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ABSTRACT 

Large uncertainties may exist in modeling various processes determining fisheries 

population dynamics. The uncertainties may come from various sources such as 

environmental variations (process errors), measurement errors, and model errors. In order 

to quantify the uncertainties, an understanding of the complex model error structure in the 

population dynamic models and how the model error structure affects the parameter 

estimation is important. In this study I evaluated and quantified the uncertainties in 

modeling various processes of fisheries population dynamics using Monte Carlo 

simulations and applied the proposed methods to Atlantic cod stocks. 

The generalized linear model approach, which can readily deal with different error 

structures, were used to identifY suitable model error structure in stock-recruitment 

modeling, stock biomass modeling, and age-structure population modeling. A simulation 

study was developed to evaluate the influence of stock mixing on the collection of fish 

growth data and estimation of growth parameters. The recent status of the Atlantic cod 

fishery in Divisions 2J3KL was evaluated using a composite risk assessment method which 

calculates the total risk of overexploitation in the cod fishery. I considered the uncertainties 

in both biological reference point and current fishing mortality estimates. 

I recommend that the generalized linear model be used to identify appropriate model 

error structures in stock-recruitment modeling, stock biomass modeling, and age-structure 

population modeling. I also suggest that stock mixing be incorporated into stock 

assessment models to improve the estimation of growth parameters in stock assessment. 
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Uncertainty in both management reference points and in indicator reference points should 

be considered in evaluating stock status using the proposed composite risk assessment 

method. 
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the unexploited stock. The fishing mortality rate at which the slope of the yield­
per-recruit curve is only one-tenth the slope of the curve at its origin. 

Fcur --- current fishing mortality 
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Fmax --- A biological reference point. It is the fishing mortality rate that maximizes 

equilibrium yield-per-recruit. 
Fm.•y --- fishing mortality rate which, if applied constantly, would result in Maximum 

Sustainable Yield (MSY). 
Gt --- surplus production of stock biomass in year t 
11 --- a biomass index observed in the fishery or surveys in year t 
Ia,y ---research vessel survey index expressed as mean numbers per tow at age a and in 

year y 

k --- Brody growth parameter in length-at-age model and weight-at-age model 
K --- carrying capacity or virgin biomass 
L --- likelihood function 
LL --- the loglikelihood function 
La --- length-at-age data 

L~ --- maximum attainable length 

m --- shape parameter in the selectivity model 
M --- natural mortality 
N(~,cr 2 ) ---define a normal distribution with the mean of~ and variancecr 2 

Na,y ---number alive at age a at the beginning of year y, 

ND1 --- number of fishes caught at age t that are discarded at sea 

P(Y >X) ---probability ofY larger than X 

Pa,y ---proportion of catch-at-age 

q --- catchability coefficient 
r --- parameter describing the stock intrinsic growth rate 
R --- recruitment 
S --- stock abundance or biomass 

s 1 --- selectivity coefficient for fish at age j, s 1 = 1 -~u-s so) 
+e 

S50 ---age at which 50% of the individuals are vulnerable to the fishing gear in the 
selectivity model 

tO --- hypothetical age at which the length is 0 in the length-at-age model or the weight is 0 
in the weight-at-age model 

t 1 --- maximum age of fish that could contribute to the fishery 

t, ---age of entry into the fishery 

U(0,1) ---uniform distribution between 0 and 1 

~ --- weight-at-age 

W~ --- maximum attainable weight 
Y --- attained yield 
a--- parameter in the Cushing, Ricker, and Beverton-Holt models 



~---parameter in the Cushing, Ricker, and Beverton-Holt models 
~ •; --- estimated parameter value in the ith simulation 
E --- error term 
En --- error term that follows normal distribution 

E g --- error term that follows gamma distribution 

E P --- error term that follows Poisson distribution 
p 

11 --- A linear predictor, which is given by 11 = LX 1 ~ 1 
J=l 

)..l --- mean of an estimated parameter 
cr --- standard deviation of an estimated parameter 
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CHAPTER 1: INTRODUCTION 

Optimal management of fish populations requires full understanding of their 

population dynamics. Such understanding is obtained through fitting quantitative models 

to data collected in the fisheries to estimate vital parameters in stock assessment. The 

quality of stock assessment is thus a central issue in fisheries management. The collapse 

ofthe fisheries worldwide has been attributed to gross overestimation of stock size, 

overfishing, discarding, negative environmental effects on recruitment, changes in 

distribution and mortality, food competition and predation. Ignoring or mis-estimating 

and mis-interpreting uncertainty in stock assessment modeling and fisheries management 

was another important reason leading to mismanagement of many fisheries (Hilborn and 

Walters, 1992; Ludwig et al., 1993; Walters and Maguire, 1996). Lack of consideration, 

misuse of uncertainties, and inappropriate incorporation of errors in stock assessment 

modeling can result in poor parameter estimation, leading to mis-estimation of fish 

population dynamics. Thus, an understanding of the error structure in stock assessment 

models and how an assumption ofthe model error structure may affect the parameter 

estimation is a critical issue in stock assessment and management. In this study I focused 

on evaluating and quantifying uncertainties in modeling stock-recruitment data, stock 

biomass dynamics, age-structured catch data, and growth data. I also evaluated how these 

uncertainties may influence the estimation of biological reference points and how the 

uncertainties can be incorporated in determining the status offish stocks. 

1.1 Review of uncertainty types in fisheries population dynamic modeling 
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Uncertainty is the condition of being uncertain, or doubt, or the incompleteness of 

knowledge about the states or processes in nature (Houghton Miflin, 1992; F AO, 1995). 

Uncertainties are often caused by estimating population properties from stochastic, or 

from inaccurate, deficient, or biased data which results in errors and information loss. 

This leads to variation, even disparity in statistical properties between population and 

samples drawn from the population. Classification of the uncertainties in fisheries can be 

found in Schnute (1989), Hilborn and Walter (1992), Polacheck et al. (1993), FAO (1995, 

1996), and Chen and Paloheimo (1998). Uncertainties in fisheries are mainly from the 

following sources: measurement errors, process errors, model errors, decision errors and 

implementation errors, etc (F AO 1996). 

Measurement error is the error in the observed fishery used for analysis, such as 

catches, efforts and biological parameters. Process error is the underlying stochasticity in 

the population dynamics such as the variability in recruitment, and the mis-understanding 

of the relationships between the different elements of the fishery system and their 

interaction. Model error is the misspecification of model structure. Estimation error is the 

error in the estimation ofthe populations and parameters. It can result from any, or a 

combination of the above errors. Decision error is the error in decisions that management 

takes on the basis of gained information. In fisheries, when models are related to fisheries 

management, control uncertainties or operational uncertainties appear, which refer to 

human operational factors, such as the inability to exactly achieve aT AC, or fishing 

mortality, etc. 
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Uncertainties may be decreased or minimized by increasing data quantity and quality 

and by using statistical techniques appropriate to the data and model structure. 

1.2 Review of stock assessment of Atlantic cod 

The Atlantic cod (Gadus morhua) used to support one ofthe most valuable 

commercial fisheries in Canada. The fishery was critical to Newfoundland's economy 

and society. For management purposes, the cod fishery is divided into stocks; however, 

these stocks likely do not represent distinct populations (de Young and Rose, 1993). The 

Atlantic cod around Newfoundland was divided into several stocks (Figure 1.1 ). There 

are six major stocks within Canadian waters: Labrador-NorthEast Newfoundland (NAFO 

Div. 2J + 3K + 3L), Southern Grand Bank (NAFO Div. 3N + 30), Southern 

Newfoundland (NAFO Div. 3Ps ), Western Newfoundland (NAFO Div. 4R + 4S + 3Pn), 

Southern Gulf of St. Lawrence (NAFO Div. 4T + 4Vn), and E. Scotian Shelf(NAFO Div. 

4Vs + 4W). Tagging data show that there are migrations or dispersal among these 

populations {Templeman, 1979; Rose, 1993; Campana et al., 1999). 

Atlantic cod in Division 2J3KL was used as an example when modeling uncertainties 

in fish population dynamic models. Canadian fisherman once captured 70-75% of cod 

caught in the Northwest Atlantic (Scott and Scott 1988). Kurlansky (1997) gave a 

thorough review of the cod fishery and its historic impact, Garrod and Schumacher (1994) 

reviewed catches of Atlantic cod, and Hutchings and Myers (1995) reviewed the history 

ofthe Atlantic cod fishery along with changes in catches and fishing technology. 
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The fishery history is shown in Figure 1.2. The total catch peaked up at the late 1960s 

but declined from the early 1970s until the 1980s. There was a small increase late in the 

1980s, but the trend suddenly declined in 1991. By 1992, there was a dramatic decline in 

the northern cod stocks. Canada had to declare a moratorium on fishing in July 1992 

(DFO, 1996). 

Total Allowable Catches (TACs) were introduced in 1974, but were set too high to 

be effective (Lear and Parsons, 1993). In 1976, Canada implemented a 200 mile limit. It 

did significantly reduce catches because foreign fishing declined. Canada, however, 

made large investments to expanding their fleet and catches grew again during the late 

1970s and 1980s (Taggart et al., 1994; Garrod and Schumacher, 1994; Hutchings and 

Myers, 1995). Another result ofhigh fishing mortality was the collapse in the age 

structure of stocks. Older fish, which would have made large contributions during 

spawning, were being removed (Hutchings and Myers, 1995). By 1993, the age 

distribution had narrowed and the average age of Atlantic cod in 2J3KL divisions had 

fallen to 4 years (Taggart et al., 1994). Catch in survey fishery in NAFO Division 2J3KL 

had almost no fish older than age 9 from 1993 to 1998 (Data from Shelton et al., 1996; 

Lilly et al., 2001). 

Although data from Atlantic cod fishery were used in this study, this study was not 

designed for identifying the causes of declines in cod stocks. Rather I just used the data 

to facilitate the development of new methods in modeling uncertainties in stock 



assessment. Thus, the interpretations of management implications should be done with 

caution. 

1.3 Overview of the uncertainties in the biological data pertinent to the stock 

assessment 
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The quality of stock assessment could be affected by not incorporating important 

physical processes, such as climate-ocean oscillation, by ignoring some key biological 

processes, such as predation, and by ignoring natural variation of fish population itself 

resulted from natural environmental variations. Recent studies have suggested large 

variations of life-history processes, which in many cases covary with the climate ocean 

variables, but not all the time. Statistically averaging over a number of events sometimes 

cannot show the important details. 

Marine fisheries ecosystem varies with its environments, such as turbulence, 

vertical mixing, tidal mixing and run-off on a scale of less than one kilometer, fronts, 

upwelling and tides, tidal mixing and internal waves on a scale of 1-1000 kilometers, 

gyres, large currents, global climate oscillations etc (Steele, 1998). The causes for 

fluctuations of many fish species, such as Atlantic cod, are not well understood in 

general, but are postulated to be closely related to variations in year-class success with 

variations related to environmental factors (e.g. Bishop and Shelton, 1997). The 

production of fish biomass in the oceans is governed by interactions among numerous 

physical, chemical, and biological processes. With ever increased coastal development, 
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the impact of human activities on coastal areas cannot be ignored. Fishing influences 

the dynamics of ecosystems. Climate changes are likely to exacerbate existing stresses 

on fish stocks. Recent anomalies in periodicities of cod stock fluctuations are likely due 

to heavy fishing in an unfavorable climate regime. 

It is almost impossible to identify or develop a population dynamics model that 

can incorporate all effects from climate, fishing, and other environmental variables. 

Model predictions often failed because of lack ofunderstanding ofthe interactions 

between natural and human-induced variations (Rigler, 1982). Biological life-history 

processes of fish, such as growth and recruitment, are heavily impacted by changing 

environment and human activities (Shelton eta!., 1999). It is critical to identify 

methodological and theoretical gaps in current knowledge and explore the possibilities 

for resolving them in stock assessment and in fishery management. 

Many biological studies have been conducted on Atlantic cod because of its 

commercial importance. The following biological processes are regarded to be pertinent 

to stock assessment. They are recruitment, growth, maturity, natural mortality, predation, 

spatial distribution, stock definition and by catch, discarding and fishing mortality. I 

discussed some of them that were included in this thesis. Because I used Atlantic cod 

data as examples in this study, I will focus the discussions on the cod. 

1.3.1 Recruitment 
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Large variations in recruitment have been observed for many fish species (e.g., 

Myers et al., 1995; Myers and Barrowman, 1996; Power, 1996; Hinrichsen, 2001). 

Stock-recruitment (SR) models are mathematical functions that describe relationships 

between spawning stock abundance and subsequent recruitment. Future recruitment can 

be estimated from current spawners using SR models, which is essential for fisheries 

management (Hilborn and Walters, 1992). The lack of model fit of recruitment evokes 

the controversy of the relationship between stock and recruitment (e.g., Myers and 

Barrowman, 1996; Gilbert, 1997). 

The recruitment of Atlantic cod 2J3KL was significantly correlated with the 

spawning stock biomass (Myers et al., 1995). The recruitment of Atlantic cod 2J3KL 

estimated both from survey index (Lilly et al., 2001) and from VPA analysis (Baird et al., 

1992) varied greatly. The variation of recruitment may be caused by environmental 

variation (e.g. Koslow et al., 1987; de Young and Rose, 1993); but the relationship 

between recruitment and climate-ocean index is not clear (Hutchings and Myers, 1994). 

1.3.2 Growth 

As variation is observed in recruitment, there are also large variations in length-at­

age among years in many fish stocks. For Atlantic cod 2J3KL stock, many hypotheses 

had been developed to explain the variations including variations in environmental factors 

such as water temperature (Hutchings and Myers, 1994; Gomes et al., 1995; Shelton et 

al., 1999), food (Krohn et al., 1997), density-dependant effect (Hanson and Chouinard, 
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1992; Swain 1993), and population stress as a result of over-exploitation (Beacham, 1983, 

Trippel, 1995). The following factors were also considered in causing growth variations: 

size-selective mortality (Myers, 1989; Hanson and Chouinard, 1992), early life history 

(Otterson and Loeng, 2000), energy allocation (Chen and Mello, 1999), and sampling and 

stock structure (Lilly, 1996). The temporal variation of growth might also result from the 

inclusion of cod mixing from other stock or population whose growth patterns differ. 

This also might lead to observed temporal and spatial variations in growth. 

1.3.3 Environmental characteristics and migration 

Oceanography plays a large role in the early stages of life. Currents act to disperse 

fish eggs and larvae, which has a large impact on survival rates. The changes of water 

temperature, salinity, and other environmental variables greatly impact life-history 

parameters, such as growth, fecundity, survival. The continental shelf off the Canadian 

east coast is characterized by a number of shallow regions known as banks, which are 

favored habitats for the cod. Two major currents dominate this area. The Labrador 

Current brings fresher, colder water from the north over the banks, where it meets the 

warmer, saltier Gulf Stream coming from the south (Fisheries and Oceans, 1995; DFO, 

1996a). This configuration imparts a general southward drift along most of the bank area 

(DFO, 1996a). Ice conditions and storms can also impact the survival of eggs and larvae. 

Work carried out by DFO in the early 1990s made a number of interesting 

discoveries about Atlantic cod migration and spawning habits (Rose, 1993). Cod tend to 
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migrate in large schools along trenches in the continental shelf. These trenches are 

favored because the water is 2-3°C warmer than the shelf. The cod follow the trenches 

inshore where they spread out to feed during the summer. By autumn they have moved 

northward and then back offshore, following a circular route. 

Understanding the spatial distributions and migrations has clear economic and 

ecological benefit to humans and will result in more precise assessments of managed 

stocks (Giske et al., 1998). A lot of work has been done to collect information on the 

spatial dynamics of the cod fishery (Rose, 1993; Rose et al., 1994; 2000; Hutching et al., 

1993; Hutching, 1996; Brander 1994, 1996; Dalley and Anderson, 1997; Atkinson et al., 

1997; Campana et al., 1999; Brattey 2000; Lawson and Rose, 2000). 

1.3.4 Bycatch and discarding 

Approximately one quarter ofthe marine commercial catch is discarded at sea in the 

worldwide fisheries. Bycatch and discarding was considered to play a role in cod's 

decline (e.g. Myers, 1997). Kulka (1996) estimated the discarded cod at age from 1980 

to 1994. The Canadian observer program estimated the averaged discarding rate in 2000 

was about 1.33% in biomass (Lilly et al., 2001). Though it is not a large proportion in 

biomass, its impact on recruitment and number of fish is much larger because the 

discarding mainly consists of age 1-4 fishes. The uncertainties in the estimation of 

bycatch and discarding were not quantified, but were thought to be large. 

1.3.5 Seal predation 
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Predation was considered to play a role on cod's decline (e.g. Shelton and Healey, 

1999; DFO, 2000). The estimated predation by harp seal was large, and perhaps larger 

than the estimated population biomass from VPA (Stansbury et al., 1998; DFO, 2000). 

The estimated consumption by seals has not been incorporated into the current cod SPA 

model (Lilly et al., 1998). The uncertainty associated with the estimated consumption of 

cod by seals is large (Lilly et al., 2001). 

1.3.6 Fishing mortality (Indicator biological reference point) 

Fishing mortality was historically used as the indicator in fisheries management of 

Atlantic cod 2J3KL. From 1972 to 1992, the biological reference points were all based 

on constant fishing mortality (Fmax and Fo.J based fishing mortality) (Bishop and Shelton, 

1997; Shelton, 1998). The retrospective F estimates were subsequently found to be 

higher than those estimated at the time of the assessment (Bishop and Shelton, 1997; 

Shelton and Rice, 2002). 

1.4 Risk and total risk 

Risk in general is the possibility of suffering harm or loss, danger; a factor, thing, 

element, or course involving uncertain danger, a hazard (Houghton Milflin, 1992). Risk is 

conceived as a permanent property of any random phenomenon. If the population 

distribution of the phenomenon were known, the risk would then be exactly known in any 

analysis and decision related to the phenomenon. Risk is identified with probabilities of 

values greater than, or smaller than, a given value. This risk is the basic risk, and is 
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inherent in the phenomenon itself, and cannot be avoided with a change in the population 

itself. New types of risks are then associated with the changed populations, e.g., regime 

shift in ecosystems or climate changes, or introduced species. Total risk is to consider all 

other uncertainties added to the basic risk. 

1.5 Research objectives 

Stochasticity and uncertainty estimation methods play a key role in current 

population models (Lande et al., 2003). When fitting the model, different model error 

structures call for different objective functions, which will result in different model fit and 

parameter estimates. Misspecifications of error structure or parameter estimation methods 

may severely bias model assessments, population forecasting, and estimations of 

overexploitation risk. 

1.5.1 Why consider model error structure in stock-recruitment models? 

Information on future recruitments of fish populations is commonly estimated from 

the corresponding spawning stock biomass, which is critical to fishery management 

(Hilborn and Walters, 1992). Large variations in recruitment have been observed in many 

cod stocks (e.g. Myers et al., 1995). The stock-recruitment (SR) relationship of cod 

stocks has been explored in many studies (e.g. Myers et al., 1995). However, as noted by 

Hilborn and Walters (1992), the estimation ofthe SR relationship is perhaps the most 

difficult task in fisheries stock assessment. For many fish stocks, the SR relationships are 

not well defined and unclear (Ricker, 1975; Hilborn and Walters, 1992; lies, 1994; 
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Gilbert, 1997; Quinn and Deriso, 1999). Often the shape ofthe recruitment curve is hard 

to determine because of small sample sizes and because ofthe high variability in 

recruitment in a given level of stock. To respond to the uncertainties in stock-recruitment 

data, an understanding of the model error structure and how the model error structure 

influences the parameter estimation are essential in improving SR modeling (Francis, 

1997). 

A combination of the assumed model's deterministic form and error structure 

determines an objective function, which in turn dictates the parameter estimation (Chen et 

al., 2003). The lack of fit of an SR model to data does not necessarily establish the 

independence between the stock and recruitment. It likely results from a highly skewed 

distribution of recruitment values for a given level of stock (Chen and Paloheimo, 1995). 

Thus understanding the model error structure is necessary in evaluating and estimating 

the relation of recruitment to stock size, but it is often ignored in the SR model fit. For 

example, in fitting a SR model using a nonlinear least-square method, the assumed model 

error distribution is always normal. A commonly used practice is to linearize SR models 

by taking an appropriate transformation (e.g., logarithmic for the Cushing, Ricker model; 

reciprocal for Beverton-Holt model) and then to use a least-square criterion to estimate 

parameters. Large variations in recruitment have led to the wide adoption of the 

assumption that recruitment at a given level of spawning biomass follows a log normal 

distribution (Hilborn and Walters, 1992). This has been used as an alternative to the 

normal distribution (Hennemuth et al., 1980; Walters, 1986; Lapointe et al., 1992; Quinn 
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and Deriso, 1999). The intrinsic recruitment distribution has often been ignored for the 

convenience of parameter estimation, perhaps resulting in estimation errors (Chen and 

Paloheimo, 1995). 

In Chapter 2 and Chapter 3 I used a Generalized Linear Model (GzLM) method to 

explore and identify appropriate error structures in modeling stock-recruitment data for 

cod stocks. A Monte Carlo simulation was developed and used to explore the importance 

of error structure in modeling SR data (Chapter 2), and then empirical data of all the cod 

stocks for which stock-recruitment data are available were analyzed to determine whether 

there were consistent patterns among different gadoid stocks in identifying appropriate 

SR model error distributions (Chapter 3). 

1.5.2 Why consider model error structure in production models and sequential age­

structured population analysis models? 

Both surplus production models and age- or size-structured population dynamics 

models have been most commonly used in stock assessment of many fisheries worldwide 

(Shepherd 1988; Megrey 1989; Zhang et al., 1991). Like all other stock assessment 

models, care in implementation and choice of statistical methods can be as important as 

the model specification itself (Xiao 1997, 2000). When fitting the model, different model 

error structures call for different objective functions, which can result in different model 

fit and parameter estimates. 
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Parameter estimation for the surplus production model and age-structured population 

models usually takes the form of an observation-error estimator. Observation-error 

estimators have been suggested to perform better than other estimators such as process­

error estimators, in fitting production models to data (Punt 1988; Hilborn and Walters 

1992; Polancheck et al., 1993). These estimators are constructed by assuming that the 

population dynamics models are deterministic, having no process error, and that errors 

only occur in the observation model that describes the relationship between stock biomass 

and the abundance index. 

When solving the models to get the parameter estimate, a nonlinear least-square 

method was often used. Because of the arguments ofthe normally distributed error in 

survey indices, lognormal error structure was widely used, i.e., log transformed 

population abundance follows a normal distribution. Argument on the lognormal 

assumption arises both from the statistical results, practical data analysis, and simulation 

study (Firth, 1988; Myers and Pepin, 1990; Cadigan and Myers, 2001 ). A diagnostic 

procedure is needed to identify the assumption of normally, or lognormally, or gamma 

distributed error structure in the survey indices in the population production model and 

population dynamic models. 

In Chapter 4 I incorporated a Generalized Linear Model (GzLM) method to the 

surplus production model and the sequential population analysis, to identify appropriate 

error structures in modeling catch, catch-at-age, and abundance index. Atlantic cod in 

NAFO divisions 2J3KL was used as an example. 
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1.5.3 Why consider growth variation and why relate it to stock mixing? 

Growth, as a key life-history process, greatly influences population dynamics and 

stock assessment. Large variations have been observed in length-at-age data of cod in 

Atlantic Canada within and among year classes. Several hypotheses have been developed 

to explain the growth variation observed in the cod stocks, ranging from influx of 

individuals from different populations with different life-history parameters to natural 

response to changes in population density and environmental conditions. Large areas of 

migration and mixing among stocks of Atlantic Cod have been documented in Atlantic 

Canada. In Chapter 5, I quantitatively evaluated the mixing hypothesis through a Monte 

Carlo simulation study. I considered temporal variation in growth resulting from the 

mixing of cod from another stock with different growth pattern. I demonstrate in the 

simulation that such a mixing also might lead to observed temporal variation in growth. 

Impacts of sample size in subsampling catch on the observed growth variations were also 

evaluated in the simulation study. 

1.5.4 Why consider uncertainties in a biological reference point (BRP)? How does it 

influence the risk assessment in decision making? 

A management reference point is an estimated value derived from an agreed 

scientific procedure and an agreed model to which corresponds a state ofthe resource and 

ofthe fishery and which can be used as a guide for fisheries management (FAO, 1996). 

The decline in stock size of Atlantic cod, widely discussed environmental effects, and 
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improved methodology on risk assessment call for close evaluation ofBRPs. As stated in 

the 1.1, 1.2, 1.3 and 1.4, factors such as seal predation, growth variation, bycatch and 

discarding, and uncertainties in model or parameters used to estimate those processes, 

need to be incorporated in the BRP analysis, necessary for evaluating the current fishing 

status. Because the Atlantic cod 2J3KL has been historically managed based on Fo.h we 

used the Fo.1 BRP to illustrate the method developed in this study. Including uncertainty 

in stock assessment was believed to be an alternative approach of population dynamic 

models to environmental changes and observation errors in current scientific level. 

Sensitivity analysis was used to identify important pathways and parameters where 

assumptions about distributional form contribute significantly to overall uncertainty. Risk 

management without risk assessment is nonsense. The current approach used in stock 

assessment and risk analysis usually only considers the uncertainty associated with 

indicator reference points, but does not consider the uncertainty associated with 

management reference points (Fogarty et al., 1996). In Chapter 6 Fo.1 and Fmax were 

explored through a sensitivity analysis. I used an approach to determine the likelihood of 

overfishing in comparing indicator and management reference points, which considers the 

fact that both indicator and management target reference points are subject to large 

uncertainty. 

Finally, the work in this dissertation is summarized in Chapter 7 with a brief 

description of the future directions that I believe are necessary for better understanding 

and management of marine fish populations. 



Figure 1.1 Atlantic cod distribution in the Atlantic Ocean and the stocks around 

Northwest Atlantic waters. 

NORTH ATLANTIC 
ON AN AZIMUTHAL EQUAL AREA 

PROJECTION CENTRED AT 
40" N AND 35" W 

X 

- 17-



- 18-

Figure 1.2. Atlantic cod 2J3KL total allowable catch (TAC) and landings from 1959 to 

2000 (Lilly et al., 2001 ). Landing by gear types (top panel); landings by 

Canadian and non-Canadian (middle panel); landings by divisions (bottom 

panel). 
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CHAPTER2 

A SIMULATION STUDY OF IMPACTS OF ERROR STRUCTURE ON MODELING 

STOCK-RECRUITMENT DATA USING GENERALIZED LINEAR MODELS 

Abstract 

Stock-recruitment (SR) models are commonly fitted to SR data with a least-square 

method. Errors in modeling are usually assumed to be normal or log normal, regardless 

of whether such an assumption is realistic. A Monte Carlo simulation approach was used 

to evaluate the impact of the assumption of error structure on SR modeling. The 

generalized linear model, which can readily deal with different error structures, was used 

in estimating parameters. This study suggests that the quality of SR parameter estimation, 

measured by estimation errors, can be influenced by the realism of error structure 

assumed in estimation, the number of SR data points, and the number of outliers in 

modeling. A small number of SR data points and presence of outliers in SR data could 

increase the difficulty in identifying an appropriate error structure in modeling, which 

might lead to large biases in the SR parameter estimation. This study shows that 

generalized linear model methods can help identify an appropriate error distribution in SR 

modeling, leading to an improved estimation of parameters even when there are outliers 

and the number of SR data points is small. I recommend the generalized linear model be 

used for quantifying stock-recruitment relationships. 
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2.1 Introduction 

Stock-recruitment (SR) models are mathematical functions that describe relationships 

between spawning stock abundance and subsequent recruitment. Future recruitment can 

be estimated from current spawners using SR models, which is essential for fisheries 

management (Hilborn and Walters 1992). 

