (w), 764 (s), 751 (m) cm-1
. HMRS mlz [M+] calcd for C20H 16N20 5 

364.1058, found 364.1086. 

(8S* ,SaS* ,13bR*)-8-( 4-Nitrophenyl)-8,8a,9,13b-tetrahydro-6H -5-oxa-7 -aza­

indeno[2,1-c ]phenanthren-6-one (282) 

Using general procedure 1, 222 (0.50 g, 1.7 mmol), indene (0.60 mL, 5.1 rnmol, 

0.59 g), Yb(OTf)3 (0.05 g), and acetonitrile (10 mL) and were reacted under reflux for 8 
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h. The bright yellow suspension went to a pale thick yellow suspension over the course of 

the reaction. The solution was then filtered and washed with pentane, which afforded 282 

(0.59 g, 1.4 mmol, 85%) as a bright yellow solid. The dr ratio was determined to be 

greater than >95 : 5 in favor of the endo isomer. 

282: Mp = 269-270 °C (chloroform/hexane). 1H NMR (500 MHz, CDCh): 8 = 8.01 (d, 

2H, J = 7.7 Hz, H-3'), 7.86-7.84 (m, 1H, H-1), 7.41-7.37 (m, 4H), 7.35 (d, 2H, J = 8.5 Hz, 

H-2'), 7.29 (d, 1H, J = 2.7 Hz), 6.99-6.95 (m, 2H), 6.83-6.82 (m, 1H), 5.21 (s, 1H, H-7), 

4.91 (d, 1H, J = 7.8 Hz, H-13b), 4.72 (d, 1H, J = 4.4 Hz, H-8), 3.49-3.44 (m, 1H, H-8a), 

3.18 (dd, 1H, J= 17.6, 5.4 Hz, H-9a), 2.87 (dd, 1H, J= 16.0, 7.9 Hz, H-9~). NOE-D 

(CDCb): 8 = 8.01 (7.35, 3.7%), 7.86-7.84 (7.41-7.37, 4.1 %, 5.0%; 4.91, 7.1 %), 5.21 

(7.35, 3.2%; 4.72, 3.6%), 4.91 (7.86-7.84, 6.6%; 7.29, 2.2%; 4.72, 1.1 %, 3.49-3.44, 

5.2%; 2.87, 1.6%), 4.72 (7.35, 5.1 %; 5.21, 2.9%; 3.49-3.44, 4.3%; 3.18, 1.5%), 3.49-3.44 

(7.35, 2.1 %; 4.91, 5.0%; 4.72, 5.3%; 3.18, 1.2%; 2.87, 3.9%), 3.18 (7.35, 4.1 %; 7.29, 

1.9%; 5.21, 0.9%; 4.72, 1.7%; 3.49-3.44, 1.5%; 2.87, 18.2%). 13C NMR (126 MHz, 

CDCh): 8 = 158.8 (0), 148.7 (0), 148.4 (0), 147.3 (0), 142.8 (0), 142.4 (0), 1302. (0), 

127.83 (1), 127.82 (1), 127.2 (1), 126.7 (1), 125.02 (1), 125.0 (1), 124.7 (1, C-1), 123.289 

(1), 123.288 (1), 121.1 (0), 120.6 (0), 117.1 (1), 57.4 (1, C-8), 44.9 (1, C-8a), 42.8 (1, C-

13b), 33.3 (2, C-9). IR (neat, ZnSe): Umax = 3427 (w), 1702 (s), 1629 (m), 1504 (s), 1337 

(s), 1207 (m), 1059 (w), 756 (s), 734 (s) cm-1
. HRMS m/z [M+] calcd for C25H18Nz04 

410.1265, found 410.1276. 
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(2R*, 4R*)-(2-( 4-Nitrophenyl)-4-(2-oxopyrrolidin-1-yl)-1,2,3,4-tetrahydro-9-oxa-1-

aza-10H-phenanthren-10-one (283a) and (2S*, 4R*)-(2-(4-nitrophenyl)-4-(2-

oxopyrrolidin-1-yl)-1,2,3,4-tetrahydro-9-oxa-1-aza-10H-phenanthren-10-one (283b) 

Using general procedure 1, 222 (0.50 g, 1.7 mmol), 1-vinyl-2-pyrrolidinone (0.55 

mL, 5.1 mmol, 0.57 g), Yb(OTf)3 (0.05 g), and acetonitrile (10 mL) were reacted under 

reflux for 7 h. The bright yellow suspension went to a thick pale yellow suspension over 

the course of the reaction. The yellow precipitate produced was then filtered and washed 

with pentane to give 283b (0.26 g, 0.64 mmol, 38%) as a pale yellow solid. The solvent 

of the mother liquor was evaporated, which afforded 283b (0.16 g, 0.40 mmol, 23%) as a 

pale yellow solid. Combined yield= 0.42g, 1.0 mmol, 61%. The dr ratio was determined, 

from isolated material, to be 1: 3, in favor of the exo isomer 283b by NMR. 

283a: Mp = 187-188 oc (chloroform/hexane). 1H NMR (500 MHz, CDCh): 8 = 8.27 (d, 

2H, J = 9.4 Hz, H-3'), 7.64 (d, 2H, J = 8.9 Hz, H-2'), 7.36-7.32 (m, 2H), 5.77 (dd, 1H, J = 

9.0, 7.8 Hz, H-4), 5.16 (s, 1H, H-1), 4.62 (dd, 1H, J = 10.8, 2.6 Hz, H-2), 3.13 (ddd, 1H, 

J = 14.2, 7.1, 7.1 Hz, H-5'~), 2.78 (ddd, 1H, J = 14.3, 7.2, 7.2 Hz, H-5'a), 2.50-2.46 (m, 

lH, H-3a), 2.45-2.32 (m, 2H, H-7'), 2.23-2.16 (m, 1H, H-3~). NOE-D (CDCh): 8 = 8.27 

(7.64, 4.7%), 7.64 (8.27, 5.7%; 5.16, 2.7%; 4.62, 3.2%; 2.50-2.32, 1.7%; 2.23-2.16, 
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2.4%), 5.77 (7.36-7.32, 3.2%; 4.62, 0.9%; 2.50-2.32, 2.3%; 2.23-2.16, 0.6%), 5.16 (7.64, 

4.0%; 4.62, 3.6%), 4.62 (7.64, 4.0%; 5.77, 1.8%; 5.16, 2.2%; 2.50-2.32, 3.0%; 2.23-2.16, 

1.0%), 5.13 (2.78, 17.4%; 2.23-2.16, 5.0%; 1.80, 3.7%); 2.78 (7.36-7.32, 1.9%; 3.13, 

17.9%; 1.80, 3.7%), 2.233-2.26 (7.64, 2.6%; 5.77, 1.6%; 4.62, 1.4%; 3.13, 4.7%; 2.50-

2.32, 17.5%). 13C NMR (126 MHz, CDCh): 8 = 175.6 (0, C-8'), 158.4 (0), 148.2 (0), 

148.0 (0), 132.6 (0), 127.5 (l,C-2'), 125.5 (1), 124.4 (l,C-3'), 122.1 (1), 119.5 (0), 117.1 

(1), 115.6 (0), 55.0 (1, C-2), 45.2 (1, C-4), 42.8 (2, C-5'), 35.4 (2, C-3), 31.2 (2, C-7'), 

18.2 (2,C-6'). IR (neat, ZnSe): Umax = 3262 (w), 1704 (m), 1666 (s), 1623 (w), 1599 (w), 

1507 (s), 1457 (m), 1344 (s), 1290 (m), 857 (s), 743 (s), 734 (s) cm-1
. HRMS m/z [M+] 

calcd for CzsHr8N20 4 405.1323, found 405.1331. 

283b: Mp = 281-282 °C (chloroform/hexane). 1H NMR (500 MHz, CDCh): 8 = 8.30 (d, 

2H, J = 8.5 Hz, H-3'), 7.64 (d, 2H, J = 8.8 Hz, H-2'), 7.38-7.26 (m, 4H), 5.55 (dd, 1H, J = 

5.0, 2.0 Hz, H-4), 5.33 (s, 1H, H-1), 4.65 (dd, 1H, J = 12.6, 3.4 Hz, H-2), 3.59 (ddd, 1H, 

J= 8.2, 8.2, 5.5 Hz, H-3~), 3.16 (ddd, 1H, J= 8.9, 8.9, 5.8 Hz, H-3a), 2.83-2.78 (m, 2H, 

H-7'), 2.42-2.39 (m, 1H, H-5'), 2.25-2.07 (m, 2H), 1.98-1.93 (m, 1H, H-5'). NOE-D 

(CDCh): 8 = 8.30 (7.64, 12.5%), 5.55 (7.36-7.26, 7.1 %; 2.42-2.39, 2.42%; 2.25-2.07, 

5.1 %), 5.33 (4.65, 1.3%), 4.05 (7.64, 4.9%; 5.33, 1.4%; 3.59, 5.0%; 2.42-2.39, 4.0%; 

2.25-2.07, 2.4%), 3.59 (4.65, 6.8%; 3.16, 17.4%, 2.25-2.07, 3.7%), 3.16 (3.59, 13.2%; 

2.42-2.39, 4.5%; 1.98-1.93, 2.8%). 13C NMR (126 MHz, CDCh): 8 = 175.0 (0, C-8'), 

158.3 (), 148.6 (0), 148.2 (0), 148.0 (0), 130.8 (0), 127.7 (1, C-2'), 127.3 (1, C-3'), 125.7 

(1), 124.5 (1), 121.6 (1), 120.0 (0), 117.0 (1), 112.1 (0), 52.8 (1, C-2), 47.0 (2, C-3), 43.1 

(1, C-5c), 37.8 (2,C-7'), 31.3 (2, C-5'), 18.8 (2, C-6'). IR (neat, ZnSe): Dmax = 3389 (w), 
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1715 (s), 1663 (s), 1628 (m), 1600 (w), 1518 (s), 1507 (s), 1424 (m), 1347 (s), 1319 (m), 

1292 (s), 1194 (s), 745 (s) cm-1
. HRMS mlz [M+] calcd for C2sH1sNz04405.1323, found 

405.1334. 

(2S* ,4R*)-(2-( 4-Nitrophenyl)-4-( 4-phenylsulfanyl)-1,2,3,4-tetrahydro-9-oxa-1 -aza-

10H-phenanthren-10-one (284a) and (2R*,4R*)-(2-(4-nitrophenyl)-4-(4-

phenylsulfanyl)-1,2,3,4-tetrahydro-9-oxa-1-aza-lOH -phenanthren-10-one (284b) 

Using general procedure 1, 222 (0.50 g, 1.7 mmol), phenyl vinyl sulfide (0.70 

mL, 5.1 mmol, 0.69 g), Yb(OTf)3 (0.05 g), and acetonitrile (20 mL) were reacted for 60 

min. The bright yellow suspension went to a thick yellow suspension over the course of 

the reaction. A yellow residue was obtained and the dr ratio was determined to be 1.8 : 1, 

in favor of the endo isomer 284a by NMR. The residue was then subjected to flash 

chromatography (dichloromethane), which afforded 284a (0.14 g, 0.33 mmol, 19%) as a 

yellow solid, mixed fraction (0.08 g, 0.19 mmol, 11 %) as a yellow solid, 284b (0.36 g, 

0.84 mrnol, 49%) as a yellow solid. Combined yield= 0.58 g, 1.4 mmol, 81%. 

284a: R1 = 0.25 (dichloromethane). Mp = 225-226 °C (chloroform/hexane). 1H NMR 

(500 MHz, CDCh): 8 = 8.26 (d, 2H, J = 8.5 Hz, H-3'), 7.77-7.24 (m, 1H, H-5), 7.62 (d, 

2H, J = 8.9 Hz, H-2'), 7.59-7.58 (d, 2H, J = 4.7 Hz, H-6'), 7.43-7.42 (t, 2H, J = 7.1 Hz), 
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7.38-7.32 (m, 4H), 5.26 (s, 1H, H-1), 5.11 (dd, 1H, J = 11.6, 3.3 Hz, H-2), 4.64 (dd, 1H, J 

= 3.4, 1.6 Hz, H-4), 2.34 (ddd, 1H, J= 13.4, 2.0, 2.0 Hz, H-3~), 2.20-2.12 (m, 1H, H-3a). 

