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Abstract

Water quality monitoring s one of the comer stones of water fesources management.
Monitoring water quality using a Real Time Water Quality (RTWQ) monitoring
approach provides high temporal resolution measurements, while monitoring through the
use of satellite imagery produced high spatial resolution maps for the monitored water
parameters. By combining approaches, RTWQ and satellte, high temporal and spatial
resolution products can be obtained. The integration was done through developing

statistical relationships between the extracted reflectances from the satellte i

agery and
measured real time water quality parameters in the field

Lake Manzalah, the largest of the northern lakes in Egypt, was used as a case study for
the proposed combined approach. The water quality parameters investigated were
Turbidity (TUR), Chlorophyll-a (CHL), and Total Dissolved Solid (TDS). The results
showed that there were statisically significant regression relationships between the
satellite reflectance and the measured water quality parameters with * = 0.77, n=34;
065, 0= 33; and 0.60, n= 56 for TUR, CHL, and TDS models, respectively. The
corresponding Nash-Sutcliffe coefTicients were 0.76, 0.64, and 0.61 for TUR, CHL, and
TDS models, respectively. The results indicate the viabilty of using satelite reflectances
o infer the stae of the water quality in Lake Manzalah. The relationship between RTWQ
measurements and satelltc obscrvations were subsequently used to generate other useful

quantitative water quality products. This research has the potential for application to

other larg ies in d Labrador and
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1. Introduction

“This chapter briefly introduces the background of the proposed rescarch, the reasons why

there is a need for new rescarch, and the objectives of the thesis.

1.1. Background

Traditionally, water quality monitoring of lakes has two principal stages: field sampling
and laboratory analysis. Field sampling consists of taking a representative portion of
water from predefined locations of a water body and subsequently transporting the

collected samples o the laboratory. In the laboratory, the water samples are analyzed

using a wide variety of physical and chemical analytical techniques, 1o quantify the

P
One of the disadvantages of this traditional approach to monitor water qualty has been
the difficulty of collecting sufficient samples to capture the temporal variation of the
water quality parameters i the water body being sampled. This has especially been an
issue when the water body being sampled is situated far from the water quality analysis

laboratory.

In recent years, digital sensors have been developed to monitor some of the water quality
parameters. These sensors can address the challenge of capturing the temporal variation
of measured water quality parameters as they can be deployed in the field for a sufficient
long time. The pairing of these sensors with digital recording and control devices like
data loggers allows for measurements to be taken at pre-programmed time intervals. The

further pairing of the data loggers with remote communication devices such as phone




modems and cell phone modems offers the option of transferring the stored data from the

field to the office in real time. This combination of in situ monitoring coupled with real

ime reporting is usually referred 1o as real-time water quality (RTWQ) monitoring.

RTWQ monitoring is used in conjunction with traditional water quality monitoring to

provide a more extensive characterization of a water body.

In the specific case of sampling large lakes, another difficulty is the ability to sample the
different areas of the lake simultancously. This is especially so for lakes with islands and
aquatic growth which results in different water quality zones within the same lake.
Examples of such large lakes can be found all over the world such as the perialpine lakes
of Europe, the Laurentian Lakes and Great Lakes in North America, and Lake Victoria in
East Afiica.

Table 1 summarizes the location and surface areas of some large lakes around the world.

Herdendorf (1982) provides more details of the lakes listed. Studies carried out in these

lakes are based on dedicated field trips for a limited period of time. Hence detccting

seasonal or long term trends in water quality in these lakes are not possible.

Large lakes are a precious resource in every part of the world. Many civilizations have

sprung up around large lakes. This is particularly true especially in Egypt along with the

Nile River. They are a source of fresh water for agricultural, domestic, industral, agua-
culural, and recreational uses. One such large lake is Lake Manzalah, It i the largest of
Egypt’s northem lakes. Lake Manzalsh covers an approximate area of 770 Km® and has
approximately a 1000 small islands scattered in the lake, representing about 9% of the

lake’s total surface area.



r

“Table 1: Examples of large lakes

Lake Location
Lake Superior Canada,U.S., North America.

Surface Area (km
82,100

Lake Victoria Kenya, Tanzania, Uganda, Africa 62940
Lake Huron Canada,U.S., North America 59,500
Lake Michigan Canada,U.S., North America 57750
Take Erie Canada,U.S., North America. 25,657
Lake Ontario Canada,U.S., North America 19,000
Lake Nasser Egypt, Africa. 6000
Lake Okeechobee USS., North America. 1730+
Lake Constance | Germany-Switzerland- Austra, Europe. 40

Lake Manzalah Egypt, Africa 12750
Lake El-Burnullus Egypt, Affica. Sose

‘The current water quality monitoring system in Lake Manzalah relies on the traditional
water quality monitoring method described earler located at drainage channels leading
into the lake. Although this monitoring system can capture the changes in water quality
of the catchments leading o the lake, this system does not provide a clear picture about
the temporal and spaial variation of lake water quality. This in tum does not lead to

effective decision making by authorities responsible for managing a wide variety of

\ activities that make use of the lake.

partially address this spatial coverage problem as the in-situ readings are usually

representative of only a small arca around the sensor. The difficulty of spatial coverage

*Herdendorf (1982) eZalat and Vildary (2005) * Ebaid and Ismail (2010)

‘ ‘The installation of RTWQ monitoring stations in different parts of the lakes can only

h

| can however be addressed water quality




Space based satelltes have been used for the monitoring of some water quality

parameters in oceans and open seas, since late 1960s and early 1970s. The water quality

monitoring efforts were i

itally dedicated to mapping the chiorophyll and the ocean
surface temperature (Doerffer ef al, 199). In the last two decades, the effort has been
extended to include monitoring coastal and inland waters quality as well. More recently
this has been tested to monitor water quality in large lakes and to retrieve water quality
parameters based on their optical properties. This was tested out for the Great Lakes in

the U.S., and Canada (Gons ef al., 2008), Lakes Constance i

Europe (Odermatt et al.,
2008; Guanter et al., 2010; Matthew et al., 2010), Lake Victoria in Africa (Swenson and
Wahr, 2009; Cavalli ef al., 2009) and Lake Malawi in Malawi (Chavula et al,, 2009).

This is done through developing statistical relationships between the extracted

reflectances from the satellite images and in-situ measured parameters.
To produce quantitative estimates of water quality, the satellite imagery has to be

calibrated with in-situ water quality readings from different parts of the lake.

Coordi

ing the in-situ water quality monitoring in different parts of the lake to occur
simultaneously that the satellte passes over the lake poses logistical challenges. However
this can be addressed by using RTWQ monitoring at a few selected locations representing
different parts of the lake. By combining the RTWQ monitoring and satellite water

quality monitoring systems, there is a potential for developing a large lake water quality

‘monitoring system with a high spatial and temporal resolution. With this approach, it is
possible to develop a long term data collection program to Keep track of the temporal

spatial vari

ion of water quality parameters.




1.2. Research Objectives

“The main objective of the research is to evaluate the feasibility of developing a high
spatial and temporal frequency lake water quality monitoring system for selected
parameters through the integration of space satellite imagery with a real time water

quality (RTWQ) monitoring system. The study area selected for this case study is Lake

Manzalah, Egypt and the water quality parameters being investigated are Turl

(TUR), Chlorophyll-a (CHL), and Total Dissolved Solids (TDS),

“This rescarch examines the feasibilty of using statstical regression models o describe
the relationship between the extracted reflectance from satellite imagery and specific

water quality parameters measured at RTWQ monitoring stations in Lake Manzalah,

.

is rescarch has potential applications for the monitoring of other large lakes around the

world, including large water bodies in Newfoundland and Labrador,

1.3 Outline of Thesis

“This thesis contains six chapters and seven appendices. Chapter | briefly introduces the
background of the rescarch, the need for new research, and the objectives of the thesis.

Chapter 2 is devoted 1o the review of previous literature on water quality monitoring and

the historical background of the technologies used to monitor water qualiy. Chapter 3

describes the case study arca which is Lake Manzalah, Egypt. Chapter 4 outlines the
methodology that was followed in this research. Chapter $ presents the results and also

provides samples of final water quality products in terms of colored images of lake water




quality. Chapter 6 contains the discussion about the results obtained, and the conclusions.

and recommendations for future work.



2. Literature Review

“This chapter provides background information about the different methods of water
quality monitoring and the effect of advanced applications of communication and sensor
technologies in the last few decades on water quality monitoring methods; and the use of

remote sensing based on satellite imagery for water quality monitoring.

2.1. Water Qual

Monitoring

Fresh water is essential for human activities such as agriculture, industry, and drinking.

Water quality is the ke factor for deciding if the water is suitable for use in these

activites. In particular, human health s dircctly related to the water quality conditions as
evidenced by the number of people suffering from water-bome discases (WHO, 1980,

1982).

While water quality influences human health, human activites, in forms of point or non-
point pollution, human  activities also impact water quality (Smith, 2002). It was
estimated that the human activities resulted in the entrance of a total of 12,000 tonnes of
Phosphorus and 304,000 tonnes of Nitrogen into Canadian fresh, ground, and coastal

waters in 1996. Of these, municipal sewage represents 26 % and 47 %, respectively, of

added Nitrogen and Phosphorus, and indusrial waste water percentage of the total

Nitrogen and Phosphorus were 4 % and 17%, respectively, (Chambers et al., 2001),

“The nutrient enrichment through the addition of Nitrites and Phosphorus into inland
waters, such as a lake or a reservoir, results in eutrophication of the water, Eutrophication
leads 10 a considerable increase in the algae load in the water system which causes

7




serious water quality problems such as toxic algal blooms, loss of oxygen, fish kill, loss

of biodiversity (including species important for commerce and recreation), loss of aquatic
plant beds and coral reefs. Nutrient enrichment seriously degrades aquatic ecosystems
and impairs the use of water for drinking, industry, agriculture, recreation, and other
purposes (Carpenter et al., 1998).

I order to define the quality water body for a given use, sufficient data about the main
water constituents must be collected and studied. Collected water quality data must be
reliable as they also are essential for decision makers in a number of areas, such as policy
planning, program planning, and the general assessment of the water bodies as a valuable

resource (Phillps e al., 1974)

Water quality data.collection is typically accomplished through a water quality

monitoring program. Water quality monitoring program consists of collecting water

samples that spatially and temporally represent the water body being monitored. These

samples are analyzed for selected physical, chemical and biological parameters that are

relevant o the intended use of s

quality.

Selected parameters are then compared to standards and guidelines to decide if the
sampled water body is suable for a particular use such as drinking, agriculture etc. The
aim of monitoring may also extend to establishing irends for the measured parameters

(Bartram et al., 1996; Chapman, 1996; USGS, 2010),

Traditionall, the water sampled from the field is analyzed in the laboratory under

controlled environments. Due to recent advances of sensor and computer technologies,




some of the water quality parameters can now be sampled and analyzed automatically in
st in the feld. The collected data can then be obtained either manually or it can be sent
10 the office remotely by wired or wireless network. More recently, satellte technology

has been used to monitor some of the water quality parameters.

From a water quality monitoring point of view, one challenge of water sampling is to
increase the frequency of the collected samples to capture the change of measured water
constituents in small time interval. Another challenge is to cover the whole surface area
of the water body to determine the distribution pattem of the measured water

constituents. The spatial coverage is more challenging for large lakes and reservoirs as it

reqires a large stations (o

There are a lot of important water quality parameters monitored o assess the water

quality. These parameters can be classified into three main

tegories physical, chemical,
and biological parameters (Chapman, 1996, EPA, 2001, Environment Canada, 2011)
‘Table 2 lists the common water quality monitored parameters.

‘Table 2 Important water quality monitoring parameters
Water temperature
H

Physical parameters

D)
ubidity
[ Nutrients (Nirogen, phosphorus)
Tace metals (ex. Nickel, cadmium, mercury)
‘Major fons (ex. Calcium, Magnesium
Chemical parameters |1, hlorinated biphenyls (PCBs)
Hydrocarbons
Pesticides
: Cenica Oxygen demand COD)
Biological parameters L o)

Biologic

EPA (2001), Environment Canada (2011,



Three important water parameters that are widely monitored in large lakes t0 assess the
water quality status are: turbidity, total dissolved solids, and chlorophyll a. In the next
few sections, background information as well as the standard methods of measuring of
these parameters are presented.

Turbidity (TUR) is the presence of suspended matters in the water when it looks hazy and

cloudy. The suspended mater that causes the turbidity could be clay, silt, sand, organic,

inorganic. particles, and other microscopic organisms (Dowing, 2005). Turbidity is

‘measured optically by a turbidity meter in nephelometric turbidity unit [NTUJ. Standard
methods calculate the turbidity by measuring the amount of light that is scattered at 90
degrees by the sample (AWWA, 1995).

“The angular distribution of scattered light depends on the fluid refractive indices and
wavelength of the light as well as the particles” size. Small particles (the diameter of the
particle s around 1/10 of the light wave length) scatier the light forward and backward at
the same amount, while the intermediate size particles (the diameter of the partcle is
around 1/4 of the light wave length) scatter the light in the forward direction. The

e the

particles which have diameters bigger than the wavelength of the light nearly
light forward in a cone shape (Dowing, 2005). As a result, the measurement of the

turbidity is associated with variability. In another words, two samples of water with

ifferent suspended matters might have same rbidity measurement. On the other hand,
the same sample of water might have different readings of turbidity by different wrbidity
meters (Purrington, 2010).

