

Information Extraction on Biological, Organic and

Inorganic Materials Using Image Processing

Techniques

St. John's

by

©Muhammad Jehangir

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the

requirements for the degree of·

Master of Science

Computational Science Programme

Memorial University of Newfoundland

May, 2006

Newfoundland

1+1 Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de !'edition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre reference
ISBN: 978-0-494-19370-9
Our file Notre reference
ISBN: 978-0-494-19370-9

L'auteur a accorde une licence non exclusive
permettant a Ia Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par !'Internet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

L'auteur conserve Ia propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni Ia these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

Conformement a Ia loi canadienne
sur Ia protection de Ia vie privee,
quelques formulaires secondaires
ant ete enleves de cette these.

Bien que ces formulaires
aient inclus dans Ia pagination,
il n'y aura aucun contenu manquant.

Abstract

Information extraction from images is essential to research in many science fac

ulties today, from computer science to bioinformatics and medicine. My research

focuses on the analysis of structural changes in biological, organic and inorganic ma

terials under a variety of conditions. Therefore, I process images from before and

after an event (such as the addition of ions) to quantify exactly how much change is

occurring in the material.

My major focus is to write code to automate finding objects/structures (in an

image) and calculating their sizes, heights, orientations, and distributions. The data

comes from atomic force microscope measurements, which produce multi-layered two

dimensional arrays of data (i.e. sets of three-dimensional images). The image process

ing involves noise reduction, background leveling, object identification, and then the

calculation and display of statistical information. The code used to automate these

processes and to present the features to the user is written in the IgorPro Scripting

Languange.

The processing of an image proceeds iteratively, where an initial identification of

objects/structures in an image leads to a definition of background and noise, which

can then be adjusted to better identify the objects. Background leveling can be

done vertically as well as horizontally, as per the requirements of a specific image.

Distribution (spacing) of objects is calculated in different ways for isotropic versus

non-isotropic arrangement of objects. The information about the objects in the im

ages is presented in comparison graphs and summary tables.

ii

Acknowledgements

Thanks to Dr. Y. Zhao and N. Zhou (Department of Chemistry), Dr. J. Robin

son and M. Hayley (Department of Biochemistry), Dr. J. Shirokoff and Sanjeev

Vasisht (Engineering), Dr. A. Yethiraj (Physics and Physical Oceanography), and

K. Soper and M. Sun (Merschrod group, Chemistry) for samples and/ or images. I

also acknowledge financial support from the Natural Science and Engineering Resouce

Council (Canada) and the Canada Foundation for Innovation.

iii

Contents

Abstract ii

Acknowledgements iii

List of Figures vii

1 Introduction 1

2 An Approach towards Segmentation of Images with 3-D Information 8

2.1 Introduction . . . 8

2.2 Image Processing 9

Layer Extraction

Noise Removal .

Leveling Background

Object Identification .

2.2.1

2.2.2

2.2.3

2.2.4

2.2.5

2.2.6

Object distribution in the image .

Recording Results .

3 Image Processing

lV

10

11

12

12

14

16

18

301 Layer Extraction

302 Noise Removal . .

3.201 Order Filters

30202 Mean filters 0

30203 Fast Fourier Transformation Filter (FFT Filter)

303 Flattening Image

3.4 Particle Analysis

3.401 Minimal distance calculation between neighboring

objects 0

3.402 Average distances between structures in images

305 Extension for non-Igor Images

4 Results and Discussion

401 Toposome

402 Polymers 0

403 Collagen Microfibrils

4.4 Limitations of the System

5 Conclusions and Future Direction

Bibliography

A User Manual

Ao1 Introduction 0

A. 2 Installation

Ao3 Usage 0 0 0

v

18

20

20

22

23

24

29

34

35

37

39

39

42

44

46

49

52

55

55

57

57

A.4 Generate Image Statistics 58

A.4.1 Flattening 58

A.4.2 Layer Extraction 58

A.4.3 Noise Removal 60

A.4.4 Image Statistics . 62

A.5 Apply Image Leveling Algorithm 65

A.6 Calculate average distances between structures in an image . 69

A.7 Import an Image to Igor (SEM Image) 69

A.7.1 Set Image Scale (SEM Images) 73

A.7.2 Manage External Images (SEM images) . 74

A.7.3 Invert Layer Data (SEM images only) .. 74

A.7.4 Make Image Square (SEM images only) . 74

A.8 Feedback: 76

B Code 77

Vl

List of Figures

1.1 (a) Black Box View of System and (b) White box view of system 2

1.2 System functional flow diagram 4

1.3 Two views of an AFM image; (a) shows the 3-D view of image of

polymer on mica and (b) shows the height layer of same image.This

image @Ming Sun, 2005. Used with permission. 5

2.1 Shows the image of polymer on mica, where the height trace represent

heights of objects, the amplitude trace represents error in feedback

mechanism, and phase trace represents elasticity of sample. This image

@Erika Merschrod, 2005. Used with permission. 10

2.2 A fast-fourier transform (FFT) filter of image (a) removes high fre

quency noise and results in image (b). This image @Ming Sun, 2005.

Used with permission. 11

2. 3 A Horizontal Flattening of image (a) (gold particles on a silicon surface)

levels the background and results in image (b). This image @Erika

Merschrod, 2005. Used with permission. 13

vii

2.4 A Vertical Flattening of toposome (a type of protein) [13) image (a)

levels the background and results in image (b). This image @Ming

Sun, 2005. Used with permission.

2.5 Particle analysis of image showing polymer grown on mica substrate.

13

This image @Erika Merschrod, 2005. Used with permission. 14

2.6 An image of a collagen pattern showing user defined input line a and

one of the generated perpendicular lines b used to find average distri

bution/distances of anisotropic structures. This image @Ming Sun,

2005. Used with permission. 15

2.7 Graphical representation of the object statistics in the image from Fig-

ure 2.4 (showing polymer grown on mica substrate). (a) objects' areas

aginst heights (b) objects' heights histogram. 16

3.1 Copying Mask from Image (a) (friction map) to Image (b) (height map)

identifies objects (such as that indicated by the arrow in (b)) which

would not be seen in a mask generated directly from(b). Images repre

sent gold particles on a silicon surface. This image @Erika Merschrod,

2005. Used with permission. 19

3.2 Moving window median filter example, inspired from image in thesis

of Jason Waltman, Wittenberg University, 2001. 21

3.3 Applying median filters on image (a) an image with salt-pepper noise,

removes salt-pepper noise and results in image (b). This image @Ming

Sun, 2005. Used with permission.

Vlll

22

3.4 Applying mean filters on image (a) an image with uniform noise, re

moves noise and results in image (b). This image @Ming Sun, 2005.

Used with permission.

3.5 A fast-fourier transform (FFT) filter of image (a) removes high fre

quency noise and results in image (b). This image @Ming Sun, 2005.

23

Used with permission. 24

3.6 Application of FFT on the image of the collagen fibers where section

with title "FFT" represents frequency , "Result" section shows the

image after transformation, and "Difference" section represents the

difference between the original and final images. The section of fre

quency that is filtered out is shown boxed with the arrow directing to

difference image. 25

3. 7 A Horizontal Flattening of image (a) (gold particles on a silicon surface)

levels the background and results in image (b). This image @Erika

Merschrod, 2005. Used with permission. {Equivalent to Figure 2.2.) 27

3.8 A demonstration of image leveling on image data. Table 1 represents

origional Image data, Vector 1 represents user selected image line can-

didate for image leveling, and Table 2 shows normalized image data . 28

3.9 A Vertical Flattening of toposome (a type of protein) [13] image (a)

levels the background and results in image (b). This image @Ming

Sun, 2005. Used with permission. (Equivalent to Figure 2.3.) 28

3.10 Particle analysis of image showing polymer grown on mica substrate.

This image @Erika Merschrod, 2005. Used with permission. {Equiva-

lent to Figure 2.4.) . 30

ix

3.11 The output table shown in the screen capture here lists object counters

(points) against their heights in meters for the image in Figure 3.11 . 33

3.12 Collagen image having red line showing user input angle line and sea

green lines are perpendicular lines to user input angled line. This image

@Ming Sun, 2005. Used with permission. 36

3.13 SEM images a, shows raw SEM image and b, shows same images scalled

and ready for processing. This image @Anand Yethiraj, 2005. Used

with permission. 38

4.1 Toposome Images a)without Calcium solution b) with Calcium solu-

tion. This image @Ming Sun, 2005. Used with permission. 40

4.2 (a) Toposome image with higher calcium concentration, (b) zooming

view to show clear view of horseshoes, irregular and regular structures.

This image @Ming Sun, 2005. Used with permission. 42

4.3 Result of even polymerization shown in image (a) and uneven poly

merization in image (b) of film on mica substrate. This image @Erika

Merschrod, 2005. Used with permission. 43

4.4 Graphical representation of Image (showing polymer grown on mica

substrate) statistical results a) objects areas aginst heights b) objects

height histogram.

4.5 Statistical summary for the image in Figure 4.4

X

44

45

4.6 Collagen micro fibril image. The red and sea green lines are user de

fined lines drawn to calculate the distribution of collagen structures in

sample. This image @Ming Sun, 2005. Used with permission. (Equiv-

alent to Figure 3.13.) . 46

4. 7 Images of Collagen at different concentration with calcium. This image

@Ming Sun, 2005. Used with permission. 47

4.8 (a) Gold particle on silicon surface with noise lying on top of particles.

(b) The same image after applying FFT (Fast Fourier Transformation)

filter. This image @Erika Merschrod, 2005. Used with permission. 48

A.l Srvices exposed and created by user define procedure. 56

A.2 Flattening the image before layer extraction 59

A.3 Screen capture of Layer Extraction services for desired image . 60

A.4 Screen capture shows different filters that can be applied on Layer data

according to the requirement of image 61

A.5 Screen capture showing particle analysis process 62

A.6 Screen capture showing the services for generating Image statistics . 63

A. 7 A screen capture showing the graphical representation of information

about the processed image . 64

A.8 A screen capture showing statistical information in tabular format 65

A.9 Screen capture illustrates how to applying leveling on the image layer 66

A.lO Screen capture shows the result after applying horizontal leveling 67

A.ll Screen capture shows the result of applying vertical leveling . . . 68

XI

A.12 Shows how to calculate the average distances of structures for some

image . 70

A.l3 Screen capture shows how to load an external (SEM) image 71

A.14 Screen capture shows how to load an external image and save it so that

it can be visible in MFP-3D software. 72

A.15 A screen capture illustrating how to set the scale for a non-Igor (or

SEM) image . 73

A.16 A screen capture showing how to invert an image so that it will bring

out objects from the background . 75

xii

Chapter 1

Introduction

Computer Imaging can be defined as the acquisition, visualization and processing

of information by computer. Image processing is computer imaging wherein the

application involves a human being in the visual loop (images are to be examined

and acted upon by humans). Some of the major challenges in image processing are

the separation of image data from noise, background from objects of interest, and the

processing of image data to extract desired information.

The application of imaging and its processing is a key area of research in the fields

of medicine, security systems, biochemistry, geography, engineering and physics [1].

Medical imaging is one of the fastest growing areas in medical science. In recent

times most of the diagnosis includes: imaging of the damaged tissues and processing

those images to know about the magnitude of damage and the appropriate response

to it is determined [8]. Security is one of the major concerns in our rapidly changing

world. Image processing is used in most secure systems, as in the form of biometric

authentication, like authorized entry to some secure building. This security system

1

·a: .---S-ta_rt: ___)-------lil'l Image Aq.;sltlan and

sample Material Sampling Matetlel Proce:sl:ng Syilem . fh!J'Itesentlng rea~b

b

Figure 1.1: (a) Black Box View of System and (b) White box view of system

normally uses a fingerprint, retina or face recognition system to permit authorized

entry (9]. In geography, images of earth structures below the surface are analyzed for

finding sources of oil or any possible changes occurring inthe structure of earth crust,

i.e. that can lead to earth quakes (10]. These are a few applications of imaging and

image processing, but the scope of image processing is not limited to the mentioned

fields.

Image processing includes image acquisition, image compression, image enhance-

ment and image understanding [1]. Image Acquisition is the process of obtaining

images of various objects (such as human being, animal, tree, location, car or any

tangible object) (1, 2). The scope of this research deals with images of proteins, poly-

mers, and metal nanoparticles under a variety of chemical and physical conditions.

These images are obtained using Atomic Force Microscopy (AFM) (3, 4], a technique

used to image nano-scale materials. My approach to image processing is illustrated

in the schematics of Figure 1.1.

2

Image Compression is reducing the massive amount of data that represents an

image. This is done by removing unnecessary or redundant data from the image. In

our research, the image is compressed by selecting the appropriate layer of data from

a multilayer image.

Image Enhancement involves improving a selected image visually. Enhancement

methods are problem specific. For example, an enhancement method used to improve

a satellite image's quality may not be suitable for the enhancement of medical images

[5,6). Our research uses noise filters (such as mean filters, median filters, and Fourier

transform filters) and background leveling as enhancement tools. Background leveling

levels the uneven background of an image to avoid losing small objects and helps in

finding the true heights of objects.

