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Abstract

Water quality monitoring is one of the corn er stones of wate r resourc es management.

Monitoring water quality using a Rea l Time Water Quality (RTWQ) monitoring

approach provides high tem poral resolu tion measurements. whil e monitorin g throu gh the

usc of sate llite imagery produced high spatial resolution maps for the monitored water

parameters. By combining approaches, RTWQ and satellite, high temporal and spatial

resolution products can be obtained. The integration was done through developing

statistical relationships between the extractcd rcflcctances from the satellite imagery and

mcasurcd real timc waterqualityp arameters in thc lield.

Lake Manzalah. uhe largest of the northern lakes in Egypt, was used as a case study for

the proposed combined approach. The water quality parameters investigated were

Tu rbidi ty (TU R), Chlorophyll-a (Cl IL), and Tot al Disso lved Solid (TDS) . Tbe results

showed that there were statistically significant regression relationships between the

satellite reflectance and the measured water quality parameters with r2 = 0.77, n= 34;

0.65, n= 33; and 0.60, n= 56 for TUR, CIIL, and TDS model s, respectively. Tbe

corresponding Nash-Sutcl iffe eoe fficients were O.76,O. 64, and 0.6 1 for TUR, C1IL, and

TDS models, respectively. The results indicate the viab ility of using satellite reflectances

to infer the state of the water qual ity in Lake Manzalah. The relationship between RTWQ

measurem ents and satellite observa tions were subseque ntly used tog enerate other useful

quantitative water quality products. This research has the potential for application to

other large water bodies in New foundland and Labrado r and intem auo nal ly.
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1. Introduction

Thi s chapt er br iefly introduce s the back ground of the propo sed rcsearcb. the rcasons why

there is a need for new research . and the o bj ectives o f the thesis .

1.1. Back grou nd

Tradit ional ly, water q ua lity moni toring of lakes has two principal stages: field sampling

and laboratory ana lys is. Fie ld sampling co nsists of taking a representat ive port ion of

\..n tcr from predefi ned locatio ns ora water body and subseq uently tran sportin g the

collected samples to the laboratory. In the laboratory, the water samples arc analyzed

using a wid e var iety of phys ical and chem ical analyt ica l techniqu es. to quantify the

concentration of vari ous co nst ituent s in the water sa mple.

One of the d isadva ntage s of this tradi tiona l approac h to monitor wate r qualit y has bee n

the difficu lty of co llect ing sufficient samples to capture the temp oral var iat ion of the

water qual ity parameter s in the water bod y bc ing sampled. Thi s has especi ally been an

issue when the water bod y bein g sa mpled is s ituated far from the water qua lity ana lysis

laboratory.

In recent year s, d igital sensors have been develope d to mon itor some of the water quality

para meters. T hese sensors ca n add ress the cha llen ge of captur ing the tempora l variation

ofmeasuredwaterquality paramcters astheyc anbedeployedinthclieldfor a sufficient

longtime . The pair ing of the se sensors with digital reco rd ing and control de vices like

data logger s allows for mea surement s to be taken at pre-pro gramm ed time interv als. The

further pair ing of the data loggers wit h remote communication dev ices such as phone



mode ms and ce ll phone modems offe rs the option of transferring the stored data from the

field to the oflice in rea l time. This combination of in situ monitoring coupled with real

time report ing is usually referred to as rea l-time water quality (RT \VQ) monitoring.

RTWQ monit ori ng is used in conju nction with tradit ional water qua lity monito ring to

provide a more exten sive character izati on ofa water body.

In the specific case of sampling large lakes, anot hcrd iflicu lty ist he ab ility to sample the

difTerent areas oft he lake simliltaneolis ly. This is espec ially so for lakes with islands and

aquatic growt h which result s in different wate r quality zones within the same lake.

Examples of such large lakes can be found a li over the world suchas theperialpine lakes

of Europe, the Laurentian Lakes and Great Lake s in North Americ a, and Lake Victori a in

Ta ble I summarizes the location and surface areas of some large lakes aro und the world.

I lcrdcndorf (1982) providcsmorcd clails ofl hc lakcsl istcd . Stud ics carricd out in these

lakes arc based on ded icated field trips for a limited period of time. Hence detecting

seasonal or long term trend s in water quality in these lakes are not poss ible.

Large lake s arc a preciou s resource in every pan of the world . Many civilizat ions have

sprung up aro und largel akes. This is particularly true especia lly in Egypt a long with the

Nile River. The y are a source of fresh water foragricultura l, do mcstic, industri alv aqua-

cultural, and recreational uses. One such large lake is Lake Manza lah. lt ist he largcstof

Egypt' s northern lakes. Lake Manzala h cover s an approximate area of770 Km2 and has

approximate ly a 1000 small islands scattered in the lake, repre sentin g about 9% of the



Table I: Examples of large lakes

Lake Location Sur face Area km
Lake Superior Canad a,U.S., North Amer iea. 82, 100

Lake Victoria Kenya, Tan zania. Uganda, Africa. 62,940

Lake Huron Canada,U.S., North America . 59,500

Lake Michi gan Canada.lf .S; North America 57,750

Lake Erie Canada .U.S.• North Amer ica. 25,657

Lake Onta rio Canada .U.S., North America. 19,000

Lake Nasse r Egy pt.Africa , 6000'

Lake Okeechobee U.S., North America. 1,730 '

Lake Constance Germany-Sw itze rland-Austr ia, Euro pe. 540'

Lake Manzalah Egypt,Africa . 1275.

LakeEI-Bu rrullus Egypt,Africa. 568 .

'H erdendor f ( 1982) . Za lat and V,ldary (2005) Ebaid and lsmail I'ZulO)

The curren t water q ua lity mo nito ring system in Lake Manzala h rel ies on the tradi tional

wa ter quality monitoring method described earlier located at dra inage channels leading

into the lake. Although this monitoring system can capture the changcs in water quality

of the catchment s leadin g to the lake, this system does notprovide a clear picturc abou t

the temporaland spatial variation of lake water qualit y. This in turn does not lead to

elTcctive decision making by authorities responsible for managing a wide variety of

The installation of RTWQ monitoring stations in different parts of the lakes can only

partially add ress this spatial coverage problem as the in-situ readings are usua lly

repre sentative of only a small area around the sensor. The diffi cult y of spatial coverage

can however bc addressed using a satellite-based waterqua litym onitoringapproach.



Space based satellites have been used for the monitoring of some water quality

surface temperature (Doerff er £'1ul., I ~~~ I . In me iast two aecaac s, InC CIIon nas ocen

the U.S., and Cana da (Gonse lal., 2008), Lakes Constance in Europc fOdcrmau er c f,

Thisisdone lhroughdeveloping stalistical relalionships

reflcctances from the satellite images and in-situ measured parame ters.

To produce quantitative estimates of water quality, the satellite

calibrated with in-situ water quality readings from different

di fferent parts of the lake. By combining the RTWQ monitoring and sate llite water

spatial variat ion of water quality parameters.



1.2. Research Objective s

The ma in objec tive or the research is to eva luate the feasib ility of developi ng a high

spatial and tempora l freque ncy lake water quali ty mon itor ing system for selected

param eter s thro ugh the integrat ion of space satellite imagery with a rea l time water

qua lity (RT \VQ) moni tor ing system. The study area selected for this case study is Lake

Man zalah, Egypt and the water qualit y param eters being investi gated arc Turbidit y

(TUR), Chlorophyll-a (C HL), and Tot al Dissolved Solids (TDS )

Th is research examines the feasibili ty o f using statistica l regression models to describe

the relationship ben veen the extracted re flectance from satellite imager y and speci fic

water quality parameters measured at RTWQ monitoring stations in Lake Manzalah,

Egy pt.

This researc h has potentia l applications fort hemon itoringofother large lakes around the

wor ld. inc luding large water bodies in Newfoundland and Labrador.

Th is thesis contains six chapters and seven appendices. Chapter lbriellyintroducest hc

back ground of the rcsearch,the need for new rcsearch,and the object ives of the thcsis.

Chaptcr2 is devoted to the reviewo f prcv ious literature onwaterq uality monitor inga nd

the historical bac kground of thc technologies used to monitor water qua lity. Chapter 3

describes the case study area whic h is Lake Man zalah, Egypt. Chapter 4 outlines the

methodology that was followed in this researc h. Chapter 5 presents the results and a lso

provides samples of final water quality products in terms of co lored images of lake water



qua lity. Chapte r 6 contain s the discussion abo ut the resu lts obta ined,andtheconclu sions



2. Lit erature Re view

Thi s chap ter prov ides background information about the di fferen t met hods o f water

qual ity monit orin g and the effec t o f adva nced applica tions of comm unication and sensor

techn o logies in the last fcw dccadcso nwatcr q ua lity mo nitor illg methods; and the usc of

rem ote sensing based on satellite imagery for water quality monitori ng.

2.1. Wa ter Qua lity Monit orin g

Fresh water is essent ial for human ac tiv ities such as agr iculture. industry, and d rinking.

Water q ua lity is the key facto r for deci d ing if the wate r is suitable for use in these

act ivities . In pa rticula r, human health is d irectl y related to the water quality conditions as

evide nce d by the numbe r of peo ple suffering from water-borne di seases (WHO, 1980,

While water qual ity influ ences human health, human acti vities, in for ms of point or non-

po int po llut ion , human activities also impact water qual ity (Smith, 2002) . It was

Phosphor us and 304 ,OOOt onnes of itrogen into Canadi an fresh, groun d , and coaslal

waters in 1996 . Of these, municipal sewage rep resents 26 % and 47 %. respec tive ly, o f

added N itrogen and Phosphorus. and indu str ial was te water percentage of the tota l

Nitroge n and Phosphorus were 4 % and 17%, respective ly, (Ch amb ers et 01.,2 00 1).

The nutri ent enr ichmc nt th rough the add ition of Nitrites and Phosphoru s into inland

waters. such as a lake or a reservo ir, resu lts in eutrophica tion of the water. Eutrophication

lead s to a co ns iderable increase in the algae load in the water system wh ich cause s



serious water quality problems such as tox ic alga l blooms, losso fo xygen , fish kills, loss

of biodiver sity (includ ing spec ies important for commerce and recreat ion), loss of aquatic

plant beds and coral reefs. Nutrient enrichment seriously degrades aquatic ecosystem s

and impairs the use of water for drinkin g, industry, agriculture. recreation , and other

purposcs (Carpcnlcr el ul ., 1998).

In order to define the qua lity \vater body fora give n use, sufficient data abou t the main

water constituents must be collected and studied. Collected water quality data must be

re liab le as they also arc esse ntial for decision maker s ina number 0 f areas, such as poliey

plannin g, program plannin g, and the gene ral assessment of the water bodies as a valuable

resource (Phillip s et al., 1974).

Water quality data col lectio n is typica lly accomplished through a wate r quality

monitoring program. Water qual ity mon itoring program consists of co llecting water

samples that spatially and temporally represent the water body being monitored. These

samples are analyzed for selected phys ica l, chemica l and biological paramete rs that arc

relevant to the intended use of the water or for under standing the state of the water body' s

quality .

Se lected parameters are then compared to standards and guide lines to decide if the

sampled wate r body is suitable for a partic ular use such as drinkin g, agriculture etc. The

aim of monitor ing may also extend to estab lishing trend s for the measured parameters

(Bartram et al., 1996; Cha pman, 1996; USGS. 2010) .

Tradi tiona lly, the water sampled from the field is analyzed in the laboratory under

contro lled enviro nments. Due to recent advance s of sensor and com puter technologies,



some of the water qua lity parameter s can now be sampled and analyzed automatic ally in

situ in the field . Thecollecteddatacanthenbeobtainedcithermanuallyo ri tc anbe sent

to the office remotely by wired or wireless network. More rece ntly. satellite technology

has been used to monitor some of the water quality parameters.

From a water qualit y monitoring point of view , one challenge of water sampling is to

increase the frequency of the collected samples to capture the change of measured water

constitue nts in small time intervaJ. Anot her challen ge is to coverthe whole surface area

of the water body to determine the distribut ion pattern of the measured water

const ituent s. The spatial coverage is more challenging for large lakes and reservoir s as it

requ ires a large numbe r of stations to comp letely cover the surface area

There are a lot of important water quality parameters mon itored to assess the water

qua lity. These paramctcrscan be classified into three main categories physical. chemical.

and biological para meters (Chapman, 1996, EPA, 200 1, Environment Canada, 20 11).

Tab le 2 lists the common water quality monitored parameter s.

Table 2 Important water quality monito ring paramete rs

Water temperature
I pI!

Physical paramete rs I Specific conductance

I urbidity

Chemica l parameters

Il vdrocarbons
Pestic ides

Biological parameters
: hemical zen demand CO D

Bioloaical Dxvec n dc mand BO D



Three important water parameters that are widely mon itored in largc lakcs to assess the

wate r quality status are: turbidity, total dissolved solids, and chloro phy ll a. ln the next

few sections, backgrou nd information as well as the standard method s of measuring of

thesep arametcr s areprcsented .

Turb idily (TUR) is the presence of suspended matte rs in the water when it looks hazy and

c loudy. The suspended matter that causes the turbidit y could beclay,silt,sand,o rganic,

inorganic partic les, and other microscopic organis ms (Dow ing, 2005). Tu rbidity is

measured opt ical ly by a turbidity mete r in nephelomctr ictu rbidity linit [NTU] . Standard

method s calcul ate the turb idity by measurin g the amount of light that is scattered at 90

dcgreesb ythe sampJe (AIVWA ,1 995).

