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Abstract 

Molecular computing is a promlSlng area for researchers from several disciplines. 

Currently many theoretical and application-oriented scientists are turning towards 

molecular computing with the goal to develop a molecular computer. Digital circuits for 

molecular devices are designed at the molecular level. A digital circuit will be thousands 

of times smaller if we can develop switching elements from appropriate molecules by 

using a direct chemical procedure. To develop such circuits we need to understand the 

nature of molecular switching in principle. The concept soliton automaton has been 

introduced to model this phenomena using graph matchings. The goal of my thesis was to 

develop and implement graph algorithms for soliton automata. 
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Chapter 1 

Introduction 

Molecular computing IS a promlSlng area for researchers from several disciplines. 

Currently many theoretical and application-oriented scientists are turning towards 

molecular computing with the goal to develop a molecular computer. Electronics is the 

major obstacle in reducing the size and increasing the speed of conventional switching 

devices. New principles like bioelectronics or molecular electronics have been introduced 

to overcome these problems. The idea of molecular switching dates back to the early 

1930's, when science fiction introduced some molecular devices [17]. Feynman was one of 

the pioneer researchers who brought up the idea of building real molecular devices. He 

introduced his ideas in [31]. A viram and Ranter also dealt with molecular electronic 

devices in their paper [32], which encouraged F. L. Cater to continue their study. Some 

further interesting ideas (e.g. biological systems) have been proposed by Adleman [33] and 

Conrad[34]. 
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Digital circuits for molecular devices are designed at the molecular level. A digital circuit 

will be thousands of times smaller if we can develop switching elements from appropriate 

molecules by a direct chemical procedure. For this type of molecular circuits, chemical 

molecules will be used as electronic switches and will be interconnected by some sort of 

ultra-fine conducting wires. Carter [20] introduced an idea to construct such type of 

conductors. In his proposed technique, Carter used single strands of electrically conductive 

plastic polyacetylene and electrons. Electrons are thought to travel along polyacetylene in 

little packets called soliton. Molecular scale electronic devices are constructed from 

molecular switches and polyacetylene chains, which are called soliton circuits. 

Polyacetylene consists of a chain of carbon atoms held together by alternating double and 

single bonds. Each carbon atom is also bonded to a hydrogen atom. Polyacetylene has two 

stable states, which differ in the position of the alternating double and single bonds with 

respect to the carbon atoms. A soliton is a moving wave which causes conversion between 

the two states of polyacetylene. When a soliton wave passes through a polyacetylene, it 

effectively selects one arrangement of bonds and ignores others. Fig. 1.1 shows how a 

soliton wave affects the bonds in a polyacetylene . 

... ------- + 

H H H 
I I I 

'c'c'c'c'c'c, 
I · ......_;~ I ......_;~ I .._;If 

H H H 

H H H 
..-._1..-._1..-._1 

~ 'c/c,c/c,c/c, 
I I I 
H H H 

I 

Figure. 1.1: Effect of soliton in a polyacetylene 
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Several soliton-based computational models have been proposed in the last few years. A 

good survey of such models can be found in [35]. In this thesis we have used a 

mathematical model of soliton circuits known as soliton automata. The concept of soliton 

automata was first introduced by J. Dassow and H. JUrgensen in 1990 [22]. The intention 

behind this model was to investigate the logical aspects of soliton switching. 

Graph theory plays a significant role in the study of soliton automata because the 

underlying object of soliton automaton is a finite undirected graph, called a soliton graph. 

In soliton graphs vertices correspond to the atoms or certain group of atoms, whereas the 

edges represent chemical bonds or chains of bonds. The multiplicity of bonds (single or 

double) is fixed by a weight assignment to the edges. We assume that molecules consist of 

carbon and hydrogen atoms only. In a soliton graph, some vertices are distinguished as 

external, and their role is to accept or donate electrons for the remaining part of the 

molecular network. In the later chapters of this thesis, we will provide a detailed discussion 

on soliton automata and their underlying soliton graphs. In this chapter we are limiting our 

focus to the intuitive understanding of soliton graphs and automata. 