Image Interpretation is the transformation of image information into a format

understandable by humans. For example if an image is processed to find a human

face, then extracting the face from an image and matching it with the faces from

databases will be its interpretation [7).

In this thesis my research is focused on developing routines to automate and facil

itate the processing of biochemical images to find and represent the size/distribution

of objects/structures (in an image) in summary tables or graphs, as outlined in Fig

ure 1.2. The image processing starts with imaging the sample (proteins in various

solutions) by AFM. Our goal is to find structures and structural changes occurring in

proteins and the reasons for these changes. The summary about structures in the im

age, represented in the form of tables or graphs that tells us about changes occurring

and its causes.

One of the key features of this research is that we compress images as our first

3

Sample
Material

Yes

Complement
La er information

Image
copymask

t----Yes-~~
Leveling Background

Vertical/Horizontal z
0

Partical Analysis
or Objects identification

Extraction and
interpretation of results

-Images

Applying Filters
mean/rank filter or

FFT

Figure 1.2: System functional flow diagram

4

Layer Extraction
System

step. That leads to the processing of the minimum required data for the latter phases

of the process. To improve the time efficiency of our system, we filter the image infor

mation from three layers of data, where each layer is a 3-D (three-dimensional) image

represented by a 2-D array of data values, as shown in Figure 1.3. We convert the 3-D

image into a 2-D binary array, which provides us information about structures (or ob

jects) in the images. The next step is to make the image ready for structures/object

identification. This step involves applying filters in the case of noise and leveling

image background if it is not even. An algorithm (steps to identify objects in the

image) is then used to identify the structures/objects in it and information about

these structures/objects is represented in the form of tables and comparison graphs.

The future of this research is to simulate the changes and to process images that are

obtained from imaging instruments other than atomic force microscopy.

b1.0
OJI 6 a " o.&

2

i
0 ~

1),4

-2

0.2 ·4

-6

O.D
O.D 0.2 0.~ 0.6 O.B 1.0

um

Figure 1.3: Two views of an AFM image; (a) shows the 3-D view of image of polymer

on mica and (b) shows the height layer of same image.This image @Ming Sun, 2005.

Used with permission.

5

The thesis is divided into five chapters dealing with various issues and function

alities of the system where my code serves two purposes:

1. to expose already available services (by WaveMetrics [11]) in a user friendly

fashion; and

2. to add desired services which are not already available.

The list of services provided or exposed by Igor (WaveMetrics [11]) are Layer extrac

tion, Noise filters (i.e. mean filters, median filters, FFT filters) and particle analysis.

The services implemented in this research are copying image mask, leveling of un

even background (i.e. vertical and horizontal leveling), calculating objects heights,

calculating the average distances between objects/structures (for isotropic and non

isotropic cases), recording and representation of results, and extension of the system

to non-Igor images.

The second chapter, "System Functionality", gives a brief overview of the whole

system, i.e. features, limitations and applications of the system. Chapter 3, "Image

processing" , corresponds to details of the functionality: what types of services are

provided, how these services work, and their advantages and limitations. This chapter

also discusses the algorithms used for providing different services during the processing

of an image. Chapter 4, "Results", discusses the image analysis for a series of case

studies in biochemistry and material sciences. The results tell us exactly what types of

changes occur in the structure and distribution of materials if combined with any other

material or behavior of materials at different temperatures. This chapter also includes

details about the processing of SEM images and records statistical and graphical

results. Last but not least, Chapter 5, "Conclusion", deals with system advantages

6

and efficiencies and also discusses the limitation of different services provided. This

part of the thesis also suggests future directions for research.

Each chapter includes numerous references and examples for the materials pre

sented. The material is presented in a conceptual and application-oriented manner so

that it gives an immediate understanding of how each of the topics fits into the overall

system. The appendices of the thesis include key word explanations, a manual of the

services, various sets of processed images, pseudo algorithm of services provided, and

fully commented code of services.

7

Chapter 2

An Approach towards

Segmentation of Images with 3-D

Information

2.1 Introduction

Image segmentation is one of the focuses of computer vision and image processing.

Segmentation is to distinguish between the objects of interest and "the rest." This

latter group is also referred to as the background. Segmentation leads to information

extraction from an image. This information extraction from the images is utilized in

various fields of science and engineering. [1, 2} For example, segmentation and object

extraction are widely used in security systems based on finger print, retina or face

recognition. In medicine, molecular imaging makes it possible to reveal the activity

of different molecules inside the body at different scales.

8

We apply image processing and segmentation to the field of biomaterials. In our

experiments, we create images of surface of materials as proteins and enzymes us

ing AFM (atomic force microscopy) [3, 4]. We use AFM to create an image of the

surface of materials containing nano-scale objects and to observe how these materi

als/surfaces respond to different solutions and different environments. We analyze

and process these images having nano-scale objects and observe the changes at dif

ferent conditions. One of the key aspects of our image processing is that we process

two-dimensional arrays of data and extract three-dimensional information. We use

Igor [11] as the image processing language as it is also used to acquire the data.

The approach we use for image segmentation and processing is targeted for images

scanned through AFM. However, the routines we develop can be used for images

scanned using SEM (scanning electron microscopy).

2.2 Image Processing

The process of segmentation and image processing can be further divided into several

steps:

• layer extraction (with option of maintaining inter-layer correlation),

• noise removal,

• background leveling,

• object identification, and

• presentation and recording of results

9

2.2.1 Layer Extraction

The first step in processing the scanned image is to extract the layer of interest for

further processing. The AFM images are of three layer format as shown in Figure

2.1, but the information of our interest can be extracted from only one layer in most

of the cases. So we extract the favourable layer that contain information of our

interest from image and process it for information extraction to save processing time.

This technique helps in speeding up the image processing and information extraction

process. Correlation between layers can be maintained where necessary to apply

image information from one layer to another, such as applying boundaries defined by

friction to the object height information.

Height Trace Amplitude Trace Phase Trace

Figure 2.1: Shows the image of polymer on mica, where the height trace represent

heights of objects, the amplitude trace represents error in feedback mechanism, and

phase trace represents elasticity of sample. This image @Erika Merschrod, 2005.

Used with permission.

10

2.2.2 Noise Removal

Generally, several noise sources can affect the AFM image (i.e. environmental noise,

roughness of the support surface [12]). The noise that most commonly affects an

AFM image is due to a single source that leads to distributed spots. This noise can

be classified as impulsive, and can be filtered out using a median filter. Sometimes

the noises are uniformly distributed in the whole image and can be eliminated using

a mean filter. There are cases where regular noise is superimposed over the image

pixel lines; we handle it by removing the superimposed noise through a Fast Fourier

Transformation (FFT) filter. Figure 2.2 shows the same image of collagen fibers but

the superimposed noise in Figure 2.2a is removed in 2.2b using an FFT filter.

lU IU

a b
8 6

6 6

:1.

4 4

2 2

0 0

0 2 4 6 8 1C 0 2 4 6 8 10

Figure 2.2: A fast-fourier transform (FFT) filter of image (a) removes high frequency

noise and results in image (b). This image @Ming Sun, 2005. Used with permission.

11

2.2.3 Leveling Background

One of the focuses of image segmentation and processing is to find the true heights

of objects in an image. Unfortunately, most of the AFM images have uneven back

grounds [12]. This uneven background leads to inaccurate objects'/structures' iden

tification, for example missing small objects in object identification.

Figure 2.3a shows that the central part of the background of the image is high

(brightness represents height), so it will make a huge object in the center of the image.

We need a uniform background to obtain true heights of the objects in an image. To

level the background of our image, we apply our image background leveling algorithm.

This algorithm levels the background as per requirement of the image (vertically or

horizontally). The algorithm selects a pixel line in the image for leveling, and then

applies the differences of that pixel line and average of that pixel line to the whole

image matrix. Our results show that the leveling background algorithm leads to good

results in object identification and height calculation. Figure 2.4 shows the vertical

flattening of the first image into the second image and similarly in Figure 2.3 the

results of horizontal flattening can be seen.

2.2.4 Object Identification

Once the noise is filtered and the background is leveled the image is ready for object

identification. The object identification service can be provided with a minimum area

for an object as a threshold (filter the objects with lower area than provided threshold

area). The area is measured in pixels. Particle analysis is accomplished by first

converting the data from its original format into a binary representation where the

12

OOJ OOJ

a b
600

10 600

5

400 e 400 c
0

-5
200 200

-10

0 0

0 200 .400 600 BOO u 200 .400 600 BOC
nm nm

Figure 2.3: A Horizontal Flattening of image (a) (gold particles on a silicon surface)

levels the background and results in image (b). This image @Erika Merschrod, 2005.

Used with permission.

1.2

1.0

0.8

O.ti

0.4

0.2

0.0

0;0 0.2 0.4 0.6 0.8 1.0 1,2 H .0.2 0.4 0.6 0.11 1.0 1.2 H
urn urn

Figure 2.4: A Vertical Flattening of toposome (a type of protein) [13] image (a) levels

the background and results in image (b). This image @Ming Sun, 2005. Used with

permission.

13

particle is designated by zero and the background by any non-zero value [11, 14]. The

algorithm searches for the first pixel or voxel that belongs to a particle by considering

the difference of background and objects' pixel point values, then grows the particle

from that seed while keeping count of the area, perimeter and count of pixels or voxels

in the particle. Figure 2.5 shows the outlines of objects with red boundary lines. The

image represents a film polymerized on a mica substrate.

16

14 8

6

4

E 12 2
::::1.

0 E
1:

10 -2

-4

-6
8 -8

6 8 10 12 14

Figure 2.5: Particle analysis of image showing polymer grown on mica substrate. This

image @Erika Merschrod, 2005. Used with permission.

2.2.5 Object distribution in the image

One of our research requirements is to find how objects and structures are distributed

in sample. To serve this purpose I wrote an algorithm for average distance find-

ing. The algorithm tells us about the average distances between neighboring ob-

jects/structures. A special case of this algorithm is for anisotropic objects such as the

14

pattern shown in Figure 2.6. In this case, users of the system must select the image

to find the objects distribution in it. The algorithm is then provided with an angle

representing a line on the image. The algorithm draw lines perpendicular to each

point of the angled line and calculates distances between objects on each perpendic-

ular line. The algorithm can also optimize the user-provided line to provide more

accurate distances. The result of the algorithm provides us with average distance

between every two neighboring objects/structures. Figure 2.6 shows the input line

3.0

2.5

1.0

2.0
0.5

E 1.5 ::1.

0.0 E
c:

1.0
-0.5

0.5
-1.0

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

~m

Figure 2.6: An image of a collagen pattern showing user defined input line a and one

of the generated perpendicular lines b used to find average distribution/ distances of

anisotropic structures. This image @Ming Sun, 2005. Used with permission.

provided by the user via a selected angle (45° in this case) as line a, with the line

marked b representing one of the perpendicular lines.

15

2.2.6 Recording Results

The service of object identification outlines the objects in the AFM images. The

next step is to calculate the desired statistics about the image and record them. The

statistics about processed images, such as their objects' heights, sizes, and orientation,

are recorded in graphical and textual formats. Sample graphical output is shown in

Figure 2.7. A summary text file is also saved showing the image statistics as the

number of objects in the image, their sizes, heights, rectangularity, standard deviation

and kurtosis.

+ o all
25 6
:!)

'\'
Sl 15 4
"' 10

5 2

0 + +
D

zo 40 aJ Ill
x1d15

Figure 2.7: Graphical representation of the object statistics in the image from Figure

2.5 (showing polymer grown on mica substrate). (a) objects' areas aginst heights (b)

objects' heights histogram.

The graphs in Figure 2. 7 show that the distribution of polymers grown on a mica

substrate is mostly uniform [15]. A quick glance at the Figure 2.7a also clearly tells

us that three crosses with low heights and high areas must be scan line noise. Hence

we can say these graphs tell us about noises and erroneous data present in images.

16

The text summary file contains information about the processed image: number of

objects in image, average height and area, maximum and minimum height and area,

standard deviation, skewness, and kurtosis of the objects' heights and areas.

17

Chapter 3

Image Processing

One of the major challenges for image processing is the reduction of data. Images

normally have an enormous amount of data, from kilobytes to megabytes. In most

cases much of this information is not required to solve an image processing problem.

The first step of our processing determines exactly what information is necessary.

3.1 Layer Extraction

The layer extraction mechanism is a procedure of compressing the image for process

ing. The AFM images we use in our research represent the surface of materials, which

are of the three-layer format [3]. These layers represent height, error in the feedback

mechanism (which highlights edges) and elasticity/friction of the sample (16,17]. Each

of the layers is an image, and the information we are trying to extract from the image

are its objects' /structures' heights, area and distribution [3, 16-18].

All the information of interest usually can be extracted from the height layer

only. Therefore, we reduce the image data into data representing the height layer of

18

the image. This is a simple process that can be performed by selecting the available

service of layer extraction from the service menu for a specific image. Layer extraction

speeds up the image processing and analysis process by about ten times.

