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Abstract 

Iceberg and ship identification in satellite synthetic aperture radar (SAR) data is an 

essential part of offering an operational iceberg surveillance program. Identification here 

refers to detection of ocean SAR targets and then classification of these targets as iceberg, 

ship, or unknown. Maximizing the detection and minimizing incorrect classification of 

iceberg and ship targets are required. Because coarser resolution satellite SAR data is at 

times not as intuitive as satellite optical data for manual human interpreted target 

classification, this process can be labor intensive, subjective, and error prone. Therefore, 

it is desired that an automated method for iceberg or ship identification be implemented. 

The methodology investigated here follows a well known standard in supervised pattern 

recognition, the maximum likelihood-quadratic discriminant function. The goal here in 

this thesis is to build class models from known iceberg and ship targets. Each class 

model is based on features that describe targets such as brightness, texture, and shape. 

Based on these descriptors as training input into the discriminant functions, future 

unknown targets can be compared with the class model for best fit. The best fit (or 

minimum distance) is used to assign class status for these unknown targets. One major 

consideration when using this type of pattern recognition approach is feature selection. 

Feature selection is based on the notion that some subset (subspace) of the descriptive 

metrics will lead to improved classification accuracy when comparing discriminant 

functions. Sequential forward selection and variants of exhaustive search algorithms are 

implemented and compared. RADARSAT-1, ENVSIAT AP (HH/HV), and EMISAR 

SAR iceberg and ship targets are used for algorithm training, feature selection, and 

performance estimation. 
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1 Introduction 

In the extremes of the northern and southern hemispheres, there are hazardous 

environmental conditions that threaten exposed manmade structures. In the North 

Atlantic Ocean, off the east coast of Newfoundland, Canada, is the Grand Banks. This 

area is rich in natural resources, such as oil reserves and fish stocks. Each spring, the 

final treks for the Greenland born icebergs follow the Labrador Current-a natural 

oceanic flow that follows the Labrador and Eastern Newfoundland coastline. Some 

icebergs that travel the Labrador Current make it as far south as the Grand Banks or even 

further. The combination of North Atlantic shipping lanes, oil platforms, oil platform 

support vessels, and fishing vessels cause a significant human presence in the Grand 

Banks region. To minimize the monetary and life risks associated with iceberg-infested 

waters, organizations such as the International Ice Patrol (liP), the Canadian Ice Service 

(CIS) and Provincial Airlines Ltd (PAL) have taken an active role in iceberg 

management. This entails knowing where the icebergs are, predicting where they will 

drift and passing this information on to the public and private sector. Current operational 

iceberg reconnaissance from the liP and PAL are collected with airborne forward-looking 

and side-looking airborne radar (FLAR and SLAR), which is supported by visual 

confirmation when weather conditions permit. 

One alternative to aerial ocean surveillance is satellite remote sensing. Satellites offer a 

variety of sensor types, swath coverage, and resolutions. Synthetic aperture radar (SAR) 

is one type of sensor that is commercially available from earth's orbit. SAR is an active 

microwave sensor, where active implies that it emits its own energy and receives a 

portion of that energy back. The energy received is largely dependent on the send and 

receive wave polarizations and the interaction of the wave with the ground. The wave 

interaction with the ground is dependent on geometry and dielectric properties of the 

medium with which the wave interacts. SAR (unlike optical) is not dependent on 

sunlight, and thus can be acquired at day or night. Additionally, for the specific SAR 

frequencies used here, a minimal interaction is expected between the air and water 
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droplets that occur in the earth's atmosphere, hence SAR signals are capable of passing 

down and back through cloud, rain and fog. This is especially important when 

considering the maritime environment of the Grand Banks where these conditions are the 

norm. 

1. 1 Purpose of Study 

The purpose of this research is to demonstrate the capabilities of SAR-based sensors for 

automated iceberg and ship surveillance. Automated SAR target identification is 

accomplished here by first using histogram methods for target detection and second by 

using target-based features for iceberg and ship classification. Additionally, since current 

and newly available spacebome sensors have advanced polarization capabilities at various 

resolutions, the direct comparison for the probability of classification for single, multi, 

and quad polarization SAR is investigated. 

Many works have shown that both iceberg and ship detection with SAR is possible using 

histogram processing methods [1, 2, 3]. These works however do not specifically address 

the matter of classification for SAR iceberg and ship detected targets. This said, one SAR 

group from McMaster University [1] has applied pixel-based Bayesian classification 

methodologies to radar data for iceberg and sea ice classification [4, 5]. 

The approach for detection of iceberg and ship targets in this work follows a histogram 

methodology as presented by [3, 6]. The proposed approach for classifying detected 

iceberg and ship targets focuses on supervised Bayesian classification models with 

assumed multivariate Gaussian distributions and feature space optimization. Success for 

this approach is highly dependent on the known sample (or training data) representing the 

general population. Specifically, the number of samples and feature space distribution of 

the training data must represent the general population in order to build a reliable and 

robust model. Two forms of feature space optimization are evaluated. The first is a 

sequential search, sequential forward selection (SFS), which is computationally 

inexpensive. This is due to the relatively small proportion of the feature space being 
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evaluated. The second is the exhaustive search (ES). This search method can be 

extremely computationally expensive due to the evaluation of all possible combinations 

of the feature set. Two variants of the ES are developed and implemented here based on a 

limited and ranked exhaustive feature space search. 

In addition to target detection and supervised classification, other works have also shown 

advances in SAR technology that have increased the ability over standard single channel 

sensors for differentiating specific target backscatter. Specifically, polarimetric aerial 

SAR sensors have been tested and several unsupervised pixel-based classification 

methods have been proposed [7, 8, 9, 10, 11]. These methods are physically modeled 

after specific SAR backscatter from primitive geometric shapes or primitive scatter 

classes. Physical constraints based on geometry, dielectric properties of the medium, and 

polarimetric measurement describe these primitives. It is important to note that these are 

not modeled specifically for iceberg or ship targets; however, if dominant scatter types 

differ between iceberg and ship targets, then these methods add potential for increased 

classification accuracy. Here, Cameron decomposition was tested using the EMISAR 

polarimetric data [7]. The author modified and further developed MA TLAB source code 

provided by MacDonald Dettwiler and Associates (MDA) for this purpose. 
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2 Relevant Background 

This background focuses on remote sensing fundamentals concerning iceberg and ship 

identification with SAR data. Included here is a summary of radar theory relevant to 

iceberg, ship and ocean response, image processing and pattern recognition. As well, 

reviews of technical papers are included which are particularly relevant to iceberg and 

ship detection and iceberg and sea ice classification in radar data. 

2. 1 Fundamentals of Radar 

Radio detection and ranging (radar) was developed as a means of using radio waves to 

detect the presence of objects and to determine their range. The process entails 

transmitting short bursts of microwave energy in a direction of interest and recording the 

strength and origin of the echoes (reflections) received from objects [12]. The range or 

distance to an object is found by measuring the time it takes for the transmitted energy, 

which is traveling at the speed of light, to travel to the target and back [13]. From this, 

the distance measure, which is commonly referred to as range (R), is given by 

R = ct 
2 

(2.1) 

where c is the speed of light and t is the time from pulse transmission to scatter reception. 

The factor of 2 is included since the echo has to make a return trip to the measured object 

and back to the sensor. 

One of the most useful models for describing radar performance is the radar equation. 

The radar equation gives the received signal power P, of the scattering from an object as 

PG a 
P =-1 -

1 x--xA. 
r 4trR 2 4trR 2 e 

(2.2) 

The first factor is the power density at a distance R meters from the radar, where P
1 

is the 

power that is radiated from the antenna in watts, G1 is the antenna gain, and 

4trR 2 accounts for the divergence of the electromagnetic waves as they radiate out from 

the antenna/object in a spherical pattern. The second term is the radar cross section, a , 
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which is also normalized with respect to electromagnetic divergence. The product of the 

first two terms represents the power per square meter returned to the radar. Ae is the 

effective aperture area-a factor that represents the portion of power that the antenna 

actually receives [13]. 

The radars considered here are all monostatic. This means they transmit and receive from 

the same antenna. For monostatic sensors, the effective aperture area ( Ae) and the 

antenna gain ( G
1

) are related by 

A = GrA} 
e 4.1l' ' 

(2.3) 

where A is the wavelength of the radar electromagnetic energy. By directly substituting 

Equation 2.3 into 2.2, we get 

(2.4) 

The radar cross section (a ) is the intensity of the energy scattered back from the object to 

the source of the transmitted wave. It is equivalent to consider cr as the projected area 

(m2
) of a variably sized perfectly conducting sphere that, if substituted for the object, 

would scatter identically the same power back to the radar [14]. The radar cross section 

is normalized with respect to radar resolution by taking the fraction of a to the area of 

the image sample spacing (m\ Thus, normalized radar cross section ( 0'
0

) is a unitless 

ratio of area for a perfectly conducting sphere to the area of the image sample spacing 

[13]. 

2.1.1 Synthetic Aperture Radar 

An airborne or spaceborne radar sensor can have a side, forward, or moving antenna for 

sending and receiving microwave energy. This study includes only side-looking radar 

technology for both aerial and satellite sensors. For instance, a side-looking radar flying 

in the azimuth direction transmits and receives microwaves in the range (orthogonal to 

azimuth) direction. 
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A consequence of using side-looking radar technology is that a varying look direction or 

incidence angle is collected. Formally, the incidence angle is a measure of the angle 

between the radar wave and the altitude normal. As can be seen in Figure 2.1, the first 

range data sample is collected at a steep incidence angle (towards normal) while the last 

range data sample is collected at a shallow incidence angle (away from normal). This 

incidence angle variation is important to consider as both target and ocean clutter radar 

signature (backscatter) can vary as functions of incidence angles. 

The resolution of radar is not trivial due to the differing process of collecting data in the 

range and azimuth directions. The ground range resolution of a radar image can be found 

directly from the slant range resolution. The slant range resolution is defined as the 

distance it takes for emitted energy to travel half a pulse length. This is also the minimum 

distance required to detect point targets separately. Based on the definition of range in 

Equation 2.1, we can formulate the ground range resolution through trigonometry as 

R = cr 
r 2sin 8 

(2.5) 

where r is the pulse length and 8 is the incidence angle. It is important to note that range 

resolution is independent of altitude. As well, as the pulse length decreases the range 

resolution becomes finer. However, pulse length is inversely proportional to system 

bandwidth and amplitude requirements for detection. Most radar systems today use chirp 

radar that allows for a small pulse length while maintaining the required bandwidth and 

amplitude. 

Figure 2.1: Side-looking radar and variable incidence angle 
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Resolution in the along track (azimuth) dimension for a traditional (real-aperature) radar 

is defined by 

R = R). 
A L , 

a 

(2.6) 

where R is the slant range distance, 'A is the wavelength of the transmitted energy, and La 

is the antenna length [15]. From Equation 2.6, by increasing the antenna length the 

azimuth resolution will become finer. 

The breakthrough in radar technology came with the realization of synthetic aperture 

radar (SAR), discovered by Wiley in 1965 [15]. It was observed that two point targets at 

slightly different angles with respect to the track of the moving radar have different 

speeds relative to the radar platform. From this, the radar pulse when reflected from the 

two targets will have two distinct Doppler frequency shifts. Using the Doppler shifts and 

the flight path of the sensor a longer antenna can be synthesized from a physically shorter 

one. It has been shown that for SAR, the azimuth resolution is 

R =La 
A 2 ' (2.7) 

which shows that resolution becomes finer for smaller antennas [15]. This was originally 

seen as counter-intuitive because it is the opposite of real aperture systems. There are 

lower bound limiting factors for this equation to be valid however, where transmitting at 

least one plus each time the radar platform travels a distance equal to one half an antenna 

length is required [15]. 

2.1.2 SAR Ocean Backscatter 

SAR interaction with the ocean surface is highly complex. Here we must consider that 

the dynamics of the sea surface are affected by wind, sea currents, swells, atmospheric 

effects and sea surface temperature. This is in addition to the microwave interaction with 

the water surface, which is affected by the dielectric properties of salt water, wave 

geometry and the continuously oscillating wave surface, the sensor frequency, sensor 

polarization and the local incidence angle. However, generally an oceanic radar return is 
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strongly correlated with local surface roughness. This surface roughness is in tum highly 

correlated with wind-generated capillary waves. Thus wind is typically a strong factor 

when considering ocean backscatter. In addition to wind, gravity waves and currents 

modulate the capillary waves on the sea surface to produce characteristic patterns in the 

SAR imagery [14]. This leads to a two tier scattering model, which is dependent on the 

small capillary waves and larger gravity waves that interact with the emitted microwave. 

The capillary waves are on the order of the length of the emitted sensor wavelength, 

where C-band is 5.5 em and capillary waves are 7 ± 1 em [14]. SAR microwaves do not 

penetrate beyond a few millimeters of the ocean surface. 

In the absence of wind, the ocean surface will be smooth and hence specular, reflecting 

the radar energy away from the sensor. Increasing wind speed will result in increasing 

ocean roughness and hence increased backscatter as more energy is returned to the sensor. 

It is important to note however that sensor constraints exist such as the noise equivalent 

sigma zero (NESZ)-which is a random white Gaussian noise-can overwhelm ocean 

backscatter for low wind speeds collected at shallow incidence angles [ 14]. Presented in 

Figure 2.2, the ocean backscatter is demonstrated to be dependent on wind speed, 

direction, SAR polarization and incidence angle [2]. It is clear from this figure that 0"
0 

increases as a function of wind speed but decreases as a function of incidence angle. It is 

also apparent that the 0"° C-band VV polarization is greater than HH for all wind speeds, 

directions, and incidence angles. Additionally, the HH cr0 's for winds blowing in the 

direction of the radar sensor ( ¢ = 0) are shown to be larger than cross winds ( ¢ = 90 ). 

2.1.2.1 Processing Ocean Backscatter for Target Detection using CFAR 

Generally, targets on the oceans surface can be detected by radar when the ocean 

background contrasts with the targets of interest. Thus, if we consider a histogram of an 

ocean backscatter region (Figure 2.3), the ocean response will form a single modal 

distribution and any targets that are visually discemable (based on intensity) will appear 

in the upper or lower tail boundary of the histogram. In this work, we are only interested 
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Figure 2.2: Ocean Backscatter 0'
0 for C-band VV and HH polarization [2] 

m targets that have strong scattering properties that appear brighter than the ocean 

background. Target identification can then be maximized by selecting image modes that 

produce the greatest signal to clutter ratio (the ratio of target backscatter to ocean 

backscatter). 

