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Abstract 

The acute in vivo effects of proteinase-activated receptor 2 activating peptides 

(PARz-AP) are reported to include vascular inflammation and hypotension. We studied 

the time- (7 and 14 days) and dose-dependent (2 nmol/kg/min and 6 nmol/kg/min) effects 

of chronic subcutaneous infusion with a PAR2-AP, 2-furoyl-UGRLO-NH2 (2fly), in 

C57BL/6J (C57) mice and PAR2-deficient (PAR/ -) mice. In aortas from PAR2-AP 

treated C57 mice the relaxation curve generated by 2fly was rightwardly shifted relative 

to saline-treated C57 mice. At specific times and doses of PARz-AP treatment in C57 

mice, the maximal endothelium-dependent (acetylcholine) and -independent 

(nitroprusside) nitric oxide-mediated relaxations of aortas were less than in sa line-treated 

C57. Aortic expression of proteins associated with P AR2-AP induced smooth muscle 

relaxation was not significantly di fferent between mouse strains and treatment groups. ln 

C57 mice, 24 h hemodynamics and locomotor activity measured by radiotelemetry 

throughout the infusion periods indicated that 2fly high dose treatment lowered arterial 

systolic and pulse pressures relative to the baseline period when compared to saline 

infus ions. We conclude that PAR2-AP administered chronically in vivo produced aortic 

dysfunction in C57 mice which was characterized by attenuated endothelium-dependent 

P AR2, cholinergic, and endothelium-independent nitric oxide-mediated relaxations. ln 

spite of the in vivo vascular dysfunction, high dose 2fly-treatment lowered the systolic 

and pulse blood pressures of C57 mice. 
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Chapter 1: Introduction 

1.1 Research problem 

Cardiovascular diseases including myocardial infarction, stroke, and ischemic 

heart disease, accounted for 30% of all deaths in Canada during the years 2000 to 2006 

(Statistics Canada, 20 I 0). Hypertension is a major risk factor for these diseases and is one 

of the most common chronic clinical pathologies in Canadians. Hypertension has many 

underlying causes. A well known cause is increased peripheral vascular resistance to 

blood flow; this has been in part attributed to increased level of endothelium-derived 

contracting factors and decreased levels of endothelium-derived relaxing factors 

(Harrison, 1997). The constant imbalance of vasoactive substances in a blood vessel such 

that there is greater amounts of vasoconstrictive compared to vasorelaxant effects 

resulting in elevated blood pressure (BP) is one definition that is used to describe 

endothelial dysfunction. Increased blood pressure may lead to vascular damage (damage 

to the membrane integrity of the endothelium), which can be followed by inflammatory 

processes leading to atherosclerosis (Dean field eta/. , 2005). Endothelial dysfunction is 

associated with hypercholesterolemia, type 2 diabetes, and chronic inflammation 

(Brunner et al., 2005). The interactions of endothelial dysfunction with multiple diseases 

makes this topic an area of research that needs to be further studied. It is possible that an 

intervention or functional offset of endothelial dysfunction may be a therapeutic benefit in 

cardiovascular diseases. 



One possible target for intervention of endothelial dysfunction is P A R2. ln many 

studies, when this receptor was activated acutely it decreased inflammation pathologies 

(Kelso eta!., 2006, Lindner eta!., 2000; Schmidlin eta!., 2002; Robin eta/., 2003; 

Seeliger eta!., 2003) and lowered blood pressure (Cheung eta!., 1998; Damiano eta/., 

1999; Wang eta!. , 201 0). A study of chronic activation of P AR2 would add to the 

knowledge on how the body may function under the influence of a receptor system with 

capability for modulating both inflammation and vasorelaxation. 

1.2 Rationale 

Endothelial dysfunction has been described in animal models of chronic 

inflammation (Urbich and Dimmeler, 2004) and cardiovascular diseases (Anderson eta!., 

1995; Panza eta!., 1990; Quyyumi eta!. , 1997; Schachinger and Zeiher, 1995; Volpe et 

a!. , 1996). During tissue inflammation or injury, the production of cytokines including 

interleukin- 1 (rL-1 p) and interleukin-6 (IL-6) have been reported to contribute to the 

development of endothelium dysfunction. This dysfunction results in a diminished ability 

of vessels to modulate tone in response to either endogenous or exogenous vasoactive 

substances, such as bradykinin and acetylcholine. Endothelial dysfunction is associated 

with progression of cardiovascular diseases such as hypertension, cerebrovascular 

diseases, and coronary artery disease (Brunner eta/., 2005). Mediators of inflammation, 

which includes lL-1 p, have also been found to upregulate endothelial cell responses to 

proteinase-activated receptor 2 (PAR2) activation (Nystedt eta/. , 1996). For example 

P AR2 activation by PAR2-activating peptides (PARr AP) can induce further cytokine (lL-
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6, IL-8) production (Lourbakos eta!., 200 I) and adhesion molecule expression in 

endothelial cells (Buddenkotte eta!., 2005; Shpacovitch eta!., 2004). If activating PAR2 

induces the production of cytokines then PAR2 activation is expected to lead to 

endothelial dysfunction. 

In vivo studies have reported that PAR2-APs administered acutely causes a range 

of effects including hyperalgesia (Vergnolle et a!., 2001 ), increased salivary secretion 

(Kawabata eta!., 2000; Kawabata eta!., 2004), and scratching (Shimada eta!. , 2006), 

which are effects that would be attTibuted to localized tissue inflammation. High doses of 

some PARrAPs have been found to generate non-P AR2 vascular actions in vitro, and 

thus, provide potential confounding interpretations for in vivo studies (McGuire et a!., 

2002a). In isolated blood vessel assays, nanomolar concentrations of PARrAPs cause 

vasodilation which is dependent on an intact endothelium and PAR2 expression (McGuire 

eta!., 2002a; McGuire eta!., 2002b; Saifeddine eta!., 1996). The P ARr AP 2-furoyl­

LIGRLO-NH2 (2fly) has 30- to I 00-times the in vitro potency of legacy P AR2-APs 

(SLIGRL-NH2) and lacks the non-P AR2 effects of these compounds in the same assays 

(McGuire eta!., 2004a). Acutely administered intravenous (i.v.) PAR2-APs, including 

2fly, lowered blood pressures of anaesthetized rodents (Cheung eta!., 1998; Damiano et 

a!., 1999; Wang eta!., 2010). Decreases in mean arterial blood pressures in response to 

i.v. 2fly have been replicated in anaesthetized rats by our laboratory (McGuire and 

Tabrizchi, unpublished data). Acute PAR2 infus ions in humans caused an increase in 

forearm blood flow and were well-tolerated (Robin eta!., 2003). Interestingly, the 
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vasodilator effects of2fly and other PARrAPs have been found to persist in resistance 

arteries under conditions when other endothelium-dependent relaxing agents have 

reduced efficacy (Kagota eta!., 2011; McGuire eta!., 2007; Smeda and McGuire, 2007; 

Smeda eta!., 201 0). In vitro studies have reported a protective role of P AR2 activation 

against ischemic reperfusion damage in the coronary vasculature (Napoli eta/., 2000). 

These effects appear to contradict the notion of PAR2 activation causing endothelial 

dysfunction. In fact, protection against ischemia, persistent vasodilator activity, and blood 

pressure lowering effects of P AR2-AP would suggest evidence of P ARrAP being useful 

against the negative effects of endothelial dysfunction. 

Which way, agonist or antagonist, should we target PAR2 to produce a 

therapeutic benefit? Acutely administered small molecule antagonists of PAR2 have been 

reported to be effective in rodent models of acute inflammatory diseases, including the 

use ENMD-1 068 in an immune system-induced arthritis model (Kelso eta/., 2006). 

Studies in P AR2 gene knockout mice (PAR/-) indicate gene deficiency for this receptor 

is protective against several types of tissue inflammation including airway inflammation 

(Schmidlin eta/. , 2002), contact dermatitis (Seeliger eta!., 2003), and colitis (Lindner et 

a!., 2000). However, there is also evidence to indicate that injury and inflammation 

responses were increased in P AR2_, __ Increased inflammation was found in mouse 

pancreatitis (Sharma el a/. , 2005). Acute focal ischemic brain injury was reported to be 

higher in PAR/- (Jin el a/., 2005). In conscious unrestrained PAR/-, we reported 

significantly elevated systolic arterial and pulse pressures compared to their control strain 
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under baseline conditions (McGuire eta/., 2008). Our data were acquired by 

radiotelemetry, which is the method with the highest resolution for conscious blood 

pressure measurements. Other earlier studies, that collected hemodynamic data via carotid 

dwelling catheters in isoflurane-anaesthetized mice, reported no difference between 

PAR/- and control mice (Damiano eta/., 1999). A search of the most recent literature (to 

June 2011) indicates no published studies of the chronic effects of PAR2-AP administered 

in vivo. 

PAR2 activation in vivo may be expected to induce inflammation leading to 

endothelium dysfunction, and thus, contribute to the development of cardiovascular 

diseases including hypertension. However, this possible effect does not exclude a time- or 

dose-dependent hypotensive effect of chronic administered P AR2-AP. 

1.3 Hypotheses and Objectives 

This thesis tested two hypotheses. Hypothesis 1 was that chronic treatment of 

mice with PAR2-AP would induce time- and dose-dependent endothelium dysfunction 

linked to loss of endothelium-derived NO relaxation; P AR2-AP would not cause 

endothelial dysfunction in PAR/-. Hypothesis 2 was that chronic treatment of mice with 

PAR2-AP would induce time-dependent lowering of blood pressures in normal mice with 

no effect in PAR/-. 

To test Hypothesis 1, we established a chronic PARz-AP treatment model which 

comprised administering either of two doses of P AR2-AP 2fly (2 nmollkg/min (low dose, 

LD) and 6 nmollkg/min (high dose, HD)) to normal healthy mice (C57BL/6J; C57) and 
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PAR2-deficient (B6.Cg-F2rll 1
"'

1
Mslb/ J; PAR/ -) for 7 and 14 days by subcutaneous 

infusions via micro-osmotic pumps (Figure 1.1 ). 

< 
7 days 

Saline 

14 days 

C57 
2 < nmol/:g/min 

7 days 

nmol/kg/min 
2fly 

2 

14 days 
< nmol/:g/min 

nmol/kg/min 

< 
7 days 

saline 

14 days 

PAR -/-
2 

6 
7 days 

nmol/kg/min 

2 fly 2 

14 days 
< nmol/:g/min 

nmol/kg/min 

Figure 1.1 Experimental design for mice treatment. Abbreviations: C57, C57BL/6J 

mice; PAR/ -, B6.Cg-F2rll1
"'

1
Mslb/ J mice; 2fly, 2-furoyl-LIGRLO-NH2; saline, 0.9% 

NaCl; 2 nmol/kg/min, low dose (LD) 2fly; and 6 nmol/kg/min, high dose (HD) 2fly. 
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The nitric oxide-mediated smooth muscle relaxation by endothelium-dependent (2fly, 

acetylcholine, calcium ionophore (A23187)) and - independent (nitroprusside) agonists in 

aortas from these mice were recorded while contracted by a thromboxane A2 agonist 

under isometric tension conditions in myographs. Objective 1 was to characterize the 

dose and time effects of in vivo PAR2-AP treatment on the subsequent vascular reactivity 

of aortas as a measurement of endothelial and smooth muscle cell health. Objective 2 

was to characterize the nitric oxide component of relaxations by measuring the agonist 

relaxation activity in chronic PAR2-AP treated mice using pharmacological inhibitors of 

endothelial nitric oxide synthase (Nw-nitro-L-arginine-methyl ester, L-NAME) and 

cyclooxygenases (indomethacin). Based on initial experiments, it was apparent that 

chronic PAR2-AP treatments attenuated the aortas relaxations induced by 2fly, ACh and 

nitroprusside in C57. Objective 3 was to identify the possible mechanisms underlying the 

attenuated relaxations by PAR2-AP. Western blotting of aortic proteins and 

immunohistochemical staining of aortas for P AR2 were used to measure the expression 

levels of endothelial NO synthase (eNOS), soluble guanylyl cyclase (sGC), 

cyclooxygenases isoforms - I and -2 (COX-I, COX-2), and P AR2 to investigate the 

contributions of these components in attenuated relaxations. 

To test Hypothesis 2, we used the chronic P AR2-AP treatment model described 

above. Objective 4 was to test whether high dose PAR2-AP administered chronically 

lowered blood pressures in mice. To do this we recorded continuously the blood pressures 

and locomotor activity by radiotelemetry while administering the high dose PAR2-AP to 
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m1ce. 

From these studies, we expected to determine the effects of chronic treatment with 

P AR2-AP on the endothelium function of mouse aortas and on the blood pressures, heart 

rates, and locomotor activities of mice. 

