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ABSTRACT

Seed survival in the soil and cycling through states of dormancy is a key component

determining entry and persistence in ecosystems, and seed dormancy is a major trait akered

for dormancy is overcome through the

during domestication of wild species. The pote e
and environment-sensitive process of after-ripening that occurs in the dry seed. The dormant
condition s not a quiescent state; it is a dynamic state in which cell metabolism is active,
although growth is repressed. Dormancy s thought 1o be under the control of two ditinet

processes: the accumulation of damaging Reactive Oxygen Species (ROS), a critial level of

which leads to dormancy alleviation, and a hormonal balance that regulates dormancy directly
and likely interacts with ROS and/or antioxidative pathways. The precise mechanisms by which
ROS affect seed dormancy status and germination potential remain to be elucidated. Thiol-

disulfide proteins are particularly important for redox-dependent regulation of metabolic and

developmental activities in cells as functional ‘hotspots” in the proteome, Differential protcomic
analysis of six hybrid lines of spring wheat (Triicun aestivin 1) doubled haploid population,
derived from the cross 8021-V2 (high dormancy) * AC Karma (low dormancy) segregating
transgressively for dormancy phenotype, and two parent genotypes, was addressed (o gain

further insight into biochemical mechanisms underlying dormancy controlling events. The thiol

redox-sensitive and the total proteome were quantitatively monitored by 2D-gel electrophoresis

combined with solubility-based protein fractionation, fluorescent thiol-specific labelling, and

mass spectrometry analysis in conjunction with wheat EST sequence

Quantitative differences between genatypes were found for 106 spots containing 64

unique proteins. Forty seven unique proteins displayed distinctive abundance patierm, and of




these 31 proteins contained 78 unique redox active cysteines. Seventeen unique proteins with 19
reactive modified cysteines were found to have differential post-translational thiol redox
modification. The results give an insight into the dormancy-related alteration of thiol-redox
profiles in seed proteins that function in a number of major processes in seed physiology. In
dormant seeds, there i a shift n the accumulation of proteins from those activ in biosynthesis
and metabolism to those with roles in storage and protection against biotic and abioic stresses.
“The proteomic data provide evidence for an increased capacity of potent antioxidant machinery
in seeds of high non-deep physiological dormancy wheat genotypes, which could be coupled
with their abilty to regenerate antioxidant systems rapidly upon rehydration for dormancy

‘maintenance.

Keywords: Dormancy; Germination; Reactive oxygen species; Thiol-redox regulation; Trticum

aestivun L.; Plant proteomics; Two-dimensional polyacrylamide gel clectrophoresis; Mass

spectrometry
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1. INTRODUCTION AND LITERATURE REVIEW

L1 Socio-cconomic impact of wheat
LI Economic and nutritional values of wheat
‘Wheat (Triticum) consttutes about one-third of the global production of cereals,

and plays a dominant role in the grain trade atributable 10 its nutritional value, ease of

cultivation and storage (Dubcovsky and Dvorak, 2007). The most financially and

nutritionally significant specics is the common o bread wheat (Triticum acstivam L),
which is modified by selective breeding for desired trits (Feuillet er al, 2007). It
provides the greatest number of high-yielding varieties of starchy grains, contributing o

one-fifth of the calories consumed by humans.

112 Wheat classes and cultivation conditions
“The species of wheat differ in their basic number of chromosomes. Each related
genome (A, B, or D) contains seven chromosomes. For example, T. monococcum is

diploid (20~

=14), T. durum tewraploid (2n=4x=28) and T. aestivum hexaploid

x=42) (Sears, 1966). Growing seasons and. temperature-dependent flowering
conditions separate wheat into the winter wheat and spring wheat. Moreover, according to
the seed texture and the seed coat color, five marked classes of wheat are distinguished:

Hard and Soft Red Winter (HRW and SRW), Hard Red Spring (HRS), durum (Durum),

and White, which is classified in the following subclasses: Hard and Soft Winter (HWW

and SWW), and Hard and Soft Spring (HWS and SWS) (Shucy, 1960). The grain




development of winter-types requires a lower temperature (3°C to 8 °C) for seedling
emergence than that of spring-types (Feuillet ef al, 2007). After harvest, low moisture
content and low temperature are essential for successful storage of grain for prolonged

periods of time.

113 The primary uses of wheat

Wheat is an efficient source of protein and carbohydrate. Various classes of wheat
are used for different purposes. Durum wheat i the main material for macaroni, spaghett,
and similar products. Soft wheat, with a lesser content of protein than hard whea, is
‘generally used in the manufacture of cakes, biscuits, and pastry flours. The major classes

of

used for bread are hard-red spring and hard-red winter wheat. Hard white wheat
higher quality than red wheat, but is prone to pre-harvest sprouting (PHS) (Bassoi and
Flintham, 2005). PHS is a harmful phenomenon causing wheat seeds to germinate on the

mother plant before harvest, and reducing grain quality and yield (Flintham and Gale,

1988). The susceptibility of wheat varieties to such sprouting is associated with low levels

of seed dormancy, especially in white wheat.

12 General structure of wheat seeds
121 Wheat sced structural and functional features

‘The wheat grain has a complex structure with many individual components. The
protective peripheral layers (14% of the grain dry weight) are composed of aleurone layer,

testa (seed coat) and pericarp layer (Setter and Carlton, 2000) (Figure 1.1).
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Molecules of nutitional interest e.g. vitamins, minerals, dietary fibres, and anti-oxidants),
and toxic pollutants (e.g. pesticide residues and heavy metals) are concentrated in
peripheral layers. The storage endosperm, characterized by high content of starch and
protein, contributes to 83% of the grain dry weight. At maturity, the endosperm (dead

Storage tissue) conteins inactive reserves, which provide energy for the developing

embryo. Al e layer of living y y
seed germination. Developed embryo (3% of the grain dry weight) is the embryonic
wheat plant, and it functions in absorbing the nutrients from the endosperm and delivering
them to the growing scedling (Shewry, 2009). Mobilization of the storage reserves in the
endosperm requires an embryo signal (c.¢. gibberellin), which induces the production and

secretion of hydrolytic enzymes from the leurone layer

122 Wheat seed p position and criteria of o

The structural composition of the mature endosperm (i.c. protein content, grain
hardness and starch quality) determines the end-use quality of wheat products (Rhazi er
al.,2003; Veraverbeke and Delcour, 2002). Proteins and carbohydrates accumulated in
the developing endosperm not only support germination and early seedling growth as
sources of carbon, nitrogen and sulphur through storage proteolysis, but are also critical
1o humans and animals as food sources.

‘The endosperm proteome contain approximately 11% of defense- and stress-

related proteins out of the total protein content. They protect the starch reserves by

¢ stress factors. For example, wamylase and a-

increasing resistance 0. bi

amylase/rypsin inhibitors proteet the seed from attack by pathogens secreting protcases




(Kurek et al., 2002). In addition, proteins related to abiotic environmental stresses were

found in  such as Heat Shock ISP) chaperones, which are related

10 drought stress and/or elevated temperature (Basha ef al., 2004; Flemetakis ef al., 2002;
Johansen et al., 2000). Moreover, a number of antioxidant proteins are present in the
endosperm o prevent oxidative stress, notably by Reactive Oxygen Species (ROS) that
are generated through different metabolic processes during carly and late stages of
endosperm development (Mandal and Mandal, 2000). In wheat, the majority of storage
proteins are comprised of glutens. Their polymeric structures are formed through inter-
and intra-chain disulphide bonds via cysteine residues, tyrosine-based cross-links and
other covalent bindings during wheat endosperm formation (Shewry and Halford, 2002
Tilley et ., 2001). They have been shown to undergo a change in thiol redox state as the
grain matures, that is, conversion from a redox active (sulfhydryl) state to an oxidised,

stable (disulfide) sate (Kobrehel ef al,, 1992). During germination, proteins in the

areversal of . that s, reduction back to

an activated state, thereby faciltating the mobilization of nitrogen and carbon for the

developing seedling. A growing number of redox regulated processes demonstrated in

previous studies (De Gara et al., 2003; Wong et al., 2003) was found to be controlled by
way of a thioredoxin system.

Proteins identified in the embryo were found to be in functional categories

associated with activating growth and development, such as transcription, translation,

energy and general metabolism, protein assembly, transport, cell division, signalling

processes, and i 1 and Rakwal, 2008;

Pawlowski, 2009). Protein composition in the embryo provides the basis for a better




understanding of the dynamic mechanisms involved in grain dormancy and germination
at the metabolic and molecular levels (Williams, 1999; Williams and Hochstrasser, 1997).

Although wheat grain protein composition depends primarily on_genotype, it is

significantly affected by environment factors and their interactions (Ma e al., 2009;

Wieser, 2007). Therefore, an enhancement of wheat grain quality for yield developmen,

biotic and abiotic stress resistance, is a major objective for common wheat breeding.
Comparison of protein profiles in the endosperm and embryo demonstrated that

sulphid

the function of which s to catalyze the rearrangement of both inter-chain and intra-chain

the endosperm contains more pro merase isoforms (Skylas ef al., 2000),
disulphide bonds during the folding and maturation of proteins containing disulphide
bonds (Shimoni et al., 1995). A larger number of metabolic enzymes were found in the

embryo, whereas only oxidoreductases and isomerases were expressed in the endosperm

forms (c.g.

during mid-devel Th ition of i s
Mn-S0D, Cu/Zn-SOD and Fe-SOD) was demonstrated 1o be different between the
endosperm and embryo. The functional role of SOD is to reduce the superoxide radicals
that are normally produced in actively respiring cells and can be highly toxic (W et al.,

1999). A larger number of expressed SOD soforms present in the endosperm compared

h is likely to be exposed to idative s

than the embryo.




13 i development, d

131 Wheat seed development and maturation

Wheat seed embryo and endosperm development and seed maturation phase
comprise an orchestrated physiological process. The formation of embryo structure is
followed by further cell differentiation and tissue establishment, to the maximum seed
quality and potential longevity attained at physiological maturity (Gutierrez et al., 2007).
During embryogenesis, the basic architecture of the seed embryo is built, starting with the
formation of a single-cell zygote, followed by cell division and the establishment of

embryo structures. Subsequent events include embryo growth and expansion during seed

filling, further cell differentiation of vegetative tissue and organ systems, untl finally the
embryo arests during maturation to prepare for seed dormancy (Zhu and Khan, 2001).
Endosperm development progresses to reach endosperm cell differentiation into tissue
types such as starchy endosperm and aleurone (Young and Gallie, 2000). As in all
monocotyledons, the endosperm of wheat sceds represents the main part of the mature
seed (James et al. 2003), which is an important organ for reserving storage compounds

(carbohydrates, proteins and lipids) that are redistributed as nitrogen and carbon sources

during germination.

During seed maturation, the developing sced is geared towards the concomitant
increase in volume and mass due (o significant cell expansion of the storage tissues. Seed
‘maturation is completed when storage compounds have accumulated, water content has
decreased, abscisic acid (ABA) levels have increased, and desiccation tolerance and
primary dormancy are established (Bewley, 1997). At maturity, so-called orthodox seeds

acquire desiccation tolerance during development and remain viable but dormant in a



highly dehydrated state when stored under dry and cold conditions (Arc ef al., 2011;
Black et al., 1999). This process allows sceds to delay germination until there are suitable

environmental conditions.

132 Seed dormancy and germination

1.3.2.1 The definition and si

ficance of seed dormancy

Developing seeds enter a physiological state where an intrinsic block to
germination is built during the completion of seed maturation on the mother plant
(Wilkinson e al., 2002). This developmental state, in which a viable sced fails to

germinate under favourable nvironmental conditions, has been termed s primary

dormancy or seed dormancy (Finch-Savage and Leubner-Metzger, 2006). In general,
fresh-harvested dormant sceds temporarily maintain dormancy in conditions adequate for
germination, whereas non-dormant seeds wil germinate easily. Numerous transeripts and
proteins correlated with dormant versus non-dormant secds have been identified through
“-omics” approaches (Bykova et al., 2011; Gerjets ef al., 2010; Somyong ef al., 2011)
These global studies of functional aspects of entire genomes, transcriptomes, and
proteomes complement genetic studies for a comprehensive understanding of the

dormancy controlling systems.

Dormancy is not a single phenomenon but a condition with many contributing

causes, which categorize dormancy into different types. Owing to embryonic immaturity
or physiological constraints, dormancy has been classified as embryo dormancy if the
controlling structure or substances are embryonic, or seed coat-imposed dormancy if the

sues surrounding the sced inhibit germination (Finch-Savage and Leubner-Metzger,




2006). Whereas primary dormancy is acquired during seed maturation, imbibed afer-
ripened seeds exposed to unfavourable temperature conditions or lacking adequte light
or nitrate may enter a state of secondary dormancy (Finkelstein ef al., 2008). Moreover,

based on i s d d by

both morphological and physiological properties of the seed, physiological dormancy (PD)
(Baskin and Baskin, 2004) is the most prevalent type of dormancy in temperate seed
banks and is the most abundant dormancy class in the crop field. Finch-Savage and

termediate and non-

Leubner-Metzger (2006) categorized PD into three levels as decp,
deep according to the germination requirements and conditions to break dormancy. The
great majority of seeds have non-deep PD, including the spring wheat seeds discussed in
this thesis. Baskin and Baskin (2004) demonstrated that non-deep PD can be broken by
GA treatment, scarification, afer-ripening in dry storage, and cold (0-10 °C) or warm
(215 °C) sratification. Embryos excised from these seeds produce normal seedlings.

Seed dormancy, a delay between sced shedding and germination, ensures the
ability of a species to survive natural catastrophes, decreases competition between

individual organisms of the same species, or prevents germination out of season, allowing

seedling establishment according o seasonal changes and persistence of the population
(Bahin e al., 2011). Lack of seed dormaney s not desirable because it causes pre-harvest

sprouting, which reduces seed longevity and damages seed quality.

1.3.2.2 The role of after-ripening in interaction between dormancy and germination
I the process of seed maturation, seed dormancy level increases and reaches a

maximum in harvest-ripe seeds (Karssen et al., 1983). Environmental conditions during



sced development affect the dormancy status of different genotypes when the dry sceds
are freshly shed from the mother plant (Assmann, 2003). Following desiccation,
metabolic processes, such s transeription and translation, are arrested and the embryo
enters a period of dormancy during which germination will not occur, even under
favourable environmental conditions (Chow and McCourt, 2004). A quiescent period
during after-ripening allows the seed to fully release the matemal control, which prevents
germination, and finalize the separation from the mother plant to become autonomous.

