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Abstract 

The data collected from a typical microarray experiment usually consist of tens 

of samples and thousands of genes (i.e., features). Usually only a small subset of 

the features is relevant to the differentiation of the samples. The problem of iden­

tifying an optimal subset of features for the differentiation is called Feature Subset 

Selection (FSS). The main purpose of the thesis is to develop a method for relevant 

gene subset selection using microarray gene expression data. Specifically, this thesis 

extends the classic Support Vector Machine (SVM) algorithm to present a new hill­

climbing method Relevant Subset Selection Using The Maximum Margin Criterion 

(RSSMMC) and using its Genetic Algorithm (GA) version RSSMMC-GA for feature 

selection. This method identifies that there are two factors, one biological and the 

other mathematical, that can affect the SVM margin value. Through an analytic pro­

cess, we neutralize the mathematical factor, which has no contribution to the relevant 

gene selection, and utilize the biological factor to select genes which contribute to the 

increase of the SVM margin. The result subset with a fixed number of features is 

determined when the maximum accumulative margin value is achieved. 

This method is shown experimentally to yield better performance than previ­

ous attempts which select features with correlation techniques and Recursive Feature 

Elimination (RFE), to generate biologically relevant genes. In contrast to the former 

methods, RSSMMC creates a unique and more compact gene subset. Moreover, since 

the RSSMMC method starts from an empty set to construct the subset whose size is 

usually small, it consumes less computation time than the comparing methods. This 

improvement is especially evident in large data sets. 

ii 



Acknowledgements 

I would like to thank my supervisor, Dr. Jian Tang, for his continuous support 

over the past two years. His enlightening discussions and suggestions helped improve 

the thesis quality greatly. 

I would also like to thank Dr. Guang Sun of the Medical School of Memorial Uni­

versity of Newfoundland. His guidance in bioinformatics and first-hand data resources 

were very important in the success of this thesis and experimental analyses. 

Thanks also to several faculty members in the Department of Computer Science, 

including Dr. Harold Todd Wareham, who gave helpful suggestions on improving the 

thesis, and Ms. Elaine Boone, who offered various professional assistances that have 

made completing this thesis much easier. 

Portions of the data used in this thesis were obtained from the study of "Global 

gene expression profiles of subcutaneous adipose tissue in obese and non-obese young 

men", supported by Canadian Institute of Health Research Grant 200209MOP-107450-

NUT-CJAA-56379. 

Finally, I would like to express my gratitude to the thousands of individuals re­

sponsible for the development and distribution of robust and freely available software 

tools such as Linux, Jb.'IE;X Eclipse, and related tools that contributed significantly 

to the successful completion of this thesis. 

lll 



Contents 

Abstract 

Acknowledgements 

List of Tables 

List of Figures 

1 Introduction 

2 Related Work 

201 Feature Subset Selection Problem 

201.1 The FSS problem 

201.2 Filter Algorithms 

201.3 Wrapper Algorithms 

201.4 Search Strategies 0 0 

ii 

iii 

vii 

viii 

1 

6 

6 

6 

7 

9 

10 

201.401 Exponential Search 0 10 

201.402 Sequential Forward Selection and Sequential Back-

ward Selection 0 0 0 0 0 0 0 0 11 

IV 



2.1.4.3 Stochastic Search . 12 

2.2 Genetic Algorithm . . . . . . . 13 

2.3 Support Vector Machine (SVM) 19 

2.3.1 Basic Algebraic Properties of a Hyperplane . 19 

2.3.2 Separable Case . . . . . . . . . . . . . . . 20 

2.3.2.1 How to Solve the SVM Problem. 23 

2.3.3 Non-separable Case . . . . . . 24 

2.3.4 Nonlinear Decision Functions 26 

2.4 SVM and GA in FSS 28 

2.4.1 SVM in FSS . 28 

2.4.2 GAin FSS. . 30 

3 RSSMMC and RSSMMC-GA 34 

3.1 SVM Margin: the Criterion of RSSMMC and RSSMMC-GA 34 

3.2 Relevant Subset Selection Using the Maximum Margin Criterion 35 

3.2.1 Formulation of RSSMMC . . . . . 36 

3.2.2 Coping with Increasing Dimensions 

3.2.3 Normalized Margin ........ . 

3.2.4 Determining Dimensions in Feature Spaces . 

3.2.5 Considerations on RSSMMC . . . . . 

3.3 A GA version of RSSMMC (RSSMMC-GA) 

3.3.1 GA in Gene Expression Data Analysis 

3.3.2 Formulation of RSSMMC-GA 

3.4 RSSMMC versus RSSMMC-GA ... 

v 

39 

41 

44 

46 

46 

47 

48 

53 



4 Empirical Analysis 55 

4.1 Experimental Material and Methods 55 

4.2 RSSMMC Results on Simulated Data . 57 

4.3 Leukemia Data Set . . . . . . . . . . . 61 

4.3.1 Implementation Results of RSSMMC, RFE, and the Baseline 

Method . 62 

4.4 Obesity Data Set 71 

4.4.1 RSSMMC Experiments . 74 

4.4.1.1 Experimental Results 76 

4.4.1.2 Selectivity Comparison when Recall is Given . 82 

4.4.2 RSSMMC-GA Experiments . . . . . . . . . . . . . . . 83 

4.4.3 The Analysis of the Results Generated from both RSSMMC 

and RSSMMC-GA . . . . . . . . . . . . . . . . . . . . . . . . 87 

5 Conclusions 89 

A Basic Knowledge of Molecular Biology and the General Procedure 

of a Microarray Experiment 93 

B The SVM Solution in Non-separable Case 95 

C The Sequential Minimal Optimization Algorithm 97 

D Top 50 Genes from Leukemia Data Set by RSSMMC 101 

Bibliography 105 

vi 



List of Tables 

4.1 The Comparisons between Classification Results . . . . . . . . . . . . 63 

4.2 Possible Leukemia Functions of the 16 Top Ranked Genes by RSSMMC 

(1-8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 

4.3 Possible Leukemia Functions of the 16 Top Ranked Genes by RSSMMC 

(9-16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 

4.4 The Physical and Biochemical Characteristics of Lean and Obese Sub-

jects ..................... . 

4.5 An Obesity Gene Expression Data Example 

4.6 The Obesity Gene List ..... 

4. 7 The Obesity Gene Ranked List 

4.8 The Selectivity and Recall Comparisons between Randomized method, 

72 

72 

75 

76 

P-value, SVM and RSSMMC . . . . . . . . . . . . . . . . . . . . 81 

4.9 The Results of GA Implementations with Different Configurations 86 

D.1 The 50 Top Ranked genes by RSSMMC (1-17) . 102 

D.2 The 50 Top Ranked genes by RSSMMC (18-34) 103 

D.3 The 50 Top Ranked genes by RSSMMC (35-50) 104 

vii 



List of Figures 

201 Crossover Occurs at the Crossover Point 

202 Mutation Occurs at the Mutation Points 

203 A Demonstration of the Basic GA Procedure 0 

2.4 Crossover Occurs at Multiple Crossover Points 

205 Example of a Landscape with Two Features 

15 

15 

17 

18 

18 

206 Linear Algebra for a 2D Hyperplane 0 0 0 0 0 20 

207 Multiple Hyperplanes all Produce the Correct Separation 21 

208 The Linear Separating Hyperplane with Three Support Vectors 22 

209 Data Points ~i Appear on the Wrong Side of the Boundaries 25 

301 The Flowchart of RSSMMC 0 0 0 0 0 0 0 0 0 0 0 0 0 37 

302 The Margin Increase Demonstration from R1 to R2 

303 The Minimum Requirement on Newly Added Dimensions 

3.4 The Flowchart of RSSMMC-GA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

401 The Reordered Simulated Data ( The gray shading indicates the feature 

value of a sample, the lighter the stronger) 0 0 0 0 0 0 0 

402 RSSMMC's Results on the Reordered Simulated Data 0 

Vlll 

40 

43 

49 

58 

59 



4.3 The Maximum Margin Distribution across the Features without Neu-

tralizing the Effects of the Mathematical Factor . . . . 60 

4.4 The Maximum Margin Distribution across the Features 60 

4.5 The 16 Top Ranked Genes Generated by RSSMMC .. 64 

4.6 The 16 Top Ranked Genes Generated by RFE and the Baseline Method 65 

4. 7 The Maximum Margin Distribution across the Obesity-relevant Genes 

without Neutralizing the Effects of the Mathematical Factor . . . . . 77 

4.8 The Maximum Margin Distribution across the Obesity-relevant Genes 78 

4.9 The Comparison of Selectivity between Randomized Selection, P-value, 

SVM, and RSSMMC . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 

4.10 The Comparison of Recall between Randomized Selection, P-value, 

SVM, and RSSMMC . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 

4.11 The Selectivity Curve over Different Normalization Suppressors by 

RSSMMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 

4.12 The Comparison of the Position of Obese Genes between P-value and 

RSSMM ........................... . 

4.13 The Maximum Margin Distribution across the Generations 

C.1 The Two Lagrange Multipliers must Satisfy the Constraints: k = o:~1d+ 

83 

84 

so:21
d and s = Y1Y2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 

lX 



Chapter 1 

Introduction 

In recent years, the production of information has increased to the extent of an 

information explosion. This explosion has implications to the environment in which 

we live, to the workplace, the academic world, and our own peace of mind. Most 

research agrees that, as a result of this explosion of information, we are experiencing 

a state called information overload. For instance, along with the appearances of 

new biological technologies, huge quantities of biological records are being generated 

everyday and each of these records usually contains many features. The problem of 

focusing on the most relevant information in a potentially overwhelming quantity of 

data has become increasingly important. 

In Machine Learning area, the most relevant knowledge is critical for future pred­

ication. Given a set of training data and a set of candidate functions known as the 

hypothesis space 1i, a supervised learning algorithm takes the training data as input 

and selects a hypothesis from 1i as a target function, where the target function reflects 

the functional relationship mapping inputs to outputs. The ability of a hypothesis 
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to correctly classify future data, i.e., those not in the training set, is known as its 

generalization. Usually, good generalization ability needs a lot of training data, which 

is often impractical in real-world applications. 

Generally, a large number of candidate features may be involved in the learning 

procedure. The majority of these features are often irrelevant to the target func­

tion. This is especially evident in the application domain in this thesis, microarray 

data analysis. In a typical microarray data set, only tens of samples are available 

altogether for training and testing while each sample has thousands of genes as the 

features [27]. Most of the features are irrelevant to determining the target function 

of classifying the samples. These irrelevant features may lower the learning accuracy, 

increase learning time and complicate data description. Moreover, in some applica­

tions, it is not economic to collect input features that are irrelevant or redundant. 

Thus, searching for the optimal feature subset, i.e., Feature Subset Selection (FSS), 

is usually critical. 

A typical microarray data set 1 is usually represented by a matrix. The rows 

are the measurements associated with individual genes while the columns are the 

measurements associated with the samples. Each entry represents the expression 

level of one gene of a sample. Typically, an asymmetric relationship exists between 

genes and samples, i.e., the number of genes (in thousands) is much larger than the 

number of samples (in tens). The data set can be analyzed in two ways, either by 

explaining the genes across different samples or by explaining the samples under which 

the mutually functioned genes vary in the expression levels. This thesis will focus on 

1 Interested readers are referred to Appendix A for the introduction of basic molecular biology 

and the microarray experiment technology. 
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the former one. By monitoring gene expression levels in different clinical samples, 

information can be extracted to understand special gene functions, diagnose disease 

conditions and test effects of medical treatments. 

The main purpose of the thesis is to develop a method for relevant gene subset 

selection using microarray gene expression data. Since the genes in the resulting 

subset are most relevant to classify different types of samples, they may have impor­

tant contributions to the functions of relevant diseases and deserve further medical 

research. 

A SVM-based hill-climbing algorithm Relevant Subset Selection Using the Max­

imum Margin Criterion RSSMMC is proposed and applied to the classification in 

this thesis. The relevance of each gene is ranked according to its contribution to the 

classification. The SVM margin, the distance between the SVM hyperplane and the 

support vectors which are closest to the hyperplane, is adopted as the measurement of 

relevance (Details of SVM and its margin will be introduced in Chapter 2). Because 

each relevant gene has its own contribution to the classification, they can be searched 

stepwise. That is, one relevant gene can be added iteratively to the subset to achieve 

a higher margin value until the maximum margin value is attained. This thesis iden­

tifies that two types of factors, mathematical factor and biological factor, affect the 

margin. An analytic method is provided in this thesis to neutralize the influence of 

the mathematical factor, which has nothing to do with the differentiation between 

samples, to let the biological factor dominate the margin increase. Through such a 

procedure, these genes are ranked solely by their respective biological contributions 

to the margin increase. 

To test the applicability of RSSMMC both theoretically and practically, an ex-
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periment was first conducted on a simulated data set to exhibit its ability on locating 

the relevant features. Experiments were then performed on a leukemia data set which 

is publicly available and a newly created obesity data set. In the experiments on the 

leukemia data set, RSSMMC is shown to yield better performance than the other 

two comparing methods, RFE and the baseline method (both the methods will be 

explained in details in Chapter 2 and Chapter 4), in identifying biologically relevant 

genes. Specifically, in contrast to the comparing methods, the RSSMMC algorithm 

generates a unique and more compact gene subset. Moreover, since the RSSMMC 

method starts from an empty set in constructing the subset and the number of rele­

vant features is usually small, it consumes less computation time than another SVM­

based algorithm, the sequential version of RFE method does. This improvement is 

especially evident in large data sets. 

In the experiments on the obesity data set, RSSMMC exhibits better ability of 

locating the obesity-relevant genes than the p-value method (Chapter 4 will provide 

details for this method), SVM (without using maximum margin as the criterion), 

and randomized selection. Due to the heuristic essence of the hill-climbing method 

RSSMMC, the best solution may be hidden by the local optimum in terms of the 

maximum SVM margin. Therefore, a Genetic Algorithm version of the RSSMMC 

method, RSSMMC-GA, is also applied to search the optimal feature subset in the 

whole space. The results of RSSMMC and RSSMMC-GA are shown experimentally to 

locate the same subset of obesity-relevant genes, although some members are different 

in their resulting subsets. 

This thesis is organized as follows: 

Chapter 2 reviews recent work on FSS technologies. This includes a formulated 
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definition of FSS and a review on main FSS methods. Chapter 2 also provides detailed 

descriptions of SVM and GA. This chapter summarizes recent applications of SVM 

and GA in FSS problems lastly. 

Chapter 3 describes the hill-climbing method RSSMMC and its GA version RSSMMC­

GA. Chapter 3 also presents an analytic method to neutralize the influence of the 

mathematical factor which has no contribution to the relevant feature selection. 

This chapter concludes with a discussion of the differences between RSSMMC and 

RSSMMC-GA. 

Chapter 4 reports implementation and experiments results of RSSMMC and RSSMMC­

GA on one simulated and two real-world data sets. For the simulated data set, an 

experiment was conducted to exhibit RSSMMC's ability in locating the most relevant 

features where the SVM margin is maximized. The experiments on the two real-world 

data set are divided into two parts. Experiments of RSSMMC on the leukemia data 

set are first described and the results are compared with two other algorithms. The 

results from implementations on both RSSMMC and RSSMMC-GA on the obesity 

data set are then discussed. Lastly, the gene ranking results are investigated against 

the results from p-value, SVM, and randomized selection. 

Chapter 5 concludes the thesis with a summary of the RSSMMC and RSSMMC­

GA methods and indicates several future research directions. 
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Chapter 2 

Related Work 

In this chapter, a formal description of FSS is provided. Recent work on FSS is 

reviewed and the SVM concepts are introduced. Since the GA version of RSSMMC 

is proposed in Chapter 3, the principle of GA is also briefly described. This chapter 

concludes with a discussion of recent efforts on FSS problems using SVM and GA. 

2.1 Feature Subset Selection Problem 

2.1.1 The FSS problem 

As a classic problem in machine learning, FSS has been defined from various angles. 

