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ABSTRACT 

Standard analysis methods of mechanical components and structures are based on elastic 

analysis, elastic-plastic analysis and limit analysis. The determination of limit load using 

a simplified method is considered to be an attractive alternative over the conventional 

limit analysis methods i.e., analytical methods, experimental methods and numerical 

methods. Simplified methods are considered to be effective if they are able to estimate 

the lower bound limit load of a general class of mechanical components and structures 

within a minimum number of linear elastic analysis iteration without compromising with 

the quality of the result. 

In this thesis, a simplified method is proposed in order to estimate the limit load of a 

general class of mechanical components and structures. The proposed rna-tangent method 

makes use of statically admissible stress fields based on a single linear elastic analysis or 

on an assumed distribution to estimate the limit load. The method is applied to a number 

of mechanical components and structures ranging from standard example problems to 

typical pressure vessel components. The results are in good agreement with the 

corresponding analytical and inelastic finite element analysis results. The underlying 

features of the rna-tangent method enabled its application into three major areas: analysis 

of cracked components, stress categorization and fitness-for-service assessment. 

The determination of load carrying capacity is an important step in the integrity 

assessment of mechanical components and structures containing crack-like flaws. The 

rna-tangent method is extended in order to estimate the limit load of components and 
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structures with cracks. The proposed method enables the determination of limit load 

using a single linear elastic analysis. The method is applied to a number of cracked 

component configurations and the results compare well with those obtained from the 

corresponding analytical and inelastic finite element analysis results. 

The ASME Boiler and Pressure Vessel Code can be applied to design pressure vessels 

and piping systems by using the design by analysis (DBA) approach. It provides 

guidelines for the classification of linear elastic stresses into primary, secondary and peak 

stress. Although these guidelines cover a wide range of pressure containing components, 

the guidelines are sometimes difficult to employ for three dimensional components with 

complex geometry. In this thesis, a simplified method is proposed in order to categorize 

the elastic stresses in pressure vessel components and structures using a single linear 

elastic finite element analysis. It uses the rna-tangent method, an assessment of constraint 

in the component based on limit load multiplier estimates, as a stress classification tool. 

The proposed method is applicable to both mechanical and thermal loads and is able to 

partition the elastic stresses into primary (P), primary plus secondary (P+Q) and peak (F) 

stress. The proposed method is a direct and alternative approach over conventional 

approaches i.e., stress linearization and interaction I discontinuity analysis. The method is 

applied to several practical pressure vessel components from simple to relatively complex 

geometric configurations and the results compare favorably with those obtained by the 

conventional techniques. 

Thermal hot spot and corrosion are the typical of damages occurring in operational 

pressurized components and structures. Fitness-for-service (FFS) assessment of these 

components and structures need to be performed periodically in order to demonstrate the 
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operational safety and structural integrity. In this thesis, a simplified method, based on 

the rna-tangent method, is proposed in order to perform Level 2 FFS assessment of aging 

pressure vessel components and piping systems containing thermal hot spot and corrosion 

damage. The method is demonstrated through a number of examples and the results are 

verified by Level 3 inelastic finite element analysis. 

The potential benefits of using the above mentioned simplified methods over the 

conventional methods is that the simplified methods are applicable to a wide range of 

mechanical components and structures; they require minimum expertise from the analyst 

to perform the analysis; they are economically viable to use on a daily or regular basis; 

they are computationally effective as they do not require any iterative procedure; and they 

are very rapid and easy to implement in practice. 
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CHAPTER 1 

INTRODUCTION 

1.1 General Background 

Mechanical and structural designers are continuously working on to develop innovative 

and reliable design solutions. The main objective in designing mechanical components 

and structures is to ensure that the structure is able to serve the intended purpose safely at 

minimum capital and operating costs. In order to design such a structure, the designer 

should focus on the efficient utilization of material and consider all potential failure 

modes associated with the structure during its service life. Among the various failure 

modes that govern the failure of a mechanical component or structure, plastic collapse is 

considerably important and should be properly addressed. 

Standard analysis methods for mechanical components and structures are based on elastic 

analysis, elastic-plastic analysis and limit analysis. Among these methods, limit analysis 
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is of considerable interest to the structural engineers as it simplifies the analysis using an 

elastic perfectly plastic material model and provides a guaranteed margin of safety 

against load carrying capacity of the structure. Limit analysis could be defined as the 

determination of load that results in cross-sectional plasticity in the structure, which leads 

to uncontained plastic flow (plastic collapse). Limit analysis is considered as a viable tool 

for design, analysis and assessment of mechanical components and structures. 

In practice, limit load could be determined either by using analytical methods, numerical 

methods, experimental methods or by using simplified methods. Analytical methods are 

based on bounding theorems in plasticity. Application of these methods is generally 

limited to standard and simple structures. These methods are not suitable for practical 

complicated three dimensional components and structures. Numerical methods, on the 

other hand, are applicable to a wide range of practical components and structures. These 

methods include finite element analysis (FEA), where an elastic perfectly plastic material 

model is considered. The finite element method is generally accepted by the Codes and 

Standards (e.g., ASME Boiler and Pressure Vessel Code, 2007) as an alternative method 

for limit analysis. Inelastic FEA is carried out in an incremental and iterative manner. It 

requires substantial effort I expertise from the analyst to carryout the analysis. It involves 

numerical difficulties and demands significant computational time especially in case of 

complex three dimensional component configurations and loading conditions. It requires 

detailed information about the material properties at various operating conditions. In 

addition, the analysis and interpretation of inelastic FEA results require in-depth 

knowledge and understanding of nonlinear analysis techniques. 
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Experimental methods are widely accepted as a tool for limit analysis given that the 

experiments are to be carried out very precisely. In order to perform such experiments for 

practical complex components and structures, skilled personnel as well as costly 

experimental setups I instrumentation is required. In practical term, each experiment 

involves considerable capital investment and hence is not economically viable to perform 

in a daily basis. Therefore, in-practice, the experimental methods are of very limited use. 

In order to overcome the above mentioned limitations of the conventional limit analysis 

methods, the development of robust and simplified methods is of considerable interest. In 

recent years, significant efforts have been directed to develop robust and simplified 

methods. The idea behind the simplified method is that it is able to estimate the limit load 

by using linear elastic analysis. The potential benefits of using simplified method over the 

convention methods is that the simplified method is applicable to a wide range of 

practical components and structures, it requires minimum expertise from the analyst to 

perform the analysis, it is economically viable to use on a daily or regular basis, it is 

computationally effective as it does not require any iterative procedure, and it is very 

rapid and easy to implement in practice. 

The integrity assessment of cracked components and structures is of paramount 

importance in industrial applications. One of the most important elements of the integrity 

assessment is the estimation of load carrying capacity of the component or structure. 

Simplified methods are shown to be very effective in determining the limit load of 

components and structures with crack like flaws. 
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In conventional design approach, a safety factor is considered to limit the maximum 

calculated stress level to some percentage of either the yield or ultimate strength of the 

material at the operating temperature. Design-by-analysis (DBA) using ASME stress 

categorization approach is a direct application to linear elastic analysis results. ASME 

Boiler and Pressure Vessel Code, Section Ill (2007) and Section VITI, Div. 2 (2007) 

provide guidelines for interpreting the elastic stresses obtained from linear elastic 

analysis. In these guidelines, the stresses are divided into different categories and 

allowable stress limits are imposed on each of these categories and specific combinations 

of the same. The categorization of elastic stresses in pressurized components and 

structures is a challenging task even with the finest computing facilities and available 

numerical techniques. Conventional indirect approaches for categorization of stresses are 

stress linearization and interaction I discontinuity analysis. Use of simplified method for 

stress categorization is considered to be an attractive alternative over the conventional 

approaches as the simplified method does not require any stress classification lines or 

planes; and hence is a direct approach over conventional indirect approaches. The 

simplified method makes use of statically admissible stress field based on von Mises or 

Tresca yield criterion to categorize the stresses. 

A fitness-for-service assessment of mechanical components and structures is of 

paramount importance in oil and gas, nuclear and petrochemical industries. The 

determination of load carrying capacity of the in-service mechanical components and 

structures is an important goal in structural integrity assessment. Simplified method is 

considered to be a viable tool for fitness-for-service assessment of aging pressure vessel 
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components and structures undergoing damage. The simplified method is useful for plant 

engineers to use on a daily or regular basis. 

1.2 Objective of Research 

The aim of the present research work is to develop robust and simplified methods in 

order to design and conduct integrity assessment of mechanical components and 

structures. The main set of objectives of this thesis is to: 

1. Develop a simplified method to estimate the limit load of a general class of 

mechanical components and structures containing crack-like flaws and those 

without flaws. 

2. Categorize the linear elastic stresses induced in mechanical components and 

structures by using simplified method, conforming to the available Codes and 

Standards used for design. 

3. Develop simplified method based procedure for Level 2 fitness-for-service 

(FFS) assessment of pressure vessels and piping systems containing thermal 

hot spot or corrosion damage. 

4. Apply the proposed methods to typical mechanical components and structures 

and validate the simplified methods by comparing the results with those 

obtained from the conventional techniques. 
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1.3 Scope of Research 

Limit analysis plays an important role in designing mechanical components and 

structures. Estimation of limit load by using simplified method is of considerable interest 

due to its simplicity and effectiveness, in terms of computational effort and time, over the 

conventional limit analysis techniques. A simplified method is one, which is able to 

estimate the lower bound limit load of a general class of mechanical components and 

structures at a minimum number of linear elastic iterations, without compromising with 

the quality of the results. In this thesis, significant effort has been directed to develop a 

simplified method for estimation of limit loads of a general class of mechanical 

components and structures. The method makes use of statically admissible stress field, 

based on a single linear elastic analysis, in order to estimate the limit loads. Simple 

equations are deduced that enable rapid determination of reasonably accurate limit loads. 

The formulation of the proposed method is based on the variational principles in 

plasticity. The proposed method is applicable to a general class of mechanical 

components and structures. The method is suggested as a viable tool for limit analysis. 

Determination of load carrying capacity is an important goal in structural integrity 

assessment. Limit analysis plays an important role in integrity assessment of mechanical 

components and structures containing defects. Crack-like flaws are considered to be a 

severe threat to the integrity of in-service components and structures. Components 

containing crack-like flaws could fail either by brittle fracture or ductile tearing 

depending on the loading and corresponding stress state. The limit load of these 

components and structures are needed to be determined in order to address the failure by 
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ductile tearing. Therefore, a simplified method which is able to estimate the load carrying 

capacity of cracked components and structures is of considerable importance from 

structural integrity standpoint. In this thesis, a simplified method is proposed for 

estimations of limit loads of mechanical components and structures containing crack-like 

flaws. 

In designing mechanical components and structures based on ASME design-by-analysis 

(DBA) approach, elastic stresses are partitioned into primary, secondary and peak stress 

categories in order to apply the appropriate stress limits for each of these stress categories 

and for specific combinations of the same. Each of these stress categories and their 

specific combinations are associated with distinct type of failure modes: primary stress 

limits are intended to prevent the gross distortion and plastic collapse, primary plus 

secondary stress limits are intended to prevent the excessive plastic deformation leading 

to incremental collapse, and the cumulative usage factor from all cycles of primary plus 

secondary plus peak stress is limited to a specific value, less than or equal to one, to 

prevent fatigue failure. 

In practice, categorization of stresses is a complex task especially in case of complicated 

three dimensional mechanical components and structures. In this thesis, an attempt has 

been made to categorize the elastic stresses into primary, primary plus secondary and 

peak stress by using a single linear elastic finite element analysis, in light of available 

Codes and Standards (e.g., ASME Boiler and Pressure Vessel Code, Section lli and 

Section VITI Div. 2, 2007). The proposed simplified method makes use of statically 

admissible stress field based on a single linear elastic analysis. The proposed method is a 

direct and alternative approach over conventional stress categorization concepts e.g., 
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stresses linearization and interaction I discontinuity analysis. The proposed method is 

applicable to both two and three dimensional pressure vessel components and structures 

with complex geometries. The proposed method can be applied to both mechanical and 

thermal loading cases, without requiring two separate analyses. 

Fitness-for-service (FFS) assessments are performed in operating plants in order to 

demonstrate the integrity of in-service components and structures undergoing damage. 

Thermal hot spots and corrosion are the typical of damages occurring in in-service 

pressure vessels and piping systems. FFS assessments of these components and structures 

need to be performed periodically in order to determine the suitability of the component 

for the prevailing operating conditions and for the assessment of remaining life . 

. Therefore, appropriate assessment methods are needed to assess the serviceability as well 

as remaining life of the aging components and structures under various operating 

conditions. In this thesis, a simplified method, based on the rna-multiplier, is proposed for 

Level 2 FFS assessment of pressure vessels and piping systems containing thermal hot 

spot and corrosion damage. The proposed method gives an improved estimate of the 

remaining strength factor (RSF) of the damaged pressure vessel components and 

structures. The method is applicable to a wide range of components and structures 

including the structures experiencing significant stress gradient in and around the 

damaged spot. 
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1.4 Organization of the Thesis 

This thesis is composed of eight chapters. The first chapter addresses the general 

background, objective and scope of the proposed research work. The chapter also covers 

a brief review of state-of-the-art limit load estimation methods and purpose of the present 

research work. 

Chapter 2 presents a comprehensive review of the literature pertaining to the current 

research work. The chapter covers theoretical aspects of elasticity and plasticity, 

including failure theories and bounding theorems in plasticity. The chapter also covers a 

brief review of different limit load multipliers. 

Chapter 3 discusses the upper bound and classical lower bound limit load multipliers 

along with the review of extended variational theorems in limit analysis. The derivation 

of the rna method is also presented in this chapter. This method is used as a basis for the 

development of the proposed simplified method for lower bound limit load estimation. 

Chapter 4 presents the proposed simplified method, called the rna-tangent method, which 

has been developed for estimation of limit loads of a general class of mechanical 

components and structures. The rna-tangent method overcomes the limitations of the 

rna method and hence is applicable to any practical mechanical components and 

structures. The proposed method makes use of statically admissible stress field based on a 

single linear elastic analysis to estimate the limit load. The method makes use of the 

"limiting tangent" in order to relate the initial elastic state of a component or structure to 

that of the exact limit state. The theoretical background, formulation and potential areas 
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of application of the method are presented in a systematic manner. A number of example 

problems are worked out to demonstrate the method, and the results are verified by 

comparing them with those obtained by the conventional analytical and numerical 

methods. 

Chapter 5 presents the extension of the rna-tangent method, which has been proposed to 

estimate the limit load of components and structures containing crack-like flaws. Three 

different procedures are proposed, which covers a wide range of practical components 

and structures containing crack-like flaws. The method is demonstrated through a number 

of examples and the results are compared with those obtained from the conventional 

techniques. 

Chapter 6 presents a simplified method to categorize the elastic stresses induced in 

pressure vessels and piping systems. The method makes use of equivalent stresses (von 

Mises or Tresca) in order to categorize the stresses. The proposed method is able to 

categorize the stresses into primary, secondary plus secondary and peak stress, in light of 

ASME B&PV Code Section III (2007) and Section Vill Div. 2 (2007). The proposed 

method is a direct and alternative approach over conventional stress categorization 

approaches, e.g., stress linearization and interaction I discontinuity analysis. The method 

is applicable to both mechanical and thermal loading cases. The proposed method is 

demonstrated through a number practical pressure vessel component configuration. The 

results are compared with those obtained from the conventional techniques. 

Chapter 7 discusses the simplified method, based on the rna-multiplier, which has been 

developed for Level 2 FFS assessment of pressurized components and structures 
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containing thermal hot spot and corrosion damage. The proposed method gives an 

improved estimate of the remaining strength of the damaged pressure vessel components 

and structures. The method is applicable to a wide range of pressurized components and 

structures especially the components experiencing significant stress gradient in and 

around the damage spot. The proposed method is demonstrated through a number of 

practical examples and the results are verified by Level 3 inelastic finite element analysis. 

Chapter 8 summarizes and concludes the contributions and findings present in this thesis. 

The chapter also presents the original contributions to this thesis along with some 

guidelines for future work. 

11 



CHAPTER2 

LITERATURE REVIEW 

2.1 Introduction 

The theoretical concepts pertaining to the research work of this thesis are presented in 

this chapter. The current research work covers an extensive volume of literature 

particularly in the area of elasticity, plasticity and limit analysis. A brief review of the 

basic theories of elasticity, plasticity and limit analysis including limit load multipliers is 

covered. The variational principles in limit analysis are also presented in brief. These 

theories and concepts are used extensively in the research work presented in this thesis. 

12 



2.2 Elastic Analysis and Design Concepts 

The theory of elasticity deals with the behavior of solid bodies, which are able to recover 

their original shape upon removal of the applied loads. The elastic analysis of a 

mechanical component or structure essentially means the determination of stress and 

strain fields that simultaneously satisfies the equilibrium equations, compatibility 

conditions and constitutive relationships. The equilibrium equations are basic physical 

laws that represent a balance between the applied external forces and/or moments with 

that of the internal resistive forces and/or moments. On the other hand, compatibility 

conditions are the geometric relationships that express the continuity of the structure. 

Stresses are related to the strains by appropriate constitutive relationships. 

For a linear elastic solid body, the constitutive relationship is expressed by generalized 

Hooke's law. The most general relationship between the stresses and strains could be 

expressed by au = Cijkl£/d, where au is the stress tensor, £k1 is the strain tensor and 

C ijkl are the material dependent elastic constants. 

In case of isotropic material, where all possible symmetries are considered, the elastic 

strains are related to the stresses according to the following relationship, 

I+v v ~ h . h . . h . h £ij =Eau- E akkuij' w ere Eu IS t e stram tensor, aij IS t e stress tensor, E IS t e 

Young's modulus, v is the Poisson's ratio and 8u is the Kronecker's delta. 

In designing mechanical components and structures by using the theory of elasticity, the 

maximum stress based on certain specified conditions is limited to the allowable stress of 
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the material. The allowable stress is usually defined on the basis of design safety factor 

and yield strength of the material at operating temperature. 

2.3 Plasticity Concepts 

The theory of plasticity deals with the behavior of solid bodies, where the deformation of 

the body does not fully recover upon removal of the applied loads. The underlying 

principles and mathematical interpretations of the theory of plasticity and its field of 

applications are available in a number standard text by Mendelson (1968), Calladine 

(2000), Hill (1950), Kachanov (1971 ). In contrast to the theory of elasticity, the stress­

strain relationship in plastic range is generally expressed by Prandtl-Reuss equation and 

is characterized as the flow rule. In the plastic range, the strains are dependent on the 

history of loading. Therefore, in order to determine the final strain, the incremental 

strains must be accumulated over the full loading history. Theory of plasticity is the basis 

for limit analysis. The limit analysis is an idealized form of elastic-plastic analysis, where 

an elastic perfectly plastic material model is assumed without considering any strain 

hardening. 

2.3.1 Theories of Failure 

In a uniaxial state of stress, the initiation of yielding of the material can be readily 

determined by simple tensile test. However, when a material is subject to multiaxial state 

of stresses, then an appropriate yield criterion is needed in order to identify the beginning 
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of yielding of the material. These yield criteria are generally termed as failure theories. 

The yield criteria that are pertaining to the current research work are discussed below. 

(a) Tresca Yield Criterion (Maximum Shear Stress Theory) 

Historically, the first yield criterion for general states of stress was presented by Tresca 

(Calladine, 2000). The Tresca yield criterion states that the yielding of a material will 

occur when the maximum shear stress in a multiaxial state of stress reaches the value of 

the maximum shear stress occurring under simple tension test at onset of yielding. The 

maximum shear stress is equal to half the difference between the maximum and 

minimum principal stresses. For simple tension, only one principal stress exists ( a 1 =f. 0) 

and the other two principal stresses are equal to zero ( a2 = a 3 = 0 ). If the principal 

stresses ( a 1, a 2 and a 3 ) are arranged in such a way that a 1 > a 2 > a 3 , then according to 

Tresca yield criterion, yielding will occur when la1 - a31 = a Y, where ay is the yield 

strength of the material. The Tresca yield criterion takes the form of a hexagon in two­

dimensional stress space. The size of the hexagon depends on the yield strength of the 

material. The Tresca yield criterion is used extensively in design because it often 

simplifies the analysis and design, and is slightly conservative compared to the von Mises 

yield criterion. 

(b) von Mises Yield Criterion (Distortion Energy Theory) 

R. von Mises proposed an alternative to Tresca's yield criterion (1912). The formal basis 

of the von Mises yield criterion is as follows. The strain energy is the energy that stored 
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in the material due to elastic deformation. This deformation can be the combination of 

volume change and angular distortion without volume change. The energy that is stored 

in the body due to angular distortion is called the shear strain energy or distortion 

energy. The shear strain energy is considered to be the primary cause of failure in ductile 

material. 

The von Mises yield criterion states that the yielding of a material will occur when the 

distortion energy density in a multiaxial state of stress is equal to the value of the 

distortion energy that occurs in a simple tensile specimen at the onset of yielding. The 

von Mises yield criterion can now be expressed as, 

The von Mises yield criterion takes the shape of an ellipse in two-dimensional stress 

space. The size of the ellipse depends on the yield strength of the material. It can be seen 

that the von Mises yield criterion is related to the root-mean-square (R.M.S.) value of the 

principal stress differences, while the Tresca yield criterion considers only the largest 

absolute value. 

(c) Yield Surface in Three-Dimensional Stress Space 

In case of three-dimensional principal stress space, the experimental observation shows 

that the hydrostatic pressure does not affect the yield behavior of the material as there is 

no change in shape. This insensitivity of the yield behavior to hydrostatic pressure is the 

basis for plastic incompressibility of the material. Therefore, under hydrostatic pressure 

loading the state of stress is expected to be purely elastic. 
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Generally, the yield criterion depends on the complete three-dimensional stress state at 

the point under consideration. The state of initial yielding of a material can be 

represented by the following relationship f(a;) = K, where aij is the stress tensor in 

three-dimensional stress space and K is a known quantity. This equation is called the 

yield function. The hypersurface represented by the yield function is called the yield 

surface. Any point on this surface essentially indicates the beginning of yielding. In order 

to define the yield surface, consider a three-dimensional stress space, where the 

coordinate axes are represented by three principal stresses (a" 0'2 , 0'3 ). The line having 

equal subtended angle with the principal coordinate axes represent the hydrostatic stress 

state ( 0'1 = 0'2 = 0'3 = am), on which the deviatoric stress components are equal to zero. 

In case of Tresca yield criterion, the shape of the yield surface takes the form of a 

hexagonal prism with the axis 0'1 = 0'2 = 0'3 = am. On the other hand, the yield surface 

based on the von Mises yield criterion takes the form of a cylinder with the centre line 

0'1 = 0'2 = 0'3 =am. The size of the yield surface depends on the yield strength of the 

material. 

2.3.2 The Plastic Flow Rule 

When a material is loaded within the elastic range, the strains are linearly related to the 

stresses by Hooke's law. In that case, the strains can be computed directly from the 

current state of stress regardless of the loading history. But in plastic range, the 

relationship between stresses and strains are nonlinear and the final strain depends on the 
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history of loading. Therefore, the total strains can be computed by summing the 

increments of plastic strain throughout the loading history. The onset of yielding IS 

defined by the appropriate yield criterion and the subsequent plastic strain increment is 

prescribed by the corresponding plastic flow rule. The most general form of the plastic 

flow rule for ideal plasticity is as follows, 

a~'(a .. ) 
de~= dA. 'J 'J 

I] a (J'ij 
(2.1) 

where de; is the plastic strain increment at any instant of loading, dA. is the plastic flow 

parameter, f is a yield function and aij is the stress tensor. 

The plastic flow parameter dA. is equal to zero when the material behaves elastically i.e., 

f(aij) < K and takes a positive value when the material behaves plastically i.e., f(aij) = 

K. The direction cosine of the normal to the yield surface is proportional to aj(a;)jaaij. 

Therefore, Eq. (2.1) implies that the plastic flow vector is directed along the normal to the 

yield surface when plastic flow takes place. 

As mentioned earlier, onset of plastic flow is characterized by the appropriate yield 

criterion. For instance, von Mises yield criterion can be expressed as, f(sij) = ~ sijsij- e. 

The associated flow rule corresponding to von Mises yield criterion can be expressed as, 

de;~ = sijdA, where sij is the deviatoric stress tensor. The plastic strains and stresses are 

related by the infinitesimal strain increments and deviatoric stresses. Therefore, it is 
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convenient to divide the strains and strain rates by increment of time and write the 

equilibrium equations. 

2.3.3 Bounding Theorems in Plasticity 

Most of the practical engineering components and structures are complicated in nature 

and hence the complete plastic analyses of these structures are generally more involved 

and time consuming. The complexities arise from the irreversibility of plastic flow and its 

dependency on the history of loading. Since the failure prevention is the primary 

objective of any structural design, therefore, it is justified to concentrate on the collapse 

state of the structure, which results in a considerable saving of effort. 

The plasticity theory offers the well known bounding theorems in order to estimate the 

collapse load of the structure. There are two approaches, the equilibrium approach for 

lower bound estimate and the geometry approach for upper bound estimate. The load at 

plastic collapse is termed as limit load of the structure. In the classical limit analysis, 

material nonlinearity is included by assuming perfectly plastic material model, while the 

geometric nonlinearity is not taken into account. 

(a) Classical Lower Bound Theorem 

The statement of the classical lower bound theorem is as follows: "If any stress 

distribution throughout the structure can be found, which is everywhere in equilibrium 
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internally and balances the external loads and at the same time does not violate the yield 

condition, those loads will be carried safely by the structure" (Calladine, 2000). 

Therefore, the load estimated by the lower bound theorem will be less than or at most 

equal to the exact limit load. In lower bound theorem, the equilibrium equations 

(statically admissible stress field) and yield condition are satisfied without considering 

the mode of deformation of the structure. 

(b) Classical Upper Bound Theorem 

The classical upper bound theorem states that "If an estimate of the plastic collapse load 

of a body is made by equating the internal rate of dissipation of energy to the rate at 

which external forces do work in any postulated mechanism of deformation of the body, 

the estimate will be either high, or correct" (Calladine, 2000). 

In upper bound theorem, only the mode of deformation (kinematically admissible 

velocity fields) and energy balance are considered without considering the equilibrium 

equations. Applying the principle of virtual work, the upper-bound theorem can be 

expressed as, 

1 TJtidS ~ L DdV 
T T 

(2.2) 

where 1'; are the surface tractions acting on surface Sr , iti are the rates of displacement, 

D are the corresponding plastic dissipation rates per unit volume and Vr is the total 

volume. 
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2.4 Limit State and Admissible Limit Load Multipliers 

Consider a structure with volume V and surface S (Figure 2.1 ), which is in equilibrium 

under surface traction Ti applied on surface Sr and the geometric constraint vi=O applied 

on surface Sv. It is assumed that the surface traction is applied in proportional loading, 

that is, the external traction is assumed to be mTi, where m is a monotonically increasing 

parameter. For sufficiently small values of m, the structure will be in a purely elastic 

state. As m gradually increases, plastic flow starts to occur at a certain point in the 

structure. If the value of m continues to increase, the plastic region spreads further and 

the structure will reach to a state of impending plastic collapse. 

The set of loads corresponding to the impending plastic collapse state is called the limit 

load of the structure and the corresponding value of m is the safety factor. Therefore, the 

safety factor is the ratio of the limit load to the actual applied load. 

Figure 2.1 A closed domain V bounded by surface S 
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2.4.1 Classical Statically Admissible Multiplier 

A given stress field, ug is said to be statically admissible when it is in equilibrium 

internally, balances the external load mJ;, and nowhere violates the yield criterion. The 

multiplier ms corresponding to such a stress field is called the statically admissible 

multiplier. Therefore, a statically admissible stress field should satisfy the following 

conditions, 

(]"~ . 
lj,j 

0 in V, (2.3) 

0 
O"unj m sTi on ST, (2.4) 

f(sg) 1 0 0 2 

2susu -k ~ 0 in V, (2.5) 

where k is the yield stress in pure shear and sg is the statically admissible deviatoric 

stress tensor which can be defined as, 

(2.6) 

(2.7) 

where ou is the Kronecker delta. Note that Eqs. (2.3 and 2.4) are the equilibrium 

equations and Eq. (2.5) is the yield function. 
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2.4.2 Classical Kinematically Admissible Multiplier 

A given velocity field, 
. 

v; is said to be kinematically admissible if it satisfies the 

displacement (velocity) boundary conditions and also the rate of total external work done 

by the applied loads on this velocity field is positive. Therefore, a kinematically 

admissible velocity field should satisfy the following conditions, 

8uv~ 1 =0 in V (2.8) 

. 
=0 on Sv (2.9) V; 

fr;v;ds > o (2.10) 
Sr 

where 8u is the Kronecker delta. Here, Eq. (2.8) is the condition of incompressibility. 

The generalized strain-rate vector associated with a given kinematically admissible 

velocity field can be defined by £ *, where the asterisk is used to indicate that it is not 

necessarily the actual strain-rate vector but kinematically admissible. If von Mises yield 

criterion is applied, plastic strains occur when deviatoric stresses are on the yield surface 

i.e. , _!_sus;1 = k 2
, where k is the yield stress in pure shear. The kinematically admissible 

2 

multiplier, m " can now be expressed as, 

k fc2t~ £~ ) 1 ' 2 dv 
I) IJ 

m • = ___!_v ________ _ 

fr;v;ds 
(2.11) 

Sr 
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where 

. • 1 • • 
£ .. =-(v .. +v . . ) in V, 

I] 2 1, ] ],1 

According to the classical limit theorem, the following relation holds, 

< < • ms _m_m 

where m is the actual collapse load multiplier. 

2.5 Closure 

(2.12) 

(2.13) 

A review of the theory of elasticity, plasticity and limit load multipliers is presented in 

this chapter. The derivation of the admissible limit load multipliers is also presented. 

These fundamental concepts have been used in the research work presented in this thesis. 

In the next chapter, the variational theorems in limit analysis and the derivation of the 

improved lower bound limit load multiplier, the ma method, is presented. The next 

chapter also presents a brief review of the limit load analyses methods. 
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CHAPTER 3 

REVIEW OF LIMIT LOAD MULTIPLIERS 

3.1 Introduction 

Limit analysis plays an important role in design and integrity assessment of mechanical 

components and structures. Limit load is the load at which uncontained plastic flow 

(plastic deformation) occurs in a perfectly plastic structure, and the structure is on the 

verge of collapse. Limit load is a quantitative measure of the load carrying capacity of 

such a structure. Limit analysis is especially attractive as it simplifies the inelastic 

analysis by assuming an elastic perfectly plastic material model. 
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Lower bound limit load is the load that a structure is able to carry out safely during its 

service life. There is no permanent deformation of the structure. It is the maximum load 

that a structure is expected to experience in its service life. Lower bound limit load is 

especially attractive as it provides a guaranteed margin of safety against load controlled 

plastic failure modes. The limit load multiplier scales the applied load proportionally to 

that level where the structure reaches to its limit state. The exact limit load multiplier is 

available only by performing a plastic limit analysis. Several estimates and bounds of the 

exact limit load multiplier can be obtained from an elastic analysis. Some of these are 

discussed below. 

3.2 Classical Lower Bound Multiplier 

The lower bound multiplier can be directly obtained by applying the lower bound 

theorem of plasticity. Assuming that some stress distribution throughout the component 

or structure can be found, which is everywhere in equilibrium internally, balances the 

external loads and at the same time does not violate the yield condition. Then the 

corresponding applied loads will be less than or equal to the exact limit load, and will be 

carried safely by a sufficiently ductile material. If uy is the yield strength of the elastic-

perfectly plastic material, then the classical lower bound multiplier (mL) can be expressed 

as 

(3.1) 

where P is the applied load and PL is the limit load. 
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Statically admissible stress distributions can be constructed by "inspection", or by using a 

closed form linear elastic solution. When a finite element analysis is performed, the stress 

distribution inside each element is approximate. Therefore, mL obtained from linear 

elastic FEA is a mesh dependent estimate that is expected to converge to the exact value 

as the mesh is refined successively. 

