








Information Extraction on Biological, Organic and 

Inorganic Materials Using Image Processing 

Techniques 

St. John's 

by 

©Muhammad Jehangir 

A thesis submitted to the 

School of Graduate Studies 

in partial fulfilment of the 

requirements for the degree of· 

Master of Science 

Computational Science Programme 

Memorial University of Newfoundland 

May, 2006 

Newfoundland 



1+1 Library and 
Archives Canada 

Bibliotheque et 
Archives Canada 

Published Heritage 
Branch 

Direction du 
Patrimoine de !'edition 

395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

NOTICE: 
The author has granted a non
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

• •• 
Canada 

AVIS: 

Your file Votre reference 
ISBN: 978-0-494-19370-9 
Our file Notre reference 
ISBN: 978-0-494-19370-9 

L'auteur a accorde une licence non exclusive 
permettant a Ia Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par !'Internet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

L'auteur conserve Ia propriete du droit d'auteur 
et des droits moraux qui protege cette these. 
Ni Ia these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

Conformement a Ia loi canadienne 
sur Ia protection de Ia vie privee, 
quelques formulaires secondaires 
ant ete enleves de cette these. 

Bien que ces formulaires 
aient inclus dans Ia pagination, 
il n'y aura aucun contenu manquant. 



Abstract 

Information extraction from images is essential to research in many science fac

ulties today, from computer science to bioinformatics and medicine. My research 

focuses on the analysis of structural changes in biological, organic and inorganic ma

terials under a variety of conditions. Therefore, I process images from before and 

after an event (such as the addition of ions) to quantify exactly how much change is 

occurring in the material. 

My major focus is to write code to automate finding objects/structures (in an 

image) and calculating their sizes, heights, orientations, and distributions. The data 

comes from atomic force microscope measurements, which produce multi-layered two

dimensional arrays of data (i.e. sets of three-dimensional images). The image process

ing involves noise reduction, background leveling, object identification, and then the 

calculation and display of statistical information. The code used to automate these 

processes and to present the features to the user is written in the IgorPro Scripting 

Languange. 

The processing of an image proceeds iteratively, where an initial identification of 

objects/structures in an image leads to a definition of background and noise, which 

can then be adjusted to better identify the objects. Background leveling can be 

done vertically as well as horizontally, as per the requirements of a specific image. 

Distribution (spacing) of objects is calculated in different ways for isotropic versus 

non-isotropic arrangement of objects. The information about the objects in the im

ages is presented in comparison graphs and summary tables. 
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Chapter 1 

Introduction 

Computer Imaging can be defined as the acquisition, visualization and processing 

of information by computer. Image processing is computer imaging wherein the 

application involves a human being in the visual loop (images are to be examined 

and acted upon by humans). Some of the major challenges in image processing are 

the separation of image data from noise, background from objects of interest, and the 

processing of image data to extract desired information. 

The application of imaging and its processing is a key area of research in the fields 

of medicine, security systems, biochemistry, geography, engineering and physics [1]. 

Medical imaging is one of the fastest growing areas in medical science. In recent 

times most of the diagnosis includes: imaging of the damaged tissues and processing 

those images to know about the magnitude of damage and the appropriate response 

to it is determined [8]. Security is one of the major concerns in our rapidly changing 

world. Image processing is used in most secure systems, as in the form of biometric 

authentication, like authorized entry to some secure building. This security system 
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Figure 1.1: (a) Black Box View of System and (b) White box view of system 

normally uses a fingerprint, retina or face recognition system to permit authorized 

entry (9]. In geography, images of earth structures below the surface are analyzed for 

finding sources of oil or any possible changes occurring inthe structure of earth crust, 

i.e. that can lead to earth quakes (10]. These are a few applications of imaging and 

image processing, but the scope of image processing is not limited to the mentioned 

fields. 

Image processing includes image acquisition, image compression, image enhance-

ment and image understanding [1]. Image Acquisition is the process of obtaining 

images of various objects (such as human being, animal, tree, location, car or any 

tangible object) (1, 2). The scope of this research deals with images of proteins, poly-

mers, and metal nanoparticles under a variety of chemical and physical conditions. 

These images are obtained using Atomic Force Microscopy (AFM) (3, 4], a technique 

used to image nano-scale materials. My approach to image processing is illustrated 

in the schematics of Figure 1.1. 
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Image Compression is reducing the massive amount of data that represents an 

image. This is done by removing unnecessary or redundant data from the image. In 

our research, the image is compressed by selecting the appropriate layer of data from 

a multilayer image. 

Image Enhancement involves improving a selected image visually. Enhancement 

methods are problem specific. For example, an enhancement method used to improve 

a satellite image's quality may not be suitable for the enhancement of medical images 

[5,6). Our research uses noise filters (such as mean filters, median filters, and Fourier 

transform filters) and background leveling as enhancement tools. Background leveling 

levels the uneven background of an image to avoid losing small objects and helps in 

finding the true heights of objects. 

Image Interpretation is the transformation of image information into a format 

understandable by humans. For example if an image is processed to find a human 

face, then extracting the face from an image and matching it with the faces from 

databases will be its interpretation [7). 

In this thesis my research is focused on developing routines to automate and facil

itate the processing of biochemical images to find and represent the size/distribution 

of objects/structures (in an image) in summary tables or graphs, as outlined in Fig

ure 1.2. The image processing starts with imaging the sample (proteins in various 

solutions) by AFM. Our goal is to find structures and structural changes occurring in 

proteins and the reasons for these changes. The summary about structures in the im

age, represented in the form of tables or graphs that tells us about changes occurring 

and its causes. 

One of the key features of this research is that we compress images as our first 
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step. That leads to the processing of the minimum required data for the latter phases 

of the process. To improve the time efficiency of our system, we filter the image infor

mation from three layers of data, where each layer is a 3-D (three-dimensional) image 

represented by a 2-D array of data values, as shown in Figure 1.3. We convert the 3-D 

image into a 2-D binary array, which provides us information about structures (or ob

jects) in the images. The next step is to make the image ready for structures/object 

identification. This step involves applying filters in the case of noise and leveling 

image background if it is not even. An algorithm (steps to identify objects in the 

image) is then used to identify the structures/objects in it and information about 

these structures/objects is represented in the form of tables and comparison graphs. 

The future of this research is to simulate the changes and to process images that are 

obtained from imaging instruments other than atomic force microscopy. 

b1.0 
OJI 6 a " o.& 
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i 
0 ~ 

1),4 

-2 

0.2 ·4 

-6 

O.D 
O.D 0.2 0.~ 0.6 O.B 1.0 

um 

Figure 1.3: Two views of an AFM image; (a) shows the 3-D view of image of polymer 

on mica and (b) shows the height layer of same image.This image @Ming Sun, 2005. 

Used with permission. 
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The thesis is divided into five chapters dealing with various issues and function

alities of the system where my code serves two purposes: 

1. to expose already available services (by WaveMetrics [11]) in a user friendly 

fashion; and 

2. to add desired services which are not already available. 

The list of services provided or exposed by Igor (WaveMetrics [11]) are Layer extrac

tion, Noise filters (i.e. mean filters, median filters, FFT filters) and particle analysis. 

The services implemented in this research are copying image mask, leveling of un

even background (i.e. vertical and horizontal leveling), calculating objects heights, 

calculating the average distances between objects/structures (for isotropic and non

isotropic cases), recording and representation of results, and extension of the system 

to non-Igor images. 

The second chapter, "System Functionality", gives a brief overview of the whole 

system, i.e. features, limitations and applications of the system. Chapter 3, "Image 

processing" , corresponds to details of the functionality: what types of services are 

provided, how these services work, and their advantages and limitations. This chapter 

also discusses the algorithms used for providing different services during the processing 

of an image. Chapter 4, "Results", discusses the image analysis for a series of case 

studies in biochemistry and material sciences. The results tell us exactly what types of 

changes occur in the structure and distribution of materials if combined with any other 

material or behavior of materials at different temperatures. This chapter also includes 

details about the processing of SEM images and records statistical and graphical 

results. Last but not least, Chapter 5, "Conclusion", deals with system advantages 
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and efficiencies and also discusses the limitation of different services provided. This 

part of the thesis also suggests future directions for research. 

Each chapter includes numerous references and examples for the materials pre

sented. The material is presented in a conceptual and application-oriented manner so 

that it gives an immediate understanding of how each of the topics fits into the overall 

system. The appendices of the thesis include key word explanations, a manual of the 

services, various sets of processed images, pseudo algorithm of services provided, and 

fully commented code of services. 
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Chapter 2 

An Approach towards 

Segmentation of Images with 3-D 

Information 

2.1 Introduction 

Image segmentation is one of the focuses of computer vision and image processing. 

Segmentation is to distinguish between the objects of interest and "the rest." This 

latter group is also referred to as the background. Segmentation leads to information 

extraction from an image. This information extraction from the images is utilized in 

various fields of science and engineering. [1, 2} For example, segmentation and object 

extraction are widely used in security systems based on finger print, retina or face 

recognition. In medicine, molecular imaging makes it possible to reveal the activity 

of different molecules inside the body at different scales. 
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We apply image processing and segmentation to the field of biomaterials. In our 

experiments, we create images of surface of materials as proteins and enzymes us

ing AFM (atomic force microscopy) [3, 4]. We use AFM to create an image of the 

surface of materials containing nano-scale objects and to observe how these materi

als/surfaces respond to different solutions and different environments. We analyze 

and process these images having nano-scale objects and observe the changes at dif

ferent conditions. One of the key aspects of our image processing is that we process 

two-dimensional arrays of data and extract three-dimensional information. We use 

Igor [11] as the image processing language as it is also used to acquire the data. 

The approach we use for image segmentation and processing is targeted for images 

scanned through AFM. However, the routines we develop can be used for images 

scanned using SEM (scanning electron microscopy). 

2.2 Image Processing 

The process of segmentation and image processing can be further divided into several 

steps: 

• layer extraction (with option of maintaining inter-layer correlation), 

• noise removal, 

• background leveling, 

• object identification, and 

• presentation and recording of results 
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2.2.1 Layer Extraction 

The first step in processing the scanned image is to extract the layer of interest for 

further processing. The AFM images are of three layer format as shown in Figure 

2.1, but the information of our interest can be extracted from only one layer in most 

of the cases. So we extract the favourable layer that contain information of our 

interest from image and process it for information extraction to save processing time. 

This technique helps in speeding up the image processing and information extraction 

process. Correlation between layers can be maintained where necessary to apply 

image information from one layer to another, such as applying boundaries defined by 

friction to the object height information. 

Height Trace Amplitude Trace Phase Trace 

Figure 2.1: Shows the image of polymer on mica, where the height trace represent 

heights of objects, the amplitude trace represents error in feedback mechanism, and 

phase trace represents elasticity of sample. This image @Erika Merschrod, 2005. 

Used with permission. 
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2.2.2 Noise Removal 

Generally, several noise sources can affect the AFM image (i.e. environmental noise, 

roughness of the support surface [12]). The noise that most commonly affects an 

AFM image is due to a single source that leads to distributed spots. This noise can 

be classified as impulsive, and can be filtered out using a median filter. Sometimes 

the noises are uniformly distributed in the whole image and can be eliminated using 

a mean filter. There are cases where regular noise is superimposed over the image 

pixel lines; we handle it by removing the superimposed noise through a Fast Fourier 

Transformation (FFT) filter. Figure 2.2 shows the same image of collagen fibers but 

the superimposed noise in Figure 2.2a is removed in 2.2b using an FFT filter. 

lU IU 

a b 
8 6 

6 6 

:1. 