Since the FSS algorithm proposed in this thesis is within the context of classification, 

the definition described by M. Dash et al is adopted [14]. It is summarized as follows: 

FSS attempts to select the minimally sized subset of features while the classifica­

tion accuracy does not significantly decrease. Specifically, let 'Y be the original set of 

features, with cardinality n. Let d represents the desired number of features in the 
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selected subset X, X c;;; 'Y· Let the FSS criterion for the set X be represented by 

f(X). Without loss of generality, a higher value off is assumed to indicate a better 

feature subset. The problem of FSS is to find a subset X c;;; 'Y such that I X I= d and 

(2.1) 

where Z represents the possible subsets with cardinality d. 

The algorithms that tackle the FSS problem can be classified into two main cat­

egories, i.e., the filter method and the wrapper method [31][35]. We discuss Filters 

and Wrappers in Section 2.1.2 and 2.1.3. The proposed algorithms in this thesis, 

RSSMMC and RSSMMC-GA, fall into the class of the wrapper method. They use 

SVM as the learning algorithm and the SVM margin to evaluate the performance of 

the possible feature subsets. 

2.1.2 Filter Algorithms 

Filter methods filter out irrelevant features before the learning occurs and thus are 

independent of the learning algorithms. This preprocessing step uses general charac­

teristics of the training set to select some features. These selected features are then 

used in the learning algorithm. This approach is computationally more efficient but 

ignores the relationship between the learning algorithm and the optimal feature sub­

set. Since the learning algorithm is not integrated into the filter algorithm. Instead, 

the selected subsets are evaluated by other techniques. 

The RELIEF [31] algorithm is a filter method that assigns relevance weight to 

each feature. This algorithm adopts random samples to find the relevance of features. 

Specifically, it utilizes the difference between the selected samples and the two nearest 
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samples of the same and the opposite class, called near-hit, near-miss, respectively. 

The ID3 decision tree algorithm is then applied to the training data using only the 

selected features to induce a decision tree. 

The FOCUS algorithm described in [3] searches the minimal combinations of fea­

tures that perfectly discriminate the classes. This algorithm starts from evaluating 

each feature in isolation, then turns to pairs of features, triples, and so forth. It stops 

when a combination that generates perfect partitions of the training set, i.e., in which 

no samples have different classes (in other words, in each partition all samples have 

the same class label). The original training examples described using only the selected 

features are then passed to an algorithm for conducting decision tree classification. 

Besides the Decision Tree algorithm, other classifier learning methods, such as 

Naive Bayesian classifier, Nearest Neighbor Retrieval, Cross-Entropy, and Principal 

Components Analysis (PCA), have also appeared in recent literature. Blum and 

Langley summarized these methods in [6]. 

Filtering methods based on Information theory such as Markov blanket algorithms 

constitute another broad family. Let f-l and rJ are two distributions over some prob­

ability space n, the cross-entropy of f-l and rJ is defined as D(f..l, rJ) = LxE!1 log~' 

where f-l is the "real distribution" and rJ is the approximation to f-l· Suppose all the 

features in feature set F construct a vector f and fc is used to represent the pro­

jection of f onto the variables in G ( G is the desired feature subset of F), G will 

minimize .6.c(.6. = Lf Pr(f)D(Pr(CIJ), Pr(Cifc))). Given Fi a feature in G and 

G' = G - Fi, Fi is conditionally independent of the classification function C if and 

only if .6-c' = .6-c. Let M be some set of features which does not contain Fi, M is 

said to be a Markov blanket for Fi if Fi is conditionally independent ofF- M- F;,. 
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Therefore, once a Markov blanket is found, Fi can be safely eliminated. Futhermore, 

in a backward elimination procedure, Fi will continue to be unnecessary at later 

stages [36]. Koller et al [36] applied algorithms which iteratively select one candidate 

set Mi for each feature Fi, and uses a heuristic to estimate how close Mi is to being 

a Markov blanket for Fi; the feature Fi for which Mi is closest to being a Markov 

blanket is eliminated. 

2.1.3 Wrapper Algorithms 

The wrapper methodology, proposed by Kohavi and John [35], offers a straightforward 

and powerful way to address the FSS problem. In its most general formulation, the 

wrapper method utilizes a learning algorithm as the black box to score subsets of 

features according to their predictive power. A typical wrapper algorithm searches 

for the optimal feature subset by running some learning algorithm on the training 

data and using some predefined criterion (e.g. the estimated accuracy of the resulting 

classifier) as its metric. A search strategy is used to search all the candidate feature 

subsets. This process is implemented across all the candidate subsets and the subset 

that has the highest predication performance is the resulting feature subset. 

In practice, three questions in the wrapper approach need to be answered: (1) 

how to search the space of all possible feature subsets; (2) which learning algorithm 

to use; and (3) how to assess the prediction performance of a learning algorithm to 

guide the search and halt it. 

Ideally, an exhaustive search can be performed given a small number of features. 

Unfortunately, the exhaustive search of optimal feature subset becomes computa-
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tionally intractable when a large number of features are processed 1
. To make the 

wrapper method a feasible technology, a wide range of heuristic search strategies can 

be used, including Best-First, Sequential Forward Selection, Sequential Backward Se­

lection, Branch And Bound, Simulated Annealing, and Genetic Algorithms, to solve 

this problem [35]. These search strategies are discussed in Section 2.1.4. 

Many learning methods, including Decision Trees, Naive Bayesian classifier, Least­

Square linear classifiers, and SVMs, are used as a subroutine in the subset search 

procedure. 

The performance of a classifier is usually assessed using a validation set or by 

cross-validation [27]. The objective function (the evaluation standard) often consists 

of two terms that compete with each other. On one hand, the goodness-of-fit needs to 

be maximized; on the other hand, the number of features needs to be minimized. This 

characteristics of multi-criteria optimization make the FSS a challenging problem. 

2.1.4 Search Strategies 

2.1.4.1 Exponential Search 

An exponential search method searches the best feature subset exhaustively. Two 

representative search algorithms in this category are Branch And Bound (BAB) and 

Beam Search. 

For a feature subset S of size m(2: d) (dis a constant) under search, BAB [48] 

uses the best criterion value obtained so far at size m for cutting the branches below 

S. Its improved version BAB(g) [65] uses the best criterion value obtained so far at 

1In fact, this problem is shown to be NP-hard by Amaldi and Kann [4]. 
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size m- g for the cutting, where g is a look-forward parameter. One limitation of the 

BAB algorithm is that it requires feature selection algorithm to be monotonic, i.e., 

the addition of new features to a subset does not decrease the evaluation value for 

that subset. 

In beam search [19], an initial feature subset is stored in a beam. The beam is then 

expanded to multiple subset by adding untested features to the initial one. These 

expanded sets are called states. These states are evaluated and assigned scores. The 

states with the lowest scores are dropped from the beam. Other newly tested states 

are put in proper places in the beam according to their evaluation scores. The beam 

expansion proceeds iteratively until no more untested states remain. 

The exhaustive essence of the exponential search algorithms makes them compu­

tationally expensive and less effective for real-world applications. 

2.1.4.2 Sequential Forward Selection and Sequential Backward Selection 

The Greedy Search strategy (i.e., the former decision is never revisited to include or 

exclude features in light of new decisions) comes in two flavors: forward selection and 

backward elimination. Forward selection methods progressively incorporate features 

into the subset whereas backward elimination methods start with the set of all fea­

tures and progressively eliminates the least promising ones. Both methods produce 

nested subsets of features with each super set (of its child set) includes one or more 

added/removed feature(s) plus all the elements of the child set set. 

Sequential Forward Selection (SFS) [16] [47] search starts with an empty set, eval­

uation is conducted against each feature and the best feature f* is selected. The 

combinations of f* with the other features are then tested and the best subset is 
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selected. The process continues by putting one more feature into the subset until no 

more performance improvement for the system can be achieved. Sequential Backward 

Selection (SBS) starts the search from the complete feature set. Let the cardinality 

of the full set be n, all subsets with n - 1 features are evaluated and the best subset 

is chosen, noted as S*. In the next step, all the subsets of S* with n - 2 features 

are evaluated. This process is run iteratively until the deletion of a feature does 

not improve performance any more [11]. There are some variations of SFS and SBS 

to speed up the search process. Instead of processing one at a time, GSFS(g) and 

GSBS(g), the generalized versions of SFS and SBS, respectively, evaluate g features at 

the same time and the best g-feature subset is chosen for addition or deletion [16] [37]. 

PTA(l, r ), noted as Plus-l take-away-r algorithm, goes forward l stages by adding l 

features (obtained by SFS) first and then go backward r stages by deleting r features 

(obtained by SBS) [37]. In its generalized version GPTA(l, r ), GSFS(g) and GSBS(g) 

are used to be the strategies for addition and deletion. 

2.1.4.3 Stochastic Search 

The Stochastic search algorithm is another main type of FSS technology which in­

cludes Simulated Annealing search methods and Genetic Algorithms (GA). Simulated 

Annealing is a stochastic optimization method that derives its name from the anneal­

ing process used to re-crystallize metals. In annealing, temperature is initially set to 

high in the beginning and then is cooled down to an equilibrium for optimization, i.e., 

the system reaches a configuration of minimum energy. Namely, at high temperature 

the algorithm is only searching the gross features (search in a large solution space) of 

the optimum, while at low temperatures, the finer details (search in a small solution 
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space) of the optimum start to appear. In FSS problem, if the initial annealing sched­

ule, i.e., the difference of features in the solutions of two neighboring annealing stages 

is too large, the temperature will decrease very slowly (since the next stages are gen­

erated from these neighboring stages and are supposed to still have large differences), 

allowing the "moves" to higher energy states to occur more frequently. This results in 

slow convergence. On the other hand, if the annealing schedule is too small and the 

temperature decreases very fast, the algorithm is more likely to converge to a local 

minimum [56]. 

Since RSSMMC-GA integrates GA with RSSMMC in this thesis, the principle of 

GA is presented in more details in Section 2.2. 

2.2 Genetic Algorithm 

First proposed by John H. Holland in 1962 [29], GA has been successfully applied in 

many real-world problems, e.g., optimization and planning, decision making, and fea­

ture selection. GA is a particular class of evolutionary algorithms that use techniques 

inspired by evolutionary biology such as inheritance, mutation, natural selection, and 

recombination (or crossover). One nice statement of GA is cited as follows: 

"Genetic algorithms are based on a biological metaphor: They view 

learning as a competition among a population of evolving candidate prob­

lem solutions. A fitness function evaluates each solution to decide whether 

it will contribute to the next generation of solutions. Then, through op­

erations analogous to gene transfer in sexual reproduction, the algorithm 

creates a new population of candidate solutions." [41]. 
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GA is an iterative procedure that searches for an optimal solution in a solution 

space. Since the solution space is usually huge, GA adopts a heuristic approach. In 

each iteration. A fixed-size set of candidate solutions, called population, are examined. 

Each member of this population is encoded as a finite string of symbols, e.g. a 

sequence of zeros and ones. These members are called chromosomes and all possible 

chromosomes form the set of possible solutions in a given problem space. The standard 

GA procedure imitates the biological evolution. First, a random or heuristic process is 

conducted to produce the initial population. Second, each member in this population 

is evaluated according to some predefined quality criterion, referred to as the fitness 

function. Finally, those which score higher in the fitness function values are assigned 

higher probabilities to be selected for the creation of the next generation. Thus, 

individuals with high fitness are more likely to be reserved for reproduction while 

those with low fitness values are more likely to disappear as the evolution proceeds. 

This procedure is called selection. Basically selection prepares the population for the 

later reproduction. Reproductions are implemented by special operations. The two 

best known operations are crossover and mutation. Crossover is a process between 

two individuals, named parents, in a population. Crossover occurs when the parents 

exchange parts of their chromosomes to form two new individuals, called offspring. 

This operation, as shown in Figure 2.1(Note that in this figure, the crossover point 

indicates where the crossover operation occurs. Also note that this demonstrates only 

the one-point crossover and there are other types of crossover such as multi-point 

crossover through which the crossover occurs at multiple points at the same time), 

tends to enable the evolutionary process to move towards more promising regions of 

the search space. Another important operation, mutation, as illustrated in Figure 2.2, 
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Before Crossover Operation 

Crossover 
Point 

After Crossover Operation 
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Figure 2.1: Crossover Occurs at the Crossover Point 

is applied to randomly sample new points in the search space to prevent premature 

Before Mutation Operation 

After Mutation Operation 

I o l1l o l1l o l1l1 I o l1l o I o I o l1l 1l o l1l1l 

Figure 2.2: Mutation Occurs at the Mutation Points 

convergence. The mutation operation flips bits of individual chromosomes at random 

with some small probability. Generally, GA is a stochastic search process and is not 

guaranteed to converge. Thus, some termination condition should be specified to stop 

the iteration. For example, stop after some fixed number of generations or when some 
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acceptable fitness level is attained. The GA evolution process is briefly summarized 

in Figure 2.3. 

Several points need to be noted. First, the encoding strategies are problem spe­

cific, i.e., it can be binary encoding or in other forms, such as permutation, value, tree 

encoding [45]. Second, the crossover operation can be performed in single point/two 

points/uniform points (i.e. many random points), as shown in the Figure 2.4. Third, 

depending on the mutation probability, the mutation operation can occur in many 

bits in one individual of the population. Fourth, in many real-world applications, 

various elitism mechanisms are adopted. That is, instead of conducting crossover and 

mutation for each individual in a generation, the best chromosome (or a few best 

chromosomes) is (are) directly copied to the next generation. By reserving the best 

solution(s) in each generation, the performance of GA can often be improved because 

the loss of the best found solutions is more likely prevented. In a domain which has 

many dimensions, each dimension denotes a trait, feature, or attribute, the popula­

tion can be envisioned as a n +!-dimensional space with n features and the height 

corresponding to fitness. The values of the n features of the population construct a 

n-dimensional hyperplane. This hyperplane is usually called a fitness landscape. Each 

individual represents a single point on the landscape and the population is therefore 

a cloud of points. The GA search moves across the landscape over time as evolution 

proceeds, this is called adaptation. Figure 2.5 shows a landscape formed by two fea­

tures. The selection procedure "pushes" population upwards in the landscape while 

genetic operation, e.g. crossover and mutation, can cause the population to skip 

across hills, thus crossing valleys and leaving local optima. 
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Create initial random population 

Evaluate fitness for each member of the 
population 

Optimal or good solution 
found? (e.g. Maximum 
generation reached?) 

NO 

Select new members of the population 

Implement Crossover and Mutation 
Operations 

Figure 2.3: A Demonstration of the Basic GA Procedure 
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Figure 2.4: Crossover Occurs at Multiple Crossover Points 
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Figure 2.5: Example of a Landscape with Two Features 
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2.3 Support Vector Machine (SVM) 

Although somewhat complex in its mathematical deduction, the basic idea of SVM 

is straightforward. That is, to find the best hyperplane to separate two classes. 

In this section, the necessary Algebra knowledge is first introduced. Based on the 

basic separable case, a brief but complete description of SVM is then presented. 

The separable case is also extended to the non-separable case and the nonlinear 

decision function using the kernel function (kernel will be explained in full details 

in Section 2.3.4), which gives SVM the real power on solving real-world problems, 

is explained. This section concludes with a summary of the SVM implementation 

adopted in this thesis. 

2.3.1 Basic Algebraic Properties of a Hyperplane 

Let a 1 , a 2 , ... , an, an+l be scalars that are not all equal to 0. The setS consisting of 

all vectors V = (v1, V2, ... , Vn)T in nn Such that Ct1V1 + et2V2 + ... + CtnVn + Ctn+l = 0 

is a subspace of nn, called a hyperplane. 

Figure 2. 6 illustrates the hyperplane L defined by f (X) = f3o + f]T X = 0 in n 2 . 

