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Abstract 

The results of an urchin removal experiment which was conducted over a 

four year period at a site in Conception Bay, Newfoundland are reported. The 

experiment was carried out to determine how the benthic algal community at a 

heavily grazed sublittoral Newfoundland site, subjected to periodic ice scour, 

would respond to a reduction in grazing pressure. Three transects were selected: 

one from which urchins were removed manually; one from which urchins were 

removed using quicklime, and one as a control. Sampling was conducted within 

each of three depth ranges: 0-2m, the shallow macro-algal zone; 2-3m, the upper 

portion of the urchin dominated zone; and 6-9m, the middle portion of the urchin 

dominated zone. The occurrence of ice-scour during two out of four years of the 

study allowed an assessment of its effects on biomass, diversity, and species 

composition of the algal community. 

In the shallow zone (0-2m) urchins had no detectable effect on macroalgal 

biomass. Biomass, species composition and diversity were affected, however, by 

the occurrence and timing of ice-scour. In the absence of ice-scour, A/aria 

esculenta formed a canopy which shaded the substratum; few species coexisted, 

and diversity was low. Winter and spring ice scour, which was temporally and 

spatially patchy, removed the A/aria canopy and made available well lighted 

rocky substratum for colonization. Scoured patches were· colonized by annual 

algae, resulting in an increase in diversity. Biomass returned to pre-scour levels 

approximately 2 mo after scouring, but diversity remained high due to the 

persistence of several species of annual algae in patches among the unscoured 

A/aria. 

In the urchin dominated zone macro-algal biomass increased following 
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urchin removal by both manual and quicklime techniques. The upper portion of 

the resulting communities became dominated by A/aria esculenta, with very few 

co-existing species. This dominance by A/aria was also typical of the shallow 

zone in years during which no ice-scour occurred. Below the zone of Alaria 

domination (2-3m) the community became dominate~ by Desmarestia aculeata , 

with many other co-existent species (including Agarum cribrosum, Alaria 

esculenta, and Laminaria digitata). 

Algal biomass in the control area was generally low, except during the 

summer of 1982, when an increase in both biomass and species richness occurred. 

The species composition, however, differed from that on the removal transects in 

that the control area was dominated by annual algae such as Acrothrix novae­

angliae, Chordaria flagelliformis, Dictyosiphon foeniculaceus, Ectocarpus 

siliculosus, and Eudesme virescens. A/aria and Desmarestia aculeata were 

unimportant in this association because the algae recruited in the late spring and 

early summer, after the period of A/aria and Desmarestia recruitment. 

Urchin biomass in the control area was greatest at 2-3m. Density was 

greatest in the middle of the urchin dominated zone (6-9m), where • numerous 

juveniles occurred in crevices, and among branched and undercut encrusting 

coralline algae. 

In addition to urchins, the herbivore guild in the study area consisted of six 

species of molluscs (Acmaea testudinalis, Lacuna vincta, Margarites helicinus, 

Ischnochiton alba, Tonicella marmorea, and T. rubra). Densities of Acmaea and 

the three chitons were greatest at 6-9m. Recruitment and density of the latter 

three species showed no detectable relationship with urchin removal. Recruitment 

of the annual Lacuna and Margarites occurred during the early autumn, in 

shallow water, particularly in the presence of macro-algae. Survival into the 

following spring wa.S greatest on the macro-algae in the urchin removal areas. 
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INTRODUCTION 

1. The geographical perspective 

Extensive rocky subtidal areas, which are devoid of large fleshy macrophytes 

as a result of grazing by green sea urchins (Strongylocentrotus droebachiensis), 

occur from Massachusetts to Labrador (Breen and Mann 1976, Chapman 1981, 

Harris 1981, Himmelman 1985, Himmelman et a/. 1983a, Hooper 1980, Mann 

1977, pers. obs. 1977-1985). Areas dominated by green sea urchins have also been 

reported in Europe; they occur in Norway (Hagen 1983) and on the Barents Sea 

coast of the Soviet Union (Propp 1977). This species has also been shown to limit 

algal biomass on a local scale in the eastern Pacific (Vadas 1969, Foreman 1977). 

Such urchin dominated communities1 hav:e been referred to as •barrens• 

(Lawrence 1975), a term used here to refer to the absence of very large, canopy­

forming macrophytes such as Laminaria. The removal of urchins from such 

barren areas generally leads to the recovery of abundant macrophytes (Chapman 

1981, Duggins 1980, Himmelman et al. 1983a, Lawrence 1975, Miller 1985). 

In the north Atlantic Ocean the history of sea urchin grazing, and the 

factors regulating sea urchin populations in areas directly influenced by cold 

water [eg. north of the North Cape of Norway in Europe, Newfoundland and 

north in North America), may be very different than in more southerly areas 

influenced by warmer water (see below). Outbreaks of the green sea urchin are 

recent events (with in the last 16 y) in the warmer part of its range on both sides 

of the North Atlantic (Mann 1977, Hagen 1983), although there is evidence that 

1The word community, as employed here, refers to a group or organisms occurring in a 
particular environment, presumably interacting with each other and with the environment, and 
seperable by means or ecological survey from other such groups {Mills 1969). 
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such outbreaks ~ave occurred before (Miller H)85). The urchin outbreak, which 

destroyed most of the Laminaria-dominated kelp beds off the Atlantic coast of 

Nova Scotia during the early H)70's (Mann 1977, Wharton 1980), was terminated 

by a disease caused by a parasitic amoeba (Jones et a/. 1985, Miller 1985, 

Scheibling 1985). There is evidence that the outbreak which occurred in Norway 

will be terminated by a parasitic nematode (Hagen 1983, 1985, in press). 

The situation described above contrasts with the more long-term nature of 

sea urchin barrens in the colder regions of both sides of the Atlantic. Sea urchin 

dominated barrens have predominated in the subtidal of eastern Newfoundland 

for at least 22 years (D.H. Steele,2 pers. com.), and probably for much longer 

(Hooper 1980). There is also evidence that the barrens in the Passamaquoddy 

Bay area of the Bay of Fundy and in the lower St. Lawrence Estuary (both areas 

experience colder summer sea surface temperatures than the Atlantic coast of 

Nova Scotia) have existed for a much longer time than the barrens in Nova Scotia 

(Dawson 1867, Ganong 1885,1888, Scott 1902, Stimson 1854, Verrill 1874). Green 

sea urchin dominated barrens in the colder area of Europe have probably also 

existed for a longer time than they have in the more southerly, warmer area 

(Hagen 1983, Propp 1977). There is no documented case of the natural 

termination of green sea urchin outbreaks in the colder part of the species' range 

[Bay of Fundy (pers. obs. 1985), Newfoundland (pers. obs. 1977-1985), Murmansk 

Coast in Europe (Propp 1977)]. 

There have been differences m the response of the algal community to a 

reduction in urchin grazing, in the two regions of the northwest Atlantic where 

this phenomenon has been studied (Nova Scotia and the lower St. Lawrence 

Estuary). These differences may be related, in part, to the different history of sea 

urchin grazing (ie. recent versus more long-term). In Nova Scotia, manual urchin 

removal from a grazed patch within a kelp bed, as well as from a barren area 8 y 

after kelp bed destruction, was followed by a return of kelps, mainly Laminaria 

2
Dept. of Biology, Memorial University of Newfoundland, St. John's, Nfld., Canada, AlB 3X9 
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longicruris (Breen and Mann 1976, Chapman 1981}. Kelp beds dominated by 

Laminaria longicruris regenerated along the Nova Scotian coast after disease­

induced mass mortality of urchins (Moore and Miller 1983, Scheibling 1984, Miller 

1985}. ' In the lower St. Lawrence estuary, however, two years after the 

experimental removal of. urchins, Alaria esculenta dominated in shallow water, 

and Agarum cribrosum was the most abundant species in deeper water. In 

contrast to the Nova Scotia situation, domination by Laminaria longicruris did 

not occur (Himmelman et al. 1983a}. 

The pattern of macro-algal distribution at urchin dominated sites in eastern 

Newfoundland (South 1983} differ markedly from both Nova Scotia (Breen and 

Mann Hl76) and the St. Lawrence estuary (Himmelman 1980; Himmelman et al. 

1983a}. A shallow water refuge from · urchin grazing exists in eastern 

Newfoundland (Himmelman 1985), and Nova Scotia (Chapman 1981). This zone 

was lacking in the area of the St. Lawrence Estuary studied by Himmelman et al. 

(1983a), although such a zone does occur in many areas of the lower St. Lawrence 

Estuary (Himmelman and Lavergne 1985). The kelp Laminaria longicruris is 

common in the shallow water refuge in Nova Scotia (Chapman 1981, pers. obs. 

1980), whereas it is lacking from this refuge in eastern Newfoundland (pers. obs. 

1977-1985). Himmelman and Lavergne (1985) did not state which species of 

Laminaria occurs in this refuge on the north shore in some parts of the lower St. 

Lawrence Estuary, but L. longicruris was common in the middle Estuary and on 

the south shore of the lower Estuary. 

A second important difference among areas concerns the presence of sea ice, 

which occurs in the St. Lawrence Estuary (Archambault and Bourget 1983) and 

Newfoundland (Hooper 1980), but does not occur in that region of the Nova 

Scotian coast where algae-sea urchin interactions have been studied (Markham 

1980}. Scouring by sea ice has a major impact on benthic communities (Hooper 

1980), but this was not examined in the study by Himmelman et al. (1983a). 

Eastern Newfoundland is influenced by cold water from the Labrador 
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Current. In addition to the effects on the water temperature regime, the 

Labrador Current brings sr:a ice into the region , which lies south of the maximum 

extent of in situ generated winter pack ice (Dinsmore 1972). When ice drifts 

south with the Labrador current, onshore winds may blow the ice onshore and 

bring about extensive scouring of the littoral .and upper sublittoral (Hooper 1981). 

Although it is known that ice-scour influences the ecology of algae at high 

latitudes (Sundene 1953; Taylor 1957; Lund 1959; Wilce 1959; Ellis and Wilce 

1961; Stephenson and Stephenson 1972; Hooper 1981; Bolton 1983), there are few 

detailed accounts of its effects on macro-algal communities. 

As a result of the physical and biotic differences among areas, including 

differences in the history of urchin grazing, it is impossible to generalize from one 

region to another in the northwest Atlantic, how barren are'as respond to a 

natural ( eg. disease) or artificial ( eg. manual removal) release from urchin grazip.g. 

No study of the algal community response to urchin removal from a barren area 

has yet been conducted in an area influenced directly by cold Arctic water and 

ice-scour. None of the studies conducted in the Northwest Atlantic have 

examined, in detail, the changes in algal biomass, species composition, or diversity 

in relation to a reduction in urchin grazing at a barren site, with the exception of 

the study by Himmelman eta/. (1983a). 

The approach taken here is to use the well established technique of urchin 

removal to examine the response of the benthic algal community to a reduction in 

urchin grazing pressure at a barren site under the direct Arctic influence of the 

cold Labrador Current and ice-scour. During the present study ice-scour occurred 

in the research area in two of four years, permitting its effects on benthic 

sublittoral macrophytes to be studied concurrently with experimental urchin 

removal. 
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2. The research program 

Aspects of community structure include spectes composition, species 

diversity
2 

the relative abundances of species, the spatial and temporal patterns of 

species abundances, and morphological characters of the dominant species 

(Tilman H}82). All of these characteristics of a community may be influenced by 

interactions with the physical and biotic environment. I have therefore examined 

biomass, species composition, diversity (a combination of the number of species 

and the relative distributi~n of biomass among them), species richness, and some 

of the life history characters of the species which occur in the study area, in 

relation to the experimental reduction in sea urchin grazing, and in relation to ice 

disturbance. I also examined the biomass and density of the members of the 

molluscan herbivore guild, because grazing by other herbivores may be an 

important consideration in evaluating the response of macro-algae to urchin 

removal ( cf. Fralick et al. 197 4). Also, other herbivores may increase in 

abundance, and therefore grazing capacity, in response to an increase in algal 

abundance (Himmelman et al. 1983a). 

The experimental reduction in benthic marme herbivore densities has 

generally involved one or more of: ., (1) manual removal, (2) the application of 

high-calcium quicklime, and (3) caging (North and Shaefer 1963; Connell 1972; 

Lawrence 1975). Although an exclusion net was placed around the transect from 

which urchins were removed, cage experiments per se were not employed during 

the present study because of the difficulties of working with cages at exposed 

sites. The manual-removal and quicklime methods of reducing urchin grazing 

were used, because they have given good results in other studies (Jones 1948; 

Kitching and Ebling 1961; North and Shaefer 1963; Leighton et al. 1966; Jones 

and Kain 1967; Paine and Vadas 1969; Lawrence 1975; Breen and Mann 1976; 

Vance 1979; Duggins 1980; Chapman 1981; Bernstein and Welsford 1982; 

Sammarco 1982a,b; Himmelman et al. 1983a). 

Three subtidal transects were utilized; one left untreated as a control, one 

from which urchins were removed manually, and one from which urchins were 
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removed by quicklime application. The study sites were in Conception Bay, the 

outer portion of which preliminary observations showed has a species compositlon 

and zonation typical of the open Atlantic coast of Newfoundland (Himmelman 

Hl85, South 1983). 

There are generally three distinct seaweed zones on the open Atlantic coast 

of Newfoundland. The shallowest zone (ca 0-2m _below mean low tide) has 

abundant macrophytes, which exist mainly because wave action reduces urchin 

foraging ability (Himmelman 1985). Preliminary observations in the study area 

suggested that biomass, species composition and diversity in this sl;lallow zone is 

strongly influenced by ice-scour. Next is the barren zone (ca 2-12m below ML T) 

with numerous green sea urchins, and very few large fleshy macrophytes 

(Himmelman 1985). Below the barrens there is usually another zone with a 

relatively high seaweed biomass and cover, dominated by Agarum cribrosum and 

Ptilota serrata (Keats et a/. Hl82). 

With the exception of the Agarum/Ptilota zone (Keats et a/. 1982) there are 

no published data on macro-algal biomass and its variation among species with 

depth and time in the Newfoundland sublittoral. The present study was 

conducted between mean low water -.and a depth of 9m. Over a four year period 

detailed analyses were conducted within three separate depth ranges 

corresponding to distinct habitats: the shallow macro-algae dominated zone 

(0-2m); the upper fringe .of the urchin dominated zone (2-3m); and the mid­

portion of the urchin dominated zone (6-9m). Some data from the 

AgarumjPtilota zone (12-18m), gathered during another study (Keats et a/. 1982), 

are included for comparative purposes. 

The research program was designed to answer the following questions: (1). 

What changes in macro-algal biomass, diversity, and species composition occur 

following the removal of urchins, and how do these changes compare with natural 

changes (if any) which occur in a control area over the same time period? (2). 

How do these changes compare with the results of studies elsewhere, particularly 
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in the northwest Atlantic? (3). Are there changes in the abundance of other 

herbiv,,res with depth, time, or when the macro-algae are released from urch:n 

grazing pressure? ( 4). How does ice-scour influence macro-algal biomass, diversity, 

and species composition? (5). What are the predominant life history adaptations 

of the algal species to grazing and ice-scour? 

3. T _heoretical considerations 

The theoretical and conceptual framework for the questions which will be 

addressed in this thesis comes from studies of the effects of physical disturbance3 

( eg. ice-scour) and herbivory ( eg. sea urchin grazing) on community structure. 

Disturbance and herbivory have a number of parallels in terms of how they 

impact ecological communities. The highest diversity in a community has been 

predicted at intermediate levels of disturbance (Connell 1978, Levin and Paine 

197 4) and herbivory (Paine and Vadas 1969, see following). With no disturbance 

(or herbivory), dominance of a resource by a small number of competitively 

superior species is predicted. At high levels of disturbance (or herbivory) all 

species are eliminated, or a few ephemeral or species with defenses occur. 

Diversity is highest at intermediate l.~vels of these factors because there are many 

patches of habitat at different successional stages and, therefore, different species 

corr..position (Connell 1978, Sousa 1984). 

The term •level of disturbance• (or herbivory) incorporates several aspects 

of the disturbance regime: patch size, patch shape, the frequency of patch 

initiation, the intensity (physical) of disturbance, the severity (biological damage) 

of disturbance, predictability, and turnover rate (time required to disturb a given 

3There are two competing definitions of •disturbance. • One view holds that disturbance is an 
irregular event that moves a community away from equilibrium conditions (see White 1979). The 
alternative view, the one employed in most of the recent literature, and the meaning used here, is 
that disturbance is •a discrete, punctuated killing, displacement or damaging of one or more 
individuals or colonies that directly or indirectly creates an opportunity for new individuals (or 
colonies) to become established • (Sousa 1984). This definition makes no assumptions about the 
equilibrium status of the community, and it permits the study of disturbance as one of the 
normal factors influencing the community. 
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area under consideration) (Miller 1982, Paine and Levin 1981, Sousa 1984). In 

addition to the level of dist·ubance, the timing of disturbance (or herbivory) 

relative to the reproductive phenology of potential colonizers is an important 

consideration (Sousa 1984). 

A significant feature by which herbivory differs from physical disturbance is 

that the relationship between level of herbivory and diversity may be modified by 

the preferences and foraging strategies of the members of the herbivore guild 

(Gaines 1985, Lubchenco and Gaines 1981). If a competitive dominant(s) is 

preferred then diversity is maximized at an intermediate level of herbivory, but if 

a competitive subordinate is preferred then diversity will decrease monotonically 

(Lubchenco 1978), or will show little change with increasing herbivory. Even so, a 

parallel with food preference may exist for disturbance, in that some species will 

be more susceptible than others to a particular disturbance agent (White 1979). 

A second parallel exists between these factors in that disturbed patches 

(between disturbances) and grazed patches (released from grazing) tend to be 

colonized by early successional4 species. It has been suggested on theoretical 

grounds and backed up by the results of some empirical studies that early 

successional species are selected to have life history and morphological characters 

adapted to the rapid colonization of available habitats (Littler and Littler 1980). 

These early successional species tend to be ephemerals (short lived, many 

generations per year), annuals (live less than one year, but only one generation 

per year), or perennials (live more than one year) with vegetative short-cuts 

(asexual reproduction with dispersal) in the life history (Littler and Littler 1980). 

In contrast, late-successional species tend to be predominately perennials without 

vegetative short-cuts. Early successional species also tend to be less structurally 

complex, and show higher growth rates and productivity than later successional 

species (Littler and Littler HJ80, Steneck and Wattling 1982). 

4
Successlon as used here refers to the changes in a community which take place with time 

following a purturbation, irrespective of the mechanisms !sensu Connell and Slayter {1977)) 
involved in those changes. 
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If these theories are applicable to this environment, then they suggest some 

predictions concerning the response of the algal comm:1nity to urchin removal and 

to ice-scour. Diversity and species richness should be higher during the early 

stages, than they are during the later stages following urchin removal. U ice scour 

is patchy and incomplete (as preliminary observations suggest that it usually .is in 

this region) then diversity and species richness should be higher in years during 

which ice-scour occurs than it is in years without ice-scour. Species which 

colonize early after urchin removal, after ice-scour, or in temporary patches in the 

grazed (control) area should (on average) possess the life history characteristics 

attributed to early successional species (see above). Species which are more 

abundant in the later stages following urchin removal, and in years without ice­

scour should (on average) possess the life history characteristics attributed to late 

successional species. 

These theoretical considerations and predictions aside, I wish to emphasize 

that the major purpose of this thesis is to increase our understanding of 

geographical variation in the role of grazing by the green sea urchin in shallow­

water, rocky bottom marine communities, the response of communities to a 

reduction in such grazing, and how this is influenced by the interactions with the 

physical environment (eg. ice-scour). 
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MATERIALS AND METHODS 

1. Selection of sites 

The locations for the three transect sites (Figure 1) were selected on the 

basis of the following characteristics: (1) They were representative of the open 

Atlantic Coast of Newfoundland (Hooper et al. 1980), in particular possessing 

urchin/coralline dominated areas, (2) They were similar in terms of slope, aspect, 

substratum type, and biotic communities, {3) They were steep enough in slope to 

allow access to a range of depths over a short distance, and ( 4) They were easily 

accessible from St. John's. On the basis of criteria 3 and 4 the area of coast 

between Portugal Cove and Bauline in Conception Bay was selected (Figure 1 ). 

During March-April, 1979 the area was surveyed, and the two sites were chosen 

on the basis of criteria 1-4 (above). A third site, to be treated with quicklime, was 

chosen on the same basis during May 1981. The areas were marked by weighted 

transect lines scaled at 2m intervals; and extending from above high water to a 

depth of 30m below mean low water. The study sites are hereafter referred to as 

control, experimental (=manual removal), and quicklimed transects. 

2. Description of the study area 

Subtidal macro-algae are distributed m three distinct zones (Figure 2). In 

the immediate subtidal there is a zone (0-2m) with abundant fleshy macrophytes. 

Below that there IS a zone (2-12m) dominated by Strongylocentrotus 

droebachiensis, with a much reduced abundance of fleshy macro-algae. There is 

also a deeper zone (>12m) where Agarum cribrosum and Ptilota serrata are 

abundant. Coralline algae, mainly Clathromorphum drcumscriptum, Coral/ina 

officina/is, Phymatolithon rugulosum, Phymatolithon /aevigatum, and 

L£thothamn£on glaciale are well developed in the study area, and cover nearly 
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100% of the substratum from ca 6m to beyond diving depths. Thickness of the 

corallines (Ciathromorphum circumscriptum and Lithothamnion glaciale) is 

greatest (up to 6 em) in the deeper portion of the barrens, and in the 

AgarumJPtilota zone. 

The lOOm depth contour is approximately 200m offshore, and because of the 

s~eeply sloping bottom wave energy is dissipated on a narrow band of shore. The 

substratum consists of bedrock of volcanic origin from the intertidal to 

approximately 6m depth, and a mixture of bedrock and small densely-packed 

boulders to approximately 25m depth. Large (>3m diameter) boulders also occur 

in the area, but were avoided in the placement of the transects. 

Sea surface temperatures in the vicinity of the study site range from a 

minimum of -1.8°C in winter to a maximum of 16°C m summer, although the 

annual range shows some variation (Steele 1975). Frequent temperature 

fluctuations occur during the spring warm-up period, due to the instability of the 

water column. Short-term temperature stability gradually increases with 

increasing thermal energy content of the water column. After September a steady 

decline in temperature occurs (Steele 1975). 

There is little salinity fluctuation in the study area. Petrie (1980) reported a 

mean annual variation in surface salinity of 1 ° I 
00 

(from 31 to 32 ° I 
00

) off Cape 

Spear over the period the 1950-1959. Sandeman (1982) reported variation in the 

surface salinity from 31 ° I 
00 

to 33 ° I 
00 

over a period of 1y at a site in the inner 

part of Conception Bay. Mass mortality of urchins due to salinity reductions 

resulting from heavy spring run-off (Hooper 1980) therefore do not occur at an 

open site such as the present study area. 

Sandeman (1982) reported variations over a 15 mo period m the 

concentrations of selected nutrients at a site 7 km from the present study area. 

From July to September nitrogen (nitrate and nitrite) concentration within the 

0-lOm depth range was ca 0.4 JLg-at. r 1. Nitrogen concentration rose during 

January (ca 2.5 JLg-at. r 1), peaked during March (5.0 JLg-at. r1), declined to ca 
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0.4 JLg-at. r 1 by mid June, and remained low throughout the summer. 

Phosp~orous concentration was highest (ca 0.4 JLg-at. r 1) between late July and 

early November, and lowest in the January to March period (ca. 0.05 JLg-at. r 1). 

The mean tide range for the study area is 0.9 m (Fisheries and Oceans Canada 

1983) which, combined with the steeply sloping shore, produces a narrow 

intertidal zone. 

Wind patterns vary both seasonally, and annually (Banfield 1983). Figure 3, 

compiled froin data in Anon. (1982), shows the mean monthly frequency of wind 

in 5 categories ranging from 0 (calm) through 1 (offshore), to 4 (fully onshore). 

Both the frequency of onshore winds and the mean speed are at their annual low 

in summer, increase in October, and peak during December to March. Sea states 

are therefore relatively calm during the summer, and highest during the autumn 

and winter when the study area is frequently exposed to the full force of strong 

onshore winds. 

3. Removal of Urchins 

3.1. Manual Removal 

During May, 1979 (Table 1 ), the transect areas were marked off 5 m on 

either side of the transect line to a depth of 10m, over a horizontal (offshore) 

distance of 40 m. The marked area ( 400 m2) was divided into 5 m 2 grids, and 

urchins were systematically killed in each grid. Removal was begun in mid-June 

of 1980 in the grids at lOrn, and continued up the slope such that the 0-2m area 

was the last to have urchins removed, and this did not take place until mid­

August. Urchins were smashed with hammers, and all those visible were killed. 

Urchins smaller than 10-15 mm test diameter occupy cryptic microhabitats, and 

hence were not as effectively removed as larger individuals. After the initial 

removal urchins were killed every 1-2 wks in summer, ca monthly in winter. The 

removal area was surrounded by a 1.5 m high fence constructed of 3 em mesh size 

seine netting. The fence had a 1.5 m skirt onto which boulders were placed to 

seal it against the bottom. 
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3.2. Application of quicklime. 

A preliminary surface application of 0.8 kg m-2 to a 10m x 10m test area, 

during June of H)81, eliminated a large enough portion of the urchin population 

to allow macro-algal colonization. An area 90 m (parallel to the shore) by 40 m 

(perpendicular to the shore), extending to a depth of 15 m was then marked off 

using lead core line at Blast Hole Bight, Conception Bay (Figure 1 ). The 

quicklime site was 0.8 km. south of the control transect. 

On October 22, 1Q81, 1400 kg of granular high calcium quicklime (Pfizer 

Chemical, Adams Massachussetts) was applied using an agricultural seed spreader 

(Figure 4). Waves prevented the boat from maneuvering near to shore, and 

depths shallower than 3 m received very little quicklime. Inspection by divers 2h 

later revealed a patchy distribution of quicklime. Less than 50% of the 

substratum had received adequate quicklime. Other areas received considerably 

more than the 0.8 kg m-2 average. 

Weather conditions did not permit the application of the remaining 1300 kg 

quicklime until November 18, when high waves again prevented an even 

application. Rough weather prevented further access to the site until December 

5, 1Q81, when observations indicated that in the southern portion of the area ca 

90% of the substratum received relatively ~ven coverage of quicklime, with the 

evenness of coverage decreasing considerably toward the north portion of the 

area. Subsequent observations and biomass sampling were therefore restricted to 

the southern-most 40m (1600 m2) of the quicklimed area. 
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4. Sampling ~rocedure 

4.1. Quantitative samples 

Sampling was conducted in the shallow algal zone (0-2m below mean low 

tide), just below that zone (2-3m) at the upper edge of the urchin/coralline zone, 

and well within the urchin/coralline zone (6-9m). Quadrats were constructed of 

6.5mm diameter steel rods. One side was removed, and the quadrat was painted 

reflective yellow for ease of working within the macro-algae. During May, 1979 

four preliminary samples were obtained with a quadrat area of 0.25 m 2, a size 

used successfully in similar habitats elsewhere (Mann 1972; Ebert 1977; Foreman 

1977; Pearse and Hines 1979; Bernstein et al. 1981; Chapman 1981; Choat and 

Schiel 1982; Himmelman et al. 1982). Sorting and measurement logistics, 

however, dictated that quadrat size be reduced to 0.1 m 2, which also has been 

used in similar sampling studies (Paine and Vadas 1969.; Lang and Mann 1976). A 

0.04 m 2 quadrat was used to sample Lacuna vincta and Margarites helicinus 

during the autumn of 1980, after a heavy settlement yielded too many individuals 

to sort them from 0.1 J?2 quadrats. 

A sample size of 5 quadrats p~r treatment was chosen initially, as plots of 

running means (Kershaw 1973) showed this to be an adequate number for total 

macro-algal and urchin biomass. Biomass of ir.dividual algal species showed 

greater variability than the total biomass of all algae. Sample size was therefore 

increased (to a maximum of 10) when logistic constraints permitted. 

Table 2 shows the periods when sampling was conducted, the transect and 

depth ranges sampled, and the number of samples obtained. Sample periods were 

chosen to reflect the seasonal changes in floristics, which have been reported for 

the Newfoundland inshore (Hooper et al. 1980). These were spring (May), 

summer (July), and autumn (October). Rough sea conditions, and lack of 

adequate diving support reduced the effectiveness of sampling during the autumn, 

and prevented winter sampling. 
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Quadrats were placed by blind casting at each depth range. Material which 

could be harvested by hand was placed into 0.5 mm mesh collecting bags. The 

remaining material was then scraped from the rock surface using a combination of 

paint scrapers, diving knives, and hard-bristle tooth brushes. The scraped 

material was coll~cted using an air dredge (Figure 5) fitted with a 0.5mm (mesh 

size) collecting tube. 

Until the autumn of 1980 the percentage cover of individual crustose 

coralline species was estimated visually in quadrats prior to destructive sampling. 

This was discontinued because it consumed too much underwater time, but the 

data obtained up until that date were used to determine the distribution of 

coralline algae with depth. 

Variables measured included total macro-algal biomass (except for crustose 

species), and biomass of individual species. Only species which were large enough 

to observe in the field, or present in large enough quantities to be seen in a sorting 

tray are included for analysis. Species present, but at a biomass below the 

resolution of the balance (0.05 g) are recorded as •present• (+). Density and 

biomass of the members of the herbivore guild were also determined, and the size 

structure of the urchin populations was studied in detail. Samples of algae and 

herbivores from the AgarumfPtilota zone (12-18m), gathered during another 

study (Keats et al. 1982), were also used for comparative purposes. 

4.2. Field observations 

In addition to the destructive, quantitative samples, observations were made 

in the study areas as often as conditions permitted. The study area was traversed 

for 20-30 min within each depth range; notes on the abundance [4=dominant 

(>50% of biomass), 3=high biomass but patchy, not dominant, 2=small 

abundant plants, !=small patchily distributed plants] of macrophyte species were 

recorded on plastic paper. This, when supplemented with detailed post-dive 

notes, and photographs of the study area, allowed the rapid collection of 

information when quantititive biomass samples could not be obtained. Notes were 
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also kept on the occurrence of sea ice in the research area. Light measurements 

(in F-stop units) were made on June 7, 1982 usii:g a Sekonic Marine photographic 

light meter, and were converted to the percentage of the illumination at the 

canopy surface which reached the understorey. Only preliminary measurements 

were made because the light meter malfunctioned after the first day of use, so 

detailed light measurements are not presented. 

5. Sorting, Identification, Weighing and Measuring 

Laboratory sorting and identification were made on fresh or frozen material. 

Algae and invertebrates were sorted into species, or higher taxa, blotted for ca 5 

min to remove surface water and wet weighed. Values obtained were converted 

to g (fresh wt) m-2 for analysis. Linear dimensions were measured using Helios 

calipers, accurate to 0.05 mm. 

All algal species names and authorities are as per South {1984), except 

Scagelia pylaisaei (Mont.) Wynne (Wynne 1985). Invertebrate names are as per 

Gosner (1971) and Abbott (1974). 

6. Data Analysis 

Table 2 is a summary of the sampling undertaken during the study. 

Examination of scatter plots of standard deviations versus means of biomass, and 

frequency plots where appropriate, showed considerable heteroscedasticity and 

deviation from normality. Log10 transformations of biomass data were therefore 

performed prior to calculating standard errors, and a re-examination of the data 

showed that the transformations were effective. For graphical representation the 

means were converted to geometric means (Sokal and Rohlf 1969). Arithmetic 

means were also computed, and are presented here for comparison with published 

data using arithmetic means. Arithmetic means were used for calculation of 

percent biomass by species, as statistical tests were not performed on the resulting 

data. Species richness as used here represents the total number of species present 

in all samples, or counted during monthly observations. 
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To determine how patterns of diversity and species relative abundances 

varied under the influence of ice-scour, and urchin removal domiuance-diversity 

curves (Whittaker HJ65, May 1981), diversity (H•) and dominance (1-J) (Wilhm 

1968) were produced using a Fortran-77 program written by the author on a 

Digital Equipment Corporation Vax 11/780 computer. All means and standard 

errors were calculated using the Statistical Analysis System (Ray 1982a,b) on an 

Amdahl 470/V6-ll or a Digital Equipment Corporation VAX 11/780 computer, or 

SPSS (Nie et al. 1975) on a VAX 11/780. 

The data were not subjected to rigorous statistical tests due to problems of 

pseudoreplication (Hurlbert 1984), and missing data due to the difficulties of 

working in this environment. In most cases means and standard errors are 

presented, along with field observations, and the reader can judge whether to 

accept biological significance from this information. This is the approach 

recommended by Hurlbert (1984) when it is necessary to work in environments 

where it is not possible to produce a true replicated and balanced experimental 

design. 

Confidence limits about an estimate of percentage urchin biomass removed 

were made based on the a priori contrasts of untreated (i.e. control and pre­

removal experimental transect samples) versus treated (i.e. post-removal 

experimental or quicklimed transect samples) for each depth range averaged over 

all sample periods. These confidence limits were set by: 

1. Computing the 95% confidence limits about the means of the log10 transformed 

variates; 

2. Transforming these to the geometric mean with confidence limits; 

3. Computing the mean % biomass removed by taking: 

% removed=((X t t d-Xt t d)/X t t d)xlOO% un rea e rea e un rea e 
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4. Computing the lower confidence limits for the % biomass removed by taking: 

LCL=((LCLuntreated-UCLtreated)/LCLuntreated)xlOO% 

an<!, 

5. computing the upper confidence limit for the % biomass removed by taking: 

UCL=((UCL t t d-LCLt t d)/UCL t t dx100% un rea e rea e un rea e 

The percentage of biomass removed from the quicklimed transect was similarly 

estimated by comparison with control condition samples. 

The percentage survival (over the autumn-spring) of the gastropods Lacuna 

vincta and Margarites helicinus from the autumn of 1980 recruitment was 

calculated by comparing spring or summer 1981 densities with densities from the 

previous autumn. 

Cluster analysis of algal species biomass data was carried out usmg 

CLUSTAN (Wishart 1978) implemented on a Digital Equipment Corporation Vax 

11/780 computer. The similarity matrix was generated using Euclidean distance, 

with clustering by group average sorting (Wishart 1978). Sample sets were 

clustered on the basis of log10 mean biomass. Species recorded only as present 

(i.e. too little to weigh), or which occurred in less than two samples overall were 

excluded from the analysis. Certain other species were grouped at the generic 

level (see Table 3) because of uncertainty of the accuracy of identification during 

the early part of the study (Giffordia, Ectocarpus, Desmarestia). 

To determine how species richness and biomass were divided among annual 

and ephemeral versus perennial algae (sensu Feldmann 1966) the number of 

species and biomass of both5 was computed for the following conditions: (1) 0-2m 

5annual and ephemeral are considered together on theoretical grounds (see page 8), and 
because the distinction is not always possible to make. All reference to annual in figures 
therefore includes annuals and ephemerals in the annual category 
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during years in which ice-scouring occurred, (2) 0-2m during years in which no 

ice-scouring occurred, (3) 2-3m contrcl conditions (i.e. control and pre-treatment 

experimental transect), (4) 6-9m control conditions, (5) 2-3m experimental transect 

2 mo after urchin removal, (6) 6-9m experimental transect 2 mo after urchin 

re111oval, (7) 2-3m remova~ areas (i.e. experimental and quicklimed transects), 

more than 9 mo after urchin removal, and (8) 6-9m removal areas more than 9 mo 

after urchin removal. The assignment of an alga to annual or perennial status 

(Table 3) was based on information from Taylor (1957) and South and Hooper 

(1980). The number of species of annuals and perennials was computed both 

with, and without species whose mean biomass was less than the accuracy (0.05 g) 

of our weighing balance (i.e. those recorded only as •present•) included. 

To determine if the increase in macro-algal biomass and species richness 

which occurred in the control area during the summer of 1982 was confined to the 

immediate area, or if these algae were also abundant at other localities, 

observations were made at 18 sites between Topsail Head and Cape St Francis, 

Conception Bay. This was done because such an mcrease may have been 

attributable to the manipulation of urchin densities in nearby areas, particularly 

at t he quicklimed site. Each site was traversed for 20 minutes, in a direction 

parallel to the shore. At the end of the dive a subjective estimate was made of 

the percentage algal cover as the dive site, and abundant species were noted. 
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RESULTS 

1. Description of ice scour episodes 

In 1Q7Q first-year ice6 (ca 60% ice cover) drifted into Conception Bay during 

mid-April (Figure 6). It was present for six days, when offshore winds moved it 

out of the bay. Observations indicated that in the 0-2m depth range 40% of the 

cover of large fleshy algae had been removed by scouring, leaving well lighted 

substratum available for the colonization and regrowth of macro-algae. In 1Q80 

first year ice (ca 60% ice cover) moved into the bay during the second week of 

February. Ice was present for 4 days, after which no further ice-scour occurred. 

Observations indicate that again 40 % of the substratum in the 0-2m depth range 

had been scoured. No scouring occurred in the study area subsequently. 

Significant ice-scour was confined to the intertidal and the upper subtidal, but in 

both years ice-scour was not uniformly distributed within those zones. With the 

exception of crevices, the intertidal and the upper 0.5 to 1 m of the subtidal was 

completely scoured of upright macroscopic algae; a 0.5 to lm wide band along the 

lower edge of the shallow algae-zone remained unscoured; the intermediate ca 0.5 

to lm was patchily scoured. 

6Markham (1981) defines first-year lee as sea ice of not more than one winter's growth, with 
a thickness from 30 em to 2 m. Multi-year (or •old •) ice in contrast has survived at least one 
summer's melt, so most topographic features are smoother than on first-year ice. Multi-year ice is 
much harder than first-year ice (Dinsmore 1 972). 



2. Macro-algal abundance 

2.1. Percentage cover of coralline algae with depth prior to urchin 

removal 
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Clathromorphum circumscriptum had the highest percentage cover within 

the 0-2m, 2-3m, and 6-9m range (Figure 7). Corallina officina/is was the only 

other coralline alga with measurable cover at 0-2m. Corallina reached peak cover 

at 2-3m on both transects, had low cover values at 6-9m, and was rare within the 

Agarum/Ptilota zone. Lithothamnion glaciate cover was negligible at 0-2m and 

increased with depth to a maximum in the Agarumf Ptilota zone. Lithothamnion 

lemoineae was present at 6-9m, but was rare in the study area, and did not occur 

in quadrat samples. Phymatolithon /aevigatum and P. rugulosum had highest 

~over values in the 6-9m depth range. Total coralline cover was lowest at 0-2m. 

