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Abstract

We have studied experimentally the dynamical behavionr of a driven (hnid-air

instability. The system consists of

interface in the system known as the printer
Lwo horizontal eylinders, one momnted eccentrically inside the other, with the narrow

viscous oil. - As one or both of the

part. of the gap between them filled with a

able, and the int

eylinders rotate, the straight oil-air interface hecomes uns ace

ates. These inelude stationary and traveling finger

displays v of dynamical

io-temporal chaos.  Measurements of the onset

patterns, solitary waves. and s

and development, of the stationary finger pattern observed when only one eylinder

ze elffecls delay the onset of the fingering instability.

s indicate that linit

rota

| parity-hreaking

supereritic

When the two eylinders connter-rotate, we observe

teansition, at which the stationary pattern loses its reflection symmetry and begins

ymmetry of the

o drift along, the apparatus. From meastrements of the degree of &
drifting pattern as a function of the experimental control parameter, we find that
e asymmelry inereases with the square root of the control parameter, and that,

L veloeity is linear in the asymmetry. This behavionr is in accord with recent,

the dr

ng patiern

theoretical predictions. Al low values of the control parameter, the dr
i disordered, also in agreement with theoretical results. We have also observed a
nommiform traveling pattern in which the fingers become unstable to the Ecklians

instability, and we measure the Eckhans stability boundary for this system.




Acknowledgements

As a graduate student, T have benefited immeasirably

Trom the support, adyice,

and friendship of my supervisor, John de Brayn. Withont his gnidance, this the

would not exist. 1 thank Bill Kieley and Paul Martin {or making the apparatus.

[ am grateful for helpful discussions with Raymond Goldstein, Win van Saarloos

and Jim Gleeson. Financial support from Memorial University of Newfonndland is

aratefully acknowledged.



Table of Contents

List of Tables vi

of Figures ix

1 Introduction 1

1L Pattern formation and the printer’ 1

12 Previons work T

13 Summany of this Work « .o v 12

2 Theory 15

20 Linear stability analysis 15
22 Parity breaking

D20 Symmely armument ... 2

d=2g mode conpling .« o v 2

23 Tustabilitios of the travelingswave state . ..o P

280 Results from complex Ginzburg-Landan equation . . . . . . . 2

Its from asymmetry equations . .. .v.vv e u L. 33

3 Apparatus 36

4 Experimental Results with One Cylinder Rotating 43

1L Experimental results with 13 =504 mm . . .ovo e n o 13

AL Results with onter eylindor rotating « « v« voonn Il

112 Results with inner eylinder rotating . . . . . . R 1



Exporimental results with vy = 24.85 mm

............... Gh

0 B e (1)

5 Experimental Results with Cylinders Counter-Rotating T
ol MResilln s, deisianic 3 % mitendi s F o Bt R A A DB B 5 & Tl
Al Uniform hroken-parity waves . . .o oo Lo i

6 Conclusions 122

Bibliography 124



3.1

List of Tables

FIaid propertics . . ..o

39



List of Figures

view of the experimental apparatus,

1.2 Examples of patterns observed in the experiment. ... ...

13 Dynamical phase diagram of e interf

2.1 Calenlated lincar

tability bowndary of the straight menis

Stability i

cquation. ... o Ty
2.3 Lin bility diagram of the
amplittde and phase cquations. . .. ..o
3.0 Sehematic drawing of the experimental apparatis. ..« oo 0oL
Block diagram of the experimental apparatus, . ... o0

4.1 Development of the finger pattern when the onter eylinder rotates. . .

1.2 Finger amplitude vs. onter

cylinder capillary mimber Cag. oo L.
43 Pattern wavelongth v, (e oo oo e
8 o

44 Onset capillary numbey Ca, vs, dimensionless gap thickness b/, . .

A5 Pattern wavelength at onset A/ R ovs. bof/lt. ..o
46 Phase diagram when the bigger inner eylinder rotates.. . ... ...

4.7 Development of the pattern when the bigger inner eylinder rotates.
4.8 Finger amiplitnde vs. Clag atonset for by/ I8 = 0.0024. . ... ...
4.9 Disordered and traveling patterns observed with the bigger imer

cyitdlorsrobalings: + & 5 wai o 6 58 K atuhe 53 6 4 B D GERE U E D

4,10 Finger amplitude vs. Cag ab onset for bo/ 8= 00046, . ... ... ..

vii




A0
A2
08
A

=

416

5.9

Alo

Finger amplitnde vs, Cag Tor the bigger inner evlinder.

Width of the hysteresis loop at onset for the higger inner eylinder. .. 62

Pattern wavelength A v, Cag for the bigger inner eylinder. . ... o 64
Finger amplitude and wavelength vs, Ca, for the smaller inner eylinder. 66

Finger amplitude and wavelengih vs. Cag. for the smaller inner eylinder. 67

Comparison of present resnlts with previons work, ... ... L R ]
Uniform traveling patlerns, .o o oo oo i 6
Space-time image of a uniform traveling pattern. . . .. ... .. 7
o2 v, op or unifornn traveling waves, ... 79
Pattern wave mumber Vs, v oo 80
Nonuniform traveling-linger patterns. oo oo oo 82

Space-time image of a nonuniform traveling pattern. . ... 8

s of a nommiform tr

The lacal propert veling pattern. ... ... .. 85
2

]

5 VR SRR o0 5 % 5 scwwzevs o 56 0 w0 s dvisse e 88

Ihe formation of a new linger throngh the Eekhaus instabilit

Space-time image of a drifting pattern showing the Eckhans instability. 91

The measured Bekhaus stability houndary for traveling waves

Fourier amplitudes for a stationary pattern and a drifting pattern. . . 97
A? vs. vp for uniform traveling patbern. .. ..o L 98
o4 vs. A for mniform braveling waves. . ... 100

Fourier amplitudes of the pattern vs. the control parameter, 0. . . . 101

Fourier amplitude of the second spatial harmonic vs. that of the first. 103
The phase mismateh angle 0 vs. the control parameter, v+« .+ .+ . . 104
The pattern’s phase velocity against the quantity by/g. . .. ... .. 106

Phe transformed interface U(1) and its Fourier amplitid

viii



The two a

nmetry parameters, A vse A from one experiments, ... 10
522 The two asymmetry parameters, A vse A from simlations. .. L L 11L
AT v n al v = ITLB /S« 10

5 () 0 vse A Tora nonmiform pattern, (b) w s, v ..o

Partial phase diagram of Rel. [S1). . . T




Chapter 1

Introduction

11 Pattern formation and the printer’s instability

s as they are driven ont of equilibrinm

Many dynamical systems nndergo instability

by a driving foree. These instabilities can lead to the formation of patterns —

states with some form of regnlar spatial and for temporal strueture, The adjustable

is referred Lo as the control parameter. When this parameter is small,

driving fo

ally inca spatially iniform state, When it is increased to a cortain

Lhe system is Ly pi

e, a Difurcation that is. a transition from one state to another — veenrs, at

mmetry and goes into a lower symmetry state

which the systen los

whieh exhibits a pattern. When the control parameter is inereased further, or when

a second control parameter is varied, this pattern can itsell become unstable to

secondary, and then higher order instabi uecossively breaking the symmetries

y.

of the pattern. The global dynamies of the system ean go from simple to very

complicated, at some stage hecoming time dependent and eventually turbulent.

Tustabilities in pation-loriing systems have heen studied extensively in recent

< [1]. Relative to fully three-dimenzional pattern-forming systems, one-dimen-

sional systems have the advantage of simplicity, which allows meaningful compar-
isans of experimental results with theoretical o numerical predictions. A quanti-

has been

tative nnderstanding of several one-dimensional pattern forming systems

achieved, An important example is Rayleigh-Bénard conveetion [2-4]. in which a

thin horizontal luid layer. confined between two rigid plates, is heated from helow.
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The temperature difference. AT between the top and bottom of the Taye

the density of the fuid to inercase with height. This le;

Is to a putential instability,

sinee the heavier, colder flnid sits above the Tighter, warmer nid. When the con

trol paranieter, AT s raised above aeritical value, a conveetion pattern consisting

of straight. parallel rolls develops.  Rayleigh-Beénard conveetion has heen studied

ensively both experimentally [3. 5] and in theory [2. 8] and the experimental

and theoretical results agree with each other very well. Other well known one-

ems include

dimensional pattern-forming Paylor-Conette flow [3, 6], in which

e space hetween two concentric rotating evlinders is fully filled with fuid and the

thove i

spatially uniform base state hecomes unstable to the formation of vortic

certain value of the eylinder rotation speed; Taylor-Dean flow [7. 8]0 whieh is simi-

ar to Taylor-Couette flow, but with the space hetween the eylinders only partially

filled with fuid; directional solidification [9-11], in which a sample. placed i i tem

peratire gradient such that. it contains an interface hetween tsvo different phases,

is putled in the direction of deereasing temperature, and the interface hecomes nn-

stable above a certain pulling spo W the so-called printers fnstability [12 17]

whiel is the system studied in this thesis. A vich variety of nonlinear dynamical phe

nomena has heen observed in the printer’s instability [12). We believe that Tuether

stady of this experimental system will add to the understanding of the dynaies of

one-dimensional patierns.

The apparatus used Lo study the printer’s instability i our experiment is com

posed of two lorizontal, parallel, hut vertically offset eylinders, one inside the other,

sueh that the eross section is as in Fig. L1 A quantity of viscons (lid, just enough

1o keep the hotlom part of the gap hetween the eylinders filled, is intradueed fnto

this gap. When one or both of the eylinders rotate, a varioly of dynamical states is

observed at the fluid-air interface running the length of the eylinders, depending on
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the rotation speeds of the ¢

Some typical interface patterns are shown in

Fig, 1.2, These include a stationary fingering pattern which consists of symmetric,

stationary. periodic lingers (Fig,

1.2()): & teavelingswave pattern consisting of
asymmetric, periodic traveling fingers (Fig. 1.2(0)): solitary traveling waves in the

form of localized patehes of asymmetric fingers propagating through a hackground

(¢)): and spatio-temporal chaos.
d)). Fig. 13

ystem, in the space defined by the two control parameters

in which fing

formed and destroyed constantly (Fig.

the measnred dynamical

phase diagram of our s

v; and v, the inmer and onte

eylinder surface speeds, rospectively. Tn the region

labeled S, the straight interface is unstable to a pattern of stationary lingers, In
e, TW indicats

the region Tabeled SW, solitary waves are ol

e in which

the entire interface consists of asymmetry traveling lingers, and $1C indicates e

region where the pattern is spatio-temporally chaotic,

The transition from the stationary, symmetric pattern of Fig, 1.2(a) to the t

cling, asymmetric pattern of Fig, 1.2(h) is an example of a parity-hreaking bifurea

tion, at which the pattern’s reflection, or parity, symmetry is broken. Both localized

regions of broken parity, which propagate througl a stationary hackgromnd patterm,
heen abserved i several lab-

and extended broken-parity traveling-wave states ha

oratory systems [9-13,18-24]. Parity-hreaking bifurcations have also recently been

the subject of much theoretical work [25-41). Pari shown 1o he one of

“Dreaking w

ten po

sible generic secondary instabilitios of stationary one-dimensional patterns by

Coullet, and looss [42]. The parity-hreaking bifurcation in one experimental

will be disenssed in detail in Chapte

Another well-k in

Jility of

1 pattern is the Eckhans insta

bility [43]. AL a supereritical bifurcation (analogons to a second-order transition in

the mean-field theory of phase transition) Lo a state with a stationary  spatial pat-



Chapter 1. Introduction i

Figure 1.2: Examples of patterns observed at the ofl-uir interface in the printer’s
bility experiment. (i ry fingers; (b) a asymmetric fingers
i wave traveling in the backgronnd of stationary




Chapter 1. Introduction

300
STC
2
~
E .
L]
E stable % S
B
O L]
. ,/.TW
2
SwW .
-150
-150 0 250
v; (mm/s)

Figure 1.3: Dynamical phasc diagram of the interface, in terms of the rotation
speeds of the Lwo cylinders. S - stationary fingers; TW - traveling waves; STC -
spatio-temporal chaos; $W - solitary waves.
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terny the uniforn base state beeomes nnstable to perturbations of a particnlar wave

number, while above the onset, it is lincarly unstable to perturbations within a hand

of wave numbers. Not all wave numbers within this band lead to stable patterns,

1 is only stable in a narrower wavennmber band defined by the

however, the pai,
Iekhans bonndary [43, 44]. Pattems with wave numbers lying ontside the Eckhans
bonndary are unstable to a long-wavelength phase instahility, which eventually leads
Lo the gain or 1ss of individual pattern units so as to bring the pattern back inside

the Lekhav le hand. This is called Bekhans instability. The Bekhaus instability

stndicd in several systems displaying stationary pattems [9,45-51). The

has heen

bility also aflects traveling-wave patterns, but it is only recently that it

iekhaus i &

hias been studied in this context [4,52-58]. We have observed the Eckhans instability

li ave state inonr experimental system, and will disenss our results

in the

in Chapl

1.2 Previous work

The primary motivation for mieh of the provions work on the printer’s instability
ias come from industeial conting applications: instabilitios that, arise when a thin

I

ad 1o an uneven coating thickness,

Tayer of luid is spread or coated onto a surlac

often callod rilbbing, which is generally undesivable, Fluid dynamical systems with
different geometries ave heen used 1o model practical coating systems, and the
dynamieal behavionr of viseous fuids in Uhe narrow passages hetween two moving

e has been extens

surfaces or between a moving and a stationary surfa vely inves-

tigated, both experimentally and theoretically, over the last thirly years [59-70].

have been applied to problems in

More recently. the ideas of nonlinear dynami

coating [T1].
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Raband and Hakim [23] studied the equations of motion of the printer’s jnsta-

bility using the Inbrication approximation. They pointed ont that the equation for

the pressure field in the printer’s instability,
2 L 2ok
v L (1 +0a)

T on~ " RI

whete b(y) = by(y) = bi () is the gap thicknes

shown in Fig. 1.1, 0y and o,

rotation velocitios of the two eylinders, g is the cocflicient of viscosity of the lluid,

and 1(y) = b(y)/(3db/dy), is similar to the equation for the impurity concenteation,

which governs the slow growth of a ery

Vi &
rr i)

Here €1is the impurity coneentration, £, the impurity diffusion cocflicient, and 17

the pulling speed of the container. i a sense the prink stability s a Hid

mechani

Al analogue of directional solidification, with the pressure field playing the

fon.

role of the impurity concentration in dircetional solidifie:

For constant thickness, db/dy = 0, Fq. (1.1) hecomes the Lapls

cquation,

which deseribes the Salfman-Taylor instability in a Hele-shaw cell [72]. In this

tem, a more viscons fluid is displaced by a less viscons fluid in the narrow space

between two plates, and instabilities arise at the interface hetween the two flui

bil-

Rabaud et al. [23] compared the shapes of the fingers observed in prin in

ity with finger shapes calealated from the equation relevant to the Saffian-Taylor

instability, and some similaritics have been fonnd.

N

printer’s instability witl

Raband of and Conder o,

1. [18] studiced the dynamieal hehaviour of te

an apparatns very similar to that nsed here two eylinders,

one cecentri

ly monnted inside the other. They observed the varions dynami

states des shown in

hed above, and measured a phase diagram similar Lo t;
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an be fonnd in Michalland’s

123, Some detailed doseriptions of these states
(14].