The ru

ntary embryo must develop into a full embryonic axis before germination can
oceur (Yamaguchi-Shinozaki and Shinozaki, 2007). Generally, primary dormancy may be
broken during subsequent dry storage of the seeds (afterripening) or/and stratification
(Bewley and Black, 1994), which consist, respectively, of a warm temperature treatment
10 dry sceds and a low temperature treatment to imbibed sceds,

During after-ripening, the dormancy status reduces until seeds are able ©
complete germination when imbibed under favourable conditions. Upon imbibition, the

quiescent sced is able to reboot ts system by intemal regulatory control under adequate

ditions. Germination i the radicle from the seed

coat by taking up water, and terminates with the elongation of the embryonic axis
(Bewley and Black, 1994). This process is driven metabolically by the hydrolysis of
proteins and lipids stored during maturation, and subsequent reactivation of a cascade of
‘metabolic actvities including transcription, translation, DNA synthesis and cell division
leading to the growth of the embryo (von Well and Fossey, 1998). The speed of after-
ripening and dormancy status varies, influenced by extemal environmental cues during

seed maturation, seed storage and germination conditions (Holdsworth ef al., 2008). A

10



seed population that previously exhibited a high level of dormancy on imbibition, will
subsequently shovw a high level of germination under the same conditions (Donohue, 2002;
Kucera et al, 2005). Both temperature and moisture content influnce the speed of afer-
ipening of unimbibed sceds (Bair ef al, 2006; Steadman et al, 2003). The molecular

h h

balance theory, which explains dormancy by the opposing action of hormones inhibiting
(ABA) and stimulating (mainly gibberellins, GAs) germination (Karssen and Lagka,
1986), and the metabolic theory through enzymic and non-enzymic reactions, which
postulates a specific perturbation of respiration in dormant sceds (Bewley and Black,
1994).In addition to gene expression differences between dormant and germinating seeds,
non-enzymatic reactions play a role in dormancy release by a causal link between
proteome modification via ROS and afer-ripening (Oracz et al., 2007). Wouters e al.
(2010, 2011) demonstrated that the oxidation of proteins results in a modification of

enzymatic or binding mechanisms, which leads to changes in the structure and/or function

of the spes wlated proteins involved i dry seeds.

323 g of.

Common wheat seeds are often dormant when they are shed, and then gradually
lose dormancy through dry afier-ripening (Steadman et al., 2003). The controlling
components have been identified as substances, of which accumulation in seds correlates

with the depth of dormancy (Baskin and Baskin, 2004). Seed dormancy has been

ted with regard to associated physiological, biochemical and molecular changes,

as such it is highly regulated by both interal and external cues that determine the

n



dormancy status and the potential for germination (defined as the final percentage of
‘germination) (Bewley, 1997). Environmental cues, such as temperature, light, oxygen and

moisture that widen the requirements for germination, are by definition regarded as

dormancy release factors (Finch-Savage and Leubner-Metzger, 2006). In addition to

substantial environmental influences, genetic va

tions in structure andor pigmentation
of the seed coat (esta) affect the dormancy status of seed (Fofana ef al, 2008). It has been
demonstrated that dormancy genes are tightly linked to seed coat colour as determined by
dominant R alleles (Flintham, 2000). In wheat, the strongest dormancy is associated with

a red seed coat colour, whereas the lines with white sced coats are non-dormant or weakly

dormant and pre-harvest

Dormancy and germination are physiological developmental processes mediated

by a complex network of phytohormones, including ABA, GA, ethylene and auxin
(Finkelstein et al., 2008; Kwak et al, 2006). Hormone controlling events depend on the
ombination of the hormone content (the net result of ates of synthesis and metabolism),

and the ser

vity of the cells to the hormone (Bradford and Trewavas, 1994). Previous
studies demonstrated that the onset of dormancy during embryo maturation is regulated
by ABA biosynthesis (Brady and McCourt, 2003), ABA signal transduction (Kuhn and
Schroeder, 2003) and maturation processes (To ef al, 2006). During seed matwration, the

ABA content increases and the changes in sensitivity o ABA are related 10 the

maintenance of dormancy, tolerance to desication stress and inhibition of germination
(Holdsworth e al., 2008). ABA s produced in matemal tissues and in the embryo, but

only embryonic ABA is necessary to impose a lasting dormancy (Nambara and Marion-

Poll, 2003), whereas maternal ABA, or ABA application during seed development,

[t)




1o induce lasting seed dormancy (Rajjou and Debeaujon, 2008). However, de niovo ABA
synthesis n the embryo during imbibition allows maintenance of dormaney (Kucera efal.,
2003). The embryonic ABA content decreased quickly afer imbibition in non-dormant
grains (where germination occurred), but remained high in dormant imbibed grains
(where germination was prevented) (Benech-Amold ef al. 2006). Deficiency of ABA
during seed development is associated with the absence of primary dormancy in the
mature seed, whereas the over-expression of ABA biosynthesis genes can increase seed
ABA content and enhance seed dormancy or delay germination (Finkelstein ef al., 2002;
Kushiro ef al., 2004). Therefore, ABA levels and the resulting dormancy are controlled
by the combined action of differentially expressed enzymes involved in several steps of
both ABA synthesis and catabolism,

On the contrary to the role of ABA controlling the establishment and maintenance
of dormancy, the presence of GAs stimulates germination by inducing hydrolytic

enzymes that weaken the barrier tissues such as the endosperm or sced coat, inducing

mobilization of seed storage reserves, and stimulating expansion of the embryo (Grappin
et al., 2000). There are many instances where GA alone is ineffective for the induction of
‘germination in dormant sceds, and GA is thought to be necessary but not sufficient for
dormancy release (Gonai ef al,, 2004). There is growing evidence that GA mediates
metabolism of ABA and vice versa (Gubler ef al., 2008). In the aleurone layer of seed, the

role of GAs s crucial afler dormancy breakage, where it is required for reserve

mobilization and germination (Gubler ef al., 2002). The balance of ABA/GA levels and

sensitivity plays a critical role in regulating seed germination and dormancy satus, and

these hormones have reciprocal effccts on their respective biosynthesis and inactivation
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pathways (Cadman ef al., 2006; Oh ef al. 2007). Moreover, ethylene promotes
‘germination, and auxins support plant growth and development throughout the plant life
eyele (Allen et al., 2007). It is necessary to characterize and quantify the germination and

dormancy behaviour of sceds in response to a diverse range of physiological states and

environmental conditions.

In addition to the role during sced dormancy and germination, phytohormones are
known to control the mobilization of storage reserves in cereals (Lovegrove and Hooley,

2000). ABA and GA regulate the expression of genes encoding the enzymes required for

storage protein and carbohydrate mobilization in wheat (Pulido et al., 2009). Studies on

al.,2009; Kranner et al.,

highly complex interaction between environmental conditions, seed growth regulators,

and the sensitivity of seeds o these parameters.

14 Environmental factors related to seed dormancy and germination
141 Tnteractions between phytohormones and the environment

Seed dormancy or germination outcomes are determined by a balance between
pathways associated with GA and ABA, extemal environmental signals, and intemal
developmental signals (Brady and MeCourt, 2003). The signalling pathways of these
hormones are interconnected at several levels and interact with other hormones, such as

cthylene and brassinosteroids, which both influence the ABA/GA balance by

counteracting ABA effects and promoting germination (Weiss and Ori, 2007). It i likely
that the crosstalk between different hormone signalling pathways contributes 1o the

flexibility of seeds in their responses to developmental and environmental factors
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(Alboresi ef al., 2005). Low temperatures and exposure 1o light are the major
environmental factors that release sced dormancy and enable the completion of
‘germination (Chiwocha et al., 2005). Furthermore, ROS, niteate, and nitric oxide have

been d (0 affect GA and ABA et al., 2007; Pulido et al., 2009b)

and was shown 10 accelerate the decrease in ABA levels that occurs during seed
imbibition (Ali-Rachedi ef al., 2004; Koomneef ef al,, 2002). However, the precise
mechanisms by which ROS affect sced dormancy status and germination potential remain

o be clucidated.

142 Pre-harvest sprouting
Dormancy at harvest is a desired trait because it prevents the precocious
‘germination, the premature sprouting of grains in the head following exposure to cool

‘moist conditions, known as pre-harvest sprouting (PHS) or vivipary (Bassoi and Flintham,

2005). PHS s the major cause of increased alpha-amylase hydrolytic enzyme activity

during the hydrolysis of starch in the endosperm, which results in a decrease of grain

weight conditions (King, 1993). and leads to a reduction in grain quality and viabiliy of
seed, therefore significant economic losses on end-product quality for the grain industry,
especially in parts of the world where cool damp conditions prior to harvest arc a
possibility (Gubler et al., 2005). Common wheat is susceptible to PHS due t0 a lack of
sufficient degree of seed dormancy (McCaig and Depauw, 1992). Therefore, it is
necessary 10 breed for inereased resistance by enhancing sced dormancy to improve the

tolerance to PHS.



Different between genotypes, PHS resistance is a complex trait that varies
depending on the stage of maturity, which is affected by environmental conditions during
grain ripening, and depends on spike and crop morphology, biotic and abiotic stress
(Mares et al., 2005). Significant efforts have been made to identify quantitaive trait loci
(QTLs) controlling seed dormancy and pre-harvest sprouting tolerance in wheat (Mori ef
al., 2005; Torada et al., 2008). PHS can be combated in part through manipulation of
grain colour via the red grain (R) locus, which provides some resistance to sprouting
(Kato et al,, 2001). Chen et al. (2007) demonstrated that QTL on chromosome 4A can

i harvest, as well as ABA sensitivity and PH bl

A number of studies have analysed the relationships between dormancy, ABA
sensitivity and susceptibility to PHS in wheat. Germination potential of wheat sceds
increases with time of dry storage (Mares, 2005), and the Kinetics of afer-ripening are
related to variety and environment (Mori et al., 2005). PHS-resistant varicties exhibited

enhanced dormaney characteristcs of isolated embryos and enhanced responsiveness to

applied ABA (Flintham, 2000). Conclusions from previous studies (Fofana ef al., 2008)
show 1) dormancy at harvest and PHS susceptibility have been assumed 1o be linked

phenomens; 2) understanding the phytohormone signalling mechanisms that control

wheat seed dormancy will contribute to the targeted breeding of wheat varicties with

2 protected against uncontrolled by sprouting

143 Abiotic and biotic stresses to wheat seed growth

h temperatures, drought, sali

.

and oxidative stress, suppress the activities of cellular molecules and result in the
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deterioration of the cellular environment, reduced growth and extensive losses in

agricultural production by more than 50% (Benech-Amold, 2006). Wheat seeds from

temperate climates often exhibit primary dormancy at harvest that is most evident at
warm temperatures (>15°C) (Leymarie et al., 2008). Insufficient dormancy can result in
pre-harvest sprouting in humid climates, while excessive dormancy can interfere with
wtilization of the grain for planting,

Common wheat has low drought resistance and is vulnerable to water deficit
(McCaig and Depauw, 1992). Drought conditions (caused by weather conditions and/or

sl type) have the potential (0 altr the dormancy status in sceds. Withholding water

during seed development caused a decrease in the degree of seed dormancy (Rajjou and
Debeavjon, 2008). During early seed development, drought causes the abortion of
developing grains, resulting in the shrinking of grains, leading to yield losses (Blum,
1998). Lower seed mass affects the development and biomass of the seedlings (Aparicio

e al,, 2002), and ths the carbohydrate reserves and yield of the next generation

(Bamabis et al, 2008). Late in sced development, upon imbibition, the quiescent sced
embryo faces a hostile environment. The conditions of high heat and humidity accelerate
sced ageing (Hajheidari er al., 2007). It has demonstrated that imbibing embryos are

capable of expressing an enhanced level of heat shock response, which s related to the

seed's ability o germinate and establish under extremes of temperature and moisture

(Wang er al., 2004). The heat shock response during very carly germination plays an

important role secds
Dormant seeds are deficient in heat shock response. proteins and show o marked

depression in their ability to survive and germinate following exposure to long periods of
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high temperature and humidity, while non-dormant seeds demonstrate a high frequency of
germination under the same stress (McElwain and Spiker, 1992). It was established in
previous studies (Basha ef al., 2004) that a germinating wheat embryo is able to
synthesize a complete set of heat shock responsive proteins to survive heat stress, when
heat shock was iniiated simultancously with imbibition.

Soil salinity adversely affects physiological and metabolic processes, and finally
diminishes crop growth and yield (Ashraf and Harris, 2004). The effect of dormancy-
related growth regulators (e.z. GA, ABA, and cthylenc) on germination has been studied
in relation to their response to salinity (Athar ef al., 2008; Sairam et al., 2005; Wahid et
al., 2007). Changes in growth regulators balance that are induced by salt stress may be
related to the mechanisms inducing dormancy in sceds.

Seed growth reduction due to salinity is attributed 1o ion toxicity and nutrient

imbalance, which fead 1o an oxidative stress manifested by accelerated production of
ROS (Lee ef al,, 2001). The balance ROS-formation and ROS-scavenging appears to
represent a key siress tolerance trait (Kim e ., 2009). Expression of antioxidant defense.
‘genes would, in tum, be triggered to defend the cells against oxidative damage (Blokhina
et al., 2003). Elimination of ROS is mainly achieved by antioxidant compounds such as

ascorbic acid, glutathione, thioredoxine and. caroteniods, and by ROS scavenging

enzymes, such 3 peroxi olville and
Kranner, 2010). This shows that oxidative stress tolerance is genetically controlled and it
provides a wide scope for crop improvements enabling the breeding of more drought

tolerant, or generally more stress tolerant crops.




15 d thiol-based

151 Oxidative stress by reactive oxygen species

Acrobic metabolism produces oxygen derivatives including singlet oxygen ('02).
superoxide anion (Ox), hydrogen peroxide (H:0) or hydroxyl radicals (OH) termed
ROS (Apel and Hirt, 2004). Although ROS are produced as a consequence of acrobic

metabolism, their levels are maintained relatively low under standard growth conditions

(Asada, 2006; Gapper and Dolan, 2006). However, environmental strss, such as sain

drought, high light intensity, low or high temperature, or pathogen attack disturb the
cellular homeostasis and inerease ROS production, thus causing oxidative stress (Gill and

Tutcja, 2010). ROS aceumulation has a toxic effect due to the high reactivity of these

species that cause damage to the lipids, proteins and nuclei Because proteins have

ation of their

numerous biological functions, their oxidation may result in modif
enzymatic and binding properties and lead to diverse functional changes. Previous studies
(Arc et al, 2011; Davies, 2005) have shown that oxidation of proteins can oceur through
a number of different mechanisms, such as the formation of disulfide cross-links and
glycoxidation adducts, itration of tyrosine residues, and carbonylation of specific amino.

acid residues.