Some important properties of this hyperplane are listed as follows: 

1. For any two data points P1 and P2 lying in L, j3T(p1 - P2) 0, i.e., j3 is 

orthogonal to P1- P2 and thus /3* = /3/ll/311 is the normal vector to L; 

2. For any point x in L, f(x) can be transformed and f]T x = -!30 holds; 

3. The signed distance of any point x to Lis given by f3*T(x-x0) = 11 ~ 11 (f]T x+f30). 
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X~, 

Figure 2.6: Linear Algebra for a 2D Hyperplane 

2.3.2 Separable Case 

The simplest case of binary separation, the separation of two classes, is accomplished 

via linear classifiers trained on separable data. In fact, the analysis for the more 

general case, nonlinear classifiers trained on non-separable data, can be deducted 

using a quadratic programming method. In Figure 2.7, three hyperplanes can all 

separate the given binary-labeled training data correctly. Thus, the problem to find 

the "optimal" separating hyperplane needs to be solved. 

Given the training data points {xi,Yi},i = 1, ... ,N,xi E Rd,Yi = {-1,1}. Sup-

pose there exists some hyperplane which separates the positive from the negative sam-

ples (See Figure 2.8). The data points that lie on the hyperplane satisfy xT{3+(30 = 0, 

where (3 is normal to the hyperplane. f&rr is the perpendicular distance from the hy-
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• 

• 

Figure 2.7: Multiple Hyperplanes all Produce the Correct Separation 

perplane to the origin, and 11,811 is the Euclidean norm of ,8. Let d+ (d_) be the 

shortest distance from the separating hyperplane to the closest positive (negative) 

sample, Vapnik [60] defined the "margin" of a separating hyperplane to be d+ + d_. 

For the linear separable case, a SVM searches for the separating hyperplane with the 

largest margin. The formulation of this process is shown as follows: 

Suppose that all the training data satisfy the following constraints: 

x[ ,8 + ,8o 2: + 1 for Yi = + 1 

x[,8 +,8o'S -1 for Yi = -1. 

The two constraints can be combined into one set of inequalities: 

(2.2) 

(2.3) 

(2.4) 

Let us now consider the points for which the equality in Equation 2.2 holds. These 

points lie on the hyperplane H 1 : xf ,8 + ,80 = 1 with normal ,8 and perpendicu­

lar distance from the origin lt1~ol. Similarly, the points for which the equality in 
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Equation 2.3 holds lie on the hyperplane H 2 : xf f3 + /30 = -1, with normal ;3, and 

perpendicular distance from the origin l-~~1fo1. Thus d+ = d_ = 11111 and the margin 

is 11 ~ 11 . Note that H1 and H2 are parallel since they have the same normal and that 

no training points fall between them. Thus the pair of hyperplanes which gives the 

maximum margin and separates the two classes, is obtained by solving the following 

optimization problem: 

min 11/311
2 

(3,f3o 
subject to Yi(xf f3 + ;30 ) 2: 1, i = 1, ... , N (2.5) 

Those training data points for which the equality in Equation 2.4 holds are called 

support vectors. This is illustrated in Figure 2.8. 

• 

• • 

0 
0 

£/3-/3, =1 

1 
d_ = d .. = IIJ311 

Figure 2.8: The Linear Separating Hyperplane with Three Support Vectors 
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2.3.2.1 How to Solve the SVM Problem 

Expression 2.5 is a standard convex optimization problem. Fletcher provided detailed 

discussion on solving this problem in [23]. This problem can be formulated using 

Lagrange multiplier theory. There are two reasons to do this [10]: (I) the constraints 

Yi(xf (3 + (30 ) ~ 1 can be replaced by constraints on the Lagrange multipliers, which is 

much easier to handle; and (2) only dot products of vectors of the training data points 

appear in the new formulation. The second property is crucial for later generalization 

of the procedure to the nonlinear case. 

Positive multipliers ai, i = 1, ... , N are introduced (these multipliers are called 

Lagrange multipliers), one for each of the inequality constraints Yi ( xf (3 + (30 ) ~ 1. 

The Lagrange rule for constraints of the form Ci ~ 0 is that the constraint equations 

are multiplied by positive Lagrange multipliers and subtracted from the objective 

function to form the Lagrangian. For equality constraints, the Lagrange multipliers 

are unconstrained. This gives the Lagrangian 

(2.6) 

Setting the derivatives of (3 to zero, two equations 

N 

(3 = Laiyixi (2.7) 
i=l 

N 

0 = LCI!iYi (2.8) 
i=l 

are obtained. Substituting Equations 2. 7 and 2.8 into 2.6, the Wolfe dual [23] 

subject to ai ~ 0 (2.9) 
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is achieved. According to one important Wolfe dual property, minimizing Lp is equiv­

alent to maximizing LD. In addition, the Karush-Kuhn-Tucker(KKT) conditions, 

which include Equations 2.7, 2.8, 2.9, and 

(2.10) 

must be satisfied. In this solution, those data points for which ai > 0 are called 

support vectors and lie on one of the boundaries H1 and H2 in Figure 2.8. All other 

training data points satisfy ai = 0 and lie on the boundary Ht/ H2 such that the 

equality part holds or on the side of Htf H2 (but not on the boundary) such that 

the strict inequality part holds. As the support vectors are the only constructing 

elements to form the hyperplane, removing any other data points does not change 

the separating hyperplane. Once the SVM is trained, a function 

(2.11) 

is obtained. This function is also noted as the SVM discriminative function [44]. 

Thus, which class a test data point xk belongs to can be determined by simply checking 

the sign of this function using the Equation 

G(x) = sign(xif3 + f3o). (2.12) 

2.3.3 Non-separable Case 

The aforementioned technique for separable data does not apply to non-separable 

data. When class overlapping occurs, one way to accommodate the new case is to 

relax the strict constraint which requires no class members can appear on the wrong 

side to allow some data points to appear on the wrong side of the boundaries. By 
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defining the slack variables to be~ = (6, 6, ... , ~N ), the constraint in Equation 2.4 

is rewritten as 

N 

Yi(xf f3 + f3o) 2 1 - ~i, Vi, ~i 2 0, L ~i :::; constant. (2.13) 
i=l 

~i in the constraints is the proportional amount by which the prediction f(xi) = xf /3+ 

(30 can be on the wrong side of its boundaries. Thus the total proportional amount can 

be bounded through bounding 2:: ~i. From Equation 2.13, misclassifications are known 

to occur when ~i > 1. Thus 2:: ~i is the upper bound of total training misclassifications. 

Therefore, the optimization problem in non-separable case is 

min 11/311 subject to 
{ 

Yi(x[ f3 + f3o) 2 1 - ~i 

~i 2 o, 2:: ~i :::; 'Y 

Vi, 
(2.14) 

where 'Y is a constant. The non-separable case is illustrated in Figure 2.9. Similar to 

0 

• 
0 

• 

Figure 2.9: Data Points ~i Appear on the Wrong Side of the Boundaries 
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the separable case but with the new slack factor ~i, Equation 2.5 can be rewritten as 

subject to ~i 2:: 0, Yi(xf (3 + f3o) 2:: 1 - €i Vi. (2.15) 

The separable case now corresponds to 'Y = oo. Like the solution for Equation 2.5, 

the Lagrangian multipliers can be used to solve Equation 2.152
• 

2.3.4 Nonlinear Decision Functions 

When the decision function is not a linear function of the training data, by applying 

an old kernel method [1] (the dot product in high dimensional space can be mapped to 

a kernel function of dot product in low dimensional space), the classification process 

stated in Section 2.3.3 can still be performed. Note that data points in Equation B.5 

have the form of dot product, e.g. xi· x1. These data can be mapped to some high 

dimensional Euclidean space 1t (also noted as feature space) using function 

(2.16) 

Note that the training algorithm works only with the dot product <I>(xi) · <I>(x1) in 'H. 

Thus, if some kernel function K is found such that K(xi, x1) = <I>( xi) · <I>(x1 ), only 

K will appear in the training algorithm without even knowing what <I> is. Another 

important advantage of using a kernel in real-world applications is that the algorithm 

will take almost the same amount of time it would take to train the original data(in 

a low dimensional space £). In other words, exactly the same linear classification is 

performed in a different space. 

2 Interested readers are referred to Appendix B for the details on solving Equation 2.15. 
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There exists a pair {H, <I>} for all kernels that satisfy Mercer's condition [13], i.e. 

there exists a mapping <I> and an expansion 

(2.17) 

if and only if, for any g(x) 

(2.18) 

is finite. Thus, from Mercer's condition, 

j K(x, y)g(x)g(y)dxdy ~ 0 (2.19) 

is achieved. More detailed discussions about the kernel function can be found in [13] 

and [60]. In recent literature, three popular kernels are: 

dth Degree Polynomial Kernel K(x,y) = (x · y + 1)d (2.20) 

Radial Basis Kernel ~ e 2u (2.21) 

Neural Network Kernel tanh(kx · y- 8) (2.22) 

Since the SVM kernel evaluations on large size data are very time-consuming, 

the implementation efficiency of SVM on the microarray data sets, which usually 

include thousands of genes, is critical. In this thesis, the modified version of Sequen-

tial Minimal Optimization (SMO) [33], a rapid SVM implementation, is adopted to 

perform SVM kernel calculations. Since only two samples are evaluated each time in 

this asymptotical method, this algorithm has rapid implementation speed and good 

scalability. Its mechanism is described in Appendix C and the Java software im-

plementation for all experiments in this thesis can be obtained by sending a paper 

request to the thesis author. 
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2.4 SVM and GA in FSS 

2.4.1 SVM in FSS 

Guyon et al [28] presented the Recursive Feature Elimination (RFE) algorithm to 

select gene subset for cancer sample classification using SVM. RFE is a Sequential 

Backward Selection method. Starting from the full set of genes (the initial working 

set), RFE eliminates the gene with the smallest discriminative power (Recall in Equa­

tion 2.5, f3 is the vector normal to the hyperplane. For f3 = ({31, · · ·, f3n), f3i indicates 

the discriminative power of the ith gene) in each iteration. This eliminated gene is 

removed from the working set (Note that RFE only works with the working set in 

each loop, i.e., the removed genes are no longer considered in future calculation. This 

is different from the proposed method RSSMMC in this thesis and will be discussed 

in Chapter 3). To improve the elimination speed, the actual implementation of RFE 

removes chunks of genes at a time. After the first iteration, the number of genes that 

is closest power of 2 is reached (the working gene set is the subset obtained so far and 

half of the genes with less discriminative power are removed each time). After each 

subsequent iterations, half of the remaining genes are eliminated. This elimination 

process results in nested subsets of genes of increasing informative density. 

Mao described a discriminative function pruning analysis (DFPA) FSS method 

in [44]. Although the SVM discrimination function (See Equation 2.11) is a non­

linear function of the input variables, it has a linear relationship with the kernels. 

This structure is noted as linear-in-the-parameter structure and its parameters can 

be estimated using the linear least square estimation algorithm. The goodness of 

the feature subset is evaluated based on the squared error, which is calculated after 
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the parameter estimations are obtained. To summarize, DFPA combines a forward 

selection process with the linear least square algorithm to achieve the pruning step 

and returns a reduced feature subset. 

Suppose that the size of the maximal margin of a SVM is M and ¢(x1), ... , ¢(xt) 

( ¢(x) is the feature space projection of an input variable x) are within a sphere of 

radius R. Vapnik showed that the SVM performance is related not only on the margin 

M but also on R [61]. Weston et al showed that the optimal feature subset can be 

searched by minimizing R2W2 where W2 is the Wolfe dual introduced in Equation 2.9, 

or some other differentiable criterion, by gradient descent [63]. This can be achieved 

by repeatedly training a SVM a few times, thus can be very fast in implementation. 

Some SVM-based methods search the feature subset using sensitivity analysis. 

Sensitivity analysis is a fundamental concept in neural networks. It involves evaluating 

the deviation of the output of the neural networks, which is caused by perturbations in 

the input and/or weights. Wang et al defined the sensitivity of SVM as the deviation 

of margin width with respect to the perturbation of given features [62]. The features 

are ranked with respect to the values of sensitivity measurement. 

Sindhwani et al used mutual information, a quantity that measures the indepen­

dence of two variables, between class labels and classifier outputs as an objective 

function and applied this objective function in the feature subset selection task in 

multilayer perceptrons (MLPs) and multiclass SVMs [57]. A trained classifier can 

be visualized as transmitting information across multiple layers of components. The 

transmission starts from the input layer containing features to the output layer con­

taining class indicators, one of which is fired when the classifier is shown a pattern. 

The class indicators are output neurons in MLPs and individual binary SVMs in 
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a multiclass SVM. The transmitted information is calculated and back propagated 

across the layers of components of the classifier using a heuristic to measure how each 

components contributes to the information flow. Each feature is assigned a credit in 

the information back propagation process. These credits represent the relevances of 

the features. The evaluation of the mutual information objective function is compu­

tationally inexpensive and scalable, immune to bias in prior distribution. Recently, 

mutual information has also been applied to measure the correlations between the 

features [38]. 

2.4.2 GA in FSS 

Since as a stochastic search algorithm, GA has the freedom to explore more feature 

subsets than greedy algorithms, it has been incorporated with some feature subset 

algorithms recently. One of the most difficult aspects of GA is the setting of parame­

ters. GA has four main parameters to be set, i.e., the population size, the maximum 

number of generations, the crossover rate, and the mutation rate. Initial population 

of chromosomes are normally randomly generated. 

The standard GA was directly applied to data with a small or medium number of 

features (less than 50) in early GA applications [64]. Typically, through a classification 

algorithm, a given input sample can be assigned to one of a finite set of classes. Each 

input sample can also be represented by a subset of features. The size of the subset 

cannot be too small that important information were lost and it also cannot be too 

large to lower the accuracy by introducing irrelevant features and increasing learning 

time and cost. Yang et al selected the representative feature subset through a fitness 
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function produced in a neural network classification algorithm using only the selected 

subset of features [64]. The fitness is calculated by combining the accuracy of the 

classification result with the cost of performing the classification. A fixed set of GA 

parameters were used for all experiments. 

Kudo et al divided the feature subset (FS) into three categories: small scale FS, 

medium scale FS, and large scale FS (if the number offeatures is in [0, 19], [20, 49], or[50, oo], 

respectively) and conducted a comprehensive comparative study of large-scale feature 

selection [37]. The set of parameters in GA is determined on the basis of the results 

of experiments using artificial data. Instead of selecting the initial population of 

chromosomes arbitrarily, Kudo et al adopted two different options to create the chro­

mosomes. The first option has 2n extreme feature subsets consisting of n distinct 

1-feature subsets (each of the sets has 1 feature) and n distinct (n- I)-feature sub-

sets (each of the sets has ( n - 1) feature) . The second one has 2n features subsets 

in which the number of features is in [m- 2, m + 2] and all features appear as evenly 

as possible, where m is the desired number of features and n is the original number 

of features. The goodness of a feature subset is measured by leave-one-out cross­

classification rate of One Nearest Neighbor ( 1-NN) classifier 3 . The results indicate 

that GA is suitable for large-scale problems and has a high possibility to find better 

solutions that cannot be found by other heuristic algorithms. 

Loughrey et al [40] studied the overfitting problem in wrapper-based FSS algo­

rithms and provided a solution using the early stopping strategy. Overfitting happens 

3 1-NN works as follows: if a sample from the test set is presented to the nearest neighbor classifier, 

the class label of its nearest (in terms of some distance measure) training sample is declared to be 

the class label this test sample. 
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when the feature subsets perform well on the training data but do not perform as 

well on data that are not used in the training process. Reunanen [53] showed that 

the degree of overfitting is related to the depth of the search (the more iterations 

of search occur, the more possible that overfitting happens). In [40], the number of 

subsets explored is used as an indicator of the search depth and thus as a predictor of 

overfitting. The overfitting is overcome by using early stopping. This is realized by a 

cross validation process and the early stopping is performed when the generalization 

performance starts to fall off in terms of the validation accuracy. The length of time 

that the GA is allowed to run is reduced through early stopping and the number 

of subsets that will be evaluated is limited. Thus, the search depth is reduced and 

overfitting is avoided. 