3.3 Upper Bound Multiplier 

In limit analysis, the statically admissible stress field (equilibrium set) cannot lie outside 

the yield surface and the stress associated with a kinematically admissible strain rate field 

(compatibility set) in calculating the plastic dissipation should lie on the yield surface. 

Mura et al. ( 1965) proposed an approach that eliminates such a requirement and replaced 

it by the concept of integral mean of yield based on a variational formulation. The 

integral mean of yield criterion can be expressed as, 

f,uo [r(s~) + ({/Jo )2 ]dv = 0 (3.2) 
Vr 

where s~ is the statically admissible deviatoric stress for impending plastic flow; {/)0 is a 

point function which takes on a value of zero if s~ is at yield and remains positive below 

yield. The flow parameter Jlo is defined through the associated flow rule as, 

(3.3) 
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where f.1° ~ 0 (statically admissible set) and eu is the strain rate. Now, s~ = rn° sg where 

sZ corresponds to the applied traction, T;. The von Mises yield criterion can be 

expressed as, 

(3.4) 

Assuming an unspecified but constant flow parameter ;.i and performing the necessary 

mathematical manipulations Eq. (3.4) becomes (Seshadri and Mangalaramanan, 1997), 

(3.5) 

where aeq is the von Mises equivalent stress and VT is the total volume. Proof of the 

upper-boundedness of rn° is presented by Reinhardt and Seshadri (2003). 

3.4 Extended Variational Theorems in Limit Analysis 

The variational formulation, proposed by Mura et al. (1963, 1965), is an alternate 

approach to the classical limit theorem. Seshadri and Mangalaramanan ( 1997) proposed 

the rna-method based on Mura's variational theorem, which provides better lower bound 

limit load over Mura' s lower bound estimate. The rna-method adopted the elastic modulus 

adjustment procedure (EMAP) to estimate improved lower bound limit load. Further 

discussion on these methods is presented in the following sections of this chapter. 
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Mura et al. showed by using the variational principles that the safety factor, the statically 

admissible multiplier and the kinematically admissible multiplier for a component or 

structure made of elastic perfectly plastic material model and subjected to prescribed 

surface tractions are actually extremum values of the same functional under different 

constraint conditions. 

In limit analysis, the statically admissible stress field (equilibrium set) cannot lie outside 

the yield surface and the stress associated with a kinematically admissible strain rate field 

(compatibility set) in calculating the plastic dissipation should lie on the yield surface. 

Mura et al. proposed an approach that eliminates such a requirement and replaced it by 

the concept of integral mean of yield based on a variational formulation. The integral 

mean of yield criterion can be expressed as, 

1 ,U 0 [f(s~) + (qJ
0

)
2 ]dV = 0 

T 

(3.6) 

where the superscript "0" refers to the statically admissible equilibrium stress fields and 

,u0 is the plastic flow parameter. The deviatoric stress siJ0 corresponds to the impending 

limit state, where s iJo = m 0 s iJo. Here, m 0 is the limit load multiplier and s iJo is the 

deviatoric stress field that is in equilibrium with the applied loads. The parameter qJ0 is a 

point function that takes a value of zero if siJ0 is at yield and remains positive below 

yield. 

A lower bound limit load multiplier m' is derived from Mura's extended variational 

principle, which is smaller than the unknown actual collapse load multiplier m. Mura' s 

lower bound multiplier can be expressed as, 
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(3.7) 

The von Mises yield criterion is given by, f(sij)='isijsij -a~ and the associated flow 
2 

rule can be expressed as, tij = f.l(df(sij) jCJsij) where f.1?:. 0. Mura et al. have shown that 

m 0 , f.1° and lp0 can be determined by rendering the functional F stationary in, 

F = mo- f. f.lo[f(s~) + (lpo)2]dV 
T 

(3.8) 

which leads to the set of equations, 

CJF =O 
dm 0 

' 
(3.9) 

For von Mises yield criterion, the functional takes the form, 

(3.10) 

Assuming a constant flow parameter f.1° and setting 8F = 0, the above functional can be 

solved for lp0 = 0 as, 

mO = ---,=o;=(J"='=y='=JV;=v=T = 

J<aeq )2dV (3.11) 

Vr 
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where aeq are the equivalent stress and Vr is the total volume of the component or 

structure. Eq. (3.2) for m' can now be written in terms of the maximum equivalent stress 

a~ in a component or structure as, 

(3.12) 

3.5 The ma- Method 

The lower bound limit load multiplier (m') obtained from Mura' s extended variational 

theorem was shown to be less than that obtained by applying classical lower bound 

theorem. As an attempt for improved estimation of lower bound limit loads, Seshadri and 

Mangalaramanan (1997) proposed the rna-method by invoking the notion of reference 

volume to account for localized plastic collapse and the technique of leapfrogging to 

reach to the limit state. The iteration variable ? was introduced in such a way that an 

infinitesimal changes to the elastic modulus of various elements in successive elastic 

analysis would induce a corresponding change of 11? . As ? increases with iterations 

therefore, m 0 and m' should ideally converge uniformly to exact value of the safety 

factor, m. 

3.5.1 Local Plastic Collapse - The Reference Volume 

When plastic collapse occurs in the localized region of a component or structure, the 

value of upper bound multiplier ~0 will be overestimated if it is calculated based on the 
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total volume, VT, as in Eq. (3.6). Furthermore, the corresponding value of m' will be 

underestimated. The reference volume was introduced in order to identify the 

kinematically active portion of the component or structure that participates in plastic 

action. If VR is the reference volume, then VR ~ VT and hence the upper bound multiplier 

can be written as, 

(3.13) 

where 

a 

VR = :~:JL\ Vk) , and a <.N (3.14) 
k=1 

The elements are arranged in following sequences, 

(3.15) 

Mura' s lower bound multiplier can be expressed in terms of the iteration variables as, 

(3.16) 

where a!(?) is the maximum equivalent stress at iteration number "i". The quantities 

m', m0 and a! are all functions of s. Differentiating the both sides of the above 

equation with respect to s , we get, 
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dm' am' dm0 am' da~ --=----+-----
d( am0 d( aa~ d( 

(3.17) 

In terms of finite difference, Eq. (3.12) can be expressed as, 

, lftn' ( o) lftn' ( o ) fim = --o (, . fim + --o . Ll.a M 

/ftn /i(J' M ( , 
(3.18) 

where (=(;corresponds to the ith iteration. For a limit type state ((
00

), we define, 

(3.19) 

where ma is the value to which m' and m0 are expected to converge. Combining Eq. 

(3 .13) and (3 .14) and carrying out the necessary algebraic manipulations, the following 

quadratic equation can be obtained, 

Am! +Bma +C=O (3.20) 

where 

o( o -o )2 B = -8m; m; aMi 

(3.21) 

and 
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The coefficients A, B, C and finally, the value of ma can be evaluated from the results of 

any linear elastic FEA. Although the ma -method was intended for two iterations at first, 

increasing iterations would give better estimates provided certain conditions are satisfied. 

To ensure real roots for Eq. (3.20), the discriminant must be greater than zero, i.e., 

(3.22) 

3.5.2 Expression for Lower Bound Multiplier ma 

Reinhardt and Seshadri (2003) derived an expression for the lower bound limit load 

multiplierma from the equation m' = J(mL,m0) If mL and m0 are derived from a series 

of stress and strain distributions that converge to the collapse state, then m' is assumed to 

follow a line that ends at m = mL = m' = m0. From current iteration ( , estimate of the 

final solution is made by linear extrapolation along the tangent to the curve m'((). The 

differentiation of the equation m' = f (mL, m0) with respect to the iteration variable ( is 

as follows, 

(3.23) 

It is postulated that the trajectory ends at m = mL = m' = m0 and by doing so, ma is 

expected to give a reasonable estimate of the multiplier m if the values of mL and m0 are 
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sufficiently close to the exact limit load multiplier m. In terms of finite difference, Eq. 

(3.18) can be written as, 

(3.24) 

Solving the above equation forma, we get 

(3.25) 

The rna-method has been shown to provide reasonable estimate of limit loads of various 

mechanical components and structures. 

3.6 Review of Limit Load Analysis Methods 

Seshadri and Fernando (1992) have developed the Redistribution Node (R-ode) method 

in order to determine the lower bound limit load of mechanical components and 

structures, using the elastic modulus adjustment procedure (EMAP) and by adopting the 

concepts of reference stress in creep analysis. The R-Node method makes use of two 

linear elastic finite element analyses to identify the load controlled location(s) in the 

structure and the limit load of the structure is achieved by using the load controlled 
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stresses. The R-Node method is further extended by Seshadri and Marriott (1993) to 

categorize the linear elastic stresses in mechanical components and structures. Seshadri 

and Mangalaramanan (1997) have used the R-Node method for minimum weight design 

of pressure vessel components and structures. Famous and Seshadri (2005) have used the 

R-Node method to estimate the limit load of components and structures subjected to 

multiple loadings. Other applications of the R-Node method are available in the 

monograph by Seshadri ( 1998). 

Seshadri and Mangalaramanan (1997) have developed the upper bound multiplier m~ 

using the integral mean of yield criterion (Mura et al., 1965) and further details are 

available in Section 3.3 of this thesis. The m~ multiplier is shown to be greater than the 

classical lower bound multiplier (mL) and lower than the classical upper bound multiplier 

(mu) (Reinhardt and Seshadri, 2003). The m~ multiplier is based on the total volume of 

the component or structure. If plastic collapse occurs over a localized region of the 

component or structure, the m~ multiplier will be overestimated. In order to overcome 

this limitation, Pan and Seshadri (2001) have proposed the m~ multiplier by invoking the 

concept of reference volume. 

Seshadri and Indermohan (2004) have developed the m P method by making use of the 

integral mean of yield criterion in order to estimate the limit load of mechanical 

components and structures. The mp multiplier relies on the entire stress distribution 

rather than the maximum stress in the component or structure. 
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3.7 Closure 

Mura' s variational formulation and the corresponding limit load multipliers have been 

presented in this chapter. The classical lower bound multiplier and upper bound 

multiplier based on Mura's variational formulation is also presented. The derivation of 

the improved lower bound limit load estimation method, the rna-method, has also been 

presented in detail. The chapter also covered a brief review of the simplified methods in 

limit analysis. The following chapter represents the rna-tangent method, which has been 

developed under the scope of this thesis to estimate the limit load of a general class of 

mechanical components and structures. The formal basis of the proposed simplified 

method is the rna-method, which has been developed by Seshadri and Mangalaramanan 

(1997). 
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CHAPTER4 

THE ma-TANGENT METHOD 

4.1 Introduction 

The assessment of load carrying capacity under applied loads is an important goal in 

designing mechanical components and structures. Limit load analysis is performed in 

order to determine the load at which uncontained plastic flow (plastic collapse) occurs in 

the component or structure. Lower bound limit loads are especially relevant from design 

standpoint since they provide a guaranteed margin of safety against load controlled 

plastic failure modes, or the related primary stress limits contained in the ASME Boiler 

and Pressure Vessel Code (2007). The concept of reference stress (Webster and 

Ainsworth, 1994 ), used extensively in the United Kingdom in high temperature integrity 

assessment procedures and inelastic fracture evaluations (Ainsworth et al., 2000), is 

related to the limit load. 

38 



The conventional method for limit analysis includes analytical method, experimental 

method, and numerical method e.g., nonlinear finite element method. Analytical methods 

have a very limited application in real-life as these methods are based on simplified 

assumptions and are particularly applicable to standard classical problems and simple 

structures. It is practically impossible to apply the analytical methods in order to estimate 

the limit load of complex three dimensional mechanical components and structures. 

On the other hand, experimental methods are widely used as a practical tool for limit load 

estimation. These methods are accepted by the structural design community as a viable 

tool for limit load estimation. However, these methods are not always cost effective as 

they require expensive set-ups as well as experienced professional to run the experiment 

precisely. 

Nonlinear finite element methods are widely used in determining the limit load. These 

methods are accepted by the Code (ASME B&PV Code, 2007) as a standard method to 

estimate the limit load of mechanical components and structures. However, these 

methods are not effective in terms of computational effort and time, especially when 

applied to practical three dimensional components and structures subjected to complex 

loading. These methods work on iterative procedure and sometimes face convergence 

problems. 

4.2 Simplified Method in Limit Analysis 

There are several practical advantages of using limit analysis as a tool for mechanical 

structural design. Limit analysis provides a guaranteed margin of safety over the load 
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carrying capacity of the structure. As discussed earlier, conventional methods of limit 

analyses have their own limitations in terms of applicability and cost effectiveness. As a 

result, simplified methods drew significant attention of structural design community to 

use these methods as an alternative tool over the conventional limit analysis techniques. 

The simplified methods are shown to be effective in terms computational effort and time. 

Significant efforts have been directed over the recent years in order to develop robust and 

simplified methods to estimate the limit loads. A simplified method is one, which is able 

to estimate the lower bound limit load of a general class of mechanical components and 

structures at a minimum number of linear elastic iteration without compromising with the 

quality of the result. 

In this thesis, significant effort have been directed to develop a robust and simplified 

method in order to estimate the limit load of a general class of mechanical components 

and structures. The proposed rna-tangent method makes use of statically admissible stress 

field based on a single linear elastic analysis or assumed fields to estimate the limit load. 

The formulation of the method is based on the variational principles in plasticity. The 

method is shown to be rapid and easy to implement in practice. 

The method is demonstrated through a number of mechanical components and structures 

ranging from standard example problems to typical pressure vessel component 

configurations. The results are in good agreement with the corresponding analytical and 

inelastic finite element analysis results. The detailed derivation of the rna-tangent method 

is presented in the following sections of this chapter. 
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4.3 Beyond the ma·Method 

The ma multiplier method was developed by Seshadri and Mangalaramanan (1997) on the 

basis of variational considerations. The ma multiplier depends on the parameters m0 and 

mL, and can be expressed as 

(4.1) 

The ma multiplier is an improved estimate of the analytical limit load multiplier 

compared to the bounds mL and m0. Although it is often found to be an improved lower 

bound, it could not be established as a lower bound in general. The issue of lower-

boundedness of ma has been discussed by Reinhardt and Seshadri (2003). Rewriting the 

expression for ma by normalizing with the (usually unknown) exact multiplier (m), the 

following equation can be obtained 

(4.2) 

where ( = m0 /mL, Ro = m0 /m and Ra = mafm. Due to normalization, Ra= 1 represents the 

boundary between the upper bound region (Ra > 1) and lower bound region (Ra < 1) as 

shown in Figure 4.1. The value of ma becomes imaginary when m 0 I mL > 1 + .J2 , as 

would be the case for components with notches and cracks. 
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Figure 4.1 Regions of lower and upper bounds of rna 

In Eq. (4.2), the exact multiplier (rn) for a component being analyzed is generally 

unknown. As well, rn° I rnL which is equal to ((o-e)max I o-ref ) is a measure of the 

theoretical stress-concentration factor of the notch. The region bounded by rn°(rnax), 

1 ~ rn ° I rn L ~ 1 + J2 and 1 ~ rn° I rn ~ 1 + J2 is designated as the "rna triangle". 

Due to the behavior of the two bounds in response to local stress concentration that was 

discussed above, the ratio rn° I rnL can become large for components with notches and 

cracks, and fall outside the domain where rna is defined. Therefore, the rna multiplier 

method is not applicable if a component falls outside the "rna triangle". In order to 

overcome these limitations, the rna-tangent method is developed in the present thesis. 

The rna-tangent method can take practically any value of rn° I rnL, which extended the 
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domain of application of the proposed rnctangent method beyond the "rna triangle". 

Therefore, the rna-tangent method is applicable to a general class of mechanical 

components and structures containing significant amount of peak stresses. The 

underlying concepts, formulation, and detail derivation of the proposed rna-tangent 

method is presented in the following sections of this chapter. 

4.4 The Constraint Map 

General pressure vessel components subjected to mechanical and thermal loads are made 

up of primary, secondary and peak stresses. The plot of rn°/rn versus rn°/rnL in the context 

of iterative EMAP (Elastic Modulus Adjustment Procedure) represents the trajectory 

signifying a progressive loss of constraint from an initial elastic state to a plastic collapse 

state (Seshadri and Adibi-Asl, 2007), which is called "constraint map" (Figure 4.2). 

It should be noted that the upper bound multiplier rn° is based on the overall statically 

admissible stress distribution in the component whereas the classical lower bound 

multiplier rnL depends on the maximum stress in the component. Therefore, rnL is 

sensitive to peak stresses whereas rn° is almost insensitive to peak stresses and hence is 

invariant while blunting of peak stresses. The ratio rn° lrnL represents a combination of 

primary, secondary and peak stresses. At the origin, the stresses are purely primary (limit 

state), and therefore load controlled. The ratio rn°1rnvl points to the existence of 

secondary and peak stresses, in addition to primary stresses. 
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Figure 4.2 The constraint map 

The ratio m0 /m represents a combination of primary and secondary stresses for which 

m01m>l. A trajectory that proceeds towards the origin with a continuous reduction in the 

magnitudes of m0/mL and m0/m, points to a corresponding reduction in the degree of 

"statical indeterminacy". In this context, the plot of m0/mL versus m0/m is a "constraint 

map" in which the m0, mL and mare essentially "scalar measures". 

Points A and B in Figure 4.2 represent the state of static indeterminacy of a given 

component or structure. The constraint trajectory AO and BB' 0 can be generated for a 

general class of mechanical components and structures. For most of the components BB' 

is nearly horizontal and represents the blunting of peak stresses. Therefore, m0 is almost 

invariant while mL increases as m0/mL decreases. If m0/mL is less than 1 +.fi, which 

corresponds to point A in Figure 4.2, the peak stress in the component is expected to be 

either zero or negligible. 
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According to Figure 4.2, if we proceed from B to B' along the constraint trajectory, the 

peak stress will be gradually redistributed due to their deformation controlled nature. The 

peak stress of the component is redistributed by suitably adjusting the elastic modulus of 

the elements, in a finite element discretization scheme, stressed above reference stress 

The modulus adjustment formula is as follows: 

(4.3) 

This formula describes how the elastic modulus at a location with the equivalent stress 

aeq (e.g., von Mises equivalent stress) is updated from i1h to the (i+lYh linear elastic 

iteration while plotting the constraint trajectory. It should be noted that the constraint 

trajectory and the location of point A, B, and B' (Figure 4.2) are problem dependent, i.e., 

it depends on the geometry, loading, and boundary conditions of the component under 

consideration. The formal basis for 1 + ..J2 will be discussed in the following sections of 

this chapter. 

4.5 Reference Two-Bar Model (TBM) 

General pressure vessel component configurations can be related to the reference two-bar 

structure by using the "integral mean of yield" criterion. Seshadri and Adibi-Asl (2007) 

have derived the "scaling equations" as follows (Figure 4.3): 
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Figure 4.3 Reference two-bar structure (Seshadri and Adibi-Asl, 2006) 

m~omp = m~ar (= _1_) 
mL,Comp mL,Bar JI 

L 1 and~ are the lengths of the bars, and u1 and u2 are the respective stresses. 

(4.4) 

(4.5) 

Once m~omp and m L,comp are determined on the basis of a linear elastic FEA, the value of 

A can be determined by using Eq. (4.4). Based on this A an estimate of mcomp can be 

obtained by using Eq. (4.5). It should be noted that where 0'1 is 

identified with the maximum equivalent stress, (o-Jmax. Therefore, the ratio (m~ar I m 8ar) 

will represent a combination of primary, secondary and peak stresses along the TBM 

trajectory. 
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4.6 The Concept of the ma-Tangent 

The ma multiplier method (Seshadri and Mangalaramanan, 1997) was developed on the 

basis of variational concepts in plasticity. The method has explicit dependency on the 

upper bound multiplier, m0, and the classical lower bound multiplier, mL. The upper 

bound multiplier, m0
, depends on the entire stress distribution in a component or structure 

whereas mL depends on the magnitude of maximum stress. Therefore, for components 

with sharp notches and cracks, the value of m0/mL will be high due to the presence of 

peak stresses. 

With respect to Figure 4.4, the following can be stated: 

(1) when m approaches mL, the domain of statically admissible m0 is bounded by the 

45-deg (R 0 (max)) line and the positive x-axis. 

(2) when m approaches m0, the domain of statically admissible m0 is represented by 

the line m=m0. 

(3) the exact solution (m) locus would lie somewhere between the positive x-axis and 

the 45-deg line ( R0 (max)). 

(4) the tangent to the Ra=l curve at the limit state (mL=m0=m) will locate the rna­

tangent, which can then be used to estimate the multiplier m. 
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y -axis 

Figure 4.4 The rna-tangent construction 

The determination of the rna-tangent multiplier is as follows. Equation (4.2) describes Ra 

as a function of two variables, R0 and (, where (=rn°/rnL. For Ra=1, Eq. (4.2) can be 

represented by a curve in two-dimensional space as shown in Figure 4.4. The slope of the 

tangent at the limit state, where rna = rn° = rnL = rn, can be obtained as: 

dRa 1 
- =1--
d( (=l .J2 (4.6) 

Therefore, the slope of the tangent ( R~ = 1) line at the converged limit state is 

Tan( e)= 0.2929. 

The equation corresponding to R~ = 1 can be obtained as: 
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mo 
-=1+(( -1) Tan(B) (4.7) 
m 

The exact limit load multiplier (m) for most of the practical components and structures 

being analyzed is not known a priori. For the rna-tangent method, R0 can be defined by 

making use of the tangent ( R~ -line in Figure 4.4) for any value of(. Both R0 and t; are 

greater than one, except at the limit state for which R0 = t; = 1. It should be noted that the 

reduction of m0 along the R~ = 1 trajectory implicitly accounts for the reference volume. 

Therefore, m0 will converge to the exact multiplier as the trajectory approaches to the 

origin. 

4. 7 Peak Stresses 

Secondary and peak stresses are set up by redundant kinematic constraints (or static 

indeterminacy) in a component. ASME Boiler and Pressure Vessel Codes (2007) 

explicitly recognize these stress and related constraint effects. Figure 4.5 shows the stress 

distribution in the ligament adjacent to the notch tip, where x-axis represents the distance 

ahead of the notch tip, and y-axis represents the equivalent stress. As can be seen from 

this figure, the magnitude of the peak stress (o-F) at the notch tip is considerably high; 

however, it is assumed that the peak stresses are very localized and that the following 

expression is valid (Adibi-Asl and Seshadri, 2007): 

(4.8) 

where A is the representative area on which o-F acts. 
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Figure 4.5 Stress distribution ahead of notch tip 

With respect to the constraint map, R~ = 1 line can be identified as shown in Figure 4.4. 

This line is tangential to the Ra = 1 curve at the origin (m0/m=1, m0/mL=1). The curve 

m 0 1+A 
-;;; 

2
..Ji for the reference two-bar model (TBM) can also be located as shown in 

Figure. 4.4. 

4.8 Significance of ( * = 1 + J2 

The point D (Figure 4.4) can be determined by finding the intersection of the R~ = lline 

and the reference two-bar model equation, i.e., 

so 



m
0 

( ) 1+2 -=1+((-1)TanB= 
01 m 2v2 

1 1 
where A= -

2 
and Tan(B) = 1- r;:;. 

( v2 

(4.9) 

The intersection points work out to be ( * = 1.0 and 1 + J2. The R~ = 1 line represents a 

combination of primary and secondary stresses that exists in the pressure vessel 

components. On the other hand, the TBM trajectory represents the combination of 

primary, secondary and peak stresses. Therefore, at point D the peak stresses are 

negligible. 

4.9 The rna-Tangent Method 

Once the R~ = 1 line is identified, the value of m~ can be readily estimated by using the 

following relationship 

1 + 0.2929(( -1) 
(4.10) 

The slope of the R~ =I line is equal to Tan(O)= (1- ~).The value of m0 and (can be 

determined from statically admissible distributions obtained from linear elastic PEA. 

Two cases are considered next: 
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Case-1: ( ~ 1 + J2, (negligible peak stresses) 

For this case, point A (Figure 4.4) is assumed to lie on the R~ = 1 line. The value of m~ 

can be obtained from Eq. (4.10). This case usually applies to well-designed pressure 

vessel components with gentle geometric transitions. 

Case-II: ( > 1 + ..fi, (presence of peak stresses) 

This case applies to components that develop flaws or cracks in service, or to components 

with sharp notches. The aim here is to blunt the peak stresses prior to evaluating m~ . 

With respect to Figure 4.4, the initial linear elastic FEA locates point B on the R~ = 1 

m? 
line and point B' on the TBM locus corresponding to Si = -'-. The subscript "i" refers 

mL,i 

to the initial point Band B'. The calculation procedure is as follows: 

1. Perform a linear elastic analysis. 

2. Locate point B and B'. Point B represents the combination of primary and 

secondary stresses whereas point B' represents the combination of primary, 

secondary and peak stresses. 

3. Construct a horizontal line from point B to B" signifying an invariant m? 

(blunting of peak stresses). Designate the value of m0/mL at B" as (j, which can 

be obtained by solving the equation 
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0 ( 2 +1 
m ; = 1 + 0.2929((; -1) = ---=-1 -
m 2(1 

(4.11) 

The roots ofEq. (4.11) are 

(4.12) 

where C = 0.2929{(; -1) 

4. The value of m: can be evaluated by the equation 

0 
T m . 

m = ' 
a 1 + 0.2929(( f -1) 

(4.13) 

For some geometric transitions for which ( > 1 + .J2 , redistribution of secondary stresses 

could occur along with peak stresses. In such cases, the value of m ;0 is not constant 

during the blunting of peak stresses, and there is a gradual reduction in its magnitude. 

These cases are usually attributed to components undergoing highly localized plastic flow 

such as beam and frame structures. In this thesis, all the problems are solved by assuming 

a constant value of m~ . 

4.10 Applications 

A number of example problems, ranging from simple to relatively complex geometric 

configurations, are worked out in this section to demonstrate the proposed rna-tangent 

method. The results obtained from the proposed method are compared with those 

obtained from the corresponding analytical and inelastic finite element analysis results. 
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4.10.1 Thick Walled Cylinder 

A thick walled cylinder with inner radius, R=65 mm (2.56 in.) and wall thickness, t=25 

mm (0.984 in.) is modeled in plane-strain condition. The modulus of elasticity of the 

material is 200 GPa (29x 106 psi) and yield strength is 300 MPa (43.5x 103 psi). The 

cylinder is subjected to an internal pressure of 50 MPa (7.25x 103 psi). 

The finite element model of the cylinder is developed in plane-strain condition by taking 

advantage of symmetry. The geometry and finite element model of the cylinder is shown 

in Figure 4.6. Linear elastic FEA for this problem leads to a statically admissible stress 

distribution, on the basis of which m£=1.702 and m0=2.264. The corresponding (=1.330 

lies within the rna-triangle. Using Eq. (4.10) the value of the limit load multiplier is 

m~ =2.065. Elastic-plastic FEA estimates the limit load multiplier mNFEA =2.254. The 

results are shown in Table 4.1. 

(a) (b) 

Figure 4.6 Thick walled cylinder (a) Geometry (b) Finite element model (plane strain) 
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Table 4.1 Limit load multipliers for thick walled cylinder 

Method m fflAnalytical 

Linear elastic FEA 2.264 1.702 1.330 2.065 2.254 2.255 

* Analytical result from (Mendelson, 1968) 

4.10.2 Plate with a Hole 

Consider next a thin plate with a hole (Figure 4.7) with the following dimensions: plate 

width, 2W=150 mm (5.905 in.); length, 2L=300 mm (11.811 in.); hole radius, r=20 mm 

(0.787 in.). Applied load in the vertical direction is p=100 MPa (14.5x 103 psi). The 

material properties are as follows: yield strength, cry=l50 MPa (21.75x 103 psi); modulus 

of elasticity, £=150 GPa (21.75x 106 psi), and Poisson's ratio, v=0.3. 

p 

r 

2L 
I J / / / 

2W 

p 

(a) (b) 

Figure 4.7 Plate with a hole (a) Geometry (b) Finite element model (plane stress) 
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Table 4.2 Limit load multipliers for plate with a hole 

Method m 

Linear elastic PEA 1.416 0.527 2.604 0.963 1.099 

Linear elastic PEA leads to the location of point B (Figure 4.4). The value of m?=I.416, 

mL,i =0.527 and ~i =2.687. Since ~i > 1 + .J2, peak stresses are present in the component. 

~1 is evaluated so that m 0 at B and B"' are equal (Eq. (4.12)). The value of ~1 =2.604. 

The m~, based on ~1 , as obtained from Eq. (4.13), is 0.963. The corresponding elastic-

plastic estimate is 1.099. The results are shown in Table 4.2. 

Convergence study has been performed for this example problem to verify the sensitivity 

of the m~ estimate with respect to the mesh density. It was observed that the current 

result changes within the range of 1 to 3% while using relatively coarser or finer mesh. 

4.10.3 Indeterminate Beam 

An indeterminate beam (Figure 4.8) with length, L= 508 mm (20 in.); height, h=25.4 mm 

(1 in.) and width, w=25.4 mm (1 in.) is modeled. The modulus of elasticity of the 

material is 206.85 GPa (30x 106 psi) and yield strength is 206.85 MPa (30x 103 psi). The 

beam is subjected to uniformly distributed load of 1.0 MPa (145 psi). 

An initial linear elastic finite element analysis is performed. From the results of the initial 

linear elastic PEA, m0=2.648 and mL=0.636 is evaluated. Since G=4.164 is greater than 
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1 + .J2, significant amount of peak stresses are present in the component. Now, (
1 

is 

evaluated so that m0 atB and B" are equal (Eq. (4.11)). The value of (
1

= 3.573; and the 

value of m~ based on (
1

, as obtained from Eq. (4.13), is 1.510. Then a complete elastic-

plastic finite element analysis is performed, which gives the limit load multiplier mNFEA = 

1.538. The analytical solution of the problem gives the limit load multiplier mAnalytical = 

1.510. The analysis results are tabulated in Table 4.3. 

Table 4.3 Limit load multipliers for indeterminate beam 

Method m mAnalytical 

Linear elastic FEA 2.648 0.636 3.573 1.510 1.538 1.510 

t Analytical result from (Mendelson, 1968) 

~h 
w 

(a) 

(b) 

Figure 4.8 Indeterminate beam (a) Geometry (b) Finite element model (plane stress) 
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4.10.4 Unreinforced Axisymmetric Nozzle 

In this example, an axisymmetric cylindrical nozzle on a hemispherical head (Figure 4.9) 

is modeled. Inside radius of the head is R=914.4 mm (36 in.), and the nominal wall 

thickness is t=82.55 mm (3.25 in.). Inside radius of the nozzle is r-136.525 mm (5.375 

in.) and nominal wall thickness is tn=25.4 mm (1 in.). The required minimum wall 

thickness of the head and the nozzle are t,.=76.835 mm (3.025 in.) and tm=24.308 mm 

(0.957 in.), respectively. 

(a) (b) 

Figure 4.9 Unreinforced nozzle on a hemispherical head (a) Geometry (b) Finite element 

model (axisymmetric) 
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Table 4.4 Limit load multipliers for unreinforced nozzle 

Method m 

Linear elastic FEA 1.847 0.896 2.061 1.410 1.672 

The modulus of elasticity of the material is 262 GPa (38x 106 psi) and yield strength is 

262 MPa (38x 103 psi). The hemispherical head is restrained at the vessel end, away from 

the nozzle, in the meridional direction but allowed to move in the radial direction. The 

structure is subjected to an internal pressure of 24.132 MPa (3500 psi). 

From the results of the initial elastic FEA, m0=1.847 and m£=0.896 is evaluated. Since 

G=2.061 is less than 1 + J2, therefore peak stresses are either negligible or zero. The 

value of m~ is obtained from Eq. (4.10) as 1.410. The elastic-plastic finite element 

analysis gives the limit load multiplier mNFEA = 1.672. The analyses results are tabulated 

in Table 4.4. 