Hakim

the

. [73] studied the fingering ins
pering

bility that oceurs in a thin layer

o silicone oil confined by a single roller rotating above a stationary plane. They

observed a continnons us state Lo a state of sta-

sition from the straight menis

They performed a linear s

tionary fingers. ility analysis of Lhe straight meniscus,

similar to that, presented carlier by Savage (63, 64]. Their caleulated results for the

rotation speed at the onset of the instability, and for the onset. pattern wavelength,

were in reasonably good agreement with their experimental data, while above on-

sty Uhe pattern wavelength closely followed the Tow-wavelength edge of the linear

ability boundary.
The wavelength selection mechanisms and transient hehavionr in the stationary

fingering pattern were studied by Rabaud et al. [74] They ted the varions

ways i which the pattern relased to its preforred wavelength when the rotation

spoed of the eylindor was ehanged suddenly. They observed localized disturbances

composed of broken-parity lingers: propagating through the pattern in mueh the

same way as has heen observed in the directional solidification of liquid erystals

[75] and of Tamellar entocties [18, 76]. Similar strnetures also play a role in the

development. of

where the two cylinders

In Rel. [77], Michalland

o-temporal intermittency in the o

co-rotate, as studicd by Michalland and Rabaud [T

and Raband also studied the ont-of-phase damped oseillations of the lingers, which

into an optical mode of pulsation after the localized disturbances propagate
(7.

Michalland et al. [78] investigated the dynamical hehavionr of

Their results suggested an ol behaviour of the interfac

STC state

vith the eylinders co-rotating. Deeré ot al. [79] performed a similar study on

wstem consisting of two rotating eylinders, one above the other. Both of these
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groups studied the statisties of the ordered and chaotic domains, and showed that in
both cases, the transition from the ordered state to STC was analogons to a second
order phase transition. as fonud in other theoretical and experimental studies of

STC in extended one dimensional systems [S0-55].

Cummins ot al. [84] studied the printer's instability in an apparatus sinilar
to onrs. They inereased the inner eylinder speed with the outer exlinder connter

rotaling at a fixed low speed (in the fourth quadrant of Fig, 13), and observed a

sequence of three transitions. First the straight inte ceame instable o the

hiere was a transition [rom the statiouary pattern to

stationary linger pattern. Nex

mniform broken-parity traveling waves, and, finally, the traveling pattern nnderwent

a spatial period-doubling transition.  They also observed o pattern made ap of

sting domains of Tong- and short-wavelength hroken-parity traveling lingers,

Parity-hreaking transitions have heen observed in several other experimental

stems, but for the most part have been only qualitatively eliavacterized. The

observed broken-parity waves appear to take Lo forms: localized patehes of broken

parity, which propagate through an olerwi symuietrie pattorn, and

extended traveling-wave states, which can inelnde sonree and sink defeets,

Alocalized broken-parity state was first, reported by Simon et al. [9, 10] in exper-

iments on the directional cooling of a liquid crystal at the isotropic-nematic transi-

tion. This system was investigated both numerically and analytically by Rappel and

co-workers [36-38]. Localized regions of broken parity have also heen observed in

experiments on Rayleigh-Bénard conveetion in a narrow slot [F1, 2], and in Taylor

The exi:

vortex flow with connter-rotating eylindors [ ence of a parity breaking

hifurcation in 1 ally by Riceke and Paap

.

system had heen predicted theoret
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vre and vo-workers have studied broken-parity waves in work on the diree-

tional solidiication of lamellar enteeties [18-20]. They observed both localized.

propagating regions of hroken parity [18, 19], and extended regions of mniform prop-

agating cclls [20],

Gitooson el al. observed extended regions of propagating, asymmetric cells ema-

nating from a sonrce defeet at a grain boundary in a directional solidification exper-

iment [24]. They measnred the asymmetry of the traveling cells and demonstrated

that. the propagation speed was linear in the

ymmetr

Mutabiazi and Andereck [8] observed a supereritical bifurcation from a pattern

of stationary rolls to an extended s

Taylor-Dean

o of drifting rolls in the

and coneluded that in their system, the drift instability was a rosult of interactions
between the fundamental spatial mode and its second harmonic. This g=2q conpling
hias been shown o he the cause of the pariy-hreaking instabilities observed in

directional solidification of liquid erystals [37,

] and in Taylor vortes flow [39].

A secondary instability of a pattern of parametrically excited surface waves in

an annular container, leading to a drifting pattem, has heen observed by Donady

o al, [21]. Fanve et al, showed that this drifting patiern arose from a breaking of

proaches, One of thes

-, introduced by Coullet, and co-worken

28], and further
developed i Refs [26, 27], s ased on coupled amplitude and phase oquations de-

veloped from very general symmetry arguments. The other, which involves the

resonant. coupling between spat

Al modes with wave numbers ¢ and 2, was first

investigated by Malomed and Tribelsky 28], and since then by many other groups

[29-10]. Tn both of thes

theories, the phase speed of the traveling wave is expected
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to he proportional to the asymmetry of the pattern. Both of these theoretical ap.

proaches will he disenssed in Chapter 2,

The Eckhans instability has been stidied in several s

cstems displaying stationary

patterns. These include Taylor-Couetie flow [17, 18], eleetrically-driven conveetion

in liquid erystals [15, 46), and a conting system [51] in which a eylinder conted with

an oil lilm rotates under a horizontal plate. The experimental results on Taylor

Conette flow [17, 48] are in_ good agroement. with theoretical calenlations hy Riceke

and Paap [49]. The Eekhans instability of a traveling-wave state has heen ohserved
recently in Rayleigh-Bénard conveetion, Janiaud, et al. [51, 55] have studied the
Eckhaus instability experimentally in traveling waves produced by the oseillatory

stability in Rayleigh-Bénard convection in compressed argon g

and analyti

cally and wimerically in the framework of the complex: Ginzburg: Landa equation.

Baxter ot al. [56] and Koloduer [57, 58] have studied the Eekhans instability in

traveling-wave conveetion in binary mistures. The experiments in each of tese

cases involved preparing the system in a state ontside the Eekhans-stable band and

studying its evolution. A modulation of the pattern’s phase develops and grows in

amplitude, eventnally leading to the gain or loss of one wavelength of the oscillatory

pattern in the former case [54], or the ereation or annihilation of a pair of conve

volls in the Tatter case [36-58].

1.3 Summary of this work

A variety of dynamical states is observed at the [nid-air interface in onr experimen-

tal system, as shown in Figs. 1.2 and The experiments deseribed in this thesis

involve quantitative measurements on some of these states, We stidicd the forma-

tion an . development of stationary fingers near the transition at which the straight

fluid-air interface loses stability to a stationary fingering pattern, Depending on the
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size of the eylinder, and on which of e two eylinders is rotating, the bifurcation to

small

s cither imperfeet bt continnons, or discontinnons. with a

amonnt of hysteresis. By comparing onr results with the theoretical expectations

Vs o Tinear stability analysis, and with previons experimental results, we find

that fini

size elfects can substantially delay the onset of the fingering instability.

This is the fost study of finite-size effects in this Lype of paitern-forn

system,

and onr results have potential applications in the coating industry.
We have studied in detail the broken-parity traveling patterns observed when

U eylinders are i connter-rotation. When the onter eylinder rotation speed is just

above its value at the onset of the s

ationary pattern, with the inmer eylinder counter-

votiting, & wniform traveling pattern is observed. We find that this pattem appears

vin asupereritical parity-hreaking Lransition, at which the pattern loses its refloction

symmetry and hegins traveling along the length of the eylinders. However, when the

inder specd is higher, the traveling patterns are never perfectly uniform,

and never perfeetly stable, Rather, the pattern’s local wavelength, and the linger's

asymmetry and traveling speed vary slowly along the pattern.  In add

ion, the

linger pattern is intermittently disturbed by transient bursts of disordered behaviour.

The variation of wavelength along the pattern in this regime allows us to observe

e Bekhans instability in this traveling-wave system, and we have measured the

Khaus instability boundar

A method of measuring the asymmetry of the fingers has heen developed nsing

a Fowrier transform teehnique. Me

airements of the degree of asymmetry of the
traveling pattern as a fnetion of the experimental control parameter show that

the asymmetry inereases with the square root of the control parameter, and that

the drifting speed is lincar in the asymmetry. The lincar onship hetween the

eling, speed and asymmetry also holds for the individual lingers of the nommiform




Chapter 1. Introduction 1

ord with recent theoretical predictions

e ac

pattern at a given time. These resul

25-27]. We also compare our results with the predictions of the ¢ - 2¢ model

mentioned above [35), by investigating the hehavionr of the spatial modes i the

pattern as the control parameter ix inere

ed. However, onr results do ot agree

with the predictions of this model, oral possible reasons for (his disagrecment

are suggested. Onr quantitative studies of the parity-breaking transition in this

system will add to the understanding of the dynamies of one-dimensional patterns.

The remainder of this thesis is organized as follows: in Chapter 2 some impor
tant theoretical results are presented. In Chapter 3, we deseribe onr experimental

apparatus. Experimental results obtained with one eylinder rotating are presented

and diseussed in Chapter 4, and results obtained with two eylinders rotating are

reported in Chapter 5, Chapter 6 is a briel conelusion.




Chapter 2

Theory

mmber of theoretical topies relevant Lo onr experiments.

In this chapter, we dis

pstem is invostigated by Tinear stabil-

The stability of the planar interface in our s

¢ traveling-wave state is disenssed

< of Uhe broken-p

ity analysis. The dyus
i terms of the asymmetry of the pattern, as well as a model for parity-hreaking

involving the coupling of waves with wavennmber ¢ and 2. The stability of the

1y traveling-wave state with respect 1o long-wavelength perturbations is

Broken-pa
analyzed using the complex Ginzburg-Landan equation, and its stability near onset

i also discus:

2.0 Linear stability analysis

The linear stability of coating systems has been studied for over thirty years [

ability analysis is to add a small perturbation

8-70], The general idea of linea

taa base flow, and to see whether the perturbation grows or decays with time. IF the

perturbation grows with time. the base flow is unstable and a pattern may form. In

did in analyzing the linear

s section we fullow the same route as Hakim ot al, [

stability of of the straight meniseas in the printer’s jnstability, Their treatment is

quite similar to that presented by Savage [63, 61]. We first look at the oquations for

stem, shown in Fig,

e base state, with a straight interface. In our experimental s
L b/ B < 1 and Ro(bo/ RY? <€ 1, where B, is the Reynolds number, £, = o/,

and R is the effective

Here vis the velocity of the fluid, # is the kinematic
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radins of the system. defined as

We can therefore use the Inbrication approximation to deseribe the llow in the gap

[86]. I this approximation. the prossure. p. s only @ fanetion of g in our

and the Navier-Stokes equation for u. the flow velocity, hecomes

dp

dy

)]

=p

Thus the expression for the llow veloci

Ldp o,
= As 4B
e R

u(y. =
No-slip boundary conditions at the surfaces of the two eylinders require

u(ybn(y)) = o, and ulyy ba(n)) = o0 (24)

indors, respectively.

where o and o, are the su speeds of the inner and onter
Sinee the (iid only fills a small region at the hottom hetween the eylinders, we have
negleeted the = components of oy and w,,. Therefore

| dp
lfl'/) = In(y)) +717W

() (== bal)), (2.5)

uly.z) = o0, + 22

where b(y) = ba(y) = by(y) is the width of the gap as showa in Fig, 1.1 1T y/r »
where s the radins of cither of the eylinders, b(y) is approsimately
"
p
by) = b+ lLR (26
The fluid flus per unit Tength in the gap s then

hal) i+ v, W) dp
- (2)z = e L 47
¢ Am wliz)d PR P )
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or, solving for dp/dy,
dp _ e fQ
dp _ 12 ), Q@ 2.8
dy = W y) (‘ b(n))’ .
where

V=

0+ 0, 5
e (2.9)

We now introduce a mathematical variable # such that y = (20by)"/* tan 0, and

() = bu(1 + tan? 0). B, (2.8) then hecomes

dp 2 :‘( i [/ )
— =12, 7 cos? )~ S eos™0) 2.
P [ (Veot0 = et (2.10)
Integrating Fe. (2.10). we get
M Q) = = GpV 20T [(u + 1,) +éxin(2l/)]
rd i - T . |
—6p Q2R [E (u+ E) +

where po s the pressure al y = —oco, which we take to be atmospherie pressure,

\(20)+—’|(—i.si|11110) L(201)

IF we negleet the influences of the meniseus and gravity, then taking y = oo and

pec) = po. wee ge, Trom . (2.11).
4
Q= ghV. (2.12)

There is, however a pressure drop at the menisens, due to surface tension, which is

approsimately equal 1o the static value, so

(2.13)

I’(.’/m)=l’u—”<l +
b~

where g, i the position of the tip of the meniscus. and by = b(y). 1/p is the

rintorl

curvature of the menisens in the horizontal plane, whicl is zero at a plan

and a is the surface tension,
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AU the interface, the pressure given by . (2.11) shonld equal that from Ky,

(2.13). so we get:

sin(20,, )]

| |
(20,0 + -
(20 +

T [T (n,,, sin(m,,,)] NEAT

In the experiment. the term on the Teft hand side of . (2.11) is very soall, amd
in this case, the s calenlated from this cquation s very close to S as found in

Eq. (2.1

. This means that the effect of the menisens on the flux is small,

By the conservation of fhix of the fluid, the (Tux of Hhiid which enters the gap
betwees he eylinders shonld be equal to that which exits from the gap, in the form

of layers coated onto the eylinder

e thickness of the coating can be expressed

as
o

o= b (2

i (2.19)
where [(Ca) is a Tinetion of the dimensionloss capillary wnmber Ca = pofa. By

fitting experimental data obtained by Tabeling o al, [87] in a ¢

iral Salfman-

Taylor experiment, Hakim ot al. found f(Cfa) to be well approgimated by
J(Cla) = 0.02[1 = exp(—0.86¢ )], (2.16)

Therefore, we can write the ontgoing fluy

Q= ribs (B2) + b (2.47)

r

Eq. (2.14) together with Eq. (2.17) determines gy, and Q, and therelore the pressure
field p(y) = p(y) in the front of the planar interface,

Next, a small pertnrbation proportional to sin(f.r) will be imposed on the inter-

face, and its lincar stability will be studiced, The position €(e) ane the pressure field
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p(e,y) at the perturbed interface are now

Eyl) = g e()sin(h), (2.18)
e t) = pO) + p(Oasly)sinChir). (2.19)

where £ is the wavenmber of the perturbation.

2.19) and (2.13) about y = g, to the lirst order,
y=4

By “Taylor expansion of

we gel

(0}
#or ) = 10+ L)) 4 s, 20)
@i
and
2 20 (db 5
plavy) = (,,” - r”) + ,,T” (%) (1) sin(ler) — % (221)

i
respeetively, where py = 20 /b, = p® and the enrvature of the pertrerhed interface

is

Lo L@ty g singee).
P [ singhe)),

By equating the right-hand sides of Bqs. (2:20) and (2:21), we find that the rela-

tionship between (1) and g(t) is

Ap) 2 [ db 7
(i) = (1) [—"le/—- o E‘Z (:T,/‘) + aL-‘l : (2.23)
o m AS

“I'he equation of motion for the boundary is given by the conservation of fluid at the

interface:
b [i7.77(€) = ta] = b [[(Cati) (05 = 00)) + J(Cata) (00 = 0], (2:24)

whete i7 is the normal direction of Uhe interface, and v, is the velocity of the fluid
futerface in the v direction:

= "’l[(,’) sin{ks ],
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The left hand side of Bq. (2.24) deseribes the Hnid going into the interface, and the

right hand side, the lnid coming ont of the interface. The veloeity

and

Here V = (7

2.