However, sometimes the information in the height layer is not complete, and

cannot be used to extract accurate information about the image. In such situations

a "copy mask" service is used to complement the missing information of the height

layer from any other layer. In the example given in Figure 3.1, the object boundaries

are copied from an auxiliary layer (friction layer) and are pasted on top of the layer

with data of interest (height layer). In the height layer in Figure 3.1b, the dark part

of the image represents small heights and light regions corresponds to larger heights.

600

400

200

0

0 200 400 600 800

Figure 3.1: Copying Mask from Image (a) (friction map) to Image (b) (height map)

identifies objects (such as that indicated by the arrow in (b)) which would not be

seen in a mask generated directly from(b). Images represent gold particles on a

silicon surface. This image @Erika Merschrod, 2005. Used with permission.

19

Figure 3.1a, has clear objects, but Figure 3.1b is the layer favorable for processing.

The copy mask service saves the boundaries of objects in Figure 3.1a and pastes those

boundaries on the image (layer) in Figure 3.1b. Otherwise, small objects like the one

with the arrow in Figure 3.1b would not appear in height mask. The copy mask

service is provided in MFP-3D software (by wavematrics) but the idea of copying

mask and pasting it on top of other layers to complement missing information was

adopted during the research.

3.2 Noise Removal

Noise is any undesired information that contaminates an image. In typical images the

noises can be categorized as Gaussian ("normal"), uniform, or salt-pepper ("impulse")

noises. The sources of noise can be the object of focus and/or analog to digital

conversion. The major sources of noise in AFM images are environmental noise and

roughness of the support surface [12]. In our imaging process the support surface

is very uniform so our images normally have environmental noises only. The image

processing tool provides noise filtering services to get rid of the noise. The filters most

often used for noise removal in this research are order filters (such as median filters),

mean filters, and Fast Fourier Transformation filters [19].

3.2.1 Order Filters

These filters are based on the order statistic of an image. This filtering technique

arranges all the pixels in sequential order, based on their value (mostly gray scale).

The most useful of the order filters is median filter. The median filter starts with

20

a window of size N from the top left of the image and arranges the pixels within,

by bringing the median valued pixels to the center of the window [20]. The window

moves from left to right and goes to the second row after reaching the end of the first

row. Figure 3.2 gives an idea of the working of median filter for N = 3.

Output Image This shows the resultant
image with sorted values.

24 29

37

Figure 3.2: Moving window median filter example, inspired from image in thesis of

Jason Waltman, Wittenberg University, 2001.

The median filter is effective in removing salt-pepper noises (black and white spots

on an image). Figure 3.3 shows the application of the median filter on the image with

21

salt-pepper noise.

o -". .. 1.6

a
12

1.4 • _
I

I ..
1.0

1.4

12 1.0

1.0 - •• •
1.0 0.5 0.5 ...

"
..

• • • -
§.

0.0 E c

-0.5

§. 0.8 0.8
0.0 ~

0.6 0.6
-0.5

0.4
-1.0

0..4 • -1.0 . ' . 02 02 •
0.0 0.0

0.0 0.2 0.4 0.6 O.B 1.0 1.2 1.4 1.6 0.0 0.2 0.4 0.6 0.8 1 D 12 1.4 1.6
~m ~m

Figure 3.3: Applying median filters on image (a) an image with salt-pepper noise,

removes salt-pepper noise and results in image (b). This image @Ming Sun, 2005.

Used with permission.

3.2.2 Mean filters

The mean filter is applied when the images have uniformly distributed noises [20].

The filter requires a window size N, and then the filter finds out some form of average

within an NxN window, using the sliding window concept to process the whole image.

The most basic of the mean filters is the arithmetic mean filter which finds the average

of pixel values Xi in the window:

22

EIJO EIJO a b
600 '' &JO

E ~0
" 0 E 0 E

" "
~ ~0

-1 -1
200 200

-2 -2

0 0

0 200 ~ &lO BOO
nm nm

Figure 3.4: Applying mean filters on image (a) an image with uniform noise, removes

noise and results in image (b). This image @Ming Sun, 2005. Used with permission.

3.2.3 Fast Fourier Transformation Filter (FFT Filter)

The Fourier Transformation maps image data into frequency space through trans-

formation equations. In our research we apply the commonly used "Fast Fourier

Transformation" (FFT)) [19] on images to filter high frequency noises when periodic

noise in the image is superimposed over the image pixel lines. We handle it by re-

moving particular frequency ranges. Our image data (pixel points) numbers 2n (e.g.

256x256, 512x512) and the FFT works efficiently with 2n data points.

N-l i27rkn

Fast Fourier Transformation I [t1] [n] = Lf[tl] [k] e ~
i=O

The FFT is applied on each column of original image, where I is the resultant

transformed column for the original image column f. The images in Figure 3.5 show

the same collagen fibers but the superimposed noise in figure 3.5a is removed in 3.5b

using Fast Fourier Transformation [11, 21].

23

lU IU

a b
8 8

6 6

4 4

2 2

0 0

0 2 4 6 8 1(0 2 4 6 8 10

Figure 3.5: A fast-fourier transform (FFT) filter of image (a) removes high frequency

noise and results in image (b). This image @Ming Sun, 2005. Used with permission.

3.3 Flattening Image

One of our research goals is to find the exact information about structures in images,

i.e. their heights, areas and distribution. To find the accurate heights, areas and

distribution of structures/objects in an image, an even background is highly desirable

[16). Unluckily most of our images have the problem of an uneven background.

Results have shown that there are cases when small objects fade out as compared

to the high part of uneven backgrounds and in some cases the ups/heights of the

background become objects or parts of objects. To get rid of this issue we have a

service (algorithm) of background flattening in our working system. The service asks

the user of the system to provide the type of algorithm suitable for the image at

hand (vertical flattening algorithm or horizontal flattening algorithm). The user then

inputs the best pixel line to provide the guidance for the algorithm. The algorithm

24

Figure 3.6: Application of FFT on the image of the collagen fibers where section with

title "FFT" represents frequency , "Result" section shows the image after transfor

mation, and "Difference" section represents the difference between the original and

final images. The section of frequency that is filtered out is shown boxed with the

arrow directing to difference image.

25

averages out unwanted heights and depths according to the user desired mechanism.

The step by step working of the flattening algorithm is as follows:

1. The user selects an image for flattening

2. The user provides the information about the type of flattening required for the

current image (Vertical flattening / Horizontal flattening).

3. The user selects a pixel line in the selected image to guide the algorithm

4. The algorithm:

(a) finds the average of the selected pixel line (row or column of image matrix),

(b) calculates a vector representing the difference of average to the actual

values of the selected pixel line (avoiding exception values), and

(c) applies this difference value (average - pixel values) vector to the whole

image data vertically or horizontally as required.

Our observations tell us that this algorithm leads to reliable results of true heights,

areas and distribution of objects.

Figure 3.7a (equivalent to Figure 2.3) shows an image with an uneven background

as there is a dark band (representing depth in the image) horizontally between 400

and 500 micrometers. Figure 3.7b shows the same image but the background is leveled

by applying the horizontal background leveling algorithm.

Analogous to the horizontal flattening in Figure 3. 7, Figure 3.9 (equivalent to

Figure 2.4) shows the vertical flattening of the first image into the second image.

Without this flattening, the central part of the background of the image in Figure

26

IDl

b
10 600

5

~ 400
0

-5
200

-10

0

0 200 400 600 BOO u 200 400 600 BOC
nm nm

Figure 3.7: A Horizontal Flattening of image (a) (gold particles on a silicon surface)

levels the background and results in image (b). This image @Erika Merschrod, 2005.

Used with permission. (Equivalent to Figure 2.3.)

3.7a is high (brightness represents height), so it will make a huge object in the center

of the image.

An illustration with a simple (or small) matrix follows. As shown in Figure 3.8

Table 1 represents the image matrix, and the third column of image data is selected

by the user as ideal for horizontal leveling. As higher values represent objects, we can

clearly see there is an object or part of an object in our selected line. We have to skip

the data points belonging to the objects and use the previous or next values instead.

Then we calculate the difference of the average of the selected column and store it

in Vector 1. Applying Vector 1 (adding to matrix vertically) to the image (Table 1)

results in Table 2 (image with uniform background).

The algorithm is highly customized and can process huge amounts of data in

minimal time. For example an image with data size 1028 x 1028 (image data matrix

27

11 13 12 11 12 9 11 10 9 10

13 7 198 7 10 11 5 196 5 8

11 10 12 9 10 9 8 10 7 8

7 5 6 8 6 11 9 10 12 10

9 10 8 9 7 11 12 10 11 9

Table 1: Vector 2: Table 2:
Original Image Data Normalization Vector Image Data After Normalization

Figure 3.8: A demonstration of image leveling on image data. Table 1 represents

origional Image data, Vector 1 represents user selected image line candidate for image

leveling, and Table 2 shows normalized image data

0.0 0.2 0.4 0.6 0.8 1.0 1.2 '1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
urn urn

Figure 3.9: A Vertical Flattening oftoposome (a type of protein) [13] image (a) levels

the background and results in image (b). This image @Ming Sun, 2005. Used with

permission. {Equivalent to Figure 2.4.)

28

size) can be processed and flattened in a fraction of second (0.03 sec "processing

speed") on a computer with an average speed processor. Furthermore, the algorithm

is effective and leads to help in identifying true structures (the heights, areas and

distribution of objects in an image) that were difficult to find without this algorithm.

3.4 Particle Analysis

Once the image is refined by removing all anomalies and/or noises it is ready for

finding objects or structures. Particle analysis is accomplished by first converting the

image data from its original format into a binary representation, where the particle is

designated by zero and the background by any non-zero value [11, 14]. The algorithm

searches for the first pixel that belongs to a particle and then grows the particle

from that seed while keeping count of the area, perimeter and count of pixels in the

particle. The margin of error in object boudaries identification is approximatly 5 nm.

The first particle pixel is calculated as follows:

1. Select an arbitrary threshold value to differentiate between background and

objects of interest.

2. Create mask with object pixels set to 1 and background pixels set to 0.

3. Apply mask to obtain a flattened background.

4. Check correlation between images before and after mask, with optimal correla-

. d fi d image x mask 1 twn e ne as . ~ .
~mage

5. Adjust the mask based on correlation feedback and repeat from step 1 untill

correlation is approximately equal to 1.

29

If you use additional flags the algorithm will compute additional quantities for

each pixel that belong to the particle [11]. The particle analysis service provides the

user with an interface to input the threshold for filtering out unwanted objects. The

user can provide a minimum area (in term of pixels) to filter out the objects with

areas less than provided the threshold value. The objects/structures exceeding the

threshold value found in the image are numbered starting from the bottom left corner

of the image. Figure 3.10 (equivalent to Figure 2.5) shows the outlines of objects with

red boundary lines. The image represents a film polymerized on a mica substrate [15].

16

14 8

6

4

E 12 2
::J.

0 E c

10 -2

-4

-6
8 -8

6 8 10 12 14

Figure 3.10: Particle analysis of image showing polymer grown on mica substrate.

This image @Erika Merschrod, 2005. Used with permission. {Equivalent to Figure

2.5.)

Once objects are identified and marked with object counters, the following values

are calculated for each object.

1. Object area: the area (in pixels) for each particle as the number of pixels

30

inscribed in an object

2. Object perimeter: the perimeter (in pixels) for each particle. The perimeter

calculation involves estimates for 45° edge that results in no-integer values.

3. Object circularity: the circularity is the ratio of the square of the perimeter to

(4 x 1r x object area). This value approaches unity (one) for a perfect circle.

4. Object rectangularity: the rectangularity is the ratio of the area of the particle

to the area of the inscribing (non-rotated) rectangle. The ratio is 1r /4 for a

perfect circular object and unity for a non-rotated rectangle.

5. The standard deviation, skewness and kurtosis of object areas and/or heights

are calculated according to following formulae:

where

Standard Deviation a_ V V
1 L (Yi- Vavg) 2

npnts -1

1 Vnpnts-1 [(}i _ Y)] 3

Skewness- V
1

L
npnts- a

i=O

1 Vnpnts-1 [(Y. _ Y)] 4

Kurtosis - V """' ~ - 3
npnts -1 ~ a ,=0

Vnpnts: number of objects/structures.

Vavg: average of Y values. Where Y can be objects heights or areas

Standard Deviation: standard deviation of Y values

One of the desired results of our research is to calculate the height of each object.

If we use the binary image it is not possible to calculate the heights of the objects,

31

so we process the original image data to find the highest point of each object in the

image. In the original image data the pixel values of objects are positive values and

the background of the image consists of negative pixel values [11]. Also, the bigger

positive values represent higher parts of objects rather than smaller positive values.

The algorithm devised to find the height of objects follows the same route for finding

objects as that of the object marker i.e. it identifies objects and marks them with a

number. The pseudo code for the algorithm calculating the heights/peaks of objects

is as follows.

1. Start from bottom left of an image and move right searching for positive values.

2. When a positive value is encountered, the system checks if the positive value is

higher than the threshold value for the previous object identification algorithm.

3. If the identified value belongs to an object/structure, increment the object

counter.

4. Move in the direction of higher values either top, right or top right (45 ° from

top).