EPA 180.1 is a standard method for measuring low turbidity samples developed by U.S.

Environmental Protection Agency (EPA). This method requires a turbidimeter with a

10



tngsten-lament lamp (TFL) light source at temperature of operation between 220 and

3000 K, and detector plus bandpass filter with peak between 400 and 600 nm. TFL has

peak intensity in the NIR near 860 nm. The detector must be at 90° o the light beam and
accept the scattered light in a cone not wider than 60° (see Figure 1). In case that the

sample turbidity is more than 40 NTU, sample dilution is required (Dowing, 2005).

Aperture

Bandpass filer |

Phtodiode
(Detector)

Light beam |

PA Method 180.1 for measuring turbidity (Dowing, 2005).

The standard IS0 7027 method is developed by the Intemational Standards Organization
(IS0). 150 7027 requires an 860 Nanometer Infrared laser diode as light source, The
detector aceeptance angle s 20-30° and must be orfented at 90 % 2.5 (see Figure 2). In

the case that the sample trbidity is more than 40 NTI

ample dilution s also required

n



(Dowing, 2005). Based on the previous review of both methods, the closer method to the
standard methods is 1SO 7027 (AWWA, 1995). Some trbidity meters that are
commercially available along with their range and measurement method are listed in

Table 3

Phtodiode
(Detector)

Aperture

Light beam ‘\‘

Figure 2: 150 7027 design for measuring turbidity (Dowing, 2005)



Table 3: Ce jally avail i ing, 2005)

Manufacturer Model Range [NTU] | Measurement
ethod

Hach Company 21007 2000 A 180.1

HANNA Instruments ci 50

HF Scientific Inc. DRI-I5CE 1000

Lamotte 0 1100

HydroLab Inc. D 3000

HANNA Instruments HI93703 1000

WIW Measurement sys. Inc. | Turb 350 IR 1100

St inc. VSI6136 1000 1507027

Total dissolved solids (TDS) represent the total weight of the dissolved matter that is
non-filterable in the water or wastewater. These dissolved matters could be ions, acids
bases, salt, and certain gases such as carbon dioxide, hydrogen chloride and ammonia.
(AWWA, 1995; Dowing, 2005) and are measured in mg/L. (milligrams per one liter) or
they can be expressed as ppm (part per million). The EPA limit for permissible TDS in
drinking water is 00 mg/L (EPA, 2010). The concentration of TDS can be approximated
by measuring the conductivity of the water sample. Conductivity measurements are then
converted to TDS concentrations (Purrington, 2010), The standard method for measuring
TDS is to filter the sample through a glass fiber filer, the flrate i then evaporated until
dryness in a weighted dish at 180° C. The increase in dish weight is the TDS
concentration (AWWA, 1995)

Chlorophyll a (CHL) is an indicator of the presence of the algae and aquatic plants.
Algac are the outcome of the water quality deterioration as it is results from the

cutrophication process (Carpenter et al, 1998). The standard method that is used to

measure CHL in water and wastewater consists of filtrating the sampled water at low

vacuum through a glass fiber filter; the pigments are then extracted from  the

13




phytoplankton and centrifuged. The centrifuged sample is transferred 1o a glass cuvette
and fluorescence is measured before and after acidification, the CHL can then be

calculated. The concentration is reported in pg/L,

icrograms per one liter. (Arar and
Collins, 1997).
In the next few sections, the methods of monitoring water bodics are reviewed. These

methods include: laboratory-based, sensor-based, and satellte based methods

211 Traditional water quality monitoring method (Laboratory-based)
Water quality monitoring programs started in the 1960s and 1970s. At that time, the
water quality programs were developed to describe the general state of the water bodies’
quality (Strobl and Robillard, 2006). The parameters under investigation were few and
the frequency of sampling was 12-13 times a year. Later in the 19805, collected water

parameters increased dramatically to reach more than 100 (Wetering et al., 1986).

Traditionally, water quality monitoring programs had been conducted using a costly,
time-consuming, and labor-intensive in-situ sampling and data collection process with

subsequent transport of the collected samples to laboratories for evaluation (Glasgow ef

al., 2004). The typical sequence of steps for the traditional method of water quality
monitoring begins with sampling the water from selected points throughout the water
body. In case of large surface water body such as lakes, reservoirs and coastal zones, the
selected points should represent the whole area under consideration in terms of spatial

distribution 10 ensure adequate spatial coverage. Then the samples are transported

directly to the laboratory. In case, the laboratory is far away from the site, the collected

14




samples are preserved, using a variety of methods, to keep changes of the sample
properties at a minimum. In the laboratory, the sample is analyzed using standardized
methods to measure water parameters (AWWA, 1995). The analyzed data are then
compared 1o standards based on the intended use of the water and reported to decision

makers to take appropriate informed decisions

‘Conventional water quality monitoring methods allows decision makers and scientists to

observe a large number of parameters in the same monitoring program because there
o limitation on the number of observed parameters except the total cost of sampling and
laboratory tests (Lettenmaier, 1978) and the laboratory capacity (Wetering ef al., 1986).

In addition, the information that comes out from lsboratory-based water quality

‘monitoring programs is accurate and refiable (Kloiber ef al., 2002; Bierman et al., 2011).

Although the traditional method of water quaity monitoring can address a large number
of parameters in the same sampling process, it has many disadvantages. Some of these

disadvantages includes: the high cost of the water quality monitoring process, laboratory

limitations in terms of the ability of analyzing a large number of samples at the same
time, changing measuring stndards over time and from country 1o country, poor
temporal resolution in the best case scenario, and the dependency of the spatial coverage
on the number and the distribution of sampling points. Details of these shortcomings as

published in the literature will be elaborated in the next sections.

“The cost of the monitoring process includes the capital cost of establishing permanent
sampling points in the selected sampling locations in addition to the operational cost of

collecting and analyzing the samples (Karamouz ef al., 2006). The operational cost
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consists of the cost of collecting and transporting the water samples, which requires a
large group of dedicated workers, chemical analysis and reporting the results (Phillips e
al., 1974). The percentage of the chemical analysis cost i around 70% of the total water
quality monitoring program cost (Wetering ef al., 1986). As a result, the cost of the
monitoring program restricts the selection of sampling frequencies and sample station

densities (Lettenmaicr, 1978)

In case of long-term water quality monitoring programs, the observed parameters can be
divided into two groups. One group of parameters is monitored continuously on a daily
basis, while the second group is monitored in pre-defined intervals such as biweekly or
‘monthly. The laboratory capacity plays an important role in deciding which parameters
will be included in routine monitoring and which parameters will be included in periodic
monitoring, as the optimal use of the available laboratory capacity is always a

prerequisite (Wetering ef al, 1986),

“The standard methods of analyzing the water samples differ from country to country and
from time to time (Kwiatkowski, 1985; Greenberg ef al, 1995). As a result, the
‘comparison and the establishment of trends using these data is invalid in case that the
historical data was measured by a different method (Lettenmaicr, 1978).

The laboratory-based monitoring method's shortcomings also include the time gap
between taking the water samples and obtaining the resul from the laboratory analysis
due to the tests running time which may take up 10 a few days. This delay can lead to
consequences that may affect the decision on human health. When human health s a
concer, immediate information i critical (Vernon and Stack, 1972; Christensen ef al.,

2001)




Because of the relationship between the water quality status and the human health, the

rapid response is required especially in case of detecting any water quality

contaminations or else human health will be put at risk (EPA, 2005). The effect of the
mitigation process depends on the time between the occurrence of the contamination and

the detection and identification of the contaminants which is called the response time.

“The response time depends mainly on the time between the sampling and the reporting of

the results of the laboratory analysis.  The time between occurrence of contamination
and reporting in two hours or less is considered to be a rapid response time (EPA, 2005).
This time may be influenced by the technologies used in sampling and the overall
approach to identification of the contaminant. Due to the long time required to analyze
and report the analyzed results which can take p to several days, the traditional method
of water quality monitoring cannot be considered as a rapid response time method.
Traditional water quality monitoring has significant fimitations from the perspective of
temporal and spatial resolutions. In the best case scenario, the samples are taken on a
daily basis which is not satisfactory in terms of understanding the behavior of water
properties (Bourgeois e al,, 2001). This method can not detect changes and trends of
ritcal water parameters in a period of time less than 24 hours. As an example, pH may
change significantly in a matter of minutes through losing or gaining of dissolved gases
(Phillips et al, 1974),

In addition to the temporal limitations, the results of the laboratory-based water quality

monitoring method are limited in describing the sampled water body in terms of spatial

coverage as it is based on point-samples (Bicrman ef al, 2011). This spatial limitation



e

becomes a serious problem in cases of monitoring water bodies that have a huge surface

area such a large lake or reservoir.

“The limitation in temporal and spatial scales and reporting in real time, especially for a
large lake or reservoir case, make it hard 10 address certain serious problems such as
harmful algal blooms, oxygen depletion, fish-Kills, and contamination of shellfish beds by
enteric bacteria (Glasgow et al., 2004).

Since the late 1960s a monitoring program has been implemented mainly using the
laboratory-based method monitoring program to monitor the water quality status and
trends in Lake Ontario. Kwiatkowski (1985) concluded that the main reasons for limited

water quality information from the monitoring program are:

Water records are often short in time and the measurements were not taken

simultancously in all sampling locations,

The sampling frequency was only 13-15 times per year.

The techniques and limitations of analytical methods that have been used in

monitoring in the program have changed over the years.

‘Sampling locations and the frequency have changed between the years due to

the site conditions.

« The natural background variability often hides the true water quali



Therefore, for cases of large lakes such as Lake Manzalah and Lake Ontario, the expense,
time, and sampling frequency make the traditional way of water quality monitoring
impractical to be applied to such large areas (Kloiber ef al, 2002),

From the above review, the need for rapid, frequent analysis of water quality is quite
clear. The next sections discuss new technologies that have been developed in the water

quality monitoring area to improve upon the traditional water quality monitoring method.

212 Sensor-based water quality monitoring

Recent advances in sensor technology along with. the rapid advances in computer

have made digital measuring a large number of
water quality constituents simultaneously (Brignell, 1996; Glasgow ef al.2004). This
section presents overview of sensor-based water quality monitoring method in the
published lterature.
A sensor is a device that contains a primary sensing clement, fltering system, and signal
amplification, in addition to software for data processing and compensation. The sensor
element transfers the physical or chemical or biological property into an clectrical signal.
‘The signal is processed into engincering values such as mel-1 or NTU (Tanner and
‘White, 1996; Charef ef al., 2000; Jer'onimo et al, 2007). There are three types of sensors
that can be used in water quality monitoring process: optical sensors, biosensors, and
sensor arrays (Bourgeois ef al, 2001).
An optical sensor s a sensor in which electromagnetic radiation s used in sensing the

chemi I properties of the surrounding environment such as water, air etc

1 and ph

The principles that can be used in sensing and quantifying the measurements are:
absorbance, reflectance, luminescence, and fluorescence. The spectral range used in
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different optical sensors covers UV, visible, IR, and NIR spectra (Jer'onimo ef al., 2007).

“The optical sensor can be a direct sensor (ic. the sensor's components are locaied at the
sensing point) or attached with an optical fiber to transmit the clectromagnetic radiations
toffrom the sensed point (Kersey, 1996; Gauglitz, 2005). Figure 3 shows a layout of a

direct optical sensor, while Figure 4 depicts a layout of a fiber optical sensor.

Light Source: -
Lan et
- Emitted Lt Light D ‘x ctor
S > ‘ L{ :’
Microprocessor
Figure 3: Dirct optical sensor layout (Hanna, 2010)
Excitation Filter | jght Source
Excitation Fiber

o]

Probe Head

Detection System

Figure 4: Fiber optical sensor layout (MacCraith et al, 1994; and Grattan, 1997)




Some of the parameters that can be measured using the optical sensors ar: trbidity, pH,

fonic species such as Al Bi, Cu, and Cd, gases, Oxygen, Carbon oxide and Hydrogen
(Kersey, 1996 Jer'onimo ef al., 2007; Liu, 2009; Purrington, 2010). The applications of
optical sensors include water quality monitoring, and monitoring in the chemical and
food industries.
The bio-sensor is a sensor that has a biological sensing element such as enzymes,
aniibodics, and microbial cells (bacteria or yeast that re genetically modified). Examples
of the contaminants that can be monitored using bio-sensors are: pesticides, herbicides,
pencillin, phenol, mycotoxins, antibiotics and other chemical contaminants. It is also
used to measure some water quality parameters such as BOD, COD, and DO (Patel,
2002).  The applications of bio-sensors can be used in many arcas such as
pharmaceutical, food quality and food security industries, as well as water and
wastewater quality monitoring and environmental agencies. The limits of the bio-sensor
need to be improved in order to compete with other methods of water quality monitoring.
Improvement s required in areas such as:

o Improving the sensor’s sensitivity

« Reducing the sensor’s response time

o The specificity of the bio-sensor which is dependent on the sensing clement
(Bourgeais ef al, 2001; Patel, 2002; Wilson, 2005)
“The third type of sensors that an be used in water quality monitoring is the sensor array.
“The sensor array is a group of bio- or optical-sensors which analyzes the responsc pattem
by a pattem  recognition routine or chemometrical method (Krantz-Ralcker, 2001).
Examples of the sensor arrays that can be used in detecting contaminants in the water are
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the electronic noses and electronic tongues. The electronic nose is used to monitor the
pollutants in the gaseous state. (i.c. the electronic nose is more applicable for volatile and
‘odorous compounds ) while the electronic tongue is used to monitor the pollutants in the

liquid state (Dewettinck, 2001). The main difference between the sensor array and other

sensors is the measuring concept. The concept of electronic nose and tongue often predict
a quality of a sample rather than measuring exact values of the individual parameters,
Only in special cases the concentrations of individual parameter are measured in the
sample (Krantz-Ralcker, 2001).