SAR sensors offer many different data forms or modes to choose from. These modes 

have varying image size, resolution, NESZ's and polarizations. Image modes with high 

resolution and low NESZ offer an improved signal to clutter ratio. Also, imagery with 

varying incidence angles and polarizations have to be considered collectively. It is true 

that the ocean backscatter decreases as a function of increased incidence angle. However, 

the backscatter of the targets of interest may also decrease as a function of increased 

incidence angle. It is also vital to consider polarization where it is known that VV will 

produce the greatest response from ocean, then HH, and then HV. The HV ocean 

backscatter response is considerably lower than HH or VV and is susceptible to being 

buried in the NESZ depending on mode and sensor. However, the type of targets of 
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Figure 2.3: ENVISA T ASAR histogram of ocean clutter in HH cr0 

interest will also backscatter differently based on polarization. Thus, in order to optimize 

SAR mode selection, resolution, incidence angle, NESZ and polarization have to be 

considered together. 

It is desired to maximize the probability of detection P d and minimize the probability of 

false alarms Pta for iceberg and ship detection on an ocean background. Manual 

interpretation of SAR data in this way can be labor intensive, subjective, and error prone. 
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Thus, developing an automated algorithm for target detection which standardizes and 

benchmarks the technology capabilities (Pd and Pfa trade-offs) is desired. Considering that 

both the ocean and target backscattering mechanisms are variable and complex systems, it 

is unlikely that target detection will be modeled in an optimal way. From this, there will 

always be a trade-off effect where a higher detection rate is desired and potentially 

achievable but at the expense of an increased false alarm rate. 

Monitoring the ocean with SAR has several issues that must be addressed. As described 

in the previous section, there are incidence angle and wind dependencies that significantly 

effect local SAR ocean response. From this, the statistics of ocean clutter can vary 

significantly over the coverage area of the radar. Attempting to set a fixed decision 

threshold will result in a similarly wide varying Pfa [1]. As can be seen in Figure 2.4, one 

SAR scene with a wide coverage area (approximately 500 km2 in this case) can have 

several distinguishable problematic phenomena such as land, sea ice, atmospheric effects, 

nadir ambiguities, and significant incidence angle variation. Applying a global threshold 

for detection to this data would be at the expense of a paired lesser detection rate and/or 

an increased false alarm rate. As a consequence, using an adaptive threshold to determine 

the decision criteria based on local conditions would be beneficial. One such method is a 

constant false alarm rate (CFAR), which is one specific form of adaptive image 

processing. 

It is known that when estimating statistical parameters that describe the ocean 

background, a large number of independent samples are required. However, local 

variation in ocean backscatter can significantly affect the expected single modal 

distribution. As a side, it is also important to process an image efficiently in software, 

thus, scanning an image and storing background clutter in a multi-pass way should be 

avoided if possible due to computational constraints. The accepted standard [1, 2, 3] is a 

CF AR sliding window approach, where a processing window is imposed over the image, 

the ocean response is extracted in the form of mean, standard deviation, and distribution 

shape and finally an adaptive threshold is run based on the ocean response. This CFAR 
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Figure 2.4: RADARS AT -1 SCW with variable ocean features 

has to take into account the possibility of targets that are on the boundary of the 

processing window and thus truncated. This can be achieved by having a window 

overlap that is larger than the expected maximum target size. This way a potentially 

truncated target will be captured in its entirety in at least one processing window. 

2.1.3 Physical Properties of Iceberg Backscatter 

Glacial ice, unlike sea ice, has its origins on land. Glaciers form where precipitation in 

the form of snow exceeds evaporation and over time the snow compresses to become ice. 

Under the pressure of their own weight, glaciers flow from higher altitude to sea level. 

The ocean and glacier interface or glacier tongue is constantly exposed to tides and sea 

level changes which inevitably causes large pieces of ice to calve. It is this process by 

which icebergs are born [16]. 

The radar backscatter from an iceberg arises from two mechanisms, specifically surface 

scattering and volume scattering. For glacial ice there is extensive penetration of the 

radar wave into the ice. The scattering mechanisms controlling the return of energy are 

driven by the surface and volume multiple scatter [17]. 
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Volume scattering is due to the low absorption of the non-saline glacial ice, allowing 

considerable penetration of the radar energy into the iceberg. For RADARS AT -1 at a 

frequency of 5.3 GHz, the penetration depth for glacial ice has been cited to vary from 3 

to 14 meters, depending on the specific ice properties [16]. The penetrated energy is 

scattered by dielectric discontinuities that are due to trapped air pockets. Surface 

scattering is dependent on the specific surface structure of individual icebergs, including 

variations due to any snow or water on the surface of the iceberg, which may also reduce 

or alter the signal penetration. The orientation of local surface roughness to the SAR 

antenna and vertical relief relative to other portions of the iceberg and the sea surface are 

also contributing factors in the total backscattered intensity. 

In instances with high clutter and small icebergs relative to the resolution of the SAR, the 

response from an iceberg may be indistinguishable from the bright ocean backscatter or 

speckle [6]. As can be seen in Figure 2.5, the P" rate (calculated using a CFAR of 

2.46x10-5
) for small icebergs is directly dependent on wind speed and incidence angle 

[18]. In general, for HH and VV SAR, as wind speed increases the probability of 

detection of icebergs decreases. As well, for HH and VV SAR, as incidence angle 

increases the probability of detection of icebergs increases. From this, HH and VV SAR 

modes of choice for iceberg detection should favor increased (shallower) incidence 

angles. Current spaceborn SAR sensors have relatively high NESZ considering the ocean 

response in the HV channel and as such the background observed in the cross channel 

when monitoring ocean environments can be contributed to the NESZ. Thus, modes 

offering improved NESZ for the cross channel will improve the signal to noise ratio for 

both iceberg and ship targets. 

2.1.4 Physical Properties of Ship Backscatter 

The radar backscatter from a metal ship predominately arises from surface scattering. 

This is based on the premise that a metal ship's reflectivity is absolute. From this, we 
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Figure 2.5: RADARSAT-1 Wide mode probability of detecting small icebergs [18]. 

expect that dominant scattering behavior would occur between the ships deck and 

superstructure and as well between the ocean and above-water portion of the ship hull 

itself. The strength of the return would depend on the orientation of the ship to the SAR 

sensor, structure and size of ship, and any deck equipment. Deck items for consideration 

include anchor, anchor chain, cylindrical tanks, storage boxes, and ballast stabilizers. 

For describing ship scatter we considered dihedral, trihedral, and multi-bounce scatter as 

dominant. A dihedral (two bounce) response occurs when the transmitted radar wave is 

orthogonally aligned with a 90 degree pseudo-comer reflector. Predominant dihedral 

response would nominally occur from a ship superstructure and deck intersection when a 

ship's heading is toward, away, or parallel to the sensor direction of flight. There will 

also be a quasi-dihedral response from the ocean and the side of the vessel in calm sea 

states. A trihedral (three bounce) response would nominally occur when the send wave is 

aligned with a 90 degree horizontal x, 90 degree horizontal y, 90 degree vertical z degree 

14 



pseudo-comer reflector. Predominant trihedral response would nominally occur from the 

comers (acting pseudo-comer reflectors) between the ship superstructure and the deck 

interface. The trihedral response for a ship target is expected to be strongest when the 

heading is 45 degrees toward, away, or parallel to the sensor direction of flight. Multi­

bounce scatter is expected from complex alignment with the deck equipment and the ship 

itself. Ship backscatter is a combination of dihedral, trihedral, and multi-bounce surface 

scatter where variables such as ship size, materials and orientation affect the significance 

of contribution of these elementary scattering phenomena. 

It has been shown [13, 2] that empirical models for estimating ship size from the radar 

scatter have been successful. Vachon et al. [2] has presented a modified version of 

Skolnik's empirical radar cross-section as a function of ship length 

(J' = 0.08[7 
I 

3 
, (2.8) 

where the units are such that cr is the radar cross-section of the ship in square meters and l 

is its length in meters. 

In instances with high clutter (due to high wind speed), ship targets have been shown to 

have a decreasing detection rate based on ship size [2]. As can be seen in Figure 2.6, the 

minimum detectable ship length decreases as a function of increasing wind speed. Here 

the solid lines represent the upwind direction (i.e., the largest 0'
0

, hence, worst case) while 

the dotted lines represent the crosswind direction (i.e,. the smallest 0'0 , hence, best case). 

From this, ship detection is directly dependent on ship size, wind speed, and wind 

direction. In addition, it is well known that ocean clutter is dependent on incidence angle. 

As seen in Figure 2.7, as the incidence angle increases the minimum detectable ship size 

also decreases. In general, as wind speed increases, the probability of detection for ships 

decrease. As well, as incidence angle increases, the probability of detection for ships 

increase. From this, the modes of choice for ship detection with SAR imagery are those 

with larger incidence angles. 
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2.2 Digital/mage Processing and Analysis 

An image can be defined as a two-dimensional function, f(x, y), where x andy are spatial 

coordinates, and the amplitude off at any pair of coordinates (x, y) is called the intensity or 

grey level of the image at that point [19]. When x, y and f(x, y) are all finite and discrete 

quantities the image is considered to be a digital image. Digital image processing involves 

any modification or information extraction from an image with a computer. 

When considering ocean target identification in SAR digital imagery, the key element of 

information extraction follows from target detection. The detection of targets in ocean 

SAR data as presented here is based on the expected K-distributed ocean clutter and the 

relatively strong response from ocean targets such as iceberg and ship backscatter. 

2.2.1 Target Detection 
Image thresholding is a fundamental tool in image processing where objects of interest 

(or targets) can be identified in an autonomous process. Let f(x, y) be an image with a 

uniform background and also have targets of a different intensity than the background 

that are observable in the image. By setting a threshold, T, as an optimized boundary 

between the background and the target intensity, a binary image (or target mask) can be 

created. 

Establishing a threshold can be accomplished by examining a histogram of the intensity 

of the image pixels. If the target of interest and the background form a bimodal 

distribution, a threshold T can be derived at the minimum point between the two maxima. 

Figure 2.8 shows an image clip of an EMISAR aerial SAR iceberg clip that has a 

relatively bright intensity compared to the ocean background. Considering the 61 x 61 

pixel region (outlined in red) containing both the iceberg and surrounding ocean response, 

the upper tail of the histogram is due to the target and the lower portion due to the ocean 

clutter. Therefore, as described above, by taking the minimum that is bounded by the two 

maxima we get good separation between the iceberg and the ocean background. If this 
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Figure 2.8: EMISAR sample iceberg detection via histogram local minima. 

method is to be effective the processing window size must be target centered and allow 

for expected target sample size and ocean sample size to have comparable sample 

statistics. 

Figure 2.9 demonstrates another way to achieve similar results by applying a threshold 

based on some combination of the mean and standard deviation for an area of interest 
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Figure 2.9: ENVISAT ASAR sh1p detection via adaptive threshold. 

(AOI) clip or processing window. Since the background clutter for SAR has an expected 

distnbution, and the targets (if present) are expected to be in the upper tail of the 

histogram, the assignment of the threshold can be derived based on an acceptable 

combination of target detection and ocean false alarm rates. 

Just like in the previous example, the target samples appear in the upper tail of the 

histogram but due to the relative sample size difference in ocean backscatter versus target 
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backscatter pixels, there is no longer a visual decision boundary. Here, the threshold was 

set as three standard deviations from the mean for demonstration purposes. 

Formally, the threshold process can be thought of as a functional test T of the form 

T = T[x, y, p(x, y), f(x, y)] (2.9) 

where x andy are the column and row position in the image,f(x,y) is the image, and p(x,y) 

is some local property. Let the threshold image g(x,y) be defined as 

{
1, f(x, y) > T 

g(x,y) = < 
0, f(x, y) _ T. 

(2.10) 

When T depends on f(x,y) alone it is considered a global threshold. If the threshold is 

based onf(x,y) and p(x,y) it is considered a local threshold. If x, y, f(x,y) and p(x,y) are 

considered, the threshold is called dynamic or adaptive [19]. 

2.2.2 Local/Adaptive Threshold and CFAR 
Local threshold methods are useful when an image has uneven illumination [19]. As 

introduced in Section 2.1.2, this is the case in SAR ocean processing, where the 

background intensities decrease across an image due to an increasing incidence angle. As 

well, local atmospheric conditions can vary significantly. Also possible is the existence 

of sea ice or unmasked land that when mixed with the ocean background will not produce 

the expected K-distribution. 

Local oceanic windowing methods are driven by a higher spatial probability of having a 

homogeneous background due to being collected in and exposed to similar conditions. It 

should also be noted that statistical histogram detection is driven by adequate sample 

statistics. Thus, window size is optimized by minimizing uneven image illumination and 

maximizing statistical stability. Once an adequate segmentation is achieved, the 

threshold methodology can be derived as described in Section 2.1.2.1. 

The traditional approach for SAR target detection is through applying a CF AR algorithm. 

This method is based on a statistically expected sample of false alarm pixels or bright 
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ocean clutter that exists in the upper tail of the measured ocean SAR response. A 

threshold is set based on the acceptable and statistically expected number of false alarms 

pixels per image. For example, a CFAR rate of 2.46x10-5 will produce 612 individual 

false alarm pixels in a 150 km x 150 km RADARSAT-1 wide 3 image [18]. 

CFAR (Section 2.1.2.1) has a significant radar background and is considered here as one 

specific application of adaptive thresholding. As described, a sliding window 

sequentially covers the image such that the entire image is processed. There has to be 

some overlap in the windowing process to account for targets that could potentially exist 

on the windows edge. In processing a window or area of interest (AOI), the upper tail of 

the histogram can be truncated to avoid target contamination of the measured ocean 

clutter (otherwise known as setting guard cells or using an ordered statistic (OS)). The 

ocean statistics are measured and a threshold is adaptively set for that window based on 

the predetermined CF AR rate and the measured ocean distribution. For the resolution and 

number of looks in the data presented in this thesis, a K-distribution is expected. 

2.2.3 Region Growing 
Post target detection via the CFAR methodology, the entire target area (or region) 

identified may not be fully represented by the initial CFAR threshold layer. This is due to 

lower intensity target pixels that do not meet the initial (more aggressive) CFAR 

threshold. Region growing is a post processing technique to better identify the target 

boundary from background response. 

Formally, region growing involves identifying neighboring pixels of seed pixels that have 

a high likelihood of being part of the target. Neighboring pixels (a pixel has 8 connected 

neighbors) of the seed pixels may be assigned to the target region based on some decision 

criteria that is more liberal than the initial threshold [19]. The process can be iterative; if 

identified neighboring pixels are assigned to the region they can be considered seeds in 

the next iteration. It is also possible to grow a region exclusively from the original seed 

with a lower threshold and/or a distance criterion. Whichever method is implemented, it 
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is important to consider and design a stop criterion such that potential region overgrowth 

is avoided. 

