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Abstract 

To solve boundary value problems whose solutions contain moving fronts or sharp 

variations, moving mesh methods can be used to achieve reasonable solution resolution 

with a fixed, moderate number of mesh points. Such meshes are obtained by solving 

nonlinear elliptic differential equations which are governed by an equidistribution 

principle. In this thesis we combine the moving mesh technique with several Schwarz 

domain decomposition methods, which allow elliptic boundary value problems to be 

solved by parallel computation. Convergence results are established for both parallel 

and alternating iterations using classical, optimal, or optimized Schwarz transmission 

conditions. Results for multidomain and time-dependent variations are also presented. 

Four potential sets of optimized transmission conditions are proposed for a 2D mesh 

generation algorithm. Numerical results are provided to illustrate typical behavior of 

the proposed algorithms. 
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Chapter 1 

Introduction 

The efficient solution of partial differential equations (PDEs) which vary over dis­

parate space and t ime scales often benefit from the use of non-uniform meshes chosen 

to adapt to the local solution behavior. There are many different adaptive methods 

which generate meshes for such PDEs, most falling into one, or more, of three general 

categories [22, 32]: 

• h-refinement: change the number of points to locally coarsen or refine the mesh 

according to an a posteriori error estimate, 

• p-refinement: varying the order of the numerical method used over the domain 

- achieved by varying the order of basis polynomials in finite element methods, 

or 
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• r-refinement: relocating mesh points to best resolve the solution while keeping 

the number of mesh points and mesh topology fixed. 

It is t he last of these categories, also known as moving mesh methods, which we 

consider here. 

A standard way to perform spatial mesh adaptation is the equidistribut ion prin­

ciple of de Boor [12] . Given some positive measure M(t, x, u) of the error or difficulty 

in representing t he solution u( t, x) over t he physical domain S1 at t ime t , typically 

referred to as a mesh density function, equidist ribution requires the integral of M to 

be equally distributed over each mesh element. M is typically chosen so that it is 

large where we expect proportionally large error in the computed solut ion. Enforcing 

equidistribution concentrates mesh points in regions where the error is large. The 

mesh is typically determined by solving a nonlinear mesh PDE which is coupled to 

the physical PDE of interest. Particular mesh PDEs have been developed and an­

alyzed for specific problems: see for example [14, 54] for CFD problems and [56, 57] 

for flow and magnetohydrodynamics. Thorough recent reviews of grid generation by 

moving mesh methods can be found in [7, 39] . 

In addition to mesh equidistribution, we wish to solve both the physical and mesh 

PDEs by taking advantage of parallel computation. We introduce spatial parallelism 

by using a domain decomposit ion approach, in which the domain of a boundary value 
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problem (BVP) of interest is partitioned into multiple subdomains and the original 

problem is reformulated as a coupled set of smaller subdomain problems to be solved 

in a parallel iteration, in the hope of obtaining the solution to the original problem 

more quickly. The coupling is created through the use of transmission conditions, 

designed to ensure that solutions on adjacent subdomains agree, and that the original 

solution is represented as a piecewise combination of subdomain solutions over t heir 

respective subdomains. 

In this thesis we consider the combination of mesh equidistribution and domain 

decomposition techniques, resulting in a parallel mesh adaptation method. In Chap­

ter 4 we consider the steady mesh problem, which determines a mesh for a time 

independent function u( x), presenting convergence results for both parallel and al­

ternating classical Schwarz iterations for two or more subdomains in Section 4.2, 

and convergence results for optimal Schwarz and optimized Schwarz in Sections 4.3 

and 4.4, respectively. In Chapter 5 we discuss the applicat ion of DD to the t ime 

dependent mesh problem, providing convergence results for parallel and alternating 

classical Schwarz iterations for two or more subdomains. This combination of mesh 

equidistribution and domain decomposition has previously been presented in the ex­

perimental papers [29, 31, 32] and some results of Chapters 4 and 5 have previously 

been published by Gander and Haynes in [22] , Haynes and Howse in [30], and by all 
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three authors in [23]. 

An outline of the remainder of the thesis is as follows. In Chapter 2 we provide an 

introduction to moving mesh methods as determined by the equidistribution princi­

ple. We describe how mesh equations are derived in both steady and time dependent 

cases for a single spatial dimension, along with details on how these equations can 

be implemented numerically. We then turn to higher dimensional cases, discussing 

several general methods used to develop mesh adaptation equations, then present a 

specific algorithm for 2D mesh generation, along with details for numerical implemen­

tation. In Chapter 3 we introduce domain decomposition methods for general ellipt ic 

boundary value problems, discussing what are known as classical Schwarz methods, 

and describing how they can be modified to obtain optimized and opt imal Schwarz 

methods. We also show two different ways these methods can be extended to solving 

time dependent parabolic problems. In Chapter 6 we discuss how Schwarz methods 

can be applied to a particular 2D mesh adaptation problem, proposing several pos­

sible optimized Schwarz variants. In Chapter 7 we provide details on the numerical 

implementation of the domain decomposition mesh adaptation iterat ions proposed 

in Chapters 4 through 6. We show numerous numerical results to illustrate typical 

trends and behavior observed for t hese iterations. Finally, in Chapter 8 we give a 

summary of the results presented and highlight areas for future work. 



Chapter 2 

Moving Mesh Methods via the 

Equidistribution Principle 

Of the three broad categories of adaptive mesh methods described in Chapter 1, 

this chapter will focus on some particular r -refinement, or moving mesh, methods 

for one or more spatial dimensions. We begin by looking at the 1D case, describing 

how many of t he standard equations governing mesh movement are based on the 

equidistribution principle (EP) of de Boor [12] and discussing t he set of equations 

known as moving mesh partial different ial equations (MMPDEs) . We then move to 

t he setting of higher dimensions, presenting moving mesh methods developed for two 

and three spatial dimensions. 
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2.1 lD Moving Mesh Methods 

The main goal of moving mesh methods is to use a fixed number of mesh points to best 

represent, or resolve, a function u(x) . This may be a known function or may be the 

solution to a problem of interest. A commonly used method for function resolution 

follows from the concept of equidistribution, originating in the work of de Boor in 

the 1970s. In the papers [11] and [12] de Boor addresses a similar problem of how 

to best approximate functions using polynomial splines of fixed order with varying 

knots - that is, placing the knots in a perhaps nonlinear fashion to best capture 

the characteristics of a given function. We use the text [39] as a general reference 

throughout the following discussion. 

For a function M(x) > 0, continuous over the bounded interval [a, b], and given 

an integer N > 1, equidistribution involves determining a mesh x1 = a < x2 < · · · < 

XN = b such that M(x) is evenly distributed over each sub-interval determined by the 

mesh points. By "evenly dist ributed", we mean that the area under M(x) is equal 

for each sub-interval, that is 

1
X2 1 XN 

M(x)dx = · · · = M(x)dx . 
X1 XN-1 

(2.1) 

Such a mesh { x 1 , x2 , . . . , XN } is referred to as an equidistributing mesh for M(x). 

For the purposes of moving mesh methods, when determining a mesh for u(x) the 
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function M ( x) is in fact typically M ( u( x)) and has been referred to in past literature 

as a monitor function [7, 32, 35] and more recently as a mesh density function [22] . 

We note that in [39] they instead adopt the term monitor function for (M(x) )2 to 

be consistent with the multi-dimensional case, which may be a source of confusion 

for some readers. Mesh density functions are chosen to somehow indicate the error 

or difficulty in resolving the function u( x), such that M ( x) is large at values of x 

for which u( x) is difficult to resolve. The development of appropriate mesh density 

functions has been the area of much study, and choosing an appropriate function 

can contribute greatly to the success of the numerical implementation of the moving 

mesh method. As a detailed summary of possible mesh density functions can be found 

in [39], we will instead comment on some of the most common choices for M(x). 

The trivial mesh density function is M(x) 1, which simply results in a uniformly 

distributed mesh, that is, no adaptivity. Two commonly used mesh density funct ions 

are the arc-length mesh density function, M(x) = \/1 + luxl 2 , and the curvature 

arc-length mesh density function, M(x) = y'1 + luxx l2 . Both of these mesh density 

functions quantitatively measure certain aspects of t he function u(x), and agree with 

an intuit ive idea of "difficulty" - we would anticipate t hat large or rapid variations in 

function value would require more mesh points to resolve accurately, and this behavior 

corresponds to large values of the arc-length or curvature mesh density functions . It 
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has been observed in practice that the arc-length mesh density function can lead 

to numerical difficulty, concentrating too many points at singularities and making 

the coupled mesh and physical PDE problem exceedingly stiff [52]. An alternative 

which approximates the arc-length mesh density function and which may mitigate 

these difficulties is M(x) = )1 + ~luxl 2 , which is known as the relaxed arc-length 

function. For a » 1, M(x) ~ 1, and an approximately uniform grid results. As 

a --+ 1, M ( x) approaches the original arc-length function. 

While mesh density functions involving arc-length or curvature are often used due 

to their ease of implementation and straightforward interpretation, it is also possible 

to formulate mesh density functions based on interpolation error. Indeed, in [39], 

the authors demonstrate how to derive an optimal mesh density function based on 

interpolation error, obtaining t he continuous function 

[ 
1 ] 1+2( k m+ l ) 

M(x) = 1 + -;lu(k+l)(xW 

where 

[ 
1 b ] 1+2(k- m+l) 

a = b - a 1 1u(k+l) 11+2(k:_m+ lJ dx ' 

is described as an adaptation intensity parameter, as it controls the impact the deriva-

tives of u( x) on the mesh adaptation. The constant k is the degree of the interpolating 

piecewise polynomials (k = 0 being piecewise constant , k = 1 piecewise linear , and 
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so forth) and m controls whether the error is measured in the L2 norm (m = 0) or 

the H 1 semi-norm (m = 1) . In deriving error bounds for this mesh density function 

and showing it to be optimal, the authors illustrate the key advantage of adaptive 

meshes over uniform meshes: the uniform mesh error bound has a solution depen-

dent factor llu(k+l) llu(a,b) whereas the optimal mesh error bound has a factor of 

l lu(k+l) II 2 • While these quantities are of similar size for a smooth func-
L 1+2(k m+l) (a,b) 

tion u, in the case of u not being smooth the factor for the adaptive error bound 

is much smaller, hence in such a case the error bound for an adaptive mesh will be 

significantly smaller than t hat for a uniform mesh with the same number of mesh 

points. 

Having presented several different possible choices for the mesh density function 

M(x), we note that each of these functions is bounded away from zero. This is not 

unintentional - if there is some m such that M(x) ~ m > 0 Vx E [a, b], t hen we can 

infer the existence of a unique equidistributing mesh for any integer N > 1. We state 

this result of [39] as Theorem 2.1. 

Theorem 2.1. For any strictly positive mesh density function M(x) and any given 

integer N > 1 there exists a unique equidistributing m esh of N points satisfying (2.1) . 

Proof. As we require the integral of M(x) over each subinterval to be equal, we can 
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rewrite (2.1) as 

l
x · 1 

a 

3 

M(x)dx = ~-=- 1 O", for j = 1, .. . , N, (2.2) 

where we denote 

O" = 1b M(x)dx. 

By our assumption that there exists m such that M(x) 2:: m > 0 Vx E [a, b], we know 

that J: M(x)dx is a strictly monotone increasing function of x, hence each Xj of the 

equidistributing mesh is uniquely determined. D 

In Figure 2.1 we plot the function u(x) = ~ [1- tanh(20x - 10)] using 40 mesh 

points, indicating the position of mesh points, as determined using t he arc-length 

mesh density function, below the plot. The mesh points are spread out in regions of 

little variation and cluster together where the function value changes rapidly. 

I I 11111111111111111111 I I 

Figure 2.1: A specified function u( x) on an equidistributing mesh determined using 

the arc-length mesh density function. 
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Although we have introduced the concept of equidistribution for a discrete mesh, it 

is convenient for theoretical work to consider a continuous form of t he equidistribution 

condition. To do so, we introduce a computational coordinate~ over the interval [0, 1] 

and suppose that the mesh { x 1, x2 ... , x N} is obtained via a coordinate t ransformation 

x = x(~), ~ E [0, 1], x (O) =a, x(1) = b, 

which satisfies Xi = x(~i), i = 1, . .. , N, where 

(i- 1) 
~i = (N _ 

1
), i = 1, ... , N. 

Under this transformation (2.2) becomes 

1
x(~i) 

a M(x)dx = ~iCJ, i = 1, . .. ,N. 

More generally, if a mapping x = x(~) satisfies the equation 

1
x(~) 

a M(x)dx = ~CJ, \;/~ E (0, 1), (2.3) 

then it is called an equidistributing coordinate transformation for the function M ( x) 

[39] . 

While the integral form of (2.3) will be used extensively in proving results, it is the 

differential version of the EP which will typically be used in subsequent discussion. 

To obtain this differential equation, we differentiate (2.3) once and twice with respect 
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to ~ to obtain 

and 

dx(~) 
M(x(~))~ = CJ, 

d ( dx(~)) d~ M(x(~))~ = 0, 

12 

(2.4) 

respectively. When combined with the boundary condit ions x(O) = a and x (1) = b, 

(2.4) is the boundary value problem which governs mesh equidistribut ion. 

2.2 Moving Mesh Partial Differential Equations 

Up to this point we have focused on how to find an equidist ributing mesh x(~) for 

some u(x) which varies only in space. In reality, it is likely the function of interest 

will be of the form u(x, t) , and in such cases we wish to find a mesh t hat also varies 

in t ime. Our problem is thus to determine a mesh {x 1(t ), x 2(t) , . . . XN(t)} such t hat , 

fort~ 0 

1Xj (t) j _ 1 lb 
M(x (t), t) dx = M(x (t) , t )dx, 

a N -1 a 
for j = 1, ... , N . 

This is the same condition as for the steady case, except we now allow M(x(t ), t ) 

to vary in time, resulting in a mesh which also changes as time passes . The reason 

for calling t hese adaptive techniques "moving mesh" methods is apparent in the t ime 

dependent case: the fixed number of discrete mesh points will move t hroughout the 
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interval [a, b] to best resolve the funct ion u(x, t) as it evolves. For example, in Figure 

2.2 we plot the mesh trajectory for the function 

1 
u(x, t) = 2[1- tanh(c(t)[x- t- 0.4]) , 

199 
c(t) = 1 + 2 [1 + tanh(50t - 2.5)], 

a similar problem appearing in [22] , which illustrates how the mesh moves as t ime 

passes. As in the steady case, mesh points cluster where there is rapid change in 

function value, and as the location of this region of rapid change varies as time 

passes, the mesh moves in response. 

0.2 

0.18 

0.16 

0.14 

0.12 

...., 0 .1 

0.08 

0.06 

0.04 

0.02 

0~-L~~~~LL~~LL~~LL~~~~~~~~~~~~_L~ 
0 0.1 0.2 0.3 0.4 0.5 

X 
0.6 0.7 0 .8 0.9 

Figure 2.2: The mesh trajectory associated with a function u(x, t). 



2.2 MOVING MESH PARTIAL DIFFERENTIAL EQUATIONS 14 

To obtain the continuous formulation of this moving mesh we proceed as before, 

introducing a computational coordinate~ over [0, 1] such that 

x = x (C t), ~ E [0, 1], x(O, t) =a, x(1, t) = b, 

to arrive at the condition 

1
x(Ct) 

a M(x, t)dx = ~CJ(t), v~ E (o, 1), (2.5) 

where 

CJ(t) = 1b M(x(t), t)dx. 

By differentiating (2.5) twice with respect to ~' it is clear that our t ime dependent 

mesh transformation x(~, t) satisfies 

a ( ax(~, t)) 
a~ M(x(~, t), t) a~ = 0, Vt 2 0. (2.6) 

As this equation does not explicitly involve the rate of change of the mesh function , 

±((, t) := ax~~ ,t), it is known as a quasi-static EP (QSEP). 

While the desired mesh transformation x(~, t) will satisfy (2.6) exactly, there are 

many situations when an alternate method of determining the mesh would be ben-

eficial. In practice the function u(x, t) will often not be known a priori - it being 

the solution of some underlying physical PDE of interest. In such a case (2.6) will be 

coupled to the PDE through the monitor function result ing in both problems being 
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solved together. If we semi-discretize (2.6) in space, we obtain a system of algebraic 

equations to be solved. Applying the method of lines to solve the physical PDE 

will result in a system of differential algebraic equations (DAEs). Such systems are 

typically difficult to solve, being stiff and ill-conditioned [1, 39] . 

To overcome this problem we instead may use a PDE related to (2.6) which 

explicitly involves the mesh speed, ±(~, t). The remainder of this section follows the 

work of [39] and [35], the former discussing adaptive mesh generation in great detail 

and the latter being one of the original references ·for the methods which follow. 

If we semi-discretize such an equation in space we will obtain a system of ordinary 

differential equations (ODEs) rather than algebraic equations, thus when coupled with 

the numerical solution of the physical PDE we will have a system of ODEs, which 

are typically easier to solve than a system of DAEs. In addit ion to this, introducing 

the mesh speed term provides a measure of temporal smoothing, which is beneficial 

for the accurate solution of certain physical PDEs. 

An equation for determining a mesh t ransformation which involves the mesh speed 

is known as a moving mesh PDE (MMPDE). There are many different MMPDEs 

which may be used, and often multiple ways to derive a given MMPDE, see [7, 33, 

34,38,52] . One possibility is to obtain an MMPDE by time differentiation of QSEPs. 
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For instance, differentiating (2.5) once with respect to time gives 

1
x(~,t) 0 

M(x(~, t) , t)±(~, t) + a fJt M(i, t)di = ~&(t), 

and then by differentiating twice with respect to ~, we obtain 

8
2 a (oM ox) 

8~2 (M ±) = - 8~ at 8~ . (MMPDEl) 

The process by which (MMPDEl) was derived implicitly assumed that the mesh 

x(~, t) will satisfy the QSEP (2.5) at any given time, which is typically not the case in 

actual numerical computations. As such, it is desirable to derive MMPDEs which are 

relaxed, such that the difference between the computed and equidistributing meshes 

will play a role . To do so, we require the mesh to satisfy (2.6) at some time t + T 

(0::::; T « 1) , that is 

(2.7) 

By expanding the functions of (2. 7) using Taylor series and dropping terms of 0( T 2 ) 

and higher , we obtain 

(MMPDE2) 

Compared to (MMPDEl) , we see t hat the effect of relaxing the equidistribution con-

clition has introduced an addit ional term in (MMPDE2) , which serves as a correction: 



---- --------------------------------------------
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if x(~, t) is not equidistributed, the additional term 

_!_~(Max) 
Ta~ a~ ' 

will move the mesh towards equidistribution, even in cases where M(x, t) is time-

independent, avoiding a potential pitfall of (MMPDEl). Arguing that the term 

involving aa"'/ may be dropped without any significant loss of effectiveness leads to 

a2 
1 a ( ax) ae ( M x) = -;a~ M a~ · (MMPDE3) 

Expanding the derivative on the left hand side of (MMPDE3) and making the further 

simplifying assumption that the term involving xaa7 is negligible we obtain 

(MMPDE4) 

Further MMPDEs may be derived by making use of the concept of attraction and 

repulsion pseudoforces between mesh points [35]. A mesh point will attract other 

points if a measure of the truncation error is larger than the average measure, and 

vice versa. The error measure, denoted by W, is typically related to a given monitor 

function , often expressed as 

1
Xi+! 

wi = x; M(x, t )dx, 

which can be interpreted as a discrete form of 



2.2 MOVING MESH PARTIAL DIFFERENTIAL EQUATIONS 18 

as both W and Wi can be approximated at point xi by using the midpoint rule: 

Wi ~ Mi+1(xi+l- xi) · Finally, the mesh speed is proportional to the rate of change 
2 

of the error measure in the computational coordinate, giving 

ax 1 a ( ax) 
at = -:;.a~ M(x(~, t), t, u) a~ , (MMPDE5) 

for some positive constant 7. Examining this equation, we see that mesh points 

will move toward regions where the error is large, and will remain unmoving if W is 

unchanging, that is, when the mesh is equidistributed. 

Comparing the MMPDEs derived thus far , we see that both (MMPDEl) and 

(MMPDE2) involve the function 8
8"{, causing them to be significantly more difficult 

to implement, as this term is often not easy to calculate. It has also been observed 

that the correction term in (MMPDE2) - (MMPDE5) not only forces the mesh to-

ward equidistribution, but also prevents the mesh from crossing, that is, individual 

lines in a mesh trajectory cannot cross each other [34]. The parameter 7 present in 

(MMPDE2) - (MMPDE5) is a t imescale for the mesh to reach equidistribution [32]. 

This relaxation prevents oscillations from occurring in the t ime integration, hence 

producing smoother mesh trajectories. The appropriate value of 7 for numerical 

calculations is generally problem dependent, but values of w-k, for some small non-

negative integer k, are commonly used [34]. The goal is to choose such a value of 7 

so that the mesh evolves at a rate proportional to that of the solution u(x, t) [33]. 
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However, it has been noted that maintaining a small constant value ofT may make 

the MMPDE unnecessarily stiff. To avoid this problem, after any transient rapid 

mesh movement due to significant changes in the behavior of u(x, t), one can increase 

the value of T without adversely affecting the quality of the solution [52]. One may 

instead use a variable T(t) , where T(t) E [Tmin , Tmax] is determined at each t ime by 

considering the size of M(x, t) at this step. For further discussion, refer to [39, 52]. 

At this point we note that it is (MMPDE5) that will be used for discussion of time 

dependent problems in subsequent chapters. 

2.3 Numerical Implementation 

As mentioned previously, the mesh equation is coupled to the physical PDE via the 

monitor function. For example, given a PDE of the form Ut = .C(u), where £ is a 

spatial differential operator, we consider the coupled system 

au 
at = .C(u), ax 1 a ( ax) at = -;.a~ M(x(C t), t) a~ , (2.8) 

for x E [0, 1] and t E (0, T]. A review of various finite difference, finite element, 

collocation, and spectral methods previously used to solve t his problem can be found 

in [7] . Of particular interest is the solver MOVCOL, described in detail in [36], in 

which (2.8) is semi-discretized in space using a collocation approach, and the resulting 
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system of ODEs is integrated in time using the solver DASSL [51]. In MOVCOL 

both the mesh xk and the solution uk at time tk are determined simultaneously by 

solving a single nonlinear system. In higher dimensions such an approach may be 

prohibitively computationally expensive. However , if we do not require t he mesh to 

reach the same level of accuracy as the solution, less costly lower order methods can 

be used [2, 38]. Another way to reduce the computational cost of t his system is to 

use an alternating approach [3, 7]. To step forward in t ime, t he mesh equation and 

physical PDE are solved alternately, iterating until they agree within a user specified 

tolerance. This approach avoids the difficulty which the nonlinear coupling of mesh 

and solution would normally introduce, and can preserve other desirable features such 

as ellipticity and sparsity in the individual physical or mesh problems [7]. 