Sun et al wrapped four different classifiers, i.e., a Bayes classifier, a Neural Network 

classifier, a SVM classifier, and a Linear Discriminant Analysis (LDA) classifier, in 

GA, respectively, to select features subset from the eigen-features provided by Princi­

pal Component Analysis (PCA) [59]. The number of l's and O's for each chromosome 

in a population is generated randomly. Sun et al adopted the combination of accuracy 

from the validation data and the number of used features to evaluate the fitness. In 

case that the dependent features are far apart in the chromosome, the traditional 

1 -point crossover is applied to destroy such a pattern. In other words, the depen­

dent features with a large distance will get close to each other after the crossover. To 

reserve the possible dependency between eigen-features, the uniform crossover oper­

ation is adopted. The results show that the combination of GA and SVM provides 

the best performance in terms of the error rate. 

Sometimes, features are strongly correlated in real-world problems. One example 

32 



is the features derived from the continuous wavelet transform [18]. Using GA directly 

for FSS in the continuous wavelet transform will have poor performance, since GA 

does not take into account the correlation structure of the features. Dijck et al [18] 

proposed a 2-stage GA based FSS algorithm to incorporate the feature correlations. 

This algorithm first constructs basic clusters using the Hierarchical Agglomerative 

Clustering Algorithm [54]. One representative feature from each cluster is selected to 

form the subsets. The first GA is applied on these subsets to select the one with the 

best cross validation performance. Features in the clusters that contain the features 

selected from the first GA process are evaluated in the second GA. In the second 

GA process, each feature is only allowed to be mutated into a feature from the same 

cluster. This guarantees each cluster generated in the first GA process is preserved 

within each solution. The second GA uses the same fitness function as the one in 

the first GA. The results show that compared with the standard GA, the 2-stage GA 

finds better solutions in fewer generations. 
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Chapter 3 

RSSMMC and RSSMMC-GA 

3.1 SVM Margin: the Criterion of RSSMMC and 

RSSMMC-GA 

This chapter shows that, with the inclusion of new relevant genes to the gene subset 

generated so far, the change on the SVM margin value is positive, if at all. In contrast 

those irrelevant genes do not contribute to the separation and thus does not change 

the margin or their effects on the margin increase are not as evident as the relevant 

genes do. Therefore, a separating point between the relevant and irrelevant genes 

can be determined by where the SVM margin reaches its maximum. However, the 

analysis in this chapter and the experiments in Chapter 4 both indicate that any 

difference on the expression values of the newly added gene across different samples 

will increase the margin no matter how small it is due to a mathematical factor. This 

problem is tackled using an analytic method in this chapter. The proposed method 

is then expanded to the feature space of SVM. 
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After neutralizing the influence of the mathematical factor, the hill-climbing method 

RSSMMC adopts the idea of incremental expansion per iteration in the Sequential 

Forward Selection (SFS) method (as discussed in Chapter 2) to construct the rele­

vant gene subset. RSSMMC returns the relevant gene subset when the SVM margin 

reaches its maximum. 

In the rest of this chapter, the hill-climbing RSSMMC method is described and 

formulated. This chapter then discusses how two factors, the mathematical factor and 

the biological factor, affect the SVM margin value while the gene subset is constructed. 

An analytic method is provided to neutralize the influence of the mathematical factor. 

Through such a procedure, all genes can be ranked solely by their biological contribu­

tions to increase the margin. Moreover, a GA version of RSSMMC is formulated and 

presented to search the optimal subset in the whole space. This chapter concludes 

with a discussion of the differences between RSSMMC and RSSMMC-GA. 

3.2 Relevant Subset Selection Using the Maximum 

Margin Criterion 

RSSMMC searches the subset of relevant genes based on the degrees to which they 

differentiate one group of samples from another. A working set of genes initialized to 

be empty is used and expanded by adding genes to it one at a time. The genes included 

earlier are deemed to be more differentially expressed than the genes included later. 

This idea is implemented in a hill-climbing method RSSMMC using the maximum 

margin attained from SVM, described as follows. 
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3.2.1 Formulation of RSSMMC 

All genes are initially stored in the remaining gene set. Each sample is a p-dimensional 

vector of genes. Starting from zero, the size of the working set increases by one in 

each iteration. In every iteration, the SVM algorithm uses the samples to generate an 

optimal hyperplane, based on which the SVM margin is obtained. A gene is selected 

from the remaining genes and included in the working set if it maximizes the margin 

when the minimum classification errors are achieved. The same process is repeated 

until the maximum margin is achieved (Note that if the ranking order of all genes 

are desired, this process can also be implemented continuously until all genes are 

included in the subset). This process is illustrated in Figure 3.1. This method is 

noted as Relevant Subset Selection with the Maximum Margin (RSSMMC). In the 

algorithm, the following notation are adopted: 

81: the set of the positive samples 

82 : the set of the negative samples 

G: the entire set of genes in one microarray experiment 

R: the working set of genes, expanding by one in each iteration 

A: the set of genes 

8VM(81,82 ,A): the function that returns the maximum margin between 8 1 an 8 2 

when the minimum test errors are obtained 

CP: the maximum margin value in the current iteration 

M M: the maximum margin value over all previous iterations 

Algorithm 1-RSSMMC 
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YES 

NO 

YES 

Set the Maximum margin (MM) to zero 
Initialize Gene Working Set to Empty (R) 

R (working set)= 
G (entire gene set) 

NO 

Select one gene q from the 
(G-R) 

Implement binary classification with the 
genes in set { q} U R and assign the 

maximum margin value to CP 

All genes in (G-R) 
haven been selected? 

YES 

Return R as the resulting set ~----< CP<=MM 

Store the value of CP in MM 

R=R U {q} 

Figure 3.1: The Flowchart of RSSMMC 
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l.MM+---0 

2. R +--- <I> 

3. while R =1- G do 

4. CP +--- max{SVM(S1, 82 , {q} U R): q E G- R} 

5. if CP::::; MM return R 

6. MM+- CP 

7. p = argMaxqEG-R(SVM(S1,S2,q U R)) 

8. R +--- R U {p} 

9. end while 

The main structure of the algorithm has two loops; the outer loop from lines 3 to 9 

expands the working set, R, while the inner loop implicit in line 4 exhausts all the 

remaining genes in G - R one at a time to find the gene whose contribution together 

with the genes in the current gene subset R, maximizes the margin in the current 

outer loop. Recall that RFE [28] does not utilize the removed genes and always 

calculates its criterion from genes in the remaining gene set after removing the rele­

vant gene(s) in each iteration. This is very different from the principle of RSSMMC. 

Specifically, RSSMMC evaluates the contributions from genes in the relevant gene 

subset together with one gene from the remaining gene set in each loop. In this way, 

the mutual contribution of genes in the relevant gene subset and the new to-be-tested 

gene is stressed in RSSMMC. 
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3.2.2 Coping with Increasing Dimensions 

The main functionality of the RSSMMC algorithm is realized by the subroutine 

SVM(S1 , S2, A). This is implemented with an SVM where the training set is S1 US2. 

Each point in the training set has all the genes in A as features. The subroutine re­

turns the margin determined by the optimal hyperplane between S1 and S2 . However, 

using the SVM margin directly presents some nontrivial problems. This is explained 

as follows: 

As implied in RSSMMC, the way of judging how relevant a gene is to differentiate 

one group from another is based on comparing the margins for the same training 

set of different dimensions (i.e, genes). However, experiments show that, when new 

dimensions (features) are added to existing dimensions for objects in the training 

set, the margin always increases, even though the training points differ only by an 

arbitrarily small non-zero value in the new dimensions (Note here Euclidean distance 

is applied to obtain the margin). This margin increase seems not to be related to 

the relevant gene subset construction. One simple demonstration is shown in Fig­

ure 3.2 where M argin2 ~ M arginl using the right triangle theorem (experimental 

data are provided to support this fact in Chapter 4). In other words, the margin 

increases even when the difference for sample 4 in dimension 2 is small. Therefore, 

assessing solely whether or not a gene contributes to increasing the margin value is 

insufficient to judge its capability on differentiating different classes of samples. One 

approach to address this issue is not only comparing the margins, but also compar­

ing the individual expression levels of the candidate genes. This approach, however, 

is inappropriate in the context of this thesis. First, the individual gene expression 
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Figure 3.2: The Margin Increase Demonstration from R1 to R2 
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values are measured in the input space, while the margin is calculated in the feature 

space. Superficially putting them in a pair to form a single measure is awkward in 

defining a proper metric. For example, how much weight should be given to each of 

them when pairs are compared? Second, it is difficult, if not impossible, to examine 

the individual expression values of the genes in the feature space. 

The following solution is proposed in this thesis: the individual expression values 

are incorporated in the margin seamlessly, and then the margin is used as the single 

measure for comparison (we will explain this in the Section 3.2.3). This solution is 

based on the observation that, as mentioned before, a small difference in values of 

the new dimension between classes implies a small difference in margins (but not vice 

versa). In the next section, how it is applied is discussed. 

3.2.3 Normalized Margin 

The mathematical effects on the margin increase need to be neutralized so that the 

biological effects can dominate. This is tackled by multiplying the SVM margin with 

a fraction, called normalization factor, and the product is called a normalized margin. 

A gene must contribute to increasing the normalized margin in order to be selected. 

The normalization factor should be a decreasing function of the number of current 

dimensions. This is because more current dimensions result in larger margins between 

the classes and thus need a smaller normalization factor. To obtain the exact function 

of the normalization factor is a difficult one since it is not yet known how biologically 

significant a margin increase is. In the following, a function is deducted with the above 

property based on a special case, where each of the two classes contains exactly one 
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training point. 

Consider the simplest case where two points are in R1. Let them be (xi) and (x2) 

(See the cycle and square point in Figure 3.3). Suppose that they are separated by 

a unit distance in R 1 , i.e., x2 - x1 = 1. 1 is actually the margin value in this case. 

Now a second dimension is added to both points so they become (x1, y1) and (x2 , 

y2). Then three possibilities exist which are listed as follows: 

Case 1. I Y2 - Y1 I> I x1 - x2 I 

Case 2. I Y2- Y1 1=1 x1 - x2 I 

Case 3. I Y2- Y1 1<1 x1- x2 I 

In case 3, the newly added dimension y introduces only a smaller difference than the 

old dimension x. Such a difference is thought to be biologically insignificant. We 

do not have solid biological evidence yet to support this hypothesis. However, our 

experimental results give a strong indication that it is biologically reasonable. In other 

words, if a new dimension is considered in the selecting process, it is selected only if the 

condition in Case 1 or 2 is true or equivalently only if the distance( (x1, yi), (x2 , y2 )) 2: 

v'2(x2 - x 1). Note the distance is the new margin between the two classes, and 

therefore v'2 (d2 in Figure 3.3) is the minimum required new margin. Similarly, 

the minimum required new margin is J3 (d3 in Figure 3.3) when the newly added 

dimension changes the samples from 2-dimensional space to 3-dimensional space. In 

general, if the current space is n - 1-dimensional and the margin is yn=-I then 

a dimension is selected only if the new margin is at least y'ri. Now consider this 

problem from a different angle. Assume the two points are both d-dimensional, X= 

(x1, · · ·, xd) andY = (y1 , · · ·, Yd), and 1 additional dimension is added such that X 

and Y become, respectively, X' = (x1, · · ·, xd, xd+l) and Y' = (y1, · · ·, Yd, Yd+d· In 
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Figure 3.3: The Minimum Requirement on Newly Added Dimensions 

order for the margin increase due to additional genes to be remarkable enough, The 

inequality 

'Lf!{(xi- Yi) 2 > 'Lf=l(xi- Yi) 2 

d+ 1 d 
(3.1) 

is required. The following is the motivation. Note that the value on the right side is 

the average contribution to the squared margin by each current dimension, and that on 

the left side is the average contribution to the squared margin by current dimensions 

together with the margin to be added. The rationale is: if the average contribution 

combining the new dimension and the current dimensions is less than that by the 

current dimensions, then the new dimension is considered not contributing enough to 

differentiate the given sample classes and is not included in the most relevant gene 

subset. The Inequality 3.1 is equivalent to the following: 

Which is 

Margin in Rd+l > Margin in Rd 
Jd+I - y(j (3.3) 

Letting Xi - Yi 1 for 1 ::; i ::; d, Inequality 3.3 becomes Rd+l > Jd+I. This 

43 



is exactly the requirement that is discussed earlier in this section. Inequality 3.3 is 

called a selection condition. It suggests using Jn as the normalization factor for n­

dimensional training points in the case where each class contains only a single point. 

To use this function also for the general case, where there are more than two training 

points, slight modification can be made. In practice, ;,r is adopted where r, called 

normalization suppressor, is a variant around ~- It can be determined experimentally. 

A smaller r, and therefore a larger normalization factor, achieves a larger normalized 

maximum margin value, which in turn lets more relevant genes be included in the 

relevant subset. 

3.2.4 Determining Dimensions in Feature Spaces 

In SVM, some complications may arise due to the fact that all input points are mapped 

to the feature space H and the optimal hyperplane is computed also in H. Thus, the 

corresponding number of dimensions of H for the d dimensional input space need 

to be calculated to obtain the normalization factor in the feature space. Different 

kernels produce different H. Therefore, this number is associated with the selected 

kernel function. In the experiments of this thesis, the cube polynomial kernel 

(3.4) 

is adopted1
. Thus, the cube polynomial needs to be analyzed in the general case. 

Without loss of generality, 1 in Polynomial3.4 is replaced with x 0y 0 , The polynomial 

1There are two main reasons to apply the cube polynomial kernel. First, the kernel evaluation is 

faster with cube polynomial kernel than with other kernels (e.g. Radial Basis Kernel) when multiple 

kernel calculations are needed. Second, the cube polynomial kernel can achieve zero classification 

error in one of the data sets in our experiments and this will allow us to focus on investigating the 
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can be equivalently written as 

(3.5) 

where dis the number of dimensions in 1{. It can be expanded to 

(3.6) 

3 Lo~j~d,j# x~y~xiYi + 6 Lo~i<j<k~d XiYiXjYjXkYk 

This polynomial can be further written as the dot product of the following two vectors 

(the row vector and the column vector) in feature space 
T 

v'3xix2 · · ·, v'3xixd, v'3x~, v'3x~x2, 

· · · J3x~xd · · · v'3x~, 

v'3x~xl · · · v'3x~xd-l, 

vf6x1x2x3···vf6xd-2xd-lxd 

l,yf .. ·y~, J3yl ... J3yd, J3yi, 

J3YiY2 · · ·, J3yiyd, J3y~, vf3y~y2, 

... J3y~yd ... J3y~, 

J3y~yl · · · J3Y~Yd-l, 

vf6Y1Y2Y3···vf6Yd-2Yd-1Yd 
(3.7) 

The total number of dimensions in the feature space can then be calculated by count-

ing the total number of elements in either of the two vectors in the dot product. The 

value is 

( ) 
2 d! 

d+l +d+d +3!(d-3)! (3.8) 

which is then simplified to 

(d )2 d(d- l)(d- 2) + 1 + 6 . (3.9) 

margin increase by the biological difference without having to handle the additional complications 

generated by the non-separable classes. Note that, in other cases, such as small data sets, Radial 

Basis Kernel often shows better classification accuracy. Therefore, The decision which kernel should 

be adopted according to the details of individual experiments. 
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Thus, the normalization factor for the cube polynomial kernel is: 

1 1 
(3.10) 

3.2.5 Considerations on RSSMMC 

Like other wrapper-based SFS methods (See Chapter 2), the hill-climbing RSSMMC 

is a heuristic that assumes each new candidate gene works only with the genes in the 

working subset. However, it is possible that some other subsets, which include some 

or all genes not in the working subset, achieve a larger margin value than that of 

the working subset. In other words, it is possible that the result from the RSSMMC 

method is a local optimum because hill-climbing methods are local search algorithms. 