Thc angul ardistributionof scattcr ed light depend s on the fluid rcfrac tiveindice s and

wavelen gth of the light as we ll as the part icles ' size. Small part icles (the diameter of the

part icle is aro und 1/I Oof the light wave length) scatter the light forward and backwar dat

the same amount, while the intermediate size particl es (the diamet er of the partic le is

around 1/4 o f the light wave length) scatter the light in the forward direct ion. The

part icles which have dia meters bigger than the wavelength of the light nearly scatter the

light forward in a cone shape (Dewing. 2005). As a result , the measurement of the

turbidit y is associated with variability. In another words, two samples of water with

different suspended matte rs might have same turbidit y measureme nt. On the other hand,

the same sample of water might have different readin gs of turbid ity by difTerent turbidit y

meter s (Purrington, 2010).

EPA 180.1 ls a standard method for measurin g low turb idity samples developed by U.S.

Environmenta l Protect ion Age ncy (EPA) . Thi s met hod requires a turbid imeter with a



Figure I : EPA Method 180 .1 for measur ing turb idity (Dow ing, 2005)

Th e standard ISO 7027 method is developed by the Intern ational Standards Organization

(ISO) . ISO 7027 requir es an 860 Nanometer Infrared laser d iodc as light source. The

detector acceptance angle is 20·30" and must be oriented at 90 ± 2.5° (see Figure 2). In

the case that the sample turbid ity is more than 40 NTU , sample dilution is also requi red



(Dowing,2 005). Based on the previous review of both methods, the closer method to the

standard methods is ISO 7027 (AWWA, 1995). Some turbidity meters that are

commercially available along with their range and measurement method arc listed in

Figure 2: ISO 7027 design for measuring turbidity (Dewing, 2005 )



Table 3: Comm ercially available turbidimete rs. range. and method(Dowing. 2005)

Manufacturer Model Range [NTU] Measurement
Method

Haeh Com an 2 100P 2000 EPA 180.1
HANNA Instruments C I02 50 EPA 180. 1
ll F Se ientifiel ne. DRT-15CE 1000 EPA 180.1
Lamotte 2020 1100 EPA 180.1
Hvdrol.ab lnc, DataSonde4 3000 ISO 7027
IIANNAl nstruments 11193703 1000 ISO 7027
WlWMeasurement s s. lne. Tu rb 350 lR 1100 ISO 7027
YSl lne. YS16136 1000 ISO 7027

Total dissolved solids (TDS) represent the total weight of the dissolved malter that is

bases, sa lt. and certain gases such as carbon dioxide. hydrogen chloride and ammonia.

(AIVIVA, 1995; Dow ing, 2005) and are measured in rng/L (milligram s per one liter) or

they can be expressed as ppm (part per million). The EPA limit for permiss ible TDS in

drinking water is 500 mg/L (EPA, 20 10). The eoneentrat ion ofTDSeanbeapproximated

bymeasuring thec onductivityof the water sample.Co nductivity measurement s arc then

eonverted to TDS eone entra tions( Purrington. 2010). The standard method for measur ing

TDS iS IO filter the sample through a glass fiber filter, the filtrate is then evaporateduntil

dryness in a weighted dish at 1800 C. The increase in dish weight is the TDS

eoneenlrat ion(AWWA , 1995)

Chlorophyll a (C1IL) is an indieator of the presenee of the a lgae and aquatie plants.

Algae are the outcome of the w ater quality deterioration as it is results from the

eutrophication process (Carpenter et 0/.• 1998). The standard method that is used to

measure CIlL in water and wastewater consists of filtrating the sampled water at low

vacuum through a glass fiber filter; the pigments are then extracted from the



phytoplankton and centrifuged . The centrifuged sample is transferred to a glass cuvette

and fluorescence is measured before and after acidification, the CHL can then be

calculated. The concentration is reported in ~Ig/L, micrograms per one liter. (Arar and

Collins. 1997).

In the next few sections, the methods of monito ring water bodies are rev iewed. These

rncthods includc:l aboratory-bascd, scnsor-bascd. and satell ite bascd mcthods.

2.1.1 T radit ional wat er qua lity monito rin g,meth od (Labor at ory<based]

Water qualit y moni toring programs started in the 1960s and 1970s. At that time , the

water quality programs were deve loped to describe the general state of the water bodies '

quality (Strobl and Robillard, 2006). The para meters under investigation were few and

the frequency of sampling was 12- 13 times a yea r. Later in the 1980s, collected water

parameters increa sed dramat ically to reach more than 100 (Wete ring et ol., 1986).

Traditionally, water qua lity monitoring programs had been conducted using a costly,

time-consuming, and labor-intensive in-situ sampling and data co llectio n process with

subsequent transport of the collected samples to laboratories for eva luation (Glasgowet

aI., 2004 ). The typ ical sequence of steps for the traditional method of wate r qualit y

monitoring begins with sampling the water from selected points throughout the water

body. In case of large surface water body such as lakes. reservoirs and coastal zones. the

selected points should represent the whole area under consideration in terms of spatial

distribution to ensure adequate spatial coverage. Then the samples are transported

direct ly to the laboratory. In case. the laboratory is faraway from the site. the collected



samples are preserved. using a variety of methods. to keep changes of the sample

prope rties at a minimum . In the laboratory, the sample is analyzed using standardized

methods 10 measu re water parameler s (A WWA, 1995). The analyzed data are then

compared to standards based on the intended usc of the water and reported to decision

makers to take approp riate informed dec isions.

Conventional water qual ity moni toring methods allows deci sion maker s and scientists to

observe a large num ber of parameters in the same monitorin g program because there is

no limitation on the num ber of observed paramete rs except the tota I cost of sampling and

laboratory tcsts Il.e ttenmaie r. 1978) and the laboratory capac ity (Wetering el al., 1986).

In addition. the information that co mes out from laboratory-based wate r quality

monitoring programs is accurate and reliable (Kloiber e/al. , 2002 ;ll ierman el al ., 201 I ).

Although the trad itional method of water quality monitor ing can add ress a large number

of parameters in the same sampling process, it has many disadvantages. Some o f these

disadvantages includes: the high cost of the water qual ity monitorin gprocess, laboratory

limitat ions in terms of the ability of analyzing a large number o f samples at the same

time, changing measur ing standards over time and from country to country. poor

temporal reso lution in the best case scenario, and the dependencyo f the spatia l coverage

on the number and the distr ibut ion o f sampling points. Details of these shortcomings as

publi shed in the literature will be elaborated in the nexts ections.

The cost of the monitori ng process includes the cap ital cost of establ ishing permanent

sampling points in the selected sampling locatio ns in addi tion to the operational cost of

collectin g and analyzing the samples (Karamouz et ul., 2006). The operational cost



consists of the cost of collectin g and transport ing the water samples, which require s a

largegroupofdedicatedworkers.c hemical ana lysisand repol1ingt he results (Phill ips et

al ., 1974).The percentageofthechem icala nalysiscost isaround 700/0of the tota l water

quality monitor ing progra m cost (Wetering et al.. 1986). As a result. the cost of the

monitor ing program restricts the selection of sampling frequencies and sample station

densities (Let tcn maic r, 1978)

In case of long-term water quality monitoring programs. the observed parameter s can be

divided into two groups. One group of parame ters is monit ored continuou sIy on a da ily

basis, while the second group is monitored in pre-defined interval s such as biweekly or

monthly . The laboratory capacity plays an important ro le in decidin g which parame ters

will be included in routi ne monitoring and which parameters wi ll be included in period ic

monitoring, as the optimal use of the available laboratory capacity is always a

prerequ isite (Weterin g et al., 1986)

The standard met hods of ana lyzing the wate r samples difTer from country to country and

from time to time (Kwiatkow sk i, 1985; Gree nberg et ul., 1995). As a result, the

compari son and the establi shment of trend s using these data is invalid in case that the

historicaldataw asmeasuredbyadifTerentmeth od (Lcttenmai er,1978).

The laborato ry-based mon itoring method ' s shortcomings also inc lude the time gap

between tak ing the water sample s and obtaini ng the results from thc laboratory analysis

due to the tests running time which may take up toa few days. This de lay can lead to

consequences that may affect the deci sion on human health . Whcn human health is a

concern , immed iate informat ion is crit ical (Vernon and Stack , 1972; Christensen et ul.,



Bec ause of the relat ion ship between the water qualit y status and the human health , the

rapid response is requ ired especia lly in case of detecti ng any wate r qua lity

co ntam inatio ns o r e lse hu man healt h will be put at risk (EPA , 2005). The effec t of the

mit igat ion process depend s on the time between the occurrence of the cont ami nation and

the detecti on and ident ification of the cont am inant s which is called the respon se time .

The res ponse time depend s mainl y on the time between the sa mplinga nd the reportin g of

the resu lts of the laboratory analy sis. The time betwee n occ urrence of contamination

andreportingi ntwo hou rsorlessi sconside redtobea rapid response time (EPA . 2005) .

Th is timc may be influen ced by the tech nolo g ies used in sa mpling and the o verall

approac h to ident ification of the cont am inant. Due to the longtime requ ired to analyze

and report the ana lyzed result s which can take up to several da ys, the traditi onal meth od

of wa ter qua lity mo nito ring can not be con sidered as a rapid respo nse time method .

Tradit ional wa ter qua lity moni tori ng has s ignificant limitations from the perspect ive of

temporal and spatial reso lutions. In the best cas e scenario, the sa mples are taken on a

dail y basis which is not satisfac to ry in term s of unde rstand ing the behavior of water

properti es (Bourgeois et al., 200 1). Thi s meth od can not detect ch ange s and trend s of

cr itical water paramete rs in a peri od of time less than 24 hour s. As an exampl e. pl l ma y

cha nge significantly ina matter of min utes throu gh losing or ga ining of di sso lved gases

(Phil lips et al., 1974).

In add itio n to the tem poral lim itat ion s, the result s o f the laboratory-based water qual ity

mon itorin g meth od are lim ited in desc ribing the sampled wat er bod y in term s of spatial

coverage as it is based on point -sampl es (Biermane/al.,20 11). This spatial limitati on



become s a ser ious problem in cases of monitori ng water bodie s that have a huge sur face

area such a large lake or reservoir .

The limitation in temporal and spatial sca les and reportin g in reaI time . especi ally fora

large lake or reservoir case, make it hard to address certain serious problems such as

harmful algal bloom s, oxygen depletion , fish-kills, and contaminat ion of shellfish beds by

enteric bacteri a (Glasgo we r al., 2004).

Since the late 1960s a monit or ing program has been imp lemented mainly using the

laboratory-based method monitorin g program to monitor the water qualit y status and

trend s in l.ake Onta rio. Kwiatkow ski (1985) conc luded that the main reasons for limited

water qual ity information from the monitoring prog ram ru e:

• Water record s are often short in time and the measurcment s v.....ere not taken

simultaneously in all sampling locations.

• The sampling frequency was on ly 13-15 times per year .

• The tech niques and limitations of ana lytica l methods that have been used in

monitorin g in the program have changed over the years.

• Sampl ing location s and the frequency have changed betvveen the years due to

• Thenaturalbackgroundvariability oltenhidesthetruewaterqualitytrend .



Therefo re. for cases of large lakes such as Lake Manzalah and Lake Omario .fhc expcn sc.

time, and sampling frequency make the traditional way of wate r qua lity mon itoring

impractica l to be applied 10 such large area s (Kloiber et ul., 2002) .

From the above rev iew, the need for rapid. frequent analysis of water quality is qu ite

clear. The next sections discuss new technologies that have bccn dcvclo ped in the water

quality mon itor ing area to improve upon the tradit ional water quality mon itori ngm cthod.

2.1.2 Sensor-hased wa te r (l u a l i tJ mo ll i tori ll ~

Recent advances in sensor technology along with the rapid advances in compute r

processing capabilities have made digita l sensors capab le of measuring a large number of

water qual ity const ituents simultaneously (Brignell, 1996; Glasgow et ul.,2004) . Thi s

sectio n presents overv iew of sensor-based water quality mon itoring method in the

published literature.

A sensor is a dev ice that contains a primary sensing clement, filter ing systcm, and signal

amplification. in addi tion to software for data processing and compensation . The sensor

element transfe rs the physical or chemica l or bio logica l property into an electrica l signal.

The signal is processed into engineerin g value s such as mgL-I or NTU (Tanner and

White, 1996; Chare f et ul. , 2000 ; Jcr'onimo et ul. , 2007) . There are three typcs o f scnsors

that can be used in water quality mon itoring proce ss: optica l sensors, biosensors, and

sensor arrays (Bourgeoi s et al.• 2001) .

An optica l senso r is a sensor in which electro magne tic radia tion is used in sensing the

chemical and physical propert ies of the surrounding environment such as water. air etc.

The principles that can be used in sensing and quantifying the measurements arc:

absorbance. reflecta nce, luminescence. ~)J1d fluorescence. The spectra l range used in



different optica l sensors covers UV, visible, IR, and NIR spectra (Jer'o nimo elal., 2007) .

The optical sensor can be a direct sensor (i.c. the senso r's com pone nts are located at the

se ns ing point) or attached with an o ptica l fibcrto tran smit th e el ec tro m a gnc ti c radimions

to/from the sensed point (Kersey , 1996; Gau glitz, 2005) . Figure 3 shows a layout of a

direct optical sensor, while Figure 4 depict s a layout of a fiber opticalsc nsor.