NOE-D (CDeb): 8 = 8.26 (7.62, 5.0%), 7.77-7.74 (7.43-7.42, 1.0%; 7.38-7.32; 4.0%; 

4.64, 7.5%), 7.62 (8.26, 9.5%; 5.26, 1.3%; 5.11, 2.3%), 5.26 (7.2, 5.0%; 5.11, 2.5%), 5.11 

(7.62, 4.6%; 5.11, 1.5%; 2.34, 3.4%), 4.64 (7.77-7.74, 8.2%; 7.62, 2.6%; 2.34, 3.4%; 

2.15, 4.5%), 2.34 (7.62, 1.6%; 7.59-7.58, 1.6%; 5.11, 4.8%; 4.64, 4.3%; 2.15, 15.3%), 

2.15 (7.62, 2.8%; 4.64, 4.8%; 2.34, 9.8%). Be NMR (126 MHz, eDeb): 8 = 158.4 (0), 

149.2 (0), 149.1 (0), 148.3 (0), 148.1 (0), 134.1 (0), 132.6 (1), 129.8 (1), 128.5 (1), 127.9 

(1), 126.9 (1), 125.0 (1, e-2'), 124.4 (1, e-3'), 122.2 (1, e-5), 119.8 (0), 117.0 (1), 113.6 

(0), 51.2 (1, e-2), 41.5 (1, e-4), 36.1 (2, e-3). IR (neat, ZnSe): 'Umax = 3387 (w), 1719 (s), 

1629 (m), 1599 (w), 1518 (m), 1504 (m), 1347 (m), 1328 (m), 1195 (m), 1069 (w), 782 

(w), 692 (m) cm-1
. HRMS mlz [M+] calcd for e 24H18N20 5S 430.0986, found 430.1015. 

284b: R1 = 0.20 (dichloromethane). Mp = 200-201 oe (chloroform/hexane). 1H NMR 

(500 MHz, eDeb): 8 = 8.20 (d, 2H, J = 8.4 Hz, e-3'), 7.67 (dd, 1H, J = 7.6, 1.8 Hz, H-

5), 7.48 (d, 2H, J = 9.4 Hz, H-2'), 7.37-7.27 (m, 6H), 7.16-7.08 (m, 2H), 5.59 (s, 1H, H-

1), 4.92 (t, 1H, J = 4.6 Hz, H-2), 4.67 (t, 1H, J = 3.9 Hz, H-4), 2.71 (ddd, 1H, J = 14.4, 

3.4, 3.4 Hz, H-3a), 2.60 (ddd, 1H, J = 14.6, 6.2, 6.2 Hz, H-3~). NOE-D (eDeb) 8 = 8.20 

(7.48, 4.1 %), 7.67 (7.37-7.27, 4.5%; 7.16-7.08, 6.4%), 7.48 (8.20, 4.1 %; 5.59, 1.4%; 

4.92, 2.7%; 2.60, 1.8%), 5.59 (7.48, 5.3%; 4.92, 6.7%), 4.92 (7.48, 4.0%; 5.59, 2.4%; 

4.07, 1.1 %; 2.71, 1.9%, 2.60, 3.3%), 4.67 (7.67, 6.6%; 7.16-7.08, 2.3%; 4.92, 3.6%; 4.67, 

4.0%, 2.60, 4.7%), 2.71 (7.48, 4.9%; 7.16-7.08, 2.3%, 4.92, 3.6%; 4.67, 4.0%; 2.60, 

4.7%), 2.60 (4.92, 5.9%; 4.67, 6.4%; 2.71, 3.5%). Be NMR (126 MHz, eDeb): 8 = 
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158.5 (0), 150.6 (0), 148.1 (0), 147.5 (0), 134.3 (0), 132.2 (1), 129.4 (1), 129.3 (0), 128.1 

(1), 127.4 (1), 126.8 (1, C-2'), 124.9 (1), 123.9 (1, C-3'), 122.6 (1, C-5), 119.8 (0), 116.8 

(1), 113.8 (0), 52.2 (1, C-2), 40.1 (1, C-4), 33.4 (2, C-3). IR (neat, ZnSe): Umax = 3374 

(w), 1701 (s), 1623 (m), 1516 (s), 1336 (m), 1314 (w), 1212 (m), 1073 (m), 850 (m), 741 

(s), 694 (m) cm-1
• HRMS m/z [M+] calcd for C24H18N20 5S 430.0986, found 430.1001. 

(2R*,4R*)-2-(4-Nitrophenyl)-4-phenyl-1,2,3,4-tetrahydro-9-oxa-1-aza-10H­

phenanthren-10-one (285b) 

Using general procedure 1, 222 (0.50 g, 1.7 mmol), styrene (0.60 mL, 5.1 mmol, 

0.53 g), Yb(OTf)3 (0.05 g), and acetonitrile (20 mL) were reacted for 25 min. The bright 

yellow suspension and went to a thick pale white suspension over the course of the 

reaction. A white residue was obtained and the dr ratio was determined to be 1 : 11.8, in 

favor of the exo isomer 285b by NMR. The residue was then subjected to flash 

chromatography (50% dichloromethane/hexane), which afforded mixed fraction (0.32 g, 

0.80 mmol, 47%) as a white solid, 285b (0.23 g, 0.58 mmol, 34%) as a white solid. 

Combined yield= 0.56 g, 1.5 mmol, 82%. Not enough endo adduct was obtained pure 

enough for full characterization. 
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285b: R1 = 0.15 (50% dichloromethane/hexane). Mp = 249-250 oc (chloroform/hexane). 

1H NMR (500 MHz, CDCh): 8 = 8.10 (d, 2H, J = 8.9 Hz, H-3'), 7.50 (d, 2H, J = 7.1 Hz, 

H-2'), 7.30 (d, 1H, J = 7.0 Hz, H-8), 7.20 (td, 1H, J = 7.7, 1.3 Hz, H-7), 7.17 (m, 3H), 

7.05-7.04 (m, 2H, H-6'), 7.00 (td, 1H, J = 7.8, 1.4 Hz, H-6), 6.93 (dd, 1H, J = 7.7, 1.6 Hz, 

H-5), 5.24 (s, 1H, H-1), 4.66 (d, 1H, J = 7.4 Hz, H-2), 4.44 (t, 1H, J = 7.6 Hz, H-4), 2.66-

2.61 (dddd, 1H, J = 13.9, 7.0, 3.4, 1.7 Hz, H-3a), 2.33 (ddd, 1H, J = 17.4, 8.6, 8.6 Hz, H-

3B). NOE-D (CDCh): 8 = 8.10 (7.50, 4.1 %), 7.50 (8.1, 6.3%; 5.24, 3.3%; 4.66, 4.4%; 

2.33, 2.8%), 7.30 (7.20, 2.1 %; 7.05-7.04, 0.6%), 7.20 (7.30, 1.9%; 7.05-7.04, 1.6%), 

7.05-7.04 (7.50, 0.5%; 7.17-7.09, 1.1%; 4.44, 2.1%), 7.24 (7.50, 4.3%; 4.66, 4.6%), 4.66 

(7.50, 4.9%; 5.24, 3.5%; 4.44, 2.4%; 2.66-2.61, 3.9%; 2.33, 2.5%), 4.44 (7.17-7.09, 

3.2%; 7.05-7.04, 3.8%; 4.66, 1.3%; 2.66-2.61, 4.1 %; 2.33, 1.7%), 2.66-2.61 (7.50, 1.7%; 

717-7.09, 2.1 %; 4.66, 4.4%; 4.44, 6.5%; 2.33, 16.9%), 2.33 (7.50, 3.5%; 7.05-7.04, 3.6%; 

4.66, 1.9%; 4.44, 1.9%; 2.66-2.61, 16.7%). 13C NMR (126 MHz, CDCh): 8 = 158.0 (0), 

149.4 (0), 148.6 (0), 147.6 (0), 142.9 (0), 131.2 (0), 129.1 (1), 127.60 (1), 127.58 (1), 

127.5 (1), 127.1 (1), 126.7 (1), 124.4 (1), 124.3 (1), 124.0 (1, C-3'), 120.4 (0), 119.5 (0), 

116.7 (1), 54.8 (1, C-2), 41.8 (2, C-3), 40.2 (1, C-4). IR (neat, ZnSe) Dmax = 3326 (w), 

1696 (s), 1685 (s), 1620 (m), 1515 (s), 1497 (w), 1191 (m), 1183 (m), 746 (s), 703 (s) em· 

1
. HRMS mlz [M+] calcd for C20H18N20 5 398.1265, found 398.1271. 

(8S* ,9S* ,lSbR*)-8-( 4-Nitrophenyl)-8,8a,13a-tetrahydro-6H -5-oxa-7 -aza­

acenaphthene[2,1-c ]phenanthren-6-one (286) 
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Using general procedure 1, 222 (0.50 g, 1.7 mmol), acenaphthylene (0.78 g, 5.1 

mmol), Yb(OTfh (0.05 g), and acetonitrile (20 mL) were reacted for 16 h. The bright 

yellow suspension went to a thick pale yellow suspension over the course of the reaction. 

The solution was then filtered and washed with pentane, which afforded 286 (0.18 g, 0.40 

mmol, 24%) as a pale white solid. The mother liquor was concentrated under reduced 

pressure and residue was then crystallized from chloroform/hexane, which afforded 286 

(0.12 g, 0.27 mmol, 16%) as a white solid. Combined yield= 0.30 g, 0.67 mmol, 40%. 

The dr ratio was determined to be greater than >95 : 5 in favor of the endo isomer by 

NMR. 

286: Mp = >300 oc (chloroform/hexane). 1H NMR (500 MHz, CDCh): 8 = 8.16 (d, 2H, J 

= 8.8 Hz, H-3'), 8.01-7.99 (m, 1H, H1), 7.58 (d, 2H, J = 8.0 Hz), 7.50-7.41 (m, 4H), 7.29 

(t, 1H, J = 7.6 Hz), 7.24-7.20 (m, 2H), 6.07 (d, 1H, J = 7.2 Hz, H-10), 5.44 (d, 1H, J = 

8.5 Hz, H-15b), 4.93-4.90 (m, 2H, H-7, H-8), 4.74 (t, 1H, J= 7.0 Hz, H-9). NOE-D 

(CDCb): 8 = 8.16 (7.50-7.41, 1.2%), 8.01-7.99 (5.44, 4.3%), 7.58 (7.24-7.20, 0.5%), 4.44 

(8.01-7.99, 6.1 %; 4.74, 3.4%), 4.74 (5.44, 7.2%; 4.93-4.90, 1.2%). 13C NMR (126 MHz, 

CDCi}): 8 = 158.7 (0), 149.6 (0), 147.7 (0), 143.3 (0), 141.0 (0), 140.2 (0), 139.7 (0), 

132.0 (0), 131.5 (0), 128.6 (1), 128.14 (1), 128.11 (1), 127.5 (1), 125.5 (0), 125.0 (1), 
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124.4 (1), 124.2 (1), 123.6 (1, C-3'), 123.4 (1, H-1), 122.2 (1), 120.0 (1), 117.4 (1), 61.3 

(1, C-7, C-8), 52.6 (1, C-9), 42.2 (1, C-15b). IR (neat, ZnSe): 'Umax = 3304 (w), 1706 (s), 

1634 (w), 1602 (w), 1521 (m), 1346 (s), 1179 (s), 794 (s) cm-1
. HRMS mlz [M+] calcd for 

CzsH18N204446.1265, found 446.1285. 