The analysis of soliton automata is a complex task, and only few special cases have been 

analyzed so far. These are: soliton automata with a single external vertex [23], automata 

with a single cycle [24], automata obtained by the general product of strongly deterministic 

soliton automata [25], and the transition monoids of tree-based soliton automata have been 

studied in [26]. M. Bartha and E. Gombas first recognized the connection between soliton 
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automata and matching theory [1], which opens up a new perspective for the study of 

soliton automata. They used the concept of perfect internal matching (matching covering 

all internal vertices of a graph) for characterizing soliton graphs. In a soliton graph, the 

edges belonging to a perfect internal matching correspond to the double bonds in an 

appropriate state of a molecule chain. After the paper [1], soliton graphs and automata have 

been systematically studied in a sequence of papers on the ground of matching theory 

[2] [ 4] [ 5] [ 1 0]. 

When using matching theory to describe soliton automata, we are analyzing the internal 

structure of a chemical compound (e.g. polyacetylene). Using matching theory for this 

purpose is not a new idea. For many years, chemists have used graph matchings to analyze 

different chemical compounds which have an alternating pattern of single and double bond. 

Graphs corresponding to such compounds are called Hiickel graphs in the literature. For 

more information on Hiickel graphs, see [28, Section 8.7]. Hiickel and soliton graphs are 

quite similar, although there is an important difference between them. Hiickel graphs 

generally have a perfect matching, whereas soliton graphs only possess a matching that 

covers all of the internal vertices (vertices with degree greater than one). 

The study of soliton switching is not limited to theory. There is also some practical 

research going on. As an example, a research project funded by Circadian Technologies 

shows promising results. A series of papers showed that an appropriate chemical structure, 

which is able to communicate with solitons, could be used as an electronic switching 
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device [36][37][38][39]. In this thesis, however, we concentrate on the mathematical model 

of soliton circuits. A thorough analysis of the mathematical model can tell us a lot about the 

behavior of a soliton circuit, so we can verify certain properties of such circuits without 

actually building them. Therefore, the elaboration of a proper mathematical model is a 

significant step towards developing molecular switching devices. 

There is an intriguing connection between soliton automata and the recent efforts by 

Abramsky [ 41] and others to revive Girard's geometry of interaction program. As it turns 

out, soliton automata can be given the structure of a self-dual compact closed category, 

which qualifies such automata as simple but very efficient reversible computation models. 

Research in this direction is under development. 

In this thesis we have worked out three algorithms, which are all related to soliton graphs. 

These algorithms will either test some important property of soliton graphs, or perform a 

simplifying transformation on such graphs. To develop these algorithms, we need a 

thorough understanding of matching theory and the structure of soliton graphs. We devote 

separate chapters to matching theory and soliton automata in order to provide the necessary 

background. Most of the terms used here to explain the algorithms will be dealt with in 

later chapters. 

The first algorithm reduces a graph, using its incidence matrix. The second algorithms can 

decide if a given graph is an elementary deterministic soliton graph or not. The third 
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algorithm can test whether a given graph is a deterministic viable soliton graph containing 

an alternating cycle. Different intermediate steps of the second and third algorithms will 

also determine some other important properties of soliton graphs (e.g. being a generalized 

tree or a baby chestnut). 

After the design of the above algorithms, I have implemented and tested all three of them. 

The algorithms are discussed in separate chapters, which also indicate the major underlying 

theoretical results. 

The thesis consists of eight chapters. Chapter 1 is a short introduction containing a 

preliminary discussion on molecular switching devices and their history, soliton graphs and 

automata. In Chapter 2, we introduce the idea of molecular switching and F. L. Carter's 

mechanism for soliton switching. Chapter 3 is a revision of basis concepts in matching 

theory, which are related to this thesis. In Chapter 4, the reader will find the exact 

definition of soliton automata and soliton graphs. This chapter contains most of the 

theoretical background used in the algorithms. This chapter also contains a detailed 

discussion on the structure of soliton graphs. Chapter 5, 6, and 7 contain the description of 

the first, second, and third algorithm, respectively. Finally, Chapter 8 concludes this thesis. 
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Chapter 2 

Molecular Switching and Carter's 
Mechanism 

Before discussing soliton automata and soliton graphs in detail, we present some heuristics 

about the concepts of molecular switching. This chapter will provide some answers as to 

how Carter's experimental technique to explore molecular level switching leads to the 

development of mathematical models like Soliton Automata. Most of the observations in 

this chapter originate form Carter's paper 'Conformational switching at the molecular 

level' [18]. The reader is referred to that work for more details. 