At 6-9m both Clathromorphum and Lithothamnion formed encrustations up to 

4 em thick. These encrustations were under-cut by boring sponges, and 

polychaetes. The under-cut and rugose corallines provided shelter for a variety of 

animals, including juvenile urchins, chi tons (Tonicella spp. ), Hiatella arctica ), 

nemerteans, polychaetes, encrusting bryozoans and ascidians. 

2.2. Total non-calcareous macro-algal biomass 

Total fleshy macro-algal biomass at 0-2m was high throughout the study, 

and showed no significant change with time or between transects (Figure 8). 

During 1979 and 1980 biomass at 2-3m on the control transect was negligible, but 

it increased to 100 g m-2 during the summer of 1981. Biomass decreased again 

when the algae were removed by urchin grazing during the autumn. Biomass was 

negligible at 6-9m on the control transect prior to the summer of 1982, when it 

increased considerably at both 2-3m and 6-9m (Figure 8). On the experimental 

transect, at depths corresponding to the urchin dominated zone (2-3m and 6-9m), 

macro-algal biomass increased after urchin removal (Figure 8). At both 2-3m and 

6-9m on the quicklimed transect biomass increased after treatment. During the 

summer of 1982, however, when an increase in biomass occurred on the control 

transect, there were no significant among transect differences (Figure 8). 
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The overall arithmetic mean biomass at 0-2m was 4412 g m-2 (N=57, s.e.= 

488), at 2-3m without urchin removal it was 249 g m-2 (N=43,s.e.=88), at 2-3m 

> 7 mo. after urchin removal it was 2999 g m-2 (N=37, s.e.=581), at 6-9m 

without urchin removal it was 114 g m-2 (N=49, s.e.=57) and at 6-9m after 

urchin removal it was 1494 g m-2 (N=30, s.e.=413). Biomass within the 2-3m 

depth range increased after urchin removal, and was nearly equal to biomass at 

0-2m. Although biomass also increased at 6-9m, it was lower than biomass at the 

shallower depths. 

2.3. Cluster analysis of macro-algal species biomass means 

Figure 9 shows the results of a cluster analysis of the log10 mean algal 

biomass data for each transect, sample depth range, and sample period 

combination (hereafter refered to as • sample set • ). Sample sets from 12-18m, 

within the Agarum/Ptilota zone (data from Keats et al., 1982) are also included 

for comparative purposes. Four major groups are evident in the dendrogram 

(Figure Q). Group • A• consists of sample sets from 0-2m during years in which 

ice scouring occurred. The strong influence of ice-scour on community 

composition within the shallow algae zone is evident in the separation of this 

group from all other sample sets (Group •B•). Group •c• consists of sample sets 

from 0-2m taken during years in which ice-scour did not occur, and samples from 

2-3m on the manual removal and quicklimed transects taken more than 9 mo. 

after urchin removal. The community which developed at 2-3m following urchin 

removal was thus a downward extension of the community which occurred in the 

0-2m depth range in the absence of ice-scour. 

Group •D• contains sample sets from the control transect at both 2-3m and 

6-9m; from the manual removal transect at 2-3m prior to, and during the first 

autumn after urchin removal; and from both the manual removal and quicklimed 

transects at 6-9m before and after urchin removal. The association which 

developed in the 6-9m depth range after urchin removal had more in common 

with the association at both 2-3m and 6-9m under control conditions than with 
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the shallower or deeper associations. Group •E• consists of sample sets from the 

Agarum/Ptilota zone (12-18m). 

2.4. Species composition at 2-3m and 6-0m 

The descriptions presented here are based on algal biomass data (Figures 

10-12, Figures 26-29, Appendix A) and, for time periods when quadrat samples 

were not taken, on presence absence data (Tables 4,5), and field notes on 

abundance. Where possible the situation being described is illustrated with 

photographs taken in the study area. The descriptive information is presented 

because it provides information from outside periods during which quantitative 

samples were obtained. This information is crucial to an understanding of the 

changes which took place, both in the urchin removal and control areas. 

2.4.1. Species composition in the control area 

Prior to the removal of urchins both the control and experimental transects 

had a low fleshy algal biomass and few species. Desmarestia aculeata and D. 

viridis were fairly common in the 2-3m depth range during all summers (Figures 

11, 13, Table 4). Other species which were present, but had low biomass during 

the summer included Acrothrix novae-angliae, Chordaria flagelliformis, 

Dictyosiphon foeniculaceus, Ectocarpus spp., (E. fasiculatus and E. 

siliculosus), Eudesme virescens, Petalonia fascia, Pilayella littoralis, 

Polysiphonia urceolata and Scytosiphon lomentaria (Table 4, Figure 27, 

Appendix A). Prior to 1982, most of these summer species disappeared during the 

autumn, and except for Polysiphonia flexicaulis and Polysiphonia urceolata the 

2-3m depth range was essentially barren throughout the autumn to early spring. 

In 1981 and 1982 Urospora wormskjoldii was observed in dense carpets on the 

tops of ridges following rough seas in April, but it was removed by urchin grazing 

during calmer sea conditions in late April and early May (Figure 14). 

There was a large increase in macro-algal biomass at both 2-3m and 6-9m 

during the summer of 1982 (Figure 8). The species which increased were largely 

those present at low biomass at 2-3m during previous summers. At 2-3m 
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Ectocarpus siliculosus became very widespread during June, and by early July it 

compris~~d 25% of the biomass (Figures 15, 27). Petalonia, Pilayella, and . 

Scytosiphon appeared in the study area, and Scagelia pylaisaei, Ceramium 

rubrum, and Rhodomela confervoides were present in small quantities. Tilopteris 

mertensii was common, but sparsely distributed within the 2-3m depth range. 

Eudesme appeared, grew rapidly to a large size, then died back, but persisted 

through this period. Its biomass was considerably higher than it was during 

previous sampling periods, and it made up 15% of the total. Chordaria became 

abundant and developed a sparse population of epiphytic Dictyosiphon. Acrothrix 

novae-angliae appeared during June, but was gone by late August. Saccorhiza 

juveniles were present during this period, but they were not abundant. A few 

Chorda tomentosa and Laminaria digitata recruited during the winter and 

spring, but disappeared by late July. A few scattered small A/aria plants were 

also present during this period. Both species of Desmarestia remained fairly 

common, but still very patchily distributed. 

During the summer of 1982 fleshy macro-algae were abundant and fairly 

evenly distributed at £-9m. Prior to 1982 this portion of the control area was 

essentially barren of fleshy algae. Acrothrix, Chordaria, Eudesme, some juvenile 

Laminaria, Pilayella, Scage/ia pylaisaei, Polysiphonia flexicaulis, and P. 

urceolata became fairly abundant at 6-9m (Figure 29, Appendix A). Desmarestia 

-aculeata and D. viridis were present in about the same quantities as at 2-3m. 

Ectocarpus si/icu/osus was the most abundant species at 6-9m during this period 

(30% of total biomass), although it was more patchy than at 2-3m. Eudesme was 

also a significant component of the vegetation, comprising 26% of the total 

biomass. 

By February 1983 most of the species present during the previOus summer 

and autumn were gone. At 2-3m only Desmarestia aculeata, D. viridis, 

Petalonia, and Scytosiphon remained. At 6-9m only a few new recruits of D. 

aculeata were observed, and this portion of the area had reverted to an essentially 

barren condition. 
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2.4.2. Summary of changes in algal species composition in the urchin 

removal areas following urchin removal at 2-3m and 6-0m 

INITIAL STAGES (July-Aug, 1980) 

In the early stages of urchin removal the coralline substratum throughout 

the study area became covered by a dense diatom turf, and a mixture of 

Ectocarpus siliculosus and Pilayella littoralis (Figure 16). At the same time 

there was an increase in survival, and perhaps recruitment, of summer annuals, 

especially Acrothrix novae-angliae, Chordaria flagelliformis, and Eudesme 

virescens (Figure 16b ); these species were also present in low abundance at 2-3m 

on the control transect. Large Desmarestia aculeata and Desmarestia viridis 

were also present. 

AUTUMN OF YEAR! (Sept.-Nov., 1980) 

By late-September/early-October, with the exception of Desmarestia 

aculeata, most of the above taxa had disappeared. Certain Rhodophyta 

increased in abundance (Figure 17); these included species with perennating 

rhizoidal systems (Polysiphonia urceolata and Scagelia pylaisaei), as well as 

Ceramium rubrum, Polysiphonia flexicaulis and Rhodome/a confervoides 

(Figure 26). A few Laminaria digitata plants colonized throughout the 2-9m 

depth range. 

WINTER OF YEAR! (Dec.,1980-Mar., 1981) 

Desmarestia aculeata and D. viridis recruitment occurred throughout the 

2-9m depth range, with greatest abundance in the 6-9m portion of the area. A 

few A/aria sporelings appeared at 2-3m beginning in December, and an extremely 

heavy recruitment occurred during March of 1981 (Figure 18). Only a few, 

scattered A/aria sporelings appeared in the 6-9m range on the experimental 
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transect . Agarum cribrosum and Ptilota serrata were first observed m small 

quantities at 6-9o during the winter-spring of 1981 (Figure 19). 

SPRING OF YEAR! (Apr.-May, 1981) 

By April A/aria biomass was high (Figure 10), and it was the dominant 

species (76% of biomass) at 2-3m (Figure 26). A few large individuals of 

Laminaria digitata, Desmarestia aculeata and Desmarestia viridis were also 

observed, but their distributions were patchy (Figures 11, 12). Monostroma 

grevillei also occurred, but biomass was low (geometric mean 9 g m-2). A few 

small plants were also observed at 6-9m. At 6-9m observations indicated that 

Desmarestia aculeata was the most abundant species, although L. digitata made 

up 49% of biomass in quadrat samples and Desmarestia 41% of biomass. Most of 

the Rhodophyta mentioned on p. 26 were still found in the understorey. Other 

large algae, such as A/aria esculenta, Agarum cribrosum, also co-existed with D. 

aculeata (Figure 20). In addition, a few Saccorhiza dermatodea sporelings 

appeared at both 2-3m and 6-9m during April. 

Sillv!MER, YEAR 1-2 (JUNE-AUG., 1981) 

There was little change in the community composition at 2-3m during this 

time. A/aria was the most abundant species (51% of biomass) (Fig 26). A few 

small Giffordia sp. plants were observed (also at 6-9m), but they were rare. 

Towards the middle of August the distal portion of the A/aria blades became very 

eroded, although no plants that were eroded below the meristematic region were 

observed. 

At 6-9m the percentage of biomass made up by Desmarestia aculeata 

increased considerably (63%) due to the attainment of a large size by the 

sporophytes (Figure 28). Laminaria digitata and Agarum cribrosum were 

abundant (Figure 28), but they were patchily distributed (Figure 12, Appendix A). 

A few summer annuals (Acrothrix novae-angliae, Chordaria flagelliformis, 



- 27 

Dictyos·iphon foeniculaceus, Eudesme vsrescens, and Scytosiphon lomentaria), 

and Callophyl'is cristata appeared in the removal area but did not become very 

abundant. 

AUT~N. YEAR _g_ (Sept.-Oct., 1981) 

At 2-3m Chorda tomentosa, Desmarestia viridis, and Scytosiphon 

/omentaria disappeared. Antithamnione//a f/ocossa, and Ceramium rubrum 

reappeared, and Polysiphonia flexicau/is, P. urceolata, and Rhodome/a 

confervoides showed renewed recruitment and growth. The renewed rhodophyte 

growth and recruitment coincided with the period of maximum erosion of the 

A/aria canopy. 

At 6-9m the annuals Acrothrix novae-angliae, Chorda tomentosa, Eudesme 

virescens, Desmarestia viridis, Pilayella littora/is, and most of the Dictyosiphon 

foeniculaceus also disappeared. Some Dictyosiphon remained until December, 

attached to the barely discernable remnants of a few decaying Chordaria plants. 

During this time there was a reappearence of Antithamnione//a f/occosa and 

Ceramium rubrum, and renewed recruitment and growth of Scagelia pylaisaei, 

Polysiphonia f/exicaulis and Rhodome/a confervoides. Ceramium rubrum and 

P. flexicau/is were most abundant as epiphytes on Desmarestia acu/eata, but 

they also occurred on the substratum. 

WINTER, YEAR ~ (Dec. 1981-March, 1982) 

At 2-3m Scage/ia py/aisaei and Ceramium rubrum attained maximum 

abundance, being found on the substratum under the A/aria and epiphytic on it. 

Polysiphonia urceolata decreased and Pilayella littora/is disappeared in the 

A/aria understorey. Desmarestia aculeata disappeared completely, presumably 

due to storm mortality. A few Desmarestia viridis germlings appeared in the 

area, but did not survive. Neither D. aculeata nor D. viridis were observed at 

2-3m on the experimental transect after this period. The Laminaria population 
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was reduced to a few individuals in the Alaria understorey. A heavy recruitment 

of Alaria germlings occurred . during this period in the few storm generated gaps 

in the canopy, and in the areas opened up due to blade erosion. When combined 

with the onset of rapid growth, this resulted in a rapid closure of the Alaria 

canopy. By the end of this period the few remaining Polysiphonia flexicaulis 

plants were gone, partly as a result of being eroded off with the distal ends of the 

rapidly growing A/aria. 

At 6-9m Scagelia pylaisaei, -Antithamnionella floccosa and Ceramium 

rubrum reached maximum abundance for the year. Rhodomela confervoides 

underwent considerable mortality during this period, but was still quite common 

and the remaining plants were very large {up to 30 em in length). A few Agarum 

cribrosum sporophytes appeared and reached 20-30 em in stature by April. Some 

Alaria recruitment at 6-9m also occurred. Juvenile A/aria were common near 

patches of mature sporophytes, which recruited during the previous winter, but 

were rarely observed more than 1-2m away from these patches. A few decaying 

Chordaria plants persisted throughout this period, but the epiphytic 

Dictyosiphon was not observed. The few Saccorhiza and Scytosiphon plants 

disappeared during this period. 

SPRING, YEAR~ (April-May, 1982) 

At 2-3m on the experimental transect Antithamnionella floccosa, 

Rhodomela confervoides, and the few rema1nmg Saccorhiza sporophytes 

disappeared; Ceramium rubrum decreased to a few very small plants. 

Approximately 10-15 juvenile Chordaria plants recruited to the area. This is the 

first time period during which detailed observations were made on the quicklimed 

transect. The species composition at 2-3m there was similar to that on the 

experimental transect during the spring of the previous year. The A/aria 

sporophytes, which recruited during the winter, had attained a large size and the 

percentage of biomass A/aria comprised was high (Figure 26). Some Desmarestia 

aculeata and D. virid,£s germlings appeared during this time, and had attained a 
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large size by May. Laminaria digitata germlings were present in the A/aria 

understorey, but they did not grow beyond 1-4 em in height. Saccorhiza 

sporelings also recruited to the area and grew rapidly to 30-50 em tall in a few 

patches un boulders that had evidently (as indicated by the position of the 

coralline cover) been overturned during a winter storm. Urospora wormskjoldii 

was very common in patches on bedrock and large boulders. The presence of 

battered Alaria holdfasts indicated that these patches were probably made 

available for colonization by the scouring action of moving boulders. Urospora 

was not present among the dense A/aria throughout most of the quicklimed site 

at 2-3m. A few Giffordia sp. plants were observed. 

At 6-9m on the experimental transect Scagelia pylaisaei, Antithamnionella 

floccosa, Ceramium rubrum, and Rhodomela confervoides became uncommon, as 

they did at 2-3m. The Agarum plants, which recruited to the area during the 

winter, increased to more than 30 em in length. A few Chordaria and Saccorhiza 

plants recruited to the experimental transect, but they did not become very 

abundant. Approximately 8-12 small Scytosiphon plants were observed in a single 

patch. Only two large (> 20 em) Desmarestia viridis plants were present in the 

area, and no juveniles were observed. Desmarestia viridis began to appear on 

the experimental transect at 6-9m in December of 1980. Desmarestia aculeata 

appeared at the same time but was much more abundant than D. viridis. The D. 

viridis individuals from the 1980 colonization disappeared during the autumn of 

1981, but most of the D. aculeata survived the winter. No further colonization by 

either conspecific or D. viridis individuals occurred. Thus D. aculeata comprised 

much of the biomass, and only two D. viridis plants were observed at that depth 

in the experimental area during 1982 (Figure 28). Although it was noted that 

Desmarestia aculeata was the most abundant species, no detailed observations 

were made at 6-9m in the quicklimed area during this period. 

SUMMER, YEARS 2-3 (June-Aug., 1982) 

On the experimental transect in early summer A/aria comprised most of the 
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this period at 2-3m, as the A/aria canopy again became very ~roded, a number of 

species increased in abundance and some became very widespread in the 

understorey and epiphytically on the A/aria. These included Scagelia pylaisaei, 

Ceramium rubrum, Polysiphonia flexicaulis, P. urceolata, Rhodomela 

confervoides, and Derbesia marina. Palmaria palmata was observed for the first 

time at this depth on the quicklimed transect. It was epiphytic on the A/aria 

stipes, but only a few small plants were observed. The 5-6 Chordaria plants 

present attained a large stature. The s-pecies associated with erosion of the A/aria 

canopy on the experimental transect also increased in abundance on the 

quicklimed transect. Very small ( < 5 em) Laminaria digitata sporophytes were 

widespread in the understorey, but showed little or no sign of growth in length 

during this period. A few Desmarestia aculeata and D. viridis were present on 

the quicklimed transect, as they were on the experimental transect during the 

previous year. A small number of Chorda tomentosa plants were observed at the 

beginning of June, but they did not survive into July. Chordaria and Eudesme 

were present, but did not attain a large size or become abundant. Ectocarpus 

spp. (mainly E. siliculosus) became very widespread as epiphytes on A/aria in 

the quicklimed area. 

At 6-gm on both the experimental and quicklimed transects there was an 

mcrease in the abundance of some of the species which increased at 2-3m 

(Scagelia, Ceramium, Polysiphonia flexicaulis, P. urceolata, and Rhodomela). 

At 6-gm, with the exception of P. urceolata these species were most abundant as 

epiphytes on Desmarestia. About 8-12 Phycodrys rubens plants were observed 

on the experimental transect, but none were seen on the quicklimed transect. No 

Ptilota serrata was observed, and Agarum was rare ( < 10 plants in the whole . 
area) on the quicklimed transect. The Desmarestia canopy was much more 

closed than on the experimental transect. Although their distributions were 

ext remely patchy, both Ptilota and Agarum were fairly common on the 

experimental transect. A/aria was also less abundant at 6-gm in the quicklimed 

area. A few Chordaria plants were present on both the experimental and the 
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quicklimed transects, but they were uncommon. Dictyosiphon was observed only 

in the quicklimed area. Although Desmarestia aculeata was by far the most 

abundant species in the quicklimed area (Figure 21}, the quadrat samples did not 

reflect it' (Figs. 11,28). The Desmarestia was heavily overgrown by epiphytic 

Ectocarpus siliculosus (49% of the total biomass). This estimate is probably 

high, but it does illustrate the importance of Ectocarpus at this time. Ectocarpus 

siliculosus was much less abundant in the experimental area. Large individuals 

of Laminaria digitata were fairly common, but extremely patchy on the 

experimental transect (Figure 22). On the quicklimed transect, however, 

Laminaria was present only as a few small ( < 5 em) individuals in the 

Desmarestia understorey. Petalonia and Scytosiphon, both rare or absent on the 

experimental transect, were more common (but still very patchy) on the 

quicklimed transect. Upright forms of these taxa were largely restricted to small 

boulders which had been overturned during rough weather. The crustose forms of 

Petalonia and/or Scytosiphon were extremely abundant in the Desmarestia 

understory of both the experimental and quicklimed transects at 6-9m. 

Table 6 presents the percentage of the total biomass for each species on the 

control, experimental, and quicklimed transects during this period. It is evident 

from this that there were differences among transects in species composition, 

especially at 2-3m (see also page 23, and Figs. 26 to 29}. These data and 

observations indicate that Acrothrix, Chordaria, Desmarestia spp., 

Dictyosiphon, Ectocarpus siliculosus, and Eudesme are important members of a 

summer community of macro-algae which occurs during certain years. When 

urchin grazing was reduced these species were excluded by extensive A/aria in 

shallow water (2-3m) and by Desmarestia aculeata and other canopy-forming 

species in deeper water (6-9m). 

AUTUMN, YEAR Q (Sept.-Oct., 1982) 

Observations during this period were restricted to September and October 

at 2-3m, and to September at 6-9m. Few major changes took place on either the 
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experimental or the quicklimed transect at either of the two depth ranges during 

this reriod. The A/aria canopy was heavily eroded, and those species whi~h 

began to increase in abundance during the late summer continued to do so at this 

time. Derbesia marina in particular became very abundant at 2-3m on the 

experimental transect, and virtually covered the substratum and the A/aria stipes. 

Gloiosiphonia capillaris was observed in the study area for the first time, and 

occurred at 2-3m only on the experimental and the quicklimed transects_ It was 

fairly common, but the plants were sparsely distributed and very patchy. 

WINTER, YEAR ~ (Feb., 1982) 

At 2-3m on the experimental transect A/aria remained the most abundant 

species. It had begun renewed growth and the canopy· was beginning to close. 

There was some recruitment of germlings in the understorey, but they were not 

abundant. The summer-autumn species, Chordaria, Ectocarpus, and 

Gloiosiphonia were gone. Juvenile Laminaria were present in the understorey, 

but no large sporophytes were observed. Pilayella had disappeared, and Scagelia 

pylaisaei, A!7-tithamnionella floccosa, Ceramium, Polysiphonia flexicaulis, P. 

urceolata, and Derbesia, had declined to a few scattered plants. This situation 

was duplicated at 2-3m on the quicklimed transect, with a few exceptions: A few 

large Desmarestia aculeata sporophytes persisted. Desmarestia viridis, which 

had been present during September, was gone and there was no sign of new 

recruitment. Although juvenile Laminaria were more abundant in the A/aria 

understorey on the quicklimed transect, few large sporophytes were present. A 

small amount of Palmaria was observed attached to Alaria in the quicklimed 

area, but not in the experimental area. 

At 6-gm on the experimental transect Desmarestia aculeata remained the 

most abundant species, but the large algae A/aria, Agarum, and Laminaria also 

persisted. Decreases in the abundance of summer-autumn species paralleled those 

at 2-3m. There was some new recruitment of Desmarestia aculeata, but D. 

viridis was not observed. On the quicklimed transect the situation was similar, 
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except that associated large algae were much less abu~dant. No Agarum was 

observed, but a few plants were probably present and overlooked due to the short 

observation period (ca 15 min). Juvenile Laminaria were abundant in the 

Desmarestia understorey, but no large sporophytes were observed. 

OBSERVATIONS MADE AFTER FEBRUARY, 1982 

In an experiment (not reported here because it was a failure) initiated 

during November of 1981 I transplanted six fertile Laminaria longicruris 

sporophytes into the southern side of the quicklikmed site. Within 40 days the 

sporophytes were consumed by a group of urchins which invaded from outside of 

the treated area. One large, fertile sporophyte of L . longicruris was observed at 

9m, and two at 4m during the summer of 1984, suggesting that they appeared 

during the previous winter. It is not known whether these sporophytes arose from 

gametophytes derived from spores released by the transplanted sporophytes, or 

from sporophytes located some distance from the study area. Althouth it is 

possible that gametophytes survived for two years before producing sporophytes, 

the latter case seems more likely, in view of this two year time lag between the 

transplantation, and when the sporophytes appeared. 

Although sampling was completed in 1982, I attempted to maintain the 

manual removal area with a low urchin grazing pressure by smashing urchins at 

irregular intervals until August of 1983. Large numbers of urchins began to 

invade the manual removal area during the autumn of 1983. By April of 1984 

urchins had removed all fleshy macroalgae except for Agarum and Ptilota. As of 

September 1984 these plants showed no detectable sign that they were incurring 

mortality as a result of grazer damage, and most of the dense groups of urchins 

had dispersed from the area. During the autumn of 1985 a few of the Agarum 

plants were still present. This process was repeated on the quicklimed transect, 

but because of the larger size of the quicklimed area it took one more year for 

urchins to completely eliminate all algae except for Agarum and Ptilota. 
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2.6. Analysis or species richness trends, and species importance curves 

Figure 23 shows species richness for 0-2m, based on quadrat samples because 

monthly species counts were not made within this depth range, and for 2-3m and 

6-9m based on monthly species counts. Species richness at 0-2m decreased after 

1980 on both the experimental and control transects. Figure 24 shows the species 

importance curves for the 0-2m biomass data, pooled by year and transect. The 

number of species which made up more than 0.1% of biomass was higher during 

1979 and 1980. The percentage of biomass comprised by A/aria was greater 

during 1981 and 1982. Although species richness and diversity were generally 

greater during 1979 and 1980, there was still a tendency for most of the biomass 

to be made up of one or two species. Chordaria made up the highest percentage 

of biomass during 1979. A mixture of A/aria and Saccorhiza c.omprised the 

largest fraction of biomass during 1980. In 1981 and 1982 more than 90% of the 

biomass was A/aria. 

At 2-3m on the control transect, a peak in species richness occurred during 

the spring and summer months (May-August), and during 1979, 1980, and 1981 a 

sharp decline in the number of species occurred during the late summer and early 

autumn (September-October) (Figure 23). A net increase of two species was noted 

during the autumn (October) of 1981, when Polysiphonia flex£caulis, 

P. urceolata, and Rhodomela confervoides appeared, but Desmarestia viridis 

disappeared. Species richness began to increase in January of 1982, and peaked 

during July. The peak persisted into the early autumn (October), and decreased 

again by February of 1983. 

At 6-9m there were very few species of macro-algae on the control transect 

until the spring and summer of 1982. A peak in species richness lasted at least 

until September of that year, but had decreased to a single species (Desmarestia 

aculeata) by February of 1983. As occurred at 2-3m, there was an increase in 

species richness on the control transect during the summer of 1982. 

At 2-3m the difference between control and experimental transects became 
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apparent during urchin removal in August of 1980. During August of 1980 the 

number of species on the experimental transect increased, while decreasing on the 

control transect. Although there was an increase in species richness on the 

control t'ransect during the summer of 1981, species richness also increased on the 

experimental transect and it had the greater number of species. From August 

1981 to June 1982 there was a steady decline in the number of species present at 

2-3m on the experimental transect. Species richness on the control transect 

increased considerably during the spring of 1982, and from spring to early autumn 

the experimental transect had fewer species than the control transect. During the 

winter of 1982/83 the number of species present on the control transect declined 

considerably, while showing a smaller decrease on the experimental transect. By 

February of 1983 the experimental transect again had more species than the 

control transect. 

Species richness at 2-3m in the quicklimed area followed a similar pattern to 

that on the control transect during April to October of 1982. During February of 

1983 it was greater on the quicklimed transect than on either the experimental or 

the control transect. Species richness during February, 1983 was similar to that 

on the experimental transect in the same month of the previous year. 

At 2-3m, after urchin removal, the number of species decreased as A/aria 

increased in abundance, and the A/aria canopy became closed (Figure 25 ). Light 

readings under the closed canopy ranged from 0-5% of levels at the canopy 

surface, but were usually much less than 1%. Thus 95-100% of the irradiation 

incident at the canopy surface was probably removed by the canopy. The erosion 

of the A/aria blades during the late summer and early autumn released a portion 

of the light resource. During that time an increase in the number of species 

(Scagelia pylaisaei, Ceramium rubrum, Polysiphonia flexicaulis, P. urceolata, 

and (1982 only) Derbesia marina) occurred (Figure 23). During the late winter of 

1982 the number of species declined again as the A/aria canopy became closed, 

reducing the amount of light reaching the understorey. 
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Figure 26 presents the species importance curves for the 2-3m sample sets 

fr0m the experimental and quicklimed transects after urchin removal. Dh-ersity 

was greatest during the rust autumn, two months after urchin removal. Diversity 

decreased with time following urchin removal, and dominance by A/aria 

increased. 

Figure 27 shows the species importance curves for the control transect at 

2-3m, and the experimental transect prior to urchin removal. It is evident that 

although biomass was greater on the experimental transect at 2-3m (Figure 8), in 

general, diversity was greater on the control transect than on the A/aria 

dominated experimental and quicklimed transects. Exceptions to this were those 

periods during which essentially no macro-algae were present on the control 

transect (autumn, 1979; autumn, 1980; and spring, 1982). 

At 6-9m the difference between the control and experimental transects also 

became evident in August, during urchin removal. The experimental transect 

continued to have the greater number of species throughout the study, although 

the difference was less during the increase in macro-algal abundance which 

occurred during the summer of 1982. The quicklimed transect also had a greater 

number of species than the control transect. 

Figure 28 shows the species importance curves for the 6-9m sample sets from 

the experimental and quicklimed transects after urchin removal. The tendency 

towards strong domination by a single species, although evident, was less 

pronounced than at 2-3m, or 0-2m in years {1981,1982) in which no ice scouring 

occurred. Most biomass, after the spring of 1981, was Desmarestia, but there 

were more species of intermediate relative abundance than there were at 

shallower depths following urchin removal. Light readings under the Desmarestia 

canopy ranged from 5-80% of levels at the canopy surface, and were usually more 

than 10%. Evidently more light penetrated to the Desmarestia understorey than 

did the A/aria understorey. At 6-9m diversity was greater on the experimental 

transect than on the quicklimed transect. Both biomass and diversity (Figure 29) 

were generally low under control conditions, 
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The results of the survey, which was conducted to determine if the increase 

in macroalgal abundance occurred at other localities in Conception Bay, are 

presented in Table 7 . A greater than 50% cover of fleshy macro-algae was 

present At 47% (7) of the sites. The species present at these sites were the same 

as those present in the control area (see page 25). At those sites with high fleshy 

algal cover the bottom invariably had abundant large (>50 em. across) boulders, 

and/or abundant crevices. Fleshy macro-algae were largely absent from areas 

with only coralline encrusted, relatively smooth bedrock (i.e. lacking boulders or 

crevices). 

2.6. The number of species and biomass of annual and ephemeral, 

versus perennial algae 

There was little pattern in the relative abundance of annual and ephemeral 

versus perennial taxa under the different conditions when the species with mean 

biomass values less than .05 g quadrat-I (the accuracy of the weighing balance) 

were included in the analysis (Figure 30). When these species were excluded a 

pattern emerged (Figure 31 ). Under the most uncertain conditions for 

recruitment and survival (0-2m with ice-scour; 2-3m and 6-9m with urchin 

grazing) the number of annual and ephemeral taxa exceeds the number of 

perennial taxa. The reverse appears to be true under the more favourable 

conditions for recruitment and survival (0-2m without ice-scour; 2-::>m and 6-9m 

after urchin removal). Thus relative to the perennials, a larger fraction of annual 

and ephemeral taxa become rare under the more uncertain conditions of ice-scour 

and urchin grazing. 

A greater biomass of annual taxa occurred under unstable conditions (0-2m, 

ice-scoured; both 2-3m and 6-9m under control conditions, and two mo after 

urchin removal), and greater biomass of perennial taxa occurred under more 

stable conditions (0-2m, no ice-scouring; and both 2-3m and 6-9m on the removal 

transects more than 9 mo. after urchin removal) (Figure 32). 
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2.7. EtTect of ice-scouring on species composition at 0-2m 

·, 

Table 8 presents biomass data for each species at 0-2m averaged by year. 

Ice-scouring during April of 1Q7Q removed the dominant A/aria, and Chordaria 

became the most abundant species in scoured patches. Chordaria biomass was 

highest during the summer of 1Q7Q. Chordaria became senescent during the 

autumn of 1Q7Q, and the remaining individuals were removed by further Ice­

scouring during February of 1Q80. Recruitment by Alaria occurred mainly during 

l_ate February and early March. Saccorhiza appeared during late March, and its 

biomass was highest during 1Q80. Saccorhiza became senescent by the following 

February (1981), when further Alaria recruitment occurred. During 1Q81 95% of 

the biomass was Alaria. In the absence of ice-scour during 1981 and 1982 A/aria 

remained dominant. Other species had higher biomass during years in which ice­

scour occurred, but were evidently less sensitive to the timing of the scour 

episodes than were Alaria, Chordaria and Saccorhiza. This group of species 

includes Chorda tomentosa, Ectocarpus spp., Petalonia fascia, Pilayella 

littoralis, Punctaria plantaginea, Scytosiphon lomentaria, Devaleraea 

ramentacea, Spongomorpha arcta, and S. aeruginosa. Laminaria d_igitata was 

present, but patchy throughout the study. Polysiphonia urceolata was present 

throughout the study. Other species which were present in low abundance are 

presented in Table 8. 

3. Urchin biomass, population structure, and the effectiveness of 

urchin removal 

3.1. Urchin biomass on the control transect 

Urchin biomass was greater at 2-3m than at 6-9m, and lower in samples 

from both the shallow (0-2m) macro-algal zone (Figure 33, Table Q), and the 

Agarum/Ptilota zone (Keats et al. 1982). Patches of urchins were also frequently 

observed along the fringe of the shallow algae zone (see Figure 2). These patches 

were sampled during the summer of 1979, and contained a geometric mean urchin 

biomass of 3280 g m-2 (log10 mean=3.515, s.e.=0.04, N=10). Such patches 
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(Figure 2) which were observed throughout the year, formed during calm periods 

and dispersed during rough seas. When sea conditions remained calm for long 

periods they created large bare patches within the shallow macro-algal zone, 

and/ or decreased considerably the width of the zone within which fleshy macro­

algae were abundant (see Himmelman 1Q6Q, 1Q80). 

3.2. The percentage of the urchin biomass which was removed 

Estimates of the overall effectiveness of urchin removal and exclusion (see 

Materials and Methods) are presented in Table 10. At 0-2m, where biomass 

was low, it was estimated that 92% of the urchin biomass was removed. 

Confidence limits were very large, however, ranging from a 52% increase to a 

9Q.7% decrease i~ biomass. It is therefore unlikely that urchin removal had a 

significant effect on urchin biomass in the shallow macro-algal zone, where urchin 

biomass was low and the area difficult to access (due to wave surge). At 2-3m, 

where urchin biomass was greatest it was estimated that Q3% of urchin biomass 

was removed. The 95% confidence limits ranged from 82 to 97%. At 6-9m, 

where biomass was intermediate between that of the 0-2m and the 2-~m samples, 

it was estimated that 88% of biomass was removed; confidence limits ranged from 

66 to 96%. Table 10 also includes a coefficient of variation ( =s/X x 100%), 

the magnitude of which was greater under the treated condition than under the 

untreated condition for each depth range. This indicates that the urchin biomass 

was more patchy after removal than under control conditions at the same depth. 

The percentage urchin biomass removed from the quicklimed transect was 

94% (74% < 94% < 99%) at 2-3m (Table 11). At 6-9m the estimated 

percentage removal was 92%, but the 95% confidence limits were large (-60% < 

92% <99.9%). The large confidence limits were probably the result of an 

increased patchiness due to the uneven application of the quicklime, and the small 

sample size (N=5). Urchin biomass data for the quicklimed transect are 

presented with the data from the other sites in Table 9, and Figure 33. 
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4. Urchin population structure 

Urchin size frequency distributions from 0-2m, 2-3m, 6-9m, and 12-18m are 

presented in Figures 34, 35, 36, and 37 respectively. The smaller sizes 

(0-2 and 2.1-4 mm) were rare in the 0-2m and 12-18m samples. In general 

abundance of the smaller sizes was greater at 2-3m than at '0-2m , and peak 

abundance was at 6-9m. 

No time related trends are obvious in the size frequency data from 0-2m 

(Figure 34). On the control transect at 2-3m there was a mode at 3 mm during 

the autumn of 1979 (Figure 35). During the spring of 1980 peak abundance was 

at 5 mm, and at 7 mm during the spring of 1981. During the summer of 1981 the 

mode was still at 7 mm, but absolute abundance had decreased. Abundance of 

the 11 mm size class at that time was greater than it had been previously. During 

the spring of 1982 the mode was at 5 mm, and abundance of the 7-15 mm size 

classes had decreased. During the summer of 1982 the mode was at 9 mm. On 

the experimental transect at 2-3m a mode at 3 mm disappeared after removal of 

larger urchins. This is probably a result of increased growth in response to the 

increase in macroalgal biomass, but any growth which took place was obscured 

due to the removal of urchins of more than ca 15 mm test diameter. 

At 6-9m on the control transect the 1 mm size group was abundant during 

1979-80, declined to very low levels by the spring of 1981, and remained low 

during 1982 (Figure 36}. This decrease was followed by a decline 1n the 

abundance of the 3 mm size class, to near zero by the summer of 1982. The 5 

mm size class had also decreased considerably by the summer of 1982. These data 

indicate that recruitment in 1979 and 1980 contributed to a high density of <2 

mm urchins. An accumulation of those recruits in the 3 mm mode would account 

for an increasing trend evident in that mode until autumn 1980. Very low 

recruitment during subsequent years may have led to a decline in the abundance 

of the 1 mm size class, probably due to a combination of mortality and growth 

into the 3 mm size class. A decrease in the 3 mm size class showed a lag behind a 

decline in the 1 mm size class. There was very little change in the abundance of 
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the 5 m:m size class until the summer of 1982, by which time it had decreased 

considerably. No modes progressing to the right were observed, indicating either 

very slow growth, high mortality, or both. 

A similar trend was evident on the experimental transect (Figure 36). The 

peak remained at 3 mm during the summer of 1982, however, which may indicate 

reduced mortality of small urchins under the algal canopy. The data from the 

spring of 1982 indicated a tendency for increased growth of smaller urchins after 

removal of the larger individuals, but that was obscured at other times by the 

frequent removal of individuals larger than 15 mm test diameter. 

The manual removal technique was inefficient with smaller ( < 15 mm) 

urchins. This contrasted with the quicklime technique which, while patchy in 

effect, yielded less size-selective mortality (Figs. 35, 36). 

5. Biomass and density of other members of the herbivore guild 

The total biomass of the herbivores other than urchins, in the study area 

was substantial (Table 9). It was generally greatest at 6-9m, where it ranged from 

17-30 g m-2 (geometric means) in the control area, and from 30-54 g m-2 in the 

experimental area after urchin removal. In addition to Strongylocentrotus 

droebachiensis, the herbivore guild m the study area consisted of the 

polyplacophorans Tonicella rubra, T. marmorea and Ischnochiton alba, and the 

gastropods Puncturella noachina, Acmaea testudinalis, Margarites helicinus, 

Lacuna vincta, and Skeneopsis planorbis. Of these Puncturella and Skeneopsis 

were encountered only as solitary individuals in a small number of samples, and 

will not be considered further here. Some herbivorous amphipods may have been 

present in the study area, but were not quantified. 