Chapter 2: Literature Review 

2.1 Proteinase-activated receptors (PARs) 

Proteinase-activated receptors are a class of seven transmembrane domain G­

prote in coupled receptors, which consists of a family of 4, numbered I to 4 according to 

order of discovery (reviewed in Hollenberg, 2003). In the cardiovascular system, PAR are 

found on platelets (PARt, PAR3 and P~; Kahn et al., 1998; Vu et al., 199 1), 

endothelial cells (PAR~, PAR2, and PAR3; D 'Andrea et al., 1998; Hamilton et al., 2002), 

smooth muscle cells (PARt and PAR2 ; D'Andrea et al., 1998; Hamilton et a/., 2002), 

cultured cardiomyocytes (PARt, PAR2, and P~; Hamilton et al., 2002, Ide et al., 2007, 

and Sabri et al., 2003), megakaryocytes (PAR3 and PA~; Ishihara et al., 1997 and Kahn 

et al., 1998), leukocytes (PAR2; Dery eta/., 1998) and fibrob lasts (PARt; Connolly et al., 

1996). 

The normal structure of PAR conceals a tethered ligand that is exposed by serine 

proteinases c leaving theN-terminal domain of PAR. Table 2. 1 contains the N-terminal 

amino acid sequences of the revealed tethered ligands in mice, rats, and humans. TheN­

terminus binds to a region of extracellular loop 2, which induces a conformational change 

in the receptor that couples with activation of several possible G-proteins (reviewed in 
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Receptor Revealed tethered ligand sequence 
(human) SFLLRN .. . 

(rat, mouse) SFFLRN .. . 
(human) SLJGKV .. . 

(rat, mouse) SLIGRL . . . 
(human) TFRGAP . . . 
(mouse) SFNGGP . . . 

p~ (human) GYPGQV . . . 
(mouse) GYPGKF . . . 

(rat) GFPGKP . . . 
Table 2.1 Tethered ligand sequences from human, rat, and mouse for each 

member of the PAR family. Modified from Hansen eta!., 2008. 

Macfarlane et a!., 2001 ). Selectivity for the activation of PARs amongst serine pro teases 

(a superfamily of enzymes) has been identified : fo r example, thrombin activates PAR 1, 

P AR3, and PA~, but not PAR2 (MacFarlane eta!. , 2001 ). PAR-activating pep tides 

(PAR-AP) mimic the tethered ligand sequence and so are substituted as more practical 

pharmacological tools than enzymes (Dery et al., 1998; Hollenberg et al., 1997; 

Hollenberg et a!., 1999). Figure 2.1 illustrates these two mechanisms for PAR2 activation: 

I. Cleaving the N-terminus produces P AR2-tethered ligand, and 2. binding of 

extracellular loop 2 by PARz-AP. 
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Figure 2.1 Illustration comparing PAR2 activation by enzymes versus PAR2-AP. 

Modified from McGuire (2004). Used with author's permission. 

2.2 PAR2-activating peptidcs 

Several of the more common PAR-APs are listed in Table 2.2. 2- furoyl-LIGRLO-

NH2 (2fly) has proven to be one of the most potent and specific agonists that have been 

purposefully designed to target PAR2• 2fly is 10 to 300-times more potent than SLIGRL-

NH2, the native amino acid sequence of the exposed region in rats and mice (Table 2.2) 

(McGuire eta/., 2004a). The substitution of serine by a furoyl group and the addition of 

ornithine to the carboxy terminus of SLIGRL contribute to increased potency and a 

resistance to aminopeptidases. In total , 2fly is a more effective PAR2-AP compared to 
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what we refer to as legacy PAR2-AP. 

PAR1 

SFLLRN-NH2 

TFLLR-NH2 

TFRJFD 

SFLLRN-NH2 

SLIGKV-NH2 

SLIGRL-NH2 

transcinnamoyl-LIGRLO-NH2 

2-furoyl-LIGRLO-NH2 

PARt 

TFRGAP a GYPGQV-NH2 

GYPGKF-NH2 

AYPGKF-NH2 

Table 2.2 PAR-activating pep tides. Peptide sequences are abbreviated by the 

internationally accepted biochemical nomenclature standard using the 1 letter code fo r 

each amino acid. Exceptions, NH2 = amide functional group. Though not listed 

separately, it is common to find that studies have used the free carboxylic acid fotms, 

which have I 0-times less potency than the am ides. a A lthough this is the reference fo r 

the tethered ligand sequence, it has not been found to activate PAR3. 

2.3 Cardiovascular actions of P AR2-APs 

A potentially promis ing therapeutic activity of PAR2-APs is that these compounds 

can produce endothelium-dependent relaxation of vascular smooth muscle cells (Al-Ani 

et at. , 1995). In acute in vivo studies PAR2-AP caused a reduction in b lood pressure 

without increasing heart rate in anaesthetized rats (Emilsson et al., 1997) and mice 

(Cheung et a!. , 1998) using SLIGRLETQPPI and SLIGRL-NH2 respectively. It was 

reported by McLean et at. (2002) that P AR2 activation was protective against myocardial 
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ischemia and reperfusion injury. This protection occurred because P AR2-AP infusion 

increased coronary perfusion despite being unresponsive to acetylcholine under these 

conditions (McLean et al., 2002). Robin et al. (2003) administered i.v. SLIGKV-NHz to 

healthy volunteers while measuring blood flow in the foreann. They reported no adverse 

effects and that SLJGKV-NH2 increased blood flows. These increases by SLIGKV-NHz 

were reduced (26%) by pretreatment by NG -methyi-L-arginine and were reduced even 

more by combining the later with aspirin. 

In various animal models of human diseases, P AR2 mediated vasodilation is 

preserved despite other endothelium-dependent vasodilators being less effective. ln 

genetic hypertensive mice (BPH/2) relaxation of small mesenteric arteries by PAR2-AP 

were only slightly reduced (6%) when compared to normotensive mice (BPN/3) 

(McGuire eta/. , 2007). In contrast, relaxations by acetylcholine and bradykinin in BPHJ2 

were significantly reduced by 25-50% compared to BPN/3 (McGuire eta!. , 2007). This 

preservation of P AR2 function in the small calibre arteries was attributed to an 

endothelium-dependent hyperpolarization mechanism. In basilar (So bey eta/., 1999) and 

pulmonary arteries (Wanstall and Gambino, 2004), the preserved PAR2 relaxations were 

nitric oxide (NO) mediated in SHR and pulmonary hypertensive rats, respectively. 

Similar to the findings by McGuire et al. (2007), stroke prone hypertensive rats (SHR) 

displayed reduced middle cerebral artery vasodilation by bradykinin and A23187 while 

2f1y-induced vasodilation remained unchanged (Smeda and McGuire, 2007). According 

to P AR2 immunostaining of middle cerebral arteries there was no apparent change in 
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distribution of P AR2 expression (Smeda eta/., 201 0). When taken together, these studies 

reveal that PAR2-AP could play a number of cardioprotective roles. The acute lowering of 

arterial blood pressures is one protective role. The maintenance of the capacity fo r 

endothelium-dependent relaxation despite reduction in effectiveness of other vasodilators 

in disease models is a second protective role. 

2.4 In vivo effects of PAR2-AP link with inflammation and immunity 

PAR2 activation in vivo can cause both anti-inflammatory and pro-inflammatory 

effects as well as change expression of molecules associated with immune mechanisms. 

Anti-inflammatory effects have been measured by acutely administering in vitro and in 

vivo P AR2-APs. One early in vitro study of PAR2-APs infused SLIGRL-NH2 in a rat 

model of myocardial ischemia reperfusion injury (isolated perfused working hearts). This 

caused an increase in myocardial contractile recovery and decreased oxidative stress from 

free radicals during reperfusion in the ischemic risk zone (Napoli eta/. , 2000). ln the 

respiratory system, intranasal administered SLIGRL inhibited antigen-induced hyper­

reactivity and infiltration of eosinophils in the airway (De Campo and Henry, 2005). 

SLIGRL administered in vivo also increased prostaglandin E2 levels in the bronchiolar 

lavage (a mechanism in the lung that reduces inflammation by reducing inflammatory 

molecule recruitment (Lan eta!., 2001 ; Vancheri eta!., 2004)) in the absence of any 

inhibitors. When PAR2-AP was co-administered with indomethacin (blocking 

prostaglandin E2 production) the allergy hyper-responsiveness returned (De Campo and 

Henry, 2005). lntrarectal administered SLIGRL-NH2 was found to protect against 
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experimental colitis that had been induced by exposure to trinitrobenzene sulfonic acid 

(Fiorucci et a/., 200 I). This protection by P ARz-AP was described by increased 

macroscopic and histological scores and reduced level ofT helper I type cell cytokines 

(Fiorucci eta/., 2001 ). These studies demonstrate the ability of P AR2 to elicit anti­

inflammatory effects. The latter two studies also display differences in the modulation of 

immune mechanisms. The activation of PAR2 caused changes in the amount of mediators 

of the immune response, an increase in prostaglandin E2 (an anti-inflammatory e ffect in 

the lungs) and a decrease in T helper 1 type cell cytokines. 

In vivo administered PAR2-AP can cause pro-inflammatory effects. [njection of 

SUGRL-NH2 into rat paws caused oedema resulting from increased vascular 

permeability (Kawabata eta/., 1998; Vergnolle eta!., 1999). The oedema in these rats 

was characterized as being independent of mast cell activation and of the production of 

prostanoids and NO. These features of inflammation were demonstrated in hind paw 

oedema using compound 48/80 (depletes mast cells), cromolyn (a mast cell stabilizer), 

indomethacin, and L-NAME, respectively (Vergnolle eta!., 1999). Increased 

inflammatory response described by joint swelling and synovial vasodilation has also 

been reported to occur in mouse knee joints that had been administered either SLIGRL­

NH2 or 2-furoyl-LIGKV-OH (Ferrell eta!., 2003). Local intracolonic administration of 

SLIGRL-NH2 caused inflammation as described by increased wall thickness and 

macroscopic damage score, caused increased tumor necrosis factor-a, lL-1 p, and 

interferon-y mRNA expression (increase in T -helper 1 cells) and caused increased 
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epithelial permeability (Cenac eta/., 2002). P AR2-AP 2fly administered to rats prior to 

intestinal irradiation exacerbated the tissue injury at early time points following exposure 

(Wang eta!. , 2010). These studies show that PAR2 activation in vivo has potentia l to 

increase pro-inflammatory effects at multiple sites and has been associated with immunity 

regulated by T-helper 1 cells. 

2.5 PAR2 antagonists 

To understand the consequences of PAR2 activation more clearly, PAR2 

antagonists would be of great use. Researchers have synthesized antagonists of PAR1 that 

have been characterized by their ability to inhibit both the initial transient g lobal cytosolic 

calcium signal and endothelium-mediated relaxation (reviewed in Ahn eta/. 2003). 

However, there has been limited success in developing an antagonist to PAR2. One 

approach used to develop P AR2-antagonist compounds was functional screening of 

pep tides comprised of the reversed amino acid sequence of the PAR activating peptides. 

Al-ani eta/. (2002) attempted this approach for both PAR1 and PAR2 using FSLLRY­

NH2 and LSIGRL-NH2 respectively. These peptides were previously described as having 

no PAR agonist activity (Al-ani eta!., 1999). FSLLRY-NH2 and LSIGRL-NH2 blocked 

trypsin activation ofPAR2, but did not block SLIGRL-NH2 mediated activation of 

calcium signaling in Kirsten virus-transformed kidney cells or relaxation of rat aorta (AI­

ani et a/., 2002). Other approaches to develop inhibitors of PAR activities include 

peptidomimetic molecules (Ahnet a!., 2003), pepducins (Kaneider eta!., 2007), small 

interfering ribonucleic acid sequences (siRNA), and monoclonal antibodies (Kelso et al., 
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2006). 

Mimetic molecules for PAR1 inhibition are compounds that resemble the 

chemistry of the same binding motif as the activating amino acid sequences, the template 

being a 6-aminoindole ring. One such antagonist is RWJ-58259, which binds with high 

affinity and inhibits PAR1 mediated platelet aggregation (Ahn eta/., 2003). The inhibitor 

actions of PAR1 small-nonpeptide inhibitors including pyrroloquinazoline analogs, 

benzimidazole derivatives, and himbacine analogs have also been described (Ahn eta!., 

2003). Generally, pepducins can have either agonist or antagonist activity by interacting 

intracellularly with the G-protein coupled pathways. These compounds have been 

successfully employed as agonists to both PAR1 (Kaneider eta/., 2007) and PAR2 (Covic 

eta/., 2002; Kaufmann eta!., 2009), but not asP AR antagonists. siRNAs, antibodies (85 

antibody specifically), and Nl-3-methylbutyryl-N4-6-aminohexanoyl-piperazine (ENMD-

1068) have been successfully employed to partially inhibit PAR2 activation (Kelso et al., 

2006). siRNAs reduced the amount of knee joint swelling after cytokine induction. The 

85 antibody serum also reduced knee joint swelling in mice after induction of 

inflammation via carrageenan/kaolin (Kelso eta!., 2006). ENMD- 1 068 reduced calcium 

signaling in Lewis lung carcinoma cells mediated by SLIGKV-NH2, but had no effect on 

trypsin activation in these cells (Kelso eta/., 2006), and thus, was a partial antagonist. 

