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ABSTRACT

Standard analysis methods of mechanical components and structures are based on elastic
analysis, elastic-plastic analysis and limit analysis. The determination of limit load using
a simplified method is considered to be an attractive alternative over the conventional
limit analysis methods i.e., analytical methods, experimental methods and numerical
methods. Simplified methods are considered to be effective if they are able to estimate
the lower bound limit load of a general class of mechanical components and structures
within a minimum number of linear elastic analysis iteration without compromising with

the quality of the result.

In this thesis, a simplified method is proposed in order to estimate the limit load of a
general class of mechanical components and structures. The proposed m,-tangent method
makes use of statically admissible stress fields based on a single linear elastic analysis or
on an assumed distribution to estimate the limit load. The method is applied to a number
of mechanical components and structures ranging from standard example problems to
typical pressure vessel components. The results are in good agreement with the
corresponding analytical and inelastic finite element analysis results. The underlying
features of the m,-tangent method enabled its application into three major areas: analysis

of cracked components, stress categorization and fitness-for-service assessment.

The determination of load carrying capacity is an important step in the integrity
assessment of mechanical components and structures containing crack-like flaws. The

mg-tangent method is extended in order to estimate the limit load of components and
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structures with cracks. The proposed method enables the determination of limit load
using a single linear elastic analysis. The method is applied to a number of cracked
component configurations and the results compare well with those obtained from the

corresponding analytical and inelastic finite element analysis results.

The ASME Boiler and Pressure Vessel Code can be applied to design pressure vessels
and piping systems by using the design by analysis (DBA) approach. It provides
guidelines for the classification of linear elastic stresses into primary, secondary and peak
stress. Although these guidelines cover a wide range of pressure containing components,
the guidelines are sometimes difficult to employ for three dimensional components with
complex geometry. In this thesis, a simplified method is proposed in order to categorize
the elastic stresses in pressure vessel components and structures using a single linear
elastic finite element analysis. It uses the m,-tangent method, an assessment of constraint
in the component based on limit load multiplier estimates, as a stress classification tool.
The proposed method is applicable to both mechanical and thermal loads and is able to
partition the elastic stresses into primary (P), primary plus secondary (P+Q) and peak (F)
stress. The proposed method is a direct and alternative approach over conventional
approaches i.e., stress linearization and interaction / discontinuity analysis. The method is
applied to several practical pressure vessel components from simple to relatively complex
geometric configurations and the results compare favorably with those obtained by the

conventional techniques.

Thermal hot spot and corrosion are the typical of damages occurring in operational
pressurized components and structures. Fitness-for-service (FFS) assessment of these

components and structures need to be performed periodically in order to demonstrate the
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operational safety and structural integrity. In this thesis, a simplified method, based on
the m,-tangent method, is proposed in order to perform Level 2 FFS assessment of aging
pressure vessel components and piping systems containing thermal hot spot and corrosion
damage. The method is demonstrated through a number of examples and the results are

verified by Level 3 inelastic finite element analysis.

The potential benefits of using the above mentioned simplified methods over the
conventional methods is that the simplified methods are applicable to a wide range of
mechanical components and structures; they require minimum expertise from the analyst
to perform the analysis; they are economically viable to use on a daily or regular basis;
they are computationally effective as they do not require any iterative procedure; and they

are very rapid and easy to implement in practice.
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NOMENCLATURE

List of Symbols
a Crack length, Half width of a rectangular damage area
b Half length of a rectangular damage area
Ay, A Bar cross-sectional area

dy Nominal outside diameter

D Increment of plastic dissipation per unit volume

E Modulus of elasticity

Ey Initial modulus

E; Joint efficiency

E Secant modulus

Ssi) Yield function
F Peak stress
h Shell thickness
h. Thickness of corroded area
k Yield stress in pure shear
L Length of beam

Ly, L, Bar length

m Exact limit load multiplier
m° Upper bound multiplier
m’ Lower bound multiplier from Mura’s formulation
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Experimental methods are widely accepted as a tool for limit analysis given that the
experiments are to be carried out very precisely. In order to perform such experiments for
practical complex components and structures, skilled personnel as well as costly
experimental setups / instrumentation is required. In practical term, each experiment
involves con lerable capital investment and hence is not economically viable to perform

in a daily bas . Therefore, in-practice, the experimental methods are of very limited use.

In order to ¢ rcome the above mentioned limitations of the conventional limit analysis
methods, the :velopment of robust and simplified methods is of considerable interest. In
recent years, significant efforts have been directed to develop robust and simplified
methods. he idea behind the simplified method is that it is able to estimate the limit load
by using li elastic analysis. The potential benefits of using simplified method over the
convention  thods is that the simplified method is applicable to a wide range of
practical cor onents and structures, it requires minimum expertise from the analyst to
perform the alysis, it is economically viable to use on a daily or regular basis, it is
computatior y effective as it does not require any iterative procedure, and it is very

rapid and ea: to implement in practice.

The inte; . assessment of cracked components and structures is of paramount
importance i industrial applications. One of the most important elements of the integrity
assessment ~ the estimation of load carrying capacity of the component or structure.
Simplifie 1 thods are shown to be very effective in determining the limit load of

components  d structures with crack like flaws.



In conventional design approach, a safety factor is considered to limit the maximum
calculated stress level to some percentage of either the yield or ultimate strength of the
material at the operating temperature. Design-by-analysis (DBA) using ASME stress
categorization approach is a direct application to linear elastic analysis results. ASME
Boiler and Pressure Vessel Code, Section III (2007) and Section VIII, Div. 2 (2007)
provide guidelines for interpreting the elastic stresses obtained from linear elastic
analysis. In these guidelines, the stresses are divided into different categories and
allowable stress limits are imposed on each of these categories and specific combinations
of the same. The categorization of elastic stresses in pressurized components and
structures is a challenging task even with the finest computing facilities and available
numerical techniques. Conventional indirect approaches for categorization of stresses are
stress linearization and interaction / discontinuity analysis. Use of simplified method for
stress categorization is considered to be an attractive alternative over the conventional
approaches as the simplified method does not require any stress classification lines or
planes; and hence is a direct approach over conventional indirect approaches. The
simplified method makes use of statically admissible stress field based on von Mises or

Tresca yield criterion to categorize the stresses.

A fitness-for-service assessment of mechanical components and structures is of
paramount importance in oil and gas, nuclear and petrochemical industries. The
determination of load carrying capacity of the in-service mechanical components and
structures is an important goal in structural integrity assessment. Simplified method is

considered to be a viable tool for fitness-for-service assessment of aging pressure vessel












stresses linearization and interaction / discontinuity analysis. The proposed method is
applicable to both two and three dimensional pressure vessel components and structures
with complex geometries. The proposed method can be applied to both mechanical and

thermal loading cases, without requiring two separate analyses.

Fitness-for-service (FFS) assessments are performed in operating plants in order to
demonstrate the integrity of in-service components and structures undergoing damage.
Thermal hot spots and corrosion are the typical of damages occurring in in-service
pressure vessels and piping systems. FFS assessments of these components and structures
need to be performed periodically in order to determine the suitability of the component
for the prevailing operating conditions and for the assessment of remaining life.
Therefore, appropriate assessment methods are needed to assess the serviceability as well
as remaining life of the aging components and structures under various operating
conditions. In this thesis, a simplified method, based on the m,-multiplier, is proposed for
Level 2 FFS assessment of pressure vessels and piping systems containing thermal hot
spot and corrosion damage. The proposed method gives an improved estimate of the
remaining strength factor (RSF) of the damaged pressure vessel components and
structures. The method is applicable to a wide range of components and structures
including the structures experiencing significant stress gradient in and around the

damaged spot.
















































where

& =200, +v,) iV, (2.12)

where m 1s the actual collapse load multiplier.

2.5 Closure

A review of the theory of elasticity, plasticity and limit load multipliers is prese
this chapter. The derivation of the admissible limit load multipliers is also prese
These fundamental concepts have been used in the research work presented in tl 5t
In the next chapter, the variational theorems in limit analysis and the derivation
improved lower bound limit load multiplier, the m, method, is presented. The

chapter also presents a brief review of the limit load analyses methods.
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CHAPTER 3

REVIEW OF LIMIT LOAD MULTIPLIERS

3.1 Introduction

Limit analysis plays an important role in design and integrity assessment of mechanical
components and structures. Limit load is the load at which uncontained plastic flow
(plastic deformation) occurs in a perfectly plastic structure, and the structure is on the
verge of collapse. Limit load is a quantitative measure of the load carrying capacity of
such a structure. Limit analysis is especially attractive as it simplifies the inelastic

analysis by assuming an elastic perfectly plastic material model.
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Lower bound limit load is the load that a structure is able to carry out safely during its
service life. There is no permanent deformation of the structure. It is the maximum load
that a structure is expected to experience in its service life. Lower bound limit load is
especially attractive as it provides a guaranteed margin of safety against load controlled
plastic failure modes. The limit load multiplier scales the applied load proportionally to
that level where the structure reaches to its limit state. The exact limit load multiplier is
available only by performing a plastic limit analysis. Several estimates and bounds of the
exact limit load multiplier can be obtained from an elastic analysis. Some of these are

discussed below.

3.2 Classical Lower Bound Multiplier

The lower bound multiplier can be directly obtained by applying the lower bound
theorem of plasticity. Assuming that some stress distribution throughout the component
or structure can be found, which is everywhere in equilibrium internally, balances the
external loads and at the same time does not violate the yield condition. Then the
corresponding applied loads will be less than or equal to the exact limit load, and will be
carried safely by a sufficiently ductile material. If o, is the yield strength of the elastic-
perfectly plastic material, then the classical lower bound multiplier (m;) can be expressed

as

O .
m =——; P=Pm, 3.1)
(o}

where P is the applied load and P is the limit load.

26



Statically admissible stress distributions can be constructed by “inspection”, or by using a
closed form linear elastic solution. When a finite element analysis is performed, the stress
distribution inside each element is approximate. Therefore, m; obtained from linear
elastic FEA is a mesh dependent estimate that is expected to converge to the exact value

as the mesh is refined successively.