Tonicella rubra was the herbivore with the second greatest biomass in the 

study area (Table 12). Both biomass and density (Table 12) were negligible at 

0-2m. At 2-3m on the control transect, biomass and density were greater than at 

0-2m. Tonicella rubra was more abundant on the control than on the 
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experimental transect at this depth throughout the study. On the quicklimed 

transect both densit] and biomass were intermediate between biomass and density 

on the other two transects. Biomass and density were greater at 6-Qm, where the 

species made up from 1% to 24% of the total herbivore biomass under control 

conditions. At this depth geometric mean biomass ranged from 8 to 32 g m-2, and 

geometric mean density from 179 to 804 m-2. There were no consistent between­

transect or among sample period differences in either the abundance or the 

biomass of T. rubra at 6-9m. Biomass and d~nsity of T. rubra m the 

Agarumj Ptilota zone were similar to those at 6-9m. 

Tonicella marmorea density in the study area was lower than that of 

T. rubra (Table 13). Tonicella marmorea was rarely present in samples taken 

shallower than the 6-9m depth range. Biomass and density reached maximum 

values from the mid barrens (6-9m) to the Agarum/ Ptilota z~:me (12-18m). There 

was an increase in density and biomass on the control transect between the 

autumn of 1980 and the spring of 1981. The species was less abundant on the 

quicklimed transect than on the control or experimental transects. There were no 

other consistent ~ among transect or sample period differences for this species. 

Neither T. rubra nor T. marmorea showed any detectable change in density or 

biomass in the removal areas following treatment (Tables 12, 13). 

Ischnochiton alba was present in the study area only at 6-9m, but density 

and biomass were low, and it was very patchily distributed (Table 14). It is 

possible that /. alba was more abundant than the samples indicated, since it tends 

to be found mainly under large rocks, coming to the surface only at night. 

Acmaea testudinalis was very patchily distributed, both spatially and 

temporally (Table 15). No consistent between transect differences were evident. 

The species comprised a small fraction of the total overall herbivore biomass 

under control conditions. The estimated Acmaea density was probably lower 

than its actual density, because large numbers of very small ( < 1-2 mm in length) 

Acmaea were often observed in quadrats, but were crushed because of their 
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delicate shells and the tenacity with which they cling to the substratum. It is 

evident, however> from Table 15 that Acmaea was most abundant at 6-Qm, and 

rare in the Agarum/ Ptilota zone. 

Lacuna vincta abundance was greatest within the shallow portion of the 

study area during the autumn, particularly in the presence of macroalgae (Table 

16). Although density _ was high at certain times, biomass was low under control 

conditions and was never more than 0.4 percent of the total herbivore biomass. 

On the experimental transect biomass, during the autumn-spring periods, was 

higher than on the control transect, and geometric means ranged up to 20 g m-2. 

Peak settlement occurred during late August through September, with none 

during the winter to early summer period. Table 17 presents an estimate of 

percentage survival of Lacuna from the autumn of 1980 settlement on the control 

and experimental transects. Survival until spring was higher in the presence of 

macroalgae, and highest at 6-Qm. Despite this trend only a small fraction of the 

recruited Lacuna survived into the summer of the year after they settled. 

Damage to some juvenile A/aria plants by Lacuna was observed in the study area 

(Figure 38), but no extensive grazing of algae by this gastropod was observed. 

The pattern of distribution of Margarites helicinus within the study areas 

was similar to that of Lacuna, although abundance was lower (Table 18). 

Recruitment was observed at the same time of year, and abundance was highest 

in shallow water. Biomass of the species was low, and never amounted to more 

than 1.4 percent of the total herbivore biomass under control conditions. Table 

19 presents an estimate of percentage survival of Margarites from the recruitment 

which occurred during the autumn of 1980. Although there were no significant 

differences in recruitment between transects, survival until spring was higher in 

the presence of macroalgae. Like Lacuna, only a small fraction of the recruited 

Margarites survived into the summer after they settled. 
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DISCUSSION 

1. Summary of major trends 

Interactions among urchin grazing, wave action, and ice-scour are important 

in structuring Newfoundland open Atlantic coast subtidal algal communities. In 

shallow water there is a zone of high macroalgal biomass, the lower limit of which 

varies with season and exposure to wave action (Himmelman 1985). Macro-algae 

are abundant in that zone because the dominant herbivore , Strongylocentrotus 

droebachiensis, is prevented from foraging effectively due to wave action. Within 

the shallow zone the patterns of biomass distribution among algal species vary 

considerably in relation to the presence or absence, and timing of ice-scour. In 

the absence of ice-scour, on relatively smooth bedrock where wave action is not 

extreme (eg. the study area), biomass in the shallow algal zone is dominated by 

the perennial kelp A/aria esculenta. Patchy disturbance by 1ce increased 

diversity by permitting colonization of the patches by otherwise rare or absent 

algae. Many species of algae show seasonal recruitment patterns, so the month of 

ice scour is an important determinant of species composition. 

Within the urchin dominated zone a rich community of largely annual and 

ephemeral fleshy macro-algae develops in certain years, but in other years the 

zone is essentially bare of fleshy algae. The data available do not allow the 

determination of the causes of this year-to-year variation. Removal of urchins 

from this zone leads to a downward extension , into the upper part of the urchin 

dominated zone, of the A/aria community typical of the upper subtidal during 

years in which no ice-scour occurs. A reduction in the ability of urchins to forage, 

by an increase in wave action, may also lead to downward extension of the Alaria 

zone in some years (Himmelman 1985). A reduction in urchin grazing at 
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intermediate depths (6-9m) leads to the development of a flora dominated by the 

perennial, finely-branched al~a Desmarestia aculeata. Both of these communities 

prevent the development of summer annuals. 

The A/aria and Desmarestia communities occurred on both the manual 

removal and quicklimed transects, despite the difference in the time of urchin 

removal, suggesting that these associations might develop on a larger scale if a 

mass urchin mortality were to occur. 

2. Effects of urchin removal on canopy species in Conception 

Bay 

In eastern Newfoundland abundant A/aria is restricted to the shallow zone 

by urchin grazing. Domination of this shallow subtidal zone by A/aria in 

moderately to fully expose~ areas is widespread in eastern Newfoundland 

(Himmelman 1980, Keats pers. obs. ), at least in years between ice-scour episodes. 

A/aria is abundant in the immediate subtidal throughout much of its range in the 

north Atlantic Ocean. An A/aria zone is frequently found at sites with similar 

exposure in Nova Scotia (Mann 1972), Labrador (Wilce - 1959, pers. obs. 

1979-1984), Greenland (Lund 1959), Iceland (Munda 1975, 1977, 1979), the Faroes 

(Price and Farnham 1982), Norway ( Jaasund 1965), and parts of the British Isles 

(Norton et a/. 1977). 

By the first spring after urchin removal A/aria formed most of the biomass 

in the upper portion of the removal areas. A number of features of the biology of 

A/aria may be important in allowing the species to develop and maintain 

dominance7 . 

1. A/aria showed nearly synchronous recruitment. Although a few 

sporelings appeared throughout the winter-spring period, most 

7 A dominant, as use here, refers to a species which exerts a strong influence on community 
structure. Thus the word applies to Alaria because it excludes most species from the community 
because of its closed canopy. 



appeared during a two week period in February-March. A/aria 

recruitment is probably controlled partly by temperature, and in 

colder areas, such as Labrador, recruitment occurs over a more 

extended period (Himmelman et al. 1Q83a, R. Hooper,8 pers. com.). 

2. There was very high recruitment per unit area. A large number of 

sporelings appeared and completely carpeted the substratum. Such 

high recruitment ensures that there is very little spaceflight for 

competitors during the critical recruitment period. 

3. Ala ria can grow in a ve:r;-y dense stand with a closed-canopy, thereby 

limiting the amount of light reaching the substratum to < 1% of 

those at the canopy surface. This in turn probably limits the growth 

of potential competitors. A natural test of this hypothesis was 

provided by 1) ice-scour, and 2) the opening of the canopy by blade 

eroswn. The abundance of other species increased in both of these 

instances. 

4. A/aria grows rapidly. Within 4-5 wks of the appearance of A/aria 

germlings, many of the plants were more than 50 em in length, and 

the canopy was essentially closed. 

5. Most spores released by A/aria sporophytes probably settle and 
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germinate into gametophytes within a short distance from the parent 

plant. Sundene (1961) transplanted mature A/aria to an area where it 

was not naturally present at Dr¢bak, Norway. Abundant juvenile 

sporophytes later appeared along a 10m stretch of shore, suggesting 

that the dispersal of large numbers of spores is limited to a scale of 

IO's of m. A single A/aria sporophyte was observed on the island of 

Surtsey in 1965, one year after the lava solidified. Once the • seed 

stock • was established, the population expanded rapidly, and by 1968 

A/aria was the dominant species in a belt extending around the whole 

of the island (Jillson 1970). If most spores settle, and germinate into 

gametophytes which successfully reproduce near the parent 

population, this would reduce colonization into newly opened, large 

areas, but would result in recolonization and rapid reclosure of the 

canopy in openings near the parent population. 

6. Its structural tissue (stiff but flexible stipe and midrib) allows A/aria 

to grow up off the substratum, above the level of lower stature species. 

7. Although A/aria sporophytes are perennial, they need not survive for 

more than one year to reproduce successfully. The plants which arose 

in the first year after urchin removal pro-duced sporophylls bearing 

reproductive son during the following autumn-winter. Being 

perennial, however, sporophytes can persist for several years in the 

absence of disturbance, and monopolize the light resource (except in 
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late summer and autumn when the canopy becomes more open as a 

result of blade erosion). 

Limited dispersal may also have been responsible for the initial lower limit 

of extensive A/aria following urchin removal-in Conception -Bay. On a local scale 

at steeply sloping sites, dispersal has two components: horizontal and vertical. 

The results of this study, and the study by Himmelman et al. (1Q83a) suggest that 

A/aria dispersal is better horizontaly than vertically. In the area studied by 

Himmelman et al. (1983a) the nearest A/aria was a large population 90m away 

on a wharf. A/aria colonized the shallow part, but not the deeper part of the 

removal plot. A limited horizontal dispersal on this scale (lO's of m) could not 

account for this pattern, nor could a limited horizontal distance dispersal of spores 

account for the restriction of heavy A/aria recruitment to shallow water in 

Conception Bay. I observed that abundant A/aria colonized only the upper lm of 

two ropes which marked the present study site. A/aria colonized the 6-9m depth 

range in the first year after urchin removal, but sporophytes were scattered, and 

the species made up only a small fraction of algal biomass. During the second 

year only a few sporelings were observed at 6-9m, primarily on the substratum 

near the base of the parent sporophytes which arose and produced mature 

sporophylls during the prevwus year. Some of these new recruits survived to 

maturity, resulting in a s~aall increase in the size of the A/aria patch. By this 

time, however, the Desmarestia aculeata canopy was quite dense, and I speculate 

that it probably acted along with the limited depth dispersal to limit the further 

expansion of A/aria by limiting available light and/or space. 

Desmarestia-dominated algal beds would probably develop m the mid­

barrens in eastern Newfoundland, at least in the short-term (2-3y), if grazing 

pressure were reduced, for example by an urchin disease (Scheibling and 

Stevenson 1984) such as occurred in Nova Scotia. Desmarestia aculeata made up 

most of the algal biomass in the 6-9m depth range on both of the urchin-removal 

transects. Desmarestia-dominated beds also exist at several sites in Conception 

Bay, where my observations of very few urchins suggest that urchin grazing 
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pressure was reduced in comparison with grazing pressure on the control transect. 

Those Desmarestia beds have been stable for at least 8 years (pers. obs. ). 

The upper limit of abundant Desmarestia in the urchin removal areas was 

probably set by the closure of the Ala ria canopy. The presence of Desmarestia 

aculeata at 2-3m during the first year after urchin removal, and on the control 

transect throughout the study shows that _extensive Desmarestia was not 

restricted to the lower portion of the removal area by physical factors. Similarly, 

Santelices and Ojeda (1984) have shown that competition from Lessonia vadosa 

determined the upper limit of Macrocystis pyrifera at a site in southern Chile. 

The presence of Agarum at 6-9m on the experimental transect and within 

the same depth range in the area studied by Himmelman et al. (1983), but in 

neither control area within this depth range, is somewhat suprising given its low 

dietary preference [possibly due to its high phenolic content (Steinberg 1980)] by 

urchins (Vadas 1977, Himmelman 1980, Larson et al. 1980, Keats et al. 1984). 

Why was Agarum not present in this depth range prior to urchin removal? 

Although this is speculation, the only explanation that fits what is known is that 

in barren areas, where urchin biomass is high, urchins graze the microscopic 

stages of Agarum along with the microscopic stages of other algae. In this case 

the Agarum would probably not be detected by the urchins, because of its small 

size and combination with other species. When the Agarum sporophytes reach a 

certain size, however, an urchin must graze entirely on Agarum with each feeding 

action if it is to include Agarum in its diet. Thus Agarum may have been 

excluded from the control area by indiscriminant grazing of its microscopic stages. 

Within the distinct Agarum zone urchin biomass is lower, but large urchins are 

still abundant (Keats et al. 1982). It is likely that frequent escapes of Agarum to 

a size refuge from grazing may account for the high abundance of Agarum within 

that zone. The higher densities of urchins at depths corresponding to the barren 

zone presumably graze all of the young stages, such that escapes to a size refuge 

are rare. In support of this adult Agarum are occasionally observed in the barren 

zone, and do not appear to incur much damage from urchin grazing. When 
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urchins were allowed access to the experimental transects they removed all fieshy 

macro- :~.lgae except for Agarum and Ptilota. Some of the Agarum plants survive~ 

for two years, despite very high densities of large urchins. Similar comments may 

apply to' Ptilota serrata, which also is avoided by urchins (Himmelman 1Q80; 

Keats et al. 1Q84). Ptilota w~ present on the experimental, but not the control 

transect. Some Ptilota survived for at least one year after urchins had removed 

all other algae except for Agarum. It was very abundant in the zone {12-18m) 

where Agarum biomass was greatest. 

3. Effects of urchin removal on species richness and diversity in 

Conception Bay 

Following urchin removal at 2-3m there W;lS an initial increase in the 

number of species. As the A/aria canopy became closed, however, the number of 

species (especially those whieh comprised more than one percent of biomass) 

declined, and diversity (H•) decreased. Other large perennial algae (Laminaria 

digitata and Desmarestia aculeata), which were present during the first year, 

were replaced by A/aria by the second year after urchin removal. The A/aria 

canopy eliminated almost all light from the understorey, thus preventing the · 

growth of competitors. This is likely the mechanism whereby species diversity 

was reduced during the later stages after urchin removal. 

Seasonal changes in species richness and diversity were superimposed on this 

overall trend at 2-3m. This seasonal change in species richness was related to the 

erosion of the A/aria blades. During the late winter and early summer periods, 

the A/aria canopy reduced the light in the understorey to near zero. Species 

richness was low at that time. Following a reduction in the A/aria canopy by 

blade erosion during late summer, species richness increased in the urchin-removal 

areas. This blade erosion, exhibited by most Laminariales, may in this case be a 

response to high water temperature (Munda and Lfining 1977) combined with 

decreased nutrient levels (Buggeln 197 4), which reduce growth and increase tissue 

destruction. Similarly, an increase in the abundance of understorey species 

associated with the seasonal degeneration of kelps (Pterygophora californica, 
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Laminaria setchellii, and Dictyoneurum californicum) has also been recorded in 

California (Dayton et al. 1Q84). Renewed growth of A/aria in the winte~, 

correlated with decreasing water temperature and perhaps increasing nutrients 

(Buggeln~ 1Q74), again reduced the light reaching the understorey. This reduction 

in light in turn resulted in a decrease-in species richness. 

In contrast _with the situation at 2-3m, and the general trend in urchin 

removal studies (see below), at 6-Qm species richness and diversity increased and 

remained high after urchin removal. The Desmarestia canopy was never as 

completely closed as the A/aria canopy, and more light could penetrate to the 

understorey. The availability of light may have permitted several canopy forming 

(eg. A/aria, Agarum and Laminaria) and understorey species (eg. Ceramium 

rubrum, Polysiphonia urceolata, Rhodomela confervoides, and Scagelia 

pylaisaei) to co-exist with Desmarestia. In addition, a number of species ( eg. 

Ceramium, Polysiphonia flexicaulis and Ectocarpus) grew as epiphytes on the 

profusely branched Desmarest{a, and these contributed further to a higher species 

diversity at 6-Qmthan at 2-3m. 

Intermediate levels of grazing would be expected to increase diversity (Paine 

and Vadas }g6g; Lubchenco and Gaines }g81). The presence of the remaining 

urchins and the guild of molluscan herbivores, combined with a greater ease of 

foraging due to less wave surge, may have also contributed to the increased 

diversity at 6-gm after urchin removal. 

4. Parallels with other studies of species richness and diversity 

after sea. urchin removal -

The pattern, observed during the present study, of an initial increase in 

species richness and diversity, followed by a decrease as one or a few species come 

to comprise most of the biomass is commonly observed when urchins are removed 

from barren areas. For example, Paine and Vadas (lg6g) removed urchins from 

intertidal and subtidal sites at Friday Harbor, Washington. There was an initial 

increase in diversity, but subsequently the intertidal sites became dominated by 
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Hedophyllum sessile, and the subtidal sites by Laminaria complanata and/or 

Laminaria groenlandica. Spec~es richness in the intertidal remained high because 

of understorey species, but an extensive understorey did not develop in the 

subtidal.' Paine and Vadas attributed this in part to the closu!e of a dense canopy 

in the subtidal. Breen and Mann (1976) eliminated urchins from a barren area 

within a kelp bed in St. Margarets Bay, Nova Scotia. Species richness was 

greatest during the first year after urchin removal, and then decreased as 

Laminaria longicruris came to dominate the removal plot. Foreman (1977) 

observed algal succession following the destruction of an algal community by S. 

droebachiensis in the Strait of Georgia, British Columbia. Species richness 

peaked 3-4 years after urchins were removed, and decreased to 26% of the 

maximum by year six. To simulate sea otter predation Duggins (1980) removed 

urchins from subtidal over-grazed areas in Alaska. Diversity of kelps increased in 

the first year, but declined to intermediate levels in the second year as dominance 

by Laminaria groenlandica increased. Pearse and Hines (1979) studied 

community development following natural mortality of urchins in central 

California. Within one year the area was dominated by a near monoculture of 

Macrocystis pyrifera. 

Other studies indicate that species richness and diversity are reduced once a 

dense canopy is established because canopy-forming species can limit the amount 

of light reaching the understorey. For example, in the study by Pearse and Hines 

(1979 - cited above) the Macrocystis -canopy was experimentally removed. This 

was followed by colonization by several species, thus demonstrating that its dense 

canopy reduced light levels in the understorey below those necessary for the 

growth and survival of other macro-algae. Harkin (1981), removed the distal 

portion of Laminaria hyperborea blades and obtained a significant increase in 

epiphyte biomass. Further evidence of the importance of light limitation by 

canopy-forming species was provided by Reed and Foster (1984), who 

demonstrated that light levels below a Macrocystis pyrifera canopy, or a surface 

Macrocystis canopy with a subsurface Pterygophora californica canopy are 

usually less than 1% of the light incident at the canopy surface. Removal of the 
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canopy resulted in a heavy recruitment by Macrocystis, Pterygophora, and 

Desma ... estia ligulata, none of which recruited to the intact-canopy control sites. 

5. Differences from the results of other urchin removal studies in 

the Northwest Atlantic 

There have been differences among areas 1n the northwest Atlantic in the 

response of the algal community to urchin removal from barren areas. A major 

difference concerns the role of Laminaria longicruris in the communities which 

developed in response to reduced grazing pressure. In Nova Scotia L. longicruris 

colonized rapidly, and became the dominant species within a year (Breen and 

Mann 1976, Chapman 1981, Miller 1975, pers. obs. 1984). In the present study 

area the species did not appear in 2-1/2 years. The three L. longicruris 

sporophytes which appeared at the quicklimed site in Conception Bay may have 

resulted from spores derived from transplanted material, although it seems more 

likely that they arose from isolated spores transported from some distance. On 

the north shore of the lower St. Lawrence Estuary a few L. longicruris 

sporophytes appeared during the first 1-3 months after urchin removal 

(Himmelman et al. 1983a). Those plants attained a large size, but there was little 

or no further recruitment. 

This difference is probably related to the availability of a spore sou:-ce 

adjacent to the removal sites. In Nova Scotia L. longicruris was common in a 

shallow water refuge from urchin grazing (Chapman 1981, pers. obs. 1980)., so a 

spore source was available. The nearest L. longicruris population to the present 

study areas was at 1-3m depth on a wharf at Portugal Cove, 4.5 km away. The 

two species which became dominant at the experimental sites (Desmarestia 

aculeata and A/aria esculenta) were, however, present in the study area prior to 

the removal of urchins. A source of their spores was therefore present in the 

immediate area. Laminaria longicruris was absent on natural substrata in the 

area studied by Himmelman et al. (1983a). At that site it lacked a shallow water 

refuge from grazing because urchins graze right up into the intertidal. The 

species was, however, present on a wharf, 90m away from the removal plot. I 
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would speculate t.hat were it not for the population of L. longicruris on the wharf, 

the species would not have occurred in the removal area. In any case, L . 

longicruris was absent from the subtidal fringe, and it was an unimportant 

component of the community which developed after urchin removal. Once the 

dense A/aria canopy was established, it presumably reduced further recruitment 

of L. longicruris into the area by eliminating light from the understorey 

(Himelman et al. 1Q83a). 

The distance over which Laminaria longicruris is capable of dispersal may 

be small. If so this would explain the rapidity of L. longicruris colonization in 

Nova Scotia, its absence for 1-1/2 years in the Conception Bay urchin removal 

areas, and its poor initial recruitment at the removal site in the lower St. 

Lawrence estuary. The results of Chapman's (1Q81) study indirectly support the 

idea that L. longicruris has a limited potential for dispersal. He removed urchins 

during February of 1Q78 from four 10 m 2 quadrats located adjacent to, and 20, 

30, and 40 m distant from an intertidal kelp fringe in St. Margarets Bay, Nova 

Scotia. A/aria, L. digitata and L. longicruris were common in the intertidal 

fringe, and colonized the removal areas. Colonization by these species began 

within two weeks in the plot adjacent to the fringe, but one, two, and three 

months respectively were required for colonization of the plots located 20, 30, and 

40m distant. The depth range over which this experiment was conducted was not 

provided by Chapman ( 1981 ). 

No data are available in direct support of the hypothesis of limited disperal 

for L. longicruris, but the Pacific species Macrocystis pyrifera has been studied 

from this point of view. Macrocystis water column spore concentrations are 

reduced considerably with distance from the parent plants, and spore 

concentrations, sufficient to establish enough gametophytes for a heavy 

recruitment of new saprophytes, occur at a maximum of 40m from a dense adult 

population (Anderson and North 1966). In California it was necessary to 

transplant either mature plants, germlings or gametophytes in order to establish 

Macrocystis in areas remote from existing Macrocystis beds (P.K. Dayton, pers. 
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com.9 ). Other species, once established, inhibited the recruitment of Macrocyctis 

sporophytes (Dayton and Tegner 1984b, Dayton et a/. 1984). 

Laminaria longicruris was common in the shallow refuge from urchin 

grazing in ~ova Scotia, so why is it absent from this refuge in eastern 

Newfoundland? It is present on a wharf at Portugal Cove and similar scattered 

locations throughout eastern Newfoundland. It occurs in Long Island Sound to 

the south, and into the Arctic (Taylor 1957), so we can therefore rule out 

temperature as a factor limiting its occurrence. 

I propose a hypothesis to explain the absence of L. longicruris from the 

shallow refuge in eastern Newfoundland: The absence of L. longicruris is related 

to an interaction of the history or sea urchin grazing (long-term), with the limited 

dispersal ability of the species, its poor ability to compete with Ala ria (and 

Laminaria digitata) in the shallow surf zone, and the periodic occurrence of 

severe ice-scour. The scenario which I propose is as follows: Long term grazing by 

urchins prevents L. longicruris populations from occurring below the shallow 

water refuge. It cannot colonize the shallow zone because of periodic heavy ice­

scour, which eliminates all algae within that zone. Such heavy ice-scour did not 

occur during the preserrt study, but it has been observed in the past. It results 

from a build up of hard, thick multi-year ice, which can scour to a depth of 

several meters (Hooper 1980). In the face of less severe ice-scour L. longicruris is 

probably unable to compete with A/aria (and possibly L. digitata at more exposed 

sites), even if spores did settle within the shallow fringe (cf. Himmelman et al. 

(1983a) for inability of L. longicruris to compete with an established A/aria 

canopy]. Thus L. longicruris is limited to a few widely scattered localities, and 

cannot disperse over long distances, even if conditions became favourable for 

colonization. In barren areas on the South coast of Newfoundland, where ice­

scour rarely occurs, and in the Gulf of St. Lawrence (between Bonne Bay and the 

Bay of Islands), where scour is only by relatively thin, locally generated, first year 

9Scripps lost. Oceanogr., La Jolla, California, USA 



ice, L. longicrur~s is common in the shallow water refuge from urchin grazing. 

For these reasons it seems likely that a L. longicruris dominated commuLlty 

would not develop in eastern Newfoundland, at least on a time scale of 3-4 years, 

if grazing pressure were reduced along extensive areas of coastline. 

Extensive beds of L. longicruris exist in Newfoundland, for example at the 

head of Fortune Bay (Keats et al. H)82), and Bonne Bay . (Hooper 1975). 

Extensive urchin dominated areas exist on the Gulf of St. Lawrence coast of 

Newfoundland, between Bonne Bay and the Bay of Islands (pers. obs. 1983-1984). 

On the open coast outside of Bonne Bay and the Bay of Islands Laminaria 

longicruris sporophytes are commonly encountered in the subtidal fringe, and as 

isolated patches on boulder and ridge tops, habitats from which the species is 

absent on the east coast. It seems likely that Laminaria dominated algal beds 

would develop in that part of the Gulf of St. Lawrence, and on the South Coast, 

in the event of a decrease in urchin grazing. 

The response of the algal community to urchin removal in the lower St. 

Lawrence Estuary showed _ other differences from the response of the algal 

community in Conception Bay. Some of the differences are almost certainly 

related to the fact that the St. Lawrence Estuary experiences summer water 

temperatures considerably lower than those generally experienced at the 

Conception Bay site. Although Laminaria digitata, L. longicruris, and 

Desmarestia were present, neither extensive Laminaria nor Desmarestia 

developed in the area studied by Himmelman et a/. ( 1983). Rather, below the 

zone of greatest A/aria biomass, there developed a mixture of Agarum, A/aria, 

Ulvaria, and Ptilota. 

In the St. Lawrence estuary A/aria germlings appeared in July, soon after 

urchin removal, and attained a large stature by October (Himmelman et al. 1983). 

A second crop of germlings appeared in February. In Conception Bay A/aria 

germlings did not appear following urchin removal until December, were not 

abundant until February, and attained a large stature by April. A/aria 
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recruitment is greatest when water temperatures are low in Newfoundland (South 

:-nd Hooper 1Q80), so the extended recruitment period of A/aria at the Quebec 

site was probably a result of the lower summer water temperature there. 

Shortly after urchin removal Ulvaria obscura became abundant throughout 

the depth range studied by Himmelman et a/ (1Q83). It and other ulvoids were 

essentially absent from the present study area. In Newfoundland Ulvaria obscura 

is a winter /spring species (South and Hooper 1Q80), suggesting a dependence on 

colder water temperatures. 

During the first 1-2 months after urchin removal at the present study site 

there was an enhanced growth or survival of certain summer annuals which were 

present at low abundance in the control area ( eg. Acrothrix novae-angliae, 

Eudesme virescens, Chordaria flagelliformis), and an expansion of rhizoidal 

species ( eg. Scagelia coralli"rw, Polysiphonia urceolata) from cryptic habitats 

such as spaces among Lithothamnion uprights, as well as cracks and crevices in 

the corallines. Most of the summer annuals were gone by late September, and 

during the autumn, red algae dominated the substratum (Fig. 17). The extensive 

development of summer annuals, and the expansion of certain Rhodophyta did 

not occur at the Quebec site. The Quebec site experiences greater water 

turbidity, and less exposure to wave action than the Conception Bay site, 

differences which may also have contributed to differences in the effects of urchin 

removal. These differences serve to emphasize the importance of using caution in 

interpreting detailed local results in a regional or broader geographical context. 

6. The importance of time scale 

The results of a number of studies suggest that some trends observed in 

grazer removal studies are related to the temporal scale of observation (see 

Dayton and Tegner 1984a). For example, colonization and succession following 

release from overgrazing10 has been studied over the longest time-frame by 

10overgrazlng is used here to denote grazing levels which maintain algal biomass at very low 
levels . 
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Foreman (1977), who included a companson with pre-grazing and ungrazed 

control areas. Durint; an urchin outbreak in the Strait of Georgia, British 

Colombia, Canada, urchins (Strongylocentrotus droebachiensis) moved through 

the study area in a distinct •front• during 1973 (Foreman 1977). Following 

grazing the mean number of species per quadrat decreased by 50%, biomass by 

65%, and diversity (H') by 60%. Annual and ephemeral algae made up most of 

the biomass during the initial stages of recovery. Many of the species which had 

been eliminated from the grazed site had reappeared by the second year, and 

biomass had returned to- pre-grazing levels. Despite this recovery trend, 28 

species collected during 1972 were not present in 1975, compared with 17 species 

in the control area. Nereocystis luetkeana an annual, large-stature kelp, which 

was uncommon in the pre-grazing or control area, was abundant at the recovering 

grazed site after 3 y. These facts indicate incomplete recovery after 3 y, and 

Foreman (1977) predicted th_~t 4-6 y would be required to reach •ecological 

climax• (sensu Fishelson 1977). 

It is important to note that most statements made thus far apply only to a 

relatively short time scale (3-4y). Given sufficient time it is likely that there 

would be further changes in community structure. For example, the potential 

does exist for the development of Laminaria digitata beds, or perhaps even L. 

longicruris beds, but if this were to occur it would likely be a long-term 

phenomenon. At exposed locations m eastern Newfoundland abundant 

Laminaria digitata is found mainly on vertical substrata, such as the sides of 

boulders, cliffs and surge channels. Laminaria digitata was common in each of 

these habitats m the vicinity of the study areas. Juvenile L. digitata were 

common in the Desmarestia understorey on both the experimental and 

quicklimed transects, and many patches of large plants occurred on the 

experimental transect. On the quicklimed transect, however, few large plants 

occurred. The failure of juveniles to develop beyond a small size was presumably 

a result of shading by Desmarestia, which was more dense on the quicklimed 

transect. This suggests the possibility that extensive mortality to Desmarestia 

could lead to Laminaria development, if the juvenile Laminaria were to grow 
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and mature. The L. longicruris sporophytes in the quicklimed area could possible 

give rise to an increasir.g population or that species, such that in the long-term a 

kelp bed community might develop. 

7. Effect of ice scour on macro-algal species composition, 

diversity, and species richness in the shallow zone 

The shallow zone with a high macro-algal biomass exists because urchin 

grazing is reduced by wave action (Himmelman 1985). Removal of urchins from 

that zone had no detectable influence on macro-algal biomass. Scouring by pack 

ice, was restricted to the intertidal and this upper subtidal algal dominated zone, 

where it had a measurable impact on the algal community. Ice-scour reduced 

algal biomass, but biomass returned to approximately pre-scour levels within a 

few months. 

In the absence of ice-scour the shallow subtidal was dominated by Alaria, 

and both the biomass and the number of other species were low. Ice-scour cleared 

patches of A/aria from the substratum; other species appeared in the scoured 

patches, increasing the number and biomass of other species, and the evenness of 

biomass distribution among them. These data support predictions made by the 

intermediate disturbance model of community structure (Levin and Paine 197 4). 

Aspects of the disturbance regime which affect community response to 

disturbance include patch size, patch shape, the frequency of patch initiation, and 

the timing of disturbance events (Abugov 1982, Miller 1982, Paine and Levin 

1981, Sousa 1979a,b, 1980, 1984). The results of the present study show that the 

timing of ice-scour determines its effect on the species composition of the algal 

community, although some of these differences may have been due to the 

combined effects of patch size, patch shape and the frequency of patch initiation 

in addition to the timing of disturbance. During 1979, when ice-scour occurred in 

April, Chordaria comprised 85% of the biomass in the more heavily ice-scoured 

area. During 1980, when ice-scour occurred in February, the scoured patches 

were colonized by A/aria sporelings, which resulted in a return to A/aria 
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dominance. Chordaria was less abundant during 1980 than 1Q7Q, but Saccorhiza 

was more abundant. Despite among year differen.:.es in species composition, 

species richness was not dependent on the month during which ice-scour occurred. 
~. 

Factors which influence the stability of ecological communities have received 

the attention of ecologists in recent years (see Sutherland 1981, Connell and Sousa 

1983, Dayton et al. 1984 for review). The Alaria_ dominated community has a low 

resistence11 stability when perturbed by ice-scour; the species present, overall 

biomass and its distribution among species changed considerably as a result of ice­

scour. The return to Alaria dominance after ca one year indicates a high degree 

of adjustment stability. Furthermore, the degree of adjustment stability (the 

resiliency) is influenced by the timing of ice disturbance, as indicated by a rapid 

return to Ala ria domination wh(m scour occurred in February, and a delay in the 

return of Alaria when scour _?ccurred in April. Stability is thus not an innate 

property of the community; it depends not just on the magnitude and frequency 

of the perturbation, but also on the timing of its occurrence. 

Based on the above observations, and on disturbance theory (White 1Q7Q, 

Paine and Levin 1Q81, Abugov 1Q82, Miller 1Q82, Sousa 1Q84), it is suggested that 

in the short-term ( <4y) species richness of the upper subtidal would be greater if 

patchy but incomplete ice-scour occurred throughout the winter-spring period. 

That is, scouring in February would remove old Alaria sporophytes and lead to 

the formation of patches occupied by new Alaria, Saccorhiza, and species which 

are less seasonal. Scouring in April, if patchy and incomplete, would remove some 

of the old Alaria as well as the new Alaria and Saccorhiza plants, and patches 

would be colonized by Chordaria and other species. Patchy scouring during 

intermediate and later periods could presumably alter further the species 

composition, and diversity would be high. 

On the south coast of Newfoundland, where ice-scour is rare [less than once 

11Terminology after Connell and Sousa (1983) 
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in 10-15 y (Markham 1Q81)], the high degree of domination by A/aria usually does 

not occur. There the shallow subtidal at sites receiving moderate to full exposure 

to wave action frequently has a rich community of perennial algae, which often 

includes 'A/aria, Laminaria digitata, Laminaria longicruris, Chondrus crispus 

and associated species (pers. obs~, Hooper pers. com.). Although some of- this 

difference may be due to the fact that the south coast is richer floristically than 

the east coast, it suggests that in the long-term absence of ice-scour or other 

major disturbance A/aria domination may decrease and a richer community may 

develop. 

Based on the results of this study, and on the above observations from the 

south coast, a proposed relationship between community structure and ice-scour is 

presented in a simplified form in Fig. 3Q. The observations on the south coast 

suggest that in the absence of ice-scour or other large-scale disturbance the low 

diversity A/aria dominated community would develop into a high diversity 

community with many large perennial algae {pathway • A • ). This increased 

diversity would be the result of an enrichment phase, as suggested l;>y Fishelson 

{IQ77). This enrichment phase would consist of the colonization by epiphytes, and 

the formation and colonization of gaps in the A/aria stand which result from 

small scale disturbances involving the mortality ·or individual plants due to grazer 

damage, storm surge, or disease. Although I saw no evidence for this enrichment 

phase in the present study, the observations on the south coast of Newfoundland 

indicate that this is a likely scenario. Additionally, the potential would exist for 

the occurrence of species unable to survive in the periodically ice-scoured 

environment, and which on the open Atlantic coast lack a refuge below the ice­

scour zone because of heavy urchin grazing. In eastern Newfoundland, pathway 

• A • is prevented by ice-scour and either •B• or •c, • or a combination of •B• 

and • C • predominates depending on the timing of ice-scour. Although the short­

term effect of ice-scour is to change a low-diversity A/aria dominated community 

to a rich community of annuals, the long-term extreme domination by A/aria may 

be dependant on periodic ice-scour. This periodic ice-scour prevents the 

development of a more diverse community (pathway • A • ), and maintains the 
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system in a dyna~c state (pathways •B• and •c• ). The validity of these ideas 

should be subjected to further testing, particularly with ~tudies conducted on the 

south coast of Newfoundland where ice-scour is rare, and in Labrador where it is 

an annual and prolonged event. 

Chordaria was particularly prominent in patches scoured during April. On 

exposed shores qf the Atlantic coast of Nova Scotia Chordaria is an important 

source of primary production in the intertidal zone (Rice and Chapman 1982). 

Probyn and Chapman (1982, 1983) have demonstrated that Chordaria possesses a 

very high V for nitrate and urea uptake, allowing it to take advantage of max 

short-term pulses in the availability of dissolved nitrogen. In addition, Chordaria 

has a very low Km for nitrate uptake (0.6 J.tg-at f 1 
), indicating the ability to 

obtain nitrate at very low concentrations (Probyn and Chapman 1982, 1983). 

These adaptations make Chordaria particularly well suited to colonization and 

growth in areas scoured during the spring, just prior to a major decrease 

(Sandeman 1982) in nutrient concentration. Nutrient kinetics of the other species 

observed during the study have not been determined. 

8. Comparison with other studies of ice-scour effects 

Only one study provides data on species biomass-composition, richness and 

diversity in relation to ice scour. O'Clair (1981) compared species richness and 

species importance curves (the latter for molluscs only) for the intertidal of ice­

scoured and unscoured islands in the Pribilof islands. Samples were taken during 

July-August following scour in April-May. Species richness for algae and molluscs 

was greater on the unscoured than on the ice-scoured islands. The unscoured 

islands also showed the greatest diversity of molluscs, as indicated by more species 

and a more even distribution of biomass among them. I suggest two reasons for 

the difference from the results of the present study. The sites were intertidal, and 

therefore subjected to more intense and more even scouring. The sites were also 

heavily scoured almost every year. Observations of the intertidal at the 

Newfoundland site indicate that scouring was more complete, and the diversity of 

species lower than in the less intensely and more patchily scoured upper subtidal. 
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This serves to e~phasize the importance of the severity, and degree of patchiness 

of ice-sc~>ur in determining its effect on community structure. 

