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Abstract 

A motivation is made for a quasi-equilibrium set of black hole thermodynamic laws 

on the merit that they, being analogous to thermodynamics, are more physical than 

current formulations. Black hole formalisms are reviewed and it is determined that 

the trapping horizon is sufficient to formulate a slowly evolving horizon regime. A 

summary of this formalism and the accompanying thermodynamic laws are stated. 

To be slowly evolving, a horizon must meet certain general conditions and those con

ditions from [1] are stated. A particular spacetime, to be considered slowly evolving, 

must satisfy these conditions and they must translate to physically meaningful restric

tions. Three spacetimes are checked to see that they are slowly evolving horizons. 

For all three spacetimes, the conditions are met and the zeroth and first laws are then 

confirmed to hold. 
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Chapter 1 

Statement of the Problem 

Equilibrium is an indispensable concept in physics; particularly so in the field of 

thermodynamics. This fact is made obvious through the general acceptance and use 

of the term "thermodynamics" to refer to equilibrium thermodynamics and near or 

quasi-equilibrium thermodynamics. Equilibrium as well as quasi-equilibrium thermo-

dynamics come encompassed in the term classical equilibrium thermodynamics. The 

adjective "classical" refers to the nature of the original formulation of the theory of 

thermal physics which was a phenomenological one based on macroscopic measure-

ment that did not concern itself with assuming the underlying structure of matter or 

providing an explanation for the process [2]. The alternate case is then referred to 

as non-equilibrium thermodynamics. 1 Classical equilibrium thermodynamics centered 

itself, at least initially, on understanding the workings of heat engines and then on the 

1 Undergraduate texts often establish the first law of thermodynamics for quasi-equilibrium states 
without clearly specifying the distinction between it and the non-equilibrium thermodynamics case. 
An appropriate convention will subsequently be followed here where equilibrium and non-equilibrium 
thermodynamics will be distinguished from each other as described above. 

1 



CHAPTER 1. STATEMENT OF THE PROBLEM 2 

study of heat exchange and work done on a system. The general laws of thermody

namics, in the equilibrium regime, are simple, physical and allow easy description of 

the system properties with time. Thermodynamics becomes, more generally though, 

a study of energy and entropy especially for non-equilibrium thermodynamics as a 

whole. 

Its wide ranging application to all matter, in particular to the description of the 

bulk properties of matter, make thermodynamics applicable to the study of black 

holes. With that said, it is not surprising that the field of black hole thermodynam

ics too, can benefit from considerations of first the equilibrium regime and then the 

quasi-equilibrium regimes. The equilibrium regime is, by definition, a physical ideal

ization which does not allow a description of a system's evolution. To provide such a 

description, thermodynamics considers systems that undergo quasi-equilibrium pro

cesses. Carrying out the application of this formalism to black holes and considering 

some specific examples, is the main goal of this thesis. 

This introductory chapter will serve as a brief review of some basic thermody

namics which will put into context and help motivate what is required to obtain a 

quasi-equilibrium formulation of the zeroth and first laws of black hole mechanics. A 

general discussion of black hole thermodynamics, horizons, and in particular slowly 

evolving horizons will further motivate the objectives here within. As well, there will 

be an outline of what is to follow in the main sections of this thesis. 
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1.1 Thermodynamics 

To formulate classical thermodynamics is to deal with equilibrium situations and 

states. An equilibrium state is one whose properties are constant in time. Variables 

used to describe such equilibrium states are thus referred to as state variables. Quan

tities like pressure, P, volume, V, and temperature, T (as yet undefined) are examples 

of state variables [2]. With this said, it is important to understand and keep in mind 

that classical thermodynamics really applies only to equilibrium situations. Thus 

it does not immediately make sense to talk about such variables in non-equilibrium 

processes [3]. In general, a non-equilibrium process cannot be described in terms of 

state variables. State variables are by definition quantities of equilibrium states and 

not non-equilibrium states. The important variable in thermodynamics is tempera

ture and it provides a very relevant example for a discussion about state variables 

in non-equilibrium thermodynamics. Temperature can not really be quantified in a 

non-equilibrium scenario. If one were to drastically change the internal energy of a 

beaker of water on a lab bench, classifying it as a non-equilibrium process, a ther

mometer would do little justice to describing the "temperature". Not until the source 

of energy was cut off or decreased, when the water came close to equilibrium, would 

temperature be measurable. 

These restrictions, inherent of classical thermodynamics, effectively exclude a de

scription of the thermal dynamics of a system. In other words, one can not describe 

the evolution of a system using classical thermodynamics. This is because the afore

mentioned equilibrium state variables do not exist for non-equilibrium states. While 

thermodynamics can be generalized to non-equilibrium thermodynamics using a field 



CHAPTER 1. STATEMENT OF THE PROBLEM 4 

theory to allow for dynamics [4], it is not the goal here to elaborate on or even use 

such a formulation. However, it will be relevant shortly to discuss some generalities 

in using such a field theory in section 1.2. The reason is that the ultimate goal is 

to go from the general situation that requires field theory to a regime that can be 

described by classical thermodynamics. 

Formulating classical thermodynamics requires use of the property temperature. 

The association of temperature with equilibrium is fundamental and first becomes 

apparent in the formulation of equilibrium thermodynamics with the statement of 

the zeroth law. 

Zeroth Law of Thermodynamics If two systems are separately in thermal equi-

librium with a third system, they are in equilibrium with each other [2]. 

From this law, the empirical temperature can be defined empirically as a function of 

pressure and volume that provides a label for each possible equilibrium state [5, 2]. 

Temperature serves as an indicator as to whether or not a system is in equilibrium 

with another. Directly from the zeroth law comes, through a formal and rigorous 

procedure, the realization that there is a function of state of a body that will have 

the same value for two or more bodies that are in equilibrium with one another; that 

function, say ¢, which depends on pressure P and volume V, is equal to empirical 

temperature and is denoted as e [5]; 

¢(P, V) =e. (1.1) 

The reader should recognize this as the equation of state of a fluid. 2 This temperature 

2The symbols e and ¢ will denote empirical temperature and equation of state only in this chapter 
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is 'empirical' because each fluid will have its own equation of state and the labeling 

of each isotherm across a P vs. V plot with a value for () requires an arbitrary choice. 

The empirical temperature can be described as an operational temperature [6]. This 

undesired characteristic along with the fact that this temperature is not directly 

related to the 'hotness' and 'coldness' of a body will be alleviated when a modified 

version of temperature is identified in a further step to write quasi-equilibrium first 

law. 

While this definition limits one to using temperature only in equilibrium, the 

reality is that physicists do measure temperature in beakers of water as the system 

changes with time. What is more, they in essence use equilibrium thermodynamics to 

describe such situations. How this is done, in spite of the restrictions to equilibrium 

discussed above, is of fundamental importance. If a system undergoes a quasi-static 

process it is then possible to use thermodynamics as an approximation. Such a 

process is one in which the system and its variables deviate only infinitesimally from 

equilibrium at each instant. That is, the system moves from one equilibrium state to 

one infinitesimally near by. A reversible process is always quasi-static. The converse 

of this is not necessarily true [2]. In the quasi-static regime, a physicist's thermometer 

will be in equilibrium with the water at each instant. 

Laws of thermodynamics must also govern energy conservation in and out of 

the system. The First Law of thermodynamics is simply an expression of energy 

conservation that specifically includes thermal energy. It says that the change of 

internal energy of the system is equal to the heat or thermal energy acquired by the 

as those symbols will later refer to the scalar expansion of a congruence and map between manifolds. 
There will be no reference to empirical temperature or equation of state after this chapter. 
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system combined with the work done on the system. 

First Law of Thermodynamics The change in internal energy of the system, .6.U, 

is equivalent to the heat going into the system minus the work done by the 

system. Mathematically, 

.6.U = U1 - Ui = Q + W, (1.2) 

where Q is the heat acquired by the system and W is the work done on the 

system respectively (this leaves work done by the system, W, negative). [3] 

This law is true for any change in the system but does not allow for physical 

analysis of the changing or dynamic system. In Equation (1.2), Q and W are each 

dependent on path which means they are not state functions. As far as trying to 

analyze changes, these "non-state functions" Q and W can have various possible 

values between to equilibrium states and therefore no values can be assigned to them 

in an attempt to describe the system. For a given change in energy in the system 

from one state to another, their values are ambiguous. In this sense, Q and W are 

not well defined. A start in trying to make this law more dynamic is writing it as an 

infinitesimal law, 

~U=aQ+aW, (1.3) 

where aQ and aW are inexact differentials3 . The physical reason for writing these 

as inexact instead of exact differentials is that Q and W are not quantities that the 

system has but instead are a change the system undergoes. If we sum these changes 

3 A mathematical discussion of exact and inexact differentials can be found the appendices of [2]. 
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around the "path" of the system, the changes will not be zero. The integral around 

a closed path of aQ or aW will not be zero in general. 

It turns out it is possible to view the changes to a thermodynamic system (i.e. Q 

and W) as well-behaved. This is only possible under certain conditions; those situa

tions are inherently ones in which the system can be better described. In particular, 

the condition for this to be true of a process is that it must be reversible. More 

specifically, this process is frictionless and quasi-static. 4 Then the work, appearing in 

Equation 1.3 becomes configuration work. Configuration work is the characteristic of 

reversible processes and is defined in terms of an intensive variable and an infinites-

imal of an extensive variable. There are different types of configuration work but a 

commonly considered one is that for compression of a gas whereaW-+ dW = -PdV 

which is a state function. Since dU is already a state function the remaining term of 

the equation- the heat term- must also be one. Thus Equation (1.3) also undergoes 

the change aQ -+ dQ. Once in a reversible quasi-static regime it is possible to write 

the first law in differential form in terms of exact differentials as a dynamic law; [5] 

/:).U = dQ + dW. (1.4) 

It is important to note though that dQ is not an exact differential over finite changes. 

Changing the form of dQ is all that really remains in order to fix the first law. To 

do so requires stating the version of the second law referring to the physics of heat 

engines as stated by Kelvin. 

40ften times the frictionless aspect is assumed and the terms reversible and quasi-static are 
interchangeable. This will be the case here. This will be consistent then with the terminology used 
for black hole thermodynamics. 
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Second Law of Thermodynamics (Kelvin) It is not possible to construct an en

gine that follows a cycle that will convert heat from a reservoir to mechanical 

energy at 100% efficency [5]. 

From this law it is possible to show that for any two values of empirical temperatures 

81 and 82 the negative of the ratio ~~ is equivalent for all Carnot cycles (see [5] for 

coverage of the Carnot cycle). Specifically; 

(1.5) 

This now defines the absolute temperature denoted T, since in looking at (1.5) it is 

evident that a change in temperatures (T) now depends on the ratio of heats in the 

Carnot cycle and not on the properties of the substance. In addition to that, this 

definition of temperature now is directly related to heat; specifically the 'hotness' or 

'coldness' of an object. 

Identifying this very important quantity T, provides the means to show that this 

infinitesimal, dQ, can actually be defined in terms of state variables. Those state vari-

ables are T and another yet undefined exact differential. This can be mathematically 

treated by searching for the proper integrating factor (see [7, 2] for such treatment). 

The physical motivation for entropy though actually comes from the consideration of 

the Carnot cycle . Clausius studied Carnot cycles and discovered in general that, 

f aQR = 0 
T ' 

(1.6) 

where R refers to a reversible process. It was Clausius who defined this exact differ-

ential with integration factor 1/T as entropy dS, 

aQR = dS 
T - . (1.7) 
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The notion of entropy allows the heat infinitesimal to be mathematically defined in 

terms of state variables. Equation (1.6) illustrates where the definition for entropy 

comes from and also tells that S is independent of path and thus is a state function. 

Equation 1.7 can be rearranged to give a definition for the aQR. This allows the 

first law to finally be written as, 

dU = TdS- PdV. (1.8) 

This version of the first law is now written in terms of state variables only. This law, 

as is, represents a more physical law of energy conservation because it involves state 

variables and it serves quasi-equilibrium processes. Moreover, there is often a miscon

ception regarding this equation and it is important to note the nature of this mistake. 

Because this equation was derived by obtaining exact differentials through restricting 

to reversible processes, one might hastily conclude that it is also restricted in the same 

way. According to Pippard, Equation 1.8 can be generalized to all differential pro

cesses; not just reversible ones. Since (1.8) is a relationship between functions of state, 

this equation holds for all differential changes. However, for differential irreversible 

changes, the terms on the R.H.S. of the equation no longer represent the non-state 

functions of aQ and aW respectively. Instead, if aQ = TdS - E then aW = PdV + E, 

and thus Equation 1.8. 

This final fix to the first law introduces entropy which in turn leads to the second 

law of thermodynamics. This law actually allows for full physical description of 

thermodynamics. The first law alone does not exclude certain prohibited occurrences 

like the moving of heat from a cold body to a warm body. Observation illustrates 

that these are physical processes that do not occur in nature but are not prohibited 
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by the zeroth and first laws. The second law excludes such processes. The general 

second law can be developed by considering a cyclic path that connects two states by 

an irreversible path in one direction and a reversible path. 

dS > aQR 
- T (1.9) 

The equal sign holds for a reversible process and the inequality holds for an irreversible 

one. The second law may be written as 

dS 2:: dSr, (1.10) 

where dSr is referred to as the entropy production. 

If the system is isolated the second law can be simplified to 

dS 2:: 0. (1.11) 

The statement of the second law of thermodynamics is actually most often stated in 

the case of an isolated (no energy exchange with surroundings) system instead of that 

of the general case as described in Equation 1.10. 

Second Law of Thermodynamics (Isolated) An isolated system's entropy re-

mains the same or increases; the former for a reversible process, the latter 

for an irreversible one. This is equivalent to equation 1.11. 

The zeroth and first laws that accompany the isolated case are quite trivial but worth 

mentioning due to their relevance in the first formulation of black hole thermodynam-

ics. For the isolated case the heat exchange is zero thus the temperature change is 

zero and the body is at equilibrium. The first law states that because the work and 

heat exchange are both zero, the total change in internal energy is zero as expected 

for an isolated system. 
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1.2 Black Hole Thermodynamics 

As was already mentioned, thermodynamics is a very general and broad field that 

describes the behaviour of matter. It is not extremely surprising that laws of black 

holes that appeared in the early 1970s were found to be similar to the laws of ther-

modynamics. Four of these laws were formulated by Bardeen, Carter and Hawking 

[8] and contained geometrical properties of a black hole defined by an event horizon; 

three of which will be relevant for this thesis. It was surmised at that time that these 

black hole quantities were analogous to the entropy and temperature of thermody-

namics. What is more, it was realized that black holes are actually thermodynamical 

in nature. Hawking radiation, discovered shortly after Bardeen, Carter and Hawk

ing's paper, is a mechanism that allows a black hole to have a black body spectrum 

with a real temperature of r;,f27r where r;, is called the surface gravity (when physical 

units are not dimensionalised the temperature is ( 2~k)r;, ) [9]. A black hole also has 

an entropy that is one quarter its area, S = A/ 4 (in undimensionalised units the en

tropy is 1~~) [9, 10]. Thus, black holes are truly thermodynamic in nature and thus 

the review of classical thermodynamics above becomes relevant here for the study of 

black holes. 

These results however, must not be generalized to all black holes in any spacetime. 

One important detail required for this formulation of black hole thermodynamics is 

that the spacetime be stationary5 . Because the spacetime is stationary, the black hole 

is also stationary. The black hole is also isolated since in a stationary spacetime not 

5 A stationary spacetime is one which contains a timelike Killing vector, at least outside a black 
hole, or equivalently one whose metric is independent of t. 
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even the mass or energy change with time nor cross the horizon of the black hole. The 

black holes for which these rules apply are in equilibrium which is essentially the same 

starting point of the development of classical thermodynamics .It is in this context that 

the laws of black hole thermodynamics are stated below. 

For the isolated spacetime black hole, defined by an event horizon, it is shown in 

[8] that the surface gravity is constant on the horizon. Being the analogous quantity 

to temperature, the surface gravity ~ here serves as a state variable of the black hole. 

Like classical thermodynamics there is a first law which reads, 

~ 
8M = -8A + 081, 

81r 
(1.12) 

where M and J are the mass and angular momentum of the black hole. n is called 

the angular velocity of the black hole [10]. A fundamental part of establishing these 

laws is using the event horizon as the defining boundary of the black hole. With the 

connection between event horizon area and entropy evident, an area second law is 

expected. The area A of an event horizon is nondecreasing, bA 2: 0 [8]. These laws 

are referred to as the laws of black hole classical thermodynamics, mechanics or black 

hole thermostatics. 

To reiterate, these laws are for equilibrium cases only; specifically here they are 

for stationary spacetimes which include the subsets stationary black holes, isolated 

black holes, and equilibrium black holes, in that order. They do not apply to a 

dynamic situation. This is essentially the same starting point as for the development 

of thermodynamics. The development will be similar here except there are extra 

elements of the formulation that must be changed. 

Because these laws are for equilibrium states only (i.e. stationary spacetimes) and 
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they do not allow for dynamic situations, there is a need to follow a procedure similar 

to that followed for classical thermodynamics; a process must be carried out to obtain 

quasi-equilibrium laws for black hole thermodynamics. The classical black hole laws 

are defined for a black hole that is in turn defined by an event horizon which has 

properties consistent with stationary spacetimes and the equilibrium laws established 

there within. The black hole must be defined in a more general spacetime than a 

stationary one. Thus, there is a need to formulate a horizon definition other than 

the event horizon. Choosing how to define this horizon can be inferred from how the 

black hole thermostatics are formulated. 