In the past two years there has finally been some progress made in discovery of 

small molecule inhibitors of PAR2. One study, by Kanke eta!. (2009) described two new 

peptidomimetic antagonists ofPAR2 (K-12940 and K-14585). Both antagonists reduced 
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SLIGKV -induced calcium influx in primary human keratinocytes and inhibited 

competitively the specific binding of [3H]-2-furoyl-LIGRL-NH2 to the cell membrane 

(Kanke et al., 2009). Competitive inhibition of SLIGRL-induced relaxation of rat aorta 

was reported with K-14585 (Kanke et al., 2009). The most recent study, by Barry et al. 

(20 I 0), described the first compound (G883) to inhibit PAR2 activation via proteinases 

and by synthetic peptides (2fly) at low concentrations. G883 was shown to inhibit PAR2 

induced intracellular calcium release in a colon cancer cell line in a dose dependent 

manner with full potency at J.lM concentrations. 

It has taken many years to develop an antagonist ofPAR2 that has the ability to 

inhibit activation by proteinases and synthetic peptides. It is expected that GB83 should 

prove to be very useful to further describe the actions ofPAR2 and the consequences of 

blocking the receptor. 

2.6 PAR2 knockout mice 

Prior to discovery of pharmacological inhibitors ofPAR2, transgenic PAR/- mice 

have been used to investigate the in vivo role of PAR2 in various experimental models of 

diseases. Several strains of PAR/- mice have been used to investigate the cardiovascular 

actions of PAR2 (Damiano et al. , 1999; McGuire et al., 2002a; McGuire eta!., 2008) and 

inflammatory models of disease (Cenac eta/., 2002; Ferrell eta/., 2003; Kelso eta/., 

2006; Lindner et al., 2000; Schmidlin et al., 2002; Seeliger eta!., 2003). 

Cardiovascular phenotype characteristics present in PAR/- include higher systolic 

arterial pressures and pulse pressures compared with C57 (PAR/ 1
) under baseline 
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conditions when measured by radiotelemetry (McGuire et al., 2008). These mice have 

also been used to demonstrate that hypotension produced by acute i.v. administered 

SLIGRL-NH2 in wild type mice was due to PAR2 expression (Damiano eta/., 1999). 

There are differences in P AR2_,_ responses in various models of inflammation 

which creates some uncertainty about the pathophysiological role that may be played by 

PAR2. PAR2_,_ mice are protected from airway inflammation (Schmidlin et al., 2002), 

contact dermatitis (Seeliger et al., 2003), and colitis (Lindner eta!., 2000). The 

inflammatory response is substantially less in mouse knee joints of PAR/- compared to 

their wild type counterpart after adjuvant induced arthritis (Ferrell eta/., 2003). In this 

arthritis model PAR2_,_ mice had lowered swelling compared to wild type. Intracolonic 

administration of SLIGRL-NH2 caused little change in inflammation of PAR/- mice as 

compared to PAR/ 1
+ mice (Cenac eta/. , 2002). P AR2 +t+ had increased wall thickness and 

macroscopic damage score, increased tumor necrosis factor-a, IL-l p, and interferon-y 

mRNA expression (increase in T-helper I cells) and increased permeability (Cenac eta!. , 

2002). In general , PAR/ - responses to immune system action are lower than PAR2 +!+, but 

there is contradictory evidence that indicates that injury and inflammatory responses in 

some cases were increased in PAR/-. 

Increased inflammation was observed after acute focal ischemic brain inj ury as 

PAR2-/- mice compared to their counterparts had an increased infarct volume (Jin el a!. , 

2005). In pancreatitis there seems to be different effects that are dependent on the 

mechanism of inducing inflammation. Induction of pancreatitis by a supramaximal 
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caerulein stimulation caused increased inflammation in PAR/ - mice (Sharma et a/., 

2005) whereas the inflammation induced by retrograde administration of bile salts in the 

pancreatic duct was reduced in P AR/ -(Laukkarinen et a!., 2008). These findings are 

evidence that P AR2_,_ mice may exhibit different outcomes, sometimes opposite, 

depending on the tissues and experimental model studied. For our purposes it is important 

to know that PAR/- can exhibit different inflammatory responses when stimulated. 

2.7 Endothelium-dependent relaxation mechanisms 

An understanding of vasodilator mechanisms similar to those produced by P AR2 

activation, such as endothelium-dependent relaxation by cholinergic agonist acetylcholine 

and calcium ionophore A23187, is useful to designing studies to characterize potential 

signal transduction mechanisms underlying PAR2 responses. 

In what are now considered classic in vitro experiments, the neurotransmitter 

acetylcholine was found to relax precontracted rabbit aortas (Furchgott and Zawadzki, 

1980). Relaxation was dependent on the presence of intact endothelial cells because when 

inner surfaces of rabbit aortas were damaged by rubbing, relaxation did not occur 

(Furchgott and Zawadzki, 1980). These fundamental observations led to the co-award of 

the 1998 Nobel Prize in Medicine to Furchgott, lgnarro, and Murad; the work of the latter 

two contributed to the identification of (NO) being the mediator of this endothelium­

dependent relaxation and the role of soluble guanylyl cyclase in signal transduction, 

respectively (SoRelle, 1998). 

Acetylcholine activates the type 3 muscarinic receptor (M3) found on endothelial 
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cell plasma membranes (Dauphin and Hamel, 1990). M3 cholinoreceptor is a classic 

seven transmembrane domain G-protein coupled receptor. Briefly, activation of M3 

receptors causes Gaq to exchange GOP for GTP. Gaq is released from its G~y subunit 

which acts as the signal transduction molecule leading to activation of phospholipase C. 

Phospho I ipase C cleaves phosphatidylinositol-4, 5-bisphosphate into inositol triphosphate 

and diacylglycerol (Noh eta/., 1995). Inositol triphosphate binds to its nominal receptor 

on the endoplasmic reticulum that causes a release of stored Ca2
+ into the cytosol of 

endothelial cells (Noh et al., 1995). Ca2
+ binds to calmodulin to activate endothelial nitric 

oxide synthase (eNOS) (Matsubara eta!., 1996). NO synthases catalyse the oxidation of 

L-arginine to L-citrulline while producing diffusible free radical gas NO (Kwon eta/., 

1990). NO diffuses into the smooth muscle cells where it binds to and activates soluble 

guanylyl cyclase, which converts GTP to cGMP. The accumulation of cGMP leads to 

activation of cyclic GMP-dependent protein kinases and subsequent phosphorylation of 

various substrates linked to the regulation of Ca2
+ including those mediating sequestration 

by the sarcoplasmic reticulum (Twort and Breemen, 1988), Ca2
+ desensitization (Stull et 

a/., 1990; Tansey eta/., 1992), and plasma membrane Ca2
+ extrusion from the smooth 

muscle cell (Popescu et al., 1985). 

A23 187 is a calcium ionophore that has blood vessel relaxant activity, that is 

dependent (in a concentration dependent manner) on the presence of an endothelium layer 

(Furchgott, 1983). It has a different mechanism of action than acetylcholine. A23187 

fOtms pores in the membrane of endothelial cells that allow the entry of Ca +2 into the 
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cells (Reed and Lardy, 1972). It is proposed that this stimulates the production ofNO, 

which follows the same pathway as NO derived by eNOS, to cause relaxation through 

sGC. 

PARrAP mediated endothelium-dependent relaxation of large calibre arteries 

occurs by a mechanism which resembles that underlying the typical acetylcholine- and 

A23187-induced relaxations. In large arteries NO is the mediator of the PAR2 signal 

transduction mechanism (Figure 2.2). In small resistance calibre arteries, endothelium 

agonists including PAR2-AP (McGuire eta/., 2002; McGuire eta/., 2004a), acetylcholine 

and A23187 do not necessarily require NO to cause vasodilation. In the presence ofNOS 

inhibitors, for example L-NAME, SLIGRL-NH2 and other PAR2-APs induce the 

relaxation of small mesenteric arteries contracted by a vasconstricting agonist (McGuire, 

2002). These responses are mediated by endothelium-dependent hyperpolarization (EDH) 

of vascular smooth muscle, which involves activation of small- and intermediate­

conductance Ca2+-activated K+ channels on the endothelium (McGuire et al., 2002a; 

McGuire et al., 2002b; McGuire et al., 2004a; McGuire et al., 2004a). This alternate EDH 

cascade may provide a mechanism for vasodilation of arteries in disease states when NO 

is limited. 
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Endogenous proteinases 

t alcium 
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alcium desensitization 
Figure 2.2 Vascular smooth muscle relaxation by PAR2 activation via endothelial-

derived NO. Used with the author's permission (McGuire, 2004). 

2.8 Endothelium-independent nitrovasodilators 

Nitroprusside initiates its vasodilator action upon spontaneous release of NO (Rao 

and Cederbaum, 1995). Thus, nitroprusside provides an exogenous source of diffusible 

NO that causes smooth muscle to relax. The mechanism of action of nitroprusside 

bypasses the endothelium and the activation of eNOS, but still involves activation of 

soluble guanylyl cyclase and cyclic GMP-dependent protein kinase activation. 

Nitroprusside is frequently used as a tool for comparing relaxation by endothelium-

dependent and -independent mechanisms. 

2.9 Non-hemodynamic effects of PAR2-AP on endothelial cells 

There has been much work performed on endothelial cells to try to describe how 

PAR2 mediates its actions within in vivo and in vitro systems. These studies have found 

PAR2-APs also have many non-hemodynamic effects on endothelial cells, including 
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stimulating the production of pro-inflammatory molecules and other mediators of the 

innate immune system. Activation of P AR2 also increased the release of prostanoids and 

cytokines (IL-6 and IL-8) in epithelia l and non-epithelial cells (Lourbakos eta!., 200 I). 

P AR2 activation in cell lines is partly linked to the NFKB pathway (Buddenkotte eta!., 

2005; Goon Goh eta!., 2008; Kanke eta!. , 2001; Macfarlane eta!., 2005) involved in the 

regulation of IL-8 production (Yoshida eta!., 2007). A lso the activation of p38 MAP 

kinase and NFKB by P AR2-AP in human umbilical vein endothelial cells has been 

reported (Ritchie eta!., 2007). P AR2 expression can be upregulated by tumor necrosis 

factor-a, IL- I~, and lipopolysaccharide in human umbilical vein endothelial cells 

(Nystedt eta!., I 996). Together these observations imply evidence linking PAR2 to pro­

inflammatory actions of endothelial cells. 

2.10 Methods for assessment of endothelial dysfunction 

In a clinical setting there are several technical methods to assess endothelial 

dysfunction. The typical approach has involved recording hemodynamic responses by 

acetylcholine, bradykinin and or endothelium-independent nitrovasodilators. It is 

proposed that an attenuated responsiveness to all of these drugs is enough to demonstrate 

endothelial dysfunction. For example, quantitative coronary angiography (Cox eta/., 

I 989) is employed to visualize blood vessels vasodilations by these agonists (Schachinger 

eta!., 2000). A lternate methods have been proposed, which include recording the 

coronary arteries responses to cold pressor testing (Schindler et al., 2003) and flow­

mediated vasodilation of large arteries of the forearm vascular bed (Perticone eta!., 200 I) 
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or microvasculature (skin microcirculation) using laser Doppler techniques (Dean field et 

a/., 2005). Another minimally invasive test is to observe the blood pressure (BP) changes 

occurring during reactive hyperemia using ultrasound and a BP cuff (Celermajer eta/., 

1992). The premise behind following reactive hyperemia is that in patients with normal 

vascular function blood flow increases after occlusion, but in patients with endothelial 

dysfunction the vessel of interest does not relax to the same extent to permit an increase 

in blood flow (hyperemia). In line with the increasing clinical trend to measure molecular 

markers of disease (biomarkers) there are multiple markers that have been proposed to 

assess endothelial dysfunction in humans, which include IL-6, tumor necrosis factor-a, 

and C reactive protein (Deanfield eta/., 2005). 

In vitro experiments have been performed on arteries isolated from gluteal tissue 

of human patients. There was reported in these studies a good correlation to the degree of 

flow-mediated dilation of the patient's brachial artery (Endemann and Schiffrin, 2004). 

Most in vitro research exploring mechanisms of endothelial dysfunction has been 

performed using animal models for ease of access and range of disease models available. 

For example, isolated vessels from rodents have been tested for effectiveness of 

acetylcholine to cause vasodilation under different conditions or stages of disease. 

Specific models include: spontaneously hypertensive rats (Luscher, 1 988; Luscher, 1989), 

third order mesenteries from the two-kidney one-clip hypertension model in rats (Dohi et 

a/., 1991 ), angiotensin II hypertension model in rats (Rajagopalan eta/., 1996), and 

diabetic models in rats and rabbits (Cameron and Cotter, 1992; Tesfamariam eta/., 1989). 
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The effectiveness of acetylcholine is also reduced in mice models including 

hyperhomocystinemia (Virdis eta!., 2003). Endothelial dysfunction associated with 

cytokine production (tumor necrosis factor-a and IL- l B) derived from chronic PAR2 

activation has yet to be determined. 