The ideal method of assessing RSSMMC is to compare RSSMMC's resulting feature 

subset with the global optimum. Unfortunately, it is usually not practical to obtain 

the global optimum by exhausting all solutions. A straightforward evaluation method 

is comparing the performance of RSSMMC with that of other methods. The experi-

mental results described in Chapter 4 show that RSSMMC is highly effective and can 

provide resulting subset that contains biologically relevant genes. 

3.3 A GA version of RSSMMC (RSSMMC-GA) 

In this section, another heuristic method, Genetic Algorithm, is used to search for the 

optimum solution in the whole search space. The reason we adopt the GA algorithm 

is because GA is a global search algorithm contrast to hill-climbing and can search the 

complete solution space. One of the most important aspects of GA is the definition of 

the fitness function (See Chapter 2). In general, the higher the fitness value, the better 
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the solution. To be consistent with the RSSMMC, the value of the maximum margin 

in the feature space in each generation is adopted as the fitness to implement GA. Note 

that, GA is not used for assessing the optimality of the RSSMMC method. Rather, 

possible "good solutions" are investigated through GA evolution process, which might 

have been overlooked by the hill-climbing RSSMMC. The basic principle of GA has 

been introduced in Chapter 2. The following section only discuss the aspects that are 

related to the context in this thesis, the microarray gene data analysis. 

3.3.1 GAin Gene Expression Data Analysis 

GA is an iterative procedure that searches for an optimal solution in a solution space. 

In microarray application domain, a candidate solution is a set of genes. A population 

is a set of candidate solutions. Each set of genes is encoded as a binary string. A 

gene is in the gene set if and only if the corresponding bit in the candidate solution is 

1. RSSMMC-GA implemented in this thesis works as follows: An initial population 

of members is generated randomly. In each evolutionary step, denoted as a genera­

tion, the members in the current population are evaluated according to the fitness 

function, the normalized margin value in the feature space. Members are selected for 

reproduction according to their fitness to create the next generation. Specifically, the 

fitness values of the members in the population are calculated. Then the crossover 

and mutation operations are applied to all members to obtain the offspring and the 

fitness values of the offspring are calculated as well. From the union of the two pop­

ulations, the parent and offspring, the half members with the best fitness values, are 

selected to form the next generation. This ensures enough number of good blocks in 
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one generation are reserved for the evolution. Members with high fitness value have a 

better chance to be selected for reproduction, while low-fitness ones are more likely to 

disappear. This process is repeated iteratively. In the implementation in this thesis, 

the iterative process of GA stops if the best fitness value has not increased across a 

pre-determined number of generations. 

3.3.2 Formulation of RSSMMC-GA 

The GA version of the RSSMMC method is called RSSMMC-GA and its work flow 

is illustrated in Figure 3.4. RSSMMC-GA uses the following notation: 

S: a solution string representing a subset of genes; a gene is in the subset iff its 

corresponding bit in the string is '1' 

lSI: the length of S 

G M M: the global maximum fitness value 

GS: the global solution 

SS: the array of all solutions in each generation 

S S': the offspring of S S 

PS: the size of SS 

PI: the probability that a bit in a string S is set to 1 

PC: the probability for selecting a position for crossover operation 

PM: the probability for mutation operation 

FA: the array to temporarily store the fitness values for all solutions in each genera­

tion 

C1: the set of the positive samples 
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YES 

Output the global solution 

Initialize parameters 

Determine the initial candidate solutions 
stored in SS 

Calculate the fitness value for each 
memberinSS 

Store the maximum fitness and its 
corresponding solution in the global solution 

NO 

Implement the GA crossover operation 

Implement the GA mutation operation 

Implement the GA selection operation 

Figure 3.4: The Flowchart of RSSMMC-GA 
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C2 : the set of the negative samples 

A: the set of genes 

SVM(C1, C2 , A): the function that returns the maximum margin between C1 an C2 

when the minimum classification errors are obtained 

GeneSet(S): the set of genes represented by string S 

SubString(S,p1,p2): the substring of S from bit p1 to bit p2 

BitValue(S,p): the value of the pth bit in stringS 

ConcatenateString(S1 , S2 ): concatenate the string S1 and S2 

Si: substring i, i = 1 · · · 4 

RSSMMC-GA is described as follows: 

1. Initialization. 
SS +---an array of arbitrary solution strings with size PS 

GMM +--- 0 

2. Determine the initial candidate solutions with size P S. 
For each member S in S S 

For (i = 1;i :S ISI;i + +) 

set Bit Value(S, i) to 1 with probability PI 

3. Calculate the fitness value for each member in population SS. 

For ( i = 1; i :S ISS I; i + +) 

begin 

//record fitness function value for each solution 

let si be the ith string in ss 

end 
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4. Store the maximum fitness and its corresponding solution in global variables. 
let si be the string in s s 

such that F A[i] is the largest in FA 

if FA[i] > GMM then 

begin 

GMM ...._ FA[i] 

end 

5. Check the stopping criterion. 
if GMM's value does not change within n consecutive 

iterations 

then goto the 9th step 

6. Implement the GA crossover operation (requires an even number of strings). 
For each pair of solutions Si and Si+l in S S 

begin 

select j with probability PC 

81 ...._ SubString(Si,O,j -1) 

82 ...._ SubString(Si+1,j, lSI- 1) 

83 ...._ SubString(Si+1,0,j -1) 

store Si, Si+l into SS' 

end 
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7. Implement the GA mutation operation. 
For each string S in S S' 

begin 

For (j = I;j :S ISI;j + +) 

begin 

end 

end 

with probability PM do 

begin 

end 

if BitValue(S,j) == 1 

then BitValue(S, j) = 0 

else BitValue(S, j) = 1 

8. Implement the GA selection operation. 
//reserve the half of strings with the best fitness 

//values in both parent and offspring 

select the best half (with size ISSI) solutions 

from SS U SS' 

store the best solutions in SS 

repeat the 3rd step 

9. Output the global solution GS. 
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3.4 RSSMMC versus RSSMMC-GA 

Essentially, The major difference between RSSMMC and RSSMMC-GA is that hill­

climbing is a local search algorithm while GA is a global search algorithm. With 

hill-climbing, genes are processed one at a time to evaluate its impact on classifica­

tion. In contract, GA processes many different combinations of genes simultaneously. 

Predictably, RSSMMC always reach the same solution no matter how many times 

it is tried. On the other hand, the output of GA greatly depends on its settings 

of parameters, the initial population, the values of crossover and mutation rate, the 

fitness function, and the random number seeds. 

Compared to the stochastic process of RSSMMC-GA, the RSSMMC method is 

more stable and the number of genes in the resulting feature subset is determined 

when the SVM margin, the measurement of the distance between the two different 

classes, attains the maximum value. Contrarily, RSSMMC-GA outputs the subset 

of genes when the maximum margin is acquired with the current configuration of 

parameters (this means the number of genes in the subset and the members of the 

subset vary with different GA setups). On the other hand, unlike RSSMMC, in 

RSSMMC-GA, the ·sets of genes selected in different iterations are not necessarily 

nested and therefore RSSMMC-GA is more flexible in exploring the search space. 

Thus it has a better chance to reach the optimal solutions. 

This chapter provides the formulation of both the hill-climbing method RSSMMC 

and its GA version RSSMMC-GA. In the next chapter, we will describe the ex­

periments and analyze the results. In the leukemia data set, RSSMMC is shown to 

achieve a significant improvement over its precedents (e.g. RFE and baseline method) 
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in terms of the classification accuracy, the size of generated feature subset, and the 

identification of biologically relevant genes. The gene subsets generated from RSS­

MMC and RSSMMC-GA on the obesity data set show a large portion of overlapping 

where both algorithms discover the same obesity-relevant genes. In other words, those 

genes that have a large impact on the differentiation of different types of samples are 

captured by both RSSMMC and its GA version. This indicates that the feature 

subset generated using the methodology in this thesis is capable to approximate the 

global optimum. 
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Chapter 4 

Empirical Analysis 

4.1 Experimental Material and Methods 

This chapter first shows results on a simulated data set to exhibit the feature selecting 

ability of RSSMMC. To investigate the usefulness of RSSMMC in the real-world 

applications, we present results on two microarray data sets 1. The first one is the 

leukemia data set [25] which is available online. The second set, the obesity data set, 

is a new data source obtained from the study of "Global gene expression profiles of 

subcutaneous adipose tissue in obese and non-obese young men" 2 . 

For the leukemia data set, the results of RSSMMC are compared with the baseline 

method proposed along with the data set [25] and the Recursive Feature Elimination 

(RFE) method [28]. In the baseline method, each feature (of a pre-selected subset) 

that is correlated (or anti-correlated) with the class separation is used as a class 

1 All the implementations were written with Java 1.5 on a Linux 2.4.26 kernel and tested on a 

computer with a X86-64 AMD architecture CPU. 
2This is a project led by the Discipline of Genetics of Memorial University of Newfoundland. 
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predictor, albeit an imperfect one. This method is called Neighborhood Analysis and 

works as follows: 1. Find informative genes. One defines an "idealized expression 

pattern" corresponding to a gene that is uniformly high in one class and uniformly 

low in the other. One tests whether there is an unusually high density of genes 

"nearby" (or similar to) this idealized pattern, as compared to equivalent random 

patterns. Self-Organizing Maps (SOMs) technique is applied for this purpose in [25]. 

2. Develop the class predictor. Uses a fixed subset of "informative genes" chosen 

based on their correlation with class distinction and makes a prediction on the basis 

of the expression level of these genes in a test sample; each informative gene casts a 

"weighted vote" for one of the classes, with the magnitude of each vote dependent 

on the expression level in the test sample and the degree of that gene's correlation 

with the class distinction; the votes were summed to determine the winning class, as 

well as a "prediction strength" (PS), which is a measure of the margin of victory that 

ranges from 0 to 1; the sample was assigned to the winning class if PS exceeded a 

predetermined threshold, and was otherwise considered uncertain. 3. Test the class 

predictor. The accuracy of the predictors was first tested by cross-validation on the 

initial data set and the cumulative error rate is calculated; one then builds a final 

predictor based on the initial data set and assesses its accuracy on an independent 

set of samples. 

As discussed in Chapter 2, RFE is a sequential backward selection method which 

eliminates the feature with the smallest discriminative power in each iteration. 

The RSSMMC method shows similar results as the RFE method while outper­

forms the baseline method in terms of the classification accuracy. RSSMMC also gen­

erates more diversified subset of genes than RFE. Moreover, the RSSMMC method 
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provides a fixed number of most relevant genes in the gene subset when the maximum 

margin is obtained, while RFE only provides nested subsets. 

The obesity data set is not yet publicly available. Our experimental result in this 

thesis is among one of the first analyses of the data set 3 . Since the genes have been 

prepared pairwise in the significance test in the early statistic processing, the ranking 

result by p-value is used for comparison. We also compare the results of RSSMMC 

with that of SVM which does not use maximum margin criterion and the randomized 

selection process. The RSSMMC method is shown to provide better ranking order of 

the genes than that of all the comparing methods in terms of the obese gene inclusion. 

4.2 RSSMMC Results on Simulated Data 

Artificial data from three different distributions were generated to exhibit the ability 

of RSSMMC to select relevant features. 30 samples with 50 features from three 

different distributions were created 4 . The first 25 features of the first 15 samples 

(Class A) were constructed with a sin() based function Yi,j = i * sin(C1 * j), i = 

1, ... , 25, j = 1, ... , 15 where C1 is a constant. The first 25 features of the second 15 

samples (Class B) were created with a cos() based function Yi,j = C2 * i * cos(C1 * 

(j - 15)), i = 1, ... , 25, j = 16, ... , 30 where C1 and C2 are constants. The values 

of the remaining 25 features across all samples were generated with another sin() 

based function Yi,j = (i- 25) * sin(C3 * j), i = 26, ... , 50, j = 1, ... , 30 where C3 is 

a constant. C1, C2 and C3 are selected such that the two type of samples are more 

3 More information about this data set can be found in http:/ jwww.med.mun.ca/genefind/. 
4For the convenience of description, we use this 30 x 50 matrix for demonstration. Experiments 

on 100 samples with 1000 features have been conducted and shown the similar results. 
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differentiated by the first 25 features than by the last 25 features. For all samples, 

Yi,J represents the value of feature j for sample i. After the data were generated, the 

features were reordered randomly. The reordered data are shown in Figure 4.1. If 

Class A 

Class B 

Figure 4.1: The Reordered Simulated Data ( The gray shading indicates the feature 

value of a sample, the lighter the stronger) 

RSSMMC works normally, after the implementation, the 25 features with different 

distribution functions between two classes of samples should be listed first in the 

output with an order according to the relevance of each feature while the 25 features 

that are uni-distributed across all the samples should be listed at the end. The 

experiments results illustrated in Figure 4.2 perfectly matches the prediction. In this 

figure, samples are represented in rows. Features are represented in columns, listed 

from left to right according to the descending order of the relevances. The 7 top 

ranked features are those in the subset when the margin values of the feature subsets 

reach the maximum. The 7 features show the highest differentiation between two 
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Class A 

Class B 

Figure 4.2: RSSMMC's Results on the Reordered Simulated Data 

classes in the diagram clearly. In this figure, all the 25 most relevant features have 

also been selected correctly. 

Recall that it has been mentioned in Chapter 3 that the SVM margin value always 

increases if the mathematical factor is not handled. This is illustrated in Figure 4.3 

when the RSSMMC algorithm is implemented without neutralizing the effects of the 

mathematical factor. After neutralizing the dimensionality effect of the mathematical 

factor, the final maximum margin distribution is shown in Figure 4.4. The curve in 

Figure 4.4 matches the prediction, i.e., the margin value reaches the highest when 

the 7 most relevant features are included (the reason that the peak value does not 

appear when 25 most relevant features are included is because the margin increase 

(the numerator) is smaller than the dimension increase (denominator) after 7 genes 

have been included in the subset). 
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4.3 Leukemia Data Set 

Golub et al [25] presented methods to classify two types of cancer in the leukemia data 

set, noted as Acute Lymphocytic Leukemia (ALL) and Acute Myelogenous Leukemia 

(AML), respectively. This data set is formed by two subsets, i.e., the training and 

the test set. The training set is used to select a subset of genes and determine the 

classifiers, and the independent test set is used to estimate the algorithm performance. 

The training set consists of 38 samples (27 ALL and 11 AML) from bone marrow 

specimens. The test set has 34 samples (20 ALL and 14 AML), prepared under 

different experimental conditions, and includes 24 bone marrow and 10 blood sample 

specimens. All samples have 7129 genes. The preprocessing procedure in this thesis 

has normalized the original data by setting the minimum threshold to 20 and the 

maximum to 16000 (Note: The expression values less than 20 or over 16,000 are 

considered by biologists as unreliable for the experiment and any value exceed the 

boundaries are replaced with the minimum or the maximum values, whichever is 

closer). We also standardized the data set as suggested in [25], namely, from each 

gene expression value, we subtracted its mean and divided the result by its standard 

deviation (this is also called z transformation). For this data set, the RSSMMC 

method is compared with the other two, the baseline method [25] and the SVM­

based RFE method [28]. Three main factors are considered in the experiments: 

1. The classification accuracy, i.e., how accurate the classifier obtained from the 

training set can predicate the classes of the samples in the test set; 

2. The size of the gene subset, i.e., how many features are used to construct the 

classifier (usually smaller is better); 
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3. The information provided by the generated subset. This factor stems from 

practical significance in medical research, namely, how much information the feature 

subsets generated from the algorithms can provide. 

4.3.1 Implementation Results of RSSMMC, RFE, and the 

Baseline Method 

We report the performance of the three classifiers performing the best on the test data 

(34 samples) in Table 4.1. Note in this table, Genes# refers the number of genes 

of the subset selected by the given method yielding best classification performance. 