5. Stop where the value is maximum from its next and previous values.

6. Write this value against the object counter as its peak value/height of the object.

7. Skip the positive value of this object and move right.

8. When a background pixel value (negative pixel value) is reached, move right

and repeat the process from step 2.

32

9. When the end of an image is reached on the right side, the routine moves up

by one pixel line and starts from left to move right and repeat the process from

step 2.

10. Repeat from step 2 until the end of the image is reached.

This algorithm is fast and takes about 0.03 seconds to calculate heights of objects

in an image with more than a hundred objects. The loops are managed effectively

and are broken with a break statement on reaching the height for an object to avoid

unnecessary iteration of loops. After applying this algorithm we have a summary

table with the object counter and its height for a certain image.

ROCO

Point heightVector

14 1 . 7 5407 e-081
··································1·5· ··················1··:·57·1·5·1··~·~·6iil
.................................. 1.6 .. ··················1··:·74·2·i2·;~·68 .. i
··································1·:;-· ··················1·:·71"3ci2·~-~6s·!
.................................. 1.8"" 1.:"?588"6·~·~·68""!
··································1·9·· 1-:"7"1"29"3·~·~·68""!
··································20"· ··················1·:·aa·9:2"2·~·~·6s .. l

::::::::::::::::::::::::::::::::::~j:: ::::::::::::::::::1::;:?.9:?.~~:~:~:9~:!
22 1.84214e-08!

::::::::::::::::::::::::::::::::::?.~: ::::::::::::::::::1:;:~9:~!~:~:~:g~::1
24 1.62546e-08!

Figure 3.11: The output table shown in the screen capture here lists object counters

(points) against their heights in meters for the image in Figure 3.10

33

Another feature of particle analysis is to find the distribution of objects. To see

the distribution of the objects our system has two services:

1. Minimal distance calculation between neighboring objects

2. Average distances between structures in images

Our images normally have one of two different types of structures/objects. The first

are regular or irregular circle-shaped objects (as shown in Figure 3.1and 3.11). The

second are rod or rope like structures (as shown in Figure 3.12). The first service of

distance calculation between neighboring objects is applied on images having circle

like objects. Similarly, the service of average distance calculation is applied when

dealing with the images having rod or rope like structures.

3.4.1 Minimal distance calculation between neighboring

objects

This algorithm tells us how the objects are distributed in the image. The result

of this algorithm is the average distance, the minimal distance, and the distances

between any two neighboring objects. The result in this algorithm is calculated as

the displacement between neighboring peaks. The pseudo algorithm for this service

is as follows:

1. Start from bottom left of the image and search for object peak.

2. If a peak is encountered initialize the distance counter with zero.

3. Move right and search next peak and increment distance counter for every non

peak object pixel point or background pixel point.

34

4. If there is no background point between two peaks consider the peak with higher

positive value as peak and adjust distance counter accordingly.

5. Repeat step 3 until reaching next peak.

6. On reaching second peak save the distance counter value in distance summary

table and initialize counter with zero and go to step 3.

7. If right end of image is reached go to one level up.

8. Repeat from step 2, until the end (top right) of image is reached.

The result of this algorithm is a summary table with information about objects dis

tribution.

3.4.2 Average distances between structures in images

This algorithm calculates the distances between the structures (rod or rope like struc

tures) in AFM images. In this service the user provides an angle and the system draws

a line with the user input angle from right-bottom of the image. Then the system

draws perpendicular lines to the user defined line. The system then calculates the

distances between structures on each perpendicular line and takes its average.

The result of this algorithm is average and minimal distances between structures

for current image. The distance is separation between the peaks of structures. The

pseudo algorithm for this service is as following:

1. User inputs an angle to draw a line from right-bottom of the image

2. The system draws lines perpendicular on the user input line

35

3.0

2.5
1.0

2.0
0.5

E 1.5 :::1.
0.0 E

c:

1.0
-0.5

0.5
-1.0

0.0

OD 0.5 1.0 1.5 2.0 25 3D
~m

Figure 3.12: Collagen image having red line showing user input angle line and sea

green lines are perpendicular lines to user input angled line. This image @Ming Sun,

2005. Used with permission.

3. The system starts to find objects on perpendicular draw line starting from top-

left of top-right according to distribution of lines

4. If a structure is found on perpendicular line find and record its distances

5. Go to next perpendicular line below processed

6. Go to step 4, until the right bottom or left bottom of image is reached

7. Calculate the average of recorded distances between structures

This algorithm tells us exactly how structures are distributed in some images.

We can see the effect of external factors on some material by imaging material and

then applying the external factor (such as temperature change, adding some chemical

solution) on the same material and image it again. If we look at the distribution

36

before and after change we can easily say how objects behave they converge, diverge,

grow or shrink because of change. Furthermore, when a user provides the system

with some angle (i.e. 30 °), the system calculates the distribution of structures for a

range of [input 0 +2, input 0 -2] (28-32°) and the results show what angle gives more

accurate results for distribution of structures.

3.5 Extension for non-Igor Images

Our system was designed to process Igor images but it has the ability to process

specific SEM (Scanning Electron Microscopy) images with minimal interaction from

the user. The first step is to import the image to Igor-MFP 3D and then ask the user

to set the scale for the image. The user of the system provides the size of one pixel

for the SEM image he/she wants to process. The system then converts the image

dimension to 2n x 2n dimension. Now the image can be treated as an AFM image,

and be processed to find the areas of objects/structures in the image.

First of all an image is imported to Igor environment and scaled as shown in

Figure 3.13 b. Then we can now process it, like Igor native images as explained in

previous sections.

37

15
«<I

50
300

e
0 lii z

lllO

·50
100

100 200 300 «<I 500
m

Figure 3.13: SEM images a, shows raw SEM image and b, shows same images scalled

and ready for processing. This image @Anand Yethiraj, 2005. Used with permission.

38

Chapter 4

Results and Discussion

Our research focuses on automating the analysis of physical changes occurring in a

variety of proteins and polymers. We record statistical and graphical information

of the sample material before and after the change. By comparing statistical data

and graphical information, we deduce the exact amount of change (in size, shape,

distribution and/ or aspect ratio) occurring in the sample material. Furthermore, we

discuss the structure of different sample materials in a variety of chemical compounds.

The type of materials and their detailed structural analysis are given below.

4.1 Toposome

In this section we present the results of an analysis of calcium binding to toposome.

Toposome is generally found in the cytoplasm of the sea urchin egg and embryo and

is thought to repair damage in the plasma membrane [22]. In Figure 4.1 we image

the protein toposome, and then add calcium to the same sample, and image it again.

The statistical results of surface images (as in Figure 4.1) of (4.3x1Q-06 mg/ml

39

1.2

1.5 4
6

1.0

2
0.8 2

1D
0 0

0.6
-2

-2
0.4

0.5 -4

-4 -6
0.2

0.0 0.0

0.0 0.5 1D 1.5 2.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
~m ~m

Figure 4.1: Toposome Images a)without Calcium solution b) with Calcium solution.

This image @Ming Sun, 2005. Used with permission.

concentration) toposome in lOOj.tM calcium solution (Figure 4.1b) and without the

calcium solution (Figure 4.1a) show that in calcium solution the toposome aggregates

significantly, perhaps as a repair mechanism for the egg. The average area of objects

in calcium solution increased by an amount 7.19x10-16 m2 (or 719 nm2) (about 28%),

that is from 2.542x10-15 m2 (or 2542 nm2) to 3.261x10-15 m2 (or 3261 n m2). On

the other hand, the effect on height is small as the increase in the average height is

approximately by 5%, which is from 4.6x10-9 m (or 4.6 nm) to 4.8x10-9 m (or 4.8

nm).

The number of particles in the higher concentrated calcium solution is smaller

so that it appears that particles aggregate laterally to make bigger particles. Also,

a smaller increase in height shows that particles do not aggregate on top of other

particles. Furthermore, the rectangularity of the objects is increased by 12.23% in

calcium solution. Rectangularity is the ratio of the area of the particle to the area of

40

the inscribing rectangle. This suggests aggregation resulting from a structural (shape)

change in the protein.

Results of this experiment leads to the observation that toposome undergoes

structural changes by adding the mentioned concentration of calcium. The uncer

tanities/errors in area and height calculation will be due to error in the selection of

threshold value for the selection of object pixel and background pixel. Our observa

tion tells us that different concentrations of calcium lead to different types of changes.

According to J. J. Robinson (22], with low concentrations of calcium the toposome

undergoes a secondary structural change which facilitates protein binding to mem

branes. As increasing amounts of calcium bind, the toposome undergoes a change in

tertiary structure which helps this protein to cause or drive membrane-membrane in

teractions. These interactions are required for a number of biological processes during

development.

The Figure 4.2 is the same toposome sample as in Figure 4.1 but with a higher

concentration of calcium (500J.LM concentration). As is clear from the image, the

higher concentration of calcium introduced a great amount of change in structure

and distribution of toposome [23]. The toposome objects adopted different type of

shapes, e.g. circular, rectangular and horse shoe types. Our system is unable to tell

us about the exact amount and type of changes occurring due to the higher calcium

concentration because the structures in the image adopt a variety of shapes and it is

difficult to characterize the smaller objects in a field of larger ones.

41

12

1.0

[0.8

OS

0.2

0.0

0.0 0.2 O.A OS 0.8 1.0 1.2 U 1.8

0.5

0.0

..0..5

1.0 1.1 t.2 1.3 u t5
~m

Figure 4.2: (a) Toposome image with higher calcium concentration, (b) zooming view

to show clear view of horseshoes, irregular and regular structures. This image @Ming

Sun, 2005. Used with permission.

4.2 Polymers

The growth of polymer on a mica substrate is the focus of the polymer discussion

and results [24]. After growing a polymer film on a mica substrate, the sample is

imaged using AFM. Observation of graphical and numerical results of Figure 4.3a

tells us that polymer growth on the mica substrate is quite uniform. The image on

the right, Figure 4.3b, shows some uneven polymerization on a larger scale possibly

due to local variation in polymer film thickness and evaporation rate. Below we show

the statistical details for the image on the left.

The statistical graphs in Figure 4.4 left and right show that the distribution of

polymer nano-particles grown on a mica substrate is mostly uniform with a tight

bimodal distribution.

42

~
6

:20

•
2 10

0 E
c:

-2
·10 .,
-20 ..s

pm pm

Figure 4.3: Result of even polymerization shown in image (a) and uneven polymer-

ization in image (b) of film on mica substrate. This image @Erika Merschrod, 2005.

Used with permission.

Polymer particles with areas of more than 5.0x10-14m2 (or 50000 n m2) could be

quite high and should certainly be non-zero. Hence these graphs isolate noise and

erroneous data present in the images. Also, the graph tells us that polymers on a

mica substrate grow taller with increase in their area i.e. particles with area in a

range of 0-4.0 xl0-14m2 (or 0-40000 nm2) have a height of 5-20x10-09m (or 5-20 n

m) but when the area is 5.0-6.0x10-14m2 (or 50000-60000 n m2) the object's height

ranges 28-34x 10-09m (or 28-34nm). So the growth in area and height of polymers on

mica substrate is directly proportional. A quick glance at the Figure 4.4 also clearly

tells us about outliers in data. Marked by the circle are three particles with a large

area but very small height, indicators of scan-line noise.

The statistical summary file lays out statistical information in tabular form. As

the table in Figure 4.5 shows, the object growth for the polymer sample is uniform.

The average area appears to be the midpoint between maximum and minimum area

43

a3)
25

20

-~ 15
)<

10
en
l: 5
C)

'Q; D
J:

20

Areas

0 5 10 15 20
X10"9

Height Histogram

Figure 4.4: Graphical representation of Image (showing polymer grown on mica sub-

strate) statistical results a) objects areas aginst heights b) objects height histogram.

objects. The table also shows that the heights of the objects is mostly uniform, the

maximum height of any object being very close to the average heights.

4.3 Collagen Microfibrils

Collagen is one of the most abundant proteins in animals' bodies, and collagen fibrils

are the most important tensile reinforcing element in animals' tissues [25]. Among

more than 20 different types of monomers, Type I collagen is the most abundant

one found in animals and is also a focus of research [25, 26]. The size and shape of

the fibrils are important to determine tissues' functions since the hierarchical spatial

arrangement of collagen fibrils can dominate the mechanical and physical properties

of tissues. In our research we study the shape and distribution of collagen micro

fibrils.

From Figure 4.6, it is obvious that collagen makes rope-like structures. The above

44

Figure 4.5: Statistical summary for the image in Figure 4.4

image is from a collagen solution of 2 mg/ml concentration. To find the exact spa

tial distribution of these fibers in the sample, we calculated the average distances of

neighboring structures. For the image in Figure 4.6, the average distance between

neighboring structures is 8.8x10-08m (88 nm). The average distances help us cal

culate the structure and structural changes at a different solution and for different

concentration of collagen.