~ Len s Ligh t Dete ct or

® I ~m~"~~0~IDOD~_

Figure 3: Direct optical sensor layout (Hanna , 20 10)

Excitat iDnF ilter Llqht Sourc e

Probe Head

r--
Figure 4: Fiber optical sensor layout (MacCraith et al, 1994; and Grattan , 1997)



Some o f the paramete rs that can be measured using the optical sensors are: turbidity, pl l.

ionic spec ies such as AI. Bi, Cuvand Cd. gases, Oxygen, Ca rbon ox ide and Hydrogen

(Kersey, 1996 Jeronirno et al., 2007; Liu, 2009; Purr ington, 2010) . The applicatio ns o f

optica l sensors include wate r qualit y monitoring, and monito ring in the chemical and

The bio-sensor is a sensor that has a biological sensing eleme nt such as enzy mes.

antibodies, and microbia! cell s (bacte ria or yeast that are genet !ca lly modi fied). Examples

of the con taminants that can be monitored using bio-sensors are: pesticides , herbicides ,

penicillin, phenol , mycotoxins, antibiotics and other chemical contam inants. It is also

used to measure some water quality paramet ers such as BOD, COD, and DO (Patel,

2002). The applications of bio-scnsors can be used in many areas such as

pharmaceutical, food quality and food security indu stries, as well as water and

wastew ater qua lity monitoring and environmenta l agencie s. The limits of the bio-sensor

need to be improved in order to compe te with other methods ofwater qual ity mon itoring.

Improvement is requir ed in areas such as '

• Improving the sensor ' s sensitivity

• Reduci ngt he sensor' s responset ime

• The spec ificity of the bio-sensor which is dependent on the sensing c lement

(Bourgeo is et aI., 2001; Patcl, 2002; \Vilson, 2005).

The third typeofsensors that canbeusedin \'vaterquality monitoring is thesensora rray.

Thesenso rarrayisagroupo fb io-o roptica l-sensoTS\vhich analyzes the response pattern

by a pattern recognition routine or chemome trica l method (Krantz-Rulcker, 200 1).

Examples of the senso r arrays that can be used in detecting contam inants in the wate r arc



the electronic noses and c1ectronic tongues. The electronic nose is used to monitor the

pollu tants in the gaseou s state . (i .e, the electron ic nose is more applicable for volatile and

odorou s compou nds) while the electronic tongue is used to mon itor thc pollutantsinthe

liquid statc(Dewcttinck, 200 1). The main difTerenc e between the sensor array and other

sensors is the measuring concept. The co ncept of electronic nosc and tonguc oftcn prcdict

a quality ofa sample rather than measuring exa ct values of the individual parameters

Only in spec ial cases the co ncentrations of ind ividual parameter arc measured in the

sample (Krantz-Ru lckc r, 2001).

The elec tronic tongue and noses are used in the food and bever age industr ies in addition

to quality control and classifications of water , food and a ir. It is also reponed that the

electr ical nose and tongue are used to monitor wastewaters qual ity as well as the

detection and identification of micro-o rganisms (Ga rdne r and B'1rtlett, 1992;110bbs et al.•

1995; Gibso n et al., 1997; Misselbrook et a l., 1997; Gard ner et al.. 1998; Holmbcrg er

ul., 1998; Dewctt inck, 200 1). Sensor arrays have been success fully employed for

detect ing cyanobac teria in water as well as heavy meta ls and pesticide s (Canhoto and

Megan. 2005; Bastos and Maga n. 2006).

Based on the previous overview . the recent advances in sensor teehnology have resulted

in robust. versatile , speed-response device s that can measure a wide range o f

environmenta l parame ters at different sites in a locality (M irncndia, 20 10). There are

many rewa rds that can be gained from using the sensor- based method for monitori ng

water quality. Some of these rewards are: the automation of operation, the high temporal

resolut ion of the measurements, the minimum expos ure to wet chemicals, a short

response time, and the possibility to be paired with communication tools to report the



measurement s in real-time . The advant ages of the sensor based monitorin g method are

Sensor-based water qual ity monitoring prog rams are designed to be automatica lly

operated and to take readin gs continu ously at user-defined intervals such as 10, 15, 30

minut es or more . As a result , a stream of data flows describin g the changes of water

propertie s in high temporal resoluti on can be achieved (Phillips et al., 1974).

Usage of the senso r-based monitoring method avo ids worker s ' direct exposure to wet

chem icals in the monitoring process. Sensor-based wate r quality monitorin g methods are

measuring water quality con stituents based on the optical , chemical , and physical

prope rties of the water to estimate the water parameter s. The usageofwetchemical si s

confincdonlytothccalibrat ion proccssofthc scnsors(Phi llipse t al., 1974; Charc f et al.,

Unlike the traditi onal way of water quality monitoring, which requ ires collectin g samples

manually from the site, the sensors are sited in-situ and samples are taken auto matically

at short timc interva ls. The se short intervals a llow the trcndsand changes in cr itical water

paramet ers to be detected ear ly. As a resu lt,appropriate act ion can be taken qu ickly to

preventundesirableconsequence s\vhich canhappen ifthedecision is taken too late

(Glasgowe t al., 2004).

It is also possible to monitor more than one parameter at the same time using a multi -

parameter senso r probe . EPA (2005) reported that there are sensor-based water quality

monitoring systems that can monitor up to eight parameter s at the same time . In additi on,



the process o f sa mp ling and measuring are con ducted auto matica lly regard less o f the time

gap between sampling and ana lyz ing the sa mp les

the offi cc in real tim e (G lasgowelal. , 2004).

water quality monitoring methods to become automated rem ot: monit orin g systems,

Therefore, the ability of monitoring water quality properties at

Glasgow ct al., 200 4; EPA, 2005).

traditional water quality monitoring, it ca nnot entire lv rcnlace th" trad ition a

sensor-based water quality method can only measure some of the



In addition, the sensors need to be calibrat ed frequent ly to cnsurc sensc r uccuracy.

Moreover, there arc uncertainties associate d with sensor measurements as they vary from

sensor to sensor and from manufacture r to manufacturer. For examp le, DO sensors

genera lly have 15-20% uncerta inty in the result s (Bourgeo is etal .. 200 1).

Despite the high temporal resolution and in-situ deployment, a sensor-based water quality

monitoring method is still a point measurement method ,vhich means that it is poor in

terms of spatial representation of' a large water body. Lakes or coastal areas require a

large numbe r of sensor-based stations in order to completely cover the study area

spatially.

Based on the previous discussion. it is obvious that there is 3 need for a sys tem that can

gather the high tempora l measurements along with a high spatial coverage. Satellite-

based wate r quality mon itoring method can provide the spatial dimension for the

mon itoring system. An ove rview of the sate llite based water quality monitoring system is

thus presented in the next section.

2.1.3 Sa tel li t e- ba sed ",a t cr (I Ua li t)' mon i to ri n~

The need for a method that prov ides high spatial resolution measurements to mon itor a

water quality is concluded from the literature review in the previous sections. Sate llites

can be used to close the gap of spatial coverage in monitoring methods. The overview

here in consists ofa br ief review of remote sensing followed by a discussion of the role o f

satellite sensors in mon itorin g water quality as well as the dilTerent methodsofextracting

water qual ity information from the satellite data.



Rcmotc scnsing is thc sc ience which dea ls with acquiring inform ation about the Earth's

surfacc rcmotcly without a direct contact (Colwell, 1983). The concept of th is science is

built on collect ing images of the Earth's sur face using sensors. The remote sensor can be

carr ied by two di tTercnt platforms: airplancsandsatcllitcs. In this thcsis the focus wil l be

on satellite-based rcmote scnsing. Thc collect cd imagery is then ana lyzed using a v..'ide

range of techniq ues to extract the use ful information. Aro und 7 1 % of the Earth's surface

is covcrcd by water which can bc found in oceans, scas, lakes, rivers, snow, and glaciers

(Chen and Yu, 2009). Since the late 19705, attention has been drawn to mon itoring

waters in ocean s and ope n seas using a dedicated satellite senso r.T he Coastal Zone Color

Scanner (CZCS) was designed for wate r-monitoring purposes and was launched mainly

to measure the water leaving reflectance to detect chlorophyll-a concentra tions in open

waters (Antoine er ul.. 1995; Longhurst e/ a l., 1995; Behrenfeldand Falkowski, 1997;

Gones,2 002)

2.1.3,1, \Va tc r q ua li ty mon it o ri J1~ sa tc lli tc scn so rs

CZC S was launehedaboard lheNimbus-7satelJite( 1978- 1986) (Doerfrer e/ al., 1999).

CZC Sg reatlye nlarged the infonna tiona bout the dislributionof ehlorophylJ(Ch l) a in the

oceans and open waters (Barale and Schlittenhardt, 1993; Hooker and MeClain , 2000).

CZC S provided lessons regarding the requ irements for calibra tion, validation, and

atmospher ic correction of the data (Hooker and McClain, 2000). The success of the

ClC S mission to retrieve the phytoplankton concentrations in occan s and open seas was

signi ficant. However , despite the name of the sensor , the algor ithm used to retrievc the

water prope rties in case of ocea n wate rs was not applicable to the case of coasta l zone

areas. The algorithm was also not applicable for inland waters such as large lakes and



reservoirs. The restrictions which limit the CZCS applications to open waters were

related to the differenc e in optical properties between the open and coas ta l watcrs zones

as well as the limitations in the spectral and radiometric resolutions of the CZCS

(Doerffer ela l., 1999). The spcctr al and rad iometr ic limitation s arc mainly attr ibutcd to

the lack of infrared bands whic h reflected in poor atmospher ic correction proccdures. As

a result, the accuracy of estimating inorganic or biogenic particulate material on thcw ater

was low (DoerlTer e/ al., 1999).

There are other sensors, such as the Advanced Very High Resolution Radiometer

(AVflRR ) on the ational Oceanic and Atmosphere Admini stration (NOAA) weather

sate llites and the Themat ic Mappcr (TM ) senso r on Land sat , that have been used for

some ocean color applications andestimating some water parameters like CHL a. butare

not optimized for water monitoring and have more limitations than Cl CS. The reason

was that their spectral bands, spatial resolut ion and dynamic range were optimized for

land c r mctcorologicnl usc and had limited sensitivity in this area (Doerffer elal.. 1999;

Ty ler et al ., 2006)

CZCS inspired a new generation of satellite sensors dedicated for environmental

monitorin g such as SEAWiFS and MOD IS. Under ASA ' s Earth Science Enterprise.

Sea-viewing Wide Field-of-view Sensor (SeaWiFS) was launched on August I. 1997.

The Earth Scie nce Enterprise is designed to monitor earth' s system and behav ior through

satellite imaging. SeaWiFS is one of the first dedicated instruments for environmental

studies espec ially forwater qua lityapplicalions(Fue/al.• 1996; Hookcr and McClain,

2000) .



The exper ience ga ined from the SeaWiFS mission and the conclusion drawn based on the

data extracted from its imaging have encourage NASA's technicians and scientists to

design and luneh EOS's MODe rate resolution Imaging Speetror ad iome ter (MOD IS)

instrument, as \,,'e11 as the National Polar-Or bit ing Environmental satellite System

(N POES), and the Visible/In frared Imager/Rad iometer Suite (VIIRS) (Hooker and

McCla in, 2000) .

In 1998, NASA launched the first EOS (Earth Observing Syste m) satellite (EOS AM-I)

with five sensors : MOD IS (Moder ate-re solution Imagi ng Speetrorad iomete r), ASTER

(Adva nced Space-borne The rmal Emissio n and Rellection Rad iome ter), CE RES (Clouds

and the Earth's Radiant Energy Sys tem), MOPITI (Measu rements of Polluti on in the

Trop osphere ), and MISR(Multi-angle lrnaging Spcct ro-Rad iorncter).

MODIS is a passive, imaging Spectroradiomcter.lthas 36 bands that cover visible and

infrared spectrum. Its swath is 2330 km cross track by 10 km along track at nadir. Its

spatial resoluti on varies from band to band . For examp le, 250 m (bands 1-2), 500 m

(bands 3-7) and 1000 m (bands 8-36). For temporal resoluti on , it covers the whole ea rth

in 1-2 days. So it has a high spat ial and temporal resolution (Morel,1998). MODIS has

been dedicated to provide high qua lity obs ervatio ns of land surfaces, atmosphere and

oeca ns(Yamaguchielul., 1998; Jacob ct al., 2004) .

In March 2002, the European Space Agency (ESA) launched ENVISAT, an advanced

polar-orbiting Earth observation satellite which provides measurements of the

atmosphere, ocean, land, and icc. MERIS (MEdium Resolution Imaging Spectrometer)

was one of the instruments which was on the ENVISAT spacecraft (Gaunter et al.. 2010).

MERIS spectralrange is 390-1040nmand hasbeendesignedtoacqu ire 15 bands (sec



Table 4).

The MERIS spectral range is restr icted to the visible and ncar -i nfrared part of the

spectrum. Tab le 5 shows a summary of the ocean color senso rs.

One or the main reasons for sclccting the bands centers is its sensitivity to the most

important op tically -act ive water constituent s. For exa mple .wave length -t12.5 is scnsitive

to co lored dissolved organic matter and det ritus which means it can be used (0 retrieve

data with ye llow substances, 442.5, 490, and 665 nm are sensit ive toe hlorophyll, 5 10a nd

620 nma resensitive to tllrbidity,5 10 nm isse nsitive to red lides,a nd 665, 681, and 709

nm are sensitive loe hlorophyli lluoreseenee (DoerfTcr el a l., 1999; Gauntcr er c /, 20 10).