4 4 

2 2 

0 0 

0 2 4 6 8 1C 0 2 4 6 8 10 

Figure 2.2: A fast-fourier transform (FFT) filter of image (a) removes high frequency 

noise and results in image (b). This image @Ming Sun, 2005. Used with permission. 
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2.2.3 Leveling Background 

One of the focuses of image segmentation and processing is to find the true heights 

of objects in an image. Unfortunately, most of the AFM images have uneven back

grounds [12]. This uneven background leads to inaccurate objects'/structures' iden

tification, for example missing small objects in object identification. 

Figure 2.3a shows that the central part of the background of the image is high 

(brightness represents height), so it will make a huge object in the center of the image. 

We need a uniform background to obtain true heights of the objects in an image. To 

level the background of our image, we apply our image background leveling algorithm. 

This algorithm levels the background as per requirement of the image (vertically or 

horizontally). The algorithm selects a pixel line in the image for leveling, and then 

applies the differences of that pixel line and average of that pixel line to the whole 

image matrix. Our results show that the leveling background algorithm leads to good 

results in object identification and height calculation. Figure 2.4 shows the vertical 

flattening of the first image into the second image and similarly in Figure 2.3 the 

results of horizontal flattening can be seen. 

2.2.4 Object Identification 

Once the noise is filtered and the background is leveled the image is ready for object 

identification. The object identification service can be provided with a minimum area 

for an object as a threshold (filter the objects with lower area than provided threshold 

area). The area is measured in pixels. Particle analysis is accomplished by first 

converting the data from its original format into a binary representation where the 
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Figure 2.3: A Horizontal Flattening of image (a) (gold particles on a silicon surface) 

levels the background and results in image (b). This image @Erika Merschrod, 2005. 

Used with permission. 
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Figure 2.4: A Vertical Flattening of toposome (a type of protein) [13] image (a) levels 

the background and results in image (b). This image @Ming Sun, 2005. Used with 

permission. 

13 



particle is designated by zero and the background by any non-zero value [11, 14]. The 

algorithm searches for the first pixel or voxel that belongs to a particle by considering 

the difference of background and objects' pixel point values, then grows the particle 

from that seed while keeping count of the area, perimeter and count of pixels or voxels 

in the particle. Figure 2.5 shows the outlines of objects with red boundary lines. The 

image represents a film polymerized on a mica substrate. 
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Figure 2.5: Particle analysis of image showing polymer grown on mica substrate. This 

image @Erika Merschrod, 2005. Used with permission. 

2.2.5 Object distribution in the image 

One of our research requirements is to find how objects and structures are distributed 

in sample. To serve this purpose I wrote an algorithm for average distance find-

ing. The algorithm tells us about the average distances between neighboring ob-

jects/structures. A special case of this algorithm is for anisotropic objects such as the 

14 



pattern shown in Figure 2.6. In this case, users of the system must select the image 

to find the objects distribution in it. The algorithm is then provided with an angle 

representing a line on the image. The algorithm draw lines perpendicular to each 

point of the angled line and calculates distances between objects on each perpendic-

ular line. The algorithm can also optimize the user-provided line to provide more 

accurate distances. The result of the algorithm provides us with average distance 

between every two neighboring objects/structures. Figure 2.6 shows the input line 
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Figure 2.6: An image of a collagen pattern showing user defined input line a and one 

of the generated perpendicular lines b used to find average distribution/ distances of 

anisotropic structures. This image @Ming Sun, 2005. Used with permission. 

provided by the user via a selected angle (45° in this case) as line a, with the line 

marked b representing one of the perpendicular lines. 
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2.2.6 Recording Results 

The service of object identification outlines the objects in the AFM images. The 

next step is to calculate the desired statistics about the image and record them. The 

statistics about processed images, such as their objects' heights, sizes, and orientation, 

are recorded in graphical and textual formats. Sample graphical output is shown in 

Figure 2.7. A summary text file is also saved showing the image statistics as the 

number of objects in the image, their sizes, heights, rectangularity, standard deviation 

and kurtosis. 
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Figure 2.7: Graphical representation of the object statistics in the image from Figure 

2.5 (showing polymer grown on mica substrate). (a) objects' areas aginst heights (b) 

objects' heights histogram. 

The graphs in Figure 2. 7 show that the distribution of polymers grown on a mica 

substrate is mostly uniform [15]. A quick glance at the Figure 2.7a also clearly tells 

us that three crosses with low heights and high areas must be scan line noise. Hence 

we can say these graphs tell us about noises and erroneous data present in images. 
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The text summary file contains information about the processed image: number of 

objects in image, average height and area, maximum and minimum height and area, 

standard deviation, skewness, and kurtosis of the objects' heights and areas. 
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Chapter 3 

Image Processing 

One of the major challenges for image processing is the reduction of data. Images 

normally have an enormous amount of data, from kilobytes to megabytes. In most 

cases much of this information is not required to solve an image processing problem. 

The first step of our processing determines exactly what information is necessary. 

3.1 Layer Extraction 

The layer extraction mechanism is a procedure of compressing the image for process

ing. The AFM images we use in our research represent the surface of materials, which 

are of the three-layer format [3]. These layers represent height, error in the feedback 

mechanism (which highlights edges) and elasticity/friction of the sample (16,17]. Each 

of the layers is an image, and the information we are trying to extract from the image 

are its objects' /structures' heights, area and distribution [3, 16-18]. 

All the information of interest usually can be extracted from the height layer 

only. Therefore, we reduce the image data into data representing the height layer of 
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the image. This is a simple process that can be performed by selecting the available 

service of layer extraction from the service menu for a specific image. Layer extraction 

speeds up the image processing and analysis process by about ten times. 

However, sometimes the information in the height layer is not complete, and 

cannot be used to extract accurate information about the image. In such situations 

a "copy mask" service is used to complement the missing information of the height 

layer from any other layer. In the example given in Figure 3.1, the object boundaries 

are copied from an auxiliary layer (friction layer) and are pasted on top of the layer 

with data of interest (height layer). In the height layer in Figure 3.1b, the dark part 

of the image represents small heights and light regions corresponds to larger heights. 

600 

400 

200 

0 

0 200 400 600 800 

Figure 3.1: Copying Mask from Image (a) (friction map) to Image (b) (height map) 

identifies objects (such as that indicated by the arrow in (b)) which would not be 

seen in a mask generated directly from(b). Images represent gold particles on a 

silicon surface. This image @Erika Merschrod, 2005. Used with permission. 
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Figure 3.1a, has clear objects, but Figure 3.1b is the layer favorable for processing. 

The copy mask service saves the boundaries of objects in Figure 3.1a and pastes those 

boundaries on the image (layer) in Figure 3.1b. Otherwise, small objects like the one 

with the arrow in Figure 3.1b would not appear in height mask. The copy mask 

service is provided in MFP-3D software (by wavematrics) but the idea of copying 

mask and pasting it on top of other layers to complement missing information was 

adopted during the research. 

3.2 Noise Removal 

Noise is any undesired information that contaminates an image. In typical images the 

noises can be categorized as Gaussian ("normal"), uniform, or salt-pepper ("impulse") 

noises. The sources of noise can be the object of focus and/or analog to digital 

conversion. The major sources of noise in AFM images are environmental noise and 

roughness of the support surface [12]. In our imaging process the support surface 

is very uniform so our images normally have environmental noises only. The image 

processing tool provides noise filtering services to get rid of the noise. The filters most 

often used for noise removal in this research are order filters (such as median filters), 

mean filters, and Fast Fourier Transformation filters [19]. 

3.2.1 Order Filters 

These filters are based on the order statistic of an image. This filtering technique 

arranges all the pixels in sequential order, based on their value (mostly gray scale). 

The most useful of the order filters is median filter. The median filter starts with 
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a window of size N from the top left of the image and arranges the pixels within, 

by bringing the median valued pixels to the center of the window [20]. The window 

moves from left to right and goes to the second row after reaching the end of the first 

row. Figure 3.2 gives an idea of the working of median filter for N = 3. 

Output Image This shows the resultant 
image with sorted values. 

24 29 

37 

Figure 3.2: Moving window median filter example, inspired from image in thesis of 

Jason Waltman, Wittenberg University, 2001. 

The median filter is effective in removing salt-pepper noises (black and white spots 

on an image). Figure 3.3 shows the application of the median filter on the image with 
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salt-pepper noise. 
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Figure 3.3: Applying median filters on image (a) an image with salt-pepper noise, 

removes salt-pepper noise and results in image (b). This image @Ming Sun, 2005. 

Used with permission. 

3.2.2 Mean filters 

The mean filter is applied when the images have uniformly distributed noises [20]. 

The filter requires a window size N, and then the filter finds out some form of average 

within an NxN window, using the sliding window concept to process the whole image. 

The most basic of the mean filters is the arithmetic mean filter which finds the average 

of pixel values Xi in the window: 
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Figure 3.4: Applying mean filters on image (a) an image with uniform noise, removes 

noise and results in image (b). This image @Ming Sun, 2005. Used with permission. 

3.2.3 Fast Fourier Transformation Filter (FFT Filter) 

The Fourier Transformation maps image data into frequency space through trans-

formation equations. In our research we apply the commonly used "Fast Fourier 

Transformation" (FFT)) [19] on images to filter high frequency noises when periodic 

noise in the image is superimposed over the image pixel lines. We handle it by re-

moving particular frequency ranges. Our image data (pixel points) numbers 2n (e.g. 

256x256, 512x512) and the FFT works efficiently with 2n data points. 

N-l i27rkn 

Fast Fourier Transformation I [t1] [n] = Lf[tl] [k] e ~ 
i=O 

The FFT is applied on each column of original image, where I is the resultant 

transformed column for the original image column f. The images in Figure 3.5 show 

the same collagen fibers but the superimposed noise in figure 3.5a is removed in 3.5b 

using Fast Fourier Transformation [11, 21]. 
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Figure 3.5: A fast-fourier transform (FFT) filter of image (a) removes high frequency 

noise and results in image (b). This image @Ming Sun, 2005. Used with permission. 

3.3 Flattening Image 

One of our research goals is to find the exact information about structures in images, 

i.e. their heights, areas and distribution. To find the accurate heights, areas and 

distribution of structures/objects in an image, an even background is highly desirable 

[16). Unluckily most of our images have the problem of an uneven background. 

Results have shown that there are cases when small objects fade out as compared 

to the high part of uneven backgrounds and in some cases the ups/heights of the 

background become objects or parts of objects. To get rid of this issue we have a 

service (algorithm) of background flattening in our working system. The service asks 

the user of the system to provide the type of algorithm suitable for the image at 

hand (vertical flattening algorithm or horizontal flattening algorithm). The user then 

inputs the best pixel line to provide the guidance for the algorithm. The algorithm 

24 



Figure 3.6: Application of FFT on the image of the collagen fibers where section with 

title "FFT" represents frequency , "Result" section shows the image after transfor

mation, and "Difference" section represents the difference between the original and 

final images. The section of frequency that is filtered out is shown boxed with the 

arrow directing to difference image. 
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averages out unwanted heights and depths according to the user desired mechanism. 