The images in Figure 4. 7 show that collagen at higher concentration grows more

structures (not taller structures) than at low concentration. So the distribution of

structures of collagens can be controlled by increasing or decreasing the concentration

of collagen in the sample solution used for experimenting. The average distance

between neighboring structures for image 4. 7 a is 4. 65 x 10-07 m (or 465 nm). When the

concentration was increased from 0.3 mg/ml to 1 mg/ml the average distance between

neighboring structures reduced to 1.29x1Q-07m (or 129 nm) and for concentration 3

45

l.ll

2.5

2JJ

E 1.5 :0.

~

1.0

0.5

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
~m

Figure 4.6: Collagen micro fibril image. The red and sea green lines are user defined

lines drawn to calculate the distribution of collagen structures in sample. This image

@Ming Sun, 2005. Used with permission. (Equivalent to Figure 3.12.)

mg/ml as shown in image 4.7c, the average distance was 8.6xl0-08m (or 86 nm).

4.4 Limitations of the System

Our system is capable of handling and processing a variety of AFM images. However,

during our experimentation we were unable to process images of the gold sample

with a noise superimposed over the objects. The nature of noise superimposed over

particles is different than previously mentioned noises, as it is a signal of noise su-

perimposed on top of objects. We have objects of different heights, so in case of

applying a threshold on height to get rid of the noise, that will either cut the tops

from taller objects or it will leave noise on top of objects with smaller heights. For

example, we tried to filter the high frequency noise using Fourier transformation but

46

11- 4C. I.U l., .. %." 11
1ft

Image of CoHagen sample with 0.3
mglml concentration

fJ.t ti IJ U 1t 2$ U ...
Image of Collagen sample with 1.0 1
mg/ml concentration

3 ".1 ::: ..
Image of Collagen sample with 3.0
mglml concentration

•.J

:.) ~

.J

Figure 4.7: Images of Collagen at different concentration with calcium. This image

@Ming Sun, 2005. Used with permission.

the transformation left us with a distorted image as shown in Figure 4.8b.

In future we can design specific filters for the problem in hand to get rid of this

type of noise. For example, we could ask the user about maximum height (threshold

value) of objects/structures in the image and then set all the pixel values higher than

user defined threshold to threshold values.

47

02.0 t).a

1.5 15
100 100

!ill fill

l 1.0
e 1:0 =a.

0 e 0 e
c c

-50 ·fill

05 05

·100 ·100

0.0 1),0

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1..0 1.5 2.0
prn ~"'

Figure 4.8: (a) Gold particle on silicon surface with noise lying on top of particles.

(b) The same image after applying FFT (Fast Fourier Transformation) filter. This

image @Erika Merschrod, 2005. Used with permission.

48

Chapter 5

Conclusions and Future Direction

The developed system is a combination of robust and user-friendly services provided

by Igor-MFP3D or by specially written code customized to serve our purpose, i.e.

image analysis for nano-scale bio-chemical images. A very user-friendly interface is

provided in the form of menus or option boxes.

The major focuses of the services I developed are accuracy of information extrac

tion, speed of processing, user friendliness and robustness. Our system tells us about

the exact amount of change occurring if we increase concentration of certain solu

tion or add other materials to our solution. The accuracy of results is confirmed by

comaparing with manual calculations and already-present information. Our system

processes the images of the sample before and after the change and then generates a

statistical summary table or graph indicating the exact amount of change occurring

in the sample structure.

One of the key features of our system is effective and faster processing of images

with huge amounts of data points. In our research, the images we need to process have

49

multiple layers with a variety of information associated with each layer. To process

the images faster, we extract the layer of relevant data and process it. This layer

extraction mechanism increases our processing capability by a large degree. In cases

where the extracted layer does not have all of the desired information, we complement

the missing information by adding to it one of the other layers of the image. The

idea of layer extraction and subsequent correlation for processing the AFM images

was adopted in this research and was not available previously. We observe that this

technique decreases our processing time more than threefold.

Furthermore, our system is designed to a higher degree of user friendliness and is

robust to use. All the services provided are easy to use with a click of the mouse either

on a menu or in a user option dialog box. The system functionality and usability is

explained through screen-capture images in the user manual. The system is design to

respond consistently and intelligently to undesirable user inputs. For example, if the

user provides nothing where the system asks for the file name, or if the file provided

by the user does not exist, the system will ask the user again to provide the correct

file name.

Our system is designed for AFM images, but it is also capable of processing non

AFM images. A few user-defined services can import, scale and process SEM images

in a semi-automated fashion. Future directions for this research would be to make the

system flexible to support and process all types of images. In my opinion, our system

can easily process optical microscope images if the already existing services are tuned

accordingly. This could be particularly useful for fluorescence images where you stain

different parts of your sample with different coloured fluorescent tags. These could

be thought of as different layers for your sample: one red, one green, one blue. We

50

can use our image processing techniques to compare statistics between layers to check

for co-localization of various parts of the sample by providing new interfaces and by

tuning and automating already existing services.

Another potential area of future research will be to design filters for images with

low-frequency noise superimposed over the object signal. The images of gold particles

on a silicon surface have this type of noise. We can get rid of problems by asking the

user to enter the threshold value for the maximum height of objects/structures for

an image and then mark all the pixel higher than threshold with the threshold.

Furthermore, currently our image processing system is unable to categorize statis

tical information about objects or structures in images with multiple types of struc

tures/objects in a single image. As a next step, we can design services that can take

care of this issue, i.e. to find exactly how many objects are of what shape (circular,

rectangular, horse shoe, rope like) and exactly what kind of changes occur in these

objects/structures due to changes in the sample. To find the shapes of objects in au

tomated services, a comparative analysis of area and cross-section will be extremely

helpful.

In conclusion, our highly automated and effective system finds statistical infor

mation about objects/structures in bio-chemical material samples. Also, the system

records any changes which occur in these samples due to the addition of any other

material or any change in concentration or temperature.

51

Bibliography

[1] Umbaugh, S. E. Computer Imaging: Digital Image Analysis and Processing; CRC

Press: Prentice Hall PTR, Upper saddle river, NJ 07458, 2005.

[2] Danaher, M.; Hopkins, L. International Symposium for Information Science

2002, 8, 79-83.

[3] Binnig, G.; Quate, C. F.; Gerber, C. Physical Review Letters 1986, 56, 930-934.

[4] Liou, S. P.; Jain, R. C. 1990, 1, 201-203 Digital Object Identifier

10.1109 /ICPR.1990.118091.

[5] Barrett, H. H. Optical Society J. Opt 1990, 7, 1266-1278.

[6] Yang, X.; Lo, C. P. Photogrammetric Engineering and Remote Sensing 2000,

66, 967-980.

[7] Samal, A.; Ivengar, P. A. Pattern Recognition 1992, 25, 65-77 ISSN:0032-3203.

[8] Warfield, S. K.; Kaus, M.; Jolesz, F. A.; Kikinis, R. Tensor Controlled Local

Structure Enhancement of (CT) Images for Bone Segmentation. In Medical Im

age Computing and Computer-Assisted Intervention, Vol. 1496; Springer Verlag:

Boston, MA, 1998 ISSN :0302-97 43.

52

[9] Osuna, E.; Freund, R.; Girosi, F. IEEE Computer Society Conference on Com

puter Vision and Pattern 1997, p. 130.

[10] Douglas, T. R.; Solmon, S. C.; Purdy, G. M. Journal of Geophysical Research

1994, 99, 135-157 ISSN:0148-0227.

[11] WaveMetrics, Inc., WaveMetrics, Inc Lake Oswego, OR 97035, USA "Igor Pro

Manual", 5.03 ed.; 2004.

[12] Elisa, F.; Luca, B.; Macii, E.; Zuccheri, G. Information Technology m

Biomedicine 2005, 9, 508-517.

[13] Mayne, J.; Robinson, J. J. Biochem Cell Biol 1998, 76, 83-88.

[14] Software for Image acquisition and Processing by Asylum Research,

http:/ /www.asylumresearch.com.

[15] Zhou, N.; Merschrod, E.; Zhao, Y. J. Am. Chem. Soc 2005, 127, 14154-14155.

[16] Almqvist, N.; Bhatia, R.; Primbs, G.; Desai, N.; Banerjee, S.; Lal, R. 2004,

86, 1753-1762.

[17] Giessibl, F. J. Reviews of Modern Physics 2003, 75, 949-983.

[18] "Atomic Force Microscopy", http:/ /www.bfrl.nist.gov/nanoscience/BFRLAFM.htm.

[19] Fisher, R.; Perkins, S.; Walker, A.; Wolfart, E. "Fourier

Transformation: Image Processing Learning Resources", 2003

http:/ /homepages.inf.edu.ac. uk/rbf/HIPR2 /hiprtop.htm.

53

[20] Moore, M. S.; Mitra, S. K. Nonlinear Image Processing Proceeding of SPIE

1999, 3646, 56-66.

[21] "Igor Pro", Software by wavematrics, IGOR Pro is an extraordinarily powerful

and extensible scientific graphing, data analysis, image processing and program

ming software tool for scientists and engineers.

[22] Mayne, J.; Robinson, J. J. FEES Journal 2005, 272.

[23] Bowman, C. N.; Chair, P. "Division of Polymer Chemistry ABSTRACTS",

224th ACS National Meeting, Boston, MA, 2002 Abstracts.

[24] Biscarini, F.; Zamboni, R.; Samori, P.; Ostoja, P.; Taliani, C. The American

Physical Society 1995, B 52, 14868-14877.

[25] Kielty, C. M.; Grant, M. E. Connective Tissue and its Heritable Disorders 2003,

2003, 159-221.

[26] Batge, B.; Notbohm, H.; Diebold, J.; Hartwig,; Lehmann,; Bodo, M.; Deutz

mann, R.; Muller, P. K. European Journal of Biochemistry 1990, 192, 153.

54

Appendix A

User Manual

A.l Introduction

Nanotechnology is the one of the fastest growing research focuses for scientists of

various interests. State of the art devices are used to observe the tiny (nano-scale)

structures and their behaviors. We can apply this technology to study the systems of

biological or chemical interest. One question we often ask is, how these structures re

acts/responds to different environments and situations? We can answer this question

using Atomic Force Microscopy.

Atomic Force Microscopy (AFM) is used to measure three dimensional nanoscale

objects. It provides data in the form of 2-D arrays (3-D images), that is clear enough

to be observed with human eye, and easy for analysis and processing. We use AFM

to collect data on sample surfaces. Our samples have atomic or molecular structures

and our images show their response to temperature changes, different solutions, and

other physical parameters.

55

The first step is to scan the sample's surface area using AFM. This process give

us AFM images. These images are then processed in Igor [21] (a mathematical pack-

age) to collect information. Igor provides an extremely large set of operations for

the analyzing and processing of images. Our focus is specific and cannot be served

directly by native Igor operations alone; therefore we need extra image analyzing and

processing services within the Igor environment to serve our purpose. These services

are named as Igor "Add-ons". Some of these are provided by Asylum Research [14]

(the AFM manufacturers). These services are mainly responsible for getting statistics

about scanned images.

MakeExternaiimageSquare

ChangelmageName
SetExternaiimageScale

Figure A.1: Srvices exposed and created by user define procedure.

56

Our goal is to extract the statistics about the height, size and distribution of

objects in the images. These statistics are then represented in the form of tables

and graphs. Furthermore, we want to bring the scanned SEM (scanning electron

microscopy) images into Igor for information extraction. Images that are scanned at

a high resolution are easy to process and analyze.

A.2 Installation

To install the "Add-on" services Igor users are required to add procedure "ImageAnal

ysisProcedure" to their experiment. The user can observe extra options as shown in

Images below after saving experiment. To install the "add-on" the user has to add

"ImageAnalysisProcedure.ipf' to their experiment by going to the menu File----+ Open

File ----+ Procedure. Igor users can apply these services and utilize them during the

processing of their images.

A.3 Usage

The first step in using Igor's image processing services is to load the desired images in

the experiment. Then open the procedure file "ImageAnalysisProcedure" (by going

to menu File ----+ Open File ----+ Procedure) in the current experiment and compile

it by clicking the "compile" button at lower left. Before analyzing and processing

it is highly recommended to save the experiment. Image processing and analysis

is available to users in the form of various services. The usage of these services is

explained in the following sections.

57

• Generate Image Statistics

• Apply Image Leveling Algorithm

• Calculate average distances between structures in an image

• Import an Image to Igor (SEM Image)

A.4 Generate Image Statistics

A.4.1 Flattening

The first step for generating image statistics is to flatten the image and extract the

suitable layer of the image for processing. The image must be selected for processing

to generate statistics. The first step is to flatten the image by the Asylum-provided

flattening service. To perform that operation first click the button with caption "M"

on top right of selected image. A new window will appear having tabs at the top.

Select the tab with caption "Flatten" and then click the button "Flatten". Set the

flattening order to zero.

After flattening the image click the "Auto" button at the top of the image. Im

age analyzing and processing routines can be applied now. To save memory during

processing, the required layer will be extracted and processed.

A.4.2 Layer Extraction

To extract a layer from an Image, the user has two options. One can use the built

in command "extract layer" found in the dropdown list "Commands" on the image.