Inserting Bs. (2.25)-(2.27) in Eq.

2.21), we get

1) dp
2 dn

[l = [(Ca)) = f(Ca)]) = Vi —

(o4 [(Ca)e] (228

where, by Taylor expansion,

o 1 (Bt fa
o)™ = g 0 m) '_(L”_/”Q (1) sinlr)+0 (1 )"”‘("”' sin(hr). (2:29)
dn dn iy

Sinee the gap thickness varies vory sle 7ly with g, we can take the approsimations

), A )

W S Ty (2:40)
dgpa) - dagls (231)

i oy

Combined with Bq. (2.8), . (2.29) becomes

"1' i )

@ = =+ [' Qb

. "ﬁ,'/f_(,'/m)] o) sin(ler),

2

where b, = db(y)/dy, qi(ym) = dqi(ya)/dy.
3), (2.28), (2

From Eqs. the equation for (1) is

)

[1 = J(Cai) = [(Ca,)] sin(ka

Qb [ e A 2l .
- [ L u'é’}f',,f{'u (- 2 ) s
()

= [[(Cagyo, + [(C u“)n,,]]. (2.43)
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The Tast term on the right-hand side of . (2.33) is cqual to zero for the straight,

interface, 11 we now assnme that «(L) ~ ¢* then from Eq. (2.33) the growth rate 3

is
| O, Rl (200, A ,
_ @b, Rkt e s BT
iy 77y e M i T | Bl

When #is positive, the perturbation will grow, so the base state is instable. The
bifureation happens at f= 0.

To calenlate fi, we need 1o know (g, ). The incompressibility of the fluid

that
V- [by)u(y)] = 0, (2.35)

andd Trom this, we have
Py Bdbdy

i hdydy "

g = 0. (2.46)

We also require that g goes Lo zeto when g — —20. For simplicity, we assume that
(dbdy)/bly) is a constant:

K3 <:lh)

=2\,

Then B, (2:36) can be solved for g The soltion is of the form

g~ ‘-x..(% (ViFme - 1)). (2.38)

Using this., the exprossion for the growth rate, Kq.(2:34), is now
|
= [(Cai) = [(Ca,)

[% b 7 (T - ) (ﬂ o2 (('u N ﬂ))] . (2:39)

=

T2l 7, w N
The relevant physical length scaleis 1 in onr system. Actually, if we seale the length
variablos in B, (239) by B and scale 4 by o/, and Q by o /p, this equation

will remain unchanged exeept that the variables will now he dimensionless. Thus,
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in the following calenlations and graphs, we will nse dimensionless length va s

pillary e Ca = g e,

which have heen sealed by B and the dimensionless
The planar interface loses stability when the growth rate 4 = 0. For a piven

\calenlate by, /1 and

ary numbers Ca, and (.

gap thickness b/ /¢ and capi

Qp/tio by using Bqs. (2.14) and (217). Thus we can unmerically determine the

39) equal to zero. | 2.1 s a plot ol the

“thing Bq. (2

'y hy

ary calenlated for by/ R = 0,002

stability bonnd;

s i

The inlinite, straight men

stability hound.

stable for values of Cta lying helow the plotted enrve, and nnstable to the formation

of sinusoidal fingers above. Beyond e highewavelength end of the enrve plotted,

L We wanld expect

solutions of Eq. (2.39) with 4 = 0 conld not. e found for

abil

above th Ly

ght interface to become nnstable when Ca s inere

the s

houndary plotted in Fig. 2.0, This ocenrs first at the minimmm of the plofted

s Lwo local minima one al

However, Fig, 2.1 I

curve, b a wave length )
the high-waveleagth end of the curve, and one at a wavclength AR~ 0.3, The
Bigh-wavelength hehaviour of our stability boundary is mmsual and unespeeted, 1t

s ot been fonud in other analyses of this type of instability [63, 6], cven thit of

., whose equations we used (73] Furthermore, onr experinental results

Iakim ot a
are most consistent with the short-wavelength instability. While we have no reason
Lo doubt the results of our numerical solution of Bgs. (2.14), (217) and (2.39), it
seems that the high-wavelength portion of the stability boudary is for some reason
not, relevant to the physical sitnation. This will be shown further in Chapter 4.
Recently, Reinelt. [70] has taken into acconnt. the effeets of hotlh the left and the

air interfaces, as shown in Fig, 1.1, on the stability of the meniseus, and has

right oil
camn Fig, 1.3,

calenlated a stability boundary similar to that. shown in the phase dia
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2.5 T T T

15 H .

Ca

0.0 4 :
0.0 0.5 1.0 15

wavelength A\/R

Figare 2.8 Calenlated linear stability houndary of the straight meniseus, al a di-
mensionless wap thickness bo/f = 00021, Note the two minima. The stabili
corresponding o the minimum at larger wavelength ocenrs at a lower valie of

and s should in principle be the one observed in an ideal experiment, bt the
are in hetter accord with the shorter wavelength instability.

experimental results
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2.2 Parity breaking

In onr experimental system. the stationary lingering patterns ol

vod when only

one eylinder rotates undergo a pavity-breaking transition when the exlinders begin to

counter-rotate, At this trans

tion, the lingers of the pattern lose their reflection sym
metry and start to drift. 1t is impossible, at this stage, to investigate the properties

of this traveling-pattern state by solving the Navier-stokes equations. To avoid fhis

mathematically knotty problem, however, we can study the dynamical hehaviour

of the broken-parity state by considering the symmetry of the pattern, There have

h

heen two theoretical appros

s Lo this problem. both of which predict that the

y symmetry of a pattern leads to a traveling-wave state. One of

1.

general synime

breaking of par

these theories, introduced hy Conllet and co-worker

Based on conpled

amplitude and phase cquations developed from v Irgnents.

The other, which involves the resonant, coupling of spatial modes with wavenmmhers

q and 2q, was lirst inv

e thearetically by Malomed and Trillskey [28], and

sinee then by many other gronpy cetion we introdice some

A0). I this
of the results of the two theories which are related 1o onr experiments, More detail

can be found in Rels,

2.21 Symmetry argument

Following Refs. 7], the pattern at the oil-air interface in onr experimental

system, U, 1), can always he writton as

a s of parity-symmetric (5) and anti-

symmetric (A) components:

U, ) = S )y

b B 1)+ A, OUa e 4 1)), (240)

where S and A are the amplitudes of the

i antisymmetrie parts of

e pattern, respectively, and g is a phase variable, g and Uy are even and odd
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funetions of their arguments, respectively, i.

Uslir) = Us(—

1y (i) = =114 (=ir). (2.42)

I1 A = 0 the pattern has parity symmetry; A can he taken to be the order parameter
of the broken-parity state. The phase variable ¢ gives the phase of the patter rela-

Live to that of the underlying symmetric pattern. A nonzero valne of ¢, corresponds

1o moving pattern, while é, = (g = ga) /g0 is the relative difference in wave number

hetween the asymmetrie state, with wavenamber g, and the underlying symmetric
pattern, which has wavemmber g 5, A and ¢ are assumed 1o be slowly varying

veal finetions of space and time,

To de

ihe the dynamies of the broken-parity pattern, equations of motion arce

required for hoth A and ¢, which may he deduced from the invariance of the dynam-

ies seen by observers on opposite sides of the pattern. Assuming that the coordinates

of the two observers are ¢ and ., then & = —a, and (=) = —g(a). Sinee the

amplitude of the pattern seen by hoth viewers is the same, taking into acconnt.

the antisymmetry of Uy, we require A=) = =A(x). The equations of motion

and are invariant, with respect to the transformation

§ = ¢ const are, to the lowest order,

Apr A = A3 el e, (2.43)

Be= s FwA A (2.44)

wherew and ¢ are conpling constants, and r (not viscosity!) is the control parameter;

the bifureation ocenrs atb g = 0. Here we have assumed asnpereritical hifurcation to

al

the broken-parity state, in accordance with onr experimental results. 16 a suberi

bifurcation is assumed. a term proportional to A7 should be included in Bq. (2.43)
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and the sign of the A% term should be veversed. Other terms involving, higher

derivatives of A and ¢ are allowed by symmetry, hat were not ineluded in the

dise

o of Rel. |

For a spatially uniform pattern, the steady solutions of Eq. (213) are given by

(+ i) =

which b trivial solutions

A=+ h) R (2.16)

F. (21) then gives

e (2.17)

where g is the phase velocity of the drifting pattern. Pag e exis

when A % 0, and the different,

15 of A correspond Lo two degenerate states which

travel in opposite directions. From Bqs (2.46) and (2.47), we expeet the square of

the asymmetry of the pattern to grow lnearly with the contral parameter g, and

the phase speed to be proportional to the asymmetry.

2.2.2 ¢ —2¢ mode coupling

A more specific model of parity breaking involves the resonant. conpling of spatial
modes with wavenimber g and 2g. According to Rel. [35], a pattern U, 2) involving

two modes of wavenmber ¢ and 2q can he writien as
Uy 1) = [('(.,-‘/)(."/"JH-,(-] 4 [IJ(.;».()(-“"’ +.».‘.| [ (2.4%)

Here ¢ and 1) are the amplitndes of the two modes, and e indicates the complex

conjugate. If we a atially wniform, then (4 and 1)

nme that the pattern is

independent of @, Then, one can write down a set. of conpled cquations for the
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dynamies of tie amplitudes of the two modes. These equations. to third order, are

of the form

= pt! = D = o|CPC = BIDI

De=wD + C* =4|CFD = 8|DI*D, (2.50)

which deseribe a resonant. interaction of the two modes. The coeflicients @, 4.7, 8
are positive Lo ensure the stability of the solutions, that is, ¢ and Dy should go to
zero when € and D inerease up Lo certain valies. We assume v < 0, 5o that only the
planar interface is stable when ¢ < 0. In this case the 2q mode is linearly damped.
The signs of the quadratic terms have heen chosen such that the parity-breaking
instability exists.
Writing
(=Rt D=8 S =250, (2.51)

we el Trom Bs.

9) and (2.50)

Ro= (=l = BSHR = RS cos S, (2.62)
Sio= (=l =8NS+ I cos S, (2.53)
S o= (28 K/S)sing, ' (2.5)
b= Ssink

When gt becomes positive, the stable state bifurcates to a stationary pattern

with £ 0,8 # 0,8 =0, and ¢ arbitrary. When g is

increased, this stationary

state loses stability, via a supereritical hifure:

i, 0 a state drifting with constant

speed. corresponding to

Bi=0, S=0, S,=0, ¢ =constant 0, (2.56)

whieh implios 28 = #2785 = 0. This can ocenr as long as v is not Loo negative, i.c..

as long as the seeond harmonic is not. too strongly damped. The order parameter
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of this parity breaking is the phase mismateh X. As long as X # 0, the pattern will

drift with a velocity

vo=dify=

This ¢ = 2¢ model is in fact equivalent to the model of Conllet ot al. deseribed

can e shown

above, as long as the pattern involves only (wo spatial modes, Tl

by assuming that the pattent s deseribed by

o+ )]

Ulr) = acos [qula + ¢)] + beos

= s [gole + d)] + beos(ga(dn = )] cos 2

+ bsin(2qu(dy — )] sin [2galr + d0)]

The first two terms of the right-hand side of Fe. (2.58) are symmetric, while the

e phase mismatel is X oy g and

el term s asyimmetric,

) is

1= bain 2, so Ko

the asymmelry order paramoter of Bq. (2.40) is

equivalent to Bq. (2.57) when ouly modes go and 2gy esist in the pattern,

23 I ilities of the tr g state

celing waves are obser

In our experimental en, the broken-parity tr

stable only inside a wavelength band. Also, the traveling state is chaotic when the

el i e experiments,

control parameter, which is the inner eylinder rotation
is very low, In this section we look at the instability of the traveling wave using
Sinzburg-Landan equation. which prediets an Fekhans instability for

We then

the complex

s can e fonnd in Rel.

The details of this anal

traveling, wav
investigate the instability of the traveling wave by studying the asyimet ry equations
Is 1o a predietion that the traveling state is disordered

(243) and (244). This le

at low experimental control parameter, in agreement with the results of Fanve et al,

[
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2.3.1 Resulis from complex Ginzburg-Landau equation

Here we present a qualitative theoretical explanation for the long-wavelength mod-

nalogons Lo the Eckhaus in

ional instability of the traveling waves, which i

bility for stationary patterns. A detailed theoretical analysis can be found in Ref.

A complex Ginzbirg-Landan cquation (CGLE) up to the third order can be used

to deseribe a system which exhibits a supereritical hifurcation to a traveling-wave
state:

A= A (by A i) Ay = (hy = )| AP A (2.59)
Tere A i the aplitnds of o comples el and ¢ the control parameter. whers the

nd nonlinear

bifurcation is at ¢ = 0. ¢y and ey are a ated with dispersion effect

Trequency renormalization, and by and by correspond to diffusion effects (by > 0) and

to nonfinear stabifity (by > 0). By appropriately scaling time and space, by and by
e et fo ones Thias
A=A+ (1 +ia)An — (1 —ics)|APA. (2.60)

Let

Al l) = a(er, 1)e=0, (2.61)

ting Eq. (2.61) into Eq. (2.60). we find that the amplitade a and phase ¢

satisfy the following cquations:

W= gy = aBE = 2010,y = 1yt — P,

=20 gy brw + 10 s — b2+ ey’

tions can e casily found by sefting

= ageiltr=an), (2.64)




Chapter 2. Theory 30

and

ey setting @ = ag and & = g —wl. and using Fas.

- This yvields

al=c—

—ea 4 (e + )yt (2.66)

Since a3 must e positive, (he wavenumber of the dri

B pattern must be in the
band defined by

<

as shown in Fig. 2.2, The linear stability of the plane-wave state deseribed in Ko,

(2.61) can he studied by the standard linear analysis approach. Let
A = (g + @)ook, (2.68)
where the small perturbation @ and § have the form

= g

B = i@,

Substituting Eq

2.68) into Bys. (2.62) and (263). we get

(A= e+ Q* ¢ + Buf +

1 Q) = (eran€)* — i2qQuu)dy = 0, (271)

Q= i2qQ)ay ay = (A + QF + i2qQey )y = 0. (2.72)

(Zey

Solving Fqs. (2.71) and (2.72) for A gives the characteristic cquation

N4 y=0,

with
X =\ +2iqQer. (2.74)
A =20+ 20}, (2.75)

o= QUQ? + 203) + (1O — i20Q) = 2atesl e — i2Q).  (2.76)
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d=do

Figure 2.2: Stability diagram of traveling-wave state for the Ginzburg-Landan equa-

tion, eling-wave stale exists above the solid curve, but is only stable above
the dashed line, The traveling w t Lo the Eckhaus instability in the

range between the two e
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The solution to Eq.

7T

The requirement for stability is A < 0. For long-wavelength modulation (Q — 0),

3 < A Then, expanding (2.77) (o order Q1. we get the stability cquation

Re [v/6 + /"] > 0. (2.78)
Substituting Fqs. (275) and (276) info Bq. (2.78), we got

—2¢2 = 24%E >0, (2.79)

HE

table in the

From Eqs. (279) and (265), we find that the traveling wave is s

wavenumber band:

Cien

+ (1= eies)

Thus a necessary condition for stability is

L=y >0,

5 ina narrower wi

From Eq. (2.80), we see that the stable traveling wave ey venm-

A long:

ber band than the allowed traveling-wave hand given by

ate oecnrs i the range

wavelength modulation instability of the traveling wave s

(2.42)

as shown in Fig. 2.2, This result is very similar to that deseribing the Fekhans

In that. case, a stationary periodic

instability [43] in the time-independent ¢

patton of wave mumher g exists when g2 < ¢ (in normalized units), but is only stable

lengtl Il i a narrower ber band, g% < Lo The

against |

stationary periodic pattern is subject to the Fekhans instability in the wavenumber

band, § < ¢* <.
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2 Results from asymmetry equations

In this section, Twill investi

e the stability of the spatially uniform traveling-wave

state using Uhe asymmetry equations (2.43) and (2.44):

Av= Aps+ A = A* + A (2.83)

b= hew + WA, (2.81)

where A represents the degree of asymmetry of the pattern as before.