To discretize (2.4) or (MMPDE5) for numerical solut ion, we use centered finite 

difference spatial derivatives and the backward Euler method for t ime integration due 

to its simplicity and numerical stability. For (2 .4) t his leads to 

To replace t he mesh density function M(x) evaluated at half-nodes, we make the 

additional approximations 
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and 

to obtain 

[M(xi+1) + M(xi)] [xi+1- xi]- [M(xi) + M(xi_I)] [xi- Xi-d = 
0 

2~e , 

for i = 2, . .. , N- 1, where N is the number of mesh points. The Jacobian for this 

system is tridiagonal, with non-zero entries 

[M(xi-d + M(xi)] - M'(xi- 1) [xi- Xi-1] 
2~e 

if i - 1 = j, 

J(i, j) = M'(xi) [xi-1 - 2xi + xi+1J - [M(xi-d + 2M(xi) + M(xi+I)] 
2~e , if i = j , 

[M(xi+l) + M(xi)] + M'(xi+1) [xi+1 - xi] 
2~e 

if i + 1 = j, 

dM . 
where M' = dx . For (MMPDE5) we first semi-discretize in space to obtain the 

system of coupled ODEs 

dxi [M(xi+l ) + M(xi)] [xi+l -xi] - [M(xi) + M(xi- I)] [xi - xi-1] 
dt T. 2~e 

for i = 2, .. . , N - 1. Using backward Euler to handle the time derivat ives and 

rearranging, we obtain 

[M(x~+1 ) + M(x~!l)] [x~+1 - x~!l]), for i = 2, ... , N - 1. 
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The Jacobian of G is once again tridiagonal, with nonzero entries for 

and 
axn+1' 

i+1 

These nonzero entries of the Jacobian are: 

for i = 2, ... , N - 1. 

22 

-~t ( [M(xn+l.) + M(xn+ 1)] - M'(xn+1) [xn+l - x~+1] ) if i- 1 = ]·, 2T ~~2 t-1 t t-1 t t-1 ' 

J(i, j) = if i = j, 

[M(x~..::n + 2M(x~+1 ) + M(x~:nn, 

In practice, it has been observed t hat a lack of smoothness in the mesh trans-

formation can affect the convergence of the iteration for the equidistributing mesh 

or prevent the physical solution from being accurately represented - see [39] as a 

general reference for the following discussion. To prevent this problem a common 

strategy is to use some type of spatial smoothing on the monitor function M(x). As 

a result, a smoothed mesh density function M(x) will be used in place of the originally 

calculated function M ( x) . lri the continuous case, a smoothed mesh density function 

can be formulated as the solution to a boundary value problem (BVP) . For a given 

mesh density function, M, a smoothed mesh density function, M, can be obtained 
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by solving 

( ' d2) ~ 
I- (3- 2 de M = M, ~ E (0, 1) , 

~ ~ 
(2.9) 

dM dM 
df(O) = df(1) = o. 

where (3 > 0 is a parameter and I the identity operator. If we discretize this BVP 

using centered finite differences, we obtain the system of algebraic equations 

(2.10) 

In both (2.9) and (2.10) the smoothing is a global process, as either a BVP or a 

linear system must be solved to determine M. A local smoothing method may of-

ten be sufficient for a given problem - such methods can be obtained by expanding 

(I - (3- 2 
:;

2
) M as a series, truncating, and using appropriate finite difference ap­

proximations. More generally, when working with discretized equations, one can 

compute Mas the weighted average of Mat nearby mesh points [7,34,39]. There are 

many possible ways to carry out this weighting, a reasonably representat ive example 

is given by 
max(N,i+p) 

L ')'IJ-kl Mk 
M· _ k= min(l,i- p) 

2 
- max(N,i+p) 

2:.: ')'IJ- kl 

k= min(l,i - p) 

for i = 1, . .. , N. (2.11) 
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In (2.11) the parameter p controls the number of terms in the sum, p = 1 or 2 being 

commonly used, and 1 E (0, 1) controls the weight corresponding to each term in the 

sum. 

It is also possible to incorporate the smoothing of the mesh density function 

directly into the EP, then derive smoothed versions of (2.4) and the MMPDEs. This 

eliminates the need to compute the smoothed mesh density function as an individual 

step in the solution process. For instance, the mesh transformation x(~) for M will 

satisfy 

where M is the solution to (2.9). That is, 

Integrating both sides, isolating t he inverse operator and then solving for M we obtain 

where e is the constant of integration. Solving for e-1 and then differentiating with 

respect to ~ leads to the smoothed equidistribution equation 

d [ 1 ( - 2 d
2 

) ( 1 ) l d~ M I - f3 d~2 ~~ = 0. 

A similar approach can be used to obtain smoothed MMPDEs. 
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2.4 Moving Meshes in Higher Dimensions 

The concept of moving mesh methods has been extended to two or more dimensions 

in a variety of ways: the review article [7] and the textbook [39] describe multiple 

ways to implement adaptivity in higher dimensions. As in lD, the goal is to find a 

mesh transformation X = x(e) : f2c --t f2 which maps from a computational domain, 

nc, to best resolve some function u(x) throughout the physical domain, n. 
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Figure 2.3: A 2D adaptive mesh (left) and the function u(x, y) being equidistributed 

plotted using this mesh (right). 

An example of 2D mesh equidistribution is given in Figure 2.3, where we determine 

an equidistributing mesh for the function 
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Mesh points are concentrated in an annulus containing the circle ( x- ~ )2+ (y - ~ )2 = ~ 2 

where u( x, y) undergoes rapid variations. 

In multiple dimensions the EP, which will determine the volume of mesh elements, 

is no longer sufficient to fullY. determine the mesh. An addit ional alignment condit ion, 

which ensures the mesh is aligned with the behavior of the physical solut ion, is used to 

specify shape and orientation of the mesh elements. A matrix valued function M ( x) 

called the monitor function is used to define a metric on D, and p = Jdet(M(x)) is 

the corresponding mesh density function. As in the lD case the appropriate choice 

of monitor function M, and hence mesh density function p, is key to the success of 

any adaptive method - the details are presented in [39]. If K is a mesh element and 

:h is the mesh over D, then equidistribution requires t hat 

where there are N elements in Jh and (J = fn p(x)dx, that is, each mesh element will 

have the same volume in the metric. The other condition is that the mesh elements 

must be equilateral in the metric M . If ')'1 , . .. , 'Yd(d+l)/2 are t he edges of an element 

K and I'Yi iM is the length of edge 'Yi in the metric M, then this condition requires 

These conditions can be simplified to obtain approximations used for numerical im-
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plementation, and can also be described in terms of a continuous mesh transformation 

for theoretical analysis. 

A second common approach is based on the calculus ofvariations, in which ~(x) , 

the inverse mapping of x(~), is determined to be the function which minimizes the 

functional 

I[~] = 1 F(V~, ~ , x)dx, 

where F can take on numerous different forms , see [3, 7, 33, 37- 39] for examples of 

this. The mesh transformation in the steady case can be obtained by solving the 

Euler-Lagrange equations 

- n · [a F - J a Fa·] = 0 £or i - 1 2 3 
v 8ai 8J t ' - ' ' ' 

(2.12) 

where ai = V(i, ai = ~~ and J is the Jacobian, Vex. MMPDEs can be obtained by 

modifying (2.12) in a similar fashion to the 1D EP: 

8(i = 1 n. [8F _ 1 8Fa·] f 
( )

v t, or i = 1,2, 3, at TP x , t 8ai 8J 
(2.13) 

where T > 0 is a parameter controlling the time scale of mesh movement and p(x , t) is 

described as a balancing function which will hopefully allow all mesh points to move 

on the same time scale; the appropriate choice of t he balancing function vary wit h 

the problem and the formulation of t he mesh equations. Finally, t he mesh equation 
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for the computational coordinate (2.13) can be transformed to obtain a MMPDE for 

the physical mesh, 

Another method of mesh adaptation based on the concept of local equidist ribu-

tion in two dimensions has been proposed in [40]. As before, we let x = [x, y]T be 

the spatial coordinates of a mesh in a 2D physical domain, n. We int roduce the 

coordinate transformation x = x(~), where ~ = [~ , 7J]T denotes the spatial coordi-

nates on the computational domain, nc = [0, 1] x [0, 1]. In contrast to other methods 

where the quantity being equidistributed can be changed, we focus solely on how to 

equidistribute the arc-length measure of a function u(x, y) over n. Specifically, we 

consider a scaled arc-length measurement of variation of u along the arc element from 

x to x + dx, which can be expressed as 

(2.14) 

where M = a2\lu · \JuT+ I, and I is the identity matrix. Making use of the mesh 

transformation x = x(~), (2.14) can be expressed as 

(2.15) 

where J is the Jacobian of the transformation. 
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The EP follows from (2.15): if u(x(~)) is to be the constant value ds along any 

arc element in the computational domain of fixed length [d~T d~jll2 , then (2.15) must 

be independent of~- This implies that JT M J should be independent of~, or 

(2.16) 

where M is a constant, ~-independent, and symmetric positive definite matrix. If a 

coordinate transformation can be found which satisfies (2 .16) , u will have the same 

variation at any point in S1 along any arc of length 

Usually (2.16) cannot be satisfied by the coordinate transformation on the whole 

computational domain when the number of nodes along a given coordinate line is 

fixed, which is the case for moving mesh methods [40]. However, if we weaken this 

condition and only require the transformation to satisfy (2.16) locally; that is, only 

require M to be constant along a given coordinate line; it is possible to find a local 

equidistribution on 0. This leads to the system of equations 

(2.17) 
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The unknown c1 (17) is a constant for each.; and c2 (.;) is constant for each 7] . They 

can remain unspecified, as they will be eliminated in the numerical implementation 

of this system. In practice, instead of the scaled arc-length matrix M, we use 

where the parameter b ~ 0 is used to prevent situations where extremely small mesh 

spacing or mesh tangling could occur, that is, when l\7ul is very large. 

In [40] a combination of Dirichlet and Neumann conditions are used along 8Dc 

x(O, 17) = y(.;, 0) = 0, x (1 , 17) = y(.;, 1) = 1, (2.18) 

ox ox 8y 8y 
OTJ (.;, 0) = OTJ (.;, 1) = a.; (0, 17) = 0~ (1, TJ) = o, (2.19) 

where~' 17 E [0, 1]. The Dirichlet conditions are consistent with the requirement that 

there are mesh points on the boundary of the domain. The Neumann orthogonality 

conditions are arbitrary, and in fact can cause smoothness issues near the domain 

boundaries. As an alternative, we follow [46] and apply the 1D EP, (2.4), to determine 

x(~, 0) , x(.;, 1), y(O, TJ) and y(1, TJ). 

2.4.1 Numerical Implementation 

To implement system (2.17) numerically, we consider a uniform computational mesh 

over the De= [0, 1] x [0 , 1], with points (.;i ,TJj) for i= 1, ... , n and j = 1, . .. ,m, 
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such that ~1 = 'T]1 = 0 and ~n = 'TJm = m . Discretizing the equations of (2.17) at the 

half-nodes, (i + ~. j) and (i, j + ~), we obtain 

[( )

T 

Xi+l,j - Xi,j 

Yi+l,j - Yi,j 

M. 1. 
t+2,J 

fori= 1, ... , n- 1 and j = 2, . .. , m- 1; and 

[ ( :::::: ~ ::.:) T Mi,j+~ ( ::::: ~ :::) r ~ c,(e,), 

for i = 2, . . . , n- 1 and j = 1, ... , m- 1, where Mi,j = M(~i, 'T}j) · The unknown 

constants c1 and c2 are eliminated by computing differences of t hese equations for 

adjacent indices, leading to 

[ ( ::: ~ ::~:.:) T M,_~" ( ::·: ~ ::~:::)] 1/ 2 

[ ( ::: :: ~ ::.:) T Mt+~.; ( ::: :: ~ : :.:) r ~ 0, 

(2.20) 
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and 

r ( ::: ~ ::.:J T MiJ-~ ( ::: ~ :::J 11/2 

- r ( ::::: ~ ::.J T Mi.j+~ ( ::::: ~ :::) r ~ o. 

(2.21) 

both for i = 2, . . . , n - 1 and j = 2, .. . , m - 1. These equations enforce the equidis-

tribut ion on the interior mesh points of the computational domain. 

To discretize the matrix M at half nodes, we note that 

and by computing the inverse of this matrix, we obtain 

\lu = [u~yTJ - uTJy~, 
x~yTJ - xTJy~ 

T 

-U~XTJ + UTJX~ ] 
x~yTJ- xTJy~ 

(2.22) 

To discretize (2.22) at the points (~i+l/2 , 17i+l/2), discretizations for derivatives of 

x, y, and u with respect to E, and 17 are required. These are obtained by central 

differences - for example 

. 1 
x~(E,i+l/2, 17i+l / 2) = 2 (xi+l,j- xi,j + xi+l ,j+l - Xi,j+l) , 

1 
XTJ(f.i+l / 2, 1Ji+l / 2) = 2 (xi,j+l - Xi,j + Xi+ l ,j+l- Xi+l,j), 
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with similar expressions for y and u. Expressions for M at the ( i + ~ , j ) and ( i, j + ~) 

nodes are the averages 

and 

As in the 1D case, it has been noted that smoothing the matrix M can significantly 

improve the quality of the mesh determined by the system of discretized equations 

[40]. This is carried out by replacing the matrices M in (2 .20) and (2.21) by the 

weighted averages 

i+1 j + 1 ( "( ) lk-il+ ll -j l 

L L Mk+~,l 1+ "( 
k=i-1l=j-1 

i+1 j+1 ( "( ) lk- i l+ ll-j l 

M . . 1 = """' """' M 1 -
t,1+ 2 L L k,l+ 2 1 + 'Y 

k=i-1l= j-1 

Here 'Y is a positive constant, the scaling parameter, and the summations are under-

stood to only include values which are well defined. 

Having provided an introduction to mesh equidistribution, we next turn to the 

other method of interest, domain decomposition, in Chapter 3. 



Chapter 3 

Domain Decomposition 

In this chapter we introduce the concept of domain decomposition methods for BVPs. 

We begin by considering the historical origin of what are known as Schwarz methods, 

describing how such methods are implemented for continuous problems as well as 

linear systems. We then discuss two common approaches used to extend DD methods 

for elliptic problems to time dependent parabolic problems. 
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3.1 Domain Decomposition for Time Independent 

Problems 

Domain decomposition (DD) is a method which is used to facilitate the solution of 

PDEs by introducing spatial parallelism. In t he DD approach, the spatial domain 

S1 of a given BVP is partitioned into overlapping or non-overlapping subdomains, 

and we solve the original PDE on each of the subdomains, resulting in a system of 

coupled BVPs. To complete these new BVPs, transmission conditions are introduced 

along the artificial boundaries to ensure that solutions on adjacent subdomains agree 

with each other, and that t hey reproduce the solut ion to the original problem in a 

piecewise manner. Through DD, the large systems of equations which result when 

solving high dimensional PDEs can be replaced by multiple systems of smaller size, 

being less costly to solve. Furthermore, by appropriately choosing the transmission 

conditions the subdomain problems can be solved in parallel, thus DD lends itself to 

implementation on parallel computer architecture. 

3.1.1 Classical Schwarz 

The origin of DD can be traced to the work of H. A. Schwarz in 1869, who sought 

to provide a rigorous proofof the Dirichlet principle - that if a function u(x) is 
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a solution to Laplace's equation on a bounded domain n with boundary conditions 

u = g on an, then u is the infimum of the Dirichlet integral In I'Vvl2dx over all 

functions v satisfying v = g on an - for an arbitrary domain n [18]. 

- - - - ~--------------------------~ 

an 

Figure 3.1: The original "complicated" domain considered by Schwarz, the combina­

tion of a circle and a rectangle. 

The original domain n considered by Schwarz, pictured in Figure 3.1 , is a com­

bination of two simple subdomains, a circle 0 1 and a rectangle 0 2 . The artificial 

boundaries introduced are r 1 = a01 n 02 and r 2 = a02 n 01 . The iteration proposed 

by Schwarz required an initial guess along ug along r 1 , where superscript denotes 
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iteration number, and was then calculated according to t he iteration: for n = 0, 1, .. . 

We note that uf and u~ must also satisfy the posed Dirichlet condition along the 

outer boundaries of 0 1 and 0 2 [18]. This iteration is t he origin of what is now 

called the alternating Schwarz method, so called because the subdomain problems 

are solved in an alternating fashion: first over 0 1 , t hen 0 2 , 0 1 , 0 2 , and so on. The 

alternating Schwarz method can be extended to any number of subdomains, so long 

that care is taken to use the most recent solution information is used along the 

artificial boundaries. 

To implement the alternating Schwarz method for a general time independent 

problem 

.Cu = j , X E 0, (3.1) 

where .C is a spatial differential operator, we decompose D into subdomains {Di}f' 

such t hat 
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and implement the iteration: for n = 0, 1, 2, ... 

run+l = J X En 
;.__ t ' ~ Gi' (3.2) 

(3.3) 

where in the superscript 1i1 = 1 fori> j, zero otherwise, and ri1 = 80inn1. To avoid 

complications arising from multiple choices of boundary conditions in subsequent 

discussion, we only consider partitionings of n such that at most two subdomains 

contain any given point of the original domain. For example, in one dimension 0 is 

an interval [a, b], and subdomains are intervals satisfying 

where a 1 =a, f3N = b, and 

An important extension to the alternating Schwarz method is t he parallel Schwarz 

method, first proposed by Lions [42], in which each subdomain problem will use in-

formation from the previous iteration along the artificial boundaries, and so all sub-

domain problems can be solved simultaneously. An obvious analogy to make is to 

compare the alternating and parallel Schwarz methods to the Gauss-Seidel and J acobi 

iterations for linear systems, where each linear equation can either be solved in se-

quence or in parallel depending on whether the most recent information is used. If n is 
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decomposed into nl and n2 and we denote t he nonempty intersections anl n n2 = r 1 

and an2 n nl = r2, the parallel iteration is: for n = 0, 1, . .. 

Similarly, if we decompose D into arbitrarily many subdomains we obtain t he itera-

tion: fori = 1, . . . , N and for n = 0, 1, ... 

(3.4) 

Un + l = un X E r 
t J , ij . (3.5) 

Taken together , the alternating and parallel Schwarz methods comprise what are 

known as the classical Schwarz methods. They are characterized by their use of 

Dirichlet transmission conditions between subdomains and the fact that subdomains 

must overlap, t hat is, adjacent subdomains must share more points t han t he inter-

section of t heir respective boundaries. If subdomains do not overlap, the Dirichlet 

condit ions will only impose cont inuity at the artificial boundaries, not smoothness, 

hence the DD iteration will typically not generate a smooth solution, thus it will not 

agree wit h the single domain solution. It is also possible for classical iterations to fail 

to converge for certain equations, even when overlap is used - the example of the 

indefinite Helmholtz equation is given in [18]. Another common failing of t he classical 
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Schwarz methods are their typically slow rates of convergence for smaller amounts of 

overlap between subdomains. However, there is a way to overcome all of the above 

failings, which is to modify the transmission conditions used between subdomains, 

leading to what are known as optimized Schwarz methods. 

3.1.2 Optimized and Optimal Schwarz 

The origin of optimized Schwarz methods can be traced to the work [43] by Lions, 

in which he proposed the use of Robin transmission conditions, linear combinations 

of function value and derivative value, to overcome the requirement of overlap for 

the classical Schwarz DD iteration to converge. As before, n is decomposed into 0 1 

and 0 2 ; but we now allow the possibility that the subdomains only share a common 

boundary - that is, f 1 = f 2 = r. The parallel optimized Schwarz iteration is of the 

form 

£u?+l = j, X E f21, 

£u~+l = f, X E f22, 

(an 1 + Pl)u?+l = (an 1 + Pl}u~, X E f1 , 

(an2 + P2)u~+l = (an2 + P2)u?, x E f 2, 

(3.6) 

where an; denotes the partial derivative normal to the boundary of domain i, and Pi 

are constant parameters [18, 43]. While the rate of convergence for optimized Schwarz 

iterations depend on t he choice of parameters Pi, optimized Schwarz methods for 

elliptic problems have been shown to converge for an arbitrary number of subdomains 
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which only share common boundaries [18]. Removing this need for overlap allows 

optimized Schwarz methods to be applied to problems which contain discont inuous 

coefficients, interfaces between different media, and other cases where overlap would 

not be part of a natural decomposition. Furt hermore, optimized Schwarz methods 

converge significantly faster t han classical Schwarz iterations for little to no extra 

computational cost, and for many types of problems, there may be simple optimization 

procedures or dosed form solutions for the best choice of transmission condition 

parameters [17] . 

The convergence of the Schwarz DD approach can be further improved by using 

more general transmission conditions, the best possible choice of conditions for a 

given problem produce what are known as optimal Schwarz methods. By doing so, 

the parallel Schwarz DD iteration will take the form 

.Cu~+l = j , .Cu~+l = f , 

where Bi is an operator acting along the interface between subdomains. The optimal 

choice of Bi is dependent on the problem being solved. For a large class of second-order 

problems, with domains decomposed into strips, the optimal choice of transmission 

condit ion Bi is of the form Oni + DtNj , where DtNj denotes a non-local Dirichlet to 

Neumann or Steklov-Poincare operator associated with the elliptic operator£ [18,48]. 
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These optimal operators are often non-local, hence more costly to evaluate and more 

difficult to implement. To avoid this extra difficulty, it is common to approximate 

optimal transmission conditions by local operators of the form Bi = anj + Pj + rjaT + 

qjaTTl Where aT iS the tangential derivative at the interface between SUbdomainS [18]. 

The original optimized Schwarz transmission conditions of (3 .6) correspond to taking 

r1 = q1 = 0, and can be thought of as a zeroth order approximation, with higher order 

approximations being obtained with each subsequent term kept . Further discussion 

on optimized and optimal Schwarz methods for various problems can be found in [17] 

and many subsequent papers by Gander. 