4.10.5 Reinforced Axisymmetric Nozzle 

A reinforced axisymmetric cylindrical nozzle on a hemispherical head is considered here. 

Inside radius of the head is R=914.4 mm (36 in.), and nominal wall thickness is t=82.55 

mm (3.25 in.). Inside radius of the nozzle is r=l36.525 mm (5.375 in.) and nominal wall 

thickness is tn=25.4 mm (1 in.). The required minimum wall thickness of the head and the 

nozzle are t,.=76.835 mm (3.025 in.) and tm=24.308 mm (0.957 in.), respectively. 

The nozzle is reinforced with an appropriate reinforcement scheme. The schematic 

diagram and typical finite element mesh of the model is shown in Figure 4.10. The 
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geometric transitions of the reinforcement are modeled with fillet radius, r 1=l0.312 mm 

(0.406 in.), r2= 83.312 mm and r3= 115.214 mm (4.536 in.). The other dimensions 

include, T2=54.61 mm (2.15 in.) and 8=45°. The distribution of reinforcement is bounded 

by the reinforcement zone boundary specified by the circle of radius, Ln= 143.51 mm 

(5.65 in.). The other geometric dimensions are the same as the previous example. 

The modulus of elasticity of the material is 262 GPa (38x 106 psi) and yield strength is 

262 MPa (38x 103 psi). The hemispherical head is restrained at the vessel end, away from 

the nozzle, in the meridional direction but allowed to move in the radial direction. The 

structure is subjected to an internal pressure of 24.132 MPa (3500 psi). 

r 

(a) (b) 

Figure 4.10 Reinforced nozzle on a hemispherical head (a) Geometry (b) Finite element 

model (axisymmetric) 
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Table 4.5 Limit load multipliers for reinforced nozzle 

Method m 

Linear elastic FEA 1.891 1.176 1.608 1.605 1.874 

From the results of the initial elastic FEA, m0=1.891 and mL=l.176 is evaluated. Since 

(;=1.608 is less than 1 + .J2, therefore peak stresses are either negligible or zero. The 

value of m~ is obtained from Eq. (4.10) as 1.605. The elastic-plastic finite element 

analysis gives the limit load multiplier mNFEA = 1.874. The analysis results are shown in 

Table 4.5. 

4.10.6 Oblique Nozzle 

Limit load analysis of a vessel with oblique nozzle has been studied both experimentally 

and numerically by Sang. et al. (2005) to find the limit pressure. The geometry consists of 

a cylindrical vessel with a closed nozzle connected with an angle of 30 deg. The 

schematic diagram of the model and corresponding finite element model is shown in 

Figure 4.11. The inside diameter of the vessel D;=600 mrn (23.622 in.) and outside 

diameter of the nozzle d0 =325 mrn (12.795 in.). The wall thickness of both vessel and 

nozzle is t=6 mrn (0.236 in.). The length of the vessel is L=2400 mm (94.488 in.) and the 

length of the nozzle along the centerline 1=600 mrn (23.622 in.). The dimensions of the 

heads of the vessel and the nozzle are Hi=175 mrn (6.890 in.) and hi=106 mrn (4.173 in.), 

respectively. The saddles are located at a distance A=400 mrn (15.748 in.). 
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(a) 

(b) 

Figure 4.11 Oblique nozzle on a cylindrical vessel from Sang. et al. (2005) (a) 

Geometry, (b) Finite element model 
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Table 4.6 Limit load multipliers for oblique nozzle 

Method m mNFEA 

Linear elastic FEA 4.804 0.411 8.139 1.554 1.805 

Modulus of elasticity and yield strength of the material is 400 GPa (58.015x 106 psi) and 

339.4 MPa (49.226x 103 psi) respectively. The structure is subjected to an internal 

pressure of 1.0 MPa (145 psi). The finite element model of the geometry is developed 

with three dimensional isoparametric solid elements. Due to the symmetry about the 

longitudinal plane, one-half of the vessel was modeled. 

An initial linear elastic finite element analysis is performed. From the results of the initial 

elastic FEA, m0=4.804 and mL=0.411 is evaluated. Since (1=11.688 is greater than 

1 + J2 , therefore significant amount of peak stresses are present in the structure. Now, 

(
1 

is evaluated so that m0 at Band B" are equal (Eq. (4.11)). The value of (
1

= 8.139 

and the value of m: based on (
1

, as obtained from Eq. (4.13), is 1.554. Then a complete 

elastic-plastic finite element analysis is performed, which gives the limit load multiplier 

mNFEA = 1.805. The results are summarized in Table 4.6. 

4.11 Lower Roundedness of the m~ - Multiplier 

The detailed derivation of the rna-tangent method and its application to practical complex 

three dimensional mechanical component configurations have been presented in the 

previous sections of this chapter. The method makes use of the "limiting tangent" in 
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order to relate the initial elastic state of a component or structure to that of the exact limit 

state. The proposed method is developed as a viable tool for estimating the limit load of a 

general class of mechanical components and structures by using a single linear elastic 

analysis. The limit load multiplier rn~ is evaluated by making use of the limiting tangent; 

upper bound multiplier rn° and classical lower bound multiplier rnL. All necessary 

information can be extracted from the initial linear elastic analysis. The limiting tangent 

approximates the value of rn°1rn with respect to a give value of rn°1rnL. 

Several example problems are worked out in the previous section of this chapter, ranging 

from simple to relatively complex geometric configurations, and the results are found to 

be lower bound to the corresponding analytical and inelastic finite element analysis 

results. The exact locations of rn°1rn for all of the example problems are shown on the rna­

tangent plot in Figure 4.12. It should be noted that the value of rn is calculated on the 

basis of inelastic finite element analysis results. In Figure 4.12, the limiting tangent line 

essentially represents the value of rn ° I rn~ for any component under consideration. It 

could be observed from the plot that the value of rn° I rnNFEA, for different components, 

lies under the limiting tangent line. 

Therefore, it is clear from the Figure 4.12 that the limit load estimated by the proposed 

rna-tangent method is lower bound to the inelastic finite element analysis results for all 

worked out examples. Therefore, the proposed method is expected to give lower bound 

solution to the exact limit loads for a general class of mechanical components and 

structures. 
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Figure 4.12 The location of different components, on the rna-tangent plot, based on 

inelastic FEA results. 

4.12 Discussion 

The estimates of m~ for all the worked out example problems are found to be lower 

bound to the corresponding analytical or inelastic finite element analysis results. With 

reference to Figure 4.4, points such as B' on the two-bar model (TBM) locus are 

indicative of the existence of peak stresses and therefore, convexity (viewed from the 

origin) of the linear elastic stress distribution. This is the case for ; > 1 + .J2 . For values 
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of ' less than 1 + .J2, the peak stresses are either zero or negligible. The aspect of 

convexity of stress distribution is a possible explanation for lower bound values of limit 

load multiplier rn~ . 

In recent times, inelastic finite element analysis has been successfully used to solve 

complex problems. For three dimensional nonsymmetric problems, however the 

computational time can be excessive. Furthermore, computational issues associated with 

volumetric and shear locking can arise. Iterative EMAP has been shown to converge 

within 10 iterations to an acceptable limit load, and has recently found applications in 

non-cyclic methods for plastic shakedown determination (Adibi-Asl and Reinhardt, 2008) 

and fitness-for-service (FFS) assessments. 

4.13 Conclusion 

Simplified methods are shown to be very useful in determining the limit loads of 

mechanical components and structures. These methods are easy to implement in practice 

and overcomes the potential difficulties encountered in conventional inelastic finite 

element analysis. The rna-tangent method is proposed as a simplified tool to estimate the 

limit load for a general class of mechanical components and structures. The phrase "rna­

tangent" refers to the use of the limiting tangent that relates the initial elastic state of a 

component or structure to that of the exact limit state. A simple expression is deduced 

that enables the rapid determination of limit loads. 
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By using the proposed method, reasonably accurate estimate of limit load can be obtained 

on the basis of a single linear elastic analysis. The proposed method is applied to 

components and structures including standard example problems as well as typical 

pressure vessel component configurations. The results obtained are in reasonably good 

agreement with the respective analytical and elastic-plastic finite element analysis results. 

The method is suitable for Level-2 "fitness-for-service" (FFS) assessments of mechanical 

components and structures, which will be discussed in Chapter 7 of this thesis. 

4.14 Closure 

A new and simplified method, called the rna-tangent method, has been developed in this 

chapter of the thesis. The theoretical background, formulation and detail derivation of the 

proposed method is presented in a systematic way. The method is shown to be able to 

estimate the limit load of a general class of mechanical components and structures using a 

single linear elastic analysis. The current form of the method is applicable to components 

and structures without sharp notches or cracks. The method has been extended in the next 

chapter of this thesis to estimate the limit load of components and structures containing 

crack-like flaws. 
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CHAPTERS 

ANALYSIS OF CRACKED COMPONENTS 

5.1 Introduction 

Determination of load carrying capacity is an important step in integrity assessment of 

mechanical components and structures. The load carrying components and structures 

generally fail due to either excessive yielding or dominant fracture. In case of 

components with crack-like flaws , failure can be due to either ductile tearing (net-section 

collapse) or brittle fracture. Net section collapse becomes more important in case of high 

toughness materials where brittle fracture is unlikely. On the other hand, brittle fracture 

becomes very important in case of materials with high strength. Linear elastic fracture 

mechanics (LEFM) is no longer valid in this case and a nonlinear formulation must be 
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considered. However, both modes of failure must be taken into account in order to assess 

the integrity of components and structures containing crack-like flaws. 

Limit analysis is performed in order to determine the load carrying capacity of a 

component or structure. Closed form solutions for determination of limit loads of cracked 

bodies are limited to simple geometric configurations and loading conditions. For 

complex situations, numerical methods such as finite element method are more 

appropriate. Inelastic finite element analysis is extensively used for complex geometric 

configurations and loading conditions; however, it can often be expensive in terms of 

computational effort and time. 

For small-scale yielding at the crack tip, the load-deflection behavior is linear, and 

therefore, linear elastic fracture mechanics (LEFM) is applicable in this case. When the 

plasticity spreads around the crack tip and significant plastic deformation occurs, the 

concept of limit load becomes more appropriate. Therefore, any effort directed towards 

developing robust and simplified methods that are cost effective and reasonably accurate 

would be of importance from integrity assessment standpoint. 

Extensive investigations have been carried out over the past few decades in order to 

assess the integrity of in-service components and structures containing flaw or damage. 

Some of the available practices and procedures are API 579 (2000), R5 and R6 procedure 

(2004) and SINTAP (1999). These procedures are mostly semi-empirical and obtained 

from numerous experimental data. In order to perform more accurate assessment, 

advanced numerical simulation and analysis techniques need to be incorporated. This will 

facilitate more accurate modeling and analysis of the real-life scenario. 
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In this chapter of the thesis, a simplified method is proposed in order to estimate the limit 

load of components and structures containing crack-like flaws. The proposed simplified 

method is an extension of the rna-tangent method. A reasonably accurate estimate of the 

limit load can be obtained by using a single linear elastic finite element analysis. The 

method is applied to a number of cracked component configurations including 

component with multiple cracks and pipe with extended inner axial crack. The results 

compare well with those obtained from the conventional inelastic finite element analysis. 

5.2 Integrity Assessment of Cracked Components and 

Structures 

Integrity assessment of mechanical components and structures is an effort to assess 

whether a structure is fit to withstand the service conditions safely and reliably 

throughout its predicted lifetime. The philosophy behind the design of any structural 

component is to ensure that the strength of the material, of which the component is made 

of, is higher than the maximum applied stress in service. If the former appears to be 

greater than the latter, then the component is considered to be fit for service, otherwise, 

modification in design or the use of another material with a higher strength is required to 

be considered. 

The fracture mechanics based fitness-for-service (FFS) assessment enables the 

assessment of crack-like flaws in order to ensure the structural integrity. FFS can be used 

to demonstrate whether a given flaw can be left as it is and so avoid unnecessary repairs 

or replacements. In order to perform the integrity assessment of components and 
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structures containing crack-like flaws, it is required to obtain the detail material data, 

estimate applied as well as residual stresses either experimentally or by simulated 

modeling, detect size and location of the flaw in the structure by non-destructive testing, 

and finally assess the fitness of the structure for continued service. 

In order to address the brittle fracture, assessment needs to be performed that requires the 

information about the size and shape of the existing flaws, material tensile properties, 

fracture toughness and applied stress. To carry out a brittle fracture assessment, the above 

information should be implemented into one of the available assessment procedures, e.g., 

failure assessment diagram (FAD). The outcome of the assessment is normally presented 

as maximum tolerable crack-like flaw size, permissible applied load and minimum 

fracture toughness for the material used. 

In order to perform the integrity assessment of components and structures containing 

crack-like flaws, the following two criteria needs to be considered: 

• 

• 

Susceptibility to brittle fracture: A cracked component or structure is prone 

to brittle fracture if the applied loading exceeds materials resistance to brittle 

fracture. This phenomenon is pronounced in case of components made up of 

high strength material. 

Susceptibility to plastic collapse: A cracked component or structure is 

susceptible to local plastic collapse if the reference stress on the ligament 

ahead of the crack exceeds a factor of yield or flow stress. This phenomenon 

occurs in case of high toughness material. 
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5.2.1 Failure Assessment Diagram (FAD) 

The failure assessment diagram (FAD) is used for the evaluation of components and 

structures containing crack-like flaws. The FAD gives a technically based assessment 

procedure for the cracked components where the failure of the structure is measured by 

using two distinct criteria i.e., brittle fracture and plastic collapse. When the material is 

brittle in nature (high strength material) and the flaw size is relatively small, then brittle 

fracture is the possible mode of failure of the component. 

On the other hand, when the material is ductile in nature (high toughness material) and 

the flaw size is relatively large, then plastic collapse (ductile tearing) is the possible mode 

of failure of the component. In order to assess the integrity of the component or structure 

containing crack-like flaws, both modes of failure needs to be considered and addressed 

properly. 

In order to perform the integrity assessment of components and structures containing 

crack-like flaws, the results from a stress analysis (urer), stress intensity factor (K1) and 

limit load solutions, the material yield strength (uy) and fracture toughness (K1c) are 

combined to calculate a toughness ratio (Kr) and load ratio (4). These parameters are 

used in the FAD to assess the cracked components and structures. 

The failure assessment diagram (FAD) was first proposed in R6 procedure (Harrison et 

al., 1976) for integrity assessment of structures containing crack-like defects. The FAD 

method uses two parameters, toughness ratio Kr and load ratio Lr, in order to predict the 

failure of cracked component, which are defined by 
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Kr=K!Kmat 
Kl 

(5.1) <=> K =-
r K/C 

Lr = P / PL 
O'ref 

(5.2) <=> L =-r 
O'y 

where Kr is the ratio of the linear elastic stress intensity factor (K) and the fracture 

toughness of the material (Kmar) , and Lr is the ratio of the applied load (P) and limit load 

(PL) of the structure. By evaluating these two parameters using Eq. (5.1) and Eq. (5.2), 

failure could be avoided if the point (Kr, Lr) lies within the failure assessment diagram 

(safe region) as shown in Figure 5.1. 

1.0 

0.5 

0 

Brittle Fracture 

-- -- ----------- --------... 
/ 

Assessment 
Point 

0.5 

Unsafe Region 

Safe Region 

1.0 

Failure Assessment 
Diagram Envelope 

Plastic Collapse 

Figure 5.1 Failure assessment diagram (FAD) 
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To conduct a brittle fracture assessment, both brittle fracture and plastic collapse 

parameters are implemented in the failure assessment diagram (FAD). This is considered 

to be an essential tool in order to assess the integrity of components or structures 

containing crack like flaws. Both failure modes (brittle fracture & ductile tearing) should 

be considered for fracture evaluation (structural integrity assessment). Note that the 

failure assessment curves are independent of geometry and material strain-hardening 

properties (Ainsworth and O'Dowd, 1995). 

5.3 Estimation of Limit Load for Cracked Components 

The materials generally used for pressure vessel construction are sufficiently ductile. 

Therefore, the number of catastrophic failure by brittle fracture is very small. However, 

the possibility of brittle fracture in large complex structures must be taken into account, 

and assessment should be performed using appropriate assessment method. Generally, 

brittle fracture occurs in a pressurized component or structure due to the presence of 

residual stresses and I or high triaxiality at the ligament ahead of the crack-tip as the 

pressure vessel materials are generally sufficiently ductile. On the other hand, plastic 

collapse (ductile tearing) is the possible mode of failure if the material is sufficiently 

ductile. Therefore, limit load plays an important role in the integrity assessment of 

components or structures containing crack-like flaws. 

74 



5.3.1 Blunting of Peak Stresses 

Secondary and peak stresses are set up due to static indeterminacy in a component or 

structure. ASME Boiler and Pressure Vessel Code (2007) explicitly recognize these stress 

and related constraint effects. Figure 5.2 shows the stress distribution in the ligament 

adjacent to the crack tip, where x-axis represents the distance ahead of the crack tip, and 

y-axis represents the equivalent stress. 

As can be seen from this figure, the magnitude of the peak stress (a F) at the crack tip is 

considerably high; however, it is assumed that the peak stresses are very localized and 

that the following expression is valid (Adibi-Asl and Seshadri, 2007) 

(5.3) 

where A is the representative area on which a F acts. 

An explanation of this concept is presented by Adibi-Asl and Seshadri (2007). The 

shaded area in Figure 5.2 represents the elastic analysis based secondary stresses (Q) that 

are essentially self-limiting, and tend to redistribute around the redistribution node (R­

Node) (Seshadri, 1991). Therefore, theoretically it does not have any effect on the limit 

load of a component. The primary stresses, which are "load-controlled" in nature, do not 

redistribute upon plastic-deformation or inelastic action, as shown in Figure 5.2. The 

following section is dedicated to address the treatment of peak stress ahead of the crack 

tip in the context of limit load determination. 
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Figure 5.2 Stress distribution ahead of crack tip 

The stress distribution, ahead of a crack, based on linear elastic analyses can be 

represented by the plots as shown in Figure 5.2. By modifying the elastic modulus of the 

material around the crack tip (i.e., singular elements that surrounded the crack tip in a 

finite element discretization scheme), stress distributions can be plotted as shown in 

Figure 5.3. In this figure, Es is the modified value of elastic modulus around the crack tip. 

At a specific value of E s = E ; , the stress distribution ahead of crack becomes almost 

horizontal; this means that the magnitude of stress gradient reaches a minimum, and the 

effect of peak stresses becomes small. Numerical simulation of different crack 

configurations shows that E s = E 0 /3 is a good choice for modifying the crack tip 

elements. This also can be explained as follows (Adibi-Asl and Seshadri, 2007): 
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Consider a crack configuration (Figure 5.3) for which the stresses at the crack tip can be 

expressed as 

KJ 
where (J max = ~ 

-v2m-

configuration factor. 

(J 

Crack 

(J= = (JYY = (Jmax (5.4) 

--7 Plane stress 

--7 Plane strain 

Yun~ 
---====-- and CY n is remote field stress and Y is crack 
~2Jr r 

------

Figure 5.3 Elastic stress distribution ahead of the crack tip for different values of Es 

(Adibi-Asl and Seshadri, 2007) 
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The above stresses are the principal stresses at the crack tip. The von-Mises criterion can 

be written as 

(5.5) 

Substituting the stresses from Eq. (5.4) into Eq. (5.5), the following expression can be 

obtained 

(5.6) 

where A= 1 for plane stress and A= (l-2v) for plane strain condition. 

fYref 

Elastic stress distribution 

r 

Figure 5.4 Elastic stress distribution ahead of the crack tip (Adibi-Asl and 

Seshadri, 20007) 
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The average stress along the crack orientation in the singularity domain can be calculated 

as 

(5.7) 

Referring to Figure 5.4, at r = rs the equivalent stress is equal to the reference stress; 

thus, 

aeq =A a max (5.8) 

Making use of Eq. (5.8), the relationship between the modified elastic modulus (Es) and 

initial modulus of elasticity (Eo) can be written as 

(5 .9) 

The value of parameter "q" can be within the range of 1 ~ q ~ 2 (Adibi-Asl and Seshadri, 

2006). Applying the values q = 1 and q = 2, the Es I E0 will vary between 0.5 and 0.25, 

respectively. Based on numerous FEA on different crack configurations Es = E0 13 

works out to be a good choice for modifying singular elements around a crack tip. 

The modified elastic modulus of the singular elements around the crack tip can be 

obtained as Es = E0 13. A linear elastic FEA with Es I E0 = 113 for all adjacent elements 
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around the crack tip and with Es = E 0 for all other elements of the component is carried 

out. The resulting parameters (rn° I rn, rn° I rnL) are used to locate B' (Figure 4.2). 

5.3.2 Simplified Method for Cracked Components 

Limit analysis is used to predict the load carrying capacity of cracked components and 

structures made up of sufficiently ductile material with high toughness. Local behavior of 

the structure is of considerable importance for components and structures with crack like 

flaws. Significant stress concentration is present at the crack tip. The peak stress due to 

the singular stress field needs to be blunted by artificially softening the material 

surrounding the crack tip, prior to applying the simplified method. 

In this chapter of the thesis, the rna-tangent method is extended in order to estimate the 

limit load of components and structures containing crack-like flaws. The proposed 

simplified method enables rapid determination of limit load based on a single linear 

elastic analysis. The method makes use of statically admissible stress field based on 

linear elastic finite element analysis. While using the rna-tangent method, blunting of 

peak stresses are suggested to be performed in two stages if necessary. The detailed 

procedure is outlined in the following section of this chapter. 

The steps to determine the limit load using the proposed rna-tangent method are as 

follows: once the R~ = 1 line is identified, the rn~ value can be readily estimated by 

using the following relationship 
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T m 
0 

m =-------
a 1 + 0.2929(( -1) 

(5.10) 

and (5.11) 

The slope of the R~ ~I line is equal to Tan(O)~ (1- Jz) . The value of m0 and (can be 

determined from statically admissible distributions obtained from linear elastic FEA. 

With reference to Figure 4.4, the limit load multiplier m~ can be evaluated as follows: 

Case-1: For 1.0 ~ ( ~ 1 + .J2, point A (Figure 4.4) is assumed to lie on the R~ = 1 line. 

The value of m~ can be obtained from Eq. (5.10). This case usually applies to pressure 

vessel components with negligible peak stresses. 

Case-II: For ( > 1 + .J2, point B (Figure 4.4) is assumed to lie on the R~ = 1 line. This 

case applies to components that develop flaws in service, or to components with sharp 

notches. The aim here is to blunt the peak stresses prior to evaluating m~ . With respect to 

Figure 4.4, the initial linear elastic FEA locates point B on the R~ = 1 line and point B' 

m? 
on the TBM locus corresponding to ( ; = -'-. The subscript "i" refers to the initial point 

mL,i 

B and B'. The calculation procedure is as follows: 

1. Perform a linear elastic analysis. 
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2. Locate point B and B' . Point B represents the combination of primary and 

secondary stresses whereas point B' represents the combination of primary, 

secondary and peak stresses. 

3. Construct a horizontal line from point B to B" signifying an invariant 

(blunting of peak stresses). Designate the value of m0/mL at B" as (j, which can 

be obtained by solving the equation 

0 s2+1 
mi = 1 + 0.2929(si -1) = ____:._!-
m 2sf 

(5.12) 

The roots of Eq. (5.12) are 

(5.13) 

where c = 0.2929(si -1) 

4. The value of m~ can be evaluated by the equation 

m? mr= , 
a 1 + 0.2929(s f -1) 

(5.14) 

5.3.3 Proposed Methodology 

To estimate the limit load of cracked components and structures using the m11-tangent 

method, the following procedure is proposed. In order to blunt the peak stresses due to 

the singular stress field at the crack tip, the elastic modulus of the singular elements 

around the crack tip in a finite element discretization scheme are modified as Es=Eo/3, 
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where Eo is the initial modulus and Es is the modified modulus for the singular elements, 

while the rest of the component is specified a modulus of E0 . 

From the statically admissible stress distribution obtained from a linear elastic FEA, 

inelastic parameters m0 and ( are obtained by using Eq. (5.IO) and Eq. (5.11), 

respectively. If ( is less than I+ .J2, the limit load multiplier ( m~) can be determined 

directly by using Eq. (5.IO). However, if ( is greater than I+ .J2, a second stage of 

softening is incorporated, and the value of m~ is obtained by using Eq. (5.I4). It should 

be noted that BB" (Figure 4.4) is designated in this thesis as "peak stress correction". In 

this section, we calculate limit load using three procedures: 

• Procedure-1: Elastic analysis with Es=Eo and peak stress correction. This 

procedure is outlined in the previous section. 

• Procedure-2: Elastic analysis with Es=Eo/3 (singular elements) with no 

peak stress correction. This procedure simply modifies the singular elements 

without peak stress correction. 

• Procedure-3: Elastic analysis with Es=Eo/3 (singular elements) with peak 

stress correction. This procedure modifies the singular elements and makes 

the peak stress correction as outlined in the previous section. 

A number of example problems are worked out in order to demonstrate the above 

mentioned procedures and the results are compared with those obtained from the inelastic 

finite element analysis. 
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5.4 Applications 

The determination of limit load of cracked components using the proposed method is 

demonstrated in this section by working out several example problems. The finite 

element model for all the examples are developed using ANSYS (2008). Inelastic finite 

element analyses are performed by assuming elastic-perfectly plastic material model. 

While modeling the cracked components using the finite elements, singular stress field 

ahead of the crack-tip is simulated by using singular elements. 

5.4.1 Compact Tension (CT) Specimen 

The compact tension specimen, which contains an axial force and a moment on the 

ligament ahead of the crack, is widely used in fracture toughness testing. A compact 

tension specimen (Figure 5.5) having a width W=100 mm (3.937 in.), height H=125 mm 

(4.921 in.), thickness t=3 mm (0.118 in.) and crack length a=46 mm (1.811 in.) is 

considered. The modulus of elasticity of the material is 206.85 GPa (30x 106 psi), yield 

strength is 206.85 MPa (30x 103 psi). and Poisson's ratio is 0.3. The specimen is 

subjected to a tensile load of 5 kN (0.725 psi). 

Due to the symmetry of geometry, loading and boundary conditions, one half of the 

specimen is modeled in plane stress condition. The finite element model is developed 

using eight noded isoparametric quadrilateral elements with sixteen singular elements 

around the crack tip. Using the proposed methodology, limit load of the component is 

estimated as follows: 
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Figure 5.5 Compact tension specimen (a) Geometry (b) Finite element model (half of 

the specimen) 

Procedure- I: Linear elastic FEA for this component generates a statically admissible 

stress distribution, on the basis of which m? = 2.603, mL i = 0.292, and the corresponding 

?i is equal to 8.906. Now ?i > 1 + J2 is represented by point B, as shown in Figure 4.4. 

Using Eq. (5.13), ( 1 is evaluated such that m 0 at B and B" are equal. As a result, 

( 1 =6.477 and m~ based on ( 1 , obtained from Eq. (5.14), is 0.9996. 

Procedure-2: The singular stress field ahead of the crack tip is blunted by modifying the 

elastic modulus of the singular elements as Es=Eo/3, where Es is the modified elastic 

modulus of the singular elements and Eo is the modulus of the rest of the elements of the 
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component. On the basis of a linear elastic FEA, m?= 2.595, mLi= 0.494, and the 

corresponding (i = 5.258 is obtained. Using Eq. (5.10), the value of m~ based on (i is 

1.155. 

Procedure-3: The value of (i = 5.258 is obtained in Procedure-2, where (i > 1 + J2 as 

represented by point B, shown in Figure 4.4. Therefore, peak stress correction is needed 

in this case. Using Eq. (5.13), ( 1 is evaluated such that m0 at B andB" are equal. As a 

result, ( 1 = 4.260 and m~ based on ( 1 , obtained from Eq. (5.14), is 1.328. The 

corresponding elastic-plastic finite element estimate is 1.331. The results are shown in 

Table 5.1. 

Table 5.1 Limit load multipliers for compact tension specimen 

Procedure m 

Procedure-1 2.603 0.292 6.477 1.000 

Procedure-2 2.595 0.494 5.258 1.155 1.331 

Procedure-3 2.595 0.494 4.260 1.328 

5.4.2 Middle Tension Panel 

Consider a thin middle tension panel (Figure 5.6) with the following dimensions: width, 

2W=250 mm (9.843 in.); thickness, t=3 mm (0.118 in.); length, 2L= 600 mm (23.622 in.) 

and crack length, 2a=50 mm (1.969 in.). The plate is subjected to a remote tensile load of 

75 MPa (10.877x 103 psi). The modulus of elasticity of the material is 206.85 GPa 

(30x 106 psi), yield strength is 206.85 MPa (30x 103 psi) and Poisson's ratio is 0.3. Due 
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to symmetry, only a quarter of the plate is modeled. The finite element model is 

developed with eight noded isoparametric quadrilateral elements with sixteen singular 

elements around the crack tip. 

The model is first analyzed using Procedure- I. Based on the initial linear elastic FEA, 

the value of m?= 2.715, mL,;= 0.984 and the corresponding (;= 2.760 is obtained. As 

( ; > 1 + .J2, the peak stress correction is needed and therefore, the value of ( 1 is 

evaluated using Eq. (5.13) as 2.654. Based on ( 1 , the value of m~ is obtained from Eq. 

(5.14) as 1.829. 

p 

2L 

2W 
~ ~ 
~ X. 

X 

~ £z:tt ~ 

(a) (b) 

Figure 5.6 Middle tension panel (a) Geometry (b) Finite element model (quarter of the 

plate) 
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Table 5.2 Limit load multipliers for middle tension panel 

Procedure mo mL s T 
ma mNFEA 

Procedure- I 2.715 0.984 2.654 1.829 

Procedure-2 2.713 1.369 1.981 2.107 2.233 

Procedure-3 

** In this case, further peak stress correction is not needed since t; 
1 

< 1 + .J2 . 

In order to estimate the limit load based on Procedure-2, the singular stress field ahead of 

the crack tip is blunted by modifying the elastic modulus of the singular elements as 

explained in the previous example. From the initial linear elastic FEA, the value m? = 

2.713 and mL;=l.369 is obtained. The corresponding (;=1.981 lies within the ma-

triangle. Using Eq. (5.10) the value of the limit load multiplier is m~= 2.107. Elastic-

plastic FEA estimate the limit load multiplier mNFEA =2.233. It should be noted that 

Procedure-3 does not need to apply in this case as the value of (; < 1 + ..fi. The results 

are shown in Table 5 .2. 

5.4.3 Plate with Multiple Cracks 

A thin plate with multiple cracks (Figure 5.7) is considered in this example. The plate has 

one horizontal crack (length, 2a=20 mm (0.787 in.)) at the centre and four 45° inclined 

cracks (length, 2b=21.2 mm (0.835 in.)), symmetrically located on both sides of the 

horizontal and vertical lines of symmetry. The crack tips are spread vertically by c=30 

mm (1.181 in.) and horizontally by d=60 mm (2.362 in.). The plate has a width, W=200 

mm (7.874 in.); height, H=200 mm (7.874 in.) and thickness, t=3 mm (0.118 in.). 
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Figure 5.7 Plate with multiple cracks (a) Geometry (b) Finite element model (quarter of 

the plate) 

The modulus of elasticity of the material is 262 GPa (38x 106 psi), yield strength is 262 

MPa (38x 103 psi) and Poisson's ratio is 0.3. The plate is subjected to a remote tensile 

load of 75 MPa (10.878x 103 psi). Only a quarter of the plate is modeled by taking 

advantage of symmetry. 

Table 5.3 Limit load multipliers for plate with multiple cracks 

Procedure mo mL ' 
T 

ma mNFEA 

Procedure- I 3.376 1.112 2.840 2.194 

Procedure-2 3.369 1.389 2.426 2.377 2.663 

Procedure-3 3.369 1.389 2.423 2.378 
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The model is first analyzed using Procedure-!. Based on the initial linear elastic FEA, 

the value of m? = 3.376, mL.i = 1.112 and the corresponding ( ; = 3.036 is obtained. As 

( ; > 1 + .J2, the peak stress correction is needed and therefore, the value of ( 1 is 

evaluated using Eq. (5.13) as 2.840. Based on ( 1 , the value of m~ is obtained from Eq. 