1. 3 Horizons 

The need to define quasi-equilibrium laws of black hole thermodynamics brings about 

the need to define an appropriate horizon that will alleviate the restrictions of the 

event horizon. 

As mentioned, it is because the mechanics are defined for stationary spacetimes 

that the laws are not dynamic. This relates to the event horizon, which defines the 

thermodynamics introduced above, because it is defined for a stationary horizon. 

Not only that, it is defined for an "ideally isolated" spacetime. As such it is not a 

local object. Because a black hole has been typically defined in terms of future null 

infinity, an observer necessarily has to go there to determine if an event horizon even 

exists. Once one moves out of a stationary spacetime the event horizon no longer 

exists. Thus the black hole thermodynamics laws should not really be expressed [11] 

in terms of the event horizon. 
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Historically, the use of boundaries of black holes has progressed with various hori

zons all with different properties, some of which are more appropriate than others for 

black hole thermodynamics. The event horizon was explored by Penrose in 1968 long 

after Schwarzschild [12] found the first black hole solution to Einstein's equation in 

1916. This formulation of defining the boundary of horizon actually is preceded by 

t}le notion of a trapped surface. A paper by Penrose [13] in 1964 introduces a two

surface called a trapped surface whose existence implies the existence of a singularity. 

This notion was used to define other alternate horizons. 

A first attempt to remedy the horizon situation was to introduce a horizon that 

was dynamic. An apparent horizon [14] is a horizon that is non-stationary, defined in 

terms of the expansion of geodesics. In general, if a horizon is evolving and expanding 

some light rays may not be inside the apparent horizon at a given instant but based 

on the infalling mass, will certainly fall inside the apparent horizon after it expands. 

Even these geodesics by definition lie inside the event horizon or coincide with it if 

there is no infalling matter. 

The problem with the apparent horizon is that it also shares with the event horizon 

the characteristic of having non-local properties. Much work has been done recently 

on the latter to solve the problem. Introduction of the isolated horizon provides the 

definition of a quasi-local horizon. However, it defines an equilibrium (or isolated) 

black hole as implied by its name. This type of horizon is a very restrictive one 

and does not allow the description of an evolving black hole. Trapping horizons and 

dynamical horizons on the other hand are both quasi-local and dynamic. While the 

aforementioned horizons are all slightly different and of varying application, they are 
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similarly defined in terms of trapped surfaces and expansions. Of specific use here 

will be the trapping horizon; a horizon which retains some of the notions of apparent 

horizons and contains some extra conditions [15]. Such a discussion will be considered 

in Chapter 3. 

1.4 Slowly Evolving Black Holes 

With these various dynamic (or non-stationary) horizon definitions one can think of 

formulating the laws of black hole mechanics in a local and dynamic way. Once the 

appropriate quasi-local horizon is identified, then an obvious approach would be to 

define generalized versions of the parameters that appear in black hole thermostatics. 

One could imagine defining for example a fully dynamic generalization to surface 

gravity (i.e. Hayward's trapping gravity [16]) in order to produce fully dynamic laws. 

It is not the aim here to discuss the prospect of such an approach. Instead, it is the 

goal to establish a quasi-static or quasi-equilibrium regime for black hole mechanics. 

The motivation for a "Slowly Evolving Horizon" is to have a regime that is truly 

analogous to that of classical thermodynamics and thus more physical. There are 

myths about the first law of classical thermodynamics not being generalizable to 

dynamic black holes as cited by Hayward [16]. These laws can in fact be generalized 

to black holes since Equation 1.2 is simply an energy conservation law which should 

follow for black holes as well. What is true is that it is in general not possible to write 

an infinitesimal first law analogous to Equation 1.4 for a fully dynamic black hole. 

However, it is possible to write such a law for a black hole that is in quasi-equilibrium 

process or slowly evolving. In fact it is only the slowly evolving case which permits a 
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truly analogous set of black hole thermodynamic laws. 

Pursuing the slowly evolving formalism of black hole thermodynamics will have 

benefits over the static or dynamic versions of the same. There is great application 

here for slowly evolving horizons in numerical relativity. In particular it will become 

drastically simpler mathematically, and coincidentally computationally, to describe 

the stages after black hole merger, for example, once assuming the slowly evolving 

regime. 

1.5 Outline 

The main goal of this thesis is to present the characterization of a slowly evolving 

horizon as introduced by Booth and Fairhurst [1 J and to give some physical examples 

and calculations. In doing so, it becomes very relevant to give a mathematical de

scription of the horizons already mentioned in Section 1.4, in order to introduce the 

slowly evolving horizon. Both will be done in Chapter 3 along with statements of the 

black hole first and zeroth laws. In order to properly discuss these horizon formalisms 

there will be some General Relativity Tools reviewed in Chapter 2. 

The original work of this thesis will be presented in Chapter 4 and there physical 

examples of slowly evolving horizons and the relevant calculations is the topic of 

Chapter 4. There will be presentation of a Vaidya black hole, where there is infalling 

null dust; a Tolman-Bondi spacetime, a spherical shell collapse; and finally a tidally 

distorted black hole. For each section the spacetime will be described and their 

respective metrics will be defined. Each will also contain derivation of the specific 

conditions for slow evolution and a validation of the zeroth and first laws. The 
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calculations will attempt to validate the black hole thermodynamics of slowly evolving 

horizon 

A conclusion chapter will summarize the thesis. 



Chapter 2 

General Relativity Tools 

As discussed in §1.3, when studying black hole thermodynamics a necessary first step 

is choosing a definition for a black hole. A proper treatment of the different black 

hole horizon definitions, which follow in the next chapter, requires a discussion of 

some mathematics that arise in trying to define the boundary of a black hole. 

The boundaries of black holes are necessarily hypersurfaces. These hypersurfaces 

sit in the four-dimensional spacetime for which general relativity theory is defined. 

When one discusses the physics of these horizons or hypersurfaces, the tensors and 

vectors associated with Einstein's equations, namely the metric, have to be 'brought' 

from the spacetime to the hypersurface. To discuss an object on the surface of the 

horizon, one needs to know how that tensor is defined from those in the spacetime. 

Hypersurfaces in general can be thought of as generated by a particular set of 

curves. This set is a specific set known as congruence and will be described below. A 

particular theorem says; if a congruence has a vanishing rotation, then the congruence 

is orthogonal to a hypersurface. While the rotation of a congruence tells whether it is 

18 
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surface forming, other properties of such congruences, like the congruence expansion, 

are telling of the gravitational field of the spacetime and in such a way are useful for 

defining black hole horizons. 

An example of the connection between hypersurfaces and congruences is the event 

horizon. The event horizon is a hypersurface. Further, it is well known that such a 

hypersurface is null and composed of, or more precisely defined by, a congruence of 

null geodesics. These concepts of congruences, of null geodesics specifically, will also 

be useful in defining the other horizons as well. In particular, trapped surfaces are 

also defined by congruences of null geodesics. Trapped surfaces compose or define 

other types of horizons. 

A detailed, well motivated discussion of the properties of a congruence of curves 

as well as hypersurfaces and their mappings, is the subject matter of this chapter. 

Specifically, the behaviour of geodesic congruences will be described and the be

haviours associated with the congruences that define the event horizon and trapped 

surfaces will be identified. In general, the formulation of a mathematical definition of 

a black hole and its horizon will be done using the concepts associated with geodesic 

congruences. 

While only concepts pertaining to null geodesic congruences will be of direct rel

evance here, it will be useful to introduce timelike geodesics and their properties. 

Spacelike traits are analogous to the timelike ones and as such will not require con

sideration. The treatment of timelike geodesics is the simpler of the two and will 

serve as an introduction for the null geodesics. 

This approach follows that used by Poisson [17] and much of the pedagogy used 
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here will be similar. To start, in Section 2.1, the basics of geodesic congruences are 

discussed. To discuss this behaviour it is necessary to introduce what is meant by 

deviation vector. This is described in Section 2.1.3 and it is of particular importance 

as it is the object used to describe the evolution of the congruence. 

A review of congruences of both timelike (§2.2) and null (§2.3) geodesics will con

stitute separate yet similar sections. Contained in each section will be a discussion on 

their characteristics and behaviour. An important consideration in both the sections 

will be the scalar expansion. As will be seen, the expansion serves as an indicator of 

the fractional rate of change of the size (area or volume) of the surface. The shear 

and rotation will also determine properties of the congruences evolution. 

Important statements pertaining to geodesic congruences will appear in both these 

sections. A general statement of their behaviour will be given mathematically through 

Raychaudhuri's equation. Preceding that will be a statement of Frobenius' Theorem, 

which tells how congruences relate to the notion of a hypersurface; in particular, null 

congruences define null hypersurfaces. 

A discussion of hypersurfaces and mapping between manifolds will take place in 

the last section of this chapter. As mentioned, the tensors of the general theory of 

relativity are defined in the four-dimensional spacetime and must be mapped to the 

hypersurface of interest. This is of general fundamental importance. In particular, 

some horizons defined in Chapter 3 are defined using a particular map, the pullback, 

to the hypersurface that represents the horizon. Calculations of such objects is also 

required in Chapter 4. Section 2.4 discusses precisely hypersurfaces and how objects 

are mapped to these surfaces. 
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Finally, §2.5 serves to revisit congruences in terms of the non geodesic curves 

and in regard to hypersurfaces. This section will summarize the connection between 

the tensors, describing the congruences and the mapping to hypersurfaces, without 

assuming the curves are geodesic. 

2.1 Congruences 

Congruences are important because they can be used to describe flow lines of flu

ids or histories of null geodesics. While properties of curves that are not necessarily 

geodesics will be summarized later, the more immediately physically relevant congru

ences are those of geodesics. 

2.1.1 Geodesics 

A geodesic is a 'straight line' in a possibly curved spacetime. More technically it is the 

longest (under local conditions) possible distance between two events in a spacetime. 

In calculating such an extremization, distances are defined using the metric. Distance 

is defined along an arbitrarily parameterized curve between the two events. Of course 

in Euclidean space the classical straight line is recovered from this definition of a 

geodesic. While the role geodesics play in general relativity is quite basic to the 

subject, it is considerable and thus noteworthy. Since they generalize the definition 

of a straight line, they allow a liberation of spacetime (and attempts to describe it) 

from the confines of special relativity's flatness; 

The world lines of freely falling bodies in a gravitational field are simply 
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the geodesics of the (curved) spacetime metric [18]. 

They provide a general mathematical description of a particle's path. In order to 

be geodesic a curve with tangent vector ua must everywhere satisfy ua;f3uf3 = 0, 

which assumes affine parameterization. It is not surprising then that families or 

congruences of geodesics are important in general relativity and that they reveal 

details about the nature of the gravitational field in general. 

2 .1. 2 Congruence 

A congruence in an open region of a manifold is a set of curves where only one member 

passes through each given point in that region. This congruence is directly associated 

with a vector field as the tangents to it give a vector field in the open region for which 

the congruence is defined and vice versa [18]. 

This structure provides a mechanism for measuring the behaviour of a hypersur

face and how it evolves. In particular the physically interesting congruences are the 

congruences of timelike and null geodesics. 

2.1.3 Deviation Vector 

A determination of the geometry of the congruence is made possible by introducing 

a deviation vector ~a which is defined to represent a displacement from one geodesic 

to its nearest neighbour. The setup, as per [17], is a coordinate system xa(s,t) with 

t as an affine parameter along the curve and with s as a label for the geodesic. Thus 

the family of geodesics is represented by the coordinates xa ( s, t) where each member 

of the family can be considered by keeping s constant and varying t. The vector field 
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tangent to these geodesics is ua = a;ta. Because this is a geodesic, ua satisfies the 

geodesic equation. 

If however, t is fixed and s is varied, a new family of curves can be considered. 

For this family, the tangent vector field defined at the first geodesic gives a notion of 

a deviation vector eals=O where the tangent vector field is ea = a;SOI. This notion can 

be qualified by considering a vector of this vector field at say (s = 0, t = 0) as one 

goes to (s = 1, t = 0) and how much the coordinate value has changed. The vector 

actually tells the rate of change of the coordinate as one begins to move to the nearest 

geodesic while holding t constant. This notion of deviation vector is restricted to the 

first geodesic in order to retain its meaning. It represents an infinitesimal displacement 

to the next geodesic. Accordingly, from this point it is assumed that the deviation 

vector is defined at the first geodesic, ea = eals=O· 
To write an important relation for the deviation vector, one starts by recognizing 

that from the definition of ua and ~a above, comes the relation 8lfsa = 8J;. Then by 

extending this to its covariant relation, allows the generalization £u~a = £€ua = 0. 

Next evaluating the Lie derivative gives £~ua = u~ef3- e~uf3 = 0, which presents a 

relation that holds for the congruence; 

(2.1) 

and it represents the fact that, by construction, the deviation vector is Lie transported 

in the direction of ua and vice versa [18, 17]. 

By using (2.1), which arises from the definitions of ~a and ua, and the fact that ua 

is a geodesic, it follows that the derivative of uaea along the affine parameter is zero 

and thus is constant along some initial geodesic. The geodesics can be parameterized 
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so that ua~a = 0. Thus the vector does represent a deviation as it is perpendicular 

to an initial geodesic. For instance, if proper time were held constant one could see 

how the geometry of the congruence changes across members of the congruence. 

2.2 Congruence of Timelike Geodesics 

A congruence of timelike geodesics is a congruence of curves all of which are geodesic 

and timelike. To be timelike, the tangent vector to a curve returns a negative value 

when dotted with itself. All generality can still be retained by assuming that the 

parameterization of the geodesic is by the proper time T, the standard affine parameter 

for timelike curves. Thus the tangent vector, ua, has the form uaua = -1. Also, with 

this parameterization, to study the evolution is to find how the deviation of the vector 

changes along the parameter T. 

Because the deviation vector is transverse to the congruence flow (tangent to the 

geodesics), it is of interest to isolate the transverse part of the metric. 

2.2.1 The Transverse Metric 

By transverse, it is meant that there is no component in the direction of the flow. 

Thus, ~a should be orthogonal to ua. The breakdown of the metric is into its trans

verse part, ha(3, and the remaining longitudinal part, fop· The transverse part can 

be written as 

(2.2) 
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The transverse condition can now be written as 

(2.3) 

Substituting Equation 2.2 into this transverse condition here with some rearranging 

gives the longitudinal part of the metric as faf3 = -uaUf3. Using this gives a final 

version of Equation 2.2; 

(2.4) 

Because the metric is chosen to be transverse to the ua, it is also purely spatial. This 

is made clear when in a comoving Lorentz frame; 

9a(3! diag( -1, 1, 1, 1) =? Ua! ( -1, 0, 0, 0) =? ha(3 * diag(O, 1, 1, 1), (2.5) 

* where = means equal only necessarily in a Lorentz frame. More tensors will be 

examined below that will also be transverse. Then the relevance of considering the 

transverse metric becomes somewhat more evident. 

2.2.2 Kinematics and Expansion 

To describe the evolution of the deviation vector it is possible to define a fully trans-

verse tensor, Baf3, as the covariant derivative of the tangent to the geodesics; 

(2.6) 

It is transverse because the deviation vector is transverse to the congruence flow. 

Verifying that this is in fact transverse requires using the transverse condition of 

Equation 2.3 again. It describes the evolution of the deviation vector in that it 
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reflects the extent to which it is parallel transported along the congruence i.e. along 

the curve u. This in turn, represents the evolution of the congruence. Using (2.1), 

this notion is borne out in the relation, 

(2.7) 

Every tensor can be written as a sum of its symmetric and antisymmetric parts. 

Breaking Baf3 down into its symmetric part B(af3) and its antisymmetric part B[af3] 

produces tensors that are more easily physically interpreted. Respectively they are 

the expansion tensor Bab and the rotation tensor Wab· The symmetric part can be 

broken down further into the trace and the tensor minus the trace. To find the trace, 

the transverse metric can be used to find B~ which is actually the expansion scalar 

B. The traceless part of B(af3) is found by subtracting off the appropriate term from 

the diagonal elements O"ab = B(af3) - iBhaf3 and is known as the shear tensor. The 

kinematic tensor now can be fully decomposed as 

(2.8) 

These kinematic quantities can be interpreted as follows. The expansion is fun-

damental for determining, in relation to massive particles, the properties of the grav-

itational field. It can be shown.( e.g. in [17]) that the expansion is the rate of change 

of the volume of the cross-section of the congruences: 

(2.9) 

where 6V = Vhd3 y where h = det[hab] [17]. 1 

1See Section 2.3.8 of [17] for a proof. 
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To consider the effects of the shear and rotation tensors one can start with a slice 

of the congruence that forms a sphere. The shear O'ab for example indicates how an 

initial slice of the congruence evolves along ua and stretches or contracts the circle 

along the major or minor axes to make the sphere into an ellipsoid. The rotation 

tensor Wab, if the only non-zero part of the expansion tensor, rotates the sphere. 

2.2.3 Frobenius' Theorem 

To get a good understanding of Frobenius' theorem one has to be aware of the defi

nition of hypersurface. While a hypersurface defined in terms of maps and manifolds 

will be presented in section 2.4, a general definition is given here. In a given space, a 

hypersurface is a subspace of one lesser dimension. That lower dimension is acquired 

at a cost of losing a direction in the space. This is consistent with the best known 

example of a hypersurface: a plane in three-dimensional space. 