Chapter 3: Materials and Methods 

3.1 A nimal Ethics 

The procedures on mice were approved by the Institutional Animal Care 

Committee of Memorial University in accordance with the guidelines and principles of 

the Canadian Council on Animal Care. 

3.2 Materials 

2fly (PAR2-AP) and TFLLR-NHz (PAR1-AP) were purchased from Peptides 

International (Louisville, KT). Antibodies SC-2020 (COX-2 secondary antibody), SC-

1745 (COX-2 primary antibody), SC-25778 (GAPDH-FL primary antibody), and SC-

13504 (PAR2 primary antibody, (SAM-II)) were purchased from Santa Cruz 

Biotechnology. Antibodies labeled I60 I 09 (COX-I primary antibody), and I 000430 I 

(COX-I and GAPDH-FL secondary antibody) were purchased from Cedarlane 

(Burlington, ON). Antibodies for eNOS were purchased from BD Transduction 

Laboratories (primary antibody, 61 0296) and Vector Laboratories (secondary antibody, 

PI-2000). Antibodies for sGC were purchased from Abeam (primary antibody, ab5033) 

and Vector Laboratories (secondaty antibody, PI-1000). Oligonucleotide primers for 

genotyping were purchased from Eurofins MWG Operon (Huntsville, AL). Sybr® Safe 
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was purchased from Invitrogen (Burlington, ON). For PCR experiments, Taq polymerase, 

MgCI2, DNAse-free water and 10 x PCR buffer were purchased from Bio Basic Inc. 

(Ontario, Canada). Fluorescein isothiocyanate (FITC)-conjugated AffiniPure goat anti­

mouse IgG ( 115-095-003) was purchased from Jackson ImmumoResearch Laboratories 

(West Grove, PA, USA). All other chemicals were purchased from Sigma Aldrich 

Canada (Oakville, ON). 

3.3 Mice 

C57BL/6J (C57) and homozygous B6.Cg-F2rll1
"'

1
Mslb/J (PAR/·) were obtained 

from The Jackson Laboratory (Bar Harbor, ME). Three PAR/· breeding pairs were used 

to generate an initial colony. C57 mice were purchased at intervals to age-match the 

PAR/· used in experiments. Male mice (12 to 20 weeks of age) were used in all 

experiments. Mice were housed within a specific-pathogen free barrier facility until used 

for experiments, and thereafter, mice were housed in a room dedicated fo r the main use of 

radiotelemetry recording. Room temperatures, humidity and light cycles were controlled 

by Animal Care Services in the Health Sciences Centre, but were monitored routinely for 

seasonal or unexpected (power blackouts) variations. 

3.4 Breeding Protocol 

The colony ofPAR2·' · mice was started with three founding pairs from different 

parents. These breeding pairs produced about one litter of offspring every three to four 

weeks. Litter size varied from one to seven offspring. Litters were weaned on day 21 after 

bitih. The litters from the pairs of breeders were then bred together to establish a stable 
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colony. The colony number was maintained whi le ensuring there was no breeding 

between relatives at least as far back as two generations. Eighteen months after the start 

of breeding the first pairs of PAR2-
1
-, the rate of colony growth appeared to slow. A 

decision was made to reestablish the PAR/ - by backcrossing to C57 followed by 

breeding heterozygotes. Four pairs of female PAR/- of different family lines were mated 

to male C57 to generate first familial (F I) generations of heterozygote mice (PAR2 +/-). 

These PAR/ 1
- from each pair were then crossbred (using both males and females from 

each breeding pair in combination) to create second fami lial (F2) generations of PAR/-, 

P AR2 +/-,and C57 li ttermates. A ll mice from heterozygote crosses were genotyped to 

determine identity using tail cl ips. 

3.5 Gcnotyping 

Mice were genotyped using a modification of the supplier's recommended 

protocol (Jackson Laboratory, Bar Harbor, ME). Dideoxyribonucleic acid (DNA) 

extraction procedure entai led heating a mouse tail clipping (5 mm length) in a 500 f.ll 

solution of 50 mM NaOH for 1 h, cooling to room temperature, adding 50 f.ll TrisHCI 

(pH 7.5) fo llowed by mixing and centrif-ugation at I 0,000 x g for 2 min. The supernatant 

containing DNA was stored at -20 °C. DNA concentration was detern1ined using the 

NanoDrop 1000 spectrophotometer (Fisher Scientific), which was calculated by the 

measured absorbance at 260 nm (Az6onm) by nucleic acids. 

Polymerase chain reactions using 2 primer sets and a reaction mixture was used to 

amplify DNA. When paired correctly and at the optimal cycling conditions these primers 
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amplified the portions of DNA that were of interest (Appendix A). The reaction mixture 

amp! ified both a portion of the par 2 ex on and the neomycin gene present in the PAR/ ­

mice. This approach differed from the supplier as our protocol used IMR 5332 as one of 

the primers while Jackson Laboratories used IMR 7415 to amplify this region. The 

neomycin gene insert was introduced during the derivation of the P AR2_,_ mouse genotype 

at The Jackson Laboratories, and thus, it would be absent in C57. To control for 

contaminants in the PCR mixtures, a no DNA template control was analysed concurrently 

with regular DNA-containing samples. To ensure that the correct genotypes were 

visualised on gels a positive and negative control were included in all assays. The positive 

and negative controls contained DNA from known C57 and PAR2-' -, respectively. 

Standard agarose gel electrophoresis and DNA dye staining protocols were used 

to separate and then visualize the amplified DNA samples in order to identify the 

polymerase chain reaction products based on base pair lengths. Gels cast were ( 14 em x 

12 em x 0.5 em) 1.5% agarose (w/v) Tris borate ethylenediaminetetraacetic acid (TBE) 

buffer containing Sybr® Safe DNA chelating dye. A loading dye (to allow experimenter 

to watch the progress of the electrophoretic separation) was added to polymerase chain 

reaction products . A DNA ladder of I 00 base pair increments was used as a reference to 

identify the size of PCR products in parallel lanes. Gels were run for ~ 1.5 h at 90 V 

which produced clear separation of the DNA ladder base pairs and movement of the DNA 

primers > 4 em from their wells. Polymerase chain reaction product DNA were imaged 

using Alpha Imager® EP, which used trans-ultraviolet light to illuminate DNA bands that 
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were stained by Sybr® safe. 

3.6 Radiotelemetry 

Physiological parameters were recorded in unrestrained mice using a 

radiotelemetry approach. Telemeters (T A 11 PA-C 10, Data Sciences lnc.) were implanted 

following procedures described for recording blood pressure in aorta with access through 

the left carotid artery (McGuire et al., 2007). Telemeters were implanted into male mice 

12-16 weeks of age, which weighed 22-34 g. Surgical procedures were 40-60 min and 

were followed by close observation for 48 h immediately after initial recovery from 

anesthesia. Recovery surgery was performed using a 3-stepped combination of isoflurane 

and oxygen anesthesia: induction: I 00% 0 2 (0.5 - I Lim in) isoflurane (3 - 4 %), 

maintenance: I 00% 0 2 (0.8 - 2 Lim in) + isoflurane (I - 2 %), and recovery: I 00% 0 2 (I 

- 2 Lim in). The !ina! positions of the gel-filled catheter tip of theTA II PA-C I 0 

telemeters, which were inserted into the left carotid artery and secured in position with 

silk ligatures, were verified later at necropsy. The TAIIPA-CIO telemeter body was slid 

into a lateral subcutaneous pocket that had been filled with 0.2-0.5 ml saline. Saline (0.2 

ml s.c.) and Duplocillin LA (0.02 ml intramuscular) were administered after all surgical 

wounds were closed with sutures. After wakening from anesthesia, mice were returned to 

their own cages and then transferred to a small animal intensive care unit, which provided 

a controlled temperature (30 ·q and humidity environment with a stream of oxygen (I Ll 

min) for 48 h post-operation observation. 

Mice were allowed a 10 day recovery period before their baseline radiotelemetry 
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data were recorded. Five days (days -4 to -1 ) of continuous telemetry data were recorded 

as baseline using the proprietary DSr acquisition system, sampling the 3 s average for 

each variable every 30 s to produce 2880 data points for each variable per 24 h period. It 

is the standard practice of our laboratory that mice with 24 h mean pulse pressures less 

than 20 mmHg were excluded from subsequent data analysis because below this blood 

pressure the values may not be reliable (Van Vliet eta/., 2006). 

3.7 Blood pressure and activity data analyses 

The variables measured by radiotelemetry in the unrestrained mice were mean 

(MAP), diastolic (DAP) and systolic arterial pressure (SAP), pulse pressure (PP), heart 

rate (HR) and locomotor activity. These data were exported into a Microsoft Excel 

worksheet-based template designed for routine analysis of telemetry data (HemoDynamic 

Statistics, 'HDstats' version 2006b-l .xls, July 2, 2006; Van Vliet eta!., 2006). This 

spreadsheet generates 500 statistics based on the recorded variables for each 24 h period. 

Data obtained on the day of pump implant (day 0) and cage change days (day 8 and 11) 

were excluded from analyses. Data points containing fewer than 3 mice were excluded 

from analyses. Baseline data were calculated from the total number of mice of each strain 

as shown in Table 8 (C57 n=6 and PAR/- n=8). The statistical test to compare baseline 

data between strains was a Student's t-test for unpaired data. Two way ANOVA (pump x 

time) was used to compare the 24 h mean variables and changes of variables from 

baseline data. 
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The change from baseline data = values recorded on day x (where x is the day of 

pump implant) - mean of the baseline data. 

Microsoft Excel and GraphPad Prizm software were used to manage data, perform 

statis tical comparisons and create graphs. 

3.8 Subcutaneous drug delivery 

Drug treatments were delivered by subcutaneous infusion using micro-osmotic 

pumps. Micro-osmotic pumps were filled with saline or peptide (2fly) then equil ibrated 

6-12 h at 37 oc as per manufacturer's instructions (Aizet). The micro-osmotic pumps 

were then implanted subcutaneously in anaesthetized mice through an incision on the 

dorsal neck into a small pocket filled with saline along the flank as described previously 

(McGuire eta/., 2008). Surgeries to implant micro-osmotic pumps lasted 5-10 min and 

were followed by 2 h of recuperation in the small animal intensive care uni t for fu ll 

apparent recovery. The anesthesia protocol was the same as for telemeter implan ts. Each 

mouse was also administered 0.2 ml of saline s.c. and 0.02 ml of Duplocillin LA (per ml, 

active portion contains 150,000 international units (fU) benzathine penicillin and 150,000 

ru procaine penicillin, with methyl parahydroxybenzoate (1.2 mg) and propyl 

parahydroxybenzoate (0.13 mg) as preservatives) intramuscularly. After 2 h post-surgical 

recovery, the mice were returned to the room dedicated to radiotelemetery recordings in 

the animal care facility. Length of treatment (7, 14 days) and dose (low, LD and high, 

HD) of administered peptide were selected by choosing an appropriate micro-osmotic 

pump model and varying the concentration of drug in the pump reservoir (7 days: model 
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10070, pump rate 0.5 j . .tl/h; 14 day: model 1002, pump rate 0.25 )..1.1/h). Concentrations of 

drug inside reservoirs were adjusted by dilution with bacteriostatic saline to match the 

dose delivery rate on the starting (pre-pump implant) weight basis for each mouse. Mice 

assigned to 2fly treatment received either HD (6 nmol/kg/min) or LD (2 nmol/kg/min). 

Since there were no literature references regarding chronic infusions with PAR2-AP at the 

initiation of these studies in September 2008 and because of practical considerations 

(amount of drug required and solubility), doses of2fly were chosen based on a range of 

molar doses that were estimated to be in the equipotent molar dose range of SLTGRL-NH2 

used in acute studies of blood pressure effects (a I min i.v. infusion of 0.1, 0.3, 1 )..tiTIOl 

SLIGRL-NH2 /kg in anaesthetized mice reduced MAP by 10-40 mmHg for up to 5 min 

(Cheung eta!., 1998)). We made an assumption that 2fly would be at least I 00 - 300-

times more potent that SLIGRL-NH2 in vivo as it had been reported to be at least such in 

vitro (McGuire eta/., 2004a). 