3.3 Upper Bound Multiplier

In limit analysis, the statically admissible stress field (equilibrium set) cannot lie outside
the yield surface and the stress associated with a kinematically admissible strain rate field
(compatibility set) in calculating the plastic dissipation should lie on the yield surface.
Mura et al. (1965) proposed an approach that eliminates such a requirement and replaced
it by the concept of integral mean of yield based on a variational formulation. The

integral mean of yield criterion can be expressed as,
[u'lrGH+ @2 lav =0 32)
VT

where E,;.) is the statically admissible deviatoric stress for impending plastic flow; ¢° is a

point function which takes on a value of zero if E,.;.’ is at yield and remains positive below

yield. The flow parameter z° is defined through the associated flow rule as,

& = H=— (3.3)
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where #° >0 (statically admissible set) and £, 1s the strain rate. Now, E; =m° sf} where

sg. corresponds to the applied traction, 7,. The von Mises yield criterion can be

expressed as,

3_ _ ) 3.4)
f(sij)zgsusu’ oy

Assuming an unspecified but constant flow parameter x° and performing the necessary

mathematical manipulations Eq. (3.4) becomes (Seshadri and Mangalaramanan, 1997),

(3.5)

where o, is the von Mises equivalent stress and V7 is the total volume. Proof of the

upper-boundedness of m° is presented by Reinhardt and Seshadri (2003).

3.4 Extended Variational Theorems in Limit Analysis

The variational formulation, proposed by Mura et al. (1963, 1965), is an alternate
approach to the classical limit theorem. Seshadri and Mangalaramanan (1997) proposed
the m,-method based on Mura’s variational theorem, which provides better lower bound
limit load over Mura’s lower bound estimate. The m,-method adopted the elastic modulus
adjustment procedure (EMAP) to estimate improved lower bound limit load. Further

discussion on these methods is presented in the following sections of this chapter.
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admissible multij

by using the variational principles that the safety factor, the statically

er and the kinematically admissible multiplier for a component or

structure made of elastic perfectly plastic material model and subjected to prescribed
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constraint conditi

In limit analysis,
the yield surface
(compatibility se
Mura et al. prop
the concept of

mean of yield cr

where the supet

° is the plastic

limit state, wh
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point function
yield.
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e actually extremum values of the same functional under different

e statically admissible stress field (equilibrium set) cannot lie outside

1e stress associated with a kinematically admissible strain rate field
calculating the plastic dissipation should lie on the yield surface.
an approach that eliminates such a requirement and replaced it by
1l mean of yield based on a variational formulation. The integral

1 can be expressed as,
[ £ 1F G+ 9" 1av =0 (3.6)

“0” refers to the statically admissible equilibrium stress fields and

parameter. The deviatoric stress E,.J.O corresponds to the impending

0.0
O=m’s

, ; - Here, m® is the limit load multiplier and sij0 is the

that is in equilibrium with the applied loads. The parameter ¢° is a

<es a value of zero if E,.].O is at yield and remains positive below

load multiplier m” is derived from Mura’s extended variational
1aller than the unknown actual collapse load multiplier m. Mura’s

r can be expressed as,
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The coefficients A, B, C and finally, the value of m,can be evaluated from the results of
any linear elastic FEA. Although the m,-method was intended for two iterations at first,

increasing iterations would give better estimates provided certain conditions are satisfied.

To ensure real roots for Eq. (3.20), the discriminant must be greater than zero, i.e.,

meo <1++2 (3.22)

3.5.2 Expression for Lower Bound Multiplier m,

Reinhardt and Seshadri (2003) derived an expression for the lower bound limit load
multiplierm, from the equation m’ = f(mL,mO) If m, and m’ are derived from a series
of stress and strain distributions that converge to the collapse state, then m’ is assumed to
follow a line that ends at m=m, =m’=m". From current iteration ¢ , estimate of the
final solution is made by linear extrapolation along the tangent to the curve m’((). The
differentiation of the equation m’ = f (mL,mO) with respect to the iteration variable ¢ is

as follows,

It is postulated that the trajectory ends at m=m, =m’=m" and by doing so, m, is

expected to give a reasonable estimate of the multiplier m if the values of m, and m° are
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sufficiently close to the exact limit load multiplier m. In terms of finite difference, Eq.

(3.18) can be written as,

i zzﬂ(mo—ma>-4 e o IEY
)

Solving the above equ on for m,, we get

) EET i

A /:D:z—ﬁ][(ijzmmﬁ}

The m,-method has been shown to provide reasonable estimate of limit loads of various

(3.25)

mechanical components : d structures.

3.6 Review of I nit Load Analysis Methods

Seshadri and Fernando 1992) have developed the Redistribution Node (R-ode) method
in order to determine lower bound limit load of mechanical components and
structures, using the e/ ¢ modulus adjustment procedure (EMAP) and by adopting the
concepts of reference  :ss in creep analysis. The R-Node method makes use of two
linear elastic finite el ent analyses to identify the load controlled location(s) in the

structure and the limit .d of the structure is achieved by using the load controlled
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stresses. The R-Node method is further extended by Seshadri and Marriott (1993) to
categorize the linear elastic stresses in mechanical components and structures. Seshadri
and Mangalaramanan (1997) have used the R-Node method for minimum weight design
of pressure vessel components and structures. Famous and Seshadri (2005) have used the
R-Node method to estimate the limit load of components and structures subjected to
multiple loadings. Other applications of the R-Node method are available in the

monograph by Seshadri (1998).

Seshadri and Mangalaramanan (1997) have developed the upper bound multiplier m,
using the integral mean of yield criterion (Mura et al., 1965) and further details are
available in Section 3.3 of this thesis. The m, multiplier is shown to be greater than the
classical lower bound multiplier (n;) and lower than the classical upper bound multiplier
(my) (Reinhardt and Seshadri, 2003). The m,0 multiplier is based on the total volume of
the component or structure. If plastic collapse occurs over a localized region of the
component or structure, the m; multiplier will be overestimated. In order to overcome
this limitation, Pan and Seshadri (2001) have proposed the m. multiplier by invoking the

concept of reference volume.

Seshadri and Indermohan (2004) have developed the m; method by making use of the

integral mean of yield criterion in order to estimate the limit load of mechanical

components and structures. The m,; multiplier relies on the entire stress distribution

rather than the maximum stress in the component or structure.
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3.7 Closure

Mura’s variational formulation and the corresponding limit load multipliers have been
presented in this chapter. The classical lower bound multiplier and upper bound
multiplier based on Mura’s variational formulation is also presented. The derivation of
the improved lower bound limit load estimation method, the m,-method, has also been
presented in detail. The chapter also covered a brief review of the simplified methods in
limit analysis. The following chapter represents the m,-tangent method, which has been
developed under the scope of this thesis to estimate the limit load of a general class of
mechanical components and structures. The formal basis of the proposed simplified
method is the m,-method, which has been developed by Seshadri and Mangalaramanan

(1997).
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CHAPTER 4

THE m,-TANGENT METHOD

4.1 Introduction

The assessment of load carrying capacity under applied loads is an important goal in
designing mechanical components and structures. Limit load analysis is performed in
order to determine the load at which uncontained plastic flow (plastic collapse) occurs in
the component or structure. Lower bound limit loads are especially relevant from design
standpoint since they provide a guaranteed margin of safety against load controlled
plastic failure modes, or the related primary stress limits contained in the ASME Boiler
and Pressure Vessel Code (2007). The concept of reference stress (Webster and
Ainsworth, 1994), used extensively in the United Kingdom in high temperature integrity
assessment procedures and inelastic fracture evaluations (Ainsworth et al., 2000), is

related to the limit load.
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The conventional mecthod for limit analysis includes analytical method, experimental
method, and numerical method e.g., nonlinear finite element method. Analytical methods
have a very limited application in real-life as these methods are based on simplified
assumptions and are particularly applicable to standard classical problems and simple
structures. It is practically impossible to apply the analytical methods in order to estimate

the limit load of complex three dimensional mechanical components and structures.

On the other hand, experimental methods are widely used as a practical tool for limit load
estimation. These methods are accepted by the structural design community as a viable
tool for limit load estimation. However, these methods are not always cost effective as
they require expensive set-ups as well as experienced professional to run the experiment

precisely.

Nonlinear finite element methods are widely used in determining the limit load. These
methods are accepted by the Code (ASME B&PV Code, 2007) as a standard method to
estimate the limit load of mechanical components and structures. However, these
methods are not effective in terms of computational effort and time, especially when
applied to practical three dimensional components and structures subjected to complex
loading. These methods work on iterative procedure and sometimes face convergence

problems.

4.2 Simplified Method in Limit Analysis

There are several practical advantages of using limit analysis as a tool for mechanical

structural design. Limit analysis provides a guaranteed margin of safety over the load
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carrying capacity of the structure. As discussed earlier, conventional methods of limit
analyses have their own limitations in terms of applicability and cost effectiveness. As a
result, simplified methods drew significant attention of structural design community to
use these methods as an alternative tool over the conventional limit analysis techniques.
The simplified methods are shown to be effective in terms computational effort and time.
Significant efforts have been directed over the recent years in order to develop robust and
simplified methods to estimate the limit loads. A simplified method is one, which is able
to estimate the lower bound limit load of a general class of mechanical components and
structures at a minimum number of linear elastic iteration without compromising with the

quality of the result.

In this thesis, significant effort have been directed to develop a robust and simplified
method in order to estimate the limit load of a general class of mechanical components
and structures. The proposed m,-tangent method makes use of statically admissible stress
field based on a single linear elastic analysis or assumed fields to estimate the limit load.
The formulation of the method is based on the variational principles in plasticity. The

method is shown to be rapid and easy to implement in practice.