Figure 2.10 shows an example of a region-grown ship target. Here initial seed pixels 

were set by thresholding 13 standard deviations from the background mean. The region 

growing algorithm is implemented with a difference equation, where each iteration 

neighboring pixels of seed pixels that are greater than 6 standard deviations from the 

background mean are assigned seed pixel status. This could be problematic if the 

background expectations (preconditions) are broken, as a loop bounded only by the 

processing window size is conceivable. The final region grown product is binary filled 

and morphological opened to create a clean target boundary. 

Another similar approach which leads to acceptable results is to pass a ceiling threshold 

(primary) and a floor threshold (secondary) over the processing window. All objects that 

are detected in the ceiling threshold are assigned target status. Post detection from the 

ceiling threshold, the floor threshold is run for region growth and the intersecting target 

from the floor threshold is taken as the target. A criterion that protects region overgrowth 

can be implemented such that the ceiling and floor threshold objects have nominally 

aligning centers. 

Figure 2.10: RADARS AT -1 ship target region growing example. 
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2.2.4 Feature Extraction 

Feature extraction is a processing step that follows once a target has been identified. 

Once a target has been detected (with region growing), the binary layer that describes the 

target can be used for feature extraction. Feature extraction allows for common shape 

features like area, major axis length, minor axis length, elongation, compactness, 

circularity, roughness and central moments to be collected for any given target. In 

addition, the intensity or normalized radar cross section ( cr0
) features like mean, 

maximum and variance are extracted by overlaying the binary target mask on the original 

SAR window. 

The process of feature extraction was implemented here in an attempt to m1m1c the 

human visual interpretation process and to achieve significant data compressiOn. 

Consider a human interpreter, the process of labeling or discriminating targets is often 

based on the collective experience of the interpreter and their ability of identify 

reoccurring tendencies for particular objects based on their shape, size and brightness. 

The second reason for feature extraction is data compression, the process allows for each 

target to be represented by a fixed set of features that are significantly easier to work with 

compared to the raw target imagery. Specific features were extracted with the aid of 

commercial image processing software packages such as MATLAB and HALCON. The 

process of selecting which features to be collected was based on previous experience and 

their availability from the aforementioned commercial image processing libraries. 

2.3 Pattern Recognition 

Post processing of all identified targets involves a classification algorithm that assigns or 

labels a specific target to a class. Based on the unknown target's best fit to one of the n 

class models, a target classification can be assigned. There are a variety of different 

approaches for developing a class model. Here we will focus solely on supervised 

parametric models which are based on Baysian decision theory. 
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2.3.1 Bayesian Decision Theory 

Baysian decision theory is a fundamental statistical approach when solving pattern 

recognition problems [20]. Bayes formula is 

I 
_ p(x I m)P(m) 

P(m
1 

X)- , 
p(x) 

(2.11) 

where p(x I m
1

) is the class conditional density function of class j, P(m,) is the prior 

probability for class j, and p(x) is a scale factor which normalizes the sum of the posterior 

probabilities P(m, I x) to one. From this, the Bayes (minimum error) decision rule for a 

two class system can be written as 

if P(m1 I x) > P(m2 I x) decide m1 ;else m2 • (2.12) 

Since p(x) is only a scale factor, it does not influence an unknown sample x classification 

assignment, and thus we write the discriminant function (DF) as 

f, (x) = p(x I m.)P(m,). (2.13) 

This function is often modified by taking a monotonic transformation g(f;(x)), producing 

g,(x) = lnp(x I m,)+lnP(m,). (2.14) 

In doing so, all classification results will produce the same decision and at a reduced 

analytical and computational expense [20]. 

2.3.1.1 Maximum Likelihood: a Quadratic Discriminant Function 

The general multivariate normal density inn dimensions (feature space) is written as 

1 1 T l 
p(x)= uz exp[--(x-,u) L- (x-,u)], 

(2;rr12 ILI 2 
(2.15) 

where x is the sample column vector of length n, J1 is the mean sample column vector of 

length n, L is the n x n covariance matrix, and ILl and L-1 are its determinant and 

inverse, respectively. [20] 
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From the Bayesian classification presented in Equation 2.11, if we assume the class 

feature densities p(x I mJ are multivariate normal, then we can substitute Equation 2.15 

into Equation 2.14, which gives, 

g;(x) = ln[ 
1 

112 
exp[ _ _!_(x- ,u)T L-1 (x- ,u)]l + ln P(m;) 

(2Jrr 12 ILI 2 
(2.16) 

and from Equation 2.16 we get, 

1 T _, n 1 I I g ;( x) = --( x - .u) L ( x - .u) - -ln(2Jr) - -ln L + ln P( m; ) . 
2 2 2 

(2.17) 

The quadratic discriminant model gi(x) for each class is built by estimating the population 

mean (P,) and covariance ( L) from the known training data. This way, online 

classification of an unknown sample can be evaluated for distance from each gi(x). The 

class function which produces the maximum scalar value (minimum distance from class) 

is the class assignment for the unknown sample. 

2.3.2 Feature Selection 

One of the fundamental problems in statistical pattern recognition is to determine which 

features should be employed for the best classification results [21]. Feature selection can 

be defined as follows: given a set of candidate features, select a subset that performs the 

best under a classification system [22]. 

Feature selection algorithms can not only reduce the cost of running a classification 

algorithm by reducing the feature space, but can also provide a better classification model 

due to the statistically favored feature space that better fits the pattern recognition 

problem [23]. 

The feature selection algorithms presented in this thesis follow a wrapper approach when 

considering feature subset evaluation [24]. This means that the actual classifier 

discriminate function and the measured accuracy or error rate is directly used for 

comparing feature subsets. Aha and Bankert [25] suggest that the wrapper approach 

outperforms other indirect evaluation methods however at the cost of increased 
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computational effort. This is in agreement with Inza's work which suggests that for small 

data sets a wrapper approach is the method of choice [26]. 

2.3.2.1 Sequential Forward Selection 

The sequential forward selection (SFS) algorithm [25, 26, 27] is a search method that 

starts with an empty "selected" feature set and iteratively evaluates and adds features in a 

forward manner from the available "test" feature set to the "selected" set. Once a feature 

has been identified to offer the most improved accuracy for the dimensionality (or feature 

space) being evaluated, it is permanently assigned as a member of the selected feature set 

and as well removed from the test feature set. Appendix I outlines pseudo code for the 

SFS algorithm. The SFS algorithm is O(n2
), where n represents the number of features 

for the target feature space, and can be deduced from the number of iterations required by 

SFS as presented in Equation 2.18. 

Ik = n(n+1) 
k=l 2 

(2.18) 

Some SFS algorithms stop once an increase in performance 1s not achieved [27]. 

However, the implementation employed in this thesis adds all available features based on 

a maximum gain I minimum loss stratagey. 

Other variants of this search strategy, such as sequential backward selection (SBS), are 

also viable methods [25]. SBS is very similar to the SFS algorithm with the exception 

that the data set starts full and removes features based on least additive effect. This 

algorithm is noted as (nominally) being more computationally expensive than the SFS 

algorithm even though the order and number of evaluations are the same. This is due to 

the SBS having to evaluate the bulk of the search in the higher order feature spaces where 

the discriminate function training and evaluation are more computationally expensive 

[22]. 

2.3.2.2 Exhaustive Search 
The exhaustive search (ES) is the only algorithm that is guaranteed to find the optimal 

feature combination [28]. The cost of finding the optimal solution is tied to the extensive 
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computational effort to evaluate all 2n permutations, 0(2n), where the exponent n 

represents the number of features that describe the target feature space. Generally, the ES 

is not utilized as a feature selection algorithm due to its exponential computational 

expense. This problem is even further amplified when considering more computationally 

expensive discrimination functions, larger feature spaces and larger sample sizes. Liu and 

Motoda propose two approaches to ES, the depth-first and breadth-first [29]. The depth 

first approach evaluates down (a tree structure) all combinations that contain a particular 

feature. For example, a 3 feature space would be evaluated, FS { 1}, FS { 1, 2}, FS { 1, 3} 

FS { 1, 2, 3}, FS { 2}, FS { 2, 3}, FS { 3}. The breadth-first approach evaluates across all 

combinations of a feature space, and then expands its search space. For example, a 3 

feature space would be evaluated, FS { 1}, FS { 2}, FS { 3}, FS { 1, 2}, FS { 1, 3}, FS { 2, 3}, 

FS { 1, 2, 3}. Regardless of approach, both evaluate all possible combinations. 

The implementation of ES presented in this thesis follows the breadth-first approach. The 

breath-first approach was adopted because it searches the lower feature spaces first. If 

doing a partial ES, focusing the search in lower feature spaces is advantageous since it 

minimizes the curse of dimensionality. This is especially important when approximating 

the maximum likelihood inverse covariance matrices since they will become singular 

when n or less samples are used to estimate n or more feature spaces [30]. Hence, this 

problem is avoided by stopping the search before the n1
h feature space is evaluated in the 

breath-first implementation. Appendix II outlines pseudo code for the ES algorithm and 

the incrementFS function. 

The MA TLAB incrementFS function was designed by the author with code flexibility in 

mind, allowing data distribution to different processors (parallel processing on the data 

level) with unique start and stop combinations. Parallelization of the ES (PES) method 

described above leads to a linear speed-up as a function of the number of processors used. 

The overhead of assigning work to computers, managing message passing, and 

integrating results is negligible compared to the computational effort required for feature 

space evaluation. This said achieving a reasonable search time for larger search spaces 
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will eventually lead to unreasonable execution times due to the exponentially increasing 

computational cost of increasing feature spaces [28] combated by the linear decreasing 

computational cost of using more processors. 

Two suboptimal variants of the ES were developed by the author for this thesis work: the 

exhaustive ranked search (ERS) and the limited exhaustive search (LES). The ERS work 

was inspired by exactly the reason why ES methods are often discredited: their 

exponential dependency on the number of features. Here it is proposed that as the 

number of features is reduced from the working training set, the ES will require 

exponentially less time to run. The LES is simply the ES with a time stop criteria as 

opposed to the evaluation of all combinations. The LES was inspired by the fact that the 

lower feature spaces can be evaluated exhaustively with reasonable computation times as 

the bulk of computational load exist in higher order feature spaces. As well, the LES 

supports limited data sets that would potentially suffer from the curse of dimensionality. 

The ERS, LES and PES algorithms are presented in Section 5.4 and 5.5. 

2.3.3 Discriminant Performance 

It is important to estimate the classifier performance for evaluation and prediction 

purposes. The three main methods for performance estimation are re-substitution, hold 

out, and cross-validation [21]. For re-substitution, all samples are used to train the 

classifier and to test its performance. The hold out method separates all samples into two 

groups, a training set and a test set. The cross-validation method iteratively divides all 

samples into two groups, a training set and a test set. For each iteration of cross­

validation, a subset of data is extracted for training, and the remaining sample(s) are used 

for testing. The testing is such that each sample is tested only once during the entire 

process. The size of the testing subset can be as low as one sample. Cross-validation 

using one sample for testing is commonly known as the leave-one-out method [21]. 

The re-substitution method results in an optimistically biased estimate for performance 

and should only be used when the sample size is sufficiently large. The hold out method 
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is unbiased; however, all samples are not used in the training phase and as such the 

overall potential for classification and performance estimation could decrease. This is 

especially true for small sample size data. The cross-validation method is essentially an 

unbiased measure. However, recalculation of the classification model for each sample 

test creates a substantial computational effort compared to the hold out and re-substitution 

methods [21]. Given a small number of training samples and a relatively inexpensive DF, 

the cross-validation method is a reasonable compromise between potential evaluation bias 

and sample utilization. This process has been validated and described in Section 5.1. 

2.4 Previous Works 

There has been a significant amount of study on automated target recognition in radar 

imagery. Of interest to this body of work are iceberg and ship target detection and 

discrimination. The following are a collection of significant journal and conference 

papers that have contributed to the direction of this work. 

2.4.1 Marthaler's Iceberg and Ship Detection with SLAR 

In Marthaler and Heighway [31], the early development of an iceberg detection and 

classification capability was describe. This system for the US Coast Gurad used an aerial 

real aperture side-looking airborne radar (SLAR) system. The area of interest for iceberg 

and ship detection and classification was the Grand Banks of Newfoundland, Canada. 

The US Coast Guard through the International Ice Patrol (liP) has been conducting 

iceberg reconnaissance in the North Atlantic since 1914. This reconnaissance was 

actually started in response to the sinking of the Titanic. The NASA Lewis research 

center in remote sensing was involved in this work in designing the hardware and 

software of the SLAR system. The goal of this work was to implement an automated way 

to detect and classify icebergs and ships. This work focused on a SLAR, X band (9.1 -

9.4 GHz), with a nominal resolution of 15 meters along track (ground) and 30 meters 

cross track (range). 
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A dynamic target threshold method was implemented for target detection. This was 

implemented during flight (real time), as average sea return was sampled to determine 

local threshold levels. This method is analogous to CFAR adaptive image histogram 

processing presented in Section 2.2.2, with the exception that a SAR image uses local 

sliding window statistics compared to sampling ocean response during flight. 

Classification focused on the premise that, for targets of the same physical size, a ship 

will produce an echo of greater amplitude than that of an iceberg. This is theoretically 

based on the higher reflectivity of metal as compared with ice of glacial origin. The 

amount of energy returned from an object, its reflectivity R, can be expressed as 

R=(~)z 
n+l 

(2.20) 

where n is the index of refraction for the object. The value for the index of refraction of 

metal approaches infinity, thus the reflectivity of metal is 1. For ice of glacial origin, the 

index of refraction is approximately 1.79, giving a reflectivity of .08. The resulting ratio 

of reflectivity, (Rmera/R1ce), indicates that, theoretically, for targets of geometrically 

similar configuration, a ship would reflect 12.5 times (lldB) more energy than an 

iceberg. However, Marthaler and Heighway stressed that geometry and size varies 

significantly from iceberg to iceberg, and from ship to iceberg. As a result, the actual 

reflectivity differences between ships and icebergs can only be determined in a statistical 

sense from radar data collected for a large number of samples. The following key points 

were made: 

• Ship and iceberg detection is successful using a dynamic threshold that is based 

on the average ocean background measured during flight. 

• For targets of the same sizes, shape, and orientation to the SAR sensor, ship 

targets will theoretically reflect lldB more energy than that of iceberg targets. 

• Size, shape, and orientation vary significantly from iceberg to ship targets. Actual 

reflectivity differences between iceberg and ship targets can only be determined in 

a statistical sense from a large number of samples. 
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2.4.2 Vachon's Ship Detection with SAR 

The work of Vachon et al. on ship detection with SAR has been an ongoing effort for 

improved detection and operational evaluation [2, 32, 33]. The focus of this work has 

been on using the RADARS AT -1 C-band HH polarization SAR data. The study area for 

this work includes Canada's east and west coasts. 