Frobenius' Theorem pertains to congruences and hypersurfaces. It characterizes 

congruences that, throughout the spacetime, are orthogonal to a group of hypersur

faces that make up or foliate the spacetime. The characterization of hypersurface 

orthogonal congruence is a statement which follows from the definition of hypersur

face. 

One can always associate with a hypersurface a normal na and defining equation 

<I>(xa) = c where c is a parameter labeling the hypersurfaces of the foliation. Ex

plicitly then, to be hypersurface orthogonal the tangent to the congruence must be 

proportional to the hypersurface normal and thus, 

(2.10) 
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with the proportionality being expressed by the constant f.L· Since the tensor U[o:;f3U'Y] is 

antisymmetric it can be written as~ (uo:;f3U'Y + u'Y;o:U,B + u,a;'YUo:- Uo:;'Yu,a- u,a;o:u'Yu'Y;.B- uo:) 

which by the commutativity of the covariant derivatives goes to zero. Thus the the

orem of Frobenius is achieved; 

hypersurface orthogonal=? U[o:;f3U'Y] = 0. (2.11) 

This statement, along with its converse, says that a congruence with tangent vector 

field Uo: can be characterized as hypersurface orthogonal if and only if U[o:;f3U'Y] = 0. 

The proof of the converse of this statement is more complicated and will not be given 

here. 

What is significant about this form of Frobenius' Theorem is that it was proved 

without using the fact that the congruence was timelike or geodesic. It is simply a 

statement of congruences in general. A more specific version of the theorem can be 

obtained using these two conditions. The antisymmetry of U[o:;f3U'Y], as stated above, 

can be used to write: 

2(uo:;f3U'Y + U')';o:U,B + Uf3;/'Uo:) 

2(wo:,au'Y + w'Yo:Uf3 + w,a'Yuo:)· 

The left side is zero by (2.11). Multiplying both sides by u~' gives Wo:,B = 0. This is 

the new form of Frobenius' Theorem specifically for timelike geodesic congruence; 

hypersurface orthogonal =? Waf3 = 0. (2.12) 

A congruence of timelike curves with tangent vector ua is surface forming if it has a 

vanishing rotation. 
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2.2.4 Raychaudhuri's Equation 

It is now possible to find an evolution equation for the scalar expansion e. It comes 

from first finding such an equation for Baf3 and then getting its trace. The evolution 

of the tensor is Baf3;~-tui-L = Ua;f3~-tui-L, which can be written as 

(2.13) 

It is not hard to see that the desired quantity is the trace of the above equation; 

d(} - Baf3B R a f3 
dr - a(3 - a(3U U . 

The equation named after Raychaudhuri follows easily; 

d(} 1 (}2 a(3 ab R a (3 
- = -- - (J CJ (3 + W W (3- f3U U dr 3 a a a . 

(2.14) 

(2.15) 

Individually the terms in (2.15) have some restrictions (e.g. their sign) on them and 

considering them together presents a picture of the evolution of the timelike geodesic 

expansion. In the first term, ()2 is positive since it contains the square of(). The second 

and third terms, CJaf3CJa(3 and wabWaf3 are both positive since they are also squares and 

the tensors are spatial. In the general case not much can be said about the fourth term 

unless some assumptions are made. Those assumptions have to do with the possible 

energy conditions set upon a spacetime. The subject of energy conditions involves 

deciding what conditions will be imposed on the stress-energy tensor of spacetime. 

If the strong energy condition holds then that means that ( Taf3 - ~ T gaf3) uauf3 2::: 0 

and it forbids observers from realizing a negative energy density and large negative 

pressures [14]. Using Einstein's equation, 

(2.16) 
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the strong energy condition becomes, Raf3Uauf3 2: 0 which is useful for interpreting 

Raychaudhuri's equation in (2.15). Including the fact that the congruence is hyper

surface orthogonal (waf3 = 0; term three vanishes) and the signs of the other terms, 

one can write 

(2.17) 

Thus a significant and far reaching result arises from examining Raychaudhuri's 

equation; 

The scalar expansion () must diminish or remain unchanged with the con

gruences' evolution. 

Physically this means that massive particles, following timelike geodesics, if initially 

converging, will later converge at a greater rate; if initially diverging they will diverge 

more slowly. Raychaudhuri's equation in this form is known as the focusing theorem. 

2.3 Congruence of Null Geodesics 

The null geodesics require a slightly different setup than the timelike ones. The only 

difference is that the tangent to the congruences is null and is labeled go:. Now the 

magnitude of the tangent vector is gaga: = 0. 

The departure from the procedure used in the timelike treatment starts with that 

of the transverse metric. The distinction is enough to make a significant difference 

and accordingly it has warranted its own section. The tensors defined in this section 

are analogous but not the same as those in the previous section. 
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2.3.1 The Transverse Metric 

Finding the transverse metric here is a little more involved. Because 9a(3 + faff3 does 

not give zero when contracted with the tangent vector fa but instead gives fa, it is 

not the transverse metric. The remedy for this is not conceptually straightforward 

without going to a comoving Lorentz frame. However, seeing how this attempted 

transverse metric contracts with fa in comparison with the same in the timelike case 

provides a solution. What is obvious is that the metric can be written as the sum of 

the transverse and longitudinal parts; 

(2.18) 

where faf3 is the yet unknown longitudinal part. Now the contraction with the trans

verse metric and the tangent vector (with index a) gives faf3ff3 = fa. Finding the 

longitudinal part using this transverse condition will fully define the transverse met

ric. Unlike before, solving for faf3 cannot be done by simply contracting both sides 

with ff3 since the left side goes to zero. To find the transverse part requires introduc

ing a new general null vector from the congruence that will give a non-zero constant 

when contracted with ff3. Here that vector is labeled na. Now fa,-yf"~nf3 = fanf3. If 

the cross-normalization of the two null normals is f!3nf3 = c for a particular constant 

c then faf3 = ~fanf3. Considering the other transverse condition i.e. the contraction 

with index (3, also produces faf3 = ~naff3· As it turns out combining both these 

solutions gives faf3 = ~(Panf3 + nafp) where cis actually arbitrary; for simplicity it is 

chosen to be -1 here. The form of the transverse metric is then: 

(2.19) 
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After multiplying the metric by both null normals, it turns out that this metric 

is transverse to both null directions and so is two-dimensional. In particular (2.19) 

shows that ho:f3 is also orthogonal to no:. 

Baf3 again represents the kinematics of the spacetime and the evolution of the 

congruence; 

(2.20) 

It registers to what degree the deviation vector is parallel transported along the null 

geodesics; 

(2.21) 

However this tensor, as is, is not useful as it was before in the timelike case. The 

problem lies in the fact that the tensor is not transverse; Baf3 is not orthogonal to no:. 

A scheme is required here to relieve this tensor of its non-transverse components. 

To remove the non-transverse components, the metric h~ is used to first remove the 

transverse components from the deviation vector and then find its covariant derivative 

while removing the remaining transverse component from it. 

The transverse form of (2.21) gives, after some simplifications, 

(2.22) 

where the tilde indicates transversality e.g. ~a = h~~f-1. Explicitly the deviation vector 

considered here must be the transverse one. In this expression, the form of Baf3 is 

(2.23) 

The tensor can be broken down in the same way as before, 

(2.24) 
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except now the equation is two-dimensional. The scalar expansion e is the trace of 

the transverse of i{~f3; e = gaf3 Baf3 = gaf3 Ba{3· Further using Equation (2.23) gives 

the basic form of the expansion; 

(2.25) 

where e(£) is the scalar expansion along the null normal ga (the outward pointing null 

normal). There is a similar definition for na (the outward pointing null normal). 

These kinematic quantities can be interpreted in the same way as for the time-

like congruence. The expansion is fundamental for it tells of the properties of the 

gravitational field. In particular it describes the field in relation to particles of light. 

The difference here from the timelike case is that it can be shown that the expansion 

is the rate of change of the area (as opposed to volume) of the cross-section of the 

congruences: 

(2.26) 

where 8A = Vhd3y and h = det[hab]· 2 

To consider the effects of the shear and rotation tensors one can consider slice of 

the congruence that forms a circle. The shear (Jab for example indicates how an initial 

slice of the congruence evolves along ua and stretches or contracts the circle along 

the major or minor axes to make the circle into an ellipse. The rotation tensor Wab, 

if the only non-zero part of the expansion tensor, would rotate the circle. 

2See Section 2.4.8 of [17] for a proof. 
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2.3.2 Frobenius' Theorem 

The general form of Frobenius Theorem as stated in (2.11) holds true here. From 

that, the null form is t'[a;,et'-y] = 0 which can be easily written in terms of Baf3; B[af3]£''Y 

+ B['Ya]t'f3 + B[f3-y]fa = 0. Multiplication by n"~ and a rearrangement of terms produces, 

(2.27) 

Substitution into Equation (2.23) easily gives B[af3] = 0 which is enough for Frobenius' 

Theorem for the null case, 

hypersurface orthogonal==?- Waf3 = 0. (2.28) 

This hypersurface must be null. Recognizing here that the null vector ea is orthogonal 

and tangent to the hypersurface means that the geodesics lie with in the hypersurface. 

For that reason they are referred to as the null generators. 

2.3.3 Raychaudhuri's Equation 

Raychaudhuri's equation for null geodesics, assuming the null energy condition, is 

(2.29) 

This again gives the same interpretation; the scalar expansion, e, must diminish with 

the congruences' evolution. Physically this means that massless particles, following 

null geodesics, if initially converging will later converge at a greater rate; if initially 

diverging will diverge more slowly. 
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2.4 Hypersurfaces 

Most of the material covered in §2.2 and §2.3 involved transverse tensors. What was 

not discussed was exactly why the move was made to the transverse scenario and 

what the underlying meaning was associated with that. Generally there was a map 

made from one manifold to another. Accordingly, this section will cover maps of 

manifolds. 

Tensors get mapped to hypersurfaces which are a particular subspace of the four

dimensional spacetime. A definition for hypersurface will be finally stated precisely. 

Using the terminology covered in Section 2.4.1, the mapping to and from a hypersur

face will be defined. This will bring a new perspective regarding the congruence and 

the associated tensors. Specifically, there will be a discussion about the transverse 

metric and how it is regarded as the induced metric of the hypersurface. 

2.4.1 Mapping between Manifolds 

A congruence gives rise to an associated vector field in an open subset 0 C .4 and 

the converse of this is also true [18]. 

When dealing with hypersurfaces, one must be able to map objects of interest 

(e.g. the metric tensor) from the higher dimensional manifold representing spacetime 

to the hypersurface. Doing so requires a discussion of what is often referred to as 

'pullbacks' and 'pushforwards'. Below the approach of Carrol [19] is followed closely. 

To define a map between two manifolds, it is necessary to maintain generality 

and allow that the manifolds may be of different dimension. The manifolds .4 and 

JV have coordinates x~-' and ya respectively as described in Figure 2.1. The map 
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¢ between the two manifolds is an association of each and every point in A with 

exactly one in JV. The set of points belonging to JV that have a map from A is 

called the image of ¢. 

The simplest object to map between manifolds is a function which is defined on 

JV as, f : JV ~ R Because there is a map between manifolds there is a natural way 

to use the function f on the manifold A. This function is known as a pullback off 

and is defined as, 

(2.30) 

The term pullback is an appropriate choice since it 'pulls back' the function from the 

manifold JV to the manifold A; it is 'backward' because the function moves against 

the direction of the map ¢ [19]. 

Before evolving this discussion to vectors, one-forms and higher order tensors, the 

other type of possible map, the 'pushforward', must be considered. A function cannot 

be pushed forward. If there were a function defined on A, there would be no way to 

take points from JV to A where the points in A would act as input into the function 

since the map goes from A to JV. There would of course be a natural way to do 

so if the existing map had an inverse, ¢-1 . (Thus if the manifolds are diffeomorphic 

then it is possible to push forward or pull back all ranks of tensors.) 

A natural procedure for a pushforward of vectors, however, is possible. Using the 

procedure for the pullback of a function, allows a definition of vector pushforward. 

For a vector V at a point p E A its pushforward gives a vector at ¢(p) E JV. The 

pushforward c/J*V is defined such that it satisfies 

(2.31) 
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Figure 2.1: Mapping of manifolds and the objects that live on them. 
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In words, c,b*V is chosen such that its action on the function f (which is, again, defined 

on JV) gives the same result as the vector V acting on the pullback of J, ¢*f. It is 

a pushforward in the sense that an initial vector V associated with a point p E A 

becomes a vector c,b*V at ¢(p). It is truly a vector since it satisfies the vector axioms 

at ¢(p) [18]. This pushforward looks a lot like the transformation of a vector. For a 

discussion on this see [19]. 

Exploring this similarity of the vector pushforward to vector coordinate trans

formation proves very important since it involves looking at the pushforward from 

coordinate perspective. Because the vectors have a basis in both A, af.l- = 8~" and 

in JV' aa = i)~a it is possible to find a coordinate relation between the vector and its 

pushforward. Equation 2.31 becomes, 

(2.32) 

after correcting the vector and its pushforward in terms of its respective bases. The 

pullback function can be written as a composition using (2.30), 

and then using the chain rule allows a simplification from the composition derivative 

to the derivatives of individual maps, 

(2.33) 

This is a coordinate version of the pushforward of a vector. 

Dual to the vector, the one-form can be mapped, in an opposite way to the vector, 

as a pullback. The pullback of a one-form is defined by recalling that the one-form 
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that once acted on a vector V gives the same result as the one-form acting on the 

pushforward of the vector V, ¢*V; 

(¢*w)(V) = w(¢*V). (2.34) 

The coordinate version of the pullback of the one-form is found as before for the 

vector pushforward; 

(2.35) 

Pulling back a (0,2) tensor is of great interest since the metric tensor falls into 

that category. The method for defining such a map is similar to that already used for 

pushforward of a one-form and nearly the same as that for the pullback of a vector. Of 

course a difference here is that the tensor requires more than one input; two vectors. 

Because it is already known how to map these vectors using ¢ or more precisely ¢*, 

these pushed-forward vectors can be used to define the pulled back tensor, 

(2.36) 

as the operation of the tensor Ton the pushed-forward vectors ¢*V. 

For all the higher rank tensors, contravariant and covariant, the technique for 

defining them follows in a similar way. However mixed rank tensors cannot, in general 

be pulled back or pushed-forward [19]. 

Induced Metric 

The pullback of the two-form defined in (2.36) provides a means for moving the 

spacetime metric to the hypersurface. A spacetime metric in J/1 pulled back to the 
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hypersurface is known as the induced metric. In particular, the coordinate form of 

(2.36), as yet unstated, gives the form of the induced metric. 

This is consistent with the induced metric as laid out by Poisson. It is intrinsic 

to the hypersurface as it can be found by imposing restrictions on the line-element 

which induces the new metric. 

ds~ go:f3dxo: dxf3 (2.37) 

ga(3 ( ~:: dya) ( ~:: dya) 

habdyadyb (2.38) 

A proper definition of the hypersurface induced metric in terms of maps will occur in 

the next section. 

Another notation for a pullback, which can be used to note the induced metric in 

terms of the spacetime metric is as follows, ¢gab = g af3· The same notation can be 
+--

used to describe the pullback of the covariant derivative i.e. \7 a· 
+--

2.4.2 Hypersurface 

Hypersurfaces can be defined in terms of an ( n - 1 )-dimensional submanifold :7 and 

an embedding ¢ : :7 ---+ ._$!. A hypersurface in a manifold ._$!, is the image ¢( :7) of :7 

[14]. A standard four-dimensional spacetime manifold will give a three-dimensional 

hypersurface. 

In the coordinate sense a hypersurface is formed by introducing a constraint, 

<I>(xa) = 0, (2.39) 



CHAPTER 2. GENERAL RELATIVITY TOOLS 41 

or issuing an equivalent set of parametric equations, 

(2.40) 

A coordinate definition is consistent with a mapping definition of hypersurface. Be

cause the map ¢ has associated with the pullback of the vectors through the map 

¢* which maps from Tp to T,p(p), it is easy to see how a direction is lost. There 

must be some form na belonging to TJ(p) such that for a vector xa E TP from Y, 

9abna¢*Xa = 0. 

The induced metric from vii is defined on Y and is induced by the map ¢. If xa, 

yb E Tp then ¢*9ab is an induced metric if ¢*(9abXaYb)IP = 9ab¢*(Xa)(¢Yb)lp· 

It is possible to find a tensor that is a result of pulling back the metric from 

vii and then pushing it back into T¢(p)· To do that requires gabnanb -/=- 0 where the 

normalization can be picked so that gabnanb = ±1. Under this circumstance and 

given the subspace H;(p) of r;(p) such that all one-forms wb at ¢(p) give gabnawb = 0, 

then ¢* will be one-to-one on H*. Thus if the inverse ( ¢*) -l will be defined in such a 

case it earns the label ¢*. Because ¢* already maps contravariant tensors, this inverse 

can be generalized to covariant tensors (e.g. the metric tensor); J;*T::_:}na = 0 and 

J*Tc~::Jgcene = 0. 

With this map one can now move the metric from the spacetime manifold vii to 

the hypersurface ¢(.9). The new metric is J;*(¢*9ab)· Knowing that this metric must 

satisfy ¢*hab = ¢*9ab and hablcnc = 0, it is possible to write the tensor in terms 

of the normalized normal na as hab = 9ab =F nanb. This is now recognizable as the 

transverse metric from Section 2.3.1. 