A significant feature of the ice-scour which occurs on the open east coast of 

Newfoundland is that the ice is generated elsewhere (in the Labrador Sea and the 

Arctic) and drifts into the region under the influence of the Labrador Current and 

onshore winds. The formation of extensive local ice does not often occur in this 

region, so the coast usually lacks an ice-foot (ice frozen fast to the shore). If an 

ice-foot does occur in eastern Newfoundland it is usually short-lived, and does not 

build up, because of periodic above-freezing temperatures. An ice-foot usually 

occurs in more northerly regions, where ice is locally generated (Ellis and Wilce 

1961). An ice-foot, when present, may serve to protect a portion of the intertidal 

and sometimes the upper subtidal from damage by the drifting ice. The intertidal 

and the upper subtidal were the most heavily impacted depths in the present 

study area. 

The occurrence of alternating onshore, offshore, and along-shore winds and 

currents is an important factor which can increase the impact of ice-scour. 

Constant onshore winds pack the ice against the shore, and can limit scour in a 

manner similar to that of the ice-foot. 

9. Algal abundance without urchin removal in Conception Bay 

The increase in species richness at 2-3m on the control transect during the 

summer is probably due to a number of factors; one may be a seasonal cycle in 

urchin behavior. Bernstein et al. (1981) showed that urchins in St. Margarets 

Bay, Nova Scotia tended to be in hiding during the daytime in summer. 

Localized Laminaria regeneration was observed, but the new plants disappeared 

during the autumn when daytime foraging by urchins resumed. A second factor 

could be the formation, in the spring and early summer, of grazing •fronts• of sea 

urchins at the lower edge of the shallow zone. Reduced urchin biomass behind 

these • fronts • may have permitted macro-algal recruitment. A third factor may 

involve decreases in grazing potential due to an increased gonad size of urchins 
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(Himmelman 1Q8_5, Kuznetzov 1Q46, Keats et al. 1Q84). The size of urchin 

gonads is negatively correlated with depth in the study ~rea (Keats et al. 1Q84). 

Reduced feeding as the test becomes full of gonad material may act along with 

wave action, and possibly more favourable light conditions, to permit a greater 

algal biomass and species richness at 2-3m than at 6--Qm.-

Most of the spe_cies which increased during the summer at 2-3m, and at 

6-Qm during 1Q82, were summer annual Phaeophyta. These include Acrothrix, 

Chordaria, Di-ctyosiphon, Ectocarpus, and Giffordia, which exist in cryptic 

phases during the winter. Most of these species also have vegetative short-cuts in 

their life history. The production (from these cryptic stages) of rapidly growing 

macroscopic phases, via spores or direct development, would thus account for the 

apparent increase in species richness during the summer. 

Sea urchin grazing may actually increase the overall diversity of the 

community by preventing domination by A/aria along the upper edge of the 

urchin dominated zone, and thereby allowing the development of summer annuals 

such as Acrothrix, Ectocarpus, Eudesme, and Tilopteris-, Summer annuals were 

fairly common along the upper edge of the urchin-dominated zone at the control 

site, even without the major increase in algal abundance, which occurred during 

1Q82. Most of these summer annuals were excluded or reduced in abundance at 

2-3m at the experimental sites by Alaria. At 6-9m the occurrence of these species 

in abundance was probably prevented by the predominance of other species, 

especially Desmaresh·a aculeata. 

Increases in overall community diversity in the presence of heavy grazing 

has been reported in other areas. In New Zealand an increase in overall diversity 

was attributed to grazing by Evechinus chloroticus (Choat and Schiel 1982). In 

California grazing by the urchin Centrostephanus coronatus decreased small scale 

diversity in the patch in which it grazed, but increased diversity in the overall 

community by creating local areas suitable for otherwise rare taxa (Vance 1Q7Q). 

The increase in species richness and algal biomass at 6-Qm on the control 
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transect during 1982 was coincident with a decreasing trend in urchin biomass. It 

is not known if this trend represents a real decrease in urchin biomass, but if it 

does it could account for the increase in macroalgae. The fact that abundant 

urchins Appeared in the autumn and eliminated all of the remaining algae, 

however, suggests that the apparent decrease in urchin biomass merely reflects an 

increased occupancy of cryptic habitat (eg. in crevices and under boulders), which 

was -very patchily distributed and therefore not sampled quantitatively. 

Since 1977 I have made extensive observations throughout Newfoundland 

and it is evident that a macro-algal increase, such as occurred within the middle 

of the barren zone during 1982 and 1983, often occurs in summer at many urchin 

dominated sites. The reasons for this increase remain to be determined, but may 

involve reduced grazing intensity, increased macro-algal growth rates, increased 

macro-algal colonization rates, acting singly or in combination. A much longer 

time-series of data, along with measurements of environmental factors and urchin 

behavior, will be necessary in order to explain fully this variability in macro-algal 

biomass within the urchin dominated zone. 

10. Parallels between the effects of urchin grazing and ice-scour 

Parallels exist between the effects of urchin grazing and the effects of ice­

sc0ur on the algal community. Three aspects of these parallels bear on the r~sults 

of this study including (1) the longevity of the algae (annual and ephemeral 

versus perennial), {2) the available modes of reproduction (asexual short-cuts 

versus obligate sexuality), and {3) the ability of the algae to persist in cryptic 

phases, and asexually generate the macroscopic phase. The early stages following 

urchin removal, following ice-scour, and the temporary growth of macro-algae in 

the control area represent early succession. 

The prediction that early successional species will be annuals or ephemerals, 

whereas later successional species tend to be perennials is supported by the results 

of the present study. The species which were the first colonizers after urchin 

removal were ephemerals (Ectocarpus, Pilayella, and annuals (Acrothrix, 
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Eudesme, Desmarestia viridis, Polysiphonia flexicaulis ). Annual and 

ephemeral species were more abundant during years in which ice-scour occurred 

than thay were in its absence. Annual and ephemeral algae were most abundant 

in the control area during the macro algal increase which occurred during the 

summer of 1982. 

These results are consistent with the results of a number of empirical studies 

which have also demonstrated this phenomenon. For example, short-lived annual 

algae were the first to appear in intertidal recolonization experiments conducted 

on Vancouver Island (Lee 1966). Annual and ephemeral species were the first to 

colonize when Dayton (1975) removed the dominant Hedophyllum sessile at a site 

in Washington, USA. Ephemerals colonized initially and perennial species were 

more abu'ndant later in succession on an artificial substratum in a Macrocystis 

pyrifera forest in California (Foster 1975). Emerson and Zedler (1978) simulated 

natural disturbance in the California intertidal by brushing the substratum. 

Although there were strong seasonal effects on actual composition, annual species 

were generally the first colonizers. Ephemeral algae (Enteromorpha, 

Polysiphonia, Ulva) developed initially on mussel culture ropes in northwestern 

Spain, but subsequently the ropes became dominated by kelps (LaPointe et al., 

1981). Taylor and Littler (1982) removed a dominant sea anemone (Anthopleura 

elegantissima) m California, following which annual algae increased m 

abundance. Kain and Jones (1966) showed that the annual kelp Saccorhiza 

polyschides colonized urchin removal plots initially, but was later replaced by 

Laminaria. Duggins (1980) reported that the abundance and biomass of annuals 

were greatest in the first year after urchin removal, and declined as a Laminaria 

groenlandica canopy became closed. Removal of the canopy was followed by an 

increase in the abundance and biomass of annuals. Himmelman et al. (1983) 

noted that annual algae (Chordaria flagelliformis, Desmarestia viridis, 

Petalonia fascia , Pilayella littoralis, Saccorhiza dermatodea, Spongomorpha 

arcta, and Ulvaria obscura) were more abundant during the first year after urchin 

removal than they were during the second year. 



Sousa (1979a,b,H)80) studied the influence of disturbance, m the form of 

wave induced boulder movement, on macro-algal communities on Lt.rge intertidal 

boulders in California. Annual species colonized newly overturned boulders, and 

there wa.S an initial increase in diversity shortly after space was made available. 

Diversity decreased considerably after 2-3y if no further disturbance occurred, and 

a single species dominated between 60 and 90 percent of available secondary 

space. Reed and Foster ( 1984) showed that at a site in California with low levels 

of disturbance a few perennial species with a light-limiting canopy predominated. 

At another site, where disturbance was greater and more frequent, there was a 

diverse mixture of annual algae. O'Clair (1981) noted that ephemeral and annual 

algae were the most abundant in ice-scoured areas in the Pribilof Islands, Alaska, 

in contrast with non-scoured islands where large canopy-forming perennials were 

more abundant. 

Annual and ephemeral algae have an advantage in early succession in that 

they tend to be fast growing, highly productive species, with relatively little non­

photosynthetic structural tissue (Littler and Littler 1980, Steneck and Watling 

1982). Perennial species, in contrast, often have a high degree of structural tissue, 

which results in lower productivity. Structural tissue reduces the probability of 

damage, and increases the alga's chance of surviving more than one season. 

The prediction that early successional species will have vegetative short-cuts 

in the life history, whereas later successional species will generally lack such short­

cuts is supported by the present study. All of the annual species (with the 

exception of Desmarestia viridis and Saccorhiza dermatodea) which were the 

initial colonizers after urchin removal, all of the species which were more 

abundant after ice-scour, and all those which predominated in the control area 

during the summer of 1982, have vegetative short-cuts [Acrothrix (Forward and 

South 1985), Chordaria (Kornmann 1962), Dictyosiphon (Bold and Wynne 1978), 

Ectocarpus (Mueller 1972), Eudesme (Bold and Wynne 1978), Petalonia spp. 

(Nakamura and Tatewaki 1975; Roelveld et al. 1974), Punctaria (Clayton and 

Ducker 1970), Spongomorpha arcta, (Tanner 1981), and Scytosiphon (Littler and 
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Littler 1983)]. Many of the perennials which colonized early also have vegetative 

short-c·Jts (Ceramium, Polysiphonia urceolata, Rhodomela, Scagelia) (Bold anJ 

Wynne 1978). In contrast, the perennial species which predominated after the 

first year (A/aria, Agarum, Desmarestia aculeata, Laminaria digitata) were 

obligately sexual (Bold and Wynne 1978). Vegetative short-cuts are advantageous 

for early colonization, because it is possible to produce large numbers of 

propagules without the necessity of going through the complete alternation of 

generations. 

Vegetative short-cuts are likely to be particularly advantageous when the 

plants possessing them can produce macroscopic individuals, asexually from 

microscopic stages inhabiting cryptic microhabitat. Species with such cryptic 

phases capable of inhabiting surface irregularities in the substratum, and then 

producing uprights either directly or via dispersal of propagules, would also have 

an advantage over species which have to colonize from outside the disturbed area. 

Species with cryptic phases include Chordaria, Dictyosiphon, Petalonia, 

Punctaria, Saccorhiza, and Scytosiphon. Spongomorpha aeruginosa and S. arcta 

have a microscopic sporophyte which lives either endophytically or attached to 

the substratum (Kornmann 1972); it is also possible that they could survive as 

microscopic gametophytes. Little is known about the ecology of the microscopic 

stages of such algae, and field studies are urgently needed. 

Devaleraea colonized after ice-scour, yet it evidently lacks the ability to 

disperse without sexual reproduction. It has a sexual cycle, involving a few-celled 

female, and a male which is isomorphic with the tetrasporophyte (van der Meer 

1981). Tetrasporophytes develop on the female, and form a discoid holdfast on 

the substratum. Upright thalli develop from the discoid holdfast. A 

carposporophyte is lacking. The marked sexual dimorphism means that the males 

are much older than the females when they achieve fertility. In culture 

unfertilized females may develop directly into haploid tetrasporophytes, but the 

frequency and significance of this in nature is not known (van der Meer 1981). In 

the absence of ice scour, Devaleraea was uncommon in the study area. The 
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restrictions of the Devaleraea life history lead to the question •How was it able to 

colonize the scoured area?• Accordi.ug to J. van der Meer12 (pers. com.) 

Devaleraea plants produce abundant carpospores and tetraspores. As well, both 

gametopfiytes and tetrasporophytes may persist in a basal crustose phase in 

cryptic habitats. 

It is evident from the discussion presented here that a reduction in grazing, 

and the occurrence of ice-scour initiate succession. The trends observed during 

this succession, (the initial colonization by species characteristic of early 

succession, and the later reduction in their abundance as perennial canopy species 

become domminant), forms a common thread connecting grazing and ice-scour. 

12NRCC, Atlantic Regional Laboratory, Halifax, Nov a. Scotia., Canada. 
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Figures and tables 



Fig. 1. Map showing the location of the study areas m 

Conception Bay {E=Experimental (manual removal) transect; 

C=Control transect; Q=Quicklimed transect; PC=Portugal 

Cove. Dot on inset map is location of St. John's. Depth 

contours in meters from nautical chart 4566}. 
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Fig. 2. Photographs illustrating the three main subtidal zones, 

typical of open Atlantic coast sites in Newfoundland. {a= The 

shallow fleshy macro-algae dominated zone, with a band of 

urchins along the lower edge (arrow); b=the urchin dominated 

• barren • zone; c=the deeper Agarum/ Ptilota zone}. 
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Fig. 3. Mean monthly frequency of wind in each of 5 

categories ranging from calm (0) to fully onshore ( 4). Data are 

from Environment Canada, Atmospheric Environment service 

(1975). Categories: O=calm; !=offshore (E,SE,S); 2=onshore 

from within the bay, but sheltered by Bell Island (SW); 

3=onshore from the across the bay (W), or slightly offshore 

but producing a light swell from outside the bay (NE); 4=fully 

onshore (N & NW). Mean monthly wind speed (averaged over 

all directions) is also included (the black line). 
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Fig. 4. Agricultural seed spreader attached to the back of the 

12m MV Elsie G. used for quicklime application. 
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Fig. 5. Diver sampling with the air dredge used in the present 

study. 



80 



Fig. 6. First year ice near the study sites (V) in Conception 

Bay during mid-April of H)79. 
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Fig. 7. Percentage cover of crustose coralline algae (including Corallina basal 

system) versus depth (averaged for both transects over sarrple pericds: 

summer 1979, autumn 1979 and spring 1980). Key: P~Phyrnatolithon 

rugulosum, LITG=Lithotha:mnion glaciale, CORAL=Corallina officinalis 

basal system, CIAT=Clathrorrorphum circumscriptum , PHYL=Phymatoli thon 

laevigatum. 
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Fig. 8. Total fleshy macro-algal biomass for each transect, 

depth, and sample date [geometric mean (g m-2) + std. err.]. 

Vertical line indicates the time of urchin removal from the 

experimental transect. 
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Fig. 9. Cluster analysis of macroalgal bioma.ss data. Sample sets were clustered 

on the basis of log10 rrean for each s:p=cies. Key: [FORMAT: Transect, Depth, 

Sample :p=riod (l=E,0-2rn,Sum79; 2=C,0-2m,Sum79; 3=E,0-2m,Aut80; 4=C,0-2rn, 

Spr80; 5=C,0-2rn,Aut80; 6=E,0-2rn,Spr81; 7=E,2-3m,Sum81; 8=E,2-3m,Spr81; 

9=E, 0-2m, Sum81; lO=E, 0-2m, Sum82; 11 =C, 0-2m, Sum81; 12=E, 2-3m, Sum82; 

13=E,2-3m,Spr82; 14=C,0-2rn,Sum82; 15=Q,2-3m,Sum82; 15=Q,2-3m,Spr82; 

17=E,2-3m,Sum79; 18=E,6-9m,Sum79; 1~,2-Jm,Sum79; 20=C,6-9m,Aut80; 

2l=C,2-3m,Spr82; 22=C,6-9m,Spr80; 23=C,6-9m,Spr82; 24=C,2-3m,Spr80; 

25=C,6-9m,Spr81; 26=C,6-9m,Aut79; 27=C,6-9m,Sum81; 28=C,6-9m,Sum79; 29=C, 

2-3m,Sum79; 30=E,2-3m,Aut80; 3l=E,6-9m,Aut80; 32=C,2-3m;Spr81; 33=Q, 

6-9m,Sum82; 34=C,2-3m,Sum81; 35=C,2-3m,Sum82; 36=E,6-9m,Sum82; 37=E, 

6-9m,Spr81; 38=E,6-9m,Spr82; 39=E,6-9m,Sum82; 40=E,6-9m,Sum81; 4l=C,l2-18m, 

Spr79; 42=C,l2-18m,Spr80; 43=C,l2-18m,Spr81). Note: 12-l8m data are from 

samples used for Keats et al. 1982]. 
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Fig. 10. Biomass of A/aria esculenta versus sample month 

[geometric mean (g m-2) + std. err.] ( 0 =Control transect, 
-

6 =Experimental transect, X =Quicklimed transect). ( + 

std. err.). 
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Fig. 11. Biomass of Desmarestia spp. versus sample month 

(geometric mean (g m-2) + std. err.] ( 0 =Control transect, 
-

6 =Experimental transect, X =Quicklimed transect). ( + 

std. err.). 
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Fig. 12. Biomass of Laminaria digitata versus sample month 

[geometric mean (g m-2) + std. err.) ( 0 =Control transect, 

6 =Experimental transect, X =Quicklimed transect). ( + 

std. err.). 
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Fig. 13. Photograph illustrating patches of Desmarestia spp. 

(D) on the control transect (summer 1979). Arrow indicates a 

winter flounder (Pseudopleuronectes americanus). Note also 

the abundant Coral/ina officina/is (C). 
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Fig. 14. Photograph illustrating growth of Urospora 

wormskjo/dii (arrow) on the tops of ridges on the control 

transect during the spring of 1981. 
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Fig. 15. Photograph illustrating heavy growth of Ectocarpus 

siliculosus (tail-less arrow) and associated species, especially 

Eudesme virescens (arrow with tail) at 2-3m on the control 

transect during the summer of HJ82. 
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Fig. 16. Photograph illustrating the diatom and 

Ectocarpus/Pilayella turf present during the earliest stage 

after urchin removal. The abundant fish are cunners 

(Tautogolabrus adspersus ). 
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Fig. 17. Photograph illustrating the occurrence of certain 

Rhodophyta (arrows) during the first autumn following urchin 

removal on the experimental transect. 
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Fig. 18. Photograph illustrating (a) colonization by A/aria 

esculenta (tail-less arrows) during March of 1981, and (b) the 

same area one month later. The fish in (b) is a male lumpfish 

( Cyclopterus lumpus ). 
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Fig. 19. Photograph illustrating Agarum (a) in the 6-9m depth 

range in the removal area during March of 1981. Note also 

A/aria esculenta (e), Laminaria digitata (I), and Desmarestia 

aculeata (d). The fish are cunners (Tautogolabrus adspersus ). 
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Fig. 20. Photograph illustrating abundant Desmarestia 

aculeata (d) in the 6-9m depth range, and some of the large 

algae existing with it during the spring of HJ8.1 (a=Alaria 

esculenta, b=Laminaria digitata, c=Agarum cribrosum). 
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Fig. 21. Photograph illustrating the abundant Desmarestia 

aculeata in the 6-9m depth range on the quicklimed transect 

during the summer of 1982. 
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Fig. 22. Photograph illustrating a patch of Laminan·a digitata 

(1) at 6-9m on the experimental transect during the summer of 

1982. ( d=Desmarestia aculeata ). 
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Fig. 23. Number of species of fleshy macro-algae vs. 

observation date for each depth and transect. Double arrows 

indicate time of urchin removal from the experimental 

transect. 
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Fig. 24. Dominance-diversity curves for sample sets from 0-2rn for each year of the 

study. 
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Fig. 25. Photograph illustrating (a) the closed nature of the 

A/aria canopy during the spring and early summer (HJ82), and 
-

(b) its relatively open nature during the late summer and early 

autumn (H)82). 
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Fig. 26. Dominance-diversity curves for sample sets from 2-3m, on the experimental 

and quicklimed transects after urchin rerroval. (A=Autumn 1980, experi-.¥. 

mental transect; B=Spring 1981, experimental transect; C=Spring 1982, 

quicklined transect; D=Sunmer 1981, experimental transect; E=Sumrer 1982, 

quicklined transect; F=Spring 1982, experimental transect; G=Sunmer 

1982, experimental transect). Note: Curves representing the samples from 

the quicklimed transect are included inmediately after those representing 

samples fran the experimental transect which are approxi.rratel y equivalent 

in term of time since urchin rerroval. 
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Fig. 27. Dominance-diversity curves for sample sets from 2-3m, without urchin 

re.noval. (A=Sunmer 1979, experimental transect before urchin re.noval; 

B=Surmer 1979, control transect; C=Autumn 1979, control transect; 

D=Autumn 1980, control transect; E=Spring 1981, control transect; 

F=Surrmer 1981, control transect; G=Spring 1982, control transect; 

H=Sunmer 1982, control transect) . 
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Fig. 27. Dominance-diversity curves for sample sets from 6~9m on the experimental 

and quicklirred transects after urchin rerroval. {A=Auturnn 1980, ex:peri-

rrental transect; B=Spring 1981, experimental transect; C=Surrmer 1981, 

experimental transect; D=Sumner 1982, quicklined transect; E=Spring 1982, 

experimental transect; F=Surrmer 1982, experimental transect). NJte: 'file 

curves representing samples from the quicklined transect are included immediately 

after those representing sarrples from the experimental transect which are 

approximately equivalent in terms of tirre since urchin removal. 
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Fig. 29. Ibminance-diversity curves for sample sets from 6-9rn without urchin rerroval. 

(A=Surrmer 1979, experimental transect (before urchin removal) ; B=Sumner 

1979, control transect; C= Autumn 1979, control transect; D=Spring 1980, 

control transect; E=Autumn 1980, control transect; F=Spring 1981, control 

transect; G=Summer 1981, control transect; H=Spring 1982, control transect; 

I=Surrmer 1982, control transect) . 
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Fig. 30. The number of species of annual and perennial algae from each of eight 

sample groupings: A= 0-2m during years in mich ice-scour occurred; B= 2-3m, 

without urchin rerroval; C= 6-9m, without urchin rerroval; D= 2-3m, experi-

mental transect during the autumn of 1980 (2 rro. after urchin rerroval); 

E= 6-9m, experimental transect during the autumn of 1980 (2 rro. after 

urchin rerroval); F= 0-2m, during years in which no ice-scour occurred; 

G= 2-3m, rerroval areas (experimental + quicklimed transects) rrore than 

9 mo. after urchin rerroval; H= 6-9m, rerroval areas rrore than 9 rro. after 

-2 urchin rerroval. Note: Species recorded only as present ( <::: 0. 05 g rn ) 

are included in these data. 
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Fig. 31. The number of species of annual and perennial algae from each of eight 

sample groupings: A= 0-2m during years in 'Which ice-scour occurred; B= 2-3m, 

without urchin removal; C= 6-9m, without urchin removal; D= 2-3m, experi-

rrental transect during the autumn of 1980 (2 ITO. after urchin removal); 

E= 6-9m, during the autumn of 1980 (2 ITO. after urchin removal) ; F= 0-2m, 

during ¥ears in which no ice-scour occurred; G= 2-3m, removal areas 

(experimental & quicklima:l transects) , ITOre than 9 ITO. after urGhin removal; 

H=6-9m, removal areas, norethan 9 ITO, after urchin removal. Note: Species 

-2 recorded only as present (<0.05 g m ) are excluded fran tl"Ese data. 
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Fig. 32. Percentage of biorrass for annual and perennial algae from each of eight 

sample groupings: A= 0-2m during years in which ice-scour occurred; B= 2-3m, 

without urchin rerroval; C= 6-9m without urchin rerroval; D= 2-3m, experi­

mental transect during the autumn of 1980 (2 ITO. after urchin rerroval); 

E= 6-9m, experimental transect during the autumn of 1980 (2 TID. after urchin 

rerroval); F= 0-2m during years in which no ice-scour occurred; G= 2-3m, 

rermval areas, rrore than 9 TID. after urchin rerroval; H= 6-9m, rerroval areas 

ITOre than 9 ITO. after urchin rerroval. 
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Fig. 33. Urchin biomass for each transect, depth, and sample 

date [geometric mean (g m-2) + std. err.]. 
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Fig. 34. Urchin size frequency distributions from 0-2rn. Note: The curves for 1979 

are ba.sed on 5 mm size ranges; other curves are ba.sed on 2 nm size ranges. 

(C=Control transect, E=~rirrental transect). 
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Fig. 35. Urchin size frequency distributions from 2-3m. Note: The curves from 

summer 1979 are b3.sed on 5 nm size ranges, all others on 2 rrm size ranges. 

(C=Control transect; E=Experimental transect; Q=Quicklined transect). 



2-3M 

100 SUMMER 1 9 7 9 AUTUMN 1980 SPRING 1982 
, ~>- ····· · 

' ·. 

·• ······• .. ~e " ·• I 
e 

10 ~· ······~ .. • . .... 
N · ... ...... ................................................ 
1 
~ 100 AUTUMN 1 9 7 9 SPRING 1 9 8 1 SUMMER 1982 

0 
z 

10 

w 
() 

z 
c( 

0 100 SPRING 1 9 8 0 1 9 8 1 z 
:::> 
CD 
c( 

10 

5 15 25 35 45 55 5 15 25 35 45 55 

TEST DIAMETER (MM) 



Fig. 36. Urchin size frequency distributions from 6-9rn. Note: the 

curves from 1979 are based on 5 nm size ranges, all others 

on 2 rrrn size ranges. (C=Control transect; E=Experimental 

transect; c.rQuicklimed. transect) . 
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Fig. 37. Urchin s1ze frequency distributions from 12-18m. 

Note: all curves are based on 2mm size ranges (C=Control 

transect). 
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Fig. 38. Juvenile A/aria escu/enta showing damage from 

browsing by Lacuna vincta. 
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Fig. 39. Schematic representation of the known and hypothesized effect of ice­

scour on shallow water, open coast communities in eastern Newfmmdland. 

(See text for explanation). 
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Table 1. Summary of the field work undertaken during the 
course of the present study. 

Study areas selected;transect lines established I Apr . -
preliminary sampling to determine quadrat I June 1979 
size, number & logistic requirements 1 

Pre-treatment sampling of transects; Monthly 
observations and species counts 

Determine the feasibility of autumn sampling; 
Monthly observations and species counts 

Monthly observations and species counts 

Sample control transect; Monthly observations 
and species counts; preparations for manual 
urchin removal 

I July -
I Aug. 1979 

I Sept. -
I Oct. 1979 

I Nov. 79 
I Apr. 1980 

May 1980 

Manual urchin removal; Monthly observations and 1 June -
species counts I Aug. 1980 

Sample control and experimental transects; 
Monthly observations and species counts 

Monthly observations and species counts 

Sample control and experimental transects 
Monthly observations and species counts 

Locate and survey area for, and conduct a trial 
quicklime application to determine dosage and 
technique; monthly observations and species cts 

Sample control and experimental transects; 
Monthly observations and species counts 

Monthly observations and species counts 

Monthly observations and species counts; 
Quick liming 

I Sept . -
I Oct . 1980 

I Nov. 1980 -
I Apr. 1981 

I May 1981 
I 

June 1981 

I July 1981 
I 

I Aug. -
I Sept. 1981 

I Oct. -
I Nov. 1981 

Monthly observations and species counts conducted thereafter 
until February, 1983. Sampling conducted on the control, 
experimental and quicklime transects during May and July,1982 



Table 2. Summary of the sampling data obtained during the urchin removal experiment 
(Number in parentheses is the number of samples. 

SUMMER AUTUMN SPRING AUTUMN SPRING SUMMER SPRING SUMMER 
1979 1979 1980 1980 1981 1981 1982 1982 

----------------------------------------------------------------------------------------
TRANSECT: c E c E c E c E c E c E c E Q c E Q 
----------------------------------------------------------------------------------------
SAMPLE 
DEPTH 
RANGE 
0-2M (5) (5) (5) (4) (5) (3) (5) (5) (10) (10) 

2-3M (5) (5) (3) (5) (5) (5) (5) (5) (6) (5) (6) (5) (10) (10) (5) 

6-9M (5) (5) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (10) (10) (5) 

E=Experimental transect, C=Control transect, Q=Quicklimed transect. 
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Table 3. List of taxa used in the cluster analysis, the frequency of their occurrence in the 43 transect, depth 

and sample period combinations, and whether they were considered annual or perennial. 

Taxon 

Acrothriz novae-angliae Taylor 
Agarum cribroBum (Mert.) Bory 
Alaria esculenta (L.) Grev. 
Antithamnionella floccoBa (0. F. Mlill.) Whittick 
Callophylli8 cri8tata (C. Ag.) Klitz. 
Ceramium rubrum (Huds.) C. Ag. 
Chorda tomentou Lyngb. 
Chordaria flagelliformis (O.F. Mlill.) C. Ag. 
Derbesia marina (Lyngb.) Solier 
De8marestia spp.* 
Devaleraea ramentacea (L.) Guiry 
Dictyol'"phon foe niculac eus (Huds.) Grev. 

••• EctocarpuB spp. 
Eudume vire8cen8 (Carm. ex Harv. in Hook) J.Ag. 
Giffordia sp. 
Laminaria digitata (Huds.) Lamour. 
Membranoptera alata (Huds.) Stackh. 
MonoBtroma grevilleii (Thur.) Wittr. 
Palmaria palmata (L.) 0. Kuntze 
Petalonia fa8cia (O.F. Mlill.) 0. Kuntze 
Petalonia zoBter•Jolia (Reinke) 0. Kuntze 
PhycodryB rubenB (1.) Batt. 
Pilayella littorali8 (L.) Kjellm. 
Polysiphonia flezic auliB (Harv.) Coli. 
PolyBiphonia urceolata (Lightf. ex Dillw.) Grev. 
Ptilota Be rrata Kl1 tz. 

Frequency of Annual(A) or 
Occurrence Perennial(P) 

2 A 
7 p 

28 p 

8 A 
5 p 

21 p 

7 A 
27 A 
8 A 

23 p** 

18 A 
13 A 
32 A 
10 A 
9 A 

23 p 

3 p 

2 A 
9 p 

19 A 
3 A 
5 p 

17 A 
19 A 
43 p 

28 p 

Punctaria plantaginea (Roth) Grev. 2 A 
Rhodomela confervoideB (Huds.) Silva 17 P 
Saccorhiza dermatodea (Pyl.) J. Ag. 12 A 
Scagelia pylaiuei (Mont.) Wynne 96 P 

Scytosiphon lomentaria (Lyngb.) Link 12 A 
Spongomorpha aeruginoBa (L.) Hoek 14 A 
Spongomorpha arcta (Dillw.) Klitz. 17 A 
Uro8pora wormBkjoldii (Mert. in Hornem.) Rosenv. 3 A 

• De8mare8tia aculeata (L.) Lamour. and D. viridi8 (0. F. Mlill.) Lamour. **D. aculeata is perennial, and D. 
viridi8 is annual. Only pooled biomass data for both species is available, and because D. aculeata was the 
more abundant species, Desmarestia spp. has been assigned perennial status. ••• Ectocarpu8 fasiculatus 

Harv. and £. 8iliculo8uB (Dillw.) Lyngb. 



Table 4· Species presece/absence from observations made monthly throughout 
the study at 2-3m. 

1979 1980 1981 1982 
SPECIES JASOND JFMAMJJASOND JFMAMJJASOND JFMAMJJASO . . F 

Acrothrix c ·----- -----···---- -----···---- ---~-···--
novaeangliae E ·----- -----·····-- -----·····-- --- ... ·-----

Q -------
Alaria c ·----- ----- ---- --· ·······----- -········· esculent a E ·----- -----------· ............... ............ .. 

Q ........ + 

Chorda c ----- - ------------ --------- --- ----+++---

tomentosa E ------ ------------ ---++++++--- ---+------

Q --·----
Chordaria c +----- -----···---- ----····---- ----······ flagell 1 formis E +----- -----···---- ----····---- ----······ Q --····· .. 
Desmarestia c ........... ..................... ....................... .. ............... .. 
aculeata E ............ ....................... ........................ ···-- -----Q ............. .. 
Desmarestia c ···--- .................. __ _ .................... __ .................. + 

viridis E ···--- .................. -- .. .................... __ ··---- ----
Q ............. 

Dlctrosiphon c ·----- ------··- --- ------•+---- ------···· foen culaceus E ·----- ------····-- -----···---- ------ -- --
Q ---···· 

Ectocarpus c ··---- ----·------- ----·····--- ---······· spp. E ++---- -------····· ·---········ --------·· 
Q -······ 

Eudesme c ·----- -----···---- -----···---- ------···· 
virescens E ·----- -----·····-- -----······· ------- ---

Q --···--
Giffordia c ------ ------------ ----·------- ----------
sp . E ------ -------------------·----- ----------

Q -··----
Laminaria c ------ --------- · -- --·-··· -- --- --·····-·· digitata E ------ --------···· .................... ................. .. 

Q ........... .. 
Petalonia c ------ ------------ -----···---- ------···· .. 
fascia E ------ --------- -- - -----······- ----------

Q ·------

I-' 
lJl 
N 



Table 4· continued. 

P ilayella c +----- ------·----- ----+++----- ---+++++++ 

littoralis E +----- ------+++++- ----++++++++ ---+++++++ 

Q +++++++ 

Saccorhiza c ------ ------------ ----+++----- ------++++ 

dermatodea E ------ ------------ ---+++++++++ ++++------

g +++++++ + 

Scytosiphon ------ ------------ ----+++----- ------++++ + 

lomentaria E ------ ------------ ----+++++--- ----------
Q -------

Tilopteris c ------ ------------ ------------ ------++--

mertensii E ------ ------------ ---·-------- ---+------

Q -------
Antithamnion c ------ ------------ ------------ -+++++++++ 

pylaisaei E ------ --------++++ ++++++++++++ ++++++++++ + 

Q +++++++ .. 
Antithamnionella c +----- ++++-------- ------------ -++++---++ 

floccosa E +----- -++++------- -+++++----++ +++++---++ + 

Q +++++++ + 

Bangia c ------ ------------ --+--------- ----------
atropurpurea E ------ ------------ --+++------- ----------

Q -------
Ceramium c ++---- ------------ ------------ ++++++++++ 

rub rum E ------ ---------+++ +++++++--+++ +++++--+++ + 

Q ++-++++ + 

Gloiosiphonia c ------ ------------ ------------ ----------
capillar is E ------ ------------ ------------ --------++ 

Q -----++ 

Cystoclonium c ------ ------------ -------+---- ----------
purpureum E ------ ------------ ------------ ----------

Q -------

Halosaccion c ------ ------------ ----++++---- ----------
ramentaceum E ------ ------------ ------------ ----------

Q -------

Palmaria c ------ ------------ ------------ ---------- f-J 
lJ1 

palmata E ------ ------------ ------------ ---------- w 
Q ---t++++ • 

Polyslphonla c ------ ------------ ---------++- --------·· 
flexicaulls E ------ --------···· ................. ···----··· • 

Q ----+++-+ 



Table 4. continued. 

Polysiphonia 
urceolata 

Porphyra 
sp. 

Rhodomela 
confervoides 

Derbesia 
mar ina 

Monostroma 
grevlllel 

Urospora 
wormskjoldll 

c 
E 
Q 

c 
E 
Q 

c 
E 
Q 

c 
E 
Q 

c 
E 
Q 

c 
E 
Q 

++ --
+ + - -

- - --
- - - -

- - --
-- --

- -- -
----

--- -
----

- - - -
- - - -

- - ---
- - - --

-- -- -
-- - --

-- ---
- - -- -

- - -- -
-- ---

- - ---
- - - - -

- - - - -
-- -- -

- - - - - - - - -
----- ++ + + 

--- -- -- - -
------ -- -

- - ---- ---
- --- -++++ 

-·- ---- - -
------ +- -

--- - - --- -
- -- -- -- - -

- - - - - - - - -
--- - - - - - -

- ---- --- + +- - -- -- - --- ++ 
++ +++++++ + ++ ++++++++++ + 

+++++++ + 

- - - -+ - ------ --- ---+- --
---- -------- --- - ---- --

--- ----
- - -------++ - -+++++++++ 
++++++++++++ +++++ --+++ + 

-- +++ ++ + 

--- - +- - ----- -- - -- - ----
-- - --- -- --- - --- ----· + + + 

---- +++ + 

------ --- - - - - - ------ --
- - - -+ - ------ ---- - -----

---- - --
- - - + - - - - -- -- - - -+ + -- - - -
- - -+ - - - - - - -- - - -+- - - -- -

-++- -- -



Table 5. Species presence/absence from observations .made monthly throughout 
the study at 6-9m. 

SPECIES 

Acrothrix 
novaeangllae 

Agar urn 
cr·lbrosum 

Alarla 
esculenta 

Chorda 
tomentosa 

Chordarla 
flagelllformls 

Desmarestla 
aculeata 

Desmarestia 
vlrldis 

Dlctyoslphon 
foen culaceus 

Ectocarpus 
spp. 

Eudesme 
virescens 

Clf fordia 
sp. 

c 
E 
Q 

c 
E 
Q 

c 
E 
Q 

c 
E 
Q 

c 
E 
Q 

c 
E 
Q 

c 
E 
Q 

c 
E 
Q 

c 
E 
Q 

c 
E 
Q 

c 
E 
Q 

1979 1980 1981 1982 
JASOND JFMAMJJASOND JFMAMJJASOND JFMAMJJASO .. F 

++---- ------------ ------------ ------+++ 
++---- -----++++--- -----++++--- ---------

------ ------------ ++++++++++++ +++++++++ + 
++++ 

------ ------------ --++++++++++ +++++++++ • 
++++ + 

------ ------------ --+++++++--- ---------

+----- ------------ ------------ -----++++ 
------ -------+++++ ++---++++++- +++++++++ 

...... + 

------ ------------ ------------ -----++++ .. 
------ -----------+ +++-+++++++++ ++++++-+++ + 

..... + 

------ ------------ ------------ --+++++++ 
------ -----------+ +++++-+++++-- ++++++-+++ 

++++ 

------ -------+++-- ------++++++ ----------··-
+----- ------------ ------------ -----++++ 
+----- -------+++++ +++++++-+++++ +++++++++ 

++++ 

++---- ------------ -----++----- -----++++ 

··---- -------+++-- -----+++++-- -----·---
++++ 

------ ------------ -------+---- ---------



Table s. continued 

Laminaria c ------ ------------ ------------ ------+++ 

digitata E ------ --------++++ ++++++++++++ +++++++++ .. 
Q ++++ .. 

Petalonia c ------ ------------ ------------ ---------
fascia E ------ ------------ ------------ ---------

Q -+++ 

P ilayella c ------ ------------ ------------ ------+++ 

littoralis E ------ -------+++++ +++++++++++- ---++++++ 

Q 

Saccorhlza c ------ ------------ ------------ ---------
derrnatodea E ------ ------------ ----++++++++ t--+++t++ 

Q 

Scytoslphon c ------ ------------ ------------ ---------
lomentarla E ------ ------------ ----++++++++ ··--···--

Q ....... 
Antlthamnion c ------ ------------ ------------ ------+++ 

pylalsaei E ------ -------+++++ ++++++++++++ ................ .. 
Q ....... .. 