58

Figure A.2: Flattening the image before layer extraction

59

Otherwise, the user can select the image and then click the user service Extract layer"

from the Macros menu. The extract layer process is explained with the image below:

Figure A.3: Screen capture of Layer Extraction services for desired image

A.4.3 Noise Removal

In case of noise in the "LayerData" a noise filter will be applied by clicking "M" on

top right of the image and then select the tab with caption "Filter". Median or rank

filters will be used in case of impulse (salt & pepper) noise while Gaussian filters are

used if Gaussian (uniform, normal, distributed) noise exists.

60

Figure A.4: Screen capture shows different filters that can be applied on Layer data

according to the requirement of image

61

A.4.4 Image Statistics

The image is now ready for analysis and processing, so select the particle analysis

option from the menu option "image" as shown in the image below. Then select the

analysis parameters (normally the default values are fine) and click the button do

it. The objects inside the image will be encircled as shown in the image below. If

the boundaries of objects are not acceptable click the "Remove Overlay" button and

change the parameters. If the user wants to make objects with numbers in the view,

click the check box "label" .

stats •.•
Threshold ...
Edge Detoctlal, •.

Image Mo<phology ...

Image Translonnotlons ...
Image Normolzalian ...

Rotate ...
Cdortze

Spotlli Col>rotlon ...

Spotlal Measurements •••

Add Sider

Figure A.5: Screen capture showing particle analysis process

62

The statistics about the image are generated and can be represented in the form

of graphs and a summary file by clicking "ShowlmageStatistics" from menu option

"Macro" or from the user menu box by clicking Apply Generate Statistics. The user

will be prompted to provide the directory for saving the text summary of the image

objects.

Figure A.6: Screen capture showing the services for generating Image statistics

63

I*
10 15

I
20 20 40 60 80 100 120

a and b. shows height againls object number and height histograms. While Graph c and d shows height
and area distribution over objects(avea againls object numbers).

Figure A. 7: A screen capture showing the graphical representation of information

about the processed image

64

Figure A.8: A screen capture showing statistical information in tabular format

A.5 Apply Image Leveling Algorithm

After applying the built-in "Flatten" algorithm, if the background of the image is

still not level (i.e. there are some sharp bands or the background which have different

intensity), the image leveling algorithm can be applied. To solve the problem of

uneven background, our system provides two services for flattening: vertical flattening

and horizontal flattening. The user of the system can apply these flattening algorithms

by selecting a line from the background (ideal candidate line for flattening) and level

the image background according to that line.

The "ApplylmageLevelingAlgorithm" option can be selected from the "Macro"

menu to apply the appropriate leveling algorithms on the desired layer of data. The

difference between the images before and after applying the leveling algorithm can be

65

E
c

CopyContatrTrace

~aplic
BlgPSD --..""'"""'--· O!angolmogoNome

~· ----

Figure A.9: Screen capture illustrates how to applying leveling on the image layer

66

Figure A.lO: Screen capture shows the result after applying horizontal leveling

67

lfJ Fmal0001_ HthOctohcr leor Pro 5 03 1),IFP30 050600 1- I r'i' if X j

'i ~~., r~c ~ ~{";.f: ~·::.y ,r.J...-;-_::;;p; '-t"7!" ~~{1"f'~~"7z=;-::::;;::F;-:"'7:-;FJ"i~~-~,-:;-,-----~----.:::--·----~-~""~~---

1 'rn -lt 1, 1 1 ·!, -1 ldycrl1atdf'1H~t~~~~tTr,,rc•.lodf) ~- r1 1IXI

W/~:~~;::-;:J~- 0,~~-:~: }-~~--~---··::=::_-~~}:--f-~~--~1 '~~':·.~-- -~~~;~- ~~-~-:. '"' . __ :=w_~t~Tr~· -~~_-:
t;;,:1'~:~!~£ ~~~':. .. · .~c"' -~ !IT. ,[T;! ~~ '""'·"'l~j,~ ~~- ,. ~~-,J~ tr,:, fC ', ~ :

~ill:.·}:_, '- --' '--, ... ;--- '. -~----- . . ' "-~~- j: I:._,::, __ , c -- '' •'"·- -- : :· •• "'L '~ ~

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure A.ll: Screen capture shows the result of applying vertical leveling

68

observed by looking at Figures A.lO and A.ll above . .The extraction of true objects

is also easier when the image background leveling algorithm is applied in the case of

an image which has an imbalanced background.

A.6 Calculate average distances between structures

. . In an Image

This service calculates average distances between structures in an image by finding

average distances between neighboring structures. The service ask the user to input

an angle for a line and then the system finds structures along a series of lines nor-

mal to the user-input line. The system then calculates the distances between those

structures.

The result of average distances for an image is calculated. The system normally

calculates the average distance of structures for 5 angles closer to user input angle

line, i.e. from [user angle - 2] to [user angle + 2]. This result will help the user to

find a good candidate angle for finding the structure distribution in an image.

A.7 Import an Image to Igor (SEM Image)

To analyze an external analog image- such as a Scanning Electron Microscope (SEM)

image on polaroid film - in Igor, the image must first be digitized with a scanner and

saved in any standard graphics file format. To import the image, use the menu option

"Data" then "Load Image" from "Load waves" as shown in Figure A.l3. In the dialog

box which appears, click the "File" button to select a file in the "Open File" dialog.

69

Figure A.12: Shows how to calculate the average distances of structures for some

image

70

Make Waves •••

Duplicate Waves ...

Change Wave Scalno ...
Redmension Waves •••

Insert Poilts .. .
Delete Points .. .

KiiWaves ...

Rename ...

Figure A.l3: Screen capture shows how to load an external (SEM) image

71

Do give some name to the file you want to import by clicking the radio button "Use

the name". Do check the checkbox Display Image to see the import image.

lnstParrn
utlltles
Code3D
XPT

Figure A.14: Screen capture shows how to load an external image and save it so that

it can be visible in MFP-3D software.

Note: If you are currently working with some images in the experiment, the image

will be loaded into Image folder. In case a newly-loaded image is not loaded into the

Image folder, it can be dragged and dropped to the Image folder from the root folder

in the data browser. You can open the data browser by going to menu option "Data"

and then "Data browser".

72

A.7.1 Set Image Scale (SEM Images)

This operation is available for images collected from tools other than the MFP-3D

AFM. These images (i.e. SEM images) require scales setting to represent true size

information. Menu option "SetlmageScale" under "Macro" will perform this func

tionality. The image is selected from the drop down list for scaling. The size of the

actual pixel will be provided for scaling of image. In our images the size of the pixel is

constant so we set that value as default, but for a different set of images the pixel size

will be different, so the field that takes the value of actual pixel size is kept editable.

The continue button will perform the scaling and the result can be seen by viewing

the image with the true dimensions of the image.

Figure A.15: A screen capture illustrating how to set the scale for a non-Igor (or

SEM) image

73

A.7.2 Manage External Images (SEM images)

SEM images can be copied into a dummy image layer for processing using this oper

ation. The user can either just copy the image directly to some Igor dummy layer or

copy the inverted image (see below) into an Igor dummy layer. The image can be se

lected from the dropdown image list and the conversion mechanism should be selected

and performed by clicking "continue". The new layer can be seen as "myLayerData"

after refreshing images in the list panel.

A.7.3 Invert Layer Data (SEM images only)

Flipping/Inversion of an image is sometime required during image processing since

the SEM negatives are often scanned in for their higher resolution relative to the

polaroid prints. This can be done by clicking the "InvertLayerData" option from

"Macro" . Any SEM image in the layer data will be inverted. Nate: This option does

not work for AFM images and should not be applied on AFM images.

A.7.4 Make Image Square {SEM images only)

SEM images are normally not square and do not contain 2n number of image points.

Igor deals with images of 2n x 2n number of data points more efficiently, so the Make

Image Square option shrinks the image to suitable (2n number of point. This option

can be selected by selecting "MakeimageSquare" under menu option "Macros" . Then

the user has to select the image from the dropdown images list. The resultant square

(2n points) image is stored in LayerData.

74

Figure A.l6: A screen capture showing how to invert an image so that it will bring

out objects from the background

75

A.8 Feedback:

Any feedback about these services or manual should be provided to Dr. Erika Mer

schrod (erika<.Omun. ca) or J ehangir by their email addresses or in person.

76

Appendix B

Code

All the code used and written in this research is written in Igor Pro Scripting Language.

The code calls the Image Processing procedures exposed by MFP-3D (wavematrix).

The services given below are developed during this research.

77

#include <All IP Procedures>
#pragma rtGlobals=1 //Use modern global access method.
II During our process we tested these services on different SEM images
II successfully. Every macro calls a function that does the
II the functionality closely related to name of function/service.
macro MakeExternalimageSquare()

makeimageSquare()
end
//This Macro set is responsible for making non-igor images change
II in a way that we can process it just like igor native images.

macro ChangeimageName()
renameimage()

end
macro SetExternalimageScale()

SetScaleForimage()
end
macro ManageExternalimages()

~ ManageExternalimage()
end
macro InvertExternalimageLayer()

InvertLayer()
end
//End of Externalimages Macros

II Macro that calls the user defined processes option box
macro ImageAnalysisProcessing()

checkboxfunction()
end
//macro call generate statistics
macro GenerateStatistics()

doGenerateStatistics()
end
II This function draws the box with Title Image Processing Options and
II then applies those processes according to user responses
Function checkboxFunction()

NewPanel /k=1 /W=(150,50,450,180) as "Image Processing Options"

"" tO

End

Variable/G gRadioVal= 1
CheckBox check0,pos={52,25},size={78,15},title="Apply Layer
Extraction",value= O,mode=O,proc =doLayerExtraction;

CheckBox check3,pos={52,45},size={78,15},title="Apply Partical Analysis"
,value= O,mode=O,proc = doAnalyzeParticles;
CheckBox check4,pos={52,65},size={78,15},title="Apply Generate
Statistics",value= O,mode=O,proc = doGenerateStatistics;

Function doLayerExtraction(ctrlName,checked) : CheckBoxControl
String ctrlName
Variable checked
if (checked == 1)
Extract Layer ()
end if

end

Function doAnalyzeParticles(ctrlName,checked) : CheckBoxControl
//This service checks if user selected to do analyze particles.
II If yes, it will open image analyze particle window

end

String ctrlName
Variable checked
if (checked == 1)

WMCreateimageParticlePanel();
end if

Function doGenerateStatistics(ctrlName,checked) : CheckBoxControl
//This service checks if user selected to call generate image
//statistics. It then calls the function Generate Image Statistics

String ctrlName

end

Variable checked
if (checked == 1)

GenerateimageStatistics();
end if

II This macro asks the user about the type of leveling algorithm to

00
0

II apply and what mode s/he wants to apply
II Either to input image leveling information or use default
II normalization techniques

macro ApplyimageLevelingAlgorithm(Levelingoption,levelType)
String Levelingoption,levelType
Prompt Levelingoption,"Select The Option for Leveling Image in
LayerData",popup,"Vertical Leveling;Horizontal Leveling;_none_"
Prompt levelType,"Select Leveling Type",popup,"manual;automatic;"
if (stringmatch(Levelingoption,"Vertical Leveling") ==1)

if(stringmatch(level Type," automatic ")==1)
ImageVerticalLevel(O)

else
GraphWaveDraw/0/L/R

II Here system asks the user to draw the input line
end if

else stringmatch(Levelingoption,"Horizontal Leveling") ==1)
if(stringmatch(level Type," automatic")==1)

ImageHorizontalLevel(O)
else

GraphWaveDraw/0/B/T
II Here system asks the user to draw the input line

endif
end if

End

II When user selects to draw a line for leveling the image, the system
II then asks the user again to apply the line in leveling. Although
//it's an added burden for the user, we have to ask the user twice. We
II cannot declare global variables, so we cannot store the user
II response in macro as we cannot declare static data type in macros.
II declare global variables so cannot store the user response in macro
II as we cannot declare static data type in macros.