A statistical approach to ship target detection in a clutter background was used to show 

the performance capabilities of RADARSAT-1. Of specific importance were, (1) the 

optimization of a best fit distribution model for the ocean clutter, (2) the contribution 

effects from incidence angle, wind speed and wind direction on ocean clutter, and (3) the 

distinguishing of ship targets from the ocean background through a constant false alarm 

rate (CF AR) methodology. 

Results suggest that a data-adaptive K-distribution produced an increased performance 

compared to assumed distribution methods. The proposed method measures the mean 

and standard deviation of a processing window and a parameter (called an order 

parameter) that defines the shape of the distribution. This way, the effect of variable 

winds and incidence angle on a local processing window are indirectly taken into account. 

Apparent strengths of this method are that the background is not assumed but modeled 

and in doing so removes potential variability when comparing unknown targets against 

the measured ocean background. 

This method can be thought of as a specific form of adaptive image histogram processing 

presented in Section 2.2.2. Here, a statistically expected sample of false alarm pixels or 

bright ocean backscatter will exist in the upper tail of the known distribution of the 

measured SAR ocean response. A threshold is set based on an acceptable number of 

false alarm pixels per image being identified. Consequently, all targets that have 

backscatter greater than the accepted false alarm levels will be detected. 
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SAR ship backscatter has been reported as largely independent of incidence angle and 

environmental effects [34], whereas increased ocean response has been found to depend 

on decreasing incidence angle and increasing wind speed. The following key points were 

made: 

• Ship detection performance improves for increased incidence angle due to the 

reduction in ocean clutter. 

• Ship detection is best for fine beam modes due to their large incidence angle and 

high resolution. 

• For larger incidence angles, the ship detection problem becomes the detection of 

bright point targets against a noise background. 

2.4.3 C-CORE's Iceberg Detection with SAR 

Significant SAR iceberg research has come out of C-CORE [3, 6, 18, 50, 35, 36]. 

C-CORE is a research and development company that initially started out as the Centre 

for Cold Ocean Resources Engineering in 1975. C-CORE's iceberg surveillance 

capabilities focus predominately on RADARSAT-1 (HH) and ENVSIAT (HH and 

HH/HV) data in 8, 25, 50, 75, and 150-meter resolutions. The initial area of interest 

when doing validation studies for iceberg detection work was on Canada's east coast, the 

Grand Banks of Newfoundland. 

This work focused on an adaptive threshold detection method with an assumed K­

distribution (see Section 2.2.2). Speckel noise (bright ocean response) was spatially 

filtered to remove potential false positive targets. Also, the target areas were 

morphologically closed (dilation followed by erosion) to smooth the target edges. This 

also had the added benefit of merging multiple pixel groupings that belonged to a unique 

target. The resulting target mask was then used to extract target characteristics required 

for the discrimination and classification process. Classification was initially proposed [3] 

based on the following three features: mean intensity, variance of intensity, and target 

area. Later works by this group describe a guard cell CF AR implementation, where the 

highest intensity pixels are excluded from the background intensity approximation via a 
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truncated sorted (or ordered) statistic. This ensures that the ocean clutter measure is 

representative of the sea clutter alone [6]. 

Iceberg radar backscatter arises from two mechanisms, specifically surface and volume 

scattering [ 17]. Volume scattering, which is dominant, is due to the low absorption of the 

non-saline glacial ice, allowing for considerable penetration of the radar energy into the 

iceberg volume. The penetration depth for glacial ice-at the frequency of 5.3 GHz-has 

been cited as 3 - 14 meters depending on the specific ice properties [16]. The penetrated 

energy is scattered by dielectric discontinuities (change in medium) that are caused by 

trapped air bubbles. Surface scattering depends on the surface structure of individual 

icebergs, including variations due to snow or water on the surface. The orientation of the 

local surface roughness, vertical relief relative to other portions of the iceberg and to the 

sea surface, are contributing factors in the total backscattered intensity [6]. The following 

key points were made: 

• Iceberg and ship target mean, maximum, and variance features hold promise for 

classification. 

• Iceberg detection performance improves for increased incidence angle due to the 

reduction in clutter level. 

• The limits for iceberg target size detection are on the order of the SAR resolution. 

• Iceberg backscatter is a complex combination of surface and volume scattering. 

2.4.4 Haykin's Remote Sensing of Iceberg, Ship, and Sea Ice Targets 

Haykin et al. has contributed to remote sensing of icebergs, ships and sea ice through 

Remote Sensing of Sea Ice and Icebergs [17] and Detection and Classification of Ice [16]. 

He has also contributed to the topic significantly through conference and journal papers 

[1, 4, 5]. This review focuses on two areas of Haykin et al. work: the detection of radar 

ship targets, and the classification of iceberg and sea ice via statistically driven Bayesian 

methods. 
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2.4.4.1 The Detection of Ship Targets by Ground Radar 

The work by Haykin et al. [1] on ship detection is well summarized in a report prepared 

for Transport Canada. The focus is on comparing Neural Network detection to the CFAR 

detection approach. Of interest to this body of work specifically is the conventional 

assumed Rayleigh, K-distribution, and ordered statistic (OS) CFAR approaches. 

In low resolution radar (antenna beamwidth > 1° and pulse length> 0.5 f.lS) the sea clutter 

amplitude distribution has been shown to be Rayleigh. The Rayleigh distribution can be 

described by one parameter, as the standard deviation equals some constant times the 

mean. As the resolution of the radar increases, the statistics of sea clutter increasingly 

deviate from a Rayleigh distribution. This is a function of large sea clutter amplitudes 

leading to distributions with long upper "tails", which can be accurately modeled as K­

distribution [37]. The K-distribution of ocean clutter can be considered as being based on 

the underlying physics of the sea surface. It is a compound distribution, using a Rayleigh 

distribution to represent the small wind waves with short decorrelation times (fast 

changing relative to the SAR), but with the mean of the Rayleigh distribution changing 

with time according to gamma distribution, representing the effect of the larger swell 

waves, having longer decorrelation times (slow changing relative to the SAR). These 

longer-tail distributions are characterized by two parameters, one related to the mean and 

one related to the width. These are often termed scale and shape parameters [ 1]. 

Assuming that clutter is drawn from a K-distribution, a target detection threshold can be 

set to yield the desired probability of false alarms (P10). This is accomplished 

dynamically for a processing window by thresholding 't standard deviations from the 

mean. Here 't is derived from the area under the probability density function that has 

been set as the accepted Pta· This method will work as long as the clutter continues to 

match the assumed distribution. If the statistics change over time and location, the 

decision threshold, determined a priori based on the assumed distribution, will be 

incorrect [ 1]. 
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The OS CF AR was designed to negate the effect of target pixels being included in the 

sampled ocean response. An OS CFAR generally collects data from a sliding window as 

in the adaptive threshold method, but the local sampling statistics are sorted in ascending 

order. Then a suitable percentile (empirically derived) of the sorted sampling statistic is 

culled. This way, as long as the percentile is significant enough to exclude multiple 

targets (based on expected maximum size and distribution), the remaining background 

sample will exclusively represent ocean clutter. Rather than try to model the clutter 

distribution specifically, the OS approach reduces variation found in the upper tail of the 

histogram, where the major factor determining P1a actually exists [1]. The following key 

points were made: 

• Ocean backscatter distribution is dependent on the resolution of the radar. 

• The K-distribution physically models SAR ocean clutter. 

• An OS CF AR can be useful for negating the effects of variable Pfa· 

2.4.4.2 Bayesian Classification of Icebergs and Sea Ice 

Haykin et al. also contributed to work on iceberg and sea ice classification which focused 

on both single [4] and dual [5] polarized surface-based microwave radar. A Bayesian 

methodology for pixel-based classification of first year ice, multi year ice, icebergs, and 

iceberg shadow was investigated. 

Initial work focused on single polarization (one feature space) reflectivity, which is 

known to depend on certain physical characteristics of ice type. The Bayesian classifier 

was trained on collected pixel samples to estimate distribution parameters for each class 

type. Both the Pearson system beta [38] and maximum likelihood Gaussian [39] 

distribution classifiers were investigated and the performance results were found to be 

essentially the same. This is of importance since the Gaussian classifiers have fewer 

parameters to estimate and are conceptually easier to work with. Later work expanded to 

included HHIVV (dual co polarization) and HH/HV (dual cross polarization) reflectivity. 

The use of dual polarization data for deriving a multivariate Bayesian maximum 
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likelihood classifier improved classification accuracy from 77% for HH to 82% for 

HH/HV reflectivity. 

In approximating the performance of the classifier, the re-substitution method was 

employed (Section 2.3.3). Here, classification accuracy was calculated by finding the 

percentage of correctly classified ice type pixels of the total number of sample points. 

It was concluded that sea ice in surface-based marine radar does exhibit considerable 

statistical variability. Hence, decision theory pattern recognition techniques to classify 

sea ice fields may be used. Non-parametric classification techniques and multilevel 

thresholding may not yield optimal classification results like Bayesian methods. The 

following key points were made: 

• Maximum likelihood Gaussian distribution classifiers had essentially the same 

performance as more complicated Pearson system beta distributions. 

• Dual polarized HH/HV radar showed improved Maximum likelihood 

classification for iceberg and sea ice over single polarized HH. 

• Decision theory pattern recognition is demonstrated and found successful for 

iceberg and sea ice radar targets. 
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3 SAR Iceberg and Ship Target Detection 

This section presents the building of three distinct iceberg and ship target training data 

sets: single polarization HH RADARSAT-1 Wide, dual polarization ENVISAT AP, and 

quad polarization EMISAR. Here a summary for the sensors and the number of 

correlated detected targets is presented. Feature extraction for the RADARS AT -1 and 

ENVISA T AP iceberg and ship targets was collected using the iceberg detection software 

(IDS), which is proprietary software developed by C-CORE. The software uses the 

CFAR methodology as described in Section 2.2.2. For the EMISAR data set, due to the 

large image size ( -12 Gigabytes for the Tango Denmark data set), resolution and data 

format, the author developed a CF AR methodology for target detection and routine 

feature extraction as described in Section 2.2.2. 

3.1 Data 

Three data sources for ground truth (verified) SAR iceberg and ship targets have been 

collected. The RADARSAT-1 Wide 2 and 3 mode data were part of a research and 

development program that started in the late 1990's. The early goal of this work was to 

demonstrate the operational capabilities of SAR for iceberg and ship detection and 

discrimination. The dual polarization ENVISA T AP (HH/HV) mode data was part of a 

continuation study to quantify the potential benefits of using a dual channel SAR. This 

work started in 2002, and from the demonstrated benefits of dual channel SAR, this mode 

is the current sensor of choice. EMISAR, an airborne SAR, data has been used here to 

benchmark classification performance of iceberg and ships when using polarimetric 

sensors (HH/HVNH/VV with phase). This is of importance since the soon to be 

launched RADARSAT-2 satellite will also have polarimetric modes and its classification 

capabilities are unknown. 

3.1.1 RADARSAT-1 

RADARS AT -1 is a Canadian Earth observation satellite developed to monitor 

environmental change and to support resource sustainability [40]. This platform was 

launch in 1995, and has outlived its original planned lifetime of five years as it is still 
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operational. RADARS AT -1 is an active SAR sensor. Thus, it is not dependent on 

daylight for data collection like other satellite-based optical sensors. As well, its HH C­

Band microwave operational frequency of 5.3 GHz has minimal interference from clouds, 

haze, smoke, fog and rain. 

RADARS AT -1 SAR offers an array of mode selections, with swath width ranges from 35 

to 500 km and resolutions from 10 to 100 meters respectively. Through the various 

modes, incidence angle variations range from 20 to 50 degrees. Specifically of interest to 

this work are the 25 meter resolution Wide 2 and 3 mode data. Based on previous work 

[6], this mode is the best compromise between swath coverage and required resolution for 

iceberg and ship detection. This data has incidence angle range from 31 to 39 degrees for 

Wide 2 and from 39 to 45 degrees for Wide 3. All data have 12.5 meter pixel sampling in 

both azimuth and range, and an effective number of looks of 4 (one in range and four in 

azimuth). The NESZ in RADARSAT-1 is nominally -22 dB. [41] 

3.1.2 ENVISAT 

ENVISA T is an Earth observation satellite developed by the European Space Agency 

(ESA) to extend an already established observation program. ENVISA T is a multiple 

sensor platform. Of interest in this context is its advanced synthetic aperture radar 

(ASAR) sensor [42]. The platform was launched in 2002 and had a planned orbit lifetime 

of five years. Like RADARSAT-1's SAR, ENVISAT's on board ASAR has the 

advantages of being an active sensor in that it is not dependent on daylight for data 

collection like other satellite-based optical sensors. As well, its C-Band operational 

frequency of 5.3 GHz allows for minimal to non-existent interference from clouds, haze, 

smoke, fog and rain. Unlike the single polarization HH RADARSAT-1 sensor, ASAR 

has the added flexibility of choosing image modes in either HH or VV single polarization. 

Additionally, there are dual or alternating polarization modes offering HH/HV, VVNH, 

or HHNV combinations. 
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The ASAR sensor offers an array of mode selections where swath width ranges from 56 

to 400 km and resolutions from 30 to 150 meters. Through the various modes, incidence 

angle variations range from 15 to 45 degrees [ 43]. Specifically of interest to this work is 

the nominal 30 meter resolution collected at IS 4 though 7. These have been selected 

based on optimization of incidence angle, swath coverage, required resolution, and 

polarization. This data has incidence angle range from 31 to 45 degrees. All AP data 

included in this study have 12.5 meter pixel sampling in both azimuth and range, and an 

effective number of looks of 1.8. The NESZ for ASAR ranges from worst case -19.4 to 

best case -27.0 dB for differing AP modes. 

3.1.3 EMISAR 

EMISAR is an Earth observation twin engine jet platform that was developed by the 

Electromagnetics Institute (EMI) in Denmark. The EMISAR SAR sensor has been in a 

state of development since 1989, where it started out as a single polarization VV C-Band 

sensor and has since evolved into a C and L-Band polarimetric sensor. Like 

RADARS AT -1' s and ENVISAT' s SAR, EMISAR is an active sensor, thus, it is not 

dependent on daylight for data collection. As well, its C-Band operational frequency of 

5.3 GHz allows for minimal interference from clouds, haze, smoke, fog and rain. Unlike 

the single polarization HH RADARSAT-1, or dual polarization (without phase) ASAR, 

EMISAR has the added capability of collecting quad polarization (HH, HV, VH and VV 

with phase) SAR data. 

EMISAR offers an array of mode selections with swath width ranges from 12 to 48 km 

and resolutions of 2m with pixel spacing ranging from 1.5 to 6 meters respectively [44]. 