The electronic tongue and noses are used in the food and beverage industries in addition
to quality control and classifications of water, food and air. It s also reported that the
electrical nose and tongue are used to monitor wastewaters quality as well as the
detection and identification of micro-organisms (Gardner and Barlett, 1992; Hobbs ef al,
1995; Gibson e al., 1997 Misselbrook ef al., 1997; Gardner ef al., 1998; Holmberg et
al, 1998; Dewettinck, 2001). Sensor arrays have been successfully employed for
detecting cyanobacteria in water as well as heavy metals and pesticides (Canhoto and
Megan, 2005; Bastos and Magan, 2006).

Based on the previous overview, the recent advances in sensor technology have resulted
in robust, versatile, speed-response devices that can measure a wide range of
environmental parameters at different sites in a locality (Mimendia, 2010). There are
many rewards that can be gained from using the sensor-based method for monitoring
‘water quality. Some of these rewards are: the automation of operation, the high temporal
resolution of the measurements, the minimum exposure to wet chemicals, a short

response time, and the possibility to be paired with communication tools to report the
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measurements in real-time. The advantages of the sensor based monitoring method are

discussed below with more detais.

Sensor-based water quality monitoring programs are designed to be automatically
operated and to take readings continuously at user-defined intervals such as 10, 15, 30
minutes or more. As a result, a siream of data flows describing the changes of water

propertics in high temporal resolution can be achieved (Phillips ef ., 1974).

Usage of the sensor-based monitoring method avoids workers” dircet exposure to wet

chemicals in the monitoring process. Sensor-based water quality monitoring methods are

I, and physi

measuring water quality constituents based on the optical, chemi
propertis of the water to estimate the water parameters. The usage of wet chemicals is
confined only to the calibration process of the sensors (Phillips ef al., 1974; Charef et al.,

2000).

Unlike the raditional way of water quality monitoring, which requires collecting samples
manually from the site, the sensors are sited in-situ and samples are taken automatically
at short time intervals. These short intervals allow the trends and changes in critical water
parameters to be detected carly. As a result, appropriate action can be taken quickly to
prevent undesirable consequences which can happen if the decision is taken oo late
(Glasgow et al, 2004),

It i also possible to monitor more than one parameter at the same time using a muli-
parameter sensor probe. EPA (2005) reported that there are sensor-based water quality

‘monitoring systems that can monitor up to eight parameters at the same time. In addition,



the process of sampling and measuring are conducted automatically regardless of the time
gap between sampling and analyzing the samples.

Pairing the sensor-based water quality equipments with data loggers saves time and effort
that is usually wasted in collecting the recorded data from the field. Further pairing the

monitoring system with remote data transferring capability such as a t

ephone network,

wireless network, or satellite retrieving data system can enhance the whole monitoring

system performance and increase the reliabilty of transferring the data from the field to

the office n real time (Glasgow et al., 2004)

As described, recent advances in communication technology have catalyzed progress in
water quality monitoring methods (o become automated remote monitoring systems.
Therefore, the ability of monitoring water quality properties at adequate temporal
resolution has greatly improved. Morcover, the real time monitoring programs open
new window for setting up an early warning system (EWS). The carly warning system
can help decision makers take informed decisions in a shorter time frame (o avoid the
consequences which might take place in case of late decisions (Phillips ef al, 1974;

Glasgow et al,, 2004; EPA, 2005),

Although the sensor-based water quality monitoring system have improved and enhanced
traditional water quality monitoring, it cannot entirely replace the traditional way of
‘monitoring. The main reason is the limitations of the existing sensor technology. The
sensor-based water quality method can only measure some of the water quality
parameters that can be measured using the laboratory-based method (Horsburgh ef al.,

2010).



In addition, the sensors need to be calibrated frequently to ensure sensor accuracy.
Morcover, there are uncertaintis associated with sensor measurements as they vary from

sensor to sensor and from manufacturer 1o manufacturer. For example, DO sensors

generally in al, 2001).

Despite the high temporal resolution and in-situ deployment, a sensor-based water quality
‘monitoring method s stll a point measurement method which means that it is poor in

terms of spatial representation of a large water body. Lakes o coastal areas require a

large number of sensor-based stations in order to completely cover the study area
spatially.

Based on the previous discussion, it s obvious that there is a need for a system that can
gather the high temporal measurements along with a high spatial coverage. Satellite-
based water quality monitoring method can provide the spatial dimension for the
‘monitoring system. An overview of the satellite based water quality monitoring system is

thus presented in the next section.

213 Satellte-based water quality monitoring
“The need for a method that provides high spatial resolution measurements to monitor a
water quality is concluded from the literature review in the previous sections. Satelltes
can be used 1o close the gap of spatial coverage in monitoring methods. The overview
herein consists of brief review of remote sensing followed by a discussion of the role of
satellite sensors in monitoring water quality as well as the different methods of extracting

water quality information from the satellite data,



Remote sensing is the science which deals with acquiring information about the Earth’s
surface remotely without a direct contact (Colwell, 1983). The concept of this science is
built on collecting images of the Earth's surface using sensors. The remote sensor can be
carried by two different platforms: airplanes and satelltes. In this thesis the focus will be
on satellite-based remote sensing. The collected imagery is then analyzed using a wide

range of techniques 1o extract the useful information. Around 71 % of the Earth's surface

s covered by water which can be found in oceans, seas, lakes, rivers, snow, and glaciers
(Chen and Yu, 2009). Since the late 19705, attention has been drawn to monitoring
waters in oceans and open seas using a dedicated satellte sensor. The Coastal Zone Color
Scanner (CZCS) was designed for water-monitoring purposes and was launched mainly
1o measure the water leaving reflectance to detect chlorophyll-a concentrations in open
waters (Antoine et al,, 1995; Longhurst et al, 1995; Behrenfeld and Falkowski, 1997;
Gones, 2002),

2.1

‘Water quality monitoring satellite sensors

€ZCS was launched aboard the Nimbus-7 satellte (1978-1986) (Doerffer et al, 1999).

CZCS g ged the inf ibout the distribution of chlorophyll (Chi)  in the
oceans and open waters (Barale and Schlitenhardt, 1993; Hooker and McClain, 2000).

ion, and

CZCS provided lessons regarding the requirements for calibration, val

atmospheric correction of the data (Hooker and McClain, 2000). The success of the

ZCS mission t0 retrieve the phytoplankton concentrations in oceans and open seas was

ificant. However, despite the name of the sensor, the algorithm used to retrieve the

water properties in case of ocean waters was not applicable to the case of coastal zone

areas. The algorithm was also not applicable for inland waters such as large lakes and
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reservoirs. The restrictions which limit the CZCS applications to open waters were

related to the difference in optical properties between the open and coastal waters zones

as well as the limitations in the spectral and radiometric resolutions of the CZCS

(Doerfler ef al,, 1999). The spectral and ra

iomet

limitations are mainly atiributed to

L As

the lack of infrared bands which reflected in poor atmospheric correction procedur
aresult, the accuracy of estimating inorganic or biogenic particulate material on the water

was low (Doerffer e al, 1999).
There are other sensors, such as the Advanced Very High Resolution Radiometer
(AVHRR) on the National Oceanic and Atmosphere Administration (NOAA) weather

satellites and the Thematic Mapper (TM) sensor on Landsat, that have been used for

some ocean color app imating some water p: like CHL a. but are
not optimized for water monitoring and have more limitations than CZCS. The reason
was that their spectral bands, spatial resolution and dynamic range were optimized for
land or meteorological use and had limited sensitivity in this area Doerffer et al., 1999;

Tyler et al, 2006).

© n of satellite sensors dedicated for environmental

7CS inspired a new. generat

monitoring such as SEAWIFS and MODIS. Under NASA’s Earth Science Enterprise,
Sea-viewing Wide Field-of-view Sensor (SeaWiFS) was launched on August 1, 1997,
“The Earth Science Enterprise s designed o monitor earth’s system and behavior through
satellite imaging. SeaWiFS is one of the first dedicated instruments for environmental

studies especially for water quality applications (Fu et al., 1996; Hooker and MeClain,

2000)




The experience gained from the SeaWiFS mission and the conclusion drawn based on the
data extracted from its imaging have encourage NASA’s technicians and scientists o
design and lunch EOS’s MODerate resolution Imaging Spectroradiometer (MODIS)
instrument, as well as the National Polar-Orbiting Environmental satellite System
(NPOES), and the Visible/Infrared Imager/Radiometer Suite (VIIRS) (Hooker and

McClain, 2000).

In 1998, NASA launched the first EOS (Earth Observing System) satellite (EOS AM-1)

with five sensors: MODIS (Moderate-resolution Imaging Spectroradiometer), ASTER
(Advanced Space-borne Thermal Emission and Reflection Radiometer), CERES (Clouds

and the Earth's Ry

 Energy System), MOPITT (Measurements of Pollution in the

‘Tropospherc), and MISR (Multi-angle Imaging Spectro-Radiometer),

MODIS is a passive, imaging Spectroradiometer. I has 36 bands that cover visible and
infrared spectrum. Its swath is 2330 km cross track by 10 km along track at nadir. Its

spatial resolution varies from band to band. For example, 250 m (bands 1-2), 500 m

(bands 3-7) and 1000 m (bands 8-36). For temporal resolution, it covers the whole earth
in 1-2 days. So it has a high spatial and temporal resolution (Morel, 1998). MODIS has
been dedicated to provide high quality observations of land surfaces, atmosphere and
oceans (Yamaguchi e al, 1998; Jacob et al, 2004).

In March 2002, the European Space Agency (ESA) launched ENVISAT, an advanced
polar-orbiting Earth observation satellite which provides measurements of the
atmosphere, ocean, land, and ice. MERIS (MEdium Resolution Imaging Spectrometer)
was one of the instruments which was on the ENVISAT spacecraft (Gaunter ef al, 2010).

MERIS spectral range is 390- 1040 nm and has been designed to acquire 15 bands (see
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Table 4).
The MERIS spectral range is restricted to the visible and near ~infrared part of the

spectrum. Table § shows a summary of the ocean color sensors.

One of the main reasons for selecting the bands centers is its sensitivity 1o the most

important optically-active water constituens. For example, wavelength 412.5 i sensitive

10 colored dissolved organic matter and detritus which means it can be used to retrieve

data with yellow substances, 442.5, 490, and 665 nm are sensitive to chlorophyll, 510 and
620 nm are sensitive to turbidity, 510 nm is sensitive to red tides, and 665, 681, and 709

nm are sensitive to chlorophyll fluorescence (DoerfTer et al., 1999; Gaunter et al, 2010).

Table 4: The MERIS specteral bands center and width (Schroeder e al, 2006)

Band Band Center (nm) Band Width (nm)
4125
25 |

90

510

560




‘Table 5: Summary of ocean color sensors

Semsor CZCs | SaWiFs | MObIS MERTS
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Taunched Cetober 78 | Augisto7 W9E | Mard
Ground resolution 25m T3km | 1.0km250m ‘ T2k /300m
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2132, Case land Case 2 waters
Waters which are remotely sensed by satellites have been classified into two types: Case
1 and Case 2 waters (Morel and Prieur, 1977). By definition, Case 1 waters are those
waters whose optical properties depend mainly on the phytoplankion and  related
particles. Case | waters are represented in the ocean and open sea waters. The optial
properties of Case 2 waters are-more complicated as they are not only dependent on the
phytoplankton, but also depend on factors such as inorganic matters, suspended solids,
and yellow substances. Case 2 waters are represented in the coastal zones and inland
waters, lakes and reservoirs (Morel and Prieur 1977, Gordon and Morel 1983; Doerffer er

al., 1999; 10CCG, 2000; Schroeder et al., 2007),

In addition to phyloplankton, the optical properties of Case | waters also depend on other
factors such as the biological debris generated by grazing, the natural decay of
phytoplankion organisms, and dissolved organic matter (yellow substances) which results

from biological particles. However, the contribution of these factors to the optical




properties of Case 1 waters is relatively small and can be considered as a function of
phytoplankion concentration (Sathyendranath and Morel, 1983; 10CCG, 2000). On the
other hand, the contribution of factors such as yellow substance and suspended matters in
Case 2 waters is significant and it is not related to the phytoplankton concentration.
Because of this, these factors have to be treated independently

ure 5 shows a triangular diagram to differentiate between Case 1 and Case 2 waters

based on the concentration of the phytoplankton (P), the yellow substance (Y), and
suspended matters (S). The diagram was first presented by Prieur and Sathyendranath

(1981), and is now adopted by I0CCG (2000)

100

20 80
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Figure 5: A triangle diagram 1o classify the water into Casel and Case2 (10CC




“The procedure to classify a water body is by determining the concentrations of P, Y, and

. For example, gi

en the concentrations of P, S, and Y in a particular point in a water
body are 90%, 10 %, and 10%, respectively, from Figure 5, point A, this part of the
water body i classified as a Case | water. In another case (see Figure S, point B), the
concentrations of P, S, and Y were 10%, 55%, and 42% respectively; the classification
for this point i a Case 2 water.