The step by step working of the flattening algorithm is as follows: 

1. The user selects an image for flattening 

2. The user provides the information about the type of flattening required for the 

current image (Vertical flattening / Horizontal flattening). 

3. The user selects a pixel line in the selected image to guide the algorithm 

4. The algorithm: 

(a) finds the average of the selected pixel line (row or column of image matrix), 

(b) calculates a vector representing the difference of average to the actual 

values of the selected pixel line (avoiding exception values), and 

(c) applies this difference value (average - pixel values) vector to the whole 

image data vertically or horizontally as required. 

Our observations tell us that this algorithm leads to reliable results of true heights, 

areas and distribution of objects. 

Figure 3.7a (equivalent to Figure 2.3) shows an image with an uneven background 

as there is a dark band (representing depth in the image) horizontally between 400 

and 500 micrometers. Figure 3.7b shows the same image but the background is leveled 

by applying the horizontal background leveling algorithm. 

Analogous to the horizontal flattening in Figure 3. 7, Figure 3.9 (equivalent to 

Figure 2.4) shows the vertical flattening of the first image into the second image. 

Without this flattening, the central part of the background of the image in Figure 
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Figure 3.7: A Horizontal Flattening of image (a) (gold particles on a silicon surface) 

levels the background and results in image (b). This image @Erika Merschrod, 2005. 

Used with permission. (Equivalent to Figure 2.3.) 

3.7a is high (brightness represents height), so it will make a huge object in the center 

of the image. 

An illustration with a simple (or small) matrix follows. As shown in Figure 3.8 

Table 1 represents the image matrix, and the third column of image data is selected 

by the user as ideal for horizontal leveling. As higher values represent objects, we can 

clearly see there is an object or part of an object in our selected line. We have to skip 

the data points belonging to the objects and use the previous or next values instead. 

Then we calculate the difference of the average of the selected column and store it 

in Vector 1. Applying Vector 1 (adding to matrix vertically) to the image (Table 1) 

results in Table 2 (image with uniform background). 

The algorithm is highly customized and can process huge amounts of data in 

minimal time. For example an image with data size 1028 x 1028 (image data matrix 
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13 7 198 7 10 11 5 196 5 8 

11 10 12 9 10 9 8 10 7 8 

7 5 6 8 6 11 9 10 12 10 

9 10 8 9 7 11 12 10 11 9 

Table 1: Vector 2: Table 2: 
Original Image Data Normalization Vector Image Data After Normalization 

Figure 3.8: A demonstration of image leveling on image data. Table 1 represents 

origional Image data, Vector 1 represents user selected image line candidate for image 

leveling, and Table 2 shows normalized image data 
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urn urn 

Figure 3.9: A Vertical Flattening oftoposome (a type of protein) [13] image (a) levels 

the background and results in image (b). This image @Ming Sun, 2005. Used with 

permission. {Equivalent to Figure 2.4.) 
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size) can be processed and flattened in a fraction of second (0.03 sec "processing 

speed") on a computer with an average speed processor. Furthermore, the algorithm 

is effective and leads to help in identifying true structures (the heights, areas and 

distribution of objects in an image) that were difficult to find without this algorithm. 

3.4 Particle Analysis 

Once the image is refined by removing all anomalies and/or noises it is ready for 

finding objects or structures. Particle analysis is accomplished by first converting the 

image data from its original format into a binary representation, where the particle is 

designated by zero and the background by any non-zero value [11, 14]. The algorithm 

searches for the first pixel that belongs to a particle and then grows the particle 

from that seed while keeping count of the area, perimeter and count of pixels in the 

particle. The margin of error in object boudaries identification is approximatly 5 nm. 

The first particle pixel is calculated as follows: 

1. Select an arbitrary threshold value to differentiate between background and 

objects of interest. 

2. Create mask with object pixels set to 1 and background pixels set to 0. 

3. Apply mask to obtain a flattened background. 

4. Check correlation between images before and after mask, with optimal correla-

. d fi d image x mask 1 twn e ne as . ~ . 
~mage 

5. Adjust the mask based on correlation feedback and repeat from step 1 untill 

correlation is approximately equal to 1. 
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If you use additional flags the algorithm will compute additional quantities for 

each pixel that belong to the particle [11]. The particle analysis service provides the 

user with an interface to input the threshold for filtering out unwanted objects. The 

user can provide a minimum area (in term of pixels) to filter out the objects with 

areas less than provided the threshold value. The objects/structures exceeding the 

threshold value found in the image are numbered starting from the bottom left corner 

of the image. Figure 3.10 (equivalent to Figure 2.5) shows the outlines of objects with 

red boundary lines. The image represents a film polymerized on a mica substrate [15]. 
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Figure 3.10: Particle analysis of image showing polymer grown on mica substrate. 

This image @Erika Merschrod, 2005. Used with permission. {Equivalent to Figure 

2.5.) 

Once objects are identified and marked with object counters, the following values 

are calculated for each object. 

1. Object area: the area (in pixels) for each particle as the number of pixels 
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inscribed in an object 

2. Object perimeter: the perimeter (in pixels) for each particle. The perimeter 

calculation involves estimates for 45° edge that results in no-integer values. 

3. Object circularity: the circularity is the ratio of the square of the perimeter to 

(4 x 1r x object area). This value approaches unity (one) for a perfect circle. 

4. Object rectangularity: the rectangularity is the ratio of the area of the particle 

to the area of the inscribing (non-rotated) rectangle. The ratio is 1r /4 for a 

perfect circular object and unity for a non-rotated rectangle. 

5. The standard deviation, skewness and kurtosis of object areas and/or heights 

are calculated according to following formulae: 

where 

Standard Deviation a_ V V 
1 L (Yi- Vavg) 2 

npnts -1 

1 Vnpnts-1 [(}i _ Y)] 3 

Skewness- V 
1 

L 
npnts- a 

i=O 

1 Vnpnts-1 [(Y. _ Y)] 4 

Kurtosis - V """' ~ - 3 
npnts -1 ~ a ,=0 

Vnpnts: number of objects/structures. 

Vavg: average of Y values. Where Y can be objects heights or areas 

Standard Deviation: standard deviation of Y values 

One of the desired results of our research is to calculate the height of each object. 

If we use the binary image it is not possible to calculate the heights of the objects, 
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so we process the original image data to find the highest point of each object in the 

image. In the original image data the pixel values of objects are positive values and 

the background of the image consists of negative pixel values [11]. Also, the bigger 

positive values represent higher parts of objects rather than smaller positive values. 

The algorithm devised to find the height of objects follows the same route for finding 

objects as that of the object marker i.e. it identifies objects and marks them with a 

number. The pseudo code for the algorithm calculating the heights/peaks of objects 

is as follows. 

1. Start from bottom left of an image and move right searching for positive values. 

2. When a positive value is encountered, the system checks if the positive value is 

higher than the threshold value for the previous object identification algorithm. 

3. If the identified value belongs to an object/structure, increment the object 

counter. 

4. Move in the direction of higher values either top, right or top right ( 45 ° from 

top). 

5. Stop where the value is maximum from its next and previous values. 

6. Write this value against the object counter as its peak value/height of the object. 

7. Skip the positive value of this object and move right. 

8. When a background pixel value (negative pixel value) is reached, move right 

and repeat the process from step 2. 
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9. When the end of an image is reached on the right side, the routine moves up 

by one pixel line and starts from left to move right and repeat the process from 

step 2. 

10. Repeat from step 2 until the end of the image is reached. 

This algorithm is fast and takes about 0.03 seconds to calculate heights of objects 

in an image with more than a hundred objects. The loops are managed effectively 

and are broken with a break statement on reaching the height for an object to avoid 

unnecessary iteration of loops. After applying this algorithm we have a summary 

table with the object counter and its height for a certain image. 

ROCO 

Point heightVector 
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Figure 3.11: The output table shown in the screen capture here lists object counters 

(points) against their heights in meters for the image in Figure 3.10 
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Another feature of particle analysis is to find the distribution of objects. To see 

the distribution of the objects our system has two services: 

1. Minimal distance calculation between neighboring objects 

2. Average distances between structures in images 

Our images normally have one of two different types of structures/objects. The first 

are regular or irregular circle-shaped objects (as shown in Figure 3.1and 3.11). The 

second are rod or rope like structures (as shown in Figure 3.12). The first service of 

distance calculation between neighboring objects is applied on images having circle 

like objects. Similarly, the service of average distance calculation is applied when 

dealing with the images having rod or rope like structures. 

3.4.1 Minimal distance calculation between neighboring 

objects 

This algorithm tells us how the objects are distributed in the image. The result 

of this algorithm is the average distance, the minimal distance, and the distances 

between any two neighboring objects. The result in this algorithm is calculated as 

the displacement between neighboring peaks. The pseudo algorithm for this service 

is as follows: 

1. Start from bottom left of the image and search for object peak. 

2. If a peak is encountered initialize the distance counter with zero. 

3. Move right and search next peak and increment distance counter for every non

peak object pixel point or background pixel point. 
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4. If there is no background point between two peaks consider the peak with higher 

positive value as peak and adjust distance counter accordingly. 

5. Repeat step 3 until reaching next peak. 

6. On reaching second peak save the distance counter value in distance summary 

table and initialize counter with zero and go to step 3. 

7. If right end of image is reached go to one level up. 

8. Repeat from step 2, until the end (top right) of image is reached. 

The result of this algorithm is a summary table with information about objects dis

tribution. 

3.4.2 Average distances between structures in images 

This algorithm calculates the distances between the structures (rod or rope like struc

tures) in AFM images. In this service the user provides an angle and the system draws 

a line with the user input angle from right-bottom of the image. Then the system 

draws perpendicular lines to the user defined line. The system then calculates the 

distances between structures on each perpendicular line and takes its average. 

The result of this algorithm is average and minimal distances between structures 

for current image. The distance is separation between the peaks of structures. The 

pseudo algorithm for this service is as following: 

1. User inputs an angle to draw a line from right-bottom of the image 

2. The system draws lines perpendicular on the user input line 
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Figure 3.12: Collagen image having red line showing user input angle line and sea 

green lines are perpendicular lines to user input angled line. This image @Ming Sun, 

2005. Used with permission. 

3. The system starts to find objects on perpendicular draw line starting from top-

left of top-right according to distribution of lines 

4. If a structure is found on perpendicular line find and record its distances 

5. Go to next perpendicular line below processed 

6. Go to step 4, until the right bottom or left bottom of image is reached 

7. Calculate the average of recorded distances between structures 

This algorithm tells us exactly how structures are distributed in some images. 

We can see the effect of external factors on some material by imaging material and 

then applying the external factor (such as temperature change, adding some chemical 

solution) on the same material and image it again. If we look at the distribution 
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before and after change we can easily say how objects behave they converge, diverge, 

grow or shrink because of change. Furthermore, when a user provides the system 

with some angle (i.e. 30 °), the system calculates the distribution of structures for a 

range of [input 0 +2, input 0 -2] (28-32°) and the results show what angle gives more 

accurate results for distribution of structures. 

3.5 Extension for non-Igor Images 

Our system was designed to process Igor images but it has the ability to process 

specific SEM (Scanning Electron Microscopy) images with minimal interaction from 

the user. The first step is to import the image to Igor-MFP 3D and then ask the user 

to set the scale for the image. The user of the system provides the size of one pixel 

for the SEM image he/she wants to process. The system then converts the image 

dimension to 2n x 2n dimension. Now the image can be treated as an AFM image, 

and be processed to find the areas of objects/structures in the image. 