Thus the tensor hi; = gachcb is a projection operator. Showing this can be done 
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easily with hbh~ = h~. It projects into a subspace H = ¢*(Tp) of T,p(p)· From Tp 

to H ¢(p) the map ¢* is one-to-one so that the map ( ¢*) -l exists in this case and is 

labeled ¢*. Like before, because it is already possible to map covariant tensors from 

¢(9) to 9, this inverse function ¢* can be expanded to include tensors in general. 

Now looking at the properties of¢* and¢* in composite, ¢*(¢*r:::J) = Tc~::J and 

J;*(J;*Tc~::J) = T:_::). This property allows one to categorize tensors on 9 and those 

on H on ¢(9) as corresponding to one another. In this way, hab, the transverse 

metric, corresponds to the induced metric ¢* 9ab and can thus be referred to as the 

induced metric. The differences are obvious but for all intents and purposes the two 

are the same. The induced metric is defined on 9 and follows from the map of 9ab 

from A. The transverse metric is actually a second map of the induced metric ¢*gab 

from 9 back to A but in the hypersurface ¢( 9). 

2.5 Congruences Revisited and Summarized 

As already alluded to, the reasoning for finding the transverse tensors in §2.2 and §2.3 

has been overlooked. Here, a discussion of just that will be presented. An overview 

of the kinematics of congruences and the association with hypersurfaces will serve as 

summary of some of the important properties of congruences and their evolution. It 

is of interest now to concisely generalize the idea of expansion and other properties 

of congruences of curves while generalizing to those that are not necessarily geodesic 

since the previous treatment considered only geodesic curves. 

The rationale for finding transverse tensors, as it will be seen, is that the tensors 

of interest are those defined on a hypersurface that must be mapped there from the 
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spacetime. The move to a hypersurface can by understood by considering the use 

of the deviation vector. As already described the deviation vector describes how the 

congruence evolves. Particularly it measures in some sense the separation between to 

consecutive geodesics of the congruence. More specifically; for the timelike case the 

separation represented by ~a is between points equal distances along their respective 

curves from two arbitrary starting points. The properties of the deviation vector that 

make it inherently suited for the description of congruence evolution, also leave the 

tensors that describe the congruence, like the expansion; shear; and rotation tensor, 

mapped to a hypersurface. The move to the hypersurface becomes evident when 

considering that the most relevant description of separation is between neighbouring 

curves and not just points on the curves and realizing that this can be achieved by 

adding a multiple of ua to ~. Thus one is only concerned with ~ and points parallel 

to it. This means at each point q one need only deal with the space of vectors Qq 

composed of the equivalence class requiring them to be different than ua only by an 

added multiple. In other words one can get a projection of vectors orthogonal to ua 

which can be represented as Hq of Tq composed of orthogonal vectors to ua. 

The null case is somewhat different. If one considers Hq as the subspace of Tq 

orthogonal to ga than in this case Qq is not isomorphic to Hq. Instead the relevant 

subspace is Sq which is composed of equivalence classes of vectors which differ by a 

multiple of Ra. 

Now that it is clear that the deviation vector and the evolution tensor are mapped 

to a hypersurface, the kinematics can now briefly be reviewed. A comment on notation 

is first necessary before continuing. Instead of using the notation hab, beyond this 
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point, the induced metric will be labeled iiab where the tilde reflects that the metric is 

actually the pushforward of the true induced metric Qab = ¢9ab· Again, once pushed 

forward this metric is transverse but iiab can in fact be viewed as the induced metric. 

The induced (or transverse) metric is again defined as, 

(2.41) 

The expansion and rotation tensors can now be generally defined as the projection 

of the covariant derivative of the tangent to the congruence on the hypersurface 

defined by that congruence. Tensors on the hypersurface are defined by using the 

induced metric in the form of projection operator as described on page 41. The 

vorticity and expansion tensors are thus defined as; 

(2.42) 

and 

(2.43) 

The tensors have the same physical meaning as described m §2.3. These tensors 

defined here are more general since they do not include the geodesic condition. 

In a similar way, the scalar expansion on the surface can also generally defined as 

the trace found using the induced metric. The expansion of both the outgoing and 

ingoing are defined as 

(2.44) 

and 

(2.45) 
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The shear tensor is then simply the trace free part of the expansion tensor; 

O"ab =(Jab- ~qab()(C)· 

45 

(2.46) 

To illustrate how all these definitions are general to curves that are not necessarily 

geodesic, it can be shown that the expansion definitions, as an example, correspond 

to the definition from sections 2.3. The outward null expansion of (2.44) expands to 

give; 

(2.47) 

The third term on the right hand side goes to zero using the Leibnitz rule, £b'\l aRb = 

1/2"Ya (Cb£b) = 0. If the congruences are of geodesics then, the second term goes to 

zero and (2.25) is recovered. 

These tensors will be used in the discussion of horizons in Chapter 3. In particular 

the horizon of interest, the trapping horizon, is defined using these definitions. These 

notions will be required in the main calculations of the thesis in Chapter 4. 



Chapter 3 

Horizons and the Slowly Evolving 

Case 

An integral property of physics is that cause precedes effect. An event in spacetime 

can only have an influence on other events that can be reached via a beam of light or 

a null geodesic. A discussion of this is one of causal structure and inherently involves 

the boundaries of groups of events that have a particular causal relationship with 

other events; these are horizons in general relativity (e.g. Cauchy horizon). Such 

a discussion becomes necessary when exploring conditions for the existence of black 

hole horizons 1 in a spacetime and when characterizing them. This topic dominates 

the better part of this chapter. Among these horizon characterizations is that of the 

slowly evolving horizon, which is the horiwn of interest in this thesis. Stating the 

1This is often directly associated with the existence of singularities; the event horizon case being 
an exception. The association with black hole horizons to singularities as well as the singularity 
theorem will be briefly discussed below. 

46 
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properties of this horizon and expressing the associated thermodynamic laws is the 

main goal of this chapter. 

To properly present these horizon definitions and the slowly evolving horizon in 

particular, it must be done in the context of causal structure. Accordingly, a review 

of some fundamental causal structure will be presented. Immediately following, will 

be a discussion of the standard black hole definition, the event horizon. Doing so 

involves imposing some tedious mathematical restrictions on the spacetime; which 

will be summarized only. As well, some shortcomings of the event horizon will be 

discussed. 

A locally defined alternative to the event horizon will be presented as the appar

ent horizon. Other newer characterizations of horizons will be reviewed; these are 

isolated, dynamical and trapping horizons. These definitions are explored with ref

erence to their degree of locality or non-locality as well as their application to black 

hole thermodynamics. Considering the practicality of all these formalisms as a venue 

for stating the laws of black hole mechanics is paramount in making relevant the main 

discussion of this thesis - the slowly evolving horizon. Some concise comments to this 

effect will be made for each type of horizon. 

As discussed in the introductory chapter, the slowly evolving classification proves 

very fundamental for exploring black holes in a very physical (quasi-local and quasi

equilibrium) way. The important part of this chapter will be the discussion of the 

slowly evolving horizon formalism. Finally, following the motivation provided in 

Chapter 1, there will be a statement of the black hole laws of thermodynamics in

troduced in Section 3. 7. The procedure followed in establishing these laws will not 



CHAPTER 3. HORIZONS AND THE SLOWLY EVOLVING CASE 48 

be discussed in great detail here and though it is in many ways analogous to that of 

Section 1.1 there are important differences that warrant mention. 

3.1 Event Horizon and Causal Structure 

Black holes can be regarded as a trademark of general relativity. This is true be

cause they have a special property. They are causally isolated from the surrounding 

universe. Events inside a stationary black hole can be connected to those outside in 

only one way, that is events outside can effect those on the inside but not vice versa. 

The boundary of that region is the event horizon. A mathematical formulation of 

this definition is made using the well developed theory of causal structure in general 

relativity. 

3.1.1 Causal Structure 

In order to classify sets of events into causal relationships relative to another event 

or set of events, definitions of some standard terms are given below. Following Wald 

[18], the chronological future of an event p E A is defined as J+ (p); the set of all 

events which, starting from some event p, can be reached by a future directed timelike 

curve. An obvious and similar term is defined for the chronological past, J-(p). This 

definition includes only massive particles ( timelike curves) and does not allow for 

photons. Events can also be connected by photons. The causal future of an event, 

J+ (p), is the set of events that, from p, can be reached via a timelike or null future

directed curve. Again, a similar definition for the past case exists as J-(p). Both 
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pairs of sets, causal and chronological, can be generalized to include a definition for 

not only a single event p, but a set of events S. For example; J+(S) is the union of 

causal futures of all the points p E S. 

A set S C A is achronal if there are no p, q E S such that q E J+ (p) or equivalently 

J+(S) n S = 0, with 0 of course denoting the empty set. Thus, no two points in A 

are timelike separated. Any two points belonging to S can only be connected via a 

null or spacelike curve. 

To define a crucial concept, the Cauchy surface, a definition for the domain of 

dependence, is required. The domain of dependence of a set of events S (S must be 

closed and achronal) is the union of the past and future domains of dependence. 

(3.1) 

where the future domain of dependence of S is 

n+(s) = [p E Asuch that all past inextendible causal curves through p intersects S] 

(3.2) 

and the future case is analogous. These domains are also referred to as the past and 

future Cauchy development of S. 

A Cauchy surface is a closed achronal set I:, the domain of dependence of which 

is equal to the the manifold A; 

D(I:) =A. (3.3) 

The Cauchy surface, for all intents and purposes, can be viewed as an instant in 

time. Thus a Cauchy surface is an important object in general relativity. Spacetimes 
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Figure 3.1: This illustrates the domain of dependence, D+(S) for the case of a removed 

point. The Cauchy horizon is H+(S). 

which contain such a surface are classified as globally hyperbolic.2 :E can be seen as 

an instant in two ways. (i) It is achronal; thus :E is a null-or-spacelike structure in 

the sense that no particle moving less than the speed of light can coincide with any 

two events on the surface. (ii) Its entire past and future are predictable. 

Black Hole: The Event Horizon 

A [stationary] black hole is defined by distinguishing between those regions of space

time from which null geodesics can reach future null infinity and those from which 

they cannot. The rigorous definition of a black hole requires some constraints on 

the spacetime. Attempting to mathematically identify the region of a black hole in 

a general spacetime illustrates the problem and provides a motivation for requiring 

these conditions. 

2The definition of globally hyperbolic used here is different from that used in Hawking and Ellis 
[14] and instead follows that of Wald [18] 
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If the black hole is defined in a general spacetime (.4, 9ab) it will be a subset 

of the spacetime manifold, A C .4. Particularly, all the points p in the black hole 

region A will have their causal future inside the black hole. Since the union of subsets 

is still a subset, that is equivalent to J+(S) C A. This subset fits the definition of 

a black hole as an object where light particles do not escape. While this definition 

seems reasonable at first glance, upon reflection one can see that the causal future of 

any set in a general spacetime is a black hole according to this definition. One could 

always give the causal future of any given set the label A; thus a black hole. In other 

words, any spacetime will contain a black hole; Minkowski spacetime included. 

This definition does not confine the black hole to a particular region of spacetime 

- as can be seen in the Minkowski spacetime. The Minkowski spacetime, using the 

above definition, would produce a black hole that contains the entire spacetime. A 

proper definition would logically come from restricting the set to define a black hole 

from reaching a particular region of spacetime in a physically meaningful way. If 

one considers a Schwarzschild black hole, the part of spacetime that makes up the 

black hole is not the entire spacetime but is actually confined to a region of spacetime 

where r is small. It will be shown shortly that with the correct physical restriction 

and 'transformation', a given spacetime can be represented by one in which it is 

clear whether the original spacetime contains a black hole - in particular that the 

Minkowski spacetime does not contain a black hole but the Schwarzschild does. 

A well posed mathematical definition for a black hole with an event horizon exists 

in a spacetime that is asymptotically fiat. 3 The flatness refers to the zero curvature 

3 The definition of asymptotically flat used here is the same used in [18] and it is important to 
note that it is slightly different than the one used in [14] 
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associated with an empty spacetime; it falls off asymptotically away from the region of 

interest. Asymptotically flat spacetimes mimic Minkowski spacetime far away from 

an object of interest. These spacetimes are used to represent isolated systems in 

general relativity. Isolated systems in physics involve physical constraints and thus 

asymptotic flatness is associated with a physical restriction. Generally, being in such 

a spacetime as this, means that the gravitational field goes to zero as one gets further 

away from the system. Limiting the gravitation field is a physical restriction. It 

is in this way that, when asymptotically flat, a spacetime provides a notion that 

allows distinguishment of a region for which no escape can occur. Having a rigorous 

definition of what escape is, is ultimately what the mathematical definition provides 

for a black hole. 4 

The notion of infinity, in particular future null infinity, is a trait of asymptotically 

flat spacetimes and is used to define a black hole as a region for which nothing can 

escape. It is useful to first look at Minkowski spacetime and how it is transformed to 

asymptotically flat as a simple example. As it turns out, in order to use this notion of 

infinity it is necessary to extend the Minkowski spacetime into a larger (unphysical) 

spacetime. Doing this requires a conformal transformation. While the procedure of 

moving to an unphysical spacetime through a conformal transformation is technically 

important, it will not be discussed here.5 In short though, it involves adding in 

points at "infinity". A figure best represents the notion of conformal infinity that 

4 Another necessary constraint is that the spacetime must be strongly asymptotically predictable 
which includes being asymptotically flat as well as posses a Cauchy surface in the unphysical space
time or is globally hyperbolic. (See [20] or [18] for a formulation of the Cauchy condition for being 
strongly asymptotically flat. 

5 See Appendix D of [18] for a good discussion of conformal transformations and Chapter 11 of 
the same for one on exactly how a conformal transformation gives the Minkowski conformal infinity. 
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Figure 3.2: This represents a conformal transformation of the Minkowski spacetime. 

The boundaries of the spacetime are labeled as described in the main text. 

results from the appropriate conformal transformation. Figure 3.2 illustrates that 

the boundaries of the region 0 are the infinities. Infinity can be divided into different 

regions, namely past timelike infinity, i-, past null infinity , ~-, spatial infinity, i 0 , 

future null infinity, ~+; and future timelike infinity , i+. 

For the Schwarzschild spacetime, it is possible to undergo an analogous confor

mal transformation and produce an asymptotically flat spacetime with a future null 

infinity. For this transformation, it is useful to illustrate how to obtain the confor

mal or Penrose-Carter diagram from a series of coordinate changes while using the 

Schwarzschild metric. This is carried out in [17]. The resulting diagram is depicted 

in Figure 3.3. 

Comparing the two figures of the Minkowski and Schwarzschild conformal dia-
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Event Horizon 

Figure 3.3: This represents a conformal transformation of the Schwarzschild space

time. The shaded region represents the matter of the spacetime. The region labeled 

II is inside the event horizon and is outside J-(~+). 
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grams presents the way in which future null infinity can be used to define a black 

hole. The diagrams can be used to easily see what region of the diagram cannot reach 

future null infinity. The causal past of future null infinity, J-(Yf+), should be, by 

definition, a region of the spacetime where events can reach future null infinity by a 

null geodesic. Thus anything not in this region must be inside a black hole. Figure 3.2 

shows that this set is the entire spacetime for a Minkowski spacetime and no region 

of the spacetime lies outside this set. However this region of the Schwarzschild space-

time, as in Figure 3.3, does not compose the entire spacetime. Thus, after making 

the conformal transformation, it is clear that the Minkowski spacetime does not have 

a black hole whereas the Schwarzschild spacetime does. This is as expected. The 

region containing the black hole is defined generally - for any spacetime - by using 

the future null infinity of that spacetime's conformal diagram. It has now been shown 

that the future null infinity, yr-, and asymptotically flat spacetimes allow for a clear 

definition of a black hole. 

With all this formulation out of the way, it is now possible to define a general 

black hole in a strongly asymptotically predictable 6 spacetime; 

(3.4) 

Equation 3.4 says that the black hole region includes all points in the manifold minus 

those that makeup the causal past of the future null infinity. This is equivalent to a 

physical notion of a black hole; that is, an event inside the black hole can never be 

causally connected to events at future null infinity. The boundary of B is called the 

6Please see [18] for a precise definition. Again, this definition follows that by [18] which as a 
different definition than that used by [14]. The difference in the two stems from their differences in 
the term asymptotically flat. 
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event horizon. 

(3.5) 

With this mathematical notion of a black hole it is possible to discuss the geometry 

of the event horizon. It turns out that the event horizon is a null hypersurface. [21] 

This definition is very non-local in that it refers to future null infinity, ,J?+. One 

can talk about whether a black hole is present at a given time, L:, by considering 

B n L:. This requires a notion of the entire space at that instant which is certainly 

non-local spatially. Furthermore to find the entire set B requires a notion of the entire 

spacetime. One would need the spacetime metric for all time. Discussions of event 

horizons, for this reason, often describe them as teleological objects. 

A black hole defined with an event horizon is satisfactory for mathematical general 

relativity but because of its global nature it is impractical for real observers. For 

example, if an observer were to certainly be 'captured' at some time by a black hole 

resulting from a future gravitational collapse, then that observer would be sitting 

inside the event horizon and thus considered to be already 'in' the black hole. In this 

way, the event horizon is not a physical definition. What is more, because observers 

are not omniscient, it is not possible to even determine the existence of the event 

horizon for the reasons just described above. 

The global nature of the event horizon and these physical problems with the event 

horizon are motivations for alternate black hole horizon definitions. 
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3.2 Apparent Horizon 

While the most popular definition of a black hole involves the event horizon, there 

are other horizons that may be used. The apparent horizon is actually a different 

definition of a black hole, as are the other horizons which will be described below. 