(5.14) as 2.194. 

In order to estimate the limit load based on Procedure-2, the singular stress field ahead of 

the crack tip is blunted by modifying the elastic modulus of the singular elements as 

explained in the earlier example. From the initial linear elastic FEA, the value m? = 3.369 

and mL,i = 1.389 is obtained. The corresponding (; = 2.426 lies outside the rna-triangle. 

Using Eq. (5.10), the value of m~ based on ( ; is 2.377. 

Then the limit load is estimated using Procedure-3. The value of (; = 2.426 is obtained in 

Procedure-2, where (; > 1 + .J2. Therefore, peak stress correction is needed in this case. 

Using Eq. (5.13), ( 1 is evaluated as 2.423 and corresponding m~ obtained from Eq. 

(5.14), is 2.378. The corresponding estimate based on elastic-plastic finite element 

analysis is 2.663. The results are shown in Table 5.3. 

5.4.4 Pipe with an Extended Inner Axial Crack 

A pipe with an extended inner axial crack (Figure 5.8) is considered in this example. The 

radius to thickness ratio of the pipe is Rlt=2.5, the crack depth is a/t=0.4. The modulus of 

elasticity of the material is 262 GPa (38x 106 psi) and yield strength is 262 MPa (38x 103 
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psi). The structure is subjected to an internal pressure of 25 MPa (3.626x 103 psi). Only a 

half of the pipe is modeled in plane strain condition due to the symmetry of geometry, 

loading and boundary conditions. Singular elements are used to simulate the singular 

stress field ahead of the crack tip. 

The model is first analyzed using Procedure-!. Based on the initial linear elastic FEA, 

the value of m~= 3.979, mL,;= 1.077 and the corresponding ( ;= 3.695 is obtained. As 

( ; > 1 + .J2, the peak stress correction is needed and therefore, the value of ( 1 is 

evaluated using Eq. (5.13) as 3.274. Based on ( 1 , the value of m~ is obtained from Eq. 

(5.14) as 2.965. 

(a) (b) 

Figure 5.8 Pipe with an extended inner axial crack (a) Geometry (b) Finite element 

model (half of the pipe). 
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Table 5.4 Limit load multipliers for pipe with an extended inner axial crack 

Procedure 

Procedure- I 3.979 1.077 3.274 2.388 

Procedure-2 3.972 1.695 2.344 2.850 2.965 

Procedure-3 

** In this case, peak stress correction is not needed since s 
1 

< 1 + .J2 . 

In order to estimate the limit load based on Procedure-2, the singular stress field ahead of 

the crack tip is blunted by modifying the elastic modulus of the singular elements as 

explained in the earlier example. From the initial linear elastic FEA, the value m?= 3.972 

and rnL.i = 1.695 is obtained. The corresponding (; = 2.344 lies inside the rna-triangle. 

Using Eq. (5.10) the value of the limit load multiplier is rn~ = 2.850. Elastic-plastic FEA 

estimate the limit load multiplier mNFEA = 2.965. It should be noted that Procedure-3 does 

not need to apply in this case as the value of (; < 1 + .J2. The results are tabulated in 

Table 5.4. 

5.5 Discussion 

The underlying feature of the rna-tangent method is used in this chapter to develop a 

simplified method in order to estimate the limit load of mechanical components and 

structures containing crack-like flaws. By using the proposed method, reasonably 

accurate estimate of limit load of cracked components and structures can be obtained on 

the basis of a single linear elastic FEA. The proposed three procedures are applied to a 
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number of standard cracked component configurations. The capability of the method is 

further tested on more complicated practical component configuration. The results 

obtained are in good agreement with the respective inelastic FEA results. The method is 

suitable for level-2 "fitness-for-service" (FFS) assessment. 

5.6 Closure 

The rna-tangent method has been extended in this chapter in order to estimate the limit 

load of mechanical components and structures containing crack-like flaws. The method is 

demonstrated through a number of example problems and the results are compared with 

the corresponding inelastic FEA results. In the next chapter, a linear elastic analysis 

based method is proposed to categorize the elastic stresses in pressure vessel components 

and structures. The method is considered as an attractive alternative over conventional 

techniques e.g., stress linearization and interaction I discontinuity analysis. The proposed 

method is applicable to components and structures subjected to both mechanical and 

thermal loads. 
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CHAPTER6 

STRESS CATEGORIZATION OF PRESSURE 

COMPONENTS 

6.1 Introduction 

Design by analysis (DBA) using the ASME stress categorization approach (Code Section 

Ill (2007), Subsection NB and Code Section Vill, Division 2 (2007)) is a direct 

application of linear elastic analysis results. The ASME Boiler and Pressure Vessel 

(B&PV) Code Section lll (2007) (paragraph NB-3217 and Tables NB-3217-1 (for 

vessels) and NB-3217-2 (for piping)) and Section Vill Div. 2 (2007) (paragraph 5.2.2.2 

and Table 5.6 [2]) provide guidelines for classifying the elastic stresses that could be 

obtained by finite element analysis. In these guidelines, the stresses are sorted into 
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different categories and allowable limits are imposed for each respective category and 

defined combinations of the same in order to guard against distinct type of failure modes. 

Although these guidelines cover a wide range of pressure vessel components and 

structures, they are sometimes difficult to use for three dimensional components with 

complex geometry. 

Significant work has been reported over the decades in order to interpret the linear elastic 

stresses induced in pressure vessel components and structures. Kroenke (1974) developed 

a procedure to interpret two-dimensional stresses in axisymmetric structures along a 

predefined line called a stress classification line (SCL). Gordon (1976) proposed a 

procedure for evaluation of two-dimensional finite element stress resultants such that the 

evaluated stresses are comparable to the ASME Boiler and Pressure Vessel Code, Section 

ill (Nuclear Power Plant Components, Division 1, 1974) stress requirements. Marriott 

(1998) investigated the issue of decomposition of load and deformation controlled 

stresses by using linear elastic FEA. 

Seshadri and Marriott (1993) demonstrated that the reference stresses are load controlled 

stresses and are directly proportional to the applied loads. Seshadri and Marriott (1993) 

also attempted to relate the reference stress and limit load with the ASME stress 

categorization concepts. Hechmer and Hollinger (1997, 2000) have made significant 

contributions in developing the methods for categorization of the resultant stresses from 

various finite element analyses. Fanous and Seshadri (2006) implemented the 

redistribution node (r-node) method by using the elastic modulus adjustment procedure 

(EMAP) (Mackenzie et al., 1993), to identify the primary stresses in pressure vessel 

components. Stress classification lines or areas are not necessary in this method. 
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The categorization of linear elastic stresses in non-symmetric three dimensional 

components and structures is a challenging task despite the efforts mentioned above. In 

this thesis, a simplified method is proposed as an attempt to circumvent the difficulties in 

stress categorization of linear elastic stresses in complex three dimensional structures. 

The concepts underlying the rna-tangent method, as discussed in Chapter 4, are used 

herein to categorize the linear elastic stresses in pressure vessel components and 

structures. The proposed method is a simplified tool for achieving the categorization of 

elastic stresses in two or three dimensional components with complex geometry. 

The proposed simplified method is able to categorize the elastic stresses in pressure 

vessel components and structures, using a single linear elastic finite element analysis. The 

proposed method is based on approximate limit load multipliers and makes use of 

equivalent stresses (Tresca or von Mises) as a measure of the proximity to yield of the 

stress state or stress distribution. The proposed method is applicable to the components or 

structures subjected to both mechanical and thermal loads. The method is able to partition 

the elastic stresses into primary (P), primary plus secondary (P+Q), and peak (F) stress 

categories. The method is considered to be a direct and alternative approach over 

conventional approaches i.e., stress linearization and interaction I discontinuity analysis. 

The method is first demonstrated by an example, a torispherical head subjected to internal 

pressure and thermal load (temperature gradient across the thickness of the wall). The 

method is further applied to several practical pressure vessel components and structures 

ranging from simple to relatively complex geometric configurations. The results compare 

well with those obtained by the conventional techniques. Therefore, the proposed method 

can be used as a tool for the categorization of linear elastic stresses induced in pressure 
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vessel components and structures, especially three dimensional components with 

complex geometric and loading conditions. 

6.2 Stress Categories and Their Role in Pressure 

Component Design 

The ASME Boiler and Pressure Vessel Code (2007) can be used to design pressure 

vessels and piping systems by analysis. Design by analysis (DBA) using the ASME stress 

categorization approach is a direct application of the linear elastic results. The main idea 

behind the stress categorization concept is that each category of stresses and their 

selective combinations are associated with distinct type of failure modes. Appropriate 

stress limits are imposed on each of these categories and their selective combinations in 

order to guard against the respective failure modes. 

The ASME Boiler and Pressure Vessel Code (2007) provides guidelines for the 

classification of linear elastic stresses in pressure vessel components and structures into 

(a) primary, (b) secondary and (c) peak stress categories. The definition and basic 

characteristics of these stress categories and their role in practical pressure vessel 

component design is discussed below. 

(a) Primary Stress 

Primary stresses are set-up in a mechanical component or structure in order to equilibrate 

the applied external traction. The basic characteristic of the primary stress is that it is not 
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self-limiting. Primary stresses are set-up in a structure due to mechanical loads. Stresses 

developed by thermal load are not classified as primary stress. The definition of the 

primary stress that is spelled out in the Code (ASME B&PV Code, 2007) is as follows: 

Primary stress is any normal stress or a shear stress developed by an imposed 

loading which is necessary to satisfy the laws of equilibrium of external and 

internal forces and moments. 

Primary stresses are subdivided into three categories: general primary membrane (P m), 

local primary membrane (PL) and primary bending (Pb) stress. The general primary 

membrane stress is the average stress across the thickness of a component or structure 

developed due to the mechanical loads. This stress is free from the effect of structural 

discontinuities. The local primary membrane stress is the average stress across the 

thickness of a component or structure developed due to the mechanical loads, and 

includes the effect of structural discontinuities. 

The primary bending stress is the component of primary stress that is proportional to the 

distance from the centroid of the solid section, and is produced due to the mechanical 

loads. The local stress concentrations are not considered in the primary stresses. The 

primary stress limits are intended to prevent the plastic deformation and to provide a 

safety factor on the ductile bust pressure. If the primary stresses considerably exceed the 

yield strength of the material, the structure will be in the verge of collapse or, at least, in 

gross distortion. 
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(b) Secondary Stress 

Secondary stress is developed in a component or structure in order to satisfy the 

geometric compatibility conditions. Secondary stresses are generally developed in the 

region of gross structural discontinuities due to internal and external constraints produced 

by the mechanical loads, and also due to differential thermal loads. The local stress 

concentrations are not considered in the secondary stresses. The definition of the 

secondary stress that is spelled out in the Code (ASME B&PV Code, 2007) is as follows: 

Secondary stress is a normal stress or a shear stress developed by the constraint 

of adjacent material or by self-constraint of the structure. 

The basic characteristic of a secondary stress is that it is self-limiting. Local yielding and 

minor distortions can satisfy the conditions which cause the stress to occur and failure 

from one application of the stress is not to be expected. Secondary stresses are important 

for shakedown analysis. The primary plus secondary stress limits are intended to prevent 

the excessive plastic deformation leading to incremental collapse. 

(c) Peak Stress 

Peak stress is the highest stress in a component or structure produced by a notch or 

thermal gradient. The definition of the peak stress that is spelled out in the Code (ASME 

B&PV Code, 2007) is as follows: 
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Peak stress is that increment of stress which is additive to the primary plus 

secondary stresses by reason of local discontinuities or local thermal stress 

including the effects, if any, of stress concentrations. 

Peak stresses are generally developed in the region of local structural discontinuities. The 

basic characteristic of a peak stress is that it does not cause any noticeable distortion in 

the component or structure and is objectionable only as a possible source of a fatigue 

crack or brittle fracture. The cumulative usage factor from all cycles of primary plus 

secondary plus peak stress is limited to a specific value, less than or equal to one to 

prevent fatigue failure. 

6.3 Stress Categorization Approaches 

6.3.1 Traditional Methods 

Stress categorization m pressure vessel components and structures aims to isolate 

primary, secondary and peak stresses from the stress resultants of a linear elastic analysis. 

Traditionally, equilibrium and compatibility considerations between different elements of 

the component have been used for this purpose. Two of the methods that have been used 

to aid stress categorization are stress linearization and interaction I discontinuity analysis 

as per A-6200 of ASME B&PV Code, Section III (2007). 

Stress linearization has been used to extract stresses that are similar to those from 

discontinuity analysis on the basis of linear elastic PEA. The finite element analysis as 

such provides total stresses, which can then be partitioned into membrane, bending and 
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peak stresses by linearization through the thickness as depicted in Figure 6.1. The 

membrane and bending stresses correspond to the force and moment transmitted by the 

wall. The dotted lines that appear in Figure 6.1 represent the linearized stress component 

distribution obtained from FEA across the thickness of a section for a given loading 

condition. The method works well for simple geometries such as axisymmetric pressure 

vessels. However, for complex three-dimensional geometric conditions, it can be very 

difficult (though not impossible) to identify the appropriate location and orientation of the 

stress linearization path. It should be noted that linearization does not explicitly 

categorize the stresses; categorization is dependent upon the analyst's interpretation of 

the rules contained within the respective ASME B&PV Codes (2007). 

In a discontinuity analysis, the pressure vessel is decomposed into a finite number of 

interconnected blocks or elements. Primary stresses are then derived from the interacting 

forces and moments. Secondary stresses can be obtained by imposing displacement 

compatibility. Discontinuity analysis is particularly applicable to two dimensional 

axisymmetric pressure vessels. The method is generally not feasible for complex, 

asymmetric, three dimensional pressure vessels. 

Total stress 
M fromFEA 

p t p 

Figure 6.1 Finite element stress linearization 
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6.3.2 ASME Stress Categorization Procedure 

ASME Boiler and Pressure Vessel Code Section III (2007) and Section VIII Div. 2 

(2007) have provided guidelines to categorize linear elastic stresses based on the location, 

origin (e.g., pressure or thermal) and type (membrane, bending or peak) of the stresses. 

Each category of the stress is compared to the respective allowable limit. ASME has 

specified three different levels of allowable stresses, which are given as Sm, 1.5Sm, and 

3Sm, where Sm is the allowable "stress intensity" based upon the material properties at the 

design temperature (here, stress intensity is the same as two times the maximum shear 

stress). 

The main stress categories in pressure vessel components are general primary membrane 

(P m), primary local membrane (PL), primary bending (Pb), secondary (Q), and peak (F). 

ASME B&PV Code (2007) has provided allowable limit for each of these stress 

categories and their selective combinations: the primary membrane stress (Pm) is limited 

to Sm. the primary local membrane stress (PL) and primary membrane plus bending stress 

(PL+Pb) are limited to 1.5Sm, the primary plus secondary stress range (P+Q) is limited to 

3Sm, and the cumulative usage factor from all cycles of (P+Q+F) is limited to a specified 

value less than or equal to one. Therefore, in order to apply the appropriate Code (ASME 

B&PV Code, 2007) limits in practice, it is necessary to develop a clear procedure to 

partition the total stresses obtained from FEA (or any other rigorous analysis method) 

into these predefined ASME B&PV Code (2007) stress categories. 
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6.3.3 Equivalent Stress Method 

The ASME stress categorization guidelines work well for axisymmetric structures and 

thin shells. Guidelines have also been developed to address more complex three­

dimensional geometries and non-symmetric loadings and boundary conditions, as 

previously discussed by Hechmer and Hollinger (1997, 2000). However, the basis for the 

application of stress linearization is much weaker than for axisymmetric structures, and in 

practical terms, the placement of classification lines becomes much more difficult to 

justify. Stress linearization can account for plastic stress redistribution (i.e. the 

redistribution of stress from the elastic state if plasticity occurs) through the thickness, 

but not for plastic stress redistribution in the plane of the shell. Local "hot spots" of high 

stress, e.g. within the attenuation length of a particular geometric discontinuity, near lugs 

or nozzles, require experience from the analyst in placing classification lines, or a very 

conservative evaluation will result. It is well recognized that stress classification may 

produce ambiguous results (Section 5.A.3 (c) [2]). 

Alternative simplified concepts are utilized in the present work to categorize the elastic 

stresses induced in pressure vessel components and structures. The proposed method is 

based on approximate limit load multipliers and makes use of equivalent stresses (Tresca 

or von Mises) as a measure of the proximity to yield of the stress state or stress 

distribution. The proposed method is able to partition the elastic stresses into primary (P), 

primary plus secondary (P+Q), and peak (F) stress categories. It sidesteps some of the 

difficulties of the conventional stress categorization approaches, such as choosing 

suitable linearization locations. Therefore, the proposed method can be used as a tool for 
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the categorization of stresses for a general class of pressure vessel components, especially 

three dimensional components with complex geometries. 

6.3.4 Post Processing of Linear Elastic FEA 

Some of the currently available commercial finite element codes facilitate the 

linearization of stresses, resulting from a linear elastic FEA, through post-processing. 

The stress linearization is performed along a predefined path. The path is defined by two 

nodes (i.e., N 1 and N2) across the section of interest as shown in Figure 6.2. The stress 

linearization tool available in commercial finite element codes, e.g. ANSYS (2008), 

enables the splitting of total stresses into membrane (constant), bending (linear), and peak 

categories through a predefined section. 

The membrane stress for a given section of interest is computed as follows: 

(6.1) 

where t is the thickness of the section (length of the path), CJi is the stress component, and 

Xs is the coordinate along the path. The magnitude of the bending stress at the extreme 

points of the path is calculated as follows: 

(6.2) 

The bending stress at the extreme fibers of the component will be equal in magnitude but 

opposite in sign. 
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Finally, the amount of peak stress, which usually occurs at the surface of the component, 

is the difference between the total stress and the sum of the linearized membrane and 

bending stresses. Therefore, the peak stress at any point along the path is given by 

(6.3) 

where ai is the total stress obtained from the results of the FEA. 

It should be noted that ANSYS does not explicitly categorize the stresses; instead it 

linearizes them into membrane (am), bending (ab) and peak (F) stresses. Therefore, 

additional effort is required to properly identify the different categories of stresses for 

Code (ASME B&PV Code Section ill and Section VID Div. 2, 2007) compliance. 

Figure 6.2 Coordinates of cross section 

105 



6.4 Concepts of Simplified Methods 

The rna-tangent method has been developed in this thesis in order to estimate the limit 

load of a general class of mechanical components and structures. The formulation of the 

rna-tangent method is based on the variational principles in plasticity. The method has 

explicit dependency on the classical lower bound multiplier (rnL) and upper bound 

multiplier (rn°). The detail derivation of the rna-tangent method is presented in Chapter 4 

of this thesis. The underlying concepts of the two-bar model (TBM) and rna-tangent 

method are invoked herein to categorize the linear elastic stresses in pressure vessel 

components and structures. The rna-tangent method is briefly presented here in order to 

demonstrate the proposed stress categorization method in a more organized way. 

6.4.1 Reference Two-Bar Model (TBM) 

The Two-Bar Model is the simplest structure in which stress redistribution occurs after 

the onset of yielding. As such, it serves as a simplified representation of similar 

redistribution phenomena in general pressure vessel components. The geometry of the 

TBM can be adapted to best reflect the behavior of the component. General pressure 

vessel component configurations can be related to the reference two-bar structure by 

matching the point on the constraint map based on elastic analysis. Seshadri and Adibi-

Asl (2006) have derived the "scaling equations" as follows (Figure 6.3): 

(6.4) 
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Figure 6.3 Reference two-bar structure (Seshadri and Adibi-Asl, 2006) 

L 1 and L2 are the lengths of the bars, and a1 and a2 are the respective stresses from elastic 

analysis. The cross sectional area and elastic modulus of the two bars are assumed to be 

the same. Therefore, the length ratio A uniquely defines the stiffness ratio of the two bars. 

Without loss of generality, it is assumed that A~ 1. The yield strengths of both bars are 

the same, oy. Equation (6.4) serves to define the geometry parameter A that best 

represents stress redistribution in the actual pressure vessel component. This is the 

reference TBM. Once m~omp and m L,Comp are determined on the basis of a linear elastic 

FEA, the value of A can be determined by using Eq. (6.4). 

Based on this A an estimate of m comp can be obtained using Eq. (6.4), which assumes that 

the ratios of m0/m are the same for the actual component and the reference two-bar 

mechanism. 
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(=:~) (6.5) 

The limit load multiplier m is calculated analytically for the reference TBM as 

2aY ( ) m = , where a 1 is identified with the maximum equivalent stress, a e max • 
Bar a +a 

I 2 

Therefore, the ratio ( m ~ar J will be a specific point ~epresenting combination of primary, 
mBar 

secondary and peak stresses along the TBM trajectory. The entire TBM trajectory can be 

drawn by considering 2 as a free parameter. 

6.4.2 The rna-Tangent Method 

For a given pressure vessel component, a single elastic analysis will yield all the 

information that are needed to perform stress classification with the rna-tangent method. 

The values of m0 and t; can be determined from statically admissible stress distributions 

obtained from linear elastic FEA of the component. The m~ value can then be readily 

estimated by using the following equations 

mo 
mT=-------

a 1 + 0.2929(( -1) 

The slope of the R~ =I line is equal to Tan(B)= (1- ,k). 

Depending on the value of(, one of two cases needs to be considered: 
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Case-I: s ~ 1 + .J2, (negligible peak stresses) 

For this case, point A (Figure 4.4) is assumed to lie on the R~ = 1 line. The value of m~ 

can be obtained from Eq. (6.6). This case usually applies to well-designed pressure vessel 

components with gentle geometric transitions. 

Case-II: s > 1 + .J2, (presence of peak stresses) 

This case applies to components that develop flaws or cracks in service, or to components 

with sharp notches. The aim here is to blunt the peak stresses prior to evaluating m~ . 

With reference to Figure 4.4, the initial linear elastic FEA locates point B on the R~ = 1 

0 

line and point B' on the TBM locus corresponding to S; = m; . The subscript "i" refers 
mL,; 

to the initial point B and B'. The detailed calculation procedures are presented in Chapter 

4 of this thesis. 

6.5 Stress Categories in Pressure Components 

The categorization of elastic stresses, induced in pressure vessel components, essentially 

means the decomposition of the stress resultants into primary (P), secondary (Q) and 

peak (F) stress. The primary stress could be either primary membrane (P m) or primary 

bending (Pb) or combination of the two. Similarly, the secondary stress could be either 

secondary membrane (Qm) or secondary bending (Qb) or combination of the two. 
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Figure 6.4 Stress distribution at the critical section of a component 

Figure 6.4 represents the schematic stress distribution, based on initial linear elastic 

analysis, at the critical section of a component. The different categories of stresses are 

labeled in the figure in order to relate them with the linear elastic stress distribution. The 

stress distribution at the critical section of a component after the initial linear elastic FEA 

is shown by the "solid-line" in Figure 6.4, where a/1UL-c represents the maximum stress in 

the component. 

Practical pressure vessel components and structures usually experience combined 

mechanical and thermal loads. It should be noted that thermal load (due to through 

thickness temperature gradient) produces only secondary and peak stresses in the 

component or structure. These stresses are expected to disappear if the structure is 

allowed to expand (or contract) up to certain extent. These stresses are deformation-
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controlled in nature. Most of the practical pressure vessel components and structures 

experience a certain extent of thermal load in their service life. 

On the other hand, mechanical loading can produce primary, secondary and peak stress in 

the component or structure. Primary stresses are set-up in the structure in order to 

equilibrate the applied sustained loads. These stresses are statically admissible i.e., load 

controlled in nature. Mechanical loading can produce secondary stress due to the internal 

and external constraint of the structure. Peak stress in the structure is due to local 

structural discontinuity. 

6.6 Stress Categorization Methodologies 

For simple geometries, the tradeoff for considering the full membrane stress as load 

controlled primary stress (P) and full bending stress as deformation controlled secondary 

stress (Q) is usually workable (Hollinger and Hechmer, 2000). Therefore, for simple 

axisymmetric structures, primary plus secondary (P + Q) and peak (F) component of 

stresses could be obtained by using the stress linearization technique. For highly complex 

geometries, the Codes' (ASME B&PV Code, 2007) simplified assumption is to consider 

membrane stress as primary and bending stress as secondary (Hollinger and Hechmer, 

2000). 

It is well understood that the intensity of peak stress (F) is simply the difference 

between the total stress (a max ) and the membrane plus bending stress (am + a b) , which 

could be obtained through stress linearization. On the other hand, primary plus secondary 
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stress (P + Q) is the difference between the maximum total stress (0" max) and the peak 

stress (F). Therefore, for simple axisymmetric structures, primary plus secondary 

(P + Q) and peak (F) stress component could be obtained by using linearization 

technique within reasonable accuracy. As a result, the primary plus secondary stress 

(P + Q) identified by the proposed method is compared with those obtained from the 

linearization technique for simple axisymmetric structures. The primary stress (P), 

identified by the proposed method is compared with elastic-plastic FEA results. It should 

be noted that the proposed method estimates the plastic limit load solution and, therefore, 

gives a primary stress (P), which is directly comparable with the Sm limit. 

Inelastic FEA is considered to be an alternative tool to identify the primary stress. For 

complex three dimensional and especially nonsymmetric components and structures, 

inelastic FEA may not be effective in terms of computational effort and time. The 

proposed rna-tangent method is able to identify the primary component of stresses using a 

single linear elastic analysis. The method is applicable to three dimensional components 

and structures with complex geometric and loading conditions. The step by step 

procedure for determining the primary, primary plus secondary and peak stress, using the 

proposed method, is outlined in the following section of this chapter. 

6.6.1 Proposed Methodology (The ma-Tangent Method) 

The proposed method for categorization of stresses, using the rna-tangent method, is 

applicable to both mechanical and thermal loads. Thermal load will generate secondary 
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and peak stresses but will not affect the primary stresses. For mechanical loading, the 

proposed method is as follows: 

An initial linear elastic FEA is performed. The results of the initial FEA are used to 

evaluate classical lower bound multiplier (mL) and upper bound multiplier (m0
) using Eq. 

(3.1) and Eq. (3.5), respectively. 

OJ If m0/mL is less than 1 + .J2 then only primary and secondary stresses are considered 

to be present in the component, and the magnitude of peak stresses is either zero or 

negligible. Then the limit load multiplier ( m~) is evaluated by using Eq. (6.6). The 

maximum stress in the component is a max = a Y j m L • For mechanical load, the 

stresses are categorized as follows: 

Primary stress: P =a Y I m~ 

Primary-plus-secondary stress: P + Q =a max 
} (6.8) 

For combined mechanical and thermal loading, the stresses are categorized as 

follows: 

Primary-plus-secondary stress: P + Q = a Y / m L (6.9) 

Note that these stresses are within the rna triangle. Therefore, peak stresses are either 

zero or negligible. 

(2) If m0/mL is greater than 1 + .J2 then all three categories of stresses are expected to be 

present in the component. Now (j is obtained from Eq. (4.12). The value of m41 

corresponding to (j can be evaluated as m L.J = m? I ( 1 . The limit load multiplier 
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( m~ ), based on (j, is evaluated by using Eq. ( 4.13). Then for mechanical loading, the 

stresses are categorized as follows: 

Primary stress: P =a Y I m~, 

Primary-plus-secondary stress: P + Q = a Y I m L.J 

Peak stress: F = (]"max - (]"~ ' where (]"max = (]" y I m L,i 

} 

(6.10) 

and a~ = a Y I m L.f 

For combined mechanical and thermal loading, the stresses are categorized as 

follows: 

Primary-plus-secondary stress: P + Q =a Y lmL.J } 

1 (6.11) 
Peak stress: F =(]"max - (]"~' where (]" max = (]" y I m L ,i and (]"max = (]" y I m L,f 

6.6.2 Finite Element Stress Linearization 

The procedure for stress linearization using the post processor of finite element software 

(ANSYS) is as follows: 

(1) An initial linear elastic PEA is performed. 

(2) The results of the initial PEA are used in conjunction with the post processor of a 

finite element software to evaluate membrane (um), membrane plus bending 

(um+ub) and maximum (umax) stress. 

(3) Then the maximum of (um) and (um+ ub)/1.5 is identified and considered to be the 

"equivalent stress" (Seq) and the difference between the (umax) and (um+ ub) is the 

peak stress (F) in the component. 
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It should be noted that stress linearization using ANSYS post processor, which gives 

membrane (am), bending (ab) and peak (F) stress, is leaving it to the analyst and the rules 

provided in the Code (ASME B&PV Code, 2007) to decide about the primary and 

secondary component of stresses. 

6.6.3 Nonlinear Finite Element Method (NFEM) 

Limit analysis implicitly classifies the primary stresses in a component. In the present 

work, a complete elastic-plastic FEA is performed to compare the primary stress (P) 

obtained by the aforementioned methods. 

6.7 Illustrative Example- Torispherical Head 

The systematic procedure for the categorization of linear elastic stresses induced in 

pressure vessel components and structures is demonstrated in this section through an 

example. A typical pressure vessel component configuration, a torispherical head on a 

cylindrical vessel, is considered herein for the demonstration purpose. The geometry of 

the component is shown in Figure 6.5(a). 

The torispherical head has the following dimensions: the ratio of the thickness to vessel 

diameter tID s = 1 I 40, toroidal radius to shell diameter rIDs = 0.12, and head radius to 

shell diameter is Rh IDs = 0.8. The modulus of elasticity of the material is 262 GPa 

(38x 106 psi) and yield strength is 262 MPa (38x 103 psi). The structure is subjected to an 

internal pressure of 5 MPa (725 psi). 
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In order to analyze the structure for combined (mechanical and thermal) loading, 

temperature gradient is applied through thickness of the structure, in addition to pressure 

loading. The thermal load that is applied to the structure is as follows: inside temperature 

of the head is 200° C, outside temperature is 25° C, and ambient temperature is 20° C. 

Coefficient of thermal expansion of the material is considered to be 9.5 x 1 o-6 m/m.K. The 

finite element model of the structure is developed by taking advantage of symmetry. 

(a) Load Case-1: Mechanical Loading (Internal Pressure) 

The structure is first analyzed for mechanical loading (internal pressure). Then the 

proposed rna-tangent method is applied to categorize the stresses. The detail procedure is 

as follows: 

An initial linear elastic FEA is performed which gives a statically admissible stress 

distribution. From the results of the initial linear elastic FEA, rn°=3.0497; rn£=1.4047 is 

evaluated using Eq. (3.5) and Eq. (3.1), respectively. Then the corresponding (=2.171 is 

evaluated using Eq. (6.1 0). Since ( is less then 1 + .J2, the component has negligible 

amount of peak stress. The limit load multiplier based on the rna-tangent method is 

estimated as rn~ =2.271. The maximum stress in the component is a max = 186.52 MPa. 

From the results of the foregoing calculations, the stresses are categorized as follows: 

Primary stress: P = 115.38 MPa 

Primary-plus-secondary stress: (P + Q) = 186.52 MPa 

Peak stress: F = 0. 
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Note that peak stress F = 0 as t;, corresponding to the initial linear elastic analysis, is 

within the mu.- triangle. 

The structure is then analyzed for stress linearization using ANSYS Post Processor. The 

selection of appropriate location and orientation of the stress classification lines (SCL) is 

an important part in stress linearization process. In order to place the stress classification 

lines in appropriate locations, the collapse mechanism of the structure is studied from the 

available literature. 

Seshadri and Fernando (1992) have discussed the collapse mechanism of the torispherical 

head on a cylindrical vessel. They have shown that the structure is expected to collapse 

after formation of three plastic hinges near the shell-head junction. Considering the shell­

head junction as the most critical section of the component from design standpoint, stress 

classification lines (SCL) are placed arbitrarily at five different locations as shown in 

Figure 6.5(a). 