As shown in Figure 5, the optical properties of Case 1 waters are dominated by the
presence of phytoplankton, but there is room for the presence of other constituents. On
the other hand, the optical properties of Case 2 waters are affected by all three
parameters. Case 2 waters are also known as optically-complex waters due to the
challenge in differentiating between all the water constituents that affect the optical
properties of the water at the same time.

The algorithm used to extract the water constituents concentrations in Case | waters is
based on the general principle that the signal received by the satellite sensor consists of

two main parts. The first part is the water-leaving reflectance and the other part is the

o the signal. The pr removing P
relies on the signal from the Near Infra Red (NIR) bands. This procedure is based on the
assumption that the water-leaving reflectance can almost be neglected. This allows the
determination of the atmospheric contributions to the recorded signal. The visible portion
of the spectrum is then corrected for the atmospheric effect. The water leaving
reflectances are then calculated and used to extract the phytoplankton concentrations of

the sensed waters (IOCCG, 2000; Chen and Yu, 2009)




The algorithms that have been used to extract the water's constituents in Case | waters

assume that i than is negligible. This is
one of the two main reasons why there is a need o develop algorithms that take into
consideration the presence of all substances that affect the optical properties of Case 2
waters (I0CCG, 2000; Chen and Yu, 2009).

“The other main reason for developing algorithms for Case 2 waters is that the assumption

of almost negligible water-leaving reflectance in the NIR portion of the spectrum is
inaccurate. This assumption may work for Case | waters but it is not true for Case 2
waters. Figure 6 shows the spectral signature of Casel and Case 2 waters. As an example,
the presence of yellow substances as well as suspended matters can significantly affect
the reflectance of the NIR. This is beside the fact that Case 2 waters are mostly shallow,
which means there is a contribution in the reflectance of NIR from the bed of the water

body (Schroeder ef al., 2007; Chen and Yu, 2009),
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Figure 6: Spectral Signature of Case | and Case2 waters (Doerfler ef al., 1999)

In order to determine the optical properties of the remote sensed water and the

concentrations of its constituents, an atmospheric. correction procedure has 1o be
implemented to correct the atmospheric influence on the measured reflectances. The
optical-active water constituents then can be retrieved from the satellte imagery
(Doerffer and Schiller, 2008). The atmospheric correction procedure removes the effects
that result from the interactions between the recorded signals and the atmosphere. These
interactions can be in forms like scattering and absorption. The atmospheric procedure

also removes the effects of reflection at the water surface from the measured top-of-



atmosphere (TOA) radiances. As a result, accurate estimations of the optical-active water
parameters can be obtained from the remotely sensed images (Schroeder ef al, 2007).

‘The main idea behind the atmospheric correction is based on the assumption that the
ocean color in the near-infrared (NIR) is black (i.. the amount of reflected radiations
from the ocean surface is zero at NIR). As a result, the algorithm of atmospheric
comection is to subtract the assumed, atmospheric signals from the total measured
reflectance at the TOA (Schroeder ef al., 2007; Gaunter ef al., 2010). However, it has
been proven that this method leads to errors if there are any absorbing aerosols in the
atmosphere (Gordon, 1997; Bialey and Werdell, 2006; Gaunter ef al, 2010) or over Case
2 waters, where suspended and yellow matter and high concentrations of phytoplankton

exist. Yellow reflectance at

NIR region of the spectrum (Dekker ef al,, 1997; Lavender et al,, 2005; Morel and
Bélanger, 2006; Gaunter ef ., 2010).

For Case 2 waters, inland and coastal waters, there are different techniques (o femove the
atmospheric effects taking into consideration the presence of yellow and suspended
maters along with the phytoplankton in the water such as the approach presented by Gao
et al. (2007). This approach uses wavelengths larger than 860 nm to implement the

atmospheric correction, where the contribution of suspended matters

supposed 10 be a
minimum. Other approaches use complete visible and near-infrared (VNIR) range and
coupled atmospheric and bio-optical iradiative transfer models 1o retrieve. the
atmospheric and water components by a multi-parameter inversion model (Moore et al,

1999; Gaunter e al,, 2010). This inversion model can be carried out using either non-




linar optimization (Kuchinke ef al, 2009 or neural networks (NN) techniques

(Schroeder ef al,, 2007).

These methods are adequate to handle the coupled water-atmospheric radiative transfer
problems. However these models may be typically site-specific, i.c. these methods are
adequate only for the site where it is developed for. As the outputs of these models are
dependent on input values that applied to constrain the bio-optical model (Kuchinke er
al,,2009; Gaunter et al, 2010).

Examples of the inversion-based models using NN techniques in atmospheric correction
are presented in Doerffer and Schiller (2008). C2R is a processor tha has been developed
o retrieve case-2 waters’ parameters using radiative transfer simulations to train a neural
network. The developed neural network is then used for the parameterization of the
relationship between the TOA radiance reflectances. The training data collccted from the
North Sea, Baltic Sea, Mediterrancan Sea and North Atlantic (Schrocder ef al., 2007)
while Boreal and Eutrophic processors have been trained with data collected from
Finnish and Spanish lakes, respectively. For WeW/FUB processor, it was especially
designed for European coastal waters and uses neural network procedure to correct the
atmospheric cffects and calculate TOA of MERIS Levellb imagery. The TOA
reflectances are then used to retrieve water quality parameters from the C2R, Boreal,
Eutrophic, and WeW/FUB processors which are developed as plug-ins in Basic (E) ERS
& ENVISAT (AJATSR and MERIS Toolbox (BEAM). BEAM is a toolbox for
processing MERIS and ATSR data (Schroeder ef al,, 2007; Fomferra and Brockmann,

2005; Doerffer and Schiller, 2008).



Atmospheric corection is another step in retrieving the water constituents process from

The retrieving process consists in addition pheric correction
a model that is established 1o extract the water parameters. Due to the difference in
optical properties between Case 1 and Case 2 waters, several new methods have been
developed 10 retrieve the water quality parameters of Case 2 waters from the satellite

images. These methods take into consideration the presence of phytoplankton and

substances such as yellow and suspended matters. The new algorithms are classified by

Giardino et al. (2007) into three main methodologies: empirical, semi-empirical, and

analytical. The first two methodologies are almost the same but the semi-empirical is
used when the spectral properties of the monitored parameters are previously known.
Both the empirical and semi-empirical methods use the same technique of extracting the
water constituents from the satellite images. The analytical method is discussed in detals
under model-based approaches in the next few sections. A more comprehensive

elassification is presented by I0CCG (2000)

“The algorithms of Case 2 waters are divided by I0CCG (2000) into mainly two groups
empirical approaches and model-based approaches. The empirical approach is based on
establishing statistical relationships between extracted reflectances from the satellte
images and coincident measurements of water quality parameters of in-situ

concentrations. The relationship can be described by

m
Where B is the physical quantity to be estimated such as chlorophyll concentration and R,
is the reflectance of the spectral channel i. The coefficients a, B, and y are derived from
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the regression analysis between the radiance combinations and water quality parameters
under investigation. The ratio in the equation is a demonstration of how spectral bands

can be combined. There can also be a single band, or other combinations such as

addition, multiplication or more complicated combinations of these operations. In case

the water parameter is not explained properly by one combination of bands, it is

recommended to add more correlated bands or combi

tions of bands to explain the
variability of the measured parameters (Hoge and Swifl, 1986; Cippolini et al, 1999).

Further improvement in deseribing the optical characteristics of the water parameters will
be gained if the spetral bands are employed correctly. For example, i s reported that the
description of the pigments in chlorophyll case-2 waters can be improved by using wave
bands longer than the typical blue and green bands used in Case | waters. This decreases
the influence of the yellow substances on the algorithm which gives an opportunity to
explain the chlorophyll variabilty in the water (Dekker e al, 1991; Gitelson, 1992;

Sathyendranath et al., 1997a; Schalles et al, 1998).

pirical approaches are simple, easy fo derive (even in cases where the in-sita

measurements are limited), and easy to implement. This is in addition o the minimal time

requirement needed to develop a relationship between the extracted reflectances and in-

situ measurements. The empirical relationships can also relate between the water

extracted reflectances and the water parameters which are not optically active. This can

be done through surrogates that are optically active and have high correlation with the

non-active water properties. The results of the empirical approach are stable but there are.

several limitations that affect the empirical approach. One of the limitations is that the

data is only valid for the range and location of the in-situ measurements it was developed
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for. It is also sensitive to seasonal trends so it has to cover the seasons that may occur in

the training area. A further problem in the empirical approach is that it can easily violate

the acceptable statistical limits and assumptions that govern the developed relationship

between the reflectances and the concentration of water quality parameters

Many studies I approach to develop relationships between the

we used the empi
satelite data and in-situ measurements to monitor water quality parameters such as
chlorophyll, Dissolved Oxygen (DO), and Chemical Oxygen Demand (COD). These
studies used a wide selection of satelite sensors including Landsat TV, MODIS, and
MERIS. Gons ef al (2002) used the empirical approach to estimate Chl-a concentrations
from MERIS data over inland waters and coastal zones. The developed model was
calibrated and validated using data collected from ssel Lagoon in the Netherlands. Two.
empirical models were developed by Gons et al. (2008) for Lake Michigan and Lake
Superior 1o estimate the Chl-a concentrations. The great lakes empirical models revealed
a strong linear relationship between MERIS bands 7, 8, and 9 and the in-situ
measurements.

Qui er al. (2006) used the Landsat TM sensor data to estimate DO and COD

concentrations of Dianshan Lake, Shanghai, China. The developed empirical

relationships were lincar and non-lincar relationships between ratios of extracted
reflectances from the Landsat TM data and field measurements. Although DO and COD

parameters are not optically active, a relationship has been found between them and the

extracted water reflectances. This relationship can be explained if it is known that the DO
and COD are related to optically-active parameters which are used as surrogates. MODIS

data used by Chavula ef al. (2009) to estimate the Chl-a concentrations of Malawi Lake
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in the southern part of Affica through an empirical lincar relationship. The relationship
was developed between the in-situ measured data by 3 stations and MODIS extracted
reflectances.

The second approach to extract the water quality parameters is the model-based method.
“This approach uses the bio-optical models to explain the relationship between the water-
leaving reflectances and the water quality parameters. It also uses the radiative transfer
models to imitate the transmission of the electromagnetic waves in the atmosphere and
the water. These models simulate the spectra above the water surfice or at the TOA for
some of the water constituents in different states of the atmosphere. This simulated
information is then used to establish an algorithm to inverse map the water constituents
from the measured radiances or reflectance spectra. The model-based approach can be
implemented using different approaches including: algebraic, non-linear optimization,
principal components, and neural network (NN) approaches (10CCG, 2000; Kuchinke et

al., 2009).

“The Algebraic approach is the simplest among the model-based methods 0 retrieve the

This

water quality parameters from the satelite data based on their optical prope
method uses algebraic expressions to relate semi-analytical models of ocean color to the
‘geophysical product; consequently the water parameters can then be retrieved (Carder ef
al, 1999; Lee et al. 1996; Lee ef al.1999). The disadvantage of this method is that it only
can handle limited parameters and variables. In case more variables need fo be
considered, the other model-based approaches can be used.

“The non-linear optimization method inverts a forward model directly by minimizing the

ferences between the calculated values and measured radiances. The forward model
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describes the relationship between the radiances recorded by the satellte sensor and the
optical properties of the water quality parameters.

“The inverted model can be at the water surface level or at the TOA level (Bukata et al,
1981a; Bukata ef al,1981b; Bukata e al, 1991). The minimization can be done using
many techniques such as the Levenberg-Marquardt and simplex algorithm (Nelder and
Mead, 1965). Equation 2 explains the basic technique of the non-linear optimization

—
x? = Tallsat = Lmoa)® ]

Where L, i the radiance measured by the satellte sensor, Led s the modeled radiance,
and the summation s taken over all the wavelengths (3). The goal of this method is to
minimize the difference (x) between the modeled and the measured radiances by varying
the concentrations of the model input variables. This method does not depend on a
predefined data set while the other analytical techniques such as neural network and
principal components, as described in the next two sections, depend on a pre-defined
simulated data set. The predefined data sets need a wide range of concentrations of the
water parameters where is it difficult o select the range and frequency that represent the
natural variability in such approaches. An example of a study that uses non-linear

optimization in extracting the water quality constituents is presented in Bukata ef al.,

(1981a, 1981b, 1991). The authors implemented a study in Lake Ontario using
information of the inherent optical properties that is tailored for Lake Ontario and the

CZCS data. Bukata found that the modeled and measured values of Chlorophyll,

suspended matter, and dissolved organic carbon match well.