Introduced in 1973 [14], the apparent horizon was the first, more physical horizon 

definition alternative to that of the event horizon. The term black hole is generally 

used to describe an object from which no light (matter) can escape due to its sizable 

gravitational field. The event horizon does not really distinguish why matter does 

not escape to infinity but instead simply identifies a region of space for which they 

do not. One of the first mathematical characterizations of a black hole was done 

using what is called a trapped surface. The definition of trapped surface that follows 

in Section 3.2.1 allows for a more physical definition of an object for which light 

will not escape. Roger Penrose first introduced the trapped surface in reference to 

gravitational collapse [21]. 

As it turns out the trapped surface is an indicator of a singularity. While a dis

cussion of a singularity is strictly limited here and only qualitative, it is worth noting 

that the singularity can be tied closely to a black hole; thus a relevant consideration 

for the definition of a black hole and its associated horizon. In somewhat loose terms, 

a singularity is a region in spacetime where the curvature is unbounded. There are 

actually various specific singularity theorems [18] however, for the purpose of this 

thesis, it will simply be said that the trapped surface indicates the existence of a 

singularity. By tying the trapped surface to a black hole, there comes an inherent 

connection between a black hole, gravitational collapse, and a singularity. This is 
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something the event horizon does not possess. 

The trapped surface concept was first applied for construction of a horizon defi

nition [22, 14] the apparent horizon. While many of the horizon definitions explored 

here use the notion of trapped surface in their definition, the apparent horizon was 

the first. 

3.2.1 Trapped Surface 

A trapped surface is a (smooth, closed, connected) spacelike two-surface in spacetime 

that contains on and inside it, a region from which no matter can escape. The 

characteristic used to define the trapped surfaces is the expansion of null geodesics. 

Normally in an empty spacetime or one with an insignificantly massive object, light 

emitted radially outward from a sphere !!7 will form two spheres after an elapsed 

time, one from the ingoing rays 31 and one from the outgoing rays $2, where the 

areas of 31 is less than the area of ,92. The typical aspect and more commonplace 

scenario here is that the A.9"1 < A-92. However, in the presence of an object with 

sufficient mass, both of the areas of 31 and ,92 will be less than !!7. In this case 

!!7 is a trapped surfaces and any particles lying on it will be subsequently trapped. 

Using the fact that the expansion B(n) of the ingoing null geodesics with tangents na, 

and the expansion B(c) of the outgoing null geodesics with tangent l!a, represent the 

fractional rate of change of the area of the null hypersurfaces, it is possible to define 

mathematically the trapped surfaces. A closed (smooth, connected) two-surface is a 

trapped surface if B(c) < 0 and e(n) < 0. A slight generalization of the trapped surface 

is the marginally trapped surface where the closed two-surface satisfies B(c) ::; 0 and 
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()(n) ~ 0 [14]. 

In strongly asymptotically predictable spacetimes, all trapped surfaces are present 

inside the black hole. This property of trapped surfaces helps build the criteria for a 

black hole definition that does not depend on the future development of a spacetime. 

3.2.2 The Horizon 

For the apparent horizon, the spacetime constraints are not the same as before as there 

is not a requirement to have to be strongly asymptotically predictable. However, it 

will be beneficial to consider the apparent horizon in such a spacetime. 7 To define the 

horizon requires discussing some mathematical technicalities associated with trapped 

surfaces. 

If there is a subset C of I: that is closed and forms a three dimensional manifold 

with two dimensional boundary S = 6 and has ()(£) ~ 0 then S is an outer marginally 

trapped surface and C is a trapped region on the Cauchy surface :E [18]. The total 

trapped region of a Cauchy surface is the closure of the union of all trapped regions 

on the Cauchy surface. The apparent horizon is then defined as the boundary of the 

total trapped region fY, 

d=fY. (3.6) 

An important result is that the apparent horizon is an outer marginally trapped 

surface with vanishing expansion e(R) = 0. 

7Some sources to not make it clear that the spacetime need not be asymptotically fiat. Further
more, some sources suggest that the Cauchy surface on which the apparent horizon is defined need 
be asymptotically fiat. It does not appear that this is necessarily true. 
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An event horizon always lies outside or on the apparent horizon [18, 11]. The 

apparent and event horizon coincide for the case of a stationary spacetime. 

The apparent horizon is much more local and physical than the event horizon. It 

is actually "local in time". There is no need to refer to future null infinity. However, 

there is a need to know the entire instant that is being considered. For that reason 

there are still locality problems with this type of horizon. The requirement for a 

choice of the Cauchy surface or instants in time of the spacetime not only the makes 

the apparent horizon non-local but also causes other problems. In certain spacetimes 

(e.g. the Schwarzschild spacetime) the slicing can be chosen in such a way that no 

apparent horizon is present. This type of horizon requires placing restraints on the 

entire spacetime by requiring this choice of slicing. 

3.3 Isolated Horizon 

An isolated horizon is defined to retain properties of event or apparent horizons that 

characterize a black hole but without reference to asymptotic flatness or the whole 

spacetime. A main motivation for this is to make the definition of the horizon truly 

local while maintaining the ability to define mass and angular momentum thus allow

ing the formulation of the thermodynamical laws. In particular, the physical situation 

that the isolated horizon is intended to represent is a black hole in equilibrium (i.e. 

non-expanding) with a possibly non-stationary surrounding spacetime. 

In view of that, and knowing that the event horizon is a null hypersurface, the 

most physically relevant structure of the isolated horizon is a null 3 dimensional 

submanifold. Actually when considering the world tube of apparent horizons, it 
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is possible to show that the apparent horizon is in general, spacelike and when in 

equilibrium, it is null. It follows that, the isolated horizon is closely related to the 

apparent horizon except it describes the world tube of horizons is null and thus in 

equilibrium [23]. Reasons exactly why it is null can be taken from the reasoning in 

[24]. That is the first of four mathematical conditions in the definition of an isolated 

horizon [25, 20]: 

1. H is a null three-surface 

2. e(£) = 0 for null normal ga 

3. -Tbazb is future directed causal 

where Tab is the stress energy tensor. Condition two means that all the cross-sections 

in H are marginally trapped. Condition three is simply just an energy condition on 

the horizon. Actually it is just the dominant energy condition with, instead of the 

future directed timelike vector, a future directed null normal. This basically ensures 

that a "null observer" will not see negative energy. These first three conditions qualify 

what is technically called a non-expanding horizon. The fourth condition technically 

makes for a weakly isolated horizon but will be referred to simply as an isolated 

horizon here. 

While this horizon is quasi-local it does not allow one to generate the thermody-

namic laws as outlined in Chapter 1. The isolated horizon is restricted to describing 

equilibrium situations; isolated ones in particular. Before formulating the quasi-local, 
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quasi-equilibrium laws of black hole thermodynamics one must formulate a horizon 

that is dynamic and not restricted to equilibrium. 

3.4 Trapping Horizon 

The trapping horizon keeps the characterization that a black hole is defined using the 

notion of a trapped surface. The main difference here is that the three-surfaces that 

are the horizon are not (necessarily) null surfaces. It is this loosening of the horizon 

definition that allows the black hole to be in a non-equilibrium state. It is possible to 

argue intuitively that the equilibrium state should be null and that the evolving non

equilibrium state leaves a horizon that should be spacelike, since the null surfaces, 

as in the case of the event horizon, isolated horizon, and (obviously) equilibrium 

apparent horizon, are all equilibrium states. With the definition of trapping horizon, 

it is possible to prove just that. 

Here, the type of trapping horizon of interest is a future outer one. A future outer 

trapping horizon (FOTH) is a 3D submanifold H of spacetime foliated by spacelike 

2-spheres H v ( v is the foliation parameter) with future directed null normals n · £ = -1 

(standard cross normalization), as in Figure 3.4.They have the following properties: 

FOTHl. Buo = 0, 

FOTH2. e(n) < 0, 

FOTH3. £nB(c) < 0. 

Condition 2 here ensures that the horizon is a future horizon, as opposed to the 
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vz 

Figure 3.4: With a foliation on H of two-spheres Hv, there are null normals fa and 

past. This is analogous to the difference between the event horizon being the boundary 

of a black hole (future event horizon) and that of a white hole (past event horizon) 

and the rest of spacetime (see earlier Section 3.1.1). Condition 3 gives the horizon 

its 'outer-ness'. Characteristically this means that the points just inside are trapped 

while those outside are not. This captures the idea that the horizon contains trapped 

surfaces just inside it. 

So now the definition used for the horizon is a dynamic one which includes both 

equilibrium (null) and non-equilibrium (spacelike) states. This is one extremely im

portant property of the horizon. The horizon definition is local both spatially and 

temporally. In comparison, the apparent is spatially local and one still needs to know 

about the entire instant for a given instant in time. 



CHAPTER 3. HORIZONS AND THE SLOWLY EVOLVING CASE 64 

3.5 Dynamical Horizon 

While a slowly evolving horizon is defined in terms of the trapping horizon, it is 

relevant to define the dynamical horizon. Contrasting this horizon with the trapping 

horizon, the dynamical horizon does not impose conditions on the evolution of fields 

in the directions transverse to H. Also, the horizon must be spacelike [25]. 

A dynamical horizon (DH) is a 3D submanifold H of spacetime foliated by space

like 2-spheres Hv where; 

1. H is spacelike, 

2. (}(£) = 0, 

3. (j(n) < 0. 

The relationship between the trapping horizons can be stated explicitly. A space

like FOTH is a DH for which £n(j(£) < 0. While this horizon is also quasi-local, it 

does not include the equilibrium case since it is spacelike. This leaves the trapping 

horizon as the horizon to formulate a slowly evolving horizon. 

3.6 Slowly Evolving 

Now it is possible to exploit the fact that the trapping horizon covers both equilibrium 

and non-equilibrium states and is quasi-local. Before beginning to motivate or state 

the definition/ conditions for a slowly evolving horizon however, it is important to 

reiterate the plan. The primary motivation for establishing a slowly evolving horizon 
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comes from Chapter 1 and in particular comes from Section 1.1 regarding classi

cal thermodynamics. For black hole thermodynamics, we also want to have state 

variables that describe the system. In Section 1.1, the regime for a quasi-equilibrium 

thermodynamics was simply stated to be reversible or quasi-static. Though this qual

ifies as being very slow, it does not quantify exactly what is meant by slowness. For 

black hole thermodynamics the aim is similar except the regime of quasi-static or 

slowness is to be quantified geometrically. 

Once the regime is established and the conditions for slow evolution are explicit, 

the laws are then obtained using Einstein's equations. This is different than the laws of 

classical thermodynamics. There the first law comes from general conservation laws of 

energy and the zeroth law follows from the definition of temperature and equilibrium. 

In Section 3. 7 the laws will be stated that arise form Einstein's equations and using 

the slowly evolving parameters of the horizon. 

There is a way to characterize exactly to what degree a black hole is away from 

equilibrium using the geometry of the trapping horizon. There exists, for a given 

scaling of the null normals I! a and na, an expansion parameter C on H such that 

va = ga- Cna is tangent to the horizon; where V · V = 2C. It is intuitive from the 

Figure 3.5 that the V represents the tangent along the horizon. The term expansion 

parameter is fitting since it gives an indication to whether or not the horizon is non

equilibrium and expanding or in equilibrium and not expanding. If the one assumes 

the null energy constraint, which will be the case here, then C ~ 0. As first illustrated 

by [16], this inequality can be established by taking Lie derivative along the horizon of 

the outward null expansion. By its definition this vector va, should leave the outward 
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null expansion Lie transported along it; £v()(£) = 0. Using the basic properties of Lie 

derivative gives 

(3.7) 

Now the inequality C ;:::: 0 provides two distinct possibilities: equality to zero being 

associated with a null horizon and greater than zero being associated with a spacelike 

horizon. This follows directly from the fact that the dot product of va with itself 

is 2C, thus the sign of C tells the sign of the dot product and hence whether the 

vector is timelike, spacelike, or null. Because V represents the vector tangent to the 

horizon, the sign of C tells whether the horizon is timelike, spacelike or null. What 

is more, Hayward [16] has shown that the FOTH is only null if and only if the shear 

and energy density go to zero and thus it can be said to be in equilibrium. Otherwise 

it is spacelike. These properties of C are very convenient and knowing them will be 

important later. Summarizing, in general for a FOTH C ;:::: 0 where C = 0 means 

a horizon is null and in equilibrium and C > 0 means a horizon is spacelike and in 

non-equilibrium. 

It is necessary to restrict the rescaling freedom of null vectors; £vv = 1 where v 

is the foliation parameter. This ensures that the vector va properly represents the 

evolution of the horizon. While it already by definition points in the right direction, 

it must also have the appropriate length from one cross-section to the next. Making 

this choice ensures that va evolves the Hv into one another. 

Now the important task is to find out what quantity can be used to determine 

whether the horizon is slowly evolving. More explicitly, the relevant question is, what 

geometric quantity/ characteristic of the horizon will determine whether or not it is 
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Figure 3.5: The linear combination of ga and na gives a vector along the horizon va 

for a particular scalar field C. 

quasi-equilibrium? This question has already been answered by Booth and Fairhurst 

[1]. While the explicit details of the results will appear in a technical paper [26], the 

main summary and thermodynamic laws are communicated in a letter [1] and that 

discussion will follow here. Instead of rigorously deriving the characterization used 

for a slowly evolving horizon here, a sequence of quantities will be considered from 

intuitive reasoning and evaluated based on their merit. 

To find slowly evolving parameters one must first find the pulled back metric on 

the foliated cross-sections. As was illustrated in the Chapter 2, the transverse metric 

can be viewed as the induced metric. With this metric one can find the area element 

Jq on the surface [17] and show that it changes as, 

(3.8) 

To characterize slow expansion one has to look for something that indicates when the 

relative rate of expansion of the area A of the surface/horizon is small. Thus, one 

would expect ~~/A to be small. This is exactly what would be intuitive for spherical 
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symmetry but also generalizes to non-spherical symmetry. Upon integration of the 

above equation (3.8) for spherical symmetry over a two-surface, gives ~~ = -Ce(n)A. 

Then the value for the ~~/A would be -CB(n)· The main problem with this candidate 

parameter is that it rescales with the null vectors (£a ---+ a£a gives -Ce(n) ---+ -aCB(n)). 

This aspect is unacceptable because if the characterization changes based on rescaling, 

one can arbitrarily change the rescaling for a given black hole to change a horizon's 

classification of slowly evolving. 

One could attempt to avoid this rescaling problem by using the unit tangent vector 

to the horizon V ---+ V = Jc where V = V /I lVII . Resulting from such a move is the 

expression £vvq ~ small. This gives the condition that ( { r = ~Ce(n) ~ small2 

The problem here is that the normalized vector does not exist for the null case since 

V = & produces division by zero meaning the horizon tangent would be infinitely 

long. That said, Ce(n) is still defined and does not depend on the scaling of the 

null vectors. Thus the condition that says the evolution of the horizon is small with 

respect to the scale of the horizon becomes ce(n) :::; fi where RH is the area radius 

of the horizon. 

Thus the main properties can now be stated for a slowly evolving horizon. To be 

a slowly evolving horizon (SEH), a horizon must satisfy the following conditions; 

SE2. V2C ~ E' 
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The first condition, SE1 of the definition was that just discussed, is the main 

constraint of slow evolution. The second restricts the foliation so that the horizon is 

slowly evolving with respect to va. The final two should also be true if the physical 

fields are also to be slowly evolving. They are essentially secondary properties that 

ensure conditions of the spacetime are not too extreme. Details of these are available 

in [1, 15]. 

3. 7 Thermodynamics 

Given these constraints for slowly evolving horizons, the thermodynamics laws are 

found. For the case of the classical black hole thermodynamic laws from Section 1. 2 

(and the more general isolated black hole thermodynamic laws [27, 24]) it is possible 

to define the laws in terms of the surface gravity and the angular momentum. In the 

same way, here generalizations of surface gravity and angular momentum are required 

to formulate the laws. They can be defined in terms of 

(3.9) 

as 

(3.10) 

and 

(3.11) 

where t.pa is a vector field tangent to cross-sections of the horizon and Wa is Wa pulled 

back to Hv. 
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From Einstein's equations come a constraint law with terms that contain informa-

tion about the flux of energy across the horizon. Two things are true of this equation: 

it is lengthy, as expressed in [1]; and the details of its origin are non-trivial, and can 

be found in [15]. To extract energy flux information in a form that resembles the laws 

of classical black hole thermodynamics and classical thermodynamic laws requires 

applying the conditions newly assigned to a slowly evolving horizon. 

Zeroth Law 

The first law concerning the surface gravity is 

(3.12) 

where ""(O) is a constant. In words, the surface gravity is constant to first order. It 

qualifies as the zeroth law because the surface gravity is only truly constant when the 

black hole is in equilibrium. A black hole in equilibrium is one that is isolated. An 

isolated black hole has E = 0 which leaves (3.12) as "" = ""(o) = const. It turns out 

that if the horizon satisfies certain genericity conditions for a particular choice of va' 

then the scalings can be chosen so that the surface gravity takes the form of, where 

rH is the area radius of the horizon, 

(3.13) 

which is the standard form for Schwarzschild. 
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First Law 

Again from the diffeomorphism constraint of [15] one can derive an energy flux relation 

for a non-rotation horizon. From exploiting the slow evolution constraints, comes the 

desired law. The significant first law terms remaining are to second order in E; 

(3.14) 

This relation expresses the fact that the flux of energy across the horizon comes in 

the form of matter flux (first term) and the gravitation radiation flux (second term). 