152 Oxidati i seed development

ROS » during seed development,

‘germination, but also during sced storage (Bailly, 2004). Bailly and El-Maarouf-Bouteau
(2008) demonstrated that photosynthetic production of ROS is elevated at carly stages of

sced development; respiration is a significant source of ROS production during the carly
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stages of embryogenesis when moisture content is high enough to allow metabolic

activiies, but subsequently decreases during sced maturation and desiccation, a phase

with a low metabolic activity.

At maturity, desiccated sceds enter into a dormant period when water is not

available for biochemical reactions, and ABA induces desiceation tolerance, permiting
their survival for long periods in a dry sate. In this phase, the seed suffers oxidative stress
due to the production of ROS that oceurs as a consequence of massive loss of water
(Leprince e al., 1993). Desiccation tolerant is correlated with the generation of ROS and
the oceurrence of oxidative damage during dehydration (Pukacka and Ratajezak, 2007a),
leading 1o the suggestion that desiceation tolerance depends in part on the ability o
scavenge ROS compounds by antioxidant defense systems during after-ripening (storage
in dry conditions) or during stratfication (imbibition at low temperature), metabolic
reactivation that implies resumption of respiration, and other non-enzymatic reactions are
Tikely to occur such as lipid peroxidation (Tammela ef al., 2005; Pukacka and Ratajczak,
2007b), or the Amadori and Maillard reactions associated with fiee radical production
and oxidation processes in the embryo (Murthy and Sun, 2000; Murthy et al., 2003).
During germinating and post-germinating, wheat seeds tissues are featured with a high
sate of cell division and metabolic activity (Penfield and King, 2009). All of these tissues
suffer oxidative stress and undergo programmed cell death (PCD) during development

and germination, which can be accelerated by oxidative damage.

‘The degree of damage depends on the balance between formation of ROS and i

removal by both enzymatic and non-enzymatic antioxidative scavenging systems and it

appears o represent an important stress-tolerance trait. Among the non-enzymatic
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systems, the presence of molecules with antioxidant actvity in seed tissues including
ascorbate, tocopherols and polyphenols has been shown (Howit and Pogson, 2006;
Sattler ef al,, 2004). The non-enzymatic antioxidant systems have a relevant role in
ageing sceds (Ahmad ef al. 2010). Among the enzymatic antioxidant systems, seeds

express superoxide dismutases responsible for the conversion of superoxide anion to

hydrogen peroxide, which is reduced to water by different peroxidases, such as ascorbate
peroxidase, catalases, and peroxiredoxins (Bally ef al., 2008). For example, maturing
seeds have increased catalase activity (Berjak, 2006) and accumulate glutathione,

peroxiredoxins (Haslekis ef al., 2003), or even storage proteins serving as substrates for

oxidative carbonylation (Job et al,, 2005). Studies (Pulido et . 20099, 2009b; Rajjou

and Debeaujon, 2008) have shown that, in wheat seedlings, elimination of ROS is mainly
achieved by antioxidant compounds (e.g. ascorbic acid, glutathione, thioredoxine and
caroteniods), and by ROS scavenging enzymes (e.g. superoxide dismutase, glutathione
peroxidase and catalase) mainly increased during development of orthodox seeds when

acquisition of desiceation tolerance is associated with the synthesis of specific proteins,

accumulation  activation of antioxidant

16 Signalling roles of ROS and redox regulation of proteins

1,61 Cellular signalling roles of ROS in seed dormancy and germination

Protein oxidation due to ROS is not necessarily a deleterious phenomenon in seed
Physiology (Job e al., 2005). ROS have been invoked to play a role in cellular signalling,
notably acting as regulators of growth and development, programmed cell death, hormone

i biotic and abiotic et al., 2004). The signalling
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role of ROS is relevant for seeds during the transition from a developmental to a

‘germinative mode and the alleviation of dormancy, raising the hypothesis that these
compounds can faciltate the shift rom a dormant to a non-dormant satus in seeds. Plant
hormones, such as ABA and GA, are considered as being the major signalling actors in
these processes (Bethke ef al., 2007). Several studies (El-Maarouf-Bouteau and Bailly,
2008; Kwak ef al., 2006) have demonstrated that ROS can also interplay with the
hormonal signalling pathways.

Increased generation of ROS occurs during the activation of a regulatory system

controlled by intrinsic (dormancy) and extrinsic (environmental conditions) factors. The

extemal ROS d production (Schopfer er
al. 2001). The success of germination tightly depends on extemal factors such as
temperature, light, oxygen and water availability (Bailly et al., 2008). ROS act as
messengers or transmitters of environmental cues (o the internal sensors in seeds to
complete the germination. Hydrogen peroxide, hydroxyl radicals and superoxide radicals
have been shown to accumulate in the germination process and contribute to cell wall
loosening during endosperm weakening, programmed cell death of aleurone layer of
cereal grains or protection of the emerging seedling against pathogens (Wojtyla et al.,
2006). At the cellular level, ROS regulate the cellular redox status to cause the oxidation
of proteins and to trigger specific gene expression through the changes in ROS
homeostasis (Bailly, 2004). With regards 0 ROS metabolism during dormancy
imposition and release, it has been proposed that ROS could be a ubiquitous signal
involved in dormancy alleviation during storage of sceds in dry conditions (after-

ipening). and that they could faciltate the shift from a dormant to a non-dormant status
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in seeds. The accumulation of ROS by non-enzymatic metabolism and peroxidation
products in the dry state lead to imeversible protein oxidation (carbonylation) in cells of
embryonic axes, allowing a shift from a metabolism characteristic of dormant seeds t0
metabolism characteristc of non-dormant (after-ripened) seeds (Ahmad er al., 2010),
Additional evidence on the putative role of ROS in dormancy control comes from studies
on the interaction of these compounds with plant hormones as ABA, GA, which being
well known for playing a major role in seed dormancy and germination (Bailly ef al.,
2008). For example, H:0; was shown 10 represent major reactive oxygen leading o cell

death in aleurone cells (Bethke and Jones, 2001). GA initiates cell death of alcurone cells,

whereas ABA inhibits cell death (Wong ef al., 2003; 2004). The actvities of ROS
scavenging enzymes, including catalase, ascorbate peroxidase, and superoxide dismutase,
are significanily down-regulated in GA-treated aleurone cells, thus rendering these cells
sensitive to oxidative damage and cell death, whereas ABA caused increases in catalase
activity (Fath ef al., 2002). ROS-scavenging mechanisms will be important for mediating
and controlling these responses. A strong oxidative burst will cause cellular damage and
death (Apel and Hirt, 2004). Furthermore, consttutive ROS clevations, even if not very
high, could cause malfunction or descnsitization of ROS-dependent signaling responses
(Vandenabeele ef al., 2003). Several studies suggest that ROS-scavenger proteins play
central roles in ABA signalling (Dietz, 2008). In addition, D'Autreaux and Toledano
(2007) have shown that several ROS scavenging mRNASs are regulated in response o GA,

ABA, and oxidative stress.



162 Dynamic thiol-dis regulation and proteins

Cysteine (Cys) plays an important role in protein biochemistry. The unique

chemical property and high reactivity of the free thiol group makes reduced cysteine a
versatile component of catalytic centres and metal binding sites in proteins (Ghezzi,
2005). Cys s susceptible to a variety of modifications by ROS, which increases in
abundance under unfavourable conditions like drought, sat or temperature stress. Under
severe oxidative stress, the cell activates the programmed cell death, and sequential
oxidation of Cys thiols yields sulfenic (-SOH), sulfinic (~SO;H), or sulfonic (-SOsH)
acid derivatives, which are considered irmeversible moifications by excess ROS (Moller
€1l 2007). Less severe oxidative stess triggers signalling cascades (0 readjust the redox
environment through reversible oxidation of Cys thiols by limited amount of ROS, which
result in a disulfide bridge forming between two thiols groups either within a protein
chain o between protein chains (Hogg, 2003; Ghezzi et al, 2005). Covalent
postranslational modification by disulfide bond formation stabilizes the protcin by
maintaining it tertiary structure, which prevents denaturation and decreases suscepibility
o proteolytic degradation prominent in secretory and storage proteins (Holdsworth ef .,

2008). In addition to stabilizing structure, cysteine-dependent regulation of protein

activiies associated with the conformational changes between reversibly oxidized (S-5)
and reduced (~SH HS-) often alter functions of proteins or result in either a catalytic o
regulatory change (Yano and Kuroda, 2006: Stroher and Dietz. 2008). Catalytic disulfides
are often formed between two cysteines separated by one or wo amino acids, which can

physically affect the catalytic properties of the enzyme, such as NADP-malatc

dehydrogenase (Dalle-Donne et al., 2007), of which the redox active site functions cither
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as an electron (hydrogen) donor or acceptor (Dixon et al., 2005; Yano ef al., 2002). The
interconversion of thiols to a disulfide equally provides a mechanism for the regulation of

ed

catalytic activity, and can be prevented with a Ifide formed by cysteiny!

residues that i h
During wheat sced development and germination, seed tissues suffer oxidative
stress. Among the different antioxidant mechanisms available in this processes,

thioredoxin  (Trx ) system (Cazalis et al., 2006; Montrichard ef al., 2009), NADPH-

dependent thioredoxin reductase (NTR) system (Shahpir ef al., 2008; Li et al., 2009;
Meyer e al., 2009), and a thiol-based antioxidant system formed by 1-Cys peroxiredorin

(1-Cys Prx) (Dietz et al., 2006) support the classical function proposed for the NTR/Trx

redox system in the activation of storage mobilization, thus facilitating seed germination.
163 The NADP/Thioredoxin system of seeds

Thioredoxins (Trss) are small proteins (12-14 KDa) with a conserved active site
formed by the consensus sequence -Cys-Gly-Pro-Cys- (-CGPC-), in which the two Cys.
residues act as efficient disulfide reductants (Sokolov ef al, 2006). The redox conversion
of disulfide/dithiol functions in a process of the NADPH-dependent Trx reductase
(NTRYTex system, which aceelerate seed germination by facilitating the mobilization of
storage compounds in the starchy endosperm (Serrato ef al., 2002). Most of the proteins
i the starchy endosperm are in the oxidized state, and reduction s required to facilitate
the action of proteases involved in their degradation (Besse e al., 1996). Tex h isoform is
involved in the inactivation of a-amylase and trypsin inhibitors, thus facilitating starch

and protein degradation (Shahpiri ef al, 2008). It was shown to promote the activation of
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a-amylase, pullulanase, and proteases with the concomitant reduction of disulfide (S-S)
groups in diverse seed proteins (e.g. storage proteins, enzymes, and enzyme inhibitors).
resulting in the mobilization of carbohydrate and protein rescrves that sustain seed
gormination (Lozano et al., 1996; Yano et al, 2001). A protcomics-based approach

allowed identification of Trs targets in wheat starchy endosperm that confirmed the

important role of this redox system in sced germination (Wong e al., 2003). Besides the

role of the NTR/Trx J system in f starch and protein degradation in germinating

seeds, it was reported that ing Trx
the embryo, which affects the expression of a-amylase in aleuronc cells, thus suggesting
a functional role of this enzyme in communication between the embryo and aleurone.
tissues (Wong e ., 2004). Thus, the localization of Trx  and NTR in sced tissues could
be connected to T function as a redox signalling molecule in germinating seads linked

10 the coordination of redox control of different tssues within sceds.

164 1-Cys peroxiredoxin expressed i seeds

Peroxiredoxins (Prxs) are thiol-based peroxidases that show a typical thioredoxin
fold. Prxs represent an important family of sulthydryl-linked antioxidant_proteins,
ubiquitously present in all known organisms (Kranner e al., 2010). Peroxidase activty of
Prxsis based on the action of one o two Cys residues that form the active site, in contrast

with other peroxidises (Colville and Kranner, 2010). Regarding the seed peroxide

ging . 1-Cys Prx s exclusively expressed in developit where

it accumulates in the endosperm, scutellum, and aleurone cells, with cxpression being at



the highest level during the desiccation stage (Dietz ef al., 2006). In the starchy
endosperm of germinating seeds, the 1-Cys Prx was detected as a dimer, which could be a
reflection of the highly oxidative environment in this tissue. In both aleurone and

ting seeds, 1-Cys Prx was detected in a monomeric form, and

scutellum cells of germi

decreased upon germination completion (Monteiro ef al., 2007). Furthermore, the nuclear

Tocalization, antio . and characteristic expression pattem of a 1-Cys Prx in

seed cell i i of

of peroxide levels in the nucleus. This antioxidant system may be relevant not only as a
mechanism to protect nuclear DNA from oxidative damage, but for the redox regulation
of nuclear processes, such as transcription, splicing and protein trafficking (Guo ef al.,
2007). In addition, 1-Cys Prx antioxidant system has an important function of ROS
scavenging involved in a tolerance mechanism (o oxidative stress and Programmed Cell
Death (PCD) (Wahid et al,, 2007), which requires a source of reducing power in order to

« by thioredoxins (Trxs).

17 Proteomics analysis in wheat seeds
171 From genomics to proteomics

* (DNA), “transecriptomics

Newly emerging technologies encompassing *genomi
(MRNA) and “proteomics’ (proteins) provide complementary tools and  interactive
sequence databases 1o elucidate interactions between DNA, RNA and proteins in living

biological systems, and thercby bridge the gap between DNA and proteins, and between

ge the pi  Seilhamer, 1997). Proteomics i the study of

the full complement of polypeptides expressed by the genes of an organism in a specific
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tissue, at a particular stage of development and under specified growth conditions

(Skylasa et al., 2005). Proteomics emphasise the functional aspects of genomic studies,
involving the elucidation of downstream effects of the genome and taking into account
the interplay of environment with the genome, o determine the characteristics of the

organism.

172 Proteomies approaches
Proteomics studies the total complement of cell proteins or of defined sub-
proteomes (Wang ef al., 2007). High-throughput separative and analytical techniques are

used to detect changes in level/status of specific proteins. Most of the protcomic studies

have used two-dimensional sodium dodecy sulp ide gel

(2D SDS-PAGE) as a protein separation and quantification tool. The *first dimension’,

. separats the proteins in an immobilised pH gradient
(IPG). Proteins migrate and resolve 1o the point in which they have zero net charge
(isoelectric.point, ph. The *second dimension’ separates proteins according 1o their
molecular mass alone, using sodium dodecy! sulfate polyacrylamide gel electrophoresis
(SDS-PAGE). A uniform charge-to-mass ratio allows proteins 10 be separated from the
mixture (GO ef al., 2000). The separation power of 2D gels considerably simplifies the

subsequent analysis by MS. The digestion of cach spot on a 2D gives a few dozen

peptides, producing a level of complexity that is managed by peptide fragment
fingerprinting approaches based on matrix-assisted laser desorption/ionization (MALDI)-

MSMS, or nano-clectrospray liquid chromatography (LC)-MS/MS ~ approaches



(Shevchenko e al., 2000). Mass spectrometric sequencing is used o allow protein

databases or expressed sequence tag (EST) databases to be searched.