2.1 Basic Concepts 

A soliton is like a particle that can move in one or two dimensions on a microscopic scale. 

The single-double bond rearrangement of a conjugated system is the key idea of 
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propagating a soliton through such a system. When a soliton passes through a conjugated 

system, it causes the exchange of single and double bonds along its passage. In most of the 

examples of his paper, Carter used polyacetylene as a conjugated system. As mentioned 

before, Polyacetylene consists of a chain of carbon atoms held together by alternating 

double and single bonds and each carbon atom is also bonded to a hydrogen atom. See Fig. 

1.1. 

2.2 Push-Pull Olefin 

'Push-pull' is an important concept introduced by Carter. He showed special interest in the 

push-pull distributed olefin (1,1-N, N-dimethy1-2-nitroethenamine) (See Fig. 2.1) because 

it can be embedded in a transpolyacetylene and also can be switched off by the propagation 

of a soliton. See Fig. 2.2. 

Figure. 2.1: Push-Pull OLEFIN 
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After the horizontal soliton passage, resulting in the arrangement of bonds shown at the bottom of Fig. 2.2, the vertical 
switch of the embedded push-pull olefin molecule is no longer possible. 

Soliton Passage""' 

Figure. 2.2: Soliton Switching 



2.3 Soliton Gang Switching 

Carter extended the concept of soliton switching by introducing gang switching. The 

concept of gang switching implies that there may be more than one chain of polyacetylene 

and push-pull structure or extended chromophores ( chromophore is a part of a molecule 

which is responsible for color). Carter gave an example where he had two chains and two 

different push-pull structures. Fig. 2.3 shows that example. In this example the passage of a 

soliton down chain 1 will tum the first chromophore on and the second off; a soliton 

moving down chain 2 will tum both of them off. Turning a chromophore off means that it 

is not possible to propagate a soliton through the vertical chain of alternating single and 

double bonds in that chromophore. 

- - -o,N~ f R,c~s 

Cha;n 1 •··~"-/y~~"'-/~ ~ .... 
~ 1 ""' J I I h • 

Chaln 2 "' V.Af~/'--/4~ 
N l I 

H3c/ 'cH3 1 He~ 
l ~s 

Fig. 2.3: Soliton switching involving two transpolyacetylene chains and two chromophores. 
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Carter even generalized the concept of soliton gang switching. In Fig. 2.4, where A, C, and 

D, are generalized electron acceptors, conjugated connectors, and electron donors, 

respectively. In this figure, chromophores are separated from each other by dotted lines, 

which imply eight different chromophore-chain relationships relative to the conformations 

of chains 1, 2 and 3. See [ 18] for details. 

In another example, Carter extends the generalization concept to a very advanced level, 

which goes beyond our meager knowledge of soliton propagation. He has replaced the 

electron acceptor and donor groups with molecular 'wires' or filaments of -(SN) -. Fig. 2.5 

illustrates this example. 

A . A A . . 

Chain 1 • • • ••• . . 
c . c c . c . . . . 

Chain 2 ••• ~··· . . 
( 

. ( ( ( . 
Chain 3 ••• ~ ••• 

D D D D 

Figure. 2.4: Soliton Gang Switching 
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Chain 1 • • • 

Chain 2 ••• 

(SN)n ~ (SN)n 
. . . . . 
p 

c 

••• 

Chain 3 • • • ••• 

(SN)n (SN)n (SN)n (SN)n 

Figure. 2.5: Soliton Gang Switching with -(SN)- acceptor 

2.4 Soliton V alving 

Carter also described the valving behavior of soliton propagation in a conjugated system. 

Fig. 2.6 is illustrates an example. In this example the passage of a soliton from X to Y (or 

from Y to X) moves the double bond at the branch carbon from chain X to the chain Y. 