(2S*, 4S*)-(2-( 4-Nitrophenyl)-4-( 4-bromophenyl)-1,2,3,4-tetrahydro-9-oxa-1-aza-

10H-phenanthren-10-one (287) 

Using general procedure 1, 222 (0.50 g, 1.7 mmol), 4-bromostyrene (0.60 mL, 5.1 

mmol, 0.59 g), Yb(OTf)3 (0.05 g), and acetonitrile (20 mL) were reacted under reflux 

conditions for 5 min. The bright yellow suspension went to a thick pale yellow 

suspension over the course of the reaction. The yellow residue produced was then 

subjected to flash chromatography (dichloromethane), which afforded 287 as a pale 

yellow solid (0.57 g, 1.4 mmol, 82% ). The dr ratio was determined to be greater than 95 

% in favor of the endo isomer by NMR. 

287: R1 = 0.30 (dichloromethane). Mp = 246-247 °C (chloroform/hexane). 1H NMR (500 

MHz, CDCh): 8 = 8.14 (d, 2H, J = 10.3 Hz, H-3'), 7.50 (d, 2H, J = 8.8 Hz, H-2'), 7.34-

7.29 (m, 3H), 7.22 (td, 1H, J = 7.6, 1.6 Hz), 7.01 (td, 1H, J = 7.3, 1.2 Hz), 6.94 (d, 2H, J 

= 8.4 Hz), 6.88 (dd, 1H, J = 8.4, 1.3 Hz), 5.26 (s, 1H, H-1), 4.66 (d, 1H, J = 8.6 Hz, H-2), 
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4.42 (t, 1H, J = 7.8 Hz, H-4), 2.64-2.60 (m, 1H, H-3a), 2.30-2.23 (ddd, 1H, J = 18.0, 9.0, 

9.0 Hz, H-3~). NOE-D (CDCb): 8 = 8.14 (7.50, 4.35%), 7.50 (8.14, 10.61 %; 5.26, 

5.69%; 4.66, 2.30%; 2.30-2.23, 1.52%), 6.94 (7.34-7.29, 5.61 %; 5.26, 1.32%; 4.42, 

3.06%, 2.30-2.23, 2.01 %), 6.88 (7.01, 4.24%; 6.94, 1.29%; 4.42, 4.01 %), 5.26 (7.50, 

2.62%; 4.66, 3.09%), 4.66 (7.50, 4.38%; 5.26, 3.22%; 4.42, 1.44%; 2.64-2.60, 3.00%), 

2.64-2.60 (7.50, 1.02%; 4.66, 4.27%, 6.94, 1.84%; 4.42, 5.53%; 2.30-2.23, 20.3%), 2.30-

2.23 (7.50, 4.27%; 6.94, 3.25%; 2.64-2.60, 18.6%). 13C NMR (126 MHz, CDCb): 8 = 

159.0 (0), 149.3 (0), 148.8 (0), 147.9 (0), 142.2 (0), 132.5 (1), 131.6 (0), 129.5 (1, C-6'), 

127.8 (1, C-2'), 127.1 (1), 124.8 (1), 124.3 (1, C-3'), 121.0 (0), 120.3 (0), 118.9 (0), 117.1 

(1), 55.0 (1, C-2), 42.6 (2, C-3), 40.0 (1, C-4). IR (neat, ZnSe): Umax = 3391 (w), 3386 

(w), 1724 (s), 1716 (s), 1623 (w), 1510 (s), 1340 (s), 1337 (s), 1296 (m), 1094 (m), 754 

(s), 752 (s) cm-1
. HRMS m/z [M+] calcd for C24H17BrN20 4 410.0195, found 476.0370. 

(2S* ,4R*)-(2-( 4-Nitrophenyl)-4-( 4-methoxyphenyl)-1,2,3,4-tetrahydro-9-oxa-1-aza-

10H-phenanthren-10-one (288a) and (2R*,4R*)-(2-(4-nitrophenyl)-4-(4-

methoxyphenyl)-1,2,3,4-tetrahydro-9-oxa-1-aza-10H -phenanthren-10-one (288b) 

Using general procedure 1, 222 (0.50 g, 1.7 mmol), 4-methoxystyrene (0.70 mL, 

5.1 mmol, 0.70 g), Yb(OTf)3 (0.05 g), and acetonitrile (20 mL) were reacted for 20 min. 
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The bright yellow suspension went to a thick white suspension over the course of the 

reaction. A yellow residue was obtained and dr was determined to be 3 : 1, in favor of the 

endo isomer 288a by NMR. The residue was then subjected to flash chromatography 

(dichloromethane), which afforded 288a (0.19 g, 0.44 mmol, 33%) as a white solid, 

mixed fraction (0.21 g, 0.49 mmol, 36%) as a white solid, and 288b as a white solid 

(0.18g, 0.42 mmol, 31 %). Combined yield= 0.58 g, 1.4 mmol, 82%. 

288a: R1 = 0.30 (dichloromethane). Mp = 123-125 oc (chloroform/hexane). 1H NMR 

(500 MHz, CDCb): 8 = 8.11 (d, 2H, J = 8.9 Hz, H-3'), 7.49 (d, 2H, J = 9.1 Hz, H-2'), 

7.32 (d, 1H, J = 8.0 Hz), 7.24-7.20 (m, 1H), 7.0-6.97 (m, 2H), 6.95 (d, 2H, J = 9.2 Hz, H-

6'), 6.69 (d, 2H, J= 9.0 Hz, H-7'), 5.25 (s, 1H, H-1), 4.67 (d, 1H, 1= 7.5 Hz, H-2), 4.40 

(t, 1H, J = 7.3 Hz, H-4), 3.71 (s, 3H, H-9'), 2.64-2.60 (m, IH, H-3a), 2.32 (ddd, 1H, J = 

17.0, 8.3, 8.3 Hz, H-3~). NOE-D (CDCh): 8 = 8.11 (7.49, 4.4%), 7.49 (8.11, 5.3%; 6.95, 

1.9%; 5.25, 2.5%; 4.67, 3.7%), 7.32 (7.24-7.20, 1.0%; 7.01-6.97, 0.7%), 5.25 (7.49, 

3.4%; 4.67, 3.6%), 4.67 (7.49, 4.3%; 5.25; 3.4%; 4.40, 1.8%; 2.64-2.60, 3.2%; 2.32, 

1.9%), 4.40 (7.01-6.97 & 6.95, 8.3%; 4.67, 1.7%; 2.64-2.60, 4.2%; 2.32, 2.0%), 3.71 

(6.69, 2.5%), 2.64-2.60 (7.49, 1.6%; 6.95, 1.6%; 4.67, 4.2%; 4.40, 5.3%; 2.32, 21.0%), 

2.32 (7.49, 4.0%; 6.95, 3.6%; 2.64-2.60, 19.5%); 13C NMR (126 MHz, CDCh): 8 = 159.0 

(0), 158.5 (0), 149.6 (0), 148.6 (0), 148.5 (0), 147.5 (0), 134.6 (0), 131.0 (0), 128.6 (1), 

127.5 (1), 126.6 (1, C-6'), 124.5 (1, C-2'), 124.3 (1), 123.9 (1, H-3'), 120.5 (0), 119.8 (0), 

116.7 (1), 114.5 (1, C-7'), 55.4 (3, C-9'), 54.8 (1, C-2), 42.3 (2, C-3), 39.3 (1, C-4). IR 

(neat, ZnSe): 'Umax = 3356 (m), 2925 (w), 1702 (s), 1635 (m), 1622 (m), 1507 (s), 1341 
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(s), 1246 (s), 1178 (m), 835 (m), 835 (m), 748 (s) cm-1
• HRMS m/z [M+] calcd for 

CzsH20NzOs 410.1371, found 410.1345. 

288b: R1 = 0.25 (dichloromethane). Mp = 123-125 °C (chloroform/hexane). 1H NMR 

(500 MHz, CDCh): 8 = 8.21 (d, 2H, J = 8.5 Hz, H-3'), 7.52 (d, 2H, J = 9.5 Hz, H-2'), 

7.33 (d, 1H, J = 8.3 Hz, H-5), 7.24 (td, 1H, J = 7.8, 1.1 Hz), 7.19-7.15 (m, 3H), 7.10 (td, 

1H, J = 7.7, 1.4 Hz, H-6), 6.90 (d, 2H, J = 8.9 Hz, H-7'), 5.15 (s, 1H, H-1), 4.44 (dd, 1H, 

J = 11.5, 3.4 Hz, H-2), 4.39 (dd, 1H, J = 5.2, 1.4 Hz, H-4), 3.81 (s, 3H, H-9'), 2.28-2.25 

(m, 1H), 2.21-2.18 (m, 1H). NOE-D (CDCh): 8 = 8.21 (7.52, 5.9%), 7.52 (8.21, 4.0%; 

5.15, 2.0%; 4.44, 3.0%), 7.33 (7.19-7.15, 1.2%; 7.10, 0.9%), 6.90 (7.19-7.15, 4.0%; 3.81, 

3.2%), 5.15 (7.52, 4.2%; 4.44, 4.5%), 4.39 (7.19-7.15; 9.6%; 2.28-2.25 & 2.21-2.18, 

5.9%), 3.81 (6.90, 2.5%); 13C NMR (126 MHz, CDCi)): 8 = 159.1 (0), 158.8 (0), 149.7 

(0), 148.5 (0), 147.9 (0), 136.0 (0), 129.6 (0), 129.2 (1), 127.9 (1), 126.6 (1), 124.5 (1), 

124.0 (1, C-3'), 122.7 (1), 120.8 (0), 117.2 (0), 116.8 (1), 114.6 (l,H-7'), 55.5 (3, C-9'), 

50.8 (1, C-2), 39.7 (2, C-3). IR (neat, ZnSe): Umax = 3356 (m), 2925 (w), 1702 (s), 1635 

(m), 1622 (m), 1507 (s), 1341 (s), 1246 (s), 1178 (m), 835 (m), 835 (m), 748 (s) cm-1
. 

HRMS m/z [W] calcd for Cz5H20N20 5 410.1371, found 410.1352. 

(2R*, 4R*)-4-Ethoxy-2-(4-nitrophenyl)-1,2,3,4-tetrahydro-9-oxa-1-aza-10H­

phenanthren-10-one (289a) and (2S*, 4R*)-4-ethoxy-2-(4-nitrophenyl)-1,2,3,4-

tetrahydro-9-oxa-1-aza-10H -phenanthren-10-one (289b) 
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Using general procedure 1, 222 (0.50 g, 1.7 mmol), ethyl vinyl ether (0.80 mL, 

8.5 mmol, 0.61 g), Yb(0Tf)3 (0.05 g), and acetonitrile (10 mL) were reacted for 25 min. 

The bright yellow suspension remained a clear bright yellow over the course of the 

reaction. A yellow residue was obtained and the dr was determined to be 1 : 1.7, in favor 

of the exo isomer 289b by NMR. The residue was then subjected to flash 

chromatography (90% dichloromethane/hexane), which afforded 289a (0.18 g, 0.51 

mmol, 30%) as a pale yellow solid, mixed fraction (0.1 0 g, 0.28 mmol, 17%) as a pale 

yellow solid, 289b (0.17 g, 0.48 mmol, 29%) as a pale yellow solid. Combined yield = 

0.45 g, 1.2 mmol, 76%. 

289a: R1 = 0.31 (90% dichloromethane/hexane). Mp = 156-157 oc (chloroform/hexane). 