Doerffer and Fischer (1994) used a TOA model and the simplex method to extract
Chlorophyll, suspended solids, colored organic matter concentrations over the North Sea
surafce using the CZCS data. It was reported that there is a good agreement between the
retrieved data from the satellte imagery and the in-situ measured data which were
collected at the same time. One of the advantages of the non-linear optimization method
is that the model changes can be modified easily. The major concern of ths approach is

the long computation time required (Roesler and Perry, 1995; Lee ef ., 1999).

In the principal components approach, the optical properties of the atmosphere are

considered as a variable in an inversion model. This concept is dissimilar to the empirical

approach which implements an atmospheric correction to calculate the water-leaving

radiances. The input data of this approach are the TOA reflectances obtained from an
ocean-color sensor and the outputs are the optical properties of the atmosphere and the
three main constituents of the water (.. concentration of chlorophyll-a, yellow
substances, and inorganic suspended particles). The principal component analysis (PCA)

is used to deal with the high correlation between the signals from different wavebands

(Mueller, 1973, 1976; Fischer, 1985; Sathyendranath er al., 1989; Sathyendranath et al.,

1994).

“The principal component approach's algorithm uses a radiative transfer model to generate
a data set of radiances at the TOA for water constituents and atmosphere propertis as

well as the spectral characteristics of the sensor under consideration. Then, PCA is used

o analyze the spectral data taking into consideration the high correlation between the

bands (Krawezyk e al, 1993; Krawezyk et al., 1999; Neumann ef al, 2000).




“The main advantage of the principal component approach is the linearity of the algorithm.
This advantage gives simple results, and a stable algorithm which leads 1o the short
computational time. This, in tum, gives the algorithm the ability to be implemented on
any computer system. As an example, it only requires a few seconds to compute the
water constituents and the atmosphere properties of a full inversion of the MOS-IRS
satellte sensor scene. The main limitation facing this approach is the non-linearity of the
relationship between the water and atmospheric. properties from one side and the
radiances from the other side. To overcome this limitation, the linear relationships can be
implemented on certain sub-ranges which result in the segmentation of the parameters
(Neumann ef al, 2000).

“The last approach that lies under the model-based algorithms is the neural network (NN)
approach. The NN consists of a large number of nodes arranged in input and output
layers with a number of hidden layers. Each node of a layer is connected to the output of

all nodes in the previous layer. All inputs of a node are weighted independently and fed

into a logistic or other nonlinear function. In case of remote sensing, the logistic function
is appropriate. In the development phase, the input is the reflectances of the satellite
imagery and the output is the concentrations of the water constituents (Doerfler and
Schiller, 2008).

An example of this approach s the developed procedure for MERIS and MOS data

which based on radiance simulation using a Monte Carlo photon-tracing model. This

model combines the advantage of realistic radiative transfer model with high speed of a

neural network for processing. This algorithm consists of two phases neural network, first



is for atmospheric correction and the second is for retrieval of the water constituents
(DoerfTer and Schiller, 1999; Neumann et al., 2000)

“The neural network is a powerful approach for the retrieval of water constituents as well
as for atmospheric correction over Case 2 waters. It can gather between the most
complicated radiative transfer models with a short time for processing which is useful in
real-time processing. One of the disadvantages of his algorithm s that i s valid only for
a particular region and scason that is trained for. This means that in the case of using this
algorithm in two different regions, or two different seasons, it has to be trained twice. In
addition to it is relatively expensive to prepare, especially when the model used is
complicated and consider a large number of variables that need data collection work
(Newmann e al 2000).

Monitoring water quality using satellite sensors offers many significant advantages. First
is the extensive spatial coverage which cannot be offered by any other way of
monitoring. This advantage makes it possible to monitor large water bodies by

integration wi ional and based water quality

The global coverage is the second advantage offered by satellite water quality monitoring
which allows the estimation of water quality in remote and inaccessible areas. Moreover,
satellite water quality monitoring is comparable and it has relatively long record of
archived imagery. For example, Landsat has an archive since the early 1970s (Hellweger
etal, 2004)

Although satellte water quality monitoring has significant advantages, it also has some
disadvantages such as the ability o distinguish between different water parameters is
limited. In addition, the values extracted from satellite images are considered as relative
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values and not exact values. Besides, the depth of monitored water is limited to the

surface and depends on water clarity. Furthermore, the spatial and temporal resolutions

are not always controllable (Hellweger ef al, 2004).

Moreover, cloud cover limitation also makes satellite water quality monitoring
problematic for areas which has a significant cloud cover. Also, the effect of the
atmosphere is significant ¢.g. if the surrounding atmosphere is turbid it is not possible to

extract reliable observations (Hellweger et al., 2004).

The most effective way of water quality monitoring is the integration of traditional,

sensor-based, and satellite water quality monitoring approaches. For example, satellite
imagery can be used to interpolate and extrapolate the sensor-based observation for large
water bodies. This integration decrease the number of in-situ samples and increase the
spatial and temporal resolution of the combined method of monitoring (Hellweger et al.,

2004)
2.2. Water Quality Monitoring in Lake Manzalah

“The monitoring program currently operated by the Egyptian water authorities represented
by the Egyptian Drainage Research Insttute (DRI), relies on monthly measurements of

water quality sampled at drainage channels leading into Lake Manzalah. The measured

parameters including a wide selection of the water physical, chemical, and biological
parameters such as temperature, color, pH, odour, salinity, turbidity, total dissolved
solids, dissolved oxygen, caleium, magnesium, potassium, in addition to, biological
oxygen demand, and chemical oxygen demand. Some of these parameters are measured

in the field while the other parameters are measured in the laboratory.
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However, this program provides insufficient information on the spatial and temporal
variation of the parameters of Lake's water quaity since there are no measurements taken
inside the lake itelf, Therefore, there is a need for a water quality monitoring program
that provides information about the spatal distribution and temporal variation of water
quaity parameters. This program provides information used (o determine the source of

pollution and the current as well as the future status of the polluted areas. Once the

problems have been identified, the appropriate decisions could be made to mitigate the
affected areas. Moreover, the water quality monitoring program will also provide
information about how much the improvement has occurred, if any, in the mitigated
polluted areas. .

In 2007, a field investigation campaign took place to investigate the feasibilty of
monitoring Lake Manzalal’s water quality using satelltes. The data collected in this field
investigation consists of two main parts. First s the in-situ measured data which continue
for 4 days, while the second part i the coincident satellte data from MERIS and MODIS

correlation between

sensors. The preliminary results of the investigation show the
the turbidity (TUR) and band 1 of MODIS and band 7 of MERIS. Besides, the high
correlation between total dissolved solids (TDS) and band 1 of MODIS and band 7 of
MERIS. It is found that the ratio between band 7 and band 9 of MERIS explains the
chlorophyll-a (CHL) concentrations variability in the lake. it was also concluded that the
Lake Manzalah has 5 different water quality zones, and in order to establish a
quantitative water quality monitoring system based on the satellites, it is recommended to
establish real-time water quality monitoring (RTWQM) stations to represent the different

regimes of water quality in the lake, which provides a high temporal measurements, to
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calibrate and validate the models of the water quality parameters. The proposed system

will produce and outputs in near-real-time (NRT) to support the decision makers in

gt i im et al., 2010),



3. Study Area and Data Collection

This chapter provides a general description of Lake Manzalah, Egypt, followed by a
historical overview and the current state of the lake’s water quality based on observations
from published lterature. A description of the current water quality monitoring program
in the Lake Manzalah watershed is also presented. In-situ and satelie data collection
works are described.

3.1, Study Area

Lake Manzalah is located in the northeastern part of the Nile River delta, Egypt (

ure 7). Lake Manzalah is the largest of the five northern lakes and bordered by the

Mediterrancan Sea in the north and the Damietta branch of the Nile in the west. The Suez

Canal is located cast of Lake Manzalah. Lake Manzalah s located in five administrative

vemorates including Damiet

, Dagahliya, Ismailiya, Port Said and Shargiya.

Figure 7 shows the location and borders of Lake Manzalah.

Lake Manzalah (31° 45'- 32° 15"

: and 31° 00" - 31° 30°) is rectangular in shape. The
dimensions of the lake are about 60 km in length and 40 km in widih. The lake has an
average depth of 1.3 m allowing it to be classified as a shallow lake (Dewidar and Khadr,

2000)



Figure 7: The location and borders of Lake Manzalah (Google Farth, 2010)




“There are approximately 1000 small islands scattered in the lake, representing about 9%
of the lake’s total surface area (Zahran et al., 1989; Khedr, 1997). There are agricultural
and aquacultural activities in the area of the lake. The western and souther parts of the
Lake are dominated by agricultural activities whereas the northern and eastern parts
include the aquacultural actvities such as fish farming. The Lake Manzalah production of
fish represents around S0 % of the Egyptian fish production (Khalil, 1990; Dewidar and

Khadr, 2001).

Atthe beginning of the twentieth century, the total area of Lake Manzalah was 1700
Km?. Lake Manzalah arca decreased to 1400 km2 in 1937 (Montasir, 1937; Zahran et al.,
1989). By 1970, the area was reduced to 1300 Km” due to land reclamation (Wakeel and
‘Wahby, 1970). In 1981, the area of Lake Manzalah was 900 Km® but by 1988, according

to UNDP (1997), the area was cited to be 770 Knr’. In 2000, the Lakes area was around

500 k'

Care, 2007) Figure § shows graphically the reduction in Lake Manzalah's

area during the last 100 years.

The reduction i Lake Manzalah's area was atributed to the human activiies in the lake
area such as land reclamation  including: agriculture, building roads and marine
aquaculture (Frihy ef al, 1998; Dewidar and Khadr, 2001). The rate of reduction in the
area of Lake Manzalah in the time between 1922 and 1995 was estimated at 5.22
km?/year. The most affected parts of the lake by the area decrease were the western and
southern regions of the lake besides the growing in the size of the slands inside the lake.
Moreover, it was detected that siltation was occurring along the southern and western
parts of the lake which was duc o the increase of drain water discharge (Dewidar and
Khadr, 2001). Various agencies have stated that if land reclamation proceeds at the same
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rate, the total arca will be reduced to 469 Km® in a few years (BirdLife

International 2009).
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Figure 8: Reduction of Lake Manzalah surface arca over the last 100 years

301 Historical Overview

Historially, Lake Manzalah was known as “Lake Tanis” during the seventeenth century.
Lake Manzalah was formed as a result of water accumulation at the spilling points into
the Mediterrancan Sca. Wakeel and Wahby (1970) note that although the main feeders
have dried up, the lake stll exists. It was traversed by three (Pelusica, Tanitic and
Mendesian) of the seven historical ending branches of the Nile Delta (ECRI, 2003).

Figure 9 shows the seven historical branches of the Nile Delta.



Modite”

Figure 9: Nile Delta before the seventeenth century (ECRI, 2003).

312 Lake Manzalah Water Quality Status

Lake Manzalah water system begins from the collection networks of agriculural
wastewater in the castern Nile delta and eastern great Cairo arca. The minor drains
discharge their collected wastewater into major drains. The major drains, in tum, dispose

the collected wastewater into Lake Manzalah. The main drains which flow into Lake

Manzalah are the Bahr El-Baqar, Hadous, Farskour, and Lower Serw, sce Figure 10.



Figure 10: Main drains discharging into Lake Manzalah (DRI, 2010)

The major drains that discharge wastewater into Lake Manzalah arc Bahr El-Baqar,
1 Hadous, Lower Serw, and Farskour, The Hadous drain discharges 49 % of the total water
discharging into Lake Manzalah, followed by Bahr El-Bagar at 25 %, Lower Serw drain
at 13 %, and Farskour drain at 4 % of the total discharge. The remainder of the total
discharged water into Lake Manzalah is divided among the Inaniya canal, Port Said canal
(fresh water), Ramsis, and Matariya drains. These contribute only 110 4 % 10 the total

discharge (ECRI, 2003).

Drains are the main source of pollutants which are transported to the lake. The most

polluted drain is the Bahr El-Bagar drain which carries a mixture of treated and untreated
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waste water from eastem Cairo over a distance of 170 Km. The drain is anoxic over its
entire length (UNDP, 1997; EI-Baz ef al,, 2005). It accounts for approximately 25% of
the fresh water input and carries 60% of the nutrient loading into Lake Manzalah. The

Hadous and Faraskour drains carry predominately agriculural discharges but contribute

only half the nutrient loading of the Bahr El Bagar drain to the lake (EI-Baz et al, 2005),
Although the stated main drains are considered as agricultural drains, they also receive
treated and untreated wastewater from municipal and industrial zones that are located in

the drains basin (EI-Baz et al., 2005).

Lake Manzalah is connected 10 the Mediterranean Sea through three main connection
points. The primary connection is at Bughaz EI-Gamil (UNDP, 1997). Other connections
oceur from time o time at weak points along the narrow sand ridge that separates the lake.
from the sea (Wakeel and Wahby, 1970). The lake is also connected to the Suez Canal at

El-Qabouti (Wakeel and Wahby, 1970; Dewidar and Khadr, 2001).

These open connections allow an exchange of water between the lake and the Sea. As a
result, the salinity in the lake varies greatly. While the salnity s low near drain and canal
outflows in the south and west, it is high in the extreme north-west. Brackish conditions
predominate over much of the remainder of the lake (BirdLife Intemational, 2009).