Macro ApplyLeveling(Levelingoption)
String Levelingoption
Prompt Levelingoption,"Select The Option for Leveling Image in

00
f-'

end

LayerData11 ,popup, 11 Vertical Leveling;Horizontal Leveling; 11

if (stringmatch(Levelingoption, 11 Vertical Leveling 11
) ==1)

doUserLeveling(11 Vertical 11
)

else
doUserLeveling (11 Horizontal 11

)

end if

II Call to to the user selected funtion for User input selected line.
Function ApplyUserLeveling(Ltype)

string Ltype
//store the leveling type either vertical or horizontal

wave userLine = root:Images:W_YPolyO

end

variable dimension = DimSize(root:Images:LayerData,O
variable userRC = floor(((!+ userLine[0])/2)* dimension)
//Calculate the user defined row or column in image for the drawn line

if (stringmatch(Ltype, 11 VerticaP) ==1)

ImageVerticalLevel(userRC)
else

ImageHorizontalLevel(userRC)

end if

II This function is responsible for leveling the image vertically when
//user asks for vertical leveling of the current image layer.
Function ImageVerticalLevel(row)
//Layer Select for normalization default value is zero in case of
//automatic

variable row
wave imageWave = root:Images:LayerData
String notes = note (root:Images:LayerData)

II reading current image notes into a string for further processing
variable l_row , tot_rc , s_column , averagevalue, sumLine,column

tot_rc = DimSize(root:Images:LayerData,O)
II this variable saves the value of total number of rows or columns as
II images are square so row= column

00
~

Make/0/N=(tot_rc) userSelRow
II Make a vector to save the user selected Image line for
II normalization.

userSelRow = 0

II This loop adds the pixel values in user selected line for
//calculating average values.

for (column =0 ;column<tot_rc ;column+=!)
sumLine += imageWave[row] [column]

endfor
averagevalue= sumLine/row

II Average of user selected image line values

II This loop calculates the difference of average of selected line to
//actual values in selected line and normalization vector is created.

for (column =0 ;column<tot_rc ;column+=!)
userSelRow[column] = averagevalue- imageWave[row][column]

endfor

II This loop applies normalization vector on the whole image under
//consideration that is layer data.

for (l_row =0 ;l_row<tot_rc ;l_row+=1)
for (s_column =0 ;s_column<tot_rc ;s_column+=1)

imageWave[l_row] [s_column] = imageWave[l_row]
[s_column] +userSelRow[s_column]

endfor
endfor

II Return memory of unrequired user variables , strings and vectors to
II the Processor.

end

Killvariables /A/Z
KillStrings /A/Z
Killwaves userSelRow

//End of Vertical Leveling

II This function levels the image when user selects horizontal
//leveling/flattening according to user request

00
c..J

Function ImageHorizontalLevel(column)
variable column II User Selected line or zero for default if user select automatic
wave imageWave = root:Images:LayerData
II Load the current Image Layer into User wave for processing
String notes = note (root:Images:LayerData)
II reads notes from the current Image for getting image detail
variable tot_rc, row, s_column , averagevalue, sumLine
//Local variables declearign storing temp data and loop controls
tot_rc = DimSize(root:Images:LayerData,O) II This variable
//saves rows or columns numbers as square images in our case so we have
II one variable for both rows and columns

Make/0/N=(tot_rc) userSelRow
II Make a vector to save the user selected Image line for normalization.

userSelRow = 0
variable dummycol

II Dummy variable to store the column value for temporary usage
dummycol = column

for (row =0 ;row<tot_rc ;row+=1)
if(imageWave[row] [column] > 0)

II This checks if there is an object in user selected line so don't
//make it part of user

II selected vector (line) for image leveling
do

column +=1
while (imageWave[row] [column] < 0)

II This skips all the values of particle in selected line

sumLine += imageWave[row] [column]
II Add the previous value for every particle point instead of particle
I /pixel value

column = dummycol
II Helps remember control of old point on line before approach of a
//particle in
II User selected line or default zero indexed line

00 ..,..

else
sumLine += imageWave[row] [column]

II For regular scenario just add the value for normalization vector
end if

endfor

averagevalue= sumLine/tot_rc
II Average of User Selected line

II This loop creates the 11 average - Selected line vector 11 for
//normalizations of the current image
for (row =0 ;row<tot_rc ;row+=1)

endfor

if(imageWave[row] [column] > 0)
userSelRow[row] = userSelRow[row-1]

else
userSelRow[row] = averagevalue - imageWave[row] [column]

end if

//These for loops apply the user selected line normalization row by row
//to the whole image.

for (column =0 ;column<tot_rc ;column+=!)
for (row =0 ;row<tot_rc ;row+=1)

imageWave[row] [column] = imageWave[row] [column] +userSelRow[row]
endfor

endfor

II Killing undesirable variables, strings and waves to release memory
II for other processes.
Killvariables /A/Z
KillStrings /A/Z
Killwaves userSelRow
end
II End of horizontal leveling

II The Function GenerateimageStatistics is responsible for generating
//image statistics for the image in Layerdata

II and for which particle analysis procedure is performed and particles
//are identified. This function calculates and shows

II results in tabular format for image objects' height, areas, standard
//deviation and average heights and areas. etc.
Function Generate!mageStatistics()

//Load the Object areas vector calculated by analyze particle into
//areaVector wave for further processing

wave areaVector = root:Images:LayerData_WMUF:Particles:W_ImageObjArea
//Load the Object circularity vector calculated by analyze particle
//into areaVector wave for further processing

wave circularity =
root:Images:LayerData_WMUF:Particles:Circularity

WaveStats areaVector
II WaveStats returns the statistics in the automatically created
//variables

Make /O/T/N=(12,4) Statistics
//Table for storing resulting summary of the image

~ //Declaration of variables for later use, naming of variable shows its
//functionality

variable counter, maximum, minimum,average,
stdeviation,skewness,noofobjects, maxhono,minhon
variable kurtosis,i_length,i_area,p_area,o_totpix,obj_circularity,
circulari tyloop

//putting statistics information from automatically set variables
//with "WaveStates" into user define variables

noofobjects =V_npnts
average = V_avg
maximum =V_max
maxhono = V_maxloc
minimum = V_min
minhon = V_minloc
stdeviation =V_sdev
skewness = V_skew
kurtosis = V_kurt

Make/N =(noofobjects)/0 heightVector

00
0')

II vector to store the height of every object in the image and used for
//averaging

String notes = note (root:Images:LayerData)
//Save notes "information associated with image" of the image into
//string variable

//The below Unit of code calculates the pixel size which is further
//used to calculate pixel area in true scale

i_length = str2num(Stringbykey ("ScanSize",notes,":","\r"))
i_area = i_length*i_length
o_totpix = str2num(Stringbykey ("ScanPoints",notes,":","\r"))
p_area = i_area/(o_totpix*o_totpix)

variable temp_counter
temp_counter = 0
obj_circularity =0

II calculate total circularity using data in Circularity vector and
//store it in variable obj_circularity "objects circularity"

for(circularityloop=O; circularityloop<noofobjects;circularityloop+=1)
obj_circularity +=circularity[circularityloop]

endfor

II Calculate true area for every object by multiplying the pixel area
//to each area item

if (areaVector[temp_counter] > i_length)
do

areaVector[temp_counter] = areaVector[temp_counter]*p_area
temp_counter+=1

while (noofobjects>temp_counter)
end if

if(WaveExists(Statistics))
II If the statistics file exists store the statistical information at
//mentioned indices

Statistics [0] [0] = "Total Below information shows the
statistics about the Current Image. No of Objects

"+num2str(noofobjects)

00
-:j

Statistics [1] [0] = "AREA INFORMATION "
Statistics [2] [0] = "Average Area of Objects II

Statistics [2] [1] =num2str(average)
Statistics [3] [0] = "Max Area of an Object "
Statistics [3] [1] =num2str(maximum)
Statistics [4] [0] = "Max Area Object # "
Statistics [4] [1] = num2str(maxhono)
Statistics [5] [0] = "Min Area of an Object "
Statistics [5] [1] =num2str(minimum)
Statistics [6] [0] = "Min Area Object # "
Statistics [6] [1] = num2str(minhon)
Statistics [7] [0] = "Standard Deviation of Areas "
Statistics [7] [1] = num2str(stdeviation)
Statistics [8] [0] = "Skewness of Areas "
Statistics [8] [1] = num2str(skewness)
Statistics [9] [0] = "Kurtosis of Areas "
Statistics [9][1] = num2str(kurtosis)
Statistics [10] [0] = "Total Circularity II

Statistics [10] [1] = num2str(obj_circularity)
Statistics [11] [0] = "Average Circularity "
Statistics [11] [1] =num2str(obj_circularity/ noofobjects)

II Storage of statistical area related information ends here
wave LayerData = root:Images:LayerData

II load wave into user-defined wave for processing
variable objectno
objectno =0

II Loading particle locations in the image into user define waves to
//identify the starting point of every object
II and then walk through each object to identify height of each object

wave min __ xData = root:Images:LayerData_WMUF:Particles:W_xmin
wave max __ xData =
root:Images:LayerData_WMUF:Particles:W_xmax

wave min __ yData = root:Images:LayerData_WMUF:Particles:W_ymin
wave max __ yData = root:Images:LayerData_WMUF:Particles:W_ymax

00
00

II This loop finds the height of an item with each of its iterations.
do

variable xmin,xmax,ymin,ymax,maxval,loopcounter,
row,column
II Declaring variables for location of particles
II Setting variables for starting point of each particle

xmin =min __ xData[objectno]
ymin =min __ yData[objectno]
xmax =max __ xData[objectno]
ymax =max __ yData[objectno]
maxval = LayerData[xmin] [ymin]
row =xmin
column = ymin

loopcounter = max(row,column)
//row and column have same value so anything will be fine

variable forcounter
//This loop searches for height of the current particle. It looks for
//previous and next item for every pixel item.
II If previous point and next are both lower in height as compared to
//current pixel point, then it's a candidate for
II height particle and high point of the current object.

for (forcounter=O; forcounter <loopcounter;forcounter+=1)

if(LayerData[row+1] [column] >maxval &&
(LayerData[row+1] [column] >LayerData[row] [column+!] &&
(LayerData[row+1] [column]>LayerData[row+1] [column+!])))
maxval = LayerData[row+1] [column]

row+=1

elseif (LayerData[row] [column+!] >maxval &&
(LayerData[row] [column+!] >LayerData[row+1] [column] &&
(LayerData[row] [column+1]>LayerData[row+1] [column+1])))

maxval = LayerData[row] [column+!]
column+=1

elseif (LayerData[row+1] [column+!] >maxval &&
(LayerData[row+1] [column+!] >LayerData[row+1] [column]

00
(0

&& (LayerData[row+1] [column+1]>LayerData[row] [column+!])))
maxval = LayerData[row+1] [column+!]
column+=!
row+=!

else
break;

end if
endfor

II end of far loop and one height is identified
heightVector[objectno] = maxval

II Height value is stored against object number for further processing
objectno+=1

while(objectno<noofobjects)
II This loop runs for every object in image to calculate height

WaveStats heightVector
II Automatically setting information variables

II Storing Objects height information into summary table
Statistics [1] [2] = "HEIGHT INFORMATION"
Statistics [2] [2] ="Average Height "
Statistics [2] [3] =num2str(V_avg)
Statistics [3] [2] = "Max Height 11

Statistics [3] [3] = num2str(V_max)
Statistics [4] [2] = "Max Height Object # "
Statistics [4] [3] =num2str(V_maxloc)
Statistics [5] [2] ="Min Height "
Statistics [5] [3] =num2str(V_min)
Statistics [6] [2] = "Min Height Object #"
Statistics [6] [3] = num2str(V_minloc)
Statistics [7] [2] ="Standard Deviation "

'Statistics [7] [3] =num2str(V_sdev)
Statistics [8] [2] = "Skewness "
Statistics [8] [3] =num2str(V_skew)
Statistics [9] [2] ="Kurtosis "
Statistics [9] [3] =num2str(V_kurt)
Statistics [10] [2] =" 11

II To make the balance entries we have to put empty strings

Statistics [10] [3] =""
//Where data is not required limitation of the system otherwise

Statistics [11] [2] =""
II the system will print junk values.

Statistics [11] [3] =""

end if

II Display different comparison graphs with various modes
//[mode of view]

display heightVector vs root:Images:LayerData_WMUF:Particles:W_SpotCounter
display areaVector vs root:Images:LayerData_WMUF:Particles:W_SpotCounter
display heightVector vs areaVector; modifygraph mode =2
display heightVector vs areaVector; modifygraph mode =3
make /o hist
histogram /B ={V_min , (V_max-V_min)/V_npnts, V_npnts}
heightVector, hist
display hist

~ II Kill the variables that are no longer required to return memory to
//operating system

killVariables /A/Z
KillStrings /A/Z

end

macro CalculateTheAverageDist(degree)
string degree

end

Prompt Degree,"Select the angle from right/bottom. Please keep
it '0 - 90' Degrees or less 11

if (V_Flag)

return -1 //User cancelled
end if
distanceofobjects(str2num(degree))

Function distanceofobjects(degree)
variable degree

10
I-'

Make /0/T/N=(5,2) avgDistances
//Make it five rows and two columns

end

if (degree > 4 && degree< 86)

else

avgDistances[O] [0] = "The average distance for angle"+num2str(degree-2)
avgDistances[O] [1] =num2str(findAverageNeighbourDistance(degree-2))
avgDistances[1][0] ="The average distance for angle"+num2str(degree-1)
avgDistances[1][1] =num2str(findAverageNeighbourDistance(degree-1))
avgDistances[2] [0] = "The average distance for angle"+num2str(degree)
avgDistances[2] [1] =num2str(findAverageNeighbourDistance(degree))
avgDistances[3] [0] = "The average distance for angle"+num2str(degree+1)
avgDistances[3] [1] =num2str(findAverageNeighbourDistance(degree+1))
avgDistances[4] [0] = "The average distance for angle"+num2str(degree+2)
avgDistances[4] [1] =num2str(findAverageNeighbourDistance(degree+2))

avgDistances[2] [0] = "The average distance for angle "+num2str(degree)
avgDistances[2][1] =num2str(findAverageNeighbourDistance(degree))

end if

I I This function takes an angle as an input and uses the angle for
//drawing a line from the right bottom of the image.
II The system draws multiple normal (perpendicular) lines to the angled
//line and calculates distances of objects lies on tangent lines.
II The System then calculates the average distance of every object to
//its neighbouring object.