Error# indicates the classification errors on the test set, and the Reject# represents 

those samples that could not be determined of the class labels (this happens when 

the value returned by Equation 2.12 is smaller than a pre-determined threshold). For 

example, with the 64 top ranked genes generated by RSSMMC, the baseline classifier 

returns zero classification error and the labels for all samples can be determined 

without rejection. The patient id numbers of the classification errors are shown in 

brackets. The results of using all 7129 genes in the three classifiers with no feature 

selection are also reported for comparison. Note that, in classification test, it is not 

surprising that RSSMMC has similar results as that of RFE since both methods are 

SVM-based (they have the same classification method but have different selection 

methods). The RSSMMC method uses less genes to obtain the same classification 

accuracy as that of RFE, while both outperform the baseline method. Specifically, 

RSSMMC only needs 2 genes to achieve zero classification error whereas RFE needs 

8 genes (with which REF achieves the minimum Leave-One-Out (LOO) classification 
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Table 4.1: The Comparisons between Classification Results 

Select method SVM classifier Baseline classifier 

Genes# 2 64 

RSSMMC Error# 0{} 0{} 

Reject# 0{} 0{} 

Genes# 8,16 64 

RFE Error# 0{} 0{} 

Reject# 0{} 0{} 

Genes# 64 64 

Baseline Error# 1{28} 1{28} 

Reject# 6{ 4,16,22,23,28,29} 6{ 4,16,22,23,28,29} 

Genes# 7129 7129 

Error# 5{16,19,22,23,28} 5{16,19,22,27,28} 
N oselection 

Reject# 11 {2,4,14,16,19,20 22{1,2,4,5, 7, 11,13,14 

,22,23,24,27,28} ,16- 20,22 - 29,33} 
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error 5 ) for the same purpose. With fewer features, both RSSMMC and RFE have 

less classification errors than the baseline method. 

The feature subsets generated with the three methods were then investigated. The 

16 top ranked genes in the RSSMMC subset are illustrated in Figure 4.5. To compare 

ALL 

AML 

Figure 4.5: The 16 Top Ranked Genes Generated by RSSMMC 

the results, The 16 top ranked genes in the RFE and baseline subsets are shown in 

Figure 4.6. In these matrices, the columns represent different genes and the rows 

different patients from the training set. The 27 top rows are all ALL patients and the 

11 bottom rows are AML patients. In all the figures, the gray shading indicates gene 

5The Leave-One-Out cross validation method works as follows. Given n samples, including one of 

the n subset of n - 1 samples as the training set and the left one the test set each time to implement 

the classification algorithm. This process is iterated n times and the total classification errors are 

counted. LOO is often adopted when the number of samples is small and the experiments on the 

obesity data set in this thesis applied LOO to evaluate the classification accuracy. 

64 



ALL 

AML 

(a) (b) 

ALL 

AML 

(c) (d) 

Figure 4.6: The 16 Top Ranked Genes Generated by RFE and the Baseline Method 
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expression: the lighter the stronger. All the genes selected by RFE are more AML 

correlated (i.e., most gene expression levels are higher in AML than in ALL), while 4 

genes selected by RSSMMC are more AML correlated and the remaining 12 are more 

ALL correlated. In Figure 4.5, genes are ranked from right to left, the best one at the 

extreme right, while in Figure 4.6, genes are ranked in the opposite order, the best 

one at the extreme left (Note the existence of different ordering directions between 

the two methods is just because the visualization software packages for RSSMMC 

and RFE/Baseline method have different output formats. In matrices (a) and (c) of 

Figure 4.6, the columns represent different genes and the lines different patients from 

the training set. (b) represents the weighted (the weights are the coefficients in the 

SVM equation) sum of the 16 RFE genes used to make the classification decision. (d) 

represents the weighted sum of the 16 baseline genes used to make the classification 

decision). The result that the 16 top ranked genes include both ALL and AML 

correlated genes shows that RSSMMC has the ability to explore a broader range of 

relevant genes and creates a gene subset consisting of diversified features. 

The baseline Neighborhood Analysis method imposes that half of the genes are 

AML correlated and half are ALL correlated. The most relevant genes are in the 

middle. As indicated by Guyon et al [28], the genes selected by the baseline method 

are strongly correlated with either AML or ALL and therefore there is a lot of redun­

dancy in this gene set. In essence, all the 16 genes by baseline method carry the same 

information. On the contrary, RSSMMC and RFE carry complementary information 

since the decision function of SVM based algorithms is actually a weighted sum of 

gene expression values of selected genes (see Equation 2.12). Both RSSMMC and 

RFE show a clear ALL/ AML separating line. The result of the baseline method is 
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not as contrasted as the former two. 

RSSMMC and RFE produce some overlapping results. For example, the 11th 

ranked gene Zyxin and the 20th ranked gene Macmarcks by RSSMMC are the 1st 

and the 3rd ranked genes by RFE running on the complete data set with 72 samples, 

respectively. They have been indicated to have possible function to leukemia in [28]. 

Our literature research indicates that all the top 16 ranked genes by RSSMMC are 

more or less related to leukemia function, as listed in Table 4.2 and 4.3. The 50 top 

ranked genes by RSSMMC are listed in Table D.l, D.2, and D.3 in Appendix D. 

Since RFE and RSSMMC are both SVM-based methods. They have some SVM 

specific settings that need to be stated. 

1. RSSMMC applies the cube polynomial kernel and RFE implements dot product 

for kernel evaluation. This makes RFE runs faster than RSSMMC for a single kernel 

evaluation. 

2. RSSMMC uses SMO algorithm for SVM computation while RFE implements 

the general version of SVM algorithm. This makes RSSMMC runs faster than RFE 

for a single kernel evaluation. 

3. RSSMMC achieves the feature subset 3-4 times faster than RFE while RFE 

runs faster than RSSMMC when all the genes are to be screened. 

To summarize, while RSSMMC uses less genes to attain the same classification 

accuracy as that of RFE, both RSSMMC and RFE have better performance than the 

baseline method. Comparing with RFE, the RSSMMC method has a different ranking 

order of the generated relevant genes and the members in the relevant subsets by both 

methods are different, although the top ranked genes from the two methods have 

some overlapping. These different genes show that RSSMMC has the ability to find 

67 



Table 4.2: Possible Leukemia Functions of the 16 Top Ranked Genes by RSSMMC 

(1-8) 

Gene Description Possible Functions to Leukemia 

Terminal deoxynucleotidyl TdT is a useful marker in the diagnosis of ALL and 

Transferase mRNA (TdT) distinguishing ALL from mature B-lymphoid 

neoplasms. Faber et al, 2000 [22]. 

14-3-3 PROTEIN TAU Specific 14-3-3 isoforms are linked to genetic. 

disorders and cancers. MACKINTOSH, 2004 [43]. 

TCF3 Transcription factor 3 TCF3 (E2A) together with TFPT (FB1) gene 

(E2A immunoglobulin enhancer play an important role in childhood 

binding factors E12/E47) pre-B cell acute lymphoblastic leukemia (ALL). 

Brambillasca et al, 2001 [8]. 

CD19 CD19 is a B-celllymphoma markers. Alkanet al, 1996 [2]. 

LYN LYN is highly ranked as a feature to distinguish 

V-yes-1 Yamaguchi sarcoma AML/ALL. Bo et al, 2002 [7]. 

viral related oncogene homolog 

Nucleoside-diphosphate kinase Nucleoside diphosphate kinase protein (NM23) 

is involved in tumor metastasis. Okabe et al, 1992 [50]. 

ATP6C Vacuolar H+ ATP6C is a highly ranked feature in experiments 

ATPase proton channel subunit on three public cancer data sets. Ben-Dor et al, 2000 [5]. 

Interferon-gamma induced IFI 16 is a highly ranked feature in experiments 

protein (IFI 16) on three public cancer data sets.Ben-Dor et al, 2000 [5]. 
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Table 4.3: Possible Leukemia Functions of the 16 Top Ranked Genes by RSSMMC 

(9-16) 

LMP2 gene extracted from LMP2 is highly ranked as a feature to distinguish 

H.sapiens genes TAP1, TAP2, AML/ ALL. Bo et al, 2002 [7]. 

LMP2, LMP7 and DOB 

Transcriptional activator hSNF2b is recognized as an important gene in 

hSNF2b distinguishing AML/ ALL. Daniel et al, 2001 [46]. 

Zyxin Encodes a LIM domain protein localized at focal 

contacts in adherent erythroleukemia cells. 

Teresita et al, 1996 [42]. 

TOP2B Topoisomerase Purification of TOP2B allows the production of 

(DNA) II beta (180kD) specific antisera of leukemia. Drake et al, 1987 [20]. 

MB-1 MB-1 is a sensitive and specific reagent for B-lineage 

lymphoblastic leukemia and in the identification of 

biphenotypic leukemia presenting as AML. 

Buccheri et al, 1993 [9]. 

SPTAN1 Spectrin, alpha, non- SPTAN1 is a recognized as an important marker 

erythrocytic 1 (alpha-fodrin) gene in distiguishing AML/ ALL. Guan et al, 2005 [26]. 

Dihydropyrimidinase Dihydropyrimidinase related protein-2 is a highly 

related protein-2 ranked feature in experiments on three public 

cancer data sets. Ben-Dor et al, 2000 [5]. 

CCND3 Cyclin D3 CCND3 as a dominant oncogene in the 

pathogenesis and transformation in several histologic 

subtypes of mature B-cell malignancies with 

chromo~%mal translocation. Sonoki et al, 2001 [58]. 



a relevant gene subset which has more diversified combination of genes. Specifically, 

RSSMMC list not only the genes with higher average expression levels in AML than in 

ALL but also the genes that are more ALL over-expressed. All the 16 top ranked genes 

by RSSMMC are related to some leukemia functions. Moreover, unlike the nested 

subset generated by RFE (the size the subsets decreases according to 2n where n is 

the number of iterations), RSSMMC generates a fixed number of relevant gene subset 

when the maximum margin value is achieved (In the leukemia data set, RSSMMC 

returns 24 genes which are recognized to be most relevant on the classification while 

the margin of the gene subset reaches the maximum value). RSSMMC starts from an 

empty set and expands it to the point where the maximum margin value is obtained 

while RFE starts from full sized subset and decreases the subset in each iteration. 

Since usually a small number of genes of the data set are included in the relevant gene 

subset, the RSSMMC method is much faster than the sequential version of RFE in 

the implementation generally and slightly faster than the modified version of RFE. As 

claimed in [28], the modified version of RFE spends 3 hours to process the leukemia 

data set on a Pentium based PC while RSSMMC just needs about 45 minutes on a 

similar computer to obtain the gene subset. Note that the modified version of RFE, 

which removes a chunk of genes at a time to increase the speed, does not provide a 

clue of which genes in the same chunk are more relevant to the differentiation between 

the given two classes and therefore are less helpful than RSSMMC which explicitly 

indicate the relevance of the genes in the resulting subset. 
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4.4 Obesity Data Set 

In recent years, many medical experiments ([24][34][32]) indicate that obesity is a 

complex molecular function which involves the collaboration of a group of genes. 

These genes, however, are far from being recognized. In different organisms, the 

obese gene expression levels vary greatly. Even at the same organism, e.g. abdomen, 

these expression levels may vary across different races and patients from different 

geographic areas. 

The laboratory in the Discipline of Genetics of Memorial University of Newfound­

land collected data from more than 1000 volunteers for the obesity project research. 

16 of these volunteers are randomly chosen for comparison research. 8 volunteers are 

from lean group and the other 8 are from the obese group. The 16 members are all 

male volunteers selected from the St. John's, Newfoundland area and are all at least 

the 3rd generation Caucasian Newfoundlanders. Some of their statistical features are 

summarized in Table 4.4. Data in the table are presented as mean, range in parenthe­

sis. The Gene expression data were obtained using Agilent© microarray chips. The 

whole genome for each individual was recorded according to the standard quality con­

trol requirement. The output data are alternatively arranged to form a matrix with 

rows representing genes and columns the lean and obese samples. Several rows in this 

matrix are shown in Table 4.5. A question mark in the table indicates that the value 

at that position is missing. Notice that there are outliers in this table. For example, 

the expression value of Gene1 of sample L2 is very large. Similarly, Gene3 of sample 

Os obesity sample has expression value 13.40577 which is significantly larger than all 

others in the same row. The resulting data from the experiments include a nontrivial 
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Table 4.4: The Physical and Biochemical Characteristics of Lean and Obese Subjects 

Features Lean Obese 

Age 21.9(20, 25) 23.3(21, 27) 

Height(cm) 180(171, 190) 176(167, 187) 

Weight(kg) 74.7(56.7, 96.0) 94.5(73.5, 135.0) 

%of Body fat 14.9(7.6, 20) 30.5(25.5, 40.3) 

Insulin(pmol/L) 46.19(28.6, 78.6) 90.71(34.5, 175) 

Glucose(mmol/L) 4.58(1.9, 5.2) 5.35( 4.5, 6.5) 

Tg(mmol/L) 0. 78(0.42, 1.11) 1.12(0.79, 1.55) 

Total Chol(mmol/L) 3.82(2.87, 5.41) 4.85(4.01, 5.61) 

HDL-C(mmol/L) 1.36(0.94, 1.52) 1.48(0.95, 3.6) 

LDL-C(mmol/L) 2.11(1.29, 3.26) 2.87(1.59, 3.68) 

Table 4.5: An Obesity Gene Expression Data Example 

01 L1 02 L2 0 ... L . .. Os Ls 

Gene1 0.745295 0.476984 1.657497 1603844 ... ... 0.549685 0.314288 

Gene2 0.568145 0.196675 0.762890 0.39253 ... . .. 1.333494 0.297203 

Gene3 1.931050 0.391953 3.265161 ? ... ... 13.40577 0.296254 

Gene4 1.410610 ? 0.962336 0.502556 ... ... 3.396910 0.238794 

Gene5 0.593619 0.119576 0.389406 0.371646 ... . .. 5.341282 0.174925 
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portion of outliers. Therefore, an outlier-insensitive algorithm to preprocess the data 

is desired for unbiased outputs. 

The experiments on the obesity data set consist of two main parts, including 

the implementation of RSSMMC and the implementation of RSSMMC-GA. Note 

that, unlike the leukemia data set, the original data in the obesity data set have 

8.6% missing entries. The existence of these missing values as well as the very small 

sample size present a new challenge to existing machine learning algorithms. In the 

experiments in this thesis, we fill these missing data with a bayesian method BPCA 

proposed by Oba et al [49] (due to the space limitation, we skip the description of this 

algorithm, interested readers can refer [49] for details). This method has been shown 

experimentally to have much better estimation ability than other popular methods, 

such as singular value decomposition and K-nearest neighbors. Some marker genes 

generated by the manufacturer are not real genes and have been removed. The 

preprocessed genes were then sorted according to the p-values. Paired two tailed 

t-tests were used to determine significant differences between the expression value of 

each gene in the obese samples comparing to the lean samples. Data were transformed 

using log base 2, normalized to eliminate those extreme outliers and standardized 

with z-scores to ensure normal distribution on all arrays. Significance test was done 

only on genes which have complete data for at least 5 out of the 8 pairs. When 

p-value threshold is set to 0.05, 917 genes are reserved. For simplicity, the RSSMMC 

algorithm is only implemented over the set of 917 genes. In the following, this set 

is called the base set. On the selection of obese relevant genes from the base set, 

RSSMMC shows a significant improvement over the p-value ranking method, SVM 

without using the cumulative maximum margin criterion described in this thesis, and 

73 



the randomized selection method in terms of the inclusion of the known obese gene 

candidates (these genes all have annotations on the obesity functions and are called 

obesity-relevant genes hereafter). 

4.4.1 RSSMMC Experiments 

Since the samples of the obesity data set were prepared in pairs (i.e., lean-obese 

pairs) for p-value test originally, the ranking results by p-value are very informative. 