The method is demonstrated through a number of mechanical components and structures
ranging from standard example problems to typical pressure vessel component
configurations. The results are in good agreement with the corresponding analytical and
inelastic finite element analysis results. The detailed derivation of the m,-tangent method

is presented in the following sections of this chapter.
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4.3 Beyond the m,-Method

The m, multiplier method was developed by Seshadri and Mangalaramanan (1997) on the
basis of variational considerations. The m, multiplier depends on the parameters m° and

my,, and can be expressed as

OO 41 £ [ G )
B GE G

The m, multiplier is an improved estimate of the analytical limit load multiplier

(4.1

compared to the bounds m; and m®. Although it is often found to be an improved lower
bound, it could not be established as a lower bound in general. The issue of lower-
boundedness of m, has been discussed by Reinhardt and Seshadri (2003). Rewriting the
expression for m, by normalizing with the (usually unknown) exact multiplier (m), the

following equation can be obtained

202+ - A+V2 - O -1+42)
(£2+2-5)¢ +2+4/5)

R, =2R° (4.2)

where { = mO/mL, Ry = m®m and R, = m,/m. Due to normalization, R,=1 represents the

boundary between the upper bound region (R, >1) and lower bound region (R, <1) as
shown in Figure 4.1. The value of m, becomes imaginary when m°/m, >1+/2, as

would be the case for components with notches and cracks.
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Figure 4.1 Regions of lower and upper bounds of m,

In Eq. (4.2), the exact multiplier (m) for a component being analyzed is generally
unknown. As well, m’/m, which is equal to ((0,),../0,,) is a measure of the
theoretical stress-concentration factor of the notch. The region bounded by mo(max),

1<m’/m, <1+ V2 and 1<m®/m<1++/2 is designated as the “m, triangle”.

Due to the behavior of the two bounds in response to local stress concentration that was
discussed above, the ratio m°/m, can become large for components with notches and
cracks, and fall outside the domain where m, is defined. Therefore, the m, multiplier

method is not applicable if a component falls outside the “m, triangle”. In order to

overcome these limitations, the m,—tangent method is developed in the present thesis.

The m,~tangent method can take practically any value of m°/m,, which extended the
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domain of application of the proposed m,—tangent method beyond the “m, triangle”.
Therefore, the m,—tangent method is applicable to a general class of mechanical
components and structures containing significant amount of peak stresses. The
underlying concepts, formulation, and detail derivation of the proposed m,—tangent

method is presented in the following sections of this chapter.

4.4 The Constraint Map

General pressure vessel components subjected to mechanical and thermal loads are made
up of primary, secondary and peak stresses. The plot of m°/m versus m®/m, in the context
of iterative EMAP (Elastic Modulus Adjustment Procedure) represents the trajectory
signifying a progressive loss of constraint from an initial elastic state to a plastic collapse

state (Seshadri and Adibi-Asl, 2007), which is called “constraint map” (Figure 4.2).

It should be noted that the upper bound multiplier m° is based on the overall statically
admissible stress distribution in the component whereas the classical lower bound
multiplier m; depends on the maximum stress in the component. Therefore, m; is
sensitive to peak stresses whereas m” is almost insensitive to peak stresses and hence is
invariant while blunting of peak stresses. The ratio m%/m, represents a combination of
primary, secondary and peak stresses. At the origin, the stresses are purely primary (limit
state), and therefore load controlled. The ratio m%m;>1 points to the existence of

secondary and peak stresses, in addition to primary stresses.
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Figure 4.2 The constraint map

The ratio m%/m represents a combination of primary and secondary stresses for which
m®/m>1. A trajectory that proceeds towards the origin with a continuous reduction in the
magnitudes of m%m; and m®/m, points to a corresponding reduction in the degree of
“statical indeterminacy”. In this context, the plot of m®my versus m®/m is a “constraint

map” in which the mo, my, and m are essentially “scalar measures”.

Points A and B in Figure 4.2 represent the state of static indeterminacy of a given
component or structure. The constraint trajectory AO and BB'O can be generated for a
general class of mechanical components and structures. For most of the components BB’

0

is nearly horizontal and represents the blunting of peak stresses. Therefore, m" is almost

invariant while m; increases as mo/mL decreases. If mo/mL is less than 1+\/§, which
corresponds to point A in Figure 4.2, the peak stress in the component is expected to be

either zero or negligible.
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According to Figure 4.2, if we proceed from B to B” along the constraint trajectory, the
peak stress will be gradually redistributed due to their deformation controlled nature. The
peak stress of the component is redistributed by suitably adjusting the elastic modulus of
the elements, in a finite element discretization scheme, stressed above reference stress

level (where o, = a_‘v/mo).

The modulus adjustment formula is as follows:

q
Ei = (ilef} E 4.3)

o.,

This formula describes how the elastic modulus at a location with the equivalent stress

" to the (i+1)" linear elastic

O (€.g., von Mises equivalent stress) is updated from i
iteration while plotting the constraint trajectory. It should be noted that the constraint

trajectory and the location of point A, B, and B” (Figure 4.2) are problem dependent, i.e.,

it depends on the geometry, loading, and boundary conditions of the component under

consideration. The formal basis for 1++/2 will be discussed in the following sections of

this chapter.

4.5 Reference Two-Bar Model (TBM)

General pressure vessel component configurations can be related to the reference two-bar
structure by using the “integral mean of yield” criterion. Seshadri and Adibi-Asl (2007)

have derived the “scaling equations” as follows (Figure 4.3):
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4.6 The Concept of the m, -Tangent

The m, multiplier method (Seshadri and Mangalaramanan, 1997) was developed on the
basis of variational concepts in plasticity. The method has explicit dependency on the
upper bound multiplier, m®, and the classical lower bound multiplier, m;. The upper
bound multiplier, mo, depends on the entire stress distribution in a component or structure
whereas m;, depends on the magnitude of maximum stress. Therefore, for components
with sharp notches and cracks, the value of mO/mL will be high due to the presence of

peak stresses.

With respect to Figure 4.4, the following can be stated:

(1) when m approaches m;, the domain of statically admissible m° is bounded by the

45-deg (R°(max)) line and the positive X-axis.

(2) when m approaches m’, the domain of statically admissible m” is represented by

the line m=m".

(3) the exact solution (m) locus would lie somewhere between the positive x-axis and

the 45-deg line (R°(max)).

(4) the tangent to the R,=1 curve at the limit state (mL:mO:m) will locate the m,-

tangent, which can then be used to estimate the multiplier m.
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Figure 4.4 The m,-tangent construction

The determination of the m,.-tangent multiplier is as follows. Equation (4.2) describes R,
as a function of two variables, R’ and ¢, where C:mO/mL. For R,=1, Eq. (4.2) can be

represented by a curve in two-dimensional space as shown in Figure 4.4. The slope of the

tangent at the limit state, where m, = m° = m, = m, can be obtained as:

I 4.6
dé’ - \/E ( )

Therefore, the slope of the tangent (R. =1) line at the converged limit state is

Tan(68)=0.2929 .

The equation corresponding to R. =1 can be obtained as:
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m

—=1+({ 1) Tan(6) 4.7)
m

The exact limit load multiplier (m) for most of the practical components and structures

being analyzed is not known a priori. For the m,-tangent method, R® can be defined by
making use of the tangent (RZ -line in Figure 4.4) for any value of . Both R® and ( are
greater than one, except at the limit state for which R®= (= 1. It should be noted that the
reduction of m° along the R! =1 trajectory implicitly accounts for the reference volume.

Therefore, m° will converge to the exact multiplier as the trajectory approaches to the

origin.

4.7 Peak Stresses

Secondary and peak stresses are set up by redundant kinematic constraints (or static
indeterminacy) in a component. ASME Boiler and Pressure Vessel Codes (2007)
explicitly recognize these stress and related constraint effects. Figure 4.5 shows the stress
distribution in the ligament adjacent to the notch tip, where x-axis represents the distance
ahead of the notch tip, and y-axis represents the equivalent stress. As can be seen from
this figure, the magnitude of the peak stress (o) at the notch tip is considerably high;
however, it is assumed that the peak stresses are very localized and that the following

expression is valid (Adibi-Asl and Seshadri, 2007):

[orda=0 (4.8)

where A is the representative area on which o acts.
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Figure 4.5 Stress distribution ahead of notch tip

With respect to the constraint map, R] =1 line can be identified as shown in Figure 4.4.

This line is tangential to the R, =1 curve at the origin (m°/m=1, m®/my=1). The curve

0
m__ 1+4 for the reference two-bar model (TBM) can also be located as shown in

mzﬁ

Figure. 4.4.

4.8 Significance of £ =1++/2

The point D (Figure 4.4) can be determined by finding the intersection of the R! =1line

and the reference two-bar model equation, i.e.,
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where A= 1 and Tan(@)=1-

2

L
Yo

The intersection points work out to be {" = 1.0 and 1++/2. The RI =1 line represents a

combination of primary and secondary stresses that exists in the pressure vessel
components. On the other hand, the TBM trajectory represents the combination of
primary, secondary and peak stresses. Therefore, at point D the peak stresses are

negligible.

4.9 The m,—Tangent Method

Once the R] =1 line is identified, the value of m] can be readily estimated by using the

following relationship

0
T m

m, =
1+0.2929(¢ - 1)

(4.10)

0
m

where { =—.
m

The slope of the R. =1 line is equal to Tan(0) = [1—%} . The value of m° and ¢ can be

determined from statically admissible distributions obtained from linear elastic FEA.

Two cases are considered next:
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M 402929(C, —1)= 2

- 27, 4.11)

The roots of Eq. (4.11) are

$=U+C)x1+C)* ~1 (4.12)

where C =0.2929(¢, —1)

4. The value of m. can be evaluated by the equation

mo

T i
= 1
e TV 029297, — 1) @19

For some geometric transitions for which § > 1+ V2, redistribution of secondary stresses
could occur along with peak stresses. In such cases, the value of m, is not constant

during the blunting of peak stresses, and there is a gradual reduction in its magnitude.
These cases are usually attributed to components undergoing highly localized plastic flow

such as beam and frame structures. In this thesis, all the problems are solved by assuming

a constant value of m .