Assume thal, the spatially uniform traveling state is given by

A= Aoy b= (0= dy b= v (2.85)
With Ay =0 and dp, = 0. Substituting Bq. (2.85) into Eqs. (2.83) and (2.84),
we gol

M=pr 2R (2.86)
W

= wh. (2.87)

Sinee A2 > 0, the parity-breaking state exists when

Al ST (2.88)
%

as shown in Fig. 2.3, We now add a small perturbation to this traveling wave. Let

A= g+ ayeldet (2.89)

P ll;'I“J'+'v¢./+¢x“"w+'\'- (2.90)
o

Substituting Eqs.(2.89) and (2.90) into Eqs. (2.83) and (2.84), and lincarizing, we
Bet
(A 243 + Qg — icQAyhy =0, (2.91)

way = (A + Q%) =

(2.92)
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Stable TW

Unstable TW

0
(9=ao)/a0

Figure Linear stahility diagr ially-uniform traveling-wave state

4
from the coupled amplitude and |
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The characteristic equation for A is

Pp Ay =0,

with

A =20+ AD), (2.91)
7= QH2AL + QF) — iwc QA (2.95)

For long-wavelength modulation, Q@ — 0.y < #2 Thus, to order @',

(2.99)

as shown in Fig. 28, Thus the coupling terms in Eqs. (283) and (2:81) always
destabilize e traveling state, regardloss of the sign of the conpling constants w and
This resnlt agrees with the conelusion of Fanve ot al. [35), derived from a more

general version of equations (2.43) and (244). From Fig. 2.3, we find that, il ¢ < g0,
as is the case i our experiment, the traveling wave is always unstable when o is

sed Delow,

small, This is in agreement with onr experiment. resnlts, as will be dis
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Apparatus

The apparatus made for onr experiments i

illusteated sehematically in 1

was composed of two eylinders, with one mounted inside the other. The axes of the
two eylinders were horizontal and parallel, but vertically offset, with the gap hetween

the eylinders smallest at the hottom. A er

=section through the two eylinders is

shown in Fig. L1 The onte

machined from a solid Plegislas rod, reste

fonr bea

ng-monnted rollers, Plexiglas was nsed |

the pattern to he monitored with a video camera,

mm and its length was [

210 mm. The inner eylinder, m

was monnted on

axle and supported by bearings.  Most of the expe

including all of those involving the traveling-wave states, were performed using an

inner cylinder with radins ry = 504 mm and length 1y = 202 mm. Some of the

results reported in Chapter 4 were obtained using an inner eylinder of the

naller radins, ry =

Tength, bt witl a 185 wm, in oreer Lo gange he imy

of houndary effeets. A great deal of efford was spent to ensure that. the cylinders

were machined to high tolerance. Aunnlar end caps on the onter eylinder confined

the experimental fluid. In terms of the coord; am defined o K

. %0, the

= positions of the ends of the inner eylinder conld be independently adjusted with

micrometer s

sway s conld the g position of cacl end of the onter eylinder, The

& positions of hoth inmner eylinder and onter eylinder were also adjustable, Two

compnter-controlled microstepping motors (Computer Plus, CPLX 57-120) were

used to drive the rotation of the two cylinders independently, by means of belts
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_-outer cylinder

inner cylinder

rcllers/

\drive bel:s/

motors

Fignre 313 Seliematic drawing of the experimental apparatns.
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comected to a pulley on the axle of the inner evlinder and to a groove an the onter
surface of the onter eylinder, as shown in Fig. 3.1 The speed of the motors was

controlled from a program rnning on a S0286-hased personal computer fnte

nced

to the motors by an RS serial line. The motors had a mininum inerement in

rotation frequency of 0.001 Tz, corresponding to a velocity inerement of (08 nun /s

for the inner eylinder with ry L i 0040 /s for the inner exlinder with

85 mm, and 0.04 mm/s for the onter eylinder.

The “nip

region at the hottom of the

svlinders, where the gap hetween the

cylinders is smallest, contained a small amonnt, of s

one ol jush enongh Lo keop

this region filled. The width of this nip region is in the order of a centimeter in

the g divection. The amonnt of oil nsed varied with the gap thickn I the

traveling-wave state (Chapter 5), the results of our measnrements were independent

of the oil volume, in the stationary fingering state (Chapter 1), the resalts aronmd

onset were slightly affected by the amonnt of oil. but as long as the oil volume was

not Lo large, any volume dependenee was small compared with the measurement
error. Above onset, the results were independent of oil volime, Most experinients

were done with an oil which we refer to as oif A (Aldrich Chewieal Co., catalop,

no. 14,615-3), which had vis

pfem's = 194 /s,

9621

and density p =

a/en® ab roum temperature, A fow s in e stationary
fingering state were done with a more viscous oil, il B (Dow Corniing 530), which

bad 0 = LTS gfem s, o = 208 p/s* and p = L0 g/, Botl of thes

the surfaces of the eylinders, The Quid properties

Table

L room temperature are |

The width of the gap hetween the two eylinders was set with the micrometer

serews. We inercased the gap from zero thickness, bub there was an uneertainty in

the location of this

pero point of abott £0.05 wn, The uniformity of the gap could
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Table 3.5 Fluid proper
Muiel surface tension [ den:
(g57%)
cone oil A 19.4 0.963
cone oil 21.8 1.048

e fine-taned by viswal inspection of the uniformity of the fingers at onsel, which was
very sensitive to the gap thickness, The paralielism of the eylinders was adjusted

ingers. 11 the eylinders were slightly

by inspection of the stability of the stationary

ontof alignment, the fingers dicd not remain stationary, but. instead traveled alog
e length of the apparatus with very low specd.

Sinee the wniformity of the pattern near onset was very sensitive to the gap
thickness, the uniformity of the eylinders was very important to our studies. A sub-
stantial amonnt of effort was put. towards ensuring the uniformity of the cylinders.
Tn onr experiment. even when the eylinders were optimally aligned, we still observed
a slight. wonuiformity in the finger patterns, which was due to a nonuniformity of
Uhe gap width. From experimental measirements, we infer that the maximum vari-
ation in gap thickness was roughly 0.025 mm. Direct measurements indicated that

inder was uniform to better than this, but. the in-

the inside diameter of the onter

ner eylinder with vadins ry = 50.4 mm, which used for most of the experiments,

was slightly honeglasseshaped by abont. the same amomt. This caused the finger

n refative to the edges,

amplitude to he slightly smaller in the contor of the pat,

possible, The effect of this nonni-

even when the exlinders were as well al

formity could only he observed close to the onset of the stationary fingering

d with increasing

when only one of the eylinders was rotating. The effect deere

thickiess of the gap. This nomnniformity in the gap thickness did not seem to have
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an influence on the behavionr of the broken-parity waves discussed in Chapter

Fig. 3.2 is a block diagram of the experiment. The ail-air interface along the

length of the apparatus was monitored with a CCD (charge conpled devie) video

camera (Palnix, TM-TCN) and monitor (Burle, TCITOA), and data were recorded

on a VR (Panasonic, AG-1960) or stored on the personal computer using a video

frame grabber (Imaging Technology. e, PCVISION plus

Te ol grabbing 30

frames per second,

Tmages of the interface presented in this thesis have heen contrast-onhaneed,

It are otherwise unproce Measnrements of the amplitnde, wavelength, and

traveling speed of the patterns were done divectly from the video monitor, with an

aceu

y i the position me

wements of plis or minis one pisel. corresponding

to less than £0.3 num when the bigger inner eylinder was used, and less then 0.1

used, The VOR we used could rm the

i when the smaller inner eylinder was
video tape frame by Trame with time interval 1/60 s, and was wsed in this node

Lo meastre the instantancons speed of the traveling patterns. The average specd

of the pattern can be measured from so-called space-time graphs, sueh as thal. in

Fig. 5.2, Space-time graphs were obtained by periodically recording a single video

line throngh the pattern. The individual line images were then combined Lo make a

single two-dimensional image, in which the y-axis represented time and the

position. For quantitative analysis of the interface shape, the interface height

a function of ., the position along the length of the eylinder,

video imagos by having the computer antomatically trace along, the path of dackest

pixels from a given starting point.

Inonr results we shall often seale lengths by the effective radins 1 as expressed

in Eq. (2.1), which characterizes the rate of change of gap width in the g direction

as

shown in Fig. 1.1, For the inner eylinders with radii 50.4 mm and 24.8 min, the
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! motor
f computer
|
|
{ frama grabber
VCR

camera

Fignre 3.2 Block diagram of the experimental apparatus,






Chapter 4

Experimental Results w.th One Cylinder Rotating

In this chapter, we deseribe the dynamical behavionr observed when only one of

linder rotation

raight. line at low ¢

the eylinders rotates. The vil-air interfa

5. When the eylinder speed s inereased to sume eritical value, the straight

ationary fingering pattern. However, we find in

© becomes nnstable to a

our esperiments that. the nature of the transition from the straight interface to

the stationary pattern state depends on which of the eylinders, inner or onts

rotating, and also depends on the dimensionless length. /R, of the eylinder. Tlere

I s the effective radins of the apparatus defined in Eq. (2.1), and 1y is the length of

inner eylinder. In seetion 4.1 we present experimental results obtained with an

inner eylinder of radins 1y = 504 mm. Results with the onter eylinder rotating are

reported in section .11, and those with the inner eylinder rotating in seetion 4.

Section 4.2 includes experimental results obtained when a smaller inner cylinder,

nental results

with ry = 24.85 mm, was used. In section 4.3, we discuss our expe

and compare them with theoretical caleulations.

4.1 Experimental results with r; = 50.4 mm

In this section. we present the results of experiments done using a higger inner

exlinder with rading 1y = 50.4 mm, for which the scaled length of the eylinder, £,/ R,

i “The experinental results with the outer eylinder rotating are described in

AL and that with the inner eylinder rotating in 4.1.2. Experiments were done

43
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using oil A if not specificd,

4.1.1 Results with outer cylinder rot.

ng

When the onter eylinder rotates with the inner eylinder fixed, the transition from

straight interface Lo stationary pattern is always continnons, and no hysteresis was

observed within the resolution of our experiment. Fig. 1.1 shows the development

of the fingering patiern in this case. At low rotation rates, the oil-air interface was

straight, as in Fig. 1.1(a). As Ca, was inereased, a low-amplitude ripple, sinmsoidal

in appearance, formed along the interface. as in Fig, 4.1(1) (Here Ca, = oy fer i the
onter evlinder capillary nmber). At onset the systen accommardates approsimately

I

six fingers, with the wavelengtlh independent of the layer thicknes

elfects, consisting of a slight piling wp of the luid atcacl end of the apparatis,

are visible in the fignre, These ond effects have a strong, offect o e belavionr
at Ue onsel of Uhe fingering pattern, especially in the case that. the inner eylinder
votates, and will be diseussed in detail helow. The amplitude of the fingers (i.c.,
Uheir length) grow rapidly as the rotation speed of the eylinder was inereased just
above onset (Fig. 4.1(c)), but then seemed to saburate at higher rotation rates, As

the finger amplitude increased, the shape of the fingers changed. While they were

ronghly sinusoidal close to onset, at higher rotation rates the patlern consisted off

as illustrated in Fig, 4.0(d). Fig,

narrow oil fingers separated by wider air spac

4275 a plot of the finger amplitude as . function of capillary nmber, Ca,, at lwo

values of the gap thickness. The uncertainty i the amplitude is one unit. From onr

measnrements, we find that the amplitude of the pattern for thinner layers is lager

than that for thicker layers when the capillary number is well above onset,

e, the finger wavelongth decreases and more fingers appear in

As Cla, is ine

the pattern. Fig, 4.3 s a plot of scaled pattern wavelongth as funetion of capillary
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Figure 4.1: Development of the finger pattern formed when the inner cylinder is sta-
tionary while the outer one rotates. bo = 0.5 mm. (a) Ca, = 0.235; (b) Ca, = 0312;
(¢) Cao = 0.353; (d) Ca, = 0.942.
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number at the same two gap thickness as in Fig. 1.2, I this lignre, part of the low-

wavelength portion of the caleulated finea

tability |

nwvn in Fig, 2,

also plotted. The straight-interface state is stable on the low Ca,, side of the curves

shown, and uns

able on the high (o,

side (although not shown here, 1l lated

st

ity boundary enrves hack to high Ca at long wavelength,

1). From

Fig. 4.3, we see that the pears at values of Ca,,  than the ming

mum of Ca, on the theore enrve, and at wavel

Tengths shorter than that at that

Close Lo the experimental onset. the I alwa

Cine dightly

with Cag, then it decreases rather

s. Th

eply Defore leveling ont at higher ol

P initial inerease in wavelength is in oy

ment with the experimental

result of Ciummins ot al. [84], who suggested that it was eansed by gravitational

forees on the meniseus, Well above onset, the measnred wavelengths follow very

closely the wavelongth at the Lo stal

Hakim ot al. (73] and Michalland [14].

Ly houndary, as also observed by

Up to two or three times the o

L speed, the fingering pattern was

mary
for relatively long periods of time - up to several hours. Further above onset,
the pattern began to be perturbed by disturbances originating at. the ends of the

apparatns, which cansed tray

ient motion of the fingers near the bonndaries Lo

acenr, and at speeds of order 10 times the onset speed U pattern was

ally

disordered, with the finger amplitude varying in spac

el Lime, and the Tingers
moving contimonsly in a disordered fashion.