First of all an image is imported to Igor environment and scaled as shown in 

Figure 3.13 b. Then we can now process it, like Igor native images as explained in 

previous sections. 
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Figure 3.13: SEM images a, shows raw SEM image and b, shows same images scalled 

and ready for processing. This image @Anand Yethiraj, 2005. Used with permission. 
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Chapter 4 

Results and Discussion 

Our research focuses on automating the analysis of physical changes occurring in a 

variety of proteins and polymers. We record statistical and graphical information 

of the sample material before and after the change. By comparing statistical data 

and graphical information, we deduce the exact amount of change (in size, shape, 

distribution and/ or aspect ratio) occurring in the sample material. Furthermore, we 

discuss the structure of different sample materials in a variety of chemical compounds. 

The type of materials and their detailed structural analysis are given below. 

4.1 Toposome 

In this section we present the results of an analysis of calcium binding to toposome. 

Toposome is generally found in the cytoplasm of the sea urchin egg and embryo and 

is thought to repair damage in the plasma membrane [22]. In Figure 4.1 we image 

the protein toposome, and then add calcium to the same sample, and image it again. 

The statistical results of surface images (as in Figure 4.1) of (4.3x1Q-06 mg/ml 
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Figure 4.1: Toposome Images a)without Calcium solution b) with Calcium solution. 

This image @Ming Sun, 2005. Used with permission. 

concentration) toposome in lOOj.tM calcium solution (Figure 4.1b) and without the 

calcium solution (Figure 4.1a) show that in calcium solution the toposome aggregates 

significantly, perhaps as a repair mechanism for the egg. The average area of objects 

in calcium solution increased by an amount 7.19x10-16 m2 (or 719 nm2) (about 28%), 

that is from 2.542x10-15 m2 (or 2542 nm2 ) to 3.261x10-15 m2 (or 3261 n m2). On 

the other hand, the effect on height is small as the increase in the average height is 

approximately by 5%, which is from 4.6x10-9 m (or 4.6 nm) to 4.8x10-9 m (or 4.8 

nm). 

The number of particles in the higher concentrated calcium solution is smaller 

so that it appears that particles aggregate laterally to make bigger particles. Also, 

a smaller increase in height shows that particles do not aggregate on top of other 

particles. Furthermore, the rectangularity of the objects is increased by 12.23% in 

calcium solution. Rectangularity is the ratio of the area of the particle to the area of 
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the inscribing rectangle. This suggests aggregation resulting from a structural (shape) 

change in the protein. 

Results of this experiment leads to the observation that toposome undergoes 

structural changes by adding the mentioned concentration of calcium. The uncer

tanities/errors in area and height calculation will be due to error in the selection of 

threshold value for the selection of object pixel and background pixel. Our observa

tion tells us that different concentrations of calcium lead to different types of changes. 

According to J. J. Robinson (22], with low concentrations of calcium the toposome 

undergoes a secondary structural change which facilitates protein binding to mem

branes. As increasing amounts of calcium bind, the toposome undergoes a change in 

tertiary structure which helps this protein to cause or drive membrane-membrane in

teractions. These interactions are required for a number of biological processes during 

development. 

The Figure 4.2 is the same toposome sample as in Figure 4.1 but with a higher 

concentration of calcium (500J.LM concentration). As is clear from the image, the 

higher concentration of calcium introduced a great amount of change in structure 

and distribution of toposome [23]. The toposome objects adopted different type of 

shapes, e.g. circular, rectangular and horse shoe types. Our system is unable to tell 

us about the exact amount and type of changes occurring due to the higher calcium 

concentration because the structures in the image adopt a variety of shapes and it is 

difficult to characterize the smaller objects in a field of larger ones. 
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Figure 4.2: (a) Toposome image with higher calcium concentration, (b) zooming view 

to show clear view of horseshoes, irregular and regular structures. This image @Ming 

Sun, 2005. Used with permission. 

4.2 Polymers 

The growth of polymer on a mica substrate is the focus of the polymer discussion 

and results [24]. After growing a polymer film on a mica substrate, the sample is 

imaged using AFM. Observation of graphical and numerical results of Figure 4.3a 

tells us that polymer growth on the mica substrate is quite uniform. The image on 

the right, Figure 4.3b, shows some uneven polymerization on a larger scale possibly 

due to local variation in polymer film thickness and evaporation rate. Below we show 

the statistical details for the image on the left. 

The statistical graphs in Figure 4.4 left and right show that the distribution of 

polymer nano-particles grown on a mica substrate is mostly uniform with a tight 

bimodal distribution. 
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Figure 4.3: Result of even polymerization shown in image (a) and uneven polymer-

ization in image (b) of film on mica substrate. This image @Erika Merschrod, 2005. 

Used with permission. 

Polymer particles with areas of more than 5.0x10-14m2 (or 50000 n m2) could be 

quite high and should certainly be non-zero. Hence these graphs isolate noise and 

erroneous data present in the images. Also, the graph tells us that polymers on a 

mica substrate grow taller with increase in their area i.e. particles with area in a 

range of 0-4.0 xl0-14m2 (or 0-40000 nm2) have a height of 5-20x10-09m (or 5-20 n 

m) but when the area is 5.0-6.0x10-14m2 (or 50000-60000 n m2) the object's height 

ranges 28-34x 10-09m (or 28-34nm). So the growth in area and height of polymers on 

mica substrate is directly proportional. A quick glance at the Figure 4.4 also clearly 

tells us about outliers in data. Marked by the circle are three particles with a large 

area but very small height, indicators of scan-line noise. 

The statistical summary file lays out statistical information in tabular form. As 

the table in Figure 4.5 shows, the object growth for the polymer sample is uniform. 

The average area appears to be the midpoint between maximum and minimum area 
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Figure 4.4: Graphical representation of Image (showing polymer grown on mica sub-

strate) statistical results a) objects areas aginst heights b) objects height histogram. 

objects. The table also shows that the heights of the objects is mostly uniform, the 

maximum height of any object being very close to the average heights. 

4.3 Collagen Microfibrils 

Collagen is one of the most abundant proteins in animals' bodies, and collagen fibrils 

are the most important tensile reinforcing element in animals' tissues [25]. Among 

more than 20 different types of monomers, Type I collagen is the most abundant 

one found in animals and is also a focus of research [25, 26]. The size and shape of 

the fibrils are important to determine tissues' functions since the hierarchical spatial 

arrangement of collagen fibrils can dominate the mechanical and physical properties 

of tissues. In our research we study the shape and distribution of collagen micro 

fibrils. 

From Figure 4.6, it is obvious that collagen makes rope-like structures. The above 

44 



Figure 4.5: Statistical summary for the image in Figure 4.4 

image is from a collagen solution of 2 mg/ml concentration. To find the exact spa

tial distribution of these fibers in the sample, we calculated the average distances of 

neighboring structures. For the image in Figure 4.6, the average distance between 

neighboring structures is 8.8x10-08m (88 nm). The average distances help us cal

culate the structure and structural changes at a different solution and for different 

concentration of collagen. 

The images in Figure 4. 7 show that collagen at higher concentration grows more 

structures (not taller structures) than at low concentration. So the distribution of 

structures of collagens can be controlled by increasing or decreasing the concentration 

of collagen in the sample solution used for experimenting. The average distance 

between neighboring structures for image 4. 7 a is 4. 65 x 10-07 m (or 465 nm). When the 

concentration was increased from 0.3 mg/ml to 1 mg/ml the average distance between 

neighboring structures reduced to 1.29x1Q-07m (or 129 nm) and for concentration 3 
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Figure 4.6: Collagen micro fibril image. The red and sea green lines are user defined 

lines drawn to calculate the distribution of collagen structures in sample. This image 

@Ming Sun, 2005. Used with permission. (Equivalent to Figure 3.12.) 

mg/ml as shown in image 4.7c, the average distance was 8.6xl0-08m (or 86 nm). 

4.4 Limitations of the System 

Our system is capable of handling and processing a variety of AFM images. However, 

during our experimentation we were unable to process images of the gold sample 

with a noise superimposed over the objects. The nature of noise superimposed over 

particles is different than previously mentioned noises, as it is a signal of noise su-

perimposed on top of objects. We have objects of different heights, so in case of 

applying a threshold on height to get rid of the noise, that will either cut the tops 

from taller objects or it will leave noise on top of objects with smaller heights. For 

example, we tried to filter the high frequency noise using Fourier transformation but 
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Figure 4.7: Images of Collagen at different concentration with calcium. This image 

@Ming Sun, 2005. Used with permission. 

the transformation left us with a distorted image as shown in Figure 4.8b. 

In future we can design specific filters for the problem in hand to get rid of this 

type of noise. For example, we could ask the user about maximum height (threshold 

value) of objects/structures in the image and then set all the pixel values higher than 

user defined threshold to threshold values. 

47 



02.0 t).a 

1.5 15 
100 100 

!ill fill 

l 1.0 
e 1:0 =a. 

0 e 0 e 
c c 

-50 ·fill 

05 05 

·100 ·100 

0.0 1),0 

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1..0 1.5 2.0 
prn ~"' 

Figure 4.8: (a) Gold particle on silicon surface with noise lying on top of particles. 

(b) The same image after applying FFT (Fast Fourier Transformation) filter. This 

image @Erika Merschrod, 2005. Used with permission. 
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Chapter 5 

Conclusions and Future Direction 

The developed system is a combination of robust and user-friendly services provided 

by Igor-MFP3D or by specially written code customized to serve our purpose, i.e. 

image analysis for nano-scale bio-chemical images. A very user-friendly interface is 

provided in the form of menus or option boxes. 

The major focuses of the services I developed are accuracy of information extrac

tion, speed of processing, user friendliness and robustness. Our system tells us about 

the exact amount of change occurring if we increase concentration of certain solu

tion or add other materials to our solution. The accuracy of results is confirmed by 

comaparing with manual calculations and already-present information. Our system 

processes the images of the sample before and after the change and then generates a 

statistical summary table or graph indicating the exact amount of change occurring 

in the sample structure. 

One of the key features of our system is effective and faster processing of images 

with huge amounts of data points. In our research, the images we need to process have 
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multiple layers with a variety of information associated with each layer. To process 

the images faster, we extract the layer of relevant data and process it. This layer 

extraction mechanism increases our processing capability by a large degree. In cases 

where the extracted layer does not have all of the desired information, we complement 

the missing information by adding to it one of the other layers of the image. The 

idea of layer extraction and subsequent correlation for processing the AFM images 

was adopted in this research and was not available previously. We observe that this 

technique decreases our processing time more than threefold. 

Furthermore, our system is designed to a higher degree of user friendliness and is 

robust to use. All the services provided are easy to use with a click of the mouse either 

on a menu or in a user option dialog box. The system functionality and usability is 

explained through screen-capture images in the user manual. The system is design to 

respond consistently and intelligently to undesirable user inputs. For example, if the 

user provides nothing where the system asks for the file name, or if the file provided 

by the user does not exist, the system will ask the user again to provide the correct 

file name. 