3.9 Isometric tension measurements of mouse aortas 

Mice were euthanized by overdose inhalation with isoflurane followed by a blood 

withdrawal by cardiac puncture using a syringe containing heparin (I 00 U). Thoracic 

descending aortas (1-2 em) were removed and stored in ice-cooled K.reb's solution until 

cleaned of fat and adherent tissues. Two to four sections per aorta (2 mm lengths) were 

cut and mounted on 200 ).lin diameter hooks in a 610 multi-myograph chamber (Danish 

Myograph Technologies, Aarhus, OK). Aortas were bathed in a physiological salt 

solution (pH 7.4) comprised of 114 mM NaCI, 4.7 mM KCl, 0.8 mM KH2P04, L.2 mM 
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MgCb.6H20, 2.5 mM CaCI2.2 H20 , 11 mM 0-glucose, and 25 mM NaHC03 , while 

bubbled continuously with 95% 0 2/ 5% C02 at 37 ·c. Tissues were equilibrated at 

resting tension for 30 min prior to addition of any drugs. A normalized resting tension 

was set similar to the methods adopted for small calibre arteries from mice (McGuire et 

a/. , 2007), a procedure first developed by Mulvany and Halpern ( 1977) for rat small 

mesenteric arteries. A pilot study on mouse aortas indicated that in the hands of the 

author, an optimum acetylcholine-induced relaxation activity was achieved by a resting 

tension that was set to 90% of the internal circumference that was estimated to produce 

aorta wal l stress equivalent to 7.98 kPa. Increasing concentrations of K+ were added to 

test the viability and responsiveness of the tissues. Contraction data were obtained using 

either single doses (90 mM) or a cumulative series of doses (30 mM, 60 mM, 90 mM, 

and I 20 mM). High K+ concentration solutions were balanced for osmolarity by removing 

equimolar amounts ofNa +. 

Tissue preparations that generated <4 mN/mrn of force in response to exposure to 

any contractile agonist were excluded from analysis. Each myograph chamber contained 8 

ml of solution so investigational compounds were diluted at least Ill 00 (80 )11 in 8 ml) by 

direct addition to the organ baths. Most compounds were dissolved in nanopure filtered 

distilled water except indomethacin and A23187, which were dissolved in 95 % 

ethanol/5% water and pure dimethyl sulfoxide, respectively. 

Cumulative concentration-contraction response relationships were determined for 

phenylephrine (I nM to I 00 )1M) and U46619 (1 nM to I )1M). From these relationships 
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submaximal contractions (50-80%) were produced by addition of varying concentrations 

ofU46619 (I 0 nM to I 00 nM) rather than phenylephrine, which produced an average 

contraction <4 mN/mm of force. U46619-induced contractions were used to determine 

relaxation responses elicited by cumulative addition of various compounds. Such 

compounds included acetylcholine (1 nM to 100 ~-tM), nitroprusside (0.1 nM to I 00 ~-tM ) , 

2-furoyl-Leu-Ile-Gly-Arg-Leu-Om-NH2 (1 nM to 3 ~-tM), Thr-Phe-Leu-Leu-Arg-NH2 (I 

nM to 3 ~-tM), and A23187 (1 nM to 1 ~-tM) . Inhibitors were incubated for 15 minutes 

prior to contraction. Inhibitors included L-NAME (300 JlM) and indomethacin ( 1 0 JlM). 

Endothelium denudation of aortas was performed in order to investigate the 

endothelium-dependence of responses to specific drugs. Endothelial cells were damaged 

by rotating the aorta around the two hooks inside the myograph chambers. Resting 

(initial) tension was set by adjusting to the same length as prior to endothelium remova l. 

Vessels were contracted by U46619 as before and acetylcholine, nitroprusside and 2fly (at 

concentrations above) were tested for endothelium dependence. 

Continuous recording of isometric tension data were acquired via computer 

connections using MyoDaq/MyoData and ADI Instruments Chart 5 software packages. 

Data points representative of the maximal responses to each concentration of drug were 

selected and later exported to a master spreadsheet template file in Excel 2003 . 

3.10 Western Blots 

Protein was collected by homogenization of aortas in lysis buffer B (0.8 x TBS, 

pH 7.4) containing 10 % (v/v) glycerol, 1 % (v/v) NP-40, I mM NaF, I mM Na3V04, 
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0.025% (w/v) SDS and a standard protease inhibitor cocktail) w ith a glass micro tissue 

grinder (Wheaton) on ice. Samples were centrifuged at 14,000 rpm for 15 min in a 

microcentri fuge (Centrifuge 5415C, Eppendorf) and the supernatants were collected for 

protein concentration determination. Protein concentrations of supernatants were 

determined using Pierce bicinchoninic acid assay kit (Fisher; # 23227) w ith automated 

FluroStar microplate reader according to the manufacturer. 

Individual proteins were separated by relative molecular weight using routine SDS 

PAGE (I 0% SDS; 8 % polyacrylamide cross! inking). Supernatant protein was added to 

lysis buffer B plus loading buffer containing dithiothreitol (DTT). A protein molecular 

weight ladder (Benchmark Prestained protein ladder, lnvitrogen) was run in a para llel 

lane to allow determination of the re lative molecular weights of immunoreactive bands. A 

positive control lane containing protein isolated from mouse vas deferens was used to 

validate the relative molecular weight of immunoreactive bands corresponding to 

cyclooygenase-1 (COX-I) and cyclooygenase-2 (COX-2). Although the specific 

antibodies for sGC and eNOS were already well characterized by other in a variety of 

vascular tissues, we confirmed the specificities with homogenized lung samples from 

mice in separate experiments. All samples including the positive controls, but not the 

ladder, were boiled at 100 ·c for 5 min prior to loading on gels . Gels were run at 120 V 

until the dye front reached the end of the gel. 

Prote ins were transferred from the gel to polyvinyldiene fluoride membranes by 

electrophoresis ( 1.5 h at l 00 V) in ice cold transfer buffer comprised of 25 mM Tris-base 
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(pH 8.3), 192 mM glycine, and I 0 % methanol. Membranes containing the proteins were 

washed with TBST buffer; TBS (pH 7.4) containing 0.1% Tween-20) then blocked ( 15 

min) with a solution ofTBST containing 3% (w/v) bovine serum albumin. Membranes 

were probed with antibodies for the proteins of interest as given in Appendix B; optimal 

conditions (di lutions) for each antibody had been determined in previous work of the 

laboratory. The blocked membranes and primary antibodies were incubated together 

overnight at 4 ·c and then washed 4-times with TBST. Then an appropriate secondary 

antibody-linked to horseradish peroxidase was incubated together with membranes for I h 

at room temperature ( - 25 ·c) before exposure to substrate and visualization of 

immunoreactive bands by enhanced chemiluminescence on photographic film . The 

developed films were scanned (Hewlett-Packard ScanJet 3300C) using Adobe Photoshop 

v8 software and then a file copy was converted to a JPEG format. These files were 

imported into ImageJ software for densitometric analyses of bands. 

3.11 Immunohistochemistry 

Segments of saline and 2fly high dose-treated C57 and PAR/ - aortas were stored 

in optimal cutting temperature gel and sectioned using a cryotome at -20 ·c. Frozen 8 11m 

sections (rings) were placed on gelatin-coated slides. These slides were stored at -20 ·c 

until final use. They were probed by a primary antibody, SAM-11, a monoclonal antibody 

raised against human N-terminus of PAR2 (Molino eta!., 1997), at different dilutions 

(1 /50, 11100, and 1/500) of a stock solution (0.2 mg/ml). A secondary antibody (anti­

mouse IgG) labeled with FITC (dilution of 11500; stock solution 1.5 mg/ml) was used to 
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detect the primary staining distribution. The FITC fluorescence emission was measured in 

response to 492 nm excitation light from an argon laser. The emitted FITC fluorescence 

was filtered at 520 nm (peak of emission spectrum of FITC) and imaged by a confocal 

microscope (Olympus Fluoview, FV300). Stack images from a I 0 11m depth of tissue 

sections were obtained by stepping up or down the confocal plan through the preparation 

(z step = I 11m). Image analyses of 1 11m sections were performed by randomly selecting 

three areas of each stack image. Image J (line tool) was used to quantify the fluorescence 

patterns across the length of the vessel wall. This was measured as pixel density per 

length of aortic wall at each I micron step, in the section. The patterns of pixel density 

were compared between other sections of the same sample type to determine a common 

representation if such existed. These were then compared between treatment and strains. 

3.12 Statistical Analyses 

Graph Pad Prizm v4 was used to create all graphs and conduct the statistical 

analyses. Unless otherwise stated, the drug concentration response curves (CRC) for each 

aorta were fit by nonlinear regression to a four parameter logistic equation with a fixed 

origin set to 0. Three parameters: p02, Emax, and Hill slope, were used to determine 

changes in sensitivity, maximal effectiveness, and changes in relaxation curve kinetics, 

respective ly. Hill slopes were not restricted to allow for differences in drug interactions. 

The equation is as follows: 

% relaxation = Bottom + (Emax - Bottom)/(I+IO(IogECSO -Iog f20Y(M)])*H ill 

slope); bottom, constant = 0; Emax, maximum % relaxation; pD2, negative 
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logarithm base 10 of EC50 value. 

Data that were not good fits (R2 < 0.8) by the nonlinear regression method, e.g. 

some inhibitor treatments and A231 87 responses, were analyzed using alternative or 

additional approaches as described in the appropriate section of results. Statistical 

comparison of the means of more than two independent groups were made by two way 

ANOVA (main effects were pump and time) and were followed by a Bonferroni post-hoc 

test. Statistical analysis of three groups with one independent variable was made by one 

way ANOY A. Statistical comparisons that involved the means of only two groups were 

made by Student 's t-test for unpaired data. P < 0.05 was considered significant. (n) 

represents the number of independent samples i.e. n equals the number of mice per group. 

Error bars on graphs represent the standard error of mean. 

Chapter 4 : Results 

4. 1 Effect of chronic PAR2 activation on NO-mediated relaxation of aortas 

4.1.1 2fly Relaxation 

We measured 2fly relaxation after chronic PAR2-A P treatment and saline 

treatment to detem1ine if these treatments affected PAR2 reactivity in aortas. Chronic 

PAR2-AP caused a 3- (LD) to 4-fold (HD) decrease in sensitivity for 2fly CRC in C57 

aortas represented by decreased pD2 values (Table 4 . 1) and a rightward shift in the curve 

(Figure 4.1 A) at 7 days. At 14 days a 3-fo ld (LD) and a 2-fo ld (HD) difference was 

observed in pD2 values as well as a rightward shift in the CRC (Figure 4 .1 B). The Emax 
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Figure 4.1. Effect ofPAR2-AP s.c. infusions for 7 (A) and 14 (B) days on 2fly-

induced relaxations of isolated CS7 aortas. Mice were implanted with 7 (A) and 14 (B) 

day pumps s.c. Isolated aortas were contracted submaximally (50-80%) by U466 19 prior 

to determining relaxation by 2fly. Values in parentheses are the number of mice. * P<0.05 

for pD2, saline vs. low 2fly 7 days, saline vs. low and high 2fly 14 days and ** P<O.O I for 

pD2, saline vs. high 2fly 7days 2way ANOY A, Bonferroni. 
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and hill slopes for 2fly CRC were not different between groups (Table 4 .1). Aortas of 

PAR/· mice showed no relaxation or contraction to cumulative addition of 2fly. These 

data indicate the decrease in P AR2-AP sensitivity in C57 was dependent on in vivo dose 

and length of infusions. 
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2fly micro-Osmotic Pump Treatment 
Saline 2fly low dose 2fly high dose 

Duration Artery n pDz Ernax Hill n pDz Emax Hill n pDz Emax Hill 

(days) Treatment (M) (%) Slope (M)"·b (%) Slope (M)"·b (%) Slope 

7 Control 7 7.5(0.1) 82(2) 3.1(1.6) 4 7.0(0.1 )" 75(5) 0.8(0.1) 7 6.9(0.1 )a 77(3) 1.6(0.2) 

L-NAME 5 nld 16(7) nld 4 nld 18(4) nld 4 nld 10(5) nld 

indomethacin 6 7.3(0.2) 74(7) 4.6(2.2) - 7 6.8(0.1) 67(3) 4.7(4.1) 

14 Control 11 7.7(0.1) 86(2) 1.4(0.2) 4 7 .3(0.1 )" 80(1) 1.0(0.3) 9 7 .4(0.1 )" 82(3) 0.9(0.1) 

L-NAME 7 nld 13(6) n/d 4 n/d 7(5) nld 4 nld 25(12) n/d 

indomethacin 11 7.4(0.1) 76(3) 3.9(1.3) - 9 6.7(0.3}" 84(1 8) 4.8(1.6) 

Table 4.1. Parameters for 2fly CRC in saline and 2fly treated C57 mice in the presence of nonselective inhibitors of 

NOS and COX. Values are mean (SE), n = mice/ group. Variables were determined by nonlinear regression curve fitting of 

the averaged 2fly concentration-relaxation responses for each mouse using a four parameter logistic equation. nld indicates 

data that could not be fit to equation. -,not tested. 2fly low dose, 2 nmol/kg/min, 2fly high dose, 6 nmollkg/min; L-NAME, 

300 11M; indomethacin, 10 11M. Statistics tests (2 way ANOV A) indicating significant main effects and interactions were 

followed by Bonferroni post-hoc testing for multiple comparison testing. a P<O.OO 1, significant effect of pump. b P<O.O 1, 

significant effect of time. c P<0.05, compared to saline in each group (Bonferroni) . ct P<O.O 1, compared to saline in each 

group (Bonferroni). e P<O.OO 1, compared to control with the same treatment (Bonferroni). 