The data in Fig. 4.2 show some rounding close to onset, This we take to he

due o imperfections in the experimental geomotry, including both variations in gap

thickness and the finite length of the eylinder. Above the rounded region, e growth

of the finger is steep bt conti If Uhe transition were deseribed by

a Ginzburg-Landan equation, the amplitude would grow as (€

— Ca P, where
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ry nmber. However, fits of amplitude vs. (',

Cla, is the eritical, or onset. capill

data to a simple power law of the form A ~ (Ca,— Cag)”, where A is the amplitnde,

5, with the data for thinner layers in general

gave exponents o in the range 0.1 =0,

giving the smaller exponents, and the data were not particularly well deseribed by
this funetional form,

We also measured the

apillavy nmmber (fa, and the pattern wavelength at the

onset, of the lingering pattern for dilforent gap widths, Here, Ca, was defined as the

the center of the pattern was Lwo pi

capillary number at which the amplitude

o onr video monitor. These results are shown as squares in Fig. 4.4 and Fig. 4

Fig. 4.4 is 2 plot of Cla vs. the scaled gap thickness bo/ R, and Fig. 4.

the sealed onset. wavelength Ao/ B, vs. bo/ R Also plotted in Figs. 4.4 and 4

the onset capillary number and scaled wavelongth for other experimental sitnations

1o he discuss lity analy

sedd below, and the result of lincar s

in this case are close (o the

From Fig, 4.4, we find that the onsel, capillary mmbe

culated ones only at very small gap width. Ca, increases mueh Faster with gap

width than does the theoretical envve, the difference heing abont a lactor of five for

a gap width of 1. In addition, the onset wavelengths are much lower than the

s featnre

theoretical predictions, as shown in Fig. 4.5, Th

he seen in Fig. 4.3,

4.1.2  Results with inner cylinder rotating

5 with the

We now consider the when the 50.4 mm radins imer eylinder rota

outer eylinder fixed. The behavionr we observed is significantly different in this case

from that described above, when the onter eylinder rotates with the inner cylinder

lixed. Tu th I state were

u, traveling fingers and a disord

observed depending on the gap thickness and - the inner eylinder capillary mumber,
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(67

= poifa. The observed hehaviour is illustrated schematically in Fig. 1.6,

which is the dynamical phase diagram for this higger inder. As hefore,

very low values of the inner eylinder capillary mumber Cag. the oil-air inte

straight. As Ca; inere

sed, the Muid piled up near the ends of the ¢

uder, cansing

the menis

s to move forward there, and drop back in the center part of appa

Hustrated in

(). When the rotation speed w d 1o a particular

value, depressions or “holes” started to form at the points on the menisens near each

end wh

the curvatnre was greatest, as shown in Fig. L7(h). For thin il lay

(bo/ 2 < 0.0034) the amplitde of these holes grew continmonsly over a stall vange of

rotation speed, then, al some eritieal value Ca,, jumped discontinmor

Lo a larger
valie, resulting in the pattern shown in Fig. 4.7(¢). Typically the jump would ocenr

at one end first, and at the other end at a very slightly higher rotation speed, bt the

initial jump conld veeur at cither end of the appar s, and on occasion it happened

at hoth ends essentially simultanconsly. After this jump the bole amplitude

grew continuonsly for a small range of Caz, until a third hole suddenly formed near
the middle of the gap, accompanicd by another jump in amplitude. This process

repeated as C'a; was further increased (Fig. 4.7(d)), nutil there were approx

dy

six holes (or five fingers) in the meni: after which time the further evolution of

the the pattern was continno

within our experimental resolution. Close Lo onse

the pattern consisted of hroad oil fingers separated by somewhal narrower air holes,
as in Fig. 4.7(c) and (d). As o; was inereased, hoth the wavelength and the relative

widuh of the oil fingers decreased (Fig, 1.7(c)). At higher spocds, the oil ngers were

substantially narrower Uhan Uhe air regions, as when the onter eylinder rotated, bt

the amplitude in thi

case was significantly largor (Fig, 4.7(1)). On docreasing Cag,

hysteresis and jumps in amplitude ocenrred associated with the

the last few fingers. Fig. 4.8 shows a narrow hysteresis loop close to onsel, and the
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e diagram illustrating e behaviour observed when the bigger inner
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stationary wlule the bigger inner one rotates, bo/ R = 0.0024. (a) Ca;
Ca; = 0.357; (c) Ca; = 0.360; (d) Ca; = 0.38%; (c) Ca; = 0.449; (f) C
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discontinnons tr: n from the s lit interf;

tern. At cach speed e we waited np to several hours hefore recording the linger

plitude. and at the di

jumps where the first hole appearad or the

last hole disappeared, we waited more than 10 hours to ensure that the

relaxed to a steady state. Close to the on

< the step in e, hetwe

wmber, At the

0.08 mm/s, whi

corresponds 1o a step of 0.0 apil

high-Ca end of the hysteresis loop shown in Fig. LS.

the pattern consisted of fonr

fingers when Cla; was increased, and cight fingers when Ca, was deereased. Steps in

litude can he seen corresponding to the apy or disapy o fingers

over this range of Cfa;.

For layers with hy/ R > 00034, the behavionr was the same up Lo the point

where there were roughly five fingers in the pattern. AU ligher rotation specds,

the stationary pattern then lost its left-right symim

and the fingers began to

drift along the length of the ns. The drilt. direction ¢

time, as did the wavelength and relative width of the fingers. This disordered state

s illustrated in Fig. 4.9(a), and Fig. 4.9(h) is a space-time plot of th This

state persisted over a range of Ca;. Above this range the pattern

in e

ordered, but consisting now of asymmetric traveling fingers as shown in Fig

and in a space-time plot in Fig. 4.9(d).

For layers with b/t > 0.0046, the behavionr at the transition from the straight

menisens Lo the lingering state was similar to that deseribed in the preeeding

raph, except that the amplitnde of cach finger (or hole) now grew continn

and no amplitnde jumps or hysteresis were observed ab onse, as shown in b

a hyster

Howeve 5 loop was observed above onset, when the pattern consi

Lo fingers when Cag was increased and three fingers when (Ca, was deers

Fig. 4.11 is a plot of linger amplitude as a fanetion of Ca, for the same two layer
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Figure 4.9: (a) A typical pattern observed in the disordered state with the bigger
inner cylinder rotating. bo/R = 0.0041, Ca; = 1.283. (b) A space-time plot, showing
the pattern’s motion in the same state. Time runs from top to bottom and the
figure covers 48 s; Ca; = 1.027. (c) Fingers in the traveling state that ap,
speeds above the disordered state; Ca; = 1.497. (d) A spacc-time plot of the same
state for Ca; = 1.711; here the figure covers 24 s.
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thicknesses as shown in Figs. 4.8 and 4.10. The range over which the disordered

state deseribed above exists for the thicker layer is indicated by the short. dotted

line in Fig. 4,11 Above this range, the pattern consisted of traveling fingers. For

the thinner layer shown in Fig. 4.11, the pattern was always stationary.  Note

from Fig, 4.1 that, the amplitude for the thicker layer well above onset is larger

thian that for the thinner layer. In contrast, for the case where the outer eylinder

rotates, illnstrate

the amplitude for the thicker layer is always smaller.

As with the onter eylinder data, the amplitude data were not well deseribed by a

simple power law, nor by fits to the Ginzbnrg-Landan equation for a backwards
(discontimons) hifurcation.

fated with

Fig. 412 is a plot of the width of the hysteresis loop, ACa,

the onset, and final disappearance of the fingers. This width las a maximum for

a gap width of b/l = 0.002

dropping to zero for the thinnest gap we studied
(ba/ 12 = 0.00024) as well as for by/ 1 > 0.0046 .
s, we also observed

I addition to the Targe holes which appear al. the menis

a small amplitude “vipple”, sinusoidal in appearance. In layers with 0.00096 <
B/ 1t < 00019 this ripple appeared at rotation speeds above those at which the

holes appeased, bt in thicker layers the ripple appeared fivst, Any possible growth

of the ripple into |

arger amplitude fingers is apparently pre-cmpted by the growth

of the holes as deseribed above,

We meastred the capillary number at the onset of the fingering pattern at differ-

ent gap thicknes

os, s shown in Fig. 4.4, Tlere the onsol was dofined as the capillary

nimber at which the fiest jump in finger amplitude ocenrred when v; was inereased,

shown as cireles in Fig. 4.4, or at which the last hole suddenly disappeared as o;

was deercased. shown as downward-pointing triangles. These re

ilts are consistent

with the data measured with the onter eylinder rotating, and in hoth cases the
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measired values are substantially higher than the theoretical predictions of lincar

stability analy:

Phe onset, wavelengths are presented in Fig, 4

where the open cireles represent,

the wavelength of the low-amplitude rvipple, and the solid circles show the distance

defined by the separation of the first two lar litude holes. The 1

gth

of e ripple shows 1o systematic vatia

tion — but a fair amount of scatter -— as

the gap width is changed. The spacing hetween the first two holes is constant for

by < 0.3 mm, then deer with increasing gap thickness, appearing to level oflf

again for large thickness. The distance between the first two holes is

arger that
Jall the system Tength when the gap is thin, and is apparently dotermined by the

size of the s

em rather than any fundamental seale.

We also performed experiments using the more viscons ofl B, and observed the

ne hehavionr as deseribed above when the inner eylinder rotated. The hyste

wars substantially smaller, although still present. When the outer eylinder rotated,

the behavionr was the same as deseribed in

ction 4.1.1. The measurements of the
ansel. capillary mmber for this ol are also plotted in Fig. 1.4 as hexagons, and

overlap the data for oil A esseutially perfeetly.

vl

. 413 is a plot of s ngth as

a funetion of capillary number for il

A, with the inner eylinder rotating at the same gap thicknesses as in Pig. 4.11. The

in the data just above onset correspond to sudden changes in wavelength that

ocenr when a new hole forms, The onset is subs

tially delayed from the theoretical
predictions, as in the case where the onter eylinder rotates. The short horizontal

dotted line indie:

s Lhe region where the pattern is disordered for the thicker layer.

Above this gap the pattern consi

s of drifting asymmetric fingers. Well above

onsel, the w:

elengths for the thinner layer, where the pattern is

stationary, follow

closely the caleulated linear stability houndary, while for the thicker layer, where the
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patbern is a Uraveling wave, the wavelongths remain abont twice as high as the

theoretical stability bowndary.

From the above deseriptions, we find that the transition at the onset of the

stationary patbern is substantially different from the theoretical expectations. We

helieve that this is cansed by boundary effects, since the scaled length for this inner

eylinder is only 0.98. 'To test this hypothesis, we used a smaller inner eylinder, for

whicl the sealed length is 5,07, The results are reported in the next seetion.

4.2  Experimental results with r; = 24.85 mm

In this section, resulis of experiments done with an inner cylinder with a radins

#y = 2485 mm, and scaled length L /R o presented. All experiments were
done: using oil A.

When this smaller inner eylinder was used, we found that the transition from the

ght interface Lo the stationary pattern stale was continuous, and no hysteresis
was observed, no matter which eylinder, inner or onter, rotates. The stationary

pattern was stable to higher rotation speeds than when the bigger inner cylinder

was used, The disordered and traveling finger states deseribed above, which exist

for thicker when the higger inner eylinder rotates, were not observed. Fig,

L1d(a) and (b) are plots of the sealod wavelength vs. capillary number, and the

finger amplitude vs, illary number, respectively, for the case that the outer

eylinder rotates. while Fig, 4.15(a) and (b) are the corresponding plots for the inner

inder rolating. I hoth cases, the amplitude of the finger grows rapidly as the

rotation speed of the eylinder is increased, and then saturates at higher rotation
rates. Well above onsel, the thicker layer has larger finger amplitade than the
thinner layer when the inmer eylinder rotates, while when the onter eylinder rotates,

the thinner layer has larger amplitude than the thicker layer. This behaviour is the
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same as that when bigger inner eylinder was nsed. When the exlinder speed s

fnereased. the finger wavelength deer

ises ax before, Comparing, 19,

L (@), and

4.1

a) with Figs, 4.3 and L.13, we can see that the wavelengths aronnd onset for

the smaller inner eylinder are closer to the theoretical caleulations than when the
bigger imner eylinder was nsed.

We also measured the onset capillary mumber and onset wavelength for this

smaller inner eylinder. The results Lo and L5 as diamonds Tor

presented in Fig

the outer for the inner eylinder

inder rotating, and by upward-pointing triagle

rotating. The onset capillary numbers for both inner and onter exlinders rotating are

consistent. with cach other as before, In (hi 2 however, the results agree mueh

more closely with the theoretical calealation, althongh the measured onsel capillary

numbers are still higher than the theoretical values when bo/ 8 s high, Similarly, the

onset wavelengths for the smaller inner eylinder are eloser to, although still lower

than, the theoretical calenlation than was the case when the bigger inner eylinder

was nsed.

4.3 Discussion

We now compare onr experimental results with other experinental results on e

ing,

systems. Fig. 416 is a graph originally from Ref. [69], to whieh we have added

one results. For consistency with the way quantitios are defined in Ref. [69], in Fig,

416 Cae = pu(vy 4 vg) 20 is plotted against /A1, where oy and oy are the rotation

speeds of the two eylinders. The data from other experiments, plotted in Fig, 4.16,

were obtained with experimental systems consisting of Lwo eylinders mounted cither

side by side or one above the other [60, 62,69, 88, 89]. Also inclided in Fig, 4,16 are

the experimental results of Hakim et al. [78] (shown as crosses) for an experimental

ing of asingle eylinder rotating above a plane surface, with /6= 6,
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Figure 4.16: Ca,/2 vs. bo/4R (units have been chosen for consistency with Ref.
[69]). Data from this work are shown using the same symbols as in Fig. 4.4. Data
from the work of lakim ct al. are presented as crosses. Data from previous work on
coaling systems are taken from Ref, [69], and represented by small symbols: squares:
Ref.[60]; circles: Ref. [62]; triangles: Ref. [88]; pluses: Ref. [89]; diamonds: Ref.
[69}; solid line: calculation by Coyle et al. [69]; thinner dashed line: calculation by
Rushak [67]; thicker dashed line: this work.
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ing

The dimensionle: LG

s lengths 1/ R Tor all of the previons experiments plotted in Fig

range from 5.5 Lo 7.9 and vo systematic change in Ca, with 1/ can e soen in

these data, The solid eurve in the fignre is the thearetical result of Coyle el al.

[69] caleulated by a two-dimensional finite-clement a

is of the symmetrie film
splitting flow in a forward-roll-coating configuration. The short dashed eurve is fhat

caleulated by Ruschak [67] by a stability analysis of the asymptotic cquations for

two-dimensional flow near the menisens, using a nearly-rectilinear approximation,

and the long-dashed enrve is the theoretical result shown above in g,

Our

experimental results with the smaller inner eylinder, with £,/ 1 =

e with
the other experimental results and the theoretical calenlations quite well, suggesting

that when the effective length s larger than about 5, houndary effects are not sip-

nificant. [n the case that I/ R = 0,98, however, the onset of the fin

ring instability

stantially delayod over what

s expected from hoth the theoretical and the

elfects

other experimental rosults, suggesting that i this case houndary « qite
important.
From the above comparison, we ean conclude that ond effects somehow stabilize

the meni

is heyond the point at which fingering would ocenr in the infinitely long
system and that, the shorter the dimensionless length, the more the onset of fingering

is delayed. This result has potential applications in the coating industry: the onsel

of in;

bilitics which lead to mneven coating thickness conld Le delayed 1o higher

coaling speeds by constrieting a coating system witl i

nall value of 1/ 18

The effeet of the finite cylinder length on the actual flow is different depending,

on which of the two eylinders rota

This was observed when the bigger inner
eylinder was nsed: the transition behavionr with the onter eylinder rotating was
different, from that with the inner eylinder rotating,  Our onter eylinder is 8 mm

longer than the inner eylinder, so there is a 4 mm space at cach end, hetween the
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ends of the two eylinders. The behavior of the oil in this space determives the

Lonndary conditions at the ends of the menisens, but a detailed analysis of the low

in this region is regnired hefore any definitive statements can he made.

The effeet of the gravitational force on the flow is also different depending on
whiele eylinder is rotating. When the eylinders rotate, viscous forees pull the oil

it down, The drag force

ap al the front menisens, bt the gravitational foree d;
on the film coated on the outer eylinder is halanced partly by the normal foree of

ed on the onter

vitational effect on Lhe film e

e e

ylinder, therefo

eylinder is smaller than that coated on the inner eylinder.