Incidence angle variations for the data sets used here range from 36 to 71 degrees. 

Specifically of interest to this work is the high 2 meter resolution. This is single look 

complex (SLC) data. The NESZ in EMISAR is nominally -40 dB. 
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3.2 Target Detection and Correlation 

As described in Section 2.2.2, a CF AR detection algorithm developed by C-CORE has 

been used for identification of iceberg and ship targets. Here the results of using the 

CF AR algorithm for iceberg and ship detection are presented for the three sensors. Data 

correlation was achieved by overlaying ground truth flight and target spatial information 

on the SAR data using geographic information system (GIS) software. This process was 

manually completed though visual interpretation. 

3.2.1 RADARSAT -1 

Seven images were acquired through a collaborative initiative investigating 

RADARSAT-1 Wide 2 and 3 modes in 2000 and 2001. Figure 3.1 shows an overview 

map of the images acquired that contain targets that have a valid correlation with ground 

truth. Figure 3.2 shows ground truth photographs (courtesy of Denny Christian, 

C-CORE), RADARSAT-1 Wide 3 iceberg targets and their associated CFAR target 

detected mask. Figure 3.3 shows RADARSAT-1 Wide 3 ship targets and their associated 

CF AR target detected mask. Ground truth for the ship targets and the Hibernia oil 

platform was provided by Provincial Airlines Limited (PAL). Table 3.1 is an image 

summary, where 27 correlated iceberg targets and 16 correlated ship targets make up the 

verified data set. 

Labrador 

Figure 3.1: RADARASTA-1 imagery overview. 
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Figure 3.2: RADARSAT-1 W3 icebergs. 
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Figure 3.3: RADARSAT-1 W3 ships. 
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Table 3.1: Summary ofRADARSAT-1 iceberg and ship data. 

~ 

Start Latitude 
~' 

Date Mode Validation Icebergs Ships Start Longitude End Latitude End Longitude~ 

31-May-00 W3 C-CORE 8 0 50.154177 -55.381058 49.320760 -53.333988 

14-Jun-00 W2 C-CORE 10 0 49.429906 -55.103297 48.438839 -52.590392 

24-Jun-00 W3 C-CORE 8 0 49.471843 -55.226611 48.597988 -53.197391 

29-Apr-01 W3 PAL I 3 48 171922 ~51.704120 47.298031 -49.724600 

14-M~OI W3 PAL 0 9 47.550157 -49.369573 46.066683 -48.239609 

21-May-01 W3 PAL 0 3 47.167259 -48.400411 45.943083 -47 213016 

24-May-01 W3 PAL 0 I 47.227293 -51.642456 45.717469 -50.293334 

3.2.2 ENVISAT 

Twenty-six images were acquired through a collaborative C-CORE I Industry initiative 

investigating ASAR surveillance capabilities in 2003 through 2006. Figure 3.4 shows a 

map of the images acquired that contain targets that have a valid correlation with ground 

truth. Figure 3.5 shows ground truth photos (courtesy of Denny Christian, C-CORE), 

ENVISA T ASAR iceberg targets for both the HH and HV channel, and the associated 

CF AR HH target detected mask. Available ground truth for the targets in Newfoundland 

waters was collected by C-CORE, PAL, and the liP. Unfortunately, there was only 

secondary ground verification for some of the ship targets. This means that given the 

season and geographic location for these data (Vancouver Harbor, Canada), the targets 

were designated as manmade and thus likely to be ship. Further to this, target change 

detection-any target that is detected in a non-stationary position from subsequent 

dates-was implemented to differentiate between permanent natural scatters from 

manmade ones. Ultimately, primary ground truth is desired. However, the nature of 

moving ship targets makes them difficult to ground truth and correlate within reasonable 

error. From this, a decision to accept secondary truth targets was made acknowledging 

the increased potential for error. Table 3.2 is an image summary where 97 correlated 

iceberg targets and 125 correlated ship targets make up the verified data set. 
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Figure 3.4: ENVISAT ASAR AP (HH/HV) imagery overview. 
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Figure 3.5: ENVISAT AP icebergs. 
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Figure 3.6: ENVISAT AP ships. 
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Table 3.2: Summary of ENVISAT ASAR AP (HH/HV) iceberg and ship data. 
~ 

q c' Start Start End' End' 
Date Tirue Mode Validation ; lceQe_!g Ship Latitude Longitude Latitude LongitUde 

1-Apr-03 1 :13·14 IS? PAL 0 4 45.907547 -49.100028 46.939567 -48.583405 

2-Mav-03 13:46:49 IS6 C-CORE 6 0 51071134 -54 042730 50.223376 -55.298595 

8-May-03 13:58:08 IS4 C-CORE 2 0 51 366650 -54 811087 50.577269 -56.325943 

8-May-03 13:58:16 IS4 C-CORE 2 0 50 884712 -54.962751 50.080018 -56.466316 

16-Nov-03 18:26:02 IS4 Secondary 0 22 49 570532 -122.17499 48.780146 -123.63451 

16-Nov-03 18:26•14 IS4 Secondary 0 15 48.861703 -122.39001 48.145735 -123.80701 

5-Dec-03 1.19:19 ISS Secondary 0 3 46 437085 -52.331296 47.499293 -51.740996 

5-Dec-03 1.19:34 ISS Secondary 0 I 47 329201 -52.570844 48.375883 -51.965906 

18-Dec-03 13·18.46 ISS Secondary 0 4 48 834724 -46.609741 47.979835 -47.741863 

18-Dec-03 13.19.01 ISS Secondary 0 II 47 943697 -46.856062 47.103828 -47.964728 

18-Dec-03 13•19.13 ISS Secondary 0 4 47.255664 -47.042446 46.493798 -48.116156 

21-Dec-03 18:26.05 IS4 Secondary 0 29 49 584023 -122.17964 48.778264 -123.64402 

21-Dec-03 18:26:17 IS4 Secondary 0 23 48 874429 -122.39491 48.144941 -123.81599 

15-May-04 13:35:16 ISS PAL 9 0 51 500583 -50.158152 50.662994 -51.350434 

15-May-04 13:35:31 ISS PAL 10 0 50 625709 -50.415799 49 771999 -51.589913 

15-May-04 13:35:46 ISS PAL 9 3 49 734920 -50.673249 48.896356 -51 820781 

15-May-04 13:36:02 ISS PAL 9 5 48.796554 -50.938123 47 956750 -52.065017 

21-May-04 13"46:32 IS4 liP 9 0 52 259886 -51.632852 51.472159 -53.179761 

21-May-04 13"46:47 IS4 liP II 0 51.385560 -51.919049 50.581436 -53.439410 

21-May-04 13.47•02 IS4 liP 9 I 50.511019 -52.198195 49.705459 -53 689842 

7-Jun-2005 1:34:59 IS? liP 1 0 51.960474 -55.616461 51 093834 -55 616461 

23-May-2006 1:35:09 IS? liP 1 0 53.084097 -55 921028 52 131551 -54.814687 

5-Jun-2006 1:26:36 IS6 PAL 2 0 53.115993 -54.778238 52.268869 -53.463298 

5-Jun-2006 01:26.50 IS6 PAL 5 0 54.081495 -55.063016 53 087059 -53.677643 

8-Jun-2006 1.32•20 IS6 PAL 1 0 53.038336 -56 195559 52 208472 -54.887533 

8-Jun-2006 1:32 35 IS6 PAL 11 0 54.149390 -56 524176 53 089242 -55 118618 

3.2.3 EMISAR 

Two images were acquired through a collaborative initiative investigating the capabilities 

of iceberg and ship classification using polarimetric sensors such as EMISAR, CV-580 

SAR [45], and RADARSAT-2 [46]. This work was ongoing from 2005 to 2006. Figure 

3.7 shows a map of the images acquired that contain targets that have secondary ground 

truth. Figure 3.8 and Figure 3.9 shows EMISAR iceberg and ship detections respectively. 

There was only secondary ground verification for the targets. This means that given the 

season and geographic location for these data, the targets were designated as ships in the 

Tango Denmark port and icebergs in the Greenland Sodalen Fjord. 
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Greenland 

Figure 3.7: EMISAR imagery overview. 
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Figure 3.8: EMISAR HH icebergs. 
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Figure 3.9: EMISAR HH ships. 

50 



Further to this, target change detection-any target that is detected in a non-statiOnary 

position from subsequent dates-was implemented to differentiate between permanent 

land forms and detected targets. Landsat optical data was used for change detection [47]. 

Table 3.3 is an Image summary, where 78 iceberg targets and 30 ship targets make up the 

accepted data set. 

Table 3.3: Summary of EMISAR Iceberg and ship data. 

Start ' Start End EnsJ 
Date Tune Vahdatwn Icebergs Shtps Latitude Longitude Latitude Longitude 

18Jul96 10 II 00 Secondary 78 0 57 895278 10 261331 57 631944 10691389 

21 Aug 00 12 33 00 Secondary 0 30 68 246389 31 600833 68 156944 11 292778 
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4 SAR Iceberg and Ship Target Discrimination 

It is ultimately desired to have the capability of passing unknown SAR targets to a 

classification model that makes an automated decision. For this thesis a statistical 

approach is taken where known targets belonging to iceberg and ship classes (identified 

in Chapter 3) are used to infer differentiating characteristics between classes. Of interest 

is the optimization of an n-class quadratic discriminant - maximum likelihood model with 

various feature selection methodologies. The results collected from the computational 

extremes of SFS and ES methods are compared. Though the optimal results acquired 

from the ES are of primary interest, knowing the trade-offs when comparing such sub­

optimal algorithms, such as the SFS, is also useful when considering future pattern 

recognition work. 

The methodology for algorithm development follows closely from Raudys and Jain [21] 

where target training data are extracted from available imagery. Post target identification, 

an n x m matrix training data set is formed from all known targets, where n is the total 

number of targets and m is the number of features. It is this data set that is fundamental to 

this work. From the training set, a feature subset is likely to exist that will increase 

classification performance, lighten computational complexity and increase robustness of 

the discrimination algorithm. Using the SFS, ES, ERS, and LES methods described in 

Section 2.3.2 and Section 5.4, feature spaces are evaluated by testing the training data and 

evaluating the classification accuracy. The RADRATSA-1 data set evaluated ES that was 

implemented though parallel processing as described in Section 5.5. A cross-validation 

leave-one-out methodology was used for its nominally non-biased results and maximizing 

training set potential properties. Appendix VI describes the confusion matrix notation 

which has been used to present all feature selection iceberg and ship classification results. 

For the RADARS AT -1 target data, four combinations of feature selection paired with the 

maximum likelihood model were evaluated: SFS 2-Class, ERS 2-Class, ES 2-Class, and 

SFS 4-Class. A two class model has a binary decision: iceberg or ship. The four class 
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model was investigated due to expected physical scattering differences between small 

wooden fishing boats and large metal vessels. Since the maximum likelihood model is 

dependent on Gaussian feature spaces when trying to obtain minimum error rates [20], a 

potential gain was expected from splitting the ship class based on size. 

For the ENVISA T ASAR target data, four combinations of feature selection paired with 

the maximum likelihood model were evaluated: SFS 2-Class, ERS 2-Class, LES 2-

Class, and SFS 6-Class. A two class model has a binary decision: iceberg or ship. The 

LES was used instead of ES to demonstrate LES as a viable option. Figure 4.1 shows a 

ES benchmark plot of the required computation time as a function of the number of 

features. From this, the ERS can exhaustively run a 21 feature set on the order of a day. 

The LES was evaluated for 3.5 days. 

In addition, a 6 class model is presented for the ENVISA T data. It takes into account the 

expected physical scattering differences between small wooden fishing boats, medium 

sized ships with significant structure, and large metal vessels. Since the maximum 

likelihood model is dependent on Gaussian feature spaces when trying to obtain minimum 

error rates [20], a potential gain was expected from splitting the ship class into separate 

groups based on size. 
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Figure 4.1: ENVISAT ASAR ES benchmark. 
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The EMISAR data set has only been evaluated using the SFS 2-Class feature selection 

with the maximum likelihood model. SFS allowed for rapid algorithm development 

when evaluating the various polarization (feature) and decomposition combinations. 

Using ERS, LES orES as presented here would make this work a time consuming task. 

Several permutations of polarization modes similar to RADARSAT-1, ENVISAT AP, 

and RADARSAT-2 were evaluated: Quad Polarization (HH/HV/VH/VV with phase) with 

and without Cameron decomposition metrics [7], dual channel HH/HV, dual channel 

HHIVV, dual channel VH/VV, single channel HH and single channel VV. This data set 

gives insight into the potential gains of using various polarization combinations with high 

resolution SAR. 

4. 1 RADARSA T-1 

The 43 (27 iceberg and 16 ship) detected targets of interest were used to extract features 

for training the proposed four feature selection algorithms. Features included in the data 

set are cr0 mean, cr0 variance, cr0 maximum pixel value, area, major axis, minor axis, 

circularity, compactness, contour length, convexity, maximum diameter, anisometry, 

bulkiness, structure factor, inner circle radius, product of inertia, M20 (2nd order line 

moment), M02 (2nd order column moment), main axis inertia, 2nd main axis inertia, M21 

(3rd order line moment), M12 (3rd order column moment), M03 (3rd order column 

moment), M30 (3rd order line moment), orientation, outer circular radius, outer rectangle 

length radius, outer rectangle width radius and HH signal to clutter. 

4.1.1 SFS 2-Ciass 

The SFS 2-Class algorithm coupled with the maximum likelihood discriminate model 

was found to have a leave-one-out accuracy of 81.4%, since 35 of the 43 targets were 

correctly identified (Table 4.1). The feature set identified producing these results was the 

six feature space: cr0 mean, cr0 variance, circularity, structure factor, orientation and HH 

signal-to-clutter. 
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4.1.2 ES 2-Ciass 

The ES 2-Class algorithm coupled with the maximum likelihood discriminate model was 

found to have a leave-one-out accuracy of 90.7% (Table 4.1). The feature set identified 

producing these results was the eight feature space: cr0 mean, cr0 maximum, minor axis, 

M30, orientation, outer circular radius, outer rectangle length radius and outer rectangle 

width radius. 

4.1.3 ERS 2-Ciass 

The ERS 2-Class algorithm coupled with the maximum likelihood discriminate model 

was found to have a leave-one-out accuracy of 90.7% (Table 4.1). The feature set being 

the same one identified in the ES 2-Class was the eight space: cr0 mean, cr0 maximum, 

minor axis, M30, orientation, outer circular radius, outer rectangle length radius and outer 

rectangle width radius. 