Table 4: The MERIS spcctcral bandscen terao d width (Sch roedcr elal,2006)

Band Center om Band Width nm
4 12.5 10
442.5 10
490 10
5 10 10
560 10
620 10
665 10

681. 25 7.5
709 10

753.75 7.5
76 1 2.5
779 15
865 20
890 10
900 10



TableS: Summ ary of ocean color sensors

Sensor CZC S Sea WiFS MODI S MERIS

Platform (Sate llite) Nimhs-7 OrhView-2 EOS· AM I Envisat

Agenc y NASA NASA NASA ESA

Launched Octohcr- 78 August·97 1998 Mar-02

Ground resolution 825m 1.13 km I.Okm/250m 1.2km/300m

Global coverage 2 days 1·2 days 3 days

Waters which arc remotely sensed by sate llites have been c1assified into two types: Case

I and Case 2 wate rs (Morel and Prieur, 1977). By definiti on, Case I waters are those

waters whose optical properties depend mainly on the phytoplankton and related

particles. Case I waters arc represented in the ocean and open sea waters. The optical

properties of Case 2 waters are more complicated as they are not only dependcnto n the

phytoplankton. but also depend on factors such as inorganic matters. suspended solids.

and yellow substances. Case 2 waters are represented in the coastal zones and inland

water s, lakes and reservoirs (More l and Prieur 1977, Gordon and Morel 1983; Doerffer er

In addition to phytoplankton . the optical propert ies of Case I waters also depend on other

factors such as the bioiogicai debri s generated by graz ing. the natura l decay of

phytoplankton organisms, and disso lved orga nic matte r (yellow substances) which results

from biological particles. However, the contribution of these factors to the optical



properties of Case I waters is relat ively small and can bcconsidercdas a function of

phytop lankton concentration (Sathycndranath and Morel. 1983; IOCCG. 2000) . On the

othcr hand , the contribution of factors such as yellow substance and suspended matte rs in

Case 2 waters is significant and it is not related to the phytoplankton concentration.

Bccausc of this, thcscfactorsh avc tob ct reatedilldepcndently.

Figure 5 shows a triangular diagram to differentiate between Case I and ea se 2 waters

based on the concentrat ion of the phytop lankton (P), the yellow substance (Y). and

suspended matters (5) . The diagram was first presented by Prieur and Sathycndranath

(1981) ,and is now adopted by IOCCG (2000).

20 40 60 80
Suspended mater ial (% )

Figure S: A triangle diagram to classify the water into Cascl and Casc2 (I0CCG , 2000)



The procedure to classify a watcrb ody is by determining the concentrat ions of P, Y, and

S. For example, given the concentrati ons of P, S, and Yin a particu larpoint in a water

body arc 90%, 10 %, and 10%, respecti vcly,rrorn Figure 5, point A, this part or the

water body is classified as a Case I water. In ano ther case (see Figure S, point B), the

concentrat ionsof P,S.andY were 1O%,55%,and42%respect ively;theclass ification

for this point is a Case 2 water.

As shown in Figure 5, the optical properties of Case I waters arc dominated by the

presence of phytoplankton, but there is room for the presence of other const ituents. On

the other hand , the optica l properties or Cas e 2 wate rs arc affected by all three

parameters. Case 2 waters are also known as opt ically-co mplex waters due to the

cha llenge in differentiating between a ll the water cons tituents that affect the opt ical

properties of the water at the same time.

The algor ithm used to extract the waterco nstitucnts conccntrations in Case I waters is

based on the general principle that thc signal received by the satell itc sensor consists of

two main parts. The first part is the water-leaving reflectance and the other part is the

atmospheric contribulion lo the signal.The proced ureof remov ing the atmosp heric effect

relies on the signal from the Near Infra Red (N IR) bands. This procedure is based on the

assumption that the water-leaving rellcctance can almost beneglccted . This allows the

determination of' the atmospher ic contributions to the recorded signal. The vis ible portio n

of the spec trum is then corrected for the atmos pher ic effect. The \..-atcr leaving

rellecta nces are then ca1culated and used to extract the phytop lanktonconcentrat ionsof



The algorithms that have been used to extract the water' s con stituent s in Case I waters

assumc that the contribution ofs ubstancesothcr than phytoplankton is negligible. Thisis

one of the two main reasons why there is a need to develop algorithms that take into

consideration the presenc e of all substances that affect the opticaipropeni cs of Case 2

watcrs (IOCCG, 2000; Chen and Yu, 2009).

The other main reason for developing algor ithms for Case 2 waters is that the assumption

of almost negligible water-leaving reflectance in the NIR portion of the spectrum is

inaccurate. Thi s assumpt ion may work for Casc I water s but it is not true for Case 2

waters. Figure 6 shows the spectral signature o f Case I and Case 2 wate rs. Asa nexa mple,

the presence of ye llow substances as well assuspcnded matters can significantly a ffect

thc re flcctancc of the Nlk . This is beside thc fact that Case 2 waters arc mostly shallow.

which means there is a contribution in the reflectancc of NIR from the bed of thc water

body (Sch roedcr et al.. 2007; Chcn andYu , 2009)
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Figurc6 :Sp cctralSi gnaturc of Casc land Casc2w alers(D ocrlTcr et a/., 1999)

In order to determin e the optica l propert ies of the remote sensed water and the

concentrations of its constituent s. an atmos pheric correct ion procedure has to be

implemented to co rrect the atmos pheric influence on the measured reflectanccs. The

optica l-active water constituent s then can be ret rieved from the satellite imagery

(Docrffcr and Schi ller, 2008) . The atmospher ic correction proccd ure removes the effect s

that result from the inter actions between the recorded signa ls and the atmosphere. These

interactions can be in fOnTI S like scattering and abso rption . The atmospheric procedu re

also removes the ef fects of reflection at the water surface from the measured top-of-



atmos phere (TOA) radiances. As a result. accurate est imat ions of the optical-active water

paramet ers can be obtained from the remotely sensed images (Schroedcr el al., 2007).

The main idea behind the atmospheric correction is based on the assumpti on that the

ocea n co lor in the near-infrared (N IR) is black {i.e. the amou nt of retlected rad iations

from the ocea n surface is zero at NIR). As a resu lt, the algori thm of atmospheric

correct ion is to subtract the assumed, atmospheric signals from the tota l measured

reflectance at the TOA (Schroede r et 01., 2007; Gaunterel al., 20 10). Howev er, it has

been proven that this method leads to errors if thereareanyabsorbing ucroso ls in the

atmosphere (Go rdon, 1997; Bialcy and WerdeIJ, 2006; Gaunter et 01., 20 10) or over Case

2 waters, whe re suspended and yellow matter and high concentr ations of phytoplankton

ex ist. Yellow substance and suspended matters may generate a considera blc reflcctancc at

NIR region o f the spectrum (Dekke r et al., 1997; Lave nder et al., 2005; Mo rel and

Belanger, 2006 ; Gaunter et 01., 20 10)

For Case 2 water s, inland and coasta l waters, there are diffe rent techniques to remove the

atmospheric effec ts taking into consideration the presence of ye llow and suspended

matter s along with the phytopl ankton in the water such 3 S the approach presente d by Gao

et 01. (2007) . Thi s approach uses wavelen gths larger than 860 nm 10 implement the

atmosphericcorrcction, where the contribut ion of suspcnded matters is supposed tobca

minimum . Othe r approaches use comp lete visible and ncar- infrared (VNIR) range and

coupl ed atmosphericandbio-optica l irradiative transfer model s to retrieve the

atmospher ic and wate r co mponents by a multi-paramete r inversion model (Moore et al.,

1999; Gaunter efal., 2010) . Thi s inversion model can be carried out using either non-



linear optimization (Kuchinke et 01., 2009, or neural networks (NN) techniques

(Schroe der ela/., 2007) .

These method s are adequa te to handle the coup led watcr-at rnospheric radiat ive transfer

problems. However these models may be typically site-specific, i.c. these methods are

adequate onl y for the site whe re it is devel oped for. As the outputs of these model s are

depe ndent on input value s that applied to constrain the bio-optical model (Kuch inkeel

at., 2009 : Gaunterela/., 2010) .

Exa mples of the inversion-based models using NN techniques inatmospheric correction

are presentedi n Doe.'ffe ra ndS ehiller(2008).C2 R isa processor that has been developed

to retrieve casc-2w aters'p arametersu singr adiativet ransfer simulations to train a neural

network. The developed neural netwo rk is then used for the parameterization of the

relationship between the TOA radiance rcflectances. The trainingd ata collected from the

North Sea,lla lticSea, Med iterranean Sea and North At lant ic (Sehroeder elal. , 2007)

while Boreal and Eutrophic processors have been trained with data collected from

Finnish and Spanish lakes, respectively. For WeW/FUIl processor, it was especia lly

designed for European coastal wate rs and uses neural network procedu re to correct the

atmospheric effect s and ca lculate TOA of MERIS Level l b imagery. The TOA

rellcctances are then used to retrieve water quality parameters from the C2R, Boreal,

Eutrophic. and WeW/FUB processors which are develo ped as plug-ins in Basic (E) ERS

& ENVISAT (A)ATSR and MERIS Too lbox (IlEA M). BEAM is a too lbox for

proce ssing MERIS and ATSR data (Schroeder el a/.. 2007: Fornferra and Brockmann ,



Atm ospheric co rrection is another step in retrieving the water constituent s process from

the sate llite data . The retr ieving process consists in addition to the atmos pheric correction

a model that is estab lished to ext ract the water parameters. Due to the difference in

optical properties between Case I and Case 2 waters. several new methods have been

developed to retr ieve the wate r quality paramete rs of Case 2 water s from the satellite

images. Th ese methods take into considerat ion the presence o f phytopla nkton and

substances such as yellow and suspended matters. The new algor ithms arec lassitied by

Giardi no et al. (2007) into three main methodologies: emp irical. semi-empirical, and

analytical. The tirst two methodologies are almost the same but the semi-empirical is

used when the spectral propertie s of the monitored parameters arc prev iously known.

Both the empirical and semi-empirical metho ds usc the same techniqu e of extract ing the

water constituents from the satellite images. The analytical methodi s discussed inde tails

under model-b ased approach es in the next few sections. A more compre hensive

classification is presented by IOCCG (2000)

The a lgor ithms or Case 2 waters arc divided by JOCCG (2000 ) into mainly two groups:

empirical approac hes and model-based approaches. The empirical approac h is based on

estab lishing statistical relationsh ips between extracted retlectances from the sate llite

images and co incident measurement s of water quality paramet ers of in-situ

concentrations. The re lationship can be descr ibed by

f3

p =,, (~) + Y
III

WhereP is the physical quant ity to be estimated such as chlorophyll concentrruion and R,

is the rellectance of the spectral channel i. Thc cocflicicnls a , p, and y are derived from



the regression analysis between the rad iance com bination s and water qual ity parameter s

under invest igat ion. The ratio in the equation is a demo nstration of how spectral bands

can be combined. There can also be a single band , or other combin ations such as

addition, multipli cat ion or more complicated com binations of these operat ions. In case

the water paramete r is not expla ined properly by one com bination of bands. it is

recommend ed to add more correlated bands or combinations of bands to explai n the

variab ility of the measured parameter s (Ho ge and Swift, 1986; Cippolini et ul., 1999).

Further improvement in descr ibing the optical characte ristics of the water parameter s wiJl

be gained if the spectral bands are employed correctly. For exampie. it is reported that the

description of the pigments in chlorophyll case-2 wate rs can bci mproved by using wave

bands longer tha n the typical blue and green bands used inCasc I waters. Thi s decreases

the influence of the yellow substances on the algorithm which gives an opportunity to

expla in tbe cblorophyll variab ility in the water (De kker et al., 1991; Gitelson, 1992;

Satb ycndra natb el a t., 1997a; Schallcs el a l., 1998).

Empirical approach es arc simple. easy to derive (even in cases where the in-situ

measurements arc limite d). and easy to implement. This is in addition to the minimal time

requir ement nccded to develop a relationship between the extractcd reflect ances and in-

situ measurements. The empir ica l relationsh ips can also relate between the water

extracted reflect anccs and the water parameters whic h are not optically active. Thi s can

bcdonethrough surrogates that arc optically active and have high co rrelation with the

non-active water properties , The result s of the empirical approach are stable but there are

several limitations that affec t the empirical approach. One of the limitations is that the

data is only valid for the range and locat ion of the in-situ measurement s it was developed



for. It is also sensitive to seasonal trend s so it has to cove r the scasons that rnayoccur in

the tra ining area. A furthe r prob lem in the empirical approac h is that it can easily violate

the acceptablc stat isticallimits and assumptionsthat govcrn the deve loped relatio nship

betwee n the rellcctances and the concen trat ion of wate r quality parameters

Many studies have used the empiri ca l approach to develop re lationships between the

sate llite data and in-situ meas ureme nts to mon itor water quality paramete rs such as

chlo rophyll, Dissolved Oxygen (DO), and Chemica l Oxygen Demand (CO D). These

studies used a wide selection of satcll ite sensors includin g Landsat TM , MODIS. and

MERIS.G ons t!t ol. (2002) used the empiric al approach to estimate Chl -a conccntration s

from MERIS data ove r inland water s and coa stal zones. The developed model was

cal ibrated and val idated using data co llected from IJssel Lagoo n in the Netherlands. Two

empirical mode ls were developed by Gons et al. (2008) for Lake Michigan and Lake

Super iorto cstimat ct he Chl· a concent rat iol1s.The grcat lakcs emp irica l models revealed

a strong linear relationship betwee n MER IS bands 7, 8, and 9 and the in-situ

Qui et al. (2006 ) used the Land sat TM sensor data to estimate DO and COD

concentration s of Dian shan Lake. Shangha i, China . The developed emp irical

relationships were linear and non-line ar relat ionship s between ratio s of extractcd

reflectance s from the Landsat TM data and field measurement s. Althou gh DO and COD

parameters arc not op tically active. a rclationship has been found betwee n them and the

extracted water rell ectances. Th is relationship can be explained if it is known that the DO

and CO D arc related to optically-act ive parameters which are used as surrogates. MO DIS

data used by Chavula et a/. (2009a) to est imate the Ch l-a concentr ations of Malawi Lake



inthe southernpartofAfricathroughanempirical linearrelationship. The relationship

was deve loped between the in-situ measured data by 3 stat ions and MODIS extracte d

The second approach to extract the water quality parameter s is the model-b asedmethod.