Large variations in recruitment have been observed for many fish species (e.g., Myers 

and Barrowman 1996; Power 1996; Hinrichsen 2001). The variations tend to increase 

with spawning stock biomass (Myers et al. 1995). This has led to wide adoption of the 

assumption that recruitment at a given level of spawning biomass follows a log normal 

distribution (Hilborn and Walters 1992). This has been used as an alternative to the 

normal distribution (Hennemuth et al. 1980; Quinn and Deriso 1999; Hinrichsen 2001). 

The normal error distribution assumption is no longer widely used in SR analyses, 

although it tends to be more realistic if the survival of individuals during their early life 

stages is density independent and constant (Shelton 1992). 

Error structure is an integral part of modeling (Carroll and Ruppert 1984; Schnute 

1991; Chen and Paloheimo 1998). The impact of unrealistic assumptions of model error 

structure on parameter estimation has been evaluated with various fisheries models 

(Deriso et al. 1985; Bajdik and Schneider 1991; Cadigan and Myers 2001). 

Inappropriate error distribution assumptions can cause inaccurate estimates of model 

parameters, their variability, and the attained significance level of the fitted model. In this 

study, using a Monte Carlo simulation approach, I evaluated the importance of having a 
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proper error distribution assumption and the effectiveness of using a generalized linear 

model in identifying a proper error distribution in modeling SR data. 

The generalized linear model (GzLM) is a maximum likelihood-based method, which 

provides a systematic framework to estimate parameters when the model error structure 

belongs to the exponential family. I considered several error structures in the exponential 

family. These error structures included normal, lognormal, gamma, and Poisson 

distributions. The likelihood of recruitment having normal or lognormal distributions was 

discussed in Shelton (1992) and Fogarty (1993). Lognormal and gamma distributions 

were used by Myers et al. (1995). The Poisson distribution is considered appropriate for 

count data, and nonnegative and highly varied data (Bajdik and Schneider 1991; White 

and Bennetts 1996), and may be appropriate for recruitment. 

Because the number of SR data is often small (Hilborn and Walters 1992) and outliers 

are likely to be present in the SR data (Chen and Paloheimo 1995; Hinrichsen 2001), the 

role of sample size and outliers in identifying appropriate error structure in SR modeling 

was also evaluated in the simulation study. 

The theory ofGzLM was developed in the 1970s (Neider and Wedderburn 1972), and 

later was expanded in theory and application during the 1980s and 1990s (McCullagh and 

Neider 1983, 1989; Dobson 1990). The GzLM can be implemented by various software 

such as GUM (Numerical Algorithms Group), SAS (SAS institute), and SPLUS 

(MathSoft). MATLAB (Math Works) was used in this study. 
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2.2 Materials and Methods 

2.2.1 Data simulation 

I used the Cushing model, the Ricker model and the Beverton-Holt model (Quinn and 

Deriso 1999) as examples in modeling SR data. The Cushing model can be written as 

(1) R=aS~, 

the Ricker model as 

and the Beverton-Holt model as 

(3) R = __!!:§__ 
1 + I3S 

where a and 13 are two parameters to be estimated, and S and R are the spawning stock 

biomass and its subsequent recruitment, respectively. The Ricker and Beverton-Holt 

models consider a density-dependent effect, but the Cushing model does not. In practice, 

the choice of these models depends upon the data. In this study, I considered the Cushing 

model first. Two scenarios were used in simulating SR data with equation (1). One 

scenario was to randomly sample S data from 1000 to 10 000 using a uniform 

distribution, and then calculate corresponding R values according to equation ( 1) and an 



-24-

assumed error structure which includes normal, lognormal, gamma, and Poisson functions 

(Table 2.1). The values of2.012 and 0.857 were used for Ln(a.) and ~,respectively, in 

simulating the R data from the S data, which were taken from the pink salmon 

(Oncorhynchus gorbuscha) fishery in the northern southeast Alaska (Quinn and Deriso 

1999). For the second scenario, the SR data were simulated using actual S data of pink 

salmon in northern southeast Alaska using the four types of error distributions listed in 

Table 2.1 and the two parameters for the pink salmon described above. The data 

simulated in the first and second scenarios are referred to as the first and second data sets, 

respectively, in this paper. 

I then repeated the above approach for the Ricker and Beverton-Holt models (i.e., 

equation 2 and 3). The values used for the two parameters in the Ricker model were 

Ln(a.) = 1.047, ~ = 5.52 * w-s, in the Beverton-Holt model were Ln(a.) = 1.042, 

~ = 5.92 * w-s, also taken from the pink salmon stock. 

2.2.2 Generalized linear model (GzLM) 

The generalized linear model is sometimes abbreviated as GLM (McCullagh and 

Neider 1989; Lindsey 1997; Myers et al. 2001), GLIM (Software ofGLIM distributed by 

Numerical Algorithms Group), or GLZ (StatSoft). In this paper I write GzLM to 

differentiate the generalized linear model from the general linear model (GLM) and the 

software GLIM. 
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A GzLM has three components (McCullagh and Neider 1989). One is the random 

component Y , which is a vector of observations y having n components that are 

independently distributed with mean vector fl. The second is the systematic component, 

which is a specification for the vector ll in terms of a small number of unknown 

p 

parameters ~P ~2 , ... , ~ P. A linear predictor 11 is given by 11 =I X 1 ~ 1 , where X is the 
j=l 

model matrix or the covariates for observation Y. The third component is the link 

between the random and systematic components. It is often written as 11 = g(fl) , where g 

is the link function (McCullagh and Neider 1989). In the case ofthe GLM, 11 = J..L 

(i.e.identity link). Thus GLM is a special case of GzLM. The likelihood function of 

Y can be written as 

n 

(4) L = ITf(y;8). 

Where f is the probability distribution function (pdf.) which depends on the parameter(s) 

8 . If the pdf is a member of the exponential class, when Y is of a discrete type, then 

(5) f(y;8) = exp[p(8 )K(y) + s(y) + q(8 )], 

=0 elsewhere, 

The log-likelihood function is then 
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n n 

(6) LL = p(8)L_K(y;) + L_S(y;) + nq(8), 
I I 

n 

in which L K (Y;) is a sufficient statistic for the parameter e , and p(8) is the canonical 
I 

link for a distribution whose p.d.f. is f(y;e). Here, Y is recruitment R, X is spawning 

stock biomass S, and 8 is the parameter vector in the SR models. 

The exponential family includes the normal, Poisson, gamma and other distributions. 

The link function 11 = g(f.!) relates the mean ofthe response variable Y to the linear 

combination ofthe X;. Common choices of link functions include identity, logarithmic, 

reciprocal, power, and logit (McCullagh and Neider 1989; The Math Works Inc. 2002). 

The GzLM is flexible to incorporate different links and not be limited to the canonical 

links. The links I used in this paper were based on the SR model structure, because I did 

not consider changing the SR model form. The choice ofthe link functions did not affect 

the assumption about the distribution of Y in GzLM. The distributions, their 

corresponding canonical links, and links used in this paper are shown in Table 2.1. The 

GzLM model was used to estimate the parameters given the link function 11 = g(J.!) 

according to the maximum log-likelihood method (i.e., equation 6). The parameters were 

then used to calculate the expected value ofthe response variable (i.e., recruitment), and 

then the residuals. Homogeneity of residuals was evaluated and used as a criterion to 

determine if the model error structure was appropriate. When different model error 

assumptions were used in a GzLM, the one that resulted in homogeneous residuals was 
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considered as the most appropriate one (McCullagh and Neider 1989). An example is 

shown (Fig. 2.1 ), which resulted from the application of GzLM with the four error 

distributions to SR data simulated with a normal distributed error. This example suggests 

that residuals tend to be homogeneous when error distribution is correctly defined in the 

GzLM. 

2.2.3 The GzLM parameter estimations for stock-recruitment models 

Cushing model 

A log transformation in conjunction with a normal-error assumption is commonly 

used in fitting the Cushing model to SR data. This is equivalent to assuming that the 

untransformed recruitment has a lognormal distribution. With the lognormal 

transformation, the Cushing model (i.e., equation 1) can be rewritten as: 

(7) Ln(R) = Ln(a) + r3Ln(S) + E 

where E has a normal distribution defined asN(O,cr 2 ). Ln(R) is the dependent variable, 

and Ln(S) is the independent variable in the GzLM. The identity link is used, and the 

error is normal. The parameter estimates are the same as those from the GLM model after 

the Cushing model is log transformed (i.e., equation 7). 

For error distributions that are normal, gamma and Poisson, one can rewrite the 

Cushing model as: 

(8) E(R) = E(aS~) = E(eLn(a)+~Ln(S)), 
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model parameters are estimated based on the assumption of the distribution of R. For a 

normal distributed error, I assume R follow N(R,cr 2 ). For a gamma distributed error, one 

assumes R follow G(R I k, k) . k is a scale parameter of gamma distribution. I used k = 6 

in the simulation study. For a Poisson distributed error, one assumes R follow P(R). Here, 

R = aS~ . In the GzLM analysis, R is the dependent variable, and Ln(S) is the independent 

variable. The log link is used, and the error choice is normal, gamma, and Poisson 

respectively. The parameter estimates using a normal error distribution are the same as those 

estimated using a nonlinear least squares method. 

Ricker model 

When the lognormal distribution is assumed for the error distribution of the Ricker 

model, equation 2 can be re-written as: 

(9) Ln(R) = Ln(a)- f3S + Ln(S) + E , 

which is equivalent to: 

(10) R=Seln(a.Hse•, 

where E follows N(O,cr 2). Ln(R) is the dependent variable, negativeS is the 

independent variable, and Ln(S) is an offset in the GzLM. The identity link ( 11 = f..1. ) is 

used, and the choice of error is normal. The parameter estimates are the same as those 

from the GLM model after linearizing the Ricker model. The commonly used 

linearization method, which can be expressed as: 
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(11) RIS=ea.-ps+E, 

is likely to introduce estimation errors since variable S appears in both sides of the 

equation (Quinn and Deriso 1999). 

For error distributions that are normal, gamma, and Poisson, the Ricker model can 

be written as: 

(12) E(R) = E(eln(a.HS+ln(S)). 

Model parameters are estimated based on the assumption of the distribution ofR (see 

Cushing model). Here, R = aSe-ps. R is the dependent variable, negativeS is the 

independent variable, and Ln(S) is an offset in the GzLM. The log link, 11 = log( I!) , is 

used, and the choice of error is normal, gamma, and Poisson respectively. 

Beverton-Holt model 

When the normal, gamma or Poisson distribution is assumed for the error 

distribution of the Beverton-Holt model, equation 3 can be re-written as 

(13) 
1 

E(R) = E( 1 1 !3 ) , 
--+-
(J. s (J. 

model parameters are estimated based on the assumption of the distribution ofR (see 

Cushing model). Here, R = __!!:§__ . R is the dependent variable; liS is the independent 
1 + !3S 

variable in the GzLM. The reciprocal link ( 11 = 1 I 1-l ) is used, and the choice of error is 

normal, gamma, and Poisson respectively. 
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For error distributions that are lognormal, the Beverton-Holt model can be written 

as: 

(14) 
aS 

Ln(R) = Ln --+ E = Ln(a) + Ln(S)- Ln(l + f3S) + E , 
1+ f3S 

where E is the error term following N(O,cr 2). Because of the non-linear parameters in 

the above equation, the code and method used to get the parameter estimate are 

complicated and approximated when using GzLM. Equation 14 can be regarded as a 

nonlinear equation with normal distributed error structure, where Ln(R) is the response 

variable; S is the independent variable. Considering the fact that the parameter estimate 

using GzLM in equation 14, equals that using the nonlinear least-square estimate, a 

nonlinear least-square method was used in solving this equation instead of GzLM. 

2.2.4 Simulation design 

The following procedure was used in the simulation:( I) simulate SR data sets using 

the Cushing model for error scenarios listed in Table 2.2 with the total number of 

observations being 10, 20 and 40; (2) simulate SR data sets with outliers by adding 

atypical errors to 10%, 20% and 40% of the data with the number of observations being 

40. Both the SR data sets discussed previously in the Data Simulation section were used 

in simulating data with and without outliers. The same approach was then applied to the 

Ricker model. The combination of three models (Cushing, Ricker and Beverton-Holt), 

two data sets (randomly drawn S data and trueS data for the pink salmon), four error 
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distributions used in simulating the SR data (normal, lognormal, gamma, and Poisson), 

four error distributions assumed in the GzLM for parameter estimation (normal, 

lognormal, gamma, and Poisson), three sample sizes (10, 20 and 40 SR observations), and 

three different levels of outlier contaminations (10%, 20%, and 40%) at a sample size of 

40, resulting in 480 simulation scenarios in total being evaluated in this study. When 

adding outliers in the simulation study, if 10% of outliers were added, 90% of SR data 

with the supposed model error structure were first simulated; then another 10% ofthe 

outliers with another model error structure were simulated. Finally the 90% common data 

and 10% outliers were added together before the generalized linear model was used to 

estimate the parameters. For each simulation scenario 1000 simulations were run to 

obtain the stable results. 

Departure of the estimated parameters from the true values was measured by the 

relative estimation bias (REB), relative estimate error (REE) and root mean square error 

(RMSE). REB is calculated as: 

(15) 

the REE is calculated as: 

(16) 

and the RMSE can be expressed as: 
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(17) RMSE= 
N 

where 13 •; is the estimated parameter value in the ith simulation; N is the number of 

simulations; 13 is the true parameter value. The smaller the REB, REE and RMSE 

values, the better the estimation approach performs. 

2.2.5 Quantification of residuals' homogeneity 

Pearson residuals of the model fitting were calculated for each simulation scenario. 

Pearson residuals are the differences between observed and predicted values, standardized 

(divided by the estimated standard deviation of the fitted value) to make their variance 

(theoretically) constant. Ifthe error distribution assumed in the estimation was consistent 

with the error distribution used in simulating the SR data, a plot of resultant Pearson 

residuals should show constant variances. Thus in order to determine if the residuals are 

homogeneous, one can look at the residual diagnostic plot. A visual inspection of residual 

diagnostic plots is commonly used in evaluating the residual homogeneity, although the 

approach may be subjective, in particular when sample sizes are small. In this study, 

because 1000 simulations were run for each scenario to derive stable results, direct 

observation was laborious. Thus, I used the following quantitative method to evaluate the 

homogeneity of the residuals: (1) regress the Pearson residual value ( r) and the model 

predicted value ( R ), i.e.,: 
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(18) 

Estimate the p value for b1 to determine if it was significantly different from zero, 

a = 10% was used; (2) regress the absolute Pearson residual value ( r2 ) and the model 

predicted value ( R ), i.e.,: 

Estimate the p value for b2 to determine if it was significantly different from zero, 

a = 1 0% was used; (3) if both the estimated p values were larger than a = 1 0% , I 

regarded the residuals as homogeneous, else I regarded the residuals as not homogeneous. 

Many of the residuals show a right or left triangular shaped pattern symmetric about the x 

axis, when an inappropriate model error structure were used. That is why I double 

checked this situation by using both residuals and absolute value of residuals in the 

regression. This proposed method, referred hereafter as the regression method, was 

compared with the commonly used method, which involves visual examination of 

residual homogeneity, in 100 simulations to determine ifboth methods derived consistent 

conclusions in evaluating the residual homogeneity. 

In this chapter, regression method is used to diagnose the residuals (Anscome and 

Tukey, 1963). This regression method may not be able to measure all the 

nonhomogeneity patterns, such as a nonlinear pattern etc. The efficiency of the regression 
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method in identifying the residual homogeneity is analyzed by comparing the regression 

method with the commonly used visual-checking method for the residual homogeneity. 

2.3 Results 

The efficiency of the regression method in identifying the residual homogeneity was 

influenced by sample size (Table 2.2). When the sample size was 10, the percentage of 

the simulations with homogeneous residuals was 81% on average. This increased slightly 

with an increase in sample size (averaged 84% and 89% for sample sizes of20 and 40, 

respectively; Table 2.2). A comparison of the regression method with the commonly 

used visual-checking method for the residual homogeneity suggests that the proposed 

regression method effectively identified the simulations that had homogeneous residuals. 

When the error distributions used in the GzLM analysis were the same as those used 

in simulating SR data, percentages of the simulations that had homogeneous residuals 

increased with an increase in sample size (Table 2.3). The REEs and RMSEs for a and 

13 tended to decrease with sample size increasing (Fig. 2.2, Table 2.3). Because the REB 

is the difference between the mean parameter estimate in total simulation runs and the 

true value divide by the true value, the variance among the simulation runs was hidden. 

The REB estimate is not consistent comparing with the REE and RMSE estimates, which 

accumulate error in every simulation run. I did not show the REE estimates in the tables, 

I only show it in Figure 2.2 as an example. 



- 35-

When the error distributions used in the GzLM analysis differed from those used in 

simulating SR data, percentages of the simulations that had homogeneous residuals 

became smaller with an increase in sample size (Table 2.4). This was different from the 

observations made when model error distributions used in the GzLM analysis were the 

same as those used in simulating SR data. The REBs of a and 13 increased with an 

increase in sample sizes when normal errors were used in simulating SR data. For other 

errors used in simulating data, they decreased as the sample size increased (Table 2.4). 

The RMSEs of a and 13 decreased with increasing sample size. 

A comparison of Table 2.3 and Table 2.4 indicates that percentages of the simulations 

with homogeneous residuals were always higher and REBs and RMSEs of a and 13 were 

always lower when the error assumptions used in the GzLM were the same as those used 

in simulating SR data, compared with those derived in the simulations when the model 

error distributions in the GzLM were not the same as the ones used in simulating data 

(Tables 2.3 and 2.4). 

Different error assumptions in the GzLM yielded different estimates for the model 

parameters. Parameters estimated using lognormal and gamma distributions were similar, 

but parameters estimated using normal distribution in the GzLM were different from 

those estimated using lognormal and gamma distributions in the GzLM. Parameters 

estimated using a Poisson distribution tended to have values between those estimated 

using the normal error distribution versus lognormal and gamma distributions. Because 

this is a simulation study I did not show the parameter estimates in every simulation. The 
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estimates (Fig. 2.2, Tables 2.3 and 2.4). 
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When the second SR data (see Data Simulation section) were used for the Cushing 

model, percentages of the simulations with homogeneous residuals were higher when the 

error distributions used in the GzLM were the same as those used in simulating SR data 

(Table 2.5). Parameters estimated using the lognormal and gamma distributions were 

similar. Parameters estimated using the normal distribution in the GzLM differed from 

those estimated using the lognormal and Gamma distributions. Parameters estimated 

using the Poisson distribution in the GzLM had values between those estimated using 

normal error and lognormal and gamma distributions in the GzLM. When the error 

distribution used in the GzLM was the same as that used in simulating SR data, the 

percentages of the simulations with homogeneous residuals were higher and the REBs 

and RMSEs of a and f3 were smaller, and vice versa. This was consistent with the 

results derived for the first set of data which had S values randomly drawn from 1000 to 

10 000. 

For the first set of data (randomly drawn S data) with outliers, when the error 

distributions used in the GzLM was the same as those used in simulating SR data, the 

percentages of the simulations with homogeneous residuals decreased and the REBs and 

RMSEs of a and [3 increased with an increase in the number of outliers (Table 2.6). 

When the error distributions used in the GzLM were not the same as those used in 

simulating SR data, the percentages of the simulations with homogeneous residuals 
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increased with an increase in the number of outliers, if error distributions used in 

simulating SR data were normal and error distributions used in the GzLM were lognormal 

and gamma. The same result could also be observed when the error distributions used in 

simulating SR data were the lognormal, gamma and Poisson and the model errors used in 

the GzLM were normal. For other combinations of the distributions in simulating data 

and GzLM analyses, the percentages of the simulations with homogeneous residuals 

decreased with an increasing number of outliers (Table 2.6). The REBs and RMSEs of 

a and 13 increased with an increase in the number of outliers in most cases (Table 2.7). 

Similar conclusions could be obtained when outliers were present in the second set of 

data simulated based on pink salmon S data (Tables 2.8 and 2.9). 

When the Ricker model and Beverton-Holt model were applied to data simulated 

under different scenarios, the results derived were consistent with those described above 

for the Cushing model. The results for those two models are shown in the appendix in 

this thesis. 

2.4 Discussion 

The regression method proposed for checking the residual homogeneity was 

effective in identifying homogeneous distributions of residuals. However, the 

effectiveness decreased with sample size. This was consistent with the fact that visual 

observation for residual homogeneity was difficult when sample sizes were small. This 

suggests that the regression method I used in checking residual homogeneity of a large 
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observation method in SR modeling where there is only one set of residuals output. 
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The simulation results show that GzLM can help identify an appropriate model error 

distribution for parameter estimation through a residual homogeneity analysis. In most 

cases of the simulation the true model error distribution used in the GzLM provided the 

highest percentage of simulation runs with homogeneous residuals. According to the 

simulation, this (i.e., the use of an appropriate error distributions in the GzLM) can 

improve the parameter estimation. 

This study suggests that the number of SR data can greatly influence the 

effectiveness of identifying correct error distributions in the GzLM analyses and 

estimation errors. A small number of SR data is likely to lead to low effectiveness in 

identifying homogeneous residuals and large estimation errors in SR modeling. Thus, 

one should be cautious in using the GzLM when analyzing a small number of SR data. 

The presence of outliers can also impact a GzLM analysis in identifying a correct 

error distribution. When outliers composed 10% of the data, the percentage of simulation 

runs with homogeneous residuals was the highest for the case where the correct error 

distributions were used in the GzLM analysis. When the number of outliers increased to 

40% , the percentages of homogeneous residuals was no longer the highest for the case 

where the correct error distributions were used in the GzLM analysis. The normal error 

distribution tended to be more sensitive to outliers compared with the lognormal and 
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gamma distributions. This study shows that even when the GzLM is less effective in 

identifying the correct error distribution with an increase in the number of outliers, the 

model error distribution used in the GzLM that shows the highest percentage of 

simulation runs with homogeneous residuals usually provides better parameter estimates 

with smaller REB and RMSE. An example could be found in Figure 2.3 which illustrated 

the changes in estimation errors for Ln( a) and 13 when different percentages of data 

were outliers This suggest that the appropriate model error distribution may not be the 

underlying true error distribution because of the existence of outliers. 

This study suggests that if the model error distribution used in simulating SR data 

follows the Poisson, the parameters estimated using different error distributions in the 

GzLM have smaller differences. Thus, a Poisson distributed error in SR data is less 

sensitive to sample size, outliers, and choice of error distributions in the GzLM. The use 

of the Poisson distribution in the parameter estimation also showed robustness with 

respect to Misspecification of error structure, small sample size, and outliers. For 

example, when the error distribution used in simulating SR data was normal and the data 

were contaminated with lognormal distributed outliers, the Poisson error distribution used 

in the GzLM analysis provided the highest percentage of simulation runs with 

homogeneous residuals and better parameter estimates. Thus, I recommend using the 

Poisson distribution in a GzLM analysis of SR data. 
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The simulated results did not show obvious difference when different SR models 

were used. Because this is a simulation study, the data sets are based on "true" 

parameters with random errors, the performances of the models are difficult to compare. 

I suggest the GzLM method be used to quantify SR data relationships. The GzLM 

provides a convenient and effective way to evaluate and identify the appropriate model 

error distributions for a given set of data and models, leading to improved parameter 

estimation. 
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Table 2.1: The distributions, their corresponding canonical links, and links used in this 

chapter. 

Distribution 

Normal 

Lognormal (log transformed data) 

Gamma 

Poisson 

Canonical 

link 

11 = log().l.) 

Links used in this paper 

Cushing and Beverton-Holt 

Ricker models model 

11 = log().l.) T]=ll).l. 

11 = log().l.) 

11 = log().l.) 
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Table 2.2: Comparison of the regression method proposed in this paper with the 

commonly used visual checking method in identifying the residual homogeneity for the 

100 simulations. In this study the Cushing model was used. The results derived for 

different sample sizes (1 0, 20 and 40) are compared. 

Sample size = 10 Sample size=20 Sample size=40 

Model error distribution % of simulations with homogeneous residuals 

In 
InGzLM Regression Visual Regression Visual Regression Visual 

simulating 
estimation method checking method checking method checking 

SR data 

Normal 87 88 93 88 92 87 

Lognormal 70 68 40 48 10 16 
Normal 

Gamma 72 70 43 47 10 13 

Poisson 83 77 80 80 40 40 

Normal 82 57 65 40 20 18 

Lognormal 97 75 85 75 82 87 
Lognormal 

Gamma 88 72 82 77 85 93 

Poisson 87 63 75 58 57 50 

Normal 82 47 57 43 33 27 

Lognormal 80 72 87 77 70 70 
Gamma 

Gamma 83 78 87 83 70 70 

Poisson 83 60 78 62 73 58 

Normal 83 62 70 62 43 40 

Lognormal 87 60 72 52 53 58 
Poisson 

Gamma 85 63 75 47 53 58 

Poisson 88 67 80 77 93 87 
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Table 2.3: Summary ofthe simulations when the model error distributions used in the 

generalized linear model analyses were the same as those used in simulating stock-

recruitment (SR) data. The Cushing model and the first set of data which had S values 

randomly drawn from 1000 to 10 000 were used in the simulation. Relative estimate bias 

(REB) and root mean square error (RMSE) for parameters are shown. 

Model error Number of %of REB for REB for RMSE RMSE 

distribution in observations simulations ln(a)(%) p (%) for for p 

simulating SR data with ln(a) 

homogeneous 

residuals 

Normal 10 71.9 0.15 0.04 0.4398 0.0518 

20 79.1 0.02 O.Ql 0.2989 0.0351 

40 80.4 0.02 0.05 0.2106 0.0248 

Lognormal 10 74.3 6.9 1.93 2.9511 0.3585 

20 79.4 0.01 0.19 1.9812 0.2413 

40 80.8 2.21 0.60 1.3260 0.1618 

Gamma 10 71.3 0.61 0.15 0.4516 0.0542 

20 73.5 0.73 0.21 0.2915 0.0351 

40 79.1 0.37 0.10 0.1860 0.0224 

Poisson 10 73.6 0.026 0.008 0.0724 0.0086 

20 78.5 0.026 0.008 0.0491 0.0059 

40 80.6 0.008 0.002 0.0342 0.0041 
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Table 2.4: Summary of the simulations when the model error distributions used in the 

generalized linear model analyses were not the same as those used in simulating stock-

recruitment data. The Cushing model and the first set of data which had S values 

randomly drawn from 1000 to 10 000 were used in the simulation. Relative estimate bias 

(REB) and root mean square error (RMSE) for parameters are shown. 