1H NMR (500 MHz, CDCb): 8 = 8.18 (d, 2H, J = 9.1 Hz, H-3'), 7.53 (d, 2H, J = 8.3 Hz, 

H-2'), 7.45 (dd, 1H, J= 9.1, 1.8 Hz, H-5), 7.33 (td, 1H, 1= 7.6, 1.6 Hz), 7.30-7.24 (m, 

2H), 5.50 (s, 1H, H-1), 4.91 (dd, 1H, J = 8.1, 4.4 Hz, H-2), 4.80 (t, 1H, J = 3.8 Hz, H-4), 

3.41 (m, 1H, H-5'), 3.33 (m, 1H, H-5'), 2.75 (dt, 1H, J = 14.4, 4.2 Hz, H-3p), 2.33 (dt, 

1H, J = 14.6, 4.9 Hz, H-3a), 0.81 (t, 2H, J = 6.6 Hz). NOE-D (CDCh): 8 = 8.19 (7.53, 

3.6%), 7.53 (8.19, 4.9%; 5.50, 2.7%; 4.91, 3.2%; 2.75, 3.2%), 7.45 (0.81, 4.1 %), 5.50 

(7.53, 3.5%; 4.91, 3.4%; 3.41, 2.4%; 0.81, 1.6%), 4.91 (7.53, 3.5%; 5.50, 3.2%; 2.75, 

2.0%, 2.33, 3.6%), 4.80 (7.45, 5.0%; 3.41, 3.2%; 3.33, 4.8%; 0.81, 2.7%), 3.33 (4.80, 
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1.2%; 3.41, 2.6%; 2.75, 2.4%; 0.81, 2.7%), 2.75 (7.53, 3.5%; 4.91, 2.0%; 4.80; 2.2%; 

3.41, 1.0%; 3.33, 3.8%; 2.33, 16.8%), 2.33 (4.91, 3.5%; 4.80, 3.5%; 2.75, 17.3%); 0.81 

(2.75, 2.1 %; 2.33, 2.0%). 13C NMR (126 MHz, CDCh): 8 = 158.0 (0), 150.6 (0), 148.3 

(0), 147.2 (0), 129.2 (0), 126.9 (1, C-2'), 126.7 (1), 125.1 (1), 124.0 (1, C-3'), 122.3 (1, C-

5), 120.4 (0), 116.8 (1), 115.4 (0), 68.2 (1, C-4), 63.4 (2, C-5'), 52.0 (1, C-2), 32.1 (2, C-

3), 15.2 (3, C-6'). IR (neat, ZnSe): Dmax = 3376 (m), 2957 (w), 1701 (s), 1626 (w), 1596 

(w), 1574 (w), 1513 (s), 1338 (s), 1200 (s), 1081 (s), 931 (w), 760 (s), 738 (s) cm-1
. 

HRMS mlz [M+] calcd for C20H1sNzOs 366.1214, found 366.1195. 

289b: R1 = 0.25 (90% dichloromethane/hexane). Mp = 168-169 °C (chloroform/hexane). 

1H NMR (500 MHz, CDCb): 8 = 8.30 (d, 2H, J = 9.2 Hz, H-3'), 7.68 (d, 2H, J = 7.9 Hz, 

H-2'), 7.53-7.50 (m, 1H, H-5), 7.35-7.31 (m, 3H), 6.25 (s, 1H, H-1), 4.71-4.68 (m, 2H, H-

2, H-4), 3.98-3.92 (m, 1H), 3.77-3.71 (m, 1H), 2.49-2.45 (m, 1H), 1.88-1.82 (m, 1H), 

1.37 (t, 2H, J = 6.6 Hz). 1H NMR (500 MHz, benzene-d6): 8 = 7.82 (d, 2H, J = 9.1 Hz, 

H-3'), 7.32 (dd, 1H, J = 7.5, 1.0 Hz, H-2'), 7.12 (dd, 1H, J = 8.4, 1.4 Hz, H-8), 7.03 (td, 

1H, J = 7.7, 1.2 Hz, H-6), 6.92 (td, 1H, J = 7.6, 1.6 Hz, H-7), 6.74 (d, 2H, J = 7.8 Hz, H-

2'), 4.84 (s, 1H, H-1), 4.08-4.06 (m, 2H, H-3), 3.39-3.36 (m,1H, H-5'), 3.22-3.18 (m, 1H, 

H-5'), 1.80-1.77 (m, 1H, H-6'). NOE-D (benzene-d6): 8 = 7.82 (6.74, 5.7%), 7.32 (7.03, 

2.6%; 4.08-4.06, 6.1%), 7.03 (7.32, 6.8%), 6.92 (7.12, 1.8%; 7.03, 1.0%), 6.74 (7.82, 

5.8%; 4.84, 3.3%; 4.08-4.06, 4.4%), 4.84 (6.74, 4.2%; 4.08-4.06, 4.4% ), 4.08-4.06 (7.32, 

5.1 %; 6.74, 5.9%; 4.84, 3.6%; 3.39-3.36, 4.5%; 3.22-3.18, 3.5%; 1.80-1.77, 5.0%), 3.39-

3.36 (4.84, 1.0%; 3.22-3.18, 2.9%; 1.12-1.06, 1.7%), 3.22-3.18 (4.08-4.06, 1.0%; 3.39-

3.36, 4.5%; 1.12-1.06, 6.1 %), 1.80-1.77 (6.74, 1.2%; 4.08-4.06, 5.7%; 3.39-3.36, 3.7%; 
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1.12-1.06, 15.5%), 1.12-1.06 (4.08-4.06, 2.1 %; 1.80-1.77, 6.1 %). 13C NMR (126 MHz, 

CDCh): 8 = 158.0 (0), 149.3 (0), 148.5 (0), 148.1 (0), 130.1 (0), 128.1 (1, C-2'), 126.8 

(1), 125.1 (1), 124.4 (1, C-3'), 121.8 (1, C-5), 120.6 (0), 117.0 (0), 115.3 (0), 68.3 (1,), 

64.5 (2, C-5'), 51.4 (1), 35.3 (2, C-3), 16.1 (3, C-6'). IR (neat, ZnSe): Umax = 3393 (w), 

3363 (w), 2952 (w), 1715 (s), 1631 (w), 1600 (w), 1518 (m), 1506 (m), 1348 (m), 1335 

(m), 1194 (s), 1076 (s), 761 (s), 750 (m) cm-1
. HRMS m/z [M+] calcd for CzoHrsNzOs 

366.1214, found 366.1103. 

(±)-3-[ ( 4-Nitrophenyl)methyl]-1-methyl-1H -indole (291) 

Using general procedure 1, 222 (0.50 g, 1.7 mmol), 4-bromostyrene (0.70 mL, 5.1 

mmol, 0.67 g), Yb(OTf)3 (0.05 g), and acetonitrile (10 mL) were reacted for 5 min. The 

yellow suspension went to a clear bright orange solution over the course of the reaction. 

The orange residue produced was then subjected to flash chromatography (50% 

dichloromethane/hexane), which afforded 291 as a bright orange solid (0.67 g, 1.5 mmol, 

99%). 

291: R1 = 0.54 (50% dichloromethane/hexane). Mp = 209-210 °C (chloroform/hexane). 

1H NMR (500 MHz, CDCh): 8 = 8.12 (d, 2H, J = 9.2 Hz, H-4'), 7.49 (d, 2H, J = 8.4 Hz, 
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H-3'), 7.33 (d, 2H, J = 4.1 Hz), 7.31 (d, 2H, J = 4.3 Hz), 7.25 (m, 2H), 7.01 (t, 2H, J = 7.8 

Hz), 6.53 (s, 2H, H-2), 5.97 (s, 1H, H-1'), 3.70 (s, 6H, H-1). 13C NMR (126 MHz, 

CDCb): 8 = 152.5 (0), 146.7 (0), 137.7 (0), 129.7 (1), 128.5 (1, C-2), 127.3 (0), 123.8 (1), 

122.0 (1), 119.9 (1), 119.3 (1), 116.9 (0), 109.5 (1), 40.3 (1, C-1'), 33.0 (3, C-1). IR (neat, 

ZnSe): Umax = 2952 (w), 1592 (w), 1510 (m), 1472 (m), 1339 (s), 1010 (w), 732 (s) cm-1
. 

HRMS mlz [M+] calcd for C25H20N30 2 395.1623, found 395.1632. 

5-( 4-Acetoxyphenyl)-3,4,4a,5,6,12c-hexahydro-7 H -1,8-dioxa-6-aza-2H -pyrano[ 5,6-

c ]phenanthren-7 -one (298) 

Using general procedure 2, 222 (0.30 g, 1.9 mmol), 4-acetoxybenzaldehyde (0.30 

mL, 1.9 mmol, 0.32 g), 3,4-dihydro-2H-pyran (0.50 mL, 5.6 mmol, 0.39 g), Yb(OTf)3 

(0.05 g), and acetonitrile (30 mL) were reacted at reflux for 2.5 d. The bright yellow 

suspension turned paler over the course of the reaction. The yellow residue produced was 

subjected to flash chromatography (dichloromethane), which afforded 298 as a white 

solid (0.40 g, 1.0 mmol, 55%). The dr was determined to be greater than >95 : 5 in favor 

of the exo isomer by NMR. 
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298: R1 = 0.40 (dichloromethane). Mp = 230-231 °C (chloroform/hexane). 1H NMR 

(500 MHz, CDCh): 8 = 7.57-756 (m, 1H, H-12), 7.45 (d, 2H, J = 8.5 Hz, H-2'), 7.30-7.25 

(m, 3H), 7.15 (d, 2H, J = 8.3 Hz, H-3'), 5.09 (s, 1H, H-6), 4.78 (d, 1H, J = 11.5 Hz, H-5), 

4.71 (d, 1H,J=2.8Hz,H-12c),4.20-4.16(m, 1H,H-2B),3.81 (td, lH,J= 11.5,2.2Hz, 

H-2a), 2.33 (s, 3H, H-6'), 2.09-2.06 (m, 1H, H-4a), 1.92-1.88 (m, lH), 1.81-176 (m, lH), 

1.62-1.60 (m, lH, H-3a), 1.45-1.42 (m, lH, H-3p). NOE-D (CDCh): 8 = 7.57-7.56 (7.30-

7.25, 4.5%; 4.71, 8.0%; 3.81, 1.4%), 7.45 (7.15, 4.0%; 5.09, 1.9%; 4.78, 3.9%; 2.09-2.06, 

3.0%), 7.15 (7.45, 4.1 %; 2.33, 1.9%), 5.09 (7.45, 3.8%; 4.78, 8.0%), 4.78 (7.45, 6.2%; 

5.09, 2.4%; 2.09-2.06, 1.7%, 1.92-1.88, 3.6%), 4.71 (7.57-7.56, 9.4%; 3.81, 5.1 %; 2.33, 

1.6%; 2.09-2.06, 5.9%; 1.92-1.88, 3.2%), 4.20-4.26 (3.81, 16.6%; 2.33, 1.4%; 1.92-1.88, 

5.6%; 1.45-1.42, 3.8%), 3.81 (7.57-7.56, 1.3%; 4.71, 4.8%; 4.20-4.16, 17.4%; 2.33, 

1.2%; 1.87-1.76, 3.6%; 1.62-1.60, 4.1 %), 2.09-2.06 (7.45, 4.2%; 5.09, 1.2%; 4.78, 1.0%; 

4.71, 4.3%; 1.92-1.88, 2.0%; 1.62-1.60, 2.0%). 13C NMR (126 MHz, CDCb): 8 = 169.5 

(0), 158.0 (0), 150.9 (0), 148.4 (0), 137.9 (0), 130.3 (0), 129.1 (1, C-3'), 126.3 (1), 125.0 

(1), 122.2 (1, C-2'), 121.9 (1, C-12), 120.7 (0), 116.7 (1), 114.5 (0), 70.1 (1, C-12c), 69.4 

(2, C-2), 54.0 (1, C-5), 38.7 (1, C-4a), 24.4 (2), 22.8 (2), 21.4 (3, C-6'). IR (neat, ZnSe): 

Umax = 3411 (w), 2937 (w), 2852 (w), 1717 (s), 1635 (m), 1507 (m), 1184 (s), 1061 (s), 

1043 (s), 791 (s) cm-1
. HRMS mlz [M+] calcd for C23H21N05 391.1418, found 391.1406. 