Thi s approach uses the bio-opti cal model s to ex plain the relation ship between the water-

leav ing reflectancc s and the wate r qua lity paramete rs, It also uscs the rad iativc transfer

mode ls to imitate the transmissio n of the electro magne tic waves in the atmosphere and

the water. These models simulate the spectra abovethe water surface or at the TOA for

some of the water constituen ts in different states of the atmo sphe re. Th is simulated

information is then used to establi sh an algorithm to inver se map the water const ituent s

from the measured rad iances or reflectance spectra. The mode l-based approach can be

implemented using different approache s includ ing: algebraic , non-l inear optimizat ion,

principal components. and neural network (NN) approaches (IOCCa , 2000; Kuehinke et

al., 2009) .

The Algebra ic appr oach is the simplest amon g the mode l-based methods to retrieve the

water qual ity parameter s from the satellite data based on their optica l properti es. Thi s

method uses algeb raic expressions to rela te semi-analytical modelsofocean color to the

geop hysical prod uct; conseq uently the water parameters can thcn be retrieve d(Carderet

ul. 1999; Lee e/ a /. 1996; Lee et a/. 1999). The disadvantage o f this melhod is that it on ly

can handle limited parameters and variables. In case more variab les need to be

considered ,t he othermodel-based appro achesc anbeused.

The non-l inear optimization method inverts a forward model direct ly by minim izing the



describest her elationshipb etweentheradi ances recordedbyt he satellite sensor and the

optica l propertie s of the water qua lity parameter s.

1981a; Bukata etal.,198Ib ; Buk ata et al., 1991). The minimization can bcdoncusing

many techn iques such as the Leven berg-Marqu ardt and simplex algorithm (Ne Ider and

Mead, 1965). Equation 2 explains the basic techn ique of the non-l inear optimization

[2]

Where Lsoris the radiance measured by the sate llite senso r. LlfWd is the modeled radiance,

and the summatio n is taken overa ll the wavelengths Ix). The goa l of this method is to

minimize the difference (x) between the modeled and the measuredradiances by varying

the concentrations of the model input variables. This method docs not depend on a

predefined data set while the other analytical techniques such as neural network and

principal components, as described in the next two sections, depend on a pre-defined

simulated data set. The predefin ed data sets need a wide range of concentra tions of the

water parameter s where is it difficult to select the range and frcqucncythat represent the

natural variability in such approaches. An example of a study that uses non-linear

optimization in extracting the water quality constituents is presented in Bukataet al.,

( 198 Ia, 1981b. /991) . The authors implement ed a study in Lake Ontari o using

information of the inherent optical properties that is tailored for Lake Ontario and the

CZC S data. Bukata found that the mode led and measured values of Chlorophyll,

suspended mauc r. and disso lved organic carbon match well.



Doerffer and Fischer (1994) used a lOA model and the simplex method to extract

Chlorophyll . suspended solids , colored organic mattc rconccntrat ions over the North Sea

surafee using the CZCS data . It W3 S repo rted that there is a good agrcement between the

retrieved data from the satellite imagery and the in-situ measured data whic h were

co llected at the same time . One of the adva ntages of the non -lincar opt imization method

is that thc model changes can be modified easily. The major concern of this approach is

the iongeom putat ion time required (Roe sler and Perry, i995;Lee clal., 1999).

In the principal components approach. the optical properties or the atmosphere arc

considered as 3 vari able ina n inv ersion mode l. Thi s concept is d iss imilartotheempiric al

approach which implements an atmospheric correction to calculate the water-leaving

radiances. The input data of this approach are the TOA reflcctances obtained from an

ocea n-co lor sensor and the outputs arc the opt ical properticsofthcatmosphcrca nd the

thrccrnain constitucntsofthc watcr (i.e. conccntration of chlorophyll-a. ycllow

substanccs. and inorganic suspended particles). The principal component analysis (PCA)

is used to deal with thc high correlation between the signals from difTerent waveba nds

(Mue ller, 1973, 1976; Fischer, 1985; Sathyendranath el al., 1989;S athyendr anath cl al. ,

The principal comp onent approa ch' s algorith m uses a radiative transfer model to generate

a data set of radiance s at the TOA for water con stituent s and atmo sphere propertie s as

well as the spectral charac ter istics of the sensor under consideration. Then, PCA is used

to analyze thc spectral data taking into consideration the high correlation between the

bands (Krawcz yk et al., 1993; Krawezyk el al., 1999; Neumann clal., 2000) .



Themainadvantage oftheprincipalcomponent approa chi st heli neari ty of the algorithm .

This advan tage gives simple results. and a stable algorithm which leads to the short

computat ional time, This, in turn. gives the a lgorithm the ability to be imp lemented on

any computer system. As an example. it only requ ires a few seconds to compute the

water const ituents and the atmosphere propert ies ofa full inversion of the MOS · IRS

sate llite sensor scene. The main limitation facing this approac h is the non-linearity of the

re lationship between the wate r and atmospheric propertie s from one side and the

radiances from the other side. To ove rcome this limitation , the linear re lationships can be

implemented on certain sub-ranges which result in the segmentation of the paramet ers

( 'eumann el ol., 2000).

The last approach that lies under the mode l-based algorithms iSI he neural nciwork fblbl)

approach. The NN consists ofa large number of nodes arranged in input and output

layers with a number of hidden layers. Eachnodeof a layer isco nncctcd to thc output of

all nodes in the previou s layer. All inputs of a node are weighted independ ent ly and fed

into a logistic or other nonli near function . In case of remote sensing. jhe logistic function

is appropriate. In the development phase, the input is the retl ectances of the sate llite

imagery and the output is the concentr ations of the water constituents (Doerffer and

Schiller,2008 ).

An examp le of this approac h is the deve loped procedure for MERIS and MOS data

which based on radiance simulation using a Monte Carlo photon-t racing model. Th is

model combines the advantage of rea listic radiat ive transfer model with high speed ofa

neura l network for processing. This algor ithm consists of two phases ncural network. first



is for atmo spher ic correct ion and the second is for retrieval o f the water constituents

(Doerffe randSchiller, 1999;Neumannelal.,2000)

The neural networ k is a powerful approach for the retrieval of water constituent s as well

as for atmospheric correct ion over Case 2 water s. It can gather betwe en the most

compl icated radiativ e transfer models with a short time for proce ssing which is usefu l in

rea l-time processing. One of the disadvantage s of this algorith m is that it is valid only for

a particular region and season that is trained for. This means that in the casc ofu sing this

algor ithm in two different regio ns, or two different seasons, it has to be tra ined twice.ln

add ition to it is re latively expen sive to prepare, especia lly when the model used is

complic ated and consider a large numbcr ofvariable s that need data collection work

(Neumanne lal ., 2000).

Monitor ing wate r qualit)' using satellite sensors otTers many signilicantadvantages.F irst

is the extensive spatial cove rage which can not be offered by any other way of

monitoring . Th is advantage makes it possible to monitor large water bodie s by

integration with tradi tionala nds ensor-based waterq uality monitoringa pproac hes.

The global coverage is the second advantage offered by satellite water quality mon itor ing

which allows the estimation of water qua lity in remote and inacce ssible area s. Moreover,

satellite water qua lity monitoring is comparab le and it has relatively long record of

archived imagery. For example, Land sat has an archive since the ear ly 1970s(l lellweger

ela l.,2004).

Alth ough sate llite water qualit y monitorin g has significant advantages. it also has some

disadvantages such as the abilit y to distinguish between different water paramet ers is

limited. In addition, the va lues extracted from satellite images arc considered as relative



values and not exact values. Besides. the depth of monitored wateris limited to the

surface and depend s on water clar ity. Furthermore. the spatial and temp oral resoluti ons

are not allVays controliable (HelllVegcre l al. , 2004)

Moreover , clo ud cover limitation also makes sate llite water qua lity monitoring

problematic for areas which has a signific ant clo ud cover. Also, the ef fect of the

atmo sphe re is significant e.g. if the surrounding atmosphere is turbid it is not possible to

ext ract reliable observations (Hcl lwcgc r er al., 2004).

The most effectiv e way of water qualit y monitorin g is the integra tion of trad itional.

sensor-based, and satellite water qualit y monitoring appr oaches. For example, satellite

imagery can be used to interpol ate and extrapolate the sensor-based observati onfor large

wate r bod ies. Th is integrat ion decrease the number of in-situ samples and increase the

spatia l and tempora l reso lutio n of the comb ined method of monitoring (Hellweger et al.,

2004) .

2.2. WlIler Q uallty Monitoring in Lake Ma nza lah

The monit oring program currentl y operated by the Egyptian water author itiesrepresented

by the Egyptian Drainage Research Inst itute (DRI), relies on monthl y measurement s of

water qualit y sampled at draina ge channel s lead ing into Lakc Manzalah . The measured

parameters inc luding a wide selection of the water physical, chem ical. and biolo gical

parameters such as temp erature, color , pH, odo ur, salinity, turbidi ty, tota l dissolved

solids, disso lved oxy gen, calc ium, magnesium, potassium, in addition to, biological

oxygen de mand . and che mica l oxygen dema nd. Some of these paramete rs are measured

in the field while the other parameter s are measured in the laboratory.



However , this program prov ides insufficient information on the spatial and tempor al

varia tio n of the para mete rs of Lake' s wate r quality since there arc no mcasurcmcnts takcn

inside the lake itse lf. Therefo re,there is a need for a wate r qual ity monitorin g program

that provide s information about the spatial distributi on and temporal variation of wate r

quality parame ters. This program pro vides information used to detennin e the source of

polluti on and the curre nt as well as the future status of the pollut ed areas. Once the

proble ms have been ident ified, the appropriate deci sions cou ld be made to mit igate the

affec ted area s. Moreover , the water qua lity monitorin g program will a lso provide

information about how much the improvement has occur red, if any, in the mitigated

pollutedareas..

In 2007 , a field investigation campaign took place to investigate the feasibility of

monitor ing Lake Manzalah 's water qua lity using sate llites. The data collected in this flcld

investigation consists of two main parts. First isth e in-situ measurcd data which continue

for 4 days. while the second part is the co incident satellite data fromMER IS andMOD IS

sensors. The prelimin ary result s of the investigat ion show the high correl at ion between

the lurbidity (T UR) and band I of MODIS and band 7 of MERIS. Besides. the high

eorrcl at ion between total dissolved solids (TDS) and band I of MOD IS and band 70 r

MERIS. 1t is fou nd that the rat io between band 7 and band 9 of MERIS explains the

chlorophyll-a( CIII.)eoneentrat iol1sv ariabilityi nt he lake . itwas also concluded that the

Lake Man zalah has 5 different water qual ity zones, and in order to establish a

quantitative water qualit y monitoring system based on the satellites . it is recom mended to

establish real-time water quality monitoring (RTWQM) stations to represent the different

regimes of water quality in the lake. which provides a high temp oral measurem ents. to



calib rate and validate the models of thc wate r quality parameters. The proposed system

will produ ce and outputs in near-real-time (NRT) to support the decision makers in

laking the right decision based on reliable information (lbrahim et al., 20 10).



3. Study Are a and D ata Collection

Thi s chapter provides a genera l descr iption of Lake Manzalah, Egypt, followed by a

historical overview and the current state of the lake' s watcr qual ity based on observa tions

from publi shed literatu re. A descript ion of ~hc current water qua lity monitorin g prog ram

in the Lake Manzalah watershed is also presented . In-situ and satellite data collect ion

3. 1. Study Area

Lake Manzalah is located in the northeastern part of the Nile River de lta, Egypt (

Figure ?) . Lake Manzalah is the largest of the five northern lakes and bordere d hythe

Med iterra nean Sea in the north and the Darnictt a branch of the Nile in the west. The Sue z

Canal is located cast of Lake Manza lah. Lake Manza lah isl ocatcd in five administrative

Govcrnoralcs inciuding Damicna, Daqahliya, lsmailiya, Port Sa idan d Sharqiya.

FigUfC7 shows the loc at ion and borde rs o f Lake Man zalah .

Lake Manzalah (3 1°4 5'-32° 15' E and 3 1° 00' -3 1°3 0') is rectangular in shape. The

dimensions of the lake are abo ut 60 km in length and 40 km in width . The lake has an

average dep th of 1.3 m allowing it to be c1assilicd as a shallow lake (0 cwidar and Khadr,

200 1).



Figure 7: The location and borders of Lake Manzalah(Goog le Earth. 2010)



There are approximately 1000 small islands scattered in the lake. representing about 9%

of the lake' s lolaI surface area (Zahran et ol., 1989; Khcdr, 1997). There are agricultural

and aquacultural activities in the area of the lake. The western and southern parts of the

Lake are dominated by agricultural activities whereas thc northern and eastern parts

includc thc aquacultural activities such as fish farming. The LakcM anzalah production of

fishre presents around 50 % ofth e Egyptian fishpro duction( Khalil, 1990;Dew idara nd

Khadr, 2001).

At the beginning of the twentieth century, the total area of Lake Manzalah was 1700

Km' .L akeM anzalah areadecr easedt o 1400km2in 1937 (Montasir,19 37; Zahran e/al..

1989). By 1970, the area was reduced to 1300 Km' due to land reclamation (Wakccl and

Wahby. 1970). In 1981, lhea reaofLakeMa nzaiahwa s900Km'butby 1988. according

to UNDP(1997) , lhea reawasci led to be 770 Km' . In 2000, the Lakes area was around

500 km' (C·Co re, 2007) Figure 8 shows graphically the reduction in Lake Manzalah' s

area during the last 100 years.

area such as land reclamation including: agriculture. building roads and marine

aquaculture (Frihye /a l., 1998; Dewidar and Khadr. 2001). The rate of reduction inthc

km2fyear. The most affected parts of the lake by the area decrease were the westernand

southern regions of the lake besides the growing in the size of the islands inside the lake.