Moreover, in the upper right portion of the figure, a soliton moving from Y to Z shifts the 

double bond to the chain Z. 
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Figure. 2.6: Soliton Valving 

2.5 Soliton Memory Element 

Finally Carter proposed a structure called a soliton memory element, which shows us a real 

world use of soliton propagation. In his model, the access time of an information bit and 

the number of bits clearly depend on the soliton velocity and the length of the conjugated 

polymer linking the soliton generator and the electron tunnel switch. The structure of this 

memory element is illustrated in Fig. 2.7. 
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This memory element can store four bits (in duplicate) at a time (two bits on the upper 

chain and two bits on the lower chain). In this memory element solitons are temporarily 

stored on transpolyacetelylene chains. These chains connect the soliton generator first with 

the soliton reverser which reflects the solitons and with the control groups (CGs), which 

regulate the depth of the potential wells and hence the pseudostationary state energies of 

soliton. The control groups are gates to the multi-barrier electron tunnel detector (switch). 

See [ 18] for more details. 

+ 

Soliton Reverser + 

Body 

Figure. 2. 7: Soliton Memory Element 
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Chapter 3 

Graph and Matching Theory 

The underlying object of a soliton automaton is a soliton graph, and the definition of 

soliton graphs is based on graph matchings. Thus, matching theory becomes an integral 

part of this thesis. One must have a strong background in graph theory in order to 

understand the structural analysis of soliton graphs. The goal of this chapter is to provide 

an overview of the most important concepts on graphs and graph matchings. The reader is 

referred to [28] for a comprehensive study of matching theory. The notation and 

terminology used in this thesis is compatible with that work. 

• Graph 

By a graph we mean a finite undirected graph with multiple edges and loops allowed. For a 

graph G, V(G) and E(G) will denote the set of vertices and the set of edges of G, 

respectively. An edge e EE(G) connects two vertices v1, v2 E V(G), which are said to be 
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adjacent in G. The vertices v1 and v2 are called the endpoints of e. If v1 = v2, then e is 

called a loop around v 1. 

• Degree of a vertex 

In graph G, the degree of a vertex v is the number of occurrences of v as an endpoint of 

some edge in E(G). According to this definition, every loop around v contributes two 

occurrences to the count. 

• External, Internal and Isolated 

If the degree of a vertex v is one, then that vertex is called external. If the degree of v is 

greater than one, then v is internal, and v is isolated if its degree is 0. An edge e EE(G) is 

said to be an external edge if one of its endpoints is an external vertex. Internal edges are 

those that are not external. The sets of external and internal vertices of G will be denoted 

by Ext(G) and Int(G), respectively. 

Graph G is said to be open if it has at least one external vertex, and G is closed if all the 

vertices of G are internal. 
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• Graph Matching: 

A matching M of graph G is a subset of E(G) such that no vertex of G occurs more than 

once as an endpoint of some edge in M. This definition implies that loops are not allowed 

to participate in M. The endpoints of the edges contained in Mare said to be covered by M. 

• Perfect and Perfect internal matching 

A matching is called perfect if it covers all vertices of G. A perfect internal matching is 

one that covers all of Int(G). Clearly, the notions perfect matching and perfect internal 

matching coincide for closed graphs. 

• Subgraph 

A subgraph G' of G is a collection of vertices and edges of G. However, in our treatment 

of open graphs we do not want to allow that new external vertices (i.e., ones that are not 

present in G) emerge in G ~ Therefore, when vertex v E Int(G) becomes external in G ~ we 

will augment G' with a loop edge around v. This augmentation will be understood 

automatically in all subgraphs of G. The subgraph of G induced by a set of vertices 

XcV(G) will be denoted by G[X}, or just by [X] if G is understood. By the standard 

definition, the edges of G[X] are those of G having both endpoints in X 
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• Bipartite graph 

A graph is called bipartite if its set of vertices V(G) can be partitioned into two sets A and B 

such that every edge in E(G) has one endpoint in A and the other in B. Often the sets A and 

B are called color classes of G and (A,B) a bipartition of G. 

• Allowed, Forbidden, Mandatory and Constant edges 

An edge e EE(G) is called allowed if e is part of some perfect internal matching of G, and e 

is forbidden if this is not the case. Edge e is mandatory if it is present in all perfect internal 

matchings of G, and e is constant if it is either forbidden or mandatory. 

• Elementary Graph 

Graph G is elementary if its allowed edges form a connected sub graph covering all of the 

external vertices, and G is ]-extendable if all of its edges, except the loops if any, are 

allowed. 