Model error distribution Number of %of REB REB RMSE RMSE 

SR 
simulations for 

for f3 for for f3 In InGzLM 
with ln(a) 

simulating observations 
homogeneous ln(a) 

SR data 
residuals (%) 

(%) 

Normal Lognormal 20 26.3 2.57 0.7 0.4096 0.0486 

40 5.0 2.94 0.8 0.3033 0.0360 

Gamma 20 24.7 0.91 0.26 0.3999 0.0474 

40 4.6 0.84 0.23 0.2916 0.0346 

Poisson 20 55.5 0.31 0.09 0.3216 0.0378 

40 34.9 0.47 0.13 0.2315 0.0273 

Lognormal Normal 20 37.4 24.6 8.2 11.2407 1.2923 

40 13.1 5.25 3.02 2.2124 0.2666 

Gamma 20 81.8 4.39 0.45 2.0394 0.2480 

40 85.8 2.43 0.94 1.4105 0.1724 

Poisson 20 63.2 7.89 0.55 2.2546 0.2733 

40 43.9 2.72 0.85 1.5502 0.1890 

Gamma Normal 20 44.1 1.13 0.32 0.3392 0.0406 

40 17.8 0.2 0.05 0.2302 0.0277 

Lognormal 20 73.7 1.09 0.28 0.2924 0.0352 
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40 64.2 0.09 0.01 0.1861 0.0224 

Poisson 20 72.6 0.85 0.24 0.2935 0.0353 

40 67.7 0.38 0.1 0.1915 0.0231 

Poisson Normal 20 58.6 0.041 0.012 0.0539 0.0064 

40 36.6 0.027 0.008 0.0367 0.0044 

Lognormal 20 58.5 0.046 0.013 0.0525 0.0063 

40 39.4 0.009 0.002 0.0371 0.0044 

Gamma 20 59.1 0.026 0.008 0.0525 0.0063 

40 37.9 0.016 0.005 0.0371 0.0044 
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Table 2.5: Summary of the simulations when the Cushing model and the second set of 

data which had true S values of pink salmon were used in the simulation. Relative 

estimate bias (REB) and Root mean square error (RMSE) for parameters were shown. 

Model error distribution % of REB for REB RMSE RMSE 

simulations ln(a) for ~ for for~ 
In InGzLM 

with (%) (%) ln(a) 
simulating 

homogeneous 
SRdata 

residuals 

Normal Normal 82.25 0.01 0.01 0.2144 0.0258 

Lognormal 26.91 2.18 0.59 0.3486 0.0425 

Gamma 31.05 0.37 0.10 0.3408 0.0415 

Poisson 59.60 0.01 0.01 0.2451 0.0296 

Lognormal Normal 37.12 7.86 0.80 2.8999 0.3556 

Lognormal 80.84 0.64 0.21 1.8501 0.2309 

Gamma 86.05 6.58 0.27 1.9416 0.2418 

Poisson 77.01 12.22 1.93 2.1647 0.2682 

Gamma Normal 32.78 0.43 0.12 0.3286 0.0405 

Lognormal 73.83 0.67 0.16 0.2644 0.0328 

Gamma 75.59 0.22 0.06 0.2636 0.0327 

Poisson 82.47 0.19 0.05 0.2639 0.0327 

Poisson Normal 53.04 0.011 0.003 0.0470 0.0058 

Lognormal 39.87 0.002 0.002 0.0472 0.0058 

Gamma 42.55 0.03 0.007 0.0472 0.0058 

Poisson 83.28 0.02 0.006 0.0417 0.0051 
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Table 2.6: Summary of the simulation when the model error distributions used in the 

generalized linear model analyses were the same as those used in simulating stock­

recruitment (SR) data. The Cushing model and the first set of data which had S values 

randomly drawn from 1000 to 10 000 were used in the simulation. Outliers were added 

and the sample size was 40. Relative estimate bias (REB) and root mean square error 

(RMSE) for parameters are shown. 

Model error Distribution % of % of REB REB RMSE RMSE 

distribution in that outliers data simulations for for f3 for for f3 

simulating SR follow being with ln(a) ln(a) 
(%) 

data outliers homogeneous 
(%) 

residuals 

Normal Lognormal 10 66.8 1.77 0.67 0.7189 0.0866 

20 58.4 2.28 0.97 1.1859 0.1477 

40 43.4 5.83 2.29 1.5351 0.1852 

Lognormal Normal 10 80.0 4.08 1.17 1.2193 0.1485 

20 81.6 0.36 0.09 1.1835 0.1444 

40 79.5 0.52 0.16 0.9844 0.1203 

Gamma Normal 10 55.2 0.14 0.03 0.2030 0.0244 

20 47.9 1.37 0.38 0.2273 0.0273 

40 29.0 0.16 0.04 0.2332 0.0278 

Poisson Normal 10 68.4 0.12 0.03 0.0780 0.0092 

20 69.5 0.13 0.04 0.1044 0.0123 

40 59.5 0.14 0.04 0.1499 0.0177 



-48-

Table 2.7: Summary of the simulation when the model error distributions used in the 

generalized linear model analyses were not the same as those used in simulating stock-

recruitment (SR) data. The Cushing model and the first set of data which had S values 

randomly drawn from 1000 to 10 000 were used in the simulation. Outliers were added 

and the sample size was 40. Relative estimate bias (REB) and Root mean square error 

(RMSE) for parameters are shown. 

Model error % of % of simulations REB REB RMSE RMSE 

data for for 
distribution withhomogeneous ln(u) 13 for for 13 

being 

outliers 
residuals (%) (%) ln(u) 

In InGzLM 
simulating 
SRdata 

Normal Lognormal 10 56.6 1.21 0.31 0.4658 0.0563 

20 69.8 1.69 0.46 0.6479 0.0788 

Gamma 10 56.0 1.03 0.12 0.5111 0.0619 

20 68.8 0.15 0.31 0.7147 0.0870 

Poisson 10 70.4 0.25 0.10 0.5843 0.0664 

20 68.3 0.38 0.24 0.7996 0.0972 

Lognormal Normal 10 18.9 3.21 0.51 1.9861 0.2385 

20 22.0 1.38 1.66 1.9122 0.2305 

Gamma 10 83.2 7.83 0.72 1.2994 0.1572 

20 83.0 4.04 0.20 1.2773 0.1557 

Poisson 10 49.1 9.25 1.13 1.4226 0.1724 

20 54.6 4.76 O.Ql 1.4020 0.1704 
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Gamma Normal 10 23.3 0.19 0.05 0.2329 0.0279 

20 30.6 1.20 0.33 0.2283 0.0273 

Lognormal 10 56.4 0.78 0.19 0.2042 0.0245 

20 47.0 2.17 0.58 0.2325 0.0278 

Poisson 10 75.5 0.17 0.04 0.2001 0.0241 

20 78.1 1.15 0.32 0.2100 0.0252 

Poisson Normal 10 64.5 0.16 0.04 0.0730 0.0086 

20 71.2 0.13 0.04 0.0952 0.0112 

Lognormal 10 50.3 0.33 0.09 0.1017 0.0121 

20 42.4 0.34 0.09 0.1347 0.0160 

Gamma 10 47.6 0.08 0.02 0.0983 0.0117 

20 42.4 0.11 0.03 0.1317 0.0157 
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Table 2.8: Summary of the simulation when the model error distributions used in the 

generalized linear model analyses were the same as those used in simulating stock-

recruitment (SR) data. The Cushing model and the second set of data which had true S 

values of pink salmon were used in the simulation. Outliers were added in simulating the 

data. Relative estimate bias (REB) and root mean square error (RMSE) for parameters 

are shown. 

Model error Distribution % of % of REB REB RMSE RMSE 

distribution in that outliers data simulations for for 13 for for 13 

simulating SR follow being homogeneous ln(a) ln(a) 
(%) 

data outliers residuals 
(%) 

Normal Lognormal 10 64.3 0.02 0.18 0.3168 0.0395 

20 40.2 18.44 11.32 3.1441 0.3871 

40 21.8 27.32 8.55 2.9112 0.3597 

Lognormal Normal 10 77.4 0.60 0.18 1.8214 0.2266 

20 67.3 4.57 1.29 1.5377 0.1895 

40 26.7 1.99 0.57 1.3729 0.1690 

Gamma Normal 10 76.2 0.22 0.06 0.2616 0.0323 

20 70.5 0.10 0.02 0.2411 0.0297 

40 61.0 0.63 0.18 0.2321 0.0286 

Poisson Normal 10 80.2 0.07 0.02 0.0590 0.0074 

20 69.1 0.08 0.02 0.1134 0.0142 

40 48.2 0.08 0.03 0.1209 0.0152 
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Table 2.9: Summary of the simulation when the model error distributions used in the 

generalized linear model analyses were not the same as those used in simulating stock­

recruitment (SR) data. The Cushing model and the second set of data which had true S 

values of pink salmon were used in the simulation. Outliers were added when simulating 

the data. Relative estimate bias (REB) and root mean square error (RMSE) for 

parameters are shown. 

Model error distribution % of % of REB REB RMSE RMSE 

data simulations for for ~ for for~ 
in inGzLM 

being with ln(a) (%) In( a) 
simulating 

outliers homogeneous (%) 
SRdata 

residuals 

Nonnal Lognonnal 10 83.2 1.71 0.43 0.5946 0.0760 

20 53.1 5.36 1.57 1.1047 0.1408 

Gamma 10 84.3 7.05 2.21 0.6534 0.0840 

20 53.5 18.04 5.66 1.2074 0.1549 

Poisson 10 73.8 4.05 1.33 0.4979 0.0641 

20 40.1 25.31 7.74 2.0522 0.2580 

Lognormal Nonnal 10 80.0 11.95 2.16 2.9611 0.3629 

20 86.1 41.40 10.64 1.3247 0.1527 

Gamma 10 82.1 14.52 2.72 1.9505 0.2412 

20 73.4 26.27 6.28 1.7398 0.2113 

Poisson 10 81.1 19.76 4.27 2.1775 0.2689 
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20 85.7 35.73 9.03 1.4945 0.1772 

Gamma Normal 10 78.4 0.27 0.08 0.3213 0.0395 

20 83.0 0.07 0.03 0.1981 0.0241 

Lognormal 10 74.4 0.72 0.18 0.2617 0.0323 

20 69.3 0.67 0.16 0.2416 0.0297 

Poisson 10 84.2 0.09 0.03 0.2575 0.0318 

20 85.7 0.06 0.02 0.2004 0.0245 

Poisson Normal 10 65.7 0.14 0.04 0.0560 0.0068 

20 59.4 0.11 0.03 0.1596 0.0197 

Lognormal 10 87.7 0.05 0.02 0.0673 0.0085 

20 82.7 0.11 0.04 0.0870 0.0111 

Gamma 10 89.6 0.01 O.Ql 0.0671 0.0085 

20 82.5 0.03 O.Ql 0.0866 0.0110 
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Figure 2.1. An example for showing the homogeneity and heterogeneity of residual 

distributions. Pearson residuals were used. The model error distribution used in 

simulating the stock-recruitment data was normal; the model error distribution used in the 

generalized linear model for the parameter estimation are normal (a), lognormal (b), 

gamma (c), and Poisson (d). 
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Figure 2.2. Relative estimation error (REE) for the two parameters, Ln(a) (a) and !3 (b), 

in the Cushing model in 1000 runs of simulation when different sample sizes are used in 

the simulation study. The simulated model error distribution is normal, the model error 

distributions used in the parameter estimates are normal (solid line), lognormal (dash-dot 

line), gamma (dashed line) and Poisson (dotted line). 
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Figure 2.3. Relative estimation error (REE) for the two parameters, Ln(a) (a) and [3 (b), 

in the Cushing model in 1000 runs of simulation when different percentages of outliers 

were added in the stock-recruitment data. The number of stock-recruitment observations 

used in the simulation is 40. The model error distribution used in simulating stock-

recruitment data is normal, the model error distributions used in the generalized linear 

model for the parameter estimation are normal (solid line), lognormal (dash-dot line), 

gamma (dashed line) and Poisson (dotted line). 
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CHAPTER3 

AN ANALYSIS OF ERROR STRUCTURE IN MODELING THE STOCK­

RECRUITMENT DATA OF GADOID STOCKS USING GENERALIZED LINEAR 

MODEL 

Abstract 

When modeling the stock-recruitment (SR) relationship, the Cushing, Ricker, and 

other SR models, are fitted to the observed SR data by estimating parameters with 

assumptions made concerning the model error structure. Using a generalized linear 

model approach, I explored and identified the appropriate model error structure in 

modeling SR data for gadoid stocks. The SR parameter estimation was found to be 

influenced by the choice of error distributions assumed in the analysis. This study 

suggests that the acceptable SR model error structure can be normal and/or lognormal, 

which is widely assumed in SR modeling, but it can be gamma and/or Poisson also. In 

modeling SR data for gadoid stocks, the Beverton-Holt model was found to be more 

sensitive to the assumption of model error distribution than the Cushing and Ricker 

models. The lognormal and gamma distribution had a higher probability to be an 

acceptable model error distribution. Cluster analyses and summary statistics of error 

distributions in SR modeling did not show a consistent pattern in the identification of an 

acceptable model error structure among species, geographic distributions and sample 

sizes. A better understanding of the factors and mechanisms resulting in differences in 

the choice of appropriate model error distributions for different populations is needed in 



future research. I recommend that the generalized linear model be used to identify 

acceptable model error structures in quantifying SR relationships. 

3.1 Introduction 
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Many species in the family Gadidae have high economic values, such as Atlantic cod 

(Gadus morhua) in the North Atlantic and walleye Pollock (Theraga chalcogramma) in 

the North Pacific. Information on their future recruitments, which is commonly estimated 

from the corresponding spawning stock biomass, is critical for their management (Hilborn 

and Walters 1992). Large variations of recruitment have been observed in many cod 

stocks (e.g., Myers et al. 1995; Myers and Barrowman 1996; Hinrichsen 2001). The 

dynamics of the recruitment requires full understanding of the dynamics ofthe spawning 

stock biomass (Ricker 1975). Knowledge ofthe stock-recruitment (SR) relationship is 

commonly obtained through quantitative modeling. The SR relationship of cod stocks 

has been explored in many studies (e.g., Myers et al. 1995; Myers and Barrowman 1996; 

Power 1996). However, as noted by Hilborn and Walters (1992), the estimation ofthe SR 

relationship is perhaps the most difficult work in fisheries stock assessment. For many 

fish stocks, the SR relationships are not clear (Ricker 1975; Hilborn and Walters 1992; 

Iles 1994). Often the shape ofthe recruitment curve is hard to determine because of small 

sample size and because ofthe high variability in recruitment. 

A combination of the assumed model form and error structure determines an 

objective function, which in turn dictates the parameter estimation (Chen et al. 2003). 

The lack of fit of data to an SR model does not necessarily establish the independence 
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between the stock and recruitment. It likely results from a highly skewed distribution of 

recruitment values for a given level of stock (Chen and Paloheimo 1995). Thus 

understanding the model error structure is necessary in evaluating and estimating the 

relation of recruitment to stock size. 

Modeling errors result from inappropriate model form or inappropriate error structure 

(Carroll and Ruppert 1984; Schnute 1991; Schnute and Richards 2001). Different 

mathematical functions have been developed for the SR models based on ecological and 

mathematical theories (Hilborn and Walters 1992). The model error structure is often 

ignored in the SR model fit. For example, in fitting a SR model using a nonlinear least­

square method, the assumed model error distribution is always normal. A commonly 

used practice is to linearize SR models by taking an appropriate transformation (e.g., 

logarithmic for the Cushing, Ricker model; reciprocal for the Beverton-Holt model) and 

then to use a least-square criterion to estimate parameters. The intrinsic recruitment 

distribution has often been ignored for the convenience of parameter estimation, perhaps 

resulting in estimation errors (Chen and Paloheimo 1995). 

The necessity of having a realistic error structure or applying an estimation method 

that is robust to the error structure assumption in modeling the dynamics of fish 

populations has been discussed in various studies (Bajdik and Schneider 1991; Chen and 

Paloheimo 1998; Shertzer and Prager 2002). In this chapter I used a generalized linear 

model method to explore and identify acceptable error structures in modeling SR data for 

cod stocks. The generalized linear model method is a maximum likelihood-based 
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method, which provides a convenient and effective way to evaluate and identify the 

acceptable model error distribution for given data and models. The choice of the link 

function, which is an essential component in the generalized linear model method, does 

not affect the assumptions concerning the distribution of the independent variable, unlike 

the case oftransformations used in least-square methods (Bajdik and Schneider 1991; 

Quinn and Deriso 1999). In an extensive Monte Carlo simulation study, Jiao et al. 

(2003) found that the quality ofSR parameter estimates, measured by estimation errors, 

could be influenced by the realism of error structure assumed in an estimation, the 

number of SR data points, and the number of outliers in modeling. A small number of SR 

data points and presence of outliers in SR data could increase the difficulty of identifying 

the appropriate error structure in modeling, which might lead to large biases in SR 

parameter estimation. They also found that the generalized linear model could help 

identify the acceptable error distribution in SR modeling, leading to an improved 

estimation of parameters even when there were outliers and the number of SR data points 

was small (Jiao et al. 2003). 

In this study, using the generalized linear model method, I explore and identify 

acceptable model error structures for commonly used Cushing, Ricker and Beverton-Holt 

models in fitting the SR data of gadoid stocks. Four model error distributions (normal, 

lognormal, gamma and Poisson), were used in this study. The normal distribution is 

widely used for biological and fishery variables in fisheries modeling, which results from 

an assumption that environmental variations are random. Because of large environmental 
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changes or other reasons, the variations of those variables might be skewed. Even when 

both recruitment and stock size follow normal distributions, the model error might not be 

normal (Chen and Paloheimo 1995). So, I included the skewed distributions of lognormal 

and gamma in this study. I also included the Poisson distribution because the recruitment 

is non-negative count data. The use of the Poisson distribution in the parameter 

estimation also showed robustness with respect to Misspecification of error structure, 

small sample size, and outliers in our simulation study (Jiao et al. 2003). For example, 

when the error distribution used in simulating SR data was normal and the data were 

contaminated with lognormally distributed outliers, the Poisson error distribution used in 

the generalized linear model analysis provided the highest percentage of simulation runs 

with homogeneous residuals and better parameter estimates (Jiao et al. 2003). 

I evaluated all the cod stocks for which SR data are available, to determine whether 

there were consistent patterns among different gadoid stocks in identifying acceptable SR 

model error distributions. 

3.2 Materials and Methods 

The SR data used in this study are cod stocks in the family Gadidae obtained from 

Dr. R.A. Myers's website at http://www.mscs.dal.ca/~myers/welcome.html. The fishery 

divisions and the data sources are shown in Dr. Myers's website and in Myers et al. 

(1995). The stocks in the North Atlantic generally follow the divisions of the Northwest 

Atlantic Fisheries Organization (NAFO) or the International Council for the Exploitation 
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ofthe Sea (ICES) (Fig. 3.1). Some ofthe stocks are called the location name ifthey are 

commonly applied to the stocks in practice, or if the NAFO or ICES regions do not 

adequately describe the presently used stock boundaries (Myers et al. 1995). For the 

Atlantic cod (Gadus morhua) stock in NAFO division 2J3KL I updated the SR data to the 

year 1997 using catch data (Lilly et al. 2001) and sequential population analysis. NAFO 

division 3Ps updated SR data were estimated based on the data from Brattey et al. 

(2001). 

In this study I analyzed the SR relationship based on the Cushing, Ricker model and 

Beverton-Holt model (Quinn and Deriso 1999) to explore the identification of acceptable 

SR model error distributions in cod stocks. The Cushing model can be written as 

(1) R=aSfl, 

and the Ricker model can be written as 

(2) R = aSe-fls , 

and the Beverton-Holt model can be written as 

(3) R = __!!:§__ 
1 + f3S 

where a and f3 are two parameters to be estimated, and S and R are the spawning stock 

biomass and its subsequent recruitment, respectively. 
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The generalized linear model was used to explore the model error distributions. The 

generalized linear model is sometimes abbreviated as GLM (McCullagh and Neider 1989; 

Lindsey 1997; Myers et al. 2001), GLIM (Software ofGLIM distributed by Numerical 

Algorithms Group), or GLZ (StatSoft). In this paper I write GzLM to differentiate the 

generalized linear model from the general linear model (GLM) and the software GLIM. 

The procedure of GzLM parameter estimation for the Cushing, Ricker and Beverton­

Holt models was detailed in Jiao et al. (2003). Following that study, I used the following 

procedure to determine whether an assumed error structure was acceptable for a given set 

of SR data and SR model. A SR model is fitted to a SR data set by assuming an initial 

error distribution to estimate the model parameters. Pearson residuals (McCullagh and 

Neider 1989) from the model fitting were calculated. Pearson residuals are the 

differences between observed and predicted values, standardized (divide by the estimated 

standard deviation of the fitted value) to make their variance (theoretically) constant. The 

Pearson residuals were first used to check for the homogeneity of model error 

distributions. Visual checking was used by looking at the plot of the Pearson residuals 

against fitted values. For a given SR model and set of data, I selected acceptable model 

error distributions according to variance diagnostic analyses (See Fig. 2.1 in Jiao et al. 

2003). An assumed model error distribution in SR modeling resulting in homoscedastic 

residuals was regarded as an acceptable model error distribution, and vice versa 

(McCullagh and Neider 1989). Because the SR data points are not evenly distributed in 

many ofthe data sets and some of the SR data sets have small sample size, it is 
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subjectively biased when visual checking is used based on the Pearson residuals against 

fitted values. This is the main criteria to diagnose the residuals. Normal probability plot 

is used as the second step to diagnose the residuals. A disadvantage of the Pearson 

residual is that the distribution of Pearson residuals for non-normal distribution is often 

markedly skewed, and so it may fail to have properties similar to those of a normal-theory 

residual. Anscombe residuals (McCullagh and Neider 1989) improved the normal theory 

characteristics to a degree. They normalize the probability functions and stabilize the 

variance through transformations (McCullagh and Neider 1989). In this study, Anscombe 

residuals were used to diagnose the model error also. When an acceptable model error 

distribution is used in the generalized linear model, the normal probability plot of the 

Anscombe residuals will show normal probability characteristics, i.e., the normal 

probability plot ofthe Anscombe residuals will be linear. As an example, the SR data for 

NAFO divisions 2J3KL cod (Gadus morhua) from Dr. Myers' website were analyzed 

using the three SR models with four types of model error distributions assumed in 

estimating parameters in the SR models (Table 3.1). 

I used a cluster analysis to identify the similarities, grouping patterns among 

species/stocks based on their error distributions observed in SR modeling using the 

GzLM. I used a sequential, agglomerative, hierarchical algorithm based on the 

Manhatten distance in the cluster analysis (Everitt et al. 2001). It means that in the 

hierarchical clustering, the agglomerative method was used. Here I used the average 

linkage (UPGMA) to do the agglomerative hierarchical clustering. The distance used in 

the clustering analysis is the Manhatten distance. Species and stocks listed in Table 3.2 
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and 3.3 are clustered according to their acceptable SR Cushing, Ricker and Beverton-Holt 

model error distributions identified in the GzLM. 

3.3 Results 

The parameter estimates varied with the error distribution assumed in the GzLM 

estimation for NAFO 2J3KL cod, which was used as an example in this study (Table 3.1 ). 

The residual diagnostic plots for the Cushing model did not clearly show which error 

distribution yielded homogeneous residuals, but the residuals diagnostic plots when 

normal and Poisson distribution were used looked better than when lognormal and 

gamma distribution were used (Fig. 3.2). The normal probability plot of Anscombe 

residuals clearly showed that the normal error distribution yielded normal residuals, while 

the Poisson distribution assumptions were less acceptable (Fig. 3.3). Combining the 

above diagnosis the normal distribution was regarded as the acceptable model error 

structure. When the four model error distributions were assumed in the GzLM for the 

Cushing model, the parameter estimates and model fits differed greatly (Table 3.1 and 

Fig. 3.4). I showed parameter estimates when the four model error distributions were 

assumed in the GzLM for the Ricker and Beverton-Holt models but I did not show 

residual diagnostic plots and normal probability plots because of too many figures (Table 

3.1). The estimation procedure and the residual diagnostic procedure are the same when 

determining an acceptable model error distribution. 
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When the SR data for the 17 Gadidae species (86 stocks) were analyzed based on 

the Cushing, Ricker and Beverton-Holt models using the GzLM, the acceptable model 

error distributions were found to depend on the stocks and choice of the models (Tables 

3.2 and 3.3). A comparison of the acceptable model error distributions in using data from 

Dr. Myers' website with the updated SR data for NAFO division 2J3KL and 3Ps cod 

stocks (Table 3 .2) suggested that the identification of acceptable model error distributions 

in GzLM was also related to sample size, or the years that were included in the analysis. 

There were stocks for which several model error distributions were acceptable for the SR 

models (e.g., GM20, MM47). There were also stocks for which none of the four error 

distributions included in this study was acceptable for a SR model (e.g., GMP2, MG60). 

The proportion of the Gadus morhua stocks for which an acceptable model error 

distribution could be identified (Table 3.2) was similar to that for all the stocks analyzed 

(Table 3.3). The lognormal distribution was acceptable in 52% of the cases when the 

Cushing model was used, in 57% of the cases when the Ricker models were used and in 

48% of the cases when the Beverton-Holt model was used for the 86 gadoid stocks (Table 

3.3). They were 50%, 62% and 47%, correspondingly, for the 34 Gadus morhua stocks 

(Table 3.2). The gamma distribution was ranked second by the number and percentage 

for being identified as acceptable model error distributions in the analyses. The gamma 

distribution was acceptable in 36% of the cases when the Cushing model was used and 

33% of the cases when the Ricker model was used, and 37% of the cases when the 

Beverton-Holt model was used for all the gadoid stocks. They were 35%, 32% and 41%, 
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correspondingly, for 34 Gadus morhua stocks. The number of acceptable model error 

distributions for the Cushing model was slightly more than that for the Ricker and 

Beverton-holt models. The numbers of the normal, lognormal, gamma and Poisson 

distributions being identified as acceptable model error distributions were similar for all 

the Cushing, Ricker and Beverton-Holt models (Tables 3.2 and 3.3). 

The 34 Gadus morhua stocks could be divided into two groups according to the 

cluster analysis of the error distributions observed in SR modeling using the GzLM (Fig. 

3.5). Group 1 included stocks that had only lognormal and/or gamma model error 

distributions identified acceptable in the GzLM analysis of SR data for a given SR model. 