Moreover, it was detected that siltation was occurring along the southern and western

partsofthc lakc which was due to the incrcasc of drain watcrd ischarge(Dewidarand

Khadr, 200l ). Variousage nciesh ave statcdthatiflandreclamationproceeds at the same



rate, the total area will be reduced 10 469 Km' in a few years (B irdLife

Lake Manzalah Area Changing through time

1800 1

1400 j

IIr:1 I I600

I
Figure 8: Reduction of Lake Manzalah surface area over the last I00 years

Histor ically. Lake Man zalah was known as " Lakc Tani s" duri ng the seventccnthc cntury.

Lake Manzalah \vas formed asa result ofwatcraccumulati on at the spilling point s into

the Medit errane an Sea. Wakeeland Wnhby (1970) note that although the main feeder s

have dried up. the lake still exists. It was traversed by three (Pelusica. Tanitic and

Mende sian) of the seven historical end ing branche s of the Nile Delta (Ee RI, 2003).

Figure 9 shows the seven historic al branch es of the Nile Delta.



Figure 9: Nile Delta befo re the seventeenth century (ECRI, 2003) .

3. 1.2 La ke Man zalah Wa le r Q ua lily Stat us

Lake Manzala h water system beg ins from the co llect ion network s of agricultural

wastewa ter in the eastern Nile de lta and eastern great Cairo area. The minor drains

discharge their co llected wastewater into major dra ins. The rnajordrains. in tum ,di sposc

the co llected wastewate r into Lake Manzalah. The main drains which flow into Lake

Manzalah arc the Bahr El-Baqar, Hadous, Farskour, and Lowcr Serw. see Figure 10



Figure 10: Main drains discharging into Lake Manzalah (DRI . 20 10)

The major drain s that discharg e wastewater into Lake Manzalah arc Bahr El-Baqar.

Hadous, Lower Scrw, and Farskour. The Hadous drain discharges 49 %of the total water

discharging into Lake Manzalah, followed by Bahr El-Baqar at 25 %. Lower Serw dra in

at 13 %.andFarskour drainat 4 %of thetotaldischarge.Theremainderof thetotal

discharged water into Lake Manzalah is divided among the Inaniya ca nal, Port Said cana l

(fresh water). Ramsiscand Matariyadrains. These contribute only I to 4 %tothe total

discharge (EC RI,2 003).

Drains are the main source of pollutants which are transported to the lake. The most

polluted drain is the Bahr EI-Baqardrain which carrie s a mixture of treated and untreated



ent ire length (UN DP, 1997; EI-Boz cl ul., 2005).lt accountsfor appro ximately 25% of

the fresh water input and carries 60% of the nutr ient load ing into l.ake Manzal ah. The

Il adous and Faraskourdr ainsc arryprcdominatclyag ricultural dischargesb utco ntributc

only half the nutr ient loadin g oflh ellahr EI Baqard raint o Lhel ake (E I-lla z cl al .,20 05).

Although the stated main drain s arc considered as agricultura l drains, they also receive

treated and untreated wastewater from municipa l and industrial zones that are located in

the drains basin (EI-llazclul. , 2005).

Lake Manzalah is connected to the Mediterranean Sea through three main connection

points. The primaryc onnectioni s aI Bughaz EI-Gam il (UNDI' , 1997). Other connections

occur from time to time at weak points along the narrow sand ridge that separates the lake

from the sea (Wakecl and Wahby, 1970). Thel akei s a lso connectedl o the Suez Canal al

El-Qabouti (Wakecl and Wahby, 1970; Dewidarand Khadr, 200 1)

These open connections allow an exchange of water between the lakcand the Sea. As a

resu lt. the sa linity in the lake varies greatly. While the salinity is low near drain and canal

outflows in the south and west. it is high in the extreme north -west. Brack ish conditio ns

predominate over much of the remainder of the lake (BirdLife International. 2009).

Figure 10 shows the main drains that discharge into Lake Manzalah.

Based on records of daily air temperature at the EI-Gamil Metrological Station. the

maximumair temperatureoccurs in August (around 44.0° C) and the minimumoccurs in

Febru ary (aro und 8.6° C). For rain falls. they occ ur on ly in the winteraveraging l12.2mm

per yea r (Wakccl and Wahby, 1970; Ramdani et al.. 200 1). Maximum sunshine



observations are recorded in June-August. The prevailing wind blows from the south-

western direction in January and February, from the north and north west fromApril to

Septe mber . The wind s predomi nately blow from the north east in Octobe r and

November; and south westerl y in December.

Published water quality data for Lake Manzalah is fairly limited . Currently, a wate r

quality programwhich is operated by the Drainage Research Institute (DRI). Government

of Egypt, is monitor ing the main drains and canals that discharge into the Lake. The

monitor ing is once per month and there isn o regular monitorin g ofth e lakewa terit self.

Some result s and conclusions of previous researchers on Lake Man zalah water quality are

Lake Manzal uh was divided into three main zones from a water quality perspective by

Wakec1a ndW ahby(1970) asfoJlows:

I) The South Eastern region which rece ives mainly drainage water.

2) The North Eastern region that is affected by both sea water and drainage water.

3) The Western region that is af fected by drainage water, sea water and freshwater

duringtl oods on ly.

In terms of water quality parameters,

Table 6 shows some observations as well as the reference s.



Table 6: Water Qual ity from various researchers

Par am eter Max. Min. Reference

Te mperat ure K; ») 44.0 8.6 (Ramdanietal. ,2001)

7.86 8048 (Wakeciand Wahby,1970)
pll (pllunits)

8. 1 9 (Fis har, 1999)

Chloro phyll (mg/nr') Average from 12.66 10 32.38 (ll amza, 1983)

The south -eastern and western parts of the lake arc supplied bydrains water . The water of

these drain s carrie s a considerab le load of nutrients includingphosphates, nitrate s and

silicates, in add ition to the untreated municipa l and industrial sewage water (EI Racy er

al., 1999; Dewid ar and Khadr, 2001 ). EI Raeye tal.( 1999) dc li ncd thcconncctionso f lhc

south-eastern pan of the lake and the drains as a "b lack spot't due to the heavy load of the

contam inatio n that gets into the lake from these connect ions. This is supported by Siegel

et ot. (1995) who detected high value s of Hg (822 ppm), Pb(IIO ppm ), and Zn (635

ppm) in the bottom sediments of the south-eastern part of the lake.

Based on the ea rlier fie ld investigation in 2007. sec the litcraturc revicw, thrcc locations

were chosen to setup the water quality monitoring stations. In August 2009, three

idcntical stations wcrc installed in Lake Manzalah.l nitially.t he locat ions for the stations

1, 2, and 3 were chosen as shO\vnin Figure I1.H oweverduet o several failurcs station 2



was moved 10 2a on September 23.2009. Figure 12 shows a typical station after

installation (C-Core, 2009).

Figure II : RTWQ slation locations in Lake Manzalah (The background is LandsatTM +)



Figure 12: Typical watcrq uality monitoring station (C·Core.2009)

The water quality instrument used in collecting water quality parameters in Lake

Manzalah is the Hydrolab Data Sonde 5X multi probe (DS 5X). (See Figure 13) The Data

Sonde is equipped with sensors that can read specific conductance. pH. turbidity.

luminescent dissolved oxygen (LDO). chlorophyll. total dissolved solids. temperature.

The probe can measure conductivity with a rangeofO to lOOm S/em and accuracy of ±

0.001 mS/cmat a resolution of 0.000 I mS/cm. For pll, the probe can read with a range of

Oto 14 pll units with accuracy of ± 0.2 units at a resolution of 0.01 units. The turbidity

measuring range is from 0 to 3000 NTU with an accuracy of ±1% for a range of 0 to 100



NTU, ±3% for a range of 100 to 400 NTU, and ±5 % for a rangeof 400 t03 00O NT U.

Thc rcsoluti on is Itl NTU for a rangeo fO t0 400N TUand I NTU fora range of40 0 to

3000 NTU . LDO can be measured with a range of 0 to 60 mg/L and accu racy ± 0. 1 mg/L

for a rangc of u to S mg/L and ± 0.2 fora range of 8 to 60 mg/L. The resolut ion is 0.0 1

mg/ L.

Ch lorophylicanbc measuredby the probe witha rangeofOt0500 ~g/Landan accuracy

of ± 3% with 3 resolution or O.OI J.1 g1L.The temperature measuring range is from -5 to

50°C with an accuracy of ± 5% and a resoluti on of n.nlvC. For water depth. it can be

measured with a range of 0 to 10 meters with an accuracy of ±O.003 meters and

resolution of 0.00 1 meter. The probe measuri ng ranges, accuracy, and resolution of all

The water quality probe is connected to the data logger using a cable rather than a

wireless link. This is due to the need to transfer camera images. The data logger is

connected to satellite and GSM modems to transfer the measured data to the office

throu gh the Iridium sate llite system and the cell phone network.



Figure 13: HydroiabD ata SondcD S 5X

Table 7: Ranges, accuracy, and resolution of water quality scnsors( l lydrolab, 2006)

Sensor Ranee Accu rucv Reso lutio n

Specific Conductivityt mS/cm) 0 10 100 ± O.OOI 0.000 1

pH (pH Units) 0 10 14 ± 0.2 0.01

~ lT ur hidi ty (NT U)
0.10-400

010 3000 ±3% 100-400

±5% 1400-3000 1 1 >400

~ll issol\"CdO\ Y'gcn (mg/L) Ot06 0 0.01
± 0.2 8-60

C hloro phyll
Ot0500 ±3% 0.0 1

("g iL)

Temp er ature (C O) -5 10 50' C ± 5% o.or- c

Wat cr Leve l (m) 0 10 10 ±0.003 0.00 1



Data was collected from the RTWQ stations from the first day of installation, July 29, up

toth c cnd of October,2009, around 3m onths. Col!cctcddatap o ints were measured once

pcr hour.Foreach parameter, the numbcrof points was around2250points. ln totalt he

collected in-situ points were 42250. The collected data inchi ded turbidity (TUR)[ TU),

total dissolved solids (TDS) [gil], pH, Chlorophyll-a (Cl IL) [ug/l ], dissolved oxygen

concentration (DO) [mgll], dissolved oxygen saturation [%), speeilic conductance

(COND) [I,S/em), and temperature (TEMP) [' C).

3.2.2 EO(Satcllitc) ll a ta

MERIS imagery was the primary satellite data source for this research. Images were

collected on July 29, August 1, 7, 10,1 3,1 6, 19, 20, 23, 26, 29, September 1,4 , 5,8 , II ,

14, 17, 20, October 6, 9, 10, 13, 22, and 25. Sec Tab le 8. The collected imageries were in

form of N I, MERIS standard format. In total, 25 MERIS scenes were collected



Tab leS : Dales of acqu ired MER IS images
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In the next chapter, how the collected RT WQ alld sate llite data arc processcd andlin ally

uscdt od cvclop st3tistical modcls willbc dcscribcd indctail



4. Methodology

This chap ter outlines the methodology used to screen the co llected in-situ data and the

steps taken to extract there flectance s from the sateJlite data. Thc stat istical mcthodsu scd

to anal yze the processed data arc also briclly descr ibcd

The proce ss of extracting the wate r quality param eters consists 0 fco llcct ing satellite and

in-situ data in concurrently followed by processing both data sets. The concurrent data

sets then will be generated. The conc urrent data set will be statistically anal yzed and

mode ls will be then developed . Aller deve loping the model s. the final water qualit y

parameter s maps will be generated. The processing steps arc dep ictcd in Figure I-t

Y:

~~
*Generating Water Quality Maps

Figure 14: Processing Steps



·tt . ln- Sltu Data Processing

The in-situ data used to devel op the statistical models were co llected from July 29 to

October 25, 2009 . Collected data has been screened since the regu lar calibrat ion

information was not available. The screening process. which was implementedby C-Corc

stafT, excludcs the unusual measurements from thc datase t bascdo n a closecxamination

of' the data series acquired at each RTWQ station. Figure 15 shows an ex ample of

scrccncd data, appcndices A, B, andCshow plots for each measured water paramctcr and

the screened measurements. After screening, a total of 56. 34, and 33 points ofTDS.

TUR, and CHI..are paired with the satellite extracted reflectance. respectiv ely . Valid data

date ranges after screening arc summarized in table 2. The plots inth e appendices show

the collected data until Nove mber 17. 2009. Due to time con straints, the data conside red

for analysis arc only those between July 29 and Octobe r Zfi, 2009 (C-Co re.20 09b).

Figure 15: In-situ T UR of station 3 time series shows screened data(C- Core,20 09a)



Table 9: Valid Dale Ranges for In-Situ Data (C-Core, 2009a)

Wal tr Qu al il)
Sta t ion I Sta lion 2 Silili on 2a Stat ion 3

Pa ra meter

Temperat urel sC] Ju1. 2S - Nov.l ?
Jut. 29-Scp. 2 Scp. 23 -

Jul. 29 - Nov. 2
tnot Aug. 14) Nov. !7

Tu tal dissolved snlids
lu L2S - Nov, l? JuI. 29 - Scp. 2

ocr.s
Jul. 29 - 0, 1. 14

(TIlSl lol' l Nov. I?

T urbid il )"(TL: R) I:'I'TU)
Jul. 29 l\u g. 29

JuJ.29 - Scp. 2
Scp.2 3 - JuI.29 -Aug.I3 Scp.S

<kt.16- Nov. J Nov. I ? Scp. 180 ct. 15 -0ct.2 1

Chloroph) lI-a(C IIL)
JuI.29 -S cp.9 Jul. 29 -1\u g. 19

0 1,'1.10 -
Jul. 29 -0ct. 14

l.g /'l Nov. I ?

pll July 29-Oct. 13
Jul. 29 -Scp. 2 "'p .2 l

JuJ.29 -Ckt. 14
(noIAug. 14) Nov. I?