Our system is designed for AFM images, but it is also capable of processing non

AFM images. A few user-defined services can import, scale and process SEM images 

in a semi-automated fashion. Future directions for this research would be to make the 

system flexible to support and process all types of images. In my opinion, our system 

can easily process optical microscope images if the already existing services are tuned 

accordingly. This could be particularly useful for fluorescence images where you stain 

different parts of your sample with different coloured fluorescent tags. These could 

be thought of as different layers for your sample: one red, one green, one blue. We 
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can use our image processing techniques to compare statistics between layers to check 

for co-localization of various parts of the sample by providing new interfaces and by 

tuning and automating already existing services. 

Another potential area of future research will be to design filters for images with 

low-frequency noise superimposed over the object signal. The images of gold particles 

on a silicon surface have this type of noise. We can get rid of problems by asking the 

user to enter the threshold value for the maximum height of objects/structures for 

an image and then mark all the pixel higher than threshold with the threshold. 

Furthermore, currently our image processing system is unable to categorize statis

tical information about objects or structures in images with multiple types of struc

tures/objects in a single image. As a next step, we can design services that can take 

care of this issue, i.e. to find exactly how many objects are of what shape (circular, 

rectangular, horse shoe, rope like) and exactly what kind of changes occur in these 

objects/structures due to changes in the sample. To find the shapes of objects in au

tomated services, a comparative analysis of area and cross-section will be extremely 

helpful. 

In conclusion, our highly automated and effective system finds statistical infor

mation about objects/structures in bio-chemical material samples. Also, the system 

records any changes which occur in these samples due to the addition of any other 

material or any change in concentration or temperature. 
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Appendix A 

User Manual 

A.l Introduction 

Nanotechnology is the one of the fastest growing research focuses for scientists of 

various interests. State of the art devices are used to observe the tiny (nano-scale) 

structures and their behaviors. We can apply this technology to study the systems of 

biological or chemical interest. One question we often ask is, how these structures re

acts/responds to different environments and situations? We can answer this question 

using Atomic Force Microscopy. 

Atomic Force Microscopy ( AFM) is used to measure three dimensional nanoscale 

objects. It provides data in the form of 2-D arrays (3-D images), that is clear enough 

to be observed with human eye, and easy for analysis and processing. We use AFM 

to collect data on sample surfaces. Our samples have atomic or molecular structures 

and our images show their response to temperature changes, different solutions, and 

other physical parameters. 
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The first step is to scan the sample's surface area using AFM. This process give 

us AFM images. These images are then processed in Igor [21] (a mathematical pack-

age) to collect information. Igor provides an extremely large set of operations for 

the analyzing and processing of images. Our focus is specific and cannot be served 

directly by native Igor operations alone; therefore we need extra image analyzing and 

processing services within the Igor environment to serve our purpose. These services 

are named as Igor "Add-ons". Some of these are provided by Asylum Research [14] 

(the AFM manufacturers). These services are mainly responsible for getting statistics 

about scanned images. 

MakeExternaiimageSquare 

ChangelmageName 
SetExternaiimageScale 

Figure A.1: Srvices exposed and created by user define procedure. 
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Our goal is to extract the statistics about the height, size and distribution of 

objects in the images. These statistics are then represented in the form of tables 

and graphs. Furthermore, we want to bring the scanned SEM (scanning electron 

microscopy) images into Igor for information extraction. Images that are scanned at 

a high resolution are easy to process and analyze. 

A.2 Installation 

To install the "Add-on" services Igor users are required to add procedure "ImageAnal

ysisProcedure" to their experiment. The user can observe extra options as shown in 

Images below after saving experiment. To install the "add-on" the user has to add 

"ImageAnalysisProcedure.ipf' to their experiment by going to the menu File----+ Open 

File ----+ Procedure. Igor users can apply these services and utilize them during the 

processing of their images. 

A.3 Usage 

The first step in using Igor's image processing services is to load the desired images in 

the experiment. Then open the procedure file "ImageAnalysisProcedure" (by going 

to menu File ----+ Open File ----+ Procedure) in the current experiment and compile 

it by clicking the "compile" button at lower left. Before analyzing and processing 

it is highly recommended to save the experiment. Image processing and analysis 

is available to users in the form of various services. The usage of these services is 

explained in the following sections. 
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• Generate Image Statistics 

• Apply Image Leveling Algorithm 

• Calculate average distances between structures in an image 

• Import an Image to Igor (SEM Image) 

A.4 Generate Image Statistics 

A.4.1 Flattening 

The first step for generating image statistics is to flatten the image and extract the 

suitable layer of the image for processing. The image must be selected for processing 

to generate statistics. The first step is to flatten the image by the Asylum-provided 

flattening service. To perform that operation first click the button with caption "M" 

on top right of selected image. A new window will appear having tabs at the top. 

Select the tab with caption "Flatten" and then click the button "Flatten". Set the 

flattening order to zero. 

After flattening the image click the "Auto" button at the top of the image. Im

age analyzing and processing routines can be applied now. To save memory during 

processing, the required layer will be extracted and processed. 

A.4.2 Layer Extraction 

To extract a layer from an Image, the user has two options. One can use the built

in command "extract layer" found in the dropdown list "Commands" on the image. 
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Figure A.2: Flattening the image before layer extraction 
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Otherwise, the user can select the image and then click the user service Extract layer" 

from the Macros menu. The extract layer process is explained with the image below: 

Figure A.3: Screen capture of Layer Extraction services for desired image 

A.4.3 Noise Removal 

In case of noise in the "LayerData" a noise filter will be applied by clicking "M" on 

top right of the image and then select the tab with caption "Filter". Median or rank 

filters will be used in case of impulse (salt & pepper) noise while Gaussian filters are 

used if Gaussian (uniform, normal, distributed) noise exists. 
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Figure A.4: Screen capture shows different filters that can be applied on Layer data 

according to the requirement of image 
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A.4.4 Image Statistics 

The image is now ready for analysis and processing, so select the particle analysis 

option from the menu option "image" as shown in the image below. Then select the 

analysis parameters (normally the default values are fine) and click the button do 

it. The objects inside the image will be encircled as shown in the image below. If 

the boundaries of objects are not acceptable click the "Remove Overlay" button and 

change the parameters. If the user wants to make objects with numbers in the view, 

click the check box "label" . 

stats •.• 
Threshold ... 
Edge Detoctlal, •. 

Image Mo<phology ... 

Image Translonnotlons ... 
Image Normolzalian ... 

Rotate ... 
Cdortze 

Spotlli Col>rotlon ... 

Spotlal Measurements ••• 

Add Sider 

Figure A.5: Screen capture showing particle analysis process 
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The statistics about the image are generated and can be represented in the form 

of graphs and a summary file by clicking "ShowlmageStatistics" from menu option 

"Macro" or from the user menu box by clicking Apply Generate Statistics. The user 

will be prompted to provide the directory for saving the text summary of the image 

objects. 

Figure A.6: Screen capture showing the services for generating Image statistics 
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a and b. shows height againls object number and height histograms. While Graph c and d shows height 
and area distribution over objects( avea againls object numbers). 

Figure A. 7: A screen capture showing the graphical representation of information 

about the processed image 
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Figure A.8: A screen capture showing statistical information in tabular format 

A.5 Apply Image Leveling Algorithm 

After applying the built-in "Flatten" algorithm, if the background of the image is 

still not level (i.e. there are some sharp bands or the background which have different 

intensity), the image leveling algorithm can be applied. To solve the problem of 

uneven background, our system provides two services for flattening: vertical flattening 

and horizontal flattening. The user of the system can apply these flattening algorithms 

by selecting a line from the background (ideal candidate line for flattening) and level 

the image background according to that line. 

The "ApplylmageLevelingAlgorithm" option can be selected from the "Macro" 

menu to apply the appropriate leveling algorithms on the desired layer of data. The 

difference between the images before and after applying the leveling algorithm can be 
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Figure A.9: Screen capture illustrates how to applying leveling on the image layer 
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Figure A.lO: Screen capture shows the result after applying horizontal leveling 
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Figure A.ll: Screen capture shows the result of applying vertical leveling 
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observed by looking at Figures A.lO and A.ll above . .The extraction of true objects 

is also easier when the image background leveling algorithm is applied in the case of 

an image which has an imbalanced background. 

A.6 Calculate average distances between structures 

. . In an Image 

This service calculates average distances between structures in an image by finding 

average distances between neighboring structures. The service ask the user to input 

an angle for a line and then the system finds structures along a series of lines nor-

mal to the user-input line. The system then calculates the distances between those 

structures. 

The result of average distances for an image is calculated. The system normally 

calculates the average distance of structures for 5 angles closer to user input angle 

line, i.e. from [user angle - 2] to [user angle + 2]. This result will help the user to 

find a good candidate angle for finding the structure distribution in an image. 

A.7 Import an Image to Igor (SEM Image) 

To analyze an external analog image- such as a Scanning Electron Microscope (SEM) 

image on polaroid film - in Igor, the image must first be digitized with a scanner and 

saved in any standard graphics file format. To import the image, use the menu option 

"Data" then "Load Image" from "Load waves" as shown in Figure A.l3. In the dialog 

box which appears, click the "File" button to select a file in the "Open File" dialog. 
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Figure A.12: Shows how to calculate the average distances of structures for some 

image 
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Make Waves ••• 

Duplicate Waves ... 

Change Wave Scalno ... 
Redmension Waves ••• 

Insert Poilts .. . 
Delete Points .. . 

KiiWaves ... 

Rename ... 

Figure A.l3: Screen capture shows how to load an external (SEM) image 
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Do give some name to the file you want to import by clicking the radio button "Use 

the name". Do check the checkbox Display Image to see the import image. 

lnstParrn 
utlltles 
Code3D 
XPT 

Figure A.14: Screen capture shows how to load an external image and save it so that 

it can be visible in MFP-3D software. 

Note: If you are currently working with some images in the experiment, the image 

will be loaded into Image folder. In case a newly-loaded image is not loaded into the 

Image folder, it can be dragged and dropped to the Image folder from the root folder 

in the data browser. You can open the data browser by going to menu option "Data" 

and then "Data browser". 
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A.7.1 Set Image Scale (SEM Images) 

This operation is available for images collected from tools other than the MFP-3D 

AFM. These images (i.e. SEM images) require scales setting to represent true size 

information. Menu option "SetlmageScale" under "Macro" will perform this func

tionality. The image is selected from the drop down list for scaling. The size of the 

actual pixel will be provided for scaling of image. In our images the size of the pixel is 

constant so we set that value as default, but for a different set of images the pixel size 

will be different, so the field that takes the value of actual pixel size is kept editable. 

The continue button will perform the scaling and the result can be seen by viewing 

the image with the true dimensions of the image. 

Figure A.15: A screen capture illustrating how to set the scale for a non-Igor (or 

SEM) image 
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A.7.2 Manage External Images (SEM images) 

SEM images can be copied into a dummy image layer for processing using this oper

ation. The user can either just copy the image directly to some Igor dummy layer or 

copy the inverted image (see below) into an Igor dummy layer. The image can be se

lected from the dropdown image list and the conversion mechanism should be selected 

and performed by clicking "continue". The new layer can be seen as "myLayerData" 

after refreshing images in the list panel. 

A.7.3 Invert Layer Data (SEM images only) 

Flipping/Inversion of an image is sometime required during image processing since 

the SEM negatives are often scanned in for their higher resolution relative to the 

polaroid prints. This can be done by clicking the "InvertLayerData" option from 

"Macro" . Any SEM image in the layer data will be inverted. Nate: This option does 

not work for AFM images and should not be applied on AFM images. 