173 Proteomic analysis of wheat sceds

Proteomics has the potential to contribute to genetic and physiological studies in
wheat science and to grain quality by elucidating the ways in which the genes arc
expressed during grain filling under given environmental conditions (Skylas ef al., 2002).
For example, a major objective of proteome studies of the wheat grain is t0 elucidate the
range of polypeptides and disulfide bonds in proteins that account for the unique dough-
forming properties of wheat flour (Southan and MacRitchic, 1999). The proteome of the
wheat amyloplast has been investigated with the objective of learning more about starch
quality (Andon et al, 2002). Moreover, the application of wheat proteomics is well-suited
1o studying the proteins associated with tolerance to heat-stress conditions during growth
(Skylas et al., 2002). The application of examining the effects of variations in growth

conditions is based on the fact that relatively minor changes in the composition of a large

number of using i (Majoul e al, 2003).

Therefore,

may be possible to identify marker proteins o select for tolerance to the
dough-weakening effects of hea-stress, thercby eliminating the need to grow wheat

genotypes under controlled conditions and test for dough quality

1.7.4 Disulfide and redox protcomics of wheat grain proteins

inacell

that are essential i their functional regulation. The change of the redox state of cysteine
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residues represents a very dynamic and regulated balance. These reversible. thiol

‘modifications have found a use as regulatory nano-switches in an increasing number of

redox sensitve proteins (Wormuth ef al., 2007). These redox-regulated proteins are able
to adjust their activity quickly in response to changes in their redox environment
(Wouters ef al., 2010, 2011). A number of techniques have been developed to
‘quantitatively describe the extent of thiol modification in vivo, giving insight into the
global thiol-disulfide state of proteins in the cell. An increasing amount of studies have
een addressed to detect protein oxidation in plants through redox proteomics (Leonard et
al, 2011; Finnic and Svensson, 2009). They have been successfully used to find
substrates of thioldisulfide oxidoreductases and to-discover novel redox-regulated
proteins (Alvarez et al., 2011). For example, a model study of thioredoxin-linked
reactions in seed germination has been conducted by redox proteomics based on
analysing disulfide proteome (Rinalducei et al., 2008; Yano and Kuroda, 2006). Drought
tolerance in wheat has been widely studies for redox regulation by proteomics approach
(Hajheidari ef al., 2007). Morcover, the thiol-redox proteomics approach (Bykova et al.,
2011) was used recently 1o study dynamic changes in the redox-sensitive proteome upon
seed dormancy release in wheat.

Protcomic analysis s a powerful 0ol to depict the postiranslational modifications

of the proteome (Spickett et al., 2006). Most of the proteomic studics of the oxidative

stress response have used 2D SDS-PAGE to separate proteins based on charges and
masses, coupled with MS/MS approaches as a protein characterization tool. Many post-

translational modifications can be detected, such as some stages of cysteine oxidation

(eysteine sulphinic and sulphonic acids), which are expected (o induce p/ changes
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Oxidative stress can cause changes in levels of specific proteins detectable by protein
staining and image analysis. Similarly, redox-based processes altering the plor M, of
proteins (ic., charge isomerization, protein backbone cleavage, and crosslinking) arc
detected as altered 2D SDS-PAGE spots. Morcover, single fluorescence-based labelling
has been widely used to detect oxidized or reduced Cys residue by 2D gels. For example,
the  TAM-derivatives ~S-iodoacetamidofluorescein (Chiappetta e al., 2010) and
monobromobimane (Yano, 2003), a Cys-specific reagent that fluoresces upon UV,
imadiation, have been used to reveal the extent of Cys residue oxidation by 2D gels
Reduced Cys residues were blocked by alkylation with IAM, and oxidized residues were
labeled with the fluorescent Cys-reagent. Labeled proteins were visualized on 20 gels
using a fluorescence imaging system, and the indexes of protein-thiol oxidation were
determined by spots intensity (Hochgrafe ef al., 2005). The MS/MS approaches allow

both the description and the localization of the modification in the modified peptide.

However, Chouchani ef al. (2011) demonstrated some modifications that cause the MS.

signal to decrease considerably. For example, sulphation and cysteine oxidation in

sulphinic or sulphonic acid aler the charge of the peptide, often making it negative.

Carbonylation favours peptide-peptide interactions, which in tum decrease the peptide

extraction yields and thus the signal.

ty of targeted proteins subject
ROS driven oxidative modification of proteins comprise an important class of
posttranslational modifications. Produced throughout the variety of stages during seed

development and maturation, ROS can directly affect the thiol side chains of protein
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cysteines to regulate the activity of proteins. The free thiol functional groups (-SH) are

characterized by high reactivity, making cysteine very sensitive to redox transformations

participates X
Zn** and Fe®'), and plays structural roles in proteins, oxidoreductive modifications can
adopt a varety of oxidation sates and profoundly influcnce protein function (Wouters
al., 2010). Depending on the cystene oxidation state tha is formed, such modifications
can be reversible or irmeversible. The thiol sulfhydryldisulfide exchange and sulfenation
(SOH) are best known forms of reversible oxidoreductive posttranslational modifcation

10 cysteine residues in proteins affected by restricted levels of ROS. While there are some.

ROS, when they produced, they Excessive
levels of ROS oxidize thiol groups in cysteine residues to generate imeversible oxygen
derivatives i proteins, such as sulfenic (RSOH), sulfinic (RSO;H), and sulfonic (RSOsH)
acid, resulting in oxidative stress to cells (Jeong ef al. 2011). In addition, the thiol side
chain of cysteine participates as a nucleophile in numerous posttranslational
modifications including S-acylation, S-nitrosation and protein splicing. In cereal seeds,

the regulatory sulfhydryl/disulfide bond system alters the structure and activity of

of evens in seed germination such il storage
proteins, activation of proteases, transcription, cell division, radical scavenging and
detoxification (Montrichard e ., 2009; Jacob and Ba, 2011). Together, these proteins
and enzymes form an extensive and significant network (0 sense changes in the

intracellular redox environment and to trigger a measured, appropriate and rapidly

reversible response, in the form of gene expression, antioxidant defence or by inducing

apoptoss.




18 Thesis hypothesis and objectives

8.1 Hypothesis

Seed dormancy s a discrete developmental pathway associated with specific

Vi ofasa  stat
it in fact a dynamic state in which cell metabolism is active, but growth is repressed.
During the dormancy stage, there is a biochemical shift from active biosynthesis and
metabolism to storage and protection against biotic and abiotic stresses. Moreover, a
higher antioxidant capacity related to sensing of a threshold redox potential and balancing

the existing redox pools is needed for wheat seeds to maintain high dormancy. The

capacity to maintain, or to rapidly re-establish a number of antioxidant protein systems
upon rehydration is needed for wheat sceds to prevent ROS damage during a dormancy

stage.

182 Objectives
The objectives of this rescarch project are: 1). to identify and characterize

differential proteome expressed in fresh harvest-ripe seeds of closely related hybrid

‘genotypes of spring wheat lines varying in dormancy propertes in order to identify the
functional protein network and metabolic regulation associated with germination potential
and dormancy as a developmental state; 2). to examine the role of thiol redox control

under varying dormancy conditions. The reactive landscape of the proteome, redox active.

proteins with specific modification sites that undergo reversible cysteine oxidation under

physiological conditions and responding differentially in dormant and non-dormant seed

i probed by a thiol-red:




MATERIALS AND METHODS

21 Materials

Plant mat
Spring wheat (Triticum aestivum L) double haploid hybrid lines obtained by the

cross AC Karma and 94C15/9014 = 8021-V2 segregating transgressively were part of a

breeding program at Semiarid Prairie Agricultural Research Centre in Agriculture and
Agri-Food Canada (Clarke ef al,, 2005). One parent line, AC Karma (Knox et al., 1995).
has white sced coat with low PHS resistance. The other parent linc, 8021-V2 (DePauw ef
al. 1992), has white sced coat and high PHS resistance. Two parent and 12 spring wheat
double haploid hybrid lines used as sources of white-grained dormancy in this study are
part of a larger population of 380 doubled haploid lincs from the cross AC
Karma/SC8021V2 previously characterized for expression of dormaney (Clarke et .,

2005).

212 Plant growth and development conditions
The spring wheat hybrid lines were sceded in early spring o reach physiological

maturity under long days. Plants were grown in a climate-controlled greenhouse at 15 °C

16 h day-light at 50% relative humidity. The temperature was raised to 18 °C at 8
weeks aficr seeding and to 21 °C at 10 weeks afier seeding. Nawral light was

. fertilizer (Plant-

supplemented with 100 W high-pressure sodium lamps. During wateri

Prod 20-20-20, 500 ml of 15 g/L per pot per day, | plant per pot) was applied. To



r

maximise the genetic expression of dormancy, a number of precautions were taken to
avoid environmental stress and reduce environmental differences between experiments.
Pots were watered from the (0p every second day (o prevent salt accumulation on the
surface of the potting mix. Water recireulation system was supplied to provide a reliable
water supply for the fast growing wheat plants (Hickey ef al. 2010). Three replications

were randomly arranged within each block to minimize the environmental sources of

variability in the glasshouse.

Harvest-ripe grain was collected using a standardized procedure. Individual heads
on the primary and secondary tiller were harvested at physiological maturity, the stage of
critical importance for imposing maximum dormancy (Nyachiro ef al., 2002). For
determination of physiologieal maturity, thee criterion were met: 1) all green colour from

the sced disappeared and the sced was taking on a pale yellow colour: 2) the seed was

slightly soft upon touch with forceps: 3) upon squishing the embryo end of the seed, the
seed bursted under firm pressure with no free liquid present. When all three conditions
were met, the moisture content at physiological maturity was approximately 35-42%
(Clarke et al., 2005). Heads were immediately dried down at 35 °C for $ days in an air-

. The grain was then

forced dehydrator to reduce grain moisture content below 12%
removed from the heads by gentle hand threshing, with care taken to minimize any
damage to the seed coat and embryo, then stored at -20 °C to maintain dormancy (Mares,

1993; Nyachiro et ., 2002) until all samples were collected for further use (Figure 2.1).



22 Methods
221 Seed germination assay

The germination test was used to assess the dormancy level retained following
after-ripening treatment. Germination was scored as seed coat rupture over the embryo.
Prior to experiments seeds were surface sterlized for 20 min on a horizontal shaker with

oxine benzoate fungicide stock

2.5 ml of 1% ‘No Damp’ solution per 20 sceds (2.5

Solution, Plant Products Co. Lid.) followed by three rinses in deionized water. Twenty of

the surface-sterilized seeds were placed crease facing down into a Petr dish with filter

paper hydrated with water, and incubated at 15 °C and 40% relative humidity in the dark
for 21 days. Plates were cxamined daily, and sceds with radicals and signs of visible
pericarp rupture were counted as germinated and removed. On day 21, the ungerminated
seeds were treated for | h with 0.5 mM GAs in water, placed at 4°C in the dark, and daily
counts were continued for another 5 days to test sced viabiliy.

A weighted germination index, GR (days), was calculated using the equation as
described previously (Gordon, 1971), which provides time to 50% germination of

germinated seeds:

bt dy 4+,
@I @)

GR days
N

where d;, d: ., d;are the first, second to i th day of germination counts, 1 1. ... ngare
the number of sceds germinated on first, second, third to d th day, and N is the total

number of seeds germinated.



222 Preparation of labelled protein fractions
2.2.2.1 Fluorescent labelling of reduced protcins with monobromobimane

Proteins were extracted with simultaneous fractionation based on their solubility
from intact dry sceds and seeds subject to 24 h of imbibition. The thiolyte

monobromobimane (mBBr, dissolved in acetonitrile, Calbiochem, San D

ca)
labelling of redox reactive available -SH groups in wheat scd proteins was performed

simultancously with protein extraction (Figure 2.2).

2.2.2.2 Total SDS-soluble protein extraction

For cach parent and hybrid line, 20 whole seeds (600-800 mg FW) of the same
size were selected and ground to a fine powder in liquid nitrogen with 7 mL 63 mM Tris—
HCL, pH 6.8 extraction buffer containing 2% (wA) SDS, 0.25 mM mBBr (100 mM stock
solution in ACN) and protease inhibitor cocktail (Complete, ROCHE) added direetly to
the pre-chilled mortar (Rhazi ef al., 2003). Extraction and labelling of samples was
carricd out by continuously vortexing for 30 min at room temperature followed by
incubation at 60 °C for 2 h with occasional vortexing every 15 minutcs. Samples were
cooled down to room temperature, transferred (o 10 mi screw-capped centrifuge tbes
(Oukridge centrifuge wbes, max 10 000 xg / 9300 pm on SS 34), and centrifuged at

16,000 =g for 30 min at 22 °C. The supernatants were collected, aliquoted, stored at -80

“C and used further as the total protein extracts. Protein concentration was determined
using a Bradford dye-binding assay (Bio-Rad Laboratories) with Bovine serum albumin

(BSA) as a standard.



2.2.2.3 Aqueous protein extraction

For cach parcnt and hybrid line, 20 intact seeds (600-800 mg Fresh W
of the same size were selected and ground in liguid nitrogen to a fine powder with § mM
Tris-HCI, pH 7.5 buffer containing | mM CaClh, 0.25 mM mBBr, and protease inhibitor

cocktail (Complete, ROCHE), using a ratio | g sample / 7 ml buffer. The mixture was

transferred to a 10 m screw-capped centrifuge tube (Oakridge centrifuge twbes, max 10
000 ) and vortexed for 30 min at 4 °C followed by centifugation at 16,000 xg for 25
min at 4 °C. The collected supernatant was used as a fraction containing water soluble
proteins and was kept separately in a polypropylene falcon tube, store at 4 °C ascollection
of aqueous protein extraction. Protein concentrations were determined by Bradford dye-
binding assay (Bio-Rad Laboratorics) with BSA as a standard, and fractions were

aliquoted and stored at ~80 °C.