4.10 Applications

A number of example problems, ranging from simple to relatively complex geometric
configurations, are worked out in this section to demonstrate the proposed m,-tangent
method. The results obtained from the proposed method are compared with those

obtained from the corresponding analytical and inelastic finite element analysis results.
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Table 4.1 Limit load multipliers for thick walled cylinder

0 3
Method m mp C m; MNFEA MAnalytical

Linear elastic FEA 2.264 1.702 1.330 2.065 2.254 2.255

*Analytical result from (Mendelson, 1968)

4.10.2 Plate with a Hole

Consider next a thin plate with a hole (Figure 4.7) with the following dimensions: plate
width, 2W=150 mm (5.905 in.); length, 2L=300 mm (11.811 in.); hole radius, =20 mm
(0.787 in.). Applied load in the vertical direction is p=100 MPa (14.5><103 psi). The
material properties are as follows: yield strength, 0,=150 MPa (21.75x% 10° psi); modulus

of elasticity, E=150 GPa (21.75% 10° psi), and Poisson’s ratio, v=0.3.
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Figure 4.7 Plate with a hole (a) Geometry (b) Finite element model (plane stress)
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Table 4.2 Limit load multipliers for plate with a hole

Method m’ my, & m. MNFEA

Linear elastic FEA 1.416 0.527 2.604 0.963 1.099

Linear elastic FEA leads to the location of point B ‘igure 4.4). The value of m=1.416,
m, ;=0.527 and ¢;=2.687. Since ¢, > 1+ V2, peak stresses are present in the component.
¢, is evaluated so that m® at B and B” are equal (Eq. (4.12)). The value of {,=2.604.

The m], based on ;. as obtained from Eq. (4.13), is 0.963. The corresponding elastic-

plastic estimate is 1.099. The results are shown in Table 4.2.

Convergence study has been performed for this example problem to verify the sensitivity

of the m estimate with respect to the mesh density. It was observed that the current

result changes within the range of 1 to 3% while using relatively coarser or finer mesh.

4.10.3 Indeterminate Beam

An indeterminate beam (Figure 4.8) with length, L= 508 mm (20 in.); height, /=25.4 mm
(1 in.) and width, w=25.4 mm (1 in.) is modeled. The modulus of elasticity of the
material is 206.85 GPa (30x 10° psi) and yield strength is 206.85 MPa (30x 10° psi). The

beam is subjected to uniformly distributed load of 1.0 MPa (145 psi).

An initial linear elastic finite element analysis is performed. From the results of the initial

linear elastic FEA, m®=2.648 and m;=0.636 is evaluated. Since {;=4.164 is greater than
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1+/2, significant amount of peak stresses are present in the component. Now, ¢ is
evaluated so that m® at B and B” are equal (Eq. (4.11)). The value of §,= 3.573; and the
value of m,, based on ¢, as obtained from Eq. (4.13), is 1.510. Then a complete elastic-

plastic finite element analysis is performed, which gives the limit load multiplier myrga =
1.538. The analytical solution of the problem gives the limit load multiplier manaivicar =

1.510. The analysis results are tabulated in Table 4.3.

Table 4.3 Limit load multipliers for indeterminate beam

0 ¥
Method m my Cf m; MNFEA MAnalytical

Linear elastic FEA  2.648 0.636 3573 1.510 1.538 1.510

1LAnalytical result from (Mendelson, 1968)
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Figure 4.8 Indeterminate beam (a) Geometry (b) Finite element model (plane stress)
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4.10.4 Unreinforced Axisymmetric Nozzle

In this example, an axisymmetric cylindrical nozzle on a hemispherical head (Figure 4.9)
is modeled. Inside radius of the head is R=914.4 mm (36 in.), and the nominal wall
thickness is t=82.55 mm (3.25 in.). Inside radius of the nozzle is r=136.525 mm (5.375
in.) and nominal wall thickness is ?,=25.4 mm (1 in.). The required minimum wall
thickness of the head and the nozzle are ,=76.835 mm (3.025 in.) and ¢,=24.308 mm

(0.957 in.), respectively.

—><—tn

(a) (b)
Figure 4.9 Unreinforced nozzle on a hemispherical head (a) Geometry (b) Finite element

model (axisymmetric)
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Table 4.4 Limit load multipliers for unreinforced nozzle

Method m’ my, ¢ mZ MNFEA

Linear elastic FEA 1.847 0.896 2.061 1.410 1.672

The modulus of elasticity of the material is 262 GPa (38x10° psi) and yield strength is
262 MPa (38x10° psi). The hemispherical head is restrained at the vessel end, away from
the nozzle, in the meridional direction but allowed to move in the radial direction. The

structure is subjected to an internal pressure of 24.132 MPa (3500 psi).

From the results of the initial elastic FEA, m°=1.847 and m;=0.896 is evaluated. Since
{i=2.061 is less than 1+ V2 , therefore peak stresses are either negligible or zero. The
value of m! is obtained from Eq. (4.10) as 1.410. The elastic-plastic finite element

analysis gives the limit load multiplier myres = 1.672. The analyses results are tabulated

in Table 4.4.

4.10.5 Reinforced Axisymmetric Nozzle

A reinforced axisymmetric cylindrical nozzle on a hemispherical head is considered here.
Inside radius of the head is R=914.4 mm (36 in.), and nominal wall thickness is t=82.55
mm (3.25 in.). Inside radius of the nozzle is r=136.525 mm (5.375 in.) and nominal wall
thickness is #,=25.4 mm (Il in.). The required minimum wall thickness of the head and the

nozzle are £,=76.835 mm (3.025 in.) and ¢,,=24.308 mm (0.957 in.), respectively.

The nozzle is reinforced with an appropriate reinforcement scheme. The schematic

diagram and typical finite element mesh of the model is shown in Figure 4.10. The
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geometric transitions of the reinforcement are modeled with fillet radius, r;=10.312 mm
(0.406 in.), r,= 83.312 mm and r;= 115.214 mm (4.536 in.). The other dimensions
include, T»=54.61 mm (2.15 in.) and 8=45°. The distribution of reinforcement is bounded
by the reinforcement zone boundary specified by the circle of radius, L,=143.51 mm

(5.65 in.). The other geometric dimensions are the same as the previous example.

The modulus of elasticity of the material is 262 GPa (38x 10° psi) and yield strength is
262 MPa (38x10° psi). The hemispherical head is restrained at the vessel end, away from
the nozzle, in the meridional direction but allowed to move in the radial direction. The

structure is subjected to an internal pressure of 24.132 MPa (3500 psi).

(@) (b)

Figure 4.10 Reinforced nozzle on a hemispherical head (a) Geometry (b) Finite element

model (axisymmetric)
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Table 4.5 Limit load multipliers for reinforced nozzle

Method m® my, ¢ mz MNFEA

Linear elastic FEA 1.891 1.176 1.608 1.605 1.874

From the results of the initial elastic FEA, m°=1.891 and m;=1.176 is evaluated. Since

(i=1.608 is less than 1+ +/2 , therefore peak stresses are either negligible or zero. The
value of m is obtained from Eq. (4.10) as 1.605. The elastic-plastic finite element

analysis gives the limit load multiplier myrga = 1.874. The analysis results are shown in

Table 4.5.

4.10.6 Oblique Nozzle

Limit load analysis of a vessel with oblique nozzle has been studied both experimentally
and numerically by Sang. et al. (2005) to find the limit pressure. The geometry consists of
a cylindrical vessel with a closed nozzle connected with an angle of 30 deg. The
schematic diagram of the model and corresponding finite element model is shown in
Figure 4.11. The inside diameter of the vessel D=600 mm (23.622 in.) and outside
diameter of the nozzle d,=325 mm (12.795 in.). The wall thickness of both vessel and
nozzle is =6 mm (0.236 in.). The length of the vessel is L=2400 mm (94.488 in.) and the
length of the nozzle along the centerline /=600 mm (23.622 in.). The dimensions of the
heads of the vessel and the nozzle are H;=175 mm (6.890 in.) and ;=106 mm (4.173 in.),

respectively. The saddles are located at a distance A=400 mm (15.748 in.).
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Figure 4.11 Oblique nozzle on a cylindrical vessel from Sang. et al. (2005) (a)

Geometry, (b) Finite element model
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Table 4.6 Limit load multipliers for oblique nozzle

Method m’ my & m. MNFEA

Linear elastic FEA  4.804 0.411 8.139 1.554 1.805

Modulus of elasticity and yield strength of the material is 400 GPa (58.015x 10° psi) and
339.4 MPa (49.226x10° psi) respectively. The structure is subjected to an internal
pressure of 1.0 MPa (145 psi). The finite element model of the geometry is developed
with three dimensional isoparametric solid elements. Due to the symmetry about the

longitudinal plane, one-half of the vessel was modeled.

An initial linear elastic finite element analysis is performed. From the results of the initial

elastic FEA, m®=4.804 and m;=0.411 is evaluated. Since {;=11.688 is greater than

1++/2 , therefore significant amount of peak stresses are present in the structure. Now,

¢, is evaluated so that m® at B and B” are equal (Eq. (4.11)). The value of ¢, = 8.139
and the value of m based on ¢, as obtained from Eq. (4.13), is 1.554. Then a complete

elastic-plastic finite element analysis is performed, which gives the limit load multiplier

myrea = 1.805. The results are summarized in Table 4.6.

4.11 Lower Boundedness of the mz - Multiplier

The detailed derivation of the m,-tangent method and its application to practical complex
three dimensional mechanical component configurations have been presented in the

previous sections of this chapter. The method makes use of the “limiting tangent” in
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order to relate the initial elastic state of a component or structure to that of the exact limit
state. The proposed method is developed as a viable tool for estimating the limit load of a
general class of mechanical components and structures by using a single linear elastic

analysis. The limit load multiplier m_ is evaluated by making use of the limiting tangent;

upper bound multiplier m°® and classical lower bound multiplier m;. All necessary
information can be extracted from the initial linear elastic analysis. The limiting tangent

approximates the value of m®/m with respect to a give value of m®my.

Several example problems are worked out in the previous section of this chapter, ranging
from simple to relatively complex geometric configurations, and the results are found to
be lower bound to the corresponding analytical and inelastic finite element analysis
results. The exact locations of m%/m for all of the example problems are shown on the m,-
tangent plot in Figure 4.12. It should be noted that the value of m is calculated on the

basis of inelastic finite element analysis results. In Figure 4.12, the limiting tangent line

essentially represents the value of m®/m] for any component under consideration. It

could be observed from the plot that the value of m°/m,,,, , for different components,

lies under the limiting tangent line.

Therefore, it is clear from the Figure 4.12 that the limit load estimated by the proposed
mg-tangent method is lower bound to the inelastic finite element analysis results for all
worked out examples. Therefore, the proposed method is expected to give lower bound
solution to the exact limit loads for a general class of mechanical components and

structures.
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Figure 4.12 The location of different components, on the m,-tangent plot, based on

inelastic FEA results.