Spectnc cc nductance
l uI. 28-Nov. I? Jul. 29 - Scp. 2

oe.s-
JuI.29 -<kt. 14

haS/eml Nov. I?

Dissct ved osyg en lu 1.l8 - Nov. l ?
Jul. 29 -S cp. 2

Oc1.5-
JuI. 29 -0cl .1 4

saturalioll l% ! (noI Oel. l3) Nov. I?

Dlsscl ved () lll~ ':n Jul. 28 - Nov. 17
Jul. 29 -St: p. 2

Oc1.5 -
Jul. 29 -0cI. 14

co ncentr ati on I m~/1 1 (noI Ocl. l3 ) Nov. I?

4.2. Sa lclli lc l m age ry P ro ccss ing

To extracr I'Oa reflectances from theM ERIS imager ies. the procedure shown in Figurc

16 was followed using BEAM 4.6.1 (Fomferra and Brockmann, 2005). The procedure

includes collecting and screening the imager ies visually to filter the imageries that arc

partially or fully cove red by the clouds, then. subsetting the filtcred irnages to thc arca of



[ Imag" S"r""ning 1
and b o\\"uloading...

Proj"ding I...

Figure 16: Satellite imagery Processing steps (C-Core , 2009a)

ICOL (The Improved Contrast between Ocea n and Land) processor aims to remove the

adjacency effect which results from the high reflected electromagnetic waves from the

land surrounding the water body. Infrared is the most affected part of the spectrum. The

adjacency effect causes overestimation of the atmospheric radiance and a subsequent

underestimation of the water leaving radiance. The subsets are then projected to the

Egyp tian national grid (red zone). The procedure also includes calcu lating orTOA

reflectances. The Radiance-To-Reflectance Conversion Processor converts lOA

rad iances L TOA into reflectances explaine d in Equation 3 (Brock rn[1On. 2011).



[3J

Where EOand Oa re the so lar spectral irradianceand the sun zcnith ang le, respectively.

And L TOA is the radiances. ThcTOA rcfl cctances ca lculat ions were implement ed using

BEAM software' s water quality processors. The process also includes geocoding and

extrac ting of the image values frorn pixels that match each in-situ slations.

The water quality processors genera te masks for Iand and clouds.T f the in-situ station

falls into a pixel that included in any of these masks, the closest pixel that is valid to

represent the station was chosen. The closest pixel, that is not included in the land or

cloud masks, is considered as a valid pixel. In add ition, a gcocodcd LANDSAT image

acquired March. 2009 was used to verify visually that the chosen location is within the

For the atmospheric correction, C-Core staff applied different atmos pheric correcti on

procedures on MERIS data including dark object subtraction as well as NN based

atmospheric correct ion procedu res assoc iated with Case 2 waters processors in BEAM.

The concl usion was there is no significa nt change in the relationship between the water

parameters and the extracte d TOA rellectances before and afte r appl ying the atmos pheric

correclion( C-Corc,2009a).Thi s is supportcdbya sludy doncu sing LandsalT Mda taby

Song et af. (200 1) who concluded that the atmospheric correction led to some

improvement on the extracted data. But the achieved improvement didn' t affect the final

results in both cases with and without atmospheric correct ion . In addition, the

improve ment which can be achieved after the atmosp heric correction is not guaranteed

(Dell' Acqua, 200 5). Asa result. applying wrong atmo spheric corrcctioncan ledtoerrors



that a ffect the extracted reflectances which. Jn turn, affect the fina l results(Chafez, 1988;

Gauntcrelal.,20 10). Based on previous arguments, there is no atmos pheric correction

app licdinthis study.

4.3. Stati st ica l Ana lys is

" .3.1 Prc llmina ryStatlst lcul Analysis for In-situ a nd Extracted ReIlcctan ces

Parametric and non-parametric statistical procedu res wi ll be used to investigate the

relation ship between the primary wate r quality parameter s and the measured TOA

reflccta nccs that were extracted from MERIS imagery. Stati stical analy sis would start

with extensive use of graphical procedu res such as boxp lots, X-V plots,and normality

plots. Logarithmic transfor mat ions wi ll be applied when necessary to meet with all

necessary ass umpt ions of ANOVA or reg ress ion. If assumptions arc still not met,

non para rnetric met hods such as Kruska l-Wallis test will be used to com pare among the

samples and nonparametric correl ation analysis such as Kendall' s tau and Spearm an ' s

rho will be used to assess the association between the in-situ measured parameter s and

satellite extracted data . For the ext racted reflectance s, corre lation matrix plots will be

used to eval uate the correlation betwee n the bands. Correlat ion analysis wi ll also be used

to exa mine the relat ionships between individual bands and thcir combinations and the

water qua lity parameters. The chosen wate r paramete rs ana lyzed were TUR. CHL, and

TDS . TUR and CHL were chosen because they are opt ically active whi leTDS shows

high correlati on in previous statistica l analys is with the rat ios of the extrac ted

rc llcctance sfrom MER IS imager y.



4.3.2 Mod els Devel opm ent

Linear regression analysis will then be used to develop relationships between the water

quality parameters and ratios of the MERlS extracted TOA refle ctances, Simple and

multi ple regression models will be investigated. The validation of the relationship will be

assesse d primar ily based on the coe fficient of detcnn ination (R2
) and the Nash-Sutcliffe

"f.<Obs-Pre)'

coefficientsee NSE = 1 - "f.<Obs - Dos)'

t sobs - Pre)'
NSE = 1 - "f.<Obs_Dos)' [4]

Wher e Obs is the in-situ observed measurements. Pre is the est imated va lues using the

deve loped models. andObs is the mean of the in-situ observed values. The Nash-

Sutcl ilfccocf!i cicnteva luate s the ag reement bctw ccn n simula ted and a reference dat a. A

Nash-Sutcliffe ofI ind icates a perfect agreement between simulated and refer ence data.

So when the simulated and reference data plotted asa scatter plot they should fall on the

perfect line i.e, 45 degree line (Na sh and Sutc liffe, 1970)

The best models should have high R' and high NSE in addition to fulfilling all the

required ass urnptions of regression ana lysis such as normality of residuals, homogeneity

of variance, and independence of the residuals.



5. Resu lt s

Thi s chapter discusses the result s of the statistical analy sis 0 fthe in-situ data and the

regression model s developed to predi ct water quality from satellite imagery data . The

models were subsequently used to generate maps showing the distr ibution of water

qualil yp aramctcr sinLakeManzalah.

5.1. In-sltu Wnter Qua llry Par a meters

For the in-s itu mea sured water qua lity pa ramet ers. Figure 17 shows a plot for the wa ter

quality parameter s (TDS , TUR , and SPCON) with LOWESS (LOcally Weighted Scatte r-

plot Smoothing) line. Table 10 and Tab le I I disp lay the correlat ion matrices while Tab le

12 d isp lays the p-values for calc ulated Spear ma n' s rho . Due to non-norma litydi stributio n

of the water quality parameters, Spearman's Rho and Kenda ll's Tau were used to

invest igate the corre lation between the measured water quality paramete rs.





Tab le 10: Corre lation Matrix for In-situ Water Quality Parameters (Spearman' s Rho)

TEMP PH 5PCON TD5 DOS DOC TUR CHI

TEMP 1.00 -0.11 -0.20 -0.20 0.45 0.45 0.25 -0.27

PH -0.11 1.00 0.310.310.390.34 -0.35 -0.27

5PCON -0.20 0.31 1.001.00 -0.01-0.11 -0.86 -0.43

TD5 -0.20 0.31 1.00 1.00 -0.Ql -0. 11 -0.86 -0.43

DOS 0.450.39 -0.01 -0.Ql 1.00 0.980.03 -0.20

DOC 0.450.34 -0.11-0.11 0.98 1.00 0.13 -0.12

TUR 0.25 -0.35 -0.86 -0.86 0.03 0.13 1.000.47

CHI -0.27 -0.27 -0.43 -0.43 -0.20 -0.12 0.47 1.00

Table II : Correlation Matr ix for In-situ Water Qual ity I'arameters (Kendall's Tau)

TEMP PH 5PCON TD5 DOS DOC TUR CHI

TEMP 1.00 -0.05 -0. 12 -0.12 0.29 0 .29 0.16 -0.16

PH -0.05 1.00 0.210.21 0.280.25 -0. 18 -0.15

5PCON -0.12 0.21 1.001.00 0.02 -0.06 -0.66 -0.34

TD5 -0. 12 0.21 1.001.00 0.02 -0.06 -0.66 -0.34

DOS 0.290.28 0.02 0.021.000.92 0.04 -0.13

DOC 0.29 0.25 -0.06 -0.06 0.92 1.00 0.12 -0.06

TUR 0.16 -0.18 -0.66 -0.66 0.040.121.000.37

CHI -0.16 -0.15 -0.34 -0.34 -0. 13 -0.06 0.37 1.00

Tab le 12: P·value matrix ofcorrclat ion matr ix (Spearman' s Rho)

TEMP PH 5PCON TD5 DOS

PH 0.629

5PCON 0.360 0.167

TD5 0.3600.167
DOS 0.0360.0760.9540.954

DOC 0.0340.1190.6310.6310.000

TUR 0_264 0_1120.000 0.000 0.907 0.564

CHI 0.2230.2250.0470.0470.3820.5970.027



parameters, hO\\'ever it showsahighc orrelationbe twecnS pccificco nductivitya ndT DS,

see Figure 17. In fact the corre lation is practically perfect. Iti s aIso noticed that the there

isa high negative corre lation betwccnTUR and TDS. Spearman' s Rho equals -O.86 and

Kendall' sTaucquals-O .66, thecorrclation is statistica lly signilicantatu=O.05.Forthe

34 TUR points concurrent with satellite refl ectances, values ranged from 4.8 to 96.4,

Figure 18 and 19 show the boxplots of the TUR and Log TU R va lues by sampling

location. The overa ll median and IQR (InterQua nile Range) are 23.05 and 25.95 NTU.

respectively. The summary statistics at each station arc shown in Tab le 13. For the 33

CHL points. the value s ranged from I 1.64 to 86.53 gi l. with an overall media nof 3. 15 gil

and IQR of 25.23 gi l. The summary statistics by station is shown in Table 14 and

displayed in Figures 17 and 18. For 56 TDS data points. they ranged from 3.93 to 24,4

ug/l with an overa ll med ian of 15.35 ~ gli and IQR of 8.8 Ilg/l. The summary statistics at

each station is shown in Tab le 15 and disp layed in Figure 22 and 23. As can be seen from

the boxplots and summary statistics,th edi stribution oft hc data are positive skewed with

the possibility of some outliers.
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Figure 18: Distri bution of TUR at all sampling stations

fig ure 19: Distr ibuti on of Log (TU R) at a ll sampling stat ions

STATION N Mean StDev QI
1 13 7.654 3. 197 4.800 5.300 6.300 15.200

2 6 55.45 2 1.58 35.10 40.95 49.70 68.28 96.40

6 17.48 6.68 11.90 13.10 15.70 20.83 30.50

27.40 9.26 18.80 19.60 25.10 34.65 45.90

34 23.0 5 19.92 4.80 7.65 16.85 33.60 96.40



Figure 20: Dislribution of CII L at all sampling slations

Figure 2 1: Distributio n of Log (CIIL) at all sampling stations

Tab le 14: Descript ive slati slicsof CIIL

STATION N Mean StDcv Minimum QI Median Q3 Maximum
1 9 17.506.04 11.64 13.051504521.70 29.20

449.825.2 3204 32.9 40.1 76.3 86.5



Figure 22: Distribution ofTDS at all sampling stations

3.",------------,
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Figure 23: Distributi on ofTD S at all sampling stations

TableJ 5:[) escriptive slatislics ofTD S

Mean StDev Minimum QI Median Q3 Maximum

18.2292.220 13.90016.225 18.250 20.4752 1.700

4.985 0.315 4.600 4.6685.0055.222 5.470

11.259 4.130 3.930 8.58212.00014.52520.100

14.316 5.727 3.930 10.200 15.35019.000 24.400



For TUR, TDS and CHL. Kruskal-W allis tests were ca rried out to compare

measurement s observed at the stations 1, 2,2 a,and 3r cspcctivcly.lt\vasfoundthatthe

med ian measureme nts at difTerent sampling locat ions arc signifi cantlyd ifferentfromone

another. The test is statistically signitic ant at u= 0.05. Table 16 shows the outp ut of the

Tab le 16: Kruskal- Wallis tcsts outputs

The distribut ion of water qual ity paramet ers varies from onc stationtoanother, as shown

in Figure 18-23. Th is indicates variations in water quality parameters concentrations

across the Lake . For TUR, Figure IS, and Figure 19 show that Station 2 records the

highest va!ucs while Stat ion I record s the lowest va lues. Figure 20, and Figure 2 1 show

that the distribut ion ofCHL is similar acros s Statio ns 2, Za, and 3. While the lowest

values recorded at Station I.TDS measurement s in Figure 22 and Figure 23 have similar

ranges at I. 2a.and 3. While the lowe st mcdian and range recorded at Station 2.

The extracted reflcctance s were combined to get the concu rrent data set with the water

quality parameters . The resu lt of comb inat ion is 34, 33,a nd 56 pointsFortheTUR, CIIL

andT DSre spcctive ly.

Figurc 24·2 9 show boxplot of the co ncurrent reflectanccs before and after Log

transformation. The distributions of thc reflccta necs after log-transformation show a



higher normality than the distributionwithout transformation. the rellectances ranged

from a minimum or 0.00371 to a maximum or O.09 17. It is noted that most of the bands

are positive skewed. All of the individual bands are not normall y distributed .