On the basis of the initial linear elastic analysis for mechanical loading (internal 

pressure), the linearized stresses, i.e., membrane, membrane-plus-bending and peak 

stresses are evaluated through thickness of the shell at five different SCL locations. Note 

that the peak stress is simply the difference between the maximum stress and the 

membrane plus bending stress in the component for a given location. The maximum of 

(am) and (am+ ab)/1.5 is identified and considered to be the "equivalent stress" (Seq). The 

analysis results are shown in Table 6.1. 
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t 

Figure 6.5 Torispherical head (a) Geometry, (b) Finite element model (axisymmetric) 

It can be observed from the stress linearization results shown in Table 6.1 that SCL-3 is 

the maximum stress location and hence is considered to be the critical section to form the 

first "plastic hinge". The results also shows that the stress intensity gradually decreases in 
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either direction when we proceed from the first plastic hinge location (SCL-3). In order to 

complete the "collapse mechanism", the possible locations of other two plastic hinges are 

considered to be SCL-2 and SCL-4. 

Therefore, from the above discussion it can be concluded that for mechanical loading 

(internal pressure), SCL-3 represents the most critical section of the component from 

design standpoint and hence the corresponding linearized stresses are compared with the 

results obtained from the rna-tangent method. 

Then a complete elastic-plastic FEA is performed which gives the primary stress PNFEM = 

93.90 MPa. The above mentioned results are compared in Table 6.2. 

Table 6.1 ANSYS stress linearization for torispherical head under internal pressure 

SCL Location am am+ab apeak Seq 

SCL-1 70.69 83.66 0 70.69 

SCL-2 85.58 156.34 2.44 104.23 

SCL-3 92.14 205.29 12.86 136.86 

SCL-4 82.44 178.49 11.26 118.99 

SCL-5 77.97 100.36 2.67 77.97 

• Seq= Max. (um, (am+ab) I 1.5); Note: All stresses are in MPa. 

(b) Load Case-11: Combined Mechanical and Thermal Loading 

(Internal Pressure and Temperature Gradient) 

The structure is then analyzed for combined mechanical (internal pressure) and thermal 

(temperature gradient) loading. Note that the thermal load will not contribute to the 

primary stress in the component and hence only primary plus secondary (P+Q) and peak 

119 



(F) stresses are evaluated in this case. The structure first analyzed by using the ma-

tangent method to extract the above mentioned categories of stresses. An initial linear 

elastic FEA is performed on the basis of which primary-plus-secondary stress (P + Q) is 

evaluated using Eq. (6.9) as 353.77 MPa and peak stress, F = 0. Note that these stresses 

are pseudo-elastic stresses. 

Then linearization is performed for combined loading using the ANSYS post processor. 

The linearized membrane-plus-bending stress is evaluated at SCL-1 as (am+ab) = 371.53 

MPa and peak stress as apeak = 7.96 MPa. The analyses results are compared in Table 6.2. 

An important point should be noted here that for only mechanical loading (internal 

pressure), SCL-3 represents the most critical section (highest peak stress location) of the 

component as shown in Table 6.1. But the analysis shows that for combined mechanical 

(internal pressure) and thermal (temperature gradient) loading, the highest peak stress 

location shifts toward SCL-1 (Figure 6.5(a)), due to a non-uniform stress distribution in 

the component. Therefore, the linearized stresses are evaluated at SCL-1 in this case in 

order to compare with the results obtained from that of the rna-tangent method. 

Table 6.2 Stress categorization for torispherical head 

Load Case ma-Tangent Method ANSYS Stress Linearization"' NFEM 
p P+Q F Seq am+ab apeak PNFEM 

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 

Int. Pressure 115.38 186.52 0 136.86 205.29 12.86 
93.90 

Pr. + Thermal - 353.77 0 - 371.53 7.96 

• These quantities are simply membrane, bending, or peak. The analyst using the rules provided in 

the Code (ASME B&PV, 2007) has to decide if these stresses are primary or secondary. 
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From the above discussion, it can be concluded that when loading condition changes, the 

maximum stress location might shift from its previous location. Therefore, for 

components having non-uniform stress distribution for combined loading might lead to 

an improper selection of class lines during the stress linearization process. Whereas the 

proposed rna-tangent method gives only one value of the stress category irrespective of 

the loading condition. This is a very important advantage of using the rna-tangent method 

for combined loading cases. 

6.8 Applications 

6.8.1 Thick Walled Cylinder 

A thick-walled cylinder (Figure 6.6) with inner radius R=65 mm (2.56 in.) and wall 

thickness t=25 mm (0.984 in.) is modeled in plane-strain condition. The modulus of 

elasticity of the material is 200 GPa (29x 106 psi) and yield strength is 300 MPa 

(43.51 x 103 psi). The cylinder is subjected to internal pressure of 50 MPa (7.252x 103 

psi). In addition to pressure loading, thermal load is applied to the structure as follows: 

inside temperature of the cylinder is 200° C , outside temperature is 25° C, and ambient 

temperature is 20° C. Coefficient of thermal expansion of the material is considered to 

be 9.5x 10-6 m/m.K. 

The structure is first analyzed using the rna-tangent method for mechanical (internal 

pressure) loading only. The initial linear elastic FEA leads to a statically admissible stress 

distribution, on the basis of which rnL=l.702; rn°=2.264 and corresponding (=1.33 is 
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evaluated using Eq. (3.5), Eq. (3.1) and Eq. (6.10), respectively. Since (is less than 

1 + J2, there is negligible peak stress in the component and only primary and secondary 

stresses are expected to be present. Using Eq. (6.9), the corresponding limit load 

multiplier m~ =2.064 is evaluated. The maximum stress in the component is umax=176.26 

MPa. 

(a) (b) 

Figure 6.6 Thick walled cylinder (a) Geometry, (b) Finite element model 

From the results of the foregoing calculations, the stresses are categorized as follows: 

Primary stress: P = 145.32 MPa 

Primary-plus-secondary stress: P + Q = 176.26 MPa 

Note that peak stress F = 0 as (, corresponding to the initial linear elastic analysis, is 

within the ma- triangle. 

The initial linear elastic FEA results are then used in conjunction with ANSYS post 

processor to obtain the linearized stresses which gives membrane stress O"m = 130.98 MPa, 

membrane-plus-bending stress (um+ub) = 155.62 MPa, and maximum stress O"max= 182.39 
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MPa. The equivalent stress is evaluated as Seq= 130.98 MPa. The peak stress is evaluated 

as 26.77 MPa. 

It should be noted that the value of maximum stress obtained from the rna-tangent method 

and the stress linearization method is slightly different. This is due to the fact that the ma-

tangent method makes use of the elemental values whereas the stress linearization 

method makes use of the nodal values provided by ANSYS. As the mesh size becomes 

smaller the difference is become negligible. Then a complete elastic-plastic FEA is 

performed which gives the primary stress PNFEM = 133.04 MPa. 

The structure is then analyzed for combined mechanical (internal pressure) and thermal 

(temperature gradient) loading. As thermal load will not contribute to the primary stress, 

primary-plus-secondary stress (P + Q) is evaluated using Eq. (6.17) as 299.71 MPa and 

peak stress, F = 0 . 

Then linearization is performed for combined loading using the ANSYS post processor. 

The linearized membrane-plus-bending stress is evaluated as (um+ub) = 327.16 MPa and 

peak stress as Upeak = 37.26 MPa. Table 6.3 shows the comparison of the analysis results. 

Table 6.3 Stress categorization for thick walled cylinder 

Load Case ma-Tangent Method ANSYS Stress Linearization NFEM 
p P+Q F Seq Um+Ub Upeak PNFEM 

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 

Int. Pressure 145.32 176.26 0 130.98 155.62 26.77 
133.04 

Pr. + Thermal - 299.71 0 - 327.16 37.26 

· These quantities are simply membrane, bending, or peak. The analyst using the rules provided in 

the Code (ASME B&PV, 2007) has to decide if these stresses are primary or secondary. 
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6.8.2 Reinforced Axisymmetric Nozzle 

In this example, an axisymmetric cylindrical nozzle on a hemispherical head (Figure 6.8) 

is modeled. Inside radius of the head is R=914.4 mm (36 in.), and the nominal wall 

thickness is t=82.55 mm (3.25 in.). Inside radius of the nozzle is r=l36.525 mm (5.375 

in.) and nominal wall thickness is tn=25.4 mm (1 in.). The required minimum wall 

thickness of the head and the nozzle are t,-=76.835 mm (3.025 in.) and trn=24.308 mm 

(0.957 in.), respectively. 

! r 

(a) (b) 

Figure 6.7 Reinforced nozzle on a hemispherical head (a) Geometry, (b) Finite element 

model 
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Table 6.4 Stress categorization for reinforced axisymmetric nozzle 

mo.-Tangent Method 

P P+Q F 

(MPa) (MPa) (MPa) 

163.22 222.79 0 

NFEM 

pNFEM 

(MPa) 

139.81 

The nozzle is reinforced with an appropriate reinforcement scheme. The geometric 

transitions of the reinforcement are modeled with fillet radius, rl=10.312 mm (0.406 in.), 

r2= 83.312 mm, and r3= 115.214 mm (4.536 in.). The other dimensions include, T2=54.61 

mm (2.15 in.) and 8=45°. The distribution of reinforcement is bounded by the 

reinforcement zone boundary specified by the circle of radius, Ln=143.51 mm (5.65 in.). 

The modulus of elasticity of the material is 262 GPa (38x 106 psi) and yield strength is 

262 MPa (38x 103 psi). The hemispherical head is restrained at the vessel end, away from 

the nozzle, in the meridional direction but allowed to move in the radial direction. The 

structure is subjected to an internal pressure of 24.132 MPa (3500 psi). 

From the results of the initial linear elastic FEA, m0=1.891 and mL=1.176 is obtained. 

Since the value of (=1.608 is less than 1 + .J2, the magnitude of peak stress is negligible. 

Now, the limit load multiplier m~ =1.605 is obtained. From the results of the foregoing 

calculations, the stresses are categorized as follows: 

Primary stress: P = 163.22 MPa 

Primary-plus-secondary stress: P + Q = 222.79 MPa 

Peak stress: F = 0 
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Then a complete elastic-plastic finite element analysis is performed which gives primary 

stress PNFEM = 139.81 MPa. The results are show in Table 6.4. 

6.8.3 Oblique Nozzle 

Limit load analysis of a vessel with oblique nozzle has been studied both experimentally 

and numerically by Sang. et al. (2005) to find the limit pressure. The geometry consists of 

a cylindrical vessel with a closed nozzle connected with an angle of 30 deg. The 

schematic diagram of the model and the finite element mesh is shown in Figure 6.9. The 

inside diameter of the vessel Di=600 mm (23.622 in.) and outside diameter of the nozzle 

d0 =325 mm (12.795 in.). The wall thickness of both vessel and nozzle t=6 mm (0.236 

in.). The length of the vessel L=2400 mm (94.488 in.) and the length of the nozzle along 

the centerline 1=600 mm (23.622 in.). The dimensions of the heads of the vessel and the 

nozzle are Hi=175 mm (6.890 in.) and hi=106 mm (4.173 in.), respectively. The saddles 

are located at a distance A=400 mm (15.748 in.). 

Modulus of elasticity and yield strength of the material is 400 GPa (58.015x 106 psi) and 

339.4 MPa (49.226x 103 psi), respectively. The structure is subjected to an internal 

pressure of 1.0 MPa (145 psi). The finite element model of the structure is developed by 

using three dimensional isoparametric solid elements. Due to the symmetry about the 

longitudinal plane, one-half of the vessel was modeled. 

An initial linear elastic finite element analysis is performed. From the results of the initial 

elastic FEA, m0=4.804; mL=0.411 and amax==826.78 MPa is evaluated. Since G=11.688 is 

greater than 1 + .J2 , significant amounts of peak stresses are present in the structure. 
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(a) 

(b) 

Figure 6.8 Oblique nozzle on a cylindrical vessel from Sang. et al. (2005) (a) Geometry, 

(b) Finite element model 
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Table 6.5 Stress categorization for oblique nozzle 

ma-Tangent Method 

P P+Q F 

(MPa) (MPa) (MPa) 

218.37 574.98 251.80 

NFEM 

pNFEM 

(MPa) 

188.03 

Now, s, is evaluated so that m0 at Band B" are equal (Eq. (6.11)). The value of s,= 

8.1385 and the m~ based on s, , as obtained from Eq. (6.13), is 1.5543. From the results 

of the foregoing calculations, the stresses are categorized as follows: 

Primary stress: P = 218.37 MPa 

Primary-plus-secondary stress: P + Q = 574.98 MPa 

Peak stress: F = 251.80 MPa 

Then a complete elastic-plastic finite element analysis is performed which gives primary 

stress PNFEM = 188.03 MPa. It can be seen that the primary stress obtained from the 

proposed method is slightly conservative compared to the inelastic FEA. The peak stress 

is considerably high due to the sharp edges at the vessel-nozzle junction, which has not 

been rounded. Note that the stresses calculated above are pseudo-elastic stresses. The 

results are summarized in Table 6.5. 

6.9 Discussion 

The categorization of stresses by elastic FEA is a challenging task even with the finest 

computing facilities and advanced numerical techniques. The categorization of elastic 
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stresses in complex pressure vessels is involved and demands substantial skill. The 

purpose of the present work is to introduce a new stress categorization method based only 

on linear elastic FEA and demonstrate its application. The proposed method uses limit 

load multiplier estimates to decompose the elastic stresses into appropriate categories, 

using a single linear elastic FEA. The proposed method is able to identify the primary 

(P), primary plus secondary (P+Q) and peak (F) stress components for mechanical and 

thermal loads within reasonable accuracy. The results are directly comparable with the 

ASME B&PV Code (2007) limits. Notably, there is only a single primary stress to be 

evaluated against Sm, as opposed to separate limits for membrane and bending stress. 

Since the method delivers directly only a single bounding value for each stress category, 

its application is very convenient and straightforward. 

Several example problems are worked out to demonstrate the method, including typical 

two and three dimensional pressure vessel components. The primary stresses obtained 

from the proposed method are in reasonably good agreement with the elastic-plastic FEA 

results. For simple axisymmetric pressure vessel (cylindrical vessel and torispherical 

head), the primary plus secondary stresses obtained from the proposed method are 

compared with those obtained from stress linearization method. The results are again in 

reasonably good agreement. The same approach is expected to work well for more 

complicated structures e.g., oblique nozzle on a cylindrical vessel. 

The proposed method has several potential benefits over conventional stress 

categorization approaches. This method makes use of available FEA codes and currently 

requires a moderate amount of post-processing by the user, which could be automated. 

As a result, the method gives three numbers, namely the primary stress, primary plus 
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secondary stress, and peak stress. The method directly delivers the bounding values for 

the analyzed component. This sidesteps the potential difficulties encountered in justifying 

the appropriate location and orientation of the SCLs. The method is applicable to a wide 

range of pressure vessels including three dimensional vessel with complex geometry as 

shown in Example 7.4 in this paper. The proposed method is able to categorize the 

stresses for combined loading (pressure and thermal) without requiring two separate 

analyses. Therefore, the proposed method could be used as a tool for simplified stress 

categorization of pressure vessels with minimum computational effort. 

6.10 Closure 

A simplified method is proposed in this chapter to categorize the linear elastic stresses in 

pressure vessel components and structures. The method makes use of a single linear 

elastic finite element analysis to categorize the stresses. The proposed method is 

applicable to mechanical as well as thermal loading cases. The method is applied to a 

number of practical pressure vessel components and structures and the results are found 

to be in good agreement with those obtained from the conventional techniques. The next 

chapter discusses about the fitness-for-service assessment (FFS) of pressure vessels and 

piping systems. A simplified method is proposed for Level 2 FFS assessment of pressure 

vessels and piping systems containing thermal hot spot and corrosion damage. 
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CHAPTER 7 

FITNESS-FOR-SERVICE (FFS) ASSESSMENT 

7.1 Introduction 

Integrity assessment of mechanical components and structures is a multidisciplinary 

effort. Structural integrity assessment is of considerable importance in many industrial 

sectors e.g., oil and gas, nuclear, and petrochemical industries. It is considered to be an 

essential tool for ensuring the safety and economy of an operating plant. It also aids in 

optimal maintenance and operation of the plants. Fitness-for-service (FFS) assessments 

are performed in order to demonstrate the structural integrity of aging components and 

structures containing defect. The common categories of defects in pressure vessel 

components and structures are blunt flaws, crack-like flaws, and mechanical or material 
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damage. In order to ensure the operational safety and structural integrity, all of these 

defects need to be identified and assessed properly. 

In practice, FFS assessments are conducted periodically in order to determine the 

acceptability of in-service components and structures for continued service. Extended 

evaluations are often carried out as an effort to schedule routine inspection and estimate 

the remaining life of the component. A number of FFS assessment procedures are 

available in practice e.g., API 579 (2000), R5 and R6 procedure (2004), SINTAP (1999) 

etc. API 579 procedure is proposed by American Petroleum Institute and is widely used 

in North America, while R5 and R6 procedures are proposed by British Energy. SINT AP 

procedures are developed especially for European industry. These procedures are mostly 

semi-empirical and are based on extensive experi~ental data. In order to perform more 

precise assessment, advanced numerical simulation and analysis technique need to be 

incorporated, which will facilitate more accurate modeling and analysis of the real-life 

scenario. The above mentioned practices and procedures mostly address the fracture and 

plastic collapse type failure modes of in-service components and structures containing 

defect. 

Thermal hot spot and corrosion are the typical of damages occurring in in-service 

pressure vessels and piping systems. FFS assessments of these components and structures 

need to be performed periodically in order to determine the suitability of the component 

for the prevailing operating conditions and for the assessment of remaining life. The so­

called "remaining strength factor (RSF)" is generally used as a quantitative measure of 

the remaining strength of damaged components or structures. The RSF concept is very 

useful especially in case of thermal hot spot and corrosion damage. Significant effort has 
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been directed over the last two decades to study the structural integrity of aging pressure 

vessels and piping systems containing defect. 

Sims et al. (1992) have studied the effect of thinned areas in pressure vessels and storage 

tanks as an effort to assess the remaining strength of the damaged structure. They have 

developed an empirical equation by curve fitting the inelastic finite element analysis 

(FEA) results. They have compared the results with ASME B31G (1984) criteria, which 

is commonly used for determining the remaining strength of corroded pipelines. They 

have shown that the results are in reasonably good agreement with ASME B31G (1984) 

especially for shells having relatively smaller diameter-to-thickness ratio. 

Seshadri (2005) has studied the evaluation of thermal hot spot in cylindrical pressure 

vessels using variational principles in plasticity. A simplified formula for RSF is 

proposed to quantify the remaining strength of the vessel. Shell decay lengths are used in 

order to identify the "reference volume", which essentially represents the kinematically 

active portion of the component or structure that takes part in plastic action. Indermohan 

and Seshadri (2005) have extended the application of the concept to corrosion damage in 

cylindrical pressure vessels. A number of example problems are worked out to 

demonstrate the method. 

Ramkumar and Seshadri (2005) have studied the internal and external corrosion in 

cylindrical pressure vessels using the concept of reference volume along with the rna­

multiplier. The results are compared with ASME B31G (1984) procedure and have 

shown that the proposed method gives improved estimate of the remaining strength of the 

structure. Tantichattanont et al. (2007) have studied the thermal hot spot and corrosion 

133 



damage in spherical pressure vessels. They have derived the expressions for decay 

lengths in spherical pressure vessels. RSF based on the rn~.cmultiplier has been proposed 

for FFS evaluation. The results are compared with the inelastic finite element analysis 

results. 

In this thesis, a simplified method is developed for Level 2 FFS assessment (as described 

in API 579) of pressure vessels and piping systems containing thermal hot spot and 

corrosion damage. The method is based upon variational principles in plasticity, the rna­

tangent method (presented in Chapter 4 of this thesis), the concept of decay length and 

reference volume. The use of the rna-tangent method extends the range of applicability of 

the proposed method to components and structures experiencing significant stress 

gradient in and around the damaged spot. The method is shown to provide a reasonably 

accurate estimate of the remaining strength of ageing pressure vessel components and 

structures. The method is demonstrated through an example and the results are compared 

with Level 3 inelastic finite element analyses. 

7.2 Fitness-for-Service Assessment Procedure 

Fitness-for-service assessments are performed in oil and gas, nuclear and petrochemical 

industries in order to demonstrate the integrity of in-service components and structures 

containing flaw or damage. For pressurized equipments in operating plants, API 579 has 

provided three levels of assessment for a given damage or flaw. Each of these assessment 

levels is based on the degree of conservatism, amount of inspection data required and 
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complexity of the analysis being performed. A brief overview of the three levels of 

assessment procedures is given below. 

(a) Level 1 assessment procedure is primarily intended to provide conservative 

screening criteria that can be determined with a minimum quantity of inspection 

data or component information. This level of assessment is fairly easy and 

provides a relatively conservative estimate. Level 1 assessment is generally 

performed by the plant inspection or engineering personnel. 

(b) Level 2 assessment procedure provides a more precise and detailed evaluation 

of the flawed component compared to that of Level 1 assessment procedure. In a 

Level 2 assessment, the amount of inspection and component data needed are 

similar to Level 1 assessment; however, more detailed evaluations are performed 

in this case. Level 2 assessment reduces the degree of conservatism found in a 

Level 1 assessment. Level 2 assessment is intended to perform by facilities or 

plant engineers, although some owner-operated organizations consider it more 

suitable for a central engineering evaluation. 

(c) Level 3 assessment procedure is intended to provide the most precise and 

detailed assessment of the flawed components with a minimum degree of 

conservatism, compared to the other assessment procedures. Level 3 assessment 

procedures require the most detailed inspection and component information and 

advanced computational techniques such as finite element method. Level 3 

assessments are intended to perform by experts of the relevant area. 
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The limitations that have been imposed on the Level 1 and Level 2 assessments are that 

the component is designed and constructed in accordance with a recognized Code or 

Standard and the metal loss area has a relatively smooth contour without any notch or 

crack. On the other hand, Level 3 assessment method facilitates the detailed evaluation 

through more accurate modeling of the contour of the damage spot. Level 3 assessment is 

proposed to be performed by using advanced computational techniques e.g., finite 

element and finite difference method. The evaluation may be based on a linear elastic 

stress analysis followed by stress categorization, or a nonlinear stress analysis 

determining plastic collapse load. 

7 .2.1 Flaw Acceptance Criterion 

In API 579, the concept of remaining strength factor (RSF) is used to determine the 

acceptability of an in-service component for continued service. The assessment is based 

on limit or plastic collapse load of the structure. The remaining strength factor was 

originally proposed by Sims et al. (1992) to assess the locally thinned areas (L T A). The 

RSF is defined as the ratio of the plastic collapse load (pressure) of the damaged 

component (component with flaw or damage) to that of the undamaged component. 

If the calculated RSF is greater than or equal to the allowable RSF, the component is 

considered to be suitable at current operating condition for continued service. If the 

calculated RSF is less than the allowable RSF, the component needs to be either rerated 

through standard procedures or needed to be repaired or replaced. Note that the 
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component is to be originally designed and constructed in accordance with a recognized 

design Code or Standard. 

7.3 Corrosion Damage in Pressure Vessels and Piping 

The metal loss in pressure vessels and piping systems due to corrosion can be divided 

into two main categories i.e., general metal loss and local metal loss. The detail definition 

of these flaws is spelled out in API 579 (2000) and different assessment methods are 

proposed for each of these categories. In order to distinguish between general metal loss 

and local metal loss, characteristics of the metal loss profile should be known in detail. 

The main difference between the assessment approaches of these two types of metal 

losses is that the amount and type of data that is required for the assessment. API 579 

uses the thickness averaging approach to evaluate the general metal loss in the 

pressurized component. The present thesis focuses on the evaluation of local metal loss, 

which is generally termed as "locally thinned area" (LTA). Note that most of the criteria 

are developed to address the LTA' s in piping and cylindrical pressure vessels. 

7.3.1 Locally Thinned Area (LTA) 

The local metal loss due to corrosion or erosion in pressure vessels and piping systems is 

generally termed as "local thin area" (LTA). A region of metal loss is classified as LTA 

when it satisfies the following criteria 

min (s, c) > 6 (trm- tmin) (7.1) 
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where min (s, c) defines the minimum of the axial (s) and circumferential (c) extent of the 

LTA, and trm is the required minimum thickness of the component and tmin is the 

measured minimum thickness of the flaw as shown in Figure 7 .1. This localized defected 

area, due to thickness reduction, is more susceptible to failure than the rest of the 

structure. The parameters that influence the behavior of LT A are applied loadings, 

component geometry, flaw geometry and material characteristics. In real-life, LTA 

occurs in an irregular shape and is generally represented by an equivalent standard area. 

Longitudinal axis of pipe or vessel 

L 

tmin 

Figure 7.1 Schematic representation of metal loss in a pipe or in a cylindrical 

pressure vessel. 
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In case of cylindrical shells the damage profile is represented by an equivalent 

rectangular area. The irregular thickness profile is also represented by a standard profile 

following some standard procedures (API 579, 2000). The conservative one is to consider 

the maximum thickness loss as the effective thickness for the LTA. Due to thickness 

reduction by local metal loss, stiffness of the LTA will reduce. The reduction of stiffness 

depends on the remaining wall thickness, size of the LT A, material properties and the 

loading condition. The effective area method was developed based on the assumption that 

the strength loss due to corrosion is proportional to the amount of metal loss measured 

axially along the pipe (Figure 7.1 ). 

Thinned areas due to metal loss generally act as stress raisers, thus leading to cracking, 

tensile instability, or bucking instability under compressive stresses. While tensile 

instability is the root-cause of failure, the LTA undergoes higher deformation than the 

surrounding undamaged region. This differential deformation of the structure is generally 

termed as "bulging". Excessive bulging in a pressurized component is undesirable and is 

a considerable threat to the structural integrity. In practice, Folias factor is used to 

quantify the bulging effect of an LTA in shell structures. The phenomenon exists in case 

of internal pressure and is more pronounced in shells with smaller diameter e.g., piping. 

Due to the difference in thickness in the LTA and the surrounding shell, the LTA region 

bulges outward when the structure is subjected to internal pressure. In the LTA, stresses 

are considered to be purely primary and no redistribution occurs upon yield. Secondary 

bending stresses are induced at the edges of the LTA due to thickness misalignment near 

the edges of the LTA with the surrounding shell. However, the membrane stress is almost 

constant throughout the LT A. 
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The magnitude and significance of the bending stresses depends on the size and relative 

thickness of the LTA compared to the surrounding wall thickness. If the thickness of the 

LTA is very less compared to the surrounding wall thickness, then the effect of the edge 

bending moment becomes significant. The proximity of the LTA to major structural 

discontinuity is important. In this thesis, it is assumed that the LTA is not affected by the 

structural discontinuity. In a component or structure containing LTA, local failure occurs 

due to net section collapse and it is controlled by imposing maximum section strain or 

maximum point strain on the thin area of the defect. 

7 .3.2 Factors Influencing the Behaviour of L TA 

Locally thinned areas (LTA) are local structural defects caused by corrosion or erosion. 

The parameters that contribute to the failure of LT A are the applied loadings, pipe or 

vessel geometry, flaw geometry and material characteristics. The interaction of these 

parameters is schematically shown in Figure 7.2. 

The shell geometry, material characteristics and flaw geometry directly influence the 

stress and strain field in and around the LTA. The left side of the equation (Figure 7.2) 

represents the driving forces that contribute to the failure of the flaw or damage and the 

right side represents the material resistance to failure. The failure occurs when the 

stresses and strains, induced by the driving forces, exceeds the material resistance. 
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Figure 7.2 Schematic diagram of the primary factors controlling the behaviour of LTA's 

(Osage et al., 2001). 

7 .3.3 Evaluation of L T A 

The evaluation of volumetric type flaw e.g., local thinning due to corrosion are performed 

on the basis of amount and distribution of metal loss and strength of the material. In 

addition, thermal and environmental effects on the material properties need to be taken 

into account. The evaluation of LTA in pipelines, pressure vessels and storage tanks are 

slightly different. The factors influencing the evaluation are the internal pressure loading 

and the corresponding response of the structure, which includes gross sectional effect and 

the effect of localized bending. Generally, the internal pressure capacity is the main focus 

of the evaluation process. The need for a practical and technically sound FFS assessment 

procedure is paramount. 
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Assessment of LTA using inelastic FEA is very attractive as the user has an opportunity 

to reduce the degree of conservatism of the assessment by using the advanced modeling 

and computational techniques. The evaluation using inelastic FEA gives more accurate 

Oess conservative) result compared to the semi-empirically based methods proposed in 

available practices and procedures e.g., API 579. But the inelastic FEA is expensive in 

terms of computational effort and time as it requires detail flaw and material data as well 

as advanced computational techniques. 

An alternative option is proposed in the inspection Codes' to evaluate LTA by stress 

analysis using linear elastic FEA. The approach is based on categorization of linear 

elastic stresses as described in ASME B&PV Code, Section VIII, Division 2 (2007). The 

two step process includes stress linearization followed by stress categorization. This 

approach becomes difficult to apply in FFS assessment as categorization of stresses is a 

very challenging task for practical three dimensional components and structures. 

In this thesis, an attempt has been made to develop a method for Level 2 FFS assessment 

of pressure vessel components and structures containing LTAs. A simplified method 

based strength parameter has been proposed. The method is shown to rapid and easy to 

implement by the plant engineers. The proposed method can be applied to the pressure 

vessel components and structures experiencing significant stress gradient in and around 

the damaged spot (LTA). The analysis results obtained from the proposed method are 

compared with Level 3 inelastic finite element analysis results. The details of the 

proposed method will be discussed later in this chapter. 
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7.4 Thermal Hot Spots in Pressure Vessels and Piping 

Thermal hot spots in pressure vessels, piping systems or storage tanks are considered as 

"damage". Therefore, the mechanical integrity of the components and structures 

containing thermal hot spot is of considerable importance. Thermal hot spots are setup in 

pressure vessels and piping systems due to the loss of refractory lining inside the vessel 

wall. The additional causes include the effect of higher temperature on the outside wall of 

the vessel or pipe and also the mal-distribution of flow containing reactive or catalytic 

fluids. 

Due to temperature differential in the hot spot region, the material get softer and more 

flexible compared to the surrounding cold region. At higher temperature, the material 

properties of the hot spot changes and hence the damaged spot becomes more susceptible 

to failure than the rest of the structure. As a result, the structure fails locally. The 

difference in deformation of the damaged and undamaged region of the vessel or pipe is 

observed due to the difference in material properties at different temperatures. The 

membrane (primary) stress is same throughout the damage region of the component. In 

this thesis, only primary membrane stresses are considered in the assessment of hot spot. 

7 .4.1 Evaluation of Hot Spots 

Currently there is no standard procedure for FFS assessment of thermal hot spots. In this 

thesis, an attempt has been made to develop a method for Level 2 FFS assessment of 

pressurized components and structures of cylindrical shape subjected to internal pressure 
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and contain thermal hot spot. A simplified method based strength parameter has been 

proposed to perform the assessment. The method is shown to rapid and easy to 

implement by the plant engineers. The analysis results obtained from the proposed 

method are compared with Level 3 inelastic finite element analysis results. The details of 

the proposed method will be discussed later in this chapter. 

7.5 The Concept of Decay Length and Reference Volume 

The concepts of decay length and reference volume have been discussed by Seshadri 

(2005) in order to identify the kinematically active portion of the shell that takes part in 

plastic action. During local plastic collapse, in case of LT A and local hot spot, the plastic 

flow is assumed to occur in a localized region as shown in Figure 7.3. Therefore, these 

localized effects are accounted for by using the concept of reference volume. These 

concepts are used here to demonstrate the integrity of the structures containing thermal 

hot spot and corrosion damage. 