41 



4.1.2 Acetylcholine Relaxation 

Acetylcholine-induced relaxations were measured to determine ifthere was a 

change in endothelium-dependent nitric oxide relaxations by P AR2-AP in vivo treatments. 

Acetylcholine Emax values in C57 aortas were attenuated by 16% and 25% after 7 days of 

HD and 14 days of LD PAR2-AP treatment, respectively, compared to controls (Table 

4.2, Figure 4.2A and B). p02 and hill slope values for ACh CRC were not different across 

all groups. ACh CRC of aortas from chronic PAR2-AP treated PAR/ - were not different 

than in saline-treated P AR2-AP (Figure 4 .2C and 0 , Table 4.3). These data indicate 

endothelium-dependent nitric oxide relaxation was reduced by specific doses and 

duration of exposure to P AR2-AP in C57 mice. 

42 



C57 PAR2 -/-

A. 7 day C. 7 day 
-o-- ,.,,,. (7) J 

100 -o- low 2fly (4) * 100 -<>-saline (3) 

~ high 2fly (7) -6-- high 2fly (3) 
..-.. 
~ 0 

75 75 

c 
0 ....., 50 50 ro 
~ 

Q5 
0::: 25 25 

0 0 
-9 -8 -7 -6 -5 -4 -9 -8 -7 -6 -5 -4 

B. 14 day D. 14 day 
-+-saline (11) J --+-saline (8) 

100 *** 100 -...-high 2fly (7) 
-low2fly(4) 

-M-Iow 2fly (4) --.-high 2fly (9) 
..-.. 
~ 0 

75 75 

c 
0 

ro 50 50 
>< ro 

Q5 
0::: 25 25 

0 
-9 -8 -7 -6 -5 -4 -8 -7 -6 -5 -4 

log [acetylcholine] M 

Figure 4.2. Effect of PAR2-AP s.c. infusions for 7 (A, C) and 14 (B, D) days on 

acetylcholine-induced relaxations of isolated CS7 aortas PAR2_,_ aortas. Mice were 

implanted with 7 (A, C) and 14 (B, D) day pumps s.c. Isolated aortas were contracted 

submaximally (50-80%) by U46619 prior to determining relaxation by acetylcholine. 

Values in parentheses are the number of mice. * P<0.05 Emax, 7 day saline vs. 7 day 2fly 

high dose and*** P<0.001 Emax, 14 day saline vs. 14 day 2fly low dose by 2 way 

ANOV A, Bonferroni . 
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acetylcholine micro-Osmotic Pump Treatment 
Saline 2fly low dose 2fly high dose 

Duration Artery n pD2 Ernax Hill n pD2 Emax 
a,b Hill n pDz Emax a,b Hill 

(days) Treatment (M) (%) Slope (M) (%) Slope (M) (%) Slope 

7 Control 7 7.6(0.2) 81(3) 1.2(0.2) 4 7.3(0.1) 76(3) 0.9(0.1) 7 7.2(0.1) 68(3t 0.9(0.1) 

L-NAME 5 nld 23(12) n/d 4 n/d 28(8) nld 4 nld 23(15) nld 

Indomethacin 6 7.3(0.1) 69(9) 1.5(0.3) - 7 6.9(0.2) 66(8) 1.2(0.3) 

14 Control 11 7.6(0.1) 81(2) 0 .9(0.1) 4 7.2(0.1) 61 (9)d 1.1(0.2) 9 7.5(0.1) 81(3) 0.9(0.1) 

L-NAME 7 nld 24(12) nld 4 nld 23(10) nld 4 nld 27(12) nld 

Indomethacin 11 7.7(0.4) 72(5) 4 .2(2.4) - 9 7.3(0.2) 78(3) 1.5(0.4) 

Table 4.2. Parameters for acetylcholine CRC in saline and 2fly treated C57 mice in the presence of nonselective 

inhibitors of NOS and COX. Values are mean (SE), n = mice/ group. Variables were determined by nonlinear regression 

curve fitting of the averaged acetylcholine concentration-relaxation responses for each mouse using a four parameter logistic 

equation. nld indicates data that could not be fit to equation. -, not tested. 2fly low dose, 2 nmol!kg/min; 2fly high dose, 

6 nmol!kg/min; L-NAME, 300 ~-tM; indomethacin, 10 ~-tM . Statistics tests (2 way ANOVA) indicating significant main 

effects and interactions were followed by Bonferroni post-hoc testing for multiple comparison testing. • P<0.005, significant 

interaction between pump and time. b P<O.O 1, significant effect of time. c P<0.05, compared to saline in same group. 

d P<O.OO 1, compared to saline in same group. 
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acetylcholine micro-Osmotic Pump Treatment 
Saline 2fly low dose 2fly high dose 

Duration Artery n pD2 Emax Hill n pD2 Emax Hill n pD2 Emax Hill 

(days) Treatment (M) (%) Slope (M) (%) Slope (M) (%) Slope 

7 Control 3 7.5(0.2) 78(6) 1.0(0.2) 3 7.6(0.1 ) 83(3) 1.0(0.1) 

Indomethacin 3 7.2(0.1) 75(1) 1.8(0.2) 3 7.6(0.1) 65(20) 3.7(2.7) 

14 Control 8 7.9(0.1) 85(2) 0.9(0.1) 4 7.7(0.1 ) 84(1) 0.81(0.06) 7 7.7(0.1) 84(2) 0.9(0.1 ) 

Indomethacin 7 7.4(0.3) 68(7) 4.4(2. 1) 7 7.8(0.3) 76(7) 2.9(1.9) 

Table 4.3. Parameters for acetylcholine CRC in saline and 2fly treated PAR2_,_ mice in the presence of nonselective 

inhibitors of NOS and COX. Values are mean (SE), n = mice/ group. Variables were determined by nonlinear regression 

curve fitting of the averaged acetylcholine concentration-relaxation responses for each mouse using a four parameter logistic 

equation. -, not tested. 2fly low dose, 2 nrnollkg/min; 2fly high dose, 6 nrnollkg/min; indomethacin, 10 11M. Statistics tests (2 

way ANOVA) indicating significant main effects and interactions were fo llowed by Bonferroni post-hoc testing for multiple 

comparison testing. No significant differences were found. 
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4.1.3 Nitroprusside Relaxation 

Nitroprusside relaxations were measured to determine if there was a change in 

endothelium-independent nitric oxide-mediated relaxation by P AR2-AP treatments. 

PAR2-AP treatment in vivo caused time and dose dependent effects on nitroprusside CRC 

of mouse aortas. After 14 days LD P AR2-AP treatment, nitroprusside Emax was attenuated 

by - 28% compared to C57 controls (Figure 4.3B, Table 4.4). Nitroprusside Emax values 

were not significantly different between HD PARr AP and saline treatments (Table 4.4). 

pD2 and hill slopes of nitroprusside CRC were not different among groups (Table 4.4). 

Nitroprusside CRC in PAR/- were not affected by chronic PAR2-AP treatment (Figure 

4 .3C and D, Table 4.5). These data indicate that at 14 day LD PAR2-AP treatment there 

was an unexpected decrease in endothelium-independent nitric oxide-mediated 

relaxation. 

4.1.4 A23187 Relaxation 

A23187 relaxations were measured to determine if there was a change in receptor­

independent endothelium-dependent nitric oxide relaxations by PAR2-AP treatments. 

Relaxations mediated by A23187 were not found to differ between any of the groups 

(Figure 4.4; compare I )-LM responses for saline versus 2tly-treated, Student's t-test, 

P>0.05). We noted that tissue responses observed at 3 )-LM A23187 were highly variable. 

The solubility of 3 )-LM A23187 was poor, and thus, the relaxation data obtained at the 

highest concentrations may not be reliable. No differences in receptor-independent 

endothelium-dependent nitric oxide relaxation were found . 
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Figure 4.3. Effect of PAR2-AP s.c. infusions for 7 (A, C) and 14 (B, D) d ays on 

nitroprusside-induced relaxations of isolated C57 and PAR/- aortas. Mice were 

implanted with 7 (A, C) and 14 (8, D) day pumps s.c. Isolated aortas were contracted 

submaximally (50-80%) by U466 19 prior to determining relaxation by nitroprusside. 

Values in parentheses are the number ofmice. *** P<O.OOJ Emax, 14 day saline vs. 14 day 

low dose 2fly, by 2 way ANOVA, Bonferroni. 
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nitroprusside micro-Osmotic Pump Treatment 
Saline 2fly low dose 2fly high dose 

Duration Artery n pDz Emax Hill n pDz Emax 
a,b Hill n pDz Emax a,b Hill 

(days) Treatment (M) (%) Slope (M) (%) Slope (M) (%) Slope 

7 Control 6 7.8(0.2) 93(2) 0.9(0.1) 4 7.8(0.2) 87(6) 0.9(0.1) 7 7.8(0.1) 90(2) 0.9(0.1) 

L-NAME 5 8.1 (0.2) 92(4) 1.1(0.2) 4 8.3(0.1) 94(2) 0.9(0.1) 4 7.9(0.1) 91 (3) 0.8(0.1) 

Indomethacin 6 7.6(0.8) 90(3) 0.9(0.2) 7 8.4(0.1) 83(7) 2.5(1.7) 

14 Control 11 8.2(0.1) 93(1) 1.0(0.1) 4 7.7(0.1) 67(14)" 1.5(0.3) 9 8.2(0.1) 96(1) 0.8(0.1) 

L-NAME 7 7.9(0.2) 91(2) 1.0(0. 1) 4 8.2(0.2) 92(1) 1.0(0.1) 4 7.0(0.2) 93(1 ) 1.1 (0.2) 

Indomethacin 11 8.0(0.2) 84 (4) 2.7(1.0) 7 8.4(0.1) 91(1 ) 1.6(0.5) 

Table 4.4. Parameters for nitroprusside CRC in saline and 2fly treated C57 mice in the presence of nonselective 

inhibitors of NOS and COX. Values are mean (SE), n = mice/ group. Variables were determined by nonlinear regression 

curve fitting of the averaged nitroprusside concentration-relaxation responses for each mouse using a four parameter logistic 

equation. nld indicates data that could not be fit to equation. -, not tested. 2fly low dose, 2 nmollkg/m in; 2fly high dose, 

6 nmollkg/min; L-NAME, 300 ~-tM ; indomethacin, 10 ~-tM. Statistics tests (2 way ANOVA) indicating significant main effects 

and interactions were fo llowed by Bonferroni post-hoc testing for multiple comparison testing.• P<O.OS, significant interaction 

between pump and time. b P<O.OO 1, significant effect of pump. c P<O.OO 1, compared to saline in same group (Bonferroni). 
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nitroprusside micro-Osmotic Pump Treatment 
Saline 2fly low dose 2fly high dose 

Duration Artery n pDz Emax Hill n pDz Emax Hill n pDz Ema., Hill 

(days) Treatment (%) Slope (%) Slope (%) Slope 

7 Control 3 8.0(0.1) 87(1) 1.0(0 .18) 3 8.1 (0.2) 90(1) 1.0(0.1) 

Indomethacin 3 7.9(0.2) 89(7) 0.6(0.2) 3 7.3(0.9) 92(4) 3.4(2.1) 

14 Control 8 8.4(0.1) 92(1) 0.7(0.1) 4 8.5(0.2) 94(2) 0.6(0.1) 7 8.2(0.1) 91 (1) 0.8(0.1) 

Indomethacin 7 8. 1(0. 1) 85(2) 1.0(0.3) 7 8.1 (0.2) 82(3) 0.9(0.1) 

Table 4.5. Parameters for nitroprusside CRC in saline and 2fly treated PAR2_,_ mice in the presence of nonselective 

inhibitors of NOS and COX. Values are mean (SE), n = mice/ group. Variables were determined by nonlinear regression 

curve fitting of the averaged nitroprusside concentration-relaxation responses for each mouse using a four parameter logistic 

equation. n!d indicates data that could not be fit to equation. -, not tested. 2fly low dose, 2 nmollkg/min; 2fly high dose, 

6 nmol/kg/min; indomethacin, 10 )lM. Statistics tests (2 way ANOV A) indicating significant main effects and interactions 

were followed by Bonferroni post-hoc testing for multiple comparison testing. No significant differences were found. 
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Figure 4.4. Effect of PAR2-AP s.c. infusions for 7 (A, C) and 14 (B, D) days on 

A23187-induccd relaxations of isolated C57 and PAR/- aortas. Mice were implanted 

with 7 (A, C) and 14 (B, D) day pumps s.c. Isolated aortas were contracted submaximally 

(50-80%) by U46619 prior to determining relaxation by A231 87. Values in parentheses 

are the number of mice. The maximal relaxations did not differ amongst groups A, B, and 

C (Students t-test) and D (one way ANOVA). 
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4.1.5 Intact versus denuded endothelium 

To describe the agonists' dependencies on intact endothelium, aortas were 

subjected to endothelial cell denudation by rotating the aortas on wires in the myograph 

chambers. ACh, 2tly, and A23187 were found to be all endothelium-dependent as they 

caused minor if any relaxation in the denuded a01tas of C57 or P AR2_,_ (Figures 4.5 and 

4.6). Nitroprusside did elicit relaxation of denuded aorta, albeit reduced, in both C57 and 

P AR2-
1
-, indicating relaxation was independent of endothelium (Figures 4.5 and 4.6). The 

agonists showed specificity to endothelium as expected. 