(3aS*, 4R*, llcS*)-4-( 4-Acetoxyphenyl)-2,3,3a,4,5,11c-hexahydro-2H -1,7 -dioxa-6-

aza-6H-furano[4,5-c]phenanthren-6-one (299a) and (3aS*, 4S*, UcS*)-4-(4-
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acetoxyphenyl)-2,3,3a,4,5,11c-hexahyd.ro-2H -1,7 -dioxa-6-aza -6H -fu.rano[ 4,5-

c ]phenanth.ren-6-one (299a) 

Using general procedure 2, 212 (0.30 g, 1.9 mmol), 4-acetoxybenzaldehyde (0.30 

mL, 1.9 mmol, 0.32 g), 3,4-dihydrofuran (0.42 mL, 5.6 mmol, 0.39 g), Yb(OTf)3 (0.05 

g), and acetonitrile (30 mL) were reacted at reflux for 2.5 d. The bright yellow suspension 

went to a thick pale yellow suspension over the course of the reaction. A yellow residue 

was obtained and dr ratio was determined to be 1 : 1 by NMR. The residue was subjected 

to flash chromatography (dichloromethane), which afforded 299a (0.08g, 0.21 mmol, 

11%) as a white solid, mixed fraction (0.0 1g, 0.03mmol, 1%) as a white solid, 299b 

(0.01g 0.03 mmol, 1 %) as a white solid. Combined yield= 0.21 g, 0.56 mmol, 15%. 

299a: Rf = 0.60 (dichloromethane). Mp = 183-184 °C (chloroform/hexane). 1H NMR 

(500 MHz, CDCh): 8 = 7.83-7.81 (m, 1H, H-11), 7.52-7.50 (m, 2H, H-2'), 7.33-7.27 (m, 

3H), 7.16-7.14 (m, 2H, H-3'), 5.49 (d, 2H, J = 7.4 Hz, H-llc), 4.94 (s, 1H, H-5), 4.72 (d, 

1H, J = 2.8 Hz, H-4), 3.91 (td, 1H, J = 8.6, 2.7 Hz, H-2a), 3.81-3.76 (m, IH, H-2~), 2.95-

2.92 (m, lH, H-3a), 2.23-2.16 (m, 1H, H-3a), 1.68-1.62 (m lH, H-3~). NOE-D (CDCh): 

8 = 7.83-7.81 (7.33-7.27, 4.9%; 5.49, 5.1 %), 7.52-7.50 (7.16-7.14, 4.3%; 4.94, 3.1 %; 

4.72, 3.9%; 2.95-2.92, 2.6%; 2.33-2.16, 3.2%; 1.68-1.61, 1.6%), 7.16-7.ll (7.52-7.50; 
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4.4%), 5.49 (7.52-7.50, 5.6%; 4.72, 2.2%; 2.95-2.92, 6.1 %), 4.74 (7.52-7.50, 3.8%; 4.72, 

3.1 %), 4.72 (7.52-7.50, 5.2%; 5.49, 1.8%; 4.74, 2.3%; 2.95-2.92, 3.9%), 3.91 (3.79, 

6.7%; 2.33-2.16, 3.5%; 1.68-1.62, 2.1 %), 3.79 (5.49, 1.0%; 3.91, 6.8%; 2.23-2.16, 3.5%; 

1.68-1.62, 2.1 %), 2.95-2.92 (7.52-7.50, 3.4%; 5.49, 6.0%; 4.72, 4.3%; 3.79, 2.1 %; 2.23-

2.16, 1.7%; 1.68-1.62, 4.5%), 2.23-2.16 (3.91, 3.7%; 2.95-2.92, 0.9%; 1.68-1.62, 14.5%), 

1.68-1.62 (7.52, 1.8%; 3.91, 1.4%; 3.79, 3.7%; 2.95-2.92, 4.9%; 2.23-2.16, 16.4%). 13C 

NMR (126 MHz, CDCh): 8 = 169.0 (0, C-5'), 158.9 (0), 150.6 (0), 148.9 (0), 138.1 (0), 

129.8 (0), 127.8 (1, C-2'), 127.1 (1), 124.8 (1), 124.5 (1, C-11), 122.2 (1, C-3'), 120.3 (0), 

118.8 (0), 116.6 (1), 73.0 (1, C-11c), 67.7 (2, C-2), 57.6 (1, C-4), 47.0 (1, C-3c), 25.9 (2, 

C-3), 22.1 (3, C-6'). IR (neat, ZnSe): Dmax = 3371 (w), 2869 (w), 1709 (s), 1631 (w), 1502 

(m), 1204 (s), 1186 (vs), 1050 (m), 778 (s) cm-1
. HRMS m/z [M+] calcd for C22H19NOs 

377.1262, found 377.1258. 

299b: R1 = 0.40 (dichloromethane). Mp = 158-159 °C (chloroform/hexane). 1H NMR 

(500 MHz, CDCb): 8 = 7.78-7.75 (m, 1H, H-11), 7.46 (d, 2H, J = 9.1 Hz, H-2'), 7.32-

7.30 (m, 3H), 7.16 (m, 2H, J = 8.3, H-3'), 5.25 (s, 1H, H-5), 4.75 (d, 1H, J = 5.1 Hz, H­

llc), 4.10 (ddd, 1H, J = 8.2, 6.4 Hz, H-2B), 3.97 (ddd, 1H, J = 9.0, 5.4 Hz, H-2a), 3.84 

(d, 1H, J= 11.1 Hz, H-4), 2.52-2.47 (m, lH, H-3a), 2.18-2.12 (m, lH, H-3p), 1.84-1.78 

(m, 1H, H-3a). NOE-D (CDCb): 8 = 7.78-7.75 (7.32-7.30, 4.8%; 4.75, 6.2%), 7.48-7.45 

(7.18-7.15, 5.0%; 5.25, 2.8%; 3.84, 5.7%; 2.57-2.47, 3.2%; 1.84-1.78, 2.5%), 7.48-7.45 

(7.18-7.15, 4.7%), 5.25 (7.48-7.45, 3.9%; 3.84, 5.3%; 2.34, 3.7%), 5.25 (7.48-7.45, 3.9%; 

3.84, 5.3%; 2.34, 3.7%), 4.75 (7.78, 6.2%; 3.97, 2.3%; 2.52-2.47, 5.7%; 2.18-2.12, 

1.8%), 4.10 (3.97, 9.0%; 3.84, 1.5%; 2.18-2.12, 1.5%; 1.84-1.78, 3.4%), 3.97 (4.75, 
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1.5%, 4.10, 7.6%; 2.18-2.12, 3.6%; 1.84-1.78, 1.3%), 3.84 (7.48, 7.0%; 5.25, 3.2%; 4.10, 

1.2%; 2.52-2.47, 1.3%; 1.84-1.78, 3.8%), 2.52-2.47 (7.48, 4.3%; 4.75, 6.7%; 3.84, 2.6%; 

2.18-2.12, 2.9%; 1.84-1.78, 2.0%), 2.18-2.12 (4.75, 1.7%, 4.10, 1.4%; 3.97, 4.1 %; 2.52-

2.47, 3.6%; 1.84-1.78, 12.5%), 1.84-1.78 (7.48, 2.2%; 4.1 '3.3%; 3.97, 1.6%; 3.84, 3.1 %; 

2.52-2.47, 2.5%; 2.18-2.12, 13.4%). 13C NMR (126 MHz, CDCh): 8 = 169.6 (0, C-5'), 

158.8 (0), 151. (0), 148.4 (0), 137.6 (0), 130.8 (0), 129.5 (1, C-2'), 126.8 (1), 12.51 91), 

123.2 (1, C-11), 122.3 (1, C-3'), 121.2 (0), 116.6 (1), 116.0 (0), 72.9 (1, C-11c), 65.9 (2, 

C-2), 57.1 (1, C-4), 43.1 (1, C-3a), 28.6 (2, C-3), 21.3 (3, C-6'). IR (neat, ZnSe): Umax = 

3305 (rn), 1744 (s), 1730 (s), 105 (rn), 1242 (s), 1176 (s), 1046 (rn), 787 (s) crn-1
. HRMS 

m/z [M+] calcd for C22H1gN05 377.1262, found 377.1280. 

(4aS*, SS*,12cR*)-4-(7-0xo-2,3,4,4a,S,6,7,12c-octahydro-1,8-dioxa-6-aza­

benzo[c]phenanthren-5-yl)benzoic acid methyl ester (300) 

Using general procedure 2, 212 (0.30 g, 1.9 rnmol), methyl 4-forrnylbenzoate 

(0.32 g, 1.9 mmol), dihydropyran (0.50 rnL, 0.47 g, 5.6 mrnol), Yb(OTf)3 (0.05 g), and 

acetonitrile (40 mL) were reacted for 7 d. The thick yellow suspension went to a thick 

pale white suspension over the course of the reaction. A white residue was obtained and 

the dr ratio was determined to be 95 : 5 in favor of the exo isomer by NMR. The residue 
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produced was then subjected to flash chromatography (dichloromethane), which afforded 

300 as a white solid (0.22 g, 0.56 mmol, 31% ). 

300: R1 = 0.30 (dichloromethane). Mp = 206-207 °C (chloroform/hexane). 1H NMR (500 

MHz, CDCh): 8 = 8.08 (d, 2H, J = 7.6 Hz, H-3'), 7.57-7.55 (m, 1H, H-12), 7.56 (d, 2H, J 

= 7.3 Hz, H-2'), 7.30-7.25 (m, 3H), 5.11 (s, 1H, H-6), 4.82 (d, 1H, J= 11.5 Hz, H-5), 4.70 

(d, 1H, J = 3.4 Hz, H-12c), 4.19-4.16 (m, 1H, H-2B), 3.94 (s, 3H, H-5'), 3.81 (td, 1H, J = 

11.9, 2.1 Hz, H-2a), 2.11-2.08 (m, lH, H-4a), 1.93-1.87 (m, lH, H-4B), 1.82-1.75 (m, 

1H), 1.62-1.60 (m, 1H), 1.50 (d, lH, J = 14.1 Hz), 1.44 (d, 1H, J = 12.1 Hz). NOE-D 

(CDCh): 8 = 8.08 (7.50, 3.9%; 3.94, 2.6%), 7.57-7.55 (7.30-7.25, 5.6%; 4.70, 7.6%), 

7.50 (8.08, 5.2%; 5.11, 1.4%; 4.82, 3.3%; 2.11-2.08, 1.8%; 1.93-1.87, 1.6%; 1.50, 1.0%), 

5.11 (7.50, 3.8%; 4.82, 3.5%; 3.94, 2.9%), 4.82 (7.50, 7.2%; 5.11, 3.1 %; 2.11-2.08, 2.0%; 

1.93-1.87, 3.8%; 1.50, 1.8%), 4.70 (7.57-7.55, 8.6%; 3.81, 3.8%; 2.11-2.08, 5.3%; 1.82-

1.75, 2.6%), 4.19-4.16 (3.81, 18.0%; 1.93-1.87, 4.5%; 1.44, 3.2%), 3.81 (7.57-7.55, 

1.7%; 4.70, 4.4%; 1.82-1.75, 3.8%; 1.44, 4.7%), 2.11-2.08 (7.50, 4.3%; 4.70, 4.5%; 1.82-

1.75, 2.6%; 1.50, 2.3%), 1.93-1.87 (7.50, 3.0%; 4.82, 4.6%; 4.19-4.16, 4.6%; 3.81, 1.7%; 

1.62-1.60, 4.7%, 1.50, 16.9%), 1.82-1.75 (4.70, 2.8%; 3.81, 3.3%; 2.11-2.08, 3.7%; 1.93-

1.87, 12.8%; 1.50, 18.3%; 1.44, 4.3%). 13C NMR (126 MHz, CDCh): 8 = 166.8 (0), 

159.0 (0), 148.4 (0), 145.6 (0), 130.6 (0), 130.6 (0), 130.38 (0), 130.35 (0), 130.2 (1, C-

3'), 126.4 (1, H-12), 125.0 (1), 120.6 (1, H-2'), 116.7 (1), 114.8 (1), 69.9 (1, C-12c), 69.3 

(2, C-2), 54.43 (1, C-5), 54.35 (3, C-5'), 38.7 (2), 23.7 (2), 22.0 (2). IR (neat, ZnSe) Umax 

= 3400 (w), 2844 (w), 1714 (s), 1704 (s), 1506 (w), 1279 (m), 1058 (m), 783 (s) cm-1
. 