• Canonical Partition 

The canonical partition of an elementary graph G is determined by the following 

equivalence relation~ on V(G). For any two internal vertices u, vEV(G), u ~ v if the edge 

e=(u, v) becomes forbidden in G +e. (The graph G+e is obtained from G by adding the 

edge e). 
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• Nice and G-Permissible Graph 

Let graph G have a perfect internal matching. A sub graph G 1 of G is nice if it has a perfect 

internal matching, and every perfect internal matching of G 1 can be extended to a perfect 

internal matching of G. A perfect internal matching of G is G '-permissible if it is the 

extension of an appropriate perfect internal matching of G ~ Not all perfect internal 

matchings of G are necessarily G '-permissible. 

• Elementary Components of Graph 

The subgraph of G determined by its allowed edges usually has several connected 

components, which are known as the elementary components of G. An elementary 

component C is external if it contains external vertices of G, otherwise C is internal. An 

elementary component can be as small as a single external vertex of G. Such a component 

is the only exception from the general rule that each elementary component is an 

elementary graph. 

A mandatory elementary component is a single mandatory edge e EE(G) with a loop 

around one or both of its endpoints, depending on whether e is external or internal. An edge 

connecting two external vertices is not mandatory in G, therefore it is not a mandatory 

elementary component either. 
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• Walk, Trail and Cycle 

A walk in graph G is an alternating sequence of vertices and edges, starting and ending 

with a vertex, such that each edge in the sequence is incident with the vertex immediately 

preceding and following it. A trail is a walk in which no edge occurs more than once, and a 

path is a trail with no repetition in the sequence of vertices. A cycle is a trail that returns to 

its starting point after covering a path, and then stops. A trail is called external if one of its 

endpoints is such, otherwise the trail is internal. 

• M-Alternating Trail, Walk and Fork 

Let M be a perfect internal matching of G. A trail a= v0, e1 . . . en, Vn is alternating with 

respect to M (or M-alternating, for short) if for every 1 ::; i ::; n - 1, ei EM if and only if 

ei+1 !i!M. An alternating trail can return to itself only at its endpoints. Therefore we shall 

specify alternating trails just by giving the set of their edges, indicating the starting point 

and other particulars of the trails only in words when necessary. 

If a= vo, e1 ... en, Vn is an M-alternating path and e1 EM (e1 fi!M), then we can say that a is 

positive (respectively, negative) at its v0 endpoint. An external alternating path leading to 

an internal vertex is positive (negative) if it is such at its internal endpoint. An internal 

alternating path is positive (negative) if it is such at both ends. A positive M-alternating 

fork is a pair of disjoint positive external M-alternating paths leading to two different 
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internal vertices. Even if this sounds odd, a positive alternating fork is said to connect its 

two internal endpoints. 

• Crossing, M-alternating Loop, Cycle and Network 

A perfect internal matching of G is often called a state. For any state M, an M-alternating 

path connecting two external vertices of G is called a crossing. An M-alternating loop 

around vertex vis an odd M-alternating cycle starting from v. Clearly, the first and the last 

edge of any M-alternating loop must not be in M. Since we now have a distinct name for 

odd alternating cycles, we shall reserve the term "alternating cycle" for even length ones. 

An M-alternating unit is either a crossing or an (even length) alternating cycle with respect 

to M. An external alternating path is one that has an external endpoint. Making an M

alternating unit a (or switching on a) means changing the status of each edge appearing in 

a regarding its being present or not present in M. 

An M-alternating network r is a set of pairwise disjoint M-alternating units. Again, by 

making r in state M we mean creating a new state S(M, I) by making the units in r one by 

one in an arbitrary order. It was proved in [3] that for every two states M and M' there 

exists an M-alternating network r such that M' = S(M, I) and M =S(M',I). This network r 

is called the mediator-alternating network between states M and M~ 
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• Accessible Vertex, Impervious and Viable Edges 

An internal vertex v of G is called accessible in state M if there exists a positive external 

M-alternating path leading to v. An edge e is impervious in state M if neither of its 

endpoints are accessible in M. Edge e is viable if it is not impervious. Fig. 3.1 is showing a 

graph containing an impervious edge e. In this figure, double lines connecting two vertices 

indicate edges in the given matching M. 