7 .5.1 Decay Length for Cylindrical Shell 

The localized effect of discontinuities due to thermal hot spot and corrosion damage in 

pressurized components is represented by introducing the concept of decay length. The 

decay length is defined as the distance from the applied force or moment to the point 

where the effect of the force is almost completely dissipated or becomes negligible. 
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To deduce the expression for decay lengths in the axial direction, consider a cylindrical 

shell subjected to axisymmetric loading. Seshadri (2005) has discussed the concept of 

decay lengths for pressure vessels and piping. The decay length in axial direction for 

cylindrical shell is 

(7.2) 

The decay length in circumferential direction for cylindrical shell is (Seshadri 2005) 

(7.3) 

Since the extent of decay length in shells is highly dependent on the shell curvature, the 

decay lengths in circumferential and axial directions are different. 

7 .5.2 Reference Volume for Cylindrical Shell 

When damage occurs in a pressurized component, a part of the component adjacent to the 

damage participates in the failure mechanism. A reference volume is the sum of the 

volume of damaged portion of the vessel (LTA) and the adjacent volume affected by the 

damaged portion. The adjacent volume is the effective undamaged volume outside the 

damaged area that participates in plastic action and is part of the reference volume. The 

dimensions of the adjacent volume are calculated by using the decay lengths. 

An equivalent rectangular shape is utilized to represent the irregular shape of a hot spot 

or corrosion damage in cylindrical shell. Although the thickness of the corrosion is 

irregular in practice, uniform depth is considered. Maximum corrosion depth is a 
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conservative assumption. For a damaged area of width 2a in circumferential direction and 

length 2b in longitudinal direction of a cylindrical shell (Figure 7 .3), the volume of the 

damaged spot V D can be calculated as, 

(7.4) 

where hv is the thickness of the damaged area. The adjacent volume is the strip around 

the damaged volume that participates in plastic action and is bounded by decay lengths of 

cylindrical shells. Therefore, the adjacent volume is given by, 

4h [(xc +a)(x1 +b)-ab] (7.5) 

where Xt and Xc are decay lengths of cylindrical shells in axial and circumferential 

directions, respectively. The reference volume is therefore the sum of the above volumes 

Reference voltuue 

I 

Rectangular hot spot 
or Corrosion damage 

, ................... ~~~~ 
I 

I 
I L __ _ 

2b 

(7.6) 

Figure 7.3 Decay length and reference volume dimensions for cylindrical shell 
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7.6 Structural Integrity Considerations 

Structural integrity assessment essentially implies serviceability assessment as well as the 

remaining life assessment. In order to meet the minimum serviceability requirement, the 

theoretical limiting stress in the damaged spot should be the same as the limiting stress 

for the undamaged component. Seshadri (2005) introduced the variational concepts in 

plasticity in order to assess the integrity of pressure vessel components and structures. 

The integral mean of yield criterion is used to assess the damage. 

The behavior of a structure under internal pressure due to thermal hot spot and corrosion 

damage is slightly different although both of these damages possess the similar type of 

failure mechanism. In both cases, the structure fails locally due to stiffness reduction in 

the damaged area. For corrosion damage, the stiffness of the LTA reduces due to the 

thickness reduction, whereas hot spot region looses its stiffness due to the softening of 

the material at higher temperature. In both cases, excessive plastic deformation is the 

primary cause of failure. 

7 .6.1 Integral Mean of Yield Criterion for Integrity Assessment 

The integral mean of yield criterion was originally used in conjunction with the total 

volume of the component or structure. In pressure vessel components containing thermal 

hot spot or corrosion damage, failure occurs locally. Therefore, the assessment of the 

kinematically active portion of the volume that takes part in plastic action is of 

considerable interest. In order to use the integral mean of yield criterion in structural 

integrity assessment of components and structures containing local damage, the criterion 
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should be applied to the reference volume instead of the whole volume of the structure. 

The integral mean of yield criterion can be rewritten for reference volume as 

f,u 0 [res~)+ (qJ0
)

2 ]dv = o (7.7) 
VR 

where S~ is the Statically admissible deviatoric StreSS for impending plastic flow; qJ0 is a 

point function which takes on a value of zero if s~ is at yield and remains positive below 

yield, and V R is the reference volume. 

The Tresca and von Mises yield criteria can be expressed as 

(7.8) 

(7.9) 

where m~ is the upper bound limit load multiplier for the damaged component, ae is the 

statically admissible equivalent stress, and a Y is the temperature dependent yield stress 

of the material. 

(a) Corrosion Damage. For components containing corrosion damage, the integral 

mean of yield criterion using Tresca yield criterion can be expressed as 

(7.10) 
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where suffix U refers to the uncorroded region of the reference volume and suffix C 

refers to the corroded region, a eu is the equivalent stress in the original shell and a ec is 

the equivalent stress in the corroded area of the shell. 

Rearranging Eq. (7 .1 0), the upper bound limit load multiplier for the damaged component 

can be obtained as 

(7.11) 

Similarly, for components containing corrosion damage, the integral mean of yield using 

von Mises yield criterion can be expressed as 

(7.12) 

Rearranging Eq. (7.12), the upper bound limit load multiplier for the damaged component 

can be obtained as 

(7.13) 

(b) Thermal Hot Spot. The integral mean of yield criterion, using Tresca yield criterion, 

can be expressed as 

(7.14) 
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where suffix U refers to the uncorroded region of the reference volume and suffix H 

refers to the hot spot region, aeu is the equivalent stress in the original shell and aeH is 

the equivalent stress in the hot spot area of the shell. 

Note that, as the shell thickness is constant throughout the structure, the membrane 

stresses in the hot spot and surrounding region are same i.e., aeu = aeH = ae. The upper 

bound limit load multiplier for the damaged spot can now be obtained as 

(7.15) 

Similarly, for components containing hot spot, the integral mean of yield criterion using 

von Mises yield criterion can be expressed as 

(7.16) 

By applying aeu = aeH = ae and rearranging Eq. (7.16), the upper bound limit load 

multiplier for the damaged spot can now be obtained as 

a~u Vu + (j~H VH 

a;vR 
(7.17) 

In the following sections of the chapter, m~ based on the von Mises yield criterion will 

be discussed. 
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7 .6.2 The Remaining Strength Factors (RSF) 

As already been discussed, the remaining strength factor (RSF) is a parameter used for 

quantitative assessment of damaged components and structures. The RSF is a 

dimensionless parameter and is based on the primary load carrying capacity of the 

structure. The RSF can be defined as the ratio of the collapse load (pressure) of the 

damaged component to that of the undamaged component. Two RSFs are considered next 

for evaluation of pressure vessel components and structures containing thermal hot spot 

and corrosion damage. 

(a) RSF Based on the ma Multiplier: The first RSF is obtained by using the m a 

multiplier proposed by Seshadri and Mangalaramanan (1997), which can be expressed as 

follows 

(7.18) 

where mu0 (=ayuiO"eu) is the upper bound multiplier for undamaged vessel. Note that the 

m a multiplier is dependent on the upper bound multiplier m
0 and the classical lower 

bound multiplier mL. The m a multiplier can be evaluated by using Eq. (3.25), where 

classical lower bound multiplier can be evaluated as mL = ml.d =a Y / a ec for corrosion 

damage and ml.d = a yH jae for thermal hot spot; and the upper bound multiplier 

m 0 
( = m ~ ), based on the von Mises yield criterion, can be obtained by using the Eq. 

(7.13) for corrosion damage and Eq. (7.17) for thermal hot spot. 
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(b) RSF Based on the ma-Tangent Multiplier: The second RSF is based on the rna-

tangent multiplier ( rn~) proposed in Chapter 4 of this thesis. The proposed RSF can be 

expressed as 

(7.19) 

The value of rn~ can be obtained by using Eq. (4.10), where ( = rn~ I rnu; and rnu and 

rn~ have their usual meaning as mentioned above. The RSF based on the rna-tangent 

method ( RSFr) is of considerable relevance from a structural integrity standpoint. 

Note that the first RSF, based on the rna multiplier, is applicable only if rn°1rnL is within 

the rna- triangle i.e., 1 $ rn° I rnL $1 + ..fi (Figure 4.1). On the other hand, the second 

RSF, based on the rna-tangent method, is simple and is applicable even if the value of 

rn°1rnL lies outside the rna- triangle i.e., rn° I rnL > 1 + ..fi. This can be the case when the 

damaged spot experiences significant stress gradient. Therefore, the rna-tangent method is 

capable of taking on any value of rn°1rnL (=0 while evaluating the corresponding 

multiplier. If the value of (is greater than ( 1 + ..fi) then the rna-tangent multiplier ( rn~) 

needs to be evaluated using Eq. (4.13), instead ofEq. (4.10). 

7 .6.3 Allowable Remaining Strength Factor 

The allowable RSF for a given pressurized component or structure may vary depending 

upon the application. Different procedures use different assumptions regarding the stress 
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at failure and hence result in different allowable RSF as shown in Table 7 .1. For example, 

ASME B31G assumes 1.1 *SMYS (specified minimum yield strength) as the flaw stress 

in order to predict the plastic flow of the material at the damaged spot. Hence the 

allowable RSF is turned out to be 0.909. This approach assumes that the structure with 

flaw or damaged fails when the stresses in the damaged spot reaches to the flow stress of 

the vessel or pipe material. 

On the other hand, modified B31 G and RSTRENG criterion assumes a less conservative 

assumption of the flow stress, which is SMYS+ 10,000 psi, and for Grade B pipe (SMYS 

= 35,000 psi) the allowable RSF turn out to be 0.778. Note that it increases the degree of 

conservatism when applied to relatively higher strength materials. API 579 has 

recommended the value of RSF equal to 0.90 for typical process equipments. This value 

implies that the strength of the damaged component or structure cannot be less than the 

90 percent of the strength of the original design. 

The allowable RSF is defined as the ratio of the required minimum thickness to the 

nominal thickness of the undamaged component. The required minimum thickness is the 

thickness that is required to resist the applied internal pressure and can be calculated 

according to appropriate design Codes. In this thesis, the required minimum thickness is 

calculated based on the ASME Boiler and Pressure Vessel Code, Section Vill Division 1 

(2007). If the evaluated RSF is lower than the allowable RSF, then the component or 

structure can still be accepted to continue service upon rerating forMA WP. 
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Table 7.1 Comparison of allowable RSF for different criteria 

Sl. No. 

1 

2 

3 

4 

5 
6 

Criterion I Procedure 

ASMEB31G 
Modified B31G* 

RSTRENG* 

API 579 Level 1 

API 579 Level 2 

API 579 Level 3 

Allowable RSF 

0.91 

0.78 

0.78 

0.90 

0.90 

0.90 

*Based upon Grade B pipe specifications 

7 .6.4 Remaining Life Assessment 

Structural integrity assessment essentially means the assessment of serviceability as well 

as the remaining life of the component. Once the strength parameter of the damaged 

component is evaluated, the decision on suitability of the component for continued 

service could be made. When the component is considered to be acceptable for continued 

service, it is required to estimate the remaining life of the component. Assessment of 

remaining life of the component or structure is important in order to establish the routine 

inspection schedule and I or establishing a monitoring plan. 

Widespread research has not been carried out in assessing the remaining service life of 

aging pressure vessel components and structures. The issue has been addressed in 

different practices and procedures, e.g., API 579. The procedure for estimation of 

remaining life of aging components and structures is case dependent i.e., it depends on 

the characteristics of the flaw or damage. For example, in case of local wall thinning, 

where there is no possibility of cracking, a certain remaining life of the damaged 
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component can be established on the basis of the parameters like, remaining thickness of 

the LT A, future corrosion allowance, rate of change of size of the damage and the 

corrosion rate data. 

API 579 (2000) recommended two approaches for remaining life assessment of 

pressurized components and structures with LTAs: thickness approach and maximum 

allowable working pressure (MA WP) approach. The thickness approach is applicable 

where the thickness of the LT A is uniform and the later one is applicable when the 

remaining thickness is characterized by a thickness profile. It should be noted that there 

are some uncertainties in these assessment approaches due to the possibility of inaccurate 

inspection data, change of material properties of the aging component, assessment level, 

as well as the assumptions that are made during the course of the evaluation. 

7. 7 Finite Element Modeling 

Inelastic strength of the cylindrical pressure vessel containing thermal hot spot and 

corrosion damage (LTA) is determined by performing inelastic finite element analysis. 

This Level 3 assessment method is used to verify the results obtained from the proposed 

Level 2 FFS assessment method. Note that inelastic finite element analysis is very 

expensive in terms of computational effort and time and hence is not suitable for plant 

engineers to use in a daily basis. In the inelastic finite element analysis, a bilinear 

kinematic hardening material model is assumed as shown in Figure 7 .4. This assumption 

is made due to the fact that structural materials possesses significant amount of reserve 

strength beyond their yield limit. 
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1% 

Figure 7.4 Material model for finite element analysis 

Therefore, it is reasonable that a certain portion of the reserve strength could be taken 

into account while performing the assessment, given that the difference between the yield 

and ultimate strength of the material is considerably large. Note that there is an ongoing 

argument about the amount of reserve strength that could be taken into account beyond 

the yield limit. By adopting elastic-plastic material model and performing strain-based 

assessment, a portion of the reserve strength is taken into account, which reduces the 

conservatism in the assessment and hence avoids the unnecessary repair or replacement 

of the component. 

Finite element models of the cylindrical vessels containing thermal hot spot and corrosion 

damage is developed using 3D 8-noded structural solid element. In order to account for 

the bending stresses, present at the edges of the LT A, a very fine mesh is generated in 

and around the LTA and four elements across the thickness. The relatively finer mesh 

helps in capturing the actual stress distribution in and around the damaged spot. Typical 

finite element mesh for a cylindrical vessel with LTA is shown in Figure 7.5. 
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Figure 7.5 Finite element model of the cylindrical shell with local thin area (LTA) 

The finite element model of the structure is developed by taking advantage of symmetry 

about the meridional and longitudinal plane. Therefore, one half of the structure is 

modeled and symmetric boundary conditions are applied to the edges of symmetry. The 

structure is subjected to internal pressure. The same procedure is applied for modeling 

and analyzing the cylindrical vessel with thermal hot spot except that the material 

properties of the hot spot region are different than that of the rest of the vessel due to 

relatively higher temperature. 

7. 7.1 Inelastic Finite Element Analysis 

The strength parameters obtained by the proposed method is verified by Level 3 inelastic 

finite element analysis. Appropriate strain limits are used to obtain the collapse load of 

the structure. Sims et al. (1992) proposed a conservative limit on the amount of plastic 

strain in LTA based on numerous inelastic FEA. They argued that a limit of 2% plastic 
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strain at any location provides a reasonable and conservative estimate of the actual 

collapse load of the structure. They have shown that maximum plastic strain occurs at the 

centre of the LTA, which is the case when the structure is subjected to uniform internal 

pressure. It should be noted that the maximum allowable working pressure (MA WP) may 

not produce any plastic strain in the LTA. 

In this thesis, 1% plastic strain at the middle fiber of the centre of the damaged spot (LTA 

or hot spot) is considered as the limit for plastic collapse load estimation. The approach is 

consistent with the work reported in (Seshadri, 2005; Indermohan and Seshadri, 2005; 

Ramkumar and Seshadri, 2005; Tantichattanont et al., 2007) on FFS assessment of 

thermal hot spot and corrosion damage. In case of pressure vessels and piping, maximum 

strain occurs at the centre of the LT A or hot spot due to uniform internal pressure. In case 

of LTA, it should be noted that the periphery of the LTA is assumed to be blended with 

an appropriate blend radius such that the maximum stress and strain occurs at the center 

of the LT A but not at the edges. 

7.8 Illustrative Examples 

In order to illustrate the proposed method for FFS assessment, a cylindrical vessel under 

internal pressure is considered. The basic dimensions of the shell including design 

considerations and operating conditions are given below. The values in the brackets are 

in SI units. 
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ASTM Material 

Shell inside radius (Ri) 

Operating pressure (p0 ) 

Design pressure (pd) 

Design temperature (T1) 

Operating temperature 

Allowable stress (S) 

Corrosion allowance (CA) 

Joint efficiency (Ej) 

SA 516 Grade 55 

33 in. (0.8382 m) 

180 psig (1.24 MPa) 

220 psig (1.52 MPa) 

100 °F (37.78 °C) 

90 °F (32.22 °C) 

13.7 ksi (94.46 MPa) 

1116 in. (0.0016 m) 

1.0 

Thickness Calculation: Design thickness for cylindrical shell can be calculated as 

hd = pdRi I(SE1 -0.6pd)= 0.535 in. (0.014 m). Required thickness of the shell can be 

evaluated ash = hd +corrosion allowance (CA) = 0.598 in. (0.015 m). Therefore, a plate 

of 5/8 in. (0.016 m) thickness is specified. The shell outside radius is evaluated as R0= 

33.625 in. (0.854 m) and shell thickness is evaluated as h = 0.625 in. (0.016 m). The 

allowable RSF based on design requirements is obtained as RSF * = hd I h = 0.856. 

Calculation of Decay Length: Decay length in meridional direction is evaluated as 

x1 = 2.50-JRh = 11.354 in. (0.288 m) and decay length in circumferential direction is 

evaluated as xc = 6.10(R 3 h) 114 = 74.677 in. (1.897 m). 
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7 .8.1 Rectangular L T A in Cylindrical Shell 

Assume that 113 of the shell thickness has undergone corrosion. The remaining thickness 

of the corroded shell he (=2hl3) = 0.417 in. (0.011 m) and the corroded radius R;c = 

33.208 in. (0.844 m). 

Dimension of LTA: For the following calculation, circumferential and longitudinal 

dimension of the LTA (Figure 7.3) is considered as 2a = 20 in. (0.508 m); 2b = 20 in. 

(0.508 m), respectively. The aspect ratio of the damaged area (bla) = 1.0. 

Evaluation of Reference Volume: Volume of LT A is evaluated as V D = ( 4ab) he = 

166.680 in.3 (0.003 m3
) and volume of the remaining shell that takes part in plastic action 

is calculated as Vu = 4h [(xc +a) (x1 +b) - ab] = 4270.402 in.3 (0.070 m\ Therefore, the 

reference volume VR= (Vu+VD) = 4437.082 in.3 (0.073 m3
). 

Evaluation of Stresses for the LTA: Hoop stress is evaluated as ahc = pdR;c I he = 

17.533 ksi (120.884 MPa) and longitudinal stress is evaluated as a 1c = p d R;c I 2hc = 

8.766 ksi (60.442 MPa). Therefore, von Mises equivalent stress is calculated as 

a eC =~a,;c +a/~ -ahCa/C = 15.184ksi (104.688 MPa). 

Evaluation of Stresses for the Remaining Shell: Hoop stress is evaluated as a h = p d R; I h 

= 11.616 ksi (80.090 MPa) and longitudinal stress is evaluated as a 1 = pdRi 12h = 5.808 

ksi (40.045 MPa). Therefore, von Mises equivalent stress is calculated as 

aeU =~a;+ a/2 - aha/= 10.060 ksi (69.36 MPa). 

160 



Table 7.2 Comparison of RSF for corrosion damage; he= 2hl3 

Case No. a (in.) . b (in.) RSFa RSFr RSF inelastic 

1 5.0 5.0 0.808 0.866 0.978 
2 7.5 7.5 0.806 0.862 0.871 
3 10.0 10.0 0.805 0.857 0.844 
4 12.5 12.5 0.803 0.853 0.837 
5 15.0 15.0 0.801 0.848 0.830 
6 20.0 20.0 0.797 0.839 0.821 

Evaluation of Multipliers: Upper bound multiplier for the undamaged shell is evaluated 

as m~ =a Y I aeu = 2.982; lower bound multiplier for the damaged shell is calculated as 

mu =a Y I aec = 1.976 and upper bound multiplier for the damaged shell is evaluated as 

m~ = ~a~VR l(a;cvc + a;u Vu) = 2.913. The ma multiplier for the damaged shell could 

be obtained by using Eq. (3.25) as (ma)d = 2.399; where m 0 = m~ and mL = mu. The 

rna-tangent multiplier for the damaged shell could be obtained by using Eq. (4.10) as 

(m~)d =m~ 1(1+0.2929(( -1))=2.558; where (=m~ lmu. 

Evaluation of RSF: Using Eq. (7.18), the RSF based on ma multiplier is evaluated as 

RSFa = (ma)d I m~= 0.805. Using Eq. (7.19), the RSF based on rna-tangent multiplier is 

evaluated as RSFr = (m~ )dIm~ = 0.857. A number of LTAs are considered further with 

different aspect ratios to obtain the behavior of the evaluated Level 2 RSFs. The results 

are shown in Table 7 .2. 

Level 3 Inelastic Analysis: In order to verify the value of the Level 2 RSF obtained from 

the above mentioned methods, inelastic FEA is conducted. Plastic modulus of 50x 104 psi 
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(3.45x109 Pa) is used to account for the strain hardening effect. The RSF is calculated 

from the ratio of the limit pressure at 1% membrane strain in the centre of the LT A to the 

limit pressure of the vessel without LT A. For this example, inelastic strength parameter, 

RSF;nelastic is evaluated as 0.844. The same procedure is applied to LTA with different 

aspect ratios and corresponding results are shown in Table 7 .2. 

Discussion: The results in Table 1 show that the RSF based on the ma method (RSFa) is 

conservative compared to that of the rna-tangent method ( RSF T ). For relatively bigger 

LTAs, the RSFT slightly exceeds the inelastic strength parameter RSFinelastic· Extensive 

investigation revealed that this is a reference volume issue, not the method itself. 

Moreover, in the present analysis, RSF is calculated from the limit pressure at 1% 

membrane strain in the centre of the LTA, which is a conservative assumption compared 

to Sims (1992) assumption as 2% membrane strain (refer to Section 7.7.1 of this thesis 

for further detail). However, the maximum difference between the value of RSFT and 

RSFinelastic• as shown in Table 7.2, is about 2%, which is acceptable. 

7 .8.2 Rectangular Hot Spot in Cylindrical Shell 

A rectangular hot spot of temperature 600 °F (316 °C) is considered for evaluation. The 

material properties of carbon steel for a temperature range of 100-600 °F (37.8- 316 °C) 

are listed in Table 7.3. The basic dimensions of the shell including design considerations 

and operating conditions are as before. Dimension of the hot spot is the same as the 

dimension of the LT A. 
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Evaluation of Reference Volume: Volume of the damaged spot is evaluated as V0 = (4ab) 

h = 250.00 in.3 (0.004 m3
) and volume of the remaining shell that takes part in plastic 

action is calculated as Vu= 4h [(xc+a) (x1+b)- ab] = 4270.402 in.3 (0.070 m\ Therefore, 

the reference volume VR= (Vu+Vv) = 4520.402 in.3 (0.074 m3
). 

Calculation of Elastic Stresses: Hoop stress is evaluated as a,= pdRi I h = 11.616 ksi 

(80.09 MPa) and longitudinal stress is evaluated as a 1 = pdRi 12h = 5.808 ksi (40.045 

MPa). Therefore, von Mises equivalent stress: a e =~a,; + a 1
2

- a,a1 = 10.060 ksi 

(69.360 MPa). 

Evaluation of Multipliers: Upper bound multiplier for the undamaged shell is evaluated 

as m~ =a yu I a e = 2.982; lower bound multiplier for the damaged shell is calculated as 

mLd = a yH I ae = 2.207, and upper bound multiplier for the damaged shell is evaluated as 

m~ =~(a~HVH +a~uVu)la;VR =2.945. 

The ma multiplier for the damaged shell could be obtained by using Eq. (3.25) as (rna) d 

= 2.593; where m 0 = m~ and mL = mLd. The rna-tangent multiplier for the damaged shell 

could be obtained by using Eq. (4.10) as (m~)d =m2 1(1+0.2929(( -1))= 2.682; where 

( =m~ lmLd. 
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Table 7.3 Material properties for SA 516 Gr. 55 

Temperature 100 200 300 400 500 600 
(oF) (37.8 °C) (93.3 °C) (149 °C) (204 °C) (260 °C) (316 °C) 

E(x106
) psi 29.3 28.8 28.3 27.7 27.3 26.7 

a(xl0-6
) in./in. °F 5.53 5.89 6.26 6.61 6.91 7.17 

cry(x1 03
) psi 30.0 27.3 26.6 25.7 24.5 22.2 

Evaluation of RSF: Using Eq. (7.18), the RSF based on ma multiplier is evaluated as 

RSFa = (ma)d I m~= 0.869. Using Eq. (7.19), the RSF based on rna-tangent multiplier is 

evaluated as RSFr = (m~) d I m~ = 0.899. A number of hot spots are considered further 

with different aspect ratios. The results are shown in Table 7 .4. 

Level 3 Inelastic Analysis: The same procedure is applied here to evaluate the inelastic 

strength parameter, where RSF;nelastic is the ratio of the limit pressure at 1% membrane 

strain in the hot spot to the limit pressure of the vessel without hot spot. For this example, 

RSF;nelastic is evaluated as 0.953. The same procedure is applied to hot spots with different 

aspect ratios and the results are shown in Table 7 .4. 

Table 7.4 Comparison of RSF for thermal hot spot; T H = 600 0p 

Case No. a (in.) . b (in.) RSFa RSFT RSF ine!CJStic 

1 5.0 5.0 0.872 0.904 0.989 
2 7.5 7.5 0.871 0.902 0.981 
3 10.0 10.0 0.869 0.899 0.953 
4 12.5 12.5 0.868 0.897 0.918 
5 15.0 15.0 0.866 0.894 0.902 
6 20.0 20.0 0.863 0.889 0.893 
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Calculation of Thermo-elastic Stresses: Elastic modulus at average temperature of Tavg 

=350 °F (176.8 °C) is 28.0xl06 psi (193.05xl09 Pa) and coefficient of thermal expansion 

at Tavg is 6.435xl0-6 in./in.°F (11.6xl0-6 mrnlmm °C). Therefore, the thermo-elastic 

stresses are evaluated as o-1 =(paR; I h)- (Ea!lT /2) = -33.429 ksi (-230.49 MPa) and 

o-2 =(paR;I2h)-(Ea11T/2)=-39.237 ksi (-270.54 MPa). These stresses are 

compressive as the thermal stresses are dominating and developed in a cylindrical 

structure. Therefore, von Mises equivalent stress: o-e =~a; + o-; - o-,o-2 = 36.680 ksi 

(252.910 MPa), which is grater than the yield stress of the material at 600 °F (316 °C). 

Therefore, the hot spot will yield. Since the stresses are membrane compressive stress, 

there is a possibility of local buckling (Seshadri 2005). 

Discussion: It can be observed from the tabulated results (Table 7.4) that the value of 

RSF r , based on the rna-tangent method, is in good agreement with the Level 3 inelastic 

FEA results (RSFinelastic). Therefore, RSFT is recommended for integrity assessment of 

pressure vessels and piping systems containing thermal hot spot. 

7.9 Conclusion and Recommendation 

Level 2 FFS assessment method is proposed in this Chapter to estimate the strength 

parameters for evaluating pressure vessels and piping systems containing thermal hot 

spot and corrosion damage. The integral mean of yield criterion in conjunction with the 

rna-tangent method is used to develop the proposed method. The RSF obtained by using 

the rna-tangent method is shown to be in good agreement with the Level 3 inelastic FEA 
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results. The RSF based on the rna method (RSFa) is found to be conservative compared to 

the RSF T , which is based on the rna-tangent method. 

A significant advantage of using the rna-tangent method (based RSF T ), over rna method 

(based RSFa). is that the former one is applicable to the damages experiencing high stress 

gradient in and around the damaged spot. By using the proposed rna-tangent method 

based RSF, reasonably accurate assessment can be achieved for a wide range of damaged 

pressure vessel components and structures. Therefore, the proposed method is suggested 

as a simplified tool for achieving the FFS assessment of pressure vessels and piping 

systems containing thermal hot spot and corrosion damage. 

7.10 Closure 

The fitness-for-service (FFS) assessment of mechanical components and structures based 

on simplified method is presented in this chapter. The theoretical background, 

formulation and potential application areas of the proposed method are presented in a 

systematic way. The method is applicable to structures containing thermal hot spot and 

corrosion damage. In addition, the method is applicable if there is a significant stress 

gradient in and around the damaged spot. lllustrative examples are included in order to 

demonstrate the application of the method. 
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CHAPTERS 

CONCLUSIONS AND FUTURE RESEARCH 

8.1 Summary and Conclusions 

Design and integrity assessments of mechanical components and structures are of 

paramount importance in many industrial sectors. Evaluation of load carrying capacity is 

an important goal in structural design and structural integrity assessment. Limit analysis 

is particularly important as it provides a guaranteed margin of safety against load 

carrying capacity of the structure and simplifies the analysis by assuming an elastic 

perfectly plastic material model. Limit analysis is recognized by the available codes and 

standards, e.g., ASME B&PV Code (2007), as an acceptable tool to estimate the limit 

load. Limit analysis is widely used to identify primary stresses in the mechanical 

components and structures. It also plays an important role in integrity assessment of 
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aging mechanical components and structures. Therefore, the development of a robust and 

simplified method for limit analysis is of considerable interest from structural design and 

structural integrity assessment standpoint. 

In practice, limit load can be determined by using analytical method, numerical method, 

experimental method, or by using simplified method. Use of simplified method is of 

considerable interest, over the conventional methods, as it is very effective in terms of 

computational effort and time; and is applicable to a wide range of practical component 

configurations including three dimensional components with complex geometry. In this 

thesis, a simplified method, called the rna-tangent method, has been developed to estimate 

the limit load of a general class of mechanical components and structures. The underlying 

features of the rna-tangent method enabled its application into three major areas which 

includes: analysis of cracked components, stress categorization and fitness-for-service 

assessment. 

(a) The ma-Tangent Method. The rna-tangent method has been developed in this thesis 

as an alternative method over conventional limit analysis methods. The proposed method 

is based on variational principles in plasticity. It makes use of statically admissible stress 

field based on a single linear elastic analysis to estimate the limit load. The method 

makes use of the "limiting tangent" in order to relate the initial elastic state of a 

component or structure to that of the exact limit state. 

The rna-tangent method has several potential advantages over the conventional methods. 

It is particularly beneficial as it overcomes the potential numerical difficulties of the 

conventional inelastic FEA and cost effective compared to the experimental methods. 
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The proposed method is applicable to a wide range of practical components and 

structures with complex geometric configurations and loading conditions. The underlying 

feature of the rna-tangent method enabled its application to components and structures 

experiencing significant amount of peak stresses. The method is shown to be quick and 

easy to implement in practice. The proposed method is economically viable to use on a 

daily or regular basis. This method can also be considered as an independent verification 

tool for conventional limit analysis techniques. The rna-tangent method is applied to a 

number of mechanical components and structures, ranging from simple to relatively 

complex geometric configurations, and the results compare well with those obtained from 

the corresponding analytical and inelastic finite element analysis results. 

(b) Analysis of Cracked Components. There is a growing interest in the quantitative 

assessment of the integrity of mechanical components and structures containing crack 

like flaws, which might lead to a catastrophic failure. Limit analysis plays an important 

role in integrity assessment of cracked components and structures. In this thesis, the 

proposed rna-tangent method is extended to estimate the limit load of components and 

structures containing crack like flaws. 

In a cracked body, significant amount of peak stresses are developed due to singular 

stress field ahead of the crack-tip. In order to apply the proposed rna-tangent method, 

peak stresses ahead of the crack-tip are blunted in two stages. The method makes use of a 

single linear elastic finite element analysis to estimate the limit load. Three different 

procedures are proposed. A number of example problems are worked out in order to 
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demonstrate the method. The results are found to be in good agreement with the 

corresponding inelastic finite element analysis results. 

(c) Stress Categorization of Pressure Components. The design of mechanical 

components and structures by elastic analysis essentially means the splitting of elastic 

stresses into primary, secondary and peak stress categories and then apply the appropriate 

stress limits for each of these categories and appropriate combinations of the same. The 

complete categorization of stresses is a challenging task even with the on-hand 

computing facilities and numerical techniques. An attempt has been made in this thesis to 

categorize the elastic stresses induced in pressure vessel components and structures by 

using simplified method, in light of available codes and standards (ASME B&PV Code, 

2007). The proposed method is based on approximate limit load multiplier estimates to 

decompose the elastic stresses into appropriate categories, using a single linear elastic 

FEA. The proposed method is able to identify primary, primary plus secondary, and peak 

stress components for mechanical and thermal loads within reasonable accuracy. 