This law can be written in the form resembling the classical black hole laws by 

incorporating the definition of angular momentum if rpa is a symmetry, or at least 

an approximate one, of the horizon. For completeness purposes only the following 

version of the law is expressed here; 

. 1 ( ) . 
E = --,.;, 0 a+Ol 

8nG 'P' 
(3.15) 

where 0, is an angular momentum. Though this version of the first law is very simple, 

it is cogent to use Equation 3.14 since all examples considered below will turn out to 

be at least perturbatively spherical. 

Second Law 

The two main laws of relevance are the zeroth and first. The second law is not new 

and is the same as for the trapping horizon. Since the slowly evolving horizon is a 

region of a FOTH, Equation 3. 7 and the properties of C from page 66 for trapping 

horizons also hold for SEHs. This equation, along with the relation describing how 
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the area element changes Equation 3.8, gives the second law. According to Equation 

3.8 the relative rate of change of the area element is equal to -CB(n). It is known from 

TH2 that ()(n) < 0. Thus the minus sign and negative value of ()(n) will cancel, leaving 

the sign of -CB(n) determined by C. Thus it immediately follows from Equation 3.7 

that the relative rate of change of the area element of the FOTH must be greater than 

or equal to zero. This statement is the second law of black hole thermodynamics. 

3.8 Summary 

Various definitions were considered here for the boundary of a "black hole". The goal 

was to find one that was local and physical that could represent the equilibrium and 

non-equilibrium states. The trapping horizon, specifically the future outer trapping 

horizon, was the best candidate for satisfying the ultimate goal of finding a quasi-local 

thermodynamical laws of black hole horizons. The FOTH allowed the formulation 

of a way to characterize the black hole with a trapping horizon being quasi-local. 

The characteristics of the slowly evolving horizon through the use of Einstein's equa

tion resulted in thermodynamic laws that are truly analogous to those of classical 

thermodynamics. These thermodynamic laws are then ready for testing in particular 

physical examples. 

In the following chapter, it is the intention to explore the zeroth and second laws 

for three particular spacetimes. For the formulation of the slowly evolving to be 

upheld the conditions expressed above for slow evolution should lead to the zeroth 

and first laws of the respective forms of (3.12) and (3.14). Again, while there are 

two more laws of black hole thermodynamics the latter two will not be discussed any 
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further. The second law is already 'dynamic' in general and does not require a slowly 

evolving horizon for validation. The third law is not of interest in this thesis. 



Chapter 4 

Physical Examples 

Testing the slowly evolving conditions of Section 3.6 and the thermodynamic laws 

of Section 1.1 for particular physical spacetime examples is the main work of this 

thesis. These conditions and laws are considered in an abridged form in [1] and then 

in more detail in [15]. However actual working examples are still necessary for their 

validation. This chapter will examine spacetimes which one would intuitively expect 

to be slowly evolving and test to see if they meet the conditions. 

Three examples were selected. The first spacetime is the Vaidya spacetime in 

Eddington-Finkelstein coordinates. Vaidya describes a spherical black hole with in

falling null dust. The second spacetime is Tolman-Bondi; a spacetime of spherical 

collapsing timelike dust. The coordinates used are regular Gaussian coordinates with 

r as a coordinate that co-moves with a given dust shell. Rounding out the examples 

is a spacetime in which a tidally distorted black hole is present. An advanced time 

coordinate system is used along with a formalism of irreducible tidal fields. 

74 
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4.1 The Calculations 

All of the examples considered here are done in similar fashion. To consider them 

comprehensively, the calculations first involve finding the trapping horizon of the 

given spacetime. Once a trapping horizon is located, some quantities on the surface 

must be calculated before the conditions for slow evolution are examined as laid out 

in Section 3.6. 

In general the details of the procedure will be the same for all examples. Before 

proceeding with calculating the geometrical quantities, it is necessary to find the 

most general null normals; outward fa and inward na. In each case it is assumed 

that the covariant forms of the null normals have no non-spherical components. That 

is, they have only time and radial components. By convention, they are also cross

normalized leaving only one degree of freedom associated with the null normals. This 

is a rescaling factor which is a general function of the coordinates. A discussion on 

the choice of rescaling factor will follow. 

Next, it is necessary to find the induced metric iiab on the spacelike two-surface 

that can be described by the null normals. With the induced metric and the null 

normals it is possible to calculate both the outward and inward null expansions; ()(£) 

and ()(n) respectively. The outward null expansion is used to identify the trapping 

horizon. These surfaces will have zero outward null expansion and using this fact 

a relation between the mass function and the radial measure at the horizon (e.g. 

r = 2m( v)) can be established. 

To test a trapping horizon to see if it has slowly evolving conditions it is necessary 

to find the tangent vector 'up' the horizon va. This vector provides a way to find the 
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scalar field C, the expansion parameter from Section 3.6, along the horizon: using 

the fact that the horizon must evolve in a way such that it remains trapping, it is 

possible to define C in terms of the physical properties of the spacetime. Specifically 

the outward null expansion should vanish everywhere on the horizon, and so 

(4.1) 

Since it is defined in terms of C, by simply solving for the scalar C, the true form of 

the vector va is obtained, 

c = £ee(e). 
£n()(£) 

( 4.2) 

Imposing slowly evolving Condition 1 of page 68 gives a physical restriction asso-

ciated with slow evolution in terms of the particular physical parameters of the given 

spacetime. 

Now to reduce the remaining gauge freedom associated with the null vectors one 

can make use of the form of the inward null expansion of the surface. The freedom is 

associated with the fact that the normals are null and the length of the vector won't 

change even if the "size" of the vector changes. That is, if the vector is multiplied by 

some factor, the length does not change. An important point to note about this gauge 

freedom and the slowly evolving horizon conditions is that the gauge freedom does not 

affect the main slow evolution condition SE1 but does effect SE2. This gauge choice 

is tied directly with SE2. It will become apparent in the upcoming calculations that 

the choice of the rescaling factor is related to the vector va, which in turn is related 

to the choice of the expansion parameter, C. Thus when restricting the foliation 

parameter, as in Condition 2, it comes down to restricting C which is ultimately 

related to the size or rescaling of the null vectors fa and na. It is not surprising then 
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that the Condition 2 ultimately involves restricting the rescaling factor between the 

null vectors. 

With the restriction it is possible to test the specific zeroth and first laws. Cal

culating the surface gravity tests the zeroth law. To write the first law explicitly, 

the stress energy term and the shear term must be evaluated. The stress energy 

tensor must be contracted with the outward null normal and the shear tensor must 

be calculated. 

Some additional work is required. For example, in the tidally distorted case, work 

is needed in simplification using the spherical harmonic tensors. In order to integrate 

the shear tensor over the horizon it will be necessary to write the frame tidal fields 

that are introduced in section 4.4 in terms of the harmonic tidal fields also introduced 

in that section. Also, extra simplifications are made throughout the Tolman-Bondi 

example using the Einstein equation and its constraint to evaluate derivatives of the 

area radius, R(t, r). 

4.2 Vaidya 

The Vaidya spacetime is a solution to Einstein's equation that represents the physical 

situation of spherically symmetric null dust [28, 29]. The dust is imploding or infalling 

and uses the advanced time coordinate v. 
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4.2.1 Vaidya Spacetime 

The solution is, 

where m( v) is the mass. This mass term varies with the advanced time coordinate 

v. The advanced time coordinate appears since the metric of [4.3] is written as the 

Schwarzschild metric in Eddington-Finkelstein coordinates. The difference here from 

the Schwarzschild is the variable mass function that appears in front of the dv2 term 

of the line element. 

The Einstein tensor constructed from the metric has only one non-zero component, 

(4.4) 

This component depends on the derivative with respect to the advanced time coor

dinate (represented by the overdot 1 ) of the mass function. Accordingly, the stress-

energy tensor has the form, 

( 4.5) 

where m( v) is the derivative with respect v and the energy density of the fluid is 

p = m(v)/4nr2
• 

1The overdot represents derivative with respect to various coordinates as determined by the con
text. In Chapter 3 the overdot referred to a general foliation parameter. The coordinate represented 
by an overdot in each of these three sections is the foliation parameter. 
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4.2.2 SE Horizon 

In these coordinates the generalized cross-normalized radial null normals to spherical 

r = const., v = const., two-surfaces are, 

g _ [~ ( r - 2m ( v)) _ 1 l 
a- 2 a(v,r)r ' a(v,r)'o,o (4.6) 

and 

na = [a ( v, r) , 0, 0, 0], (4.7) 

where a(v, r) is an the scaling factor of the null normals, an arbitrary function. The 

reader is encouraged to check that these normals are both null, gaga = 0, nana = 

0 and cross-normalized to -1, gana = -1. These normals also retain all possible 

generality outside of the obvious constraints of being null, cross-normalized and radial 

(no spherical components). 

With these null normals at hand it is possible to find the null expansions of 

the two-surfaces. The induced two-metric is (jab = diag[O, 0, 1/r2
, 1/r2 sin2 8]. The 

expansion of the two-spheres is then found and used to determine the location of the 

trapping horizon: 

e - r- 2m(v) 
(£)- a(v,r)r2 · 

(4.8) 

Because the trapping horizon's outward null expansion is zero, the horizon can be 

located by solving a(£) = 0. Thus the trapping horizon is located at r = RH = 2m( v) 0 

Trapping horizons also must satisfy properties FOTH2 and FOTH3 of page 62 

both of which involve B(n). 

ll 2a(v, r) 
U(n) = 

r 
(4.9) 
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At this point the gauge freedom can be eliminated by letting a:( v, r) = -1. It is 

chosen in this way to leave the expansion e(n) equal to its Schwarzschild value. 

2 
e(n) = -

r 
(4.10) 

With this gauge choice property FOTH2 for trapping horizons is satisfied. Property 

3 is also satisfied since [4.9] gives the Lie derivative of the inward null expansion along 

the outward null vector as ( -2/r)(om(v)jov) < 0. 

Before investigating the slowly evolving conditions, the vector form of va must be 

found, 

Va= [- 1 ,-! (r-2m(v)+2Co:
2
(v,r)r) ,o,o]. 

o:(v,r) 2 o:(v,r)r 

Using equation 4.2 the scalar Cis defined; 

0 
= 2m(v) 

o:2 (v,r)' 

(4.11) 

( 4.12) 

where again m(v) means the derivative with respect to v. Determination of this scalar 

gives a definite form to the vector va in terms of the mass function m( v). Inherent 

in va is a description of how the horizon evolves in a Vaidya spacetime. With this 

geometrical object defined, the slowly evolving conditions can be examined. 

The scalar field C associated with the vector pointing parallel to the horizon and 

along with property SE1 on page 68 provide the physical condition for slow evolution 

through, 

( 4.13) 

which gives, 

(4.14) 
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where A = 47rRH. Notice that this condition does not contain an a(v,r). It is 

the first sign that the slowly evolving conditions constructed in [1] the necessary 

properties. Property SE1 is supposed to be invariant of rescalings and is according 

to (4.14). What is more, this is a physical statement in that it says something about 

the physical properties of the Vaidya spacetime. The rate of change of the mass m( v) 

with time coordinate v has to be small to second order. It also says that the horizon 

is slowly evolving if the product of the energy density of the dust and the area is 

small to second order. 

The other conditions follow from here. With (4.14), C becomes of order E
2

; 

( 4.15) 

that is with a( v, r) = -1. Now it is possible to evaluate the size of the vector va; 

0 lVI = V2C = J2 (2m(v)) ~ v qs rv E ( 4.16) 

This satisfies SE2. It is important to note that this condition would not be satisfied 

unless the function a( v, r) was equal to -1, or at least some negative value very close 

to it of course. While this choice was initially made as a choice about the form of e(n) 

it is now apparent that it is a result of Condition 2 of slow evolution. 

SE3 has two components both of which are satisfied here. Here the Wa associated 

with the horizon is, 

( 4.17) 

It follows from the form of Wa that Wa = 0. As it turns out using ( 4.17) without the 

rescaling freedom removed (i.e. not choosing the desired value for rescaling factor) 
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this condition is satisfied independently of the choice of a(v, r). Trivially it follows 

that the Lie derivative goes to zero, 

(4.18) 

and the first part of condition 3 is satisfied. As for the second condition; 

( 4.19) 

Using (4.15) from SE1 simplifies this expression; 

( 4.20) 

Thus part two of the condition is satisfied. 

Verifying SE4 involves finding some particular geometric quantities of the Vaidya 

spacetime. Firstly the Ricci scalar associated with the induced metric R is calculated. 

It is found to be 4m(v)jr3
. Thus on the horizon it is R = 2/ R'k. Secondly, the square 

of the vector Wa is considered. On the horizon, with a ( v, r) = -1 gives IW 12 = 0. The 

shear tensor of the inward null normal is zero; lcr(n)l 2 = 0. Using the stress-energy 

tensor it is possible to calculate the stress energy that would be measured by an 

observer in the Vaidya spacetime Tabnanb = 0. All these quantities are zero and thus 

obviously less than 1/ R'k, meeting the requirements of Condition 4. 

Since the conditions are satisfied, the zeroth and first laws should hold. The true 

test is that, given the fact the slow evolution has been established, the surface gravity 

must be constant on the horizon. Using the equation from section 3.6 the surface 

gravity is found; 
m(v) 1 

liV = R'k = 2RH. (4.21) 
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This is of course constant on the horizon at a given v since it depends only on the 

horizon radius. Also, the surface gravity must evolve slowly along the horizon; 

Using this equation it is possible to evaluate the extent to which the surface gravity 

changes as the horizon evolves; the condition contained in ( 4.14) simplifies this to; 

Thus the rate of change of "'v along the horizon is small and, more specifically, is 

a second order quantity. This is the expected form of the surface gravity. It is the 

zeroth law. 

It is relevant to check that the first law holds. The first law in equation (3.14) 

requires evaluation of the R.H.S. and the L.H.S. The left hand side uses the explicit 

form of the surface gravity "'; 

"'A 1 1 8( 47rr2
) 

81r 81r 2r ov -
2 

( 4.22) 

The right hand side of the equation is also simplified greatly since here the spacetime 

is spherically symmetric. As a result, the integration over the area element gives the 

area as follows: 

-
2 

( 4.23) 

The R.H.S. is equivalent to the L.H.S. In this case the first law holds exactly. 
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4.3 Infalling Timelike Dust Shells 

The physical situation considered here is the gravitational collapse of pressureless 

dust clouds on to a black hole. Such matter has an associated stress energy tensor of 

the form 1 

(4.24) 

where Ua is the 4-velocity of dust. The coordinate system used here is one with a 

radial coordinate r that is comoving with the collapsing shells. 

The collapse here is similar to that of Oppenheimer-Snyder [30]. However, in the 

Tolman-Bondi collapse the energy density of the dust is not assumed to be radially 

homogeneous. The collapse was first described and a metric found by Tolman [31] 

and Bondi [32]. 

4.3.1 Tolman-Bondi Metric 

The line element that gives the above stress energy tensor is the Tolman-Bondi metric. 

Using some basic assumptions listed in [31] the form of the metric can be found. 

It can be shown that by substitution of this form of the metric back into Einstein's 

equation X(t, r) = w(r) ~~. This is shown in [32] along with the fact that an appro

priate choice for the arbitrary function W(r) is W 2 (r) 1- k(r?. It can also be 

reasoned that for all intents and purposes the function Y(t, r) is a distance and is in 

fact the areal radius; thus the more appropriate choice of label Y(t, r) = R(t, r). 

2 [32] uses k(r) = -2E(r) 
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The line element can now be written in terms of these functions, and following 

[33], 

( 4.25) 

It is also useful to define another function; 

which will obtain physical meaning once Einstein's equation is explored. The Einstein 

equation in terms of these auxiliary functions; m(t, r) and k(r) can now be expressed. 

The general Einstein equations produce the following equations; 

· 2 2m(r) 
R (t,r) = R(t,r)- k(r), ( 4.26) 

k = 0, (4.27) 

and 

(4.28) 

with the constraint 

m' = 47rR2(t,r)R'(t,r)Ttt, (4.29) 

where Ttt := p. 

The metric and Einstein equations are fully defined in terms of the auxiliary 

functions 

m(r) = 4n 1r R 2 (0, r)R'(O, r)p(O, r)dr, 
ro 

(4.30) 

and 

k(r) = 
2m(r) - R2 (t, r). 

r 
( 4.31) 
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These functions have physical interpretations. m( r) is a mass function describing 

the mass inside a given spherical shell of radius r. k(r) tells whether the system is 

gravitationally bound. The system is bound if k(r) > 0, spacelike if k(r) < 1. 

When carrying out the calculations for the Tolman-Bondi spacetime, it is necessary 

to simplify each object by using the Einstein equation of ( 4.26) and ( 4.29) to evaluate 

R( t, r) and R' ( t, r) respectively. 

4.3.2 SE Horizon 

Finding the null normals using the metric in equation ( 4.25) gives, 

a 1 1 [ y'1- k(r) l 
n =2a(t,r) 1'- R(t,r)' ,O,O' ( 4.32) 

and 

a [ Jl- k(r) ] 
C =a(t,r) 1, R(t,r)' ,0,0 . ( 4.33) 

Upon calculation of the expansions, one can find the location of a trapping horizon 

and make a gauge choice. First the induced metric is diag[1/ R2 (t, r), 1/ R2 (t, r) sin2 8]. 