4.12 Discussion

The estimates of m_ for all the worked out example problems are found to be lower

bound to the corresponding analytical or inelastic finite element analysis results. With
reference to Figure 4.4, points such as B’ on the two-bar model (TBM) locus are

indicative of the existence of peak stresses and therefore, convexity (viewed from the

origin) of the linear elastic stress distribution. This is the case for ' >1+ V2 . For values
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of ¢ less than 1++/2, the peak stresses are either zero or negligible. The aspect of
convexity of stress distribution is a possible explanation for lower bound values of limit

load multiplier m_ .

In recent times, inelastic finite element analysis has been successfully used to solve
complex problems. For three dimensional nonsymmetric problems, however the
computational time can be excessive. Furthermore, computational issues associated with
volumetric and shear locking can arise. Iterative EMAP has been shown to converge
within 10 iterations to an acceptable limit load, and has recently found applications in
non-cyclic methods for plastic shakedown determination (Adibi-Asl and Reinhardt, 2008)

and fitness-for-service (FFS) assessments.

4.13 Conclusion

Simplified methods are shown to be very useful in determining the limit loads of
mechanical components and structures. These methods are easy to implement in practice
and overcomes the potential difficulties encountered in conventional inelastic finite
element analysis. The m,-tangent method is proposed as a simplified tool to estimate the
limit load for a general class of mechanical components and structures. The phrase “m,-
tangent” refers to the use of the limiting tangent that relates the initial elastic state of a
component or structure to that of the exact limit state. A simple expression is deduced

that enables the rapid determination of limit loads.
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By using the proposed method, reasonably accurate estimate of limit load can be obtained
on the basis of a single linear elastic analysis. The proposed method is applied to
components and structures including standard example problems as well as typical
pressure vessel component configurations. The results obtained are in reasonably good
agreement with the respective analytical and elastic-plastic finite element analysis results.
The method is suitable for Level-2 “fitness-for-service” (FFS) assessments of mechanical

components and structures, which will be discussed in Chapter 7 of this thesis.

4.14 Closure

A new and simplified method, called the m,-tangent method, has been developed in this
chapter of the thesis. The theoretical background, formulation and detail derivation of the
proposed method is presented in a systematic way. The method is shown to be able to
estimate the limit load of a general class of mechanical components and structures using a
single linear elastic analysis. The current form of the method is applicable to components
and structures without sharp notches or cracks. The method has been extended in the next
chapter of this thesis to estimate the limit load of components and structures containing

crack-like flaws.
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CHAPTER 5

ANALYSIS OF CRACKED COMPONENTS

5.1 Introduction

Determination of load carrying capacity is an important step in integrity assessment of
mechanical components and structures. The load carrying components and structures
generally fail due to either excessive yielding or dominant fracture. In case of
components with crack-like flaws, failure can be due to either ductile tearing (net-section
collapse) or brittle fracture. Net section collapse becomes more important in case of high
toughness materials where brittle fracture is unlikely. On the other hand, brittle fracture
becomes very important in case of materials with high strength. Linear elastic fracture

mechanics (LEFM) is no longer valid in this case and a nonlinear formulation must be

68



considered. However, both modes of failure must be taken into account in order to assess

the integrity of components and structures containing crack-like flaws.

Limit analysis is performed in order to determine the load carrying capacity of a
component or structure. Closed form solutions for determination of limit loads of cracked
bodies are limited to simple geometric configurations and loading conditions. For
complex situations, numerical methods such as finite element method are more
appropriate. Inelastic finite element analysis is extensively used for complex geometric
configurations and loading conditions; however, it can often be expensive in terms of

computational effort and time.

For small-scale yielding at the crack tip, the load-deflection behavior is linear, and
therefore, linear elastic fracture mechanics (LEFM) is applicable in this case. When the
plasticity spreads around the crack tip and significant plastic deformation occurs, the
concept of limit load becomes more appropriate. Therefore, any effort directed towards
developing robust and simplified methods that are cost effective and reasonably accurate

would be of importance from integrity assessment standpoint.

Extensive investigations have been carried out over the past few decades in order to
assess the integrity of in-service components and structures containing flaw or damage.
Some of the available practices and procedures are API 579 (2000), R5 and R6 procedure
(2004) and SINTAP (1999). These procedures are mostly semi-empirical and obtained
from numerous experimental data. In order to perform more accurate assessment,
advanced numerical simulation and analysis techniques need to be incorporated. This will

facilitate more accurate modeling and analysis of the real-life scenario.
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In this chapter of the thesis, a simplified method is proposed in order to estimate the limit
load of components and structures containing crack-like flaws. The proposed simplified
method is an extension of the m,-tangent method. A reasonably accurate estimate of the
limit load can be obtained by using a single linear elastic finite element analysis. The
method is applied to a number of cracked component configurations including
component with multiple cracks and pipe with extended inner axial crack. The results

compare well with those obtained from the conventional inelastic finite element analysis.

5.2 Integrity Assessment of Cracked Components and

Structures

Integrity assessment of mechanical components and structures is an effort to assess
whether a structure is fit to withstand the service conditions safely and reliably
throughout its predicted lifetime. The philosophy behind the design of any structural
component is to ensure that the strength of the material, of which the component is made
of, is higher than the maximum applied stress in service. If the former appears to be
greater than the latter, then the component is considered to be fit for service, otherwise,
modification in design or the use of another material with a higher strength is required to

be considered.

The fracture mechanics based fitness-for-service (FFS) assessment enables the
assessment of crack-like flaws in order to ensure the structural integrity. FFS can be used
to demonstrate whether a given flaw can be left as it is and so avoid unnecessary repairs

or replacements. In order to perform the integrity assessment of components and
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5.2.1 Failure Assessment Diagram (FAD)

The failure assessment diagram (FAD) is used for the evaluation of components and
structures containing crack-like flaws. The FAD gives a technically based assessment
procedure for the cracked components where the failure of the structure is measured by
using two distinct criteria i.e., brittle fracture and plastic collapse. When the material is
brittle in nature (high strength material) and the flaw size is relatively small, then brittle

fracture is the possible mode of failure of the component.

On the other hand, when the material is ductile in nature (high toughness material) and
the flaw size is relatively large, then plastic collapse (ductile tearing) is the possible mode
of failure of the component. In order to assess the integrity of the component or structure

containing crack-like flaws, both modes of failure needs to be considered and addressed

properly.

In order to perform the integrity assessment of components and structures containing
crack-like flaws, the results from a stress analysis (orf), stress intensity factor (Kj) and
limit load solutions, the material yield strength (o) and fracture toughness (Kic) are
combined to calculate a toughness ratio (K;) and load ratio (L;). These parameters are

used in the FAD to assess the cracked components and structures.

The failure assessment diagram (FAD) was first proposed in R6 procedure (Harrison et
al., 1976) for integrity assessment of structures containing crack-like defects. The FAD
method uses two parameters, toughness ratio K, and load ratio L,, in order to predict the

failure of cracked component, which are defined by
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K,=K/K,, < K, = (5.1)
KIC
O-ref

L=P/P, & L =L (5.2)
o-Y

where K, is the ratio of the linear elastic stress intensity factor (K) and the fracture
toughness of the material (K,.,,), and L, is the ratio of the applied load (P) and limit load
(Pp) of the structure. By evaluating these two parameters using Eq. (5.1) and Eq. (5.2),
failure could be avoided if the point (K,, L,) lies within the failure assessment diagram

(safe region) as shown in Figure 5.1.

A
K,
Brittle Fracture
10 Unsafe Region
Failure Assessment
....................... * Diagram Envelope
05 [ /
Assessment |
Point .
Safe Region
Plastic Collapse
| -
0

0.5 1.0 L,

Figure 5.1 Failure assessment diagram (FAD)
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To conduct a brittle fracture assessment, both brittle fracture and plastic collapse
parameters are implemented in the failure assessment diagram (FAD). This is considered
to be an essential tool in order to assess the integrity of components or structures
containing crack like flaws. Both failure modes (brittle fracture & ductile tearing) should
be considered for fracture evaluation (structural integrity assessment). Note that the
failure assessment curves are independent of geometry and material strain-hardening

properties (Ainsworth and O’Dowd, 1995).

5.3 Estimation of Limit Load for Cracked Components

The materials generally used for pressure vessel construction are sufficiently ductile.
Therefore, the number of catastrophic failure by brittle fracture is very small. However,
the possibility of brittle fracture in large complex structures must be taken into account,
and assessment should be performed using appropriate assessment method. Generally,
brittle fracture occurs in a pressurized component or structure due to the presence of
residual stresses and / or high triaxiality at the ligament ahead of the crack-tip as the
pressure vessel materials are generally sufficiently ductile. On the other hand, plastic
collapse (ductile tearing) is the possible mode of failure if the material is sufficiently
ductile. Therefore, limit load plays an important role in the integrity assessment of

components or structures containing crack-like flaws.
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5.3.1 Blunting of Peak Stresses

Secondary and peak stresses are set up due to static indeterminacy in a component or
structure. ASME Boiler and Pressure Vessel Code (2007) explicitly recognize these stress
and related constraint effects. Figure 5.2 shows the stress distribution in the ligament
adjacent to the crack tip, where x-axis represents the distance ahead of the crack tip, and

y-axis represents the equivalent stress.

As can be seen from this figure, the magnitude of the peak stress (O‘F) at the crack tip is

considerably high; however, it is assumed that the peak stresses are very localized and

that the following expression is valid (Adibi-Asl and Seshadri, 2007)

[oraa=~0 (5.3)

where A is the representative area on which o acts.