3.1.3 DD For Linear Systems 

The alternating and parallel Schwarz iterations of (3.2-3.3) and (3.4--3.5) are formu­

lated for continuous problems. After discretizing an elliptic PDE such as (3.1) we 

obtain a linear system of the form Au = f , so a natural extension of t he DD methods 

already discussed are Schwarz methods applied directly to linear systems [18, 55]. To 

decompose the vector u into subsets one can use restriction operators. If A is an 

n x n matrix, then a restricti.on matrix R is a k x n matrix, ident ically zero except for 

exactly k ones, one per row, with ~j = 1 indicat ing that u1 is t he i t h variable of the 
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resulting subset. For instance, to decompose a vector into two subsets one can take 

R, = [1 l and R2 = [ 

kxn 

1 

1 

which take the first k and last f. elements of u as subsets, respectively. The restriction 

of the matrix A to a given subset can be similarly obtained using these restriction 

matrices, defining 

We can now define the multiplicative Schwarz method for linear systems, given by: 

Similar t o the alternating Schwarz method, we first solve a system using the matrix 

A1 associated with the first subset of variables, then a second system using A2 , which 

is associated wit h the second set of variables. Indeed , if one considers t he case where 

the Rj are non-overlapping, that is, Rf R1 + RI R2 =I, t hen it can be shown that the 

multiplicative Schwarz algorit hm is equivalent to the systems obtained by discretiz-

ing the alternating Schwarz algorithm [18]. More generally, if we decompose into J 

subdomains, we obtain the iteration 
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As the multiplicative Schwarz method can be thought of as an analog to the 

alternating Schwarz method, an obvious question is t o ask if there is a Schwarz 

method for linear systems which can be implemented in parallel. One answer t o 

this question is the additive Schwarz method, in which the matrix A is preconditioned 

by a matrix Aj1
, where A1 is a direct sum of diagonal blocks of A [55]. For reference, 

the direct sum of matrices A and B is denoted by A EB B and is given by 

In the case of two subdomains, the preconditioning matrix Aj1 is given by 

or equivalently Rf A! 1 R1 + Rf A21 R2 , which leads to t he addit ive Schwarz fixed point 

iteration [18] 

Clearly t he linear solves on the right hand side can be done simultaneously, allowing 

parallel implementation. Indeed , in the case of non-overlapping Rj, t his iteration is 

equivalent to the systems obtained by discretizing the overlapping parallel Schwarz 

algorit hm. While this two subdomain iteration can be extended in an obvious fashion 

to 
J 

u n+l = u n + L RJ A j 1Rj(f- Au n), (3.7) 
j = l 
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it is interesting to note that a non-convergence result has been established, stating 

that in general the iteration (3. 7) cannot converge (See Theorem 3.3 of [18]). There 

are several ways to overcome this limitation, and furthermore, it has been observed 

that the preconditioned system obtained by applying ~f=1 RJ Aj1 Rj lends itself to 

solut ion by Krylov methods. Further details on various discrete DD methods can be 

found in [18, 55]. 

3.2 DD for Time Dependent Problems 

In the previous section we considered Schwarz DD methods for the solution of steady 

PDEs. Indeed, there is a vast body of literature of DD methods for the solution of 

elliptic problems, see for example [4 7, 55]. DD has also been applied to the solution 

of time dependent problems of both parabolic and hyperbolic varieties . In particular, 

Schwarz methods have been applied to time dependent problems using two different 

approaches, both of which will be discussed in this section. To illust rate t hese methods 

we use the sample parabolic problem 

Ut = £u, (x , t) E D X [0, T], (3.8) 

subject to appropriate initial and boundary conditions. 
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3.2.1 Solving a Sequence of Elliptic Problems 

The classical method for solving t ime dependent problems using DD is due to Cai [8,9], 

in which existing alternating or parallel Schwarz methods are applied to the sequence 

of elliptic problems which result from a t ime semi-discretization of the PDE. For (3 .8), 

discretizing by the backward Euler method leads to the sequence of elliptic problems 

u(tk+l) = u(tk) + .6.t£u(tk+l) , x E D, for k = 1, 2, ... , N, (3.9) 

where u(tk) denotes the solution at time step k, setting t0 = 0 and tN = T. At time 

step k, (3.9) is a simple inhomogeneous elliptic problem, with a time independent 

source term u(tk)· By applying DD for each k, suppressing the argument tk+1 , a 

general parallel Schwarz iteration is: for n = 0, 1, . .. 

For this method the DD iteration is an "inner loop": at each t ime step in the solut ion 

of (3 .9), we perform parallel Schwarz iterations until convergence is achieved, then 

proceed to the next time step, where the process is repeated. Vve note that optimized 

transmission conditions Bi for the corresponding elliptic problem can be applied for 

this iteration, see [17] and t he references therein. 
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3.2.2 Schwarz Waveform Relaxation 

In the more recent method, known as Schwarz waveform relaxation (SWR), the space-

time domain is decomposed and the time dependent PDE is solved on each spatial 

subdomain for the entire time interval [5, 25, 26]. The two subdomain DD iteration 

for (3.9) is: for n = 0, 1, .. . 

(x, t) E !11 X [0, T], 

(x, t) E f 1 x [0, T ], 

Un+l _ L"un+l 
2,t - 2 ' (x, t) E D2 x [0, T], 

(x , t) E f2 x [0, T] . 

For this pair of sub-problems the DD is now an "outer loop" in the iterative solution 

of the PDE. For each DD iteration, both subdomain problems are solved over their 

entire domain, ni X [0, T]. Transmission conditions along the interface between sub-

domains are updated for all t E [0, T ], then the process repeats. A key advantage 

of the SWR iteration over solving a sequence of elliptic problems is that the user is 

no longer required to maintain a uniform time step, or even use the same integration 

technique, for different subdomains, allowing much more flexibility to adjust to each 

individual sub-problem [21 , ~2]. Another advantage is in terms of parallel implemen-

tation, as fewer transmissions of larger amounts of data can be more efficient than 

many transmissions of smaller amounts of data by avoiding the "startup" cost each 
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communication incurs,· regardless of transmission size. 

The SWR method can be extended to an arbitrary number of subdomains, and 

convergence results have been established for the heat equation [5, 25], the wave 

equation [21] and for various other classes of problems, in many cases with optimized 

transmission conditions proposed [4, 19- 21, 24]. 

Having presented the basics of DD in this Chapter, we will now discuss how DD 

can be applied to the solution of mesh equidistribution problems in Chapter 4. 



Chapter 4 

DD Methods for the Steady lD 

Mesh Equation 

After int roducing t he concepts of moving mesh methods in Chapter 2 and DD in 

Chapter 3, we now turn to t he main focus of this t hesis: t he coupling of t hese methods 

together , establishing the convergence of Schwarz methods for the 1D equidistribut ion 

principle (2.4). This work follows from t he the experimental papers [29, 31 , 32] and 

builds upon the theoretical work of [22, 23], with some of t he original results previously 

included in [30]. Due to t he nonlinearity of (2.4) much of t he analysis presented will 

differ from typical st rategies used in DD literature. Indeed , much less has been written 

about DD for nonlinear problems, see [6, 10, 15, 16, 24, 42, 44, 45, 53]. 
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As in the papers [22, 23, 29, 31], we are primarily concerned with the mesh gener-

ation problem, less the solution of the coupled problem (2.8), and so we assume the 

physical solution u is known. This is a reasonable assumption, given the usual ap-

proach of decoupling the physical equation and mesh equat ion mentioned in Chapter 

2. If u is a time independent function on n = [0, 1], then from (2.4) an equidistributing 

mesh transformation x (f;,) : Slc -t S1 is determined by solving the BVP 

d ( dx) df;, M(x) df;, = 0, x(O) = 0, x(1) = 1. (4. 1) 

The following are new results presented in this Chapter. Theorems 4.16 and 4.19, 

previously submitted in [30], discuss a multidomain alternating classical Schwarz 

iteration. Theorems 4.22- 4.24 consider alternating classical Schwarz iterations with 

groupings of subdomains to allow parallel computation. Theorems 4.22-4.23 have 

been submitted to [30], and Theorem 4.24 is previously unpublished. 

Theorems 4.26- 4.28 cover optimal Schwarz iterations for two subdomains, Theo-

rem 4.29 presents a parallel optimal Schwarz iteration for three non-overlapping sub-

domains, and Theorem 4.31 gives an optimal result for four or more non-overlapping 

subdomains. Of the five, Theorems 4.27 and 4.28 have previously been submitted 

in [30]. 

Finally, Theorem 4.34, previously submitted in [30], discusses convergence of an 

alternating optimized Schwarz iteration on two non-overlapping subdomains. 
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Before presenting convergence results for various alternating and parallel methods 

for ( 4.1), we provide some preliminary results which will be used throughout the 

chapter. 

4.1 Preliminaries 

The DD methods in the following sections require the solut ion of (4. 1) with a specified 

function M(x), subject to multiple types of boundary conditions. We begin by noting 

the existence and uniqueness of a solution to this differential equation subject t o 

Dirichlet boundary conditions. These results originally appear in [22]. 

Lemma 4.1. Consider the f ollowing BVP on an arbitrary subdomain (a, (3 ) c n = 

(0, 1) , 

d ( dx ) d~ M(x) d~ = 0, x(a) = "fa, x( f3 ) = 'Yf3 · (4.2) 

If M is differentiable and bounded away from zero and infinity, i .e. there exists m 

and m such that 0 < m :::; M(x) :::; m < oo for all x, then this BVP has a unique 

solution given implicitly by 

ix(~) ~ - a i "'fJ 
M(i )di = f3 _ a M(i )di, 

"1<> "'<> 

~ E (a, (3). ( 4.3) 
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Proof. The differential equation and boundary condition at ~ = a is satisfied by 

1
x(~) 

M(x) dx = C(~- a), 
7a 

where we choose C to satisfy the Dirichlet condition at~ = /3. From direct calculation 

we obtain 

1 17(3 
C = /3 _a M(x) dx, 

7a 

arriving at the implicit representation (4.3). 

To establish the existence and uniqueness of x(~) which satisfies (4.2), we note 

that x(~) is the solution e of 

~- a 17(3 
G(B) = /3 _a M(x) dx, 

7a 

( 4.4) 

where G(B) _ J0 M(x) dx. Under t he assumptions of Lemma 4.1, G is cont inuous 
7a 

and uniformly monotonic, t hat is, 

dG 
dB = M (B) ~ r'h > 0. 

Hence, by the inverse function theorem, there is a unique, continuously differentiable 

solution to (4.4) and (4.2). D 

A simple consequence of Lemma 4.1 which will be used several times is stated in 

the following Corollary. 
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Corollary 4.2. For any ( E (0, 1) , the solution x(() which solves (4.2) satisfies the 

equation 

r({.) r 
lo M(x) dx = ( lo M(x) dx. 

Similarly, the following expressions also easily follow from Lemma 4.1. 

Corollary 4.3. Suppose the domain [0, 1] is decomposed into subdomains [0, .8] and 

[a, 1], with a~ (3. Then the following hold: 

(i) The function x(~) solving 

d ( dx) d~ M(x) d~ = 0, ~ E [0, /3], 

with x(O) = 0 and x(/3 ) a known value, satisfies 

r(f,) c r (f.u) 

lo M(x) dx = ~ lo M(x) dx, (4.5) 

where ~u ~ /3. 

(ii) The function x( ~) solving 

d ( dx ) d~ M(x ) d~ = 0, ~ E [a, 1], 

with x(1) = 1 and x (a) a known value, satisfies 

( M(x) dx = 2_ - ~ ( M(x) dx, ~ E [~1 , 1], (4.6) 
} x(f,) 1 - ~~ J x(f.t ) 

where 6 ~a. 
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The analysis of optimized Schwarz methods in Section 4.4 will require t he solution 

of boundary value problems of the form 

d ( dx) d~ M(x) d~ = 0, x(O) = 0, (4.7) 

and 

d ( dx) d~ M(x) d~ = 0, M(x)x~- pxl iJ = "fJ) , x(1) = 1, ( 4.8) 

where p and 'YJ) are constants and (3 E (0, 1) is fixed. Note the change of sign in the 

boundary condition at~= (3 from (4.7) to (4.8). The existence of unique solut ions 

to these BVPs, as well as t heir implicit solutions, are provided in the following two 

Lemmas. 

Lemma 4.4. Under the assumptions of Lemma 4.1, the BVP (4.7) has a unique 

solution for all p > 0 given implicitly by 

1
x(~) 

0 
M(x ) dx = ("1!3 - px(f3))~ , ~ E (0, {3) . (4.9) 

Proof. The differential equation and boundary condition at ~ = 0 is satisfied by 

1
x (O 

0 
M(x ) dx = c~ , 

where C is chosen to satisfy the Robin condition at ~ = f3 . Direct calculation gives 

C = 'Y!3 - px(b) , from which (4.9) follows. 
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To establish the existence and uniqueness of x(~) satisfying (4.9), we note that if 

~ = f3 then the boundary value x(/3) is the solution () of 

( 4.10) 

where 

G(e) - foe M(x) dx + {3pe. 

Under the assumptions of Lemma 4.1, G is continuous and uniformly monotonic, that 

is, there exists a constant Gp > 0 such that 

dG 
d() = M(()) + {3p ~ GP > 0, 

hence ( 4.10) has a unique solution x(/3). The existence of a unique, continuously 

differentiable solution x(~) for ~ E (0, [3 ) follows from considering ( 4.9) with the now 

specified x ([3). Noting that 

a continuous and uniformly monotonic function, it follows that it has a continuously 

differentiable inverse. 0 

Lemma 4 .5. Under the assumptions of Lemma 4.1, the BVP (4.8) has a unique 

solution for all p > 0, given implicitly as 

1
1 

M(x) dx = (Jf3 + px(/3 ))(1 - ~), ~ E (/3, 1). 
x(O 

(4.11) 
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Proof. Equation ( 4.11) follows from direct calculation. To establish existence and 

uniqueness of a function x(~) satisfying (4.11), we evaluate this equation for~= j3 to 

obtain 

or, after rearranging, 

If we define 

1
1 

M(x) dx = (1- J3)(-y13 + px(/3)), 
x({3) 

1
1 

M(x) dx - (1 - f3)px(f3) = (1 - {3)!13 • 
x({3) 

G(B) = 11 

M(x) dx- (1- j3 )pB, 

under the assumptions of Lemma 4.1, G is a continuous and uniformly monotone 

decreasing, hence is invertible. We conclude there is a unique x(j3) given by G- 1((1-

{3)!13 ) . Having determined x(/3 ), the unique solution x(O for~ E (/3, 1) is given by 

&- 1 ((1'13 + px(/3))(1- ~)), where G(B) = 11 

M(x) dx, 

is clearly a continuous and uniformly monotonic decreasing function under the stated 

assumptions. 0 
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4.2 Classical Schwarz Methods 

In this section, we present methods to solve ( 4.1) via classical Schwarz iterations. 

We begin with the two subdomain parallel Schwarz method due to Gander and 

Haynes [22] and the alternating Schwarz method we previously described in [23]. 

We then discuss classical Schwarz methods on an arbitrary number of subdomains, 

again in both parallel and alternating forms. It will be seen that there are alter­

nating iterations which can be implemented in parallel to take advantage of parallel 

computation without sacrificing the improved convergence of alternating methods. 

4.2.1 Two Subdomain Methods 

We decompose the domain ftc = [0, 1] into two overlapping subdomains !11 = [0, ,B] 

and !12 = [a, 1] with a < ,B, and first consider the parallel iteration: for n = 1, 2, ... 

(M(x~)x~.~ )~ = 0, ~ E !11, 

x'?(O) = 0, 

x~(,B) = x~-1 (,8 ) , 

(M(x~)x~.~)~ = 0, ~ E !12 , 

x~(a) = x~-1 (a), 

x~ (l) = 1. 

( 4.12) 

We begin by constructing implicit solutions on the subdomains using Lemma 4. 1. 

Lemma 4. 6. Under the assumptions of Lemma 4.1 , the subdomain solutions on !11 
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and n2 of (4.12) are given implicitly by 

1xf(0 ~ ix~-
1

(/3) 
o M(x) dx = -g 

0 
M(x) dx, ( 4.13) 

and 

1
1 

M(x) dx = 
1

- ~ 11 

M(x) dx. 
x;'(~) 1- a x~-I(a) 

(4.14) 

Proof. Simply compare the subdomain problems in ( 4. 12) with ( 4.2) and use the 

implicit representation of the solut ion in (4.3) . 0 

Using these representations of the subdomain solutions we can prove a convergence 

estimate for the parallel Schwarz iteration ( 4.12). This result first appeared in [22]. 

We will use the L00 norm, defined for any function f : (a, b) ---7 lR by llflloo ·-

SUPxE(a,b) lf(x)j . 

Theorem 4.7. Under the assumptions of Lemma 4.1, the parallel classical Schwarz 

iteration (4.12) converges for any initial values x~(a) and xg(,B). Furthermore, we 

have the convergence estimates 

where 

a1-,8 
p := -,8-- < 1. 

1- a 
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Proof. Using Lemma 4.6 and defining C := J0
1 M(i) di, the sequence x~(a) satisfies 

l
xr(a) a lx~-

1

(/3) a ( 11 ) 
M(i) di = -(3 M(i) di = -(3 C - M(i) di 

0 0 x~- 1 ({3) 

= ~ (c- 1
- !3 11 

M(x) dx) 
(3 1 - a x~-2(a) 

( 4. 16) 

- a - M(-) d- a - a C 1 (3 1
x~-2 (a) (3 

---- x x +---
{3 1...:.... a 0 {3 1- a ' 

where the second and fourth equalities above follow from 

1x l\lf(i) di = C - 11 

M(i ) di , 

and the third follows from (4.14) evaluated at ~ = (3 with n replaced by n - 1. Defining 

l
xr(a) 

K~ = 
0 

M(i) di, 

the relation ( 4.16) is equivalent to the linear fixed point iteration 

The contraction factor of this iteration, 

a 1 - (3 
p := (3 1 - a' 

is strictly less than one, hence t he it eration converges to a limit K~ satisfying 

or K~ = aC. 

( 4.17) 

( 4.18) 
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Similarly, we can obtain a fixed point iteration for t he second subdomain, 

Kn - ~ 1 - f3 Kn-2 f3 - a C 
2- /3 1 2 +1 , -a - a 

(4.19) 

where K!f is defined by 

rx~ (f3) 
K~ = Jo M (i) di. 

Possessing the same contraction factor p, this iteration also converges, the limit K; 

satisfying 

K * - ~ 1 - f3 K * f3 - a C 
2-/31 2 +1 , -a -a 

or K; = f3C. (4.20) 

We have thus shown 

lim t j(a) M(i) di =a ( M(i) di and 
n --+oo Jo Jo 1

x~(f3) 11 
lim M(i) di = f3 M(i) di . 

n --+oo 0 0 

From Corollary 4.2, it follows that 

1

xj(a) 1 x(a) 
lim M(i) di = M(i) di and 

n--+oo 0 0 1
x~(f3) 1 x({3 ) 

lim M(i) di = M(i) di . 
n--+oo 0 0 

We now establish the £ 00 norm convergence estimates. By subtracting ( 4.13) and 

(4.14) from the corresponding equivalent expressions for x(~), we obtain 

( 4.21) 

and 

(4.22) 
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Subtracting (4.17) from (4.18) and likewise subtracting (4. 19) from (4.20) , then pro-

ceeding by induction, we obtain 

(4.23) 

and 

1

x (j3) 1 x(j3 ) 
M(i) di = pn M(i) di . 

x~n ({3) xg ({3) 
(4.24) 

Combining (4.24) with (4.21) and (4.23) with (4.22), we have 

1

x(O ~ 1 x(j3 ) 
M(i) di = -(3pn M(i) di , 

xin+l (E) xg(/3 ) 
(4.25) 

and 

1

x(E) 1 _ ~ 1 x(a) 
·M(i) di = --pn M(i ) di . 

x~n+ l(E) 1- a x?(a) 
(4.26) 

Finally, by the bounds on M we have, for any a, b E IR, 

( 4.27) 

Taking absolute values in (4.25) and (4.26) , then applying (4.27), we obtain the 

estimates 

and 

We obtain the estimates in (4.15) by taking the supremum of each inequality. D 
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The need for overlapping subdomains for the convergence of classical Schwarz 

methods can be seen from the statement of Theorem 4. 7: the contraction factor p is 

less than one only if a < f3. 

In a similar fashion we describe the alternating Schwarz iteration: for n = 1, 2, . . . 

x~(O) = 0, x~(a) = x~(a), ( 4.28) 

x~(l) = 1. 

For each iteration we first solve the subdomain problem over 0 1 , then use the resulting 

solution to provide updated boundary conditions for the subdomain problem over 0 2 . 

This can accelerate the convergence of the iteration, with the drawback being that 

subdomain problems must be solved sequentially. 

Before establishing convergence of ( 4.28), we use direct integrat ion to represent 

the subdomain solutions implicitly, recording them in Lemma 4.8. 

Lemma 4.8. The subdomain solutions on 0 1 and 0 2 of ( 4.28) are given implicitly 

as 

1
xl'(~) ~ l x;- 1

(!3) 

0 
M(x) dx = 

73 0 
M(x) dx, ( 4.29) 

and 

1
x~(~) 1 - ~ 1xf(a) ~ - a 11 

Ivi(x) dx = --. Ivi(x) dx + -- M(x) dx. 
0 1 - a 0 1 - a 0 

( 4.30) 
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We now prove Theorem 4.9, previously presented in [23]. 

Theorem 4.9. Under the assumptions of Lemma 4.1 , the alternating Schwarz iter-

ation (4.28) converges for any initial guess xg(j3) and we have the error estimates 

with contraction factor p := ~ i=:~ < 1. 

Proof. Evaluating (4.29) at~= a and using the expression for x~- 1 (,8) from (4.30) , 

we have 

Mdx =- -- Mdx+ -- Mdx . 
1

xj(a) - a { ,B- 11x~-I(a) - ,B- a 11 -} 
0 ,B a-1 0 1-a 0 

Defining the quantities 

tj(a) 

K~ = lo M(x) dx and c = 11

M(x) dx, 

we obtain the iteration 

This iteration converges with rate 

and has limit 

a1-,B 
p := -,8-- < 1, 

1-a 

(4.32) 

(4.33) 
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As the single domain solution satisfies 

r x (o:) 

lo lvf(x) dx = aC, 

and M(x ) 2: ih > 0, we have convergence at the interface to the correct limit . 

Taking the difference of (4.32) and (4.33), we have 

1

x (o:) 1 x(o:) 
M(x) dx = pn M (x) dx. 

xf(o:) x~(o:) 
(4.34) 

Subtracting ( 4.30) from t he equivalent expression for the single domain solut ion and 

using ( 4. 34), we obtain 

1

x (() 1 c 1 x(o:) 1 C 1 x (o:) 
M(x) dx = --"' M(x) dx = --"' pn lvf( i ) di. 

x~+ l(O 1- a xf(o:) 1- a x~(o:) 

Taking absolute values and using the bounds on M, we obtain, for all~ E [a, 1], 

Taking t he supremum gives t he second estimate in (4.31). The subdomain one esti-

mat e follows similarly. D 

4 .2.2 A Parallel Multidomain Method 

n, f j l n.l /1,_, 0,.~ I o ..... fi,\ 

I 
...,._- - · -- _.,.. ...,._--n, 

I I I I I I I I 
1!2 n, 

0 

~--H---~--~--~----+-i~l --+1~1 _n_, ~l { 
~ ? .... ·- 1 I 

0 :! 
,i, n., d, 

Figure 4. 1: Decomposing the unit int erval into S subdomains. 
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In practice, we would like to take advantage of multicore, multiprocessor scientific 

computing environments for grid generation. A typical mult idomain decomposition 

of the interval [0, 1 J into S sub domains is illustrated in Figure 4. 1. Towards this goal, 

we now review the extension of the classical Schwarz methods for ( 4.1) to S > 2 

subdomains, originally presented by Gander and Haynes in [22]. The subdomain 

solution, xi(~), on the ith subdomain, Oi = (ai , f3i), for i = 1, 2, . .. , S, is found by 

solving 

(4.35) 

where a 1 = 0, x1 (al) = 0, f3s = 1 and x8 (f3s) = 1. In addition to requiring that 

adjacent subdomains overlap (ai+1 < /3i, fori = 1, ... , S - 1), we assume that /3i ~ 

ai+2 fori = 1, ... , S-2, so that there is no overlap between non-adjacent subdomains. 