Therefore, in addition to using the SVM algorithm and randomized selection as the 

comparing algorithm, we will also compare the feature selection results by RSSMMC 

with that by p-value on the obesity data set. 

To evaluate the results, the genes (from the base set) which have annotations of 

the obese functions are identified from recent medical literature and summarized in 

Table 4.6. 

Since we will compare the ranking effects by the four mentioned methods on the 

obesity data set, the RSSMMC algorithm is allowed to iterate through all the genes, 

i.e., RSSMMC is not stopped when the maximum margin is achieved 6 . For this 

purpose, a slight modification of Algorithm-! in section 3.2.1 produces Algorithm-2: 

6 In such a case, the maximum number of SVM calculation (mostly on the SVM kernel evaluations) 

will ben+ (n- 1) + (n- 2) + · · · + 1. Note that though the number of SVM calculation decreases, 

the dimensionality in the kernel increases which results in more time consumption in each kernel 

evaluation. In other words, there are two factors affect the computational complexity, the number 

of the SVM calculation and the size of the gene set. Thus, we can predict that the running time of 

the algorithm will reach its peak value at some point in the middle of the run. 
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Table 4.6: The Obesity Gene List 

Systematic N arne Gene Symbol 

NM_000863 HTR1B 

NM_003356 UCP3 

NM_002024 FMR1 

NM_002734 PRKAR1A 

NM_005399 PRKAB2 

NM_003749 IRS2 

NM_139322 ATRN 

NM_000142 FGFR3 

NM_006399 BATF 

T: the HC-list. 

Algorithm-2 
l.T+-<I> 

2. R +--- <I> 

3. while R of. G do 

4. CP +--- max{SV M(S1 , 82 , {q} U R) : q E G- R} 

5. p=argMaxqEG-R(SVM(S1,S2,qUR)) 

6. append p toT 

7. R+-RU{p} 

8. end while 

9. return T 

Algorithm-2 differs from Algorithm-1 presented in Chapter 3 only in that step 1, 
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5, and 6 in Algorithm-1 are removed and new steps 1, 5, 6, and 9 are added. What it 

accomplishes is to reorder the genes based on their contribution to distinguish obese 

from lean groups. (We call this list HC-list.) In each iteration, it expands the working 

set by one gene based on the same idea as that in Algorithm-1. At the same time, it 

appends that gene to the list. The genes entered into the list earlier contribute more 

than those entered later. The Ranked result of the 9 obesity related genes is shown 

in Table 4. 7. 

Table 4.7: The Obesity Gene Ranked List 

Rank Systematic Name Gene Symbol 

1 NM_003749 IRS2 

2 NM_139322 ATRN 

3 NM_000863 HTR1B 

4 NM_006399 BATF 

5 NM_002024 FMR1 

6 NM_000142 FGFR3 

7 NM_005399 PRKAB2 

8 NM_002734 PRKAR1A 

9 NM_003356 UCP3 

4.4.1.1 Experimental Results 

Since the size of the samples is very small, 10 fold cross validation is applied on the 

obesity data set. In the early experiments, no single gene can perfectly separate the 

76 



two groups, i.e. the classification error always occurs, when the dot product kernel or 

quadratic kernel is adopted. The perfect separation is achieved in two genes when the 

cube polynomial kernel is applied. Since this research is to investigate the influence 

of biological difference on the margin difference, the cube polynomial kernel is used 

throughout the experiments to avoid the additional complications created by the 

non-separable classes. 

As mentioned in Section 4.2, the SVM margin value increases monotonously if 

the mathematical factor is not handled. This is illustrated in Figure 4. 7 where the 

mathematical factor is not neutralized. The final maximum margin distribution with-
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Figure 4.7: The Maximum Margin Distribution across the Obesity-relevant Genes 

without Neutralizing the Effects of the Mathematical Factor 

out the influence of the mathematical factor is shown in Figure 4.8. The curve in 

Figure 4.8 matches the prediction. The margin value reaches the highest value some-
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where in the curve by those most relevant genes. After the maximum margin value is 

reached, the margin value decreases slowly, signifying the newly added genes weaken 

the discriminative power of the selected gene subset. 
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Figure 4.8: The Maximum Margin Distribution across the Obesity-relevant Genes 

Although accuracy can be used to achieve the evaluation task for the algorithm 

RSSMMC and the comparing algorithms, due to the fact that the relevant obesity 

genes are much fewer than the total genes in the base set, in the obesity data set 

experiments, the following metrics are defined for the evaluation. The selectivity 

(bigger is better) of an algorithm is a ratio E!. where p2 is the proportion of genes in 
P2 

the base set that have obesity annotation, and p1 is the proportion of genes in the set 

returned by the algorithm that are known to have obesity annotation. The recall of 

the algorithm is a ratio ~ where n2 is the total number of obese genes in the base set, 

and n 1 is the total number of the obese genes in the set returned by the algorithm. 
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The selectivity and recall of RSSMMC are compared with that of the randomized 

method, SVM (using 10 fold cross validation) and p-value method (Note the main 

difference between RSSMMC and SVM method is that RSSMMC uses the maximum 

margin criterion to rank the genes while SVM only bases its ranking results on the 

classification performance). For randomized method, the same number of genes as 

returned by the p-value method is randomly selected from the base gene set. For 

SVM and RSSMMC, the top ranked genes with the same size as selected by p-Value 

method are selected from the base gene set. By ranking the same number of genes, 

the four algorithms are compared equally. The result is shown in Table 4.8. These 

data are then plotted in Figure 4.9 and Figure 4.10. 
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Figure 4.9: The Comparison of Selectivity between Randomized Selection, P-value, 

SVM, and RSSMMC 
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Recall Comparison 
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Figure 4.10: The Comparison of Recall between Randomized Selection, P-value, SVM, 

and RSSMMC 

These figures show that the RSSMMC algorithm performs better in 7 out of the 

9 obese genes than the p-value method while universally outperforms the SVM and 

randomized method. 

Recall (Section 3.2.3) that to some point, when the normalization suppressor r 

decreases, more genes will be selected by RSSMMC. This is because a larger normal-

ization suppressor makes it harder for a new gene to satisfy the selection condition. 

In Figure 4.11, this trend can be observed, i.e., both the best selectivity and the best 

recall are achieved when the normalization suppressor equals to 0.494. Examination 

of the relevant genes discovered at the normalization suppressor 0.494 includes anno-

tated obesity-relevant genes, IRS2, ATRN, and HTRlB. 
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Table 4.8: The Selectivity and Recall Comparisons between Randomized method, 

P-value, SVM and RSSMMC 

Obese Randomized P-value SVM RSSMMC 

Gene Method 

Selectivity Recall Selectivity Recall Selectivity Recall Selectivity 

1st 0.21 0.21 0.53 0.11 1.05 0.22 1.58 

2nd 0.26 0.26 0.87 0.22 1.31 0.33 1.74 

3rd 0.28 0.28 1.18 0.33 1.18 0.33 1.57 

4th 0.33 0.33 1.34 0.44 1.34 0.44 1.34 

5th 0.47 0.47 1.19 0.56 1.19 0.56 1.43 

6th 0.55 0.55 1.21 0.67 1.00 0.56 1.41 

7th 0.58 0.58 1.34 0.78 0.96 0.56 1.34 

8th 0.76 0.76 1.17 0.89 0.73 0.56 1.02 

9th 0.84 0.84 1.19 1.00 1.06 0.78 1.06 
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Figure 4.11: The Selectivity Curve over Different Normalization Suppressors by RSS-

MMC 

4.4.1.2 Selectivity Comparison when Recall is Given 

It is also interesting to compare different methods in terms of one metric when the 

other metric is fixed. In this section, RSSMMC is compared with p-value method for 

selectivity when recalls are given. 

Given a number i of obese genes, we can find the shortest prefixes from both HC-

list of Algorithm-2 in section 4.4.1 and p-value list that contain i obese genes (This 

renders in giving a recall value). We then compare the lengths of both prefixes. A 

shorter length signifies a higher selectivity for the given i. The result is depicted in 

Figure 4.12. From the figure, it can be seen that the RSSMM algorithm outperforms 

p-value method in the first 7 of the 9 obese genes. 

82 



Selectivity distribution over obese genes 
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Figure 4.12: The Comparison of the Position of Obese Genes between P-value and 

RSSMM 

4.4.2 RSSMMC-GA Experiments 

In this section, The research is expanded by applying a GA version of the RSSMMC 

algorithm on the obesity data set. In GA, the string of chromosomes is obtained by 

representing the selected gene in the obese function with 1 and 0 otherwise. The 

chromosome string hence represents the collaborative functioning of the genes in the 

obesity metabolic pathway. The fitness function is the maximum margin in the feature 

space after removing the influence of the mathematical factor, i.e., 

f =Maximum Margin 
Dr ( 4.1) 

where D is the number of dimensions in the feature space and Maximum Margin 

is the maximum margin value that can be reached by a chromosome in the GA 

population in one generation, and r is the normalization suppressor. We already 
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indicated previously that the maximum number of SVM calculation (this is equivalent 

to the fitness value used in RSSMMC-GA) is n.(~+l) and thus its time complexity 

is O(n2). In RSSMMC-GA, the number of fitness evaluation is much larger than 

RSSMMC, depending on the population size and the number of generation settings. 

For example, n is 917 in the obesity data set for RSSMMC and the time complexity 

is 9172 (this is the worst case) whereas the time complexity for RSSMMC-GA is 

3000 x 5000 when the population size equals 3000 and the generation number equals 

5000. 

Since the size of the search space, 2917
, is huge, a relatively big G A population size, 

3000, is adopted in the final experiment. 90% are selected as the crossover rate and 

0.1% as the mutation rate. Figure 4.13 shows the maximum margin distribution across 

the generations by RSSMMC-GA. A close look at the resulting subset discovers that 
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Figure 4.13: The Maximum Margin Distribution across the Generations 
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all the three obesity-relevant genes in the subset created by the RSSMMC algorithm, 

namely, IRS2, ATRN, and HTR1B, are also in the subset generated by the RSSMMC­

GA implementation. To verify that this result is not obtained by chance, experiments 

with different configurations of GA parameters have been implemented. The result 

is shown in Table 4.9. The rows from the 2nd to the 5th in the Table 4.9 are the 

necessary GA parameters. The sixth row lists the obese genes found in the subset. 

The seventh row lists the number of genes in the subset. The eighth row lists the 

maximum fitness in each implementation. The three-digit entries from row 9 to 

row 17 are the positions of the obesity-relevant genes in the p-value ranking list. The 

obesity-relevant genes, IRS2, ATRN and HTR1B (Obese Gene 1, 2, and 3 in Table 4.7, 

respectively), occur in all the experiments. The parenthesized numbers are those that 

have one bit difference to the obesity-relevant genes in the p-value list and have been 

identified by RSSMMC-GA. These neighboring genes also exhibit importance since 

their expression levels are close to the obesity relevant genes. One possible reason is 

that, due to the systematic error in microarray experiments, one obese gene might not 

show as strong over/under-expressed values as its neighboring genes do. Note that 

when 273 genes are included in the subset, 6 out of the 9 obese genes are discovered. 

For the 3 that are not located, their closest neighbors are identified. Moreover, when 

a feature subset as small as 84 was achieved in Test2 in Table 4.9, RSSMMC-GA still 

locates the 3 mentioned obese genes in the relevant gene subset correctly. 
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Table 4.9: The Results of GA Implementations with Different Configurations 

Testl Test2 Test3 Test4 Test5 Test6 Test7 RSSMMC 

Population Size 800 1000 3000 2000 800 800 3000 

Generation Number 1000 2000 2000 5000 800 1800 988 

Crossover Rate 90% 90% 90% 70% 95% 90% 90% 

Mutation Rate 0.1% 0.1% 0.1% 0.1% 0.5% 0.5% 0.1% 

Obese genes found 3 3 3 2 6 5 3 

# of Genes in the subset 176 84 105 89 273 248 159 159 

The Maximum fitness 0.562 0.575 0.572 0.573 0.552 0.554 0.563 0.558 

Obese Gene 1 194 194 194 194 194 194 194 194 

Obese Gene 2 234 234 

Obese Gene 3 

Obese Gene 4 (305) (305) (305) 304 

Obese Gene 5 427 (426) 

Obese Gene 6 507 507 507 507 507 507 507 507 

Obese Gene 7 533 533 533 533 533 533 533 533 

Obese Gene 8 (699) (699) (699) (699) (699) 698 (699) 

Obese Gene 9 (767) 768 (769) 
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4.4.3 The Analysis of the Results Generated from both RSS­

MMC and RSSMMC-GA 

The experiments discover that three obesity-relevant genes, IRS2, ATRN, and HTRlB, 

show strongly differentiated expression levels between obese and lean samples. 

In [39], HTRlB (human serotonin receptor lB) is found to be associated with 

minimum lifetime body mass index in women with bulimia nervosa. In [51], the IRS2 

(the insulin-receptor substrate 2) gene at amino acid 1057 from Glycine to Asparaginic 

acid ( G1057 D) allele was shown to increase the risk of insulin resistance among obese 

individuals. Specifically, type 2 diabetic patients, particularly obese patients, carrying 

the D1057 allele and theCA haplotype were associated with insulin resistance, which 

is strongly correlated with obesity. As indicated in [21], ATRN has multiple variants, 

three of which have been characterized and found to encode different isoforms. One 

of the isoforms is a membrane-bound protein with sequence similarity to the mouse 

mahogany protein, a receptor involved in controlling obesity. 

The reason that the other six annotated obesity-relevant genes are not included 

in the subset, when a small feature subset (e.g. 84 in Test 2 in Table 4.9) is found, 

is considered to be twofold. First, they may have secondary or indirect effects on 

the obese function and hence their contributions on the margin increase are not 

obvious. Second, the gene expression profiles in the experiments are obtained solely 

from abdomen adipose tissue and only very few obese genes are under j over expressed 

in adipose issue to be detectable by computational methods. In fact, the obese genes 

can be expressed in many different tissues with different levels. It is very hard to 

determine what all the genes recognized as obesity-related in abdomen adipose tissue 
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are at the time the thesis is written. To be more specific, other obesity-relevant genes 

can be either not expressed in abdomen adipose tissue or the expression level is not 

distinct enough to pass the selection condition set by the normalization factor, and 

thus the gene expression may be biased. 
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Chapter 5 

Conclusions 

When some information about the research objects (e.g. the class label of each sam­

ple) is known in advance, supervised learning methods often show better performance 

than unsupervised ones. SVM is a very effective supervised learning technology for 

the binary classification task, especially when the samples express high dimensional 

features. In other words, SVM can still perform well in many cases while other su­

pervised methods lack effectiveness due to the overlapping of target classes. This 

is because SVMs have a nice property to map the features from a low dimensional 

space to a high dimensional space using the kernel function, as described in chap­

ter 2. On the other hand, since some genes in the real microarray data dominate the 

classification process while others have either secondary or no effects on the classifi­

cation, rather than treating all genes equally, the genes that contribute most to the 

classification should be considered more carefully. Moreover, instead of identifying 

the difference of genetic expression profiles between two groups, it is more important 

to find a group of genes which contribute maximally to the group separation. If the 
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contribution of a set of genes to the separation is to be evaluated, the margin is a 

good criterion to work with. That is, in general case, the larger the margin, the better 

the separation. 

This thesis introduces a new margin-based hill-climbing method RSSMMC to 

search relevant genes, given the labeled training data samples. This method estab­

lishes a connection between each gene's contribution on the separation of two different 

groups and the biological differences among the genes. Besides the gene expression 

data, this method does not require additional information for the searching process. 

The degree to which each gene is relevant to the class separation is ranked according 

to its contribution to the increase of the margin between the two groups. Due to the 

influence of the mathematical factor, described in Chapter 3, the margin value always 

increases, if at all, whenever a new gene is included in the relevant subset. This thesis 

presents an analytic method to remove the influence of the mathematical factor and 

expands the solution to the feature space when the nonlinear SVM is under consid­

eration. The RSSMMC method is implemented iteratively and includes a gene, one 

at a time, in the relevant gene subset until the maximum margin value is achieved. 