A.7.4 Make Image Square {SEM images only) 

SEM images are normally not square and do not contain 2n number of image points. 

Igor deals with images of 2n x 2n number of data points more efficiently, so the Make 

Image Square option shrinks the image to suitable (2n number of point. This option 

can be selected by selecting "MakeimageSquare" under menu option "Macros" . Then 

the user has to select the image from the dropdown images list. The resultant square 

(2n points) image is stored in LayerData. 
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Figure A.l6: A screen capture showing how to invert an image so that it will bring 

out objects from the background 
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A.8 Feedback: 

Any feedback about these services or manual should be provided to Dr. Erika Mer

schrod ( erika<.Omun. ca) or J ehangir by their email addresses or in person. 
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Appendix B 

Code 

All the code used and written in this research is written in Igor Pro Scripting Language. 

The code calls the Image Processing procedures exposed by MFP-3D (wavematrix). 

The services given below are developed during this research. 
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#include <All IP Procedures> 
#pragma rtGlobals=1 //Use modern global access method. 
II During our process we tested these services on different SEM images 
II successfully. Every macro calls a function that does the 
II the functionality closely related to name of function/service. 
macro MakeExternalimageSquare() 

makeimageSquare() 
end 
//This Macro set is responsible for making non-igor images change 
II in a way that we can process it just like igor native images. 

macro ChangeimageName() 
renameimage() 

end 
macro SetExternalimageScale() 

SetScaleForimage() 
end 
macro ManageExternalimages() 

~ ManageExternalimage() 
end 
macro InvertExternalimageLayer() 

InvertLayer() 
end 
//End of Externalimages Macros 

II Macro that calls the user defined processes option box 
macro ImageAnalysisProcessing() 

checkboxfunction() 
end 
//macro call generate statistics 
macro GenerateStatistics() 

doGenerateStatistics() 
end 
II This function draws the box with Title Image Processing Options and 
II then applies those processes according to user responses 
Function checkboxFunction() 

NewPanel /k=1 /W=(150,50,450,180) as "Image Processing Options" 



"" tO 

End 

Variable/G gRadioVal= 1 
CheckBox check0,pos={52,25},size={78,15},title="Apply Layer 
Extraction",value= O,mode=O,proc =doLayerExtraction; 

CheckBox check3,pos={52,45},size={78,15},title="Apply Partical Analysis" 
,value= O,mode=O,proc = doAnalyzeParticles; 
CheckBox check4,pos={52,65},size={78,15},title="Apply Generate 
Statistics",value= O,mode=O,proc = doGenerateStatistics; 

Function doLayerExtraction(ctrlName,checked) : CheckBoxControl 
String ctrlName 
Variable checked 
if (checked == 1) 
Extract Layer () 
end if 

end 

Function doAnalyzeParticles(ctrlName,checked) : CheckBoxControl 
//This service checks if user selected to do analyze particles. 
II If yes, it will open image analyze particle window 

end 

String ctrlName 
Variable checked 
if (checked == 1) 

WMCreateimageParticlePanel(); 
end if 

Function doGenerateStatistics(ctrlName,checked) : CheckBoxControl 
//This service checks if user selected to call generate image 
//statistics. It then calls the function Generate Image Statistics 

String ctrlName 

end 

Variable checked 
if (checked == 1) 

GenerateimageStatistics(); 
end if 

II This macro asks the user about the type of leveling algorithm to 
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II apply and what mode s/he wants to apply 
II Either to input image leveling information or use default 
II normalization techniques 

macro ApplyimageLevelingAlgorithm( Levelingoption,levelType) 
String Levelingoption,levelType 
Prompt Levelingoption,"Select The Option for Leveling Image in 
LayerData",popup,"Vertical Leveling;Horizontal Leveling;_none_" 
Prompt levelType,"Select Leveling Type",popup,"manual;automatic;" 
if (stringmatch(Levelingoption,"Vertical Leveling") ==1) 

if(stringmatch(level Type," automatic ")==1) 
ImageVerticalLevel(O) 

else 
GraphWaveDraw/0/L/R 

II Here system asks the user to draw the input line 
end if 

else stringmatch(Levelingoption,"Horizontal Leveling") ==1) 
if(stringmatch(level Type," automatic" )==1) 

ImageHorizontalLevel(O) 
else 

GraphWaveDraw/0/B/T 
II Here system asks the user to draw the input line 

endif 
end if 

End 

II When user selects to draw a line for leveling the image, the system 
II then asks the user again to apply the line in leveling. Although 
//it's an added burden for the user, we have to ask the user twice. We 
II cannot declare global variables, so we cannot store the user 
II response in macro as we cannot declare static data type in macros. 
II declare global variables so cannot store the user response in macro 
II as we cannot declare static data type in macros. 

Macro ApplyLeveling(Levelingoption) 
String Levelingoption 
Prompt Levelingoption,"Select The Option for Leveling Image in 
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end 

LayerData11 ,popup, 11 Vertical Leveling;Horizontal Leveling; 11 

if (stringmatch(Levelingoption, 11 Vertical Leveling 11
) ==1) 

doUserLeveling( 11 Vertical 11
) 

else 
doUserLeveling ( 11 Horizontal 11

) 

end if 

II Call to to the user selected funtion for User input selected line. 
Function ApplyUserLeveling(Ltype) 

string Ltype 
//store the leveling type either vertical or horizontal 

wave userLine = root:Images:W_YPolyO 

end 

variable dimension = DimSize(root:Images:LayerData,O 
variable userRC = floor(((!+ userLine[0])/2)* dimension) 
//Calculate the user defined row or column in image for the drawn line 

if (stringmatch(Ltype, 11 VerticaP) ==1) 

ImageVerticalLevel( userRC) 
else 

ImageHorizontalLevel(userRC) 

end if 

II This function is responsible for leveling the image vertically when 
//user asks for vertical leveling of the current image layer. 
Function ImageVerticalLevel(row) 
//Layer Select for normalization default value is zero in case of 
//automatic 

variable row 
wave imageWave = root:Images:LayerData 
String notes = note (root:Images:LayerData) 

II reading current image notes into a string for further processing 
variable l_row , tot_rc , s_column , averagevalue, sumLine,column 

tot_rc = DimSize(root:Images:LayerData,O ) 
II this variable saves the value of total number of rows or columns as 
II images are square so row= column 
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Make/0/N=(tot_rc) userSelRow 
II Make a vector to save the user selected Image line for 
II normalization. 

userSelRow = 0 

II This loop adds the pixel values in user selected line for 
//calculating average values. 

for (column =0 ;column<tot_rc ;column+=!) 
sumLine += imageWave[row] [column] 

endfor 
averagevalue= sumLine/row 

II Average of user selected image line values 

II This loop calculates the difference of average of selected line to 
//actual values in selected line and normalization vector is created. 

for (column =0 ;column<tot_rc ;column+=!) 
userSelRow[column] = averagevalue- imageWave[row][column] 

endfor 

II This loop applies normalization vector on the whole image under 
//consideration that is layer data. 

for (l_row =0 ;l_row<tot_rc ;l_row+=1) 
for (s_column =0 ;s_column<tot_rc ;s_column+=1) 

imageWave[l_row] [ s_column ] = imageWave[l_row] 
[s_column] +userSelRow[ s_column ] 

endfor 
endfor 

II Return memory of unrequired user variables , strings and vectors to 
II the Processor. 

end 

Killvariables /A/Z 
KillStrings /A/Z 
Killwaves userSelRow 

//End of Vertical Leveling 

II This function levels the image when user selects horizontal 
//leveling/flattening according to user request 
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Function ImageHorizontalLevel(column) 
variable column II User Selected line or zero for default if user select automatic 
wave imageWave = root:Images:LayerData 
II Load the current Image Layer into User wave for processing 
String notes = note (root:Images:LayerData) 
II reads notes from the current Image for getting image detail 
variable tot_rc, row, s_column , averagevalue, sumLine 
//Local variables declearign storing temp data and loop controls 
tot_rc = DimSize(root:Images:LayerData,O ) II This variable 
//saves rows or columns numbers as square images in our case so we have 
II one variable for both rows and columns 

Make/0/N=(tot_rc) userSelRow 
II Make a vector to save the user selected Image line for normalization. 

userSelRow = 0 
variable dummycol 

II Dummy variable to store the column value for temporary usage 
dummycol = column 

for (row =0 ;row<tot_rc ;row+=1) 
if(imageWave[row] [column] > 0) 

II This checks if there is an object in user selected line so don't 
//make it part of user 

II selected vector (line ) for image leveling 
do 

column +=1 
while (imageWave[row] [column] < 0) 

II This skips all the values of particle in selected line 

sumLine += imageWave[row] [column] 
II Add the previous value for every particle point instead of particle 
I /pixel value 

column = dummycol 
II Helps remember control of old point on line before approach of a 
//particle in 
II User selected line or default zero indexed line 
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else 
sumLine += imageWave[row] [column] 

II For regular scenario just add the value for normalization vector 
end if 

endfor 

averagevalue= sumLine/tot_rc 
II Average of User Selected line 

II This loop creates the 11 average - Selected line vector 11 for 
//normalizations of the current image 
for (row =0 ;row<tot_rc ;row+=1) 

endfor 

if(imageWave[row] [column] > 0) 
userSelRow[row] = userSelRow[row-1] 

else 
userSelRow[row] = averagevalue - imageWave[row] [column] 

end if 

//These for loops apply the user selected line normalization row by row 
//to the whole image. 

for (column =0 ;column<tot_rc ;column+=!) 
for (row =0 ;row<tot_rc ;row+=1) 

imageWave[row] [ column ] = imageWave[row] [column] +userSelRow[ row ] 
endfor 

endfor 

II Killing undesirable variables, strings and waves to release memory 
II for other processes. 
Killvariables /A/Z 
KillStrings /A/Z 
Killwaves userSelRow 
end 
II End of horizontal leveling 

II The Function GenerateimageStatistics is responsible for generating 
//image statistics for the image in Layerdata 



II and for which particle analysis procedure is performed and particles 
//are identified. This function calculates and shows 

II results in tabular format for image objects' height, areas, standard 
//deviation and average heights and areas. etc. 
Function Generate!mageStatistics() 

//Load the Object areas vector calculated by analyze particle into 
//areaVector wave for further processing 

wave areaVector = root:Images:LayerData_WMUF:Particles:W_ImageObjArea 
//Load the Object circularity vector calculated by analyze particle 
//into areaVector wave for further processing 

wave circularity = 
root:Images:LayerData_WMUF:Particles:Circularity 

WaveStats areaVector 
II WaveStats returns the statistics in the automatically created 
//variables 

Make /O/T/N=(12,4) Statistics 
//Table for storing resulting summary of the image 

~ //Declaration of variables for later use, naming of variable shows its 
//functionality 

variable counter, maximum, minimum,average, 
stdeviation,skewness,noofobjects, maxhono,minhon 
variable kurtosis,i_length,i_area,p_area,o_totpix,obj_circularity, 
circulari tyloop 

//putting statistics information from automatically set variables 
//with "WaveStates" into user define variables 

noofobjects =V_npnts 
average = V_avg 
maximum =V_max 
maxhono = V_maxloc 
minimum = V_min 
minhon = V_minloc 
stdeviation =V_sdev 
skewness = V_skew 
kurtosis = V_kurt 