' e 

Figure. 3.1: An impervious edge e 

• Some important claims and Corollaries 

Some of the important claims and corollaries regarding the above definitions are listed 

below: 

Claim 3.1. [1 OJ An internal vertex vis accessible in state M if and only ifv is accessible in 

all states of G. 
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Proof: Let us augment G by a new external edge at v, that is, by an edge e = (v, v }, where 

v' fi! V(G). If G + e denotes the augmented graph, then G + e still has a perfect internal 

matching, moreover, G is a nice subgraph of G + e. Obviously, there is only one way to 

extend any perfect internal matching of G to G + e, i.e., by not including the edge e in that 

matching. We shall therefore identify each state of G by its unique extension to G +e. By 

assumption, there exists an M-alternating crossing a in G + e passing through the edge e. 

Consider the state S(M, a), and switch to any G-permissible state M' of G + e by making 

the mediator alternating network rbetween S(M, a) and M~ It is clear that r contains a 

unique crossing fJ going through e. Stripping fJ from the edge e results in the desired 

positive external M~alternating path in G leading to vertex v. 

By virtue of Claim 3.1 we can say that an internal vertex v is accessible in G without 

specifying the state M relative to which this concept was originally defined. 

Corollary 3.2. [ 10} An edge e is impervious in some state of G if and only if e is impervious 

in all states of G. 

Claim 3.3. Every internal vertex of an open elementary graph G is accessible. 

Proof: It was proved in [3] that, for every two allowed edges e1,e2 of an elementary graph, 

there exists a state M such that both e 1 and e2 are contained in an appropriate M-alternating 

unit. Let v be an arbitrary internal vertex of G. Clearly, there exists an edge e EM incident 
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with v. If e is external, then we are done. Otherwise, since e is allowed, for any external 

edge e 'of G there exists a state M' and a crossing with respect toM' such that goes through 

e and e ~ Thus, vis indeed accessible (e.g. in state M). 

Claim 3.4. Let C1 and C2 be two different external elementary components of G. There 

exists no alternating path fJ with respect to any state M connecting C1 and C2 in such a way 

that the two endpoints of fJ, but no other vertices, lie in C1 and C2. 

Proof: Assume, by contradiction, that there exists an M-alternating path fJ connecting 

vertex v1 in C1 with vertex v2 in C2 as described in the claim. Clearly, fJ must be negative at 

both ends. Moreover, v; (i =1,2) can be external only if C; = { v;}. Take a positive external 

M-alternating path a; leading to v; inside C; if v; is internal, otherwise let a; be the empty 

path. The path a; exists by Claim 3.3 above. Combining a1, fJ, and a2 then results in a 

crossing through both components C1 and C2, which contradicts that C1 :F Cz. 

Claim 3.5. If v 1 and v2 are two internal vertices of an elementary graph G, then vrv2 if and 

only if one of the following conditions are met in any state M of G: 

(a) there exists a positive M-alternating path connecting v1 and v2, 

(b) there exists a positive M-alternating fork connecting v 1 and v2. 

Proof. Consider the extra edge e = (v1, v2) in the graph G +e. Since G is a nice subgraph of 

G + e, the edge e cannot be mandatory. Therefore e is not forbidden if and only if there 

exists an Me-alternating unit passing through e in any state Me of G + e. 
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Identifying the G-permissible states of G + e with those of G, this is equivalent to saying 

that e is not forbidden in G + e if and only if there exists an M-altemating unit passing 

through e in any state M of G. This unit opens up to either a positive M-altemating path or 

a positive M-altemating fork connecting v1 and v2 when the edge e is deleted from G+e. 
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Chapter 4 

Soliton Automata and Their Structural 
Decomposition 

Soliton automata are the main focus of this research. The algorithms that we have worked 

out in this thesis are related to soliton automata (actually soliton graphs which are the 

underlying objects of soliton automata). Different steps of these algorithms can determine 

many important properties of soliton automata. This chapter will provide a brief overview 

of soliton automata. There are many complex results on soliton automata, which are very 

hard to cover in one chapter. Therefore, in this chapter we will mainly concentrate on those 

results that will help us to elaborate the algorithms of this thesis. Most of the results listed 

in this chapter originate from papers [2][ 4][1 0][11]. 
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4.1 Finite State Automata 

An alphabet is a finite, nonempty set of symbols. A non-deterministic finite state 

automaton is a triple A =(S, X, 8), where Sis a non-empty finite set, the set of states, X is an 

alphabet, the input alphabet, and S: S x X -)- 28 is the transition function. Generally we use 

the term "automaton" to mean "non-deterministic finite automaton". 