Figure 24: Ttf lc-concurrcnt refl cctanccs box plot

Boxplotof log Bl , logB2, LogB3 , logB4, logBS, LogB6 , logB7, ...

Figure 25: Log transformed TUR-concurrcnt rcflcctancc s box plot



BoxplotofBl,B2 ,B3 ,B4 ,B5 ,86,B7,B8, ...

BI B2 B3 B4 as B6 B7 B8 m BI0 Bll B12 B13 BI4 BIS

Figure 26: CHL-concurrcnt rcflectanccs box plot

Boxplotof Log81, Log B2, LogB3 , Log 84 , LogB5, LogB6 ,LogB7, .. .

Figure 27: Logtransforrncd CII L-concurrcnt rctl ectances box plot



Figu re 28: TDS -concurrent rcflcctanccs box plot

Boxp lot of Log Bl , LogB2 , LogB3 , LogB4 , LogBS , Log B6, LogB7 , .. .

Figure 29: Logtransfo rmcdTDS-concurrcnt reflectances box plot

Figures 24 to 29 show that the reflect ance s are not norm ally distr ibuted . As a result. non-

parametri c correlat ion method s used to investigate the correl ation between the individu al

band s. Figure 30 shows the matrix plot between theM ERIS 15 ind ividual bands. Table



17 and 17 present the correlat ion matrices between thcT UR-concurrcntr eflectances and

corresponding p.va lues matrices. Sccappendix Dfo r thc rest o f the figures and tables of
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The matrix plots and correlation matr ices show that the bands whic h are close to each

other arc high corre lated . For exam ple Band I is high cor re lated with Bands 2, 3 and 4

Thc corre lation between the measured water quality parameters and extracted

rcflcctanc es from MERIS imagery showed no statistically significant correlations

betwee n any of the measured water quality parameters and the individual TOA

high correlations with the water parameters. Spearman' s Rho used because of the

nonlinear ity of the water qua lity parameters as we ll as thc reflectances . The co rrelation

coe fficients are shown in Table 19. All correlatio ns arc statistica lly significant at a=O.05.

Appendix E shows thec orrelation matr ices between the water quality parameters and thc

extracted reflectance rat ios more fully.

Table 19: Corre lation bctwecn TOA band rat ios and water parameters

T UR ClIL TIl S

B9/B5 0.64 0.24 -0.56

B9/B6 0.84 0.54 -0.70

B9/B7 0.89 0.81 -0.67

B9/B8 0.83 0.80 -0.61

B II /B7 0.64 0.38 -0.52

B12/B 15 0.55 0.60 -0.34

Where B5 = Band 5, B6 = Band 6, B7 = Band 7, B8 = Band 8, B9 = Band 9. B I I=
Band II ,BI 2 = Band 12, and B I5 e Band 15



The highlighted cells represent the highest correlated band ratios and water quality

parameters. B91B7 is highly correlated with TUR and CIl L. And B9/B6 is highly

corrclaled wilh TDS. Scatter plot bctween TUR, C1IL,andTDS vs. B9/B7, B9/B7, and

B9/B6 respectively are shown in Figure3 1, Figurc32 ,a nd Figure 33.

.. .-..:..~.."
Figure 3 1: Scatterp lol TUR vs.B 911l7

.-.:-.
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Figure 32:Sc atter ploI CIlLvs. B9IB7



ScatterplotofTDS vSB9/B6

2S

'0 '. '.
...

"ii 15 ~ ..
i .'

10 "

.' .'
0.7 0.8 D.'

09'86
1.1 1.2 1.3

Figure 33:S callcrplotTDSvs.B911l6

The previous analyses show linearity in the relationship between the measured water

quality parameter s and theext ractcd rcflccta nces. As a resu lt, linear regression models

were deve loped betwee n the wate r quality parameters and the extracted rellectancesfrorn

MERIS. All water quality and image extracted variables were leg-transformed to better

fulfi ll the assumptions of the regression. First, two and three explanatory variab les

models were tr ied. Atu=0 .05, the significant model was the Log (TDS) model vs. Log

(1l911l5) and Log (1l9/BS) . By trying one explanatory variab le, bothTUR andClIL

model s vs. 1l9/1l7 were significant at u=0.05 . All devel oped mode ls are presented in

Equations 5, 6, and 7. Figure 34 to 3S show the graphica l represen tation of the developed

models. Figure 34 shows that the TUR model tits the data points very well, which can be

descr ibed in the high value ofR'that equals O.7S. C1IL model , Figure 35, also shows

good tit with the data points, R2 equals O.6.f. Figure36show theg raphical representation

of the TDS model, the figure reveals good fit between the TDS model and the data point s.



Log (TU R) = 1.04 +4 .55 Log (B9!B7) .

Log(C IIL) ~ 1.39 +2 .98 Log (B9!1l7) ...

. [5J

. . .... .. . . ... [6]

Log (TDS) = 1.0 1- 1.34L og (B9/B5) - 1.86L og (B9!1l8) [71

N =34
R' = 0.78

Figurc 34 :T URm odcl



N= 33 ·
R'=O.64

Figure 35: CHL mode l

., r ,- • .: " ' .~ '. ' "0

N = 56
R' =O.6

Figure 36: TDS model



determinat ion (R2) is higher forTUR than CII La nd TDS. For the NSE coe fficient, TUR

also has he higher values then Cl IL and TD S. The table also showst henumber ofpoints

as we ll as the P-values of the developed models, Ave rage and the standard deviation of

Figure 37, Figure 38, Figure 39 show the ca lculated vs. measured TUR, C1IL, andTDS

plots respect iveiy as well as the 45 degree iine.

• I I I I I I I
06 08 10 12 14 16 18 20

CalculatedLog(TUR)

Figure 37: Measured vs. Ca1culated TUR values
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CaleutatedLog (TOS)

Figure 38: Mea sured VS. calculated TDS va lues

45 de gre e line

CalOJatedLog tCHl )

Figurc 39: Mcasurcd vs, calculatcd Cl'll.



For the uncertain ly of the developed models. the average of the residuals as shown in the

previous table arc 1.37 [NTU ], I [~ g/I] , and 0.46 [gil] for TUR, CHL, and TD S

respectively, and the standard deviation of the residuals arc 12.45 [NT U], 11.25 [~ g/I I .

and 4.26 [gi l] forTU R,C HL,andTDS respect ively.

By applying the developed equatio ns on all the image pixels, a map of water quality

parumeters canbe obtained. As anexample ofthc developed \\'ater quality map.

Figure 40,

Figure 4 1,a nd

Figure 42 are the water quality parameters maps which generated by applying the

developed equations on the ent ire water surface of the Lake . Uscdima gein thisc xample

lVas acqu iredJuly 29'h,2009 .A ndth em apsproducedforTUR,C IIL,and TDS . As these

values are log transformed, the maps are showing the median estimated values only. For

the va lues disp layed in the map key, Tab le 2 1 shows the 95% confidence intervals for

each displayed value.

Tab le 2 1: 95 % Confidence interva ls for values displayed in the maps kcy

Value Lower Limit Upper Limit

2"
8 6. 18 11.29

f-
25 17.38 4 1.38

~ 35 2 1.85 49.28

20 18.29 23.17

U ~ 35 3 1.77 53 .99

45 32,48 58.57

10 7.99 11.74

,... ~ 15 14.00 17.67

20 17.67 23.4 1



Figure 40: TUR [NTU] map Ju ly 29th , 2009 .

Figure4 1 : CHL [~g/IJ mapJuly 29th,2009 .



Figure4 2: TDS [gil] map July 29th. 2009.

The compl ete set o f the medi an water quality parameters maps are attache d with this

thesis in appendices F. Gi and H. Based on the final water quality distribution maps. Lake

south-eastern and south-western pan of the Lake (see Figure 43)whi chi s charactcrized

by high TUR. high CHL, and low TDS concentrations. The reason for the high

concentrations ofCHL and TUR is the contact between this part of the lake and the

agricultural drains that 1I0w into the lake. Area 2 is the northern pan of the lake which is

located parallel to the coast of the Mediterranean. Area 2 has low values of TUR and

CHL concentrations. but it has high value s of I DS concentration as a result o f the

area I and 2. As a result . it has med ium values o f all water parameters under study (TU R.



CHL,andTDS). The next chapter is a discussion about the results and the eonc!usion in

Figure 43: Lake Manzalah water quality Areas



6. Di scussion and Conclusions

Thi s chapt er discusses the results obtained from the study and the issues that were

encountered \"vith the data collect ion. and statistical mode l developrncnt . The limitations

of devel oped model s are also discussed . Thi s is followed by conclu sion and

recommend ations for further study.

Band 9 is co mmon in a ll band ratios that arc highly corre lated wit h the in- situ measured

wate r quality parameters. This is likely because Band 9 was originally ta ilored for

sensing thc water qualit y parameters which arc optica lly act ive in Case 2 water s. Band 9

is located in the chloro phyll-a spectrum's peak (Docrf fcr et al., 1999). Since no

atmosphe ric cor rection procedur e was impleme nted for thi s study, the ratio between

MERIS bands canb e considered as a relative atl11ospher ic correction (C-Core, 2009).

The proposed method int hist hcsis is simplc and casy to implcmcnLIt is not limited to

Lake Manzalah only, it can be adapted 10 any water body that is moni tored using the

RTWQ network . In add ition, it can develop a relationship between some of the non-

optica lly active wate r parameter s such as TDS and the extracted rcflectance s from the

satellite image ry. The explanation of the relationsh ip betwe en TDS and the extracted

reflcct ance s can be attributed to the high correl ation between the TDS and the TUR

which is optically activ e. TUR is used as a surrogate to develop the TDS model. In the



future, the models can be exten ded to other inactive water qua lity parametcr s such as pl l

and Te mperatu re using a cor responding optica l active surrogate.

By collecting more coincident in-situ and satellite measurements, it is expected to

improve the developed models. The improvement wo uld include the existing models as

well as developing new models for predicting other parameters that are already being

measured using the in-situ water qua lity mon itoring stations. The paramete rs that can be

included in the improvement aredissolved oxygen, ammonium, and pH.

The developed models only can captu re the variation during the span of data collect ion

time (August 2009 -0etobe r 2009) . The refore, the captured var iation in the lake 's water

quality is confined to one season. Collecting more co incident in-situ and satellite data can

improve the developed mode ls to include other seasons which might be exi st in the lake

water quality cycle. The improvements that can be obtained from collecting more

coincident data points also include formulating new models for areas within the same

lake system that has different watcr qualityc haracterist ics

For the uncertainty of the developed models, the average of the residualsare 1.37 [NTU],

1 [ug/l], and 0.46 [gi l ] for TUR , CHL, and TDS respectively, and the standard deviat ion

of the resid uals are 12.45 [NTU], 11.25 [~ gl l] , and 4.26 [gil] for TU R, CHL, and TD S

respectively. The reason that the average of the resid uals not equal to zero is due to the

log transformation that applied to the water parameters quality data sets. But the

predicted va lues arc median va lues not means so the bias is acce ptable

As the deve loped model s are regrcssion-based models, it is important to note that the usc

of the developed models is limited to the range of measured data and the case study area



procedur e of deve loping these mod els can be implemen ted independent o f location.

There fo re, the developed models are only suitable for gene rating Lake Manza lah ' s

median water qua lity distribut ion map s for the imagery that was acquired between Jul y

29 and October 25,2009. Due to their limitations, the develop ed mode ls need to be

enha nced by co llectin g more sate llite and in-situ da ta. The co llection of th is data is

needed to update and va lidate the developed models.

In thi s rese arch, the RT\VQ mon itoring stations integrated wi th the satellite extracted

water qua lity data. Th e final output is a waterqu ali tyd istribut ion map s. T he co nc lusions

The integration between RT\VQ mon itoring and sate llite sys tems using the

co mmu nicatio n techn o logies generates a new water quality mo nitor ing system using

the advantages o f bot h sys tems. The new sys tem final output is a water quality map

that has a moderate spatial resol ution (300m) as we ll as a high tem pora l resolut ion (3

days)

The proposed procedu re does not dep end on hie -optical irrad iative transfer models,

which are unique for eac h site. The propo sed proced ure instead depends on a simple

linear relationship between the in-situ RT \VQ monitoring measur ements and extracted

ME RISimageryre flecta nces.

From the water qua lity po int of v iew, Lake Man za lah is divi ded into three diffe rent

areas; each w ith its own water qual ity cha racteris tics. Area I is the southeas tern and



southwestern parts, area 2 is the northern part of the Lake and area 3 is the area in

The water qualit y characte ristics throug hout the lake are influenced by the proximi ty

to the Medite rranea n Sea from the No rth and the flows into the lake oft he agr icultura l

Co llect more coi ncident points to enhance and update the developedmodels tocovcr

all seasons and to try other methods of relating the in situ data with satellite data such

as arti ficia l neural networks, or principa l component reg ression

Deve lop ind ividual models for different areas of the lake. However this will need

Ana lyze the bands ref1ectances using the PCA as the correlations betwee n the

extracted ref1ectance sare high.

Extend the number of water qua lity variable s to include variab les such as Dissolved

oxyge n and pll .

Examine the propo sed approac h to other lakes in both Egypt and Canada that have

ex ist ing RTWQ moni toring systems, This will ensure that the proposed approac h is

universally app licable.
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Ma trix plats, Co rrela tion Ma trices and p-value ma trices o f fheconcu rrent
reflec tances with wate r qual ity parame lers (TUR,C Hl , andTDS)
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Appendix E

Corre lat ion Matrix between wate r qual ity parameters (TUR, CHL, and TDS)and
exlractedMERISreflecta nce s
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