Make/N =(noofobjects)/0 heightVector 
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II vector to store the height of every object in the image and used for 
//averaging 

String notes = note (root:Images:LayerData) 
//Save notes "information associated with image" of the image into 
//string variable 

//The below Unit of code calculates the pixel size which is further 
//used to calculate pixel area in true scale 

i_length = str2num( Stringbykey ("ScanSize",notes,":","\r")) 
i_area = i_length*i_length 
o_totpix = str2num( Stringbykey ("ScanPoints",notes,":","\r")) 
p_area = i_area/(o_totpix*o_totpix) 

variable temp_counter 
temp_counter = 0 
obj_circularity =0 

II calculate total circularity using data in Circularity vector and 
//store it in variable obj_circularity "objects circularity" 

for(circularityloop=O; circularityloop<noofobjects;circularityloop+=1) 
obj_circularity +=circularity[circularityloop] 

endfor 

II Calculate true area for every object by multiplying the pixel area 
//to each area item 

if ( areaVector[temp_counter] > i_length) 
do 

areaVector[temp_counter] = areaVector[temp_counter]*p_area 
temp_counter+=1 

while (noofobjects>temp_counter) 
end if 

if( WaveExists(Statistics) ) 
II If the statistics file exists store the statistical information at 
//mentioned indices 

Statistics [0] [0] = "Total Below information shows the 
statistics about the Current Image. No of Objects 

"+num2str(noofobjects) 



00 
-:j 

Statistics [1] [0] = "AREA INFORMATION " 
Statistics [2] [0] = "Average Area of Objects II 

Statistics [2] [1] =num2str(average) 
Statistics [3] [0] = "Max Area of an Object " 
Statistics [3] [1] =num2str(maximum) 
Statistics [4] [0] = "Max Area Object # " 
Statistics [4] [1] = num2str(maxhono) 
Statistics [5] [0] = "Min Area of an Object " 
Statistics [5] [1] =num2str(minimum) 
Statistics [6] [0] = "Min Area Object # " 
Statistics [6] [1] = num2str(minhon) 
Statistics [7] [0] = "Standard Deviation of Areas " 
Statistics [7] [1] = num2str(stdeviation) 
Statistics [8] [0] = "Skewness of Areas " 
Statistics [8] [1] = num2str(skewness) 
Statistics [9] [0] = "Kurtosis of Areas " 
Statistics [9][1] = num2str(kurtosis) 
Statistics [10] [0] = "Total Circularity II 

Statistics [10] [1] = num2str(obj_circularity) 
Statistics [11] [0] = "Average Circularity " 
Statistics [11] [1] =num2str(obj_circularity/ noofobjects) 

II Storage of statistical area related information ends here 
wave LayerData = root:Images:LayerData 

II load wave into user-defined wave for processing 
variable objectno 
objectno =0 

II Loading particle locations in the image into user define waves to 
//identify the starting point of every object 
II and then walk through each object to identify height of each object 

wave min __ xData = root:Images:LayerData_WMUF:Particles:W_xmin 
wave max __ xData = 
root:Images:LayerData_WMUF:Particles:W_xmax 

wave min __ yData = root:Images:LayerData_WMUF:Particles:W_ymin 
wave max __ yData = root:Images:LayerData_WMUF:Particles:W_ymax 
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II This loop finds the height of an item with each of its iterations. 
do 

variable xmin,xmax,ymin,ymax,maxval,loopcounter, 
row,column 
II Declaring variables for location of particles 
II Setting variables for starting point of each particle 

xmin =min __ xData[objectno] 
ymin =min __ yData[objectno] 
xmax =max __ xData[objectno] 
ymax =max __ yData[objectno] 
maxval = LayerData[xmin] [ymin] 
row =xmin 
column = ymin 

loopcounter = max(row,column) 
//row and column have same value so anything will be fine 

variable forcounter 
//This loop searches for height of the current particle. It looks for 
//previous and next item for every pixel item. 
II If previous point and next are both lower in height as compared to 
//current pixel point, then it's a candidate for 
II height particle and high point of the current object. 

for (forcounter=O; forcounter <loopcounter;forcounter+=1) 

if(LayerData[row+1] [column] >maxval && 
(LayerData[row+1] [column] >LayerData[row] [column+!] && 
(LayerData[row+1] [column]>LayerData[row+1] [column+!]))) 
maxval = LayerData[row+1] [column] 

row+=1 

elseif (LayerData[row] [column+!] >maxval && 
(LayerData[row] [column+!] >LayerData[row+1] [column] && 
(LayerData[row] [column+1]>LayerData[row+1] [column+1]))) 

maxval = LayerData[row] [column+!] 
column+=1 

elseif (LayerData[row+1] [column+!] >maxval && 
(LayerData[row+1] [column+!] >LayerData[row+1] [column] 
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&& (LayerData[row+1] [column+1]>LayerData[row] [column+!]))) 
maxval = LayerData[row+1] [column+!] 
column+=! 
row+=! 

else 
break; 

end if 
endfor 

II end of far loop and one height is identified 
heightVector[objectno] = maxval 

II Height value is stored against object number for further processing 
objectno+=1 

while(objectno<noofobjects) 
II This loop runs for every object in image to calculate height 

WaveStats heightVector 
II Automatically setting information variables 

II Storing Objects height information into summary table 
Statistics [1] [2] = "HEIGHT INFORMATION" 
Statistics [2] [2] ="Average Height " 
Statistics [2] [3] =num2str(V_avg) 
Statistics [3] [2] = "Max Height 11 

Statistics [3] [3] = num2str(V_max) 
Statistics [4] [2] = "Max Height Object # " 
Statistics [4] [3] =num2str(V_maxloc) 
Statistics [5] [2] ="Min Height " 
Statistics [5] [3] =num2str(V_min) 
Statistics [6] [2] = "Min Height Object #" 
Statistics [6] [3] = num2str(V_minloc) 
Statistics [7] [2] ="Standard Deviation " 

'Statistics [7] [3] =num2str(V_sdev) 
Statistics [8] [2] = "Skewness " 
Statistics [8] [3] =num2str(V_skew) 
Statistics [9] [2] ="Kurtosis " 
Statistics [9] [3] =num2str(V_kurt) 
Statistics [10] [2] =" 11 

II To make the balance entries we have to put empty strings 



Statistics [10] [3] ="" 
//Where data is not required limitation of the system otherwise 

Statistics [11] [2] ="" 
II the system will print junk values. 

Statistics [11] [3] ="" 

end if 

II Display different comparison graphs with various modes 
//[mode of view] 

display heightVector vs root:Images:LayerData_WMUF:Particles:W_SpotCounter 
display areaVector vs root:Images:LayerData_WMUF:Particles:W_SpotCounter 
display heightVector vs areaVector; modifygraph mode =2 
display heightVector vs areaVector; modifygraph mode =3 
make /o hist 
histogram /B ={V_min , (V_max-V_min)/V_npnts, V_npnts} 
heightVector, hist 
display hist 

~ II Kill the variables that are no longer required to return memory to 
//operating system 

killVariables /A/Z 
KillStrings /A/Z 

end 

macro CalculateTheAverageDist(degree ) 
string degree 

end 

Prompt Degree,"Select the angle from right/bottom. Please keep 
it '0 - 90' Degrees or less 11 

if (V_Flag) 

return -1 //User cancelled 
end if 
distanceofobjects(str2num( degree)) 

Function distanceofobjects( degree) 
variable degree 
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Make /0/T/N=(5,2) avgDistances 
//Make it five rows and two columns 

end 

if ( degree > 4 && degree< 86) 

else 

avgDistances[O] [0] = "The average distance for angle"+num2str(degree-2) 
avgDistances[O] [1] =num2str(findAverageNeighbourDistance( degree-2)) 
avgDistances[1][0] ="The average distance for angle"+num2str(degree-1) 
avgDistances[1][1] =num2str(findAverageNeighbourDistance( degree-1)) 
avgDistances[2] [0] = "The average distance for angle"+num2str( degree) 
avgDistances[2] [1] =num2str(findAverageNeighbourDistance( degree)) 
avgDistances[3] [0] = "The average distance for angle"+num2str( degree+1) 
avgDistances[3] [1] =num2str(findAverageNeighbourDistance( degree+1)) 
avgDistances[4] [0] = "The average distance for angle"+num2str( degree+2) 
avgDistances[4] [1] =num2str(findAverageNeighbourDistance( degree+2)) 

avgDistances[2] [0] = "The average distance for angle "+num2str( degree) 
avgDistances[2][1] =num2str(findAverageNeighbourDistance( degree)) 

end if 

I I This function takes an angle as an input and uses the angle for 
//drawing a line from the right bottom of the image. 
II The system draws multiple normal (perpendicular) lines to the angled 
//line and calculates distances of objects lies on tangent lines. 
II The System then calculates the average distance of every object to 
//its neighbouring object. 

Function findAverageNeighbourDistance(degree) 
Variable degree 
Make /0 distances 

//area of declaring all the local variables used in the Averaging 
//procedure , 
II variable dimension is representing number of rows and columns 

Variable dimension , sizeofpixel , selectedcol, selectedrow, startrow, 
startcol, endrow, endcol, tempstartrow, tempstartcol, tempendrow, tempendcol 



variable checkend, noofpoints, firstheight, distance, 
noofpositivevalues, distancenumber 
variable distancecounter, totalofdistances, selectrow 
totalofdistances = 0 

//is Used to calculate average distances total/no of distances 

wave layerdata = root: Images: layerdata 
sizeofpixel = deltax(root:Images:LayerData ) 

//Extract true size of pixel from the current image 
dimension = DimSize(root:Images:LayerData,O ) 

II Dimension of current image rows and/or columns 

II Following check sets start and end of angled line on the image 
II Details about function : If angle is less than 45 we calculate the 
//starting point of line by drawing angle with base in case 

II angle is more than 45 we draw the angled line by considering angle 
//with the right side of the image 

~ IF (degree>45 && degree < 90) 

Else 

degree = (90 - degree) 
selectedrow = degree I 45 * dimension 
selectedrow = round(selectedrow) 
selectedrow = dimension - selectedrow 
endrow = selectedrow - 1 
endcol = dimension 
startrow = 0 
startcol = dimension - (selectedrow) 

startrow = 0 
selectedcol = degree I 45 * dimension 
selectedcol = round(selectedcol) 
endrow = dimension - (selectedcol) 
startcol = selectedcol - 1 
endcol = dimension 

End IF 
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distancecounter = 0 
checkend = 0 

//Helps loops to adjust the start and end position of lines parallel to 
//the input angled line. 

Do 

//Using temporary variables for loop functionality to avoid change in 
//original drawn line. 

tempstartrow = startrow 
tempstartcol = startcol 
tempendrow = endrow 
tempendcol = endcol 

//This check controls the start of line for given angle by moving it 
//with reference to change end of line with every iteration of the 
//loop. 

IF (checkend == 1) 
tempendrow -=1 
tempendcol-=1 

End IF 

//Set all the variables that determine the objects and distance for all 
//perpendicular lines on the line with current start and end values. 

firstheight = 0 
distancenumber = 0 
noofpoints = 0 
noofpositivevalues = 0 

//This loop runs for every perpendicular on current angled line and 
//finds distances of objects in those perpendicular lines. 