4.1.6 Effect of eNOS and COX inhibition on vasodilators 

To determine underlying mechanisms ofNO-dependent drugs the effect of 

inhibition of eNOS and cyclooxygenases were measured using L-NAME and 

indomethacin respectively. L-NAME dramatically inhibited relaxation by 2tly (Table 4.1) 

and acetylcholine (Table 4.2) but had no effect on nitroprusside CRC (Table 4.4) in either 

treatment group. Emax values for 2tly and acetylcholine (Tables 4.1 and 4.2) CRC in the 

presence of L-NAME were significantly reduced compared to controls (P<O.OO I , 2 way 

ANOY A). Emax , p02, and hill slope of nitroprusside CRC in the presence of L-NAME 

(Tables 4.4) were not different than untreated aortas (P>0.05, 2 way ANOY A). 

Indomethacin pretreatment of aortas caused a rightward shift as measured by a reduction 

in pD2 values for 2fly relaxation in C57 2tly HD 14 day treated mice as illustrated in 

Figure 4.70 and Table 4.1 (P<O.OO I). In summary, inhibition of eNOS caused expected 

reductions in relaxation while blocking cyclooxygenases caused a rightward shift. 
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Figure 4.5. Effect of endothelium denudation of CS7 aortas on 2fly-, acetylcholine-, 

nitroprusside- and A23187-induced relaxations. The endothelium was removed from 

aortas by rotating them around hooks prior to setting ring tension. Aortas were then 

contracted by U466 19 and then exposed to 2fly, acetylcholine, nitroprusside and A23 187. 

Values in parentheses are the number of mice. Al l data points fo r 2fly, ACh, and A23 187 

(A, B, D), but not nitroprusside (C) were not different than zero (one sample Students t-

test) . Ln C, saline vs. 2fly, the maximal response was not significantly different (Students 

t-test) . 
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Figure 4.6. Effect of endothelium denudation of PAR2 _,_aortas on acetylcholine-, 

nitroprusside- and A23187-induccd relaxations. The endothelium was removed from 

aortas by rotating them around hooks prior to setting resting tension. Aortas were 

contracted by U46619 and then exposed to acetylcholine, nitroprusside, and A23 187. 

Values in parentheses are the number of mice. All data points for ACh and A23187 (A 

and C), but not nitroprusside (B) were not di fferent than zero (one sample Students t-test). 

In B, saline vs. 21y, the maximal response was not significantly different (Students t-test). 
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Figure 4.7. Effect of indomethacin on 2fly-induced relaxations of aortas from PARz-

AP treated CS7. Mice were treated with saline (A, C) or high dose 2fly (B, D) s.c. for 7 

(A, B) or 14 (C, D) days. Isolated aortas were pretreated with indomethacin ( I 0 J..LM) for 

15 min prior to submaximal contraction by U466 19 (50-80 %) and then exposing to 2fly. 

Values in parentheses are the number of mice.*** P<O.OO I pD2, 14 day 2fly control vs. 

14 day 2fly indomethacin, by 2 way ANOVA, Bonferroni. 
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4.2 Chronic P AR2-AP treatment effect on expressions of COX isoforms 1 and 2, 

eNOS and sGC in mouse aortas 

Measurement of COX isoforrns, eNOS, and sGC in aortic rings was perfo rmed to 

identify if the changes in aortic functional responses were due in part to changes in 

protein expression of components involved in the relaxation mechanism. 

Immunoreactivity indicative of COX-I, COX-2, eNOS and sGC were detected in aortic 

protein from both saline and PAR2-AP treated animals (Figure 4.8B, and 4.9C). 

Densitometric analyses of target bands indicated the relative expression of COX- I and 

COX-2 did not differ between saline-treated and P AR2-AP treated C57 aortas (Figure 

4.8A). Expression of sGC and eNOS were not significantly different between sal ine and 

P AR2-AP treatments (Figure 4.9A) as well as between strains (Figure 4.9B). These data 

indicate the change seen in aortic responsiveness did not have a corresponding change in 

these target proteins between groups. 
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Figure 4.8. Expression of COX-I and COX-2 proteins in aortas of C57 m ice infused 

s.c. with saline or high dose 2fly for 14 days. (A) Summ ary of densitometry of COX-I 

and COX-2 in C57 mice compared to GAPDH from saline and high dose 2fly treated 

animals. Each symbol indicates an independent sample. Representative western blots for 

COX- I (B) and COX-2 (C). P, indicates positive control sample (0.5 ~tg vas deferens 

protein). Arrows represent where the membranes were cut to immunoblot fo r GAPDH. 

P>O.OS, saline vs. high 2fly, Student's t-test. 
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Figure 4.9. Expression of sGC and eNOS protein in aortas of C57 and PAR2_
1
_ mice 

infused s.c. with saline or low dose 2fly for 14 days. Summary of densitometry of sGC 

and eNOS in C57 (A) and P AR2_
1
_ (B) mice compared to GAPDH from saline and low 

dose 2f1y treated animals. Each symbol indicates an independent sample. Representative 

western blots for sGC (C) and eNOS (D). Arrows represent where the membranes were 

cut. P>0.05, saline vs. low 2fly, Student's t-test. 
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4.3 Characteristics of SAM II "anti-PAR2" antibody immunofluorescence in mouse 

aortas 

PAR2 immunofluorescence experiments were performed to determine if the 

changes in aortic function to 2fly was due to a change in the amount of receptor present in 

the vessel wall. SAM! I antibody staining of aortas from both C57 and PAR/· was 

detected by immunofluorescence using confocal microscopy (Upper panels of Figures 

4.10 and 4 .11 ). Qualitatively the images did not differ (Upper panels of Figures 4. I 0 and 

4. 11 ). Quantifying the pixel density distribution across the a01tic wall (from lumen to 

exterior) indicated no obvious differences in the fluorescence signal pattern for either 

strain or treatment groups (Bottom panels of Figure 4.10 and 4.1 1 ). From the 

immunostaining procedure used we were unable to measure any differences in P AR2 

tissue distribution. 
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Figure 4.1 0. Immunofluorescence of SAM II antibody staining in CS7 aortas. Image 

(upper panel; 1 f.lm confocal plane steps) from frozen section of aorta (8 micron thick) 

incubated with primary antibody SAM 11 (anti-PAR2) followed by secondary antibody 

FTTC. Shown above is C57 2fly treated HD, SAM II , di lution I: 100 and FTTC, di lution 

1: I 00. Lower panel is a representative line scan of pixel intensity across the aortic wall 

using ImageJ software. The acquired colour confocal image was modified for 

reproduction purposes only and shown as above. Using Adobe Professional software the 

acquired image was grayscaled, inverted and the contrast was increased. In the original 

image black (empty) background and green immunofluorescence are reproduced as white 

and black, respectively. L, lumen and A, adventitia. 
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Figure 4.ll.lmmunofluorescence ofSAMll antibody staining in PAR2_,_ aortas. 

Image (upper panel; I Jlm confocal plane steps) from frozen section of aorta (8 micron 

thick) incubated with primary antibody SAM II (anti-P AR2) followed by secondary 

antibody FITC. Shown above is PAR/ - control, SAM II, dilution I: I 00 and FITC, 

dilution I : 100. Lower panel is a representative line scan of pixel intensity across the 

aortic wall using ImageJ software. Using Adobe Professional software the acquired color 

confocal image was grayscaled, inverted and the contrast was increased. In the original 

image black (empty) background and green immunofluorescence are reproduced as white 

and black, respectively. L, lumen and A, adventitia. 
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4.4 Blood pressure, heart rate and locomotor activity 

Blood pressures, heart rate and locomotor activity were measured to determine if 

chronic high dose P AR2-AP lowered blood pressure in mice. First, an analysis of the 

baseline (i.e. prior to treatments) telemetry data was performed to see if the blood 

pressures were different between PAR2_,_ and C57 mice as described previously (McGuire 

et a!., 2008). The averaged 24 h baseline data for each variable, mean arterial pressure 

(MAP), systol ic arterial pressure (SAP), diastolic arterial pressure (DAP), heart rate (HR), 

pulse pressure (PP), and locomotor activity, are summarized in table 4.6. The MAP and 

SAP in PAR2 _,_were significantly higher than in C57 mice by ~ 7 mmHg and ~8 mmHg, 

respectively (P<0.05). Heart rates were about 60 beats min-1 higher in PAR2_,_ than in C57 

mice (P<0.05). A~ 7% decrease in activity was measured in PAR/- compared to C57 was 

also found (P<O.OI). The higher baseline systolic values in PAR/- were reported 

previously (McGuire eta!., 2008), but both the higher heart rate and lowered activity had 

not been observed. 

During the infusion period with PAR2-AP, the averaged 24 h MAP, SAP, DAP, 

PP, HR and locomotor activity values were not found to be significantly different 

between most of the groups (P>0.05, Figure 4.12). The exception was a~ 15% ( I 00 beats 

min-1
) lowered heart rate in C57 controls compared to C57 14 day HD PAR2-AP (P<0.05 

to P<O.OO I as indicated for individual treatment days; Figure 4 .120). Overall, there was 

no change in the mean values of the blood pressures values recorded between the 

treatment groups. 
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Given the small sample sizes in each of the groups during the treatment periods, 

we prepared an alternative analyses of data that would be expected to reduce the variation 

within groups for statistics testing. This analysis of the hemodynamic variables and 

locomotor activity was comprised of calculating the dependent variable change relative to 

the baseline periods within each group. Based on this analyses, significant decreases in 

systolic and pulse pressures were observed in C57 mice which were administered high 

dose 2fly and these pressure changes were significantly different compared to saline­

treated C57 (P<0.05 to P<O.OO 1 for different days, Figure 4 . 13). There were no 

differences in variables between PAR/- treatment groups (Figure 4.13). Systolic blood 

pressure was lowered ~7 mmHg and pulse pressure lowered ~4 mmHg in 2fly HO C57 

compared to saline-treated C57 (Figure 4.13B and 4.13F). The other parameters were not 

significantly different between saline and 2fly administered mice of either strain. 

Therefore, blood pressure changes relative to the baseline periods were different between 

PAR2-AP and saline treatments in C57, but not PAR2_
1
_ mice. 
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24 hour mean C57 PAR2--

Ratio PAR2-/- to C57 
variable n=6 n=8 

MAP (mmHg) 101.3 (2.5) 108.3(1.5) 1.07 

SAP (mmHg) 113.5 (3 .0) 122 (1.6)* 1.07 

DAP (mmHg) 87.9(2.1) 93.5 (1.9) 1.06 

HR (beats min-1
) 534 (24) 593 (7). I. II 

Activity(%) 41.5 (1.3) 33 .6 (1.9) .. 0 .81 

pp (mmHg) 25.6 (2.3) 28.4 (2.0) I. II 

Offset (mmHg) 4.2 (0.8) 4.0 (0.5) n/a 

Table 4.6. 24 h baseline hemodynamics and locomotor activity data from 

C57 and P AR2_
1
_ mice. Data were recorded for baseline period for 2-4 days 

prior to pump implants. Values are mean (SE), n = mice/ group. Offset values 

indicate the calibrated value measured from implanted telemeters after surgery 

at 0 mmHg. n/a indicates that a ratio was not applicable for offset values. 

Pairwise comparisons of variables were made by Student's t-test for unpaired 

data. • P<0.05 compared to C57. •• P<O.OI compared to C57. 
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Figure 4.12. Mean 24 h hemodynamics and locomotor activity in C57 and PAR/ -

during a 4 day baseline period and 14 days treatment with high dose s.c. 

administered 2fly. Mice were implanted with radiotelemeters 10 days prior to recording 

baseline (day -4 to -1), pump implant (day 0), and 14 days treatment. Parentheses, number 

of mice. 24 h averages of MAP, SAP, DAP, HR, activity and PP. * P<0.05 , ** P<O.O I, 

*** P<O.OO 1, C57 saline vs. C57 high dose 2fly, 2 way AN OVA, Bonferroni. 
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Figure 4.13. Changes in 24 h mean hemodynamic and locomotor activities relative to 

baseline for C57 and PAR/- during 14 days treatments with high dose s.c. 

administered 2fly. Mice were implanted with radiotelemeterslO days prior to recording 

baseline (day -4 to -I), pump implant (day 0), and 14 days HD PAR2-AP treatment. 