2.2.2.4 Remaining SDS-soluble protein fraction
“The pellet remaining after the aqueous protein extraction was further resuspended

with 5 mM Tris-HCI, pH 7.5 containing 50% (v/v) propan-1-ol, 0.25 mM mBBr (100

mM stock solution in acetonitile) and protease inhibitor cocktail (Complete, ROCHE),
Vortexed for 1 h at room temperature and centrifuged again at 16,000 <g for 25 min at
20 °C. The supematant was collected and the pellet was washed in the same buffer but
containing 70% (v/v) propan-1-ol without label. After centifugation the supernatant was

combined with the 50% propan-I-ol supematant. The propan-1-ol soluble fraction was

discarded due 1o the lack of detectable differences in gliadin and glutenin storage proteins.



The pellet was resuspended with 63 mM Tris-HCI, pH 6.8 containing 2% SDS and
protease inhibitor cockail, without label, and vortexed for 30 min at room temperature.
The protein extraction was continued at 60 °C for 2 h with occasional vortexing followed
by centrifugation at 16,000 xg for 30 min at 20 °C. Supernatant was collected and used as
SDS-soluble protein fraction. Protein concentrations were determined using a Bradford
dye-binding assay (Bio-Rad Laboratories) with BSA as a standard, and fractions were

aliquoted and stored at ~80 °C.

223 i i ions by inding assay
Bio-Rad Protein Assay method (Microassay for protein levels from 2.5 to0 25
Jg/ml) was used for determination of protein concentrations in the extracted protein
fractions. The Iyophilized BSA standard (Bio-Rad Laboratories) was reconstituted with
20 ml of deionized water o obtain a stock solution of 1.43 mg/ml, then aliquoted and
frozen at 20 °C. The further diluted standard stock solution of BSA at protein

concentration of 20 g/ml was prepared. One blank solution with 800 I of water and six.

dilutions of BSA standard ferent protein concentrations in the range between 1 0
20 pg/ml in a final volume of 800 I were prepared and used for the standard curve
Protein Assay Dye Reagent Concentrate (Bio-Rad, solution containing dye, phosphoric
acid, and methanol) in 200 il volume was added (o each standard and protein solution.
The solutions were further incubated at room temperature (23 °C) for at least § min, and
the absorbance at 595 nm was measured. The absorbance maximum for an acidic solution

of Coomassie Brilliant Blue G-250 dye shifis from 465 nim to 595 nm when binding to



protein occurs, then the value of O.D.ss s  axis and diluted protein concentration (ug/ml)

as x axis was plotied to determine protein concentrations in extracted protein fractions.

224 Removal of contaminants and SDS by acetone protein prei

To remove salts and other compounds that interfere with protein isoelectric
focusing (IEF), 800 g of each aqueous protein fraction was transferred into a 15 ml
borosilicate glass centrifuge twbe (Kimble® High Strength borosilicate, up to 13,100 xg
with an aceessory rubber adapter sleeve in a 50 ml rotor cavity), and vortexed well at
1050 rmp for 10 min with 8 sample volume of ice-cold acetone at a final concentration
of 80% (vv) acetone and 0.07% (w/v) dithiothreitol (DTT). DTT was used o reduce the
disulfide bonds of proteins and 1o prevent intramolecular and intermolecular disulfide
bonds from forming between cysteine residues in proteins during protein precipitation.
‘The washing was followed by overnight precipitation at -20 °C and centrifugation at
10,000 rpm for 30 min at 4 °C (Mandel Scientific, Sorvall RC-6 Plus Reffigerated
Centrifuge; Fisher Scientific, Sorvall $5-34 Rotor F21-8*50y, 21000 pm, 52,600°G )

The supematant liquid was gently discarded and the pellet of protein extract was broken

up with a glass rod to make a homogenous mixture with another portion of ice-cold
acetone at a final concentration of 80% (v/) acetone and 0.07% (wv) DT, followed by
washing and precipitation as described above. After five repetitions of protein
precipitation and washing, the final protein pellet was carefully dried under nitrogen gas
and stored at -80 °C.

For the fractions containing 2% SDS, protein samples (1.0 mg for total SDS-

soluble protein extract, 800 g for SDS fraction protein) were frs diluted with 2% (/)
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CHAPS solution to achieve  dilution of SDS from 2% t0 0.25% (w/v) with a ratio of 8:1

or greater of CHAPS to SDS, and vortexed occasionally for 1 h before being precipitated

and washed as described above for the aqueous protein fraction, and then dried and stored

at-80°C

225 2D IEF/SDS-PAGE
22.5.1 Rehydration of IPG strips.
In the case of aqueous protein fractions, 800 g of protein in dried acetone powder

was dissolved for 1.5 h in 500 ul of IEF rehydration solution containing 7 M urea, 2 M,

thiourea, 50 mM dithiothreitol (DTT), 4% (wiv) CHAPS, 1% (w/v) ampholyte (40%

Biolyte 3-10, Bi

issauga, ON, Canada), and 0.002% (W)

Rad Laboratory, Mis
bromophenol blue. For the fractions containing SDS, 1.0 mg of the total SDS-soluble
protein extract or 800 jg of the SDS fraction protein were solubilized for 1.5 h in 500 I
of IEF rehydration solution containing 5 M urea, 2 M thiourca, S0 mM DTT. 2% (W)
CHAPS, 2% (w/v) Nedecyl-N.N-dimethyl-3-ammonio-1-propane sulfonatc (SB 3-10), 1%
(wiv) ampholyte, and 0.002% (w/v) bromophenol blue. Each protein fraction was

| transferred to a 1.5 mi siliconized centrifuge tube and subject to flash freezing in liquid

nitrogen, followed after thawing by additional 1 h solubilisation with 20mM DTT (5 ul of
2 M stock to cach 500 ul sample). To achieve maximum solubilty of extracted proteins,
samples were sonicated on ice with six 10 s cycles, each consisting of § s sonication with
consistant amplitude at 5 followed by a 5 s break (to prevent overheating of the samples).

Special care was taken 1o avoid sample foaming. Afler the sonication samples were

ansferred to ultra-centrifuge wbes and centrifuged at 100 000 g (53000 rpm) for 30
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min. at 23 °C (Beckman Coulter TLA-1002 Rotor). Rehydration of IPG strips with
extracted protein samples was carried out overnight al room temperature in a cusiom

made teflon rehydration/equilibration tray.

22,52 The first dimension TEF separation of proteins

IEF was conducted with the Ettan IPGphor Il system and Manifold tray (GE
Healtheare, Piscataway, NJ. USA) using 24-cm ReadySitip IPG strips according (o the
manufacturer’s instructions (Berkelman and Stenstedt, 1998). Analysis of different
isoclectrie. point (pl) ranges for 2D gels demonstrated that the optimal resolution and

coverage of proteins from the SDS-soluble extracts were obained from PG strips with

non-linear pH gradient 3-10 and for the aqueous fraction with linear pH gradient range 5
8 IEF was performed in the following manner with the maximum current of 50
microamp per srip at 20 °C: in the first step the voltage increased gradually from zero to
250 V for 2 h in the second step the voltage was kept at 250 V for the next | h; in the
third step the voltage gradually inereased from 250 V 10 1000 V for 2 b the fourth step
continued by gradient voltage increase from 1000 V 10 8000 V for the following 6 h; and
in the final fifth step the voliage was set at 8000 V for 9 h. The proteins in IPG strips

were focused for atotal of 100 kVhr during 20 h of run time.

2.2.53 The second dimension SDS-PAGE separation of proteins
The second dimension Tris-glycine SDS-PAGE was carried out with linear
gradient 10-20% acrylamide separating gels, containing 0.375 M Tris-HCI at pH 8.8, 10%

0 20% acrylamide, 0% to 214% glycerol, 0.1% SDS, 0.03% to 0.021%

)



Tetramethylethylenediamine (TEMED), 0.03% to 0.021% ammor

im persulfate (APS).

The stacking gels contained 0.125 M T

HCI buffer at pH 6.8, 4% acrylamide, 0.1%
SDS, 0.08% TEMED, 0.08% APS, as described for the Lacmmli SDS-PAGE system
(Lacmmli, 1970). The Etian DALT six gradient maker and gel caster were used for
casting 1.0 mm thick large format gels of 25.5  20.5 cm with a volume of approximately

52ml

casting cassettes of 27 22 em (GE Healtheare, Piscataway, NJ, USA). IPG gel
strips were incubated with an equilibration buffer 1 containing 50 mM Tris-HCI at pH 8.8,
4% SDS, 6 M Urea, 30% Glycerol, 0.002% bromophenol blue, 1% DTT, followed by the

equilibration buller 2 containing S0 mM Tris-HCH at pi 8.8, 4% SDS. 6 M Urea, 30%

Glycerol, 0.002% bromophenol blue, 2.5% iodoacetamide, for 10 min in cach buffer, and
subscquently rinsed with the Tris-glycine electrophoresis buffer containing 25 mM Tris,
192 mM glycine, 0.2% SDS. IPG gel sirips were placed tightly against the upper edge of
the stacking gl to avoid air bubbles. Electrophoresis was performed at 26 °C, first with

100 V, 50 mA, 10 W for 45 min and then with 500 V, 240 mA, 100 W for 5 h, using

Ettan DALT six system (GE Healtheare, Piscataway, NJ, USA) apparatus.

226 Visualization of protein thiol modifications and image analysis

2.2.6.1 Detection of fluorescent protein signal

After electrophoresis, gels were fixed in 12.5% (w/v) Trichloroacetic acid (TCA)
for 2 h in the dark, then transferred into a solution of 40% (v/v) methanol and 10% (v/v)
acetic acid and incubated in the dark for 4 h or ovemight to reduce the background.

Protein spots on the 2-DE gel were first visualized under a UV light source (365 nm) with



an exposure time of 2 10 4 s, to detect mBBr labelling of reduced thiol (-SH) groups in the

fluorescence images (Transilluminator Kodac).

226254

ing and visualization for the total protein content

Gels were stained overnight with 0.15% (w/v) Coomassic brilliant bluc R-250 i

50% ethanol, acid, ining in 1. 7% (V)
acetic acid for 1 hour to reveal the total protein patiem. The protcin extractions and
fractionations were replicated two times (biological replicates), and 2-3 gel run replicates
per extracted protein sample under each condition were performed. The gels were
transferred to 7% acetic acid, vacuum sealed, and stored at 4 °C. The gels stained for the
total protcin content were scanned and analyzed using densitometry by video imaging

(ImageScanner 111, GE Healtheare).

22,63 UV fluorescent image analysis
“The intensity of fluorescent spots is proportional 1o the number of available -SH

‘groups i the protein, since the reaction between mBBr and -SH groups is soichiometric,

rapid and complete (0'Keefe, 1994). The extent of protein reduction, and the total protein
content detected by staining with Coomassic Blue R250 as described above were
quantified using densitometry by video imaging with Quantity One software (Bio-Rad).
Normalized conditions were used throughout with respect 1o protein extraction, labelling

and loading on the gels, luorescent signal detection and Coomassie s

ining visualization.

“The normalized protein spot intensities were analysed in both the fluorescence images

and the images of the total protein pattem. The ratio of fluorescence intensi
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level was determined by dividing the intensity of a protein spot on the fluorescence image
by the intensity of the corresponding Coomassie Blue-stained protein spot. The
fluorescence to protein ratio is a reflection of the number of labelled/reduced Cys residucs
in the protein sequence, and of protein expression level. For the same protein spots of

replicate gel images, a mean ratio of the protein abundance or the rato of fluorescence

signal intensity or fluorescence/protein ratio was calculated and included if the standard

deviation was less than 30% In order to evaluate the redo stae of thiols in protens from

dormant dry seeds and after imbibition, the thiol moification ratio of a protein spot was
calculated by dividing the mean fluorescence/protein ratio of the dormant samples by the

mean fluorescence/protein rati

of the non-dormant samples as described previously

(Wolfer ., 2008).

227 Statistical analysis
Resulis were analysed with Origin data analysis andgraphing  software
8.0.63.988 (OriginLab Corporation, Northampton, MA, USA). Only protein spots that

showed consistent differences in two biological replicates were considered for

a statstical analysis, th i normalized volume
Values to missing spots. Another issue related 1o proteomics data is the correlation

between spot normalized volume and spot variance, described in some protcomic studics

(Valledor ef al., 2008), which means that the higher the mean intensity of a spot, the
higher the variance, this being explained by a scale phenomenon related to data
acquisition (Gustafsson e al, 2004). To reduce this variance-mean dependence between

different spot intensities and sample sets, spots were considered to be variable if they.
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showed statistially significant quantitative differences according 1o the one-away
ANOVA test. P-values of 0.05 or below were calculated for the majority of protein
abundance ratios, fluorescence signal intensity and thiol modification ratios of 1.5 or
higher, Therefore, redox thiol modification for a specific protein spot was considered to
be significantly increased, when the thiol modification ratio was 1.5, or significantly
decreased, when the thiol modification ratio was 0.67. Only protein spots with P-value of
005 or below are discussed in the manuscript. In the analysis of variance, it is assumed
that different samples have equal variances, which is commonly called homogeneity of
variance. The Levene test and Brown-Forsythe test as part of the one-way ANOVA
algorithms were used to verify the assumption. The ratios with low variance (high
satistically significant homogencity) are highlighted in bold in results (Tables 3.1, 3.2,

and 3.3; Supplemental Tables S1, 52, and S3; Appendices I, I, and 1)

228 LC-MS/MS identification of mBBr labelled proteins

Protein spots were excised from 2-D gels, washed with 100 mM NH/HCO;,
reduced with 10 mM DT for 45 min at 56 °C, alkylated with 55 mM iodoacetamide for
30 min in the dark at room temperature, washed again with 100 mM NH.HCO,, and
digested overnight at 37 °C with modified trypsin (Promega, sequencing-grade). Tryptic
peptides were extracted from the gel as previously described (Rampitsch et ., 2006).
Automated nano-flow LC-MS/MS analysis of peptide digests was performed using a

linear ion trap Finnigan LTQ (Thermo Finnigan, San Jose, CA, USA) mass spectrometer

connected on-line with nano-HPLC (Dionex UltiMate™ 3000) essentially as previously
described (Bykova et al., 2011). Briefly, chromatographic scparation was accomplished
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house with

with a 17 em reversed-phase nano-column (75 um ID, 360 um OD; packed i
Vydac C18, 5 um bead and 300 A pore size resin) with flow rate delivered at 250 nlimin
and peptide elution using a lincar gradient of 4-40% (v/v) ACN for 40 min, followed by a
short gradient 40-80% (v/v) ACN for 3 min, and 80% (v/¥) ACN for 2 min in 1% (V)

formic acid, 0.5% (v/¥) acetic acid. The analytical column was directly connected 0 a

distally coated, fused silica emitter (New Objective, Cambridge, MA, USA) (360 um
OD/20 pm ID/10 um tip ID) biased to 1.8 KV. The mass spectrometer was operated in the
positive ion mode with source temperature 200 °C, and was tuned in nano-spray mode
using 10 uM (Glu)-Fibrinopeptide B (GluFib) singly charged ion at miz 1552.67. Data-
dependent analysis was employed with one MS mz range 450-2000 and MS/MS of five

most abundant ions in each eycle, 20 s dynamic exclusion.