Do 

tempstartrow +=1 
tempstartcol+=1 

IF(layerdata[tempstartrow ][tempstartcol] > 0) 
//Check for the objects in virtual lines. Any value greater than zero 
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//represents object and values less than zero represent background. 
noofpositivevalues+=1 

IF(firstheight==O ) 
//If we encounter the first positive value in the virtual line, it is 
//an indication of an object in current line 

firstheight = 1 
End IF 

II Note: In our images objects' heights are continuously growing and 
//then falling down mostly making a parabolic like shape. 

//In case of positive value the check below sees if the current point 
//in image is taller than its previous and next point in height so if 
//it is taller than previous and next it's considered as peak of 
//current object. 

IF(layerdata[tempstartrow -1] [tempstartcol-1] < 
layerdata[tempstartrow ] [tempstartcol] && layerdata[tempstartrow] 
[tempstartcol ] >layerdata[tempstartrow +1] [tempstartcol +1] ) 

IF(firstheight==1) 
IF (noofpositivevalues > noofpoints ) 

//This check avoids the multiple ups and downs in same object 
//by checking for background points between two peak points. 

noofpoints+=1 
Else 

//In case of else we are sure that second peak is reached so now to 
//record the distance between two peaks set the different variables and 
//move on. 

distancenumber +=1 
noofpoints+=1 
noofpositivevalues = 0 

//This will print the value of all heights-->fprintf fileobject, "The 
//distance between object #" + num2str(distancenumber) + " and object 
//#" + num2str(distancenumber + 1) + " is :" + num2str(noofpoints * 
//sizeofpixel) + " meter\r\r\n\n\r" 

distances [distancecounter] = (noofpoints * sizeofpixel) 
totalofdistances+= (noofpoints*sizeofpixel ) 
distancecounter+=1 
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noofpoints = 0 
End IF 

End IF 
//The else operation will be performed when the current point on image 
//is not taller from its previous and next so we consider it as point 
//between peaks not a peak. 

Else 

Else 
IF(firstheight==1) 

noofpoints+=1 
EndiF 
End IF 

//Else if the current point on image is not positive so check if it's 
//between two peaks and it will be a central point considered for 
//distances between peaks. 

IF(firstheight==1) 
noofpoints+=1 

End IF 
EndiF 

while (tempstartrow !=tempendrow && tempstartcol != tempendcol) 
//End of code for every perpendicular line. 

//check to go control the starting point for every next line parallel 
//to the provided angle. 

IF (startcol == 0 && startrow == 0) 
checkend = 1 

EndiF 

//The checks below provide us with starting and ending points of next 
//line parallel to the previous line based on given input degree of 
//angle. 

IF(startcol > 0) 
startcol -=1 

Else 
startrow+=1 

End IF 



IF(endrow <dimension) 
endrow+=1 

Else 
endcol-=1 

End IF 
//This check is applied because the check does not work for while loop 

IF((startrow == (dimension-!) ) I I (endcol == 1)) 
break 

//breaks the loop on successful matching of the check. 

End 

EndiF 
While (1) 

return totalofdistances/distancecounter 

//End of Function 

//This function is used to change the name of any image by user defined 
//services. 

~ Function renameimage() 
setdatafolder root:Images 
string imagename 
Prompt imagename , 11 Select an Image from List 11 ,popup,WaveList( 11 *11

, 
11

;
11

, 
1111

) 

doPrompt 11 Select Name to remove Extension 11 ,Imagename 
renamepict imagename, Imagename 

end 
//end of unused function 

II This is a utility function that calculates the nearest square for the 
II input size and we use this service by providing original dimensions. 
Function calculateSquareSize(size) 

variable size 
variable power =0 

do 
if (size >=2) 

if (mod(size ,2) ==1) 
size = size-1 
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end 

end if 
end if 
size = size/2 
power +=1 

while(size > 1) 
size =1 
do 

size = size*2 
power -=1 
while (power >0) 

return size 
killvariables /A/Z 

II End of Utality service I Function 

II This function asks the user to select an image from the image list 
//and if the dimensions of the image are not in form of 2 to power n it 
//converts that 
II image into 2 to the power n dimension for easier and quick image 
//processing. 

Function makeimageSquare() 
setdatafolder root:Images 

II set folder pointer to images folder inside root. 
variable row, column, size,rowindex,columnindex 
string imagename 
Prompt imagename , 11 Select an Image from List 11 ,popup,WaveList( 11 *11

, 

II load all Images in the current folder that is root:Images 
11.11 

doprompt 11 select an Image from List below 11 ,imagename 
II Return the image name into Imagename variable selected from the 
//dropdown list 

if (V_Flag) 
return -1 II User canceled 

end if 
if ( waveExists($imagename) == 0 ) 

II check if the File name exists 
DoAlert 1, 11 File does not exist. Please try again 11 

' ' 
1111) 



(,0 
00 

return -1 
else 

•": 

rov = DimSize(root:Images:$imagename,O ) 
//Get the rows and column of the image selected by user 

column = DimSize(root:Images:$imagename, 1 ) 
size = min(row,column) 

II get minimum of rows and columns (dimension) for the current user 
//selected image 

size = calculateSquareSize(size) 
II call to the utility service function that calculates 2 to power n 
//dimension for current image 

if ( waveExists(LayerData) == 1 ) 
II If there is already an image with name LayerData delete it 

killwaves LayerData 
end if 
Make /0/N = (size,size) LayerData 

II Create a new Image with name LayerData 
II Copy the 2 to power n data from the selected image into layer data 
//created inside the current procedure 

wave tempLayerData =$imagename 
for (rowindex=O ; rowindex <size;rowindex+=1) 

for (columnindex=O ; columnindex <size;columnindex+=1) 
LayerData [rowindex] [columnindex] = 
tempLayerData[rowindex][columnindex] 

endfor 
endfor 

end if 

Killvariables /A/Z 
II Delete all unrequired variables and strings to release memory after 
//running this function 

KillStrings /A/Z 

End 

II This function sets the scale for an image that is a non-Igor image 
//according to user desired inputs 



<:0 
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Function SetScaleForimage() 
string scansize 
string imagename ="" 
scansize = "0.0296e-9" 

II Default pixel size which will be over write by user defined pixel 
//size information 

variable row,column 
setdatafolder root:Images 
Prompt imagename ,"Select an Image from List",popup,WaveList("*",";", "") 
prompt scansize ,"Enter the size of actual Pixel" 
DoPrompt "Enter the file name and size of actual Pixel",imagename ,scansize 
if (V_Flag) 

return -1 // User canceled 
end if 
if ( waveExists(root:Images:$imagename) == 0 ) 

DoAlert 1,"Try BY providing correct file that exists in imagefolders" 
else 

II If user provides correct information so this section of code 
//calculate and apply the scale for the user selected image 

End 

roY = DimSize(root:Images:$imagename,O ) 
column= DimSize(root:Images:$imagename, 1 ) 
SetScale X,O,str2num(scansize)*row,root:Images:$imagename 
SetScale Y,O,str2num(scansize)*column,root:Images: $imagename 
Note root:Images:$imagename, "Scane size =11 +scansize 

end if 
Killvariables /A/Z 
KillStrings I A!Z 

//End of set scale service /Function 

II This function is used to invert the data of SEM images to make it 
//compatable and graphically identical to AFM Images. The effect of 
//this service is to invert 
II The image data i.e. in SEM data the background is higher than 
//objects in terms the MFP-30 reads the data. So the service Bring the 
//objects on top of background. 
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Function InvertLayer() 
variable row,column,rowindex,columnindex 
wave myLayerData = root:Images:LayerData 
row = DimSize(root:Images:LayerData,O ) 

//Layer data should be square so row and column are dimenion of the 
//image and must be same 

column= DimSize(root:Images:LayerData, 1 ) 

for (rowindex=O ; rowindex <row;rowindex+=1) 
for (columnindex=O ; columnindex <column;columnindex+=1) 

myLayerData [rowindex] [columnindex] = (myLayerData[rowindex] 
[columnindex] -256) *(-1) 

//Putting the data back into layer data after changing pixels 
//Values with the mentioned formula and thenique 

endfor 
endfor 

end 

II This service take care of images that are not Igor native images. 
//For Example SEM images, it allows the user to select SEM image 

II and puts it into layer data and and then inverts the negative for 
//further easy processing and Igor image like view. 
Function ManageExternalimage() 

string imagename , conversionmechanism 
variable row,column,rowindex,columnindex 
setdatafolder root:Images 
Prompt imagename ,"Select an Image from List to Import into Igor 
Format",popup,WaveList("*"• 11

;", "
11

) 

II load list of images in image folder 
prompt conversionmechanism ,"Enter the Type of Conversion" popup, 
"Invert/Flip Image;Copy Image;" 

II give user option for operation 
DoPrompt "Enter the file name and Conversion Mechanism",imagename , 
conversionmechanism 

//Ask user for image format mechanism 
if (V_Flag) 



return -1 // User canceled 
end if 
if ( waveExists(root:Images:$imagename) == 0 ) 

else 
DoAlert 1, 11 Try by providing correct file name exists in image folders 11 

roY = DimSize(root:Images:$imagename,O ) 
column = DimSize(root:Images:$imagename, 1 ) 
SetDataFolder root:Images 
Make /B/U/0/N = (row,column) myLayerData 
wave tempLayerData =$imagename 
if (Stringmatch(conversionmechanism, 11 Invert/Flip Image 11 )==1) 

for (rowindex=O ; rowindex <row;rowindex+=1) 
for (columnindex=O ; columnindex <column;columnindex+=1) 

//Putting the data back into layer data after changing pixels Values 
//with the mentioned formula and technique 

myLayerData [rowindex] [columnindex] = 
(tempLayerData[rowindex] [columnindex] -256) *(-1) 

b endfor 
~ endfor 

else 
myLayerData =tempLayerData 

II put the image directly into layer data without inverting it 
//according to user options 

end if 
end if 

II delete the undesired variables strings and waves to return memory to 
//the processor for further usage. 

End 

Killvariables /A/Z 
KillStrings /A/Z 
KillWaves tempLayerData 

II End of user define procedure that takes care of external images. 
//Function multiply an image over an other image. 
macro MultiplyLayer() 

Multiply!mages() 
end 
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Function Multiplyimages() 
string imagenamefirst, imagenamesecond , conversionmechanism 
variable row,column,rowindex,columnindex 
setdatafolder root:Images 
Prompt imagenamefirst ,"Select an Image 
multiplication",popup,WaveList("*", ";", 1111

) 

II load list of images in image folder 
DoPrompt "select it man", imagenamefirst 

//Ask user for image format mechanism 
if (V_Flag) 

return -1 // User canceled 
end if 
if ( waveExists(root:Images:$imagenamefirst) == 0 ) 
DoAlert 1,"Try by providing correct file that exists in image folders" 
else 

row= DimSize(root:Images:$imagenamefirst,O ) 
column = row 
SetDataFolder root:Images 
Make /B/U/0/N = (row,column) myLayerData 
wave tempLayerData =$imagenamefirst 
wave tempSecLayerData = $ imagenamefirst 

//wave tempSecLayerData = $ imagenamesecond 
for (rowindex=O ; rowindex <row;rowindex+=1) 

for (columnindex=O ; columnindex <column;columnindex+=1) 
tempLayerData[rowindex] [columnindex] = tempLayerData[rowindex] 
[columnindex] * tempSecLayerData[rowindex] [columnindex] 

endfor 
endfor 

end if 
End //End of Procedure File 