An explanation of this concept is presented by Adibi-Asl and Seshadri (2007). The
shaded area in Figure 5.2 represents the elastic analysis based secondary stresses (Q) that
are essentially self-limiting, and tend to redistribute around the redistribution node (R-
Node) (Seshadri, 1991). Therefore, theoretically it does not have any effect on the limit
load of a component. The primary stresses, which are “load-controlled” in nature, do not
redistribute upon plastic-deformation or inelastic action, as shown in Figure 5.2. The
following section is dedicated to address the treatment of peak stress ahead of the crack

tip in the context of limit load determination.
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Peak Stresses

Q
-
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Elastic Analysis based
Secondary Stresses

i
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§\
3

Primary Stresses

0 -
Figure 5.2 Stress distribution ahead of crack tip

The stress distribution, ahead of a crack, based on linear elastic analyses can be
represented by the plots as shown in Figure 5.2. By modifying the elastic modulus of the
material around the crack tip (i.e., singular elements that surrounded the crack tip in a
finite element discretization scheme), stress distributions can be plotted as shown in
Figure 5.3. In this figure, E; is the modified value of elastic modulus around the crack tip.
At a specific value of E_ = E_, the stress distribution ahead of crack becomes almost
horizontal; this means that the magnitude of stress gradient reaches a minimum, and the
effect of peak stresses becomes small. Numerical simulation of different crack

configurations shows that E, =E,/3 is a good choice for modifying the crack tip

elements. This also can be explained as follows (Adibi-Asl and Seshadri, 2007):
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Consider a crack configuration (Figure 5.3) for which the stresses at the crack tip can be

expressed as

O-X.\’ = o-\\ = O-max (5 '4)
0 — Plane stress
O-ZZ =
Vo .. — Plane strain
K Yo, .7 a ) ) )
and o, 1s remote field stress and Y is crack

where 0, =—==
N2mr J27r

configuration factor.

Figure 5.3 Elastic stress distribution ahead of the crack tip for different values of E;

(Adibi-Asl and Seshadri, 2007)
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The above stresses are the principal stresses at the crack tip. The von-Mises criterion can

be written as

(0, —0,)* +(0,—-0,)’ +(0,—0,)’ =20, (5.5)

Substituting the stresses from Eq. (5.4) into Eq. (5.5), the following expression can be

obtained

A AYo, 7 a
o, =A0,, =—F—
! 27

where A=1 for plane stress and A= (1-2v) for plane strain condition.

(5.6)

eq

aref

Elastic stress distribution

Ly,
v /Z4

Figure 5.4 Elastic stress distribution ahead of the crack tip (Adibi-Asl and

Seshadri, 20007)
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The average stress along the crack orientation in the singularity domain can be calculated

as

o = - (5.7)

Referring to Figure 5.4, at r = r, the equivalent stress is equal to the reference stress;

thus,

AYo, 7 a
o, =A0 , =—F—— (5.8)

€q max ’27[ r

Making use of Eq. (5.8), the relationship between the modified elastic modulus (E;) and

initial modulus of elasticity (Ep) can be written as

q
o
E, _ —rd (5.9)
EO O-eq

The value of parameter “q” can be within the range of 1< g <2 (Adibi-Asl and Seshadri,

2006). Applying the values g =1 and g =2, the E /E;, wi vary between 0.5 and 0.25,
respectively. Based on numerous 'EA on different crack configurations E, =E /3

works out to be a good choice for modifying singular elements around a crack tip.

The modified elastic modulus of the singular elements ar nd the crack tip can be

obtained as E_ = E, /3. A linear elastic FEA with E_/E, =1/3 for all adjacent elements
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The limitations that have been imposed on the Level 1 and Level 2 assessments are that
the component is designed and constructed in accordance with a recognized Code or
Standard and the metal loss area has a relatively smooth contour without any notch or
crack. On the other hand, Level 3 assessment method facilitates the detailed evaluation
through more accurate modeling of the contour of the damage spot. Level 3 assessment is
proposed to be performed by using advanced computational techniques e.g., finite
element and finite difference method. The evaluation may be based on a linear elastic
stress analysis followed by stress categorization, or a nonlinear stress analysis

determining plastic collapse load.

7.2.1 Flaw Acceptance Criterion

In API 579, the concept of remaining strength factor (RSF) is used to determine the
acceptability of an in-service component for continued service. The assessment is based
on limit or plastic collapse load of the structure. The remaining strength factor was
originally proposed by Sims et al. (1992) to assess the locally thinned areas (LTA). The
RSF is defined as the ratio of the plastic collapse load (pressure) of the damaged

component (component with flaw or damage) to that of the undamaged component.

If the calculated RSF is greater than or equal to the allowable RSF, the component is
considered to be suitable at current operating condition for continued service. If the
calculated RSF is less than the allowable RSF, the component needs to be either rerated

through standard procedures or needed to be repaired or replaced. Note that the
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component is to be originally designed and constructed in accordance with a recognized

design Code or Standard.

7.3 Corrosion Damage in Pressure Vessels and Piping

The metal loss in pressure vessels and piping systems due to corrosion can be divided
into two main categories i.e., general metal loss and local metal loss. The detail definition
of these flaws is spelled out in API 579 (2000) and different assessment methods are
proposed for each of these categ es. In order to distinguish between general metal loss
and local metal loss, characteristics of the metal loss profile should be known in detail.
The main difference between the assessment approaches of these two types of metal
losses is that the amount and ty  of data that is required for the assessment. API 579
uses the thickness averaging roach to evaluate the general metal loss in the
pressurized component. The present thesis focuses on the evaluation of local metal loss,
which is generally termed as “lo 'y thinned area” (LTA). Note that most of the criteria

are developed to address the LTA’s in piping and cylindrical pressure vessels.

7.3.1 Locally Thinned A (LTA)

The local metal loss due to corr n or erosion in pressure vessels and piping systems is
generally termed as “local thin i a” (LTA). A region of metal loss is classified as LTA

when it satisfies the following ¢ ria

(S, C) 2 6 (trm - tmin) (71)
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! Geometry
K, 100
K,1,,Rc

K, 2, Rc

K, 3,, -Rc

LARC,1,2,100,Rc
LARC, 2,3,100,Rc

K, 4, ,Ro
K, 5,Ro
K,6,,-Ro
K,7,,Ri
K, 8,Ri
K,9,,-Ri

LARC,4,5,100,Ro0
LARC, 5,6,100,Ro0
LARC, 7,8,100,R1
LARC, 8,9,100,Ri1

LDIV, 3,Ratio_o0,10,0
LDIV,1,Ratio_c, 11,0
LDIV,5,Ratio_1i,12,0

L,10,11
L,11,12
L,4,7
LCSL,1,12

L,5,2
L,2,8
L,6,3
L,3,9
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AL,1,14,5,11
AL,1,10,3,13
AL,11,9,15,8
AL,8,12,7,10
AL,15,6,17,2
AL,12,2,16,4

K,111,,Rc,b
L,1,111
VDRAG,1,2,3,4,5,6,18

K,131, ,Rc, 50
L,13,131
VDRAG, 11,15,19,22,26,29, 48

VDELE, 1,,,1
LDELE, 18,,,1
LDELE, 48,,,1

K,311,Rc,,Ln

L,31,311

VDRAG, 34,38,42,45,49,52,5
LDELE, 5,,,1

! MESHING
*SET, Hdiv, 6
*SET, Hediv, 3

*SET, LTAdiv_a, 28
*SET, LTAdiv_Db, 28
*SET,CIRdiv_Xc, 44
*SET,CIRxc_ratio, 2

*SET, LENdiv_X1,42

217






LESIZE,9,,,CIRdiv_Xc,CIRxc_ratio

LESIZE, 32,,,CIRdiv_Xc,CIRxc_ratio
LESIZE,36,,,CIRdiv_Xg,1/CIRxc_ratio
LESIZE, 39,,,CIRdiv_Xc,1]/CIRxc_ratio

LESIZE, 62,,,CIRdiv_Xc,CIRxc_ratio
LESIZE, 66, ,,CIRdiv_Xc,1/CIRxc_ratio
LESIZE, 69,,,CIRdiv_Xc,1/CIRxc_ratio

LESIZE, 87,,,CIRdiv_Xc¢,CIRXc_ratio
LESIZE,91,,,CIRdiv_Xc,1]/CIRxc_ratio
LESIZE, 94,,,CIRdiv_Xc,1l/CIRxc_ratio

LESIZE, 4,,,CIRdiv_90
LESIZE, 2,,,CIRdiv_90
LESIZE, 6,,,CIRdiv_90

LESIZE, 40,,,CIRdiv_90
LESIZE, 44, ,,CIRdiv_90
LESIZE, 47,,,CIRdiv_90

LESIZE, 70, , ,CIRdiv_90
LESIZE, 74,,,CIRdiv_90
LESIZE,77,,,CIRdiv_90

LESIZE, 95,,,CIRdiv_90
LESIZE, 99,,,CIRdiv_90
LESIZE, 102, ,,CIRdiv_90
LESIZE, 60,, ,LENdiv_X1l,LENx]l_ratio
LESIZE, 50,,,LENdiv_X1,LENx]1_ratio
LESIZE, 55, ,,LENdiv_X1l,LENx]l_ratio

LESIZE, 53, ,,LENdiv_X1l,LENx1l_ratio

219




LESIZE, 51,,,LENdiv_X1l, LENx]l_ratio

LESIZE, 58,,,LENdiv_X1,LENx1_ratio

LESIZE,63,,,LENdiv_X1l,LENx1l _ratio
LESIZE,65,,,LENdiv_X1l,LENx]1l_ratio
LESIZE,68,,,LENdiv_X1l,LENxl ratio

LESIZE, 71,,,LENdiv_X1,LENxl_ratio
LESIZE, 73,,,LENdiv_X1,LENx]l_ratio
LESIZE, 76, ,,LENdiv_X1,LENxl_ratio

LESIZE, 85, ,,LENdiv_Xlad
LESIZE, 18, ,,LENdiv_Xlad
LESIZE, 80, ,,LENdiv_Xlad

LESIZE, 83,,,LENdiv_Xlad
LESIZE, 25,, ,LENdiv_Xlad
LESIZE, 78, ,,LENdiv_Xlad

LESIZE, 88, ,,LENdiv_Xlad
LESIZE, 90,,,LENdiv_Xlad
LESIZE, 93, ,,LENdiv_Xlad

LESIZE, 96,,,LENdiv_Xlad
LESIZE,98,,,LENdiv_Xlad
LESIZE, 101, ,,LENdiv_Xlad

LESIZE,13,,,Hdiv
LESIZE, 10,,,Hdiv
LESIZE,27,,,Hdiv

LESIZE, 31,,,Hdiv

LESIZE,12,,,Hdiv
LESIZE, 37,,,Hdiv
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ASEL, A, AREA, , 33
ASEL, A, AREA, , 37
ASEL, A, AREA, ,53
ASEL, A,AREA, , 57
DA,ALL, SYMM
ALLSEL