Among these stocks, in group lA only the lognormal and/or gamma distribution were 

identified as acceptable error distributions in the GzLM analysis of the three SR models 

except in stock GM32, where the Poisson distribution was identified as an acceptable 

error distribution in the Cushing model. For stocks in group lB, only the lognormal 

distribution was identified as an acceptable error distribution in the GzLM analysis of the 

three SR models, except in GM24 where none of the distributions were identified as an 

acceptable error distribution in all three SR models, and in stock GM27, where none of 

the distributions were identified as an acceptable error distribution in the Ricker and 

Beverton-Holt models. For stocks in group 2B, the normal and/or Poisson were identified 

as the acceptable model error distributions in the GzLM analysis of SR data, except in 

stock GM7, where the gamma distribution was identified as an acceptable error 

distribution in the Ricker and Beverton-Holt models. Stocks in group 2A differed from 
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those in groups 1 and 2B in that multiple error distributions were identified as acceptable 

in the GzLM analysis of SR data for the SR models. 

All the gadoid stocks could be divided into three groups according to the cluster 

analysis ofthe SR modeling errors in the GzLM (Fig. 3.6). The group 1 and 3 were 

composed of stocks for which all three SR models had one or two error distributions that 

could be defined as acceptable in the GzLM. Group 2 was mainly composed of stocks for 

which the SR models had multiple error distributions that could be defined as acceptable 

in the GzLM. For group 1A1, the acceptable SR modeling error distributions were none 

or only one in one of the SR models. In stocks GM27 and TC80 only lognormal 

distribution was acceptable in the Cushing model in the GzLM analysis. In stocks MA39, 

MG61 and TC76 only the lognormal distribution was acceptable in the Ricker model. In 

stocks MA53 and TC77 only the Poisson distribution was acceptable in the Beverton-Holt 

model and the Ricker model separately. Subgroup 1A2 was composed of the stocks for 

which only the lognormal error distribution was acceptable in most of the cases. In 

subgroup 1A2A the the acceptable SR model error distribution was only lognormal in all 

the three SR models. For all stocks in group 1C the lognormal and/or gamma error 

distributions were the acceptable model error distributions. Subgroup 1 C2 was composed 

of the stocks for which only gamma error distribution was acceptable in most ofthe cases. 

In group 3A the Poisson and/or gamma error distributions were acceptable. In group 3B, 

the stocks had normal and/or Poisson distributions as the acceptable SR model error 

distribution. In other subgroups, the SR models of the stocks had multiple acceptable 
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distributions. 
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The grouping based on the cluster analyses of SR modeling errors (i.e., residuals) did 

not show a clear pattern among species/stocks, geographic distributions and sample sizes 

(Figs. 3.5 and 3.6). For stocks with sample sizes~ 15, the lognormal distribution had the 

highest probability to be defined as an acceptable model error structure for the Cushing 

and Ricker models, but in the Beverton-Holt model the gamma distribution had the same 

proportion as the lognormal distribution. As the sample size increased to> 15, the 

lognormal distribution had the highest probability to be defined as an acceptable model 

error distribution in all the three SR models, but the proportion ofthe stocks for which 

lognormal or gamma was identified as acceptable in the GzLM decreased when the 

sample size increased to> 30 {Table 3.4). From the total value of the proportion of the 

stocks for which a particular model error distribution was identified as acceptable in the 

GzLM analysis, the number of acceptable model error distributions have no obvious 

relationship with the sample size. 

The proportion of the stocks for which the four distributions were identified as the 

acceptable model error structure in the GzLM differed somewhat between the stocks in 

the Northwest Atlantic area and the stocks in the Northeast Atlantic area {Table 3.5). The 

lognormal distribution still has the highest probability to be defined as an acceptable 

model error structure in the SR data of the stocks in the Northeast Atlantic. In the 

Northwest Atlantic the gamma distribution has the highest probability to be defined as an 
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acceptable model error structure in the stocks. For the stocks in the Northwest Atlantic, 

the proportion of the four distributions identified as the acceptable SR model error 

distribution differed not as much as for the stocks in the Northeast Atlantic. For stocks 

from the North Pacific areas, the lognormal distribution also had the highest probability to 

be defined as an acceptable model error structure. For stocks from the Southeast Atlantic, 

each of the four error distributions defined as an acceptable model error structure did not 

differ greatly (Table 3.5). Because this study only included eight stocks from the North 

Pacific and six stocks from the Southeast Atlantic, and the sample sizes in those stocks 

are small, this result might not be conclusive. This study also included two stocks 

MMH65 and MA67 from Southwest Atlantic and Southwest Pacific ocean areas. 

However, because of their small number of stocks I would not try to make a conclusion 

about their possible error distributions in modeling SR data. 

3.4 Discussion 

An inappropriate model error assumption in SR modeling was likely to yield an 

inappropriate estimation ofSR model parameters (Jiao et al. 2003). It is thus important 

to evaluate if the error structure assumed in the modeling is acceptable for a given SR 

model and data set and to identify the most appropriate model error assumption for the SR 

modeling. The normal error distribution tends to be sensitive to outliers in SR models 

(Jiao et al. 2003). Large variations in environment conditions may lead to skewed 

distributions of the recruitment, and even when both stock and recruitment follow a 

normal distribution, errors in modeling SR data may not be normal. Thus the GzLM can 
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improve the parameter estimation in the SR modeling compared with the General Linear 

Model, which is limited to the normal error distribution only. 

This study suggests that the acceptable model error structures differ among data sets. 

It could differ among SR models also, though 57% of the SR data sets had the same 

acceptable model error structure in the three SR models in this study. Error distributions 

assumed in the SR modeling acceptable to one data set or model were not necessarily 

acceptable to other data sets (with the same model) or to other SR models (with the same 

data set). Thus, the choice of error distributions should be fisheries-specific and model­

specific. This study indicates that there are situations where several distributions are 

acceptable and where the GzLM could not determine which one is the most appropriate. 

This study also suggests that, normal error distribution, although not usually used in SR 

modeling now, may be an acceptable error structure in many cases. 

The possibility of having several acceptable model error distributions or no 

acceptable model error distributions demonstrates the difficulty of selecting the best 

model error assumption for the parameter estimation in the SR modeling. A quantitative 

goodness-of-fit criterion needs to be developed for identifying the most appropriate model 

error distribution when estimating parameters using the maximum likelihood method. 

The commonly used quantitative goodness-of-fit criteria, such as the maximum likelihood 

value and scaled variance, are only used for comparing the differences when the same 

model error distribution is used because the maximum likelihood function differs for 

different error structures assumed in SR modeling. 
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The proportion of the stocks for which the particular model error distributions were 

identified as acceptable model error distributions in the GzLM analysis of SR data in 

gadoid stocks implies that in modeling gadoid SR data the Beverton-Holt model is more 

sensitive to the model error distribution assumption than the Cushing and Ricker models. 

The lognormal and gamma distributions have a higher probability to be defined as an 

acceptable model error distribution while the normal and Poisson distributions have a 

relatively lower probability to be defined as an acceptable model error distribution. The 

results presented in Tables 3.2 and 3.3 and Figures 3.5 and 3.6 might help select an 

acceptable model for stocks included in this study. But I recommend re-analyzing the SR 

data using the GzLM approach proposed in this study if more recent years of data are 

included in future studies, because the identification of acceptable error distributions 

tends to be data-specific. 

The cluster analysis of SR modeling error distributions suggests that there were no 

clear patterns in the identification of the acceptable model error distributions for stocks 

from different geographic areas and for different species. This variation in modeling error 

distribution is likely to result from intrinsic as well as extrinsic biological and physical 

processes (Armstrong and Shelton 1988; Fogarty 1993; lies and Beverton 1998). Species 

or stocks in a local ecosystem can be influenced by large scale climate changes, but the 

magnitude of the impacts might be different in ocean basins because oftheir distinctive 

oceanographic characteristics. That might explain the stock-specific SR patterns and 

model error structures. 
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Four model error distributions were considered in this study. There are, however, 

other distributions such as the Weibull distribution. GzLM can do parameter estimates 

only when model error distributions belong to the exponential family. For distributions 

that do not belong to the exponential family, the maximum likelihood method may be 

used to find parameter estimates and to perform model error distribution diagnostics. To 

identify acceptable model error structure, we recommend exploring other possible model 

error structures when the model error distribution is not in the exponential family, not 

only limited investigations to the four distributions shown in this study. 

The choice of acceptable model error distributions can also be influenced by the 

choice of SR models. Thus for stocks where I could not identify an acceptable error 

distribution, the lack of an acceptable model error distribution might result from an 

inappropriate choice of SR functions. Although I did not consider the choice of SR 

functions in this study, I recommend the multiple choices ofSR functions be considered 

when no apparently acceptable or multiple acceptable error distributions can be defined, 

or when a certain SR model does not fit the data well. For example, for cod (Gadus 

morhua) in NAFO 3Ps stock, the residual diagnostic plot showed that all four error 

distributions were acceptable when all three SR models were used. Recruitment 

obviously could not be explained well by the stock biomass. A new SR function needs to 

be developed considering biological and physical processes of recruitment in this case 

(Koster et al. 2001). Incorporation of vital environmental variables in SR modeling may 

be necessary (Hilborn and Walters 1992). 
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Table 3.1. Stock-recruitment parameter estimates for the Atlantic cod (Gadus morhua) in 

NAFO Divisions 2J3KL stock when the four different model error distributions were used 

in the GzLM. 

Error 
Parameter estimate from GzLM 

Model 
distribution 

R2 

a 

Normal 430.8880 1.0592 0.7374 

Lognormal 4918.7063 0.6600 0.6757 

Cushing 

Gamma 9632.7740 0.5832 0.6598 

Poisson 2500.9341 0.7978 0.7008 

Normal 649.2384 l.OOOx10-7 0.7304 

Lognormal 719.5640 2.5091x10-4 0.6808 

Ricker 

Gamma 1072.9489 5.2325x1o-4 0.5880 

Poisson 730.4731 1.0673 x 1 o-4 0.7127 

Normal 649.2401 2.5423 x 1 o-5 0.7304 

Beverton 
Lognormal 800.3312 8.0680x 1 o-6 0.6565 

-Holt 
Gamma 1353.1077 7.7507x10-6 0.5665 

Poisson 2849.6326 1.6283 x 1 o-5 0.3899 
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Table 3.2. Gadus morhua stocks and their acceptable stock-recruitment model error distributions identified in the GzLM for the 

Cushing, Ricker and Beverton-Holt models. The stocks generally follow the Northwest Atlantic Fisheries Organization 

(NAFO) or the International Council for the Exploitation of the Sea (ICES) divisions or the commonly used name based on their 

distribution. N, L, G, and P represent normal, lognormal, gamma and Poisson distribution, respectively. 0 indicates an 

unacceptable model error distribution and 1 indicates an acceptable model error distribution. The fishery distribution areas are 

classified as Northeast Atlantic (NEA), Northwest Atlantic (NW A). 

Fishery Sample Cushing model 
Beverton-Holt 

Code Ricker model model 
Gadus morhua (cod) Distribution size 

N L G p N L G p N L G p 
Baltic Areas 22 and 24 GM3 NEA 22 1 0 1 0 1 0 1 0 1 0 1 0 
Baltic Areas 25-32 GM4 NEA 24 0 1 1 0 0 1 1 0 0 1 1 0 
Celtic Sea GM5 NEA 22 0 1 0 0 0 1 0 0 0 1 0 0 
Faroe Plateau GM6 NEA 33 0 0 1 0 0 1 0 0 0 0 1 0 
Flemish Cap (NAFO Div. 3M) 1 GM7 NWA 9 0 0 0 1 0 0 1 1 0 0 1 1 
Flemish Cap (NAFO Div. 3M) 2 GM8 NWA 27 0 0 1 0 0 0 1 0 0 0 1 0 
Greenland offshore component GM9 NEA 35 0 1 0 0 0 1 0 0 0 1 0 0 
ICES Vlld GM10 NEA 18 0 1 0 0 0 1 0 0 0 l 0 0 
ICES VIa GM11 NEA 27 0 1 1 0 0 1 1 0 0 1 1 0 
Iceland GM12 NEA 68 0 1 0 0 0 1 0 0 0 1 0 0 
Irish Sea GM13 NEA 27 0 0 1 0 0 1 0 0 0 0 1 0 
Kattegat GM14 NEA 21 1 0 0 0 1 0 0 0 0 0 0 1 
NAF02J3KL GM15 NWA 28 1 0 0 0 1 0 0 0 0 0 0 1 
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NAFO 2J3KL updated N 2J NWA 36 1 0 0 1 1 0 0 1 0 0 0 1 
NAF03M GM16 NWA 10 0 0 0 0 0 1 1 0 0 0 1 0 
NAF03NO GM17 NWA 31 0 0 1 0 0 0 1 0 0 0 1 0 
NAF03Pn4RS 1 GM18 NWA 17 0 0 0 0 0 1 I 0 0 0 0 0 
NAF03Pn4RS 2 GM19 NWA 21 0 1 1 0 0 1 1 0 0 1 1 0 
NAF03Ps GM20 NWA 31 1 1 1 I 1 1 1 1 1 1 1 1 
NAFO 3Ps updated N 3Ps NWA 41 I 0 0 1 1 0 0 1 1 0 0 1 
NAF04TVn GM2I NWA 41 1 0 1 I 1 1 0 0 1 0 1 1 
NAF04VsW GM22 NWA 33 1 0 0 1 1 0 0 1 1 0 0 I 
NAF04X GM23 NWA 45 0 0 1 0 0 0 0 0 0 0 1 0 
NAF05Y 1 GM24 NWA 7 0 0 0 0 0 0 0 0 0 0 0 0 
NAF05Y 2 GM25 NWA 34 0 1 0 0 0 1 0 0 0 1 0 0 
NAF05Z 1 GM26 NWA 20 0 1 0 0 0 1 0 0 0 1 0 0 
NAF05Z 2 GM27 NWA 34 0 1 0 0 0 0 0 0 0 0 0 0 
North East Arctic 1 GM28 NEA 43 0 1 0 0 0 1 0 0 0 1 0 0 
North East Arctic 2 GM29 NEA 45 0 1 0 0 0 1 0 0 0 1 0 0 
North East Arctic 3 GM30 NEA 59 0 1 0 0 0 1 0 0 0 1 0 0 
North East Arctic 4 GM3I NEA 59 1 0 0 0 1 0 0 1 1 0 0 1 
North Sea GM32 NEA 30 0 1 I I 0 1 l 0 0 I 1 0 
Skagerrak GM33 NEA 13 0 l 0 0 0 I 0 0 0 I 0 0 
West Greenland (NAFO l) GM34 NWA 35 0 I 0 0 0 1 0 0 0 1 0 0 

Total 9 17 12 7 9 21 11 6 6 16 14 9 
Pro~ortion 0.26 0.50 0.35 0.21 0.26 0.62 0.32 0.18 0.18 0.47 0.41 0.26 
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Table 3.3. Gadidae species and stocks (except for Gadus morhua) and their acceptable stock-recruitment model error 

distributions identified in the GzLM. The stocks generally follow the Northwest Atlantic Fisheries Organization (NAFO) or the 

International Council for the Exploitation of the Sea (ICES) or the commonly used name based on their distribution. N, L, G, 

and P represent normal, lognormal, gamma and Poisson distribution, respectively. 0 and 1 indicate unacceptable and acceptable 

model error distributions, respectively. The fishery distribution areas are classified as Northeast Atlantic (NEA), Northwest 

Atlantic (NW A), Northeast Pacific (NEP), Northwest Pacific (NWP), Southeast Atlantic (SEA), Southwest Atlantic (SW A), 

and Southwest Pacific (SWP) according to their geographic distribution. 

Fishery Sample Cushing model Ricker model 
Beverton-Holt 

Code model 
Species and stocks 

Distribution size 
N L G p N L G p N L G p 

Gadus macrocephalus (Pacific cod) 
Eastern Bering Sea GMP1 NEP 10 0 1 1 0 0 0 1 1 0 1 1 0 
Hecate Strait GMP2 NEP 14 0 0 0 0 0 0 0 0 0 0 0 0 

Melanogrammus aeglefinus (Haddock) 
Faroe Plateau MA35 NEA 33 0 0 0 1 0 0 0 1 0 0 0 1 
ICES VIa MA36 NEA 29 0 1 0 0 0 1 0 0 0 1 0 0 
Iceland MA37 NEA 28 0 0 1 0 0 0 1 0 0 0 1 0 
NAF04TVW MA38 NWA 38 0 1 0 0 0 1 0 0 0 0 0 0 
NAF04X 1 MA39 NWA 24 0 0 0 0 0 1 0 0 0 0 0 0 
NAF04X 2 MA40 NWA 26 1 0 0 0 1 0 0 1 1 0 0 0 
NAF05Z MA41 NWA 68 0 0 1 0 0 0 1 0 0 0 1 0 
North East Arctic MA42 NEA 44 0 0 1 0 0 0 1 0 0 0 1 0 
North Sea 1 MA43 NEA 32 0 0 1 0 0 0 0 0 0 0 1 0 
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North Sea2 MA44 NEA 66 0 1 0 0 0 1 0 0 0 1 0 0 
Rockall Bank MA45 NEA 9 1 0 0 0 0 1 0 0 0 0 1 1 

Merlangius mer/angus (Black Sea whiting) 
Eastern Black Sea MM46 NEA 24 0 1 0 0 0 1 0 0 0 1 0 0 
Western Black Sea MM47 NEA 23 1 1 1 1 1 1 1 1 1 1 1 1 

Merlangius mer/angus (Whiting) 
Celtic Sea MM48 NEA 9 0 1 0 0 0 1 0 0 0 1 0 0 
ICES Vlld MM49 NEA 14 1 0 0 1 1 0 0 0 1 0 0 1 
ICES VIa MM50 NEA 27 0 1 0 0 0 1 0 0 0 1 0 0 
Irish Sea MM51 NEA 13 0 0 0 0 1 1 1 1 0 0 0 0 
North Sea 1 MM52 NEA 27 0 1 1 0 0 1 1 0 0 1 0 0 
North Sea 2 MM53 NEA 74 0 0 0 0 0 0 0 0 0 0 0 1 

Merluccius bilinearis (Silver hake) 
Mid Atlantic Bight MB54 NEA 33 0 1 0 0 0 1 0 0 0 1 0 0 
NAF04VWX MB55 NWA 13 0 1 1 0 0 1 1 0 0 1 1 0 
NAF05Ze MB56 NWA 33 0 0 0 1 0 0 0 1 0 0 0 1 

Merluccius capensis (S.A. Hake) 
South Africa 1.6 MC57 SEA 20 0 1 0 0 0 0 0 0 0 1 0 0 
South Africa South Coast MC58 SEA 12 0 0 0 0 0 0 0 0 0 0 0 0 

Merluccius gayi (Peruvian hake) 
Chile - South Central zone MG59 SEA 14 1 0 0 1 1 0 0 1 0 0 0 0 
Chile- Northern zone MG60 SEA 14 0 0 0 0 0 0 0 0 0 0 0 0 
Peru documentation MG61 SEA 8 0 0 0 0 0 1 0 0 0 0 0 0 

Merluccius merluccius (Hake) 
ICES VIIIa,b, d, Vllb-k MMH62 NEA 20 1 1 1 1 1 1 1 1 1 1 1 1 
ICES VIlle and IXa MMH63 NEA 16 1 1 1 1 1 1 1 1 1 1 1 1 
Jabuka Pit, Adriatic Sea MMH64 NEA 26 0 0 0 1 1 0 0 1 1 0 0 1 
Southwest Atlantic Ocean MMH65 SWA 9 1 1 1 1 1 1 1 1 1 1 1 1 

Merluccius productus (Pacific hake) 
W. US. +Canada MP66 NEP 23 0 1 0 0 0 1 0 0 0 1 0 0 
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Micromesistius australis (Southern blue 
whiting) 

Campbell Island, NZ MA67 SWP 14 0 1 0 0 0 1 0 0 0 1 0 0 
Micromesistius poutassou (Blue whiting) 

Northern ICES MPB68 NEA 20 0 1 0 0 0 1 0 0 0 1 0 0 
Southern ICES MPB69 SEA 10 1 1 1 1 1 1 1 1 1 1 1 1 

Pollachius virens (Pollock or saithe) 
Faroe PV70 NEA 32 0 1 0 0 0 1 0 0 0 1 0 0 
ICES VI PV71 NEA 30 1 1 1 1 0 0 0 0 1 1 1 1 
Iceland PV72 NEA 32 1 1 1 1 0 0 0 0 0 0 1 0 
NAF04VWX5 PV73 NWA 10 0 0 1 1 0 0 1 1 0 0 1 1 
North East Arctic PV74 NEA 32 1 0 0 0 0 1 1 0 1 0 0 0 
North Sea PV75 NEA 33 0 1 1 0 0 1 1 0 0 1 1 0 

Theragra chalcogramma (Walleye pollock) 
E. Bering Sea TC76 NEP 24 0 0 0 0 0 1 0 0 0 0 0 0 
East Kamchatka TC77 NWP 12 0 0 0 0 0 0 0 1 0 0 0 0 
Gulf of Alaska, Alaska TC78 NEP 25 0 1 0 0 0 0 1 0 0 1 0 0 
Japan-Pacific coast ofHokkaido TC79 NWP 15 0 1 0 0 0 1 0 0 0 1 0 0 
West Bering Sea TC80 NWP 21 0 1 0 0 0 0 0 0 0 0 0 0 

Trisopterus esmarkii (Norway pout) 
North Sea TE81 NEA 20 1 1 1 1 1 1 1 1 0 1 1 1 

Urophycis chuss (Red hake) 
NAFO Gulf ofMaine, N. Georges Bank UC82 NWA 13 1 0 1 1 1 0 0 0 1 0 0 1 
NAFO S. New England UC83 NWA 15 0 0 0 0 0 0 0 0 0 0 0 0 

Urophycis tenuis (White hake) 
NAF04T UT84 NWA 14 0 0 0 0 0 0 0 0 0 0 0 0 

Total (including Gadus morhua) 23 44 30 22 21 48 28 21 17 40 31 24 
ProQortion 0.27 0.52 0.36 0.26 0.25 0.57 0.33 0.25 0.20 0.48 0.37 0.29 
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Table 3.4. Proportion of the stocks for which a particular model error distribution was identified as acceptable in the GzLM. The 

calculation was done for different groups of stocks with different numbers of stock-recruitment observations ( n ). For a given 

stock, because multiple error distributions could be defined as acceptable, the sum of the proportions within a group of stocks 

may be larger than 1. 

Cushing model Ricker model Beverton-Holt model 
Sample size Total 

N L G p N L G p N L G p 

n~ 15 0.25 0.33 0.25 0.29 0.25 0.46 0.33 0.33 0.17 0.33 0.33 0.29 3.63 

l5<n~30 0.28 0.66 0.44 0.22 0.28 0.66 0.44 0.19 0.22 0.63 0.41 0.25 4.66 

n>30 0.27 0.50 0.33 0.27 0.20 0.53 0.20 0.23 0.20 0.40 0.33 0.30 3.77 
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Table 3.5. Proportion of the stocks for which a particular model error distribution was identified as acceptable in the GzLM. The 

calculation was done for different groups of stocks distributed at different geographic ocean areas. For a given stock, because 

multiple error distributions could be defined as acceptable, the sum of the proportions within a group of stocks may be larger 

than 1. 

Geographic Number Cushing model Ricker model Beverton-Holt model 
Total 

area of stocks N L G p N L G p N L G p 

Northwest 

Atlantic 28 0.29 0.29 0.36 0.32 0.29 0.39 0.36 0.29 0.21 0.21 0.39 0.36 3.75 

Northeast 

Atlantic 42 0.29 0.64 0.40 0.24 0.24 0.71 0.33 0.19 0.21 0.62 0.41 0.29 4.57 

North Pacific 
8 0.00 0.63 0.13 0.00 0.00 0.38 0.25 0.25 0.00 0.50 0.13 0.00 2.25 

Southeast 

Atlantic 6 0.33 0.33 0.17 0.33 0.33 0.33 0.17 0.33 0.17 0.33 0.17 0.17 3.17 



- 81-

Figure 3.1. A map showing the North Atlantic Fisheries Organization (NAFO) areas off 

the east coast of North America and International Council for the Exploration of the Sea 

(ICES) areas (modified from Charles 2001; originally produced by Ransom Myers at 

Dalhousie University). 
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Figure 3.2. Residuals diagnostic plots when the four types of model error distributions 

were used in the GzLM to estimate the parameters in the Cushing model for Atlantic cod 

(Gadus morhua) NAFO divisions 2J3KL stock. The four model error distributions are: 

(a) normal distribution, (b) lognormal distribution, (c) gamma distribution and (d) Poisson 

distribution. 
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Figure 3.3. Normal probability plot used to diagnose the four types of model error 

distributions used in the GzLM to estimate the parameters in the Cushing model for 

Atlantic cod (Gadus morhua) NAFO divisions 2J3KL stock. The four model error 

distributions are: (a) normal distribution, (b) lognormal distribution, (c) gamma 

distribution and (d) Poisson distribution. 
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Figure 3.4. Regression analyses when the four types of model error distributions were 

used in the GzLM to estimate the parameters in the Cushing model for Atlantic cod 

(Gadus morhua) NAFO division 2J3KL stock. Normal (solid line), lognormal (dash-dot 

line), gamma (dashed line) and Poisson (dotted line). 
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Figure 3.5. A cluster analysis of distributions in stock-recruitment modeling for the 

Gadus morhua stocks. 
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Figure 3.6. A cluster analysis of distributions in stock-recruitment modeling for the 

Gadidae species and stocks. 
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CHAPTER4 

AN APPLICATION OF GENERALIZED LINEAR MODEL IN PRODUCTION 

MODEL AND SEQUENTIAL POPULATION ANALYSIS 

Abstract 

Errors in fitting production models and age-structured models are usually assumed to 

follow a lognormal or normal distribution without an error diagnostic analysis evaluating 

the assumption made on the error structure of the models. The generalized linear model, 

which can readily deal with different error structures, was applied to assessing the 

Atlantic cod (Gadus morhua) 2J3KL using a production model and a sequential 

population model. A framework was developed which combines the production model/or 

sequential population model and the generalized linear model. This study suggests that 

the quality of the parameter estimation in both the models can be influenced by the 

realism of error structure assumed in the estimation. This study identified lognormal and 

gamma distributions as appropriate model error structures for the production model and 

gamma and Poisson distributions for the sequential population model in assessing the 

Atlantic cod 2J3KL stock. I recommend that the generalized linear model be used to 

identify the appropriate model error structures in quantifying fisheries population 

dynamics using production models and sequential population models. 
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4.1 Introduction 

Production models and age or size structured population models are widely used in 

the assessment of many fisheries stocks worldwide (Shepherd 1988; Megrey 1989). 

Parameter estimation is often done using a nonlinear least squares method. Lognormal 

error structure was widely assumed in fitting production models and age-structured 

models to fisheries data. 