The potential benefits of the proposed method over conventional methods are that the 

proposed method makes use of available FEA codes and requires a moderate amount of 

post-processing by the user, which could be automated; it does not require to make use of 

SCLs and hence is suitable for components with complex geometry. The proposed 

method is able to categorize the stresses for combined loading (mechanical and thermal) 

without requiring two separate analyses. The method is demonstrated by a number of 

example problems ranging from simple to relatively complex pressure vessel component 

configurations. The results are compared well with those obtained from the conventional 
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techniques. Therefore, the proposed method can be used as a tool for simplified stress 

categorization of pressure vessel components and structures with minimum 

computational effort. 

(d) Fitness-for-Service (FFS) Assessment. Damage tolerance or fitness-for-service 

(FFS) assessments are performed in operating plants in order to demonstrate the 

structural integrity of the in-service components and structures undergoing damage. The 

concepts underlying the rna-tangent method along with the concept of decay length and 

reference volume are used in this thesis to assess the remaining strength of corroded areas 

and thermal hot spots. The proposed method gives an improved estimate of the remaining 

strength of the aging pressure vessel components and structures. The method is 

applicable to a wide range of practical pressure vessel components and structures 

including damages experiencing significant stress gradient in and around the damaged 

spot. The method is demonstrated through a number of examples and the results are 

found to be in reasonably good agreement with the corresponding Level 3 inelastic finite 

element analysis results. The proposed method is economically viable to use by the plant 

engineers on a daily or regular basis. 

8.2 Original Contributions 

The original contributions to this thesis are as follows: 

• A robust simplified method, designated as the rna-tangent method, is proposed 

in order to estimate the limit load of a general class of mechanical components 
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and structures. The method makes use of statically admissible stress field 

based on a single linear elastic analysis in order to estimate the limit load. The 

rna-tangent method can take practically any value of rn° I rnL, which extended the 

domain of application of the proposed method beyond the "rna triangle". The 

method is shown to be rapid and easy to implement in practice. 

• The rna-tangent method is extended to estimate the limit load of mechanical 

components and structures containing crack-like flaws. The method is able to 

estimate the limit load using a single linear elastic analysis. Three different 

procedures are proposed. 

• A relationship is identified using the rna-method (1997) and the reference two­

bar structure method (2006) proposed by Seshadri et al., which signifies the 

importance of 1 + J2 as a threshold for peak stresses. 

• A simple procedure is proposed to categorize the elastic stresses in pressure 

vessel components and structures into primary, secondary and peak stress 

components. The proposed method makes use of statically admissible stress 

field based on a single linear elastic analysis to categorize the stresses induced 

by both mechanical and thermal loads. The method is considered as a direct 

and alternative approach over conventional approaches e.g., stress 

linearization and interaction I discontinuity analysis. 

• Simplified method based remaining strength factor (RSF) is proposed for 

fitness-for-service (FFS) assessment of pressure vessels and piping systems 
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containing thermal hot spot and corrosion damage. The proposed method is 

applicable to the damaged components or structures even when significant 

amount of peak stresses are present. 

8.3 Recommendations for Future Research 

Recommendations for future research are as follows: 

1. The rna-tangent method is proposed in this thesis for estimation of limit load of a 

general class of mechanical components and structures containing crack like flaws 

and those without flaws. The method has been applied to a wide range of pressure 

vessel components and structures ranging from simple to relatively complex three 

dimensional structures; and the results are found to be in good agreement with the 

corresponding analytical and inelastic FEA results. The method has also been applied 

to a number of standard example problems as well as typical pressure component 

configuration with crack like flaws and the results are found to be in good agreement 

with the corresponding analytical and inelastic FEA results. It will be beneficial to 

apply this method to three dimensional FE models with crack like flaws. 

2. A linear elastic analysis based simplified method has been proposed in this thesis for 

categorization of linear elastic stresses induced in pressure vessel components and 

structures. The primary stress obtained from the proposed method is compared with 

the corresponding analytical and inelastic finite element analysis results and primary­

plus-secondary stress for simple structures has been compared with those obtained 
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from the conventional techniques. It will be beneficial if the primary-plus-secondary 

stresses could further be verified by performing shakedown analysis. 

3. In this thesis, simplified method based Level 2 FFS assessment method is proposed 

for FFS assessment of thermal hot spot and corrosion damage. The following 

recommendations are proposed for future research: 

• Current API 579 rules for FFS assessment covers LTA remote from major 

structural discontinuities. Therefore, evaluation of LTA near structural 

discontinuities will be useful. In addition, interaction of LTAs could be 

considered for future research. 

• FFS assessment of LTA based on linear elastic analysis using stress 

categorization approach can be considered for future research. 

• The method is currently applied to cylindrical shells. The domain of 

application of the proposed method could be extended to other practical 

components and structures such as elbows and conical transitions. 
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APPENDIX A 

ANSYS Command Listing 

ANSYS batch files are used to perform the finite element analysis of different 

mechanical components and structures. The analysis type includes both elastic and 

inelastic finite element analysis. Typical input files of a number of example problems, 

used in Chapter 4, 5, 6 and 7, are provided in this section. The examples include standard 

example problem to typical pressure component configuration. 

A.l Thick Walled Cylinder Subjected to Internal Pressure 

/TITLE, Thick Walled Cylinder under Internal Pressure 

! Cylinder dimensions (m) 

*SET,Ri,65e-3 

*SET,Ro,90e-3 

*SET,Rm, (Ro+Ri)/2 

*SET,Thick, (Ro-Ri) 

*AFUN,DEG 

*SET,Pi,3.1416 
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! Applied internal pressure 

*SET,Prs,50e6 

! Material model 

*SET,YS,300e6 

*SET,EM,200e9 

*SET,Pois,0.3 

! Enter preprocessor 

/PREP7 

ET,l,PLANE82,,,2 

MP,EX,l,EM 

MP,NUXY,l,Pois 

! Modeling geometry 

K,lO 

K, 1, , RI 

K, 2, RI 

LARC,1,2,10,RI 

K, 3,, Ro 

K,4,Ro 

LARC,3,4,10,Ro 

L,1,3 

L,2,4 

AL,1,2,3,4 

! Meshing 

*SET,m,0.25 

ARC=(Pi*90*Rm)/180 

*SET,THKdiv,Thick*le3*m 

*SET,CIRdiv,ARC*le3*m 

LESIZE,3,,,THKdiv,3 

LESIZE,4,,,THKdiv,3 
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LESIZE,l,,,CIRdiv 

LESIZE,2,,,CIRdiv 

AMESH,ALL 

! Boundary conditions 

DL,3,1,SYMM 

DL,4,1,SYMM 

ALLSEL 

! Apply load 

SFL,l,PRES,Prs 

ALLSEL 

SBCTRAN 

FINISH 

! Enter into the solver 

/SOLO 

ANTYPE,O 

SOLVE 

SAVE 

FINISH 

! Post Processing 

/POSTl 

ETABLE,Sig,S,EQV 

ETABLE,Vol,VOLU 

*GET,Emax,ELEM,O,COUNT 

*SET,Vtot,O 

*DO,kk,l,Emax 

*GET,Evol,ELEM,kk,ETAB,Vol 

Vtot=Vtot+Evol 

*END DO 

Evaluate multipliers 
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*SET,SumRef,O 

*DO,kk,l,Emax 

*GET,SigEq,ELEM,kk,ETAB,Sig 

*GET,Evol,ELEM,kk,ETAB,Vol 

SumRef=SumRef+((SigEq**2)*Evol) 

*END DO 

SIGref=SQRT(SumRef/Vtot) 

mO_l=(YS/SIGref) 

*SET,m_O,mO_l 

ESORT,ETAB,Sig,O 

*GET,SIGmax,SORT,O,MAX 

m_L=(YS/SIGmax) 

*SET, Jeta, (m_O/m_L) 

*SET, Tan_theta, 0.2929 

m_tangent=m_O/(l+(Jeta-l)*Tan_theta) 

! Open file 

*CFOPEN,m_TWcylinder,,,APPEND 

*CFWRITE,mO,m_O 

*CFWRITE,mL,m_L 

*CFWRITE,mO_by_mL,Jeta 

*CFWRITE,m_tangent,m_tangent 

*CFCLOS 

FINISH 

A.2 Plate with a Centre Hole 

/TITLE, Plate with a Centre Hole 
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! Plate dimension 

*SET,R,20e-3 

*SET,W,lSOe-3 

*SET,L,300e-3 

*AFUN,DEG 

*SET,Pi,3.1416 

! Material model 

*SET,YS,150e6 

*SET,EM,150e9 

*SET,Pois,0.3 

! Loading 

*SET,Prs,100e6 

! Enter Preprocessor 

/PREP7 

ET,l,PLANE82,,,0 

MP,EX,l,EM 

MP,NUXY,l,Pois 

! Geometry 

K,l,O,O 

K,2,R,O 

K,3,0,R 

K,4,L/2,0 

K,S,O,W/2 

K,6,L/2,W/2 

LARC,2,3,1,R 

L,2,4 

L,3,5 

L,4,6 

L,5,6 

188 



LDIV,l,l.S,,,O 

LDIV,S,L/W,,,O 

K,9,L/4 

L,7,8 

L,8,9 

LCSL,2,9 

AL,1,10,9,8 

AL,8,5,3,6 

AL,9,11,4,7 

! Meshing 

*SET,m,O.S 

*SET,ARClen, (Pi*45*R)/180 

*SET,ARCdiv, (ARClen*le3)*m 

*SET,ACLdiv, ((L/4-R)*le3/2)*m 

LESIZE,l,,,ARCdiv 

LESIZE,9,,,ARCdiv 

LESIZE,6,,,ARCdiv 

LESIZE,S,,,ARCdiv 

LESIZE,lO,,,ACLdiv,3 

LESIZE,8,,,ACLdiv,3 

LESIZE,3,,,ACLdiv,3 

LESIZE,ll,,,ARCdiv*l,l/2 

LESIZE,7,,,ARCdiv*1,2 

LESIZE,4,,,ARCdiv 

AMESH,ALL 

! Load & Boundary conditions 

DL,3,2,SYMM 

DL,lO,l,SYMM 
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DL,ll,3,SYMM 

ALLSEL 

! Loading 

SFL,4,PRES,-Prs 

ALLSEL 

SBCTRAN 

FINISH 

! Solution 

/SOLU 

ANTYPE,O 

SAVE 

SOLVE 

FINISH 

! Enter Postprocessor 

/POSTl 

ETABLE,Sig,S,EQV 

ETABLE,Vol,VOLU 

*GET,Emax,ELEM,O,COUNT 

*SET,Vtot,O 

*DO,kk,l,Emax 

*GET,Evol,ELEM,kk,ETAB,Vol 

Vtot=Vtot+Evol 

*END DO 

! Evaluate the multipliers 

*SET,SumRef,O 

*DO,kk,l,Emax 

*GET,SigEq,ELEM,kk,ETAB,Sig 

*GET,Evol,ELEM,kk,ETAB,Vol 

SumRef=SumRef+((SigEq**2)*Evol) 
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*END DO 

SIGref=SQRT(SumRef/Vtot) 

mO_l=(YS/SIGref) 

*SET,m_O,mO_l 

ESORT,ETAB,Sig,O 

*GET,SIGmax,SORT,O,MAX 

m_L=(YS/SIGmax) 

*SET,Jeta, (m_O/m_L) 

*SET,Tan_theta,0.2929 

m_tangent=m_O/(l+(Jeta-l)*Tan_theta) 

! Open file 

*CFOPEN,m_PlateHole13000 

*CFWRITE,mO,m_O 

*CFWRITE,mL,m_L 

*CFWRITE,m_tangent,m_tangent 

*CFCLOS 

FINISH 

A.3 Indeterminate Beam 

/TITLE, Indeterminate beam 

! Beam Dimensions (m) 

*SET,H,25.4e-3 

*SET,D,25.4e-3 

*SET,Len,508e-3 

! Loading 

*SET,Prs,l.Oe6 
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! Material model 

*SET,YS,206.85e6 

*SET,EM,206.85e9 

*SET,Pois,0.3 

! Enter preprocessor 

/PREP7 

ET,l,PLANE82,,,3 

R,THK,D 

MP,EX,l,EM 

MP,NUXY,l,Pois 

! Modeling geometry 

K,l 

K,2,,H/2 

K,3,,H 

K,4,Len 

K,S,Len,H/2 

K,6,Len,H 

L,1,2 

L,2,3 

L,1,4 

L,4,5 

L,5,6 

L,6,3 

L,2,5 

AL,1,3,4,7 

AL,7,5,6,2 

! Meshing 

*SET,m,20 
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*SET 1 Hdi v 1 ( 1 I 2) *m 

*SET 1 Ldiv 1 20*m 

LESIZE 1 1 111 Hdiv 1 1/1 

LESIZE 1 2 111 Hdiv 1 1 

LESIZE 1 4 111 Hdiv 1 1/1 

LESIZE 1 5 11 ,Hdiv 1 1 

LESIZE,3,,,Ldiv,1/1 

LESIZE 1 7 111 Ldiv 1 1/1 

LESIZE 1 6 111 Ldiv 1 1 

AMESH 1 ALL 

! Boundary conditions 

LSEL 1 S 1 LINE, 1 1 

LSEL 1 A1 LINE 11 2 

OL 1 ALL 11 UX 1 0 

ALLSEL 

LSEL 1 S 1 LINE, 1 1 

LSEL 1 A1 LINE 11 2 

DL 1 ALL 11 UY 1 0 

ALLSEL 

*GET 1 X4 1 KP 1 4 1 LOC 1 X 

NSEL,S,LOC 1 X1 X4 1 X4+1 

D1 ALL 1 UY 1 0 

ALLSEL 

! Loading 

LSEL 1 S 1 LINE 11 6 

SFL 1 ALL 1 PRES 1 Prs 

ALLSEL 

SBCTRAN 

FINISH 
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! Solving 

/SOLU 

ANTYPE,O 

SOLVE 

SAVE 

FINISH 

! Enter postprocessor 

/POSTl 

ETABLE,Sig,S,EQV 

ETABLE,Vol,VOLU 

*GET,Emax,ELEM,O,COUNT 

*SET,Vtot,O 

*DO,kk,l,Emax 

*GET,Evol,ELEM,kk,ETAB,Vol 

Vtot=Vtot+Evol 

*END DO 

! Evaluate multipliers 

*SET,SumRef,O 

*DO,kk,l,Emax 

*GET,SigEq,ELEM,kk,ETAB,Sig 

*GET,Evol,ELEM,kk,ETAB,Vol 

SumRef=SumRef+((SigEq**2)*Evol) 

*END DO 

.. 
SIGref=SQRT(SumRef/Vtot) 

mO_l=(YS/SIGref) 

*SET,m_O,mO_l 

ESORT,ETAB,Sig,O 
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*GET,SIGmax,SORT,O,MAX 

m_L=(YS/SIGmax) 

*SET,Jeta, (m_O/m_L) 

*SET,Tan_theta,0.2929 

m_Tangent=m_O/(l+(Jeta-l)*Tan_theta) 

FINISH 

A.4 Unreinforced Nozzle on Hemispherical Head 

/TITLE, Unreinforced Nozzle on Hemispherical Head 

! Head dimension (in.) 

* SET, Rh i , ( 3 6 * 0 . 2 54 ) 

*SET,Th, (3.25*0.254) 

*SET,Trh, (3.025*0.254) 

*SET,Rhbs,Rhi+Trh 

*SET,RhO,Rhi+Th 

! Nozzle dimension 

*SET, Rni, ( 5. 3 7 5 * 0. 2 54) 

*SET,Tn, (1.00*0.254) 

*SET,Trn, (0.957*0.254) 

*SET,Rnbs,Rni+Trn 

*SET,RnO,Rni+Tn 

*SET,Len,lO*SQRT(Rnbs*Trn) 

! Loading 

*SET,Prs,24.132e6 

Material model 
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*SET,YS,262e6 

*SET,EM,262e9 

*SET,Pois,0.3 

*AFUN,DEG 

*SET,Pi,3.1416 

! Enter preprocessor 

/PREP7 

ET,l,PLANE82,,,1,,1 

MP,EX,l,EM 

MP,NUXY,l,Pois 

! Geometry 

K,lOO 

K,l,,Rhi 

K,2,Rhi 

LARC,1,2,100,Rhi 

K,3,,Rh0 

K,4,Rh0 

LARC,3,4,100,Rh0 

K,S,Rni,RhO+Len 

K,6,Rnbs,Rh0+Len 

K,7,Rni,Rhi/2 

K,8,Rnbs,Rhi/2 

L,5,7 

L,6,8 

L,5,6 

LCSL,1,3 

LCSL,7,4 

LCSL,2,8 
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LCSL,7,3 

LDELE,4,,,1 

LDELE,6,,,1 

LDELE,9,,,1 

LDELE,lO,,,l 

L,2,4 

LDELE,l4,,,1 

LDELE,lS,,,l 

L,9,12 

LCOMB,l2,13,0 

LCOMB,l,ll,O 

LDIV,l2,0.80 

LANG,8,1,90 

LDIV,2,0.96 

L,l00,7 

LCSL,l,ll 

LDELE,l6,,,1 

AL,5,12,9,8 

AL,9,6,4,7 

AL,4,15,14,10 

AL,l4,13,3,2 

! Meshing 

*SET,m,20*(3/4) 

*SET, Arc, ( Pi * 9 0 * Rh i ) / 18 0 

*SET,NlnDiv,Len*m*0.20 

LESIZE,8,,,NlnDiv,l/2 

LESIZE,l2,,,NlnDiv,l/2 

LESIZE,6,,,NlnDiv*0.30,1/1.5 

LESIZE,7,,,NlnDiv*0.30,1/2 
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*SET,HcirDiv,Arc*m/5 

LESIZE,lO,,,HcirDiv*O.lS,l/3 

LESIZE,lS,,,HcirDiv*O.lS,l/2 

LESIZE,l3,,,HcirDiv,l/6 

LESIZE,2,,,HcirDiv,l/6 

*SET,CirThk,Trh*m*0.4 

LESIZE,3,,,CirThk 

LESIZE,l4,,,CirThk 

LESIZE,4,,,CirThk 

LESIZE,9,,,CirThk 

LESIZE,S,,,CirThk 

AMESH,ALL 

! Load & boundary conditions 

DL,3,3,UY,O 

LSEL,S,LINE,,l3 

LSEL,A,LINE,,lS 

LSEL,A,LINE,,6 

LSEL,A,LINE,,l2 

SFL,ALL,PRES,Prs 

ALLSEL 

SBCTRAN 

FINISH 

! Solving 

/SOLU 

ANTYPE,O 

SOLVE 

SAVE 

FINISH 
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! Enter postprocessor 

/POSTl 

ETABLE,Sig,S,EQV 

ETABLE,Vol,VOLU 

*GET,Emax,ELEM,O,COUNT 

*SET,Vtot,O 

*DO,kk,l,Emax 

*GET,Evol,ELEM,kk,ETAB,Vol 

Vtot=Vtot+Evol 

*END DO 

! Evaluate multipliers 

*SET,SumRef,O 

*DO,kk,l,Emax 

*GET,SigEq,ELEM,kk,ETAB,Sig 

*GET,Evol,ELEM,kk,ETAB,Vol 

SumRef=SumRef+((SigEq**2)*Evol) 

*END DO 

SIGref=SQRT(SumRef/Vtot) 

mO_l=(YS/SIGref) 

*SET,m_O,mO_l 

ESORT,ETAB,Sig,O 

*GET,SIGmax,SORT,O,MAX 

m_L=(YS/SIGmax) 

*SET,Jeta, (m_O/m_L) 

*SET,Tan_theta,0.2929 

m_tangent=m_O/(l+(Jeta-l)*Tan_theta) 

Open file 
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*CFOPEN,m_PlateHole13100 

*CFWRITE,mO,m_O 

*CFWRITE,mL,m_L 

*CFWRITE,m_tangent,m_tangent 

*CFCLOS 

FINISH 

A.S Torispherical Head 

/TITLE, Torispherical Head 

! Torispherical head dimension 

*SET,Rs,1000 

*SET,Ts,SO 

*SET,Rk,240 

*SET,Rh,1600 

*SET,Hh, (Rs/2.118) 

*SET,Ls,750 

*AFUN,DEG 

*SET,Pi,3.1416 

! Loading 

*SET,Prs,5e6 

! Material model 

*SET,YS,262e6 

*SET,EM,262e9 

*SET,Pois,0.3 

! Enter Preprocessor 

/PREP7 

200 



ET,1,PLANE82,,,1,,1 

MP,EX,1,EM 

MP,NUXY,1,Pois 

! Geometry 

K,100 

K,1,Rs 

K, 2 , ( Rs + T s ) 

K, 3, Rs, (-L) 

K, 4, (Rs+Ts), (-Ls) 

L,1,2 

L,1,3 

L,3,4 

L,4,2 

K, 110, (Rs-Rk) 

K, 1 0 , ( Rs-Rk ) , Rk 

K, 20, (Rs-Rk), (Rk+Ts) 

LARC,1,10,110,Rk 

LARC, 2 , 2 0 , 11 0 , ( Rk + T s ) 

K,7,,Hh 

K, 8,, (Hh+Ts) 

L,7,8 

K,170,,-(R-Hh) 

K,1700,Rs,-(R-Hh) 

CSKP,11,SPHE,17,170,7 

K,70,Rh 

K, 8 0 , ( Rh + T s ) 

LARC,7,70,170,Rh 

LARC , 8 , 8 0 , 1 7 0 , ( Rh + T s ) 

CSYS,O 
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LCSL,5,8 

LCSL,6,9 

LDELE,13,,,1 

LDELE,17,,,1 

LDELE,12,,,1 

LDELE,16,,,1 

LDELE,14,,,1 

LDELE,18,,,1 

LCOMB,5,19,0 

LCOMB,10,15,0 

L,6,11 

AL,6,8,7,11 

AL,6,10,1,5 

AL,1,2,3,4 

! Meshing 

*SET,m,2 

*SET,THKdiv,2.5*m 

LESIZE,7,,,THKdiv 

LESIZE,6,,,THKdiv 

LESIZE,l,,,THKdiv 

LESIZE,3,,,THKdiv 

*SET,CIRdiv,25*m 

LESIZE,8,,,CIRdiv 

LESIZE,ll,,,CIRdiv 

*SET,TORidiv,6*m 

LESIZE,S,,,TORidiv,l 

LESIZE,lO,,,TORidiv,l 
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*SET,SHLdiv,lS 

LESIZE,2,,,SHLdiv,l 

LESIZE,4,,,SHLdiv,l 

AMESH,ALL 

! Boundary Conditions 

DL,7,l,UX,O 

DL,3,2,UY,O 

ALLSEL 

! Loading 

LSEL,S,LINE,,l 

LSEL,A,LINE,,lO 

LSEL,A,LINE,,2 

SFL,ALL,PRES,Prs 

ALLSEL 

SBCTRAN 

FINISH 

! Enter Solver 

/SOLU 

ANTYPE,O 

SOLVE 

SAVE 

FINISH 

! Enter Postprocessor 

/POSTl 

ETABLE,Sig,S,EQV 

ETABLE,Vol,VOLU 

*GET,Emax,ELEM,O,COUNT 

*SET,Vtot,O 

*DO,kk,l,Emax 

*GET,Evol,ELEM,kk,ETAB,Vol 

Vtot=Vtot+Evol 
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*END DO 

! Evaluate Multipliers 

*SET,SumRef,O 

*DO,kk,l,Emax 

*GET,SigEq,ELEM,kk,ETAB,Sig 

*GET,Evol,ELEM,kk,ETAB,Vol 

SumRef=SumRef+((SigEq**2)*Evol) 

*END DO 

SIGref=SQRT(SumRef/Vtot) 

mO_l=(YS/SIGref) 

*SET,m_O,mO_l 

ESORT,ETAB,Sig,O 

*GET,SIGmax,SORT,O,MAX 

m_L=(YS/SIGmax) 

! Evaluate Multipliers 

*SET,Jeta, (m_O/m_L) 

*SET,Tan_theta,0.2929 

m_Tangent=m_O/(l+(Jeta-l)*Tan_theta) 

FINISH 

! Enter Postprocessor 

/POSTl 

PATH,ToriH03,2,,4 

PPATH,1,13 

PPATH,2,100 

PDEF,ToriH3,S,EQV,AVG 

PLPATH,ToriHO 

PLSECT, S, EQV, (Rs+Ts), 1 

PATH,ToriH02,2,,40 
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PPATH,l,l 

PPATH,2,2 

PDEF,ToriHO,S,EQV,AVG 

PLPATH,ToriH2 

PLSECT,S,EQV, (R+T/2),1 

FINISH 

A.6 Compact Tension (CT) Specimen 

/TITLE, Compact Tension (CT) Specimen 

! Compact Tension (CT) Specimen Dimensions (m) 

*SET,W,lOOe-3 

*SET, H, ( 1. 25*W) 

*SET,Wtot, (1.25*W) 

*SET,B,3e-3 

*SET,a,46e-3 

*SET,Wtaper,80e-3 

*SET,Wcrack,75e-3 

*SET,Htaper,3e-3 

*SET, LCCy, ( 0. 275*W) 

*SET,R, (0.125*W) 

! Loading 

*SET,Load,5e3 

! Material Model 

*SET,YS,206.85e6 

*SET,EM,206.85e9 

*SET,Es, (EM/3) 

*SET,Pois,0.3 
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*AFUN,DEG 

*SET,Pi,3.1416 

! Enter Preprocessor 

/PREP7 

ET,l,PLANE82,,,3 

R,l,B 

MP,EX,l,EM 

MP,EX,2,Es 

MP,NUXY,l,Pois 

! Geometry 

K,l,a 

K,2,W 

K,3,W,H/2 

K,4,,H/2 

K,5, (W-Wtot),H/2 

K,6, (W-Wtot),Htaper 

K,7,,Htaper 

K,8, (W-Wtaper),Htaper 

K,9, (W-Wcrack) 

K,lO,,LCCy 

K,ll,,LCCy,LCCy 

CIRCLE,lO,R,ll,4,,64 

L,l,2 

*REPEAT,8,1,1 

L,9,1 

L,4,12 

L,7,44 

KSEL,S,LOC,X,-le-6,1 

206 



LSLK,S,1 

AL,ALL 

KSEL,S,LOC,X,-1,1e-6 

LSLK,S,1 

AL,ALL 

KSEL,ALL 

LSEL,ALL 

! Meshing 

ESIZE,a/12 

KSCON,1,a/18,1.0,8 

*SET,Hdiv,36 

*SET,Wdiv,14 

LESIZE,69,,,Hdiv 

LESIZE,74,,,14 

LESIZE,75,,,8 

LESIZE,68,,,Wdiv 

LESIZE,70,,,Wdiv 

LESIZE,71,,,12 

LESIZE,72,,,4 

LESIZE,73,,,12 

LESIZE,65,,,32 

AMESH,ALL 

! Modify elastic modulus of the singular elements 

NSEL,S,NODE,,182 

ESLN,S,O,ALL 

EMODIF,ALL,MAT, 2 

ALLSEL 

Displacement Boundary Conditions 
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LSEL,S, LINE,,65 

DL, ALL, ,SYMM 

ALLSEL 

! Loading 

P=Load/256 

FK,27,FY,P*l 

FK,26,FY,P*2 

FK,25,FY,P*3 

FK,24,FY,P*4 

FK,23,FY,P*5 

FK,22,FY,P*6 

FK,21,FY,P*7 

FK,20,FY,P*8 

FK,19,FY,P*9 

FK,18,FY,P*l0 

FK,17,FY,P*ll 

FK,16,FY,P*l2 

FK,15,FY,P*13 

FK,14,FY,P*14 

FK,13,FY,P*15 

FK,12,FY,P*16 

FK,75,FY,P*15 

FK,74,FY,P*14 

FK,73,FY,P*l3 

FK,72,FY,P*12 

FK,71,FY,P*ll 

FK,70,FY,P*10 

FK,69,FY,P*9 

FK,68,FY,P*8 
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FK,67,FY,P*7 

FK,66,FY,P*6 

FK,65,FY,P*5 

FK,64,FY,P*4 

FK,63,FY,P*3 

FK,62,FY,P*2 

FK,61,FY,P*l 

ALLSEL 

SBCTRAN 

FINISH 

! Solving 

/SOLU 

ANTYPE, 0 

SOLVE 

SAVE 

FINISH 

! Enter Post Processor 

/POSTl 

ETABLE,Sig,S,EQV 

ETABLE,Vol,VOLU 

*GET ,Emax,ELEM,O,COUNT 

*SET ,Vtot,O 

*DO,kk,l,Emax 

*GET ,Evol,ELEM,kk,ETAB,Vol 

Vtot=Vtot+Evol 

*END DO 

! Evaluate Multipliers 

*SET ,SumRef,O 
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*DO, kk, 1, Emax 

*GET,SigEq,ELEM,kk,ETAB,Sig 

*GET,Evol,ELEM,kk,ETAB,Vol 

SumRef=SumRef+((SigEq**2)*Evol) 

*END DO 

SIGref=SQRT(SumRef/Vtot) 

mO_l=(YS/SIGref) 

*SET,m_O,mO_l 

ESORT,ETAB,Sig,O 

*GET,SIGmax,SORT,O,MAX 

m_L=(YS/SIGmax) 

! Evaluate Multipliers 

*SET,Jeta, (m_O/m_L) 

*SET,Tan_theta,0.2929 

m_Tangent=m_O/(l+(Jeta-l)*Tan_theta) 

FINISH 

A. 7 Plate with a Centre Crack 

/TITLE, Plate with a Centre Crack 

! Plate Dimensions (m) 

*SET,W,125e-3 

*SET,L,300e-3 

*SET,B,3e-3 

*SET,a,25e-3 

*AFUN,DEG 

*SET,Pi,3.1416 

Loading 
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*SET,Prs,75e6 

! Material 

*SET,YS,206.85e6 

*SET,EM,206.85e9 

*SET,Es 1 (EM/3) 

*SET 1 Pois 1 0.3 

! Enter Preprocessor 

/PREP7 

ET 1 1 1 PLANE82 111 3 

R 1 1 1 B 

MP 1 EX 1 1 1 EM 

MP 1 EX 1 2 1 Es 

MP 1 NUXY 1 1 1 Pois 

! Quarter geometry 

K1 1 1 a 

K,2 1 W 

K1 3 1 W1 L 

Kl 4 I I L 

K 1 5 

L 1 1 1 2 

L,2 1 3 

L 1 3 1 4 

L 1 4 1 5 

L,5 1 1 

LDIV 1 2 1 l/4 1 20 11 0 

LANG 1 4 1 20 1 90 1 40 

AL 1 1 1 2 1 8 1 7 1 5 

AL 1 8 1 6 1 3 1 4 

Meshing 
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ESIZE,a/3 

KSCON,l,a/2.5,1.0,8 

*SET,LCdiv,30 

*SET,Ldiv,20 

*SET,Wdiv,30 

AMESH,l 

LESIZE,4,,,Ldiv,l/2.5 

LESIZE,6,,,Ldiv,2.5 

AMESH,2 

! Modify material of the singular element 

NSEL,S,NODE,,l 

ESLN,S,O,ALL 

EMODIF,ALL,MAT,2 

ALLSEL 

! Displacement Boundary Conditions 

LSEL,S,LINE,,l 

DL,ALL,,SYMM 

ALLSEL 

LSEL,S,LINE,,4 

LSEL,A,LINE,,7 

DL,ALL,,SYMM 

ALLSEL 

! Loading 

LSEL,S,LINE,,3 

SFL,ALL,PRES,-Prs 

ALLSEL 

SBCTRAN 

FINISH 
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! Solving 

/SOLU 

ANTYPE,O 

SOLVE 

SAVE 

FINISH 

! Evaluate Multipliers 

/POSTl 

ETABLE,Sig,S,EQV 

ETABLE,Vol,VOLU 

*GET,Emax,ELEM,O,COUNT 

*SET,Vtot,O 

*DO,kk,l,Emax 

*GET,Evol,ELEM,kk,ETAB,Vol 

Vtot=Vtot+Evol 

*END DO 

! Evaluate multipliers 

*SET,SumRef,O 

*DO,kk,l,Emax 

*GET,SigEq,ELEM,kk,ETAB,Sig 

*GET,Evol,ELEM,kk,ETAB,Vol 

SumRef=SumRef+((SigEq**2)*Evol) 