ASEL, S,AREA, , 24
ASEL,A,AREA, , 27
ASEL,A,AREA, ,47
ASEL,A,AREA,, 50
ASEL, A, AREA, ,67
ASEL, A, AREA, , 70
DA, ALL, SYMM
ALLSEL

ASEL, S,AREA,, 54
ASEL, A, AREA, , 58
ASEL,A,AREA, ,62
ASEL, A, AREA, ,65
ASEL, A,AREA, ,69
ASEL,A,AREA,, 72
DA,ALL,UZ, 0
ALLSEL

DK, 43,UX, 0
DK, 43,UY,0

! Apply internal pressure

ASEL, S,AREA, , 7
ASEL, A, AREA, , 8
ASEL, A, AREA,, 11
ASEL, A, AREA, ,32

ASEL, A, AREA,, 16
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ASEL, A, AREA, , 39
ASEL, A, AREA,, 23
ASEL, A, AREA, , 46

ASEL, A,AREA, , 10
ASEL, A, AREA, , 59
ASEL, A, AREA, , 66
S¥FA,ALL, 1, PRES,P
ALLSEL

ASEL, S, AREA, , 2
ASEL, A, AREA, , 3
ASEL, A, AREA, , 4
ASEL, A, AREA, , 5
ASEL, A, AREA, , 6
SFA,ALL, ,PRES, -SIG_lon
ALLSEL

DTRAN
SFTRAN
FINISH

! SOLVING
/SOLU
ANTYPE, 0
PRED, ON, , ON

AUTOS, ON
NSUBST, 500
OUTRESS, ALL, ALL

SOLVE

SAVE
FINISH
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A.9 Cylinder with Thermal Hot Spot

/TITLE, Cylinder with Thermal Hot Spot

!' Cylinder Dimensions (m)

*SET,pi,3.1416

! Basic inputs
*SET,Ri, 33
*SET,h,0.625
*SET, Ro, (Ri+h)
*SET,Ln, 100

! Corosion dimension
*SET, c, (h/3)
*SET,h_c, (h-c)
*SET, Rc, (Ri+c)

*SET,a, 10
*SET, b, 10
*SET, theta_c, (a/Ro) *(180/pi)

! Arc length

*SET,ARC_o, (Ro*90)* (P1/180)
*SET,ARC_c, (Rc*90) * (P1i/180)
*SET,ARC_1i, (R1*90)* (P1i/180)

*SET, ARC_co, (Ro*theta_c)*(Pi/180)
*SET,ARC_cc, (Rc*theta_c)* (P1/180)
*SET,ARC_ci, (Ri*theta_c)* (P1/180)

*SET,Ratio_o,ARC_co/ARC_o

*SET,Ratio_c,ARC_cc/ARC_c
*SET,Ratio_i,ARC_ci/ARC_1i
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! Loading
*SET, Pd, (220*10)

! Preprocessor

/PREP7

! Geometry modeling
K, 100

K,1,,Rc

K, 2, Rc

K, 3, ,-Rc

LARC,1,2,100,Rc
LARC,2,3,100,Rc

K, 4,,Ro
K, 5, Ro
K,6,,-Ro
K,7,,Ri
K, 8,R1i
K, 9,,-Ri

LARC,4,5,100,Ro
LARC, 5,6,100,Ro
LARC,7,8,100,Ri1
LARC,8,9,100,R1

LDIV,3,Ratio_o0,10,0
LDIV,1,Ratio_c¢,11,0
LDIV,5,Ratio_1i,12,0

L,10,11
L,11,12

L,4,7
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LCSL,1,12

L,5,2
L,2,8
L,6,3
L,3,9

AL,1,14,5,11
AL,1,10,3,13
AL,11,9,15,8

AL,8,12,7,10
AL,15,6,17,2
AL,12,2,16,4

K,111, ,Rc,b
L,1,111
VDRAG,1,2,3,4,5,6,18

K,131,,Rc, 50
L,13,131
VDRAG, 11,15,19,22,26,29, 48

VDELE,1,,,1
LDELE, 18,,,1
LDELE, 48,,,1

K,311,Rc,,Ln

L,31,311

VDRAG, 34, 38,42, 45,49,52,5
LDELE, 5,,,1

K,101,,,Ln
K,102,,, (Ln+Ri)

LARC,42,102,101,R1
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AREVERSE, 39
AREVERSE, 59
AREVERSE, 46
AREVERSE, 66
AREVERSE, 74

AREVERSE, 2
AREVERSE, 3
AREVERSE, 4
AREVERSE, 5
AREVERSE, 6

AREVERSE, 33
AREVERSE, 53
AREVERSE, 82

AREVERSE, 87
AREVERSE, 88
AREVERSE, 99

! Meshing

*SET, Hdiv, 3
*SET, Hediv, 2
*SET, LTAdiv_a, 40
*SET,LTAdiv_b, 40

*SET,CIRdiv_Xc, 38
*SET,CIRxc_ratio, 2.5
*SET, LENdiv_X1, 36

*SET,LENx1 ratio, 3.5

*SET,CIRdiv_90, 40
*SET, LENdiv_Xlad, 34

LESIZE,1,,,LTAdiv_a
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LESIZE, 3,,,LTAdiv_a
LESIZE,130,,,LTAdiv_a

LESIZE, 24,,,LTAdiv_a
LESIZE, 19,,,LTAdiv_a
LESIZE, 29,,,LTAdiv_a

LESIZE, 54, ,,LTAdiv_a
LESIZE, 49,,,LTAdiv_a
LESIZE, 59,,,LTAdiv_a

LESIZE, 79,,,LTAdiv_a
LESIZE, 14,, ,LTAdiv_a
LESIZE, 84,,,LTAdiv_a

LESIZE, 20,,,LTAdiv_b
LESIZE, 30,,,LTAdiv_b
LESIZE,127,,,LTAdiv b

LESIZE, 23,,,LTAdiv_b
LESIZE, 21,,,LTAdiv_b
LESIZE, 28, ,,LTAdiv_b

LESIZE, 33,,,LTAdiv_b
LESIZE, 35,,,LTAdiv_b
LESIZE, 38,,,LTAdiv_b
LESIZE, 41, ,,LTAdiv_Db
LESIZE, 43, ,,LTAdiv_b
LESIZE, 46, ,,LTAdiv_Db

LESIZE,127,,,LTAdiv_b

LESIZE,7,,,CIRdiv_Xc,CIRxc_ratio

LESIZE, 8,,,CIRdiv_Xc,CIRxc_ratio

LESIZE, 9,,,CIRdiv_Xc¢,CIRxc_ratio
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LESIZE, 32,,,CIRdiv_Xc,CIRxc_ratio
LESIZE, 36,,,CIRdiv_Xc,1/CIRxc_ratio
LESIZE, 39,,,CIRdiv_Xc, 1l/CIRxc_ratio

LESIZE,62,,,CIRdiv_Xc,CIRxc_ratio
LESIZE, 66,,,CIRdiv_Xc,1l/CIRxc_ratio
LESIZE,69,,,CIRdiv_Xc,1/CIRxc_ratio

LESIZE, 87, ,,CIRdiv_Xc,CIRxc_ratio
LESIZE, 91,,,CIRdiv_Xc,1/CIRxc_ratio
LESIZE, 94,,,CIRdiv_Xc,1/CIRxc_ratio

LESIZE, 4,,,CIRdiv_90
LESIZE,2,,,CIRdiv_90
LESIZE,6,,,CIRdiv_90

LESIZE, 40,,,CIRdiv_90
LESIZE, 44,, ,CIRdiv_90
LESIZE, 47,,,CIRdiv_90

LESIZE, 70,,,CIRdiv_90
LESIZE, 74,,,CIRdiv_90
LESIZE,77,,,CIRdiv_90

LESIZE, 95,,,CIRdiv_90
LESIZE, 99, ,,CIRdiv_90
LESIZE, 102, ,,CIRdiv_90

LESIZE, 60,,,LENdiv_X1l,LENxl_ratio
LESIZE, 50,,,LENdiv_X1,LENx1_ratio
LESIZE, 55,,,LENdiv_X1,LENx1 _ratio

LESIZE, 53,,,LENdiv_X1,LENxl_ratio
LESIZE, 51,,,LENdiv X1,LENxl ratio
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LESIZE, 58,,

LESIZE, 63,,
LESIZE, 65,,
LESIZE, 68,,

LESIZE, 71,,
LESIZE, 73,,
LESIZE, 76,,

LESIZE, 85, ,
LESIZE, 18,,
LESIZE, 80, ,

LESIZE, 83,,
LESIZE, 25,,
LESIZE, 78, ,

LESIZE, 88, ,
LESIZE, 90,,
LESIZE, 93, ,

LESIZE, 96, ,
LESIZE, 98, ,
LESIZE, 101,

LESIZE,13,,
LESIZE, 10,,
LESIZE, 27,,
LESIZE, 31,,

LESIZE,12,,
LESIZE,37,,
LESIZE, 16, ,
LESIZE, 45,,

, LENdiv_X1,LENxl_ratio

, LENdiv_X1l,LENxl_ratio

, LENdiv_X1l,LENxl_ratio

, LENdiv_X1,LENx1l _ratio

, LENdiv_X1l,LENx1l ratio

, LENdiv_X1l,LENx1 ratio

,LENdiv_X1l,LENx]l ratio

, LENdiv_Xlad
, LENdiv_Xlad
, LENdiv_Xlad

, LENdiv_Xlad
, LENdiv_Xlad
, LENdiv_Xlad

, LENdiv_Xlad
, LENdiv_Xlad
, LENdiv_Xlad

, LENdiv_Xlad
, LENdiv_Xlad
, » LENdiv_Xlad

, Hdiv
, Hdiv
, Hdiv

, Hdiv

, Hdiv
, Hdiv
, Hdiv

, Hdiv
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LESIZE, 61,,
LESIZE, 57,,
LESIZE, 67, ,
LESIZE, 75, ,