4.1.4 SFS 4-Ciass 

The SFS 4-Class algorithm coupled with the maximum likelihood discriminate model 

was found to have a leave-one-out accuracy of 86.0% (Table 4.1). Here a decision tree 

approach was taken where target size was used to navigate the tree. This size criterion 

was empirically optimized for a two branch tree. As seen in Figure 4.2, the first branch of 

the decision tree criteria is set for large targets (greater than or equal to 35 pixels), and 

small targets (less than 35 pixels). For small targets the selected feature space consisted 

of: minor axis, M20 and outer rectangle length radius. For the larger targets, cr0 variance, 

major axis, convexity and anisomery were the feature space selected. 

4.2 Discussion of RADARSAT-1 Results 

The maximum accuracies obtained for the methods investigated ranged from 81 to 91%. 

The ES and ERS (working on a ranked 24 feature subset) converged to the same feature 

set finding the highest performance combination of 91%. The SFS 4-Class focuses on 

optimization within classes, and fell short of the ES 2-Class methods. It is speculated that 
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Figure 4.2: RADARS AT -1 SFS - 4 class decision tree structure. 

this is due to an insufficient training data population ( 43 targets) being further reduced to 

represent four classes as opposed to two. 

As seen in Figure 4.3, the SFS had a reasonable performance gam with a feature 

reduction from 28 to 6, however the ES and ERS provide a more significant 

improvement. Further to this, ERS found the same feature subset as ES, thus finding the 

optimal feature combination on the order of a day on a single desktop computer. It is 

important to note that due to the limited number of samples in the ship class, the 

covariance matrix singularity limited the search space for all methods employed. Also 

from Figure 4.3 the ES shows the classification performance increase as a function of 

increasing dimensionality. 

Notably, the ES was benchmarked for this data set to be on the order of several months of 

computation time using a 3 GHz Intel Pentium 4 processor with 1 Gigabyte of RAM. 

The ES was accomplished though parallel processing (see Section 5.5) on 14 desktop 

computers (similar to the aforementioned performance specification) in order to make the 

results available in days rather than months. The development of this parallel processing 

code was solely developed for this thesis by the author. In contrast to this significant 

computational effort, the ERS with only four of the original features removed was 

completed over a weekend (72 hours) on one desktop computer. The SFS algorithm in 

both 2 and 4 class instances was evaluated on the order of minutes. Section 5.4 presents 
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the specific benchmarked time results for the ES, ERS, and SFS feature selection methods 

employed. 

Based on these results, for RADARS AT -1 wide mode iceberg and ship classification, the 

2-class maximum likelihood model with feature space cr0 mean, cr0 maximum, major axis, 

M30, orientation, outer circular radius, outer rectangle length radius, and outer rectangle 

width radius is recommended. 

Table 4.1: Summary of RADARS AT -1 iceberg and ship classification accuracy. 
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Figure 4.3: RADARSAT-1 feature selection comparison. 

4.3 ENVISA TAP HHIHV 

The 222 (97 iceberg and 125 ship) detected targets of interest were used to extract 

features for training the proposed four feature selection algorithms. Features included in 

the data set are HH signal-to-clutter ratio, HV signal-to-clutter ratio, HH mean cr0
, HH 

variance cr0
, HH maximum cr0

, area, major axis, minor axis, circularity, compactness, 

contour length, convexity, maximum diameter, anisometry, bulkiness, structure factor, 

inner circle radius, product of inertia, M20 (2nd order line moment), M02 (2nd order 

column moment), main axis inertia, 2nd main axis inertia, M21 (3rd order line moment), 

M12 (3rd order column moment), M03 (3rd order column moment), M30 (3rd order line 

moment), outer circular radius, outer rectangle length radius and outer rectangle width 

radius. Here the signal-to-clutter ratios are the target maximum cr0 pixel value ratio with 

the mean cr0 background clutter value. If a target was not detected in the HV channel, the 

maximum target cr0 HV pixel value was extracted using the corresponding HH detection 

mask. 
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4.3.1 SFS 2- Class 

The SFS 2-Class algorithm coupled with the maximum likelihood discriminate model 

was found to have a leave-one-out accuracy of 91.4%, since 203 of the 222 targets were 

correctly identified (Table 4.2). The feature set identified producing these results was the 

seven space: HV signal-to-clutter ratio, HH mean <J
0

, HH variance <J
0

, area, circularity, 

convexity and structure factor. 

4.3.2 ERS 2-Ciass 

The ERS 2-Class algorithm coupled with the maximum likelihood discriminate model 

was found to have a leave-one-out accuracy of 91.9% (Table 4.2). The feature set 

identified producing these results was the five space: HV signal-to-clutter ratio, HH 

variance cr0
, area, structure factor and inner circle radius. 

4.3.3 LES 2-Ciass 

The LES 2-Class algorithm coupled with the maximum likelihood discriminate model 

was found to have a leave-one-out accuracy of 91.9% (Table 4.2). The feature set 

identified producing these results was the five space: HV signal-to-clutter ratio, HH 

variance <J
0

, area, structure factor and inner circle radius. 

4.3.4 SFS 6-Ciass 

The SFS 6-Class algorithm coupled with the maximum likelihood discriminate model 

was found to have a leave-one-out accuracy of 94.1% (Table 4.2). Here a decision tree 

approach was taken where target size and detection confidence (an IDS specific metric) 

were used to navigate the tree. The combination of size criterion and detection 

confidence was empirically optimized for a three branch. As seen in Figure 4.4, the first 

branch of the decision tree criteria is set for large targets (greater than or equal to 70 

pixels), next is less than 70 pixels with a high detection confidence (HDC), and finally the 
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Figure 4.4: SFS ENVISAT AP 6-Class decision tree structure. 

remaining medium and low detection confidence (MDC and LDC) targets. The IDS 

detection confidence metric is a measure of target strength based on a combination of 

intensity and area. Here each branch of the decision tree had unique feature spaces 

identified. For MDC and LDC targets the feature space was anisometry. For HDC 

targets less that 70 pixels the feature space was HH signal-to-clutter ratio, HV signal-to­

clutter ratios, and circularity. For targets greater than or equal to 70 pixels the feature 

space was the HV signal-to-clutter ratio and HH 0"
0 variance. 

4.4 Discussion of EN VISA TAP HHIHV Results 

The maximum accuracies obtained for the methods investigated ranged from 91.4 to 

94.1 %. The SFS 6-Class found the highest performance combination. The LES and RES 

converged to the same feature set and thus the same classification accuracy. The SFS 2-

Class accuracy results were nominally less than LES and RES (one ship target in 222). 

Of interest, a user-based six class knowledge system was shown to outperform the two 

class models. This was achieved though the six class model using the computationally 

lighter SFS feature selection algorithm compared to the two class systems which 

incorporated the ES variants. Common features selected by the methods tested were HV 

signal-to-clutter ratio, HH variance 0"
0

, area, circularity OR inner circle radius and 

structure factor. 
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As a matter of interest relative to SAR iceberg backscatter, the HH variance cr0 was 

shown to significantly improve classification performance and was routinely selected by 

feature selection methods tested. This is in agreement with early C-CORE works [3] 

where large vessels were observed to have a higher variance compared to icebergs 

detected in RADARS AT -1 Fine mode data. As well, HV signal-to-clutter ratio was 

shown to significantly add to the classification performance. This is in agreement with 

early works by the author [19] on a limited large vessel and iceberg training data set. 

Interestingly enough, the SFS algorithm working on 29 features selected these two 

dominant features. From Figure 4.5 the large (greater than 70 pixels at 12.5 meter pixel 

spacing) ship and iceberg category was observed to have a no error classification 

boundary based on the limited 26 iceberg and 56 ship samples available. 
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The SFS, ERS and LES methods all performed extremely similarly. As mentioned 

previously, there was only one misclassified ship target separating the SFS from the ERS 

and LES obtained results. From Figure 4.6, the ERS does successfully find the globally 

optimal results for the first six feature spaces benchmarked by LES. These results are 

encouraging for the robustness of these three feature selection methods, as they converge 

to common features and accuracies even though they vary significantly in methodology. 

The ES was benchmarked for this data set to be on the order of a year using a 3 GHz Intel 

Pentium 4 processor with 1 Gigabyte of RAM. The ES was not evaluated partly due to 

the ERS success in the RADARSAT-1 data case, the extensive computational effort 

required even on a distributed computer system, overhead with manually 

distributing/harvesting data to the computer cluster, and the fact that the LES will give the 
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Figure 4.6: ENVISAT ASAR feature selection comparison. 
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optimal feature set up to the space evaluated. The ERS with eight of the original features 

removed was completed in little over a day and the LES over a weekend (72 hours) on 

one desktop computer. The SFS algorithm in both 2 and 6 class instances was evaluated 

on the order of minutes. Section 5.4 presents the specific benchmarked time results for 

the LES, ERS and SFS feature selection methods employed. 

Table 4.2: Summary of ENVISAT ASAR iceberg and ship classification accuracy. 
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Based on these results, for ENVISAT AP HH/HV iceberg and ship classification, the 6-

class (see Figure 4.4) maximum likelihood model is suggested. For small-low intensity 

targets (MLDC) the maximum likelihood model using the one feature space, anisometry 

is recommended. For medium size targets (HDC less than 70 pixels) the maximum 

likelihood model using the three feature space: HH signal-to-clutter ratio, HV signal-to­

clutter ratios and circularity is recommended. For large sized targets (HDC greater than 

or equal to 70 pixels) the maximum likelihood model using the two feature space HV 

signal-to- clutter ratio and HH cr0 variance is recommended. 

4.5 EMISAR 

The 108 (78 icebergs and 30 ships) detected EMISAR targets were used to extract 

features for training the SFS maximum likelihood models. Of interest to this work is the 

classification performance relative to the levels of polarization. Recall that EMISAR is a 

quad polarization sensor, thus single and dual polarization combinations are inherently 

contained. When quad polarization data is collected, there is potential for improved 

target detection and classification accuracy by using polarimetric SAR decomposition 

methods [48, 49]. Features included in the data set are intensity, shape and 

decomposition based: cr0 mean (HH, VV, HV), cr0 variance (HH, VV, HV), cr0 maximum 

pixel value (HH,VV,HV), area, major axis, minor axis, eccentricity, orientation, 

equivalent diameter and Cameron metrics [7]. The Cameron Decomposition produces a 

pixel-based classification for the scatter classes: dihedral, narrow diplane, diplane, 

cylinder, trihedral and quarter wave. To integrate this pixel-based method into a target 

classification regime, two groups of target-based metrics were formed. The first metric 

group takes the ratio of trihedral, dihedral, dipole, narrow diplane, cylinder, and quarter 

wave to the total number of targets pixels. The second metric group was designed to 

capture the distribution or clustering effect of dominant class types. Here the mean of the 

neighboring (8-connected) like class pixels are calculated for targets: mean neighboring 

trihedral, mean neighboring dihedral, mean neighboring dipole, mean neighboring narrow 

diplane, mean neighboring cylinder and mean neighboring quarter wave. 
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4.5.1 Quad Polarization with Cameron 

The SFS 2-Class algorithm coupled with the maximum likelihood discriminate model 

was found to have a leave-one-out accuracy of 99%, since 105 of the 106 targets were 

correctly identified (Table 4.3). The feature set identified using the SFS method was the 

two feature space: eccentricity and quarter wave. The quarter wave and eccentricity plot 

(see Figure 4.7) for the iceberg and ship targets presented here is almost ideal. Quarter 

wave is one of six symmetric scatter types defined by the Cameron decomposition. 

Figure 4.7 demonstrates the class separation based on the relatively low ship quarter wave 

measures compared to that of icebergs. Eccentricity is a shape measure that describes a 

targets difference of ellipse foci to the major axis. Thus it is a measure that reflects the 

extremes of circularity to linearity. From Figure 4.7 it is apparent that iceberg 

eccentricity has a wider range than that of ship eccentricity, this has been attributed to the 

random size and shape of icebergs as opposed to the well defined structure of man-made 

ship targets. 

4.5.2 Quad Polarization 

The SFS 2-Class algorithm coupled with the maximum likelihood discriminate model 

was found to have a leave-one-out accuracy of 97% (Table 4.3). The feature set 

producing these results was: area, orientation, equivalent diameter, HV 0'
0 mean and HV 

cr0 variance. It is important to note that this combination of features is not unique to quad 

polarization and both the dual cross polarization combinations that contain the HV 

channel (HH/HV and VHIVV) produce the same results. 

4.5.3 Dual Polarization HH/HV 

The SFS 2-Class algorithm coupled with the maximum likelihood discriminate model 

was found to have a leave-one-out accuracy of 97% (Table 4.3). Refer to Section 4.5.2. 
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Figure 4.7: EMISAR quad polarization iceberg and ship classification. 

4.5.4 Dual Polarization HHNV 

The SFS 2-Class algorithm coupled with the maximum likelihood discriminate model 

was found to have a leave-one-out accuracy of 96% (Table 4.3). The feature set 

producing these results was: area, eccentricity, orientation, equivalent diameter, HH 

(J
0 mean, VV cr0 mean and VV cr0 variance. 

4.5.5 Dual Polarization VHNV 

The SFS 2-Class algorithm coupled with the maximum likelihood discriminate model 

was found to have a leave-one-out accuracy of 97% (Table 4.3). Refer to Section 4.5.2. 
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4.5.6 Single Polarization HH 

The SFS 2-Class algorithm coupled with the maximum likelihood discriminate model 

was found to have a leave-one-out accuracy of 94% (Table 4.3). The feature set 

producing these results was: area, eccentricity, orientation and equivalent diameter. 

4.5.7 Single Polarization VV 

The SFS 2-Class algorithm coupled with the maximum likelihood discriminate model 

was found to have a leave-one-out accuracy of 95% (Table 4.3). The feature set 

producing these results was: area, eccentricity, orientation, equivalent diameter, VV 

(J
0 mean and VV cr0 variance. 

4.5.8 Single Polarization HH (without shape) 

The SFS 2-Class algorithm coupled with the maximum likelihood discriminate model 

was found to have a leave-one-out accuracy of 79% (Table 4.3). The feature set 

producing these results was HH cr0 mean, HH cr0 variance and HH (J
0 maximum. This 

combination was included to demonstrate the significant effect that removing shape 

metrics has on the classification of these targets. 

4.6 Discussion of EM/5AR Results 

The maximum accuracies obtained for the methods investigated ranged from 79% to 

99%. The SFS 2-Class was exclusively used for feature selection to allow rapid 

algorithm development and polarization comparison. Generally, quad polarization (with 

target decomposition metrics) outperformed dual polarization, and dual polarization 

outperformed single polarization for iceberg and ship classification. 