HRMS mlz [~] calcd for C23H21NOs 391.1418, found 391.1424. 
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( 4aS* ,5R* ,12cS*)-4-(7 -Oxo-2,3,4,4a,5,6, 7 ,12c-octahydro-1,8-dioxa-6-aza­

benzo[c]phenanthren-5-carboxylic add ethyl ester)benzoic acid methyl ester (301) 

3 

Using general procedure 2, 212 (0.30 g, 1.9 mmol), ethyl glyoxalate solution in 

toluene (0.65 mL, 0.67 g, 5.6 mmol), dihydropyran (0.50 mL, 0.47 g, 5.6 mmol), 

Yb(OTf)3 (0.05 g), and acetonitrile (40 mL) were reacted under reflux for 2.5 d. The 

thick yellow suspension and went to a thick pale white suspension over the course of the 

reaction. A white residue was obtained and the dr ratio was determined to be >95 : 5 in 

favor for the exo isomer. The residue produced was then subjected to flash 

chromatography (dichloromethane), which afforded 301 as a white solid (0.15 g, 0.45 

mmol, 26%). 

301: R1 = 0.20 (dichloromethane). Mp = 102-103 °C (chloroform/hexane). 1H NMR (500 

MHz, CDCh): 8 = 7.60-7.58 (m, 1H, H-12), 7.28-7.22 (m, 3H), 5.26 (s, 1H, H-6), 4.69 

(d, 1H, J = 3.4 Hz, H-12c), 4.39 (d, 1H, J = 10.2 Hz, H-5), 4.30 (q, 2H, J = 7.2 Hz, H-1'), 

4.03-4.01 (m, 1H, H-2~), 3.80 (td, 1H, J= 10.2, 2.8 Hz, H-2a), 2.18-2.15 (m, IH, H-4a), 

2.12-2.10 (m, 1H), 2.01-1.91 (m, 2H), 1.58-1.54 (m, 1H), 1.34 (t, 3H, J= 6.9 Hz, H-2'). 

NOE-D (CDCh): 8 = 7.60-7.58 (7.28-7.22, 3.2%; 4.69, 5.6%), 5.26 (4.39, 3.4%), 4.69 

(7.60-7.58, 5.8%; 3.80, 3.5%; 2.18-2.15, 4.5%; 2.12-2.10, 2.8%), 4.39 (5.26, 3.0%; 2.18-
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2.15, 3.1 %; 2.12-2.10, 3.6%), 4.03-4.01 (3.80, 11.4%; 2.12-2.10, 4.0%; 1.58-1.54, 3.2%), 

3.80 (4.69, 3.7%; 4.03-4.01, 10.4%; 2.01-1.91, 3.3%; 1.58-1.54, 3.5%). 13C NMR (126 

MHz, CDCh): 8 = 171.5 (0), 158.6 (0), 148.4 (0), 128.9 (0), 126.5 (1), 125.0 (1), 122.1 

(1), 120.4 (0), 116.7 (1, C-12), 114.4 (0), 69.9 (1, C-12c), 68.4 (2, C-2), 62.0 (2, C-1'), 

53.5 (1, C-5), 35.1 (1, C-4a), 24.4 (2), 22.2 (2), 14.4 (3, C-2'). IR (neat, ZnSe) 'Dmax = 

3418 (w), 2938 (w), 2872 (w), 1737 (s), 1706 (s), 1616 (w), 1500 (m), 1260 (m), 1198 

(s), 1190 (s), 1088 (m), 784 (s), 779 (s) cm-1
. HRMS m/z [M+] calcd for C1sH19NOs 

329.1262, found 329.1284. 

General Procedure 3: Aromatization of Diels-Alder adducts. 

To a solution of Diels-Alder adduct in dichloromethane was added dropwise 

bromine (1M solution in dichloromethane, 2.1 equivalents) in the dark over a 15 to 30 

min period. The resulting mixture was stirred at room temperature overnight. Solid 

sodium hydrogen sulfate was added to the reaction and the mixture was diluted with ethyl 

acetate. The solution was then washed with 1 M aqueous sodium carbonate solution and 

dried (MgS04). The solvent was removed under reduced pressure and the residue was 

crystallized from chloroform/hexane. 

2-( 4-Nitrophenyl)-4-phenyl-9-oxa-1-aza-phenanthren-10-one (302) 
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Using general procedure 3, 285 (0.24 g, 0.66 mmol), dichloromethane (20 mL), 

and bromine solution (1.80 mL, 1.8 mmol, 0.28 g) were reacted. The clear brown solution 

went to a thick bright yellow suspension over the course of the reaction, NaHS04 (0.20 g) 

was added to the reaction mixture and the solution was diluted ethyl acetate (30 mL). 

Crystallization afforded 302 (0.17 g, 0.43 mmol, 71%) as a white solid. 

304: Mp = >300 °C. 1H NMR (500 MHz, CDCh): 8 = 8.42 (d, 2H, J = 7.0 Hz, H-3'), 8.37 

(d, 2H, J = 8.9 Hz, H-2'), 8.04 (s, 1H, H-3), 7.61-7.58 (m, 3H), 7.48-7.44 (m, 2H), 7.43-

7.40 (m, 2H), 7.10 (d, 1H, J = 7.2 Hz), 6.94-6.90 (m, 1H). 13C NMR (126 MHz, CDCh): 

8 = 158.9 (0), 155.0 (0), 151.4 (0), 151.3 (0), 149.8 (0), 149.1 (0), 143.1 (0), 139.9 (0), 

139.5 (0), 131.3 (1), 129.9 (1), 129.7 (1), 128.5 (1, C-3'), 128.3 (1, H-3), 128.2 (1), 128.1 

(1), 124.4 (1, H-2'), 124.2 (1), 118.2 (1), 117.0 (0). IR (neat, ZnSe): Umax = 1783 (s), 1652 

(w), 1558 (m), 1458 (w), 1339 (s), 1160 (m), 862 (m), 757 (s), 703 (m) cm-1
. HRMS m/z 

[M+] calcd for Cz4H14N20 4 394.0952, found 394.0955. 

3-(2-Hydroxyethyl)-2-( 4-nitrophenyl)-9-oxa-1-aza-phenanthren-10-om~ (303) 
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Using general procedure 3, 281 (0.13 g, 0.36 mmol), dichloromethane (20 mL) 

and bromine solution (0.75 mL, 0.75 mmol, 0.12 g) were reacted. The clear colorless 

solution went to a thick bright yellow suspension over the course of the reaction. 

NaHS04 (0.20 g) was added to the reaction mixture and the solution was diluted with 

ethyl acetate (30.0 mL). Crystallization afforded 305 as a white solid (0.12 g, 0.33 mmol, 

93%). Mp = 160-161 °C. 1H NMR (500 MHz, DMSO-d6): 8 = 8.95 (s, 1H, H-4), 8.45 

(dd, 1H, J = 8.0 Hz, 0.9 Hz), 8.40 (d, 2H, J = 12.5 Hz), 8.31 (s, 1H), 7.94-7.91 (m, 2H), 

7.65 (td, 1H, J = 7.8, 1.4 Hz), 7.48 (d, 2H, J = 7.3 Hz), 3.72 (t, 2H, J = 6.3 Hz), 3.01 (t, 

2H, J = 6.4 Hz). 13C NMR (126 MHz, DMSO-d6): 8 = 158.3 (0), 157.8 (0), 150.8 (0), 

147.4 (0), 145.4 (0), 139.7 (0), 135.3 (0), 133.0 (0), 131.5 (1), 130.7 (1), 124.8 (1), 124.4 

(1), 123.4 (1), 117.2 (1), 116.6 (0), 60.6 (2), 35.4 (2). IR (neat, ZnSe): Umax = 3454 (vs), 

1740 (s), 1602 (m), 1517 (s), 1431 (w), 1343 (s), 1176 (s), 1026 (s), 553 (m), 759 (m) cm-

1. HRMS mlz [M+] calcd for C24H14N20 4 362.1130, found 361.0814. 
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Chapter 4: Compounds for Collaborative Studies 

4.1- Introduction 

The recognition that 2-azadienes of the general structure 306 were 

bichromophoric systems piqued the interest of Dr. D. W. Thompson (Memorial 

University of Newfoundland), who is very interested in studying electron transfer. 

Samples of all of the dienes that were prepared in this work were given to Dr. Thompson 

and initial studies of their photophysical properties led to the observation of some very 

unusual behavior. Of particular interest were compounds 223 and 224 (Figure 4.1). To 

further probe this unusual behavior, some related compounds were identified as subjects 

for further study, i.e. 307- 310 (Figure 4.1) syntheses of these compounds are described 

below. Details of the work regarding the photochemistry of these compounds are beyond 

the scope of this thesis and will be discussed in detail in forthcoming theses and 

publications from the Thompson group. 
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Figure 4.1 

!mines can be reduced to secondary amines using palladium-catalyzed 

hydrogenation. 1 This methodology was applied to dienes 223 and 224 to produce 307 and 

308, albeit in only fair yield (Scheme 4.1). 

1 Kokotos, G.; Tzougraki, C. J. Heterocyclic Chern. 1986,23, 87-92. 

179 



I H2, Pd/C 

CCC 
OH dioxane CCCH OH 

,0. 68% 

22~ 0 0 0 
307 

I~ H2, Pd/C ~ 
CCC 

OH CCCH OH 
dioxane 

0 0 
73% 0 0 

224 308 

Scheme 4.1 

An attempt to synthesize alkenes 309 and 310 using the Homer-Wadsworth-

Emmons reaction with phosphonate 311 was then initiated (Scheme 4.2). Phosphonate 

311 was prepared in four steps from salicylaldehyde (Scheme 4.2). 3-Methylcoumarin 

was produced from a Knoevenegal condensation and the methyl group was then radically 

brominated using light and NBS ( 47% ). 2 Reaction of the resulting benzylic bromide with 

triethyl phosphite then afforded the desired phophonate 311 (85%) (Scheme 4.2).3 

Unfortunately, attempts to prepare 309 and 310 using the Homer-Wadsworth-Emmons 

reaction resulted in the formation of complex mixtures. No further attempts were made to 

produce 309 and 310. Protection of the relatively acidic phenol protons may eventually 

facilitate these reactions. 

2 Incremona, J. H.; Martin, J. C. J. Am. Chern. 1970, 92, 627-634. 
3 Nagata, W.; Wakabayashi, T.; Hayase, Y. Org. Synth.Coll. Vol. 6, 448. 
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It was also desired to synthesize 1-azadiene 316. This compound was produced 

using general procedure in Chapter 2 (Figure 4.2). 

CCXP(0Et)2 

0 0 
311 

CCX 
312 

CH3CH2C02H l 
(CH3CH2COhO 36% 

N(Eth 

~CHO 

~OH 

NBS, hu 

DCM 
47% 

CCXBr+ 

0 0 
313 

85% ! P(OEt), 

CCXP0(0Et)2 

0 0 
314 

Scheme4.2 

Figure 4.2 
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4.2 Experimental 

General Procedures 

For general procedures please refer to the section in Chapter 2. 