*END DO 

SIGref=SQRT(SumRef/Vtot) 

mO_l=(YS/SIGref) 

*SET,m_O,mO_l 

ESORT,ETAB,Sig,O 

*GET,SIGmax,SORT,O,MAX 

m_L=(YS/SIGmax) 
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*SET,Jeta, (m_O/m_L) 

*SET , Tan_ theta , 0 . 2929 

m_Tangent=m_O/(l+(Jeta-l)*Tan_theta) 

m_Pro=(2*YS)/(SIGmax+SIGref) 

FINISH 

A.8 Cylinder with Internal Corrosion 

/TITLE, Cylinder with Internal Corrosion 

! Cylinder Dimensions (m) 

*SET, pi, 3.14159265 

! Basic inputs 

*SET,Ri,33 

*SET,h,0 . 625 

*SET , Ro , (Ri+h) 

*SET , Ln , lOO 

! Corosion dimension 

*SET , c , (h/3) 

*SET , h_c, (h-e) 

*SET , Rc , (Ri+c) 

*SET , a,lO 

*SET,b , 10 

*SET, theta_c , (a/Ro) * ( 180/pi) 

! Material model 

*SET,EM,30E6 

*SET,PM, 50E4 

*SET , Pois , 0 . 3 
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*SET,YS,30E3 

*SET,Temp, (100-32)*(5/9) 

! Loading 

*SET,Pd,220 

*SET, P, ( Pd * 10) 

*SET,SIG_lon, (Pd*Ri)/(2*h_c) 

! Enter Preprocessor 

/PREP7 

/TITLE, Cylindrical shell, Solid 185 

ET,1,SOLID185 

! Material properties for temperature 100 deg. F 

MP,EX,1,EM 

MP,PRXY,1,Pois 

TB,BKIN,1,,,1 

TBTEMP,Temp 

TBDATA,,YS,PM 

! Arc length 

*SET,ARC_o, (Ro*90) * (Pi/180) 

*SET,ARC_c, (Rc*90) * (Pi/180) 

*SET,ARC_i, (Ri*90) * (Pi/180) 

*SET,ARC_co, (Ro*theta_c)*(Pi/180) 

*SET,ARC_cc, (Rc*theta_c)*(Pi/180) 

*SET,ARC_ci, (Ri*theta_c)*(Pi/180) 

*SET,Ratio_o,ARC_co/ARC_o 

*SET,Ratio_c,ARC_cc/ARC_c 

*SET,Ratio_i,ARC_ci/ARC_i 
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! Geometry 

K,lOO 

K,l,,Rc 

K,2,Rc 

K,3,,-Rc 

LARC,1,2,100,Rc 

LARC,2,3,100,Rc 

K,4,,Ro 

K,S,Ro 

K,6,,-Ro 

K,7,,Ri 

K,8,Ri 

K,9,,-Ri 

LARC,4,5,100,Ro 

LARC,5,6,100,Ro 

LARC,7,8,100,Ri 

LARC,8,9,100,Ri 

LDIV,3,Ratio_o,10,0 

LDIV,l,Ratio_c,ll,O 

LDIV,5,Ratio_i,12,0 

L,lO,ll 

L,11,12 

L,4,7 

LCSL,1,12 

L,5,2 

L,2,8 

L,6,3 

L,3,9 
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AL,l,14,5,11 

AL,1,10,3,13 

AL,11,9,15,8 

AL,8,12,7,10 

AL,15,6,17,2 

AL,12,2,16,4 

K,lll,,Rc,b 

L,l,lll 

VDRAG,1,2,3,4,5,6,18 

K,13l,,Rc,50 

L,13,131 

VDRAG,11,15,19,22,26,29,48 

VDELE,l,,,l 

LDELE,18,,,1 

LDELE,48,,,1 

K,311,Rc,,Ln 

L,31,311 

VDRAG,34,38,42,45,49,52,5 

LDELE,S,,,l 

! MESHING 

*SET,Hdiv,6 

*SET,Hcdiv,3 

*SET,LTAdiv_a,28 

*SET,LTAdiv_b,28 

*SET,CIRdiv_Xc,44 

*SET,CIRxc_ratio,2 

*SET,LENdiv_Xl,42 

217 



*SET,LENxl_ratio,l.S 

*SET,CIRdiv_90,38 

*SET,LENdiv_Xlad,38 

LESIZE,l,,,LTAdiv_a 

LESIZE,3,,,LTAdiv_a 

LESIZE,24,,,LTAdiv_a 

LESIZE,19,,,LTAdiv_a 

LESIZE,29,,,LTAdiv_a 

LESIZE,54,,,LTAdiv_a 

LESIZE,49,,,LTAdiv_a 

LESIZE,59,,,LTAdiv_a 

LESIZE,79,,,LTAdiv_a 

LESIZE,14,,,LTAdiv_a 

LESIZE,84,,,LTAdiv_a 

LESIZE,20,,,LTAdiv_b,LTA_ratio 

LESIZE,30,,,LTAdiv_b,LTA_ratio 

LESIZE,23,,,LTAdiv_b,LTA_ratio 

LESIZE,21,,,LTAdiv_b,LTA_ratio 

LESIZE,28,,,LTAdiv_b,LTA_ratio 

LESIZE,33,,,LTAdiv_b,LTA_ratio 

LESIZE,35,,,LTAdiv_b,LTA_ratio 

LESIZE,38,,,LTAdiv_b,LTA_ratio 

LESIZE,41,,,LTAdiv_b,LTA_ratio 

LESIZE,43,,,LTAdiv_b,LTA_ratio 

LESIZE,46,,,LTAdiv_b,LTA_ratio 

LESIZE,7,,,CIRdiv_Xc,CIRxc_ratio 

LESIZE,8,,,CIRdiv_Xc,CIRxc_ratio 
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LESIZE,9,,,CIRdiv_Xc,CIRxc_ratio 

LESIZE,32,,,CIRdiv_Xc,CIRxc_ratio 

LESIZE,36,,,CIRdiv_XS,l/CIRxc_ratio 

LESIZE,39,,,CIRdiv_Xc,l/CIRxc_ratio 

LESIZE,62,,,CIRdiv_Xc,CIRxc_ratio 

LESIZE,66,,,CIRdiv_Xc,l/CIRxc_ratio 

LESIZE,69,,,CIRdiv_Xc,l/CIRxc_ratio 

LESIZE,87,,,CIRdiv_Xc,CIRxc_ratio 

LESIZE,91,,,CIRdiv_Xc,l/CIRxc_ratio 

LESIZE,94,,,CIRdiv_Xc,l/CIRxc_ratio 

LESIZE,4,,,CIRdiv_90 

LESIZE,2,,,CIRdiv_90 

LESIZE,6,,,CIRdiv_90 

LESIZE,40,,,CIRdiv_90 

LESIZE,44,,,CIRdiv_90 

LESIZE,47,,,CIRdiv_90 

LESIZE,70,,,CIRdiv_90 

LESIZE,74,,,CIRdiv_90 

LESIZE,77,,,CIRdiv_90 

LESIZE,95,,,CIRdiv_90 

LESIZE,99,,,CIRdiv_90 

LESIZE,102,,,CIRdiv_90 

LESIZE,60,,,LENdiv_Xl,LENxl_ratio 

LESIZE,SO,,,LENdiv_Xl,LENxl_ratio 

LESIZE,SS,,,LENdiv_Xl,LENxl_ratio 

LESIZE,53,,,LENdiv_Xl,LENxl_ratio 
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LESIZE,Sl,,,LENdiv_Xl,LENxl_ratio 

LESIZE,58,,,LENdiv_Xl,LENxl_ratio 

LESIZE,63,,,LENdiv_Xl,LENxl_ratio 

LESIZE,65,,,LENdiv_Xl,LENxl_ratio 

LESIZE,68,,,LENdiv_Xl,LENxl_ratio 

LESIZE,71,,,LENdiv_Xl,LENxl_ratio 

LESIZE,73,,,LENdiv_Xl,LENxl_ratio 

LESIZE,76,,,LENdiv_Xl,LENxl_ratio 

LESIZE,85,,,LENdiv_Xlad 

LESIZE,18,,,LENdiv_Xlad 

LESIZE,80,,,LENdiv_Xlad 

LESIZE,83,,,LENdiv_Xlad 

LESIZE,25,,,LENdiv_Xlad 

LESIZE,78,,,LENdiv_Xlad 

LESIZE,88,,,LENdiv_Xlad 

LESIZE,90,,,LENdiv_Xlad 

LESIZE,93,,,LENdiv_Xlad 

LESIZE,96,,,LENdiv_Xlad 

LESIZE,98,,,LENdiv_Xlad 

LESIZE,lOl,,,LENdiv_Xlad 

LESIZE,13,,,Hdiv 

LESIZE,lO,,,Hdiv 

LESIZE,27,,,Hdiv 

LESIZE,31,,,Hdiv 

LESIZE,12,,,Hdiv 

LESIZE,37,,,Hdiv 
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LESIZE,l6,,,Hdiv 

LESIZE,45,,,Hdiv 

LESIZE,6l,,,Hdiv 

LESIZE,57,,,Hdiv 

LESIZE,67,,,Hdiv 

LESIZE,75,,,Hdiv 

LESIZE,ll,,,Hcdiv 

LESIZE,22,,,Hcdiv 

LESIZE,26,,,Hcdiv 

LESIZE,l5,,,Hcdiv 

LESIZE,34,,,Hcdiv 

LESIZE,l7,,,Hcdiv 

LESIZE,42,,,Hcdiv 

LESIZE,56,,,Hcdiv 

LESIZE,52,,,Hcdiv 

LESIZE,64,,,Hcdiv 

LESIZE,72,,,Hcdiv 

VMESH,ALL 

*GET,EMAX,ELEM,O,COUNT 

! Apply symmetric boundary conditions 

ASEL,S,AREA,,2 

ASEL,A,AREA,,3 

ASEL,A,AREA,,4 

ASEL,A,AREA,,5 

ASEL,A,AREA,,6 

DA,ALL,SYMM 

ALLSEL 

ASEL,S,AREA,,l4 
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ASEL,A,AREA,,33 

ASEL,A,AREA,,37 

ASEL,A,AREA,,53 

ASEL,A,AREA,,57 

DA,ALL,SYMM 

ALLSEL 

ASEL,S,AREA,,24 

ASEL,A,AREA,,27 

ASEL,A,AREA,,47 

ASEL,A,AREA,,SO 

ASEL,A,AREA,,67 

ASEL,A,AREA,,70 

DA,ALL,SYMM 

ALLSEL 

ASEL,S,AREA,,54 

ASEL,A,AREA,,58 

ASEL,A,AREA,,62 

ASEL,A,AREA,,65 

ASEL,A,AREA,,69 

ASEL,A,AREA,,72 

DA,ALL,UZ,O 

ALLSEL 

DK,43,UX,O 

DK,43,UY,O 

! Apply internal pressure 

ASEL,S,AREA,,7 

ASEL,A,AREA,,8 

ASEL,A,AREA,,ll 

ASEL,A,AREA,,32 

ASEL,A,AREA,,16 
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ASEL,A,AREA,,39 

ASEL,A,AREA,,23 

ASEL,A,AREA,,46 

ASEL,A,AREA,,lO 

ASEL,A,AREA,,59 

ASEL,A,AREA,,66 

SFA,ALL,l,PRES,P 

ALLSEL 

ASEL,S,AREA,,2 

ASEL,A,AREA,,3 

ASEL,A,AREA,,4 

ASEL,A,AREA,,S 

ASEL,A,AREA,,6 

SFA,ALL,,PRES,-SIG_lon 

ALLSEL 

DTRAN 

SFTRAN 

FINISH 

! SOLVING 

/SOLU 

ANTYPE,O 

PRED,ON,,ON 

AUTOS, ON 

NSUBST,SOO 

OUTRESS,ALL,ALL 

SOLVE 

SAVE 

FINISH 

223 



A.9 Cylinder with Thermal Hot Spot 

/TITLE, Cylinder with Thermal Hot Spot 

! Cylinder Dimensions (m) 

*SET,pi,3.1416 

! Basic inputs 

*SET,Ri,33 

*SET,h,0.625 

*SET,Ro, (Ri+h) 

*SET,Ln,100 

! Corosion dimension 

*SET,c, (h/3) 

*SET,h_c, (h-e) 

*SET,Rc, (Ri+c) 

*SET,a,10 

*SET,b,10 

*SET,theta_c, (a/Ro)*(180/pi) 

! Arc length 

*SET, ARC_o, (Ro*90) * (Pi/180) 

*SET, ARC_c, (Rc*90) * (Pi/180) 

*SET,ARC_i, (Ri*90) * (Pi/180) 

*SET,ARC_co, (Ro*theta_c)*(Pi/180) 

*SET,ARC_cc, (Rc*theta_c)*(Pi/180) 

*SET,ARC_ci, (Ri*theta_c)*(Pi/180) 

*SET,Ratio_o,ARC_co/ARC_o 

*SET,Ratio_c,ARC_cc/ARC_c 

*SET,Ratio_i,ARC_ci/ARC_i 
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! Loading 

*SET, Pd, (220*10) 

! Preprocessor 

/PREP7 

! Geometry modeling 

K,lOO 

K,l,,Rc 

K,2,Rc 

K,3,,-Rc 

LARC,1,2,100,Rc 

LARC,2,3,100,Rc 

K,4,,Ro 

K,S,Ro 

K,6,,-Ro 

K, 7,, Ri 

K,8,Ri 

K,9,,-Ri 

LARC,4,5,100,Ro 

LARC,5,6,100,Ro 

LARC,7,8,100,Ri 

LARC,8,9,100,Ri 

LDIV,3,Ratio_o,10,0 

LDIV,l,Ratio_c,ll,O 

LDIV,5,Ratio_i,12,0 

L,lO,ll 

L,11,12 

L,4,7 

225 



LCSL,1,12 

L,5,2 

L,2,8 

L,6,3 

L,3,9 

AL,l,l4,5,11 

AL,1,10,3,13 

AL,11,9,15,8 

AL,8,12,7,10 

AL,15,6,17,2 

AL,12,2,16,4 

K,lll,,Rc,b 

L,l,lll 

VDRAG,1,2,3,4,5,6,18 

K,131,,Rc,50 

L,13,131 

VDRAG,11,15,19,22,26,29,48 

VDELE,l,,,l 

LDELE,18,,,1 

LDELE,48,,,1 

K,311,Rc,,Ln 

L,31,311 

VDRAG,34,38,42,45,49,52,5 

LDELE,S,,,l 

K,lOl,,,Ln 

K, 102,,, (Ln+Ri) 

LARC,42,102,101,Ri 
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VDRAG,62,65,,,,,5 

LARC,39,49,10l,Ri 

LARC,7,48,10l,Rc 

LARC,41,53,10l,Ro 

AL,81,116,103,117 

AL,86,117,115,118 

AL,84,114,118 

AL,l4,104,117 

AL,79,105,116 

VA,58,83,84,80,85 

VA,54,82,85,73,86 

LARC,45,50,10l,Ri 

LARC,46,51,10l,Rc 

LARC,47,52,10l,Ro 

LDELE,S,,,l 

AL,lll,l20,100,121 

AL,l08,119,97,120 

AL,ll2,102,121 

AL,l09,99,120 

AL,l07,95,119 

VA,87,78,89,72,90 

VA,88,75,90,69,91 

VDRAG,ll,,,,,,23 

VGLUE,2,24,3 

AREVERSE,7 

AREVERSE,23 

AREVERSE,l6 
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AREVERSE,39 

AREVERSE,59 

AREVERSE,46 

AREVERSE,66 

AREVERSE,74 

AREVERSE,2 

AREVERSE,3 

AREVERSE,4 

AREVERSE,S 

AREVERSE,6 

AREVERSE,33 

AREVERSE,53 

AREVERSE,82 

AREVERSE,87 

AREVERSE,88 

AREVERSE,99 

! Meshing 

*SET,Hdiv,3 

*SET,Hcdiv,2 

*SET,LTAdiv_a,40 

*SET,LTAdiv_b,40 

*SET,CIRdiv_Xc,38 

*SET,CIRxc_ratio,2.5 

*SET,LENdiv_Xl,36 

*SET,LENxl_ratio,3.5 

*SET,CIRdiv_90,40 

*SET,LENdiv_Xlad,34 

LESIZE,l,,,LTAdiv_a 

228 



LESIZE,3,,,LTAdiv_a 

LESIZE,130,,,LTAdiv_a 

LESIZE,24,,,LTAdiv_a 

LESIZE,19,,,LTAdiv_a 

LESIZE,29,,,LTAdiv_a 

LESIZE,54,,,LTAdiv_a 

LESIZE,49,,,LTAdiv_a 

LESIZE,59,,,LTAdiv_a 

LESIZE,79,,,LTAdiv_a 

LESIZE,14,,,LTAdiv_a 

LESIZE,84,,,LTAdiv_a 

LESIZE,20,,,LTAdiv_b 

LESIZE,30,,,LTAdiv_b 

LESIZE,127,,,LTAdiv_b 

LESIZE,23,,,LTAdiv_b 

LESIZE,21,,,LTAdiv_b 

LESIZE,28,,,LTAdiv_b 

LESIZE,33,,,LTAdiv_b 

LESIZE,35,,,LTAdiv_b 

LESIZE,38,,,LTAdiv_b 

LESIZE,41,,,LTAdiv_b 

LESIZE,43,,,LTAdiv_b 

LESIZE,46,,,LTAdiv_b 

LESIZE,127,,,LTAdiv_b 

LESIZE,7,,,CIRdiv_Xc,CIRxc_ratio 

LESIZE,8,,,CIRdiv_Xc,CIRxc_ratio 

LESIZE,9,,,CIRdiv_Xc,CIRxc_ratio 
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LESIZE,32,,,CIRdiv_Xc,CIRxc_ratio 

LESIZE,36,,,CIRdiv_Xc,l/CIRxc_ratio 

LESIZE,39,,,CIRdiv_Xc,l/CIRxc_ratio 

LESIZE,62,,,CIRdiv_Xc,CIRxc_ratio 

LESIZE,66,,,CIRdiv_Xc,l/CIRxc_ratio 

LESIZE,69,,,CIRdiv_Xc,l/CIRxc_ratio 

LESIZE,87,,,CIRdiv_Xc,CIRxc_ratio 

LESIZE,91,,,CIRdiv_Xc,l/CIRxc_ratio 

LESIZE,94,,,CIRdiv_Xc,l/CIRxc_ratio 

LESIZE,4,,,CIRdiv_90 

LESIZE,2,,,CIRdiv_90 

LESIZE,6,,,CIRdiv_90 

LESIZE,40,,,CIRdiv_90 

LESIZE,44,,,CIRdiv_90 

LESIZE,47,,,CIRdiv_90 

LESIZE,70,,,CIRdiv_90 

LESIZE,74,,,CIRdiv_90 

LESIZE,77,,,CIRdiv_90 

LESIZE,95,,,CIRdiv_90 

LESIZE,99,,,CIRdiv_90 

LESIZE,102,,,CIRdiv_90 

LESIZE,60,,,LENdiv_Xl,LENxl_ratio 

LESIZE,SO,,,LENdiv_Xl,LENxl_ratio 

LESIZE,55,,,LENdiv_Xl,LENxl_ratio 

LESIZE,53,,,LENdiv_Xl,LENxl_ratio 

LESIZE,Sl,,,LENdiv_ Xl,LENxl_ratio 
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LESIZE,58,,,LENdiv_Xl,LENxl_ratio 

LESIZE,63,,,LENdiv_Xl,LENxl_ratio 

LESIZE,65,,,LENdiv_Xl,LENxl_ratio 

LESIZE,68,,,LENdiv_Xl,LENxl_ratio 

LESIZE,7l,,,LENdiv_Xl,LENxl_ratio 

LESIZE,73,,,LENdiv_Xl,LENxl_ratio 

LESIZE,76,,,LENdiv_Xl,LENxl_ ratio 

LESIZE,85,,,LENdiv_Xlad 

LESIZE,18,,,LENdiv_Xlad 

LESIZE,80,,,LENdiv_Xlad 

LESIZE,83,,,LENdiv_Xlad 

LESIZE,25,,,LENdiv_Xlad 

LESIZE,78,,,LENdiv_Xlad 

LESIZE,88,,,LENdiv_Xlad 

LESIZE,90,,,LENdiv_Xlad 

LESIZE,93,,,LENdiv_Xlad 

LESIZE,96,,,LENdiv_Xlad 

LESIZE,98,,,LENdiv_Xlad 

LESIZE,lOl,,,LENdiv_Xlad 

LESIZE,13,,,Hdiv 

LESIZE,lO,,,Hdiv 

LESIZE,27,,,Hdiv 

LESIZE,31,,,Hdiv 

LESIZE,12,,,Hdiv 

LESIZE,37,,,Hdiv 

LESIZE,16,,,Hdiv 

LESIZE,45,,,Hdiv 
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LESIZE,61,,,Hdiv 

LESIZE,S7,,,Hdiv 

LESIZE,67,,,Hdiv 

LESIZE,7S,,,Hdiv 

LESIZE,ll,,,Hcdiv 

LESIZE,22,,,Hcdiv 

LESIZE,26,,,Hcdiv 

LESIZE,lS,,,Hcdiv 

LESIZE,34,,,Hcdiv 

LESIZE,17,,,Hcdiv 

LESIZE,42,,,Hcdiv 

LESIZE,56,,,Hcdiv 

LESIZE,52,,,Hcdiv 

LESIZE,64,,,Hcdiv 

LESIZE,72,,,Hcdiv 

LESIZE,107,,,CIRdiv_90 

LESIZE,109,,,CIRdiv_90 

LESIZE,112,,,CIRdiv_90 

LESIZE,l19,,,CIRdiv_90 

LESIZE,120,,,CIRdiv_90 

LESIZE,121,,,CIRdiv_90 

LESIZE,114,,,LTAdiv_a 

LESIZE,104,,,LTAdiv_a 

LESIZE,lOS,,,LTAdiv_a 

LESIZE,116,,,LTAdiv_a 

LESIZE,117,,,LTAdiv_a 

LESIZE,118,,,LTAdiv_a 
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LESIZE,106,,,CIRdiv_Xc,CIRxc_ratio 

LESIZE,llO,,,CIRdiv_Xc,l/CIRxc_ratio 

LESIZE,113,,,CIRdiv_Xc,l/CIRxc_ratio 

LESIZE,Sl,,,Hcdiv 

LESIZE,86,,,Hdiv 

LESIZE,48,,,Hcdiv 

LESIZE,82,,,Hdiv 

LESIZE,89,,,Hcdiv 

LESIZE,92,,,Hdiv 

LESIZE,103,,,Hcdiv 

LESIZE,115,,,Hdiv 

LESIZE,108,,,Hcdiv 

LESIZE,lll,,,Hdiv 

LESIZE,97,,,Hcdiv 

LESIZE,lOO,,,Hdiv 

! Hot Spot material model 

*SET, EM_h,26.7E6 

*SET,Pois,0.3 

*SET,FS_h,22.291 7 E3 

*SET,PM_h,O 

*SET,Temp_h, (600-32)*(5/9) 

! Remaining shel l material model 

*SET,EM,29.3E6 

*SET,Pois,0.3 

*SET,FS,30.09E3 

*SET,PM,O 

*SET,Temp, (100-32)*(5/9) 
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/TITLE, Cylindrical shell, Solid185, Hot Spot 

! Element type 1 

ET,1,SOLID185 

ET,2,SOLID185 

! Material properties for temperature 600 deg. F 

MP,EX,1,EM_h 

MP,PRXY,1,Pois 

TB,BKIN,1,,,1 

TBTEMP,Temp_h 

TBDATA,,FS_h,PM_h 

! Material properties for temperature 100 deg. F 

MP,EX,2,EM 

MP,PRXY,2,Pois 

TB,BKIN,2,,,1 

TBTEMP,Temp 

TBDATA,,FS,PM 

! Meshing the hot spot region 

TYPE,1 

MAT,1 

VSEL,S,VOLU,,2 

VSEL,A,VOLU,,25 

VMESH,ALL 

! Meshing the hot region 

TYPE,2 

MAT,2 

VSEL,ALL 

VSEL,U,VOLU,,2 

VSEL,A,VOLU,,25 

VMESH,ALL 
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ALLSELL 

! Apply symmetric boundary conditions 

ASEL,S,AREA,,2 

ASEL,A,AREA,,97 

ASEL,A,AREA,,3 

ASEL,A,AREA,,4 

ASEL,A,AREA,,S 

ASEL,A,AREA,,6 

DA,ALL,SYMM 

ALLSEL 

ASEL,S,AREA,,14 

ASEL,A,AREA,,98 

ASEL,A,AREA,,33 

ASEL,A,AREA,,37 

ASEL,A,AREA,,53 

ASEL,A,AREA,,57 

ASEL,A,AREA,,82 

ASEL,A,AREA,,83 

ASEL,A,AREA,,81 

ASEL,A,AREA,,77 

DA,ALL,SYMM 

ALLSEL 

ASEL,S,AREA,,24 

ASEL,A,AREA,,27 

ASEL,A,AREA,,47 

ASEL,A,AREA,,SO 

ASEL,A,AREA,,67 

ASEL,A,AREA,,70 
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ASEL,A,AREA,,88 

ASEL,A,AREA,,87 

DA,ALL,SYMM 

ALLSEL 

DK,Sl,UX,O 

DK,Sl,UY,O 

! Loading 

ASEL,S,AREA,,99 

ASEL,A,AREA,,32 

ASEL,A,AREA,,16 

ASEL,A,AREA,,39 

ASEL,A,AREA,,23 

ASEL,A,AREA,,46 

ASEL,A,AREA,,lO 

ASEL,A,AREA,,59 

ASEL,A,AREA,,66 

ASEL,A,AREA,,86 

ASEL,A,AREA,,74 

ASEL,A,AREA,,91 

SFA,ALL,l,PRES,Pd 

ALLSEL 

DTRAN 

SFTRAN 

FINISH 

! Enter solver 

/SOLU 

ANTYPE,O 

PRED,ON,,ON 
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AUTOS, ON 

NSUBST,lOOO 

OUTRESS,ALL,ALL 

SOLVE 

SAVE 

FINISH 
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APPENDIXB 

MA TLAB Files 

MA TLAB files are used in this thesis to perform the numerical analysis of different 

mechanical components and structures. Typical input files of a number of example 

problems used in this thesis are provided in this section. The examples include standard 

example problem to typical pressure component configuration. 

B.l RSF for Cylinder with Corrosion Damage 

% RSF for Cylinder with Corrosion Damage 

clear; 

clc; 

Ri = 33; 

H = 0.625; 

Ro = (Ri+h); 

Pd 220; 
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Sy 30e3; 

c = (h/3); 

h_c = (h-e); 

Rc = Ro-h_c; 

Theta_c = 17.0396; 

aBYb = 1.0; 

a 10 

b a/aBYb 

% Calculation of decay lengths 

Xc 6.10*(RoA3*h)A(1/4) 

Xl 2.50*sqrt(Ro*h) 

% Calculation of reference volume 

Vc 4*a*b*h_c 

Vu 4*h*((a+Xc)*(b+Xl)-(a*b)) 

Vref = (Vc+Vu) 

% Calculation of elastic stresses 

Stc (Pd*Rc)/h_c 

Slc (Pd*Rc)/(2*h_c) 

Sec sqrt(StcA2 + SlcA2 - Stc*Slc) 

St (Pd*Ri)/h 

Sl (Pd*Ri)/(2*h) 

Seu = sqrt(StA2 + SlA2 - St*Sl) 

% Evaluation of multipliers 

mL_d = S flow/Sec 

Num (S_flowA2*Vref); 

Den (SecA2*Vc) + (SeuA2*Vu); 

mO_d sqrt(Num/Den) 

mO_u Sy/Seu 
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% Evaluation of m-alpha multiplier 

Z = mO_d/mL_d 

nl 2*Z"2 ; 

n2 Z*(Z-1)"2; 

n3 l+sqrt(2)-Z; 

n4 Z-l+sqrt(2); 

n1234 = nl+sqrt(n2*n3*n4); 

dl Z"2+2-sqrt(5) ; 

d2 Z"2+2+sqrt(5); 

d12=(dl*d2); 

m_alpha_d = 2*mO_d*(n1234/d12) 

% Evaluation of m-alpha tangent multiplier 

jeta_i = mO_d/mL_d ; 

m_alpha_tangent_B = mO_d/(1+0 . 2929*(jeta_i-1)) 

% RSF calculation 

RSF_U = mO_d/mO_u 

RSF_mAlpha = m_alpha_d/mO_u 

RSF_mAlpha_tangent = m_alpha_tangent_B/mO_u 

RSF_L = mL_d/mO_u 

Return 

B.2 RSF for Cylinder with Thermal Hot Spot 

% RSF for Cylinder with Thermal Hot Spot 

clear ; 

clc; 

% Inputs 

Ri = 33; 

h = 0.625; 
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Pd 220; 

Ro (Ri+h); 

Sy_h = 25.7E3; 

Sy = 30 . 0e3; 

% Decay length calculation 

Xc 6.10*(RoA3*h)A(l/4); 

Xl 2.50*(Ro*h)A(l/2) ; 

Theta_h = 50.95 

aBYb = 2.0; 

a= (Theta_h/180)*pi*Ro 

b a/aBYb 

% Reference volume calculation 

Vh = (2*a)*(2*b)*h; 

V = (2*(a+Xc)*2*(b+Xl)-(2*a)*(2*b))*h; 

V_ref = Vh+V ; 

% Evaluation of elastic stresses 

Sc (Pd*Ri)/h ; 

Sl (Pd*Ri) I (2*h); 

Seq= sqrt(ScA2 + SlA2- Sc*Sl); 

% Evaluation of multipliers 

mL_d Sy_h/Seq; 

mO_d sqrt((Sy_hA2*Vh + SyA2*V)/(SeqA2*V_ref)) ; 

mO_u Sy/Seq; 

% Evaluation of m-alpha multiplier 

Z = mO_d/mL_d; 

nl 2*ZA2 ; 

n2 Z*(Z-l)A2; 
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n3 l+sqrt(2)-Z; 

n4 Z-l+sqrt(2); 

n1234 = nl+sqrt(n2*n3*n4); 

dl ZA2+2-sqrt(5); 

d2 ZA2+2+sqrt(5); 

d12=(dl*d2); 

m_alpha_d = 2*mO_d*(n1234/d12); 

% Evaluation of m_alpha tangent multiplier 

mL_i 

mO i 

mL_d; 

mO_d; 

jeta_i = mO_i/mL_i; 

m_alpha_tangent_B = m0_i/(1+0.2929*(jeta_i-1)); 

% for BB" 

if jeta_i > l+sqrt(2) 

C = 0.2929*(jeta_i-1); 

jeta_fl (l+C) + sqrt((l+C) A2-1); 

jeta_f2 (l+C) - sqrt((l+C) A2-1); 

mO_f = mO_i; 

jeta_f = jeta_fl; 

mO_f/(1+0.2929*(jeta_f-1)); m_alpha_tangent_C 

else 

m_alpha_tangent_C 0; 

end 

% RSF Calculation 

RSF_d = mO_d/mO_u; 

RSFl_m_alpha = m_alpha_d/mO_u 

RSF3_m_alpha_tangent = m_alpha_tangent_B/mO_u 

Return 
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