We obtain the solution on the whole domain by composing the subdomain solutions 

xi(~) . We begin by presenting the classical parallel Schwarz iteration: for n = 1, 2, .. . 

( 4.36) 

fori= 1, . .. , S, where we have defined for convenience x~(al) _ 0 and xS+l (f3s ) _ 1. 

The analysis which follows is from [22]. We define the error on the ith subdomain at 

iteration n , as 

1
x7(0 

e?(O = M(i) di , 
x;(.;) 

for i = 1, ... , S. ( 4.37) 
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We demonstrate convergence by showing this measure contracts to zero for each 

subdomain. As M is bounded away from zero we know limn-too ef ( ~) = 0 implies 

The error on each subdomain is given explicitly in the following Lemma. For 

convenience we denote e0(a1)- 0 and e8+l(Bs) = 0. 

Lemma 4.10. The error on each subdomain satisfies 

( 4.38) 

Proof. Computing the difference of ( 4.35) and ( 4.36) and differentiat ing ( 4.37) twice, 

we see the error e~+2 (~) satisfies the linear BVP 

e~+2 (a·) = en+1 (a·) t t t - 1 t ' 
n+2((3) _ n+l((3 ) ei i - ei+l i ' 

for i = 1, ... , S. Integrating and applying the boundary conditions gives the stated 

result . D 

We now use ( 4.38) to relate the error on subdomain i at iteration n + 2 to the 

error on subdomain i and its neighbors at iteration n . For simplicity, we introduce 

the quantities 

(4.39) 
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Lemma 4.11. The error at the interface ~= f3i-l , i = 2 , .. . , S satisfies 

( 4.40) 

while at~ = ai+1 , i = 1, ... , S - 1 we have 

(4.41) 

Proof. Inequality ( 4.40) is obtained by evaluating ( 4.38) at f3i-l and then using ( 4.38) 

. n+l({3 ) . f n d n d n+l ( ) . t f n d n T k" to wnte ei+1 i m t erms o ei+2 an ei an ei- l ai m erms o ei an e i _ 2. a mg 

absolute values, applying the extended t riangle inequality and noting each of the 

quantities in ( 4.39) is non-negative gives the result. Inequality ( 4.41) is obtained 

similarly. 0 

If S is even, we write the relations ( 4.40- 4.41) as the matrix inequalit ies 

where 
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with (S- 1) x (S - 1) matrices Me and Me_ given by 

P2q1 r2q1 

P382 p 3q2 P4T3 r4r3 

8382 83q2 p4q3 r4q3 

Ps84 p5q4 P6T5 r6r5 
Me= 8584 85 q4 P6qs r 6q5 

PS-188-2 PS-lqS-2 psrs-l 

8S-l8S-2 8S-lqS-2 psqs-l 

and 

P2q1 q3r2 r3r2 

82ql p3q2 r3q2 

P483 p4q3 P5T4 rsr4 

Me_= 
8483 84q3 p5q4 r5q4 

PS-288-3 PS-2qS-3 Ps-1rs- 2 rs- 1rs-2 

8S-28S-3 8S-2qS-3 PS-lqS-2 rs-1qs - 2 

PSBS-l psqs-l 

If instead S is odd, we obtain the matrix inequalities 

f n+2 < M f n and f·n+2 < M - f· n 
- f - f ' 

where 
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and the (S- 1) x (S- 1) matrices M1 and Mj are given by 

Mt= 

and 

Mj= 

P2q1 r2q1 

P382 p3q2 P4T3 r4r3 

8382 83q2 p4q3 r4q3 

P2q1 q3r2 

82q1 p3q2 

P483 
8483 

PS-28S- 3 PS-2qS-3 PS-1TS-2 rs- 1rS-2 

8S-28S-3 8S-2qS-3 PS-1qS-2 rs-1qS-2 

r3r2 

r3q2 

p4q3 P5T4 

84q3 p5q4 

PS8S-1 psqs-l 

r5r4 

r5q4 

PS-1SS-2 Ps-1qS-2 PsTS-l 

ss-18s-2 8S-1qS-2 Psqs-1 

69 

From ( 4.39), we see that for each i, we have Pi + ri = qi + si = 1. It follows 

that IIMelloo = IIMelloo = IIMt lloo = IIMtlloo = 1, so convergence cannot be argued 

directly using the infinity norm. In [25] it was shown there exists some ii > 0 for 

which IIM: II oo < 1 and IIMrlloo < 1 from which convergence follows. An alternative 

method to show convergence was demonstrated in [22]. For a real m x m matrix 

A and a E JR, define Wa(A) to be t he matrix obtained by deleting all rows, and 
m 

corresponding columns, for which L laij I < a. The following result comes from [58] . 
j = 1 

Lemma 4 .12. Suppose a m x m real matrix A is elem ent-wise non-negative, then 

p(A) < IIAIIoo if and only if WOAIIoo (A) = 0, where 0 is the m x m zero matrix. 
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Using this Lemma, we prove the following theorem. 

Theorem 4.13. Under the assumptions of Lemma 4.1 and the stated restrictions on 

the decomposition of Slc, the multidomain parallel Schwarz iteration ( 4.36) converges 

globally on an arbitrary number of subdomains. 

Proof. The assumptions on the choice of t he subdomains ensure the quantities ( 4.39) 

are non-negative, hence Meis non-negative (a matrix being non-negative when all 

elements are non-negative). The first, second last and last rows of Me each have sums 

less than one, hence "W 1(Me) zeroes rows and columns one, S - 2 and S- 1 of Me. 

We then see that rows two, three, S- 4 and S- 3 of w1(Me) have sums less than 

one, hence "Wi(Me) would zero rows and columns two, three, S- 4 and S- 3. It is 

clear that w~(Me) = 0 for some ii < S- 1. By Lemma 4.12, p(Me) < 1. We can 

similarly show that p(Me.) < 1, p(M1 ) < 1, and p(Mj) < 1. D 

If we make a further assumption that the overlap between each pair of subdo­

mains is the same size, we can give an explicit bound on the contraction rate. This 

assumption forces ri = si = r and Pi = qi = p, leading to the following explicit error 

estimate. 

Theorem 4.14. The Schwarz iteration (4.36) on S subdomains with a common over-



4.2 CLASSICAL SCHWARZ METHODS 71 

lap ratio r E (0, 0.5] converges in the infinity norm with iterates satisfying 

Proof. From the boundedness of M and (4.27), we have for each i and all~ that 

As l e~7+ 1 1 is linear it is bounded by the maximum of its boundary values. This leads 

to the sequence of inequalities 

l x~?+1 (()- x(~)l ::; = l e~?+ 1 (01 ::; ~max {l e~?+l (,62i)l, l e~?-1 (a2i)l} 
m m 
1 1 

::; -:-lle2nlloo::; -:-lle2nll2 
m m 

:::; ~ ( 1 - 4r(1 - r) sin
2 

2(S 11"+ l)) n lle0 ll2· 

For odd subdomains we obtain 

l x~7:11 (~) - x(~)l :S ~ ~e~7:11 (~) 1 :S _;._max {le~7+2(,62i+I ) I, le~7 (a2i+I) I } 
m m 

:S _;_ lle2nlloo :S _;_ lle2nh 
m m 

:S ~ ( 1 - 4r(1 - r ) sin
2 

2
(S11"+ 

1
)) n lle0 ll2· 

In both cases t he last inequality follows from a similar result in [25]. 0 
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By examining these bounds, we see that the convergence rate deteriorates as 

additional subdomains are used. This is not unique to the multidomain iteration for 

(4.1); similar results can be observed for many multidomain DD methods. A common 

fix for t his problem is the introduction of what is known as a coarse grid correction, 

for examples of this see [55]. 

4.2.3 An Alternating Multidomain Method 

While the forthcoming multidomain alternating Schwarz iteration is straightforward 

to understand and implement, there are significant differences from both the two 

subdomain alternating case and the multidomain parallel Schwarz iteration. We 

previously presented the results in this subsection in [30]. To help illustrate the 

general case, we begin with the four subdomain case, four subdomains being the 

minimum number of subdomains required for the general pattern to be apparent. 

Four Subdomains 

We decompose D = [0 , 1] into subdomains Di = [ai , ,Bi] fori= 1, . . . , 4, where a i+1 < 

,Bi for i = 1, 2, 3. Furthermore, we assume that ,Bi < a i+2 so that non-adjacent 

subdomains do not overlap. We denote by xi (O the solution over Di which is equal 
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to the original, single domain solution throughout ni. These solutions will satisfy 

where a 1 = 0, /34 = 1, and we define x0 (a1 ) = 0 and x5(fJ4) = 1. To determine the 

subdomain solutions, we implement the classical alternating Schwarz iteration: for 

n = 1, 2, ... 

(4.42) 

where we define for convenience x0( a 1) - 0 and xg(/34 ) - 1. 

The error on the ith subdomain, at iteration n, is defined by 

1
xi(~) 

e~(~) = M(x) dx, 
x;(~) 

for i = 1, . . . , 4. ( 4.43) 

As in the parallel case, convergence is demonstrated by showing this error measure 

contracts to zero on all subdomains. By the boundedness of M, 

lim e~(~) = 0 implies lim lxi(O - x~ (~) l = 0. 
n-+oo n-+oo 

The error on each subdomain is given in Lemma 4.15, int roducing e0(a1 ) = 0 and 

eg(/34 ) - 0 for convenience. The proof follows the proof of Lemma 4.10 and is omitted. 

Lemma 4.15. The error on each subdomain satisfies 

(4.44) 
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for~ E [ai, .Bi] and fori = 1, ... , 4. 

We introduce the quantities 

(4.45) 

and by evaluating (4.44) at .Bi- 1 and ai+1 we find 

( 4.46) 

( 4.47) 

We wish to rewrite the expressions for ei(.Bi- 1 ) and ei(ai+I) by eliminat ing t he terms 

involving ei_1 (ai) on the right hand side. 

Evaluating (4.47) fori = 1, we find e~(a2 ) = e~-1 (,81 )q1 . The right hand side 

only involves terms from the previous iteration, as e~(a1 ) = 0. Substituting this 

expression into ( 4.46) and ( 4.4 7) for i = 2, the resulting expressions will again only 

include terms from t he previous iteration. Continuing from left to right, substituting 

the previously obtained expressions into ( 4.46) and ( 4.4 7), taking absolute values and 

applying the triangle inequality, we obtain the sequence of inequalities 
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and 

All of the above inequalities depend only on t he values of [ej-1(,Bk)[ . Thus, if the 

error measures contract to zero at each ,Bk, then we have t he contraction at all 

interfaces. Writing these inequalities in matrix form gives e n+l ~ Me en, where 

(4.48) 

The matrices obtained for four or more subdomains will have zero entries everywhere 

above the first superdiagonal, i.e. they are lower Hessenberg. With ( 4.48) we can 

establish convergence. 

Theorem 4.16. Under the assumptions of Lemma 4.1 and the restrictions on the 

subdomains of De detailed above, the classical alternating Schwarz iteration ( 4.42) 

converges globally on 4 subdomains. 

Furthermore, if all subdomains are of equal size and each pair of adjacent subdo-

mains have an equal amount of overlap, then the iterates satisfy 
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where lle0 ll 2 is the 2-norm of vector e0 and the contraction rate is bounded by 

Proof. We show that p(Me) < 1 by computing IIMelloo· As in the parallel case the 

quantities ( 4.45) are non-negative, hence the matrix Me is non-negative. As such, 

IIMelloo will be the maximum row sum of Me. We can express each of these sums 

using nested products, similar to Horner's method of polynomial evaluation [28] . We 

have the inequalities 

hence IIMelloo < 1 and convergence of the iteration follows. 

If we assume all subdomains are of equal size and each pair of adjacent subdomains 

have equal overlap, then 

we have 
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It follows that 

as r > p2r. From simple calculations, we find 

an upper bound on the contraction rate p(Me)· 

From the bounds on M, we know lx~+1 (0 - x(() l ::; ;t le;·+l (()I. Furthermore, 

l e~1+1 (()I is bounded by the maximum of its boundary values, thus: 

1 1 
lx~+l ( ~) - x(O I ::; -:- l e~+l (0 I ::; -:-max { le~-H (,Bi) I, le~!11 ( ai) I} 

m m 

::; : max{le~l(,Bi) l , l e~_l(ai)l}::; ~l l en l l oo 
m m 
1 1 

::; -:-llenll2::; -:-(p(Me)t ll e 0 ll2 · 
m m 

Taking the supremum gives the bound described in the theorem statement. D 

Arbitrary Number of Subdomains 

We now extend the four subdomain case to obtain t he general result . We decompose 

S1 = [0, 1] into S > 2 subdomains S1i = [ai, ,Bi] for i = 1, .. . , S, where ai+1 < ,Bi 

for i = 1, ... , S - 1 and ,Bi < aw2 for i = 1, ... , S - 2. As before xi(( ) denotes the 

solution over n i, which is equal to the single domain solution throughout ni, and 
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satisfies 

where a 1 = 0, f3s = 1, and we define x0 (ai) = 0 and xs+1(as) = 1. The a lternating 

Schwarz DD iteration is: for n = 1, 2, ... 

(M(x~)x~~)~ = 0, x~(ai ) = x~_ 1 (ai), x~(f3i ) = x~;11 (/3i), for i = 1, ... , S, 

( 4.49) 

having defined x0(ai) - 0 and Xs+1(/3s)- 1. 

The error on the ith subdomain at iteration n is defined in (4.43), for i= 1, . . . , S. 

As in the four subdomain case, we find an error expression on each subdomain ex­

plicitly, introducing the values e0(a1 ) = 0 and eS.+l (/3s) _ 0 for convenience. 

Lemma 4 .17. The error on each subdomain satisfies 

e~(.;) = /3i ~ ai [(.;- ai ) e~;11 (/3i) + (f3i- .;)e~_ 1 (ai )], (4.50) 

.; E [ai, /3i] and fori = 1, ... , S. 

Using the quantities ( 4.45) in ( 4.50) and applying the triangle inequality we obtain 

the error bounds in Lemma 4.18. 

Lemma 4.18. The error at the interface.;= /3i- l fori= 2, . . . , S, satisfies 

le~(/3,_ ,)1 <; p, t, (lej-1(/l;- l) lq;-1 tis,) + r,le:';,'(iJ,) I, (4.51) 
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while at ~ = ai+l for i = 1, ... , S - 1, we have 

( 4.52) 

where we define IT~~~ s k = 1. 

Proof. Evaluating ( 4.50) at f3i-l and ai+1 we find 

(4.53) 

(4.54) 

We wish to replace t he terms containing ei_1 ( ai) with an expression involving values 

from the previous iteration. Starting at subdomain 1, we find e~(a2 ) = e~- 1 (/31 )q1 , 

as e0(a1 ) = 0. This is used to evaluate (4.53) and (4.54) on subdomain 2, and the 

process repeats. Working from left to right, we find e~ 1 ( ai) using t he previously 

obtained expression for ei_2 (ai_2 ) , arriving at 

Substituting this into ( 4.53) and ( 4.54) and applying t he extended triangle inequality, 

noting that each of Pi, qi, r i and si is positive, we obtain the desired expressions. 0 

The error expressions (4.51) and (4.52) depend only on the values of /ej-1(f3k) /. 

Hence if the error measure contracts to zero at each f3k, then we have t he contraction 
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at all interfaces. Writing these inequalities in matrix form gives e n+l ~ Me en, where 

Ps-1qs-2 rs-1 
PsSs-l · · · s2q1 psss- lqS-2 Psqs-l 

Theorem 4 .19. Under the assumptions of Lemma 4.1 and the restrictions on the 

decomposition of Oc detailed above, the alternating classical Schwarz iteration ( 4.49) 

converges globally on S subdomains. 

Furthermore, if all S 2: 3 subdomains are of equal size and each pair of adjacent 

subdomains have an equal amount of overlap, then the iterates satisfy 

where the contraction rate is bounded by 

Proof. 'vVe show that p(Me) < 1. As the quantities (4.45) are non-negative, the 

matrix Me is non-negative. The row sum 

(psss- l · · · s2ql) + · · · + Psss- lqS- 2 + Psqs- l 

can be expressed using nested products as 
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We know that each qi < 1 and that q i + 8i = 1. Starting at the innermost term, 

we have 8 2q1 + q2 < 8 2 + q2 = 1. Moving to the next set of brackets, we have 

8 3(8 2q 1 + q2) + q3 < 8 3 + q3 = 1. Proceeding in this manner, we know that each term 

contained within brackets will b e less than one in magnit ude, and as such we have 

Similarly, as Pi + ri = 1, the row sum is bounded as 

We see this holds if we consider any row of the matrix, hence we must have II Melloo < 1 

and the itera tion converges. 

If we make t he simplifying assumpt ion that all subdomains are of equal size and 

each pair of adj acent subdomains have equal amounts of overlap , t hen we have 

and corresponding matrix 
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From simple calculations, we find 

which is an upper bound on the contraction rate. The VX) error estimate follows as 

in the four subdomain case. 0 

4.2.4 A Red-Black Alternating Multidomain Method 

The previous multidomain iteration is similar to t he Gauss-Seidel iterative technique 

for solving linear systems, determining an improved approximation to each campo-

nent of the solution sequentially. Gauss-Seidel can be implemented in parallel by 

partitioning the elements of the solution vector into different sets, solving for all 

members of a set simultaneously, and using these values when solving for the next 

set of elements. For example, we may alternately color each component either red or 

black and solve for all of the similarly colored components in parallel [13]. Similarly, 

if we appropriately partition t he subdomains into two sets, we are able to solve all 

subdomain problems from each set in parallel while still maintaining improved con-

vergence which is characteristic of alternating methods. As before, we decompose 

nc = [0, 1] into s > 2 overlapping subdomains ni = [ai, ,Bi], for i = 1, ... , s, where 

ai+1 < ,Bi fori = 1, . . . , S - 1 and ,Bi < ai+2 fori = 1, ... , S - 2. We denote by xi(~) 

the original, single domain solution restricted to ni· 
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We modify our classical alternating Schwarz iteration to obtain the following, 

previously presented by the author in [30]. Fori= 1, ... , S: if i is odd, then 

(M(x~)x~()( = 0, x~ (ai) = x~11 (ai) , x~ (f3i ) = x~;/ (f3i ) , 

and if i is even , then 

( 4.55) 

(4.56) 

where x~(a1 ) 0 and x8+l(f3s ) = 1. If Sis even , then for each iteration we solve two 

sets of S/2 boundary value problems, using the result s from the odd subdomains t o 

provide updated boundary conditions for the even subdomains. If S is odd, we first 

solve the (S + 1)/ 2 odd subdomain problems, t hen the (S - 1)/ 2 even subdomain 

problems. In either case, we solve all odd numbered subdomain problems in parallel, 

then all even numbered subdomain problems in parallel. 

Error on the ith subdomain at iteration n is defined using ( 4.43) for i = 1, . .. , S, 

and we est ablish convergence by showing this measure cont racts to zero on all sub­

domains. The error on each subdomain is given explicitly in the following Lemma, 

defining e0(a 1) - 0 and e8+l (f3s ) = 0. 

Lemma 4.20. The error on subdomain ni = [ai, (3i], i = 1, . . . , S, satisfies 

/3; ~a; [ ( ~ - ai) e~;/ (f3i ) + ((3i - ~) e~.=-11 ( a i) J , if i is odd, 
(4.57) 

/3;~a; [ (~ - ai)ei+J (f3i ) + (f3i - ~) ei_ 1 ( a i)] , if i is even. 
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The proof of Lemma 4.20 follows from the proof of Lemma 4.15. We use (4.57) 

to relate the error on subdomain i at iteration n to the error on subdomain i and its 

neighbors at iteration n- 1. Making use of the quantities ( 4.45) we find the following 

recursive relationships. 

Lemma 4.21. The error at the interface~= f3i_ 1 , fori = 2, .. . , N , satisfies 

[ e~+l(/3i-d[ ~ riri+l[e~+2 (/3i+d l 

+ riPi+ l[ e~(ai+l )[ + PiQi-l[e~(f3i-d [ + PiSi-l [ e~_2 (ai_I) f , (4.58) 

while at ~ = ai+1 fori= 1, . .. , N- 1, we have 

[ e~+ 1 (ai+I) f ~ Qiri+l[e~+2(/3i+d l 

+ QiPi+ ll e~(ai+l ) l + siqi-l [ e~(f3i-l)l + s isi-l [ e~_2 (o:i_I) [. (4.59) 

Proof. Inequality ( 4.58) is obtained in the same way for t he even i and odd i cases. By 

evaluating ( 4.57) at /3i- l , the error is expressed in terms of the error on subdomains of 

the opposite parity - if i is even then i ± 1 is odd, and vice-versa. We use ( 4.57) twice 

more to eliminate these terms and we obtain an expression for e~+1 (/3i-d in terms 

of subdomain solutions of the same parity at the previous iteration. Taking absolute 

values, using the triangle inequality and noting ri, Pi, qi and si are non-negative gives 

the result. Inequality ( 4.59) is obtained in a similar way. D 
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The right hand sides of these bounds are identical to those obtained in the multido-

main classical parallel Schwarz method ( 4.36), hence convergence follows immediately 

from the proof of Theorem 4.13, leading to the following result. 

Theorem 4.22. Under the assumptions of Lemma 4.1 and the restrictions on the 

partitioning of Slc detailed above, the classical Schwarz iteration (4. 55 - 4. 56) con-

verges globally on an arbitrary number of subdomains. 

If we assume the overlaps are all of the same size, we have the following error 

estimate. 

Theorem 4.23. The red-black Schwarz iteration (4.55- 4.56} on S subdomains with 

a common overlap ratio r E (0, 0.5] converges in the infinity norm and the iterates 

satisfy 

Comparing the contraction estimat.es of Theorem 4.23 to Theorem 4.14 for the 

parallel case, we see that the method ( 4.55 - 4.56) satisfies the same error bound 

in n iterations that the method ( 4.36) will in 2n iterations. A single iteration of 

( 4.55 - 4.56) requires solving one set of subdomain problems in parallel, followed by 
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a second set of subdomain problems solved in parallel, meaning 2 subdomain solves 

are required per processor for each iteration. As such, a given processor will solve 

2n subdomain problems for both the red-black alternating algorithm and the original 

parallel algorithm. However, the red-black method will only require half the number 

of processors for each set of parallel computations. 

4.2.5 Alte rnate Subdomain G roupings 

Rather than classifying subdomains as odd or even, it is also possible to sort them into 

G groups, where G\S, and then perform DD, solving all subdomain problems within 

a group simultaneously. In this sense G = 1 results in the parallel iteration, G = 2 

the parallelized alternating iteration and G = S the original alternating iteration. 

The natural next case to consider is G 

according to if i - 1, 2, or 3 mod 3, for i 

following DD iteration: for n = 1, 2, ... 