As seen in Figure 4.7, the Cameron Decomposition feature quarter wave and the shape 

measure eccentricity feature space is almost non-error. These results are very promising 

as the soon-to-be-launched RADARSAT-2 will produce high resolution, quad 

polarization data similar to that of EMISAR data. From this, we expect that 
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RADARSAT-2 quad polarization modes will have an improved probability of 

classification for all size targets over dual polarization modes. 

When offering an operational surveillance program, resolution, NESZ and polarization 

are often traded for improved swath coverage. The quad polarization results (without 

Cameron) were observed to produce a high classification accuracy of 97%. This is of 

significant importance because the feature set selected was composed of CF AR detected 

shape metrics and exclusively cross polarization (HV) intensity metrics. This implies that 

any dual cross polarization (HH/HV OR VH/VV) combination should have almost the 

classification accuracy of quad polarization. HV was not evaluated as a single 

polarization mode by itself as it has not been traditionally offered in that way. Another 

point of consideration is that spacebome SAR will have limiting factors over airborne 

SAR with respect to NESZ. It is speculated that the cross-polarized (HV) channel with a 

low NESZ (like that of the airborne EMISAR sensor) would produce superior 

classification potential to that of co-polarized channels (HH or VV). Thus, a single cross 

polarization (HV) mode-with low NESZ, high resolution, and large swath coverage­

would be a desirable mode of choice for future iceberg and ship classification research 

and development. 

Dual polarization results were always better than single polarization. Dual polarization 

combinations were observed to have a range of classification accuracy ranging from 96 to 

97%, with both dual cross polarization combinations (HHJHV OR VH/VV) nominally 

outperforming the dual co-polarization. Common features selected by the SFS for all 

dual polarization combinations were area, orientation, equivalent diameter, CJ
0 mean and 

0 . cr vanance. 

Single polarization (HH or VV) results have a range of classification accuracy from 94 to 

95%, with VV nominally outperforming HH. As a special case, HH without shape 

features was also run and produced 79% accuracy. 
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Notable were the generally high classification rates observed, compared to single and 

dual polarization RADARSAT-1 and ENVISAT AP results in Sections 4.1 and 4.3. This 

has been attributed to the higher resolution and significantly lower noise floor of the 

EMISAR sensor. 

The SFS algorithm was successful in evaluating combinations of polarization in this data 

set. Due to the inexpensive computation and the confidence built with using the SFS 

algorithm on the RADARSAT-1 and ENVISAT data sets, all polarization combinations 

were compiled, collected and evaluated in relatively short order. 

Based on these results of quad polarization SAR, the Cameron decomposition quarter 

wave and eccentricity feature space is a near-optimal way to discriminate iceberg and 

ship targets. Dual and single polarization (HH/HV, HH/VV, VH/VV, HH, VV) 

combinations are relatively similar in performance with shape-based area, eccentricity, 

orientation, equivalent diameter, and intensity-based cr0 metrics being repeatedly selected. 
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Table 4.3: Summary of EMISAR iceberg and ship classification accuracy. 
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5 Computational Considerations 

The development and implementation of some of the key scientific programmmg 

components of this work are presented here. These issues were found to be important to 

this work. Notable is a demonstration for the need for the leave-one-out cross validation 

when using small sample size data, benchmarking the ES, the development of the ES 

variants ERS and LES, parallelization of ES and the implementation of a non-intrusive 

parallel ES. 

5. 1 The Necessity for Cross Validation 

As presented in Section 2.3.3, Raudys and Jain [21] summarized the main methods for 

performance estimation. Three of these are re-substitution, hold-out and cross-validation. 

And as previously discussed, it was concluded that the cross-validation method is a 

reasonable compromise given a small number of training samples and a relatively 

inexpensive DF (such as the maximum-likelihood used here). The following examples 

demonstrate the shortfalls encountered when using re-substitution and hold-out rather 

than cross-validation. 

Early in the initial stages of this work the re-substitution method was employed. Here, 

the SFS algorithm was used for feature selection and the maximum-likelihood was used 

as a discrminant function. Preliminary results for the limited RADARS AT -1 wide data 

were encouraging as the confusion matrix indicated a near perfect accuracy. Figure 5.1 

shows the accuracy assessment results for SFS using both re-substitution and leave-one­

out. Post implementation of this version of DF in software, it became apparent that the 

projected re-substitution accuracy was not being met with the new ground verified 

targets. It was known at the time that re-substitution was biased. However, the bias was 

not expected to be as significant as what was observed. This led to the investigation of 

other methods such as hold-out and cross-validation. 

The hold-out method can also be problematic. This is especially true for small sample 

size cases since every target is important in establishing the multivariate distributions for 
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Figure 5.1: RADATSAT-1 accuracy for leave-one-out andre-substitution. 

its associated class. Table 5.1 shows the leave-one-out, re-substitution and hold-out 

performance presented in the form of confusion matrices. The hold-out performance was 

evaluated based on a random split of the available data for the optimal feature space 

identified using ES methodology. 

This significant difference in performance from 90% using the ES leave-one-out to 54% 

using hold-out is a dramatic demonstration for the need for sample utilization in small 

sample size problems. Based on these results, when using a maximum-likelihood and a 

small number of training samples, the cross-validation which minimizes training bias and 

maximizes sample utilization is recommended. The only notable drawback is the 

increased cost of using the leave-one-out in the retraining of the DF when evaluating each 

target. This issue is addressed in the next section. 
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Table 5.1: RADARSAT-1 validation methodologies. 
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5.2 Maximum Likelihood Mean and Covariance Calculation 

When evaluating the DF using leave-one-out, the mean vector, covariance matrix, 

determinant and inverse of the covariance matrix have to exist for each feature subset 

being evaluated. This is true for all feature selection methods. During development and 

optimization of the exhaustive search code it was noticed that a significant portion of the 

exhaustive search work occurred when calculating the mean and covariance for each 

class. Of specific importance is that the mean and covariance can be calculated up front 

before any evaluation occurs, producing a mean vector of length nand covariance matrix 

of size n x n. All evaluations of subsets of features (feature subspaces) can be extracted 

from the master mean vector and covariance matrix. This can also be extended to a 

leave-one-out methodology where the mean vector and covariance matrix for each of the 

m targets being evaluated is estimated prior to search evaluation. The implementation 

used here has m + k mean and covariance matrices calculated up front. This takes 

negligible memory and computational effort for small sample size problems. The k extra 

instances are considered for the mean and covariance calculations necessary for each 

class using all the class samples. For example, consider the case when an iceberg p is 
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being left out and the remaining icebergs and all ships are being used to train: the 

covariance -p_ice, mean -p_ice, covariance ship, mean ship are used to build the DF and 

evaluate the feature space. 

Unfortunately, there is no known way at this time to pre-calculate the determinant or 

inverse for any feature subset combination for the covariance metrics. Thus these need to 

be calculated during the training phase. 

5.3 Benchmarking Exhaustive Search 
Unlike the SFS or other suboptimal feature selection algorithms, evaluating the ES can be 

a significant undertaking. From preliminary trials, it became apparent that it is useful to 

estimate in advance the computing time an ES would take on a particular data set. This is 

especially true when considering code parallelization and deciding upon the number of 

computer processors required for reasonable turnaround times. Here, a simple yet 

accurate method for doing a benchmark is derived. 

Since the implementation of ES is breadth-first, the benchmark also works on the breadth­

first premise. Consider that for each feature space their are n-choose-k permutations. For 

each permutation of a feature space, the cost of computing the mean vector, covariance, 

inverse covariance, determinant covariance and discriminant function (DF) evaluation are 

nominally equal. Thus, the benchmark proposed is based on a fixed number of 

permutations multiplied by the actual time sampled to build and evaluate each feature 

space. It is important to note that as the feature space increases the computation time 

required to train and evaluate will also increase due to the higher dimensionality. 

Formally, the benchmark takes the form of 

(2.19) 

where n is the total number of features, k is the feature space being evaluated, andfk is the 

benchmarked time required to evaluate one classifier in sample space k [50]. 
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5.4 Variants of Exhaustive Search 

Early work in feature selection focused on SFS andES. It became obvious early on that 

SFS had limitations when optimizing a DF and that a more extensive search space such as 

ES would likely lead to increased classification performance. However, implementing 

the ES has extensive computational cost. Even for the small sample size problems 

presented in this work, ES would be on the order of years to complete on a single 

processor CPU. 

Table 5.2 presents a benchmark for the ES on the Envisat AP data set, using an Intel 

Pentium 4, 2.6 Giga Hertz processor, 3 Giga Bytes of RAM, demonstrating the 

exponential cost as a function of increasing number of features. This data is in agreement 

with the theory and benchmarks presented in Section 2.3.2.2. and Section 5.3 

From benchmark times such as presented in Table 5.2, it became apparent that feature 

subsets could be exhaustively evaluated with acceptable tum around times. This lead to 

the notion that the ES could be scaled down, where for each feature omission there would 

be was a corresponding exponential decrease in computational requirement. Thus, based 

on the constraints of a benchmark and a predetermined acceptable run time, a desired 

feature subset of size k could be exhaustively evaluated. The feature subset could be 

selected in a random, ad hoc, or ranked process. Here a ranked approach is explored, 

where features are ranked in decreasing order based on the SFS ranking. The SFS was 

selected as a ranking methodology as it naturally produces a feature vector which has a 

minimum loss I maximum gain ranking based on decreasing order of importance relative 

to the SFS algorithm. 

Thus, then- k features removed from the available feature set produces an ES that can be 

completed in desired time. This search is no longer guaranteed to be globally optimal like 

the true ES, since the potential exists for the global solution to contain features that were 

removed in the ranking process. The algorithm for ERS-( n - k ) is presented in 

Appendix III. 
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Table 5.2: ES benchmark for ENVISA T AP data. 

# of Features ~ Days 

1 0.000001 

2 0.000002 

3 0.000004 

4 0.000008 

5 0.000017 

6 0.000036 

7 0.000073 

8 0.000146 

9 0.000298 

10 0.000600 

11 0.001210 

12 0.002449 

13 0.005027 

14 0.010025 

15 0.020312 

16 0.040940 

17 0.082639 

18 0.167506 

19 0.338998 

20 0.682285 

21 1.390965 

22 2.824745 

23 5.743248 

24 11.708289 

25 23.612310 

26 47.941402 

27 96.759610 

28 194.275616 

29 394.708097 

A second variant of ES was also implemented. It is based on the notion that a limited 

portion, or first m feature spaces (1 tom space) is relatively computationally inexpensive 

to evaluate considering the breath-first approach. This method supports the small sample 

set problem of under-sampling and the curse of dimensionality that occurs in higher order 

feature spaces. Thus, the first m spaces can be exhaustively evaluated in desired time (on 

the order of a day). This search is no longer guaranteed to be globally optimal like the 

true ES. However, the results are globally optimal for the first m feature spaces 

evaluated. The algorithm for limited exhaustive search, LES-m is presented in Appendix 

IV. 
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Both ERS and LES variants of ES are systematic and evaluate significantly more feature 

space when compared to the SFS method. Based on this, they are presented as viable 

options when considering the feature selection problem and when a more robust method 

is required. 

5.5 Non-Intrusive Parallel Exhaustive Search 

The pre-conceived notion that the ES can take months or even years to complete for even 

small training data sets is often why it is quickly discredited as a reasonable approach to 

feature selection. However, due to the independence of each feature evaluation, 

parallelization of the ES is relatively easy to achieve. A small data set, such as the 

RADAR SAT -1 43 samples and 29 features, can take half a year to complete on a single 

processor (benchmarked on an Intel Pentium 4, 2.6 GigaHertz processor, 3 GigaBytes of 

RAM). If the time to completion is -r on a single computer, it will be -rln if n such 

computers are used. Thus, the time is reduced by a factor of n. 

Due to the independence of evaluation, message passing and input/output can be 

essentially independent from each block of search space being evaluated by each 

processor. For simplicity, each processor can also own its own copy of the data set which 

the feature selection is being evaluated, and as well, its own results file that records 

performance gains and their feature permutations. Post completion of the n processors 

work, a master data collection process where each computer's results are merged and 

used to create a master output from which the optimal solution can be extracted. 

As a consequence of today's business environment, it is common for a work place to have 

desktop computers that have relatively modem computing power. This is often coupled 

with a relatively low continuous usage of this processing power. Unfortunately, these 

resources are not free to utilize all the time as people need their desktop to work. Thus, it 

is desirable to find a way to utilize this resource in a non-intrusive way to the computer 

owner and maximize processing utility. This led to the author's development of the Non­

Intrusive Parallel Exhaustive Search (NIES) software for this thesis. The idea is not new, 
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as it already has a well known implementation through a web-based search for extra­

terrestrial intelligence (SETI) screen saver [51]. 

The implementation developed here is simplified compared to a web-based parallel 

processor. Each processor has its own screen saver and block of search space to evaluate 

which is managed though a configuration file. When a computer is idle, the screen saver 

runs and spawns the ES executable. When the screen saver is interrupted by the user 

regaining control of their computer, the configuration file is updated, the ES closes, and 

finally the screen saver closes. The ES program close is accomplished in code by 

continuously checking the configuration file for screen saver activity status. When ES 

shuts down, it stores necessary information, such as current iteration number, feature 

space evaluated and improved performance feature space. 

NIES was chosen for two reasons. First, the computer resources were freely available at 

the author's workplace. Second, the foundation code executable (single processor ES) 

was easily spawned from screen saver code and expanded to parallel on the data level. 

Appendix V presents the pseudo code algorithm for parallel ES (PES). 

Results from the PES are encouraging and were definitely worthwhile for completion of 

this research. The time reduction when using PES was linear based on the number of 

processors, as the benchmark and actual computation times were in agreement. Most 

beneficial as a pattern recognition practitioner was the comparison of the ES results with 

that of other much computationally lighter search methods such as LES, ERS and SFS. 

That is, ES allows the scientist to compare the actual optimal solution combination with 

that of the optimized solution found with suboptimal methods. 

The screen saver implemented here (screen capture shown in Figure 5.2) actually 

consisted of a set of 107 randomly selected photographs of icebergs that were collected 

for the ground truth targets in this study. An animated C-CORE logo (2006) starts in a 

random position on the screen and "bounces" around the screen in a linear fashion until 
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the user shuts down the screen saver with the click of a mouse button. The screen saver 

start-up was managed by the Windows 2000 NT and XP operating systems task 

scheduler. Originally it was planned to load NIES as a screen saver in the Windows 

environment. However, a screen saver in this environment is "owned" by the operating 

system. Thus, writing permissions to the user's hard disk space are restricted. This 

restriction is not acceptable since the search results and indexing place are required to be 

updated in the configuration text files. A work-around was implemented using the 

Windows Task Scheduler. The Task Scheduler supports user-tasked software execution 

when a computer is idle. Thus, writing permissions to the local hard disk were implicit. 