On the other hand, the outward null expansion is of the form, 

2 (- 2~-k(r)+J1-k(r))a(t,r) 
B(e) = R ( t, r) · (4.34) 

It can easily be seen that B(e) = 0 when R(t, r) = RH = 2m(r) which defines a 

trapping horizon. 

On the other hand, the form of the inward null expansion is 

B _ -ftR(t,r)-J1-k(r) 
(n)- R(t,r)a(t,r) ' 
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It is now possible to use the freedom in the scaling factor to set e(n) to R(/r). Then 

using e(.e) = 0 along with Einstein's equation e(n) simplifies to 

-2J1- k(r) 
e(n) = a(t,r)R(t,r). 

Thus the preferred gauge choice will give the value for a(t, r); 

a(t, r) = J1- k(r). 

( 4.35) 

For most of the calculated results reported after this point, the determined substi-

tution for the rescaling factor will already be invoked for the results reported. Some 

other substitutions will already be made as well, like that for the trapping horizon 

condition, the Einstein equation and its associated constraint. 

Next, the form of the vector along the horizon is sought; 

va = ga _ Cna = ~ [2(1- k(r))- C (2(1- k(r)) +C) Ap 0 o] 
2 J 1 - k ( r) ' m' ( r) ' ' ' 

(4.36) 

where again A = 4nR'k. Having the form of va allows the calculation of C. Using 

(3. 7) gives C in terms of the physical parameters of the horizon; 

C = 2(1- k(r))Ap. 
l-Ap 

( 4.37) 

This is a measure of the evolution of the horizon in terms of the characteristics of the 

Tolman-Bondi spacetime. It is now possible to check to see that the SE conditions 

are satisfied. SE1 regarding the invariance of slow expansion has a left hand side 

ce2 _ 32n(l- k(r))pA 
(n)- 1- Ap ' (4.38) 

thus such a horizon is slowly evolving if, 

( 4.39) 
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Selecting 0 < k(r) < 1 , as before, equation (4.39) produces the relation 

( 4.40) 

SE2 is the restriction of foliation with respect to va. From SE1 of the Tolman-

Bondi spacetime, it is possible to learn the limit on the expansion parameter, 

(4.41) 

Condition 2 is easily achieved with the value of C, 

For condition SE3, there are two components both of which are satisfied here as 

well. The vector w on the surface goes to zero. That leaves l£vwal as zero and less 

than E/ R2. As for the second part of the condition, 

The Lie derivative simplifies: 

4(1- k(r))Ap 
£v()(n) = R2 (t, r)(l- Ap) 

1 E2 

£v()(n) = 2 R'k. 

Together these two relations satisfy those properties set out in condition SE3. 

The Ricci scalar on the surface ft is the first geometric object of consideration in 

SE4 and for this case it has the relation, 

- 2 
R= R2. 

H 

lwl 2 is zero. The shear tensor associated with the inward null vector, lo-(n) I also goes 

to zero. Finally the value of Tabnanb goes to zero. These combine to fully satisfy 

condition SE4. 



CHAPTER 4. PHYSICAL EXAMPLES 89 

With the slowly evolving conditions met, the zeroth and first should hold. They 

are checked below. The form of the surface gravity is required to evaluate both laws. 

The surface gravity is, 

1 c 
""v = -- + ----,--,-:------,--,--,--

4m(r) 8m(r)(-1+k(r)) 

where the value for C can be substituted from equation (4.41). Invoking the slowly 

evolving condition shows that the surface gravity to first order is 

as predicted by the zeroth law of slowly evolving horizons. This is the point in the 

calculation that first validates the SE regime and the thermodynamic laws for the 

Tolman-Bondi case. 

Therefore the first law can be evaluated using ""v from equation (4.3.2). The 

L.H.S. of the first law is, 

""A 1 A(v) RH 
8n 32 m(r)n 2 

( 4.42) 

As for the R.H.S. of the first law, the second term goes to zero since lcr(£)1 2 goes to 

zero and in the first term Tab fa fb = p ( 1 - k ( r)) thus, 

f d2x.jq_ [Tabfafb + lcr(£)1 2] = A(1- k(r))p. 
}Hv 

Using the Einstein equation ( 4.28) the R.H.S becomes 

( 4.43) 

( 4.44) 

Since on the horizon (r = 2m(r)) and Equation (4.28) of Einstein's equations hold, 

both the L.H.S. and R.H.S. both go to zero. This satisfies the first law. 
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4.4 Tidally Distorted Black Hole 

Here a black hole that is distorted tidally by its surrounding spacetime is consid

ered. It is the Weyl tensor [18] of the external spacetime that is responsible for the 

distortion. 

4.4.1 Spacetime of the Tidally Distorted Black Hole 

The related radius of curvature of the spacetime is R and the black hole has mass 

M. Another assumption about the spacetime is that there is no matter in the area 

surrounding the black hole. The coordinate system used to describe the spacetime 

and define the metric is an advanced time coordinate system. 

A difference in this example with the Tolman-Bondi and Vaidya spacetimes is 

that a physical restriction is already in place on the spacetime. Instead of necessarily 

using the slowly evolving conditions for the spacetime to find out something about 

the physical parameters, examples of which here are M and R, a restriction is already 

assumed: 

M - « 1. 
R 

( 4.45) 

A check of the slowly evolving condition will either indicate that this scenario and the 

associated physical restriction, ensures slow evolution or will suggest a modification to 

the restriction. As it stands, there will be an interest only in retaining the calculated 

objects to first order in ~. 

In this spacetime it is possible to relate the Weyl tensor to symmetric, tracefree 

frame tensors. These tensors are the tidal fields Eab = Caobo, and Bab = ~c:~qCpqbO, 
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where Eabc is the three dimensional permutation tensor. These frame components 

along with the derivatives of the Weyl tensor, which can also be written in terms 

of the symmetric, tracefree frame tensors, Eabc = ~ ( CaobO;c + CcoaO;b + CbOcO;a) and 

Babe = ~ (c~qCpqbo;c + c~qCpqaO;b + c~qCpqcO;a), allow for a definition of the convenient 

harmonic components ofthe tidal fields fq, £1, £1s, B~, B~s· (A,B represent indices 

that may have the value of the coordinates () and cp which are also can be labeled as 

3 and 4 respectively) 

This situation was studied by Poisson after Alvi's use of a technique for matching 

two perturbed Schwarzschild metrics was established. Poisson's version of the metric 

betters Alvi's by an order of magnitude. The metric displayed in equation (4.46), 

while very lengthy, admits relatively simple null normals and other relevant tensors. 

The metric is defined in Table 4.1, however, most of the components will go to zero 

on the horizon. The function f(r) is defined in the usual way as a simple function of 

r as 1- 2M. 
r 
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9vv - - f (r)- r 2e1 (r) Eq (v, (), ¢) + 1l3r3e2 (r) !Eq (v, (), ¢)-

1l3r3e3(r) E0 (v,(),cp) 

9vr - 1 

9vB -213 r3 (e4 (r) Ej (v, (), ¢)- b4 (r) 8j (v, (), ¢)) + 

1l3r4 (e5 (r) :vEl (v, (), ¢)- b5 (r) !8§. (v, (), ¢))-

1 I 4 r 4 ( e6 ( r) £3 ( v, (), ¢) - b6 ( r) 83 ( v, (), ¢)) 

9v¢ - -2l3r3 (e4 (r) E1 (v, (), ¢)- b4 (r) 81 (v, (), ¢)) + 

1/3 r 4 ( e5 ( r) tv E1 ( v, (), ¢) - b5 ( r) tv 81( v, (), ¢)) -

1 I 4 r 4 ( e6 ( r) £4 ( v, (), ¢) - b6 ( r) 8'4 ( v, (), ¢)) 

98¢ - -113r4 (e7 (r) E(l4 (v, (), ¢)- b7 (r) 8§,4 (v, (), ¢)) + ( 4.46) 

1
5
8 r

5 ( e3 ( r) tv Ej4 ( v, (), ¢) - b8 ( r) tv 8j4 ( v, (), ¢)) -

1 I 6 r4 ( e9 ( r) £(34 ( v, (), ¢) - bg ( r) 834 ( v, (), ¢)) 

9BB - r 2 
- 1 I 3 r4 ( e7 ( r) Ej3 ( v, (), ¢) - b7 ( r) 8§,3 ( v, (), ¢)) + 

1
5
8 r

5 ( e3 ( r) tv Ej3 ( v, (), ¢) - b8 ( r) ! 8§,3 ( v, (), ¢)) -

1 I 6 r4 ( eg ( r) E33 ( v, (), ¢) - bg ( r) 8'33 ( v, (), ¢)) 

9¢¢ sin2 
( ())r 2+ 

~ r4 sin 2 
( ()) ( e7 ( r) Ej3 ( v, (), ¢) - b7 ( r) 8j3 ( v, (), ¢)) -

1
5
8 r

5 sin2 
(()) (e8 (r) tvE!f3 (v, (), ¢)- b8 (r) :v8j3 (v, (), ¢)) 

+~ r4 (sin (())) 2 (eg (r) E33 (v, (), ¢)- b9 (r) 833 (v, (), ¢)) 

4.4.2 SE Horizon 

Here, the first step is guessing that the r = const., v = const. two surfaces will foliate 

the slowly evolving horizon. The calculation will explore this. Equation ( 4.46) is 
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all that is needed to find the null normals fa and na. The general form of the null 

normals is of course found to be using the metric and ensuring that the normals have 

a magnitude of zero and that fa and na are cross-normalized to -1. The outward 

null normal is simple to first order and the only component dependent on the tidal 

fields is the r component. 

fv a(;,r) (-~3f(r) +3r2el(r)Eq(v,B,¢) 

+r3e3 (r)E 0 (v, B, ¢)- r3e2(r) ffvEq(v, B, ¢)) 

fr 1 ( 4.47) a(v,r) 

fe 0 

f<P 0 

As is now the norm in these examples, the inward null normal is only the v-component 

that is the reciprocal of the scaling factor of the null normals; 

na = a(v, r, B, ¢)[1, 0, 0, OJ. ( 4.48) 

The induced metric for tidally distorted spacetime is lengthy and depends on the 
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tidal fields; 

qBB 18
1
r2 (18 + 6r2e7(r) £jiv, (), ¢>)- 6r2b7(r)B~3 (v, (), ¢>)-

5r3es(r) %v£!f3 ( v, (), ¢>) + 5r3bs(r) %v B~3 ( v, (), ¢> )+ 

3r3eg(r )£f3 ( v, e, ¢>) - 3r3bg(r )B33 ( v, e, ¢>)) 

1
1
8 (6e7(r)£!{4 (v, (), ¢>) + 6b7(r)B~4 (v, (), ¢>) + 

5res(r) %v£!f4 ( v, (), ¢>) - 5rbs(r) %vB~4 ( v, (), ¢>)-

3reg(r)£f4 (v, (), ¢>) + 3rbg(r)B34(v, (), ¢>)) 

q<P<P lSr2 sin 2(B) ( 18 - 6r2e7(r )£!{3 ( v, (), ¢>) + 6r2b7(r )Bj3 ( v, (), ¢>) + 

5r3 es ( r) %v £!{3 ( v, (), ¢>) - 5r3 bs ( r) %v B~3 ( v, (), ¢>)-

3r3eg(r)£f3 (v, e, ¢>) + 3r3bg(r)B33 (v, e, ¢>)). 

94 

( 4.49) 

The expression for the outward null expansion proves it to also be a fairly lengthy 

expression, so much so that it is not displayed here. However, it is straightforward 

to find that it vanishes to second order on the surface defined by r = 2m. Because 

the metric is also to second order, this surface is a trapping horizon. 

Finding the inward null expansion, ()(n) gives the expected result once the gauge 

choice is made to find the rescaling factor, a(v, r, (), ¢>) = 1. On r =2M, 

() _ 2a(v,r,B,¢>) /"'( 2)"' 2 
(n) - - + V E "-' --. 

r r 
(4.50) 

The vector va gives an expansion parameter C of zero to second order, which 

makes things extremely simple. Using the form of B(e) and va, ensuring that the 

outward null expansion is Lie dragged along va, indicates that the C must vanish. 

With C ~ 0 to second order the slowly evolving conditions are easily satisfied. 

For SE1, 

C()2 = 4Ca
2
(v, r, e, ¢>) O( 2 ) "' 0 (n) 2 + E "-' . r 

(4.51) 
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e2 = f[1 + 4~(5 + lnx)- 4~2 (9 + 4lnx) + 4:3 + 4~4] 

e3 = P(l- 2~ 

e4 = f 

e5 = f [1 + _l_ (13 + 12ln x) - 2._ - _1_ - -
1 J 6x 2x2 2x3 2x4 

e6 = f (1- 3~) 
e7 = 1- _1_ 

2x2 

es = 1 + 5~ ( 4 + 3ln x) - 5~2 - ;3 (7 + 3ln x) + 5!4 
eg = f + 10~3 

b4 = f 

b5 = f [1 + _l_ (7 + 12ln x) - _1_ - - 1 - _1 J 6x 2x2 2x3 6x4 

b6 = f ( 1 - 3
2x) 

b7 = 1- _1_ 2x2 

bs = 1 + 5~ ( 5 + 6 ln x) - 5~2 - 5;3 ( 2 + 3 ln x) + 5;4 
bg = J- HJx3 

95 

Table 4.1: The radial functions define the metric where x = r/2m. Most of them go 

to zero on the trapping horizon when r = 2M with the exception of e7 = ~, eg = 1
1
0 , 

b7 = -! and bg = - 1~. 
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The tidally distorted spacetime can invariantly be classified as slowly expanding. 

Trivially, SE2 is satisfied, 

(4.52) 

Restrictions of both quantities of SE3 are also easily satisfied. The components 

of the one-form Wa are as follows; 

~M2 (16M %v£f(v, (), ¢) + 12£j(v, (), ¢)-

12BHv, e, ¢) + 3M£f(v, e, ¢)- 3MB3(v, e, ¢)) 

W¢ ~M2 (16M %v£2(v, (), ¢) + 12£2(v, (), ¢)-

12Bl(v, (), ¢) + 3M£4(v, (), ¢)- 3MB4(v, (), ¢)). 

With the one-form, its rate of change along the horizon can be evaluated as, 

(4.53) 

( 4.54) 

Since C goes to zero as a result of Lie dragging the outward null expansion from 

above, 
2C 2 l£v()(n)l = - 2 + O(E) ~ 0. 
r 

( 4.55) 

Both are less than E/r2 as required. 

The last set of conditions are also satisfied. The first condition regarding the Ricci 

scalar on the surface must impose some conditions on how the irreducible tidal fields 

behave on the surface. The other three components are, however, satisfied without 

any new constraints. Using ( 4.53) it is possible to see that lw 12 vanishes. Also, the 

non-zero components of the shear tensor are; 
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- 3~r3 (22 (!£l3 (v,B,¢)) r -12£j3 (v,B,¢) + 12Bj3 (v,B,¢) 

-18 (tvBj3 (v, B, ¢)) r- 3r£33 (v, B, ¢) + 3rB33(v, B, ¢)) 

-3
16r3 (22 Cfv£j4(v, e, ¢)) r- 12£j4(v, e, ¢) + 12B~4(v, e, ¢) 

+18 (tvBj4 (v, e, ¢)) r- 3r£34(v, e, ¢) + 3rB34 (v, B, ¢)) 

3~ sin(B) 2r 3 (22 (tv£j3 (v, e, ¢)) r- 12£j3 (v, B, ¢) + 12Bj3 (v, B, ¢) 

-18 (tvBj3 (v, B, ¢)) r- 3r£f3 (v, e, ¢) + 3rB33 (v, e, ¢)), 

( 4.56) 

so lo-(n) I = 0. As a result, both lwl 2 and lu(n) I are approximately equal to or less than 

Jb-. Also, the double contraction of the stress energy tensor with the inward pointing 
H 

null vectors, Tabnanb reduces to zero. 

Now that it is established that the horizon is slowly evolving the zeroth and first 

law can be checked. The surface gravity associated with the horizon for the tidally 

distorted spacetime is, 

Therefore, since on the trapping horizon r = 2M, the surface gravity simplifies to 

( 4.57) 

which is the expected result. 

Expounding on this result, one can write the equation for the first law. Knowing 

the surface gravity makes possible the expression of the energy across the horizon. 

The L.H.S. of the first law is, 

~A 1 A(v) r 
( 4.58) 
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The over dot here indicates the derivative with respect to the foliation parameter. To 

evaluate R.H.S. the first term is calculated. The first term involves contracting the 

stress energy tensor twice with outward null expansion. Tabgagb = 0, since there is no 

matter. The general form simplifies to 

Expanding the shear term is, however, fairly involved. The shear of the outward null 

normals has many terms mostly composed of derivatives of the irreducible tidal fields. 

To simplify the expression it is necessary to use the spherical-harmonic decomposition 

of the irreducible tidal fields as outlined in the Table II (Appendix) from [34]. Using 

the table it is possible, with some effort, to markedly simplify the R.H.S. of the shear 

expression in terms of the frame components of the tidal fields ( £). Also required is 

the determinant of the metric on the surface, -JQ = r 2 sin( e). 