Antithamnlonella c ------ ------------ ------------ ---------
floccosa E ----- - -----------· ++++++----++ +++++--++ .. 

Q .. 
Bonnernaisonia c ------ --------·--- ------------ ---------
hami!era E ------ ------------ ------------ ---------

Q 

Callophyllls c ------ - ----------- ------------ ---------
cristata E ------ ------------ -----++++t+t tttt+++++ 

Q 

Ceramium c ------ ------------ ------------ ---------
rub rum E ------ --------tttt t+t+tt--tt-t+ +tt++t++t .. 

Q ........ .. 

Ph6codrys c ------ ------------ ------------ -- - ------
ru ens E ------ ------------ ------------ -----+t++ .. 

Q .. 
Polyslphonla c ------ ------------ ------------ -----++tt ~ 

V1 
flex icau 1 is E ------ --------++++ +t+++++t++tt ttt++++++ t 0'\ 

Q tt+t .. 

Polysiphonla c ------ ------------ ------------ -----t+t+ 

urceolata E ------ --------+ttt +tt+tt+tttt+ tt++ttt++ t 

Q ....... .. 



Table 5. continued 

Ptilota 
serrata 

Rhodomela 
confervoides 

Monostroma 
grevillei 

c 
E 
Q 

c 
E 
Q 

c 
E 
Q 

------ ------------ ++++++++++++ +++++++++ 

------ --------++++ ++++++++++++ +++++++++ 

-- + + 

------ ------------ ----·------- ---------

+ 

+ 
+ 



Table 6. Comparison of species composition of the 2-3m and 6-9m areas on 
the experimental (E) , quicklimed (Q) , and control (C) transects 
during the macro-algal increase which occurred on the control 
transect during the summer of 1982. (Log mean is the mean of the 
log transformed biomass data ori9inally in g m-2; Percentages 
calculated from arithmetic means) . 

I (2 - 3m) I E (N=10) I Q (N=5) I C (N=10) I 
1--------------- --------- ------------ -----------------------------------------l 
I llog std . % llog std. % llog std. % I 
!Species lmean err . total lmean err. total mean err. total 1 
1--------------------------------------------------------- -------------- ----- 1 
Alaria esculenta 12.86 0.33 98.5 12.27 0.74 94.3 0.27 0.16 0.62 1 
Chorda tomentosa 10.23 0.23 0.84 0.0 0.0 0.24 0.24 4.18 1 
Ceramium rubrum 10.38 0.19 0.24 I + + + + I 
Chordaria 10.24 0.18 0.23 10.19 0.19 0.07 1.25 0.22 6.90 1 
Ectocarpus spp.* 10.17 0.13 0.09 0.78 0.49 2.46 1.85 0.23 24.7 1 
Laminaria 10.16 0.13 0.07 10.49 0.37 0.73 0.0 0.0 1 
P. urceolata 10.12 0.07 0.02 I + + 0.29 0.10 0.23 1 
Desmarestia spp. 0.07 0.07 0.02 11.18 0.43 2.21 1.12 0.32 45.5 1 
Rhodomela 0.06 0.04 0.01 I + + + + I 
Saccorhiza 0 .05 0.05 0.01 1 0.0 0.0 0.22 0 . 15 0 .42 1 
Palmaria palmata 0.04 0.03 0.005 1 0.0 0.0 + + 1 
S. aeruginosa + + 1 0.0 0.0 0.06 0.06 0.04 I 
S. pylaisaei 0.0 0.0 10 . 26 0.26 0.15 0.11 0.07 0 .08 
P. flexicaulis 0.0 0.0 10.30 0.14 0.06 + + 1 
Eudesme 0.0 0 .0 10.18 0.14 0.04 1.71 0.23 15.1 1 
P. zosterifolia 0.0 0.0 10.07 0.07 0.01 0.0 0.0 1 
Dictyosiphon 0.0 0.0 1 0.0 0.0 0.58 0.20 1.39 1 
Acrothrix 0.0 0.0 I 0.0 0.0 0.26 0.17 0.24 I 
P. fascia 0.0 0 .0 1 0.0 0.0 0.37 0.07 0.24 1 
Ptilota serrata 0.0 0.0 I 0.0 0.0 + + I 
Porphyra sp. 0 .0 0.0 I 0.0 0.0 + + I 
Pilayella 0.0 0.0 I 0 .0 0.0 + + 1 
Devalaraea 0.0 0.0 I 0.0 0.0 + + I 
----------------------------1 I 



Table 6, continued. 

1-~~=:~~---------- -----------------------------------------------------------1 
IDesmarestia spp. 1.95 0.50 80.3 11.74 0.39 31.8 11.23 0.37 54.1 I 
ILaminaria 0.62 0.36 5.74 I + + I + + I 
IAlaria esculenta 0.58 0.37 5.46 10.58 0.54 14.5 I 0.0 0.0 
IP. flexicaulis 1.32 0.29 3.70 10.06 0.06 0.02 I 0.0 0.0 
IAgarum cribrosum 0.73 0.31 2.81 1 0.0 0.0 1 0.0 0.0 
IP. urceolata 0.44 0.22 0.50 10.23 0.17 0.21 10.18 0.11 0.25 
IRhodomela 0.52 0.23 0.49 I 0.0 0.0 I 0.0 0.0 
IChordaria 0.43 0.20 0.38 10.39 0.39 2.25 10.24 0.12 0.32 
!Ceramium rubrum 0.23 0.18 0.25 I + + I 0.0 0.0 
IEctocarpus spp. 0.32 0.15 0.16 11.68 0.61 49.4 11.70 0.30 30.1 
IPtilota serrata 0.40 0.15 0.15 I 0.0 0.0 + 0.0 
lA. pylaisaei 0.14 0.12 0.08 10.03 0.02 0.01 10.04 0.03 0.02 
IEudesme 10.08 0.05 0.01 10.44 0.34 1.62 11.44 0.28 14.3 
IPetalonia fascia I 0.0 0.0 10.25 0.11 0.14 10.26 0.13 0.44 
IDictyosiphon 0.0 0.0 I + + 10.18 0.12 0.29 
IPilayella 1 o.o o.o I + + I o.o o.o 
IAcrothrix I 0.0 0.0 I 0.0 0.0 10.14 0.09 0.14 



Table 7. The results of a survey of 18 sites 
in Conception Bay for percentage 

SITE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 
13 
14 
15 
16 

17 
18 

cover of macro-algae during the summer 
of 1982 (see text) . 

% COVER 

<10% 
<10% 
>50% 
>50% 
>50% 
>50% 
>50% 
<10% 
>50% 
>50% 

Algae on Tops of 
boulders only 

>50% 
>50% 
<10% 
<10% 

Algae on Tops of 
boulders only 

<10% 
Algae on Tops of 
boulders only 

BOTTOM TYPE 

2 
2 
1 
1 
1 
1 
1 
2 
1 
1 
2 (largely) 

1 
1 
2 
1 
2(largely) 

2 
2(largely) 

Bottom types: 1=Coralline encrusted bedrock 
and large (>50 em across) boulers, crevices 
abundant; 2=Coralline encrusted smooth 
bedrock, <5% boulders and/or crevices. 

160 



161 

Table 8. Biomass (arithmetic mean) or algal species by year (the number in parentheses is the log10 mean 

± std. err.; superscript on year indicates month during which ice scour occurred; + indicates presence 

but too little to weigh). 

Species 1Q7gApr 1Q80Feb 1Q81 1Q82 

(N=10) (N=14) (N=13) (N=20) 
Chordaria flagelliformi• 132Q.4(2. Q5± .18) Q2.1(1.22±.25) l.QQ(.14±.11) 14.3(.25±.14) 
Chordari a flage llif ormi• 132Q.4(2. Q5± .18) Q2.1( 1.22± .25) l.QQ(.14±.11) 14.3(.25±.14) 
Alaria e•culenta 718.3(2.15±.30) 15Q7 .5(3.11 ±0.08) 5032.2(3.34±.31) 5780.0(3.28±0.24) 
Sacc orhiza dermatode a 7.6(.46± .1Q) 824.4(2.17 ±.31) 0.0 16.7(0.1Q±0.14) 
Devaleraea ramentacea 11Q.4(1.35±.31) 177.3(1.31±.28) 6.7(.33±.16) .61(.11 ±.05) 
Spongomorpha arcta 31.1(1.16±0.23) 231.8( 1.11 ±.30) .55(.0Q±.07) 0.0 
Spongomorpha aerugino11a 14.7(.Q5±.17) 2.3Q(.40±.0Q) 0.0 0.0 
Dictyo11iphon foe niculac eu11 28.8(1.2Q±.15) 0.0 0.0 O.Q0(.06±.06) 
Laminaria digitata 10. 7( .30± .22) 3.18(.1Q±. 12) 157.1(.46±.31) 14.3(.33±.15) 
Scyto11iphon lomentaria 18.8( .QO± .18) 17.5(.56±.1Q) 0.0 .33(.07±.04) 
Petalonia Ja11cia 11.7(.87±.17) 22.2(0.66±.20) + QQ(.08±.07) 
Petalonia zotJterifolia .11(.04± .02) .11(.04±.02) 0.0 0.0 
Phycodry11 ruben• 0.0 0.0 0.0 0.0 
Pilayella littorali11 .75(.21±.05) 4.85(.33±.14) .24(.07±.04) + 
Poly11iphoni a flezic auli11 .10(.03±.03) .54( .OQ± .06) .38(.08±.06) + 
Poly11iphonia urceolata 11.7(.Q1±.15) 15.1(.71±.1Q) 51.6(.80±.25) 14.0(.54±.15) 
Porphyra sp. + + 0.0 0.0 
Ptilota 11errata + 0.0 0.0 + 
Punctaria plantaginea l.Q6(.30±.12) .57(.07± .07) 0.0 0.0 
Rhodomela confervoide• .23(.05±.05) + .88(.08± .08) .53(.08±.06) 
Scagelia c orallina + + + + 
Sphac elari a plum 01111. 0.0 0.0 0.0 0.0 
Ulv a lactuc a 0.0 0.0 0.0 0.0 
Ulvaria ob11cura + 1.2Q(.16±.0Q) .30( .07 ± .05) 0.0 
Antithamnionella flocco•a + 0.0 0.0 0.0 
Ceramium rubrum .13(.04+.03) + 5.5Q(.18±.14) + 
Chorda tomento11a .58( .08± .08) 4.4(.21±.13) 0.0 0.0 
Cy11toclonium purpureum 0.0 + 0.0 0.0 
De11mareetia spp. 0.0 0.0 17.Q(.20±.18) 2.4(.08±.08} 
Ectoc arpue spp. l.Q0(.28±.12) 28.3(.78±.23) .12(.04±.03) 12.7(.34± .14) 
Eudeeme viretJcen• 0.0 0.0 0.0 0.0 
Giffordia granulou + 0.0 0.0 + 
Monoetroma grevilleii 0.0 0.0 0.0 + 
Pa.lmaria pa.lmata + .15(.04±.04) .40(.07±.06) 4.13( .03±.01) 
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Table 9. Biomass data and summary statistics for urchins and molluscan herbivores . 
A). Molluscan herbivores 

ARITHMETIC STD. ERR. %OF 
DEPTH SAMPLE MEAN LOG 10 LOG 10 HERBIVORE 

TRST RANGE PERIOD N BIOMASS BIOMASS BIOMASS BIOMASS 

c 0-2M SUM79 5 1.16 0.327 0.042 0.30 
c 0-2M SPR80 5 9.50 0.906 0.155 2.80 
c 0-2M AUT80 4 1.73 0.429 0.047 0.50 
c 0-2M SUM81 5 1.90 0.380 0.133 1.00 
c 0-2M SUM82 10 2.06 0.311 0.125 6.70 
c 2-3M SUM79 5 10.76 1.039 0.085 1.00 
c 2-3M AUT79 3 20.70 1.333 0.038 1.30 
c 2-3M SPR80 5 12.57 1.111 0.069 0.60 
c 2-3M SPR81 5 27.57 1.431 0.074 2.10 
c 2-3M SUM81 5 29.73 1.458 0.080 2.40 
c 2-3M SPR82 5 19.44 1.288 0.072 1.20 
c 2-3M SUM82 10 20.23 1.217 0.122 15.40 
c 6-9M SUM79 5 25.17 1.351 0.128 3.20 
c 6-9M AUT79 4 32.56 1.422 0.201 3.20 
c 6-9M SPR80 5 22.91 1.341 0.100 2.10 
c 6-9M AUT80 5 30.43 1.460 0.094 4.00 
c 6-9M SPR81 5 65.00 1.740 0.133 7.90 
c 6-9M SUM81 5 30.08 1.412 0.141 5.90 
c 6-9M SPR82 5 30.87 1.451 0.111 9.30 
c 6-9M SUM82 10 21.09 1.253 0.108 28.80 
c 12-18M SPR80 5 15.43 1.182 0.082 1.50 
c 12-18M SPR81 5 15.23 1.100 0.190 4.40 
E 0-2M SUM79 5 1.41 0.181 0.181 0.30 
E 0-2M AUT80 5 4.52 0.724 0.065 37.40 
E 0-2M SPR81 3 2.98 0.427 0.275 5.20 
E 0-2M SUM81 5 1.08 0.256 0.110 0.80 
E 0-2M SUM82 10 0.67 0.103 0.086 4.40 

E 2-3M SUM79 5 8.81 0.979 0.054 0.50 
E 2-3M AUT80 5 33.40 1.501 0.092 31.70 
E 2-3M SPR81 5 35.01 1.489 0.123 25.00 
E 2-3M SUM81 6 10.18 0.995 0.104 5.00 
E 2-3M SPR82 6 9.53 0.924 0.143 3.90 
E 2-3M SUM82 10 8.35 0.805 0.139 11.30 
E 6-9M SUM79 5 26.21 1.330 0.165 4.20 
E 6-9M AUT80 5 23.98 1.363 0.086 26.00 
E 6-9M SPR81 5 28.37 1.457 0.049 63.50 
E 6-9M SUM81 5 26.56 1.391 0.102 17.70 
E 6-9M SPR82 5 44.57 1.614 0.108 26.00 
E 6-9M SUM82 10 31.69 1.490 0.051 68.60 

Q 2-3M SPR82 5 23.44 1.378 0.049 20.90 

Q 2-3M SUM82 5 6.68 0.794 0.133 18.00 

Q 6-9M SUM82 5 7.18 0.695 0.213 16.00 



Table 9 , cont ' d 

B). Urchins 

DEPTH SAMPLE 
TRST RANGE PERIOD 

c 0-2M SUM79 
c 0-2M SPR80 
c 0-2M AUT80 
c 0-2M SUM81 
c 0-2M SUM82 
c 2-3M SUM79 
c 2-3M AUT79 
c 2-3M SPR80 
c 2-3M SPR81 
c 2-3M SUM81 
c 2-3M SPR82 
c 2-3M SUM82 
c 6-9M SUM79 
c 6-9M AUT79 
c 6-9M SPR80 
c 6-9M AUT80 
c 6-9M SPR81 
c 6-9M SUM81 
c 6-9M SPR82 
c 6-9M SUM82 
c 12-18M SPR80 
c 12-18M SPR81 
E 0-2M SUM79 
E 0-2M AUT80 
E 0-2M SPR81 
E 0-2M SUM81 
E 0-2M SUM82 
E 2-3M SUM79 
E 2-3M AUT80 
E 2-3M SPR81 
E 2-3M SUM81 
E 2-3M SPR82 
E 2-3M SUM82 
E 6-9M SUM79 
E 6-9M AUT80 
E 6-9M SPR81 
E 6-9M SUM81 
E 6-9M SPR82 
E 6-9M SUM82 
Q 2-3M SPR82 
Q 2-3M SUM82 
Q 6-9M SUM82 

N 

5 
5 
4 
5 
10 
5 
3 
5 
5 
5 
5 
10 
5 
4 
5 
5 
5 
5 
5 
10 
5 
5 
5 
5 
3 
5 
10 
5 
5 
5 
6 
6 
10 
5 
5 
5 
5 
5 
10 
5 
5 
5 
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ARITHMETIC STD. ERR. % OF 
MEAN LOG 10 LOG 10 HERBIVORE 

BIOMASS BIOMASS BIOMASS BIOMASS 

433.48 2.386 0.258 99 .70 
328.36 2.423 0.144 97.20 
352.33 1.785 0.674 99 .50 
182.58 1.058 0.649 99.00 
28.50 0.819 0.284 93.30 
1074 2.988 0.092 99.00 
1626 3.193 0.094 98.70 

2019.5 3.262 0.101 99.40 
1269.1 3.025 0.153 97 .90 
1207 3.071 0.050 97.60 

1557.9 2.958 0.285 98.80 
110.99 1.932 0.110 84.60 
757.20 2.710 0.192 96.80 
994.00 2.741 0.355 96.80 
1079.5 2.989 0.102 97.90 
736.14 2.385 0.450 96.00 
755.28 2.836 0.100 92.10 
484.00 2.493 0.239 94.10 
299.60 2.227 0.240 90.70 
52.21 1.208 0.257 71.20 
1014.3 1.311 0.808 98.50 
329.94 2.293 0.255 95.60 
414.86 2.484 0.172 99.70 

7.56 0.318 0.318 62.60 
54.13 1.268 0.637 94.80 
132.04 0.572 0.562 99.20 
14.43 0.625 0.256 95.60 
1800.2 3.230 0.072 99.50 
71.90 1.665 0.210 68.30 
104.98 1.714 0.289 75.00 
194.58 2.220 0.116 95.00 
232.90 1.527 0.508 96.10 
65.71 1.429 0.266 88.70 

597.60 2.771 0.036 95.80 
68.26 1.566 0.280 74.00 
16.30 1.023 0.217 36.50 

123.18 1.752 0.305 82.30 
126.72 1.665 0.337 74.00 
14.52 0.932 0.178 31.40 
88.46 1.380 0.408 79 .10 
30.34 1.347 0.218 82.00 
37.76 0.858 0.446 84.00 
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Table 10. Estimates of the percent of urchin biomass removed from the experimental transect 

for each depth (see text for explanation). 

CONTROL EXPERIMENTAL 

Sample Geometric Geometric Estimated% 
depth mean cv* mean cv* removed 
range biomass (%) biomass (%) 

0-2m 65.1 64 5.3 143 -52<92<99.7 

2-3m 1147.0 11 78.8 48 82<93<97 

6-9m 323.0 29 37.9 44 66<88<96 

• CV=(S/X) 100% 
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Table 11· Estimates of the percentage urchin biomass removed from the 

quicklimed transect, calculated by comparison with the untreated areas. 

Estimated% 
Geometric Removal (with 

* Mean Bi~ass c.v. 95% confidence Sample Depth 
(g m- ) (%) N limits) Range 

69.8 46 10 74 < 94 < 99 2-3m 

27.2 98 5 -60 < 92 < 99.9 6-9m 

* C.V. = (S/X) X 100% 
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Table 12. Biomass and density data, and summary statistics for Tonicetla rubra. (T=Transect: 

C=Control, £=Experimental, Q=Quicklimed ; N=Number of samples). 

T 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

Q 

Q 

Q 

DEPTII 

RANGE 

~2M 

0.2M 

0.2M 

0.2M 

0.2M 

2-3M 

2r3M 

2r3M 

2-3M 

2r3M 

2-3M 

2-3M 

~OM 

~OM 

~OM 

~OM 

~OM 

~OM 

~OM 

~OM 

12-18M 

12-18M 

0.2M 

0.2M 

~2M 

0.2M 

0.2M 

2-3M 

2-3M 

2-3M 

2r3M 

2r3M 

2-3M 

~OM 

~OM 

~OM 

~OM 

~OM 

~OM 

2-3M 

2r3M 

~OM 

SAMPLE 

PERIOD N 

SUM70 6 

SPR80 6 

At.rl'8) 4 

SUM81 6 

SU1YfB2 10 

SUM70 6 

AUT70 3 

SPR80 6 

SPR81 6 

SUM81 6 

SPR82 6 

SU1YfB2 10 

SUM70 6 

AUT70 4 

SPR80 6 

At.rl'8) 6 

SPR81 6 

SUM81 6 

SPR82 6 

SU1YfB2 10 

SPR80 6 

SPR81 6 

SUM70 6 

At.rl'8) 6 

SPR81 3 

SUM81 6 

SU1YfB2 10 

SUM70 6 

At.rl'8) 6 

SPR81 6 

SUM81 0 

SPR82 0 

SU1YfB2 10 

SUM70 6 

Al.n'!IO 6 

SPR81 6 

SUM81 6 

SPR82 6 

SU1YfB2 10 

SPR82 6 

SU1YfB2 6 

SU1YfB2 6 

0 .20 

0.43 

0.41 

0 .38 

0.3tl 

10.20 

16.03 

12.06 

26.06 

27.78 

16.44 

17.26 

20.48 

26.64 

10.06 

20.02 

30.70 

26.64 

20.60 

17.00 

0.01 

8 .00 

0 .00 

0.00 

2.33 

0.00 

0.22 

6.1!0 

0.62 

0.73 

7.02 

6 .00 

0.30 

10.00 

20.38 

18.73 

10.04 

27.10 

24.90 

8 .64 

4.34 

0 .00 

Lcx::;10 

BIOMASS 

0.072 

0.120 

0.106 

0.110 

0.080 

1.017 

1.216 

1.001 

1.402 

1.431 

1.202 

1.128 

1.282 

1.347 

0.041 

1.202 

1.614 

1.347 

1.430 

1.107 

0.877 

0.8t!O 

0.000 

0.000 

0.311 

0.000 

0.061 

0.761 

0.070 

0.81!0 

0.866 

0.076 

0.043 

1.263 

1.200 

1.203 

1.088 

1.380 

1.360 

o.oeo 
o.oos 
0.038 

SID. ERR.. 

Lcx::;10 

BIOMASS 

0.072 

o.on 
0.106 

0.071 

0.060 

0.087 

0.040 

0 .072 

0.0~ 

o.on 
0.066 

0.130 

0.110 

0.180 

0.210 

0.~ 

0.162 

0.138 

0.112 

0 .111 

0.031 

0.178 

0.000 

0.000 

0.204 

0.000 

0.061 

0.134 

0.228 

0.071 

0.130 

0 .188 

0.168 

0.134 

0.070 

0.021 

0.206 

0.121 

0.072 

O.OffT 

0.220 

0.201 

ARITiiNIETIC 

l'vfEAN 

DENSITY 

4.00 

4.00 

2.60 

4.00 

6.00 

114.00 

210.07 

138.00 

260.00 

324.00 

234.00 

18:2.00 

374.00 

662.60 

248.00 

800.00 

010.00 

740.00 

~.00 

643.00 

264.00 

170.00 

0.00 

0.00 

10.07 

0.00 

3-00 

62.00 

70.00 

44.00 

70.07 

40.00 

40.00 

710.00 

028.00 

010.00 

712.00 

~.00 

927.00 

08.00 

62.00 

18:2.00 

0.264 

0.417 

0.260 

0.417 

O.MO 

2.020 

2.322 

2.114 

2.380 

2.443 

2.344 

2.13e 

2.618 

2.700 

2.2~ 

2.8fl0 

2.~ 

2.833 

2.803 

2.600 

2.390 

2.226 

0.000 

0.000 

0 .886 

0.000 

0.312 

l.OM 

1.384 

1.031 

1.803 

1.270 

1.408 

2.747 

2.738 

2.772 

2.831 

2.880 

2.001 

1.013 

1.110 

1.001 

S1D. ERR.. 

Lcx::;10 

DENSITY 

0.264 

0.266 

0.260 

0.266 

0.180 

0.008 

0.082 

0.081 

0.007 

0 .110 

0.074 

0.140 

0.126 

0.107 

0.207 

0.008 

0.121 

0.008 

0.110 

0.141 

0.047 

0.074 

0.000 

0.000 

0.472 

0.000 

0.160 

0.150 

0.400 

0.008 

0.082 

0.306 

0.107 

0.187 

0.106 

0.~ 

0 .262 

0 .180 

0 .080 

0.140 

0.407 

0.270 

% OF 
HDU3lVORE 

BIOMASS 

0.10 

0.10 

0.10 

0.20 

1.20 

0.00 

0.00 

0.80 

2.00 

2.20 

1.00 

13.10 

2.80 

2.80 

1.00 

2.70 

4.80 

6.00 

8.00 

24.10 

0.80 

2.80 

0.00 

0.00 

4.10 

0.00 

1.60 

0.30 

0.20 

4.80 

3.70 

2.40 

8.80 

3.20 

22.10 

41.00 

11.30 

16.~ 

64.00 

7 .80 

11.70 

13.60 
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Table 13. Biomass and density data, and summary statistics for Tonicella marmorea. (T=Transect: 

C=Control , E=Experimental, Q=Quicklimed; N=Number of samples). 

T 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

Q 

Q 

Q 

DEFTii 

RANGE 

~2M 

(}.2M 

(}.2M 

(}.2M 

~2M 

2-3M 

2-3M 

2-3M 

2-3M 

2-3M 

2-3M 

2-3M 

~9M 

~9M 

~9M 

~9M 

~9M 

6-9M 

6-9M 

~9M 

12-18M 

12-18M 

(}.2M 

~2M 

~2M 

(}.2M 

(}.2M 

2-3M 

2-3M 

2-3M 

2-3M 

2-3M 

2-3M 

~9M 

6-9M 

6-9M 

6-9M 

6-9M 

6-9M 

2-3M 

2-3M 

~9M 

SAMPLE 

PERIO D N 

SUM79 5 

SPR80 5 

At.rl'80 4 

SUM81 5 

SUM82 10 

SUM79 5 

AUT79 3 

SPR80 5 

SPR81 5 

SUM81 5 

SPR82 5 

SUM82 10 

SUM79 5 

AUT79 4 

SPR80 5 

At.rl'80 5 

SPR81 5 

SUM81 5 

SPR82 5 

SUM82 10 

SPR80 5 

SPR81 5 

SUM79 5 

At.rl'80 5 

SPR81 3 

SUM81 5 

SUM82 10 

SUM79 5 

At.rl'80 5 

SPR81 5 

SUMB1 e 
SPR82 e 
SUM82 10 

SUM79 5 

At.rl'80 5 

S PR81 5 

SUM81 5 

SPR82 5 

SUM82 10 

SPR82 5 

SUM82 5 

SUM82 5 

ARITIIMETIC 

MEAN 

BIOMASS 

0 .00 

0 .00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.36 

0 .00 

0 .00 

2.88 

3.~ 

!1.92 

8.92 

20.4!1 

2 .02 

0.02 

2.01 

8.74 

5.44 

0 .00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.~ 

5.82 

1.48 

2.44 

3 .02 

8.3!1 

2.5!1 

1.42 

0.00 

0.10 

LOG10 
BIOMASS 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.095 

0.000 

0.000 

0.414 

0.43!1 

0.7M 

0.!127 

1.2e1 

0.340 

0.~ 

0.285 

0.914 

O.e37 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.026 

0.45!1 

0.291 

0.384 

0.449 

0.545 

0 .47!1 

0.182 

0.000 

0.036 

0.000 

0.000 

0.000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.081 

0.000 

0.000 

0.19S 

0.213 

0.204 

0.285 

0.125 

O.Hl8 

0.~ 

0.127 

0.124 

0.212 

0.000 

0.000 

0.000 

0.000 

0.000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0.02e 

0.2e4 

0.145 

0.181 

0.178 

0.288 

0.092 

0.182 

0.000 

0.036 

ARITiiMETIC 

MEAN 

DENSITY 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0 .00 

0.00 

2.20 

0.00 

0.00 

3!1.00 

57.li0 

58.00 

eo.oo 
1~.00 

18.00 

4.00 

20.00 

eo.oo 
42.00 

0.00 

0.00 

0.00 

0.00 

20.00 

0.00 

0.00 

0.00 

0.00 

0.00 

1.00 

140.00 

20.00 

2!1.00 

2e.OO 

l'Kl.OO 

71.00 

4.00 

0.00 

2.00 

0.000 

0.000 

0.000 

0.000 

0.000 

0 .000 

0 .000 

0 .000 

0.000 

0.2e8 

0 .000 

0 .000 

0.988 

1.458 

1.400 

1.31!1 

1.934 

0.870 

0 .2!14 

0.!129 

l.M4 

1.33!1 

0.000 

0 .000 

0.000 

0 .000 

0.401 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .104 

1.250 

0 .843 

0.874 

1.097 

1.123 

1.515 

0.2!14 

0.000 

0 .208 

STD. ERR 

LOG10 

DENSITY 

0.000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.202 

0.000 

0.000 

0.424 

0.287 

0.374 

0.394 

0.149 

0.3!12 

0.2!14 

0.2e8 

0 .182 

0.350 

0.000 

0 .000 

0 .000 

0.000 

0.2e7 

0.000 

0.000 

0.000 

0 .000 

0.000 

0 .104 

0.549 

0.368 

0.300 

0.318 

0.49!1 

0.221 

0.2e4 

0.000 

0.208 

% OF 
HERBIVORE 

BIOMASS 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.40 

0.30 

o.eo 
L20 

2.50 

0.40 

0.00 

2.70 

0.80 

Leo 
0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.10 

0.00 

Leo 
5.50 

2.00 

4.90 

5.50 

1.30 

0 .00 

0 .20 
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Table 14. Biomass and density data, and summary statistics for Ischnochiton alba. (T=Transect : 

C=Control , E=Experimental,Q=Quicklimed; N=Number of samples) . 

T 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

Q 

Q 
Q 

DEPTH 

RANGE 

0.2M 

0.2M 

0.2M 

0.2M 

0.2M 

2-3M 

2-3M 

2-3M 

2-3M 

2-3M 

2-3M 

2-3M 

I}-9M 

I}-9M 

I}-9M 

I}-9M 

I}-9M 

I}-9M 

I}-9M 

I}-9M 

12-18M 

!2-18M 

0.2M 

0.2M 

0.2M 

0.2M 

0.2M 

2-3M 

2-3M 

2-3M 

2-3M 

2-3M 

2-3M 

I}-9M 

I}-9M 

I}-9M 

I}-9M 

I}-9M 

I}-9M 

2-3M 

2-3M 

I}-9M 

SAI\.1PLE 

PERIOD 

SUM79 

SPR80 

AUT80 

SUMBl 

SUtvf82 

SUM79 

AI.YI/9 

SPRBO 

SPR81 

SUMBl 

SPR82 

SUtvf82 

SUM79 

AUT79 

SPR80 

AUT80 

SPR81 

SUM81 

SPR82 

SUtvf82 

SPR80 

SPR81 

SUM79 

AUT80 

SPR81 

SUM81 

SUtvf82 

SUM79 

AUT80 

SPR81 

SUM81 

SPR82 

SUM82 

SUM79 

AUT80 

SPR81 

SUM81 

SPR82 

SUM82 

SPR82 

SUM82 

SUM82 

ARITii1vfETIC 

MEAN 

N BIOMASS 

6 0.00 

6 0.00 

4 0.00 

6 0 .00 

10 0.00 

6 0.00 

3 0.00 

6 0.00 

6 0.00 

6 0.00 

6 0.00 

10 0.00 

6 0.00 

4 0.49 

6 0.11 

6 0.00 

6 0.10 

6 0 .00 

6 0.30 

10 0.11 

6 0.00 

6 0.00 

6 0.00 

6 0.00 

3 0.00 

6 0.00 

10 0.00 

6 0 .00 

6 0 .00 

6 0.00 

e o.oo 
e o.oo 
10 0.00 

6 0 .00 

6 0.00 

6 0.02 

6 0.18 

4 0.76 

10 0 . 14 

6 0 .00 

6 0 .00 

6 0.00 

LOG10 
BIOMASS 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.117 

0.042 

0.000 

0.038 

0.000 

0.0~ 

0.032 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.008 

0.062 

0.161 

0.049 

0.000 

0.000 

0.000 

STD. ERR. 

LOG10 
BIOMASS 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.117 

0.024 

0.000 

0.038 

0.000 

0.0~ 

0.032 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.008 

0.046 

0.161 

0.023 

0.000 

0.000 

0.000 

ARI'I'H?v{ETI C 

MEAN LOG10 
DEI'ISITY DENSITY 

0.00 0.000 

0.00 0.000 

0.00 0.000 

0.00 0.000 

0.00 0.000 

0.00 0.000 

0.00 0.000 

0.00 0.000 

0.00 0 .000 

0.00 0 .000 

0.00 0.000 

0.00 0.000 

0.00 0.000 

6.00 0.331 

10.00 0 .737 

0.00 0.000 

6.00 0.298 

0.00 0.000 

14.00 0.621 

3.00 0.149 

0.00 0.000 

0.00 0.000 

0.00 0.000 

0.00 0.000 

0.00 0.000 

0.00 0.000 

0.00 0.000 

0.00 0.000 

0.00 0.000 

0.00 0.000 

0.00 0.000 

0.00 0.000 

0.00 0 .000 

0.00 0.000 

0.00 0.000 

2.00 0.208 

8.00 0 .607 

6.00 0.331 

7.00 0.601 

0.00 0.000 

0.00 0.000 

0.00 0.000 

STD. ERR. 

LOG10 

DENSITY 

0.000 

0.000 

0.000 

0.000 

0.000 

0 .000 

0 .000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.331 

0.306 

0.000 

0.298 

0.000 

0.381 

0.149 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0 .000 

0.000 

0 .000 

0.000 

0 .000 

0.000 

0 .208 

0 .318 

0.331 

0.20e 

0 .000 

0 .000 

0 .000 

% OF 
HERBIVORE 

BIOMASS 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.10 

0.20 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.10 

0.40 

0.30 

0.00 

0.00 

0.00 
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Table 15. Biomass and density data, and summary statistics for Acmaea testudinalis (T=Transect: 

C=Control, E=Experimental, Q=Quicklimed; N=Number of samples). 

T 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

Q 

Q 

Q 

DEPTI-1 

RANGE 

().2M 

().2M 

().2M 

().2M 

().2M 

2-3M 

2-3M 

2-3M 

2-3M 

2-3M 

2-3M 

2-3M 

~9M 

~9M 

~9M 

~9M 

~9M 

~9M 

~9M 

~9M 

12-18M 

12-18M 

().2M 

().2M 

().2M 

().2M 

().2M 

2-3M 

2-3M 

2-3M 

2-3M 

2-3M 

2-3M 

~9M 

~9M 

~9M 

~9M 

~9M 

~9M 

2-3M 

2-3M 

~9M 

SAMPLE 

PERlOD N 

SUM79 6 

SPR80 6 

AUT80 4 

SUM81 3 

SUM82 10 

SUM79 6 

AUT79 3 

SPR80 6 

SPR81 6 

SUM81 6 

SPR82 6 

SUM82 10 

SUM79 6 

AUT79 4 

SPR80 6 

AUT80 6 

SPR81 6 

SUM81 6 

SPR82 6 

SUM82 10 

SPR80 6 

SPR81 6 

SI.JW9 6 

AUT80 6 

SPR81 3 

SUM81 6 

SUM82 10 

SUM'79 6 

AUT80 6 

SPR81 6 

SUM81 8 

SPR82 8 

SUM82 10 

SUM79 6 

AUT80 6 

SPR81 6 

SUM81 6 

SPR82 6 

SUM82 10 

SPR82 6 

SUM82 6 

SUM82 6 

0.80 

3 .00 

0.80 

2.47 

1.70 

0.68 

1.37 

0.17 

1.02 

1.68 

2 .68 

2.e8 

1.79 

2.ro 
4.Q2 

0.87 

4.~ 

2.62 

1.03 

1.12 

0.~ 

0.13 

1.41 

0.00 

0.44 

0.18 

0.46 

3.16 

3.82 

8 .88 

2.13 

0.79 

l.W 

0.70 

0 .49 

6.19 

6.38 

l.!le 

2.14 

2.Q4 

1.12 

0.00 

0.236 

0.360 

0.091 

0.436 

0.266 

0.167 

0.323 

0.068 

0.348 

0.370 

0.467 

0.470 

0.404 

0.483 

0.731 

0.181 

0.876 

0.419 

0.266 

0.278 

0.028 

0.049 

0.181 

0.000 

0.148 

0.068 

0.088 

0.627 

0.4211 

0.670 

0.463 

0.227 

0.346 

0.200 

0. 123 

0.683 

0.698 

0.401 

0.436 

0.673 

0.274 

0.204 

STD. ERR. 

LOG10 

BIOMASS 

o.oog 
0.2211 

0.078 

0.231 

0.117 

0.087 

0.166 

0.041 

0.127 

0.102 

0.143 

0.101 

0.102 

0.122 

0.098 

0.094 

0.141 

0.166 

0.107 

0.068 

0.028 

0.030 

0.181 

0.000 

0.074 

0.030 

0.070 

0.161 

0 .218 

0.231 

0.076 

O.OM 

0.084 

0.081 

0.096 

0.2ro 

0.171 

0.117 

0.078 

0.072 

0.103 

0.1211 

ARlTHMETIC 

MEAN 

DENSITY 

10.00 

10.00 

10.00 

18.87 

17.00 

10.00 

38.87 

10.00 

48.00 

64.00 

u.oo 
oe.oo 
48.00 

180.00 

122.00 

62.00 

104.00 

72.00 

48.00 

41.00 

4.00 

6.00 

4.00 

2.00 

18.87 

8.00 

3.00 

32.00 

14.00 

u.oo 
Qe.67 

38.67 

64.00 

64.00 

26.00 

128.00 

148.00 

78.00 

76.00 

76.00 

24.00 

18.00 

LCG10 
DENSITY 

o.ggg 

0.631 

0.861 

0.938 

0.736 

0.716 

1.424 

0.716 

1.63Q 

1.443 

1.779 

1.671 

1.6:zg 

l.Q81 

2.004 

1.088 

1.939 

1.612 

1.383 

1.429 

0.264 

0.298 

0.264 

0.~ 

O.Q38 

0.881 

0.2.'36 

1.440 

0.979 

1.914 

l.lle2 

1.604 

1.~ 

1.711 

0.898 

1.747 

2.079 

1.850 

1.686 

1.883 

1.216 

0.666 

. 
' 

STD. ERR. 