Firth (1988) showed through asymptotic efficiency that gamma-distribution-based 

estimators performed better than the lognormal-based estimators. Lognormal­

distribution-based estimators were also found to be sensitive to violations in model 

assumptions in estimating abundance (Myers and Pepin 1990). Gamma-based estimators 

were found to perform better than the lognormal-distribution-based estimators in 

sequential population analyses (Cadigan and Myers 2001). A diagnostic procedure is 

needed to identify the assumption of normally or lognormally distributed error structure in 

the survey indices in production model and age-structured models. 

In this study, I applied generalized linear models, which can deal with different error 

structures (McCullagh and Neider 1989), to a production model and an age-structured 

model. Different distributional assumptions on model error structure were evaluated. I 

considered normal, lognormal, gamma, and Poisson distributions in this study. The 

appropriateness of model error structure was diagnosed through residual diagnostic 

analyses. Both homogeneity and normality of residuals (Pierce and Schafer 1986; 

McCullagh and Neider 1989) were diagnosed. The Atlantic cod fishery in NAFO 
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(Northwest Atlantic Fisheries Organization) 2J3KL was used as an example. Both a 

production model and an age-structured sequential population analysis model (SPA) were 

used to model the cod population dynamics (Shepherd 1988; Mohn and Cook 1993; 

Shelton and Lilly 2000) with the generalized linear models. 

4.2 Material and Methods 

4.2.1 Generalized linear model (GzLM) 

The generalized linear model is sometimes abbreviated as GLM (McCullagh and 

Neider 1989; Lindsey 1997; Myers et al2001), GLIM (Software ofGLIM distributed by 

Numerical Algorithms Group), or GLZ (StatSoft). In this paper I write GzLM to 

differentiate the generalized linear model from the general linear model (GLM) and the 

software GLIM. 

A GzLM has three components (McCullagh and Neider 1989). One is the random 

component Y , which is a vector of observations y having n components that are 

independently distributed with means Jl. The second is the systematic component, which 

is a specification for the vector J1 in terms of a small number of unknown 

parameters Pi' [3 2 , ••• , P P. A linear predictor 11 is given by 11 =I X 1 p 1 , where X is the 
}=1 

model matrix or the co variates for observation Y. The third component is the link 

between the random and systematic components. It is often written as 11 = g(J.l) , where g 

is the link function (McCullagh and Neider 1989). In the case of the GLM, 11 =f.! (i.e. 

identity link). Thus GLM is a special case ofGzLM. 
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The likelihood function of Y can be written as 

n 

(1) L = IJJ(y;8). 

If the probability density function (p.d.f.) is a member ofthe exponential class, when X 

is of discrete type, then I could have 

(2) f(y;8) = exp[p(8 )K(y) + s(y) + q(8 )], 

=0 elsewhere, 

The log-likelihood function is then 

n n 

(3) LL = p(8)l:K(y;)+ l:S(y;)+nq(8), 
I I 

n 

in which L K (y;) is a sufficient statistic for the parameter 8 , p(8) is the canonical link 
I 

for a distribution whose p.d.f. is f(y;8). Here, Y is the population abundance index I, 

X is the population biomass B in the surplus production model or abundance N in 

population dynamic models, and 8 is the parameters in the production and age-structured 

models (i.e., q ). 

The exponential family includes the normal, Poisson, gamma and other distributions. 

The link function 11 = g(J..L) relates the mean ofthe response variable Y to the linear 

combination ofthe X;. Common choices of link functions include identity, logarithmic, 

reciprocal, power, and logit (McCullagh and Neider 1989). The GzLM is flexible to 
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incorporate different links and is not limited to the canonical links. The links I used in the 

paper were based on the structures of production models and population models, because 

I did not consider changing the production and population model forms. The observation-

error estimator was used when fitting the surplus production and SPA models (See Fish 

production model section). The choice of the link functions did not affect the 

assumption about the distribution of Y in GzLM. The GzLM was used to estimate the 

parameters given the link function 11 = g(J.!) according to the maximum log likelihood 

method (i.e., equation 3). The parameters were then used to calculate the expected value 

of the response variable (i.e., population abundance index), and then the residuals. 

Homogeneity of residuals was evaluated and used as a criterion to determine ifthe model 

error structure was appropriate. When different model error assumptions were used in a 

GzLM, the one that resulted in homogeneous residuals was considered as the most 

appropriate one (McCullagh and Neider 1989). 

4.2.2 Fish production model 

A production model described in Hilborn and Walters (1992) was used to describe the 

dynamics of stock biomass. The model is written as 

(4a) 

where Bt is stock biomass, Gt is the surplus production of stock biomass, and C1 is catch, 

all in year t. The surplus production of stock biomass in year tis often calculated as 

(4b) 
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where r and K are two parameters describing the stock intrinsic growth rate and carrying 

capacity or virgin biomass, respectively (Hilborn and Walters 1992). Because stock 

biomass B cannot be observed directly, an observational model is needed to relate stock 

biomass B to a variable that is directly related to stock biomass and can be observed in the 

fishery or in scientific surveys (Hilborn and Walters 1992). A commonly used 

observational model can be written as 

(4c) 

where Ir is an biomass index observed in the fishery or surveys, and q is the catchability 

coefficient (Hilborn and Walters 1992). 

Observation-error estimators have been suggested to perform better than other 

estimators such as process-error estimators, in fitting production models to data (Punt 

1988; Hilborn and Walters 1992; Polacheck et al. 1993). These estimators are 

constructed by assuming that the SPA model equations (i.e. Equations 4a and 4b) are 

deterministic, and therefore, have no process error, and that errors only occur in the 

observation model that describes the relationship between stock biomass and the 

abundance index (i.e. equation 4c). With this assumption, one can rewrite observation 

model equation ( 4c) as 

(5) 

where I, is an abundance index in year t, q is catchability coefficient, B, is stock biomass 

in year t. Model parameters are estimated based on the assumption of the distribution of 
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I. For a normal distributed error, one assumes I, follows N(i,,a 2 ). For a gamma 

distributed error, one assumes I, follows G(i, I k, k). k is a scale parameter of gamma 

distribution. For a Poisson distributed error, one assumes I, follows P(i,) . Here, 

i, = qB, . With the assumption that I follows a certain distribution, such as the normal, 

the estimates of the model parameters can be obtained by optimizing an objective 

function based on the distribution of the I. Lognormal error structure was widely used, 

thus I can rewrite equation (5) as 

(6) 

where E ·, is an independent and usually assumed to be normally distributed error term. 

In this study, I explored normal, lognormal, gamma, and Poisson distributions for E 1 

in equation (5). The residuals resulting from different modei error distributions were 

diagnosed to identify the most appropriate model error structure in equation 5. 

The time series of stock biomass is estimated by projecting the biomass at the start 

of the catch series forward with the historical annual catches, an estimated stock biomass 

in the beginning of the fishery ( B0 ), and parameters rand K (Hilborn and Walters 1992). 

For the Atlantic cod 2J3KL fishery, the catch data were available from 1962 to 2000. 

Population abundance index data were available from 1979 to 2000. Because population 

abundance index data from 1983 to 2000 were weighted and renewed (Shelton et al., 

1996; Lilly et al., 2001), only the data in this period was used in this study. The biomass 
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index data used in the production model were calculated based on the number-at-age per 

tow and weight-at-age data in the surveys (Lilly et al. 2001), i.e., 11 = L number-at-
age 

age in year t x mean weight-at-age in year t. The biomass of 3 million tonnes in 1962 

was used as the carrying capacity K (Haedrich and Hamilton 2000). Parameters q, r, 

B1983 ( B0 ) were estimated. To further examine the results from different model error 

distributions, the predicted and observed abundance indices were compared. Under the 

assumption oflogistic population growth, Bmsy = rK I 4 and Fmsy = r I 2. The estimated 

fishing mortality F relative to Fmsy (F!Fmsy), and stock biomass relative to Bmsy (BIBmsy) 

were also compared among different assumptions on model error structures. 

4.2.3 Fishery population dynamic model 

A sequential population analysis was used to model the population dynamics. The 

underlying population dynamic model for the SPA is: 

(7a) N N (-M) c (-M/2) 
a+l,y+l = a,ye - a,ye ' 

where Na,y is the number offish in age a in the beginning ofyear y, Ca,y is the catch in 

number at age a and year y, assumed taken in the middle of the year, M is the annual 

instantaneous rate of natural mortality, assumed to be 0.2. As stated in the production 

model, the stock numbers at age Na,y cannot be observed directly, the research vessel 

survey indices expressed as mean numbers per tow at age, I a,y , from the fall groundfish 

bottom trawl survey were used to "calibrate" the model, 
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(7b) 

where qa is the catchability coefficient at age a. Model parameters are estimated based 

on the assumption of the distribution ofl (see Fish Production Model section). As stated 

in the production model, when the log transformed population abundance was assumed to 

follow a normal distribution, equation 7b would be rewritten as: 

(7c) 

wheree 'a,y is also an independently and normally distributed error term. 

Like the production model, I explored normal, lognormal, gamma, and Poisson 

distributions for e 1 in equation (7b ). The residuals resulting from different model error 

distributions were diagnosed to identify the most appropriate model error structure in 

equation 7b. 

Parameters q a and N a 2000 were estimated. The focus of this study is to explore the 

impacts of error structure on the GzLM estimation of fisheries parameters. Other issues 

such as management implications and quality of survey and fisheries data are beyond the 

scope of the study. 

4.2.4 GzLM for the production model 

A framework was developed, which applied the GzLM into the production model to 

estimate the parameters in the production model (Figure 4.1 ). For the assumption of error 

distributions that are normal, gamma and Poisson, the error term e, in equation 5 follows 
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a normal, gamma, and Poisson distributions, respectively. In the GzLM analysis for the 

production model, abundance index! is the dependent variable, and stock biomassB is 

the independent variable. The identity link was used, and the error choice was normal, 

gamma, and Poisson, respectively. The constant term was set to be zero. The GzLM 

estimated parameters based on a normal error distribution assumption are the same as 

those estimated using a linear least squares method for any given B. 

A log transformation in conjunction with a normal-error assumption is commonly 

used in fitting equation 5. This is equivalent to assuming that the untransformed 

recruitment has a lognormal distribution (equation 6). When using the GzLM, log(!) is 

the dependent variable, and log( B) in the production model is an offset term. A matrix 

which has the same length as B in the production model and all the values in the matrix 

equal to one is used as the independent variable in the GzLM. The identity link is used, 

and the error is normal. 

4.2.5 GzLM for the SPA population model 

A similar framework as in the production model was developed. The input in this 

framework is the current population number-at-age. I do not show it here because of the 

similarity with the Figure 4.1. For the assumption on error distributions that are normal, 

gamma and Poisson, the error term ea,y in equation 7b follows a normal, gamma, and 

Poisson distribution, respectively. In the GzLM analysis for the SPA model, Ia,y is the 

dependent variable, and Na,y is the independent variable. The identity link was used, and 

the error choice was normal, gamma, and Poisson, respectively. The constant term was 



set to be zero. The GzLM-estimated parameters based on a normal error distribution 

assumption are the same as those estimated using a linear least squares method. 
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A log transformation in conjunction with a normal-error assumption is commonly 

used in fitting equation 7b. This is equivalent to assuming that the untransformed 

abundance index has a lognormal distribution (equation 7c). When using the GzLM, 

log(Ia,y) is the dependent variable, and log(Na,y) in the SPA model is an offset term. A 

matrix which has the same length as NY in the SPA model and all the values in the matrix 

equal to one is used as the independent variable in the GzLM. The identity link is used, 

and the error is normal. 

4.2.6 Homogeneous residuals and its quantification 

Pearson residuals are widely used to diagnose if the model errors are homogeneous. 

They are calculated as differences between observed and predicted values, standardized 

(divide by the estimated standard deviation of the fitted value) to make their variance 

(theoretically) constant (McCullagh and Neider 1989). When using the Pearson residuals 

to diagnose the residuals ofthe production model, because the sample is small (i.e., 18 

years) the residuals can be diagnosed visually through the residuals plotted against the 

fitted population size. When the Pearson residuals are used to diagnose the residuals of 

the age-structured SPA model, the sample size is much larger (18 years*20 ages= 360). 

Because the samples are not distributed randomly between the fitted values of the 

population size, it is difficult to diagnose the residuals through visual inspection for such a 

large size of samples. 
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A random sampling method was used to diagnose the Pearson residuals ofthe SPA 

model. This method consists of the following procedure: 1) 40 pairs of residuals and 

fitted abundance indices are selected randomly from the total pairs of residuals and fits; 

2) the residuals and fitted abundance indices are diagnosed through visual checking. 3) 

repeat step 1 and step 2 for 100 times; and 4) count the number oftimes that yielded 

homogeneous residuals in the 100 times of random sampling. The model error structure 

that gave higher percentage of homogeneous residuals in this 100 times of sampling was 

regarded as the better model error structure. 

4.2.7 Normal theory residual and its quantification 

A disadvantage of the Pearson residual is that the distribution of Pearson residuals 

for non-normal distribution is often markedly skewed, and so it may fail to have 

properties similar to those for normal distributions. Anscombe residuals improved the 

normal distributed characteristics to a degree (Pierce and Schafer 1986). They normalize 

the probability functions through variance function cube-root transformations and then 

stabilize the variance, i.e., A(.)= J 1~u ; rA = A(~(u) (McCullagh and Neider 
V (u) V(u) 

1989). Here, A(.) is the transformation function. Vis the variance function of u. In this 

study, Anscom be residuals were also used to diagnose the normality of the residuals. 

4.3 Results 

4.3.1 GzLM for the production model 
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When the lognormal and gamma distributions were used, the residuals were 

homogeneous in the plot of Pearson residuals against the fitted abundance indices (Fig. 

4.2). When the normal and Poisson distributions were used, the residuals were 

heterogeneous in the diagnostic of the Pearson residuals (Fig. 4.2). The normal 

probability plot of the Anscombe residuals showed that the assumption of normal and 

Poisson error distributions were not acceptable (Fig. 4.3). When lognormal and gamma 

distributions were assumed for the model errors in equation 5, the normal probability plot 

of the Anscombe residuals showed that these assumptions were acceptable though not 

very good (Fig. 4.3). 

The parameter estimates of r, q, and initial biomass B1983 were different for 

different choices of model error distributions (Table 4.1 ). The rand q estimates were 

higher for the normal and Poisson distributions compared with the estimates for the 

lognormal and gamma distributions. The initial biomass B1983 and the current biomass 

B2000 were higher when the lognormal and gamma distributions were used, compared 

with the estimates for the normal and Poisson distributions. The R2 values were also 

different for different choices of error assumptions. Although the normal and Poisson 

distributions were not acceptable for the Atlantic cod production model, they yielded 

relatively higher R2 values. 

The abundance index in 1986 had been questioned for its quality and has been 

treated as an outlier in some stock analyses (Shelton and Lilly 2000). In this analysis, 

when the normal and Poisson distributions were used, the 11986 value might be an outlier, 
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but when the lognormal and gamma distributions were used, it was not an outlier (Fig. 

4.2). 

The estimated F/Fmsy and BIBmsy were different when different model error 

distributions were assumed (Fig. 4.4). The estimates ofF!Fmsy and BIBmsy were similar 

for the lognormal and gamma error distributions, and the normal and Poisson model error 

distributions yielded similar estimates ofFIFmsy and BIBmsy· 

The fitted population abundance indices were smaller using the normal and Poisson 

distributions than those using the lognormal and gamma distributions before the collapse 

of the cod fisheries (Fig. 4.5). 

4.3.2 GzLM for the SPA population model 

The residuals homogeneneity diagnostic of plotting the Pearson residuals against the 

fitted value showed that none of the four distributions was obviously homogeneous (Fig. 

4.6). They all showed systematic patterns in the residuals. I concluded that the lognormal 

distribution was not acceptable based on the Pearson residuals. The points of the 

residuals in the figures were not evenly distributed, which made it difficult to diagnose 

the residuals (Figs. 4.6a, 4.6c, and 4.6d). When the random sampling method described 

earlier was used, only 23% of the random samples resulted in homogeneous residuals for 

the normal error distribution assumption. When the lognormal distribution was used, 

there was not even one set of the random sample that could result in homogeneous 

residuals. When the gamma and Poisson distributions were used, there were 73% and 

80% of the random samples that could result in homogeneous residuals. The normal 
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probability plot of the Anscombe residuals showed that the assumption of normal error 

distributions were not acceptable (Fig. 4.7a). The normal probability plots ofthe 

Anscombe residuals suggested that the lognormal and gamma distribution assumptions 

were acceptable (Fig. 4.7b, 4.7c). The Poisson distribution was not as good as the 

lognormal and gamma distribution, but it seemed still acceptable because most points in 

the normal probability plot were on a straight line (Fig. 4.7d). 

The estimates of q and the current abundance N 2000 were different for different 

model error distributions (Table 4.3 and Figs. 4.8 and 4.9). The N2000 value estimated 

using the normal error distribution was more than twice of that estimated using the 

lognormal, gamma and Poisson distributions. The retrospective estimates of N1983 did not 

differ greatly (Table 4.3). The q estimates differed greatly for different model error 

structure assumptions in GzLM (Fig. 4.9). The q values estimated using the Poisson and 

gamma distributions were higher than those estimated using the normal and lognormal 

distributions. The R2 values were also different for different error distributions. 

Although the normal distribution was not acceptable, it yielded relatively higher R2 

values. 

The estimated q a for cod of age older than 12 increased greatly when the gamma 

error distribution was used in the GzLM. For cod older than 18, the results were similar 

for the normal, lognormal and Poisson distributions. This might result from the large 

number of zero values in the population abundance index for older age classes in recent 
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years. The surveyed abundance index can not really show the abundance or biomass of 

fish in old age classes. 

4.4 Discussion 

The goal of this study was to illustrate the potential problems associated with the use 

of a lognormal distribution as the default model error structure in the production model 

and SPA model. This study suggests that for Atlantic cod 2J3KL, the lognormal 

assumption is not appropriate for the SPA model, although it is appropriate for the 

production model. 

Different model error assumptions are likely to yield different parameter estimates 

and model fits. This is clearly shown in this study by different parameter estimates for 

different model error structures for the production model and SPA model. It is thus 

important to diagnose if the error structure assumed in the modeling is appropriate for a 

given fishery and/or a given fisheries model. 

The random sampling method proposed in this study for assessing the residual 

homogeneity in the age structure SPA model helps identify the homogeneous 

distributions of residuals. This method can be more effective when the fishery has more 

age classes and long time series. I would suggest using this method for the stock 

assessment models when the number of data is large. 

Further studies should be focused on analyzing the accuracy and precision of 

parameter estimation resulting from different choices of model error assumptions 

(Cadigan and Myers 2001). An extensive simulation study on the use of the Poisson 



distribution in the SPA model may be needed. The Poisson distribution has shown 

robustness to violations in model assumptions (Jiao et al. 2003). 
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I suggest that the GzLM method be used to fit the production model and SPA model. 

The GzLM provides a convenient and effective way to evaluate and identify a suitable 

model error distribution for stock assessment models. 



- 104-

Table 4.1: Parameter estimation ofproduction model for Atlantic cod 2J3KL when 

different model error structures were used in the generalized linear model (see equation 5 

and 6). 

Model error Parameter estimates 
Rz 

structure q (1 o-4) r B19s3 (105 T) Bzooo ( 1 03 T) 

normal 5.2948 1.0799 2.3675 4.5606 0.8332 

lognormal 3.7568 0.7257 3.6719 6.3895 0.8302 

gamma 3.9542 0.7276 3.6612 6.3728 0.8302 

Poisson 6.1149 1.2433 2.0244 4.2525 0.8328 

Table 4.2: Summary ofthe Pearson residuals diagnostic of Atlantic cod 2J3KL SPA 

model using the random sampling method. 100 sets of random sampling were done. For 

each random sampling, a sample size of 40 was used. Numbers in the parentheses are the 

percentage of random samples that had homogeneous residuals. 

Model error structure 

normal 

lognormal 

gamma 

Poisson 

Frequency of random samples that 

had homogeneous residuals 

23% 

0% 

73% 

80% 
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Table 4.3: Parameter estimation for the Atlantic cod 2J3KL SPA model when different 

model error structures were used in the generalized linear model. 

Model error N2000 (10 7) N1983 (109) Rz 

structure 

normal 1.8298 1.7018 0.8717 

lognormal 0.7760 1.5414 0.6011 

gamma 0.8566 1.5414 0.6026 

Poisson 0.7303 1.5414 0.7055 
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Figure 4.1. A framework to estimate parameters in fish production model by applying 

generalized linear model into fish production model. 
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Figure 4.2. Pearson residuals diagnostic plot for different model error structures in the Atlantic cod 2J3KL production model: a) 

normal distribution; b) lognormal; c) gamma; and d) Poisson. The circled point in the plot is for year 1986. 
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Figure 4.3. Anscombe residuals normality diagnostic for different model error structures in the Atlantic cod 2J3KL production 

model: a) normal distribution; b) lognormal; c) gamma; and d) Poisson. 
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Figure 4.4. F!Fmsy and B!Bmsy estimates for different model error distributions in the Atlantic cod 

2J3KL production model. N = normal, L = lognormal, G = gamma, and P = Poisson. 
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Figure 4.5. Production model fitting under different assumptions of model error structures. Normal 

= solid line, lognormal = dash-dot line, gamma= dashed line, and Poisson = dotted line. 
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Figure 4.6. Pearson residuals diagnostic plot for different model error structures in the Atlantic cod 2J3KL SPA model: a) 

normal distribution; b) lognormal; c) gamma; and d) Poisson. 
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Figure 4.7. Anscombe residuals normality diagnostic for different model error structures in the Atlantic cod 2J3KL SPA model: 

a) normal distribution; b) lognormal; c) gamma; and d) Poisson. 
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Figure 4.8. Comparisons of the estimated population abundances among different model 

error structures. Normal = dotted line, lognormal = solid line, gamma = dash-dot line, 

and Poisson = dashed line. 
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Figure 4.9. Comparisons of the estimated survey catchability for different model error 

structures. Normal = dotted line, lognormal = solid line, gamma = dash-dot line, and 

Poisson = dashed line. 
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CHAPTERS 

A SIMULATION STUDY OF THE IMPACTS OF POPULATION MIXING ON THE 

ESTIMATION OF GROWTH PARAMETERS 

Abstract 

Large variations are often observed in length-at-age data of many fish populations 

within and among year classes. These can have great impacts on the estimation of various 

size-dependent life-history processes, thus influencing population dynamics of the fish. 

Several hypotheses have been developed to explain large variations in length-at-age data, 

ranging from influx of individuals from different populations with different life-history 

parameters to natural responses to changes in population density and the ecosystem. 

Large areas of migration and mixing among populations have been documented, e.g., 

Atlantic Cod (Gadus morhua) in Atlantic Canada. Few studies have been done to 

quantitatively evaluate the impacts of possible population mixing on stock assessment and 

management. Using a Monte Carlo simulation approach, I demonstrated how observed 

variations in length-at-age could be influenced by mixing of individuals from a different 

population, and how a change in mixing rates might influence the analyses of growth 

data. The simulation study suggests that population mixing can have great impacts on 

growth analyses and stock assessment, and a large sample size is needed in subsampling 

catch in order to identify growth variations resulting from population mixing. I suggest 

that population mixing be considered as a possible hypothesis for explaining observed 
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variations in growth and that population mixing be incorporated into stock assessment 

models to improve the estimation of key fisheries parameters in stock assessment. 

5.1 Introduction 

Temperature, food availability, and population density are often considered to be 

main factors influencing growth rates of fishes. These factors are regarded as the 

dominant factors that result in large variations in growth rates among populations of a fish 

species. Many studies show that large variations also exist in length-at-age within and 

among year classes in a population (e.g., Gadus morhua; Beacham 1983; Lilly et al. 

2001). The large variation in growth among different year classes for Atlantic cod were 

hypothesized as a result of variations in environmental variables such as water 

temperature (Hutchings and Myers 1994; Gomes et al. 1995; Shelton et al. 1999), food 

availability (Krohn et al. 1997), density-dependant effects (Hanson and Chouinard 1992; 

Swain 1993 ), and population stress as a result of over-exploitation (Beacham 1983; 

Trippel 1995). Other factors that may result in large variations in growth for cod include 

size selective mortality (Myers 1989; Hanson and Chouinard 1992), early life history 

(Otterson and Loeng 2000), energy allocation (Chen and Mello 1999), sampling design, 

and population structure (Lilly 1996). 

The spatial dynamics of the fishery can have large impacts on fish stock assessment 

and management. Understanding of spatial distributions and migrations can improve 

assessments ofmanaged populations (Giske et al. 1998). For example, extensive efforts 

have been allocated for collecting information on fish spatial dynamics (Rose 1993; 
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Brattey 2000; Lawson and Rose 2000). These studies have suggested that there are large 

changes in cod spatial distributions after the decline in cod stock abundance, raising the 

possibility of overlapped distributions of different populations. Such overlaps are likely 

to influence data collection and subsequently complicate the estimation of some key life­

history parameters (e.g., increased uncertainty in parameter estimation). 

Using a simulation approach in this study, I quantitatively evaluated the impacts of 

potential mixing scenarios on stock assessment. More specifically, I evaluated how 

observed variations in growth could be influenced by the inclusion of individuals from 

another stock or population that has different growth patterns. 

Length-at-age data were used to describe growth. Changes in length-at-age data in 

the same stock resulting from changes in temperature and food supply tend to be smaller 

than changes in weight. One cannot exclude or isolate the influence of the temperature, 

food availability, size selectivity, density-dependent effect, and other environmental 

factors; but to simplify the simulation study of mixing on growth variation, one assumed 

that changes in length-at-age resulting from variations in temperature and other 

environmental variables were random within the population. I simulated how the mixing 

of individuals from different populations might affect the length-at-age estimates and 

subsequently influence the growth parameter estimation. I also evaluated the impacts of 

different sample sizes in subsampling catch on the estimation oflength-at-age values and 

growth parameters. 

5.2 Materials and methods 



- 118-

Mixing was assumed to occur between two populations in the simulation study. 

Unidirectional mixing was assumed, i.e., mixing always occurred in population A by 

individuals moving from population B to population A, but not the other way around. 

This assumption allows us to focus the study on one population. The simulated 

populations A and B were envisioned to represent the 2J3KL and 3Ps cod (Gadus 

morhua) stocks with similar parameters. The highest set of mean length-at-age values for 

the 2J3KL cod collected during autumn bottom-trawl surveys in 1978-2000 was used as 

the default (i.e., "true") mean length-at-age data for population A. The smallest set of 

mean length-at-age data for the 3Ps cod stock collected during the bottom-trawl surveys 

in winter-spring 1972-2001 was used as the default mean length-at-age for population B. 