Parentheses, number of mice recorded. 24 h averages of change in MAP, SAP, DAP, 

beats min-1
, activity % and PP. * P<0.05, ** P<O.Ol, C57 saline vs. C57 high dose 2fly, 2 

way ANOV A, Bonferroni . 
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Chapter 5: Discussion 

5.1 General Findings 

We found that chronic in vivo administration of the PAR2 agonist 2fly caused 

endothelial dysfunction in mouse aortas. This dysfunction was characterized by an 

attenuation of the maximum relaxations by acetylcholine that occurred in C57, but not in 

PAR/- mice. This dysfunction in aortas was dose- and time-dependent given that it was 

observed in 7 day HD 2fly, and 14 day LD 2fly treatments. We found the effectiveness of 

P AR2-AP 2fly and endothelium-independent vasodilator nitroprusside were reduced in 

C57 after P AR2-AP treatments. Rightward shifts of 2fly CRC were caused by 7 and 14 

days of LD and HD 2fly, respectively. Similarly, the reduced maximal effectiveness of 

nitroprusside was observed in the 14 day LD 2fly treatment group. Calcium ionophore 

A23187 effectiveness was not affected by the P AR2-AP treatments. Together these data 

indicate that PAR2-AP dysfunction was not restricted to endothelium-dependent 

relaxation and included endothelium-independent responses to NO. 

To assess the effects of PAR2-AP treatments in vivo on the vascular smooth 

muscle signaling pathways of each agonist, we tested the same agonists activities in the 

presence of inhibitors of eNOS (L-NAME) or cyclooxygenases (indomethacin). Inhibition 

of eNOS abolished P AR2-AP and acetylcholine-induced relaxations of aortas as expected 

in control C57 (Al-ani eta/. , 1995; Chataigneau eta/., 1999) as well as in PAR2-AP 

treated C57. Lnhibition of eNOS did not affect nitroprusside-induced relaxations. 

Lnhibition of cyclooxygenases did not have significant effects on acetylcholine- or 
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nitroprusside-induced relaxations, but did cause a rightward shift in 2fly-induced 

relaxations of aortas from 14 day HD 2fly C57. This rightward shift may have been the 

result of some COX activity present at 14 days that aided in relaxation of vessels, and 

thus, when inhibited a higher concentration of 2fly was needed to achieve the same 

relaxation. These data indicated that although NOS inhibition was sufficient to inhibit 

PAR2-AP induced relaxations, de novo COX activities may have been a supplementary 

(not critical) relaxation mechanism for PAR2-AP after 14 day HD 2fly. 

An increased expression of COX in aortas ofthe 14 day HD C57 could have 

potentially explained the inhibitory effects of indomethacin on 2fly-induced relaxations. 

However, we found that protein expression of COX-I and COX-2 were not significantly 

different between treatment groups in C57 and PAR/-. A decreased concentration of 

eNOS and sGC could have explained the attenuation of ACh- and nitroprusside-induced 

relaxations, respectively, but we found there were no significant differences between 

aortas ofPAR2-AP treated and saline-treated C57. We attempted to assess the expression 

levels and localization of P AR2 by labeling sections of frozen aortas with the antibody 

SAM II, which was raised against theN-terminus of human PAR2. A potential change in 

receptor distribution would have been a potential mechanism to explain the attenuated 

2fly-induced relaxations of aortas from P AR2-AP treated C57. However, under the 

conditions and procedures employed, specific immunofluorescence could not be 

attributed to PAR2 receptor expression; i.e. immunofluorescence was detected in PAR/ -. 

While western blot data were able to exclude decreased expression in target protein 
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expressions of COX-I, COX-2, eNOS and sGC as possible mechanisms, the specific 

mechanisms causing the attenuated agonist-induced relaxations of aortas remain 

undetermined. 

With regards to measurement of blood pressures, we found that chronic in vivo 

administered 2fly caused mild hypotension in C57 mice. This interpretation of data is 

supported by our finding of a significant lowering of systolic and pulse pressures as 

characterized by a change in these variables relative to baseline averages between saline­

treated and 2fly high dose treated C57. The absolute blood pressure values that were 

measured directly did not clearly show any differences between the groups during the 

treatment periods. 

5.2 Effects of administering chronic s.c. P AR2-AP on mouse aortas in vitro 

Our study created a novel model of endothelium dysfunction by chronically 

administering P ARrAP in vivo. This model is different than endothelial dysfunction 

models used by other researchers which measure endothelium dysfunction in many 

different rodent models of disease as well as in human patients (in rodents: Cameron and 

Cotter, 1992; Do hi et al., 1991; Luscher, 1988; Luscher, 1989; Rajagopalan et al., 1996; 

Tesfamariam et al., 1989; Yirdis et al., 2003 and in humans: Cox eta/. , 1989; Endemann 

and Schiffrin, 2004; Perticone et al., 2001; Schachinger et al., 2000). 

In our study, acetylcholine-induced relaxation was reduced in a time- and dose­

dependent manner; specifically at 7 day HD 2fly and 14 day LD 2fly in C57 mice. The 

lack of attenuated ACh responses after 7 days LD 2fly C57 may indicate the time effect is 
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related to an accumulated dose of PAR2-AP, which was reached earlier by high dose 

infusions. After 14 day HD 2fly, there was still a decrease in sensitivity to 2fly relative to 

saline-treated C57 aortas while ACh- and A23187-induced relaxations were not 

significantly different. This would be consistent with an interpretation that HD P ARr AP 

desensitizes P AR2 in vivo, which leads to a loss of the attenuating action on ACh- and 

nitroprusside-induced relaxations, and thus, resembles P AR2-AP treated PAR/-. It was 

not possible to distinguish between PAR2 receptor desensitization (e.g. internalization) 

and a potential tachyphylaxis of a downstream signal causing endothelial dysfunction. 

Nitroprusside-induced relaxations of aortas were reduced in 14 day LD 2fly C57 

aortas. We could not attribute a decrease in sGC to the effects of in vivo PAR2-AP. A 

deficit at the vascular smooth muscle level such as increased levels of oxidative stress, 

which quenches NO and thus, reduces NO bioavailability, could potentially explain both 

the attenuated nitroprusside- and ACh-induced relaxations of aortas in P ARr AP treated 

C57. Since the 2fly-induced relaxations of aortas of 14 day HD 2fly C57 after treatment 

were sensitive to indomethacin, an increased level of COX could be proposed as a source 

of supplementary vasodilator prostanoids (e.g. prostaglandin 12). We did not find a 

significant difference in content of COX-I or COX-2 in total aortic protein between 

treatments. However, our approach to assay whole aortic proteins would not resolve the 

differential over expression of COX isoforms in a cell-type specific pattern: i.e. vascular 

smooth muscle cells protein variation in COX expression may overshadow significant 

small differences in expression in endothelial cells. It is possible that indomethacin had 
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an off-target effect that affected 2fly-induced relaxations, but it was specific to only one 

treatment group. It would be worthwhile for future studies to examine the effects of 

reactive oxygen scavengers and selective COX-1, and COX-2 inhibitors on aortas from 

low dose P AR2-AP treated C57 at 14 days. 

5.3 Effect of administering chronic s.c. PAR2-AP on hemodynamics in vivo 

Our laboratory is the first to study the effects of chronic administered PAR2-AP 

on mice in vivo. Blood pressure data collected during the baseline period corresponds to 

previous work that indicated higher systolic blood pressures in PAR2_,_ than C57 

(McGuire eta!., 2008). The reasons for an increased baseline systol ic blood pressure in 

PAR/· are attributed to the lack of P AR2 and other phenotypic variations that may arise 

through development of these knockout mice. The anticipated hypotensive effect of 

PAR2-AP that was reported in acute studies with rats and mice was observed during 

chronic 2fly treatment in our study, but the magnitude of effect that we observed was on a 

much smaller scale. 

Previous studies in anaesthetized mice (Cheung el a!., 1998) and unrestrained rats 

via radio telemetry (Wang et a!., 20 I 0) measured reductions of I 0-40 mmHg and >60 

mmHg respectively. In C57 we found 2fly HD lowered the mean systolic and pulse 

pressures by ~ 7 and ~4 mmHg, respectively, relative to the baseline period. The small 

lowering effect of 2fly in vivo may be partly explained by the apparent desensitization to 

PAR2-AP of blood vessels. It would be expected that attenuated acetylcholine responses 

would be associated with higher blood pressures. ln this model , it seems that the 
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endothelium dysfunction was small enough to be overridden by the hypotensive actions 

of 2fly. Nevertheless, a hypotensive effect in vivo of 2fly occurred despite the presence of 

endothelium dysfunction which suggests that PAR2-induced hypotension in the absence 

of endothelial dysfunction (as would occur in an acute administered dose) may be of 

larger magnitude (Cheung et al., 1998; Damiano et al., 1999; Wang et al., 2010). 

5.4 Limitations to interpretations 

There were some limitations in this study. The first limitation is the selection of 

blood vessel to measure. Data in resistance vasculature such as mesenteric arteries, along 

with aortas (a compliance vessel), would have added to the information that was obtained 

and allowed a more detailed description of any results obtained. Nevertheless the 

relaxation actions ofPAR2-AP on the aorta in vitro would be consistent with the isolated 

effect in vivo ofPAR2-AP on systolic arterial and pulse pressures. A second limitation to 

the interpretations is that all of the data was obtained in males and the effect of the 

treatment in females was not measured. We have no reason to suggest that females would 

react di fferently to treatment, but also have no data to prove that they do not. A third 

limitation is in measurement of protein expression. Although there is variability in 

individual groups the sample size is sufficient to be confident of the results. With regards 

to eNOS expression a measurement of phosphorylated eNOS compared with 

unphosphorylated eNOS may offer an alternative interpretation about the level of eNOS 

activity in the two treatment groups. A fourth limitation is we do not know the 

concentrations of 2fly in the blood and tissues that are achieved through this 
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subcutaneous route. It would help in our interpretation of the blood pressure changes in 

relation to acute studies that administered 2fly intravenously. Knowing the final 

concentration in blood would allow us to titrate subcutaneous 2fly to match intravenous 

administration to see if chronic administration at the same dose as in these studies would 

elicit the large drops in blood pressures measured acutely. 

5.5 Conclusions 

Chronic in vivo administered PAR2-AP produced a dysfunction ofvascular 

reactivity in mouse aortas, which was characterized by attenuated endothelium-dependent 

P AR2 and cholinergic as well as endothelium-independent nitric oxide-mediated 

relaxations as expected by Hypothesis 1 (but only at specific time and doses). The 

vascular dysfunction caused by high dose P AR2-AP was accompanied by significant 

changes in blood pressures which supported Hypothesis 2. 

To investigate the mechanisms underlying endothelium dysfunction of aortas in 

this model , it may be of interest to measure the levels of inflammatory molecules in each 

of the treatment groups. Inflammation is known to be associated with endothel ia l 

dysfunction, and thus, pro-inflammatory mediators e.g. cytokines, may play an integral 

part in the changes that occur in the attenuation of endothelium-dependent and 

-independent induced relaxations. This chronic PAR2-AP infusion model represents an 

interesting approach to examining the possible connections between the activation of 

P AR2 and the development of cardiovascular diseases involving vascular dysfunction. 
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Appendix A 

# Primer Sequence (5' to 3') Tm(C) 

IMR5332 (Mutant) GCCAGAGGCCACTTGTGTAG 64.5 

2 IMR7419 (Forward) TCAAAGACTGCTGGTGGTTG 60.4 

3 IMR7420 (Reverse) GGTCCAACAGTAAGGCTGCT 62.5 

Oligonucleotide primer sets for genotyping P AR2 -/- mice. Product 

from (I) and (2) = 198 bp-+ mutant-+ neomycin gene present 

Product from (2) and (3) = 345 bp-+ wildtype-+ mPAR2 Exon 2 present 

Tm represents the melting temperature for the oligonucleotides. 
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Appendix B 

Antibody Relative Reactivity Catalogue# Supplier Dilution 

molecular 

weight 

(kDa) 

rabbit anti-mouse, COX-1 70 mouse, Rat 160109 Cayman 1:800 

goat anti-mouse, COX-2 70 mouse, rat, human sc-1 745 Santa Cruz 1:1000 

rabbit anti-mouse, GAPDH-FL 37 mouse, rat, human sc-25778 Santa Cruz 1:1000 

goat anti-rabbit IgG HRP linked 10004301 Cayman 1:10000 

donkey anti-goat IgG HRP linked sc-2020 Santa Cruz 1:5000 

rabbit anti-sGC 69 mouse ab50333-1 00 Abeam 1:7500 

mouse anti-eNOS 140 mouse, rat, human 610296 BD Transduction Lab. 1:7500 

goat anti-rabbit IgG HRP linked PI-1000 Vector 1:10000 

horse anti-mouse IgG HRP linked PI2000 Vector 1: 10000 

Antibodies used in western blot analysis. HRP, horseradish peroxidase. 
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