LCG10 
DENSITY 

0.~ 

O.S37 

0.291 

0.471 

0.263 

0.303 

0.266 

0.303 

0.166 

0.3e8 

0. 199 

0.20Q 

0.206 

0.232 

0.160 

o.4oe 
0.141 

0.393 

0.366 

0.182 

0.264 

0.298 

0.264 

0.~ 

0.471 

0.283 

0.169 

0. 132 

0.269 

0.080 

0.076 

0 .118 

0.287 

0.161 

0.3Q4 

0.441 

0.139 

0.109 

0.200 

0.030 

0.173 

0.404 

%OF 

HERBNORE 

BIOMASS 

0.20 

0.00 

0.10 

1.30 

6.60 

0.10 

0.10 

0.00 

0.10 

0.10 

0.20 

2.00 

0.20 

0.20 

0.40 

0.10 

0.60 

0.60 

0.30 

1.60 

0.00 

0.00 

0.30 

0.00 

0.80 

0.10 

3.00 

0.20 

3.60 

4.00 

1.00 

0.30 

2.10 

0.10 

0.60 

13.80 

4.30 

1.10 

4.60 

2.60 

3.00 

2.00 
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Table .l6 . Biomass and density data, and summary statistics for Lacuna vincta. (T=Transect: 

C=Control, E=Experimental, Q=Quicklimed; N=Nurnber oC samples). 

T 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 
E 

E 

Q 

Q 

Q 

DEPTH 

RANGE 

~2M 

~2M 

~2M 

~2M 

~2M 

2-3M 

2-3M 

2-3M 

2-3M 

2-3M 

2-3M 

2-3M 

2-3M 

t'r9M 

t'r9M 

t'r9M 

t'r9M 

t'r9M 

t'r9M 

t'r9M 

t'r9M 

12-18M 

12-18M 

~2M 

~2M 

~2M 

~2M 

~2M 

2-3M 

2-3M 

2-3M 

2-3M 

2-3M 

2-3M 

t'r9M 

t'r9M 

t'r9M 

e.gM 

t'r9M 

t'r9M 

2-3M 

2-3M 

t'r9M 

SAJI..fPLE 

PERIOD N 

SIJM79 5 

SPR80 5 

AUT80 4 

SUM81 5 

SUMB2 10 

SIJM79 5 

AUT79 3 

SPR80 5 

AUT80* 5 

SPR81 5 

SUM81 5 

SPR82 5 

SUMB2 10 

SIJM79 5 

AUT79 4 

SPR80 5 

AUT80 5 

SPR81 5 

SUM81 5 

SPR82 5 

SUMB2 10 

SPR80 5 

SPR81 5 

SIJM79 5 

AUT80 5 

SPR81 3 

SUM81 5 

SUMB2 10 

SIJM79 5 

AUT80 5 

SPR81 5 

SUM81 !I 

SPR82 !I 

SUMB2 10 

SIJM79 5 

AUT80 5 

SPR81 5 

SUM.Bl 5 

SPR82 5 

SUMB2 10 

SPR82 5 

SUMB2 5 

SUMB2 5 

ARITHMETIC 

MEAN 

BIOMA$ 

0.02 

1.21 

0.98 

0.00 

0.00 

0.00 

0.21 

0.00 

0.55 

0.00 

0.00 

1.38 

0.30 

0.00 

0.1!1 

0.00 

0.22 

0.00 

0.00 

0.02 

0.20 

0.00 

O.trl 

0.00 

4.32 

0.03 

0.!14 

0.00 

0.00 

21.54 

14.30 

0 .22 

1.23 

0.29 

0.00 

1.55 

o.gg 
0.00 

4.71 

l.&g 

8.14 

1.10 

0.10 

LOG10 
BIOl'vfASS 

0.~ 

0.302 

0.200 

0.000 

0.000 

0.001 

0.0~ 

0.000 

0.183 

0.000 

0.000 

0.20!1 

0.000 

0.000 

0.064 

0.000 

0.07!1 

0.000 

0.000 

0.~ 

0.050 

0.000 

0.209 

0.000 

0.708 

0.012 

0.1!18 

0.000 

0.000 

1.327 

1.043 

0.078 

0.299 

0.002 

0.000 

0.235 

0.21>4 

0.000 

0.624 

0.~ 

0.934 

0.282 

0.0~ 

sro. ERR. 

LOG10 
BIOl'vfASS 

0.~ 

0.098 

0.041 

0.000 

0.000 

0.001 

0.024 

0.000 

0.040 

0.000 

0.000 

0.1eg 

0.000 

0.000 

0.01!1 

0.000 

0.0-te 

0.000 

0.000 

0.~ 

0.04(1 

0.000 

0.054 

0.000 

0.0!13 

0.012 

0.095 

0.000 

0.000 

0.077 

0.1!14 

0.035 

0.()g3 

0.040 

0.000 

0.170 

0.071 

0.000 

0.185 

0.114 

0.081 

0.11!1 

0.024 

ARITI-IMETIC 

MEAN 

DENSITY 

2.00 

64.00 

807.50 

0.00 

0.00 

2.00 

193.33 

0.00 

!113.~ 

0.00 

2.00 

44.00 

3.00 

0.00 

1!15.00 

0.00 

4e.OO 

4.00 

10.00 

12.00 

42.00 

0.00 

108.00 

0.00 

2272.00 

!1.!17 

1-te.OO 

0.00 

0.00 

4815.00 

2058.00 

!18.33 

295.00 

~.00 

!1.00 

1481).00 

438.00 

12.00 

573.00 

852.00 

2lio3e.OO 

1048.00 

42.00 

* da.t& rrom qua.dra.ts t&ken outside the experiment&! tl"lLI19ed. Onzy- Lacuna &nd Margarstes qU&ntified. 

0.208 

1.496 

2.874 

0.000 

0.000 

0.208 

2.104 

0.000 

2.534 

0.000 

0.208 

1.001 

0.23!1 

0.000 

2.077 

0.000 

1.624 

0.2!14 

0.563 

0.357 

0.572 

0.000 

1.971 

0 .000 

3.073 

0.441 

1.519 

0.000 

0.000 

3.!129 

3.017 

une 
2.252 

1.415 

0.473 

2.629 

2.514 

0.08'7 

2.347 

2.032 

3.177 

2.045 

0.721 

0.208 

0.383 

0.100 

0.000 

0.000 

0.208 

0.280 

0.000 

0.250 

0.000 

0.208 

0.448 

0.159 

0.000 

0.253 

0.000 

0.101 

0.2!14 

0.34!1 

0.357 

0.273 

0.000 

0.120 

0.000 

0.280 

0.441 

0.449 

0.000 

0.000 

0.117 

0.253 

0.422 

0.221 

0.271 

0.293 

0.399 

0.184 

O.U2 

0.379 

0.410 

0.207 

0.!1!11 

0.4!17 

%OF 

HERBIVORE 

BIOl'vfASS 

0.00 

0.40 

0.30 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.10 

0.20 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.30 

0.00 

0.20 

0.00 

35.~ 

0.10 

0.50 

0.00 

0.00 

20.50 

10.20 

0.10 

0.50 

0.40 

0.00 

1.70 

2.00 

0.00 

2.70 

4.10 

7.30 

3.00 

0.20 
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Table 17 . Calculation of the survival into the following spring and summer of Lacuna from 
t he autumn 1980 recruitment (nd=no data, T=Transect: C=Control, E=Experimental) . 

0-2m 2-3m 6-9m 

Geometric Geometric Geometric 
mean mean mean 

Date T density density density 

Aut80 c nd % 340.9 % 41.1 % 
E 1181.0 surviving 4250.6 surviving 424.2 surviving 

Spr81 c nd nd 0.0 0.0 0.84 2 .04 
E 1.76 0.02 1038.8 24.4 325.7 76.8 

Sum81 c nd nd 0.6 0 .02 2.65 6.45 
E 32.0 2.7 19.7 0.46 2.86 0.67 
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Table 18. Biomass and density data, and summary statistics for Margarites helicinus. (T=Transect: 

C=Control, E=Experimental, Q=Quicklimed ; N=Number of samples). 

DEPTH 

T RANGE 

C ~2M 

C ~2M 

C ~2M 

C ~2M 

C ~2M 

C 2-3M 

C 2-3M 

C 2-3M 

C 2-3M 

C 2-3M 

C 2-3M 

C 2-3M 

c rr9M 

c rr9M 

c rr9M 

c rr9M 

c rr9M 

C ~9M 

c rr9M 

C ~9M 

C 12-18M 

C 12-18M 

E ~2M 

E ~2M 

E ~2M 

E ~2M 

E ~2M 

E 2-3M 

E 2-3M 

E 2-3M 

E 2-3M 

E 2-3M 

E 2-3M 

E rr9M 

E rr9M 

E rr9M 

E ~9M 

E rr9M 

E rr9M 

Q 2-3M 

Q 2-3M 

Q rr9M 

SAMPLE 

PERJO D 

Sl.J1'vr79 

SPR80 

At..rr'SO* 

SUMS! 

SUM82 

Sl.J1'vr79 

AUT79 

SPR80 

SPR.Sl 

SUMS! 

SPR82 

SUM82 

Sl.J1'vr79 

AUT79 

SPR80 

AUTSO 

SPR81 

SUMS! 

SPR82 

SUM82 

SPR80 

SPR81 

Sl.J1'vr79 

AUTSO 

SPR8I 

SUMS I 

SUM82 

Sl.J1'vr79 

AUTSO 

SPR81 

SUMS! 

SPR82 

SUM82 

Sl.J1'vr79 

AUTSO 

SPRSI 

SUMS I 

SPR82 

SUM82 

SPR82 

SUM82 

SUM82 

ARJTiiMETIC 

MEAN 

N SlOMA.$ 

6 0 .08 

6 4.81!1 

4 0.06 

6 0.04 

10 0 .00 

6 0 .00 

3 3.49 

6 0 .3e 

6 0 .00 

6 0 .02 

6 0.04 

10 0 .00 

6 0.02 

4 0 .10 

6 0 .02 

6 0.00 

6 0 .04 

6 0.00 

5 0.00 

10 0.00 

6 0.00 

5 0.00 

6 0.00 

5 0.20 

3 0.17 

6 0.28 

10 0.00 

5 0.00 

5 1.51 

5 7.10 

0 0 .22 

0 1.02 

10 0 .00 

5 0.00 

5 0.08 

5 0.11 

5 0 .04 

5 1.94 

10 0.00 

5 2.40 

5 0.12 

5 0.02 

0.031 

0.070 

0.021 

0.010 

0.000 

0.000 

0.040 

0.100 

0.000 

0.~ 

0.010 

0.000 

0.007 

0.038 

0.009 

0.000 

0.010 

0.000 

0.001 

0.000 

0.000 

0.000 

0.000 

O.oe7 

0.001 

0.083 

0.000 

0.000 

0.371 

0.810 

0.078 

0.252 

0.000 

0.000 

0.032 

0.041 

0.010 

0.240 

0.000 

0.470 

0.040 

0.~ 

STD. ERR. 

L(X}lO 

BIOMASS 

0.022 

0.144 

0.012 

0.010 

0.000 

0.000 

0.074 

0.079 

0.000 

0.~ 

0.010 

0.000 

0.007 

0 .023 

0.000 

0.000 

0.010 

0.000 

0.001 

0.000 

0.000 

0.000 

0.000 

0.050 

0.001 

0.059 

0.000 

0.000 

0 .084 

0.151 

0.035 

0.166 

0.000 

0.000 

0.016 

0.02h 

0.010 

0.193 

0.000 

0.115 

0.027 

0.~ 

AR11liMEI1C 

MEAN 

DENSITY 

0.00 

454.00 

102.150 

48.00 

0.00 

2.00 

1660.07 

42.00 

0.00 

38.00 

2.00 

2.00 

2.00 

06.00 

4.00 

10.00 

2.00 

0.00 

2.00 

0.00 

0.00 

0.00 

0.00 

108.00 

28.07 

144.00 

0.00 

0.00 

1530.00 

040.00 

01.07 

128.33 

2.00 

0.00 

66.00 

24.00 

0.00 

130.00 

10.00 

90.00 

122.00 

28.00 

*d&ta. l'rom qua.dn.ts ta.ken outside the experlmenta.I tl"ll.ll.lled.$0nly Lacuna a.nd Margantes qlllUltlfted. 

0.473 

2.494 

1.832 

1.362 

0.000 

0.208 

3.182 

0 .963 

0.000 

1.037 

0 .208 

0.208 

0.208 

1.050 

0.417 

0.737 

0.208 

0.000 

0.208 

0.000 

0.000 

0.000 

0.000 

1.220 

0.030 

1.474 

0.000 

0.000 

3.001 

2.741 

1.022 

1.107 

0 .132 

0.000 

1.132 

0.888 

0 .298 

1.194 

0.200 

1.834 

1.360 

0 .430 

STD. ERR 

L(X}IO 

DENSITY 

0.293 

0 .195 

0.248 

0.301 

0 .000 

0.208 

0.008 

0.433 

0.000 

0.435 

0 .208 

0.139 

0.208 

0 .010 

0.256 

0 .305 

0.208 

0.000 

0.208 

0.000 

0.000 

0.000 

0.000 

0.560 

0 .030 

0 .478 

0 .000 

0.000 

0 .149 

0 .125 

0.402 

0.610 

0.132 

0.000 

0 .473 

0.388 

0.298 

0.637 

0 .200 

0 .215 

0.500 

0.430 

% OF 
HERBlVORE 

BIOMASS 

0.00 

1.40 

0.00 

0.00 

0.00 

0.20 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0 .00 

0.00 

1.70 

0.30 

0.20 

0.00 

0.00 

1.40 

5.10 

0.10 

0.70 

0.00 

0.00 

0.10 

0.20 

0.00 

1.10 

0.00 

2.10 

0.30 

0 .00 
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Table 19. Calculation of the survival into the following spring and summer of Margarites 

from the autumn 1979 recruitment (T = transect : E = experimental, C = control; 

nd=no data). 

0-2m 2-3m 6-9m 

Geometric Geometric Geometric 
mean mean mean 

Date T density density density 

Aut80 c nd % 789.7 % 4.5 % 

E 15.6 surviving 1231.8 surviving 12.6 surviving 

Spr81 c nd nd 0.0 0.0 0.6 13.3 

E 3.3 21.2 549.7 44.7 6.7 53.2 

Sum81 c nd nd 9.9 1.25 0.0 0 .0 

E 28.8 184.5 9.5 0.77 1.9 15.1 
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Appendix A. Biomass da.ta. for each species of ma.cro-a.lga sampled during the present study (T=Tra.nsect : 

E=Experimenta.l , C=Control , Q=Quickl imed ; N = Number of qua.dra.ts) 

Species=ACROTHR/X NOVAEANGLIAE 

Depth Sample T N Arithmetic Mean of log Standard Geometric Percent of 

range 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

'2-3m 

2-3m 

2-3m 

2-3m 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

period 

SUM79 E 5 

SPRBO C 5 

AUTBO C 4 

AUTBO E 5 

SPRB1 E 3 

SUM81 C 5 

SUM81 E 5 

SUMB2 C 10 

SUM82 E 10 

S UM79 C 5 

SUM79 E 5 

AUT79 C 3 

SPRBO C 5 

AUTBO E 5 

SPR81 C 5 

SPRB1 E 5 

SUMBl C 5 

SUM81 E 6 

SPRB2 C 5 

SPR82 E 6 

SPRB2 Q 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

SUM79 C 5 

SUM79 E 5 

AUT79 C 4 

SPRBO C 5 

AUT80 C 5 

AUTBO E 5 

SPR81 C 5 

SPRBl E 5 

SUMBl C 5 

SUMBl E 5 

SPRB2 C 5 

SPRB2 E 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

Mean 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

3 .400 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .800 

0 .000 

0 .000 

transformed 

da.ta. 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0.260 

0.000 

0.000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0 .000 

0.000 

0.000 

0.000 

0.140 

0.000 

0.000 

error 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .17 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .09 

0 .00 

0 .00 

Mean 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0 .000 

0 .800 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .400 

0 .000 

0 .000 

biomass 

0.00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0.00 

0.00 

0 .50 

0 .00 

0 .00 

0.00 

0.00 

0.00 

0.00 

0.00 

0 .00 

0 .00 

0.00 

0.00 

0 .00 

0.00 

0.00 

0 .10 

0.00 

0 .00 



Appendix A , Continued 

Species=AGARUM CRIBROSUM 

Depth Sa.mple T N Arithmetic Mea.n of log Sta.nda.rd Geometric Percent of 

ra.nge 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

period 

SUM79 C 5 

SUM79 E 5 

SPR80 C 5 

AUT80 C 4 

AUT80 E 5 

SPR81 E 3 

SUM81 C 5 

SUM81 E 5 

SUM82 C 10 

SUM82 E 10 

SUM79 C 5 

SUM79 E 5 

AUT79 C 3 

SPR80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 6 

SPR82 C 5 

SPR82 E 6 

SPR82 Q 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

SUM79 C 5 

SUM79 E 5 

AUT79 C 4 

SPR80 C 5 

AUT80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 5 

SPR82 C 5 

SPR82 E 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

Mea.n 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

30.700 

0 .000 

31.200 

0 .000 

11.300 

0 .000 

66.400 

0 .000 

transformed 

da.ta. 

0 .000 

0.000 

0.000 

0.000 

0 .000 

0.000 

0.000 

0 .000 

0.000 

0 .000 

0 .000 

0.000 

0.000 

0.000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .440 

0.000 

0.440 

0 .000 

0 .350 

0 .000 

0 .730 

0 .000 

error 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .44 

0 .00 

0 .44 

0 00 

0 .35 

0 .00 

0 .31 

0 .00 

Mea.n 

0 .000 

0 .000 

0 .000 

0 000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 000 

0.000 

0.000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

1.800 

0 .000 

1.800 

0 .000 

1.200 

0 .000 

4.400 

0 .000 

bioma.ss 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0.00 

0.00 

0.00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0.00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

2.60 

0.00 

3.20 

0.00 

0 .80 

0.00 

2.80 

0 .00 
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Appendix A, Continued 

Species=ALAR lA ESCULENT A 

Depth Sa.mple T N Arithmetic Mea.n of log Sta.nda.rd Geometric Percent of 

ra.nge 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

period 

SUM79 C 5 

SUM79 E 5 

SPR80 C 5 

AUT80 C 4 

AUT80 E 5 

SPR81 E 3 

SUM81 C 5 

SUM81 E 5 

SUM82 C 10 

SUM82 E 10 

SUM79 C 5 

SUM79 E 5 

AUT79 C 3 

SPR80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 6 

SPR82 C 5 

SPR82 E 6 

SPR82 Q 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

SUM79 C 5 

SUM79 E 5 

AUT79 C 4 

SPR80 C 5 

AUT80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 5 

SPR82 C 5 

SPR82 E 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

Mea.n 

1283.500 

153.100 

1887 .000 

1745 .000 

1190 .000 

2799 .000 

6078 .000 

5326 .200 

5956 .900 

5603.400 

1.600 

0.100 

0 .000 

0 .000 

0 .000 

105.100 

1796.600 

0 .200 

1226 .500 

+ 
7061.900 

841.100 

4.100 

2485 .300 

2261.700 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0.000 

0 .000 

1.800 

0 .000 

13.400 

0.000 

26.100 

0 .000 

128.900 
107 .700 

transformed 

da.ta. 

2 .790 

1.520 

3.090 

3.230 

3.030 

3.400 

2.840 

3.640 

3.210 

3.470 

0.190 

0.030 

0.000 

0.000 

0.000 

1.110 

3.170 

0.050 

2.960 

3.520 

2 .850 

0.270 

2.680 

2.270 

0 .000 

0.000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0.200 

0 .000 

0 .620 

0 .000 

0 .550 

0.000 

0.580 
0 .580 

error 

0 .30 

0.35 

0 .21 

0 .06 

0 .10 

0 .16 

0 .79 

0 .15 

0 .-42 

0 .23 

0 .19 

0 .03 

0 .00 

0 .00 

0 .00 

0.48 

0 .13 

0 .05 

0 .16 

0.36 

0 .14 

0 .16 

0 .33 

0 .74 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0.20 

0 .00 

0 .33 

0 .00 

0.41 

0 .00 

0.37 

0 .54 

Mea.n 

615.600 

32.100 

1229 .300 

1697 .200 

1070 .500 

2510 .900 

690.800 

4364 .200 

1620 .800 

2950 .200 

0 .500 

0 .100 

0 .000 

0 .000 

0 .000 

11 .900 

1478.100 

0 .100 

911.000 

3310 .300 

706.900 

0 .900 

477 .600 

185.200 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .600 

0 .000 

3 .200 

0 .000 

2 .500 

0 .000 

2.800 

2 .800 

bioma.ss 

54 .20 

6.80 

59 .70 

45 .30 

52 .30 

76.20 

99 .90 

98.10 

97.40 

99 .90 

9.10 

8.60 

0.00 

0.00 

0.00 

77 .50 

75 .90 

0.00 

51.30 

0.00 

99.50 

85.10 

0 .60 

98 .50 

94 .30 

0 .00 

0 .00 

0 .00 

0.00 

0.00 

0 .00 

0 .00 

0.10 

0.00 

1.40 

0 .00 

2.00 

0 .00 

5.50 

14 .50 
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Appendix A, Continued 

Species=ANTJTHAMNJONELLA FLOCCOSA 

Depth 

range 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

Sample T N 
period 

SUM79 C 5 

SUM79 E 5 

SPR80 C 5 

AUT80 C 4 

AUT80 E 5 

SPR81 E 3 

SUM81 C 5 

SUM81 E 5 

SUM82 C 9 

SUM82 E 10 

SUM79 C 5 

SUM79 E 5 

AUT79 C 3 

SPR80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 6 

SPR82 C 5 

SPR82 E 6 

SPR82 Q 5 

SUM82 C g 

SUM82 E 9 

SUM82 Q 4 

SUM79 C 5 

SUM79 E 5 

AUT79 C 4 

SPR80 C 5 

AUT80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 5 

SPR82 C 5 

SPR82 E 5 

SUM82 C 9 

SUM82 E g 

SUM82 Q 4 

Arithmetic 

Mean 

0 .000 

0.000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

+ 
0 .000 

+ 
0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .300 

0 .000 

+ 
0 .000 

+ 

0.000 

0 .000 

0 .000 

+ 
+ 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

Mean of log 

transformed 

data 

0 .000 

0.000 

0 .000 

0 .000 

+ 
0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .020 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .080 

0 .000 

0.000 

0 .000 

0.000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

Standard 

error 

0 .00 

0 .00 

0 .00 

0.00 

0 .01 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .01 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .08 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

Geometric 

Mean 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .200 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

Percent of 

biomass 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0 .00 

0.00 

0.00 

0.10 

0.00 

0.00 

0 .00 

0.00 

0.00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 00 

0 .00 

0 .00 

.... 0 .00 

0 .00 

0.00 

0.00 

0 00 

0 .00 
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Appendix A, Continued 

Species=BONNEMAISONIA HAMIFERA 

Depth 

ra.nge 

0-2m 

0-2m 

0-2m 

0-2 m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

Sa.mple T 

period 

SUM79 C 

SUM79 E 

SPR80 C 

AUT80 C 

AUT80 E 

SPR81 E 

SUM81 C 

SUM81 E 

SUM82 C 

SUM82 E 

SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 E 

SPR81 C 

SPR81 E 

SUM81 C 

SUM81 E 
SPR82 C 

SPR82 E 

SPR82 Q 
SUM82 C 

SUM82 E 

SUM82 Q 
SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 C 

AUT80 E 

SPR81 C 

SPR81 E 

SUM81 C 

SUM81 E 

S PR82 C 

SPR82 E 
SUM82 C 

SUM82 E 

SUM82 Q 

N Arithmetic 

Mea.n 

5 0 .000 

5 0 .000 

5 0.000 

4 0 .000 

5 0 .000 

3 0 .000 

5 0 .000 

5 0 .000 

10 0 .000 

10 0 .000 

5 0 .000 

5 0 .000 

3 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

6 0 .000 

5 0 .000 

6 0 .000 

5 0 .000 

10 0 .000 

10 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

4 0 .000 

5 0 .000 

5 0 .100 

5 0 .000 

5 0 .000 

5 0 .000 

5 0.000 

5 0 .000 

5 0 .000 

5 0 .000 

10 0 .000 

10 0 .000 

5 0 .000 

Mea.n of log 

tra.nsfo rmed 

da.ta. 

0 .000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0 .000 

0 .000 

0.000 

0.000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .030 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0.000 

0 .000 

0.000 

0.000 

Sta.nda.rd 

error 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .03 

0 .00 

0 .00 

0 .00 

0 .00 

0 00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

Geometric 

Mea.n 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0.000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .100 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

Percent of 

bioma.ss 

0.00 

0.00 

0 .00 

0.00 

0.00 

0.00 

0 .00 

0 .00 

0.00 

0 .00 

0.00 

0 .00 

0.00 

0 .00 

0.00 

0 .00 

0.00 

0.00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 00 

0.00 

0.00 

0.00 

0.00 

79 .60 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0 .00 

0.00 

0 .00 
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Appendix A , Continued 

Species=CALLOPHYLL/S CRISTA TA 

Depth Sample T N Arithmetic Mean of log Standard Geometric Percent of 

range 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2 m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

period 

SUM79 C 5 

SUM79 E 5 

SPR80 C 5 

A UT80 C 4 

AUT80 E 5 

SPR81 E 3 

SUM81 C 5 

SUM81 E 5 

SUM82 C 10 

SUM82 E 10 

SUM79 C 5 

SUM79 E 5 

AUT79 C 3 

SPR80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 6 

SPR82 C 5 

SPR82 E 6 

SPR82 Q 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

SUM79 C 5 

SUM79 E 5 

AUT79 C 4 

SPR80 C 5 

AUT80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 5 

SPR82 C 5 

SPR82 E 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

Mean 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0 .000 

0.000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

+ 
0 .000 

0.000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

+ 
0.000 

transformed 

data 

0.000 

0 .000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0 .000 

0 000 

0 .000 

0.000 

0.000 

0.000 

0. 000 

0 .000 

0 .000 

0.000 

0 .000 

0.000 

0.000 

0 .000 

+ 
0 .000 

0 .020 

0.000 

0 .000 

0.000 

0 .000 

error 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .01 

0 .00 

0 .02 

0 .00 

0.00 

0 .00 

0 .00 

Mean 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

biomass 

0.00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0.00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0.00 

0.00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 
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Appendix A, Continued 

Species=CERAMIUM RUBRUM 

Depth Sample T N Arithmetic Mean of log Standard Geometric Percent of 

range 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

period 

SUM79 C 5 

SUM79 E 5 

SPR80 C 5 

AUT80 C 4 

AUT80 E 5 

SPR81 E 3 

SUM81 C 5 

SUM81 E 5 

SUM82 C 10 

SUM82 E 10 

SUM79 C 5 

SUM79 E 5 

AUT79 C 3 

SPR80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 6 

SPR82 C 5 

SPR82 E 6 

SPR82 Q 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

SUM79 C 5 

SUM79 E 5 

AUT79 C 4 

SPR80 C 5 

AUT80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 5 

SPR82 C 5 

SPR82 E 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

Mean 

0.300 

+ 
0 .000 

0 .000 

0 .100 

23.700 

0 .000 

0 .300 

+ 
+ 

0 .200 

0 .000 

0.000 

0 .000 

4 .000 

0 .000 

10.400 

0 .000 

15.800 

0.000 

35.500 

+ 
+ 

6 .100 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .500 

0 .000 

0 .500 

0 .000 

+ 
0 .000 

9 .700 

0 .000 

5 .800 

+ 

transformed 

0 .080 

+ 
+ 

0.030 

0.630 

0.000 

0.080 

0.060 

0.000 

0.000 

0.000 

0 .570 

0 .000 

0.750 

0.000 

0.950 

0.000 

1.100 

0.380 

+ 
0.000 

0.000 

0.000 

0.000 

0.000 

0. 150 

0.000 

0. 110 

0.000 

0.000 

0 .400 

0.000 

0.230 

error 

0 .07 

0.01 

0 .01 

0 .02 

0 .61 

0 .00 

0 .08 

0 .05 

0 .00 

0 .00 

0 .00 

0 .18 

0 .00 

0 .27 

0 .00 

0 .26 

0 .00 

0 .36 

0 .19 

0 .01 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .07 

0 .00 

0 .11 

0 .00 

0 .00 

0 .33 

0 .00 

0 .18 

Mean 

0 .200 

0 .000 

0 .000 

0 .100 

3 .300 

0 .000 

0 .200 

0.100 

0 .000 

0 .000 

0 .000 

2 .700 

0.000 

4 .600 

0 .000 

7 .900 

0 .000 

11 .600 

1.400 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0.400 

0 .000 

0.300 

0 .000 

0 .000 

1 .500 

0 .000 

0 .700 

biomass 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .60 

0 .00 

0 .00 

0.00 

0 .00 

1.00 

0 .00 

0 .00 

0 .00 

12 .10 

0 .00 

0.40 

0 .00 

0 .70 

0.00 

0.50 

0.00 

0.00 

0 .20 

0.00 

0 .00 

0.00 

0.00 

0 .00 

0 .00 

2 .10 

0 .00 

0.00 

0 .00 

0.00 

0.00 

0.70 

0 .00 

0 .20 

0 .00 
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Appendix A , Continued 

Species=CHORDA TOMENTOSA 

Depth 

range 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

Sample T 

period 

SUM79 C 

SUM79 E 

SPR80 C 

AUT80 C 

AUT80 E 
SPR81 E 

SUM81 C 

SUM81 E 

SUM82 C 

SUM82 E 
SUM79 C 

SUM79 E 
AUT79 C 

SPR80 C 

AUT80 E 

SPR81 C 

SPR81 E 
SUM81 C 

SUM81 E 

SPR82 C 

SPR82 E 

SPR82 Q 

SUM82 C 

SUM82 E 

SUM82 Q 
SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 C 

AUT80 E 

SPR81 C 

SPR81 E 

SUM81 C 

SUM81 E 

SPR82 C 

SPR82 E 

SUM82 C 

SUM82 E 

SUM82 Q 

N Arithmetic 

Mean 

5 0 .000 

5 1.200 

5 12.400 

4 0 .000 

5 0 .000 

3 0 .000 

5 0 .000 

5 0 .000 

10 0 .000 

10 0 .000 

5 0 .000 

5 0 .000 

3 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 1.600 

5 0 .000 

6 0.000 

5 0 .000 

6 + 
5 0 .000 

10 28 .000 

10 21.200 

5 0 .000 

5 0 .000 

5 0 .000 

4 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 1.10"0 

5 0 .000 

5 0 .000 

10 0 .000 

10 0 .000 

5 0 .000 

Mean of log 

transformed 

data 

0.000 

0. 170 

0.580 

0.000 

0.000 

0.000 

0.000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0.200 

0.000 

0.000 

0.000 

0 .000 

0 .240 

0.230 

0 .000 

0.000 

0 .000 

0 .000 

0.000 

0.000 

0 .000 

0.000 

0.000 

0 .000 

0 .160 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

Standard 

error 

0 .00 

0 .17 

0 .33 

0.00 

0 .00 

0 .00 

0 .00 

0.00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0.19 

0 .00 

0 .00 

0 .00 

0.00 

0 .24 

0 .23 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .16 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

Geometric 

Mean 

0 .000 

0 .500 

2 .800 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .600 

0 .000 

0 .000 

0.000 

0 .000 

0 .700 

0 .700 

0.000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.400 

0 .000 

0.000 

0 .000 

0 .000 

0.000 

Percent of 

biomass 

0.00 

0 .10 

0.40 

0 .00 

0 .00 

0.00 

0.00 

0.00 

0.00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .10 

0 .00 

0.00 

0 .00 

0.00 

0 .00 

4.20 

0.80 

0 .00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0 .00 

0 .10 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

198 



Appendix A, Continued 

Species=CHORDARIA FLAGELLIFORMIS 

Depth Sample T N Arithmetic Mean of log Standard Geometric Percent of 

range 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

period 

SUM79 C 5 

SUM79 E 5 

SPR80 C 5 

AUT80 C 4 

AUT80 E 5 

SPR81 E 3 

SUM81 C 5 

SUM81 E 5 

SUM82 C 10 

SUM82 E 10 

SUM79 C 5 

SUM79 E 5 

AUT79 C 3 

SPR80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 6 

SPR82 C 5 

SPR82 E 6 

SPR82 Q 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

SUM79 C 5 

SUM79 E 5 

AUT79 C 4 

SPR80 C 5 

AUT80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 5 

SPR82 C 5 

SPR82 E 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

Mean 

749.300 

1909.400 

43 .900 

149.000 

94 .700 

8 .600 

0 .000 

+ 
28.600 

+ 
11 .200 

0 .700 

0 .000 

0 .000 

1.300 

1.900 

0 .300 

9 .800 

57.600 

+ 
0 .000 

0 .000 

46 .200 

5 .900 

1.700 

0 .900 

0 .000 

0 .000 

0.000 

0 .000 

3 .000 

0 .000 

0.400 

0.000 

43 .000 

0 .000 

13.400 

1.700 

8 .900 

16.700 

transformed 

data 

2.650 

3.250 

1.110 

0 .950 

1.530 

0.590 

0.000 

0.490 

0.590 

0.130 

0.000 

0.000 

0 .320 

0.290 

0.100 

0.760 

0.660 

0.000 

0.000 

1.250 

0 .240 

0.190 

0.150 

0.000 

0.000 

0 .000 

0.000 

0.410 

0 .000 

0.110 

0.000 

1.580 

0.000 

0.370 

0.250 

0.430 

0.390 

error 

0 .32 

0 .08 

0 .39 

0 .63 

0 .36 

0.42 

0 .00 

0 .27 

0 .35 

0 .13 

0 .00 

0.00 

0 .08 

0 .18 

0 .05 

0 .25 

0.41 

0 .00 

0 .00 

0 .22 

0 .18 

0 .19 

0.14 

0 .00 

0.00 

0 .00 

0 .00 

0 .21 

0 .00 

0 .07 

0 .00 

0 .13 

0 .00 

0 .37 

0 .12 

0 .20 

0 .39 

Mean 

445.700 

1777 .300 

11.900 

7 .900 

32.900 

2 .900 

0 .000 

2 .100 

2.900 

0.300 

0 .000 

0 .000 

1.100 

0 .900 

0 .300 

4 .800 

3 .600 

0 .000 

0 .000 

16.800 

0 .700 

0 .500 

0.400 

0.000 

0 .000 

0 .000 

0 .000 

1.600 

0 .000 

0 .300 

0 .000 

37.000 

0.000 

1.300 

0 .800 

1 .700 

1.500 

biomass 

31.70 

84 .80 

1.40 

3 .90 

4.20 

0.20 

0 .00 

0.00 

0.50 

0 .00 

63 .80 

73 .80 

0 .00 

0.00 

3 .90 

1.40 

0 .00 

1.50 

2.40 

0 .00 

0 .00 

0 .00 

6 .90 

0.20 

0 .10 

3.50 

0 .00 

0 .00 

0 .00 

0 .00 

13 .00 

0.00 

0 .00 

0 .00 

4.40 

0 .00 

1.00 

0 .30 

0 .40 

2.30 
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Appendix A , Continued 

Species=CYSTOCLONIUM PURPUREUM 

Depth Sa.mple T N Arithmetic Mea.n of log Sta.nda.rd Geometric Percent of 

ra.nge 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

period 

SUM79 C 5 

SUM79 E 5 

SPR80 C 5 

AUT80 C 4 

AUT80 E 5 

SPR81 E 3 

SUM81 C 5 

SUM81 E 5 

SUM82 C 10 

SUM82 E 10 

SUM79 C 5 

SUM79 E 5 

AUT79 C 3 

SPR80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 6 

SPR82 C 5 

SPR82 E 6 

SPR82 Q 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

SUM79 C 5 

SUM79 E 5 

AUT79 C 4 

SPR80 C 5 

AUT80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 5 

SPR82 C 5 

SPR82 E 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

Mea.n 

0 .000 

0 .000 

0 .000 

0 .000 

0 .100 

0 .000 

0.000 

0.000 

0.000 

0.000 

0.000 

0 .000 

0 .000 

0 .000 

0 .300 

0.000 

0.000 

0 .100 

0 .000 

0.000 

0.000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0.000 

0.000 

transformed 

da.ta. 

0 .000 

0.000 

0 .000 

0.000 

0.050 

0.000 

0.000 

0.000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.070 

0 .000 

0.000 

0.020 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0 .000 

0.000 

0 .000 

0.000 

0.000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

error 

0 .00 

0 .00 

0 .00 

0 .00 

0.05 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.07 

0.00 

0.00 

0.02 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0.00 

0.00 

0.00 

Mea.n 

0 .000 

0 .000 

0 .000 

0 .000 

0 .100 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .200 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0.000 

0 .000 

0.000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0.000 

0.000 

biomass 

0.00 

0.00 

0.00 

0.00 

0 .00 

0.00 

0 .00 

0.00 

0 .00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.80 

0.00 

0.00 

0.00 

0.00 

0.00 

0 .00 

0.00 

0.00 

0.00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0.00 

0 .00 
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Appendix A , Continued 

Species=DERBESIA MARINA 

Depth Sample T N Arithmetic Mean of log Standard Geometric Percent of 

range 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-9m 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-9m 

6-Qm 

period 

SUM79 C 5 

SUM79 E 5 
SPR80 C 5 

AUT80 C 4 

AUT80 E 5 

SPR81 E 3 

SUM81 C 5 

SUM81 E 5 
SUM82 C 10 

SUM82 E 10 

SUM79 C 5 

SUM79 E 5 

AUT79 C 3 

SPR80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 6 

SPR82 C 5 

SPR82 E 6 

SPR82 Q 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

SUM7Q C 5 

SUM79 E 5 

AUT79 C 4 

SPR80 C 5 

AUT80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 5 

SPR82 C 5 

SPR82 E 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

Mean 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

+ 
+ 

0 .000 

+ 
0 .100 

0 .600 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

+ 
+ 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

transformed 

0 .000 

0 .000 

0.000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0 .000 

0 .000 

0 .000 

0.040 

0 .120 

0 .000 

0.000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0 .000 

0.000 

0 .000 

0.000 

0.000 

error 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .04 

0 .12 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

Mean 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .100 

0.300 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0.000 

biomass 

0 .00 

0.00 

0 .00 

0.00 

0.00 

0.00 

0.00 

0.00 

0 .00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.40 

0 .40 

0.00 

0.00 

0.00 

0.00 

0.00 

0 .00 

0.00 

0.00 

0.00 

0 .00 

0.00 

0.00 

0 .00 

0 .00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0 .00 
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Appendix A , Continued 

Species=DESMAREST!A SPP. 