229 i e bimane-Cy

The LC-MS/MS data were interpreted using MASCOT v. 2,101 search engine.
(Matrix Science, UK) first with the NCBInr protein database (Viridiplantae taxonomy,
6573034 sequences) followed by querying 1361178 wheat EST sequences (in-house
database). The Finnigan Xcalibur (LTQ) raw data were converted into the DTA format
and used for protein identification and modification screening. The bimane-Cys was
incorporated into MASCOT and used as variable modification for automated analysis.
The following parameters were used for database search: (1) trypsin as digestion enzyme
with maximum one missed cleavage; (2) monoisotopic peptide masses were used; (3) the
peptide mass tolerance at | Da; and the fragment ions mass tolerance at 0.5 Da for 1TQ

nano-flow LC-MS/MS; (4) variable modifications bimane (C), carbamidomethyl (C),
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deamidation (NQ). oxidation (M); (5) peptide charge sates +1, +2 and +3. The bimane
modification was added to the MASCOT list of variable modifications with elemental
composition C(10) H(10) N(2) O(2) and mass average/monoisotopic 190.2016/190.0742
for covalent bimane adduct to Cys residue. Only Triticum aestivum protcin and EST
complementary sequence matches were used for identification of proteins and their post

translational modifications. A single peptide probability of identification MOWSE score

reater than 52-55 indicated identity

ing the EST database. Peptide matches indi

ting
identity or extensive homology were considered for confident protein identification.
Providing that the protein had at least 1-3 confidently identified peptides, peptide

matches with bimane-Cys modifi

tion were manually verified using the GPMAW 7.0

(Lighthouse Data, Odense, Denmark) software.



Labelling of protein Cys with free -SH groups

Total SDS Fraction mBBr
(bimane, +190.074 Da )
Aqueous Fracti
SBS-salubie Fraction

Extraction/fractionation of labelled proteins

Protein precipitation
DT

Reduction of blocked reversibly oxidised Cys
lodoacetamide

(cam, + 57.034 Da)
Alkylation of newly generated -SH groups,

Protein separation by 2D IEF/SDS PAGE
Fluorescent signal <——"], —Densitometry imaging
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signal Quaniitative analysis of 2-D gl protein arrays
DT, lodoacetamide
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LC-MS/MS analysis of responding protein spots
MASCOT scarch against
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Assignment of Cys-bimane modification sites
jgure 2.1 Experimental design for the detection of thiol redox-sensitive proteins. Thiol
redox-sensitive proteome in dommant and non-dormant genatypes of wheat were followed by
Bt BB n i el of procncyscies with free SH groups in native seed protein
extracts. Afler ractionated
into agqueous and SDS-s bl excs, n aion to the bimane etz protcin eyscins,
unlabelled cysteines remained oxidised. Proteins with remaining reversibly oxidised cysteines,
disulfide bonds and mixed disulfides, were completely reduced with DTT and alkylated with
fodoacetamide (carbamidomethylation, CAM) prior o separation by 2D IEF/SDS PAGE as well
digestion of individual protein spots.

as prior o
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3. RESULTS

3.1 Monitoring phenotypic trait for germination resistance

“The germination index assay was used (0 test different levels of PHS resistance
between twelve doubled haploid hybrid and two parent lines of spring wheat (Triticum
aestivum L.) (Figure 3.1). It has been demonstrated that, under controlled environmental
growing conditions, dormant and non-dormant fixed lines can be clearly differentiated

and achieve similar levels of grain dormancy to feld-grown plants (Nyachiro et al,, 2002;

Clarke et al., 2005; Hickey et al, 2010). Based on the germination resistance test, four
hybrid lines and the parent standard line 8021-V2 showed consistently high levels of seed

dormancy. Six hybrid lines displayed germination characteristics that reflected a level of

dormancy even slightly Tower than non-dormant donor parent AC Karma, The spring
wheat hybrid lines used in ths study are part of a larger population of 380 doubled
haploid lines derived from the cross AC Karma/SC8021V2 previously characterized for
the expression of dormancy. There was significant bidirectional transgressive segregation
in both the glasshouse and field environments (Clarke ef al., 2005). Three hybrid lins
(BB, AF, BH) with one parent line (8021-V2) showing highest PHS resistance, and three
susceptible hybrid lines (AL, AN, BQ) with one parent line (AC Karma), a total of § lines

(Figure 3.1), were ch i for ic anal




32 The differential expression profiling of total proteome in dormant and non-
dormant hybrid wheat lines
321 Proteome maps and identification of wheat proteins
Qualitative and quantitative changes in proteins were analysed by comparing the
protein abundance of individual spots on 2D SDS-PAGE proteome maps from dormant
and non-dormant seeds in two states, dry and imbibed for 24 h. A number of protein spots
displaying significant up- o down-regulation between dormant and non-dormant
genotypes were detected in the Coomassie stained 2D SDS-PAGE images but were
absent in the fluorescence images, indicating the absence of labelled Cys residues in
cormesponding protein sequences. These protein spots were regarded as candidates that
maintain dormancy-related differential expression between dormant and non-dormant
lines based on the quantification and statstical analysis, and were then subject to MS

tion. A number of spots identified as the same protein could

analysis for protein identifi
cormespond either to post-translational modification (PTM) of the same protein or to
different protein isoforms.

The strategy for protein identification was based on considerable bioinformatic
resources and an available extensive database, hence the proteomics approach was
combined with transcriptomic resources 1o study differential wheat proteomes. This was
essential for achieving a high rate of successful protein identification by LC-MS/MS.
(Tables 3.1, 3.2, and 3.3; Supplemental Tables S1, 52, S3, and $4; Appendices 1, 11, 1l
and IV). As rich sources of comparative sequence information, publicly available EST
databases have grown exponentially and represent the largest collection of genetic

sequences. However, due o the large size and redundancy of EST databases, their
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application in high throughput functional proteomic analyses makes both automatic
MASCOT searches and results interpretation very inefficient. In our approach, we used a
custom database where contig sequences were constructed from wheat EST entrics to
reduce the size of the database (Supplemental Table $4; Appendices IV). In addition to
51% of spots matched to Triricum aestivam protein sequences (4 spots), 40% of spots
could be uniquely identified from the wheat EST database (42 spots), 9% could be
identified from both approaches (10 spois), and in most cases sets of peptides unique (o

protein or EST sequences were used.

322 Protein abundance differences in dormant and non-dormant lines
A set of proteins displayed quantitative differences in abundance between dry

and/or imbibed for 24 h sceds of dormant and non-dormant genotypes. Among the spots

that d ed the genotypes, sixteen in 25 spots were found in the
protein expression maps (Table 3.1 Supplemental Table S1; Appendix I; Figure 3.2 A~
D). Among these were one enzyme of glycolysis/gluconeogenesis (spot 1) and one TCA-
cycle enzyme (in the same spot 1), four enzymes of starch metabolism (spots 2-12,

Figure 3.2 B-D), one enzyme of amino acid metabolism (spot 13, Figure 3.2 D), two

jgure 3.2 B and spot 15 in

proteins involved in protein folding (spot I Figure 3.2 D),
one component of intracellular protein transport and signal transduction system (spot 16,
Figure 3.2 C), one enzyme involved in antioxidative defence response (spots 17 18 in

Figure 3.2 B and spot 19 in Figure 3.2 C), and five storage proteins (spots 20-25,

20)




Most of these proteins (14 proteins in 22 spots) were found to be more abundant
in dry sceds of dormant lines. Three proteins phosphoglycerate kinase, beta-chain of

succinyl-CoA ligase, and one of the isoforms of beta amylase showed higher expression

level in dry sceds of non-dormant versus dormant lines. Three identified proteins from
dormant lines, mitochondrial manganese superoxide dismutase (SOD), small Ran-related
GTP-binding protein, and one of the beta amylase isoforms displayed significantly
increased protein abundance ratio in response o 24 h of imbibition (Table 3.1;
Supplemental Table S1; Appendix ). Interestingly, two spots from aqueous fraction
containing SOD protein were differentially expressed, with spot 17 higher and spot 18
slightly lower in abundance in dormant lines (Figure 3.2 B), indicating possible post-

translational modification variants.

3.2.2.1 Differential expression of dormancy-related proteins in dry sceds of dormant

and non-dormant wheat lines

Twelve proteins found to be mare abundant in dry seeds of dormant lines (Figure
3.2) include 0.19 dimeric alpha-amylase inhibitor (spots 2, 3, 4). dimeric alpha-amylase
inhibitor (spot 6), one of the isoforms of beta amylase (spot I1). betaine aldehyde
dehydrogenase (spot 13), heat-shock protein-14.5kDa (spot 14), protein disulfide
isomerise 3 (spot 15), manganese SOD (spot 17), glutenin HMW subunit 1AX] (spot 20),
glutenin HMW subunit 12 (spot 22), glutenin HMW subunit 1DxS" (spot 23). titicin

(spot 24), and glutenin HMW subunit B3-2 (spot 25).



Three proteins. phosphoglycerate kinase (spot 1), beta-chain of succinyl-CoA
ligase (spot 1), and one of the isoforms of beta amylase (spots 9, 10), showed higher

expression level in dry seeds of non-dormant versus dormant lines.

32.2.2 Differential expression of dormancy-related proteins in imbibed seeds of
dormant and non-dormant wheat lines
Seventeen protcins were found to have higher expression level in the sceds of
dormant lines afier 24 h of imbibition (Figure 3.2), including phosphoglycerate kinase

(spot 1), beta-chain of succinyl-CoA ligase (spot 1), 0.19 dimeric alpha-amlase inhibitor

(spots 2. 3, 4), dimeric alpha-amylase inhibitor (spots S, 6), alpha-amylase/subilisin
inhibitor (spot 8), one of the isoforms of beta amylase (spot 12), betaine aldehyde
dehydrogenase (spot 13), protein disulfide isomerise 3 (spot 15), small Ran-related GTP-
binding protcin (spot 16), manganese SOD (spot 17), glutenin HMW subunit 1Ax1 (spot
20), glutenin HMW subunit 1DxS" (spot 23), witcin (spot 24), and glutenin HMW
subunit B3-2 (spot 25),

Only one of the isoforms of beta amylase (spots 9, 10) showed higher expression

fevel in the seeds of non-dormant lines responding to 24 h of imbibitions.

3223 Higher level of germination-related protein expression in dry and imbibed
sceds from non-dormant lines
Phosphoglycerate kinase (spot 1) and beta-chain of succinyl-CoA ligase (spot 1)
from dry sceds displayed significant p-regulation in protein expression in non-dormant

hybrid lines. However, the expression level of the two proteins changed dramatically after
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24 h of imbibition and was found to be approximately 2 fold lower in the imbibed sceds
from dormant lines. It is important to mention that there were two unique proteins present
in one spot (spot 1), and therefore the protein abundance rato results from the sum of two.
protein amounts, making the quantitative analysis tentative only. One of the beta amylase
isoforms (spots 9, 10) from non-dormant lines displayed increased protein abundance

Fatio in response to 24 h of imbibition.

3.2.3.4 Higher level of dormancy-related protein expression in dry and imi
sceds from dormant lines

Five identified proteins 0.19 dimeric alpha-amylase inhibitor (spot 4). alpha-

amylase/subtilisin inhibiter (spot 7), one of the isoforms of beta amylase (spot 11), heat-

shock protein-14.5 kDa (spot 14), and glutenin HMW subunit 12 (spot 22) from dormant

Tines showed statistically significant differential expression level in dry seds, while these
differences cither decreased (spot 4) or were completely climinated after 24 h of

imbibition,

Five identified proteins from dormant lines, alpha-amylase/subtilsin inhibiter
(spot 8), one of the isoforms of beta amylase (spot 12), betaine aldehyde dehydrogenase.
(spot 13), mitochondrial manganese SOD (spo 17), and small Ran-related GTP-binding
protein (spot 16) with no apparent changes in the expression level in dry seeds, displayed

significantly increased protein abundance rato in response o 24 h of imbibition.

Two spots from aqueous fraction containing SOD protein were differentially

expressed. with spot 17 higher and spot 18 slightly lower in abundance in dormant lines

(Figure 3.2 B),indicating possible post-translational modification variants.
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33 Differentis ion of thiol itive p

3.3.1 Monitoring of differenti

1 expression profiles of the dormancy-related thiol
redox-sensitive proteome
Dormancy-related differential changes in the protein sulphydryl status were
monitored using fluorescent monobromobimane (mBBr) in situ labelling of active-frec —
SH groups of protein thiols in native wheat sced protein extracts, followed by the two-

dimensional isoelectric focusing polyacrylamide gel lectrophoresis (2-D IEF/SDS PAGE)

separation. The bimane-derivatized proteins were first visualized under a UV light source
for detection of fluorescently labelled Cys residues in proteins and subsequently
Commassic Brilliant Blue (CBB) stained for the total protein content i the same 2-D gel.
The 2-D IEF/SDS PAGE comparison of the fluorescence intensity with the total protein

expression level revealed two groups of proteins with different fluorescence and protein

staining characteristics. Some protein spots were observed in the fluorescence image as

well as in the stained gel. A few protein spots produced a strong fluorescent signal but
were cither absent or faint in the total protein image, indicating low-abundance highly
abelled Cys-containing proteins in these positions,

The fluorescence (o protein ratio s a reflection of the number of labelled/reduced

Cys residues in the protein sequence, and of protein expression level. Three types of

differences were observed: 1) the fist type of response was due (0 differences in protein
expression for protein spots with about the same level of Cys reduction/oxidation (no
change in the fluorescence (o protein ratio, Table 3.2, Supplemental Table S2, Appendix

11); 2) the second type of response was caused by changes in both reduction/oxidation of

Cys and protein expression level, where the fluorescent and protein signals showed
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differences yet the fluorescence to protein ratio was not necessarily different between the
‘genotypes (overlapping proteins in Tables 3.2 and 3.3; Supplemental Tables 52 and $3;
Appendices 11 and 11); 3)the third type of response resulted from the reduction/oxidation
of Cys residues without prominent changes in the protein  expression level
(increase/decrease in fluorescence 1o protein ratio) (Table 3.3; Supplemental Table §3;

tion ratio was used to reflect changes in Cys redox state.