Figure 10 shows the main drains that discharge into Lake Manzalah,

Based on records of daily air temperatre at the El-Gamil Metrological Station, the
‘maximum air temperature oceurs in August (around 44.0° C) and the minimum occurs in
February (around 8.6° C). For rainfalls, they oceur only in the winter averaging 112.2 mm

per year (Wakeel and Wahby, 1970; Ramdani e/ al, 2001). Maximum sunshine
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obscrvations are recorded in June-August. The prevailing wind blows from the south-
westem dircction in January and February, from the north and north west from April to
Scpiember. The winds predominately blow from the north cast in October and
November; and south westerly in December

Published water quality data for Lake Manzalah is fairly limited. Currently, a water

quality program which is operated by the Drainage Research Institute (DRI), Government
of Egypt, is monitoring the main drains and canals that discharge into the Lake. The

monitoring is once per month and there is no regular monitoring of the lake water itself
3 pe e

I i Lake Manzalah water quality are

summarized in the next section.

Lake Manzalah was divided into three main zones from a water quality perspective by

Wakeel and Wahby (1970) as follows:

The South Easten region which reccives mainly drainage water.

“The North Eastern region that is affected by both sea water and drainage water,

The Wester region that is affected by drainage water, sea water and freshwater
during floods only.

In terms of water quality parameters,

Table 6 shows some observations as well as the references.



‘Table 6: Water Quality from various researchers

Parameter Max. Min. Reference
Temperature (C*) 440 86 | (Ramdanieral, 2001)
786 848 | (Wakeel and Wahby, 1970)
PH (pH units)
81 9 (Fishar, 1999)
Chlorophyll (mg/m’) | Average from 12.66 to 3238 (Hamza, 1983)

The south-eastern and western parts of te lake are supplied by drains water. The water of
these drains carries a considerable load of nutrients including phosphates, nitrates and
silicates, in addition to the untreated municipal and industrial sewage water (EI Racy ef
al., 1999; Dewidar and Khadr, 2001). E1 Raey et al.(199) defined the connections of the
south-eastern part o the lake and the drains as a “black spot” due to the heavy load of the
contamination that gets into the lake from these connections. This is supported by Siegel

et al. (1995) who detected

igh values of Hg (822 ppm), Pb (110 ppm), and Zn (635

ppm) in the bottom sediments of the south-eastern part of the lake.

3.2. Data Collection
Based on the earlier field investigation in 2007, see the literature review, three locations
were chosen to setp the water quality monitoring stations. In August 2009, three
identical stations were installed in Lake Manzalah. Initally, the locations for the stations

1,2, and 3 were chosen as shown in Figure 11, However due to several failures station 2



was moved 1o 2a on September 23, 2009. Figure 12 shows a typical station afier

installation (C-Core, 2009).

Figure 11: RTWAQ station locations in Lake Manzalah (The background is Landsat TM+)



Figure 12: Typical water quality monitoring station (C-Core 2009)

The water quality instrument used i collecting water quality parameters in Lake
Manzalah is the Hydrolab Data Sonde SX multi probe (DS 5X). (See Figure 13) The Data
Sonde is equipped with sensors that can read specific conductance, pH, turbidity.
luminescent dissolved oxygen (LDO). ehlorophyll, total dissolved solids, temperature,
and water level.

The probe can measure conductivity with a range of 0 to 100 mS/em and aceuracy of +

0.001 m$/em at a resolution of 0.0001 mS/cm. For pH, the probe can read with a range of

010 14 pH units with accuracy of + 0.2 units at a resolution of 0.01 units. The turbidity

‘measuring range s from 0 to 3000 NTU with an accuracy of +1% for a range of 0 to 100
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NTU, £3% for a range of 100 to 400 NTU, and £5 % for a range of 400 to 3000 NTU.
The resolution is 0.1 NTU for a range of 0 to 400 NTU and 1 NTU for a range of 400 to

3000 NTU. LDO can be measured

arange of 0 to 60 mg/L and accuracy + 0.1 mg/l.
for a range of 0 to 8 mg/L. and + 0.2 for a range of § 10 60 mg/L. The resolution is 0.01
mglL.

Chlorophyll can be measured by the probe with a range of 0 to 500 g/L and an accuracy
of £ 3% with a resolution of 0.01 pug/L. The temperature measuring range is from -5 to

50° C with an accuracy of + 5% and a resolution of 0.01° C. For water depth, it can be

measured with a range of 0 to 10 meters with an accuracy of £0.003 meters and
resolution of 0.001 meter. The probe measuring ranges, accuracy, and resolution of all
sensors are summarized in

Table 7.

The water quality probe is connected to the data logger using a cable rather than a
wireless link. This is due to the need o transfer camera images. The data logger is
connected 1o satellite and GSM modems to transfer the measured data to the office

through the Iridium sateli

system and the cell phone network



Figure 13: Hydrolab Data Sonde DS X

‘Table 7: Ranges, accuracy. and resolution of water qualiy sensors (Hydrolab, 2006)

Sen ¢ Accura Resolution
Specific Conductivity (mS/em) 0 10 100 0,001 0.0001
DH (pH Units) T 02 001
1% | 0100
L 010400
Turbidity (NTU) 0103000 3% | 100-400
5% [400-3000 1 [ >400
0 n owe ot
Dissolved Oxygen (m o L oo
el 02| 840
Chiorophyll
o 010500 3% 001
(ng/L)
Temperature (C¥) S1050°C 5% 0o
Water Level (m) [ 0,003 0001
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321 InSitu Data

Data was collected from the RTWQ stations from the first day of installation, July 29, up
10 the end of October, 2009, around 3 months. Collected data points were measured once
per hour. For cach parameter, the number of points was around 2250 points. In total the
collected in-situ poins were 42250. The collected data included turbidity (TUR) [NTU],
total dissolved solids (TDS) [g/1]. pH. Chlorophyll-a (CHL) [g], dissolved oxygen
concentration (DO) [me/l], dissolved oxygen saturation [%], specific. conductance

(COND) [p/em. and temperature (TEMP) [*C].

322 EO (Satellte) Data
MERIS imagery was the primary satellite data source for this rescarch. Images were
collected on July 29, August 1,7, 10, 13, 16, 19, 20, 23, 26,29, Scptember 1,4, 5,8, 11,
14, 17,20, October 6, 9, 10, 13,22, and 25. See Table 8, The collceted imageries were in

form of NI, MERIS standard format. In total, 25 MERIS scenes were collected.




‘Table 8: Dates of acquired MERIS images
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In the next chapter, how the collected RTWQ and satellte data arc processed and finally

used to develop statistical models wil be described in detal,



4. Methodology

“This chapter outlines the methodology used to screen the collected in-situ data and the
steps taken to extract the reflectances from the satelite data. The statistical methods used
to analyze the processed data are also briefly described

“The process of extracting the water quality parameters consists of collecting satelite and
in-situ data in concurrently followed by processing both data sets. The concurrent data
sets then will be generated. The concurrent data set will be statistically analyzed and
models will be then developed. After developing the models, the final water quality

‘parameters maps will be generated. The processing steps are depicted in Figure 14

Collecting In-situ Data | [ Collecting Satelite Data |

‘ In-Situ Data Processing ‘ \;Sate\l\te Data Processing ‘

Generating Concurrent Data Set
—

L Developing Models

g Water Quality Maps }

Figure 14: Processing Steps.



4.1 In-Situ Data Processing
‘ “The in-situ data used to develop the statistical models were collected from July 29 to
October 25, 2009. Collccted data has been screened since the regular calibration

information was not available. The screening process, which was implemented by C-Core

staff, excludes the unusual measurements from the data set based on a close examination
of the data series acquired at each RTWQ station. Figure 15 shows an example of
screened data, appendices A, B, and C show plots for each measured water parameter and
the screened measurements. Afler screening, a total of 56, 34, and 33 points of TDS,
TUR, and CHL are paired with the satelite extracted reflectance, respectively. Valid data
date ranges after screcning are summarized in table 2. The plots in the appendices show
the collected data until November 17, 2009. Due to time constraints, the data considered

for analysis are only those between July 29 and October 25, 2009 (C-Core, 2009b).
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Figure 15: In-situ TUR of station 3 time series shows screened data (C-Core, 2009a)



Table 9: Valid Date Ranges for In-Situ Data (C-Core, 2009a)

Water Quality
Staton 1 Sution? | Station2a Station 3
Parameter
TP Se T | S -
Temperature '€ | Jul 28 Nov. 17 029 -Nov.2
(otAug 19) | Now17
Totaldisoved sl
28 Now 17| ol 29-Sep.2 1029 0ct 14
s el
B AR D B Awg 5% S
Turbidity (TUR) INTU] S i 20-sep 2 e o
Oct16-Nov. 1 Sep. 18.0ct.15-0ct. 21
Chlorophylia (CHIL
D | se9 | dm-aw 19 1029 0ct 14
el
DS T
ot July29-0ct 13 129 0ct 14
(oA 1)
Specifc conduciance
oL 28-Nov.17 | ol 9-Sep.2 Ju.29-0ct 14
Inslem]
Disohvedoxygen | L3 Nov. 17
b .29-5ep.2 129 0ct 14
saturaton %] (o10c 13)
TN 17 s
Jo.29-Sep.2 10.29-0ct 14
concentration fmel | (1010ct 13) Nov. 17

To extract TOA reflectances from the MERIS imageries, the procedure shown in

16 was followed using BEAM 4.

e Imagery Processing

igure

1 (Fomferra and Brockmann, 2005). The procedure

ineludes collecting and screening the imageries visually to filier the imageries that are

partially or fully covered by the clouds, then, subsetting the filered images to the area of

interest.




¢ Sereening
and Downloading

Figure 16: Satellite imagery Processing steps (C-Core, 20092)

ICOL (The Improved Contrast between Ocean and Land) processor aims to remove the
adjacency effect which results from the high reflected electromagnetic waves from the

land surrounding the water body. Infrared is the most affected part of the spectrum. The

adjacency cffect causes overestimation of the atmospheric radiance and a subsequent
underestimation of the water leaving radiance. The subsets are then projected o the

of TOA

Egyptian national grid (red zone). The procedure also includes calcul
reflectances. The ~Radiance-To-Reflectance Conversion Processor converts TOA

radiances Lyox into reflectances explained in Equation 3 (Brockmann, 2011).



7 Lroa (4)
Rroa (%) E()co: (8 Bl
Where £0 and 0 are the solar spectral irradiance and the sun zenith angle, respectively.
And Lyo, is the radiances. The TOA reflectances calculations were implemented using
BEAM software’s water quality processors. The process also includes geocoding and
extracting of the image values from pixels that match each in-situ stations.
The water quality processors generate masks for land and clouds. If the in-situ station
falls into a pixel that included in any of these masks, the closest pixel that s valid to
represent the station was chosen. The closest pixel, that is not included in the land or

cloud masks, is considered as a valid pixel. In addition, a geocoded LANDSAT image

acquired March, 2009 was used to verify visually that the chosen locati thin the

water.

For the atmospheric correction, C-Core staff applied different atmospheric correction
procedures on MERIS data including dark object subtraction as well as NN based

atmospheric correction procedures associated with Case 2 waters processors in BEAM.

The conclusion was there is no significant change in the relationship between the water
parameters and the extracted TOA reflectances before and after applying the atmospheric
correction (C-Core, 2009a). This is supported by a study done using Landsat TM data by
Song et al. (2001) who concluded that the atmospheric correction led to- some
improvement on the extracted data. But the achieved improvement didn't affect the final
results i both cases with and without atmospheric correction. I addition,  the
improvement which can be achieved after the atmospheric correction is not guaranteed

(Dell’Acqua, 2005). As a result, applying wrong atmospheric correction can led to errors
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that affect the extracted reflectances which, in turn, affect the final results (Chafez, 1988;

Gaunter ef al, 2010). Based on previous arguments, there is no atmospheric correction

applied in this study.

43.  Statistical Analysis

and Extracted Reflectances

431 Preliminary Statistical Analysis for In
Parametric and non-parametric statistical procedures will be used to investigate the
relationship between the primary water quality parameters and the measured TOA
reflectances that were extracted from MERIS imagery. Statistical analysis would start
with extensive use of graphical procedures such as boxplots, X-Y plots, and normality
plots. Logarithmic transformations will be applied when necessary to meet with all
necessary assumptions of ANOVA or regression. If assumptions are sill not met,
nonparametric methods such as Kruskal-Wallis test will be used to compare among the

samples and nonparametric correlation analysis such as Kendall’s tau and Spearman’s

tho will be used to assess the association between the in-situ measured parameters and
satellte extracted data. For the extracted reflectances, correlation matrix plots will be
used to evaluate the correlation between the bands. Correlation analysis will also be used
10 examine the relationships between individual bands and their combinations and the
water quality parameters. The chosen water parameters analyzed were TUR, CHL and
TDS. TUR and CHL were chosen because they are optically active while TDS shows

high correlation in previous statistical analysis with the ratios of the extracted

reflectances from MERIS imagery.




432 Models Development

Lincar regression analysis will then be used to develop relationships between the water
quality parameters and ratios of the MERIS extracted TOA reflectances. Simple and
multple regression models will be investigated. The validation of the relationship will be
assessed primarily based on the coefficient of determination (R?) and the Nash-Sutcliffe

O0bs - Pre?