Function findAverageNeighbourDistance(degree)
Variable degree
Make /0 distances

//area of declaring all the local variables used in the Averaging
//procedure ,
II variable dimension is representing number of rows and columns

Variable dimension , sizeofpixel , selectedcol, selectedrow, startrow,
startcol, endrow, endcol, tempstartrow, tempstartcol, tempendrow, tempendcol

variable checkend, noofpoints, firstheight, distance,
noofpositivevalues, distancenumber
variable distancecounter, totalofdistances, selectrow
totalofdistances = 0

//is Used to calculate average distances total/no of distances

wave layerdata = root: Images: layerdata
sizeofpixel = deltax(root:Images:LayerData)

//Extract true size of pixel from the current image
dimension = DimSize(root:Images:LayerData,O)

II Dimension of current image rows and/or columns

II Following check sets start and end of angled line on the image
II Details about function : If angle is less than 45 we calculate the
//starting point of line by drawing angle with base in case

II angle is more than 45 we draw the angled line by considering angle
//with the right side of the image

~ IF (degree>45 && degree < 90)

Else

degree = (90 - degree)
selectedrow = degree I 45 * dimension
selectedrow = round(selectedrow)
selectedrow = dimension - selectedrow
endrow = selectedrow - 1
endcol = dimension
startrow = 0
startcol = dimension - (selectedrow)

startrow = 0
selectedcol = degree I 45 * dimension
selectedcol = round(selectedcol)
endrow = dimension - (selectedcol)
startcol = selectedcol - 1
endcol = dimension

End IF

CD
c..:>

distancecounter = 0
checkend = 0

//Helps loops to adjust the start and end position of lines parallel to
//the input angled line.

Do

//Using temporary variables for loop functionality to avoid change in
//original drawn line.

tempstartrow = startrow
tempstartcol = startcol
tempendrow = endrow
tempendcol = endcol

//This check controls the start of line for given angle by moving it
//with reference to change end of line with every iteration of the
//loop.

IF (checkend == 1)
tempendrow -=1
tempendcol-=1

End IF

//Set all the variables that determine the objects and distance for all
//perpendicular lines on the line with current start and end values.

firstheight = 0
distancenumber = 0
noofpoints = 0
noofpositivevalues = 0

//This loop runs for every perpendicular on current angled line and
//finds distances of objects in those perpendicular lines.

Do

tempstartrow +=1
tempstartcol+=1

IF(layerdata[tempstartrow][tempstartcol] > 0)
//Check for the objects in virtual lines. Any value greater than zero

co
"""

//represents object and values less than zero represent background.
noofpositivevalues+=1

IF(firstheight==O)
//If we encounter the first positive value in the virtual line, it is
//an indication of an object in current line

firstheight = 1
End IF

II Note: In our images objects' heights are continuously growing and
//then falling down mostly making a parabolic like shape.

//In case of positive value the check below sees if the current point
//in image is taller than its previous and next point in height so if
//it is taller than previous and next it's considered as peak of
//current object.

IF(layerdata[tempstartrow -1] [tempstartcol-1] <
layerdata[tempstartrow] [tempstartcol] && layerdata[tempstartrow]
[tempstartcol] >layerdata[tempstartrow +1] [tempstartcol +1])

IF(firstheight==1)
IF (noofpositivevalues > noofpoints)

//This check avoids the multiple ups and downs in same object
//by checking for background points between two peak points.

noofpoints+=1
Else

//In case of else we are sure that second peak is reached so now to
//record the distance between two peaks set the different variables and
//move on.

distancenumber +=1
noofpoints+=1
noofpositivevalues = 0

//This will print the value of all heights-->fprintf fileobject, "The
//distance between object #" + num2str(distancenumber) + " and object
//#" + num2str(distancenumber + 1) + " is :" + num2str(noofpoints *
//sizeofpixel) + " meter\r\r\n\n\r"

distances [distancecounter] = (noofpoints * sizeofpixel)
totalofdistances+= (noofpoints*sizeofpixel)
distancecounter+=1

co
C}1

noofpoints = 0
End IF

End IF
//The else operation will be performed when the current point on image
//is not taller from its previous and next so we consider it as point
//between peaks not a peak.

Else

Else
IF(firstheight==1)

noofpoints+=1
EndiF
End IF

//Else if the current point on image is not positive so check if it's
//between two peaks and it will be a central point considered for
//distances between peaks.

IF(firstheight==1)
noofpoints+=1

End IF
EndiF

while (tempstartrow !=tempendrow && tempstartcol != tempendcol)
//End of code for every perpendicular line.

//check to go control the starting point for every next line parallel
//to the provided angle.

IF (startcol == 0 && startrow == 0)
checkend = 1

EndiF

//The checks below provide us with starting and ending points of next
//line parallel to the previous line based on given input degree of
//angle.

IF(startcol > 0)
startcol -=1

Else
startrow+=1

End IF

IF(endrow <dimension)
endrow+=1

Else
endcol-=1

End IF
//This check is applied because the check does not work for while loop

IF((startrow == (dimension-!)) I I (endcol == 1))
break

//breaks the loop on successful matching of the check.

End

EndiF
While (1)

return totalofdistances/distancecounter

//End of Function

//This function is used to change the name of any image by user defined
//services.

~ Function renameimage()
setdatafolder root:Images
string imagename
Prompt imagename , 11 Select an Image from List 11 ,popup,WaveList(11 *11

,
11

;
11

,
1111

)

doPrompt 11 Select Name to remove Extension 11 ,Imagename
renamepict imagename, Imagename

end
//end of unused function

II This is a utility function that calculates the nearest square for the
II input size and we use this service by providing original dimensions.
Function calculateSquareSize(size)

variable size
variable power =0

do
if (size >=2)

if (mod(size ,2) ==1)
size = size-1

(0
---1

end

end if
end if
size = size/2
power +=1

while(size > 1)
size =1
do

size = size*2
power -=1
while (power >0)

return size
killvariables /A/Z

II End of Utality service I Function

II This function asks the user to select an image from the image list
//and if the dimensions of the image are not in form of 2 to power n it
//converts that
II image into 2 to the power n dimension for easier and quick image
//processing.

Function makeimageSquare()
setdatafolder root:Images

II set folder pointer to images folder inside root.
variable row, column, size,rowindex,columnindex
string imagename
Prompt imagename , 11 Select an Image from List 11 ,popup,WaveList(11 *11

,

II load all Images in the current folder that is root:Images
11.11

doprompt 11 select an Image from List below 11 ,imagename
II Return the image name into Imagename variable selected from the
//dropdown list

if (V_Flag)
return -1 II User canceled

end if
if (waveExists($imagename) == 0)

II check if the File name exists
DoAlert 1, 11 File does not exist. Please try again 11

' '
1111)

(,0
00

return -1
else

•":

rov = DimSize(root:Images:$imagename,O)
//Get the rows and column of the image selected by user

column = DimSize(root:Images:$imagename, 1)
size = min(row,column)

II get minimum of rows and columns (dimension) for the current user
//selected image

size = calculateSquareSize(size)
II call to the utility service function that calculates 2 to power n
//dimension for current image

if (waveExists(LayerData) == 1)
II If there is already an image with name LayerData delete it

killwaves LayerData
end if
Make /0/N = (size,size) LayerData

II Create a new Image with name LayerData
II Copy the 2 to power n data from the selected image into layer data
//created inside the current procedure

wave tempLayerData =$imagename
for (rowindex=O ; rowindex <size;rowindex+=1)

for (columnindex=O ; columnindex <size;columnindex+=1)
LayerData [rowindex] [columnindex] =
tempLayerData[rowindex][columnindex]

endfor
endfor

end if

Killvariables /A/Z
II Delete all unrequired variables and strings to release memory after
//running this function

KillStrings /A/Z

End

II This function sets the scale for an image that is a non-Igor image
//according to user desired inputs

<:0
<:0

Function SetScaleForimage()
string scansize
string imagename =""
scansize = "0.0296e-9"

II Default pixel size which will be over write by user defined pixel
//size information

variable row,column
setdatafolder root:Images
Prompt imagename ,"Select an Image from List",popup,WaveList("*",";", "")
prompt scansize ,"Enter the size of actual Pixel"
DoPrompt "Enter the file name and size of actual Pixel",imagename ,scansize
if (V_Flag)

return -1 // User canceled
end if
if (waveExists(root:Images:$imagename) == 0)

DoAlert 1,"Try BY providing correct file that exists in imagefolders"
else

II If user provides correct information so this section of code
//calculate and apply the scale for the user selected image

End

roY = DimSize(root:Images:$imagename,O)
column= DimSize(root:Images:$imagename, 1)
SetScale X,O,str2num(scansize)*row,root:Images:$imagename
SetScale Y,O,str2num(scansize)*column,root:Images: $imagename
Note root:Images:$imagename, "Scane size =11 +scansize

end if
Killvariables /A/Z
KillStrings I A!Z

//End of set scale service /Function

II This function is used to invert the data of SEM images to make it
//compatable and graphically identical to AFM Images. The effect of
//this service is to invert
II The image data i.e. in SEM data the background is higher than
//objects in terms the MFP-30 reads the data. So the service Bring the
//objects on top of background.

1-'
0
0

Function InvertLayer()
variable row,column,rowindex,columnindex
wave myLayerData = root:Images:LayerData
row = DimSize(root:Images:LayerData,O)

//Layer data should be square so row and column are dimenion of the
//image and must be same

column= DimSize(root:Images:LayerData, 1)

for (rowindex=O ; rowindex <row;rowindex+=1)
for (columnindex=O ; columnindex <column;columnindex+=1)

myLayerData [rowindex] [columnindex] = (myLayerData[rowindex]
[columnindex] -256) *(-1)

//Putting the data back into layer data after changing pixels
//Values with the mentioned formula and thenique

endfor
endfor

end

II This service take care of images that are not Igor native images.
//For Example SEM images, it allows the user to select SEM image

II and puts it into layer data and and then inverts the negative for
//further easy processing and Igor image like view.
Function ManageExternalimage()

string imagename , conversionmechanism
variable row,column,rowindex,columnindex
setdatafolder root:Images
Prompt imagename ,"Select an Image from List to Import into Igor
Format",popup,WaveList("*"• 11

;", "
11

)

II load list of images in image folder
prompt conversionmechanism ,"Enter the Type of Conversion" popup,
"Invert/Flip Image;Copy Image;"

II give user option for operation
DoPrompt "Enter the file name and Conversion Mechanism",imagename ,
conversionmechanism

//Ask user for image format mechanism
if (V_Flag)

return -1 // User canceled
end if
if (waveExists(root:Images:$imagename) == 0)

else
DoAlert 1, 11 Try by providing correct file name exists in image folders 11

roY = DimSize(root:Images:$imagename,O)
column = DimSize(root:Images:$imagename, 1)
SetDataFolder root:Images
Make /B/U/0/N = (row,column) myLayerData
wave tempLayerData =$imagename
if (Stringmatch(conversionmechanism, 11 Invert/Flip Image 11)==1)

for (rowindex=O ; rowindex <row;rowindex+=1)
for (columnindex=O ; columnindex <column;columnindex+=1)

//Putting the data back into layer data after changing pixels Values
//with the mentioned formula and technique

myLayerData [rowindex] [columnindex] =
(tempLayerData[rowindex] [columnindex] -256) *(-1)

b endfor
~ endfor

else
myLayerData =tempLayerData

II put the image directly into layer data without inverting it
//according to user options

end if
end if

II delete the undesired variables strings and waves to return memory to
//the processor for further usage.

End

Killvariables /A/Z
KillStrings /A/Z
KillWaves tempLayerData

II End of user define procedure that takes care of external images.
//Function multiply an image over an other image.
macro MultiplyLayer()

Multiply!mages()
end

1-'
0
1:'-.:>

Function Multiplyimages()
string imagenamefirst, imagenamesecond , conversionmechanism
variable row,column,rowindex,columnindex
setdatafolder root:Images
Prompt imagenamefirst ,"Select an Image
multiplication",popup,WaveList("*", ";", 1111

)

II load list of images in image folder
DoPrompt "select it man", imagenamefirst

//Ask user for image format mechanism
if (V_Flag)

return -1 // User canceled
end if
if (waveExists(root:Images:$imagenamefirst) == 0)
DoAlert 1,"Try by providing correct file that exists in image folders"
else

row= DimSize(root:Images:$imagenamefirst,O)
column = row
SetDataFolder root:Images
Make /B/U/0/N = (row,column) myLayerData
wave tempLayerData =$imagenamefirst
wave tempSecLayerData = $ imagenamefirst

//wave tempSecLayerData = $ imagenamesecond
for (rowindex=O ; rowindex <row;rowindex+=1)

for (columnindex=O ; columnindex <column;columnindex+=1)
tempLayerData[rowindex] [columnindex] = tempLayerData[rowindex]
[columnindex] * tempSecLayerData[rowindex] [columnindex]

endfor
endfor

end if
End //End of Procedure File