3-[ (2-Hydroxynaphthalen -1-ylmethyl)amino ]-2H -chromen-2-one (307) 

To a solution of 223 (0.73 g, 2.3 mmol) in dioxane (50 mL), was added Pd/C 

(0.03 g, 5% wt. Pd) and the mixture was stirred under a slight positive pressure of 

hydrogen for 24 h. The mixture remained bright orange over the course of the reaction. 

The catalyst was removed by suction filtration and the solvent was removed under 

reduced pressure to give a pale brown oil (0.83 g). The oil was then subjected to flash 

chromatography (5% ethyl acetate/dichloromethane), which afforded 307 as an orange 

solid (0.50 g, 1.6 mmol, 68% ). 

R1 = 0.40 (5% ethyl acetate/dichloromethane). Mp 178-179 oc (chloroform/hexane). 1H 

NMR (500 MHz, CDCh): 8 = 7.93 (d, 1H, J = 8.8 Hz), 7.84 (d, 1H, J = 8.0 Hz), 7.78 (d, 

1H, J = 9.2 Hz), 7.54 (m, 1H), 7.40 (t, 1H, J = 7.1 Hz), 7.34 (d, 1H, J = 8.4 Hz), 7.30-

7.29 (m, 2H), 7.24-7.21 (m, 1H), 7.12 (d, 1H, J = 8.7 Hz), 6.72 (s, 1H, H-4), 6.56 (s, 1H), 
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5.69 (s, 1H), 4.83 (d, 2H, J = 4.0 Hz). 13C NMR (126 MHz, CDCb): 8 = 159.6 (0), 153.2 

(0), 148.7 (0), 133.4 (0), 132.9 (0), 130.5 (1), 129.5 (0), 129.1 (1), 127.5 (1), 126.9 (1), 

125.8 (1), 125.0 (1), 123.8 (1), 122.2 (1), 121.4 (0), 118.5 (1), 116.4 (1), 113.4 (0), 108.9 

(1, C-4), 40.4 (2). IR (neat, ZnSe): Umax = 3405 (m), 3276 (s), 1682 (s), 1620 (m), 1514 

(w), 1497 (m), 1352 (m), 1177 (m), 858 (m), 738 (s) cm·1
. HRMS m/z [M+] Calcd. for 

C2oH15N03 317.1051, found 317.1054. 

3-(2-Hydroxybenzylamino )-2H -chromen-2-one 1 (308) 

8' 
5 4a 4 3 NH OH 6~1' 9' 

1~r/~· 
8 Sa~ 0 

To a solution of 224 (3.00 g, 11.3 mmol) in dioxane (50 mL), was added Pd/C 

(0.03 g, 5% wt. Pd) and the mixture was stirred at room temperature under a slight 

positive pressure of hydrogen for 24 h. The supernatant changed from bright orange to 

colorless during the course of the reaction. The mixture was filtered and the solvent was 

removed under reduced pressure to give 309 as a pale yellow oil (3.01 g), which was then 

crystallized from chloroform/hexane to afford a pale yellow solid (2.21 g, 8.27 mmol, 

73%). 

Mp 158-159 oc (chloroform/hexane) (Lit.4 169-170 °C). 1H NMR (500 MHz, CDCh): 8 

= 7.31-7.18 (m, 6H), 6.92 (t, 1H, J = 7.9 Hz), 6.86 (d, 1H, J = 7.5 Hz), 6.55 (s, 1H, H-4), 

4 Kokotos, G.; Tzougraki, C. J. Heterocyclic Chern. 1986, 23, 87-92. 
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5.89 (s, lH), 5.24 (s, lH), 4.42 (s, 2H, H-1'). 13C NMR (126 MHz, CDCb): 8 = 159.8 (0), 

155.1 (0), 148.6 (0), 133.2 (0), 129.6 (1), 129.4 (1), 126.8 (1), 125.8 (1), 124.9 (1), 122.8 

(0), 121.3 (0), 121.1 (1), 116.41 (1), 116.38 (1), 109.0 (1, H-4), 45.0 (2, C-2'). IR (neat, 

ZnSe): 'Umax = 3426 (s), 1694 (s), 1625 (m), 1502 (m), 998 (w), 836 (m), 754 (s) cm-1
. MS 

(EI) m/z (%) = 267 (M+, 26), 174 (11), 161 (100), 133 (35), 107 (59), 83 (21), 51 (34). 

HRMS mlz [M+] Calcd. for C16H13N03 267.0895, found 267.0905. 

3-Methyl-2H-chromen-2-one 

5 4 1' 

6~ 
7~A~r 

8 Sa 0 0 
1 

To a solution of salicyaldehyde (105.0 mL, 120.3 g, 0.985 mol) and propionic 

acid (75.0 mL, 74.48 g, 1.00 mol) in propionic anhydride (260.0 mL, 263.9 g, 2.00 mol), 

was added triethylamine (150.0 mL, 115.8 g, 1.10 mol) and the mixture was heated under 

reflux for 8 h. The clear colorless solution became clear brown over the course of the 

reaction. The reaction was cooled to room temperature and a white precipitate formed. 

The solution was filtered and washed with hexane, which afforded 312 as an off white 

solid (56.71 g, 0.35 mol, 36%). 

Mp 82-83 °C (chloroform/hexane) (Lit.5 90-92 °C). 1H NMR (500 MHz, CDCh): 8 = 

7.52 (s, lH, H-4), 7.46 (td, lH, J = 7.8, 1.3 Hz), 7.42 (dd, lH, J = 7.7, 1.4 Hz), 7.31 (d, 

lH, J = 7.7 Hz), 7.25 (td, lH, J = 7.8, 1.4 Hz), 2.23 (s, 3H, H-1'). 13C NMR (126 MHz, 

CDCh): 8 = 162.4 (0), 153.4 (0), 139.4 (1, C-4), 130.6 (1), 127.1 (1), 126.0 (0), 124.4 (1), 
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119.8 (0), 116.6 (1), 17.4 (3, H-1'). IR (neat, ZnSe): 'Umax = 3042 (w), 2988 (w), 2951 (w), 

1701 (s), 1608 (m), 1193 (m), 1074 (m), 1002 (m), 752 (s) cm-1
• MS (EI) m/z (%) = 160 

(M+, 66), 131 (100), 103 (17), 77 (24), 51 (31). 

3-Bromomethyl-2H-chromen-2-one (313) and 3-dibromomethyl-2H-chromen-2-one 

(315) 

To a solution of 3-methyl-2H-chromen-2-one (7.00 g, 43.7 mmol) in 

dichloromethane (100 rnL) was added N-bromosuccinimide (8.20 g, 45.9 mmol). The 

solution was stirred at 0 °C with irradiation by a Watt floodlight for 12 h. The clear 

colorless solution went to clear orange over the course of the reaction. The solution was 

washed with 1M HCl (50 mL) and 1M K 2C03 (50 rnL) and the organic layer was dried 

with MgS04. The solvent was removed under reduced pressure and the residue was the 

subjected to flash chromatography (30% dichloromethane/hexane), which afforded 313 

as a white solid (0.43 g, 1.3 mmol, 3%) and 315 (4.92 g, 20.6 mmol, 47%) as a white 

solid. 

5 4 1' 6a:x4a ~3 
I Br 

7 ~ 2 
Sa 0 0 

8 1 
313 

313: R1 = 0.65 (30% dichloromethane/hexane). Mp 118-119 °C (chloroform/hexane). 1H 

NMR (500 MHz, CDCh): 8 = 7.86 (s, 1H, H-4), 7.55 (td, 1H, J = 7.8, 1.4 Hz), 7.51 (dd, 

lH, J = 7.6, 2.0 Hz), 7.36 (d, 1H, J = 8.2 Hz), 7.31 (td, 1H, J = 7.4, 1.3 Hz), 4.44 (s, 2H, 

5 Singer, L.A.; Kong, N. P. J. Am. Chern. Soc. 1966, 88, 5213-5219. 
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H-1'). 13C NMR (126 MHz, CDCh): 8 = 160.1 (0), 154.0 (0), 142.1 (1, C-4), 132.4 (1), 

128.3 (1), 125.8 (0), 124.9 (1), 119.1 (0), 117.0 (1), 27.7 (2, C-1'). IR (neat, ZnSe): 'Umax = 

3043 (w), 1707 (s), 1608 (m), 1208 (m), 1191 (m), 1068 (m), 759 (s) cm-1
. MS (EI) m/z 

(%) = 238 (M+, 9), 182 (5), 159 (100), 131 (26), 115 (35), 77 (25), 51 (27). HRMS m/z 

[M+] calcd for C10H7Br02 237.9629, found 237.9636. 

315: ~f = 0.90 (30% dichloromethane/hexane). Mp 209-216 oc (chloroform/hexane). 1H 

NMR (500 MHz, CDCh): 8 = 8.34 (s, 1H, H-4), 7.62-7.60 (m, 2H), 7.40-7.35 (m, 2H), 

6.84 (s, 1H, H-1'). 13C NMR (126 MHz, CDCh): 8 = 157.7 (0), 153.9 (0), 143.1 (1, C-4), 

133.3 (1), 129.2 (0), 129.0 (1), 125.3 (1), 118.8 (0), 117.0 (1), 33.8 (1, H-1'). IR (neat, 

ZnSe): 'Umax = 3067 (w), 3041 (w), 3008 (w), 1719 (s), 1605 (m), 1198 (m), 1067 (m), 

782 (m), 755 (s) cm-1
. MS (EI) m/z (%) = 318 (M+, 7), 239 (100), 193 (4), 159 (9), 130 

(71), 102 (35), 51 (24). M+, found 315.8711, C10H7Brz02 requires M+, 315.8733. 

(2-0xo-2H-chromen-3-ylmethyl)phosphonic acid diethyl ester (314) 

5 4 1' 0 2' 3' 

6~~-o/'-
7~r\~f'l 'o-/ 

Sa 0 0 
8 1 

A mixture of triethylphosphite (9.00 mL, 8.69 g, 52.3 mmol), and 313 (2.50 g, 

10.5 mmol) was reacted under reflux conditions for 4 h. The clear colorless solution 
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became a clear pale clear yellow over the course of the reaction. The solvent was 

removed under vacuum, which produced a yellow oil. The residue was subjected to silica 

flash column chromatography (50% ethyl acetate/dichloromethane), which afforded 314 

as a pale yellow oil (2.63 g, 8.88 mmol, 85%). 

R1 = 0.25 (50% ethyl acetate/dichloromethane). 1H NMR (500 MHz, CDCb): 8 = 7.74 (d, 

1H, J = 4.1 Hz), 7.54-7.48 (m, 2H), 7.35-7.27 (m, 2H), 4.19-4.07 (m, 4H), 3.20 (d, 2H, J 

= 22.5 Hz, H-1'), 1.33 (t, 6H, J = 7.0 Hz). 13C NMR (126 MHz, CDCh): 8 = 161.4 (0), 

153.4 (0), 141.9 (1, d, ]p_c = 8.0 Hz, C-4), 131.5 (1), 127.9 (1), 124.7 (1), 120.4 (0, d, ]p_c 

= 10.2 Hz), 119.4 (0, d, ]p_c = 3.1 Hz), 116.7 (1), 62.6 (d, 2H, lc-P = 6.3 Hz, C-2'), 27.0 

(d, 2H, ]p_c = 140.2 Hz, C-1'), 16.5 (d, 3H, ]p_c = 6.3 Hz, C-3'). IR (neat, ZnSe): 'Umax = 

3469 (br), 2982 (w), 2908 (w), 1719 (s), 1609 (m), 1292 (m), 1019 (vs), 957 (s), 758 (s) 

cm-1. MS (EI) mlz (%) = 296 (M+, 60), 251 (9), 212 (35), 160 (100), 131 (66), 77 (69). 

HRMS m/z [M+] Calcd. for C14HnOsP 296.0812, found 296.0804. 