Appendix I1). The thiol madifi

3.3.2 Wdentification of bimane-labelled proteins and assignment of modified cysteine

thiols

Specific labelling of reduced free Cys with mBBr helped to identify and distinguish
redox responding proteins even from a mixture of proteins overlapping in one spot. This

often happens with proteins on 2D gels cither because they have very close pl values or

their i can be shifted due (0 post-translational modifications. Several spots (spots 27, 28,
32,33, 34, 52, 56 in Table 3.2; Supplemental Table 52; Appendix 1. Spot 94 in Table 3.3;
Supplemental Table $3; Appendix 1) contained more than one protein with identificd
bimane-Cys residues and for these proteins the given quanttative fluorescence (o protein
fatio s tentative only. Many proteins were represented by more than one isoform, 11
proteins had two, and one protcin, dimeric alpha-amylase inhibitor (spots 43, 44, 45 in
Figure 3.3 A), had three isoforms.

“To characterize Cys functionality in native proteomes based on reactivity profiling,

4 strategy for differential alkylation was applied with. cither mBBr during protein

10 in-gel digestion. This allowed us to discriminate

extraction or with iodoacetamide

redox active from inactive cystcines and detect Cys residues with mixed redox
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modifications. During mass spectrometry (MS) analysis, all Cys residues differentially
reduced at the time of protein extraction, had a covalent bimane modification (bimane,
+190.074 Da monoisotopic mass), whereas non-labelled (oxidised) Cys  were
distinguished by carbamidomethylation (cam, +57.034 Da  monoisotopic mass)
‘modification, performed prior to digestion. In MS analysis, metastable decomposition
product ions containing fiee cysteine due to partial photolytic fragmentation of bimane-
modified peptides was also abserved. In collision induced dissociation (CID) tandem MS.
(MS/MS) spectra fragment y- and b-type ons provided an easily interpretable pepiide
sequence information with covalently bound bimane-Cys remaining intact in peptide
fragmentation product ions. Two specific diagnostic signatures for the site of
modification were present in mass spectra: 1) in MS spectra — a mass increment of
190.074 Da between bimane-derivatized peptide ions and metastable decomposition
product ions containing free cysteine; 2) in CID MS/MS spectra — fragment y- and b-ype.
fons with a mass difference corresponding to bimane-Cys and Cys-SH for a modified and
unmodified peptide ion signal, respectively. The presence of all three modified forms
bimane-Cys, cam-Cys and Cys-SH increased confidence in the peptide sequencing and in
the assignment of Cys modification sies.

A total of 97 redox modified Cys were detected in 93 peptides from 64 unique
proteins responding differentilly in dormant and non-dormant closely related wheat
genotypes. The identified cysteines with known functional roles perform important
catalytic and/or regulatory functions for their parent proteins, or correspond o sites for
glutathionylation, nitrosylation and disulfide formation, and therefore offer points of

protein control by oxidative stress pathways.
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333 Differences between dormant and non-dormant genotypes

expression of
proteins with reduced cysteines.
A number of labelled thiol redox active proteins displayed differential expression

in dormant compared to non-dormant genotypes (Table 3.2; Supplemental Table $2;

Appendix 1I; Figure 3.3). Redox responding proteins from the functional groups of
carbohydrate metabolism, starch and sucrose metabolism, biosynthesis of secondary
metabolites, energy and amino acid metabolism, genetic information processing and cell

cycle, antioxidative defence and storage proteins were found in all three solubility

SDS, aqueous and protein extracts (Table
3.2; Supplemental Table S2; Appendix II; Figure 3.3 A-F). Storage globulins (spots 79,
80,81, 82, 83) as intact proteins and fragments were found in the total protein extract and

in the SDS-soluble fraction (Figure 3.3 A, B, E and F).

3330 Labelled thiol redox active proteins with higher level of expression in

dormay

compared to non-dormant dry seeds

A set of 16 proteins from dry seeds identified in 25 spots displayed increased

¢ protein abundance ratio in dormant lines, and upon imbibition their abundance

ratio cither decreased or remained at the same level (Figure 3.3). These represented the

enzymes of metabolism, inclu omerase

(spot 30) and (spot 31), alcohol (DH) (spot 33),

eytosolic phosphoglycerate kinase (spot 38), monomeric alpha-amylase inhibitor (spot

42),0.19 dimeric alpha-amylase inhibitor (spot 43), dimeric alpha-amylase inhibitor (spot
45),alpha-amylase/trypsin inhibitor CM3 (spot 46), glucose and ribitol DH (spots 47-51),
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decarboxylase (spot 52), ytosolic malate DH (spots 58, 59), two enzymes of amino acid

metabolism alanine amil pots 32, 61) and asp: (spots

52, 56), three serine protease inhibitors serpin-Z1 A (spots 62, 63), serpin-Z2B (spot 65),

ymes of

and serpin-ZIC (spot 66), cell division control protein 48 (spot 68), two et
antioxidative defence response 27K thioredoxin family protein (spots 69) and aldehyde

DH (spot 75).

3.3.3.4 Labelled thiol redox active proteins with higher level of expression in non-

dormant compared to dormant imbibed seeds

Upon imbibition of seeds from non-dormant lines, a significant increase in
expression level could be detected for NAD-dependent glyceraldehyde-3-phosphate
dehydrogenase (DH) (spots 35, 36), NADP-specific isocitrate DH (spot 57), serpin-Z1B
(spot 64). and serpin ZIC (spot 66). A moderate increase was observed for
trioscphosphate  isomerase  (spot 29, phosphofructokinase  (spot 32),  alanine.
aminotransferase (spot 32). alcohol dehydrogenase ADHIA (spot 34), mitochondrial
formate dehydrogenase (spot 34) serpin-ZIA (spots 63), and 27K thioredoxin family
protein (spot 69),

In addition, some identificd proteins showed differential expression in aqucous
and SDS-based protein fractions indicating possible variation in their solubility. Among,
these were alcohol DH (spots 33, 34), mitochondrial formate DH (spots 55, 33, 56, 34),

alanine aminotransferase (spots 32, 60, 61), and 27 K thioredoxin family protein (spots 71,

72). Other proteins were identified in several spots that displayed variation in protcin
abundance indicating possibledifferences in post-translational protein: modification
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between dormant and non-dormant protein extracts. These were triosephosphate

isomerase (spots 29, 30), alanine aminotransferase (spots 32, 60), and 27 K thioredoxin

family protein (spots 69, 70).

34 Monitoring of Cys oxidoreduction without prominent changes in the protein
expression level

A comparative analysis of fluorescently cysteine labelled and protein stained two-

imensional electrophoresis (2-DE) maps identified a set of 36 proteins with quantitative
thiol modification differences between dormant and non-dormant genotypes (Table 3.3;
Supplemental Table $3; Appendix IIl; Figure 3.3). Seventeen unique proteins with 19
reactive modified cysteines were found to have differential post-translational thiol redox
modification without differences in protein expression level. Among these, a significantly
igher thiol modification raio in dry seeds from dormant lines was found i enolase (spot

26), glucose and ribitol (DH) (spots 48. 49), 7RP4

(spot 90), NADP-specific malic enzyme (spot 53), alanine aminotransferase (spot 32),
serpin-Z2A (spot 98), 1-Cys peroxiredoxin PERI (spot 73), embryo-specific protein (spot
76). globulin 3 full length (spot 102) and fragments (in spots 103, 104), and lipoprotein-
like protein (spot 106). Higher thiol modification ratio in protein extracts of imbibed

dormant seeds from dormant lines included enolase (spot 26), pyruvate orthophosphate.

dikinase 1 (spot 37), monomeric alpha-amylase inhibitor (spot 42), mitochondrial formate
dehydrogenase (spot 55), serpin-ZIA (spot 63), serpin-Z2A (spot 98), serpin-ZIC (spot
66). globulin 3 full length (spot 102) and fragments (in spots 103, 104), and lipoprotcin-

like protein (spot 106)



“The most abundant in aqueous extracts of imbibed dormant seeds with prominent

response were proteinaceous inhibitors of a-amylases, inclu

ing 0.19 dimeric_alpha-
amylase inhibitor (spot 87), alpha-amylase/irypsin inhibitor CMS3 (spot 88). Four unique
Cys residues in seven peptides (Tables 3.2 and 3.3; Supplemental Tables 2 and S3;
Appendices 11 and 1) were found to be reduced in three isoforms of dimeric alpha-
amylase inhibitor (spots 43-45 in Figure 3.3 A, 87 in Figure 3.3 B)

Besides cytosolic phosphoglycerate kinase (spot 38), beta amylase (spot 86) that
displayed differences in protcin expression level, a set of thiol redox-modified proteins
without differences in protein expression level was more reduced in non-dormant dry.
seeds. These represented phosphoglucomutase (spot 31), fructose 1-6- biphosphate
aldolase (spot 39), granule-bound starch synthase (spot 89), mitochondrial formate
dehydrogenase (spot 92), eytosolic malate ~dehydrogenase (spot 94, alanine
aminotransferase (spots 61, 96), heat shock 70 kDa protein (HSP70) (spot 99), putative

605 acidic ribosomal protein PO (spot 94), r40g2 protein (spot 105). In non-dormant seeds

imbibed for 24, several proteins showed changes in only reduction/oxidation of Cys

without _differences in protein expression level, including cnolase (spot 84),

ephosphate isomerise (spot 29), NAD-dependent glyceraldehydes-3-phosphate
dehydrogenase (spot. 85), glucose and ribitol dehydrogenase (spot 50), thiamine
biosynthetic enzyme (spot 91), eytosolic malate dehydrogenase (spots 93, 8, 94),

mitochondrial serine (spot 95), alanine (spot

60), serpin-Z2A (spot 97), serpin-Z1B (spot 64), celldivision control protein 48 (spot 68).

putative 608 acidic ribosomal protein PO (spot 94), 2-alkenal reductase (spot 100),

101, 75), specific protein (spot 77)
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Four antioxidative defence-responsive proteins with modified thiols displayed
higher protein abundance level in dormant versus non-dormant seed protein extracts.

“Three proteins, 1-Cys peroxiredoxin (Prx), DHAR, and aldehyde DH, showed clevated

expression upon 24 h of imbibition. The thioredoxin family 27 K. protein was found in

four protein spots 69-72 containing two identified isoforms (Table 3.2; Supplemental

Table 52; Appendix II; Figure 3.3) with spots 70 and 71 more abundant and spots 69 and
72 less abundant in dry dormant sceds, indicating possible post-translational modification

cation ratio in imbibed dormant seeds was

variants. A moderately decreased thiol moy
observed for 2-alkenal reductase and aldehyde DH (Table 3.2 Figure 3.3). It was also
demonstrated that 1-Cys Prx expression level was higher in dormant dry and imbibed
seeds, whereas the redox state was moderately decreased in imbibed dormant compared
0 imbibed non-dormant wheat sceds (Tables 3.2 and 3.3; Supplemental Tables 52 and §3;
Appendices 11 and [11). One protein involved in protein degradation 208 proteasome
subunit alpha 7A had higher expression level in dormant than in non-dormant seeds, and
also contained redox active thiol (Table 3.2; Supplemental Table S2; Figure 3.3). It was

shown in this study that serpin-ZIB was more abundant in dormant sceds with

28

significantly i ion level bibition, whercs ZIA, serpi

and serpin-ZIC were more abundant in non-dormant seeds (Table 3.2; Supplemental

“Table $2; Appendix I1; Figure 3.3). Two isoforms serpin-Z1A and serpin-Z1C showed

elevated thiol reduction level in dormant seeds upon imbibition, and one soform serpin-
22 was found 1o be significantly more reduced in dry and imbibed dormant seeds
without systematic diferences in protein expression between dormant and non-dormant

genotypes (Table 3.3; Supplemental Table S3; Figure 3.3). Other two isoforms serpin-
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Z2A and serpin-Z1B displayed higher thiol reduction level in non-dormant sceds. This.

indicates differential serpin isoform variants,
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4. DISCUSSION

41 Protein abundance differences in dormant and non-dormant lines

Itis stil not clear how the germination process is being induced in non-dormant
seeds and suppressed in dormant seeds. This rescarch aimed to address this question by
studying wheat seed protein expression profiles associated with germination potential. In
our study, a number of proteins showed higher expression level in dormant sceds versus

non-dormant seeds. One of the most prominent identified proteins was Ran GTPase,

Wi

is involved in diverse biological functions such as nuclear transport, spindle
formation during mitosis, DNA replication, and cell division. The functions of Ran

and

signalling in nuclear transport and mitatic progression are well conserved in plan
animals and are essential for viabiliy in every tested organism. This protein was recently
demonstrated to be a direct target for NO-induced cellular molecular response (Heo,
2008; Heo and Campbell, 2006). The oxidative stress-induced perturbation of the Ran-
mediated nuclear import suggests that the unique structural redox architecture of Ran

associated with

could be a factor in the regulation of cell signal transduction pathway
ths protein.

A strong, negative correlation was found between germination capacity and ROS,
such as superoxide radical and hydrogen peroxide, as well as with lipid hydroxyperoxides
(Bailly et al., 2008). Afer-ripening of dormant sunflower (Helianthus annus 1) seeds
entailed a progressive accumulation of ROS, namely superoxide anions and hydrogen

peroxide, in cells of embryonic axes. This accumulation occurred concomitantly with



lipid

b al,

2007; Oracz et al., 2009). Manganese SOD s involved in superoxide radical
detoxification in the mitochondrial matrix. In mitochondria, ROS production is generally
caused by an over-reduction of the electron transport chain. In the course of seed
development and germination, energy-demanding processes relying on respiratory
metabolism and seed mitochondria are exposed to water stress, desiccation, imbibitions,

and hypoxic conditions. A number of protei

oxidatively damaged by carbonyl

on
Gincluding SOD) have been identified in the mitochondrial matrix, and the level of protein
carbonylation was higher in the mitochondria than in other organelles such as chloroplasts
and_ peroxisomes (Moller et al., 2007). Noticeably, SOD qualifies for both ROS-

detoxifying enzymes and enzymes that produce ROS as part of their normal catalytic

eyele. Elevated expression level of SOD in highly dormant wheat lines firstly can play a
protective role against oxidative stress damage during seed aging or desiccation, and
secondly can be involved in regulation of a delicate balance between production and
scavenging in ROS homeostasis for perception of environmental factors by sceds during

dormancy maintenance.

42 Protein thiol redox modification in hybrid dormancy lines

“The most abundant proteins in aqueous extracts of imbibed dormant seeds with
prominent response were protcinaceous inhibitors of a-amylases. The cereal-type a-
amylase inhibitor proteins contain five disulfide bonds and are known for their action on

a-amylases from birds, bacilli, mammals and insccts. All identified a-amylase inhibitor

proteins were shown to be putative Trx A-reducible disulfide targets in wheat and barley

8



(Wong ef al., 2004; Maeda et al., 2005). The disulfide bonds were proposed 1o be
essenial for the activity of some a-amylase inhibitor proteins in vitro (Kobrehel ef al.
1991). The findings suggest that the redox mobilization of defence proteins has a specific
role in the high dormancy genotypes.