Figure 5.2: Non-intrusive parallel exhaustive search (NIES) screen saver 
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6 Conclusion 

This thesis work has demonstrated successfully that iceberg and ship discrimination in 

synthetic aperture radar data is possible. A constant false alarm rate, which is an adaptive 

threshold method, was used for target detection following the most current accepted 

CFAR approach. Post target detection, a Bayesian-based maximum likelihood quadratic 

discriminant approach was adopted for target discrimination. Here, known iceberg and 

ship samples were used to build the quadratic discriminant functions and were found to 

produce at least 90% classification accuracy for said targets for the three different 

sensors: RADARSAT-1, ENVISAT ASAR HHIHV, and EMISAR. These results are 

essentially unbiased as they were calculated using the cross validation leave-one-out 

methodology. 

Feature selection using the sequential forward selection and exhaustive search variants 

were found to be successful to optimize feature subspaces when using quadratic 

discriminant functions. Notably, the sequential forward selection repeatedly produced a 

"good" feature subset that was obtained in minutes of processing time. Exhaustive search 

was implemented to find the optimal feature combination, but at a cost where 

parallelization was necessary to have a run time of two weeks. Non-intrusive parallel 

exhaustive search software was implemented and demonstrated to be an effective way to 

achieve optimal feature space evaluation. Variants of the exhaustive search were also 

developed, the limited exhaustive search and exhaustive ranked search. These were 

found to produce superior feature selection results compared to sequential forward 

selection. The only parameter to consider for either of the limited exhaustive search and 

exhaustive ranked search is the scalable run time based on the user requirements. 

RADARS AT -1 iceberg and ship, two class, discrimination was evaluated with three 

different feature selection methods, sequential forward selection, exhaustive search and 

exhaustive ranked search. In addition, a four class hierarchy was also developed and 

evaluated using sequential forward selection. The discrimination results for these four 
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methods ranged from 81% to 91% accuracy. The optimized feature combination was 

found commonly by the exhaustive search and exhaustive ranked search feature selection 

methodology. The two class maximum likelihood model using the five feature space: HV 

signal-to-clutter ratio, HH variance cr0
, area, structure factor and inner circle radius 

produced the 91% discrimination accuracy. 

ENVISAT HHIHV dual polarization iceberg and ship, two class, discrimination was 

evaluated with three different feature selection methods, sequential forward selection, 

exhaustive ranked search and limited exhaustive search. In addition, a six class hierarchy 

was also developed and evaluated using sequential forward selection. The discrimination 

results for these four methods ranged from 91.4% to 94.1% accuracy. The optimized 

feature combination was found with the six class hierarchy methodology. The six class 

maximum likelihood model was based on a three branch decision, which separated targets 

based on size and target detection confidence. For small-low intensity (MLDC) targets 

the maximum likelihood model using the one feature space, anisometry was selected. For 

medium size targets ( < 70 pixels) the maximum likelihood model using the three feature 

space: HH signal-to-clutter ratio, HV signal-to-clutter ratios and circularity was selected. 

For large sized targets (2:: 70 pixels) the maximum likelihood model using the two feature 

space HV signal-to- clutter ratio and HH cr0 variance was selected. 

Target size was observed to be an important indirect measure for classification 

confidence. For example, the ENVISA T iceberg and ship targets greater than 70 pixels 

were observed to have an error free classification accuracy, while targets less than 70 

pixels were expected to be falsely classified 10% of the time. This strongly supports the 

volume and surface scattering mechanisms for iceberg compared with dominant surface 

scattering of large metal vessels. Since the scattering mechanisms for these targets are so 

different, it is expected that the discrimination potential would exist. However, small 

wooden fishing boats and moderate to small icebergs can produce similar scattering 

behavior, thus targets with too few pixels, relatively similar radar intensities, and 

relatively similar shape will always be problematic to discriminate. 
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It is hard to directly compare the RADARSAT -1 single polarization results to the 

ENVISAT dual polarization results as they were trained on different samples of icebergs 

and ships, collected in differing geographical regions, during different years, with 

different sample frequencies. That said, RADARS AT -1 HH and ENVISAT AP HH/HV 

produced 90 and 94% accuracies respectively. Thus, the data suggests that a dual 

polarization HH/HV produces an improved classification over HH alone. This trend is 

also reflected in the EMISAR data set. 

EMISAR iceberg and ship discrimination was evaluated for eight polarization 

combinations, Quad Pol with Cameron Decomposition, Quad Pol, Dual Pol HH/HV, Dual 

Pol VV/VH, Dual Pol HH/VV, Single Pol HH, Single Pol VV, and Single Pol HH 

without shape features. The methodology chosen for rapid algorithm development and 

evaluation of the aforementioned polarization combinations was sequential forward 

selection two class maximum likelihood models. The discrimination results for these four 

methods ranged from 79% to 99% accuracy. Generally, quad polarization (with 

decomposition) outperformed dual polarization, and dual polarization outperformed 

single polarization for iceberg and ship classification. 

The EMISAR Quad Polarization with Cameron Decomposition feature space 

optimization selected quarter wave and (the target shape measure) eccentricity. This 

feature space was found to be almost non-error with 105 of 106 targets correctly 

discriminated. These results are very promising as the soon-to-be-launched 

RADARSAT-2 will produce high resolution, quad polarization data similar to that of 

EMISAR data. From this, we expect that RADARSAT -2 quad polarization modes will 

have an improved probability of classification for iceberg and ship targets over dual 

polarization modes. 

The EMISAR Dual Polarization results were always better than single polarization. Dual 

polarization combinations were observed to have a range of classification accuracy 

ranging from 96 to 97%, with both dual cross polarization combinations (HH/HV OR 
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VH/VV) nominally outperforming the dual co-polarization. Common features selected 

by the SFS for all dual polarization combinations were area, orientation, equivalent 

diameter, (J
0 mean and (J

0 variance. 

The EMISAR single polarization (HH or VV) results range in classification accuracy 

from 94 to 95%, with VV nominally outperforming HH. As a special case, HH without 

shape features was also run and produced 79% accuracy. 

6. 1 Future Work 

As a continuation to this thesis work, there are several areas that are of interest for future 

research. These are relevant to iceberg and ship discrimination with SAR data and the 

general topic of pattern recognition. Specifically: 

• P( m"e) and P( m,h,p) were not estimated in this study. It is believed that these 

prior probabilities for the iceberg and ship classes would improve the 

discrimination accuracy of the models presented in this work. However, 

producing a good "general" estimate for the prior probabilities is expected to be 

an onerous task. The factors when modeling these prior probabilities is expected 

to be dominated by geographic location and season. This is based on the 

expectation for vessel targets to exist geographically near ports, shipping lanes 

and fishing grounds. As well, the occurrence of icebergs is known to be 

dependent on seasonal glacial calving rates, prevailing wind conditions, prevailing 

oceanic currents, sea surface temperatures and bathymetry. 

• Current and future spaceborne SAR can be simulated from high resolution, low 

NESZ, multi polarization airborne SAR data. Such sources for airborne SAR 

would be from EMISAR as presented in this thesis or the Environment Canada 

Convair-580 SAR. This work would validate the expected decrease in 

discrimination potential as a function of resolution, NESZ and polarization. This 

methodology would remove potential sample bias when trying to compare results 

collected with different sensors. 
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• A feature selection software package for pattern recognition can be developed. Of 

interest would be to support benchmarking and running the sequential forward 

selection, genetic algorithm, exhaustive ranked search, limited exhaustive search, 

and exhaustive search feature selection applications. It would also be desired to 

support parallel processing of these algorithms based on modem multi core 

desktop architectures. 

• An n-class algorithm that specifically models icebergs, ships, sea ice, land, and 

ocean SAR targets can be developed. This would be first investigated by a n-class 

maximum likelihood approach. 

• Other discrimination methodologies should be evaluated such as linear 

discriminant, nearest neighbor, neural networks and support vector machines for 

iceberg and ship discrimination. Further to this, compare the above evaluations 

with the maximum likelihood-quadratic discriminant results found in this thesis. 

• An investigation into HV target detection can be evaluated. Iceberg and ship 

detection has traditionally focused on shallow incidence angles in HH and VV 

based on maximizing the target signature-to-clutter ratio. Based on observed 

ASAR HV imagery, the NESZ dominates the background signature and is largely 

invariant of wind conditions but dependant more on the deterministic noise floor 

constraints of the sensor. Thus, a target collected under certain wind conditions, 

incidence angles and favorable NESZ levels could have improved delectability in 

the HV channel over HH or VV. 
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Appendix I - Pseudo code algorithm for Sequential 
Forward Selection (SFS) 

1. FS {} 

2. TS {fJ,fz, ... ,fn} 

3. FOR i = 1 TO n 

a. accuracy = 0 

b. bestF eature = { } 
c. bestAccuracy = 0 

d. FOR j = 1 TO length(TS) 

i. ES = TS(j) u FS 

u. Train Discriminant Functions for feature space ES 

iii. Calculate accuracy from Discriminant Functions ( ES) 

iv. IF (accuracy>bestAccuracy) 

v. END 

e. END 

1. bestAccuracy = accuracy 

2. bestFeature = TS(j) 

f. bestFeature assigned to FS 

g. bestFeature removed from TS 

4. END 
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Appendix II - Pseudo code algorithm for Exhaustive 
Search (ES) 

1. FS {} 

2. nlterations = 2n- 1 

3. FOR i = 1 TO nlterations 

a. incrementFS(FS) 

b. Train Discriminant Functions for feature space FS 

c. Calculate accuracy from Discriminant Functions (ES) 

d. IF (accuracy>bestAccuracy) 

i. bestAccuracy = accuracy 

ii. bestF eatureSet = ES 

e. END 

4. END 

function vee = incrementFS(vec,nFeat) 

sVee = length(vee); 
vee(sVee) = vee(sVee) + 1; '" ;I.I'~('I'IPY t l"• :ll>lr"t ,, n 

if(vee(sVee) > nFeat) 
vee(sVee) = vee(sVee) - 1; ~ 

'6 de~·r,·:)('lll c~>n::i:1c1t ior, l''•:lbirot i•)rl ~)V'' : ;,n.· ... 

end 

if ( ( (nFeat-sVee + 1) :nFeat) == vee) ·:- '.Ph cl r·1<•u; i .n: 
if(sVee < nFeat) ;, c'i1tr·h t.1c 'llrl c:: thP itr,_:::,tl'J:::l ... 

vee = 1 ( sVec + 1) ; 
end 

else : bLTp t~~ lDJ0X ... 
i = sVee; 

end 

while(vee(i) == vee(i-1) + 1) 1-cJ•r . .::cnr;L:: tLc l;l~fY) _or;o:cicm 
i i - 1; 

end 
i = i - 1; 
vee(i) = vee(i) + 1; '~ ir.c:el'h"l ~ d:c.' 'r'te'X 

vee(:) = [vee(1:i-1), vee(i) : ((sVee-i)+vee(i) )] ; 
·, i1ris:1 tL.' •,·c.:cl'''' t1c·r the lL<i•.:;x ',, l:•·.: C.'JH.:i St.'CJJC.'lll~cJi ly 
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Appendix Ill - Pseudo code algorithm for Exhaustive 
Ranked Search (ERS) 

1. benchmark computer 

2. define acceptable work time 

3. feature reduction from {f1,f2, ••• ,f0 } to some subset {f1,f2, ... ,fm }, m < n, 

(e.g. via SFS) to match acceptable work time1 

4. Run algorithm for ES (Appendix II) working on Fsub 

1 Based on benchmark presented in Section 5.3 
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Appendix IV - Pseudo code algorithm for Limited 
Exhaustive Search (LES) 

1. benchmark computer 

2. define acceptable work time 

3. nlterations is set to match acceptable work time 1 

4. Run algorithm for ES ( Appendix II ) working on new nlterations 

1 Based on benchmark presented in Section 5.3 
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Appendix V - Pseudo code algorithm for Parallel 
Exhaustive Search {PES) 

1. allocate computer resources { C 1 ,Cz, ... ,Cn} 

2. benchmark computer resources { C 1 ,Cz, ... ,Cn} 

3. load balance computer resources{C1,Cz, ... ,C0 } 

4. FS is the working feature set { ft,f2, ••• Jn} 

5. BEGIN PARALLEL: Distribute search (Cistan,Cistop •... , Cnstan,Cnstop) 

6. calculate FS for Ck 

7. FOR i = Ckstan TO Ckstop 

a. incrementFS(FS) 

b. Train discriminant functions for feature space FS 

i. Calculate accuracy from discriminant functions ( ES) 

ii. IF (accuracy>bestAccuracy) 

1. bestAccuracy = accuracy 

2. bestF eatureSet = ES 

m. END 

c. END 

8. END PARALLEL 

9. data merge {C1,Cz, ... Cn} results 
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Appendix VI - Confusion Matrix Notation 

One way for measuring the class truth data versus classification output is through a 

confusion matrix (Table A VI.1 ). The confusion matrix is set up such that all samples are 

allocated to a finite set of possible truth and classification combinations. Truth is the real 

world existence of the samples, whereas classification is the predicted class from the 

algorithm output. 

One performance measure that can be calculated from confusion matrices is the 

classification accuracy, denoted as A in Equation A.1, which is a measure of how often 

the classifier is correct. Another performance measure is the class precision, or CP in 

Equation A.2, which is a measure of the rate of classification correctness for a class. The 

true positive, or TP in Equation A.3, is a measure of how often a target was correctly 

classified. False positive and overall error measures calculated as (1-TP) and (1-A), 

respectively. 

11 

"M . n· 1 "C(i,i) 
A = ~ atnx tagona = -'-f:'-'-1 __ 

I All Samples m 
(A.1) 

C D C(i,i) . {1 } 
r(,J = 

11 
,1 E , .. ,n (A.2) 

I C(i,j) 
j=l 

T'D C(j,j) . {1 } 
I(j) = n '1 E , .. , n (A.3) 

IC(i,j) 
1=1 

Accuracy is an acceptable measure for overall performance and can be used as an 

evaluation function in feature selection algorithms; however, it can be misleading when 

classes with a large sample size are classified with a high level of precision and classes 

with smaller sample size are classified with a low level of precision. In other words, the 
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Table A VI.1: Class confusion matrix for ann class system 

Truth 

Class 1 Class 2 ... Class n 
= Q Class 1 C(l,l) C(l,2) C(l,n) ..... . .. .... 
eo= 
~ Class 2 C(2,1) C(2,2) C(2,n) !.;:: ... ..... 
r:ll 
r:ll ... ... ... . .. . .. 
eo= -u Class n C(n,l) C(n,l) ... C(n,n) 

accuracy could be relatively high even though a particular class was relatively poorly 

classified. If the sample size for each class is the same, then this problem does not exist. 
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