An automaton A =(S, X, 8) is deterministic if for each s ES and x EX, I S(s,x) I .::; 1. 

4.2 Soliton Graphs 

The underlying object of a soliton automaton is a so called soliton graph. Such a graph is 

the topological model of a hydrocarbon molecule (or chain of molecules) along which 

soliton waves travel. In this model, soliton graphs come with a perfect internal matching, 

i.e., a matching that covers all the vertices with degree at least two. These vertices, called 

internal, model carbon atoms, whereas vertices with degree one, called external, represent a 

suitable chemical interface with the outside world. The states of the corresponding 

automaton are perfect internal matchings of the underlying graph, and transitions are 

carried out by switching on alternating walks. 

A soliton graph is an open graph G having a perfect internal matching. External vertices in 

G provide an interface by which the corresponding soliton automaton A(G) can be 

controlled from the outside world. The states of A(G) are the perfect internal matchings of 

G, and the inputs are pairs of external vertices in G. A state change of A(G) in state (perfect 

internal matching) M on input (v1, v2) is carried out by selecting an alternating walk a 
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connecting v1 to v2 with respect to the current state M, and exchanging the status of each 

edge along a regarding its being present or not present in M. The resulting new state will 

be denoted byS(M,a). There might be several alternating walks connecting the same pair 

(v1, v2) of external vertices. The formal definition of alternating (soliton) walks and 

automata is given in the next two sections. 

4.3 Soliton Walks 

Let Mbe a state of G. The set of external alternating walks, together with the concept of 

switching on such walks is defined recursively as follows -

1. The walk a= v0ev1, where e = (v0 , v1) with v0 being external, is an external 

alternating walk, and the set S(M,a) r;;;, E(G) is defined by S(M,a) = M EE> {e}. 

(The operation EE> is symmetric difference of sets). 

2. If a = v0e1 ... en vn is an external alternating walk ending at an internal vertex vn , 

and en+!= (vn, Vn+l) is such that en+! E S(M,a) if and only if en E S(M,a), then 

a'= aen+Ivn+l is an external alternating walk and S(M,a') = S(M,a) EE> {en+!}. It 

is required, however, that en+l *en unless en E S(M,a)is a loop. 

It is clear by the above definition that S(M,a) is a state if and only if the endpoint vn of 

a is external, in which case the walk is called complete. A soliton walk is a complete 

external alternating walk, which therefore connects two external vertices of G. Intuitively, 
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when making a soliton walk a in state M, one changes the sign of every edge immediately 

after having traversed that edge. No backtrack is allowed on the edge e that was traversed 

last, unless this is a must, i.e., e is a loop currently being positive. To exclude the 

possibility of making a backtrack altogether, we assign a direction to the loops occurring in 

soliton walks (e.g. clockwise/anticlockwise). Then we insist that once a loop has been 

traversed in one direction, it must be traversed in the same direction immediately 

afterwards. In Fig. 4.1 let M ={e, h1, h2}. A possible soliton walk from u to v with respect 

toM is a= uewgzihiz2l2z3h2z4lizigwfv. Switching on a then results in S(M, a) = {f, h /2}. 

Figure. 4.1: An example soliton walk 
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4.4 Soliton Automata 

The underlying object of a soliton automaton is a graph G having a perfect internal 

matching. Graph G gives rise to an automaton A(G), the states of which are the perfect 

internal matchings of G. The input alphabet for A(G) is the set of all (ordered) pairs of 

external vertices in G, and the state transition function 8 is defined by -

S(M, (vi, v2)) = {S(M,a)l a is a soliton walk from VI to Vz) 

A soliton automaton A(G) is deterministic if for every state M and input (v J. v2), 

1£5 (M, (vi, v2JJI :::; 1, 

where 

J (M, (vi, v2)) = {S(M, a)l a is a soliton walk from vi to Vz }. 