3, where we classify subdomain ni 

1, . .. , S. Doing so, we'll have the 

i = 1 mod ~3: (A1(xr)x~~)E = o, xr(ai) = x~-=-r1 (ai) , x7 (f3i ) = xr;r1 
(f3i)' (4.60) 

i = 2 mod 3: (A1(xr)x~~)E = o, xr (ai) = xr_r(ai ), xr (/3i) = xr;r1 (f3i), ( 4.61) 

i = 3 mod 3: (A1(x~)x~E ) E = 0, x~(ai) = x~_ 1 (ai ) , x~(f3i) = X~r (f3i) · ( 4.62) 

Theorem 4.24. Under the assv,mptions of Lemma 4.1 and the restrictions on the 
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decomposition of De of Section 4.2.4, the three group alternating classical Schwarz 

iteration (4.60 - 4.62} converges globally on S subdomains. 

Proof. Proceeding in the same manner as in the proof of Lemma 4.15, we can easily 

derive the error expressions 

i = 1 mod 3: 

i 2 mod 3: 

i - 3 mod 3: 

1 
e~(~) = /3i _ ai [(~- ai)e~;/(f3i) + (/3i- ~)e~11 (ai) ] , 

e~(~) = /3i ~ ai [(~ - ai)e~;11 (/3i) + (!3i- ~) e~1 (ai)], 

e~(~) = /3i ~ ai [(~ - ai)e~+l(f3i) + (f3i- ~) e7_ 1 (ai )]. 

Making use of the quantities defined in ( 4.45) and evaluat ing each of these error 

expressions at /3i- l and ai+1, we get the following expressions: for i - 1 mod 3: 

fori = 2 mod 3: 



4.2 CLASSICAL SCHWARZ METHODS 88 

and fori- 3 mod 3: 

To simplify these expressions, we let ei(Bi-d = y;,n and ei( ai+l) = Yi'n , fur-

ther defining y(i'n 0. Rewriting these equations, where now z 

1 ... , lS/3J, we have 

Inspecting the right hand sides of these equations, we see that t he only unknowns 
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h . . . + n-1 - n-1 - n-1 + n-1 d - n-1 appearing at t e prev1ous 1terat10n are y3i'_3 , y3i'_1 , Y3/ , Y3/ , an Y3i+2 · 

Furthermore, as the pairs Yt~3 , Yt'n and y3i~1 , y3i:;-2 differ in subscript by 3, they 

are determined by the equations of the same form. As such, we can rest rict ourselves 

to only considering the equations for y3i~1 , y"3i'n and Yt'n, and if we can show a 

contraction for these equations, we will have a contraction for the entire system. 

Isolating the relevant terms, we have, fori = 1 . . . , lS/3J, 

Applying the extended triangle inequality, this leads to a matrix inequality with 

matrix 

P2q1 r2 
P3S2ql p3q2 p4r3 r4r3 

S3S2Q1 s3q2 p4q3 r4q3 

PsS4 Psq4 rs 

Me = 
P685S4 P6S5q4 P6q5 p7r5 r7r6 

P685S4 s5s5q4 s5q5 P7q6 r7q5 

PsS7 pgq7 rs 

pgSsS7 pgssq7 pgqg P10r9 r 10r 9 

SgSgS7 SgSgq7 Sgqg P10q9 r10qg 
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Recalling the fact that Pi + r i = 1 and si + Qi = 1 it can b e seen that, except for t he 

first three and last three rows, every row sums to one, hence II Me lloo = 1. As the first 

three rows and last three rows have row sums less than one in magnitude, we make 

use of Lemma 4.12 as in the proof of Theorem 4.13. We zero six rows and columns 

for each subsequent application of W1( · ) , hence it follows that PMe < IIMelloo = 1. 

Convergence of the iteration follows. 0 

If we were to consider larger G (G ~ 4) we obtain an iteration of the form: for 

n = 1, 2, ... 

i - 1 mod G : (M(xr)x~E)E = 0, xr (ai) = xr_=-11(ai), xr(f3i) = xr;/(f3i ), 

i- 2 mod G: (M(xnx~E) E = 0, xr (ai) = xr_1 (ai), xr(f3i ) = xr;/ (f3i ), 

This introduces more cases where the left Dirichlet condit ion uses information from 

iteration n and the right condit ion from n - 1. The result ing error expressions will 

involve more unknowns at the previous iteration and a larger system of inequalities 

must be analyzed, resulting in a corresponding iteration matrix Me with a filled in 

lower triangular part. The limiting case of this process will b e the initial alternating 

case discussed in Section 4.2.3. 
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4.3 Optimal Schwarz Methods 

As noted in the previous chapter, classical Schwarz methods experience slow conver­

gence and require overlap for the iterat ions to succeed. By formulating alternative 

transmission conditions it is possible to fix both of these problems. Indeed, in [22] 

the authors present optimal parallel Schwarz transmission conditions for solving ( 4.1) 

on two non-overlapping subdomains. The "optimal" label is used to indicate that the 

iteration converges to the single domain solution after two iterations: two BVP solves 

on each subdomain, for a total of four subdomain problem solves. After reviewing this 

result, we present a new variation demonstrating optimal convergence on overlapping 

subdomains, then turn to the case of alternating iterations, previously presented by 

this author in [30]. By switching to the alternating iteration, we can reduce the num­

ber of subdomain solves required from four to three. Finally, we establish convergence 

for optimal transmission conditions for arbitrarily many subdomains. 
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4.3.1 Parallel Iterations 

We decompose nc = [0, 1] into two non-overlapping subdomains n1 

n2 = [a, 1] and consider the iteration [22] : for n = 1, 2, ... 

x~(O) = 0, 

x~(l) = 1, 

where the transmission operators are 

81(·)- M(·)8((-) - -
1-11 

M(x) dx, 
1- a 0 110 B2(·) _ M(·)a((·) - - M(x) dx. 
a o 

92 

[0, a] and 

( 4.63) 

(4.64) 

The subdomain solutions are given by (4.3), where x~(a) and x2(a) are determined 

by the transmission conditions. 

Theorem 4.25. Under the assumptions of Lemma 4.1 , the iteration (4.63) with 

transmission conditions ( 4.64) is optimal: convergence is achieved in two iterations. 

Proof. Differentiating ( 4.5) and ( 4.6) with respect to~ and letting ~u = a and ~e = a 

gives 



4.3 OPTIMAL SCHWARZ METHODS 93 

Suppose x~-1 (~) and x~- 1 (~) are given iterates on subdomains one and two. Enforcing 

the subdomain one transmission condition shows 

11xf(a) 1 .11 
- M(x) dx- -- M(x) dx 
a o 1- a xf(a) 

1 11 1 11 
= -- M(x)dx- -- M(x)dx, 

1 - a x~-1(a) 1 - a x~- 1 (a) 

whence 

1 1 xj'(o) 1 11 
- M(x) dx- -- M(x) dx = o. 
a o 1- a xf(a) 

Furthermore, as 

11 11 1 xj'(a) 
M(x) dx = M(x) dx- M(x) dx, 

xj' (a) 0 0 

we have 

tj'(a) t 
lo M(x) dx =a lo M(x) dx. 

As mentioned in the proof on Theorem 4.7, the exact solution also satisfies 

t(a) t 
lo M(x) dx =a lo M(x) dx. 

From the positive lower bound on M, it follows x~(a) = x(a) , hence we have obtained 

the correct boundary value in two iterations. Furthermore, as both x!(~) and x(~) 

satisfy the BVP 

d ( dx) d~ M(x) d~ = 0, x(O) = 0, x(a) = x(a) , 
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and by Lemma 4.1 this problem has a unique solution, we conclude x1(~) = x(~) for 

~ E (0, a ). Convergence on subdomain two follows similarly. 0 

An overlapping optimal iteration can be developed in a similar manner. We now 

decompose nc into nl = [0, ,8] and n2 = [a, 1], with a< ,8, and consider the iteration: 

for n = 1, 2, . .. 

x~(O) = 0, (4.65) 

x~(l) = 1, 

where the transmission operators are 

. 1 11 B1(·) = M(-)8~(-) - - - M(x) dx, 
1 - ,B (-) 

11(-) B2(-) = M(·)8~(·) - - M(x) dx . 
a o 

(4.66) 

Theorem 4.26. The iteration ( 4.65) with transmission conditions ( 4.66) is optimal: 

convergence is achieved in two iterations. 

Proof. Let xi (~) and x~(~) be functions on subdomain one and two, obtained from 

solving (4.65) with arbitrary initial functions x?(~) and xg(~). Applying Corollary 4.3 

with~~ = ~u = ,B to xi(~) and x~ (~) , differentiating (4.5) and (4.6) then evaluating 
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the resulting equations at /3, we obtain 

The transmission condit ion on 0 1 implies 

11xi(.B) 1 11 -
13 

M(x) dx - --
13 

M(x) dx 
0 1 - xi(/3) 

1 11 1 11 = --
13 

M(x) dx - --
13 

M(x) dx = o, 
1 - x~(/3) 1 - x~(/3) 

hence 

1xi(f3) J3 11 
M(x) dx = --

13 
M(x) dx . 

0 1- xi(f3) 

Using the fact 

1
1 

1
1 

1
xr(/3) 

M(x) dx = M(x) dx- M(x) dx, 
xr (/3) 0 0 

we have 

rxr(/3) t 
lo M(x) dx = J3 lo M(x) dx . 

From Corollary 4.2 the exact solution also satisfies 

t (/3) t rxr(/3) 
lo M(x) dx = J3 lo M(x) dx = lo M(x) dx, 

hence xi (/3) = x(/3) and we have convergence at the boundary. Convergence over 

interior of 0 1 follows from Lemma 4.1. 



4.3 OPTIMAL SCHWARZ METHODS 96 

On n2, applying Corollary 4.3 with~~ = ~u =a to xH~) and x~ (~), different iat ing, 

and then evaluating the resulting equat ions at a, we obtain 

The transmission condition requires 

1 11 11x~(a) -- M(x) dx -- M(x) dx 
1 - a x~(a) a o 

1 1 x l (a) 1 1 x l (a) 
= - M ( x) dx - - M ( x ) dx = 0, 

a o a o 

hence 

1
x~(a) a 11 

M (x ) dx = - - M(x) dx. 
o 1 -a x!l(a) 

Making use of Corollary 4.2 as before, we find x~ (a) = x(a), establishing conver-

gence at the boundary. As before, convergence over t he interior of D2 follows from 

Lemma 4.1 . 0 

4.3.2 Alternating Iterations 

The alternating optimal Schwarz iterations, for both non-overlapping and overlapping 

subdomains, follow from their parallel counterparts. In the non-overlapping case, we 

once again decompose De into D1 = [0, a] and D2 = [a, 1], and consider the iteration: 
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for n = 1, 2, ... 

x~(O) = 0, (4.67) 

x~(l) = 1, 

where 

(4.68) 

As we show in the following Theorem, convergence is theoretically achieved after 

solving 3 subdomain problems in the alternating case: one fewer subdomain solve 

than what is required in the parallel optimal method. 

Theorem 4.27. The alternating iteration (4.67) with transmission conditions (4.68) 

is optimal: convergence is achieved in three subdomain solves. 

Proof. Applying Corollary 4.3 to x~,2 (() , n ;:::: 1, differentiating the result ing equa-

tions, then evaluating the result at a, we find 

11x}(a) 
M(x~(a))8~x~(a) = - M(i) di, 

a o 

1 11 M(x~(a))8~x~(a) = -- M(i) di. 
1 - a x?i(a) 



4.3 OPTIMAL SCHWARZ METHODS 98 

Suppose xH~) has been obtained by solving ( 4.67) on r21 using an arbitrary initial 

function xg(~). Substituting the expressions previously obtained into the transmission 

condition for n2, with n = 1, gives 

1 11 11x~(a) -- M(x) dx-- M(x) dx = 
1- a x~(a) a o 

11xHa) 1 1x~(a) 
- M ( x) dx - - M ( x) dx = 0, 
a o a o 

and hence 

M(x) dx = _a_ M(x) dx . 1
x~(a) 11 

0 1- a x~ (a) 

Noting that 

11 11 1x~(a) 
M(x) dx = M(x) dx- M(x) dx, 

x~(a) 0 0 

we have 

rx~(a) t 
Jo M(x) dx =a Jo M(x) dx. 

By Corollary 4.2 we see that 

rx~(a) r x (a) 

lo M(x) dx = lo M(x) dx, 

and hence xHa) = x(a) , thus we have convergence at the boundary. Convergence in 

the interior of r22 follows from Lemma 4. 1. 
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Returning to r21 , the transmission condition for xi(~) requires 

11xi(a) 1 11 
- M(x ) dx- -- M(x) dx = 
a o 1- a xi (a) 

1 i x(a) 1 i x(a) 
-- M(x ) dx - -- M(x) dx = o, 
1- a 0 1- a 0 

which implies 

1xi (a) a 11 
M (x ) dx = -- M (x ) dx. 

0 1 - a xi (a) 

It follows from the previous equation, combined wit h Corollary 4.2, that 

rxr (a) t (a) 

lo M(x ) dx =a l o M (x) dx, 

hence xi ( a ) = x(a ). As before, convergence over the interior follows from Lemma 4. 1 

and thus the solut ion has been obtained in three subdomain solves. D 

The final two subdomain variation to consider is for an alternat ing iteration on 

overlapping subdomains. Let r21 = [0, ,8] and r22 = [a, 1], with a < ,8 , and consider 

t he iteration: for n = 1, 2, . . . 

x~(O) = 0, (4.69) 

x~( 1 ) = 1, 
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where 

B1(·) = M(·)O~(-)- _J___(3 11 
M(i) di, 

1- 0 

110 B2(· ) = M(· )a~(-)- - !v!(i) di . 
a o 

100 

(4.70) 

Theorem 4.28. The alternating iteration ( 4.69) with transmission conditions ( 4. 70) 

is optimal: convergence is achieved in three subdomain solves. 

The proof is a simple combination of the methods used to prove Theorems 4.26 

and 4.27, and hence is omitted. 

4.3.3 A Parallel Iteration for Three Non-Overlapping Sub-

domains 

It is possible to extend the parallel optimal iteration to three non-overlapping subdo-

mains, where in this case "optimal" indicates that convergence is obtained in three 

and over each subdomain we solve the differential equation 

(4.71) 
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with conditions x~(O) = 0 and x~(1) = 1. Furthermore, we require a pair of trans-

mission conditions at both interfaces. At ~ = a 1 we impose the conditions 

n-1( ) 
1 1x1 0<1 

M(x~- 1 )x~~ 1 -- M(x) dx, (4.73) 
,., a1 o 

and at ~ = a 2 we use 

M(x~-1 )x~-1 
-

1 t M(x) dx, ( 4. 74) 
>~ 1 - a2 } Tn-1( ) x3 0<2 

Theorem 4.29. The parallel Schwarz iteration (4.71) with transmission conditions 

(4. 72- 4.75) is optimal: convergence is achieved in three iterations. 
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Proof. By direct integration of ( 4. 71) over each sub domain, it is clear the following 

equations must hold: 

where the limits at a 1 and a 2 are determined by the transmission conditions. Using 

these equations we are able to eliminate all non-integral terms in (4.72- 4.75). 

Let xt(~), i = 1, 2, 3, be determined using arbit rary initial data in the transmission 

conditions ( 4. 72 - 4. 75) for the first DD iteration. We now use these functions to 

evaluate the transmission conditions for the second iteration. Of part icular interest 

are (4.73) and (4.74) , which, when simplified, give 

(4.76) 

where 

c = 11 

M(x) dx. 

Finally, performing the third DD iteration, the transmission conditions, once simpli-
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fied , give the following equations for the boundary conditions: 

( 4.77) 

(4.78) 

Substituting the results of the second iteration, (4.76), into (4.77) and (4.78), we find 

It follows that x{(al) = x~(al) and x~(a2 ) = x~(a2 ) . Furthermore, from Corollary 4.2, 

we know the single domain solution x(~) satisfies 

r x(o.l) 

lo M(x) dx = a 1C and 

mission conditions give t he exact boundary values in three iterations, and hence are 

optimal. As in the two subdomain case, convergence over the interior of subdomains 

follows from the Lemma 4.1. 0 
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4.3.4 A Parallel Iteration for Multiple Non-Overlapping Sub-

domains 

We consider the following extension of the optimal iteration to S 2:: 4 subdomains . 

We decompose De into subdomains ni = [ai-l, ai] for i = 1, . . . ' s, defining ao = 0 

and as= 1. Fori= 1, ... , S we solve the equation 

(4.79) 

with original Dirichlet conditions x!(O) = 0 and x5(1) = 1. Finally, we enforce the 

nonlinear transmission conditions 

( 4.80) 

at~= ai_1, fori= 2, ... , S, and 

( 4.81) 

at ~ = ai, for i = 1, ... , S - 1. 

By direct integration, we know that each function xr ( ~) satisfies 
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given boundary values xi(ai_l) and xi(ai)· To simplify expressions we introduce the 

notation 

Substituting these expressions for xi, xi_1 , and xi+l into the transmission conditions 

and rearranging, we obtain the equations 

( 4.82) 

fori = 2, .. . , S, and 

(4.83) 

for i = 1, .. . , S - 1. 

Multiplying (4.82) by (1- ai_1)(ai+1 - ai) and (4.83) by ai_1(ai_1 - ai_2), then 

taking the difference of the resulting equations, we obtain 

(4.84) 

Similarly, multiplying (4.82) by (1-ai)(ai+1 -ai) and (4.83) by a i (ai_1 - ai_2), t hen 
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taking the difference, we obtain 

(4.85) 

where both ( 4.84) and ( 4.85) have subscripts i = 3, ... , S - 2. The cases of i 

1, 2, S- 1, and S are somewhat different, they are as follows: 

( 4.86) 

where 

c = 11 

M(x ) dx . 

The difference equations ( 4.84- 4.86) can be expressed as a matrix iteration 

where 

n _ [ +,n - ,n +,n - ,n +,n - ,n +,n - ,n]T 
z - zl ,z2 ,z2 , .. . ,zi ,zi , .. . ,zs- I ,zS- l ,zs · 
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For 5 2: 3 subdomains, the matrix A will be of size 2(5 - 1) x 2(5 - 1) wit h 

nonzero blocks as follows: 

o; x x ;o o ; ... . ..... . . .. . . ..... .. .. . . . .. ..... 0 -~ ;---- : u--- -:------- ---- -------- ---- ------- -
I 1 2 I 

L--- -I----~----IL I ~u; 
: 3: : 3 I 
r - - - - ~- - - - T - - - -I - - - - ; 

1 £4: : U4: 
~ -- --:-t-5-: ----:- _[]_5_- ~ 

I I I I 
A = 

~ ---- - - -,----- - - ~ ------ 1 IL I ~ u I 
I S-2 I I S-2 I 

I I I 
L-- - -- --- ---- ----- - - ---

1 I I IL I 
I S-1 1 I 

- ~ ~ ---- - - --- - - -- --- - -------- ~---- -- - 1- -- - - -- ~ ~-
01 .. . .. .... . ... . ... . .... . .... 1 0 0 I X X 1 Q 

The interior rows and columns of A can be part it ioned into a grid of (5 - 2) 2 blocks, 

each of dimension 2 x 2. The matrices Ui and Li are 2 x 2 blocks of the form 

for i= 2, . . . , 5 - 2, and 

for i = 3, . .. , 5 - 1. We shall refer to the matrices Ui as being in t he first block super-

diagonal and the matrices Li as being in t he first block subdiagonal, with individual 

matrices Ui and Li being superdiagonal blocks and subdiagonal blocks, respect ively. 
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Similarly we may refer to the kth block subdiagonal or superdiagonal. The elements 

of A denoted by x are the coefficients from the equations for zi'n and zs'n, but it 

will be shown that they can essentially be ignored in future calculations. All omitted 

entries are zero. 

To establish convergence, we denote the exact solution of this iteration by z* and 

hence define the error at each iteration by en = zn - z* . This error measure satisfies 

the iteration en = Aen- l. As with all previous iterations, we wish to show the error 

measure contracts to zero. For convergence, it is sufficient that p(A) < 1. However , 

for optimal methods we require the error to be zero after finitely many steps, so 

there must be some ii E N such that An 0. That is, we require the matrix A to 

be nilpotent. Before establishing this result, we first give a useful Lemma regarding 

blocks Ui and Li. 

Lemma 4.30. Fori= 2, ... , S- 2, we have UiLi+l = 02 x 2 = Li+1Ui . 

This follows immediately from direct calculation, and it is due to this convenient 

result that we can establish that the proposed iterations are indeed optimal. 

Theorem 4.31. The parallel Schwarz iteration (4.79) on S 2: 4 subdomains with 

transmission conditions (4 .80-4.81} is optimal: convergence is achieved in S itera­

tions. 
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Proof. Convergence of this iteration will follow from the nilpotence of A. We will 

demonstrate that A5 - 1 _ 0 for all S 2: 4. To do so, we establish the form of Ak for 

k = 1, 2, ... via induction. As in the matrix A, the 2(S- 2) interior rows and 2(S- 2) 

interior columns of Ak will be divided into a grid of (S- 2)2 blocks, each of size 2 x 2. 

We number block rows and block columns from 2 through S- 1, starting at the top 

left corner. The ( i, j) block of A will be denoted by Ai,j, and the ( i, j) elem ent of A 

will be denoted by A ( i, j). 

It is our claim that Ak will have nonzero blocks only in kth block subdiagonal and 

block superdiagonal. Specifically, the superdiagonal block in the ( i, i + k) position 

will be 

(4.87) 

and the subdiagonal block in the (i + k, i) position will be 

( 4.88) 

It is clear that these nonzero blocks will only occur for k ~ S - 3. For k 2': S - 2 

there will be no nonzero blocks in the interior of the matrix A k. 

Finally, Ak will have four other nonzero elements fork~ S - 2: A(1, 2k), A(1, 2k+ 

1), A(2S - 2, 2S- 2k- 2), and A(2S - 2, 2S- 2k- 1). When k = S - 1, we will 

have Ak 0, and hence convergence in S iterations. 
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To illustrate the sequence of matrices generated, we consider the case of S = 6, 

producing a 4 x 4 grid of blocks in the matrix interior . In this case: 

o:x x: . .. .. . . .. ; o o:o 

A= 

-- r--- -~-- -- T-- - - • ---- T--

.I 1 u: I I . 

. I 1 2 I I . 
• ~ ___ -1- ___ ~ ___ , I . . IL I l u I I 

I 3 I I 3 I I 
I 1 I I I 
~--------+----- --- 4 
I IL I l u I : 4 I I 4 I 

I I I 
" - - - I - - - - 1- - - - -~ 

I L I I 
I 1 5 I I 

-~L-------- + ---~---- ~~-
0 1 ......... 10 OIX X IO 

I I I I 

o: 0 0 I X X 1 0 0 0 0 :o 
- - T------ _,_------ T------ - ,------- T- -

:: :U2U3: :: 
• I " _ ______ 1 ___ __ _ _ J • 

I :u3u4: 
~ - - --- -, L - --- - - -1 

:£4£3: 
I I :------- -:-t;t~ : : . 