5.2.1 Population and mixing pattern simulation 

Three pairs of populations were simulated (Table 5.1). They were: 1) the relative 

population size, defined as N A , is constant; 2) the relative population size is decreasing; 
NB 

and 3) the relative population size is increasing. In this simulation study, other parameters 

except recruitment, such as fishing mortality, natural mortality and selectivity in the two 

populations were regarded as equal. Recruitment size was used to control the population 

size. If I assumed that the population size was relatively constant, I implied that the 

recruitment was relatively constant. If I assumed that population size was relatively 

decreasing, I implied that the recruitment was relatively decreasing, and vice versa. 
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For every pair of populations, four mixing patterns were considered (Table 5.1 ), 

they include: (1) constant mixing rate m1 over time (i.e., 20%) with a lognormally 

distributed random variantEmm, 

(1) m, (t) = 20%e"mm ' t = 1, 2, ... , 50 

where Emm E N(O,cr mm 2)' cr mm = 0.01 was used in the simulation study. tis the year 

starting from year 0, and m1 (t = 0) = 0, thus there is no migration before year 1; (2) 

linearly decreasing rate with a lognormally distributed random variant defined by the 

following equation, 

(2) m2 (t) = (20%- 0.3% X t)e"mm, t = 1, 2, ... , 50 

where m2 (t = 0) = 0; (3) linearly increasing rate with a lognormally distributed random 

variant defined by the following equation, 

(3) t = 1, 2, ... , 50 

where m3 (t = 0) = 0; (4) mixing rate being a function ofyearly averaged temperature 

with a normally distributed random variant defined by the following equation, 

where m4 was the immigration rate from population B to population A, Twas the yearly 

averaged temperature in the year oft. The yearly averaged temperature near St. John's 
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harbor was used in the simulation study. m4 (t = 0) = 0. Climate-related indices such 

were found to be correlated with the Atlantic cod growth variations in some previous 

studies (Shelton et al. 1999; Drinkwater 2002), and temperature-driven migrations were 

also reported (Rose et al. 2000), making the fourth mixing pattern a plausible scenario. 

The values of a and b in equation (4) were set, rather arbitrarily, at 20% and 3.5%. 

The mixing from population B to population A was assumed to begin from year one 

(Figure 5.1 ). According to this assumption for a population with 20 age groups, 20 years 

were needed to allow the mixing procedure to be completed in a simulation. I used 

length-at-age 5 to explore the mixing effect on changes in length-at-age. The growth 

parameters were estimated by using the Bertalanffy growth model: 

(5) L =L (1-e-k(a-tO)) 
a oo ' 

where Lao is the maximum attainable length, k is the Brody growth parameter, and to is an 

hypothetical age at which the length is 0 (Ricker 1975). 

5.2.2 Estimating growth parameters for population A for different simulation 

scenarios 

The length-at-age data were generated according to the simulated catch-at-age data, 

sample size in subsampling catch, and growth characteristics of the populations using the 

procedure defined below (Figure 5.2). 

The number of fish at the beginning of age a, N a , is calculated from recruitment R as 
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a-l 

-L:(sjF+M) 

(6) Na = Re j=l 

where R is the number of fish at age 1 (defined as recruitment), s 1 is the selectivity 

coefficient for fish at age j and defined as 

(7) 
1 

sj = 1 + e-m(j-150) • 

The recruitment was assumed to follow a normal distribution, N (R., cr R 2 ) • The population 

composition in the first year was generated according to equation 6. I used the Atlantic 

cod selectivity curve for both the populations, where m = 1.5 ; t50 = 3.4 (Fu et al. 2001 ). 

A lognormally distributed error was assumed for S , thus the log transformed S follows 

the normal distribution with an error term of E s , where E" e N ( 0, cr s 2 ) • I used the value 

of0.01 for cr .. in the simulation study. The S values used in the simulation were randomly 

sampled from the truncated (upper limit to 1) lognormal distribution. Fishing 

mortality F was assumed to be 0.3. The variation ofF was assumed to follow a lognormal 

distribution, F = 0.3eep, where EF e N(O,cr /).The mean natural mortality M was 

assumed to be 0.2. The variation ofM was also assumed to follow a lognormal 

distribution M = 0.2eeM, where EM e N(O,cr M 2 ). I used 0.05 for both cr F and cr M. 

The catch-at-age data Ca,y were calculated using the standard catch equation and 

exponential survival equation (Ricker 1975), 
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(8) 

The total catch numbers in year y was calculated as TCY = L Ca,y . The proportion 
a 

of catch-at-age was calculated as 

Hereafter, the Pa,y were referred to as the proportion of catch at age without subsampling 

errors. 

The subsampling of the total catch was conducted with probabilities Pa,y. The P 

follows the multinomial distribution; and the sampling method was described in Chen 

(1996). It includes the following procedure: (1) generating a random number Rn from the 

uniform distribution U(0,1); (2) using the Pa,y value as the "true" value, 

k-i k 
~.y•P2,y, ... ,Pa,y'"'' where LPa,y = 1; (3) if LPa,y < Rn < LPa,y, assigning one 

a a=i a=i 

"observation" to group k; (4) repeating (1) to (3) n times (i.e. n is the size ofsubsamples) 

and denoting "observation" in each group as n1.y, ... , nk,y, ... ; and (5) calculating 

~.y· = n1,y I nY, ... , Pk,y, = nk,y I nY , ... , and these ~.y·, ... , Pk,y., ... values were the 

"observed" proportional data. The variation associated with "observed" proportional data 

was controlled by sample size n (Chen 1996) as 
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(1 0) SD = ~ P(1 ~ P) ' 

where SD is standard deviation, and P is the original proportional value. The 

subsampling of length-at-age data was conducted based on the "true" P to derive Pa~:, the 

"observed" age composition data. Superscript S represents population A or B. The 

following procedure was used: (1) determining the number in each age group and each 

1 . p 8 ' s s (2) . s 1 h d If . h 1 . popu at10n, a,y ny = na,y ; generatmg na,y engt -at-age ata; n lS t e Samp e SIZe, 

then simulated numbers of length-at-age is 

(11) na,y =nxPa,y' 

then I generate na,y length-at-age data, the log transformed length-at-age data was 

assumed to follow a normal distribution, which is equivalent to the length-at-age data 

having a lognormally distributed error defined as 

where La is the "true" mean length-at-age data, La' is the simulated length-at-age data, 

eLisanormallydistributedtermwith eL eN(O,cr/)(Iuse aL =0.1 in the La' 

simulation), and the boundary of La' was defined as La(l ± 20%) to limit the atypical and 

biologically unrealistic sampling in the simulation; and (3) add the length-at-age data 
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simulated from the two populations, and then re-estimate the growth parameters in the 

von Bertalanffy growth model. 

The determination of the number in each group and each population is related to the 

mixing patterns (Table 5.1 and Figure 5 .2). To simplify the simulation, I assumed that the 

fishes immigrating from population B into population A would not move back if they 

were still alive and the movement from population B to population A occurred before the 

fishing season in each year. The population numbers-at-age and catch-at-age in 

populations A and Bin Division A (see Figure 5.1) can be calculated based on the 

population pattern, mixing rate scenarios and the catch equation. The following equations 

were then used to determine the number of fish in the subsampling from populations A 

and B in a given year, 

(13) 

(14) 

where n is the total sample size for estimating growth parameter of population A , n: 
and n: are the sample numbers in the total samples in the Division A (see Figure 5.1), 

but are fish from population A and population B, respectively in year y, and rc: and 

rc: are the total possible catch offish of populations A and Bin the Division A in this 

year (Figure 5.1). The above equations were formulated according to the mixing 
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assumption. For simplification, my analysis was focused on the population A only. The 

above procedure was repeated 1000 times. 

Boxplot was used to show the estimates of the mean length-at-age 5 in the 

simulation. It produced a box and whisker plot for the mean length-at-age 5 estimates out 

of the 1000 simulation runs in each year. The box has lines at the lower 25 quartile, 

median, and 75 upper quartile values. The distance between the top and bottom of the box 

is the interquartile range. The whiskers are lines extending from each end of the box to 

show the extent of the rest of the data. The plus sign at the top ofthe plot is an indication 

of an outlier in the data. An outlier is a value that is more than 1.5 times the interquartile 

range away from the top or bottom ofthe box in this plot. If there are no data outside the 

whisker, a dot is placed at the bottom whisker. 

5.2.3 Effects of sample size in subsampling catch on estimation of growth 

parameters 

Growth parameters derived from catch-at-age data without subsampling errors were 

compared with growth parameters derived from catch-at-age data with different levels of 

subsampling errors. I used the first year's data. The CV (coefficient of variation) of an 

estimated parameter over N (N= 1000 here) runs of simulation can be calculated as 

(15) CV=~ 
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where )l is the mean ofthe estimated parameter over the 1000 runs,cr is the standard 

error of the estimated parameter. 

Relative estimate error (REB) is estimated as 

(16) 

Where ~ • is the estimated parameter value in a simulation run; and ~ is the "true" 

parameter value. The "true" parameters including the "true" mean length-at-age, "true" 

growth parameter L"' , k and t0 • 

Departure of the estimated parameter from the true value was also measured by the 

root mean square error (RMSE), which combines both estimation bias and lack of 

precision. The RMSE for the estimate of a "true" parameter ~ can be expressed as 

(17) i=l RMSE= 
N 

The RMSE for the proportion of catch-at-age was also estimated. In this case, ~ is the 

estimated proportion-at-age, that is, P~,y . The RMSE can be expressed as 

(18) 
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Growth parameters derived from catch-at-age data with and without subsampling 

errors were compared based on their ability to replicate the true population parameters. 

RMSEs were calculated for each estimated growth parameter using catch-at-age data with 

and without subsampling errors. A comparison index (CI) was calculated as 

(19) CI = RMSE calculated using catch-at-age data with random sampling error 
RMSE calculated using catch-at-age data without random sampling error 

Thus, a CI value greater than 1 indicates a parameter estimated using catch-at-age data 

subject to random subsampling errors has larger errors than that estimated using catch-at-

age data without subsampling errors. 

5.3 Results 

The growth curves for populations A and B show that fish in population B are 

smaller in length (Figure 5.3). The estimated growth parameters indicate that for 

population A, the L"' is 171.8, k is 0.067, and to is -0.93, and that for population B, the 

L"' is 98.3, k is 0 .116, to is 0.17. Because I assumed that the population had 20 age groups 

in the simulation study, the age-composition of population A tended to be relatively stable 

from the mixing of individuals from population B after 20 years with the assumed fishing 

patterns. When the relative population size was constant, (i.e., NA/NB= 5), the L"' , k and 

to estimates of population A randomly varied without an obvious trend when the mixing 

fraction from populations B to A was constant (20%) (Figure 5.4). When the mixing was 

linearly decreasing, theL"' of population A increased slowly over time, k decreased 

slowly, and to also decreased slowly though not obviously. When the mixing was linearly 
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increasing, the L,., of population A continued decreasing, k and to increased. When the 

mixing was a function of yearly average temperature, the L,., , k and to values had no 

obvious temporal trends, but there were small variations among years. The mean length­

at-age 5 became relatively stable. When the mixing fraction was constant over years, the 

average length-at-age 5 values of 1000 simulations tended to be stable (Figure 5.5a). 

When the mixing fraction was linearly decreasing with years, the average length-at-age 5 

tended to be increasing (Figure 5.5b). When the mixing fraction was linearly increasing, 

the length-at-age 5 tended to decrease (Figure 5.5c). When the mixing over years was a 

function of temperature, no obvious trend could be detected in the average length-at-age 5 

(Figure 5 .5d). 

When the size of population A was constant with random variations, while 

population B was linearly increasing with random variations, the L,., value of population 

A continued to decrease, k and to increased with random variations when the mixing 

fraction from population B to population A was constant (20%). When the mixing was 

linearly decreasing, there were no obvious trends for L,., , k and to values of population A. 

When the mixing was linearly increasing and when the mixing was a function of yearly 

averaged temperature, the L, value of population A continued to decrease, k and to were 

increasing (Figure 5.6). When the mixing fraction was constant, the length-at-age 5 values 

averaged over the 1000 simulations after the first 5 years of mixing continued to decrease 

(Figure 5.7a). When the mixing fraction was linearly decreasing, the average length-at­

age 5 tended to be stable (Figure 5.7b). When the mixing fraction was linearly increasing, 
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the length-at-age 5 decreased (Figure 5.7c). When the mixing over years was a function 

of temperature, the average length-at-age 5 tended to decrease (Figure 5.7d). 

When population A was constant, population B linearly decreased, and mixing rate 

from populations B to A was constant, the estimated L, of population A increased slowly 

after the first 20 years of mixing, k decreased slowly, and to varied randomly without an 

obvious trend. When the mixing rate linearly decreased, the L"' value of population A 

increased over the time, k decreased, and to also slightly decreased in the last ten years. 

When the mixing rate decreased linearly, the L"", k, and to values had no obvious 

temporal trends. When the mixing rate was a function of yearly average temperature, the 

L"" , k, and to values had no obvious trends until the last five years. The L, value 

increased slightly and the k value decreased slightly in the last five years (Figure 5.8). 

When the mixing rate was constant, the average length-at-age 5 values over the 1000 

simulations increased after the 5th year (Figure 5.9a). For all the three mixing scenarios 

(i.e., the mixing rate decreased linearly over time, increased linearly and was a function of 

temperature), the average length-at-age 5 tended to increase over the time (Figures 5.9b, 

5.9c, and 5.9d). When the mixing fraction was linearly increasing, the average length-at­

age 5 increased slower (Figure 5.9c). 

For all the simulation scenarios the averages ofL"", k, and to over the 1000 simulation 

runs varied over years. The range represented as the interquantile range and whisker lines 

in the boxplot ofthe length-at-age 5 changed because of the mixing process. When the 
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mixing began, the range of the length-at-age 5 increased, there were more outliers. After 

the 5th year the range continued increasing when the mixing fraction increased, or when 

the relative population size was decreasing (Figures 5.5 and 5.7). The range could 

decrease because of changes in the mixing fraction and the relative population size. 

(Figures 5.5 and 5.9). 

When the subsample size was small ( <1 000), CV and REE for parameters L,_, , k, 

and to were large, indicating that the estimation errors for the parameters were larger 

compared with those estimated based on large subsample sizes. With increased sizes of 

subsamples, the differences in estimation errors decreased quickly, the CV values 

approached 0, the REE values became smaller (Figure 5.10). When the sample size 

approached 2000 the CV and REE values tended to be stable. 

When the subsample size increased the CV and REE for length-at-ages 5 and 10 

decreased, but the CV and REE values for length-at-age 10 were much higher than those 

for length-at-age 5 (Figure 5.11 ). The subsample size used in the simulation was the total 

sample size for all age groups. The sample size at age was determined by age composition 

ofthe catch. The proportion offish in age 5 was much higher than that for fish in age 10, 

which led to a higher subsmaple size for fish in age 5 and subsequently smaller errors for 

the estimated length at age 5. 

The CI values for L,_, , k and to were large when sample size was small. However, CI 

values would approach 1 if sample size increased. This implied that the influence from 
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random sampling decreased when the sample size increased. The observed proportion of 

catch-at-age in subsampling was also influenced by the total sample size. The CI value for 

catch-composition was large at small sample sizes, but approached 1 with increased 

subsample sizes (Figure 5.12). 

5.4 Discussion 

The simulation study suggested that the mixing of individuals from another 

population with different growth rates could influence the growth parameter estimation. 

When mixing occurred, the changes in the relative population size could also influence 

the growth parameter estimation and length-at-age estimates. It is thus important to 

evaluate impacts of possible spatial overlaps between different populations on data 

collection and stock assessment. Misinterpreting large variations in length-at-age data 

resulting from spatial overlaps of different populations as a result of variations of other 

environmental variables may lead to errors in stock assessment. 

In this simulation study I assumed fish underwent a unidirectional movement 

between two populations. The results can, however, be extended to the situations where 

there are two or more substocks in one stock and there are movements among the 

substocks. 

The growth data were unbiasedly simulated according to the catch-at-age and length­

at-age. In practical sampling, however, because the samples were taken yearly or 

seasonally from different fishing ports and fishing boats, the sampled catch-at-age might 
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not accurately represent the true catch-at-age data. The model was based on an 

assumption that the distribution of fish is random within its distribution ranges. This may 

not be true for many fish species. For example, some fish species exhibit size-dependent 

distribution patterns (e.g., Chen et al. 1997). The impacts of such non-random and, in 

particular, size-dependent distribution patterns on subsampling catch for the collection of 

growth data need to be evaluated. Subsample size was shown to have large impacts on 

the estimation of growth parameters. This study suggests that large sample sizes are 

needed for reliable estimation of growth parameters. In practice sizes of subsampling for 

estimating length-at-age data are often small. For example, for the 2J3KL Atlantic cod the 

length-at-age values for fish older than 5 were often estimated from small sample sizes. 

For many age groups, the length-at-age data were estimated from samples smaller than 5. 

This may lead to inaccurate estimates of growth parameters (Lilly 1998). Sample size 

needs to increase greatly in order to improve the accuracy of the estimates. 

The simulation study suggest that the length-at-age estimation can be influenced by 

the population mixing, and the effect can be seen in the trend of the mean length-at-age 

changes, variations oflength-at-age, and the number of the outliers. This implies a 

possibility of using the length-at-age data as an indicator of population mixing, or even 

using the growth data to predict population mixing. However, this can only be done ifl 

can exclude the possibilities that changes in length at age are the responses of fish to 

changes in its ecosystems (e.g., changes in inter- and intra-species competitions). 
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In this study the impact from other factors, such as temperature, food availability, 

were regarded as random. An analysis on population mixing would be more practical by 

excluding the influence from other factors. Combining this study with the knowledge 

from tagging experiments would give more implications on population mixing and 

growth variations. 

Temporal and spatial changes in size at age have been observed for many fish stocks 

(e.g., Chen and Mello 1999). So far we have largely attributed such changes to changes in 

the ecosystems and/or fishes' responses to human exploitations. Limited studies have been 

done to explore possibility of changes in spatial distributions offish and subsequent 

overlapping offish of different stocks. This study suggests that such a mixing can result 

in temporal changes in size-at-age data for a fish population. I suggest that influence of 

potential mixing on the estimation of growth parameters be considered in fisheries stock 

assessment. 
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Table 5.1: Population scenarios and mixing patterns in the simulation study. t is the year 

distance from the beginning year in the simulation; T is the temperature in the simulation 

year. 

Populations scenarios Mixing patterns Migration fraction 

from population B 

to population A 

AIB=5 Constant mixing 20% 

A Linearly decreasing 20%-0.3%*t 

B Linearly increasing 20%+0.3%*t 

Function of the temperature 20%+3.5*T 

Constant mixing 20% 

AlB • Linearly decreasing 20%-0.3%*t 

A Linearly increasing 20%+0.3%*t 

/ B Function of the temperature 20%+3.5*T 

Constant mixing 20% 

AlB t Linearly decreasing 20%-0.3%*t 

A Linearly increasing 20%+0.3%*t 

B ---- Function of the temperature 20%+3.5*T 
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Figure 5 .1. A diagram showing the movement from population B to population A and the 

population composition in Division A in the simulation study. 
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Figure 5.2. The simulation procedure of population mixing between populations A and B. 
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Figure 5.3. The growth curves of population A and B. 
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Figure 5.4. The simulation result of the growth parameter estimates under the scenario of 

the constant relative population size (i.e. scenario 1 ). Solid line for mixing fraction is 

constant; dash-dot line for mixing fraction is linearly decreasing; dotted line for mixing 

fraction is linearly increasing; and dotted line with a black dot is for mixing fraction is a 

function of yearly averaged temperature. 
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Figure 5.5. The simulation result of the length at age 5 estimates under population 

scenario 1 (i.e., the constant relative population size). (a) mixing fraction is constant; (b) 

mixing fraction is linearly decreasing; (c) mixing fraction is linearly increasing; and (d) 

mixing fraction is a function ofyearly averaged temperature. 
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Figure 5.6. The simulation result of the growth parameter estimates under population 

scenario 2 (i.e., the size of population A is constant with random variations, while 

population B is linearly increasing with random variations). Solid line for mixing fraction 

is constant; dash-dot line for mixing fraction is linearly decreasing; dotted line for mixing 

fraction is linearly increasing; and dotted line with a black dot is for mixing fraction is a 

function of yearly averaged temperature. 
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Figure 5.7. The simulation result ofthe length-at-age 5 estimates under population 

scenario 2 (i..e., the population size of A is constant with random variations, while 

population B is linearly increasing with random variations. (a) mixing fraction is constant; 

(b) mixing fraction is linearly decreasing; (c) mixing fraction is linearly increasing; and 

(d) mixing fraction is a function of yearly averaged temperature. 
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Figure 5.8. The simulation result of the growth parameter estimates under population 

scenario 3 (i.e., the population size of A is constant with random variations, while 

population B is linearly decreasing with random variations). Solid line for mixing 

fraction is constant; dash-dot line for mixing fraction is linearly decreasing; dotted line for 

mixing fraction is linearly increasing; and dotted line with a black dot is for mixing 

fraction is a function of yearly averaged temperature. 

200 

100 
0 10 20 30 40 50 

0.12 

0.10 

~· ~ 

0.08 

0.06 

--
0 10 20 30 40 50 

-0.6 

_o -0.8 

Year 



- 143-

Figure 5.9. The simulation result of the length-at-age 5 estimates under population 

scenario 3 (i.e., the population size of A is constant with random variations, while 

population B is linearly decreasing with random variations). (a) mixing fraction is 

constant; (b) mixing fraction is linearly decreasing; (c) mixing fraction is linearly 

increasing; and (d) mixing fraction is a function ofyearly averaged temperature. 
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Figure 5.10. Plot of Coefficient ofVariation (CV) and Relative Estimate Error (REE) of 

L~ , k and to versus sample size. 
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Figure 5.11. Plot of Coefficient ofVariation (CV) and Relative Estimate Error (REE) of 

Length-at-age 5 and 10 against sample size. 
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Figure 5.12. Comparison index (CI) of L"', k and to (a) and proportion of catch-at-age (b) 

against sample size. 
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CHAPTER6 

AN APPLICATION OF COMPOSITE RISK ASSESSMENT METHOD IN 
ASSESSING FISHERIES STATUS 

Abstract 

The status of a fishery is often determined by comparing an indicator reference point 

(e.g. current fishing mortality) with a management reference point (e.g. F0.1). Both 

references are likely subject to large uncertainty. Thus, it is necessary to incorporate such 

uncertainties in determining the status of fisheries. The composite risk assessment 

method, which is commonly used in civil engineering, can be used to quantify uncertainty 

associated with both indicator and management references in evaluating the status of a 

fishery. I applied this method to the Atlantic cod (Gadus morhua) fishery. The results 

suggest that the uncertainties in both indicator and current reference points can influence 

the evaluation ofthe fishery status. Uncertainty can come from different sources and is 

difficult to quantify. I suggest conducting a sensitivity analysis to evaluate the relative 

importance of uncertainties resulting from different sources. Such a study will enable us 

to identify key factors influencing the assessment of stock status in fisheries stock 

assessment and management. 
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6.1 Introduction 

The collapse of many fisheries worldwide has been attributed to overexploitation 

resulting from gross overestimation of stock size and large scale discarding at sea, failed 

recruitment, and increased natural mortality due to changes in ecosystems. Ignoring or 

underestimating uncertainty in stock assessment and fisheries management is another 

important factor that may contribute to the decline of the fisheries (Hilborn and Walters, 

1992; Ludwig et al., 1993; Walters and Maguire, 1996). The status of a fishery is often 

determined by comparing an indicator reference point estimated from stock assessment 

(e.g., current fishing mortality, current stock biomass) with a management reference point 

(e.g., Po. I. Bmsy; Caddy and Mahon, 1995). The declining trend in stock size as well as 

widely discussed impacts of uncertainty on stock assessment and management calls for a 

closer examination of the role of uncertainty plays in determining the status of a fishery 

(Ludwig et al., 1993; Myers and Worm, 2003). Replacing a currently used management 

reference point with a more conservative value to offset the impacts of uncertainty may 

bias the choice of the management reference points and cause distrust by fisheries 

stakeholders in fisheries management plans and stock assessment. A better approach 

would be to place emphasis on risk analysis and risk tolerance which incorporates the 

uncertainty in assessing the status of fisheries (Shelton and Rice, 2002). 

Uncertainty in assessing a fishery may result from various sources such as 

measurement errors, process errors, model errors, and operating errors (Chen and 

Paloheimo, 1998; Patterson et al., 2001). An approach commonly used to incorporate 



- 149-

uncertainty in assessment is to estimate the empirical probability distribution of indicator 

reference points using methods such as the bootstrap and jackknife. The management 

reference points are calculated based on the fisheries data and life-history parameters 

using yield-per-recruit models, production models, and stock-recruitment models and are 

often assumed to be deterministic when they are compared with indicator reference 

points. Considering large variations that may exist in models, data and ecosystems, this 

assumption is rather unrealistic (Fogarty et al., 1996; Prager, 2003). Thus, management 

advisory statements derived using such an approach of comparing deterministic 

management reference points with stochastic indicator references do not reflect the fact 

that both the indicator and management reference points are subject to considerable 

uncertainty, and may yield erroneous conclusions about the status of fish stocks. A 

general approach should consider uncertainty in both indicator and management reference 

points (Helser et al., 2001; Chen and Wilson, 2002; Prager et al., 2003). 

Composite risk analysis is a method of accounting for the risks resulting from 

various sources of uncertainty to produce an overall risk assessment for a particular 

decision-making problem (Yen, 1986). The composite risk analysis can allow for the 

incorporation of uncertainty in both indicator and management reference points in 

determining the status of a fishery. It provides an easy and direct estimate of the risk for 

overexploitation with full consideration of the uncertainties. Prager et al. (2003) used a 

similar approach to developing the target reference point based on the limit reference 

point. In Prager's approach, the risk assessment is regarded as a weighted integration, 
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while the weight is derived from the complementary cumulative distribution function. I 

used a similar approach by using a double integration function, which shows the exact 

scientific meaning of composite risk. I developed a discrete approach to estimate the 

composite risk, which is convenient to incorporate nontypical distributions and can avoid 

the influence from covariance between the two distributions of reference and management 

reference points. This approach is different from Prager's approach ofREPAST (Ratio­

Extended Probability Approach to Setting Targets). 

For many fisheries there is a lack of understanding about the uncertainty in input 

data, variations in life history and population dynamics of fish stocks. Thus, it is 

important to evaluate the impacts of imprecise quantification of uncertainty of data in 

estimating reference points on the risk assessment and to identify key parameters 

influencing the determination of fisheries status. This calls for a sensitivity analysis 

which refers to the variation in the output of a mathematical model with respect to 

changes in the values ofthe model's input. A sensitivity analysis attempts to provide a 

ranking of the model's input assumptions with respect to their contribution to model 

output variability or uncertainty. In a broader sense, sensitivity can refer to how 

conclusions may change if models, data, or assessment assumptions are changed. A 

Monte Carlo simulation approach was used in this study for the sensitivity analysis, 

which allows for the systematic evaluation of model output with respect to uncertainty in 

input data. Uncertainty was incorporated into the simulation process in the forms of 

measurement and processing errors. All uncertainties in input data, and parameters were 
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examined to determine their effects on the output distributions through numerical 

experiments (scenarios). By comparing the differences in biologica1 reference point 

(BRP) calculated under different uncertainty levels I could evaluate how a reference point 

responded to changes in a particular life-history process (growth, recruitment, or 

mortality). This helps identify important pathways and parameters for which assumptions 

about distributional functions contribute significantly to overall uncertainty and aid in 

focusing data gathering efforts. 