In onr experiments, and also in those of Takim ot al. [73]. the pattern wave-

lose to that at the vdge of the linear stability boundar

Tength alove onsel, s quite
Normally one would expect the pattern to become ustable to the Eekhaus instabil-
ity [43] befure the wavelength reached the linear stability honndary. The Eckhans

1,90). Riley and

instability has heen observed in many other experiments 9,15

Davis [91] and Proctor [92) have theoretically studied the Bekhans instability in the

flatter than the nsual parabolic shape near

ase Lhat the linear stability honndary is

'y conclnde that the flatter is the

he case in onr experiment.

its minimnm, a

ability

the Bekhans instability to the lincar s

vy Lhe clo

Tincar stability hounday

boundary. and the narrower the hand of Eckhans-unstable wavelengths.

nrtune et al. [51] studied the Eekhaus instability in a system similar

Recently,

to ours. o their experiments, a single eylinder rotated wnder a horizontal gla

ace between the air and the oil film pulled through the small gap

plate. The interd
between the exlinder and the plate exhibited a stationary pattern similar to that

inonr experiment, Foartune et al. measured the range of the control parameter

over which a pattern with a partienlar wave number was stable. that is, the stability

imilar to those shown

of the sta

borndary fonary pattern. Their results are very s



Chapter 4. Experimental Results with Qne Cylinder Rotating 7

in the iy

o Fig. 4.13. This inset shows in more detail the pattern wavelength for

nere

ing and deercasing v, close to onset. In this re

ion ol Ca, hyste Nists

as described in seetion 412, At a partienlar value of Ca, the

fower lingers

when Ca is inercased than when Ca s decreased. or. in other words, the pattern

has a longer wavelongth when Ca is inereased than when it is decreased. Tn ther

paper [51], Fourtune et al. identify the low wavelength houndary of the hysteresis

loop with the the Eekhans houndary, while at the long wavelength houndary the

pattern wavelength changes via a propagative localized state of hroken parity. In

our experiment, in the range shown in the inset to Fig, 1.1

the w

dlength jumps

oceurred when a hole appeared at the interface on iner

i Ca, or disappeared on

deereasing Cag, as deseribed above, When Ca; w.

aried hetween hole app

nees

and disappearances, the wavelongth chianged smoothly. AL the high-wavelongth side

of the boundary, propagative localized states of hroken parity waves were obsorve

when new fingers appeared as Ca; was inereased. When Ca, was decrensed, the dis-
appearance of fingers ocenrrod thirongh the coaleseence of two neighbonring lingers,

as wonld he expected at an e

hans bonndary. These resnlts are consistent. with

those of Fourtune et al.
As deseribed above, when the bigger inner eylinder rotates, with gap thickiess
bo/ I > 0.0034, the stationary pattern hocomes unstable Lo a parity-hreaking trav

cling wave. In this case, increasing a single control parameter drives the system

through two snecessive instabilitios, from the straight interface to the stationary

pattern, and then from this stationary pattern Lo fravelin

linger state. In the case

that the eylinders counter,

rolate. two control parameters st be varied in order

to reach a parity breaking transition, as will he disenssed in the next o

pler. Sing

ilar snecessive transitions involving only one control parameter have heen observed

i the directional solidification of liquid erystals [0, 10, 24] and Tarnellar eutecties
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[18-20]. In onr experiments, close to the onset of this parity breaking state, there
neter where the drifting pattern is unstable.

3,

is a small region in the contral pa
2, that

This is in agreement with the theoretical prediction deseribed in seetion

ions

ing state is not stable at onset. According to theoretical predic

y-bore

the parity
g

degree of asymmetry of the pattern.

king wave should be proportional to the

3-27), the drift speed of the parity-be

We have not studied the hehaviour of the

ity state observed here i detail, however, a quantitative analysis of the

Iroken- i

e for connter-rotating eylinders will be prosented in Chapter 5.

parity-hreaking
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Experimental Results with Cylinders Counter-Rotal.

When the two eylinders in onr experimental apparatus counter-rofate, a variety

linders. These

il v ol the

can ocenr, depending on the veloci

ol dynamic:

include broken-parity traveling waves (‘TW). solitary waves (SW) and stationary

138 I this chapter we

fingering patterns () as shown in the phase diagram of Fig,

ent the results of experiments on the hroken-parity traveling wave state laholed

[

TW in Fig. 1.3. In section 5.1, the dynamical hehavionr of the traveling:wave state

is deseribed. Tn sect the results are analyzed and compared with theoretical

expectations. The experiments reported here were done using the inner eylinder

ap thickness was lixed at b/ 1= 00021

with radins 1y = 50.4 mm, and oil A. The

5.1 Results

The experiments reported i this dhapter were done in the parity-breaking state
which fies in the arca labeled TW in the second quadrant of the phase diagram
shown in Fig. 1.3, In a typical experimental run, shown by the dashed straight line

in Fig. 1.3, we set the onter eylinder’s velocity 1o a value above the onset of the

reed b0, = 111Gk

stationary fingering pattern, which for onr geometry ocen

we then inereased the inner eylinder

mm/s. After allowing this patiern to stabili

sieh that the eylinders were

velocity in small steps in the opposite direction,

h i

connter-rotating, allowing sufficient time between steps for the pattern Lo rea

is the inner eylinder rotation spoed.

steady state. In this case the control paramete
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5.0.1 Uniform broken-parity waves

A values of e onter eylinder speed below 157 mm/s (14v,e), a periodic pattern

observed. This

of traveling lingers, moving with constant speed,

thes shaded region of Fig. 1.3,

 observed for a particular valie

Fig. 5.1 shows a sequence of interface pat

jon specd, oy, is

of the onter eylinder rotation speed, v, as the inner eylinder’s rot.

stationary

ially, with o; = 0, the pattern is

inereased in small stops from zero, Ini

inercased slightly

left-right reflection symmetry, as in Fig. 5.1(a). When o; i

and ha

above zero, the pattern of fiugers at the interface loses its reflection symmetry, and

Initially, the drift is spatially

heging o diift along the length of the apparatus.

disordered The pattern contains sonree and sink defects, at which domains of fingers

drifting in opposite directions meet. This disorder is transient in this region of b,

and the interface gnickly settles down Lo a spatially uniform pattern of asymmetric,

drifting fingers. As vy is arther inereased, the asymmetry of the fingers and the

wavelength of the patiern both increase, as can be seen in Fig. 5.1, as does thei

time image corresponding (o a lelt-moving

phase velocity. Pig. 5.2 shows a space

pattern, which shows that the traveling speed of the pattern is wniform. Pattoms

aing) were observed,

with hoth signs of asymmetry (i.e., left-leaning and right-1

with the direction ol drift depending on the sense of the asymmetry; those in Fig.

5.1 lean to the right and move to the left.
Atstill higher g, the pattern suddenly regains its reflection symmetry and stops

1(8). The traveling speed and asymmetry drop discon-

drifting, as shown in 1

now decreased, the drifting

timously (o zero, This transition is hysteretic

pattern docs not reappear kil somewhat below the value of o at which it disap-

peared. The wavelength of the stationary pattern which reappears at higher o is

always slightly larger than that at ey = 0. At still higher v the s ary lingers
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Figure 5.1: Patterns observed at the oil-air interface with v, = 139.4 1nm,
Stationary, symmetric fingers at v; = 0; (b)-(f) asymuctric fingers drifting uniformly
to the left at successively higher values of vi: (b) v = 6.3 mmfs; (c) v = 7.9
mm/s; (d) v; = 9.5 mm/s; (e) vi = 11.1 min/s; () v; = 12.7 nun/s; (g) stationary,
symmetric fingers at v; = 15.8 mm/s.
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ages of a uniform traveling pattern at v, = 143.8 mm/s,
ime s from top o bottom and the fignre covers 24 s. 134 mm
of the pattern are shown.

Figure 5.
|

0.
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lose stability and straight meniseus returns.

We measured the phase speed of the patte

h

o from space-time images s

and 02 is plotted as a fune

as in Fig. moof o, in Fig. Data for five

values of v, between 139 mm/s and 157 mm/s are shown. with the different symbols

corresponding to different values of #,. Within o

dependence of the slope o o, can he discerned, hut the of the

ange of exis

i is shown in the inset

traveling-wave state inereases lincarly with increasing o

Lo Fig. 5.8 where we have plotted the masimun value of ; at which the 1

patterns wore observed, as a function of v, The data plotted in Fig,

enti

range of ; over which the traveling-wave state exists. A fit ol the data to o

straight line giv

0F = (448 £ 0.09) (; — (¢

04 0.2)) (5.1)

sition ocenrs

with vy and »; in mnits of mim/s. In th s, the parity-hreaking tea

at a eritical rotation speed of = 3.9 £ 0.2 mm/s. v, starls Lo grow contiy

oty

from zero at of, and o3 is linear in the control para

weter o,

When v;

increased, the wavelength of the pattern also inereases.

plot of the patter
ill

wave nmber, g, as a funetion of o, for three

alues of n,,

trates the steady deerease in g as Ue control parameter is increased Urongh the

e, AL the tr

traveling-wave sf ion back to the stationary pattern at higher o,

the wave mumber jumps back up, bt its value in the bigh-o, stationary-finger state

is always smaller than that. in the »; = 0 st “The Tin

o in g,

A simply conneet.

the data points for cach valie of o, and are intended only Lo guide te eye,

5.1.2 Nonuniform broken-parity waves

Wiien the outer eylinder rotation speed is above 157 /s, the traveling pattems

we observed were 1o longer spatially uniform, and their helavionr was rather more




Chapter 5. Experimental Results with Cylinders Counter-Rotating 7

120 == T T T T
160
— ..
100 T140 "~ ]
E
80 | o i
-30 -20 -10 k4
v; (mm/s)

4. i
vy a8

a function of v; for
/s p-

Fignre 5 The square of the pattern’s phase volocity.
iform traveling waves. Cire

alnes ol 0, of
awngles: 1,

ty

Lriang|
mfs.

square: v,

least-squares lit to the d



Chapter 5. Experimental Results with Cylinders Counter-Rotating S0

0.5 T T T T T

q (mm™)

02 i 1 1 1 1
0 5 10 15 20 25 30

vi (mm/s)

Figure 5.4: The uniform patie
in I
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complicated tian that of the miforn traveling waves seen at low v, As before, the

stationary lingering pattern exists at o soon as v; becomes nonzero, the

fingers of the stationary pattern lose their refloction symmetry and begin to drift.

When o is very small, this traveling state is chaotic. However, unlike the case where

n, is low, this disordered drifting state never settles down. This observation agre

2 above. that the traveling

with the th

state is unstable at onse

When g is further inereased, a more ordered traveling-wave state develops. How-

Souree or sink

over, s pattern is never perfoctly uniform, nor is it stable in time

but usu-

defeets can remain in the pattern, typically near the end of the appar

ally the traveling lingers appear at one end of the apparatus and disappear at the

other, I s of traveling patterns observed for v,= 174 mm/:

s increased. AL any given time, the wavelength of the pattem changes along its

fength, as can be seen in Fig, 5.5, When the fingers are moving away from a souree

defeet, the pattern’s wavelength inereases along its direction of propagation, while

il they are moving towards a sink defeet, the wavelength decreases. Furthermore,

s pattern only exists for, typically, a fow minutes at a time, after which it again

hecomes disordered. After a few seconds, the disorder passes and the pattern re-

turns to one like those in Fig. 5.5, and so on. Patterns moving in cither direction

age of

can acen, and often the direction of propagation is reversed after the p

disora 1 burst.

As v is lurther inereased, the pattern’s average wavelength,  phase speed and

finger asymmetry all ineroase, as was found for the uniform traveling patterns at low

e The variation in wavelength along the pattern also becomes more pronounced,

and the intermittent bursts of disorder more frequent. Patterns from this regime

areillustrated in Fig. 5.5(h-d). A sudden transition occurs between Fig. 5.5(d) and
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Figure 5.5: Nonuniform traveling-finger patterns at v, = 174.3 mm/s. (a) v; = 633
mm/s; (b) v = 11.08 mm/s; (c) v = 12.67 mm/s; (d) v; = 15.83 mm/s; (¢)
v; = 17.42 mm/s; () vi = 19.79 mm/s; (g) vi = 23.75 nm/s; (h) v; = 27.71 min/s.
“The images show 174 mm of the patiern’s length.
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(¢), at which the pattern’s average wavelength drops, and the phase speed and

+ As v s inereased above this transition, the

asymmetry of the fingers also sleere
wavelength of the traveling pattern hecomes more uniform and the the disordered
periods appear less frequently, and the average wavelength, traveling speed, and

asymmetry increase again, as shown in Fig. 5.5(Eh). Eventually, the solitary wave

(SW) region of Fig. 1.3 is reached, in which localized patehes of broken parity

symmetry travel throngly a backgronnd of stationary lingers, then the stationary

e, and, finally, the straight interface

finger
- 5.6 s a space-time image, showing the motion of a pattern traveling Lo the
23,8

1%

nd o

left, over a period of 24 seconds. For this pattern, o, = 174 mm/;

se i the wavelength and

5 s the ine

5.5(g). This

al

picture il

in g,

ong the length of the

s in the pattern as they move

weling speed of e finge

The way inwhich the pattern’s characteristics vary along the interface, at a lixed

time, is illustrated in Fig. 5.7, for which o, = 2614 mm/s and v = 55.42 mm/s.

The particular image from which the data were taken is shown in Fig. 5.7(a).

the Teft side of the image,

o away Trom the sonree defor

The fingers propa

50 most of the pattern is moving to the right. The local wavelength, defined as

the distance hetween adjacent. minima in the interface height, the asymmetry (sec

traveling speed, determined by

helow) of cach individnal finger, and cach finge

simply measuring the distance a finger moved over a small number of video frames

a Tunetion of position. in Fig. 5.7(b=d). The finger closest Lo the sonre

E3

are shown

i er moving than its

as cam e seen in Fig, 5.7(n), more asymmetric and fas

i lony

neighbonrs. This reflects the mechanism by which new fingers appear at the sonree,
Ixisting lingers move away [rom the defeet, When the distance hetween the sonree

and the nearest linger hecomes Loo large, small ripples appear close to the defect,
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Figure

0,

inere
bottom and the ligure covers

127 mm of the pattern are shown.
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Figure 5.7: The variation of the local properties of a nonuniforin traveling pattern,
as a function of position, for v, = 261.4 mm/s, v; = 55.42 mm/s. (a) The pattern

itself. (b) The local wavelength, A. (c)

local traveling speed, v

The asymmetry of the fingers, A. (d) The
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otherwise, they propagate

which are reabsorbed il they are too close 1o its cor
away as a new finger. The new fingers initially move quickly, bt slow down when

they catel up with the rest of the drifting pattern. Once far cnongh (i, a fow

wavelengths) away from the source, the pattern’s wavelength, speed and asymmetry

all inerease i a similar way, and appear (o be saturating towards the end of the

apparatus. Near a sink defect, the opposite hehavior is observed: the pattern slows

into the sink, This behaviour is

andd hecomes compressed, wntil a finger disappe

aus instability of the pattern, which will he diseussed below.

related to the ekl

I o of the pattern’s average phase specd against

5.8 s a plot of the sq

the control parameter, v;, at v, = 1743 mm/s. v} is lincar in v; at low v;, in
\ Vi P s

nent with our results for the spatially uniform traveling pattern at Jow o,z hero

apre

imental

at v; =0 within onr exp

ale ocenrs

the bifureation to the broken-parity s

resolution. The phase speed drops suddenly at a value of oy between 15,83 mm/s and

1742 /s The drop in oy is accompanied by a drop in the patter’s wavelength as

= 1742

) and Fig. 5.5(c) (v

can e seen by comparing Fig. 5.5(d) (o = 15.83 mm/s

/).

nsition moves to higher values of

As b, is inereased, the wavelength-changing

ndes of the changes in ave

vie I also hecomes weaker and weaker, i.c., the mag e
phase specd. wavelougth, and asymmoetry become smaller. At relatively high values
of 1. the fransition disappears complotely. At these high valies of v,, the transient

ill exist

s of disorder seen at lower v, no longer ocenr, although defects can

. Fig. 5

136 mm/s. In this e

in the patt ) is a plot of v} vs. v; for v, o

sos linearly with o; at low v, then smoothly

the square of the phase speed ine

decreases as the teansition back to stationary fingers is approached. No sudden drop

in ay is visible in the traveling-wave state.