Depth 

range 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-Qm 

6-9m 

Sample T 

period 

SUM79 C 

SUM79 E 

SPR80 C 

AUT80 C 

AUT80 E 

SPR81 E 
SUM81 C 

SUM81 E 

SUM82 C 

SUM82 E 

SUM79 C 

SUM79 E 
AUT79 C 

SPR80 C 

AUT80 E 
SPR81 C 

SPR81 E 

SUM81 C 

SUM81 E 
SPR82 C 

SPR82 E 
SPR82 Q 
SUM82 C 

SUM82 E 
SUM82 Q 

SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 C 

AUT80 E 
SPR81 C 

SPR81 E 

SUM81 C 

SUM81 E 
SPR82 C 

SPR82 E 
SUM82 C 

SUM82 E 
SUM82 Q 

N Arithmetic 

Mean 

5 2.000 

5 0 .000 

5 0 .000 

4 0 .000 

5 0 .000 

3 77 .600 

5 0 .000 

5 0 .000 

10 4 .800 

10 0 .000 

5 0.200 

5 0 .000 

3 0 .000 

5 0 .000 

5 0.000 

5 18.500 

5 48.600 

5 605.800 

6 679.500 

5 + 
6 0 .000 

5 41.900 

10 304.300 

10 0.400 

5 53.000 

5 0.900 

5 0 .000 

4 0.000 

5 0.000 

5 0.000 

5 0.000 

5 0 .000 

5 484 .300 

5 0.000 

5 620.700 

5 + 
5 505.600 

10 296.300 

10 1sgs.ooo 

5 235.600 

Mean of log 

transformed 

data 

0.210 

0.000 

0.000 

0 .000 

0 .000 

0 .850 

0.000 

0 .000 

0. 170 

0.000 

0.060 

0.020 

0 .000 

0.000 

0.000 

0.620 

1.440 

1.400 

2.230 

0.000 

0 .990 

1.130 

0.070 

1.180 

0 .170 

0.000 

0 .000 

0.000 

0.000 

+ 
0 .000 

1.500 

0.000 

2.420 

2.610 

1.230 

1.gso 

1.740 

Standard 

error 

0 .21 

0 .00 

0 .00 

0 .00 

0 .00 

0 .76 

0 .00 

0 .00 

0 .17 

0 .00 

0 .06 

0.02 

0 .00 

0 .00 

0.00 

0.40 

0 .26 

0 .73 

0 .38 

0 .00 

0 .44 

0 .32 

0 .07 

0.43 

0 .14 

0 .00 

0 .00 

0 .00 

0 .00 

0 .01 

0 .00 

0 .68 

0 .00 

0 .30 

0 .15 

0 .37 

0.50 

0 .39 

Geometric 

Mean 

0 .600 

0 .000 

0 .000 

0 .000 

0 .000 

6 .100 

0 .000 

0 .000 

0 .500 

0 .000 

0 .100 

0 .000 

0 .000 

0 .000 

0 .000 

3 .200 

26.500 

24 .100 

168.800 

0 .000 

8 .800 

12.500 

0 .200 

14 .100 

0 .500 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0.000 

30.600 

0 .000 

262.000 

406.400 

16.000 

88.100 

54 .000 

Percent of 

biomass 

0 .10 

0 .00 

0 .00 

0.00 

0 .00 

2.10 

0.00 

0.00 

0 .10 

0 .00 

1.20 

5.00 

0.00 

0.00 

0.00 

13 .70 

2.10 

!H .OO 

28.40 

0.00 

0 .00 

4.20 

45 .50 

0.00 

2.20 

3.90 

0 .00 

0.00 

0.00 

0.00 

0 .20 

0.00 

40 .80 

0 .00 

63 .10 

0.00 

38 .00 

54 .10 

80 .30 

31 .80 
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Appendix A , Continued 

Species=DICTYOS/PHON FOENICULACEUS 

Depth Sample T N Arithmetic Mean of log Standard Geometric Percent of 

range 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

period 

SUM79 C 5 

SUM79 E 5 

SPR80 C 5 

AUT80 C 4 

AUT80 E 5 

SPR81 E 3 

SUM81 C 5 

SUM81 E 5 

SUM82 C 10 

SUM82 E 10 

SUM79 C 5 

SUM79 E 5 

AUT79 C 3 

SPR80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 6 

SPR82 C 5 

SPR82 E 6 

SPR82 Q 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

SUM79 C 5 

SUM79 E 5 

AUT79 C 4 

SPR80 C 5 

AUT80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 5 

SPR82 C 5 

SPR82 E 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

Mean 

10.400 

47 .200 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

1.800 

0 .000 

0 .500 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

1.400 

5 .000 

0 .000 

0 .000 

0 .000 

9 .300 

0 .100 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .700 

0 .000 

0 .000 

1.600 

0 .000 

+ 

transformed 

data 

0.970 

1.610 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0. 130 

0.000 

0 .110 

+ 
0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0.220 

0.250 

0.000 

0 .000 

0 .000 

0.580 

0 .040 

0 .000 

0.020 

0 .000 

0 .000 

0.000 

0 .000 

0.000 

0.000 

0 .000 

0.000 

0. 190 

0 .000 

0.000 

0.180 

0 .000 

error 

0 .16 

0 .13 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .13 

0 .00 

0 .10 

0 .01 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .16 

0 .25 

0 .00 

0 .00 

0 .00 

0 .20 

0 .04 

0 .00 

0 .02 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .10 

0 .00 

0 .00 

0 .12 

0 .00 

Mean 

8 .300 

39.700 

0 .000 

0 .000 

0.000 

0.000 

0 .000 

0 .000 

0 .300 

0 .000 

0 .300 

0 .000 

0 .000 

0 .000 

0.000 

0.000 

0 .000 

0.700 

0 .800 

0 .000 

0 .000 

0.000 

2 .800 

0 .100 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .500 

0 .000 

0 .000 

0 .500 

0 .000 

bioma.ss 

0.40 

2 .10 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0.00 

2.70 

2.90 

0 .00 

0.00 

0 .00 

0.00 

0.00 

0.20 

0.20 

0.00 

0 .00 

0.00 

1.40 

0 .00 

0.00 

0 .20 

0.00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.10 

0.00 

0 .00 

0.30 

0.00 

0.00 
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Appendix A, Continued 

Species=ECTOCARPUS SPP. 

Depth 

ra.nge 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

Sample T 

period 

SUM79 C 

SUM79 E 

SPR80 C 

AUT80 C 

AUT80 E 

SPR81 E 

SUM81 C 

SUM81 E 

SUM82 C 

SUM82 E 

SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 E 

SPR81 C 

SPR81 E 

SUM81 C 

SUM81 E 

SPR82 C 

SPR82 E 

SPR82 Q 

SUM82 C 

SUM82 E 

SUM82 Q 

SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 C 

AUT80 E 

SPR81 C 

SPR81 E 

SUM81 C 

SUM81 E 

SPR82 C 

SPR82 E 

SUM82 C 

SUM82 E 

SUM82 Q 

N Arithmetic 

Mea.n 

5 0.400 

5 3.400 

5 0 .200 

4 34 .300 

5 51.500 

3 0 .100 

5 0.300 

5 0.000 

10 25.500 

10 + 
5 0 .300 

5 0 .000 

3 0 .000 

5 + 
5 0 .000 

5 0 .000 

5 0 .000 

5 10.900 

6 1.300 

5 0.000 

6 0.100 

5 0 .000 

10 165.200 

10 2 .200 

5 59.000 

5 + 

5 + 
4 + 
5 + 
5 + 
5 0 .100 

5 0 .000 

5 0 .000 

5 2 .800 

5 50.800 

5 0 .000 

5 + 
10 164.500 

10 3 .700 

5 366.100 

Mea.n of log 

transformed 

da.ta. 

0 . 120 

0.440 

0 .070 

1.030 

1.280 

0.040 

0 .070 

0 .000 

0 .680 

0.090 

+ 
0.000 

0.000 

0.000 

0 .000 

0 .600 

0.150 

0 .000 

0 .030 

0 .000 

1.850 

0. 170 

0 .780 

0 .030 

+ 
+ 

0 .240 

1.300 

0 .000 

1.700 

0.320 

1.680 

Sta.nda.rd 

error 

0 .05 

0 .21 

0 .05 

0.46 

0 .38 

0 .04 

0 .07 

0 .00 

0 .25 

0 .08 

0 .01 

0 .00 

0 .00 

0.00 

0 .00 

0 .31 

0 .15 

0.00 

0 .03 

0 .00 

0 .23 

0 .13 

0.49 

0 .02 

0 .01 

0 .01 

0.24 

0.33 

0.00 

0 .30 

0 .15 

0.61 

Geometric 

Mea.n 

0 .300 

1 .800 

0.200 

9 .700 

18. 100 

0 .100 

0 .200 

0 .000 

3 .800 

0 .200 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

3 .000 

0.400 

0 .000 

0 .100 

0 .000 

69 .800 

0 .500 

5 .000 

0 .100 

0 .000 

0 .000 

0 .700 

19.000 

0 .000 

49 . 100 

1.100 

46 .900 

Percent of 

biomass 

0 .00 

0 .20 

0 .00 

0 .90 

2 .30 

0.00 

0 .00 

0 .00 

0.40 

0 .00 

1.90 

2 .70 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

1.70 

0 .10 

0 .00 

0 .00 

0 .00 

24 .70 

0 .10 

2 .50 

0.00 

0 .00 

0 .00 

0 .00 

0.00 

0 .30 

16 .70 

0 .00 

99 .90 

5.20 

0.00 

0.00 

30 .10 

0.20 

49 .40 
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Appendix A , Continued 

Species = EUDESME VJRESCENS 

Depth 

range 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

'6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

Sample T 

period 

SUM79 C 

SUM79 E 

SPRBO C 

AUTBO C 

AUTBO E 

SPR81 E 

SUM81 C 

SUM81 E 

SUM82 C 

SUM82 E 

SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 E 

SPR81 C 

SPR81 E 

SUM81 C 

SUM81 E 

SPR82 C 

SPR82 E 

SPR82 Q 
SUM82 C 

SUM82 E 

SUM82 Q 
SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 C 

AUT80 E 

SPR81 C 

SPR81 E 

SU M81 C 

SUM81 E 
SPR82 C 

SPR82 E 

SUM82 C 

SUM82 E 
SUM82 Q 

N Arithmetic 

Mean 

5 0 .000 

5 0 .000 

5 0 .000 

4 0 .000 

5 0 .000 

3 0 .000 

5 0 .000 

5 0 .000 

10 0 .000 

10 0 .000 

5 0 .000 

5 0 .000 

3 0 .000 

5 0 .000 

5 0 .000 

5 0 .200 

5 0.000 

5 8 .300 

6 0 .000 

5 + 
6 0 .000 

5 0.000 

10 101.000 

10 0.000 

5 0 .900 

5 20.500 

5 0 .000 

4 0.000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 18.000 

5 0 .000 

5 0 .000 

10 78.400 

10 0.300 

5 12.000 

Mean of log 

transformed 

data. 

0.000 

0.000 

0.000 

0 .000 

0.000 

0.000 

0 .000 

0.000 

0 .000 

0.000 

0 .000 

0 .000 

0.000 

0.000 

0.000 

0.060 

0.000 

0.670 

0.000 

0.000 

0 .000 

1.720 

0.000 

0.180 

0.580 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.630 

0.000 

0 .000 

1.440 

0 .080 

0 .440 

Sta.nda.rd 

error 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .04 

0 .00 

0.29 

0 .00 

0 .00 

0 .00 

0 .23 

0 .00 

0 .14 

0 .39 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.40 

0 .00 

0 .00 

0 .28 

0 .05 

0 .34 

Geometric 

Mea.n 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .100 

0 .000 

3 .700 

0 .000 

0 .000 

0 .000 

51.500 

0 .000 

0 .500 

2 .800 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

3 .300 

0 .000 

0 .000 

26 .500 

0 .200 

1.800 

Percent of 

biomass 

0.00 

0.00 

0 .00 

0.00 

0.00 

0 .00 

0.00 

0.00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .10 

0.00 

1.30 

0.00 

0.00 

0.00 

0.00 

15 .10 

0.00 

0.00 

84 .80 

0.00 

0 00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

1.80 

0.00 

0.00 

14 .30 

0.00 

1.60 
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Appendix A, Continued 

Specie5=GIFFORD!A SPP. 

Depth Sample T N Arithmetic Mean of log Standard Geometric Percent of 

range 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

period 

SUM79 C 5 

SUM79 E 5 

SPR80 C 5 

AUT80 C 4 

AUT80 E 5 

SPR81 E 3 

SUM81 C 5 

SUM81 E 5 

SUM82 C 10 

SUM82 E 10 

SUM79 C 5 

SUM79 E 5 

AUT79 C 3 

SPR80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 6 

SPR82 C 5 

SPR82 E 6 

SPR82 Q 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

SUM79 C 5 

SUM79 E 5 

AUT79 C 4 

SPR80 C 5 

AUT80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 5 

SPR82 C 5 

SPR82 E 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

Mean 

0 .000 

+ 
0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

+ 
0 .000 

0.500 

+ 
0 .000 

0 .000 

0 .000 

2 .800 

0 .000 

0 .000 

0 .000 

+ 
0 .000 

0 .000 

0 .000 

0.000 

0 .000 

+ 
0 .000 

0.000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .100 

+ 
0 .000 

0 .000 

0 .000 

0 .000 

transformed 

0.000 

0.000 

0.000 

0.000 

0.000 

0 .000 

0 .000 

0 .000 

0 .110 

0 .000 

0 .000 

0.000 

0.370 

+ 
0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0.000 

0.000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0.000 

0 .000 

0 .000 

0 .050 

0 .000 

0 .000 

0 .000 

0 .000 

error 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .11 

0.00 

0 .00 

0 .00 

0 .22 

0.01 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .05 

0 .00 

0 .00 

0 .00 

0 .00 

Mean 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .300 

0 .000 

0 .000 

0 .000 

1.300 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0.100 

0.000 

0 .000 

0.000 

0.000 

biomas5 

0.00 

0.00 

0.00 

0.00 

0.00 

0 .00 

0 .00 

0.00 

0.00 

0.00 

2.90 

0.00 

0.00 

0.00 

0.00 

2.10 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0 .00 

0 .00 

0.00 

0.00 

0.00 

0.00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0.00 

0.00 
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Appendix A, Continued 

S pecies= DEVALERAEA RAMENTA CEA 

Depth 

range 

0-2m 

0-2 m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

Sample T 

period 

SUM79 C 

SUM79 E 

SPR80 C 

AUT80 C 

AUT80 E 

SPR81 E 

SUM81 C 

SUM81 E 

SUM82 C 

SUM82 E 

SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 E 

SPR81 C 

SPR81 E 

SUM81 C 

SUM81 E 

SPR82 C 

SPR82 E 

SPR82 Q 
SUM82 C 

SUM82 E 

SUM82 Q 
SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 C 

AUT80 E 

SPR81 C 

SPR81 E 

SUM81 C 

SUM81 E 

SPR82 C 

SPR82 E 

S UM82 C 

SUM82 E 

SUM82 Q 

N Arithmetic 

Mean 

5 199.700 

5 39.100 

5 357.200 

4 44 .200 

5 103.800 

3 0.400 

5 1.200 

5 15 .800 

10 0.900 

10 0.300 

5 0.000 

5 0.000 

3 0.000 

5 0.000 

5 + 
5 2 .700 

5 0.000 

5 0 .000 

6 0 .000 

5 + 
6 0 .000 

5 + 
10 0 .100 

10 + 
5 0 .000 

5 0 .000 

5 0.000 

4 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0.000 

5 0 .000 

5 0 .000 

5 0.000 

10 0 .000 

10 0 .000 

5 0 .000 

Mean of log 

transformed 

data 

1.580 

1.110 

1.220 

1.150 

1.540 

0 .160 

0 . 170 

0 .580 

0 .150 

0 .070 

+ 
0 .000 

0 .000 

0 .000 

0 .260 

+ 
0 .000 

0 .000 

0 .000 

0 .020 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

Standard 

error 

0.49 

0.41 

0 .63 

0.41 

0.45 

0 .02 

0 .17 

0 .38 

0 .09 

0 .06 

0 .01 

0 .00 

0 .00 

0 .00 

0 .22 

0 .01 

0 .00 

0 .00 

0.00 

0 .02 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

Geometric 

Mean 

37.000 

11.900 

15.600 

13.100 

33.700 

0 .400 

0.500 

2 .800 

0.400 

0 .200 

0 .000 

0 .000 

0 .000 

0 .000 

0 .800 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

Percent of 

biomass 

8.40 

1.70 

11.30 

1.10 

4.60 

0 .00 

0.00 

0.30 

0.00 

0 .00 

0.20 

0.00 

0 .00 

0 .00 

0 .00 

2 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 
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Appendix A, Continued 

Species=LAMINARIA DIGITATA 

Depth 

range 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-9m 

Sample T 

period 

SUM79 C 

SUM79 E 
SPR80 C 

AUT80 C 

AUT80 E 
SPR81 E 

SUM81 C 

SUM81 E 

SUM82 C 

SUM82 E 

SUM79 C 

SUM79 E 
AUT79 C 

SPR80 C 

AUT80 E 

SPR81 C 

SPR81 E 

SUM81 C 

SUM81 E 

SPR82 C 

SPR82 E 
SPR82 Q 

SUM82 C 

SUM82 E 
SUM82 Q 

SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 C 

AUT80 E 

SPR81 C 

SPR81 E 
SUM81 C 

SUM81 E 
SPR82 C 

SPR82 E 

SUM82 C 

SUM82 E 

SUM82 Q 

N Arithmetic 

Mean 

5 2 .200 

5 l!UOO 

5 1.000 

4 9.800 

5 0 .100 

3 680.700 

5 0 .000 

5 0 .000 

10 28 .100 

10 0.500 

5 + 
5 0 .000 

3 0 .000 

5 0 .000 

5 0 .000 

5 0 .100 

5 429.400 

5 0 .200 

6 357.600 

5 0 .000 

6 0 .000 

5 37 .300 

10 0 .000 

10 1 .800 

5 17 .600 

5 0 .000 

5 0 .000 

4 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 590.600 

5 0 .000 

5 27 .200 

5 0 .000 

5 646.800 

10 + 
10 135.600 

5 + 

Mean of log 

transformed 

data. 

0.220 

0.400 

0.180 

0.400 

0.030 

2.000 

0 .000 

0.000 

0 .580 

0.080 

0.000 

0.000 

0 .000 

0.000 

0 .040 

1.070 

0.060 

1.110 

0.000 

0.000 

1.420 

0.000 

0.160 

0.490 

0.000 

0.000 

0.000 

0.000 

0 .000 

0.000 

0.000 

1.210 

0 .000 

0.860 

0.000 

0 .700 

0.620 

Sta.nda.rd 

error 

0 .22 

0.40 

0 .14 

0.40 

0 .03 

1.00 

0 .00 

0 .00 

0 .27 

0 .08 

0 .00 

0 .00 

0 .00 

0 .00 

0 .04 

0 .58 

0 .06 

0 .61 

0 .00 

0 .00 

0.22 

0 .00 

0 .13 

0 .37 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .74 

0 .00 

0.40 

0 .00 

0 .70 

0.36 

Geometric 

Mea.n 

0 .700 

1.500 

0 .500 

1.500 

0 .100 

99.000 

0 .000 

0 .000 

2 .800 

0 .200 

0 .000 

0 .000 

0 .000 

0 .000 

0 .100 

10.700 

0 .100 

11.900 

0 .000 

0 .000 

25 .300 

0 .000 

0.400 

2 .100 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

15.200 

0 .000 

6 .200 

0 .000 

4 .000 

3.200 

Percent of 

biomass 

0 .10 

0.80 

0 .00 

0 .30 

0 .00 

18.50 

0 .00 

0 .00 

0 .50 

0.00 

0.00 

0.00 

0.00 

0.00 

0 .00 

0 .10 

18 .10 

0.00 

15 .00 

0.00 

0 .00 

3.80 

0.00 

0.10 

0.70 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

49 .70 

0.00 

2 .80 

0.00 

48 .60 

0.00 

5.70 

0 .00 
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Appendix A, Continued 

Species=MONOSTROMA GREVILLEI 

Depth 

ra.nge 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-0m 

6-9m 

Sa.mple T 

period 

SUM79 C 

SUM79 E 

SPRBO C 

AUTBO C 

AUTBO E 

SPR81 E 

SUM81 C 

SUM81 E 

SUM82 C 

SUM82 E 
SUM79 C 

SUM79 E 

AUT79 C 

SPRBO C 

AUTBO E 

SPR81 C 

SPRBl E 

SUM81 C 

SUM81 E 

SPR82 C 

SPR82 E 
SPR82 Q 

SUM82 C 

SUM82 E 

SUM82 Q 

SUM79 C 

SUM79 E 

AUT79 C 

SPRBO C 

AUTBO C 

AUTBO E 

SPR81 C 

SPR81 E 
SUM81 C 

SUM81 E 

SPR82 C 

SPR82 E 
SUM82 C 

SUM82 E 
SUM82 Q 

N Arithmetic 

Mea.n 

5 0.000 

5 0.000 

5 0.000 

4 0 .000 

5 0 .000 

3 0.000 

5 0 .000 

5 0 .000 

10 0 .000 

10 0 .000 

5 0 .000 

5 0 .000 

3 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 12.300 

5 0 .000 

6 0 .000 

5 0 .000 

6 0 .000 

5 0 .500 

10 0 .000 

10 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

4 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0.000 

5 0 .000 

5 0.000 

5 0.000 

5 0 .000 

5 0 .000 

10 0 .000 

10 0.000 

5 0 .000 

Mea.n of log 

transformed 

da.ta. 

0 .000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0.000 

0 .000 

0.000 

0.000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0.000 

1.000 

0 .000 

0 .000 

0 .000 

0 .000 

0.100 

0.000 

0.000 

0 .000 

0.000 

0.000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

Sta.nda.rd 

error 

(log1 o) 

0.00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0.00 

0 .00 

0 .00 

0 .16 

0 .00 

0 .00 

0 .00 

0 .00 

0 .10 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

Geometric 

Mea.n 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

9 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.300 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 000 

0.000 

0 .000 

Percent of 

biomass 

0 .00 

0 00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0 .00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.50 

0.00 

0.00 

000 

0.00 

0 .00 

0 .00 

0.00 

0.00 

0.00 

0 .00 

0.00 

0.00 

0 .00 

0 .00 

0.00 

0 .00 

0.00, 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 
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Appendix A, Continued 

Species=PALMARIA PALMA TA 

Depth Sample T N Arithmetic Mean of log Standard Geometric Percent of 

range 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-Qm 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

period 

SUM79 C 5 

SUM79 E 5 

SPRSO C 5 

AUTSO C 4 

AUTSO E 5 

SPR81 E 3 

SUM81 C 5 

SUM81 E 5 

SUM82 C 10 

SUM82 E 10 

SUM79 C 5 

SUM79 E 5 

AUT79 C 3 

SPRSO C 5 

AUTSO E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 6 

SPR82 C 5 

SPR82 E 6 

SPR82 Q 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

SUM79 C 5 

SUM79 E 5 

AUT79 C 4 

SPRSO C 5 

AUTSO C 5 

AUTSO E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 5 

SPR82 C 5 

SPR82 E 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

Mean 

0 .000 

+ 
0 .000 

0 .500 

+ 
0.000 

1 .000 

0 .000 

8 .300 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

+ 
0.000 

0 .000 

0 .000 

0 .000 

0 .000 

1.600 

0 .000 

+ 
0 .100 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

transformed 

data 

+ 

0.000 

0.130 

0.000 

0. 190 

0.000 

0.490 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0.000 

0.170 

0 .000 

0.040 

0 .000 

0.000 

0 .000 

0.000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0.000 

0.000 

0 .000 

0 .000 

error 

0 .01 

0 .00 

0 .12 

0 .00 

0 .15 

0 .00 

0 .21 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .17 

0 .00 

0 .03 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

Mean 

0 000 

0.000 

0 .300 

0.000 

0 .500 

0 .000 

2 .100 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .500 

0 .000 

0 .100 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

biomass 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .10 

0.00 

0.00 

0 .00 

0.00 

0 .00 

0.00 

0.00 

0.00 

0 .00 

0.00 

0 .00 

0.00 

0.00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0.00 

0.00 

0.00 

0.00 

0 .00 

0.00 

0.00 

0 .00 

0.00 
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Appendix A, Continued 

Species=PETALONIA FASCIA 

Depth Sample T N Arithmetic Mean of log Standard Geometric Percent of 

range 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3 m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

period 

SUM79 C 5 

SUM79 E 5 

SPR80 C 5 

AUT80 C 4 

AUT80 E 5 

SPR81 E 3 

SUM81 C 5 

SUM81 E 5 

SUM82 C 10 

SUM82 E 10 

SUM79 C 5 

SUM79 E 5 

AUT79 C 3 

SPR80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 6 

SPR82 C 5 

SPR82 E 6 

SPR82 Q 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

SUM79 C 5 

SUM79 E 5 

AUT79 C 4 

SPR80 C 5 

AUT80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 5 

SPR82 C 5 

SPR82 E 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

Mean 

3 .500 

20.000 

13.400 

0 .200 

48 .500 

0 .000 

0.000 

0 .200 

2 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

1.900 

0 .600 

0 .100 

0 .000 

0.000 

0 .300 

1.600 

0 .000 

0 .300 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

+ 
0 .000 

0 .000 

0 .000 

2.800 

0 .000 

0 .000 

2.400 

0 .000 

1.000 

transformed 

0.510 

1.230 

0 .640 

0 .060 

1.140 

0 .000 

0.000 

0.060 

0. 170 

0.000 

0.000 

0.000 

0.000 

0.000 

0 .000 

+ 
0.330 

0. 160 

0 .030 

0.000 

0.000 

0.070 

0.370 

0.000 

0 .070 

0.000 

0.000 

0 .000 

0.000 

0.000 

0 .000 

+ 
0.000 

0 .440 

0 .000 

0 .000 

0 .260 

0 .000 

0 .250 

error 

0 .18 

0 .16 

0 .32 

0 .06 

0 .39 

0 .00 

0 .00 

0 .04 

0 .13 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .01 

0 .16 

0 .10 

0 .03 

0 .00 

0 .00 

0 .07 

0 .07 

0 .00 

0 .07 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .01 

0 .00 

0 .17 

0 .00 

0 .00 

0 .13 

0 .00 

0 .11 

Mean 

2 .200 

16.000 

3.400 

0 .100 

12.800 

0 .000 

0 .000 

0 .100 

0 .500 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

1.100 

0.400 

0 .100 

0 .000 

0 .000 

0 .200 

1 .300 

0 .000 

0 .200 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

1.800 

0 .000 

0 .000 

0 .800 

0 .000 

0 .800 

biomass 

0.10 

0.90 

0.40 

0 .00 

2 .10 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0.00 

0.10 

0 .10 

0 .00 

0 .00 

0.00 

0.00 

0.20 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .30 

0.00 

0.00 

0.40 

0 .00 

0.10 
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Appendix A , Continued 

Species=PETALONIA ZOSTER/FOLIA 

Depth 

range 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2 m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

Sample T 

period 

SUM79 C 

SUM79 E 

SPRBO C 

AUTBO C 

AUTBO E 

SPRBl E 

SUMBl C 

SUMBl E 

SUM82 C 

SUMB2 E 

SUM79 C 

SUM79 E 

AUT79 C 

SPRBO C 

AUTBO E 

SPRBl C 

SPRBl E 

SUMBl C 

SUMBl E 

SPR82 C 

SPR82 E 

SPR82 Q 
SUM82 C 

SUM82 E 

SUM82 Q 
SUM79 C 

SUM79 E 

AUT79 C 

SPRBO C 

AUTBO C 

AUTBO E 

SPRBl C 

SPRBl E 

SUMBl C 

SUM81 E 

SPR82 C 

SPR82 E 

SUM82 C 

SUM82 E 

SUM82 Q 

N Arithmetic 

Mean 

5 0 .000 

5 0 .200 

5 0 .000 

4 0 .000 

5 0 .300 

3 0 .000 

5 0 .000 

5 0 .000 

10 0 .000 

10 0.000 

5 0 .000 

5 0 .000 

3 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

6 0 .000 

5 0 .000 

6 0.000 

5 0 .000 

10 0 .000 

10 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

4 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 + 
5 0 .000 

5 0 .000 

10 0 .000 

10 0 .000 

5 0 .000 

Mean of log 

transformed 

data 

0 .000 

0 .080 

0 .000 

0 .000 

0 .100 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

Standard 

error 

0 .00 

0 .04 

0 .00 

0 .00 

0 .06 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

Geometric 

Mean 

0 .000 

0 .200 

0 .000 

0 .000 

0 .300 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

Percent of 

biomass 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0.00 

0.00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0.00 

0.00 

0.00 

0.00 

0 .00 

0.00 

0.00 

0 .00 

0.00 

0 .00 

0 .00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0 .00 

0.00 

0 .00 
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Appendix A , Continued 

Species=PHYCODRYS RUBENS 

Depth 

range 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-Qm 

6-9m 

6-9m 

6-9m 

6-Qm 

6-9m 

6-9m 

6-9m 

6-9m 

Sample T 

period 

SUM79 C 

SUM79 E 

SPR80 C 

AUT80 C 

AUT80 E 

SPR81 E 

SUM81 C 

SUM81 E 

SUM82 C 

SUM82 E 

SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 E 

SPR81 C 

SPR81 E 

SUM81 C 

SUM81 E 

SPR82 C 

SPR82 E 

SPR82 Q 
SUM82 C 

SUM82 E 

SUM82 Q 

SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 C 

AUT80 E 

SPR81 C 

SPR81 E 

SUM81 C 

SUM81 E 

SPR82 C 

SPR82 E 
S UM82 C 

SUM82 E 

SUM82 Q 

N Arithmetic 

Mean 

s 0 .000 

s 0 .000 

s 0 .000 

4 0 .000 

s 0 .000 

3 0 .100 

s 0 .000 

s 0 .000 

10 0 .000 

10 0 .000 

s 0 .000 

s 0 .000 

3 0 .000 

s 0 .000 

s 0 .000 

s 0 .000 

s 0.000 

s 0 .000 

6 0 .000 

s 0 .000 

6 0 .000 

s 0 .000 

10 0 .000 

10 0 .000 

s 0 .000 

s 0 .000 

s 0 .000 

4 0 .000 

s 0 .000 

s 0 .000 

s 0 .000 

5 0 .000 

s 0 .000 

s 0 .000 

s + 
s 0.000 

s 0 .000 

10 0 .000 

10 + 
s 0 .000 

Mean of log 

transformed 

data 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .030 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

Standard 

error 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .03 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

Geometric 

Mean 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .100 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

Percent of 

biomass 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0.00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 
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Appendix A, Continued 

Specie3=PILA YELLA LITTORALIS 

Depth Sa.mple T N Arithmetic Mea.n of log Sta.nda.rd Geometric Percent of 

ra.nge 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-9m 

6-9m 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-9m 

6-Qm 

period 

SUM7Q C 5 

SUM7Q E 5 

SPR80 C 5 

AUT80 C 4 

AUT80 E 5 

SPR81 E 3 

SUM81 C 5 

SUM81 E 5 

SUM82 C 10 

SUM82 E 10 

SUM7Q C 5 

SUM7Q E 5 

AUT7Q C 3 

SPR80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 6 

SPR82 C 5 

SPR82 E 6 

SPR82 Q 5 

SUM82 

SUM82 

SUM82 

SUM7Q 

SUM7Q 

AUT7Q 

SPR80 

AUT80 

AUT80 

SPR81 

SPR81 

SUM81 

SUM81 

SPR82 

SPR82 

SUM82 

SUM82 
SUM82 

c 10 

E 10 

q 5 

c 5 

E 5 

c 4 

c 5 

c 5 

E 5 

c 5 

E 5 

c 5 

E 5 

c 5 

E 5 

c 10 

E 10 
q 5 

Mea.n 

O.QOO 

0 .600 

11 .700 

0 .000 

l.QOO 

0.400 

0 .000 

0.400 

+ 
+ 

0 .100 

+ 
0 .000 

0 .000 

0 .000 

0.800 

17.100 

0 .000 

0 .000 

0 .000 

+ 
+ 
+ 

0 .000 

0 .000 

0 .000 

+ 
0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .600 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

+ 

tra.n~formed 

da.ta. 

0.230 

0.200 

0.720 

0.000 

0 .200 

0 .140 

0 .000 

0.090 

0.030 

0 .000 

0 .000 

0 .000 

0 .140 

l.OQO 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

+ 

0.000 

0 .000 

0.000 

0.000 

0 .000 

0.140 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0.000 

error 

0.10 

0 .06 

0 .28 

0.00 

0 .20 

0 .04 

0 .00 

0.09 

0 .03 

0 .00 

0 .00 

0 .00 

0 .13 

0 .1Q 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .01 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.10 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

Mea.n 

0 .700 

0 .600 

4.200 

0 .000 

0 .600 

0.400 

0 .000 

0 .200 

0 .100 

0 .000 

0.000 

0 .000 

0.400 

11.300 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .400 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

bioma.5a 

0 .00 

0 .00 

0.40 

0.00 

0 .10 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .50 

0.00 

0.00 

0.00 

0.00 

0 .60 

0.70 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .10 

0 .00 

0 .00 

0 .00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0 .00 

0 .00 

0.00 
0.00 
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Appendix A, Continued 

Species=POLYSIPHONIA FLEXICAUL/S 

Depth 

range 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

Sample T 

period 

SUM79 C 

SUM79 E 

SPR80 C 

AUT80 C 

A UT80 E 

SPR81 E 

SUM81 C 

SUM81 E 

SUM82 C 

SUM82 E 

SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 E 

SPR81 C 

SPR81 E 

SUM81 C 

SUM81 E 
SPR82 C 

SPR82 E 

SPR82 Q 

SUM82 C 

SUM82 E 

SUM82 Q 

SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 C 

AUT80 E 

SPR81 C 

SPR81 E 

SUM81 C 

SUM81 E 

SPR82 C 

SPR82 E 

SUM82 C 

SUM82 E 

SUM82 Q 

N Arithmetic 

Mean 

5 + 
5 0 .200 

5 1 .300 

4 0 .000 

5 0 .200 

3 1.600 

5 0 .000 

5 0 .000 

10 + 
10 + 
5 0 .200 

5 0 .000 

3 0 .000 

5 0 .000 

5 18.800 

5 0 .000 

5 0 .700 

5 0 .000 

6 10.700 

5 0 .000 

6 0 .000 

5 0 .000 

10 0 .000 

10 0 .000 

5 1.500 

5 0 .000 

5 0 .000 

4 0 .100 

5 0 .000 

5 0 .000 

5 3 .200 

5 0 .000 

5 4 .000 

5 0 .000 

5 31.900 

5 0 .000 

5 1.900 

10 0 .000 

10 87 .300 

5 0.200 

Mean of log 

transformed 

data 

0.060 

0.210 

0.000 

0.060 

0.330 

0 .000 

0.000 

0.060 

0 .000 

0 .000 

0 .000 

0.820 

0 .000 

0 .220 

0 .000 

0 .440 

0 .000 

0.000 

0 .000 

+ 
0 .000 

0 .300 

0 .000 

0.000 

0.040 

0.000 

0.000 

0.470 

0 .000 

0.350 

0.000 

0 .630 

0 .000 

0 .230 

0.000 

1.320 

0.060 

Standard 

error 

0 .05 

0 .17 

0 .00 

0.05 

0.20 

0 .00 

0 .00 

0 .06 

0 .00 

0 .00 

0 .00 

0 .35 

0 .00 

0 .07 

0 .00 

0 .29 

0 .00 

0 .00 

0 .00 

0 .01 

0 .00 

0 .14 

0 .00 

0 .00 

0 .04 

0 .00 

0 .00 

0 .18 

0 .00 

0 .24 

0 .00 

0.43 

0 .00 

0 .19 

0 .00 

0 .29 

0 .06 

Geometric 

Mean 

0 .100 

0.600 

0 .000 

0 .100 

1.100 

0 .000 

0 .000 

0 .100 

0 .000 

0 .000 

0.000 

5 .600 

0 .000 

0 .700 

0 .000 

1 .800 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

1 .000 

0 .000 

0 .000 

0 .100 

0 .000 

0 .000 

2 .000 

0 .000 

1.200 

0 .000 

3 .300 

0 .000 

0 .700 

0 .000 

19.900 

0 .100 

Percent of 

biomass 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

1.20 

0 .00 

0 .00 

0.00 

57 .30 

0 .00 

0 .00 

0 .00 

0.40 

0 .00 

0 .00 

0.00 

0.00 

0.00 

0.10 

0 .00 

0.00 

81.60 

0 .00 

0 .00 

13.40 

0 .00 

0 .30 

0 .00 

3 .20 

0 .00 

0 .10 

0 .00 

3 .70 

0 .00 
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Appendix A , Continued 

Species=POLYSIPHONIA URCEOLA TA 

Depth Sa.mple T N Arithmetic Mea.n of log Sta.nda.rd Geometric Percent of 

ra.nge 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

period 

SUM79 C 5 

SUM79 E 5 

SPR80 C 5 

AUT80 C 4 

AUT80 E 5 

SPR81 E 3 

SUM81 C 5 

SUM81 E 5 

SUM82 C 10 

SUM82 E 10 

SUM79 C 5 

SUM79 E 5 

AUT79 C 3 

SPR80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 6 

SPR82 C 5 

SPR82 E 6 

SPR82 Q 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

SUM79 C 5 

SUM79 E 5 

AUT79 C 4 

SPR80 C 5 

AUT80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 5 

SPR82 C 5 

SPR82 E 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

Mea.n 

14 .400 

8 .900 

17 .600 

6.700 

19.300 

71.500 

2 .700 

88.500 

25 .800 

2 .300 

2 .600 

0 .000 

+ 
+ 

5 .200 

1.000 

34.600 

0 .500 

22.300 

+ 
0 .100 

9 .600 

1.500 

0 .600 

+ 
0.400 

+ 
+ 
+ 
+ 

15.300 

0 .100 

4 .900 

+ 
49.800 

+ 
0 .300 

1.400 

11.900 

1.500 

transformed 

da.ta. 