The composite risk analysis and associated sensitivity analysis were applied to the 

Atlantic cod (Gadus morhus) fishery in divisions 2J3KL. The importance of 

incorporating uncertainty in both indicator and management reference points is discussed. 

Key factors that may influence the composite risk analysis were identified. This study 

provides an alternative approach for risk analysis in determining fisheries status. 

6.2 Materials and Methods 

Growth parameters and their variations are calculated from the DFO mean weight­

at-age data (Lilly et al., 2001). The weight-age model, which combines the allometric 

weight-length model and von Bertalanffy length-age model, was used to estimate weight 

at age w; and their corresponding variation (Quinn and Deriso, 1999), 

(1) w; = w"' [1 - e -k(t-10) ]b 
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where W.., is the maximum attainable weight; k is the Brody growth parameter, and tO is 

the hypothetical age at which the weight is 0 (Ricker, 1975). A residual diagnostic 

analysis showed that the residuals of ~ in modeling followed lognormal distribution. 

Since the decline in cod abundance, studies have shown an increased variation in growth 

of cod, calling for the consideration of uncertainty of weight in stock assessment. 

The information on proportion of cod caught at age t that are discarded at sea, D1 , 

for 2J3KL was from Kulka (1996). I modeled the relationship between age-specific 

discarding using the following logistic equation: 

(2) 
ND1 _ 1 

Dt = C- 1 + ed<t-dso) • 
I 

where ND1 is the number of fishes caught at age t that are discarded at sea, C1 is the 

catch number of fishes at age t, d is the shape parameter, d50 is the age at which 50% of 

the individuals are vulnerable to be discarded. d and d50 were assumed to be time-

independent. Estimated parameters forD are shown in Table 6.1. The residual diagnostic 

analysis suggested that the residuals followed lognormal distribution in modeling. I thus 

defined D in equation 2 following a lognormal distribution with standard deviation shown 

in Table 6.1. 

Age-specific selectivity was modeled using the following logistic equation: 

(3) s, = 1 + e-m(t-S50) ' 
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where m is the shape parameter, S50 is the age at which 50% ofthe individuals are 

vulnerable to the fishing gear. m and S50 were assumed to be time-independent. Here, 

I used m =1.5, S50 =3.4 (Fu et al., 2001). I also assumed that S followed the lognormal 

distribution with standard deviation shown in Table 6.1. 

Natural mortality (M) was assumed to follow a lognormal distribution with a mean 

of0.2 and standard error ofO.l, 0.2, 0.4 to show low, median and high variations (Table 

6.1 ). The lognormal distribution is often used for many fish life-history parameters 

including growth and mortality parameters (Hilborn and Walters, 1992; Shelton, 1992; 

Quinn and Deriso, 1999). 

The exploitation rate estimated based on tagging data varied among areas and years. 

The averaged exploitation rates in 1999 and 2000 in 3KL area were estimated to be 43% 

and 12%, respectively (Cadigan and Brattey, 2002). These estimates were consistent with 

the exploitation rates estimated from landings and survey data in 1999 and 2000 (i.e. 0.29 

for 1999 and 0.12 for 2000). The average exploitation rates in different tagging areas 

were weighted by experiment size (DFO, 2002). I used the weighted mean exploitation 

rate of all the areas as the mean exploitation rate during the year. The exploitation rate 

was assumed to follow a normal distribution defined by N(0.24, 0.042) for 1999, N(O.l 0, 

0.01 2)for2000,and N(O.l2,0.012)for2001 (DF0,2002). The N(J.l,cr 2) abovedefinea 

normal distribution with the mean of J-L and variance a 2 • The corresponding coefficients 

of variation of the exploitation rates were about 10% to 16%. The variance estimate did 

not consider variation in exploitation rate in unit tagging area and uncertainty resulting 
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from natural mortality, tagging loss, and gear selectivity. I then increased the coefficient 

of variation to 25o/o-JO%. The corresponding fishing mortality would be drawn 

randomly from the distributions defined by N(0.30, 0.082) for 1999, N(0.12,0.032) for 

2000, and N(0.14, 0.042) for 2001 based on the tag loss (2.8%) and natural mortality rate 

(9.5%). That is, exploitation rate = C = F (I- e-F-M). From the above equation the 
N F+M 

fishing mortality rate can be estimated based on exploitation rate and natural mortality 

rate. For Scenario 8 of the simulation, a large natural mortality, 0.4, was used. The 

corresponding fishing mortality rate would then be drawn from N(0.34, 0.092) for 1999, 

N(0.13,0.032) for 2000, and N(0.16, 0.042) for 2001 for Scenario 8. 

6.2.1 Composite risk analysis 

Let X represent a management reference point (e.g., F0.1 ) estimate and Y represent 

indicator reference point (e.g., current fishing mortality F cur ) estimate; then the 

corresponding pdf of X and Y are f(x) and g(y), respectively. If indicator Y is 

determined without uncertainty, then 

y 

(4) P(Y >X)= fJ(x)dx. 

If X is determined without uncertainty, then 

+oo 

(5) P(Y >X)= fg(y)dy. 
X 
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Equation 5 is commonly used in assessing the status ofthe stock (Caddy and Mahon, 

1995). 

IfbothX and Y are not deterministic, and X and Y are independent, the 

probability ofY >X can be calculated as: 

(6) P(Y>X)= ]{jg(y)t!Y}f(x)dx 

+oo 

= JG(y)l f(x)dx 
-oo X 

+oo 

= J{t- G(x)}f(x)dx 
-oo 

+~X> +oo 

= jJ(x)dx- JG(x)f(x)dx 
-oo -oo 

+oo 

= 1- JG(x)f(x)dx 
-oo 

Equation 6 can also be solved in the following way: 

(6a) P(Y >X)= 1-P(Y <X) 
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-= 1- J G(x)f(x)dx 

G(y) is the cdf ofY. This equation shows the risk of overexploitation, or the probability 

of the indicator (i.e., Fcur) being larger than the management BRP (i.e., Fo.J). In most of 

the cases the distribution of X andY do not follow a standard distribution, and they are 

not continuous as in the above equation. One usually gets one or both of them from 

Monte Carlo simulations. In these cases, the above equation can be written as a discrete 

type. 

+oo 

= IG(y)l f(x)~ 
-oo x 

-=I {1-G(x)}f(x)~ 
-oo 

+oo 

= 1- I G(x)f(x)~ 
-oo 

Equation 7 can also be solved in the following way: 

(7a) P(Y >X)= 1-P(Y <X) 
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+oo 

= 1-L G(x)f(x)!'lX 
-oo 

Replacing X andY with F0.1 and Fcur in the above equations, one can estimate the 

composite risk. Because both the Fo.J and the current fishing mortality (Fcur) were 

estimated as a sample of random distribution generated from the Monte Carlo simulation 

(i.e., empirical distributions), I estimated the composite risk with equation 7a. 

6.2.2 Yield-per-Recruit model 

F0.1 and Fmax are estimated using the yield-per-recruit (YPR) model which calculates 

the average yield to be expected under a given pattern of fishing mortality over the life 

span of a cohort of fish. The YPR model is defined by parameters defining life history 

and fishery processes including growth, natural mortality, gear selectivity, and discarding. 

The uncertainty in estimating Fo.1 and Fmax using the YPR model may come from the 

following sources: uncertainty in the model parameters, which are often estimated from 

other studies, and natural variability of life-history process resulting from variations in the 

biotic and abiotic environment. In this study some parameters and their variations (e.g., 

natural mortality, fishing selectivity) used in estimating Fo.J and Fmax were not derived 

from field data. Thus, the realism of these values could be questioned. Thus, one needs 

to run a simulation, which involves running a large range of values for the model 

parameters in deriving Fo.J and Fmax· 
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The commonly used discrete YPR model can be written as 

,, 
(8) Y = LC,W,(l-D,) 

t=tr 

where Y is the attained yield, t, is the age of entry into the fishery, and t1 is the 

maximum age offish that could contribute to the fishery. The t, was set at 3, and t1 =20 

for the cod fishery. Given natural mortality, fishing mortality, and selectivity coefficients, 

catch-at-age C, can be calculated from the catch equation as: 

(9) C = N stF (1-e-s,F-M) 
t t stF +M , 

where F is the fishing mortality. N, is the number offish at age tat the beginning of the 

year. N, is estimated from recruitment R as follows: 

(10) 

1-! 

- ~)s,F+M) 
N 1 = Re i•t, 

Combining the equations 8, 9 and 10, one can get the YPR model as: 

(11) 

The Fo.1 was estimated from: 



(12) 

(13) 

B(Y I R)l = O.l B(Y I R)I-
BF aF F-O 

F;Fo.I 

The Fmax was calculated from: 

B(Y I R) = 0 
aF 
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I used the following procedure to estimate the uncertainty in Fo.1 and Fmax: (1) 

identify the parameters that are likely to have uncertainties in the YPR model; (2) identify 

the magnitude and nature of errors for each model parameter identified in step (1 ); (3) 

randomly sample each parameter from its probability distribution; (4) apply the sampled 

model parameters to the YPR model to calculate Fo.1 and Fmax (equation 12, 13); (5) 

repeat steps (3) and (4) for N times to yield N estimates ofFo.J and Fmax; (6) estimate the 

probability distribution ofF0.1 and Fmax using the results derived in step (5). 

Eight simulation scenarios were considered in this study (Table 6.1 ). Latin 

hypercube sampling was used to avoid unrealistically large or small values. The first 

three scenarios had medium, high, and low levels of variations for model parameters, 

respectively (Table 6.1 ). Scenarios 4 through 7 included high variations for selectivity 

coefficient, growth, discarding and natural mortality (the magnitudes of the corresponding 

parameters were the same as those for Scenario 2), while variations for other parameters 

were the same as those for Scenario 1. The difference in estimating Fo.J and Fmax between 

these scenarios and Scenario 1 illustrated the importance of variability in those 

parameters. Because of the speculations of a higher cod natural mortality possibly 



- 160-

resulting from climate changes and seal predation, a high natural mortality scenario was 

explored to identify possible impacts of increased natural mortality on composite risk 

analysis (i.e., Scenario 8; Table 6.1). The difference in the estimates ofFo.I and Fmax 

between the eighth and first scenarios thus reflected the relative importance of natural 

mortality in estimating uncertainty for Fo.I and Fmax· 

For the first seven scenarios, 800 simulation runs were used to derive the stable 

probability distribution function for Fo.I and Fmax· For the high-natural mortality scenario 

(i.e., 8; Table 6.1 ), 1000 simulation runs were needed to yield stable probability 

distribution functions (pdf) for Fo.1 and Fmax· The Kernel smoothing method was used to 

get a smooth pdf ofFo.I and Fmax (Bowman and Azzalini, 1997). 

6.3 Results 

The mean of the Fa. I estimates using the data with a medium level of variation (i.e., 

scenario 1) was 0.1457 (Table 6.2). The probability distribution ofF0.1 in this scenario 

had 90% confidence intervals ranging from 0.1090 to 0.1980 (Table 6.2). The probability 

distributions for Fcur and Fo.1 did, however, share some overlaps (Figure 6.1). The 

composite risk assessment suggested that the probability of the current fishing mortality 

being higher than F o.1 was 0.97 in 1999. 

The distribution ofFo.I derived for the high-variation scenario (i.e. Scenario 2) 

differed from that for the medium-variation scenario with long tails and different means. 
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Compared with those for the medium- and high-variation scenarios, variation in Fo. 1 was 

lower for the low-variation scenario (i.e., Scenario 3; Table 6.2). 

The high selectivity-variation, high growth-variation and high discarding-variation 

scenarios (i.e., Scenarios 4, 5 and 6, respectively) had levels of uncertainty for selectivity, 

growth and discarding as high as those in high-variation scenario (i.e., Scenario 2), while 

other parameters had uncertainty levels similar to those for medium-variation scenario 

(i.e., Scenario 1; Table 6.1). The probability distributions ofFo.I for Scenarios 4, 5 and 6 

were similar to that for Scenario 1 both in modes and in tails (Table 6.2 and Figure 6.1 ). 

The consistency of these scenarios with the medium-variation scenario suggests that the 

uncertainty in selectivity, growth, and discarding parameters is not the main contributor to 

the estimated uncertainty for Fo.I. Thus the estimate ofFo.1 is less sensitive to uncertainty 

in these parameters. 

The level of uncertainty for natural mortality in Scenario 7 was the same as that for 

the high-variation scenario (i.e., scenario 2), while other parameters were same as those 

for the medium-variation scenario (i.e., Scenario 1). The probability distribution ofF0.1 

for this scenario was different from that for Scenario 1 but similar to that for Scenario 2 

(Figure 6.1 ). These results suggest that the uncertainty in natural mortality is the main 

contributor to the estimated uncertainty for F0.1 and uncertainties of other parameters 

(growth, discarding, and selectivity) had limited influence on the estimated uncertainty of 

Fo.I. 
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When the higher natural mortality scenario was used, the probability distribution of 

Fo.1 for this scenario was different from the first seven scenarios both in the central 

tendency and in tails ofthe distributions (Figure 6.1). The estimated mean ofthe Fo.1 was 

0.34, which was more than two times of the values estimated for other scenarios. 

The risks ofFcw>Fo.I in 1999 were close to 97% in scenarios 1, 4, 5 and 6. They were 

close to 92%-93% in scenarios 2 and 7. This implied that the overexploitation risks 

were lower in the high-variation scenario and high M-variation scenario in this year. It 

also implied that the risk of overexploitation was sensitive to the variation of natural 

mortality. 

The average ofF cur in 2000 was smaller than the mean and median ofF0.1 estimated 

for the first seven scenarios when natural mortality was assumed to be 0.2 (Tables 6.2 and 

6.3 and Figure 6.1 ). The composite risk assessment suggested that there was a 3 7% to 

45% probability of overexploitation. In the high-natural mortality scenario the Fo. 1 

estimate was larger, so the P(Fcur > Fo.I) was only 10%. The mean ofF cur in 2001 was 

similar to the mean and median ofF0.1 estimated from the first seven scenarios (Tables 6.2 

and 6.3). The composite risk assessment suggested that there was a 54% to 61% of 

possibility of overexploitation. For 2000, the P(Fcur > F0.1) was estimated as 13% for the 

high natural mortality scenario. 

The pdfs ofF max in different scenarios showed similar trend as Fo.J. The pdfs ofF max 

for Scenarios 1, 4, 5 and 6 were also similar. The pdfs ofFmax in Scenarios 2 and 7, both 
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of which have larger variations, were similar (Figure 6.2). The P(Fcur > Fmax) estimated 

using composite risk assessment suggested that when natural mortality was assumed to be 

0.2, the P(Fcur > Fmax) was about 70% to 80% for 1999; 8% to 25% for 2000, and 10% to 

33% for 2001 (Table 6.3). 

6.4 Discussion 

This study suggests that incorporating uncertainty of indicator reference point and 

BRP into risk assessment of fisheries is important, and may influence the estimation of 

overexploitation risk and determination of stock status. Ignoring uncertainty may lead to 

incorrect conclusions about the status of the stock. 

This study also suggests that the magnitude of the uncertainty in the parameters of the 

YPR model could influence the estimation ofP(Fcur > Fo.I), thus affecting the conclusion 

as to whether the fishery is overfished. Higher uncertainty in the model parameters 

resulted in higher uncertainty in the estimates ofFo.J. By comparing the results ofthe 

medium-, high-, and low-variation scenarios considered in this study, I found that large 

uncertainty of parameters could reduce P(Fcur > Fo.t) when ~ur > Fo.t, thus making it less 

likely to conclude that the stock was overfished (the case for 1999). I also found that 

large uncertainty of parameters would increase P(Fcur > Fo.t) when ~ur < Fo. 1 , making it 

more likely to conclude that the stock was overfished (the case for 2000). The uncertainty 

associated with current fishing mortality Fcur is important in determining the status of a 

fish stock. It could be readily predicted that P(Fcur > Fo.1) decreases with increasing 
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uncertainty in Fcur when ~ur > Fa. 1 and that P(Fcur > Fo.J) increases with increasing 

uncertainty in Fcur when ~ur <Fa.,. For example, ifl increase variations associated with 

Fcur from current CV of25%~ 30% to CV = 40%, for Scenario 1, P(Fcur >Fa. I) changed 

from 0.97 to 0.94 for 1999, and 0.38 to 0.41 for 2000, and 0.55 to 0.54 for 2001 , 

respectively (Table 6.4). To verify the above conclusion, the risk of ~ur > Fa., was 

calculated when both Fo.1 and Fcur followed normal distributions and had different CVs 

varying from 20% to 40% (Figure 6.3). The results were consistent with those derived for 

the cod fishery. In this study, I used Fcur from the tagging study. In many risk analyses, 

Fcur is estimated from sequential population analysis, in which situation Fcur is often over­

estimated due to retrospective problems (Bishop and Shelton, 1997; Shelton and Rice, 

2002). The consideration ofthis uncertainty should be the focus of future studies. 

The sensitivity analysis suggested that uncertainty in natural mortality was most 

important in determining the uncertainty ofFo.I. This study indicated that uncertainty in 

Fo.1 was less sensitive to uncertainty in other parameters. This result is consistent with 

previous studies (Chen and Wilson, 2002). Reliable estimation of natural mortality and 

its associated uncertainty is thus critical in assessing the status of a fishery. 

Quantification of uncertainty in life history and fishery parameters is an essential 

step for estimating uncertainty ofF0.1 and Fcur· Uncertainties can arise from the variation 

in the statistical estimation ofthe parameters and natural variability in the parameters 

among cohorts and geographic areas. However, it is unlikely that "correct" values can be 
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identified to define the uncertainty for the parameters. Sensitivity analysis through Monte 

Carlo simulation can help overcome this problem. In the simulation, different levels of 

uncertainty are considered for each parameter. The ranges of uncertainty for each 

parameter evaluated in the simulation were rather large, reflecting our efforts to cover all 

possible ranges of uncertainty within them. The comparison of results derived from 

different levels of uncertainty help us identify the sensitivity ofthe input parameters to the 

output reference point distribution and provide us with enough evidence in identifying 

impacts of uncertainty in reference points on the determination of the stock status and its 

possible management implications in decision making. In the situation of figure 6.3, 

when a risk of5% is used in a precautionary approach and when Fo.1 is used as the BRP, 

the possible fishing mortality used as the management target (i.e., future Fcur) will differ 

when CVs ofF cur and Fo.t were different. When CVs ofboth Fcur and Fo. 1 were between 

20% and 40%, the Fcur should be between (113 ~ 1/1.62) ofFo.t. Usually an estimate with 

CV of30% is often considered to be a good estimate in fish stock assessment (Walters, 

1998). A CV between 20% and 40% would be practical in fisheries. For a healthy 

fishery a target fishing mortality estimate with lower CVs assumed to both Fcur and F0.1 

can be used. For an overexploited fishery, a target fishing mortality estimate with higher 

CVs assumed to both Fcur and Fo.1 would be suggested. 

I suggest using the composite risk analysis method to assess the risk resulting from 

uncertainty in developing precautionary approaches and in managing the fisheries. A 

precautionary approach considering uncertainty in both management reference point and 



indicator reference point is needed to prevent overexploitation and to promote the 

recovery of the overexploited fisheries. 
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Table 6.1. Parameters and models with uncertainty considered in the Fo.1 and Fmax 

estimate, and the simulation scenarios included in the study. 

Scenarios Parameter Parameter value Standard error 

1 M 0.2 0.2 

medium-variation s m = 1.5;t50 = 3.4 0.2 

scenario (most realistic ~ w"' =44.0597; k=0.0423; 0.28 

scenario) t0=-0.9955; b =2.5093; 

D, d=4.0515; td50=2.5584 0.4 

2 M 0.2 0.4 

high-variation scenario s m = 1.5;t50 = 3.4 0.4 

~ See above 0.4 

D, See above 0.6 

3 M 0.2 0.1 

low-variation scenario s m = 1.5;t50 = 3.4 0.1 

~ See above 0.15 

D, See above 0.2 

4 M 0.2 0.2 

high selectivity s m = 1.5;t50 = 3.4 0.4 

coefficient variation ~ See above 0.28 

scenario 
D, See above 0.4 

5 M 0.2 0.2 

high growth-variation s m = 1.5;t50 = 3.4 0.2 
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scenario ~ See above 0.5 

Dt See above 0.4 

6 M 0.2 0.2 

high discarding- s m = 1.5;t50 = 3.4 0.2 

variation scenario ~ See above 0.28 

Dt See above 0.6 

7 M 0.2 0.4 

high M-variation s m = 1.5;t50 = 3.4 0.2 

scenario ~ See above 0.28 

Dt See above 0.4 

8 M 0.4 0.4 

high M scenario s m = 1.5;t50 = 3.4 0.2 

~ See above 0.28 

Dt See above 0.4 
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Table 6.2. Summary statistics for the estimated Fo.1 in the simulation study. 

percentiles 
Scenario mean median 

5th 95th 

0.1457 0.1400 0.1090 0.1980 

2 0.1659 0.1340 0.0940 0.3060 

3 0.1425 0.1410 0.1230 0.1670 

4 0.1485 0.1420 0.1090 0.2060 

5 0.1465 0.1380 0.1060 0.2160 

6 0.1400 0.1350 0.1050 0.1900 

7 0.1652 0.1380 0.0980 0.3080 

8 0.3432 0.3045 0.1880 0.6380 
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Table 6.3. Summary of the statistics of the estimated P(Fcur > Fo.I) and P(Fcur > Fmax). 

N(J.l, cr2) describe a normal distribution with mean of J.l and standard deviation of cr. 

Year Fcur Scenarios P(Fcur > Fo.I) P(F cur > F max) 

1999 N(0.30, 0.082) 1 0.97 0.73 

2 0.93 0.79 

3 0.98 0.75 

4 0.97 0.71 

5 0.97 0.77 

6 0.98 0.78 

7 0.92 0.74 

N(0.34, 0.092) 8 0.62 0.25 

2000 N(0.12, 0.032) 1 0.38 0.15 

2 0.45 0.25 

3 0.37 0.08 

4 0.38 0.12 

5 0.41 0.19 

6 0.44 0.14 

7 0.42 0.20 

N(0.13, 0.042) 8 0.10 0.14 

2001 N(0.14, 0.042) 1 0.55 0.19 

2 0.57 0.33 

3 0.57 0.10 

4 0.54 0.17 

5 0.57 0.25 

6 0.61 0.21 

7 0.54 0.27 

N(O.l6, 0.042) 8 0.13 0.14 
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Table 6.4. Estimated P(Fcur > Fo.I) when increased uncertainty with Fcur was used for the 

medium-variation scenario (i.e., Scenario 1, Table 6.1). cr 1 is the standard deviation of 

Fcur with lower uncertainty, which is the same as in Table 6.3. cr 2 is the standard 

deviation ofF cur with higher uncertainty. 

Year Fcur 
cr P(Fcur > Fo.J) 

1999 0.30 cr 1 =0.08 0.97 

cr 2 =0.12 0.94 

2000 0.12 cr 1 =0.03 0.38 

cr 2 =0.048 0.41 

2001 0.14 cr 1 =0.04 0.55 

cr 2 =0.056 0.54 
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Figure 6.1. Estimated pdf ofFo.1 for eight scenarios and pdf ofFcur in 1999, 2000 and 2001. S1 represents scenario 1, and so 

on. 
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Figure 6.2. Estimated pdf ofFmax for eight scenarios and pdf ofFcur in 1999, 2000 and 2001. S1 represents scenario 1, and so 

on. 
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Figure 6.3. Risk of Fcur > F0_1 when both F0_1 and Fcur follow normal distribution and have different CVs changed from 20% to 

40%. 
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CHAPTER 7: SUMMARY 

In this thesis I model uncertainties in stock-recruitment models, surplus production 

models and sequential age-structure population analysis by exploring their model error 

structures. The model error structures in those models were evaluated using generalized 

linear models which can deal with different error structures in the exponential family of 

probability distribution. The growth variations that may result from stock mixing were 

evaluated using a Monte Carlo simulation study. The impacts of sample size in 

subsampling catch on the observed length-at-age were evaluated through the simulation 

study. The total risk of overexploiting fisheries was quantified using a composite risk 

assessment method which includes uncertainties both from a management reference point 

and from an indicator reference point. 

7.1 Model error structure in stock-recruitment models 

The estimation ofSR relationship is perhaps one ofthe most difficult works in 

fisheries stock assessment. Chapter 2 describes the impact of model error structure on 

modeling stock-recruitment data. A Monte Carlo simulation-estimation approach was 

used to evaluate the impact of the assumption of error structure on SR modeling. Data 

was first generated using the SR Ricker, Cushing and Beverton-Holt models along with 

known parameters. While estimating parameters, the generalized linear model, which can 

readily deal with different error structures, was used. Departure of the estimated 

parameters from the true values was measured by the relative estimation bias (REB) and 
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root mean square error (RMSE). With the simulation-estimation Monte Carlo approach, 

the effect of model errors was examined. In addition, because the number of SR data is 

often small and outliers are likely to be present in the SR data, the role of sample size and 

outliers in identifying appropriate error structure in SR modeling was also evaluated in 

the simulation study. 

The results from the Monte Carlo simulation are encouraging and informative. The 

quality of SR parameter estimation, measured by estimation errors, can be influenced by 

the realism of error structure assumed in an estimation, number of SR data points, and 

number of outliers in modeling. A small number of SR data points and presence of 

outliers in SR data could increase the difficulty in identifying an appropriate error 

structure in modeling, which might lead to large biases in the SR parameter estimation. 

This study shows that generalized linear model methods can help identify an appropriate 

error distribution in SR modeling, leading to an improved estimation of parameters even 

when there are outliers and the number of SR data points is small. 

Based on the simulation results in Chapter 2, using a generalized linear model 

approach, I explored and identified the appropriate model error structure in modeling SR 

data for gadoid stocks in Chapter 3. The result suggests that the appropriate SR model 

error structure can be normal and/or lognormal, which is widely assumed in SR modeling, 

but it can be gamma and/or Poisson also. In modeling SR data for gadoid stocks, the 

Ricker model was found to be more sensitive to the assumption of model error 

distribution than the Cushing model. The lognormal and gamma distribution had a higher 
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probability to be the appropriate model error distribution. Cluster analyses and summary 

statistics of error distributions in SR modeling did not show a consistent pattern in the 

identification of an appropriate model error structure among species, geographic 

distributions and sample sizes. However, stocks distributed in semi-enclosed water areas 

were found to have a higher probability of having symmetrical error distributions, such as 

a normal distribution. A better understanding of the factors and mechanisms resulting in 

differences in the choice of appropriate model error distributions for different populations 

is needed in future research. These two chapters imply that it is important to identify 

appropriate model error structures in quantifying SR relationships, the generalized linear 

model could be used as a tool to explore the SR model error structure. 