The variation of wavelength along the pattern leads to the ereation or annihila
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tion of fingers via the Eckhans instability, As the lingers move away from a source,

their local wavelength grows. When the wavelength becomes lavger than a certain

valne, the Tingers hecome unstable and ripples start (o appear on the forward side

(ivees the Tess steeply sloped side) of the finger's base, Sonte of these can he seen in

ht-hand side of 1%

FFig.

 for example at the ¢ 0. These ripple

represent

attempts to form of new lingg Sometimes these attempts are ansuccessful: the

vipple moves hack towards. and s reabsorhed Dy, the parent linger. 16 Qe ripple

howe

jally develops far enongh from the parent fing it will grow and move

away. forming a new, independent finger, and cansing the local wavelength 1o de

s baek into (he stable range. Now fingers develop at sonree defeets in a sim

as deseribed above,

This process is illustrated in Figs, 5010 and 500, Fig, 5,00 is a sequenee of

images of the interface for v, = 240 mm/s and p; = 475 mm/s. The pattern in this

case is moving to the loft. Initially (Fig. 5.10(a)). the fingers at the left-hand side

of the front have a wavelength which s Loo large, and they are nnstable, A new

finger is trying to nueleate just in frout of the finger labeled 1 in Fig, 5,100 ), hut

it is toa close, and in I,

500(h) it is in the process of being reabsorhed by finger

1. Another attempt is made in Fig. 5.10(¢), with the same rosults the new finger

is reabsorbed i Fig. 5.10(d). In Fig. 5.10(d), the finger labeled 2 has also hecone
unstable, and a small ripple can he seen developing in front of that finger. Again the

5.10(),

new finger is reabsorbed hown in Fig. 5.10(¢) and ([). Finally, in 1%,

a new finger suceessfully forms: it can be seen moving away Trom its parent finger

in Fig. 5.10(h-j

. The time elapsed Trom the start to the end of

Fig. 5.11is a space-time representation of a similar sequence of events at o, = 174

mm/s, v; = 222 mm/s. The time from the top to the bottom of the figure is 13,5

5. As in the case discussed above, prior to the ereation of the new finger, there are
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Figure 5.10: The formation of a new finger through Eckhaus instability. Here

39.6 mm/s and v; = 47.50 mm/s. The images were recorded at times (a)
053 (b) 0.1 ; (<) 0.23 s; (d) 035 5; (¢) 0.68 s; (T) 0.83 s; (g) 1.00 s; (h) 1.23 s; (i)
173 s; and (§) 273 .
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Figure 5.11: A space-time image of a drifting pattern showing the nucleation of a
new finger. Here o, = 174 mm/s, v; from the top down,
and the total time 3.5 57 91.6 mm of the system length is shown,
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Chapter

several unsnecessful attempts, hoth on the evential parent finger and its neighbors.

These

show up on the space-time picture as modulations in the widths of the fingers.

Observations of events such as these allow us Lo constrnet the Fekhans stabil-

ity houndary for broken-parity traveling waves in this system. We take the long-
wavelength stability Timit of the finger to e defined by the wavelength at which

Uhe ripples, which represent attempts to ereate new fingers, first appear. The short-

wavelength limi is given by the shortest interfinger distance for witich the two fingers

do not recombine, The resnlts of these measnrements are shown in a plot of control

parameter, v, against wavelength for three vahies of v, in Fig. 5,12, The data points

at v, = 0 indicate the wave number of the stationary pattern there, Between v = 0

disordered and mea

e

and the lowest o, data point in the fignre, the pattern wi

ments of the Bekhans boundary wore not possible. The data for v, = 218 mm/s

(the cireles) and o, = 261 mm/x (the triangles) show a definite kink, most obvions

on the low-wave-number side of the stability boundary. This kink coincides with

Uhe bransition diseussed above, at which the pattern’s wavelength suddenly changes.

taken at high values of b, (for example, the st

The kink dues not appear in da It

in 1%, 2), for which the transition does not ocenr. While the low-wavelength side

le moves

v, is varied. the ligh-wavelength s

of the bonndary doesn't change much a
i and the stablo region becomes more narrow as o, s increased. The propagating

pattern appears Lo soleet wavelongths near the | ath stability honndary,

ation or annihilation events.

and short, wavelengths are only seen during «

5.2 Analysis and discussion

ited above

In this section the experimental results on the broken-parity waves pros

will be analyzed and compared with theoretical predictions derived fron both the

symmetry and the g —2q coupling model of Ref. [
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The Eckhans instability of the traveling waves we observed will he explained quali-

Latively using the complex Ginzburg-Landan oquation.

5.2.1 Uniform traveling waves at low »,

2.1 above, al a supereriti-

From the theory of Refs. 26, 27}, outlined in section 2

cal parity-Dreaking hifureation from a stationary patten to a nniform hroken-parity

ed vy, and control pa

state, the relationship among the asymmetry A, phase s N

eter o should be deseribed by Kas. (2.46) and (2.47):

A=+ ch)' P

by =0y =wA.

For the spatially wniform traveling wave state we observed at lower values of 0,

inereased, as can be seen

Uhe patterns became more and more asymmetric as b; was

in Fig. 5.1 The increased asymmetry was accompanied by an inerase in’ phase

speed, as expected from Bq. (5.3). Also, sinee the phase speed should be linear

i the asymmetry, the dependence of o on oy shown in Fig. 5.3 is roughly what

0N More conerele, we mnst

one wonld expeet, from . (5.2). To make the compar

quantify the asymmetry of the pattern According o e, (240), the fanetion /(1)

giving the interface height as a funetion of position. #, is composed of symmetric

and antisymmetric components. This function, expanded as a Pour  at some

particnlar Gme £, is

() =3 ajeosjqe + 3 bysinjga, (5.4)

where ¢ s the fundamental wave mumber of the pattern, There s a dogree of

0 (i

frevdom availablo to s throngh the definition of the point & .. the point of

zero phase). Sinee a pattern doscribed by a perfeet cosine wave should be perfectly
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0. Thus we consider

symmetric, we choose onr zero point so that the cocflicient by

the pattern to be of the form

.5)

i [t

Ur) = areosqr + 3 ajcos jor+ 3 b,

For a symmetric pattern. all of the b; should be cqual 1o zero, while nonzero bys
imply a dogree of asymmetry. The total power in the Fourier spectenm, whicl is
fndependent of the above choiee of phase, is equal to S(a? F§). We define the

asymmelry parameter A as

s as the square root of the fraction of the total power contained in the anti

me rms. This parameter is lin et

arly proportional Lo the a Al 1

(240) for small asymmetries. This can be understoold by considering an interface

with 1) = ay cos + aycos 2 + bysin2e. Vor this interface, the asymmelry

defined by Bq. (5.6) is A = [b)/(a? + b+ B)V2, which s proportional Lo the
asymmetry A= by defined by By, (240), as long as by is small. Note that, becanse

of the way A is defined, it can never he negative, and the sign of the asymmetry, if

desited, has Lo be put in by hand.

The interface funetion /() was obtained hy having the computer antoma

trace along the path of darkest pixels of a video image, from a given s

Each individual finger in the pattern was then Fourier transformed and the coelli-
O such that the

cients aj and by of B, (5.4) were obtained. To lod

the point

coollicient by = 0, we apply the translation

g = qi + b, (5.7)

in B, (5.4), where tang = by/a. After this translation, the it

')

face cquation

n e des

rihed by Eq. (5

5) with the coeflicients equa

cos jb+ by sin jb, (5.%)
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I = —aysin job + by cos j,

and B = 0. After dropping the primes on ', o} and 8, we get Eq. (5.5), and can
then calenlate A using Kq. (5.6).

3. EBach measnrement

Sample results of this procedure are shown in Fig.
ias heen averaged over roughly five fingers in the center part of the pattern. The

fingers were in general quite anharonic in shape, and we used up to 40 spatial

modes 1o deseribe the interface to single-pixel acen

firs

cy. Tig. 5.03(a) shows the

ten Fourier sine and cosine coc flicients for the stationary symmetric pattern of

(@), T this case, the by are all close to zero and the asymmetry parameter

is A = 0,02+ 0,03, Fig. 5.13(h) shows the same coelficients for the propagating

pattern of Pig. B.1(e). Here the patter is clearly asymmetrie. As expeeted, the

contributions of the sine terms Lo U(x) are significant in this case, with the 2q

component heing strongest. This pattern has A = 0.35 £ 0.03. We performed this

analysis on all of the patterns represented in the data of Fig. 5.3. Fig, 5.14 is a plot

of A% vs. vy, and shows that A? grows linearly from zero above a critical velocity.

liq. (5.2), however, also includes a term ey Wo performed a lonstesquares fit
to the data of Fig. 5.14, using Eq. (5.2) as a fitting fnetion, with g = o; — o7, and
usiing our measurements of the pattern’s wavenumber to determine ¢, The fit gave

=02+ 1.6, i.c., « was equal to zero within our uncertainty. Using ¢ =

2, we
fornel that. the term ¢b, contributed roughly 2% to the right-hand side of Eq. (2.16),

much less than the uncertainty in A, We therefore neglect, this term, and fit the

asymmotry data to a square oot law in the rotation speed v We find of = 3.9:£0.7

n agreement with the value found from the data of Fig. 5.3, and

AP = (0.0129 £ 0.0007) (v; — (3.9 £0.7)), (5.10)

with g in wnits of mm/s. Ths the asymmetry increases continmously from zero with

a square rool dependence on the experimental control parameter v, as expected at
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s in Fig. 5.3. The symbols are as defined in Fig. 5.3, and the
line is a fit to the data.



Chapter 5. Experimental Results with Celinders Counter-Rotating "

a supercritical hifurcation.

Fig. 5.1 plot of phase speed as a funetion of A. g is linear in A over the

entire range of existence of the traveling-wave s

ate. Fitting of the data gives

ra = (0.5 £ 03) + (174 £0.8) A,

with vg in mnits of m

The intereept in Fa. (5.11) may not he

dilferent from zero, but we note that an intercept conld arise due Lo a nonzero @y,

term in Eq. (2.44) if the aresult of, for

atem were ot perfeetly wniform i

example, small imperfections in the experimental apparatus.

These results agree with the theoretical expeetations for a supererit

breaking bifurcation. The pattern’s

symmetry inere

$ with i square roul, de-

pendence on the control parameter, and the pattern

asymmetry.

We now consi s in terms of the ¢ — 2 pling model, in which

interactions between spatial modes in the pattern with wave numbers ¢ and 2q lead

to the parity-breaking hifurcation. In this context it is nseful Lo investigate the

behavior of the spatial modes of tse pattern as the control —

Fig. 5.16 presents this data for o, = 1438 mm/s. Fig. 5.06(a) is a plot of the Fourier

amplitndes of the first four even components of the pattern, i.e., ay, ug,az, and oy

as a function of v;, and Fig. 5.16(h) is a plot of the Fourier amplitudes of the odd

components, by, by, and by (recall that by is set equal to zero). Finally, Fig, 5.16(c)

shows the total amplitude of cach mode, (@246 for j = 1,2,3,4. In all cases e
amplitndes have heen normalized by the quantity £, where 1% = Y(a? 4 62) is the
total power in the pattern’s spatial Fourier spectrnm. Some general trends can be
seen. As v; is inereased, the power of the fandamental decreases, It the power in at

least the second and third harme inereases. In the case of the seeond harmonic

in particular, it can be seen that a phiase shift develops relative to the fndamentals
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Figure 5.05: The pattern’s phase velocity as a fanetion of its asymmetry for unilorm
traveling waves. The symbols are as defined in Fig. 5.3, and the line is a fit to the
data.
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s while that of the si

the amplitude of the cos(2ge) term steadily deerea

s, The amplitndes of the first three sine terms in the Four

terne inerea

inerease linearly with ;5 the slopes of lines throngh the origin and fitted to the
three data sets shown in Fig. v'v.l(i(h) are, 0,0220 £ 0.0009, 0.0070 £ 0.0005, and

—0.0045 £ 0.0002 for the second, third and fonrth harmonies, respectively, in units

of (mm/s)=".

According to Ref. o in a uniform traveling-wave , the amplitnde of the

first harmonic (1) of the pattern and that of th~ second harmonie (5) are such that

It = 28, as deseribed in Bq. (2.55) in Chapter 2. The (normalized) amplitude of

Uhe second harmonic, (ad+03)'72, is platted against, that of the first, @, in Pig. 5.17.

The two amplitudes do not have the predicted constant ratio. Rather the growth of
the 2g mode is accompanied by a linear decrease in the strength of the ¢ mode.

The order parameter of the parity-hreaking in the ¢ — 2 model is the phase

mismateh, ¥ = 2¢ — 0, as delined in section Here ¢ is the phase of the ¢

mode and 0 the phase of the 2 mode. n our analysis, we fix ¢ = 0 by onr choice

of wrigin. Neglecting the offects of higher spatial modes, the order parameter in our

case will this simply be cqual to
0 = tan™"(by/ay), (5.12)

sinee the algebraic sign of the order parametor is unimportant. In the ¢ — 2 model,

the parity-breaking bifurcation is supereritical , and so the order parameter
should grow like the square root of the control parameter near the onset. Onr data

for 0 are plotted in Fig. 5.8, as a function of onr control parameter v Within

the experinmental seatter, the relationship is linear, but the hest straight-line fit to

the data pa;

s throngh 0 = 0 at a value of o; somewhat lower than vf. From our
data, we cannot mle out a square rool growth of the order parameter very close to

the parity-breaking bifureation (i.c., eloser to the hifurcation than our closest data
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Fignre £.18: The phase mismateh angle 0 as a funetion of the control parameter v;,
s a square-root. relationship.

The 4 = 2 model prec
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point), which would imply an onsel closer to ¢7. but nor do we see any evidence for
this in our data.

Finally, the relationship hetween phase speed and order parameter is v, -

in S/q, from Eq.

7). Putting this in terms of the quantities extracted Trom

the analysis of onr dat v phiase veloeity

in 0 = ba/2q. (5.13)

vy

sinee S = (ad+03)2 /2. We have plotted the phase speed as a anetion of byfy in e,

5.l

; as hefore by has been normalized by the quantity P. Bearing in mind that the

data shonld go through the origin, we do not find the expeeted lincar velationship.

Rather, v grows more slowly than linearly with by/g. Actually, if we neglect the
, ; g 12

fion in wavenimber with i, then, sinee o, x o}

linearly with o, we expeet o find v, 0 0374 Tdeed, the data in Fig.
Y 1 b 2 I

varia L while by was fonnd o prow

9 are well
Joseribed by a square root, function.