2Obs - Pre?
%Obs - Obs» ol

Where Obs is the in-situ observed measurements, Pre is the estimated values using the

developed models, and OBS is the mean of the in-situ observed values. The Nash-
Sutcliffe coefficient evaluates the agreement between a simulated and a reference data. A
Nash-Sutclffe of 1 indicates a perfect agreement between simulated and reference data,
S0 when the simulated and reference data plotted s a scatter plot they should fall on the
perfet line i.c. 45 degree line (Nash and Sutclife, 1970),

433 Models selection

The best models should have high R® and high NSE in addition to fulfilling all the

required assumptions of regression analysis such as normality of residuals, homogencity

of variance, and independence of the residuals



5. Results

“This chapter discusses the results of the statistical analysis of the in-situ data and the
regression models developed to predict water quality from satellite imagery data. The
models were subsequently used to generate maps showing the distribution of water

quality parameters in Lake Manzalah.

5.1. In-situ Water Quality Parameters

For the in-situ measured water quality parameters, Figure 17 shows a plot for the water
qualiy parameters (TDS, TUR, and SPCON) with LOWESS (LOcally Weighted Scatter-
plot Smoothing) line. Table 10 and Table 11 display the correlation marices while Table
12 displays the p-values for calculated Spearman’s tho. Duc to non-normality distribution

of the water quality parameters, Spearman’s Rho and Kendall's Tau were used o

investigate the correlation between the measured water quality parameters.



u

(GU1] SSAMO'T M) (NODAS PUP ‘SALL “HLL) ssroureed Supenb sorem mys-ut Jo s0(d someos .| iy

rym—
CAN

w % Eoow o5




“Table 10: Correlation Mar for In-situ Water Quality Parameters (Spearman’s Rho)

TEMP PH  SPCON TDS DOS DOC TUR CHL
TEMP | 100 011 020 -020 045 045 025 027
PH 011 100 031 031 039 034 -035 -027
SPCON 020 031 100 100 -001 -011 -086 -043
TS 020 031 100 100 -001 011 -086 -043
DOS 045 033 001 001 100 08 003 -020
DOC 045 03¢ 011 011 098 100 013 -012
TUR 025 035 08 086 003 013 100 047
CHL 027 027 043 043 020 012 047 100

.
B

>058<05

Table 11: Correlation Matrix for In-situ Water Quality Parameters (Kendall's Tau)

TEMP PH  SPCON TDS DOS DOC TUR CHL
TEMP 100 005 012 012 029 029 016 -06
PH 005 100 021 021 028 025 -018 -015
SICON 012 021 100 100 002 -006 -066 -034
TOS 012 021 100 100 002 -006 066 -034
0OS 029 028 002 002 100 092 004 -013
DOC 029 025 006 006 092 100 012 -006
TUR 016 018 066 066 004 012 100 037
CHL 016 015 034 034 013 006 037 100

>058<08

Table 12: P-value matrix of correlation matrix (Spearman's Rho)

TEMP PH  SPCON TOS DOS DOC TUR
P 0629

SPCON 0360 0.167

TS 0360 0167
DOS 0036 0076 0954 0954

DOC 0034 0119 0631 0631 0000

TUR 0264 0112 0000 0000 0907

CHL 0223 0225 0047 0047 0382 0597 0.027



‘Table 10 and Table 11 show that there is no correlation between most of the in-situ

parameters, however it shows a high correlation between Specific conductivity and TDS,

see Figure 17. In fact the correlation s practically perfect. It is also noticed that the there.
is a high negative correlation between TUR and TDS. Spearman’s Rho equals -0.86 and

.05. For the

Kendall's Tau equals -0.66, the correlation is statistically significant at a=
34 TUR points concurrent with satelite reflectances, values ranged from 4.8 0 96.4,
Figure 18 and 19 show the boxplots of the TUR and Log TUR values by sampling
location. The overall median and IQR (InterQuartile Range) are 23,05 and 25.95 NTU,
respectively. The summary statistics at each station are shown in Table 13. For the 33
CHL points, the values ranged from 11.64 0 86.53 /1, with an overall median of 3.15 g
and IQR of 25.23 g/l. The summary statstics by station is shown in Table 14 and
displayed in Figures 17 and 18. For 56 TDS data points, they ranged from 3.93 to 24.4
e/l with an overall median of 15.35 g/l and IQR of 8.8 g1, The summary statistics at
ach station is shown in Table 15 and displayed in Figure 22 and 23. As can be seen from
the boxplots and summary staistis, the distribution of the data are positive skewed with

the possibility of some outliers.
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‘Table 13: Desc
STATION | N | Mean | StDev
T [13[7654 ] 397
2|6 [5545[ 2158
% |6 1748 668
3|9 [2740] 936
all 342305 1992
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Figure 21 Distribution of Log (CHL) atall sampling stations

“Table 14: Descriptive statisties of CHL

STATION | N | Mean | SiDev | Minimum | Q1 | Median | Q3 | Maximum
T |9 [1750] 604 | 1164 |1305| 1545 |21.70| 2920
7 | 4| 498 | 253 | 324 [ 329 | 401 | 763 | 865
% | 4] 494 233 | 319 |35 au1 | B6 | 83
3 [ 163900 | 1150 | 1881|2869 | 3843 |4727| 6023
Wl [ 333571 1802 | 1164 |2101| 3457 |63 | 8653
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Figure 23: Distribution of TDS atall sampling stations

‘Table 15: Descriptive statistics of TDS

[[Sttion | N[ Miean [ StDev | Minimum | Q1 | Miedian | Q3 | Maximum
[T (29[ 18225 | 2220 | 13900 | 16225 | 18250 | 20475 | 21700
|2 [ 49w 0315 | a0 | a8 | 005 | 522 | sam0
2 [ 88 631 | om0 | 1105 | 2040 | 2328 | 20
[ |30 125 | 4130 | 3950 | 8382 | 12000 | 14525 | 20.100
(S [56 14516 | 5727 | 3950 | T0.200 | 15350 | 19.000 | 24400




For TUR, TDS and CHL, Kruskal-Wallis tests were carmried out to compare
measurements observed at the stations 1, 2, 2a, and 3 respectively. It was found that the
median measurements at different sampling locations are significantly different from one
another. The test s statistically significant at a= 0.05. Table 16 shows the output of the
Kruskal- Walls tests

Table 16: Kruskal- Wallis tests outputs
P-Value
0.000
0.001
0.000

“The distribution of water quality parameters varies from one station to another, as shown

in Figure 18-23. This indicates variations in water quality parameters concentrations
across the Lake. For TUR, Figure 18, and Figure 19 show that Station 2 records the
highest values while Station 1 records the lowest values. Figure 20, and Figure 21 show

that the distribution of CHL is similar across Stations 2, 2a, and 3. While the lowest

values recorded at Station 1. TDS measurements in Figure 22 and Figure 23 have si
ranges at 1, 2a, and 3. While the lowest median and range recorded at Station 2.
52. Satellite-extracted data

‘The extracted reflectances were combined (o get the concurrent data set with the water

quality parameters. The result of combination is 34, 33, and 56 points For the TUR, CHL
and TDS respectively.
Figure 24-29 show  boxplot of the concurrent reflectances before and after Log

transformation. The distributions of the reflectances after log-transformation show a

7



higher normality than the distribution without transformation. the reflectances ranged
from a minimum of 0.00371 to a maximum of 0.0917. It is noted that most of the bands

are positive skewed. All o the individual bands are not normally distributed.
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Figure 24: TUR-concurrent rflectances bos plot
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Figure 25: Log transformed TUR-concurrent reflectances box plot
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Figure 26: CHL-concurrent reflectances box plot
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Figure 27: Log transformed CHI-concurrent reflectances box plot
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Figure 28: TDS-concurrent reflectances box plot

FEESE LSS SIS

Figure 29: Log transformed TDS-concurrent rflectances box plot

Figures 24 10 29 show that the reflectances are not normally distributed. As a result, non-
parametric correlation methods used to investigate the correlation between the individual

bands. Figure 30 shows the matrix plot between the MERIS 15 individual bands. Table

80




17 and 17 present the correlation matrices between the TUR-concurrent reflectances and
corresponding p-values matrices. See appendix D for the rest of the figures and tables of

concurrent reflectances of CHL and TDS.
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‘The matrix plots and correlation matrices show that the bands which are close 1o cach
other are high correlated. For example Band 1 is high corelated with Bands 2, 3 and 4
and less correlated to Bands 12, 13, 14 and 15.

5.3. Models

The correlation between the measured water quality parameters and extracted

reflectances from MERIS imagery showed no stistically significant correlations

between any of the measured water quality parameters and the individual TOA

reflectances of the 15 MERIS bands. However, the ratios of some of the bands showed

high correlations with the water parameters. Spearman’s Rho used because of the
nonlinearity of the water quality parameters as well as the reflectances. The correlation
coefficients are shown in Table 19. Al correlations are statistially significant at a=0.05.
Appendix E shows the correlation matrices between the water quality parameters and the
extracted reflectance ratios more fully.

Table 19: Correlation between TOA band ratios and water parameters

TR | cnL | tos
BoBS | o064 | 024 | 036
BB | 084 | osi | 070
BoB7 | 089 | o8l | -0&7
BoBs | 083 | 080 | 061 |
BIBT | o6t | 03 | 052

BI2BIS| 055 | 060 | 034

Where BS =Band 5, B6 =Band 6,B7 =
Band 11, B12 = Band 12, and BIS = Band 15

and 7, B8 = Band 8, B9 = Band 9, B1




The highlighted cells represent the highest correlated band ratios and water quality
parameters. BY/B7 s highly correlated with TUR and CHL. And B9/BG is highly
correlated with TDS. Scatter plot between TUR, CHL, and TDS vs. BY/BT, B9/B, and

BY/BG respectively are shown in Figure 31, Figure 32, and Figure 33

Scatterplot of TUR vs B9/B7
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Figure 31: Scatter plot TUR vs. BY/B7
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Figure 32: Scatter plot CHL vs. B/B7
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Figure 33: Scatter plot TDS vs. BY/B6
“The previous analyses show linearity in the relationship between the measured water
quality parameters and the extracted reflectances. As a result linear regession models
were developed between the water quality parameters and the extracted reflectances from
MERIS. All water quality and image extracted variables were log-transformed 1o betier
fulfill the assumptions of the regression. First, two and three explanatory variables
models were tried. At a=0.05, the significant model was the Log (TDS) model vs. Log
(B9/BS) and Log (B/BS). By trying one explanatory variable, both TUR and CHL
models vs. BY/BT were significant at a=0.05. All developed models are presented in
Equations 5, 6, and 7. Figure 34 10 38 show the graphical representation of the developed

models. Figure 34 shows that the TUR model fits the data points very well, which can be

described in the high value of R that equals 0.78. CHL model, Figure 35, also shows
£00d fit with the data points, R? equals 0.64. Figure 36 show the graphical representation

of the TDS model, the figure reveals good fit between the TDS model and the data points.



Log (TUR) = 1.04 + 4.55 Log (B9/B).

5]
Log (CHL) = 139 + 2,98 Log (B/B7) 61
Log (TDS) = 1.01 - 134 Log (BY/BS) - 186 Log (BY/BS). |

Log (TUR) = 1.04 + 4.5 Log (89/87)

Figure 34: TUR model
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Figure 35: CHL model
Log T08)ve Log (8915) vs. Log (89/88)

Log (TDS) = 1,01 - 1.34 Log (89/85) - Log (89/88)/

Lagtsass)

Figure 36: TDS model



Models statistics are shown in Table 20. The statstics reveal that the coefficient of
determination (R2) is higher for TUR than CHL and TDS. For the NSE coefficient, TUR
also has he higher values then CHL and TDS. The table also shows the number of points
as well as the P-values of the developed models, Average and the standard deviation of
the residuals.

Figure 37, Figure 38, Figure 39 show the caleulated vs. measured TUR, CHL, and TDS
plots respectively as well as the 45 degree line.

‘Table 20: The Models Statistics

[Model | R [NSE | n | Pvalue | Average (Residuals) | o (Residuals)
[ TUR [ 769 076 34| 000 T37INTU] | 1245 [NTU]
[CHL |65 064 33| 000 Tine/l [E]
[7TDS [60.0] 061 56| 0.00 046 [¢/] a20g)

Measured vs. Calculated TUR

Log(TUR)

Calcoted Log (TUR)
Figure 37 Measured vs. Caleulated TUR values

50



Log(108)

Calcated Log (1DS)

Figure 38: Measured vs. calculated TDS values

45 degree lne.
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Log(©

Cacatad Log CHL)

ure 39: Measured vs. calculated CHL




For the uncertainly of the developed models, the average of the residuals as shown in the
previous tble are 1.37 NTUL 1 (gl and 046 [¢/] for TUR, CHL, and TDS
respectively, and the standard deviation of the residuals are 12.45 [NTUJ, 11.25 [ug/l,
and 426 [¢] for TUR, CHL, and TDS respectively.

By applying the developed equations on all the image pixels, a map of water quality
parameters can be obtained. As an example of the developed water quality map,

Figure 40,

Figure 41, and

Figure 42 are the water qualty parameters maps which generated by applying the
developed equations on the entire water surface of the Lake. Used image in this example
was acquired July 29", 2009. And the maps produced for TUR, CHL, and TDS. As these
values are log ransformed, the maps are showing the median estimated values only. For
the values displayed in the map key, Table 21 shows the 95% confidence intervals for
each displayed value.