7.2 Observation-model error structure in the surplus production model and 

population dynamic models 

Assumptions on observation-model error structure play an important role in the 

parameter estimation of fishing mortality and population size in the surplus production 

model and age-structured population models. Commonly used lognormal error structure, 

without testing for its appropriateness for a given set of data, may result in estimation 

biases. Chapter 4 developed a generalized linear model approach to diagnose the model 

error structure when using the production and the population dynamic models. With an 

acceptable model error structure, the quality of the parameter estimation will be 

improved, which will then further improve the stock assessment and management. 

7.3 Mixing among populations or stocks can result in large growth variations 



- 178-

A Monte Carlo simulation approach was used to explore the possibility of large 

growth variation resulting from large areas of migration and mixing among stocks of 

Atlantic Cod in Chapter 5. It addresses the question as to how observed variations in cod 

length-at-age can be influenced by stock mixing, and how a change in mixture rates may 

influence growth analyses. The 2J3KL and 3Ps cod stock growth parameters were used. 

The simulation includes some assumptions to simplify the simulation. Although some 

assumptions may not be realistic, such a study shows how the observed variations in 

growth can be explained by the hypothesis of mixing of fish of one population with 

another. The simulation study suggests that stock mixing can have great impacts on the 

growth modeling and stock assessment especially when the relative population 

composition varied greatly. The sample size effect on the estimation of length-at-age and 

length-at-age model parameters was also explored through a Monte Carlo simulation. 

The result suggests that a large sample size is needed in subsampling catch in order to 

clearly identify growth variations resulting from stock mixing. I suggest that stock 

mixing be incorporated into stock assessment models to improve the estimation of key 

fisheries parameters in stock assessment. 

7.4 The importance of considering uncertainty in management BRP estimate and in 

the indicator BRP 

Chapter 6 explored the uncertainty related to the BRP ofF0.1 and Fmax estimation. 

The first step was to explore the key parameters and models with uncertainties. The 

following parameters and models were considered: gear selectivity, natural mortality, 



- 179-

growth and discarding. The second step was to set up a Monte Carlo simulation approach 

used in estimating biological reference point F0.1 andFmax for the Atlantic cod fishery. 

The third step was to evaluate the sensitivities ofFo.I andFmax to the magnitudes of 

uncertainties in those parameters and models. The last step was to estimate the risk. The 

composite risk assessment method was used to evaluate the risk of overexploitation in the 

cod fishery, which considered the uncertainties in both the biological reference point and 

current fishing mortality. The result suggests that the uncertainty in estimation of BRP 

greatly influence the risk estimate, while the uncertainty in management BRP also greatly 

influence the risk estimate. This implies that in decision making the uncertainty in 

management BRP should be considered. 

My results suggested that the Fo.1 estimate was sensitive to natural mortality 

variations, but relatively robust to uncertainties in other parameters. I suggest using 

composite risk assessment in evaluating the status of the Atlantic cod fishery. A higher 

level of uncertainty was suggested when evaluating the fishery status and in future 

management BRP decision making for an exploited fishery. 

7.5 Further improving fisheries stock assessment by better quantifying uncertainty 

Life-history processes such as growth and mortality are pertinent to stock 

assessment and fishery management. A full understanding ofthese factors, appropriately 

modeling them and taking these factors into account of fisheries management is 

necessary. From this study I can see that natural mortality estimate is important in the 

Atlantic cod stock assessment. Considering that many fisheries stock assessments are 
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sensitive to variations in natural mortality and how little I know about reliability of 

estimated natural mortality, future research should focus on the evaluation of uncertainties 

in natural mortality and how they may be better quantified and evaluated. 

The effect of uncertainty arising from the spatial distributions and migrations needs 

to be further studied through simulation study based on practical fisheries. 

Availability of the uncertainty level of these life-history factors will further improve 

the stock assessment and fishery management. Because the variation of the life-history 

processes observed does not always covaries with the climate ocean variables and there 

are a large number of environmental variables, it is difficult to model those variations by 

including climate variables in fishery models. The commonly used ecosystem models 

also have the same problem. In this case, considering the levels of the uncertainty caused 

by the environmental changes and incorporate them into stock assessment will provide a 

better solution in stock assessment. 

In many cases, the information on uncertainty of the life-history parameters are not 

available. A sensitivity analysis ofthe responses of population dynamics to different 

levels of variability in parameters will help improve the understanding of the roles the 

uncertainty plays in stock assessment modeling. A risk assessment including 

uncertainties from different sources will lead to an improved risk analysis, and 

subsequently improved management. 
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Appendix 

Table 1A: Summary ofthe simulations when the model error distributions used in the 

GzLM analyses were the same as those used in simulating SR data. The Ricker model 

and the first set of data which had S values randomly drawn from 1000 to 10000 were 

used in the simulation. 

Model error Number of %of REB REB RMSE RMSE 

distribution in Observations simulations for for f3 for for f3 

simulating SR with In( a) (%) ln(a) (10-5) 

data homogeneous (%) 

residuals 

Normal 10 88.8 0.04 0.21 0.07 1.34 

20 90.3 0.12 0.53 0.05 0.90 

40 89.6 0.01 0.04 0.03 0.61 

Lognormal 10 88.6 0.19 0.29 0.45 10.44 

20 88.7 1.39 9.52 0.30 6.70 

40 89.5 0.22 0.77 0.20 4.72 
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Gamma 10 85.8 0.01 0.34 0.06 1.42 

20 83.1 0.02 0.06 0.04 0.94 

40 79.7 0.01 0.03 0.03 0.64 

Poisson 10 89.6 0.04 0.20 0.01 0.23 

20 89.6 0.004 0.01 0.01 0.15 

40 90.3 0.01 0.05 0.01 0.10 
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Table 2A: Summary of the simulations when the model error distributions used in the 

GzLM analyses were not the same as those used in simulating SR data. The Ricker 

model and the first set of data which had S values randomly drawn from 1000 to 10000 

were used in the simulation. 

Model error distribution Number of %of REB for REB RMSE for RMSE 

SR simulations ln(a.) for J3 ln(a.) for J3 
In InGzLM 

observations with (%) (%) (10"5) 
simulating 

homogeneous 
SRdata 

residuals 

Normal Lognormal 20 35.4 0.47 1.27 0.07 1.29 

40 8.8 1.1 3.79 0.05 0.95 

Gamma 20 35.8 0.22 0.86 0.06 1.27 

40 7.6 0.34 1.41 0.05 0.91 

Poisson 20 66.9 0.21 0.84 0.05 0.99 

40 48 0.13 0.58 0.04 0.68 

Lognormal Normal 20 52.9 6.72 17.07 0.44 9.10 

40 24.9 10.69 1.62 0.32 6.48 

Gamma 20 91.7 9.49 8.23 0.33 7.02 

40 91.9 11.45 0.66 0.25 5.05 

Poisson 20 78.4 9.74 6.82 0.35 7.36 

40 65.5 11.84 2.33 0.26 5.36 

Gamma Normal 20 62.2 0.04 0.09 0.05 1.04 



- 201-

40 33.5 0.08 0.34 0.04 0.74 

Lognormal 20 82.9 0.31 0.45 0.04 0.94 

40 78.3 0.31 0.49 0.03 0.64 

Poisson 20 84.7 0.01 0.06 0.04 0.93 

40 83.1 0.04 0.19 0.03 0.65 

Poisson Normal 20 78.3 0.01 0.03 0.01 0.16 

40 60.0 0.02 0.06 0.01 0.11 

Lognormal 20 70.5 O.Ql 0.03 0.01 0.17 

40 49.2 0.02 0.07 0.01 0.11 

Gamma 20 71.5 0.004 0.01 0.01 0.15 

40 50.5 O.Ql 0.04 0.01 0.11 
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Table 3A: Summary of the simulations when the Ricker model and the second set of data 

which had true S values of pink salmon were used in the simulation. 

Model error distribution %of REB for REB RMSE RMSE 

simulations ln(a) for~ for ln(a) for~ 
In InGzLM with (%) (%) (10'5) 

simulating homogeneous 
SRdata residuals 

Normal Normal 90.6 0.13 0.52 0.03 0.58 

Lognormal 33.8 0.59 1.93 0.04 0.93 

Gamma 38.3 0.01 0.08 0.04 0.92 

Poisson 68.3 0.10 0.41 0.03 0.64 

Lognormal Normal 82.7 14.22 15.32 0.32 7.52 

Lognormal 92.1 0.31 1.13 0.23 6.59 

Gamma 94.2 12.70 6.69 0.28 6.86 

Poisson 90.9 14.22 14.74 0.29 6.90 

Gamma Normal 88.7 0.10 0.47 0.04 0.93 

Lognormal 83.2 0.38 0.86 0.03 0.84 

Gamma 84.8 0.06 0.34 0.03 0.84 

Poisson 94.8 0.07 0.34 0.03 0.84 

Poisson Normal 94.1 0.03 0.15 0.01 0.13 

Lognormal 73.8 0.01 0.05 0.01 0.14 

Gamma 76.8 O.Ql 0.07 O.Ql 0.14 

Poisson 91.8 0.02 0.11 0.01 0.13 
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Table 4A: Summary of simulations when the model error distributions used in the 

GzLM analyses were the same as those used in simulating SR data. The Ricker model 

and the first set of data which had S values randomly drawn from 1000 to 10000 were 

used in the simulation. Sample size was 40. 

Model error Distribution %of %of REB REB RMSE RMSE 

distribution in that outliers data simulations for for 13 for for 13 

simulating SR follow being with ln(a) ln(a) (10"5) 

(%) 
data outliers homogeneous 

(%) 
residuals 

Normal Lognormal 10 80.5 1.39 0.34 0.11 2.34 

20 73.4 1.68 2.99 0.15 3.38 

40 60.5 4.42 1.37 0.22 4.68 

Lognormal Normal 10 90.1 1.53 7.04 0.19 4.49 

20 90.3 0.10 2.39 0.18 4.23 

40 89.4 0.65 2.15 0.16 3.66 

Ga Normal 10 71.7 0.08 0.52 0.03 0.66 

20 61.6 0.04 0.16 0.03 0.69 
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40 45.8 0.11 0.27 0.04 0.74 

Poisson Normal 10 84.0 0.04 0.21 0.02 0.23 

20 81.6 0.09 0.34 0.02 0.31 

40 74.2 0.03 0.13 0.02 0.44 
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Table SA: Summary of the simulations when the model error distributions used in the 

GzLM analyses were not the same as those used in simulating SR data. The Ricker 

model and the first set of data which had S values randomly drawn from 1 000 to 10000 

were used in the simulation. Sample size was 40. 

Model error distribution %of %of REB REB RMSEfor RMSE 

data simulations for for~ ln(a) for~ 
In InGzLM 

being with ln(a) (%) (10-5) 
simulating 

outliers homogeneous (%) 
SRdata 

residuals 

Normal Lognormal 10 68.1 0.42 1.62 0.08 1.73 

20 79.1 0.93 3.82 0.10 2.26 

Gamma 10 68.3 1.35 0.01 0.09 1.91 

20 76.9 2.14 1.43 0.11 2.58 

Poisson 10 82.0 1.51 0.69 0.09 1.98 

20 81.0 2.20 1.17 0.12 2.76 

Lognormal Normal 10 29.9 10.19 1.99 0.31 6.17 

20 37.6 8.14 0.64 0.28 5.87 

Gamma 10 93.2 11.49 6.34 0.24 4.72 

20 92.2 9.37 3.40 0.22 4.52 

Poisson 10 65.1 11.67 7.16 0.25 5.01 

20 71.8 9.48 4.00 0.24 4.83 

Gamma normal 10 39.4 0.10 0.18 0.03 0.72 
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20 49.4 0.02 0.04 0.03 0.72 

Lognormal 10 71.3 0.42 1.13 0.03 0.67 

20 60.6 0.44 1.00 0.03 0.71 

Poisson 10 85.2 0.02 0.12 0.03 0.64 

20 88.8 0.02 0.04 0.03 0.66 

Poisson Normal 10 78.6 0.03 0.19 0.01 0.22 

20 84.6 0.05 0.21 0.02 0.29 

Lognormal 10 62.2 0.05 0.05 0.02 0.30 

20 56.4 0.05 0.04 0.02 0.40 

Gamma 10 62.5 0.04 0.21 O.Ql 0.30 

20 56.9 0.12 0.47 0.02 0.40 
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Table 6A: Summary of the simulations when the model error distributions used in the 

GzLM analyses were the same as those used in simulating SR data. The Ricker model 

and the second set of data which had true S values of pink salmon were used in the 

simulation. 

Model error Distribution %of %of REB REB RMSE RMSE 

distribution in that outliers data simulations for for f3 for for f3 

simulating SR follow being with ln(a) (%) ln(a) (10"5) 

data outliers homogeneous (%) 

residuals 

Normal Lognormal 10 87.5 1.86 1.42 0.06 0.84 

20 77.2 1.15 1 7.22 0.26 7.49 

40 43.6 2.35 15.94 0.27 7.36 

Lognormal Normal 10 88.5 1.22 2.41 0.23 6.35 

20 81.6 0.47 0.52 0.17 4.03 

40 39.9 0.09 0.77 0.17 3.65 

Gamma Normal 10 84.0 0.10 0.58 0.03 0.84 

20 82.6 0.03 0.22 0.03 0.71 
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40 74.7 0.06 0.01 0.03 0.70 

Poisson Normal 10 93.1 0.04 0.14 0.01 0.17 

20 89.5 0.02 0.03 0.01 0.42 

40 66.3 0.08 0.44 0.02 0.42 
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Table 7 A: Summary of the simulations when the model error distributions used in the 

GzLM analyses were not the same as those used in simulating SR data. The Ricker 

model and the second set of data which had true S values of pink salmon were used in the 

simulation. 

Model error distribution %of %of REB REB RMSE RMSE 

data simulations for for p for for p 
In InGzLM 

being with ln(a) (%) ln(a) (10-5) 
simulating 

outliers homogeneous (%) 
SRdata 

residuals 

Normal Lognormal 10 93.2 0.62 2.25 0.05 1.66 

20 82.4 0.74 3.04 0.15 5.13 

Gamma 10 93.4 0.20 8.16 0.06 1.95 

20 81.0 0.54 15.72 0.15 5.22 

Poisson 10 91.5 0.94 2.43 0.05 1.24 

20 79.9 0.62 16.02 0.21 6.47 

Lognormal Normal 10 92.8 13.44 18.29 0.33 7.97 

20 94.3 14.75 33.32 0.21 2.95 

Gamma 10 90.3 14.12 19.44 0.28 6.64 

20 84.3 12.43 21.71 0.23 4.54 

Poisson 10 94.4 14.46 21.64 0.29 7.11 

20 94.4 14.19 31.06 0.21 3.48 

Gamma Normal 10 90.9 0.15 0.85 0.04 0.94 
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20 93.6 0.05 0.32 0.03 0.58 

Lognormal 10 82.9 0.21 0.04 0.03 0.84 

20 80.3 0.29 0.40 0.03 0.70 

Poisson 10 93.3 0.15 0.84 0.03 0.85 

20 95.1 0.05 0.32 0.03 0.58 

Poisson Normal 10 87.0 0.04 0.14 0.01 0.15 

20 84.2 0.03 0.01 0.02 0.49 

Lognormal 10 94.8 0.06 0.10 O.Ql 0.21 

20 95.0 O.Ql 0.003 O.Ql 0.35 

Gamma 10 95.3 0.04 0.14 O.Ql 0.21 

20 94.8 O.Ql 0.06 0.01 0.35 
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Table 8A: Summary of the simulations when the model error distributions used in the 

GzLM analyses were the same as those used in simulating SR data. The Beverton-Holt 

model and the first set of data which had S values randomly drawn from 1000 to 1 0000 

were used in the simulation. 

Model error Number of %of REB REB RMSE RMSE 

distribution in Observations simulations for for 13 for for 13 

simulating SR with ln(a) (%) ln(a) (1 o-5) 

data homogeneous (%) 

residuals 

Normal 10 77.1 0.31 0.38 0.09 2.43 

20 78.1 0.21 1.68 0.06 1.68 

40 81.1 0.07 0.59 0.04 1.10 

Lognormal 10 79.7 0.15 0.41 0.07 0.09 

20 82.4 5.43 1.35 0.06 0.08 

40 89.2 5.06 1.32 0.04 0.07 

Gamma 10 74.6 0.04 1.92 0.08 2.16 

20 70.8 0.05 0.82 0.05 1.45 
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40 70.2 0.08 0.42 0.04 0.99 

Poisson 10 74.6 0.03 0.23 0.01 0.37 

20 79.1 0.01 0.07 0.01 0.25 

40 79.9 0.003 0.03 0.01 0.16 
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Table 9A: Summary of the simulations when the model error distributions used in the 

GzLM analyses were not the same as those used in simulating SR data. The Beverton-

Holt model and the first set of data which had S values randomly drawn from 1000 to 

10000 were used in the simulation. 

Model error distribution Number of %of REB for REB RMSE for RMSE 

SR simulations ln(a) for~ ln(a) for~ 
In InGzLM 

observations with (%) (%) (10-5) 
simulating 

homogeneous 
SRdata 

residuals 

Normal Lognormal 20 23.8 5.43 1.35 0.06 0.08 

40 15.2 5.43 1.35 0.06 0.08 

Gamma 20 24.6 0.09 1.61 0.08 2.02 

40 3.8 0.14 1.28 0.05 1.35 

Poisson 20 53.4 0.20 1.60 0.06 1.59 

40 34.4 0.12 0.93 0.04 1.05 

Lognormal Normal 20 29.9 12.98 69.23 0.45 27.95 

40 10.2 13.39 36.23 0.32 13.02 

Gamma 20 59.2 15.20 73.00 0.41 24.85 

40 61.4 14.47 39.01 0.30 11.84 

Poisson 20 66.3 15.01 71.85 0.37 24.97 

40 49.1 14.47 39.01 0.29 13.13 

Gamma Normal 20 38.7 0.12 1.12 0.05 1.51 
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40 16.7 0.04 0.19 0.04 1.01 

Lognormal 20 37.9 15.13 4.15 0.16 0.98 

40 15.7 10.29 2.78 0.14 0.67 

Poisson 20 75.0 0.12 1.15 0.05 1.46 

40 68.6 0.07 0.35 0.04 0.98 

Poisson Normal 20 57.2 0.02 0.12 0.01 0.26 

40 36.1 0.003 0.02 0.01 0.18 

Lognormal 20 60.0 0.003 0.13 0.06 0.18 

40 35.6 0.01 0.02 0.01 0.19 

Gamma 20 52.8 0.03 0.15 0.02 0.27 

40 37.3 0.001 0.01 0.01 0.18 
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Table lOA: Summary ofthe simulations when the Beverton-Holt model and the second 

set of data which had trueS values of pink salmon were used in the simulation. 

Model error distribution %of REB for REB RMSE RMSEfor 

simulations ln(a) for ~ for ln(a) ~ (10-5) 
In InGzLM 

with (%) (%) 
simulating 

homogeneous 
SRdata 

residuals 

Normal Normal 81.7 0.02 1.13 0.03 1.19 

Lognormal 30.5 0.05 1.35 0.05 1.59 

Gamma 31.1 0.05 1.41 0.05 1.58 

Poisson 57.0 0.05 1.03 0.04 1.10 

Lognormal Normal 33.5 14.70 103.94 0.44 36.76 

Lognormal 89.7 13.48 101.35 0.35 30.81 

Gamma 86.1 14.52 109.10 0.42 31.78 

Poisson 82.6 19.92 109.16 0.43 31.32 

Gamma Normal 37.9 0.10 0.25 0.04 1.56 

Lognormal 36.0 0.08 0.27 0.04 1.45 

Gamma 72.7 0.01 0.29 0.04 1.40 

Poisson 85.0 0.05 0.63 0.04 1.41 

Poisson Normal 51.2 0.04 0.22 0.01 0.26 

Lognormal 52.4 0.03 0.19 0.01 0.25 



Gamma 

Poisson 

56.9 

81.1 

0.03 

0.02 

0.18 

0.15 

0.01 

0.01 
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0.24 

0.21 
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Table llA: Summary of simulations when the model error distributions used in the 

GzLM analyses were the same as those used in simulating SR data. The Beverton-Holt 

model and the first set of data which had S values randomly drawn from 1000 to 10000 

were used in the simulation. Sample size was 40. 

Model error Distribution %of %of REB REB RMSE RMSE 

distribution that outliers data simulations for for for for f3 

in simulating follow being with ln(a) f3 ln(a) (10-5) 

SRdata outliers homogeneous 
(%) (%) 

residuals 

Normal Lognormal 10 74.8 1.32 3.69 0.11 3.45 

20 53.7 1.82 3.72 0.14 4.32 

40 40.3 4.91 11.81 0.20 6.43 

Lognormal Normal 10 84.2 12.37 30.62 0.21 8.83 

20 81.0 11.54 26.43 0.27 8.56 

40 80.7 5.74 6.35 0.22 6.78 

Gamma Normal 10 69.2 0.07 0.13 0.04 1.03 

20 47.9 0.02 0.28 0.04 1.09 
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40 41.9 0.10 1.27 0.04 1.21 

Poisson Normal 10 70.5 0.01 0.06 0.01 0.38 

20 66.8 0.06 0.23 0.02 0.49 

40 62.6 0.03 0.25 0.03 0.69 
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Table 12A: Summary of the simulations when the model error distributions used in the 

GzLM analyses were not the same as those used in simulating SR data. The Beverton-

Holt model and the first set of data which had S values randomly drawn from 1000 to 

10000 were used in the simulation. Sample size was 40. 

Model error distribution %of %of REB REB RMSEfor RMSE 

data simulations for for 13 ln(a) for 13 
In InGzLM 

being with ln(a) (%) (10-5) 
simulating 

outliers homogeneous (%) 
SRdata 

residuals 

Normal Lognormal 10 69.4 0.13 3.69 0.11 3.42 

20 56.7 1.97 5.42 0.14 4.30 

Gamma 10 54.3 1.27 3.71 0.10 3.37 

20 65.9 2.27 5.88 0.13 4.24 

Poisson 10 70.8 1.51 1.90 0.02 4.92 

20 69.2 2.30 3.35 0.03 5.51 

Lognormal Normal 10 15.9 12.33 31.71 0.30 9.19 

20 19.7 11.01 26.80 0.28 8.84 

Gamma 10 83.1 13.09 34.80 0.29 8.95 

20 81.0 11.64 28.93 0.27 8.24 

Poisson 10 53.2 13.25 30.86 0.21 11.19 

20 57.7 11.87 31.18 0.27 9.11 

Gamma normal 10 22.8 0.09 0.01 0.04 1.03 
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20 26.7 0.07 0.03 0.04 1.04 

Lognormal 10 50.9 0.07 0.14 0.04 1.03 

20 48.2 0.02 0.28 0.04 1.01 

Poisson 10 76.2 0.04 0.26 0.03 0.99 

20 77.6 0.02 0.20 0.04 1.01 

Poisson Normal 10 66.8 0.02 0.10 0.02 0.40 

20 71.4 0.05 0.21 0.02 0.51 

Lognormal 10 64.3 0.02 0.06 0.02 0.47 

20 71.4 0.05 0.21 0.02 0.61 

Gamma 10 49.9 O.ol 0.06 0.02 0.48 

20 66.8 0.06 0.23 0.02 0.49 
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Table 13A: Summary of the simulations when the model error distributions used in the 

GzLM analyses were the same as those used in simulating SR data. The Beverton-Holt 

model and the second set of data which had true S values of pink salmon were used in the 

simulation. 

Model Distribution %of %of REB REB RMSE RMSE 

error that outliers data simulations for for for for 13 

distribution follow being with ln(a) 13 ln(a) (1 o-5) 

in outliers homogeneous (%) (%) 

simulating residuals 

SRdata 

Normal Lognormal 10 59.8 0.91 7.57 0.12 4.81 

20 34.5 1.56 12.93 0.17 6.94 

40 22.1 41.3 25.15 0.23 10.38 

Lognormal Normal 10 72 3.51 14.77 0.09 2.11 

20 70.3 4.90 16.84 0.10 2.45 

40 50.1 6.10 22.27 0.20 6.39 

Gamma Normal 10 72.9 0.05 1.09 0.04 1.32 
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20 70.4 0.09 0.16 0.04 1.17 

40 61.0 0.21 1.31 0.04 1.18 

Poisson Normal 10 78.7 0.02 0.17 0.01 0.28 

20 70.1 0.004 0.30 0.02 0.67 

40 47.3 0.11 0.82 0.02 0.70 
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Table 14A: Summary of the simulations when the model error distributions used in the 

GzLM analyses were not the same as those used in simulating SR data. The Beverton­

Holt model and the second set of data which had true S values of pink salmon were used 

in the simulation. 

Model error distribution %of %of REB REB RMSE RMSE 

data simulations for for 13 for for 13 
In InGzLM 

being with ln(a) (%) ln(a) (10'5) 

simulating 
outliers homogeneous (%) 

SRdata 
residuals 

Nonnal Lognonnal 10 54.8 1.54 1.95 0.07 1.60 

20 36.2 0.75 11.77 0.18 6.84 

Gamma 10 82.7 0.27 3.13 0.08 3.15 

20 76.3 0.46 6.69 0.16 6.79 

Poisson 10 73.8 0.74 0.97 0.08 2.81 

20 66.6 0.05 7.91 0.24 9.25 

Lognonnal Nonnal 10 44.5 4.72 21.05 0.16 6.06 

20 52.1 3.86 15.32 0.15 5.16 

Gamma 10 82.3 4.93 22.21 0.15 5.65 

20 70.2 4.48 17.71 0.13 4.16 

Poisson 10 87.2 5.53 27.62 0.17 6.23 

20 87.2 4.81 17.59 0.11 3.13 

Gamma Nonnal 10 39.3 0.001 0.79 0.04 1.42 
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20 61.5 0.17 1.21 0.04 1.46 

Lognormal 10 37.9 0.07 1.32 0.04 1.35 

20 62.1 0.26 1.44 0.03 0.95 

Poisson 10 85.4 0.09 1.36 0.04 1.36 

20 87.6 0.28 1.60 0.03 1.00 

Poisson Normal 10 31.7 0.04 0.33 0.01 0.51 

20 36.1 0.05 0.52 0.02 0.64 

Lognormal 10 56.2 O.ol 0.18 O.ol 0.39 

20 60.4 0.04 0.59 0.02 0.81 

Gamma 10 79.2 O.ol 0.14 O.Ql 0.35 

20 80.1 0.06 0.53 O.Ql 0.52 