It is clear that the predictions of the ¢ = 2¢ model are contradicted by o

experimental results. 14 is possible that onr disagreement with the model comes

about because there are more than just two modes with significant. strength in our

patterns. As Fig. 5.16(c) shows, the thivd and fonrth harmonies have amplitindes
on the order of 10-20% of the lndamental. Cartmins ol al. [86] argned that their

results on the sequence of bifurcations observed in their experiments on this system

conld not. be explained using only two modes, hut that at least three coupled modes

were neces tent witl. s,

ary. Our resnlts are consis

Another possibility is that the ¢ = 2 model in act does apply to onr system,

mentally aceessible region alove

bt only very close to the hifurcation. Tn the expe

the transition, correetions to this mode — presumably incorporating the effects of

more spatial modes, as above — would have to be considered. 10 this were the case,

one wonld expect the lincar growth of 0 with v, shown in Fig. 5.1%, 1o tirn in toa
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square root. hehavionr elose 1o the transition, and we

annot vule this out from our

data,

Finally. it is conccivable that our parity-breaking bifurcation conld result from

a completely different, and as yeb uninve

igated. mechanism, unrelated 1o mode-

coupling, In this c ne

the theory based on symmetry arguments

26,

27] makes no assumptio

s abont the canse of the parity breaking, its predictions

wonld still be valid, hot those speeil

1o the g = 2¢ model wonld not, 1t is worth

emphasizing, however, that ¢ = 2 coupling has een awsed Lo explain the pari

breaking instabilities observed in the directional cooling of nematies [37, 38] and in
Taylor vortex flow [39]. A bifurcation analysis of the equations of motion for the

printer’s instability wonld help to resolve this iss

5.2.2 Nonuniform traveling-wave state

The analysi

above is foenssed on the mniform traveling wave. which exi:

s when o,

is relatively low. When o, is above 157 mm,

nommiform patterns are observed,

as shown in Fig. AL relatively high values of o,y the fingers of the pattern

lean over sufliciently far that /()

s not single valued, as can be seen in g, 5.5,

and so can not be direetly Fourier transformed. o determine the asymmetry of a

nmltiple-valied pattern, an extra step must be added to the procedure describied in
Uhe previons section. Consider the parameter £, which measures the longth of the

cueve defined by the interface. Tn contrast to (/(), the funetion U(0), L., the height

of the finger as a fnction of the distance n

nred along Uhe interface, is always
single-valued. An example is shown in Fig. 5.20(c) which shows the anetion 1/(1),

transformed from a multiple-valued fanction /() for Fi

). We then write

1) = e
=

sjq'l+ Y isinjq'l,
=
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Fignre 5.20: (a) The pattern of Figure 5.1(¢) transformed into a fnetion (1) of the
length along the interf: (b) The Fourier amplitudes of the transformed pattern.
(¢) The multiple-valued interface pattern of Figure 5.5(c) transformed as in (). (d)
The Fourier amplitudes of the transformed pattern.
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with ¢ being a new wavennmber given by

N ) ) .
4 _/U ] +1 de. (7

As in the single-valued case, we sel the cocllicient b equal to zero. We then

define a modified asymmetry parameter A’y inanalogy 1o Fq. (5.6), by
') Y ) 1 ')

f st s
A= Z(uj‘-ll-hj*’)‘ (5.16)

Fig. 5.20 shows the results of using this procedure on the single-valued pattern

shown in Fig, 5.1(e), and also on the multiple-valued pattern shown in Fig. 5.5(c).

Fig. 5.20(a) and (h) show the transformed funetion (1) and its Fonrier amplitudos
for the single-valued pattern, which has A’ = 0,18 £ 0,02, Pig. 5.20(¢) and (1) show

the same results for the multiple-valued function, which has A" = 017 4: 0.02, The

Fourier amplitudes calenlated from U(e) for the single-valued pattern have heen

own in Fig,

A3(h), and pive an asymmetry A = 035 4 0,03,
To determine the relationship between A and A, we calenlated both A and A

for all of the data shown in Fig. 5.14. The result shown in Fig. 521, We fit

the data Lo a power law, A = aA™, and found @ = 1.01 £ 0,03, and v = 0.02,
Using this relationship, we can get the asymmetry A from measurements of A" for
multiple-valued patierns,

We also modeled the interface by an equation

() = weos.e + age

+ bysin 2, (5.17)

with ay chosen to he 15, and ag 1o be 3, 4, and 5, These values are around those of the

corresponding Fonrier cocl its obtained from the patterns, We then ealenlated
the two asymmetry parameters, A and A’ of this model patiern, with values of

by T 1 to 30

is the plot of the resnlt, which is similar in general

appearance to Fig, 5.21.
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Pigre 5.21: A plot of the two asymmetry parameters, A’ vs. A, determined from
single-valued patterns at relatively low value of p,. The line is a fit and with
A= L0 AR,
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I the following, we will present our results in terms of the parameter A for
consistency with the previons seetion. Tn Fig. 5.2, we plot the averaged asymmetry

A s

funetion of control parameter v, for the same case as in Fig, 5.8, As can

b seen, the asymniebry drops at the same point at which the phase speed drops.

s i plob of o ve. A, Fig. 5.24, no sign of this transition is

seen: the data

from above and helow the jump fall on the same continons enrve. o, is lnear in

A at low asymmetry, as fonnd for the spatially uniform patterns, but in contrast to

what was fonnd in that case, the linea

ity o longer persists over the whole range

of ey

istence of the traveling s

We also measnred the instantancons speed, the asymmetry and the wavelength

of cach individual finger for the nonumiform traveling pattern. Fi

. 5.25(a) is

plot of phase speed vs. asymmetry for the individual fingers in the pattern shown

in Fig. 5.7(n). as well as for fingers from patierns with two ather valies of the
exlinder speeds. The fingers in the pattern display a linear dependenee of phase

speed onasymmetry, as did the uniform traveling waves. Straight-line fits to these

data sets have intercepts cqual to zero within error, indicating that. even for these
patterns where the wavelength is not constant. the @, term in Bq. (2.44) is small.

The slope of the the g vs A graph is the parameter w of Eq. (2.44). In Fig

(h). w is plotted as a funetion of v,. It includes a point from the data plotted

in Fig. 5.5, for the uniform traveling-wave case. Fig. 5.25(b) indicates that w is

propurtional (o ¢, = e, where r,, s te valie of o, at which the stationary finger

Ppattern app a dashed line,

s when g = 0. A it to the data, shown in the lignre a;

gives w = (0410 £ 0.03)(e, — 0, ). with o,

108.7 & 9.4 mm/s from the fitting. in

agreement with the measured value of 0, = LS £ 2.5 mm /s,
The range of o; over which the nnivorm  traveling-wave state is unstable is

proportional 1o w as described in K. (2:99). and w increases linearly with o,. One
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with o, as long as

would therefore expect that this range of oy should inerea

Lo quic 0, is inereased. This agrees with onr experimental

does not. de

ations. AL low values of o, the disordered traveling state was not observed

obsers

in our experiments, This may be a resnlt of the fact that w would be very small
at this low value of v,, so that the range of existence of the disordered state is too

small Lo he observed,

The temporal caexistence of the disordered state with the nommiform traveling

wees of the

pattern reported above is also interesting. The intermittent appea
disordered pattern are related to the wavelength-changing transition we obscrved

the disorder appears more frequently near the transition — but the nature of the
relationshiip is not mderstood. Despite their nomniformity, and their intermitient

1 b

of the behavionr derived in the context

disruption by the disord

, aspec

of spatially-uniform broken-parity waves remain valid for our patterns. Atlow g, the

pattern’s average phase speed, pg, grows as the square root of vy, and the asymmetry,
A . 2
though noisier, is also proportional to n}/2,

shown in Figs. 5.8 and 5.23. Fig. 5.21

shows that 0, s proportional to A at low speed. The lincar relationship hetween

g el A also holds for the individual fingers in the nonmiform pattern at a given

time, as was illustrated in Fig. 5.25(a). These results are all in agreement with the
theoretical and experimental results for uniform patterns.

Cummins et al. [84] deseribed a series of transitions in fingering patterns in an
similar o ours. Their experiments were performed in the fourth
5y

.26 s the ph periment in this

diagram of their

auadrant. They lixed v, at a small negative value, then increased vi. Beyoud the

parity-breaking trausition, the wavelength of their pattern decrcased. They then

saw a transition (from “Small” to “Large” in Fig, 5.26) at which the wavelength of

their pattern increased by roughly a factor of 15 o, hefore decreasing again as v; was
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Figure 5.26: Partial phase diagram from Ref. [84]. Stat.: stationary finger state;
Small: short-wavelength traveling waves; Large: long-wavelength traveling waves.
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further increased. According to Fig. 5.26, this wavelength-changing transition ox-

ists i a limited range of v 10 vy i

fixed at a value within this range, and o,

inereased in conuter-rotating direction, one shonld observe a wavelength drop, as in
onr experiments. In this case onr results are consistent with theirs. Tn another set
of experiments, they fixed v; at a value heyond this wavelength-changing transition.
They observed that, as v, is decreased helow zoro, the phase speed of the pattern

inereased ling

ly with the square ool of v, Lo a maximum, and then decreased.

Ounr results are consi:

ent with this, a

shown in Fig.

Cummins el al. [84] also note that the short-wavelength fingers they observe

before the wavelength-changing transition had well-defined wavelengths, but some

seabter in velocity,  In contr

the long-wavelength fingers observed above the

transition had considerable scatter in their wavelength, but well defined velocitios.

We abserved a systomatic variation in hoth wavelength and velocity with position

in the pattern, rather than random seatter, and, as shown in Fig. 5.7, the variations

are couplod. An inpor

ant point is that for the long-wavelength fingers in Rel. [84]

as well as for onr patterns, the wavelength selection is not perfeet, and in both

¢ a range of wavelongths is observed. Goldstein el al.

1 have discnssed

the hehavior of broken-parity traveling wa

os near spatiotemporal dofects. They
studied a generalization of the conpled equations, Eqs. (2.43) and (2.44), in which

o is the phase of a comples field, and reconstrieted the patterns near sonree and

sink defects using their model fa

bove onset, Their resnlts arc

shown in Fig,

As can heseen in Fig. 5.27, the mechanism by which fingers vanish at a sink defect

in their model is very

imilar to that of the Eckhaus instability. At the defect,

the broken-parity order parameter approaches zero, which causes distortions of the

pattern, Close to a sink, the pattern is compressed and its phase speed is smaller

relative to the uniform, propagating pattern far from the defect. Near a souree, the
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retehed and travels faster, This behavionr is in accord with what we

pattern is
observed elose 1o sonree and sink defeets, as deseribed above, althongh onr paticerns

are nol imiform away from the defects in this parameter range.

Previons experiments on the Eckhans instability in traveling-wave systems
56, 57, 58] mentioned in Chapter | were done by manipulating the system so as

Sekhans-stable band.

to altain a state with an average wavelength ontside of the

Pl Bekbans instability is a phase

The evolntion of the pattern was then studied

s itsell as a spatial modulation of the

instability, and at least initially, manifc

patter’s Tocal wavenmber, with the pattern amplitude remaining constant.  As
the instability develops, amplitnde variations Ily appear, and, at the point
in space-time at which the pattern gains or loses a pattern unit, the amplitude must

po to zero,

are the

The

wation in onr experiment s rather different. Tere, we do not, proy

patially nonmi-

systenn in any partienlar initial state, Rather, the system selects a

form state of its own accord, and the dynamics ol this state lead to the ocenrrence
of an instability when the pattern’s wavelength evolves ont of a stable wavelength

band. ‘T'his instability results in the birth or death of fingers, so as to bring the

wavelength back inside the stable band. This adjustment of wave number by the

of the Bekhans instahil-

s character

ereation or annihilation of pattern wnits

We have assimed that the wavelength at which new fingers first attempt to

'y of the Eckhans-stable wave-

develop corresponds to the long-wavelength bonnda

length band, and that the minimmum wavelength below which adjacent fingers morge

corresponds to the short-wavelength boundary. Our measured Eckhaus instability

boundary is roughly parabolic at low v, which is qualitatively in agreement with the

theoretical expectation based on the analysis nsing the complex Ginzburg-Landan

ibed in seetion

equation des .1 However, the nonuniformity of the wavelength
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along our patterns suggests that. the pattern is already subjoet to a phase instabili

independent of the ercation or annililation of fingers.

From the above results, we find that the hehavionr of onr systen is in

ment with the theoretical expectations based on symmetry arguments, The phase

specd of the traveling wave is Tinear in the asymmetry of the pattern, whiel is the

tion. Tl

order parameter of the the parity-hreaking hifu finearity has heen ob-

served both in mniform and nonmiform traveling waves, At re

ively low n, the

parity-hre

King Lransition i

1perct

aly and both the phase speed and the degree

of asymmetry of the traveling pattern grow as the square yool of the experimental
control parameter, Our results are not, however, in agreement with the predictions

specific Lo a model of the p

rity-breaking transition involving e conpling hetween

modes with wave numbers g and 2g, pos

by Decans

of the importanee of other sy,

tial modes in onr pattern. AL relatively high v, the phenomenology of our system is

quite complex. The patter is unstable at the onset of parity breaking, as predicted

theoretically. Above onset, the pattern is nonuniform and subject to intermittent

bursts of disorder. The pattern is also subject to the Eekhans instability, which

limits the band of wave nmbers within which the indiv

lual traveling lingers are

stable. There are several features of onr results which warrant further inves

imation,
including the nature of the transiont, disordercd bursts and their comeetion with
the wavelength-changing transition discussed above, A complete nderstanding of

this system will also require further theoretical stidy.




Chapter 6

Conclusions

We have presented experimental results on the dynamical behavionr of a driven

fuic-air interface in the system catled the printer’s instability.  While a variety

of dynamical states can ocenr in thi

system, this thesis has focused on two: the

stationary fin,

g state observed when one eylinder rotate veling-wave

whieh occurs when the eylinders comter-rotate.

The behaviour near onset of the stationary finger pattern observed when only

one eylinder rotates depends on e size of the eylinders, and on which of eylin-

ders is rotating. The bifurcation Lo stationary fingers is imperfeet but continnons

when the outer

ylinder or the smallor inner eylinder rotates, and discontinuons

when the bigger mner eylinder rotates. By comparing onr results with theoretical
expectitions, and with previons experimental results, we find that finite-size offects

e substantially delay the onsel of the lingering instability, and shorten the on-

L wavelength. “This result, has potential applications in the coating industry. A

traveling-wave state was observed with the bigger inner eylinder rotating, Here, as

single control parameter was inereased, the oil-air jurerface first bifurcated to a
stationary fingering pattern, then to a traveling pattern.

Ourstudies of the parit

breaking traveling-wavestate, with the eylinders counter-
rotating, show that the phase speed of the traveling wave is linear in the degree of
asymmetry of the pattern. This linearity was observed both in uniform and nonuni-
form traveling waves, At relatively low o, the uniform traveling pattern appears via

a supereritical parity-breaking transition, and both the asymmetry and the phase

122
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speed of the pattern inercase with the square raot of the control parameter. These

results are in good agreement with recent theoretical expeetations on the basis of

general symmetry argumonts [25-27). AL higher 1. e phenomenology of our sys-

tem is quite complex. The pattern is unstable at the ouset of parity-hreaking,

tern is nonuniform and intermittent

predicted theoreticaily. Above onset. the pi

with bursts of disorder. A wavelength-changing transition is observed as o, is in

creased above onse

The traveling pattern is also subject to the Eekhans instability,

whieh limits the band of wave mumbers within which the individual traveling fingers
are stable,

We also compared our results on the traveling-wave state with the predictions of

a specific model of the parity-hreaking hifurcation, involving, the resonant coupling
between spatial modes with wave numbers ¢ and 2q. However, onr results do ol

al

agroe with these predictions, possibly becanse of the importance of higher spa
modes in onr patiern,

‘There are several of onr results which warrant. further investigation. These in-

well as the

clude the traveling-wave state observed with one eylinder rotating, as

nature of the transient disordered hursts observed when the eylinders counter-rotate,

and their conneetion with the wavelength-changing transition. A complete nnder-

standing of this system will also require further theoretical stidy
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