LESIZE, 11, ,
LESIZE,22,,
LESIZE, 26, ,
LESIZE, 15,,
LESIZE, 34,,

LESIZE,17,,
LESIZE, 42,,
LESIZE, 56, ,

LESIZE, 52,,
LESIZE, 64, ,
LESIZE, 72,,

LESIZE, 107,
LESIZE, 109,
LESIZE, 112,

LESIZE, 119,
LESIZE, 120,
LESIZE, 121,

LESIZE, 114,
LESIZE, 104,
LESIZE, 105,

LESIZE, 116,
LESIZE, 117,
LESIZE, 118,

, Hdiv

, Hdiv

, Hdiv

, Hdiv

, Hcdiv

, Hcdiv

, Hediv

, Hcdiv

, Hediv

, Hcdiv

, Hcdiv

, Hcdiv

, Hediv

, Hcdiv

, Hcdiv

’

’

14

’

’

14

14

’

,CIRdiv_90
,CIRdiv_90
,CIRdiv_90

,CIRdiv_90
,CIRdiv_90
,CIRdAiv_90

, LTAdiv_a
, LTAdiv_a

, LTAdiv_a

, LTAdiv_a
, LTAdiv_a

,LTAdiv_a
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LESIZE, 106,,,CIRc v_Xc,CIRxc_ratio
LESIZE,110,,,CIRdiv_Xc,1/CIRxc_ratio
LESIZE,113,,,CIRdiv_Xc,1/CIRxc_ratio

LESIZE, 81,,,Hcdiv
LESIZE, 86, ,,Hdiv
LESIZE, 48, ,,Hcdiv

LESIZE, 82, ,,Hdiv
LESIZE,89,,,Hcdiv
LESIZE, 92, ,,Hdiv

LESIZE, 103, ,,Hcdiv
LESIZE, 115, ,,Hdi
LESIZE, 108, ,,Hcdiv

LESIZE,111,,,Hdi
LESIZE, 97,,,Hcdi
LESIZE, 100, ,,Hdi

! Hot Spot mater al model
*SET, EM_h,26.7E
*SET,Pois, 0.3
*SET,FS_h,22.291 i3
*SET,PM_h, 0

*SET, Temp_h, (600—-32)* (5/9)

! Remaining shel material model
*SET, EM, 29.3E6

*SET, Pois, 0.3

*SET,FS,30.09E3

*SET, PM, 0

*SET, Temp, (100-2 )Y*(5/9)
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/TITLE, Cylindrical shell, So0lid185, Hot Spot
! Element type 1

ET,1,SOLID185

ET,2,SOLID185

! Material properties for temperature 600 deg.

MP,EX,1,EM h
MP, PRXY, 1, Pois

TB,BKIN,1,,,1
TBTEMP, Temp_h
TBDATA, ,FS_h,PM_h

! Material properties for temperature 100 deg.

MP,EX, 2, EM
MP, PRXY, 2, Pois

TB, BKIN,2,,,1
TBTEMP, Temp
TBDATA, ,FS, PM

! Meshing the hot spot region
TYPE, 1

MAT, 1

VSEL, S, VOLU, , 2
VSEL,A,VOLU, , 25

VMESH, ALL

! Meshing the hot region
TYPE, 2

MAT, 2

VSEL, ALL

VSEL, U,VOLU, , 2
VSEL,A,VOLU, , 25

VMESH, ALL
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ALLSELL

! Apply symmetric boundary conditions
ASEL, S, AREA,, 2

ASEL,A, AREA, , 97

ASEL,A,AREA,, 3

ASEL,A,AREA, , 4
ASEL, A,AREA,, S
ASEL, A, AREA, , 6
DA, ALL, SYMM
ALLSEL

ASEL, S,AREA, , 14
ASEL, A, AREA,, 98
ASEL, A, AREA, , 33

ASEL, A, AREA,, 37
ASEL, A, AREA,, 53
ASEL, A,AREA,, 57

ASEL, A, AREA,, 82
ASEL, A, AREA,, 83
ASEL, A, AREA,, 81
ASEL,A,AREA,, 77
DA, ALL, SYMM
ALLSEL

ASEL, S, AREA, , 24
ASEL, A, AREA,, 27
ASEL, A, AREA, , 47

ASEL, A, AREA, , 50
ASEL, A, AREA, ,67

ASEL,A,AREA,, 70
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ASEL, A, AREA, , 88
ASEL, A, AREA, , 87
DA, ALL, SYMM
ALLSEL

DK, 51, UX, 0

DK, 51,UY, 0

! Loading

ASEL, S, AREA, , 99
ASEL, A, AREA, , 32
ASEL,A,AREA, , 16
ASEL, A, AREA, , 39

ASEL, A, AREA, , 23
ASEL, A, AREA, , 46
ASEL, A, AREA, , 10

ASEL, A, AREA, , 59
ASEL, A, AREA, , 66

ASEL, A, ARERA, , 86
ASEL, A, AREA, , 74
ASEL, A, AREA, , 91

SFA,ALL, 1,PRES, Pd

ALLSEL
DTRAN

SFTRAN
FINISH

! Enter solver
/SOLU
ANTYPE, O

PRED, ON, , ON
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AUTOS, ON
NSUBST, 1000
OUTRESS, ALL, ALL

SOLVE

SAVE
FINISH
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APPENDIX B

MATILAB Files

MATLAB files are used in this thesis to perform the numerical analysis of different
mechanical components and structurcs. Typical input files of a number of example
problems used in this thesis are provided in this section. The examples include standard

example problem to typical pressure component configuration.

B.1 RSF for Cylinder with Corrosion Damage

Qo

% RSF for Cylinder with Corrosion Damage

clear;

clc;

Ri = 33;

H = 0.625;
Ro = (Ri+h);
Pd = 220;
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Sy = 30e3;

c = (h/3);
h ¢ = (h-c);
Rc = Ro-h_c;

Theta_c = 17.0396;
aBYb = 1.0;

a =10

a/aBYb

% Calculation of decay lengths
Xc = 6.10*(Ro™"3*h)"(1/4)
X1l = 2.50*sgrt (Ro*h)

% Calculation of reference volume

<
Q
Il

4*a*b*h_c
Vu = 4*h* ((a+Xc)* (b+X1l)—-(a*b))
Vref = (Vc+Vu)

Q

% Calculation of elastic stresses

Stc = (Pd*Rc)/h_c

Slc = (Pd*Rc)/(2*h_c)

Sec = sgrt(Stc”2 + Slc”2 - Stc*Slc)
St = (Pd*Ri)/h

S1 = (Pd*Ri)/(2*h)

Seu = sqgrt(St*2 + S172 - St*Sl)

[=}

% Evaluation of multipliers

mL_d = S_flow/Sec

Num (S_flow"2*Vref) ;

Den (Secn2*Vc) + (Seu”2*Vu) ;

m0_d = sqgrt (Num/Den)

mO_u Sy/Seu
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% Evaluation of m-alpha multiplier
Z = mO_d/mL_d

nl = 2*72"2;

n2 = 72*(z2-1)"2;

n3 = l+sqrt(2)-%2;

n4d = Z-1l+sqgrt(2);

nl234 = nl+sgrt(n2*n3*n4);

dl = z2"2+2-sqrt(5);

d2 = Z2"2+2+sqgrt (5);

dl2=(d1*d2) ;

m_alpha_d = 2*m0_d*(nl234/d12)

% Evaluation of m-alpha tangent multiplier
jeta_i = m0_d/mL_d;

m_alpha_tangent_B = m0_d/(1+0.2929* (jeta_i-1))

o

RSF calculation

RSF_U = m0_d/m0_u

RSF_mAlpha = m_alpha_d/m0_u
RSF_mAlpha_tangent = m_alpha_tangent_B/m0_u
RSF_L = mL_d/m0O_u

Return

B.2 RSF for Cylinder with Thermal Hot Spot

% RSF for Cylinder with Thermal Hot Spot
clear;

clc;

% Inputs

Ri = 33;

h = 0.625;
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Pd
RO

Sy_h
Sy =

o

Xc

X1

Theta_h

aBYb

ol
Il

220;

(Ri+h) ;

25.7E3;

30.0e3;

% Decay length calculation
6.
2.

10* (Ro”~3*h) " (1/4);
50* (Ro*h) "~ (1/2);

= 50.95
2.0;

(Theta_h/180) *pi*Ro
a/aBYb

% Reference volume calculation

Vh = (2*a)*(2*b) *h;
V = (2% (a+Xc)*2* (b+X1l)-(2*a)* (2*b) ) *h;
V_ref Vh+V;

o

Sc

S1

Seq =

o

mL_d
mO_d

mO_u

o

% Evaluation of elastic stresses

(Pd*R1i) /h;
(Pd*Ri)/ (2*h);

sqrt (Sc™2 + S172 - Sc*Sl);

% Evaluation of multipliers

Sy_h/Seq;
sqrt ((Sy_h"2*Vh + Sy"2*V)/(Seq"2*V_ref));

Sy/Seq;

% Evaluation of m-alpha multiplier

Z = m0_d/mL_d;

nl
n2

2*7272;

Z2*(2-1)"2;
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n3

l+sqrt (2)-2;
nd = Z-l+4+sqrt(2);
nl234 = nl+sqrt(n2*n3*n4);

dl Z72+2-sqrt (5);

d2 = Z"2+2+sqrt(5);

dl2=(d1*d2);

m_alpha d = 2*m0_d*(nl234/d12);

% Evaluation of m_alpha tangent multiplier
mL_i = mL_d;

mO_1i = mO0_d;

jeta_i = mO_i/mL_1i;

m_alpha_tangent_B = m0_i/(1+0.2929* (jeta_i-1));

% for BB"

if jeta_i > l+sqgrt(2)

C = 0.2929* (jeta_i-1);

jeta_fl = (1+C) + sgrt((l+C)"2-1);
jeta_f2 = (1+C) - sgrt((1+C)"2-1);

mO_f = mO0_1i;

jeta_f = jeta_f1;

Il

m_alpha_tangent_C mO_£f/(1+40.2929* (jeta_f-1));

else

m_alpha_tangent_C 0;

end

% RSF Calculation

RSF_ d = m0_d/m0_u;

RSF1_m_alpha = m_alpha_d/m0O_u
RSF3_m_alpha_tangent = m_alpha_tangent_B/m0_u

Return
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