0.990 

0.830 

0.840 

0.510 

0.750 

1.620 

0.230 

0.880 

0.770 

0 .310 

0 .240 

+ 

0 .590 

0.200 

1.450 

0 .150 

1.260 

0 .020 

0 .380 

0 .290 

0. 120 

0.100 

1.010 

0.020 

0.300 

1.050 

0.070 

0.180 

O.HO 

0.230 

error 

0 .24 

0 .19 

0 .34 

0 .31 

0 .36 

0 .33 

0 .23 

0.47 

0 .25 

0 .13 

0.23 

0 .01 

0 .21 

0.13 

0 .14 

0 .06 

0 .16 

0 .02 

0 .33 

0 .10 

0 .07 

0.09 

0.24 

0 .01 

0 .28 

0.45 

0 .07 

0.11 

0 .22 

0 .17 

Mea.n 

8 .800 

5.800 

5 .900 

2 .200 

4 .600 

40 .700 

0.700 

6 .600 

4 .900 

1.000 

0 .700 

0 .000 

2 .900 

0 .600 

27 .200 

0.400 

17.200 

0.000 

1.400 

0 .900 

0 .300 

0 .300 

9 .200 

0 .000 

1.000 

10.200 

0 .200 

0 .500 

1.800 

0 .700 

biomass 

0.60 

0.40 

0.60 

0.20 

0 .80 

1.90 

0 .00 

1.60 

0.40 

0 .00 

15 .10 

2.70 

0 .00 

0 .00 

15 .90 

0 .70 

1.50 

0 .10 

0.90 

0 .00 

0.00 

1.00 

0.20 

0 .00 

0 .00 

1.70 

0.00 

0 .00 

0.00 

0 .00 

65 .30 

50 .00 

0.40 

0 .00 

5 .10 

0 .00 

0.00 

0.30 

0 .50 

0 .20 
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Appendix A , Continued 

Species=PORPHYRA SPP. 

Depth 

ra.nge 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-Qm 

6-Qm 

6-9m 

6-9m 

6-9m 

6-Qm 

6-Qm 

6-Qm 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-Qm 

6-9m 

Sa.mple T 

period 

SUM79 C 

SUM79 E 

SPR80 C 

AUT80 C 

AUT80 E 

SPR81 E 

SUM81 C 

SUM81 E 

SUM82 C 

SUM82 E 
SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 E 
SPR81 C 

SPR81 E 

SUM81 C 

SUM81 E 
SPR82 C 

SPR82 E 
SPR82 Q 

SUM82 C 

SUM82 E 

SUM82 Q 

SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 C 

AUT80 E 

SPR81 C 

SPR81 E 
SUM81 C 

SUM81 E 

SPR82 C 

SPR82 E 

SUM82 C 

SUM82 E 

SUM82 Q 

N Arithmetic 

Mea.n 

5 0 .200 

5 + 
5 + 
4 0 .000 

5 0 .000 

3 0 .000 

5 0 .000 

5 0.000 

10 0 .000 

10 0.000 

5 0 .000 

5 0 .000 

3 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

6 + 
5 0 .000 

6 0 .000 

5 0 .000 

10 + 
10 + 
5 0 .000 

5 + 
5 0 .000 

4 0 .000 

5 0 .000 

5 0.000 

5 + 
5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0.000 

10 0 .100 

10 + 
5 0 .000 

Mea.n of log 

tra.nsfo rmed 

da.ta. 

0 .060 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0.000 

0.000 

0 .000 

0 .000 

0 .000 

0.000 

0.000 

0 .020 

0 .020 

0.000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

+ 
0.000 

+ 
0.000 

0.000 

0 .020 

0 .000 

Sta.nda.rd 

error 

0 .05 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .01 

0 .01 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .01 

0 .00 

0 .01 

0 .00 

0 .00 

0.02 

0 .00 

Geometric 

Mea.n 

0.100 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

Percent of 

bioma.s:~ 

0 .00 

0 .00 

0 .00 

0.00 

0.00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0.00 

0.00 

0 .00 

0.00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 
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Appendix A, Continued 

Species=PTILOTA SERRA TA 

Depth Sample T N Arithmetic Mea.n of log Standard Geometric Percent of 

range 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2 m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

period 

SUM79 C 5 

SUM79 E 5 

SPR80 C 5 

AUT80 C 4 

AUT80 E 5 

SPR81 E 3 

SUM81 C 5 

SUM81 E 5 

SUM82 C 10 

SUM82 E 10 

SUM79 C 5 

SUM79 E 
AUT79 C 

SPR80 C 

AUT80 E 
SPR81 C 

SPR81 E 
SUM81 C 

5 

3 

5 

5 

5 

5 

5 

SUM81 E 6 

SPR82 C 5 

SPR82 E 6 

SPR82 Q 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

SUM79 C 5 

SUM79 E 5 

AUT79 C 

SPR80 C 

AUT80 C 

4 

5 

5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 5 

SPR82 C 5 

SPR82 E 5 

SUM82 C 10 

SUM82 E 10 

SU M82 Q 5 

Mean 

+ 
+ 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

+ 
0 .000 

+ 
+ 
+ 
+ 
+ 

0 .000 

0 .000 

+ 
+ 

0 .000 

0 .000 

0 .000 

+ 
0 .000 

0 .000 

+ 
0 .100 

+ 
+ 
+ 
+ 

0 .000 

3 .000 

0 .000 

0 .800 

+ 
0 .200 

+ 
3.400 

0 .000 

transformed 

0.000 

0.000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

+ 
+ 

0.000 

0.000 

0 .000 

0 .000 

0 .000 

0 .040 

0.020 

0.310 

0 .000 

0. 170 

0.050 

0.400 

0 .000 

error 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .01 

0 .01 

0 .00 

0.00 

0 .00 

0.00 

0.00 

0.02 

0.01 

0 .23 

0 .00 

0 .13 

0 .05 

0 .15 

0 .00 

Mean 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.100 

0 .000 

1.000 

0 .000 

0 .500 

0 .100 

1 .500 

0 .000 

biomas~ 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0.00 

0 .00 

0.00 

0.00 

0.00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

82 .30 

0 .00 

0 .00 

0.00 

0.00 

33 .30 

0.30 

0.00 

0.10 

0 .00 

0 .00 

0 .00 

0 .10 

0 .00 
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Appendix A, Continued 

Species=PUNCTARIA PLANTAGINEA 

Depth Sa.mple T N Arithmetic Mea.n of log Sta.nda.rd Geometric Percent of 

ra.nge 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-Qm 

6-9m 

6-9m 

6-Qm 

6-9m 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-9m 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

period 

SUM7Q C 5 

SUM7Q E 5 

SPR80 C 5 

AUT80 C 4 

AUT80 E 5 

SPR81 E 3 

SUM81 C 5 

SUM81 E 5 

SUM82 C 10 

SUM82 E 10 

SUM7Q C 5 

SUM7Q E 5 

AUT7Q C 3 

SPR80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 6 

SPR82 C 5 

SPR82 E 6 

SPR82 Q 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

SUM7Q C 5 

SUM79 E 5 

AUT79 C 4 

SPR80 C 5 

AUT80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 5 

SPR82 C 5 

SPR82 E 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

Mea.n 

0 .000 

3 .900 

0 .000 

0 .000 

1 .600 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

tra.nsfo rmed 

da.ta. 

0 .000 

0.600 

0 .000 

0.000 

0 .190 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0.000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

error 

(log10) 

0 .00 

0 .16 

0 .00 

0 .00 

0 .19 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

Mea.n 

0 .000 

3 .000 

0 .000 

0 .000 

0 .500 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

bioma.ss 

0 .00 

0 .20 

0 .00 

0 .00 

0 .10 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 
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Appendix A, Continued 

Species=RHODOMELA CONFERVOIDES 

Depth 

range 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

Sample T 

period 

SUM79 C 

SUM79 E 

SPR80 C 

AUT80 C 

AUT80 E 

SPR81 E 
SUM81 C 

SUM81 E 

SUM82 C 

SUM82 E 
SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 E 

SPR81 C 

SPR81 E 

SUM81 C 

S UM81 E 
SPR82 C 

SPR82 E 

SPR82 Q 
SUM82 C 

SUM82 E 

SUM82 Q 
SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 C 

AUT80 E 

SPR81 C 

SPR81 E 

SUM81 C 

SUM81 E 

SPR82 C 

SPR82 E 
SUM82 C 

SUM82 E 
SUM82 Q 

N Arithmetic 

Mean 

5 0 .000 

5 0 .500 

5 0 .000 

4 0 .000 

5 0 .000 

3 3 .800 

5 0 .000 

5 0 .000 

10 + 

10 1.000 

5 0 .000 

5 0 .000 

3 0 .000 

5 0 .000 

5 0 .100 

5 0.000 

5 0 .000 

5 0 .000 

6 13.900 

5 0.000 

6 0 .000 

5 0 .000 

10 0 .000 

10 0 .200 

5 + 

5 0.000 

5 0 .000 

4 0 .000 

5 0 .000 

5 0 .000 

5 0.400 

5 0 .000 

5 62 .400 

5 0 .000 

5 86.000 

5 0 .000 

5 81.400 

10 0 .000 

10 11.600 

5 0 .000 

Mean of log 

transformed 

data 

0.000 

0. 100 

0 .000 

0.000 

0 .020 

0 .360 

0.000 

0 .000 

0. 160 

0.000 

0.000 

0.000 

0.000 

0.030 

0.000 

0.000 

0.000 

0.680 

0 .000 

+ 
0 .000 

+ 
0 .060 

0.000 

0.000 

0 .000 

0 .000 

0.000 

0 .110 

0.000 

0.510 

0 .000 

0.530 

0 .000 

0.680 

0.000 

0.520 

0 .000 

Standard 

error 

0 .00 

0 .10 

0 .00 

0 .00 

0 .02 

0 .36 

0 .00 

0 .00 

0 .11 

0 .00 

0.00 

0 .00 

0 .00 

0.03 

0 .00 

0.00 

0.00 

0.32 

0 .00 

0 .01 

0 .00 

0 .01 

0 .04 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .09 

0 .00 

0 .50 

0 .00 

0 .53 

0 .00 

0.49 

0 .00 

0 .23 

0 .00 

220 

Geometric Percent of 

Mean biomass 

0 .000 0.00 

0 .300 0.00 

0 .000 0.00 

0 .000 0.00 

0 .000 0.00 

1.300 0 .10 

0.000 0 .00 

0 .000 0 .00 

0 .00 

0.400 0 .00 

0 .000 0.00 

0 .000 0 00 

0 .000 0 .00 

0 .000 0 .00 

0.100 0 .20 

0 .000 0 .00 

0 .000 0.00 

0 .000 0 .00 

3 .800 0.60 

0 .000 0.00 

0 .000 0.00 

0 .000 0.00 

0 .000 0.00 

0 .100 0 .00 

0 .00 

0 .000 0.00 

0.000 0.00 

0 .000 0.00 

0 .000 0.00 

0 .000 0.00 

0 .300 1.80 

0 .000 0 .00 

2 .200 5.30 

0 .000 0 .00 

2.400 8 .70 

0 .000 0 .00 

3 .800 6 .10 

0 .000 0 .00 

2 .300 0 .50 

0 .000 0 .00 



Appendix A, Continued 

Species=SA CCORHIZA DERMA TODEA 

Depth Sa.mple T N Arithmetic Mea.n of log Sta.nda.rd Geometric Percent of 

ra.nge 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

period 

SUM79 C 5 

SUM79 E 5 

SPR80 C 5 

AUT80 C 4 

AUT80 E 5 

SPR81 E 3 

SUM81 C 5 

SUM81 E 5 

SUM82 C 10 

SUM82 E 10 

SUM79 C 5 

SUM79 E 5 

AUT79 C 3 

SPR80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 6 

SPR82 C 5 

SPR82 E 6 

SPR82 Q 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

SUM79 C 5 

SUM79 E 5 

AUT79 C 4 

SPR80 C 5 

AUT80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 5 

SPR82 C 5 

SPR82 E 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

Mea.n 

11.400 

3 .800 

122.900 

1857 .500 

749.800 

0 .000 

0 .000 

0 .000 

33.300 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

3 .800 

6 .600 

0 .000 

0 .000 

+ 
0 .000 

2 .800 

0 .200 

0 .000 

0.000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

5 .100 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

transformed 

0 .530 

0 .380 

1.860 

3.220 

1.640 

0 .000 

0 .000 

0 .000 

0 .380 

0 .000 

0 .000 

0 .000 

0.000 

0.000 

0 .000 

0.000 

0 .260 

0 .310 

0 .000 

0 .000 

0 .000 

0.220 

0.050 

0 .000 

0.000 

0 .000 

0.000 

0 .000 

0 .000 

0.000 

0 .000 

0.000 

0.000 

0.280 

0.000 

0.000 

0.000 

0.000 

0 .000 

error 

0 .32 

0 .25 

0 .22 

0 .12 

0.73 

0 .00 

0 .00 

0 .00 

0 .27 

0.00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .26 

0 .31 

0 .00 

0 .00 

0 .00 

0.15 

0 .05 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .28 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

Mea.n 

2.400 

1.400 

71.400 

1658.600 

42 .700 

0 .000 

0 .000 

0 .000 

1.400 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .800 

1.000 

0 .000 

0 .000 

0 .000 

0 .700 

0 .100 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .900 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

bioma.ss 

0 .50 

0 .20 

3 .90 

48 .30 

32 .90 

0 .00 

0 .00 

0 .00 

0 .50 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .20 

1.00 

0 .00 

0.00 

0 .00 

0 .00 

0.40 

0 .00 

0 .00 

0.00 

0 .00 

0.00 

0 .00 

0.00 

0.00 

0.00 

0 .00 

0 .00 

0 .50 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 
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Appendix A, Continued 

Species=SCAGELIA corallina 

Depth Sa.mple T N Arithmetic Mea.n of log Sta.nda.rd Geometric Percent of 

ra.nge period 

0-2m SUM7Q C 5 

0-2m SUM79 E 5 

0-2m SPR80 C 5 

0-2m AUT80 C 4 

0-2m AUT80 E 5 

0-2m SPR81 E 3 

0-2m SUM81 C 5 

0-2m SUM81 E 5 

0-2m SUM82 C 10 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-Qm 

6-9m 

SUM82 E 10 

SUM7Q C 5 

SUM79 E 5 

AUT79 C 3 

SPR80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 6 

SPR82 C 5 

SPR82 E 6 

SPR82 Q 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

SUM79 C 5 

SUM7Q E 5 

AUT79 C 4 

SPR80 C 5 

AUT80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 5 

SPR82 C 5 

SPR82 E 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

Mea.n 

0 .000 

+ 
0 .000 

0.000 

+ 
0 .200 

0 .000 

0 .000 

+ 

+ 

+ 

+ 

+ 

+ 
3 .000 

0.400 

0 .300 

0.400 

0 .100 

0 .000 

+ 
28.100 

0 .500 

+ 
3 .600 

+ 
+ 

+ 
0 .000 

+ 
0 .900 

0 .000 

3 .600 

0 .000 

+ 
0 .000 

34 .800 

0.100 

1.800 

0 .100 

tra.nsfo rmed error 

da.ta. (log
10

) 

+ 

+ 
0.000 

0.070 

0.000 

0.020 

0 .380 

0.130 

0.110 

0 100 

0.020 

0.000 

1.340 

0 .110 

0 .260 

0.000 

0 .220 

0 .000 

0 .340 

0.000 

0 .000 

0.450 

0 .040 

0. 150 

0.030 

0 .01 

0.01 

0 .00 

0 .07 

0 .00 

0 .02 

0 .20 

0.08 

0 .04 

0 .10 

0 .02 

0 .00 

0 .16 

O.o7 

0 .26 

0 .00 

0 .11 

0 .00 

0 .24 

0 .00 

0 .00 

0.45 

0 .03 

0 .12 

0 .02 

Mea.n 

0 .000 

0.000 

0 .000 

0 .200 

0 .000 

0 .000 

1.400 

0 .300 

0 .300 

0 .300 

0 .000 

0.000 

20 .900 

0 .300 

0 .800 

0 .000 

0 .700 

0 .000 

1.200 

0 .000 

0 .000 

1.800 

0 .100 

0.400 

0 .100 

biomass 

0 .00 

0 .00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0 00 

0.00 

0.00 

0.00 

0.00 

0.00 

9.30 

0.30 

0.00 

0.10 

0.00 

0.00 

0.00 

2.80 

0.10 

0.00 

0.20 

0.00 

0.00 

0.00 

0.00 

0.00 

3 .80 

0.00 

0.30 

0.00 

0.00 

0 .00 

2.60 

0.00 

0.10 

0.00 
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Appendix A , Continued 

Specie5=SCYTOSIPHON LOMENTARIA 

Depth 

range 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

Sa.mple T 

period 

SUM79 C 

SUM79 E 
SPR80 C 

AUT80 C 

AUT80 E 
SPR81 E 

SUM81 C 

SUM81 E 

SUM82 C 

SUM82 E 

SUM79 C 

SUM79 E 
AUT79 C 

SPR80 C 

AUT80 E 

SPR81 C 

SPR81 E 
SUM81 C 

SUM81 E 

SPR82 C 

SPR82 E 

SPR82 Q 

SUM82 C 

SUM82 E 

SUM82 Q 
SUM79 C 

SUM79 E 
AUT79 C 

SPR80 C 

AUT80 C 

AUT80 E 

SPR81 C 

SPR81 E 
SUM81 C 

S UM81 E 

SPR82 C 

SPR82 E 

SUM82 C 

SUM82 E 
SUM82 Q 

N Arithmetic 

Mea.n 

5 32 .800 

5 4 .800 

5 46.400 

4 0 .000 

5 2 .700 

3 0 .000 

5 0 .000 

5 0 .000 

10 0 .700 

10 0 .000 

5 0 .000 

5 0 .000 

3 0 .000 

5 0 .000 

5 0 .000 

5 1.100 

5 2.300 

5 0 .000 

6 0 .000 

5 + 
6 0 .000 

5 0 .000 

10 1.200 

10 0 .000 

5 0.000 

5 1.400 

5 0 .000 

4 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0.000 

5 0 .600 

5 0 .000 

5 1.600 

5 0 .000 

5 0 .000 

10 0 .000 

10 + 
5 o.ooo· 

Mea.n of log 

transformed 

da.ta. 

1. 190 

0 .600 

1.200 

0 .000 

0 .380 

0.000 

0.000 

0.000 

0.140 

0.000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0.190 

0 .250 

0 .000 

0 .000 

0.000 

0.000 

0 .210 

0.000 

0.000 

0 .230 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .180 

0.000 

0 .190 

0 .000 

0 .000 

0.000 

0.000 

Sta.nda.rd 

error 

0 .27 

0 .18 

0 .32 

0 .00 

0.20 

0 .00 

0 .00 

0 .00 

0 .08 

0.00 

0.00 

0 .00 

0.00 

0.00 

0.00 

0 .15 

0 .21 

0 .00 

0 .00 

0 .00 

0 .00 

0 .09 

0 .00 

0 .00 

0 .16 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .07 

0 .00 

0 .19 

0 .00 

0 .00 

0 .00 

0 .00 

Geometric 

Mea.n 

14 .500 

3 .000 

14 .800 

0 .000 

1.400 

0 .000 

0 .000 

0 .000 

0.400 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .500 

0 .800 

0 .000 

0 .000 

0 .000 

0 .000 

0 .600 

0 .000 

0 .000 

0 .700 

0 .000 

0 .000 

0 .000 

0.000 

0.000 

0 .000 

0 .500 

0 .000 

0 .500 

0 .000 

0 .000 

0 .000 

0 .000 

Percent of 

bioma.s5 

1.40 

0 .20 

1.50 

0 00 

0 .10 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .80 

0 .10 

0 .00 

0.00 

0.00 

0.00 

0 .00 

0 .20 

0 .00 

0.00 

5 .60 

0 .00 

0 .00 

0.00 

0 .00 

0.00 

0 .00 

0 .10 

0.00 

0.20 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 
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Appendix A, Continued 

Species=SPONGOMORPHA AERUGINOSA 

Depth 

ra.nge 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

Sa.mple T 

period 

SUM79 C 

SUM79 E 

SPR80 C 

AUT80 C 

AUT80 E 

SPR81 E 

SUM81 C 

SUM81 E 
SUM82 C 

SUM82 E 

SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 E 
SPR81 C 

SPR81 E 

SUM81 C 

SUM81 E 

SPR82 C 

SPR82 E 

SPR82 Q 
SUM82 C 

SUM82 E 
SUM82 Q 

SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 C 

AUT80 E 

SPR81 C 

SPR81 E 

SUM81 C 

SUM81 E 

SPR82 C 

SPR82 E 

SUM82 C 

SUM82 E 

SUM82 Q 

N Arithmetic 

Mea.n 

5 11.300 

5 18.200 

5 3.400 

4 0 .900 

5 2 .600 

3 0.000 

5 0 .000 

5 0 .000 

10 0 .000 

10 0 .000 

5 + 
5 0.000 

3 0 .000 

5 + 
5 + 
5 0 .000 

5 0 .000 

5 + 
6 0.000 

5 0 .000 

6 0 .000 

5 0 .000 

10 0 .300 

10 + 
5 0 .000 

5 + 
5 0.000 

4 0.000 

5 0 .000 

5 0 .000 

5 + 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

10 0 .000 

10 0 .000 

5 0 .000 

Mea.n of log 

tra.nsfo rmed 

da.ta. 

0.780 

1.120 

0.590 

0 .160 

0.400 

0.000 

0.000 

0 .000 

0.000 

0.000 

+ 
0.000 

0.000 

0.000 

0.000 

0.000 

0 .000 

0.000 

0.060 

0.000 

0.000 

0.000 

0.000 

0.000 

0 .000 

0.000 

0.000 

0.000 

0 .000 

0 .000 

0.000 

0 .000 

0.000 

Sta.nda.rd 

error 

0 .26 

0 .23 

0 .10 

0 .16 

0 .18 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .01 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .06 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

Geometric 

Mea.n 

5 .000 

12.200 

2 .900 

0 .400 

1.500 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .100 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

Percent of 

biomass 

0.50 

0.80 

0.10 

0.00 

0 .10 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

2.00 

0.00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0.00 

0.00 

0.00 

0 .00 

0.00 

0 .00 

0 .00 

0.00 

0.00 

0 .00 

0.00 

0 .00 

0.00 

0.00 
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Appendix A, Continued 

Species=SPONGOMORPHA ARCTA 

Depth Sample T N Arithmetic Mean of log Standard Geometric Percent of 

range 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-9m 

6-Qm 

6-Qm 

6-9m 

6-9m 

6-Qm 

period 

SUM79 C 5 

SUM7Q E 5 

SPR80 C 5 

AUT80 C 4 

AUT80 E 5 

SPR81 E 3 

SUM81 C 5 

SUM81 E 5 

SUM82 C 10 

SUM82 E 10 

SUM79 C 5 

SUM79 E 5 

AUT79 C 3 

SPR80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 6 

SPR82 C 5 

SPR82 E 6 

SPR82 Q 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

SUM79 C 5 

SUM79 E 5 

AUT79 C 4 

SPR80 C 5 

AUT80 C 5 

AUT80 E 5 

SPR81 C 5 

SPR81 E 5 

SUM81 C 5 

SUM81 E 5 

SPR82 C 5 

SPR82 E 5 

SUM82 C 10 

SUM82 E 10 

SUM82 Q 5 

Mean 

44 .300 

18.000 

638.800 

0 .200 

10.100 

2 .100 

0 .000 

0 .200 

0 .000 

0 .000 

0 .000 

+ 
0 .000 

+ 
+ 

0.300 

2.400 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

+ 
0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

transformed 

data 

1.350 

0 .970 

2.240 

0 .060 

0.820 

0 .290 

0.000 

0 .060 

0.000 

0 .000 

+ 

0.000 

0.100 

0 .370 

0.000 

0 .000 

0 .000 

0.000 

0 .000 

0.000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

+ 
0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

error 

0.34 

0.31 

0.43 

0 .06 

0 .25 

0 .29 

0 .00 

0 .06 

0 .00 

0 .00 

0 .01 

0 .00 

0 .07 

0 .17 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .01 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

Mean 

21.400 

8 .300 

172.800 

0 .100 

5.600 

0 .900 

0 .000 

0 .100 

0 .000 

0 .000 

0 .000 

0 .000 

0 .300 

1.300 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

biomass 

1.90 

0 .80 

20.20 

0 .00 

0.40 

0 .10 

0 .00 

0 .00 

0 .00 

0.00 

0.10 

0.00 

0.00 

0.00 

0.00 

0 .20 

0 .10 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0.00 

0.00 

0.00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 
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Appendix A , Continued 

Specie~=ULVARIA OBSCURA 

Depth 

ra.nge 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-Qm 

6-9m 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-9m 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-Qm 

6-9m 

6-Qm 

Sa.mple T 

period 

SUM79 C 

SUM79 E 

SPR80 C 

AUT80 C 

AUT80 E 

SPR81 E 
SUM81 C 

SUM81 E 

SUM82 C 

SUM82 E 

SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 E 

SPR81 C 

SPR81 E 

SUM81 C 

SUM81 E 
SPR82 C 

SPR82 E 

SPR82 Q 

SUM82 C 

SUM82 E 

SUM82 Q 

SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 C 

AUT80 E 

SPR81 C 

SPR81 E 
SUM81 C 

SUM81 E 
SPR82 C 

SPR82 E 
SUM82 C 

SUM82 E 
SUM82 Q 

N 

5 

5 

5 

4 

5 

3 

5 

5 

10 

10 

5 

5 

3 

5 

5 

5 

5 

5 

6 

5 

6 

5 

10 

10 

5 

5 

5 

4 

5 

5 

5 

5 

5 

5 

5 

5 

5 

10 

10 

5 

Arithmetic 

Mea.n 

0 .000 

0 .000 

3 .600 

0 .000 

0 .000 

1.300 

0 .000 

0 .000 

0 .000 

0 .000 

+ 
0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

+ 
0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

Mea.n of log 

tra.nsformed 

da.ta. 

0 .000 

+ 
0.450 

0 .000 

0.000 

0.320 

0.000 

0.000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0.000 

0.000 

0 .000 

0.000 

0.000 

0.000 

0 .000 

0.000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0 .000 

0.000 

0 .000 

Sta.nda.rd 

error 

0 .00 

0 .01 

0 .21 

0 .00 

0 .00 

0 .14 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0.00 

0.00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

Geometric 

Mea.n 

0 .000 

0 .000 

1.800 

0 .000 

0 .000 

1.100 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

Percent of 

bioma.ss 

0.00 

0.00 

0 .10 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0.00 

0.00 

0 .00 

0.00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 
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Specie~=UROSPORA WORMSKJOLD/1 

Depth 

range 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

0-2m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

2-3m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

6-9m 

Sample T 

period 

SUM79 C 

SUM79 E 

SPR80 C 

AUT80 C 

AUT80 E 

SPR81 E 

SUM81 C 

SUM81 E 

SUM82 C 

SUM82 E 

SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 E 

SPR81 C 

SPR81 E 

SUM81 C 

SUM81 E 

SPR82 C 

SPR82 E 

SPR82 Q 

SUM82 C 

SUM82 E 

SUM82 Q 

SUM79 C 

SUM79 E 

AUT79 C 

SPR80 C 

AUT80 C 

AUT80 E 

SPR81 C 

SPR81 E 

SUM81 C 

SUM81 E 

S PR82 C 

SPR82 E 

SUM82 C 

SUM82 E 
SUM82 Q 

N Arithmetic 

Mean 

5 0 .000 

5 0 .000 

5 0.000 

4 0 .000 

5 0 .000 

3 0 .000 

5 0 .000 

5 0 .000 

10 0 .000 

10 0 .000 

5 0 .000 

5 0 .000 

3 0 .000 

5 0 .000 

5 0.000 

5 0 .000 

5 4 .700 

5 0 .000 

6 0.000 

5 0 .000 

6 + 
5 29 .000 

10 0 .000 

10 0.000 

5 0 .000 

5 0 .000 

5 0 .000 

4 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

5 0 .000 

10 0 .000 

10 0.000 

5 0 .000 

Mean of log 

transformed 

data 

0.000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.690 

0.000 

0 .000 

0.000 

1.110 

0 .000 

0 .000 

0.000 

0 .000 

0.000 

0.000 

0.000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0 .000 

0.000 

0.000 

0.000 

0.000 

0.000 

Standard 

error 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .12 

0 .00 

0.00 

0 .00 

0 .34 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0.00 

0 .00 

Geometric 

Mean 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

3 .900 

0 .000 

0 .000 

0 .000 

11 .900 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0 .000 

0.000 

0 .000 

Percent of 

biomass 

0.00 

0 .00 

0 .00 

0.00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .20 

0.00 

0.00 

0 .00 

0.00 

2.90 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0.00 

0.00 

0 .00 

0 .00 

0 .00 

0.00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 

0 .00 
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Appendix B 

A discussion of urchin population 
size structure 

228 

Changes in urchin population structure with depth were similar to those 

reported for a population sampled from a loose substratum during 1968 at 

Portugal Cove (Himmelman 1969,1980). Small urchins were uncommon m 

shallow water, peaked in abundance in the mid to lower barrens, and decreased to 

lower values in deeper water. Himmelman showed that a similar trend was 

evident , although less pronounced, on bedrock (Himmelman 1969, 1980), but 

because air dredge sampling was not employed it is unlikely that small animals 

were sampled as accurately as those on the loose substratum. Similarly in Nova 

Scotia (Wharton 1980) and Quebec (Himmelman et a/ . 1983a) small urchins were 

most abundant in barrens. The low abundance of small urchins in kelp beds in 

Nova Scotia (Wharton and Mann 1981), and their low abundance within the two 

depth ranges with abundant fleshy macro-algae at the present site suggests that 

macro-algae may have a negative influence on urchin recruitment. Pearse et a/. 

(1970) hypothesized that large non-calcareous macro-algae reduce urchin 

recruitment. Tegner and Dayton (1981) noted a negative correlation between 

recruitment of Strongylocentrotus franciscanus and Macrocystis abundance in 

California. This hypothesis is certainly worthy of direct testing, especially since 

there are other complicating factors (including predation, exposure to wave 

action , the nature of dominant algae with respect to urchin food preferences, and 

the nature of the substratum). 

There are no obvious trends m growth and mortality evident in the data 

from 0-2m and 2-3m on the control transect. The population size-structure was 
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certainly not static , but beyond that little can be said. Detailed analysis of the 

population structure within the 6-9m samples indicates that growth rates were 

very low, and interannual recruitment or mortality variations were high . 

Similarly, Himmelman et al. {1983a,b) reported growth rates of 1-1.5 mm y- 1 for 

urchins in a barren area in the St. Lawrence estuary. These authors also recorded 

considerable interannual variation in recruitment, with a heavy recruitment in 

1977, followed by no apparent recruitment during 1978-1981. Propp {1977) 

reported large interannual variations in population structure of S. droebachiensis , 

indicative of fluctuations in recruitment, in the Barents Sea. This pattern is 

common among herbivorous echinoids (Tegner and Dayton 1981; Andrew and 

Choat 1982; Ebert 1983), and other benthic invertebrates with pelagic larval 

phases (Scheltema 197 4, Dayton and Tegner 1984). 

A striking feature of the urchin population structure at 6-9m was the 

pronounced mode at 3 mm and the decrease in abundance in the 3 mm to 10 mm 

range. This is interpreted as evidence of intense predation on small urchins. 

Martel {1982) reported that urchins occurred in the alimentary tracts of 100% of 

38 territorial male cunners (Tautogolabrus adspersus) examined from St. Phillips, 

a typical urchin/coralline habitat 8 km. south of the present study area. Urchins 

< 5 mm occurred in 14%, between 5 and 10 mm in 100%, and larger than 10 

mm in 22 % of the fish examined. Martin {1979) reported urchins in the 

alimentary tracts of 29% of a random sample of 115 cunners from the same site. 

Urchins made up 14% of the diet of the total sample by weight. Cunners were 

the most abundant fish at the study site, often feeding on the benthos in large 

aggregations of 20-40 individuals (pers. obs.). For example, Coral/ina officina/is 

supported dense populations of juvenile mussels (Mytilus edulis and Vosella 

modiolus), polychaetes, and other invertebrates in the spring when the cunners 

emerged from their over-wintering sites. Cunners were frequently seen stripping 

food from Coral/ina, and by late summer the Coral/ina was essentially bare. The 

effects of cunner foraging in other habitats were less obvious, but may have been 

equally severe. These data and observations indicate that considerable predation 

on juvenile urchins by cunners occurs in eastern Newfoundland. The 
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predominance of urchins in the 5-10 mm s1ze group m the guts of territorial 

males, the importance of urchins in the general diet of cunners, and the marked 

decrease in density of urchins beyond 5 mm suggests that size selective mortality 

occurs due at least in part to predation by cunners. 

Another predator, the winter flounder (Pseudopleuronectes americanus) 

was also abundant in the study area, and I have observed that their guts 

frequently contained urchins in the 5-10 mm range Thus size selective predation 

on juveniles may be an important factor governing the size structure of the urchin 

population. Despite high levels of predation enough juveniles survive to maintain 

the dense adult population, whose grazing maintains the barrens. Andrew and 

Choat (1982) showed that fish predation on juvenile Evechinus chloroticus in 

New Zealand determined population size-structure, but enough urchins escaped 

predation to maintain an urchin and coralline dominated habitat. 

Propp (1977) reported that juvenile S. droebachiensis were most abundant 

• under a crust of calcareous algae, • and in crevices in the Murmansk area of the 

Barents Sea. Himmelman (1980) made a similar observation for urchins in eastern 

Newfoundland. At 6-9m the corallines Lithothamnion glaciale and 

Clathromorphum circumscriptum occupied 51% cover. These algae were 

undercut due to the activities of boring animals, and spaces were present 

underneath. Spaces were also present among the erect parts of L. glaciale. 

Although no quantitative data are available, I have observed that juvenile urchins 

were most abundant in these holes and spaces. They probably escape predation 

in these cryptic habitats, and this factor may influence the size frequency 

distributions. Quantification of these observations, an examination of the size of 

cryptic portions of the coralline algae in relation to the size of urchins which may 

occupy them, and a determination of whether mortality or settlement factors are 

responsible for the distribution of juvenile urchins with respect to coralline algae 

would be valuable. 



Appendix C 

Response of molluscan herbivores to 
urchin removal 
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Margarites helicinus and Lacuna vincta were the only herbivores whose 

biomass and density were affected by urchin removal. There were increases in 

recruitment, probably due to increased larval settlement, and survival of Lacuna. 

Survival of Margarites was also higher in the presence of the macro-algae which 

developed following urchin removal. High densities of these species were also 

observed on small isolated patches of algae in the control area, such as occurred 

on the tops of some boulders. Lacuna vincta 1s an annual species with a 

planktonic larval phase (Smith 1973). It appears to settle preferentially in the 

presence of seaweeds (Smith 1973, Fretter and Manly Hl77). These authors also 

reported a high mortality of Lacuna shortly after settlement, as was indicated by 

the present study. Lacuna vincta density increased in Nova Scotia following the 

decline of urchins, such that L. vincta is now the dominant herbivore in newly 

established kelp beds (Keats pers. obs.; C. Johnson, pers. com. 1 ). 

Margarites helicinus recruitment also occurred during the late summer and 

early autumn. Like L. vincta it exhibited high early mortality, and is probably an 

annual species. Unlike L. vincta, however, it lacks a planktonic phase (Fretter 

and Graham 1962). Himmelman et al. (1983) also recorded increased densities of 

M. helicinus, but not L. vincta, during an urchin removal experiment in Quebec. 

The lower mortality of these two species in the presence of abundant 

1Dept. Bioi. , Dalhousie Univ ., Halifax, N .S. 
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macroalgae may have been due to increased food availability , and/or reduced 

effectiveness of predation in the dense algae. The increase in survivorship of 

Lacuna with depth in the presence of macro-algae suggests that wave action may 

be a significant cause of mortality. Wave stress decreases with increasing depth. 

Differences in morphology between the dominant A/aria esculenta in shallow 

water, compared with early successional filamentous algae, and later Desmarestia 

aculeata in deeper water may also have influenced the depth dependence of 

mortality. Depth differences in the abundance of predatory fishes could also 

produce this pattern, but the distribution of fishes with depth has not been 

examined in the present study area. The low abundance and patchy distribution 

of Margarites in the shallow macro-algal zone may be a result of wave action 

and/or a scarcity of filamentous algae upon which egg masses, and newly hatched 

individuals were most frequently observed. The general biology and ecology of 

these species in subtidal areas, and factors which influence their recruitment, 

survival, reproduction and growth are worthy of further study. This is 

particularly true in view of the potential effect of Lacuna vincta on algal 

populations (Fralick et al. 1g74; Hooper 1gso; Thomas and Page lg83). 

The molluscan members of the herbivore guild may have had an impact on 

community structure. The grazing potential of these herbivores cannot be 

calculated from available literature, because publications dealing with this 

phenomenon rarely report herbivore biomass, but rather density. The only 

molluscan species which has been implicated in large scale effects on macroscopic 

algae, and which was present in the study area, is Lacuna vincta. Fralick et al. 

( 1g7 4) reported that a localized population explosion of the species in New 

Hampshire caused a marked depletion of Laminaria spp. Hooper (lg8o) also 

reported observing the removal of algal beds by Lacuna in Newfoundland. I have 

also observed mortality of Laminaria and other large algae due to browsing by 

this species in Nova Scotia, Newfoundland, and Labrador. Thomas and Page 

(lg83) reported that following settlement at a density of < 350 m-2 during June, 

Lacuna vincta consumed as much as 7g% of Fucus edentatus net production by 

August at a site in New Brunswick. This grazing had a major impact on plant 
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growth and standing crop. Lacuna density following settlement at 2-3m on the 

experimental transect was considerably higher than the mean density recorded by 

Thomas and Page (1983). Despite this Lacuna survivorship was ev~dently low 

enough that large scale mortality of macro-algae did not occur. A/aria sporelings, 

however, may have received some grazing damage, and this may have had some 

limited impact on community composition during the first year after urchin 

removal. Margarites helicinus feeds on diatoms and micro-algae (Fretter and 

Graham 1962), and presumably spores and germlings of macro-algae. Further 

details of the diet and feeding abilities of M. helicinus are lacking, so its potential 

impact on macro-algae cannot be assessed. 

At a mean density of 70 m -2 grazing by Acmaea testudinalis has been 

shown to significantly increase the competitive ability of Clathromorphum spp. 

over other coralline algae (Steneck 1982). Thus at densities observed in the study 

area A. testudinalis may play an important role in mediating competition among 

coralline algae. By grazing spores and sporelings (Willcox 1905) this species could 

also have direct effects on fleshy algae. 

Of the three chiton species present in the study area, Ischnochiton alba is 

probably not a very important grazer, because its abundance was very low. In 

view of their high densities and biomass both Tonicel/a rubra and T. marmorea 

may have significant effects on macro-algae. Because of the structure and heavy 

mineralization of the radular teeth, most chitons are capable of excavating 

coralline algae (Steneck and Wattling 1982). Langer ( 1978) presented data which 

suggested that T. rubra, T. marmorea and I. a/bus are omnivorous species with a 

strong herbivorous component to their diet. Presumably they may remove micro­

algae, spores and germlings of macro-algae, and thereby have the potential to 

influence community structure. The precise role of these abundant herbivores is 

certainly worthy of study, both in the presence and in the absence of urchins. 