Globulin storage proteins legumins (115 globulin 2) and vicilins (7S globulin 3)
were highly reduced in dry dormant seeds (Tables 3.2 and 3.3, Supplemental Tables 52
and $3, Appendices 1l and IIl, Figure 3.3). Both storage proteins are synthesized as
before deposi

Similar proteinases catalyse the proteolytic processing of these proteins and contibute to

precursors that undergo molecular maturation by limited proteoly: n
their complete breakdown during germination and secdling growth (Shutov ef al, 2003).
Therefore, the pattern of well-defined partal proteolytic fragments may reflect a transient
synthesis or activation of one or more proteases at this stage of development. Trx was
shown 0 reduce the major storage proteins of wheat seeds in vitro (Montrichard et al.,
2009; Wang et al., 2004). Ina recent study on the effects of endogenous and recombinant
“Tr induction on rice bran proteins, it was demonstrated that the activation of a cysteine

protease was accompanied by unfolding of ts substrate, the embryo-specific protein (ESP)

(Yano and Kuroda, 2006). Similar to ESP, globulins in wheat secds are considered to

have a folded, possibly protease-resistant structure before imbibition. Meanwhile, it has

been suggested that Trs is inactive before imbibition, and seed proteins are degraded in
specific stages of germination through the presence of a Trx-dependent mobilization

3

mechanism. Thus it is likely that Trs fine-tunes the complete degradation of globul

storage protein in non-dormant wheat seeds during germination. This finding suggests




that in dormant seeds globulins undergo a change (i.. partial proteolysis) that renders

them amenable to digestion following reduction by Trx.

43 Impactof y genotyp ional thi L
Four antioxidative defence-responsive proteins with modified thiols displayed
higher protein abundance level in dormant versus non-dormant seed protein extracts.
Three proteins, 1-Cys peroxiredoxin (Prx), dehydroascorbate reductase (DHAR), and
aldehyde dehydrogenase (DH) showed elevated expression upon 24 h of imbibition. Prss
are ROS-scavenging enzymes that provide cells with highly efficient machinery for

detoxifying H02, alkyl hydroperoxides, and OH' and were shown to prevent radical

attack of lipids, enzymes, and DNA. in vitro. Moreover, Prxs were also reported 1o
function as redox sensors, linking the redox signalling and ROS networks of cells (Dietz,
2008). Prxs are widely distributed and can be divided into 1-Cys and 2-Cys Prx groups
based on the number of conserved cysteine residues in their catalytic cycle. 1-Cys Prx is
almost exclusively expressed in seeds, te protein accumulates in the nucleus of aleurone
and embryo cells (Stacy ef al, 1999) and exhibits antioxidant activity rather than
dormancy-related function (Haslekds ef al., 2003). When coupled to a thiol-reducing
system, 1-Cys Prxs display peroxidase activity. Reduction of 1-Cys Prxs by Tex h was
previously observed in wheat (Montrichard ef al., 2009) and, in barley sceds, Trx
significantly reduced cysteine residues identical (o Cys72 and Cys147 (Hiigelund et al.,
2008). It was proposed that the antioxidant function of 1-Cys Pr resulied from the

tive stress. Our findings

protection of nuclear DNA in seed cells suffering oxi

demonstrate that the 1-Cys Pr expression level was higher in dormant dry and imbibed
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seeds, whereas the redox state was moderately decreased in imbibed dormant compared
10 imbibed non-dormant wheat seeds (Tables 3.2 and 3.3, Supplemental Tables $2 and §3,
Appendices Il and I1D).

Antioxidant strategies are used by seeds to protect themselves against oxidative
stress damage during desiccation and rehydration. One of the enzymes that maintains the
redox status and regenerates antioxidants in their active form in the ascorbate-glutathione
eycle is DHAR. Interaction between DHAR and Trs i was previously demonstrated in
Arabidopsis thaliana, wheat and barley (Montrichard ef al., 2009). A recent quantitative
proteomic study revealed that Cys19, the proposed catalytic residue of DHAR enzyme

(Dixon ef al., 2002), was extensively reduced (over 60%) by Trs  (Higglund ef a

2008). Hence the reduction of DHAR by Trx  is likely to modulate its function. The
conserved Cys19 forms mixed disulfides with glutathione GSSG, which preserve the
enzyme from being inactivated. Such S-glutathionylation of enzymes protects essential
cysteinyl residues from irreversible oxidation to the sulfinic acid and sulfonic acid
derivatives during redox stress (Dixon ef al., 2002). It was found that the reduced DHAR
form inereased in abundance in imbibed sceds of dormant white-grained wheat genotypes
Versus imbibed sceds of non-dormant genotypes, and this could possibly indicate that the
enzyme was present in a more active sate.

modification ratio in imbibed dormant seeds was

A moderately decreased
observed for 2-alkenal reductase (spot 100 in Table 3.3, Supplemental Table 3,
Appendix 11l, Figure 3.3). Degradation of lipid peroxides leads o the formation of
eytotoxic 2-alkenals and oxenes, collectively designated as reactive carbonyls. The

NADPH-dependent oxidoreductase 2-alkenal reductase (AER) catalyzes the reduction of
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the «, Punsaturated bond of reactive carbonyls (Youn er al., 2006). Specific and
imeversible protein carbonylation during seed after-ripening has been recently associated
with oxidative attack and dormancy alleviation (Oracz et al., 2007). The putative AER
proteins from Triticu shares 63% identity with AtSg16970, one of 11 homologues in
Arabidopsis thaliana (Youn et al,, 2006). The identified labelled conserved CysI83,
€ys256 and Cys275 are located in the nucleotide binding domain of the folded
At5g16970. The precise role of the Cys residues for AER function has to be further
elucidated.

A major group of identified thiol redox active proteins is involved in carbohydrate,
energy and amino acid metabolism. Enzymes of carbohydrate and energy metabolism
were redox responding to-genetic dormancy variation, including many DHs whose
activity is dependent on NAD' or NADP" (Table 3.2, Supplemental Table 52, Appendix
1), Maintaining a highly reducing interal environment in plant cells is made possible by
interactions between the major soluble non-protein redox couples (NAD', NADP',
glutathione and ascorbate). In addition, therefore, to key roles in primary and secondary
metabolism, these compounds are at the center of the complex network of reactions
surrounding ROS generation and control. Although their physiological functions are not
limited to stress conditions, the status of cach of them can influence stress responses.
Local perturbation of this NAD(P)-dependent buffering system is likely an important
process in the transmission of ROS signals (Noctor, 2006). Redox thiol change is one of
the biochemical mechanisms through which the status of redox couples could be sensed.
Many metabolic proteins identified in this study have been linked to Trx (Monirichard et

al., 2009; Wong et al., 2004; Marchand et al., 2006). One protein involved in protein
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degradation, 208 proteasome subunit alpha 7A, had higher expression level in dormant
than in non-dormant seeds, and also contained a redox active thiol (Table 32,

Supplemental Table S2, Appendix I, Figure 3.3). In plants, protein-processing and

degradation genes leading ind division, and
degrade unwanted or inhibitor proteins during cellular processes (Vierstra, 2003). A
‘number of proteasome subunits were shown (o be potential Trx targets. Trs was shown to
enhance proteolysis in cereals by its abilty to reductively activate proteases and increase
the solubility and proteolytic susceptibilty of storage proteins on the one hand, and
inactivate protease inhibitors on the other (Montrichard er al., 2009). High-level
expression of this protein during imbibition of dormant sceds may affect a rapid
degradation of dormancy-alleviating or germination-inducing proteins. Serine proteinase

like enzymes displayed different

inhibitors of chymotrypsi I expression and thiol-

reduction pattern in dormant and non-dormant genotypes. Six distinet serpins were
previously identified in grains of hexaploid bread wheat but their physiological functions
have not been completely elucidated (stergaard ef al., 2000). In our study, serpin-Z1B
was more abundant in dormant seeds with significantly increased expression level upon

imbibition, whereas serpin-Z1 A, serpin-Z28 and serpin-Z1C were more abundant in non-

dormant sceds (Table 3.2, Supplemental Table S2, Appendix II, Figure 3.3). Two
isoforms serpin-ZI A and serpin-Z1C showed elevated thiol reduction level in dormant

seeds upon imbibiti form serpin-Z2A was found to be significantly more

. and one i

reduced in dry and imbibed dormant sceds without systematic differences in protein
expression between dormant and non-dormant genotypes (Table 3.3, Supplemental Table

3, Appendix 11, Figure 3.3). Other two isoforms serpin-Z2A and serpi

Z1B displayed
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higher thiol reduction level in non-dormant seeds. This possibly indicates differential

functional role of scrpin soform variants. Plant serpins are likely to use their irreversible
mechanism in the inhibition of endogenous and exogenous protcinascs capable of

breaking down seed storage prolamins, such as digestive proteinases of insect pests or

fungal pathogens (Ostergaard ef ., 2000). The role of oxidative changes in serpins

during dormancy control remains o be investigated



. CONCLUSIONS AND FUTURE STUDIES

51 Conclusions
The results demonstrated that harvest-ripe grains of closely related genotypes of
wheat with either a dormant or a non-dormant phenotype, differentially express many

proteins involved in metabolism, genetic and environmental information processing,

anti defence response and storage (Appendix VI). It was also demonstrated that
in non-dormant sceds, thiol redox changes in proteins are associated with conversion to

rbon for

an active state, thereby fucilitating the mobilization of nitrogen and
‘germination and developing seedling. In dormant seeds, there was a biochemical shift in

the accumulation of proteins from those active in biosynthesis and metabolism to those

with roles in storage and protection against biotic and abiotic stresses. We observed in

imbibed dormant seeds higher abundance of antioxidant proteins and enzymes important
for redox control, ROS scavenging and detoxification. The proteomic data obtained
provide evidence for an increased capacity of potent antioxidant machinery in seeds of
high non-deep physiological dormancy genotypes, which could be coupled with their
ability 1o rapidly regenerate antioxidant systems upon rehydration cycles for dormancy
maintenance. Approximately 83% of the proteins identified in this study, 44 out of 53
redox active, have been shown in vitro 10 be potential or established Trx targets in land

plants (Montrichard e al., 2009). Nine redox sensitive protcins were not previously

reported as potential Trx targets (shown in bold in Tables 3.2, 3.3). The results presented

here support the hypothesis that antioxidative defence mechanisms could be involved in



imposing dormancy. This study is a further step toward a more comprehensive analysis of
the genetic and biochemical endodormancy control in wheat. In order to idenify low
abundance proteins, alterative gel-free mass spectrometry-based quantitative approaches

in conjunction with different liquid chromatography methods will need to be employed.

Further research in this area will be informative for analysing the effect of the
environmental conditions o dormancy controlling events to provide molecular

fingerprints for dormancy and PHS resistance

52 Future directions

Dormancy control through after-ripening is an essential physiological process for

many agriculturaly important crop species. The critical interaction between dormancy

and after-ripening has received lile attention, and in the long-term it should be addressed.

“The hypothes s a discrete developmental pathway associated with

is that after-ipenny

specific metabolic networks. | propose to characterize the molecular mechanisms of after-
ripening. By varying dormancy and holding after-ripening constant, we can probe the
‘modifications that after-ripening contributes to the expression of the dormancy-related
functional proteomes. In these experiments, the proteome in seeds of closely related
genotypes of Triticum acstivim, with cither dormant or non-dormant phenotypes, wil be
investigated using hybrid lines of a spring wheat double haploid population derived from
the cross 94C15/9014 = 8021-V2 (high pre-harvest sprouting resistance, white seed coat)

and AC Karma (low

Furthermore, protein thiol redox patters differ in dormant and non-dormant states

and are additionally modified by afier-ripening. The thiol redox-sensitive proteome in
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dormant and non-dormant hybrid genotypes from fresh and afier-ripened seeds will be

detected from series of 2-DE gels and characterized by LC-MS/MS analysis. It will also

be informative to follow changes in the redos ratios of oxidized and reduced forms for the

Key non-protein redox metabolite couples in the aqueous phase glutathione, NAD, NADP

and ascorbate. The activites of the ascorbate-glutathione cycle enzymes ascorbate
peroxidase,  monodehydroascorbate  reductase,  dehydroascorbate  reductase  and
glutathione reductase will be monitored

Another area of research will focus on spatial tissue-specific distribution of
metabolic pathways within the sced and whether subcomponents of the sced have

different functions in the aflerripening regulation of dormancy. Dormancy is a function

of the intact seed and in cereal grains it is partally associated with the embryo (embryo
dormancy) and partally with the covering layers (Finch-Savage and Leubner-Metzger,

2006). To inves peni functional

the aleurone layer (plus seed coat), and the embryo (plus scutellum) will be dissected
from seeds of spring-type wheat genotype with extreme dormancy. This approach in
conjunction with IEF 2-DE will allow analysis of protein groups that otherwise would not
be detectable in the intact seed proteome as described above. Blue-Native 2-DE will be

used 0 d intact protein complexes (Bykova et al., 2003; Eubel H

et al., 2005). This allows separation of hydrophobic protein complexes and provides

information on their native interactions. In a_preliminary study (unpublished resuls),

several protein complexes in the total found to be:
more abundant and differentially modified in the aleurone/seed coat tissues following

after-ipening treatment of a dormant line



To provide a more complete documentation of protein expression profilcs, gel-free
mult-dimensional protein identification technologies will also be necessary to employ
using protein sample prefractionation, Strong Cation Exchange fractionation of peptide
digests and reverse-phase LC-MS/MS (Motoyama ef al., 2006). Finally, a strategy for
differential label-free quantitative LC-MS/MS analysis of diagnostic biomarkers based on
Mass and Time Tag Proteomic approach will be developed. In this approach, the
combination of peptide mass aceuracy (mass tags), MS/MS  fragmentation for the
unambiguous  confirmation of biomarker, reproducible. chromatographic  separation

(accurate LC elution time tag) and standardized conditions for sample preparation will

give us a means for comparati analysis of complex peptide samples (Griff
et al., 2010; Wang et al., 2006) permilting more rigorous quantifcation. Morcover,
candidate biomarker proteins will be confirmed by Western and ELISA techniques or
using PCR-based detection. The Western blotting detection and relative quanification
experiments for some of the found candidate biomarker protcins (such as triosisphospate

isomerise and alcohol dehydrogenase, for example) are i progress.
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