When the iterative process finishes, a subset of ranked genes is generated. 

After RSSMMC has been implemented on a simulated data set to exhibit its ability 

on locating the relevant features, two real-world data sets were then analyzed using 

RSSMMC. In the leukemia data set, RSSMMC shows better performance than both 

the comparing methods, the baseline method and RFE. Specifically, RSSMMC only 

uses 2 genes to achieve the same classification performance as that of RFE which 

uses 8. With much fewer features, both RSSMMC and RFE have a less number 

of classification errors than the baseline method. While RSSMMC shows similar 
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classification results as that of RFE, it produces a different gene subset from what 

RFE generates. Comparing with RFE, the RSSMMC method has a different ranking 

order and composition of the generated relevant genes, although the top ranked genes 

from the two methods have some overlapping. The difference deserves more research 

since the output genes from RSSMMC that are not in the RFE top list are all over or 

under-expressed in either type of the samples in the microarray experiments. In fact, 

all of them have been summarized to have close relations to the leukemia function (See 

Chapter 4 for details). Moreover, unlike the nested subset generated RFE, RSSMMC 

generates a fixed number of relevant gene subset when the maximum margin value 

is achieved. In addition, RSSMMC starts from zero size subset and expand it to the 

point where the maximum margin value is obtained while RFE starts from a full sized 

subset and decreases the subset in each iteration. Since usually a small number of 

genes of the data set are included in the relevant gene subset, the RSSMMC method 

is much faster than the basic RFE in the implementation and slightly faster than the 

improved version of RFE. RSSMMC also provides more explainable results comparing 

with the improved version of RFE. 

The obesity data set is much harder to process than the leukemia one since it 

has many missing values and outliers. Furthermore, although not all obesity-relevant 

genes are over or under-expressed in the abdomen adipose tissue, abdomen is the only 

place the samples were collected. Two metrics, the selectivity and recall, have been 

defined to measure the capability of obesity-relevant gene location. The RSSMMC 

method shows better performance than the p-value, SVM, and randomized method 

in both metrics. It also includes 3 annotated obesity-relevant genes, HT RIB, I RS2, 

and AT RN in the relevant gene subset. To investigate other possible gene subsets, 
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a GA version of RSSMMC, RSSMMC-GA, is applied to search the solutions in the 

solution space. With different settings of parameters, the RSSMMC-GA algorithm 

discovered the 3 obesity-relevant genes consistently. Since these genes are also in the 

subset generated by the RSSMMC method, it suggests that RSSMMC can effectively 

find a good solution to approximate the global maximum in terms of the maximum 

margin value, is enhanced. 

We have discussed the RSSMMC algorithm in the context of binary classification 

throughout this thesis. Nevertheless, it is foreseeable that RSSMMC can be applied 

to data with more than two classes with minor modifications. One possible solution is, 

by applying RSSMMC to some selected paired classes iteratively until all the feature 

subsets have been generated, the features with the highest appearance frequencies 

across all the subset can be selected to construct the final subset. This deserves more 

research work in the future. 
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Appendix A 

Basic Knowledge of Molecular 

Biology and the General Procedure 

of a Microarray Experiment 

Although varying in the size and shape, cells that contain biological structural features 

constitute basic building blocks of life. Various molecules (e.g. Proteins, DNAs, and 

RNAs) perform different functions in cells. A protein is a large molecule composed 

of one or more chains of amino acids linked together in particular orders. Proteins 

perform a wide variety of functions in the cell, including serving as enzymes, struc­

tural components, or signaling molecules and regulating the body's cells, tissues, and 

organs. A DNA (Deoxyribonucleic Acid) sequence encodes complete genetic infor­

mation to synthesize proteins. Protein synthesis consists of three stages which are 

transcription, splicing and translation [15]. A strand of DNA molecule in nucleus 

is transcribed to an mRNA (messenger Ribonucleic Acid) and then the mRNA is 
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translated to protein in cytosol. The mRN A is a critical intermediary link in pro­

tein synthesis. Its expression levels in general can reflect a quantification of protein 

synthesis. In fact, the gene expression level is believed to be correlated with the 

approximate number of copies of peptides produced in a cell. Other than traditional 

genetic and molecular approaches, which usually examine and collect data on a single 

gene, microarray techniques monitor the expression pattern of tens of thousands of 

genes in parallel [12][55]. 

Generally, a microarray is a collection of microscopic DNA spots attached to a 

solid surface, such as glass, plastic or silicon chip forming an array, onto which single­

stranded DNA molecules are attached at fixed locations (spots), where each spot 

relates to a DNA sequence. The mRNA samples (or targets) are reverse-transcribed 

into eDNA, labeled with different fluorescent dyes (e.g. a red-fluorescent dye Cy5 

and a green-fluorescent dye Cy3), then mixed and hybridized with the arrayed DNA 

sequences (or probes). The process of joining two complementary strands of DNA 

or one each of DNA and RNA to form a double-stranded molecule is call hybridiza­

tion. After the competitive hybridization, the relative abundance of those spotted 

DNA sequences in two mRNA samples can be assessed by testing the two differential 

hybridizations to the sequences on the array. The slides are then imaged using a 

scanner. Fluorescence measurements are made separately for each dye at each spot 

on the array [30]. Some other hybridization-based high-throughput methods exist to 

measure the mRNA levels such as Oligonucleotide chips, SAGE (Serial Analysis of 

Gene Expression) [17]. Data collected by these methods are noted as gene expression 

data. In some cases, these raw data need preprocessing such as normalization and 

noise reduction before they are used for further analysis. 
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Appendix B 

The SVM Solution in 

Non-separable Case 

The SVM problem in non-separable case can be described in Equation 2.15. The 

separable case now corresponds to 'Y = oo. Thus, the construction procedure of the 

Lagrangian is 

1 N N N 

Lp = 2 + 'Y L ~i- La [Yi(xf f3 + f3o)- (1- ~i)] - L Jli~i· (B.1) 
i=1 i=1 i=1 

The constraint ~i ~ 0 is represented by the third term '2:~1 Jli~i while the constraint 

Yi(xf (3 + f3o) ~ 1 - ~i is represented in '2:~ 1 a [Yi(xf (3 + (30 )- (1- ~i) J. Lp can now 

be minimized with respect to (3, (30 , and ~i by setting their respective derivatives to 

zero. After simplification, 
N 

(3 = L aiyixi (B.2) 
i=1 

N 

0 = l:aiyi (B.3) 
i=1 

(B.4) 
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are obtained and the positive constraints o:i, J.Li, ~i 2:: 0 hold. Substituting Equa-

tions B.2, B.3, and B.4 into B.l, the Lagrangian Wolfe dual 

(B.5) 

is achieved. Recalling the KKT conditions, to maximize LD, in addition to Equa-

tions B.2, B.3, and B.4, 

(B.6) 

(B.7) 

(B.8) 

for i = 1, · · ·, N need to be satisfied as well. From Equation B.2, The solutions of {3 

are observed to have the form (3 = 2:~1 &iyixi. Only those data points that satisfy 

Equation B.6 have nonzero coefficients o:i. These data points are support vectors. 

From Equation B.6, when ~i = 0, the support vectors are known to lie on the margin. 

Consider Equation B.4 and B.7. These coefficients satisfy 0 ~ O:i ~ 'Y· When €i > 0, 

the coefficients satisfy &i = 'Y· One interesting point is that /30 can be obtained from 

any data point on the margin which satisfies €i = 0. Practically, the mean of all the 

solutions can be taken to stabilize the results. Same as in the separable case, the 

classification function is 

(B.9) 
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Appendix C 

The Sequential Minimal 

Optimization Algorithm 

The main advantages of SMO include fast kernel evaluation speed based on its min-

imal (only two samples are evaluated each time) computation and good scalability 

due to its asymptotic calculation manner. 

As stated in Chapter 2, the goal of the SVM algorithm is to solve the Quadratic 

Programming (QP) problem in order to minimize the dual objective function fD, i.e., 

(C.l) 

Also the KKT conditions in Equation C.2 

(C.2) 
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must be satisfied to make the QP problem positive definite. 

The major difference between SMO and other existing SVM algorithms is that 

SMO solves the smallest possible optimization problem, which involves two Lagrange 

multipliers, at every step. The reason that at least two Lagrange multipliers must 

be involved lies on a so-called linear inequality constraint in Equation C.l. The 

inequality constraints cause the Lagrange multipliers to be limited within a rectangle 

box, while the linear equality constraint causes the Lagrange multipliers to lie on 

a diagonal line. This is demonstrated in Figure C.l for two Lagrange multipliers. 

Therefore, at least two Lagrange multipliers are needed to satisfy the linear equality 

constraint at every step. In fact, given w(a) = Li aiyizi, the Lagrangian for the dual 

u 1 = 0 ol=c a,"'o 

<.1 1 - 0 

v <>v => a" a =k • l - 2 l 2 

Figure C.l: The Two Lagrange Multipliers must Satisfy the Constraints: k = a~ld + 
old d sa2 an s = Y1Y2 

in Equation C.l can be written as 

L = ~w(a)wa- I:ai- 2:::8iai + LILi(ai- C)- f3LaiYi· (C.3) 
l 1, t 'l. 
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Setting 

(C.4) 
j 

taking the partial differential of L over ai and considering the KKT conditions, the 

KKT conditions is simplified to three cases 

Casel. ai = 0 : 

Case2. 0 < ai < C : 

Case3. ai = C: 

For all samples, Define five index sets: 

Io := {i: 0 < ai < C}; 

I 1 : = { i : Yi = 1, ai = 0}; 

I2 := {i: Yi = -1,ai = C}; 

I3 := {i : Yi = 1, ai = C}; 

I 4 : = { i : Yi = -1, ai = 0}. 

8· > 0 II.· = 0 =? (R - (J)y· > 0 2- ,,....,'l t 'l-

8i = 0, f.Li = 0 =? (Fi- fJ)Yi = 0 

8i = 0, f.Li 2:: 0 =? (Fi- fJ)Yi :S 0. 

Conditions in Equation C.5 can be written as 

(C.5) 

(3 :S Fi Vi E Io U I1 U I2 and (3 2:: Fi Vi E Io U I3 U h (C.6) 

If define 

the optimality conditions will hold at some a if and only if 

(C.8) 

In numerical solution, optimality usually cannot be obtained exactly. Therefore, a 

tolerance parameter Tis added and Equation C.8 can be rewritten as 

blow :S bup + 2T. (C.9) 
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Platt [52] selected {3 to be placed halfway between b1ow and bup· In this case, Equa­

tion C.5 with T is 

(Fi- f3)Yi ~ -T if ai = 0 

I ( Fi - {3) I ~ T if 0 < O:i < c . 
(Fi - {3)yi ~ T if ai = C 

(C.lO) 

As claimed in [33], simply placing {3 halfway between b1ow and bup will be inefficient; 

in particular, in some circumstances it will prompt some violation of the optimality 

criterion even though there is no violation at all. In other words, in the original 

version of the SMO algorithm, it is possible that SMO cannot detect an optimized 

a due to the incorrect choice of {3. Therefore, Keerthi et al suggested two modified 

implementations of the original SMO algorithm [33]. The main idea is that rather than 

using a single threshold value {3 and Equation C.lO for the optimality examination, the 

modifications maintain two threshold parameters, b1ow and bup, and use Equation C.9 

to check optimality. The RSSMMC and its GA version RSSMMC-GA algorithms 

implement the first version of modification in this thesis. 
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Appendix D 

Top 50 Genes from Leukemia Data 

Set by RSSMMC 
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Table D.1: The 50 Top Ranked genes by RSSMMC (1-17) 

Rank Gene Description GAN 

1 Terminal transferase mRN A M11722_at 

2 14-3-3 PROTEIN TAU X56468_at 

3 TCF3 Transcription factor 3 M31523_at 

(E2A immunoglobulin enhancer binding factors E12/E47) 

4 CD19 gene M8437LrnaLs_at 

5 LYN V-yes-1 Yamaguchi sarcoma viral M16038_at 

related oncogene homolog 

6 Nucleoside-diphosphate kinase Y07604_at 

7 ATP6C Vacuolar H+ ATPase proton channel subunit M62762_at 

8 Interferon-gamma induced protein (IFI 16) gene M63838...s_at 

9 "LMP2 gene extracted from H.sapiens genes X6640l_cds1_at 

TAP1, TAP2, LMP2, LMP7 and DOB" 

10 Transcriptional activator hSNF2b U29175_at 

11 Zyxin X95735_at 

12 TOP2B Topoisomerase (DNA) II beta (180kD) Z15115_at 

13 MB-1 gene U05259JnaLat 

14 "SPTAN1 Spectrin, alpha, non-erythrocytic 1 (alpha-fodrin)" J05243_at 

15 Dihydropyrimidinase related protein-2 U97105_at 

16 CCND3 Cyclin D3 M92287_at 

17 "C-myb gene extracted from Human (c-myb) U22376_cds2...s_at 

gene, complete primary cds 

and five complete alternatively spliced cds" 
lU:L 



Table D.2: The 50 Top Ranked genes by RSSMMC (18-34) 

Rank Gene Description GAN 

18 CD19 CD19 antigen M28170_at 

19 MHC-encoded proteasome subunit gene LAMP7-E1 gene Z14982_rnaLat 

(proteasome subunit LMP7) extracted from H.sapiens gene 

for major histocompatibility complex encoded proteasome 

subunit LMP7 

20 Macmarcks HG1612-HT1612_at 

21 INTERLEUKIN-8 PRECURSOR Y00787...s_at 

22 VIL2 Villin 2 ( ezrin) X5152Lat 

23 RABAPTIN-5 protein Y08612_at 

24 Putative chloride channel X83378_at 

25 TTF mRN A for small G protein Z35227_at 

26 IL 7R Interleukin 7 receptor M29696_at 

27 Interleukin 8 (IL8) gene M28130_rna1...s_at 

28 PROBABLE G PROTEIN-COUPLED RECEPTOR L06797 ...s_at 

LCRl HOMOLOG 

29 "ARHG Ras homolog gene family, member G (rho G)" X61587_at 

30 26-kDa cell surface protein TAPA-1 mRNA M33680_at 

31 Transcriptional activator hSNF2b D26156...s_at 

32 C-myc binding protein D89667_at 

33 GPXl Glutathione peroxidase 1 Y00433_at 

34 BB1 S82470_at 
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Table D.3: The 50 Top Ranked genes by RSSMMC (35-50) 

Rank Gene Description GAN 

35 "FTL Ferritin, light polypeptide" M11147_at 

36 MitF mRNA Z29678_at 

37 Azurocidin gene M96326_rnaLat 

38 GLYCYLPEPTIDE U79285_at 

N-TETRADECANOYLTRANSFERASE 

39 "CYBA Cytochrome b-245, alpha polypeptide" M21186_at 

40 ADPRT ADP-ribosyltransferase (NAD+; poly J03473_at 

(ADP-ribose) polymerase) 

41 Mac25 HG987-HT987 _at 

42 FOS-RELATED ANTIGEN 2 X16706_at 

43 "NFYA Nuclear transcription factorY, alpha" X5971Lat 

44 OS-9 precurosor mRNA U41635_at 

45 UBIQUITIN-LIKE PROTEIN GDX J03589_at 

46 "MEF2A gene (myocyte-specific enhancer factor 2A, U 49020_cds2_s_at 

C9 form) extracted 

from Human myocyte-specific enhancer factor 2A 

(MEF2A) gene, first coding" 

47 GLRX Glutaredoxin (thioltransferase) X76648_at 

48 Skeletal muscle LIM-protein SLIM1 mRNA U60115_at 

49 MAN A2 Alpha mannosidase II isozyme L2882Lat 

50 "DAGK1 Diacylglycerol kinase, alpha (80kD)" X62535_at 
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