- ~ L ---- __ - ' - ______ 1 ______ - ,- __ _ ___ ~ ~ _ 

01 0 0 0 0 I X X I 0 0 10 
I I I I 

0: .... .. .... .... 0 ; X X I 0 0 :o 
- - T----------------~--- - - ~ ---------- T --

1 :U2U3U4: 
L ----------~ 

LsL4L3 : :. 
- ~L - -- - - ----- ~ -- - -- r ---------------- L ~ -
0 1 0 0 I X X IO .. ............ 10 

I I I I 
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and 
o; ...... o;x x;o 

- - r - - - - - - - -' - - - - 1 - -

I I 

I I 
I 

- ~ L--- -,-------- ~ ~-
OIX XIO ...... 10 

' ' ' 

To establish the veracity of our claim, we proceed by induction, noting that A 1 

satisfies the given description. Assuming now that Ak is as described, we prove that 

Ak+1 is also of this form, and hence Ak is as described for all positive integers k. 

Writing Ak+1 =Ax Ak, we note t hat A can be expressed as the sum of matrices L 

and U, where L is block lower triangular, containing all Li blocks, and U is block 

upper triangular, containing all ui blocks. 

The matrix U shifts the ith row of blocks in A k to row i - 1 (one block up) and left 

multiplies this row by Ui-l· This deletes t he top row of blocks in Ak as a result , and 

introduces zeros in the bottom row of blocks. This shifts the k t h block superdiagonal 

of Ak to the k + 1 th block superdiagonal, where 

which is equation 4.87 extended to k + 1. The row i block in the kth subdiagonal of 

Ak will be a product of the form LiLi- l · · · Li- k· By Lemma 4.30, left multiplying 
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this by ui-1 will produce a zero block. 

Similarly, the matrix L shifts the ith row of blocks in Ak to row i + 1 (one block 

down) and left multiplies this row by L i+l· The kth block subdiagonal to the k + 1 th 

block subdiagonal, where 

which is consistent with (4.88). The row i block in the kth superdiagonal of Ak will 

be a product of the form UiUi+l · · · Ui+k-l· By Lemma 4.30, left mult iplying this by 

ui+l will produce a zero block. 

Finally, we note that the nonzero elements A(1, 2) and A(1, 3) will have a nonzero 

product with the top block of the kth block superdiagonal of Ak, resulting in nonzero 

elements in positions (1, 2k+2) and (1, 2k+3) of Ak+1
. Similarly, the nonzero elements 

A(2(S - 1) , 2(S - 2)), and A(2(S - 1), 2(S - 2) + 1) will have a nonzero product with 

the bottom block of the k th block subdiagonal of Ak, resulting in nonzero elements 

in positions (2(S - 1) , 2(S- k- 2)) and (2(S- 1) , 2(S - k - 2) + 1). The remaining 

four nonzero elements of Ak do not contribute to any elements of Ak+ 1 . 

Having considered all parts of the product Ak+l, we see that t he position and form 

of blocks follow ( 4.87) and ( 4.88), with remaining nonzero entries as described. We 

conclude that our claim about the form of Ak is true, hence we have A8 - 1 = 0 for 

S ;::: 4. We thus have convergence in S iterations. D 
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4.4 Optimized Schwarz Methods 

While the deficiencies of classical Schwarz methods can be overcome through the 

use of optimal Schwarz methods, as observed in the previous section, the optimal 

conditions are often non-local, involving the evaluation of integrals. This makes 

the optimal conditions significantly more expensive to use in practice. However, it 

has been shown in [22] that the optimal transmission conditions of ( 4.64) can be 

approximated by developing a nonlinear Robin type transmission condition. While 

one would typically avoid introducing nonlinear transmission conditions if possible, as 

the differential equation ( 4.1) is already nonlinear, the extra cost of a single additional 

nonlinear equation is negligible during implementation. 

On subdomain one the optimal transmission condition is 

Using 

11 

M(x) dx = C -1x M(x) dx, where C = 11 

M(x) dx , 

the boundary condition can be rewritten as 
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Canceling the constant terms and using the mean value theorem for integrals, we 

rewrite this as 

or 

where tf'i, p~ > 0, as M is strictly positive. Similarly, on subdomain two 

where~, p~ > 0. This approximation in [22] led to the following optimized algorithm. 

Decompose Oc = [0, 1] into subdomains 0 1 = [0, a] and 0 2 = [a, 1], and apply the 

iteration: for n = 1, 2, . .. 

x~(O) = 0, ( 4.89) 

x~(l) = 1, 

where the transmission operators are 

with I(·) the identity operator and p a positive parameter. 
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The subdomain solutions from the optimized Schwarz algorithm ( 4.89) are repre-

sented implicitly in the following Lemma. 

Lemma 4.32. Under the assumptions of Lemmas 4.4 and 4.5, the subdomain solu-

tions on n1 and n2 of ( 4.89) are given implicitly by 

r~(f.) 
Jo M(i) di = R1 (x~(a))~ and 

where the operators R1 and R2 are given by 

1
1 

M(i) di = R2 (x~(a))(1- ~), 
x~(f.) 

11x R 1 (x) =- M(i) di 
a o 

1 11 and R 2 (x ) = -- M(i ) di . 
1- a x 

( 4. 91) 

The transmission conditions force the operator values to satisfy the recurrence rela-

tions 

(4.92) 

and 

( 4.93) 

Proof. The implicit representation of the subdomain solutions follows from Lem-

mas 4.4 and 4.5. The recurrence relations ( 4.92) and ( 4.93) follow from the t ransmis-

sion conditions. D 

As discussed in [22] , equations ( 4.92- 4.93) are an example of a Peaceman- Rachford 

type iteration [50] , and the convergence of the optimized Schwarz iteration follows 
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from analysis of similar nonlinear Peaceman-Rachford iterations in [41 , 49]. The 

following result was originally presented by Gander and Haynes in [22]. 

Theorem 4.33. Under the assumptions of Lemma 4.1, the iteration (4.92-4.93} 

converges globally to the exact solution x(a) f or all p > 0. Furthermore, we have the 

convergence estimate for the optimized Schwarz iteration 

II 2n+ 111 m P + ~ m n I ( ) o ( ) I 
X - Xl oo ::::;-:- · 1 ~ Probin X a - Xl a ' 

m p+c;m 

II 2n+ 1ll m P + 1 ~am n I ( ) o ( ) I 
X - X2 oo :=::;-:- · 1 v P robin X a - X2 a ' 

m p+ l-am 

where an upper bound for the contraction factor is 

Probin = 
2 m2 

2 m p + 0=Q)2- p~ 

2 m2 
2 m 

P + (l-a)2 + Pl- a P2 + m2 + 2p!h . 
Q2 Q 

Proof. We rewrite the iteration (4.92) and (4.93) as 

The operators R1 and - R2 defined in (4.91) are cont inuous and uniformly monotonic 

increasing, as 

R~(x) = ~M(x) ~ ~m > 0, 
a a 

- R;(x ) = -
1

- M(x ) ~ -1-m > 0. 
1- a 1-a 
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Furthermore, as p > 0, pi - R2 and pi + R 1 are also continuous and uniformly 

monotonic, hence invertible. This implies that x~(a) and x~+l (a) are well-defined. 

Eliminating the former, we obtain the recursion formula 

where 

We can express G as the composition 

where 

are strict contractions for all p > 0, due to the uniform monotonicity and Lips­

chitz continuity of the operators R 1 and - R2 [ 49]. Therefore, the iteration zn (a) = 

G1G2zn-2 (a), with z0 (a) = (pi+ Rt)x?(a ), is convergent. Furthermore, as z2n(a) = 

(pi+ R 1 )xin(a), XIn (a) also converges globally to some limit xi(a). We can simi­

larly show the odd iterates xin+1(a) converge to t he same limit. Likewise, the se­

quence x~(a) converges to a limit point x;(a) . The points xi(a) and x;(a) must 

satisfy the limiting versions of (4.92) and (4.93): by adding these two equations we 
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find x;'(a) = x;(a) =: x*(a) and by taking their difference we find x*(a) satisfies 

R 1(x*(a)) = R2 (x*(a)), that is, 

1 1x*(a) 1 (1x*(a) ) 
- M(x) dx = -- M(x) dx- c . 
a 0 a-1 0 

As in the classical and optimal cases, we can easily show x* (a) = x( a). 

An upper bound for the contraction factor for zn(a), Probin, is found by computing 

the Lipschitz constant of the operator G1 G2 as the product of the Lipschitz constants 

of G1 and G2 [49]. The convergence factor of x~(a) is related to Probin by: 

where Land L are the Lipschitz constants for (pi +RI) - 1 and (pi +RI), respectively. 

It can be shown that L = (p + ~ih t 1 and L = p + ~m. Combining this fact with the 

The estimate on subdomain two follows similarly. D 

As in the classical and optimal cases, we can easily modify the parallel iteration to 

obtain an alternating version. If nl = [0, a] and n2 = [a, 1], the alternating optimized 
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Schwarz iteration is: for n = 1, 2, ... 

x~(O) = 0, 

(M(x~)x~.~)~ = 0, ~ E 0 2 , 

B2(x~(a)) = B2 (x~(a) ) , 

x~ (l) = 1, 

119 

where the nonlinear transmission operators Bi, i = 1, 2 are the same as in (4.90). 

Again using of t he operators (4.91), we see from the transmission conditions that the 

operator values must satisfy the recurrence relations 

(4.94) 

and 

( 4.95) 

We state the alternating convergence result in the following Theorem. 

Theorem 4.34. Under the assumptions of Lemma 4 .1, the iteration (4 .94-4 .95) 

converges globally to the exact solution x(a) for all p > 0. Moreover, we have the 

linear convergence estimate 

~ 1 ~ 

llx- x~ l loo::; rr: · p + f~ P~obinlx(a)- X~( a) I, 
m P+-am 

II nil m P + l~am n I ( ) o( )I 
X - x2 00 ::; --:-

0 1 - Probin X a - x2 a ' 
m p+ l - am 
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where an estimate on the contraction factor is 

Probin = 

2 + m2 
2 m p ~- PI=Q 

2 m2 2 m 
P + (l-a)2 + P 1-a 

The proof of the preceding Theorem is very similar to that of the parallel iteration, 

the main changes being in t he iteration counters at various steps, hence it is omitted. 

We do note that we obtain the same contraction rate, Probin, now for every iteration, 

instead of every second iteration. 

4.5 Linearized DD Methods 

As presented by Gander and Haynes in [22], it is possible to avoid solving the nonlinear 

system of the classical parallel Schwarz iteration ( 4.12) by replacing the arguments 

of the nonlinear function M, x~ and x~, with the corresponding functions from the 

previous iteration. By doing so, the nonlinear equations to be solved at each DD 

iteration are replaced with linear equations. While the linearized equations may 

require more DD iterations to reach the single domain solution, the cost of each 

iteration is significantly reduced. 

Once again taking 0 1 = [0, ,B], 0 2 = [a, 1], and a < ,8, consider the iteration: for 



4.5 LINEARIZED DD METHODS 

n = 1, 2, ... 

(M(x~- 1 )x~.~)~ = 0, ~ E 01 , 

x~(O) = 0 , 

x~(/3) = x~- 1 (/3 ) , 

(M(x~- 1 )x~.~)~ = 0, ~ E rl2 , 

x~ (a) = x~-1 (a), 

x~(1 ) = 1. 
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(4.96) 

An a lternating Schwarz version of the algorit hm ( 4. 96) was previously presented 

in [23] . The resulting iterat ion is: for n = 1, 2, .. . 

(M(x~- 1 ) x~.~)~ = 0, ~ E rl1, 

x~(O) = 0, 

x~ (/3) = x~-1 (/3), 

(M(x~- 1 )x~.~)~ = 0, ~ E 0 2, 

x~(a) = x~(a), 

x~ (l) = 1. 

(4.97) 

Both para llel and a lternating iterations are numerically well b ehaved , but conver­

gence to the single domain solut ion has yet to be established in eit her case. Com­

parisons of these linearized iterations to their nonlinear counterparts are given in 

Chapter 7, p. 167. 

To extend upon the idea of linearized Schwarz iterations, we also consider the 

following iteration using optimized t ransmission condit ions. Decomposing nc int o 
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D1 = [0, a] and D2 = [a, 1]. For n = 1, 2, . .. 

x~(O) = 0, 
(4.98) 

M(xn-1)xn - pxn(a)- M(xn-2)xn-1- pxn-1(a) 
2 2,E 2 - 1 1,E 1 ' x~(l) = 1. 

Similarly, we can easily formulate an alternating version of the iteration ( 4.98): 

for n = 1, 2, ... 

x~(O) = 0, 
( 4.99) 

x~(l) = 1. 

As in the linearized classical Schwarz iterations, freezing the argument of M at the 

previous iteration means the algorithm will require more DO iterations, but will re-

quire solving far fewer linear systems in the numerical implementation when compared 

to t he nonlinear method. 

We note t hat numerical results for all steady Schwarz iterat ions presented in this 

chapter can be found in Section 7.3 (p. 156). 



Chapter 5 

DD Methods for the Time 

Dependent Mesh Equation 

As discussed in Chapter 2, a time dependent mesh transformation for a given time 

dependent function u(x, t) may be found by solving any one of several nonlinear 

parabolic equations subject to appropriate initial and boundary conditions. In this 

chapter we focus on the solution of (MMPDE5) (p. 18) on Oc = [0, 1], solving the 

initial boundary value problem 

ax 1 a ( ox ) at = -;.a~ M(x, t) a~ ' x(~ , 0) = xo (~), x(O, t) = 0, x(1 , t) = 1. (5.1) 
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In the following analysis we solve nonlinear BVPs of the form 

d ( dx) x-qdf;, M(x)df;, =J, x(f;, , 0) = xo(f.) , x(a) = Ia, x(b) = rb, (5.2) 

where q is a constant and f = f(f.) a source function, both given. Under t he assump-

tions of Lemma 4.1 the well-posedness of (5.2) can be found in [27]. We consider the 

solution of (5.1) by first discretizing in time using an implicit method (backward Eu-

ler) and then solving the sequence of elliptic problems using Schwarz DD iterations. 

Given the solution xk- 1(f.) at tk_1, the solution at t ime step k satisfies 

New results are stated in Theorems 5.4 - 5.6. Theorems 5.4 - 5.5 are previously 

unpublished and discuss the convergence of a time dependent multidomain parallel 

classical Schwarz iteration. Theorem 5.6, previously submitted in [30], covers the con-

vergence of a time dependent alternating classical Schwarz iteration for any number 

of subdomains. 

5.1 A Parallel Two Subdomain Method 

We begin by solving (5.3) at each time step (k = 1, 2, ... ) via the classical parallel 

Schwarz iteration on two subdomains 0 1 = [0, tJ] and 0 2 = [a, 1], with a < t) . This 

was previously presented by Gander and Haynes in [22] . For n = 1, 2, . .. 
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.6.t k,n (M( k,n t ) k,n) k-1 x 1 - - x 1 , k x 1 c ~ = x , 7 ,., 

.6.t k,n (M( k,n t ) k,n) _ k - 1 x2 - - x 2 , k x 2 c ~ - x , 7 ,., 

k ,n( t ) k ,n - 1 ( t ) x2 a, k = x 1 a , k , (5.4) 

To show convergence of (5.4) we make use of the classical maximum principle. A 

contraction rate is obtained by constructing supersolutions and using the following 

comparison principle [27]. 

Lemma 5.1. Suppose Lu = au"+ bu' + cu is a linear, elliptic operator with c ::::; 0 

in a bounded domain 0. Suppose that in 0, Lu 2: 0 (::::; 0) with u E C2 (0) u C0 (0). 

Then 

supu::::; sup max (u , O) 
n an ( infu 2: infmin (u , o)). 

n an 

We will also make use of the following lemma in establishing convergence. 

Lemma 5.2. For 0 < a< b we have 

sinh(a) a _ ____:.___:_ < -. 
sinh(b) b 

Proof. Consider 

f(x) = sinh(x), 
X 
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a strictly increasing function for x > 0. Thus for 0 < a < b we know 

sinh( a) sinh(b) 
a < b or 

sinh(a) a 
sinh(b) < b' 

the stated result. D 

Theorem 5.3. Under the assumptions of Lemma 4.1, the iteration (5.4) converges 

for any time step /::).t > 0 and for any relaxation parameter T > 0. The convergence 

factor at the interfaces is bounded by 

sinh(VBa) sinh(VB(1 - /3)) 
Ptime = sinh(VB/3) sinh(VB(1- a)) < 

1
' 

where (5.5) 

Proof. We define an error measure 

and obtain the derivative 

(5.6) 

The mean value theorem for integrals implies 

k,n _ M( * t ) ( k k,n ) 
el,2 - X1,2• k x - X1,2 , (5.7) 

for some xi,2 between xk and x~:~. 

Subtracting the equation for x~,n from the equation for xk we obtain 
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and by using the relations (5.6) and (5 .7) , we see the error functions satisfy 

d2 k,n 1 _e_1_ - 2._ ek,n = 0 
df.2 !J.tM(xi,tk) 1 

' 

The quantities M, T, and !J.t are strictly positive, hence the error equations satisfy a 

maximum principle [27], and the required contraction results. 

We obtain a contraction estimate for (5.4) by constructing supersolutions for the 

subdomain errors. Assume e~·n solves the BVP 

d2-k n 1 e1' T -k n k ' 0 e1'n(o) = 0, d:(2 - !J.t m e1 = ' 

The function e~·n is found explicitly as 

ek,n(C) = lek,n- 1(f3) i sinh(vfe~) 
1 ., 2 sinh( vfe(3)' 

where 

W h -k n o l . f k n D fi . dk n k n -k n f · l es owe1' 1sasupersoutwn ore1' 0 e nmg 1' = e1' -e1' , romsomes1mpe 

calculations we see that d~ ,n satisfies 

d2d~·n - 2._ 1 dk,n - 2._ ( 1 - 2_) ek,n 
df.2 !J.t M(xi, tk) 1 

- !J.t M(xi, tk) m 1 
' 

Since m ~ M(x, tk), the right hand side of this differential equation is non-negat ive. 

The boundary value at ~ = (3 is non-positive and the coefficient of e~·n in the differ-
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ential equation is negative. Hence, Lemma 5.1 shows d~,n ::; 0, that is, e~,n ::; e~,n for 

all~ E [0 , ,8]. 

The right hand side of the equation is non-positive, the boundary conditions are non-

negative, and the coefficient of d~,n is negative. By Lemma 5.1 we know d~ ·n(~) ~ 0, 

that is, e~'n(O ~ -e~'n(~) for all~ E [0, ,8]. We have thus shown 

One can similarly show 

and by combining these relations we have 

l e~,n+l(a) l ::; le~,n-l(a) l sinh(v'ea) sinh(v'e(1 - ,B) ) . 
sinh(v'e,B) sinh(v'e(1 - a)) 

The contraction rate estimate Ptime stated in (5.5) is less than one for a < ,B. This 

follows from Lemma 5.2, as · 

sinh(v'ea) sinh(v'e(1 - ,B)) v'ea v'e(1 - ,B) a 1 - ,B ----'----'-__ _:______:__;_:__:__ < -- = - --
sinh(v'e,B) sinh(v'e(1 - a) ) - v'e,B v'e(1 - a) ,B 1- a· 

0 
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We note that the convergence of the iteration will improve as tlt-+ 0, m-+ 0, or 

7 -+ oo, since limo--?oo Ptime = 0. Furthermore, t he steady contraction rate is obtained 

in the opposite limit, since 

. a1-(3 
hm Ptime = (3 --· 
0--?0 1- a 

5.2 A Parallel Multidomain Method 

We extend parallel Schwarz method to arbitrarily many subdomains in the following 

new, previously unpublished result. We decompose Oc into Oi = [ai, (3i] for i = 

1, . . . , S, with a 1 = 0 and (38 = 1 and at each t ime step k implement the following 

iteration. For n = 1, 2, ... 

tlt k,n (M( k,n t ) k,n) k-1 xi - - xi , k xi c ~ = x , 7 ,., 

(5.8) 

x7'n ((3i, tk) = x7.;_~- 1 ((3i , tk), 

fori= 1, ... , S, where we define x~·n(a1 , t ) _ 0 and x~·~1 ((38 , t) - 1. 

Theorem 5.4. Under the assumptions of Lemma 4.1, the iteration (5.8) converges 

for any time step tlt > 0 and for any relaxation parameter 7 > 0. 

Proof. We define error measures 

for i = 1, . . . , S. 
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Upon differentiating, we find 

and from the mean value theorem for integrals, we obtain 

k,n _ M( * t ) ( k k,n ) ei - x i , k x - xi , 

for some xt between xk and x~·n. Using these relations, the error functions are seen 

to satisfy 

k,n(~ t ) _ k,n-1(~ t ) ei fJi, k - ei+1 fJi, k . 

As M, T, and flt are strictly positive, the error equation for each subdomain sat-

isfies a maximum principle [27], proving the desired contraction. We construct a 

supersolution for the error on an arbitrary subdomain. 

Let e~·n be t he solution to 
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then e~·n may be obtained explicitly as 

where 

-k,n(c) -I k,n-1( ·)I sinh(vfe(f3i - ~)) I k,n-1(f3 ·)l sinh( VB(~- ai)) e. ., - e. 1 at + e-+1 t , 
1 

t - sinh(vfe(f3i- ai)) 
1 

sinh(vfe(f3i - ai)) 

e = ~2_. 
6.tm 
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W h -k n . l . f k n D fi dk n k n -k n h. h t • fi e now s ow ei' 1s a superso utwn or ei' . e ne i' = ei' - ei ' , w 1c sa IS es 

dk,n( ) _ k,n-1( ) I k,n-1( )I i ai - ei-1 ai - ei-1 ai , 

dk,n ({3 ) _ k,n-1 ({3 ) I k,n- 1 ({3 ) 1 i i - ei+l i - ei+1 i · 

Adding and subtracting 

dk n · fi we see i ' sat1s es 

dk,n( ) _ k,n- 1( ) I k,n- 1( )I i ai - ei- 1 ai - ei-1 ai , 

dk,n({3)- k,n- 1({3 ) I k,n-1 ({3 )1 i i - ei+1 i - ei+1 i · 

The right hand side of the differential equation is non-negative, both boundary values 

are non-positive, and the coefficient of d~,n in t he differential equation is negative. 

Hence, Lemma 5.1 shows d~,n ~ 0, that is, e~·n ~ e~ ·n throughout ni· 
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S. ·1 1 h t"t d-kn kn -kn t• fi 1m1 ar y, t e quan 1 y i' = ei' + ei' sa 1s es 

d-k,n((3) k,n-1((3)+1 k,n-1((3)1 i i = ei+1 i ei+1 i , 

and Lemma 5.1 guarantees that ~,n(~) ~ 0, that is, e~'n(~) ~ -e~'n(~) throughout 

Following the analysis in .t he steady case (see Theorem 4.13, p. 70), we introduce 

the quantities: 

sinh( VO(f3i- 1 - ai)) 
ri = sinh( V0((3i - a i)) ' 

sinh(VO(ai+1 - ai)) 
Qi = ---'----:::::~--~ 

sinh( VO(f3i - ai)) ' 

The error at the interface~= f3i_1, for i = 2, ... , N, satisfies 

while at ~ = ai+l, fori = 1, ... , N- 1, we have 

(5.10) 

(5.12) 
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Inequality (5.11) is obtained by evaluating (5.9) to find e~·n+2 (.Bi-d , then using (5.9) 

e~·n and e~_:_~ . Applying absolute values, using the triangle inequality and noting the 

quantities of (5.10) are non-negative gives (5.11) . Inequality (5.12) follows similarly. 