‘Table 21: 95 % Confidence intervals for values displayed in the maps key

Value | Lower Limit | Upper Limit
= = 618 1129
2 [ 138
£ [ s 928
N 20 | 1829 BT
32 [ 3177 5399
S [® =m 857
0 [ 799 1174
2 5 [15] 1w 1767
20 | 1767 2341




Figure 41: CHL [jg/l] map July 29th, 2009.
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re 42: TDS (/1] map July 29th, 2009,

attached with this

The complete set of the median water quality parameters maps a

thesis in appendices F, G, and H. Based on the final water quality distribution maps, Lake
Manzalah can be divided into three different areas: Areas 1, 2, and 3. Area 1 includes the

erized

south-eastern and south-western part of the Lake (see Figure 43) which is ch
by high TUR, high CHL, and low TDS concenirations. The reason for the high
concentrations of CHL and TUR is the contact between this part of the lake and the

s the northern part of the lake which is

agricultural drains that flow into the lake. Ares
located parallel to the coast of the Mediterranean. Area 2 has low values of TUR and

tion as a result of the

CHL concentrations, but it has high values of TDS conce
connection with the salt water in the Mediterrancan Sea. Area 3 is the area in between

area 1 and 2. As a resul, it has medium values of all water parameters under study (TUR,



e e

CHL, and TDS). The next chapter is a discussion about the results and the conclusion in

addition to the recommendations from this thesis.

Figure 43: Lake Manzalah water quality Areas



6. Discussion and Conclusions

This chapter discusses the results obtained from the study and the issues that were

encountered with the data collection, and statistical model development. The limitations
of developed models are also discussed. This is followed by conclusion and

recommendations for further study.

6.1. Discussion

Band 9 is common in all band ratios that are highly correlated with the in-situ measurcd
water quality parameters. This is likely because Band 9 was originally tailored for
sensing the water quality parameters which are optically active in Case 2 waters. Band 9
is located in the chlorophyll-a spectrum’s peak (Doerfler ef al, 1999). Since no

amospheric correction procedure was implemented for this study, the atio between

MERIS bands can be considered as a relative atmospheric correction (C-Core, 2009).

“The proposed method i this thesis is simple and easy to implement. It is not limited to
Lake Manzalah only. it can be adapied (o any water body that is monitored using the
RTWQ network. In addition, it can develop a relationship between some of the non-
opically active water parameters such as TDS and the extracted reflectances from the
satellte imagery. The explanation of the relationship between TDS and the extracted
reflectances can be atributed to the high correlation between the TDS and the TUR

which is optically active. TUR is used as a surrogate 1o develop the TDS model. In the



future, the models can be extended to other inactive water quality parameters such as pH

and Temp ing ical s

By collecting more coincident in-situ and satellte. measurements, it is expected to
improve the developed models. The improvement would include the existing models as
well as developing new models for predicting other parameters that are already being
measured using the in-situ water quality monitoring stations. The parameters that can be

included in the impr d pi.

“The developed models only can capture the variation during the span of data collection
time (August 2009 ~ October 2009). Therefore, the captured variation in the lake’s water
quality is confined to one season. Collecting more coincident in-situ and satelite data can
improve the develaped models to include other seasons which might be exist in the lake
water quality cycle. The improvements that can be obtained from collecting more
coincident data points also include formulating new models for areas within the same
lake system that has different water quality characteristis.

For the uncertainty of the developed models, the average of the residuals are 1,37 [NTUJ,
1 [ug/l}, and 0.46 [@/] for TUR, CHL, and TDS respectively, and the standard deviation
of the residuals are 1245 [NTUJ, 11.25 [ug/], and 4.26 [#/1] for TUR, CHL, and TDS
respectively. The reason that the average of the residuals not equal o zero is due to the
log transformation that applied to the water parameters quality data sets. But the
predicted values are median values not means so the bias is acceptable:

As the developed models are regression-based models, i is important (o note that the use
of the developed models is limited to the range of measured data and the case study are.

These models are not suitable for case studies other than Lake Manzalah, but the
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procedure of developing these models can be implemented independent of location.
Therefore, the developed models are only suitable for generating Lake Manzalah's
median water quality distribution maps for the imagery that was acquired between July
29 and October 25, 2009. Due to their limitations, the developed models need to be
enhanced by collecting more satellite and in-situ data. The collection of this data is

needed to update and validate the developed models

62. Conclusions
In this rescarch, the RTWQ monitoring stations integrated with the satellite extracted
water quality data. The final output is a water quality distribution maps. The conclusions
which can be drawn from this thss are:
The integration between RTWQ monitoring and satellite systems using the
communication technologies generates a new water quality monitoring system using
the advantages of both systems. The new system final output is a water quality map
that has a moderate spatial resolution (300m) as well as a high temporal resolution (3
days).
The proposed procedure does not depend on bio-optical irradiative transfer models,
which are unique for each site. The proposed procedure instead depends on a simple
linear relationship between the in-situ RTWQ monitoring measurements and extracted
MERIS imagery reflectances.
From the water quality point of view, Lake Manzalah is divided into three different

areas; each with ts own water quality characteristics. Area 1 is the southeastern and



southwestern parts, area 2 is the northern part of the Lake and area 3 is the area in
between area | and area 2.

“The water quality characteristics throughout the lake are influenced by the proximity
1o the Mediterranan Sea from the North and the flows into the lake of the agricultural

drains from the Southeast and Southwest.

6.3. Recommendations

Collect more coincident points to enhance and update the developed models to cover

all seasons and to try other methods of relating the in situ data with satellte data such

as artificial neural networks, or principal component regression.
Develop individual models for different areas of the lake. However this will need

additional data from each arc:

Analyze the bands reflectances using the PCA as the correlations between the
extracted reflectances are high.

Extend the number of water quality variables (o include variables such as Dissolved
oxygen and pil.

Examine the proposed approach to other lakes in both Egypt and Canada that have

existing RTWQ monitoring systems. This will ensure that the proposed approach is

universally applicable.
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RTWQ Dota Series Station |
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Appendix B

RTWQ Dota Series Stafion 2 and 20
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Appendix C

RTWQ Dota Series Stafion 3
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Appendix D

Matiix plofs, Correlation Mafrices and p-value matices of the concurrent
reflectances with water quality parameters (TUR, CHL, and T0S)
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Appendix I

Corelation Matix between water quality paramefers (TUR, CHL, and TDS) and
extracted MERIS reflectances
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Appendix F

TUR Wafer Quality Maps
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Figure 48 TUR Distribution Map August 1, 2009



Figure 50 TUR Distribution Map August 10, 2009
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Figure 52 TUR Distribution Map August 16, 2009
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Figure 53 TUR Distribution Map August 19, 2009

Figure 54 TUR Distribution Map August 20, 2009
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Figure 56 TUR Distribution Map August 26, 2009



Figure

Figure 5§

TUR Distribution Map September 1, 2009



Figure 60 TUR Distribution Map September 5, 2009



Figure 62 TUR Distribution Map September 11, 2009
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Figure 64 TUR Distribution Map September 17, 2009



Figure 66 TUR Distribution Map October 6, 2009

158



Figure 68 TUR Distribution Map October 10, 2009






Figure 71 TUR Distribution Map October 25,2009



Appendix G

CHL Water Quality Maps






Figure 75 CHL Distribution Map August 10, 2009,






Figure 79 CHL Distribution Map August 20, 2009.









Figure 85 CHL Distribution Map September 5, 2009






Figure 89 CHL Distribution Map September 17, 2009.



Figure 91 CHL Distribution Map October 6. 2009.



Figure 93 CHL Distribution Map October 10, 2009



Figure 95 CHL Distribution Map October 22, 2009



Figure 96 CHL Distribution Map October 25, 2009
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Appendix H

105 Water Quality Maps.



Figure 98 TDS Distribution Map August 1, 2009,
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Figure 100 TDS Distribution Map August 10, 2009.



Figure 102 TDS Distribution Map August 16, 2009.



Figure 104 TDS Distribution Map August 20, 2009,
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Figure 106 TDS Distribution Map August 26, 2009
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Figure 108 TDS Distribution Map September 1, 2009,
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Figure 110 TDS Distribution Map September 5, 2009.
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Figure 112 TDS Distribution Map September 11, 2009,
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Figure 116 TDS Distribution Map October 6, 2009,
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Figure 118 TDS Distribution Map October 10, 2009.
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Figure 120 TDS Distribution Map October 22, 2009.
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Figure 121 TDS Distribution Map October 25, 2009.















	0001_Cover
	0002_InsideCover
	0003_Blank Page
	0004_Blank Page
	0005_Title Page
	0006_Abstract
	0007_Acknowledgements
	0008_Table of Contents
	0009_Page v
	0010_Page vi
	0011_List of Tables
	0012_Page viii
	0013_List of Figures
	0014_Page x
	0015_Page xi
	0016_Page xii
	0017_Page xiii
	0018_Page xiv
	0019_Introduction
	0020_Page 2
	0021_Page 3
	0022_Page 4
	0023_Page 5
	0024_Page 6
	0025_Page 7
	0026_Page 8
	0027_Page 9
	0028_Page 10
	0029_Page 11
	0030_Page 12
	0031_Page 13
	0032_Page 14
	0033_Page 15
	0034_Page 16
	0035_Page 17
	0036_Page 18
	0037_Page 19
	0038_Page 20
	0039_Page 21
	0040_Page 22
	0041_Page 23
	0042_Page 24
	0043_Page 25
	0044_Page 26
	0045_Page 27
	0046_Page 28
	0047_Page 29
	0048_Page 30
	0049_Page 31
	0050_Page 32
	0051_Page 33
	0052_Page 34
	0053_Page 35
	0054_Page 36
	0055_Page 37
	0056_Page 38
	0057_Page 39
	0058_Page 40
	0059_Page 41
	0060_Page 42
	0061_Page 43
	0062_Page 44
	0063_Page 45
	0064_Page 46
	0065_Page 47
	0066_Page 48
	0067_Page 49
	0068_Page 50
	0069_Page 51
	0070_Page 52
	0071_Page 53
	0072_Page 54
	0073_Page 55
	0074_Page 56
	0075_Page 57
	0076_Page 58
	0077_Page 59
	0078_Page 60
	0079_Page 61
	0080_Page 62
	0081_Page 63
	0082_Page 64
	0083_Page 65
	0084_Page 66
	0085_Page 67
	0086_Page 68
	0087_Page 69
	0088_Page 70
	0089_Page 71
	0090_Page 72
	0091_Page 73
	0092_Page 74
	0093_Page 75
	0094_Page 76
	0095_Page 77
	0096_Page 78
	0097_Page 79
	0098_Page 80
	0099_Page 81
	0100_Page 82
	0101_Page 83
	0102_Page 84
	0103_Page 85
	0104_Page 86
	0105_Page 87
	0106_Page 88
	0107_Page 89
	0108_Page 90
	0109_Page 91
	0110_Page 92
	0111_Page 93
	0112_Page 94
	0113_Page 95
	0114_Page 96
	0115_Page 97
	0116_Page 98
	0117_Page 99
	0118_Page 100
	0119_Page 101
	0120_Page 102
	0121_Page 103
	0122_Page 104
	0123_Page 105
	0124_Page 106
	0125_Page 107
	0126_Page 108
	0127_Page 109
	0128_Page 110
	0129_Page 111
	0130_Page 112
	0131_Page 113
	0132_Page 114
	0133_Page 115
	0134_Page 116
	0135_Page 117
	0136_Page 118
	0137_Page 119
	0138_Page 120
	0139_Page 121
	0140_Page 122
	0141_Page 123
	0142_Page 124
	0143_Page 125
	0144_Page 126
	0145_Page 127
	0146_Page 128
	0147_Page 129
	0148_Page 130
	0149_Page 131
	0150_Page 132
	0151_Page 133
	0152_Page 134
	0153_Page 135
	0154_Page 136
	0155_Page 137
	0156_Page 138
	0157_Page 139
	0158_Page 140
	0159_Page 141
	0160_Page 142
	0161_Page 143
	0162_Page 144
	0163_Page 145
	0164_Page 146
	0165_Page 147
	0166_Page 148
	0167_Page 149
	0168_Page 150
	0169_Page 151
	0170_Page 152
	0171_Page 153
	0172_Page 154
	0173_Page 155
	0174_Page 156
	0175_Page 157
	0176_Page 158
	0177_Page 159
	0178_Page 160
	0179_Page 161
	0180_Page 162
	0181_Page 163
	0182_Page 164
	0183_Page 165
	0184_Page 166
	0185_Page 167
	0186_Page 168
	0187_Page 169
	0188_Page 170
	0189_Page 171
	0190_Page 172
	0191_Page 173
	0192_Page 174
	0193_Page 175
	0194_Page 176
	0195_Page 177
	0196_Page 178
	0197_Page 179
	0198_Page 180
	0199_Page 181
	0200_Page 182
	0201_Page 183
	0202_Page 184
	0203_Page 185
	0204_Page 186
	0205_Page 187
	0206_Page 188
	0207_Page 189
	0208_Blank Page
	0209_Blank Page
	0210_Inside Back Cover
	0211_Back Cover