3-[(2-Hydroxyphenylimino)methylene]-2H-chromen-2-one (316) 

Using general procedure 1 (Chapter 2), 176 (0.70 g, 4.0 mmol) and 2-

aminophenol (0.50 g, 4.6 mmol), were reacted in toluene (50 mL) for 24 h. The pale 

yellow solution became a thick bright yellow suspension over the course of the reaction. 
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The mixture was cooled to 6 oc and then filtered, which afforded 316 as a bright yellow 

solid (0.85 g, 3.2 mmol, 80%). 

Mp 249-250 oc (chloroform/hexane). 1H NMR (500 MHz, CDCh): 8 = 9.00 (s, 1H, H-

1'), 8.62 (s, 1H, H-4), 7.70 (d, 1H, J = 8.6 Hz), 7.64 (t, 1H, J = 7.8 Hz), 7.43-7.38 (m, 

3H), 7.26-7.25 (s, 2H), 7.04 (d, 1H, J = 7.6 Hz), 6.94 (t, 1H, J = 7.1 Hz). 1H NMR (500 

MHz, DMSO-d6): 8 = 9.21 (s, 1H), 9.02 (s, 1H), 8.78 (s, 1H), 7.90 (d, 1H, J = 7.5 Hz), 

7.71 (t, 1H, J = 7.8 Hz), 7.49 (d, 1H, J = 8.5 Hz), 7.44 (t, 1H, J = 7.8 Hz), 7.26 (d, 1H, J 

= 8.5 Hz), 7.13 (t, 1H, J = 7.8 Hz), 6.93 (d, 1H, J = 8.5 Hz), 6.86 (t, 1H, J = 7.5 Hz). 13C 

NMR (126 MHz, CDCb): 8 = 161.3 (0), 154.9 (0), 153.2 (0), 150.4 (1, C-1'), 140.6 (1, C-

4), 135.2 (0), 133.7 (1), 130.6 (1), 129.9 (1), 125.6 (1), 123.3 (0), 120.8 (1), 119.4 (0), 

117.3 (1), 116.7 (1), 115.2 (1). 13C NMR (126 MHz, DMSO-d6): 8 = 160.2 (0), 153.8 (0), 

151.7 (1), 151.6 (0), 140.9 (1), 133.2 (1), 129.9 (1), 128.4 (1), 125.0 (1), 122.6 (0), 119.6 

(1), 119.5 (1), 119.0 (0), 116.3 (1), 116.2 (1). IR (nujol, KBr): 'Dmax = 3392 (w), 1704 (s), 

1606 (w), 1586 (w), 1143 (m), 751 (m) cm-1
. MS (EI) m/z (%) = 265 (M+, 100), 236 (9), 

220 (34), 120 (69), 118 (20), 89 (12). HRMS m/z [M+] Calcd. for C16H11N03 265.0738, 

found 265.0728. 
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Chemical Shift NMR Tables 

for the 

Povarov Adducts 

340 



c ):~'He 
!Compound 

en do exo 
Sendo- Sexo proton 

() multi J (Hz) () multi J (Hz) 

Ha 8.21 m 7.56 m 0.65 
Hb 5.50 d 4.7 4.71 d 3.5 0.79 

280 He 2.36 m 2.10 m 0.26 
Hd 4.81 d 2.5 4.87 d 11.4 -0.06 
He 5.07 s 5.09 s -0.02 
Hf 7.63 d 8.7 7.62 d 8.2 0,01 

Ha 7.85 dd 7.4, 1.5 7.76 m 0.09 

Hb 5.53 d 7.4 4.76 d 5.2 0.77 
281 He 2.98 m 2.52 m 0.46 

Hd 4.86 d 2.3 3.95 d 11.2 0.91 
He 4.99 s 5.26 s -0.27 
Hf 7.71 d 9 7.66 d 8.6 0.05 
Ha 7.85 m 
Hb 4.91 d 7.8 

282 He 3.46 m 
Hd 4.72 d 4.4 
He 5.21 s 
Hf 7.35 d 8.5 
Ha 8.00 m 
Hb 5.44 d 8.5 

286a 
He 4.74 t 7 
Hd 4.92 m 
He 4.92 m 
Hf 
Ha 7.60 m 
Hb 4.71 d 2.8 

298 He 2.08 m 
Hd 4.78 d 11.5 
He 5.09 s 
Hf 7.45 d 8.5 
Ha 7.82 m 7.76 m 0.06 
Hb 5.49 d 7.4 4.75 d 5.1 0.74 

299 
He 2.94 m 2.50 m 0.44 
Hd 4.72 d 2.8 3.84 d 11.1 0.88 
He 4.94 s 5.25 s -0.31 
Hf 7.51 m 7.46 d 9.1 0.05 

Table A.l - NMR shift values for bridgehead containing Povarov adducts. 
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~I Ha ~ c '"' e 

Q 

Compound 
en do exo 

Oendo- Oexo proton 
0 multi J (Hz) 0 multi J (Hz) 

Ha 
Hb 5.77 dd 9.0, 7.8 5.55 dd 5.0, 2.0 0.22 

He a 2.48 m 3.16 ddd 8.9, 8.9, 
-0.68 

5.8 

284 Hcj3 2.20 m 3.59 ddd 8.2, 8.2, 
-1.39 

5.5 

Hd 4.62 dd 10.8, 6.2 4.65 dd 12.6, 3.4 -0.03 

He 5.16 s 5.33 s -0.17 
Hf 7.64 d 8.9 7.64 d 8.8 0 
Ha 
Hb 4.42 t 7.8 

He a 2.62 m 
287 HcB 2.26 m 

Hd 4.66 d 8.6 
He 5.26 s 
Hf 7.50 d 8.8 
Ha 7.33 d 8.3 
Hb 4.40 t 7.3 4.39 dd 5.2, 1.4 0.01 

He a 2.62 m 

Hcj3 2.32 ddd 17.0, 
288 8.3 8.3 

Hd 4.67 d 7.5 4.44 dd 11.5, 3.4 0.23 

He 5.25 s 5.15 s 0.1 
Hf 7.49 d 9.1 7.52 d 9.5 -0.03 
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Ha 7.76 dd 7.6, 1.8 7.50 m 0.26 

Hb 4.67 t 3.9 4.64 d 3.4, 1.6 0.03 

He a 2.71 ddd 
14.4, 

2.15 m 0.56 
3.4, 3.4 

He~ 2.60 ddd 
14.6, 

2.34 ddd 
13.4, 

0.26 284 6.2, 6.2 2.0, 2.0 

Hd 4.92 d 4.6 5.11 dd 11.6, 3.3 -0.19 

He 5.59 s 5.26 s 0.33 

Hf 7.48 d 9.4 7.62 d 8.9 -0.14 

Ha 7.45 dd 9.1, 1.8 7.52 m -0.07 
Hb 4.80 t 3.8 4.70 m 1 

He a 2.33 dt 14.6, 4.9 

289 He~ 2.75 dt 14.4, 4.2 

Hd 4.91 dd 8.1, 4.4 4.70 m 0.21 

He 5.50 s 6.25 s -0.75 

Hf 7.53 d 8.3 7.68 d 7.9 -0.15 
Ha 6.93 dd 7.7, 1.6 
Hb 4.44 t 7.6 

13.9, 
He a 2.63 dddd 7.0, 3.4, 

285 
1.7 

He~ 2.33 ddd 
17.4, 

8.6, 8.6 
Hd 4.66 d 7.4 

~ s 
d 7.1 

Table A.2 - NMR shift values for Povarov adducts without a bridgehead. 
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X-ray Analysis for 

299b 

344 



Experimental 

Data Collection 

A colorless prism crystal of H 19N05C22 having approximate dimensions of 0.64 

x 0.10 x 0.08 mm was mounted on a glass fiber. All measurements were made on a 

Bruker P4/CCD system with graphite monochromated Mo-Ka radiation and a sealed tube 

generator. 

Cell constants and an orientation matrix for data collection corresponded to a 

primitive monoclinic cell with dimensions: 

a= 19.587(2) A 

b = 5.0527(4) A 

c = 18.853(2) A 

v = 1831.6(2) A3 

J3 = 100.997(2)0 

For Z = 4 and F.W. = 377.40, the calculated density is 1.37 g/cm3. The systematic 

absences of: 

hOI: 1 ± 2n 

OkO: k ± 2n 

uniquely determine the space group to be: 

P211c (#14) 
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The data were collected at a temperature of -80 ± 1 °C .. The full hemisphere of 

data was collected with 30 sec., 0.3 deg. frames to a maximum 28 value of 52.8°. 
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Data Reduction 

Of the 12732 reflections which were collected, 3760 were unique (Rint = 0.044 

the linear absorption coefficient, J.!, for Mo-Ka radiation is 1.0 cm-1. The Siemens area 

detector absorption routine (SADABS) was used to correct the data with maximum and 

minimum effective transmissions of 0.9922 to 0.9402 respectively. The data were 

corrected for Lorentz and polarization effects. 

Structure Solution and Refinement 

The structure was solved by direct methods2 and expanded using Fourier 

techniques3. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms 

were included but not refined. The final cycle of full-matrix least-squares refinement4 on 

p2 was based on 3760 observed reflections and 253 variable parameters and converged 

(largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement 

factors of: 

R1 = L IIFol - JFcll I L jFol = 0.052 

wR2 = [ L ( w (Fo2- Fc2)2 )I L w(Fo2)2]112 = 0.142 
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The standard deviation of an observation of unit weightS was 1.03. The weighting 

scheme was based on counting statistics. The maximum and minimum peaks on the final 

difference Fourier map corresponded to 0.38 and -0.37 e-;A3, respectively. 

Neutral atom scattering factors were taken from Cromer and Waber6. Anomalous 

dispersion effects were included in Fcalc 7; the values for Af and Af" were those of 

Creagh and McAuley8. The values for the mass attenuation coefficients are those of 

Creagh and Hubbell9. All calculations were performed using the teXsanlO 

crystallographic software package of Molecular Structure Corporation except for 

refinement, which was performed using SHELXL-9711. 
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EXPERIMENTAL DETAILS 

A. Crystal Data 

Empirical Formula H19No5c22 

Formula Weight 377.40 

Crystal Color, Habit colorless, prism 

Crystal Dimensions 0.64 X 0.10 X 0.08 mm 

Crystal System monoclinic 

Lattice Type Primitive 

Lattice Parameters a= 19.587(2) A 

b= 5.0527(4) A 

c = 18.853(2) A 

~ = 100.997(2) 0 

v = 1831.6(2) A3 

Space Group P21/c (#14) 

Z value 4 

Deale 1.368 g/cm3 

Fooo 792.00 

J-l(MoKa) 0.97 cm-1 
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Diffractometer 

Radiation 

Temperature 

Scan Rate 

28max 

No. of Reflections Measured 

Corrections 

B. Intensity Measurements 

Broker P4/ CCD 

MoKo: (A= 0.71073 A) 

graphite rnonochrornated 

-80 ± 1°C 

30s, 0.3 deg frames 

52.80 

Total: 12732 

Unique: 3760 (Rint = 0.044) 

Lorentz-polarization 

SADABS correction 

(Trans factors 0.9922 - 0.9402) 
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C. Structure Solution and Refinement 

Structure Solution 

Refinement 

Function Minimized 

Least Squares Weights 

Anomalous Dispersion 

No. Observations (I>2.00cr(I)) 

No. Variables 

Reflection/Parameter Ratio 

Residuals: Rl; wR2 

Goodness of Fit Indicator 

Max Shift/Error in Final Cycle 

Maximum peak in Final Diff. Map 

Minimum peak in Final Diff. Map 

Direct Methods (SHELX97) 

Full-matrix least-squares on F2 

L w (Fo2- Fc2)2 

w = 11 [ cr2(Fo2) + (0.0583 · P)2 

+ 1.0972. p] 

where P = (Max(Fo2 ,0) + 2Fc2)/3 

All non-hydrogen atoms 

2611 

253 

10.32 

0.052; 0.142 

1.03 

0.00 

0.38 e-JA3 

-0.37 e-JA3 
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