In the case of an even number of subdomains (the odd case can be handled in 

a similar manner) , the relations of (5.9) may be written as e k,n+2 :::; !vfeek,n and 

ek,n+2 < M · ek,n where 
- e ' 

and the (S- 1) x (S- 1) matrices are given as 

P2q1 r 2q1 

P382 p3q2 P4T3 r4r3 

8382 83 q2 p4q3 r4q3 

Me= 
Ps84 Psq4 P6T5 r6r5 

8584 85q4 P6q5 r6q5 

Ps- 18s- 2 PS- 1qS- 2 psrs- 1 

8S-18S-2 8s- 1qs- 2 Psqs -1 

P2q1 q3r2 r3r2 

82q1 p3q2 r3q2 

P483 p4q3 Psr4 rsr4 

Me.= 
8483 84q3 Psq4 r5q4 

Ps- 28S- 3 Ps- 2qS- 3 PS- 1TS- 2 rs- 1rs - 2 

8S- 28S- 3 8S- 2q S- 3 Ps- 1qS- 2 rs- 1qs- 2 

Ps8S- 1 P s qs- 1 
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To demonstrate convergence, we show p(Me) < 1 and p(Me.) < 1. Lemma 5.2 implies 

that the quantities in (5.10) are strictly less than their steady counterparts in (4.39). 

It follows that each row sum for Me and Me. will be strictly less than the corresponding 

row sum in the steady case. Recalling that each matrix in the proof of Theorem 4.13 

satisfies IIMII oo = 1, we conclude IIMelloo < 1 and IIMe.ll oo < 1, from which p(Me) < 1 

and p(Me.) < 1 follow. D 

This general partitioning does not allow an explicit bound for the rate of conver-

gence. If we make the assumption that subdomains are of equal length and each pair 

of adjacent subdomains have equal amounts of overlap, we have the following explicit 

error estimate on S subdomains. 

Theorem 5.5. The Schwarz iteration (5.8) on S subdomains with a common overlap 

ratio r E (0, 0.5] converges in the infinity norm and the iterates satisfy 

l~~~sllx~i2n+ l (~) - xk(~) ll oo < ( (p + r )2 - 4pr sin2 2(S 7r+ 1) ) n ~ llek,O II 2, 

l ~IJI!~~s ll x~i~~+l(~) -xk(~)ll oo < ((p+r)2-4prsin2 2(S7r+l)) n ~ ll ek,olb 

where 

and 

The proof is essentially the same as the proof of Theorem 4.14, hence is omitted. 
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5.3 An Alternating Multidomain Method 

As in the steady case, we can easily modify the proposed parallel iterations to obtain 

corresponding alternating Schwarz iterations. To illustrate this, we implement the 

alternating approach previously discussed in Section 4.2.3 for the time dependent case. 

This iteration has been described previously in [30]. We also note that the alternating 

methods which group subdomain problems to allow parallel implementation, such as 

in Sections 4.2.4 and 4.2.5, can be obtained similarly. We decompose Oc = [0, 1] into 

s subdomains n i = [ai , ,Bi] fori= 1, . .. 's, where Qi+l < ,Bi for i= 1, . . . 's- 1 and 

,Bi < ai+2 for i = 1, .. . , S- 2. We solve the alternating classical Schwarz iteration at 

each time step k: for n = 1, 2, . .. 

!:::.t k,n (M( k,n t ) k,n) _ k- 1 xi - - xi , k xi c ~ - x , T ,., 

(5 .13) 

for i= 1, ... , S, where x~·n(a1 , t) = 0 and x~·~1 (,88 , t) = 1. For t he init ial solution x 0 

one can take a uniformly distributed mesh or a mesh which equidistributes t he initial 

physical solution. 

Theorem 5 .6 . Under the assumptions of Lemma 4.1 and the restrictions on the 

partitioning of Oc described above, the iteration (5.13) converges for any time step 
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.6.t > 0 and for any relaxation parameter value T > 0. 

In the case of two subdomains we have the linear convergence estimates 

where the contraction rate is bounded by 

sinh(VBa) sinh(VB(1- /3)) 
P time = l7i l7i < 1, 

sinh(vB/3) sinh(v8(1 - a)) 

For S ~ 3 subdomains we have the estimate 

where the contraction rate is bounded by 

with p and r as defined in (5.10) . 

Proof. Introducing error measures and using t he method of supersolut ions as in the 

parallel case, we obtain the inequalities 
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Making use of the notation (5.10) and proceeding as in the steady case (see proof of 

Lemma 4.18), we find that the error at interfaces~= f3i_ 1, fori= 2, . .. , S, satisfies 

while at ~ = ai+1 , i = 1, ... , S - 1 we have 

where we define f1~:i se = 1. As in the steady case, we can restrict our attention to 

f3 interfaces. We write these inequalities in matrix form, e k,n+1 ~ Meek,n, where 

and the (S - 1) x (S - 1) matrix is given as 

Ps-1qs-2 rs- 1 
Psss- 1qs-2 psqs-1 

Convergence follows immediately from Lemma 5.2 and the technique of proof in the 

st eady case. 

For t he two subdomain iteration, 
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!:::.t k,n (M( k,n t ) k,n) _ k-l x 1 - - x 1 , k x 1 c ~ - x , T ,., 

!:::.t k,n (M( k,n t ) k,n) _ k-l x 2 - - x 2 , k x 2 c ~ - x , T ,., 

the matrix Me is reduced to the single scalar value p2q1, which is our contraction rate, 

Ptime· Substituting the expressions for p2 and q1 , we find 

sinh(v'ea) sinh(v'e(l- {3)) 
1 

Ptime = sinh(v'ef3) sinh(v'e(l- a)) < ' 

the same contraction rate obtained in the two subdomain parallel iteration. 

For S 2 3 subdomains, if we make the simplifying assumption that all subdomains 

are of equal size and each pair of adjacent subdomains have equal amounts of overlap, 

then we have 

sinh ( v'e (f3i - f3i - l)) and p = q = _ ___:__=---'----'...:... 

sinh( v'e(f3i - a i)) ' 

and corresponding matrix 

p2 r 
p2r p2 r 
p2r2 p2r p2 r 
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As in the steady alternating case, we find 

2(1 S-2) 
I!Melloo = r + P - r < 1, 

1- r 

which is an upper bound on the contraction rate. The L00 error bound expression 

follows as in the steady case, see the proof of Theorem 4.15 for details. 0 

Numerical results for the time dependent Schwarz iterations can be found in Sec-

t ion 7.3 (p. 170). 



Chapter 6 

DD Methods for 2D Mesh 

Equations 

As an initial attempt at solving higher dimensional mesh equations via domain de-

composition, we consider the system of equations for two dimensional mesh adapta-

tion [39], previously given in Chapter 2, (p. 29) , 

[ 

T l 1/ 2 (i) M (i) ~ c,(~), 

[ 

T l 1/2 (i) M (i) ~ cz(~). 
(6.1) 

As these are functions of two variables,~ and rJ , we can decompose the computational 

domain De= [0, 1] x [0, 1] in either the~ direction, the rJ direction, or in both direc-
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tions simultaneously. Decomposing in a single or in both directions result in "strip" 

or "block" configurations of subdomains, respectively. For simplicity, we consider 

DD applied in the ~ direction only; that is, we decompose the ~ interval [0, 1] into 

subintervals [a~, ,8~ ], i = 1, . .. , S, where a~ = 0, ,Bf = 1, and assume the subintervals 

satisfy the overlap condit ions: 

The resulting decomposit ion of De has s subdomains, denoted by Di = [a~, ,8~] X [0, 1] 

fori= 1, ... , S. The Dirichlet boundary conditions (2.18) and the lD EP (4.1) are 

used along the ends of each strip, t ransmission conditions are specified along the 

newly created interfaces. 

6.1 A Classical Schwarz Method 

We begin by considering the 2D adaptive mesh system (6. 1) for the two subdomain 

case, illustrated in Figure 6.1. Decompose De into subdomains D1 and D2 and let 

xi denote the solution on Di. The corresponding parallel classical Schwarz iteration 
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follows: for n = 1, 2, ... 

(6.2) 

(6.3) 

for i = 1, 2 and ~ E Di, with transmission conditions 

TJ u 

1 

n1 n2 

... -0 a (3 1 
~ 

Figure 6.1 : Decomposing De into two subdomains. 
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6.2 Optimized Schwarz Methods 

As in the 1D case, the classical Schwarz iteration converges slowly. As a way to remedy 

this, we propose the use of higher order, Robin type, transmission conditions along 

the artificial interfaces. As before, we decompose De = [0, 1] x [0, 1] into subdomains 

n1 = [0, ,8] X [0, 1] and n2 = [a, 1] X [0, 1], where a :::; ,B. We consider several 

different possible transmission conditions, each an attempt to extend the successful 

1D optimized conditions to two dimensions. 

6.2.1 Case One 

The first possibility are simple linear Robin conditions, using the derivative normal to 

the artificial boundaries. Defining for any differentiable function x(~, TJ) the operators 

these Robin conditions are expressed as 

B1 (x~(,B, TJ)) = B1(x~- 1 (,8, ry)), B1(y~(,B, TJ)) = B1(y~- 1 (,8 , TJ)), 

B2(x~ (a, TJ)) = B2(x~- 1 (a, TJ)) , B2(y~(a, TJ)) = B2(Y~-1 (a, ry) ). 

6.2.2 Case Two 

(6.4) 

The second possible set of transmission conditions are a type of nonlinear Robin 

condition, similar to those used in the lD optimized Schwarz iteration ( 4.89) . We 
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replace the x equations of (6.4) by 

defining for any differentiable functions x(~, ry) andy(~, ry) the operators 

where 

The monitor matrix used in (6.1) is 

The mesh PDE (6.2) indicates the nonlinear term S1 is constant across the~ = a and 

~ = j3 interfaces. Furthermore, as t he system of equations resulting from (6.2-6.3) are 

already nonlinear, the nonlinear transmission condit ions will not have a large impact 

on the cost of solving the system. 

6.2.3 Case Three 

The third set of transmission conditions has two variations, t hough both are similar 

in form and appearance. Modifying t he previous iteration , we now use the operators 
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where we may take 

a2
w · wT V a2

w · wT 
M = T + I or M = 1 b T + I , 

l+bw ·W + W · W 

where the matrix square root is well defined, as the argument is a symmetric positive 

definite matrix. To differentiate between the two possible choices of monitor function 

Min subsequent discussion, we denote the former as Case Three a) and the latter by 

Case Three b). We now replace the x equations of (6.4) by: 

6.2.4 Case Four 

The final proposed set of boundary conditions are described by the mat rix equations 

This allows us to consider the entirety of t he matrix M, rather than leaving out half 

as in iterations three and four. We also have consistent transmission conditions for 

both x and y variables, rather than using linear Robin conditions for y and nonlinear 

versions for x. 
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Numerical results for the parallel classical Schwarz method, as well as all proposed 

optimized Schwarz methods,' can be found in Section 7.4 (p. 172) . 



Chapter 7 

Numerical Implementation and 

Results 

In this chapter we describe how the various Schwarz DD iterations have been imple­

mented for the lD and 2D mesh equations. We then present numerical results which 

compare the various algorithms proposed and illustrate the types of meshes obt ained. 

7.1 Sub domain Specification 

We decompose the domain De= [0, 1] into S ~ 2 subdomains, 
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such that a 1 = 0 and f3s = 1 -the endpoints of the original interval. To simplify the 

task of choosing appropriate ak and f3k for each of the S intervals, we assume that 

each subdomain will have an equal number of mesh points. With this assumpt ion, 

given a minimum number of mesh points to be used, Nmin, the number of subdomains 

to be used, S ~ 2, and the number of mesh points overlapping subdomains should 

share, K ~ 1; the number of points within a subdomain, P, as well as the location 

of its endpoints, can be determined. We determine N, the number of mesh points 

throughout nc, as follows. If there are p points in a subdomain, t hen 

P + (P- K) + (P - K) + · · · + (P - K) = N, 

S Subdomains 

as each subdomain (excluding the first) shares exactly K points with the previous 

subdomain. Thus 

S(P - K) + K = N, 

and by rearranging to solve for P, we find 

N-K 
p = S +K. 

We require P E Z, which gives the restriction 

N - K 
S E Z. 
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To ensure this holds, we determine N by 

This determines a correspondence between the subdomain endpoint s: [cxi, ,Bi] for i = 

1, . . . , S , and the mesh points of De, ~J = ~--\ for j = 1, . . . , N 

CXi = ~(i-l) ·(P-K)+l , 

,Bi = ~i·(P-K)+K· 

Finally, to update the transmission conditions for Dk. k = 2, ... , S - 1, we must 

know the index of the point in nk-l corresponding to a k, and t he index of the point 

in Dk+1 corresponding to ,Bk. Letting XJ:(i ) denote the i th point of the numerical 

solution on the kth subdomain for the nth it eration, the desired relationships are 

XJ:(1) = X~~{(P- K + 1) and X~ (P) = X~:;{ (K). 

7.2 Implementing the Transmission Conditions 

When implementing optimized or optimal Schwarz methods numerically, care needs 

to be taken when handling the transmission conditions due to the derivative ap­

proximations required . In this section we discuss how to handle bot h opt imized and 

optimal cases. 
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7.2.1 Optimized Transmission Conditions 

When handling the optimized Schwarz iteration ( 4.89), there are two steps to the 

numerical enforcement of the transmission conditions involving the operators specified 

in ( 4. 90). We first must handle the extraction problem - calculating the right hand 

sides of these conditions, which we denote by B R and B L; 

Bn = M(x~-1 (j3))dx~~;(j3) + px~-1 (j3), 
dxn- 1 (a) 

BL = M(x~- 1 (a)) 1d( - px~- 1 (a). 

This involves numerically approximating solution derivatives from the previous it-

eration. If there are multiple points of overlap, we calculate En and BL by central 

differences. However, if we use non-overlapping subdomains, there is a challenge in en-

forcing these conditions numerically with sufficient accuracy. We proceed recursively. 

Letting subscripts denote the subdomain and superscripts denote the iteration, and 

suppressing the argument (as a = j3 in this case), we initially have 

dx1 

M(x1)_1 +px1 = 91 
1 d~ 1 1 

and 

where g} and g~ are initial approximations to these boundary conditions, which we 

can take to be zero. For the next iteration we find 
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dx2 dx1 
M(x2) _ 1 + px2 = M(x1)_2 + px 1 

1d~ 1 2d~ 2 

= (px~ + g~) + px~ 

2 1 - 2 
= PX2 = 91, 

Continuing in this fashion, we find that 

dx 1 dx1 
M(x2) _ 2 - px1 = M(x1) _ 1 - pxl 

2d~ 2 ld~ 1 

= (gf - pxD - pxi 

2 1 - 2 
=- PX1 = 92 · 

dxn 
M(xn) _ 1 + pxn = 2pxn- 1 + 9n- 1 =· B 

1 d~ 1 2 2 · R, 

dxn 
M(x~) d~2 - px~ = -2px~- 1 + g~- 1 

=: B L. 

151 

By constructing the right hand sides of the transmission conditions recursively in this 

manner, we avoid approximating the derivatives required at the previous iteration. 

The second step is the enforcement problem - discretizing the equations 

(7.1) 

(7.2) 

then combining them with the nonlinear system of equations to be solved on each 

subdomain. These conditions require the discretization of a spatial derivative at each 

end of a subdomain. To maintain the second order accuracy of the ODE discretization, 

we use central difference schemes with the "ghost point" method: introducing and 

then eliminating points outside the computational grid. We assume that a subdomain 
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has N mesh points: x 1, x2 , ... , xN, where the iteration index superscript is omitted. 

There are two cases to consider: a transmission condition may be imposed at the left 

or right endpoint of a subdomain. 

Discretization at the Left Endpoint 

A centered difference discretization of (7.2) is 

where x0 is the "ghost" point . Solving for x 0 , 

we can substitute this into a central difference equation for the first point in the 

subdomain, x 1 , which we denote by G(l) , 

G( ) 
= (M(x2) + M(xl))(x2- xi)- (M(xl) + M(xo))(xl - xo) 

1 2~e · 

Treating x0 as a function of x1 and x2, we find 

and 
Bxo 
ax2 = 1. 

Using these quantities, we can evaluate the Jacobian entries affected by this substi-

tution of x0 , 
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Discretization at the Right Endpoint 

Similarly, a cent ral difference discretization of ( 7.1) is 

where XN+l is t he "ghost" value. Rearranging, we find 

which can be substituted into a cent ral difference equation for t he Nth point in the 

sub domain 

G(N) = (M(xN+d + M (xN ))(xN+l - XN) - (M(xN ) + 1'vf(xN_I)) (xN- XN- d . 
2~e 

Treating XN+l as a function of XN and XN- l , we calculate 

and 
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Finally, we can use XN+l and its derivatives to evaluate the Jacobian entries 

aG(N) 1 [ I axN+1 I 
a =~ M (xN+r) a (xN+1 - XN) - M (xN_r)(xN- XN-d 

XN-1 2u~ XN 

axN+1 ] +(M(xN+1) + M(xN )) axN + (M(xN) + M(xN-1)) ' 

aG(N) 1 [( 1 ( )axN+1 1( ) ) ( ) 1( )( ) a =~ M xN+1 a + M xN xN+l - xN - M xN xN - xN-1 
XN 2u~ XN-1 

+(M(xN+1) + M(xN+1)) ( ~~::: - 1) - (M(xN) + M(xN-1 ))] . 

7.2.2 Optimal Transmission Conditions 

The transmission conditions of optimal iteration (4.63), the operators given by (4.64), 

require the integral of a function M(x), which, in general, will not have an explicit 

antiderivative. To evaluate these conditions we use numerical quadrature, hence the 

optimal conditions can only be approximated in practice. Furthermore, due to the 

presence of derivatives, we have to address the extraction and enforcing problems, as 

in the case of the optimized iteration. 

For extraction, we use central differences to approximate numerical derivative for 

overlapping subdomains, otherwise we once again proceed recursively. If we let 

M(x~) aa~f - B;(x~) = Pn, 

.M( n)ax~ B2( n) Q x2 a~ - Q x2 = n, 
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then the boundary conditions can be expressed as 

M( n)ax~ B1( n) B2( n-1) B 1( n-1) + Q x1 a~ - Q x1 = Q x2 - Q x2 n-1, (7.3) 

M( n)ax2 B2( n) B 1( n-1) B 2( n-1) + n x2 a~ - Q x2 = Q x1 - Q x1 .Ln-1· (7.4) 

To enforce these boundary conditions we once again use central differences with 

"ghost" points introduced. Discretizing (7.4), denoting t he known right hand side by 

B L, we obtain 

Rearranging, we find 

2~~ ( 11X! ) Xo = x2- M(x
1

) BL + ~ 
0 

M(x)dx , 

from which we can compute the partial derivatives: 

~xo = -
2~~ 2 [(M(xi))2

- ( aBL + f x
1 

M(x )dx) M'(xi)] , 
ux1 a (M(xi)) Jo 

axo = 1 
ax2 ° 

Similarly, denoting the right hand side of (7.3) by BR, we discretize to find 

M( ) ( XN+1 - XN- 1) - _1_11 
M( )d = B 

XN 2~~ 1 _ (3 XN X X R, 

which can be rearranged to obtain 

2~~ ( 1 11 

) XN+1 = XN- 1 + M(xN) BR + 1 _ f3 x N M(x)dx . 
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Finally, we compute the derivatives: 

OXN+l = 1 
OXN-1 ' 

o;N+1 
=-

2~~ 2 [(M(xN))2 + ((1- f3)BR + 11 

M(x)dx) M'(xN)]. 
XN (1- (3) (M(xN)) XN 

With these values known, we can construct the Jacobian for both problems as in the 

optimized Schwarz case. 

7.3 lD Numerical R esults 

We now present some numerical results to illustrate the various 1D Schwarz iterations 

proposed in Chapters 4 and 5. For steady problems we use the test function 

u(x) = ~ (1 + tanh(20x) - tanh(12(x - 0.4)) + tanh(18(x - 0.7))), (7.5) 

which we plot in Figure 7.1. As can be seen, this function has three regions of 

rapid changes in function values: near x = 0, near x = 0.4 and near x = 0. 7. 

As such, we would expect mesh points to be clustered around these values of x in 

an equidistributed mesh. Indeed, that is what we observe in Figure 7.2, where we 

show the location of mesh points as determined by the optimized Schwarz algorithm, 

beginning at the uniform initial mesh (bottom) and concluding at t he equidistributed 

mesh (top). 
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~ 0. 
;:l 

0.1 0.2 0.3 0.4 0.5 
X 

0.6 0.7 0.8 0.9 

Figure 7.1: The test function (7.5) used for steady mesh generation. 
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Figure 7.2: Location of mesh points as determined by optimized Schwarz, using 

parameter p = 2 and 40 mesh points, for the test problem (7.5). 
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Figure 7.3: Convergence histories for parallel classical Schwarz with varying overlap 

on two subdomains and 80 mesh points total. 

We begin by discussing t he classical Schwarz iterations of Section 4.2 (p. 57) . 

As noted in Theorem 4.7 (p. 58), the contraction factor p depends on the extent of 

overlap between subdomains, 

We illustrate this in Figure 7.3, where we show convergence histories for different 

amounts of overlap between subdomain, varying from two points, the fewest possible 

which will allow convergence, up to 20 points, which is 25% of the total number of 

mesh points. We note t hat in this, and all subsequent convergence histories, the error 

recorded is the maximum difference between the solution over the first subdomain 
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and the single domain numerical solution. The t rend observed is that increasing 

the number of points shared between subdomains can greatly improve the rate of 

convergence, however this comes at the cost of making the subdomain problems larger , 

hence more costly to solve . 

. s 
-e- P arallel, 2 Points Overlap 
--B- Alternating, 2 Points Overlap 
-+-- Parallel, 10 Points Overlap 
--M- Alternating, 10 Points Overlap 

10- 10 L..::::====::c=====::SC::=====:::r:====::::::t---...J_--_L---...L_--_j 
0 5 10 15 20 

Iterations 
25 30 35 40 

Figure 7.4: Convergence histories for parallel and alternating classical Schwarz on 

two subdomains and 80 mesh points total. 

In Figure 7.4 we highlight the potential benefit of using alternating methods by 

comparing the parallel and alternating classical Schwarz iterations for two different 

amounts of overlap. In both cases we see that the alternating method outperforms the 

parallel method, with the extent of t he improvement increasing with the amount of 

overlap. The reason for this can be seen by comparing (4.15) in Theorem 4.7 (p. 58) 
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and (4.31) in Theorem 4.9 (p. 63): the right hand side of (4.15) gains a factor of p 

every two iterations, whereas the bound of (4.31) is mult iplied by pat every iteration, 

hence the improvement due to increased overlap is compounded twice as often. The 

obvious drawback, as previously mentioned, is the loss of obvious parallelization. 

10° . . . . . . . . .. . . . .. ... . .. . .. . . . ..... . . . . . . . . . . . . 