M6 order Shear Term = 

!; E
2 ( (d~£11 (v))

2 + (d~B23 (v))
2 + (tvBn (v))

2 + (tvB22 (v))
2 + 

(tv£23 ( v) )
2 + (:fv£22 ( v) )

2 + C~B13 ( v) )
2 + (:fv£13 ( v) / + 

(tvB12 (v))
2 + C~£12 (v))

2 + C~Eu (v)) d~£22 (v) + 

(tv Bu ( V)) tv 822 ( V)) M 6
• 

(4.59) 

Further simplification is allowed because the tidal fields are tracefree and their indices 

are raised with 8ab, 

16 M6 (E' £ab + B sab) 
45 ab ab · 

A similar procedure can be carried out for the M 8 term giving up the final version of 
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the R.H.S. first law; 

Thus the first law is satisfied to first order since both ( 4.58) and ( 4.60) are second 

order. Here it is interesting that these second order quantities obtained in this cal-

culation have provided a simple way to calculate the change in energy across the 

horizon, 

E = 16 M6 (£ £ab + J3 J3ab) + ~M8 (£ £abc+ 16J3 J3abc) 45 ab ab 4725 abc g abc . (4.61) 

This first law equation says that the rate of change of the energy across the surface 

is equal to the change in the horizon radius to second order. This in turn equals a 

somewhat simple sum of dot products of frame components of the tidal fields times 

orders of M 6 and M 8 as laid out in (4.61). 

This result matches that of [17] where here, the terms represent the physical 

picture at a given point in time while Poisson deals with time averaged quantities. 



Chapter 5 

Discussion and Conclusions 

Before concluding this thesis with a discussion and summary of the results of the 

calculations in 5.2, a brief Review of the Motivation leading up to the calculations 

will first put them into perspective. Concluding the thesis will be a discussion of 

some Philosophy and Applications and some notes on Further Study. 

5.1 Review of Motivation 

There are various ways to define the boundary of a black hole. The most widely 

accepted ones were discussed in Chapter 3. The case for using the trapping horizon 

has been made in Section 3.4 whereas the following are true. The event horizon is 

non-local in that it requires going to spacial infinity and waiting an infinite time to 

define the boundary. The situation is only moderately improved by the apparent 

horizon since the apparent horizon is only temporally local. The trapping horizon 

however is quasi-local and thus more physical. 

100 
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There is an important property of trapping horizons which makes it the most 

appropriate horizon for the work of this thesis. Unlike any other horizon discussed 

here, besides the apparent horizon, it encompasses equilibrium and non-equilibrium 

states. Using the trapping horizon formalism, one can identify the boundary of the 

black hole both when it is dynamic and when it is in equilibrium. Mathematically this 

means that the submanifold H, which is foliated by trapped surfaces, can be either 

null or spacelike. Respectively this corresponds to equilibrium and non-equilibrium 

states. The equilibrium case corresponds mathematically to the case where the shear 

e7 ab of ga and Tabla zb go to zero across the horizon [25]. This has physical meaning and 

is intuitively what is expected. The fact that these two types of states are covered, 

coupled with the fact that it is more local than other horizon formalisms, makes this 

the horizon of choice for formulating a slowly evolving regime. 

It should be apparent now though that it is the slowly evolving horizon that is truly 

physical in the same sense as in quasi-equilibrium thermodynamics. The situation 

of having to go from dynamic to slowly evolving was seen above (Chapter 1) to be 

analogous to obtaining quasi-equilibrium thermodynamics from the wider ranging 

thermodynamics. If a system is in equilibrium one can talk about the properties that 

define the state of the system. As in thermodynamics, going to a quasi-equilibrium 

state allows the definition of properties or state variables that describe the state of 

a system. The important quantity in thermodynamics is the temperature; it is the 

quantity used to define equilibrium. When two objects are in equilibrium with a third 

they have the same constant temperature. In such cases it also makes sense to talk 

about the state variable pressure. Quasi-equilibrium states thus allow the sate of the 



CHAPTER 5. DISCUSSION AND CONCLUSIONS 102 

system to be identified by these variables. In that vein, it can be said that quasi

equilibrium thermodynamics is more physical than non-equilibrium thermodynamics 

It is in this way that for black hole thermodynamics the slowly evolving horizon is 

more physical than other dynamic horizon definitions. Here the important quantity is 

the surface gravity. With the proper conditions, a trapping horizon will be quasi-static 

and will a have constant temperature associated with the horizon. The properties of 

the black hole defined in such a way are 'measurable' and determine the state of the 

black hole. To that end, the properties of slowly evolving horizons were established. 

Further motivation for SEH, within black hole thermodynamics, is also evident. 

As mentioned by Hayward there are problems with the thermodynamics described by 

the stationary black hole thermodynamics. Such a regime only covers thermostatics 

and does not describe fully a possible evolving black hole. What is more, the second 

law for this case is the only one that carries any generality. The zeroth and first law 

do not encompass a definition surface gravity and energy conservation of a black hole 

which passes through equilibrium states and is not stationary. 

The conditions for slow evolution as outlined by Booth et al. have characteristics 

that serve to prevent a false representation of a slowly evolving horizon. Great care 

has been taken to find conditions that classify slow evolution which do not depend 

on anything other than what gives a physically intuitive definition of the horizon's 

slow evolution. Slowly Evolving horizons are invariantly characterized by a slow 

expansion; in particular with respect to the vector along the horizon va. The inward 

null expansion and the vector Wa are also changing slowly along va. Some other 

geometric quantities are also restricted to slow evolution. Those conditions have 
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been respectively laid out in the properties on page 68. They have just been put to 

test in Chapter 4. 

5.2 Examples of Slow Evolution 

It has been the program of this thesis to illustrate examples of a few specific space

times and their satisfaction of the two main features of slowly evolving horizons. To be 

a slowly evolving spacetime, a black hole spacetime must posses appropriate physical 

restrictions. These must originate from the general slow evolution conditions which 

should be physically meaningful and intuitively expected. In addition, such a space

time must obey the zeroth and first laws of black hole thermodynamics as predicted 

for the slowly evolving regime. The examples considered in Chapter 4 do validate all 

the slowly evolving conditions and this is self-evident from the calculations. 

Vaidya 

In the case of the Vaidya spacetime, the physical implications of slow evolution were 

made evident in ( 4.14). This equation says that the rate of change of the mass across 

the horizon is small in comparison to the area of the horizon to second order. More 

simply, the density of the infalling matter is small to second order compared to the 

area of the horizon. Physically this is instinctive. 

The Vaidya surface gravity is defined in ( 4.21) and is a constant on the horizon. 

The surface gravity is also slowly evolving along the horizon. Thus a black hole of 

this type will be in equilibrium if all regions of the hole have the same value for this 

surface gravity. The first law holds since the L.H.S. of the first law equation, ( 4.22) 
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is equal to the R.H.S. of (4.23). The first law itself states that the energy crossing 

the horizon is the rate of change of the mass along the horizon. The Vaidya example 

proves to be a slowly evolving spacetime where the zeroth and first laws of slowly 

evolving horizons hold. 

Tolman-Bondi 

Invoking the slowly evolving conditions gives a physical restriction on the Tolman

Bondi spacetime. Equation ( 4.40) is very similar to the equivalent version for the 

Vaidya spacetime. It says that the density of the infalling matter is small to second 

order compared with the area of the horizon. Again, this is the type of restriction 

that one would naturally expect. 

The surface gravity associated with a slowly evolving horizon in the Tolman Bondi 

spacetime is expressed in §4.3.2. It is essentially the same as that from Vaidya. This 

provides an indicator of what equilibrium state the black hole is in at a given time 

measure. From this surface gravity follows the first law; (4.42) equals (4.44). The 

first law for both of the collapsing matter spacetimes are essentially the same. 

Tidally Distorted 

The physical parameters issued in the setup of the tidally distorted case turned out 

to be sufficient for slow evolution. That is, the fact that the mass of the black hole 

is much smaller than the radius of curvature of the external spacetime ensures slow 

evolution. This condition, which was already established in ( 4.45) and used in the 

derivation in the metric, turns out to be sufficient to allow SEl to go to zero. Surface 
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gravity for the tidally distorted hole is (4.57). This gives the first law as (4.61). 

While the slowly evolving laws are valid in this case there is also a particular 

aspect of Poisson's tidally distorted black hole that make it different from the other 

two examples. The first law depends on the tidal fields whereas in the other two 

examples it depends on the area and density of a shell of dust. 

A fact of the tidally distorted black hole that is worthy of discussion here is that 

in [34] Poisson proved to have the same thermodynamic first law as was calculated 

above. The first law in that case though was defined for the event horizon and in 

terms of time averages of the quantities like the rate of change of the mass and 

angular momentum. These time averages are in conjunction with the reality that the 

properties of the event horizon are not local. Here, the first law is in terms of the 

thermodynamics at s given instant in time and is more physical. Because in this case 

it was established that the slowly evolving regime was in effect, as was done above, 

the first law followed quite easily in comparison to that for the event horizon. In 

[34], much effort was required to obtain the event horizon equivalent to the first law 

here within, where the Regge-Wheeler and Zerilli equations [35, 36] were used. While 

this calculation is no doubt distinct from the one above and quite useful, especially 

when exploring the full dynamics of the event horizon, for the case of slowly evolving 

regime a first law is more physical and accordingly obtained much more efficiently. 

Of the slow evolution conditions it is also worth noting that the for general slowly 

evolving horizons the conditions are invariantly characterized. 



CHAPTER 5. DISCUSSION AND CONCLUSIONS 106 

5.2.1 Summary of Results 

Reasonable physical conditions in each of the examples considered were satisfied. 

Each of the first laws were established after the surface gravity was determined. The 

surface gravity of each of them fits the same form. As was predicted in [1], the form 

for the surface gravity in each spacetime near Schwarzschild can be written as, 

(0)- _1_ 
K,v - 2 ' 

rH 

where rH is the horizon radius. This of course is first order surface gravity which is 

constant. As well, it was seen throughout that the horizon energy flux was 

which upon simple integration gives the expression for the energy crossing the horizon. 

Summarizing the goal and achievement of this thesis is simple, and concise. The 

conditions of slow evolution, as have been previously established in a general way have 

been considered here for three distinct and physically interesting spacetimes. The 

application of those conditions to the Vaidya, Tolman Bondi, and Tidally Distorted 

spacetimes led to relevant physical implications for their slow evolution. From that, 

followed the physical zeroth and first laws for the respective black hole spacetimes. 

These were of the form predicted for the slowly evolving horizon. 

5.3 Philosophy and Applications 

On a philosophical level, there comes a certain degree of comfort in the notion of 

a slowly evolving horizon and its classification discussed here. As already repeated, 
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the slowly evolving regime is analogous to quasi-equilibrium thermodynamics. A 

simple theme that underlies these two scenarios is that in physics, one can only 

expect to detect the properties of an object or system if they are not changing. More 

importantly, if the rate of change of the system is relatively small, or slowly evolving, 

these properties can be reasonably approximated. Whether it be a black hole or 

a beaker of water, changing the system drastically either by adding infalling mass 

to the black hole, or putting the beaker of water on a Bunsen burner, leaves the 

physical characteristics of that system unmeasurable unless it begins to settle down 

near equilibrium. 

An opportunity for an application for slowly evolving horizons, which has not yet 

been discussed in the literature, is the detection of and experimental evidence for 

black holes and the laws of black hole thermodynamics. The theory of black holes 

says that they are thermodynamic objects. Experimental tests or measurements 

would obviously be made using the laws of slowly evolving horizons where one could 

measure surface gravity. The slowly evolving version of the surface gravity is one that 

is detectable or measurable, unlike something like the trapping gravity of [16]. 

More practically, the classification and laws outlined in this thesis will find ap

plication in numerical relativity, specifically when black holes reach near equilibrium 

states. Numerical relativity attempts to describe general relativity by getting nu

merical solutions to Einstein's equations. Computations in numerical relativity will 

likely be more efficient when the implementing the SEH laws after testing that the 

slowly evolving conditions are satisfied. It is probably this application that will find 

the most benefit in further research on slowly evolving horizons. 



CHAPTER 5. DISCUSSION AND CONCLUSIONS 108 

Analogies between black hole thermodynamics and thermodynamics run deep. 

SEHs take that analogy big steps further. The slowly evolving spacetimes present a 

regime for quasi-equilibrium black hole thermodynamics. These two regimes, black 

hole quasi-equilibrium and classical quasi-equilibrium, are both physical and local 

and there governing laws are similar as already described in Chapter 1. This is 

truly important because it may be true that the SEH first law is true also for non

equilibrium thermodynamics as stated Pippard [5]. 

One property of thermodynamics, that is useful in the lab, is that it is obvious or at 

least intuitive when a given physical process is within the regime of quasi-equilibrium 

thermodynamics. Thus, in most cases, scientists in the lab have an intuition for when 

the rate of change of a physical system is comparable to the time scale of measurement. 

Physicists, who use thermometers and make physical measurements on a regular basis, 

must be working within the quasi-equilibrium regime. Most experiments occur in the 

quasi-equilibrium regime or at least are controlled in such a way. Similarly, the field 

of black hole thermodynamics can hope to have a similar understanding of black 

hole spacetimes and what the relative sizes of the astronomical quantities should 

will ensure slowly evolution. For example, becoming familiar with what the initial 

conditions black hole mass, dust shell density and area of a Vaidya spacetime permit 

slow evolution. After much study of SE spacetimes there will develop an intuition for 

what these astronomical quantities should be. This thesis is hopefully a beginning 

into such progress along. This need to build an intuition is one of the areas of further 

research required in the are of slowly evolving horizons. 
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5.4 Further Study 

The study of slowly evolving horizons thus far is by no means extensive but the con

siderations above suggest that formalism has much promise in providing a physical 

description of black hole thermodynamics and identifying a spacetime or process as 

fitting into the regime means for concise and simple laws of black hole thermody

namics. There are certainly particular areas for which additional study could be 

directed. 

Determining how slowly evolving horizons can generally be implemented in nu

merical computations will allow those in the field to more easily apply the regime. 

Those in the field can implement a criteria in their computations that check to see 

the slow evolving conditions are met and then will be able to proceed much more 

efficiently. 

There is some investigation still required into the uniqueness of black hole horizons 

in general and the slicing of spacetimes in particular. This includes the trapping and 

slowly evolving horizons. A discussion about uniqueness of Dynamical horizons, which 

is relevant to the slowly evolving case, is made in [25]. As was stated by Ashtekar et 

al. the issue of uniqueness of these horizons is still an open one. 

While Chapter 1 motivates extensively by covering thermodynamics, all the analo

gies and connections with it and black hole thermodynamics are not explored in this 

thesis. This task seems somewhat daunting since non-equilibrium thermodynamics 

has only relatively recently been developed and it has not been studied extensively. 

More thought should go into the connection between the laws of dynamical horizon 

black hole thermodynamics and that of the slowly evolving and isolated cases. This 
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discussion will obviously be an important one. It may be true that the thermodynamic 

laws for isolated, slowly evolving, and dynamical horizons are well established how

ever, a discussion on how the surface gravity and angular momentum of each regime 

relate is required. Theoretically this could be analogous to a discussion about the 

connection between classical equilibrium thermodynamics to non-equilibrium ther

modynamics. 

The most notable of the things to be further studied, is the need to consider nu

merous physical examples of the regime and build an intuition for identifying which 

spacetimes are slowly evolving and thus where the thermodynamic laws of slow evolu

tion as described in §5.3. Those physical examples should involve actual astronomical 

values for the associated physical quantities of the spacetime. One such paper by 

Kavanagh and Booth [37], studies this for the spacetimes covered here within. Es

tablishing an intuition for the thermodynamics of SEH, analogous to that of classical 

thermodynamics, should prove the SEH regime to be of extreme practical use in real 

astronomical processes. 



Appendix A 

Spherical Harmonics and 

Irreducible Tidal Fields 
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Y2•0 = - ( 3 cos2 e - 1) £6 = ~ (£n + £22) B6 = ~ (Bn + B22) 

Y2·1e = 2 sine cos e cos ¢ £'-fe = £13 Bic = B13 

Y2•18 = 2 sine cos e sin¢ £'-fs = £23 Bis = B23 

Y2·2e = sin 2 e cos 2¢ E:Je = ~ (£n - £22) B~e = ~ (Bn - B22) 

Y 2•28 = sin 2 e sin 2¢ £is= £12 B~s = B12 

Y 3·0 = - (5 cos3 e- 3 cos 0) £8 = ~ (£113 + £223) Bg = ~ (Bn3 + B223) 

y 3,1e = -~sine (5 cos2 e- 1) cos¢ £fe = ~ (£111 + £122) Bfe = ~ (B111 + B122) 

y3,1s =-~sin() (5 cos2 ()- 1) sin¢ £fs = ~ (£112 + £222) Bfs = ~ (B112 + B222) 

Y3•2e = 3 sin2 e cos e cos 2¢ DJe = ~ (£113- £223) B2e = ~ (8113 - B223) 

Y 3·28 = 3 sin2 e cos e sin 2¢ Dls = £123 B2s = ~B123 

Y3•3e = sin3 e cos 3¢ Die= 1 (£111 - 3£122) B3e = ~ (Bn1 - 38122) 

Y3•38 = sin3 ()sin 3¢ £fs = 1 (3£112 - £222) B3s = ~ (3Bn2 - B222) 

Table A.l: Spherical harmonics and the harmonic components of the tidal fields as 

defined in terms of their fram components. 

£q _ """"" £q y2m 
AB- L..im m AB 

!3q - "' !3q x2m AB- L..Jm m AB 

£0 = 1 """"" £0 y3m 
A 3 L..im m A 

£ o _ 1 """"" £0 y3m 
AB - 3 L..im m AB 

130 - 1 "' 130 x3m AB- 3 L..Jm m AB 

Table A.2: Decomposition of the quadrupole and octupole tidal fields of Table A.l. 
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