"' .: 
:8 10-2 
;:I 
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<d 
(.) 

·;::: 10-4 s . . . . . . . . . .,. 

;:I 

z 
.s 
~ 10-6 
t: -+- 2 Subdomains 

J:i1 - 3 Subdomains 

10-8 

-+- 4 Subdomains 
- 5 Subdomains 

0 10 20 30 40 50 60 
Iterations 

Figure 7.5: Convergence histories for parallel classical Schwarz with varying numbers 

of subdomains. Each case uses a total of 80 Mesh Points and 10 points of overlap 

between adjacent subdomains. 

In addition to overlap, t he number of subdomains also affects the rate of conver-

gence of a DD algorit hm. In Figure 7.5 we show convergence histories for parallel 

classical Schwarz iterations with varying numbers of subdomains. Following some ini-

tial transient sharp changes in the error recorded, we see that the rate of convergence 



7.3 1D NUMERICAL RESULTS 161 

decreases as the number of subdomains used increases. This agrees with the estimates 

of Theorem 4.14 (p. 70): the error bounds involve the contraction rate estimate, 

( 1- 4r(1- r) sin
2 

2
(S7r+ 

1
)) , 

and as S increases this quantity approaches 1, resulting in slower convergence. 
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Figure 7.6: Convergence histories for parallel and alternating classical Schwarz. Each 

case uses 80 mesh points in total and 10 points of overlap between adjacent subdo-

mains. 

In Figure 7.6 we again compare the parallel multidomain method of Section 4.2.2 

to the alternating multidomain method of Section 4.2.3, this time for three and six 

subdomains. We see that the trends previously observed in Figures 7.4 and 7.5 
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continue: alternating methods outperform parallel methods when considered in terms 

of DD iterations, and more subdomains require more iterat ions to reach a given level 

of accuracy. 

In Figure 7. 7 we include the other multidomain classical Schwarz iteration - the 

red-black method of Section 4.2.4. As promised in the discussion, we see that this red-

black iteration converges at approximately the same rate as the alternating iteration, 

with the added benefit of being able to implement t his iteration in parallel. 

...... . .... · ··· · · · ······· · · ······ · ····· ·· ·· . . ... . . . . . .......... . . . . · ······. . . 

.s -&-Parallel, 2 Subdomains 
-Alternating, 2 Subdomains 
-+-Parallel, 6 Subdomains 
-Alternating, 6 Subdomains 
-...-Red Black, 6 Subdomains 

10-10 L:::::=====::::I=======:r:::====:::::___i ____ ....L_ ____ l._ ___ _j 

0 10 20 30 40 50 60 
Iterations 

Figure 7. 7: Convergence histories comparing parallel, alternating, and red-black it-

erations for two and six subdomains (recall that there is no difference between the 

alternating and red-black iterations for two subdomains). Each case uses 120 mesh 

points in total and 10 points of overlap between adjacent subdomains. 
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We now turn to the optimal Schwarz iterations proposed in Section 4.3 (p. 91). 

We plot convergence histories for the optimal iteration in Figure 7.8, including a 

plot for parallel classical Schwarz to facilitate comparison. We observe that, while 

these iterations fail to achieve convergence in two iterations as in the continuous 

case, they vastly outperform the classical iteration. Furthermore, by increasing the 

number of mesh points used throughout the domain, we can significantly improve the 

convergence of the optimal iteration, with convergence in two iterations being the 

limiting case. 

2 

-&- Classical Schwarz: 100 Mesh Points 
-a- Optimal Schwarz: 100 Mesh Points 
.....,._ Optimal Schwarz: 200 Mesh Points 

Optimal Schwarz: 400 Mesh Points 

5 
Iterations 

9 10 

Figure 7.8: Convergence histories for non-overlapping parallel optimal Schwarz for 

varying numbers of mesh points. Classical Schwarz is plotted using 15 points of 

overlap between subdomains. 
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As discussed in Sections 4.3.3 (p. 100) and 4.3.4 (p. 104), we can extend the op-

timal Schwarz iteration to three subdomains and maintain the optimal convergence, 

however the optimality is lost for four or more subdomains. In Figure 7.9 we com-

pare these optimal iterations to the parallel classical Schwarz iterations on the same 

number of subdomains. We observe that while there is a significant drop off in the 

rate of convergence when comparing the plots for three and four subdomains, in all 

cases the optimal iterations do much better than classical Schwarz, suggesting that 

they can offer a significant improvement for numerical calculations. 

' ' ··· ~ · 
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Figure 7.9: Opt imal multidomain iterations. Each plot is generated using 500 mesh 

points in total, with 25 points of overlap between subdomains for classical Schwarz 

and one shared point between subdomains otherwise. 
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Following optimal Schwarz, we discussed optimized Schwarz in Section 4.4 (p. 113) . 

In Figure 7.10 we have convergence histories for optimized Schwarz where we vary 

the transmission parameter, p. By doing so, we see that by increasing p from 4 to 

12 we first observe improved convergence for p = 6 and p = 8, little change from 

p = 8 to p = 10, then slower convergence for p = 12. This is a common observation 

for optimized Schwarz, with the best convergence attained for some p* > 0 and 

convergence deteriorating as p moves away from t his value. 

. . . .. . . .. · ·· · · · · · · ·.· . . ··· ··· ···· ··· ··· ... . ... :· · ·· · ····· ·· ·. 

Figure 7.10: Convergence histories for parallel optimized Schwarz with different values 

of the t ransmission parameter p. In each case we use two subdomains and 80 mesh 

points in total. 

We compare the three types of iterations described thus far in Figure 7.11. In this 
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plot we observe: optimal Schwarz converges the fastest, classical Schwarz converges 

the slowest, and optimized Schwarz will fall somewhere in between. Furthermore, by 

adjusting the transmission parameter p, optimized Schwarz can closely approximate 

the convergence results of optimal Schwarz. 

-&- Classical 
-fi1- Optimized: p = 4 
~Optimized: p = 8 
...._Opt imized: p = 12 
--e- Optimal 

10-15 L.:::::=::::::::~=::::====r====:::::r:=-_ _L _ _ _l_ __ ...L_ __ L_ __ L__ _ __j __ _j 

0 2 3 4 5 
Iterations 

6 7 8 9 10 

Figure 7.11: Convergence histories comparing classical Schwarz, optimal Schwarz, 

and optimized Schwarz. Each case used 2 subdomains with 80 mesh points in total, 

and 2 points of overlap except for classical with 10 points. 

As a modification to the classical Schwarz iteration, which requires t he solution of 

a nonlinear system on each subdomain, in Section 4.5 we discuss linearized classical 

Schwarz iterations, in which we freeze the argument of the mesh density function M(x ) 

at the previous iteration to obtain a linear system. We compare the convergence of 
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both parallel and alternating linearized methods versus their nonlinear counterparts 

in Figures 7.12 and 7.13. 

In Figure 7.12 we plot convergence histories versus the number of DD iterations. 

The convergence of t he linearized iterations is noticeably slower than the correspond-

ing nonlinear iteration. We also note that alternating methods again outperform 

parallel methods. 

-&- Nonlinear Parallel Schwarz 
-a- Nonlinear Alternating Schwarz 
--*- Linearized Parallel Schwarz 

Linearized Alternating Schwarz 
10- 12 L.:::=::::~=====r====::::::r:===~====::::r:_ __ __L_ __ ..l_ _ _ l._ __ L_ _ __j 

0 5 10 . 15 20 25 
Iterations 

30 35 40 45 50 

Figure 7.12: Convergence histories for parallel and alternating versions of both lin-

earized classical Schwarz and standard (nonlinear) classical Schwarz, showing error 

versus number of DD iterations. Each case generated using two subdomains with 10 

points of overlap and 80 mesh points in total. 

The true benefit of linearized iterations is seen when we plot the error versus the 
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number of linear systems solved in Figure 7.13. Here we see that the linearized results 

do much better per linear solve than the nonlinear iterations. This is not surprising, 

as the nonlinear subdomain problems will require multiple linear solves in each DD 

iteration, whereas linearized Schwarz methods only require a single linear system to 

be solved at each DD iteration. 

• • • • • • • • • • • • • • • 0 ••• • • •• •• • •••••••••• • ••• • •••• ~ . . 

-9- Nonlinear Parallel Schwarz 
-a- Nonlinear Alternating Schwarz 
.......,_Linearized Parallel Schwarz 

Linearized Alternating Schwarz 
10- 12 L'=:::::=:r====::::I====:::::r::===::r::====:I...-___]~ __ L_ _ __j'---__1--_j 

0 10 20 30 40 50 60 70 80 90 100 
Linear Solves 

Figure 7.13: Convergence histories for parallel and alternating versions of both lin-

earized classical Schwarz and standard (nonlinear) classical Schwarz, showing error 

versus number of linear solves. 

In Section 4.5 we also introduced the idea of linearized iterations for optimized 

Schwarz iterations (p. 122). We compare linearized and nonlinear versions of both 

classical and optimized Schwarz iterations in Figure 7.14, which shows that just as 
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optimized Schwarz outperforms classical Schwarz, linearized optimized Schwarz out-

performs linearized classical Schwarz. 

10 20 30 40 50 60 70 80 
DD Iterations 

Figure 7.14: Convergence histories for linearized and nonlinear classical Schwarz and 

optimized Schwarz iterations, showing error versus number of DD iterations. In each 

case we use 100 mesh points total, 10 points of overlap between subdomains, and 

transmission parameter p = 8. 

In addition to convergence histories, we can consider the interpolation error re-

sulting from the use of equidistributed meshes. For interpolation error we report t he 

maximum error between the funct ion u(x) and the linear interpolating polynomial 

formed using the values of u(x) for a given mesh . We report interpolation errors for 

t he function u(x) given by (7.5) in Table 7.1 after t he stated number of DD itera-
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tions. In the column headed by 0 we report the interpolation error for a uniform 

mesh, and in the column headed by oo we give interpolation error for the single 

domain equidistributed mesh. 

Table 7.1: Interpolation errors for grids obtained by various Schwarz methods at 

given iterations. For each case we use 100 mesh points, 10 points of overlap for 

classical Schwarz methods, 1 point of overlap otherwise, and p = 8 for the optimized 

transmission parameter. 
Iterations 

Classical (Par) 
Classical ( Al t) 

Linearized (Par) 
Linearized ( Alt) 

Optimal (Par) 
Optimal (Alt) 

Optimized (Par) 
Optimized (Alt) 

0 2 4 6 8 10 00 

0.1993 0.0627 0.0614 0.0605 0.0598 0.0594 0.0584 
0.1993 0.0605 0.0594 0.0589 0.0586 0.0585 0.0584 
0.1993 0.1287 0.0810 0.0730 0.0709 0.0684 0.0584 
0.1993 0.1282 0.0883 0.0577 0.0581 0.0582 0.0584 
0.1993 0.0579 0.0578 0.0578 0.0578 0.0578 0.0584 
0.1993 0.0578 0.0578 0.0578 0.0578 0.0578 0.0584 
0.1993 0.0607 0.0584 0.0584 0.0584 0.0584 0.0584 
0.1993 0.0584 0.0584 0.0584 0.0584 0.0584 0.0584 

In almost all cases, the mesh obtained by DD would give almost exactly the 

same interpolation error as the single domain mesh after 10 iterations. Indeed, the 

optimal Schwarz and optimized Schwarz methods result in meshes of almost identical 

quality after the initial two iterations. As such, rather than iterating to meet a strict 

tolerance, the mesh obtained after 2- 4 DD iterations will often be sufficient for most 

computational purposes. 

As the final 1D example, we consider the time dependent case of Chapter 5. In 
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the convergence results of Theorems 5.3 (p. 126) and 5.6 (p. 135) we have bounds on 

the contraction rate of 

sinh(v'ea) sinh(v'e(1- (3)) 

sinh ( v'e f3) sinh ( v'e ( 1 - a) ) ' 
where () = ~~­

!:ltm 

By decreasing the time step !:lt, we cause() to grow, resulting in a lower bound for the 

contraction rate, hence we can expect faster convergence. In Figure 7.15 we plot both 

parallel and alternating classical Schwarz iterations for the time dependent problem 

for several different time steps using t he test problem 

1 
u(x, t) = 2[1- tanh(c(t)[x- t- 0.4]) , 

199 
c(t) = 1 + 2 [1 + tanh(50t- 2.5)] . 

We observe that decreasing the time step does result in greater accuracy after a given 

number of DO iterations. Furt hermore, we note that, as in the steady case, the 

alternating algorithm fares better than the parallel algorithm in each case. Further 

results also carry over from the steady case: we can say that, in general, by increasing 

overlap we improve the rate of convergence, and that by increasing the number of 

subdomains used the convergence of the iteration will slow. 
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Figure 7.15: Convergence histories for parallel and alternating classical Schwarz iter-

ations at t = 0.1 for several time steps !J.t. All plots obtained using 50 mesh points 

in total, with 20 points of overlap between two subdomains. 

7.4 2D Numerical Implementation 

To approximate the solution of the system of equations enforcing local equidistribu-

tion, 

[ 

T ] 1/2 (i) M (i) = c,(~), 

[ 

T ] 1/2 

(~) M (~) = c2 (~) , 
(7.6) 



7.4 2D NUMERICAL IMPLEMENTATION 173 

the physical boundary conditions and transmission conditions are discretized using 

standard second order finite differences on a uniform grid in the computational (~ , rt ) 

variables as described in Section 2.4.1 (p. 30). 

To discretize transmission conditions we use centered differences, introducing 

"ghost" values for x and y adjacent to the appropriate boundary; but unlike for 

the lD equations, these ghost values cannot be eliminated . As such, the ghost values 

and the actual mesh are determined simultaneously, resulting in an additional 2N17 

equations to be solved, N 11 being the number of mesh lines in the rt direction, with the 

ghost values determined from the transmission conditions and the mesh by solving 

the original system of equations. We note that the nonlinear transmission conditions 

of Case Two through Case Four (p. 143) result in additional nonlinear equations to 

be solved at the interface. However, this is not a significant disadvantage, as the orig­

inal system (7.6) is nonlinear , hence must be solved by a Newton iteration or some 

other rootfinding method for nonlinear systems. Furthermore, when equidistribut ­

ing boundary conditions are used, we must transmit two addit ional pieces of data: 

the x-coordinate of the mesh point adjacent to the boundary in the opposite subdo­

main, so that the lD equidistributing principle can be solved using central differences 

throughout . 

A final note on the implementation of the possible optimized conditions of Sec-
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tion 6.2. In theory these conditions can be used for non-overlapping subdomains, in 

practice this presents a challenge. If we use forward and backward finite differences 

for numerical approximation of derivatives in the transmission conditions, the con­

vergence of the iteration will suffer, typically failing to agree with the single domain 

result with sufficient accuracy. Attempts at extending the recursive approach to han­

dle the extraction problem in 1D have not been successful. As such, in the following 

2D numerical results, we will restrict ourselves to considering overlapping subdomains 

for all experiments. 

7.5 2D Numerical Results 

To illustrate the 2D mesh iterations, we use the test function u(x, y) given by 

u(x, y) = (1- e (R(x-l))) sin(wy), (7.7) 

where R and w are user defined parameters. In Figure 7.16 we show the mesh deter­

mined by classical Schwarz for u(x , y) using parameters R = 15 and w = 1.5n, t he 

mesh on n1 colored red, the mesh on n2 colored blue, and the mesh on the overlapping 

region colored purple. 
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Figure 7.16: The mesh determined for u(x, y) given by (7.7). We use classical Schwarz 

with an 11 x 11 mesh for the entire domain and 5 lines of overlap between subdomains. 

The mesh parameters are a = 0.75 and b = 0.05. 

Comparing to Figure 7.17, which shows the function u(x, y) plotted using the 

mesh of Figure 7.16, we see that mesh points are concentrated in a vertical strip for 

x near 1 due to the exponential term and in horizontal strips near y values for which 

the sine function is near zero. 
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Figure 7.17: The function u(x, y) given by (7.7) plotted using its locally equidistrbuted 

mesh as shown in Figure 7.16. 

To compare the various Schwarz iterations proposed , we once again make use of 

convergence histories. Once again solving the mesh equations with parameters R = 15 

and w = 1.57r for (7. 7), we plot convergence histories for the classical Schwarz iteration 

of Section 6.1 (p. 141) for varying amounts of overlap . We use x1, the x component 

for the first subdomain, as a representative of the overall solution to calculate error 
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with respect to the single domain numerical solution. As in t he 1D case, we see that 

convergence steadily improves with the amount of overlap, the downside being that 

the subdomain problems become more computationally expensive as a result. 

10° . . . . . . . . . . . . . . .. . . 

10-2 

10-4 

... g 10-6 . . · .. . . . . . . .. ·. 
t:il 

10-8 ·· · ··· ·· .. . .... . .. 

-&- 2 Points Overlap 
10-10 :!: 4 Points Overlap . . . .. .. .. . . .. . 

6 Points Overlap 

10-12 
8 Points Overlap 

2 4 6 8 10 12 14 16 18 20 
DD Iterations 

Figure 7.18: Convergence histories for classical Schwarz with varying amounts of 

subdomain overlap. The iteration results in a 14 x 14 mesh for the entire domain, 

and used mesh parameters a = 0.8 and b = 0.1. 

The decision to focus only on t he convergence results for x 1 is not unreasonable, 

as we show in Figure 7.19 by plotting t he error in both x and y components for 

each subdomain. We see that the error of each solution component decreases at 

approximat ely the same rate, hence any one of them can be used to illustrate the 

general results for all. 
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2 4 6 8 10 12 14 16 18 20 
DD Iterations 

Figure 7.19: Convergence histories for classical Schwarz showing the error for each 

solution component. This is the case for 4 lines of overlap from Figure 7.18. 

To illustrate the various possible optimized Schwarz transmission conditions, we 

first begin with a comparison of t he methods outlined in Section 6.2 (p. 143) . We once 

again use u(x, y) as described in (7. 7), changing the parameters toR = 15 and w = 1r. 

As the Figure shows, all optimized methods vastly outperform the classical iteration, 

t hough t here is some variation between the convergence attained between any given 

pair of optimized methods. As such, the actual choice of t ransmission condit ions 

to be used will be a question of which allows theoretical convergence results to be 

established in the future. 

---- - - -
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Figure 7.20: Comparison of t he possible 2D optimized Schwarz iterations. In each 

case we use two lines of overlap between subdomains to obtain a 12 x 12 mesh over the 

entire domain. We use transmission parameter p = 2 and mesh parameters a = 0. 7 

and b = 0.05. 

To illustrate the effect of the transmission parameter p, we restrict ourselves to 

considering Case One of Section 6.2, which are simple linear Robin conditions. In 

Figure 7.21 we plot convergence histories for varying values of p, generating the mesh 

for (7.7) with parameters R = 25 and w = 1.5rr. As in the 1D example of Figure 7.10, 

by using an appropriate value of p we can optimize the convergence of this iteration. 
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Figure 7.21: Convergence histories for the optimized Schwarz iteration using linear 

Robin conditions (Case One). We use three lines of overlap between subdomains to 

obtain an 11 x 11 mesh for the entire domain. We use mesh parameters a= 0.75 and 

b = 0.1. 

Another way to assess the mesh obtained from a DD iteration is to compute a 

mesh quality measure. In particular, we consider the equidistribution quality measure 

for each element K of the grid, Qeq(K) , as presented in [39] . The maximum of Qeq 

over all elements is 1 if and only if the equidistribution condition is satisfied exactly. 

The larger the value of maxK Qeq(K) t he farther t he mesh is from equidist ributing 

the monitor matrix M. 

For the function u(x, y) of (7.7) with parameters R = 25 and w = n, we record the 
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values of Qeq(K) after a given number of iterations in Table 7.2. As for interpolation 

error in the 1D case, the zero column corresponds to a uniform mesh and the oo col-

umn with the single domain equidistributing mesh. Much like with the interpolation 

errors recorded in Table 7.1 for the 1D case, we see that after a few iterations the mesh 

produced by optimized methods are of approximately the same quality as the single 

domain equidistributing mesh. Similarly, the classical iteration succeeds in providing 

a reasonable approximation after the fifth iteration. As such, the mesh obtained by 

stopping any of DD algorithms after a small number of iterations will be as good as 

a mesh obtained by letting the iteration reach an arbitrary level of accuracy. 

Table 7.2: Mesh quality measures for the grids obtained by t he proposed Schwarz 

iterations of Chapter 6. Each iteration uses two subdomains with two lines of overlap 

to produce a 12 x 12 mesh over the entire domain. Mesh parameters are a= 0.8 and 

b = 0.05. 
Iterations 0 1 2 3 4 5 ()() 

Classical 1.7910 1.4245 1.5699 1.3496 1.4082 1.2931 1.2116 
Case One 1. 7910 1.9786 1.2116 1.2116 1.2116 1.2116 1.2116 
Case Two 1.7910 1.9852 1.2116 1.2116 1.2116 1.2116 1.2116 



Chapter 8 

Summary and Future Work 

In this thesis we explored methods which combine the techniques of mesh adaptation 

and domain decomposition for boundary value problems. In Chapter 2 we discussed 

the idea of moving mesh methods derived from the equidistribution principle for both 

steady and time dependent problems and in one or more spatial dimensions, provid­

ing theoretical details on the derivation of governing equations as well as information 

on how to implement such methods numerically. Chapter 3 introduced the basics 

of domain decomposition, exploring the historical origin and development of what 

are known as Schwarz domain decomposition methods. We discussed the connection 

between domain decomposition for continuous and discrete problems, and described 

ways in which the convergence of the domain decomposition algorithms can be im-
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proved. 

In Chapter 4 we presented results for the combination of mesh adaptation and 

domain decomposition for one dimensional steady problems, some results from earlier 

papers and others appearing for the first time. We established the convergence of three 

general types of methods for the mesh generation problem: classical Schwarz, optimal 

Schwarz, and optimized Schwarz, each type corresponding to a different type of trans­

mission condition used between subdomains. In all cases we established convergence 

of both parallel and alternating iterations, and for classical Schwarz we proved the 

convergence of several possible iterations for arbitrarily many subdomains. We also 

considered the idea of linearized methods for classical Schwarz and optimized Schwarz 

iterations, which eliminate the need to solve nonlinear systems of equations. 

In Chapter 5 we extended the classical Schwarz iterations proposed in Chapter 4 

to handle time dependent mesh equations, allowing this combined mesh adaptation 

and domain decomposition approach to be used for parabolic problems, in addition 

to elliptic problems. Chapter 6 explores the further extension of t he classical and 

optimized domain decomposition algorithms to two dimensional mesh generation. Fi­

nally, in Chapter 7 we provided numerous numerical results illustrating the iterations 

discussed in the preceding chapters. 

Future steps to be taken include establishing the convergence of optimized Schwarz 
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algorithms for overlapping subdomains and multiple domains in the lD mesh gen­

eration problem, both of which have been observed numerically. It also remains to 

prove convergence for optimized Schwarz methods for the lD t ime dependent mesh 

problem. Finally, while convergence of the classical Schwarz and optimized Schwarz 

iterations proposed for 2D mesh problems has been observed numerically, it remains 

to prove a general convergence result for these methods. 
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