Soliton graph G is deterministic if the automaton A(G) is such. 

4.5 Viable Soliton Graphs 

An edge e E E(G) is viable in state M if there exists an M-alternating path e I, ... , en from 

some external vertex of G to one of the endpoints of e such that 

(i) e ~edor any i E [n]; 

(ii) en and e are M-alternating in the sense that en EM if and only if e !i! M. 

The edge e is impervious if it is not viable (in state M). 
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Thus, an edge e is viable in state M if there exists an M-alternating path that starts from an 

external vertex, reaches one endpoint of e without passing through e itself, and it can be 

continued on e in an alternating fashion. It is easy to see that the present definition of viable 

and impervious edges is equivalent to the one given in Chapter 3. 

If a graph is free form impervious allowed edges, then it is called a viable soliton graph. 

The concept of viable soliton graphs is important for one of our algorithms (Chapter 7). By 

that algorithm we can decide if a given graph G is a deterministic viable soliton graph 

containing an alternating cycle. 

4.6 Principal Canonical Class and Principal Vertex 

Elementary components are classified as external or internal, depending on whether or not 

they contain an external vertex. An elementary component of G is viable if it does not 

contain impervious allowed edges. A viable internal elementary component C is one-way if 

all external alternating paths (with respect to any state M) enter C in vertices belonging to 

the same canonical class of C. This unique canonical class is called principal and vertices 

belonging to this class are principal vertices. A viable elementary component is two-way if 

it is not one-way. 
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4. 7 Chestnuts 

A connected graph G is called a chestnut if it has a representation in the form 

G = r + a 1 + ... +a k with k ~ 1, where ~ is a cycle of even length and each ai (i E [ k D is tree 

subject to the following conditions: 

1. V (a J n V (a) = 0 for I :S: i ,.: j :S: k; 

11. V (a;) n V (r) consists of a unique vertex- denoted by vi- for each i E [ k J 

111. v , and v j are at an even distance on y for any distinct i, J E [ k] 

tv. Every vertex w, E v (a,) with d ( w,) > 2 is at even distance from vi in a, for each 

i E [ k] 

Figure. 4.2: A Chestnut 

The following theorem provides a characterization of chestnuts. For a proof, the reader is 

referred to [7]. 
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Theorem 4. 7.1. Let G be a connected deterministic soliton graph having no impervious 

edges. The graph G has a non-mandatory internal elementary component, if and only if G 

is a chestnut. 

Chestnuts are bipartite graphs. A vertex of a chestnut G is called outer if its distance from 

any of the vertices vi appearing in ii of the definition above is even, and inner if this 

distance is odd. Then the inner and outer vertices indeed define a bipartition of G. 

Moreover, the degree of each inner vertex is at most 2. Coming up with a perfect internal 

matching for G is simple: just mark the cycle y in an alternating way, and then the 

continuation is uniquely determined by the structure of the trees ai. Thus, G has exactly 

two states. It is also easy to see that the inner internal vertices are accessible, while the 

outer ones are inaccessible. Thus, the cycle y forms an internal elementary component with 

its outer vertices constituting the principal canonical class of this component. 

In terms of families of elementary components introduces in [10], the cycle y forms a 

stand-alone internal family in G. The rest of G's families are all single mandatory edges 

along the trees ai, or they are degenerate ones consisting of a single inner external vertex. 

Their rank in the partial order::; G [10] is consistent with their position in the respective 

trees ai, following a decreasing order from the leafs to the root. The family {y} is the 

minimum element of ::; a, and G has no impervious edges. See [10] for the precise 

definition of the precise partial order ::; G of families of soliton graph G. 
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As it was proved in [22], every chestnut G is a deterministic soliton graph. Moreover, G is 

strongly deterministic in the sense that, for each pair (v1, v2) of external vertices, there exists 

at most one soliton walk from v1 to v2 in each state of G. For every connected soliton graph 

G having no impervious edges, but possessing a non-mandatory internal elementary 

component, G is deterministic if and only if G is a chestnut. 

4.8 Redex and Secondary Loop 

A redex r in graph G consists of two adjacent edges e = (u, z) andf= (z, v) such that 

u =f:. v are both internal and the degree of z is 2. The vertex z is called the centre of r, while u 

and v ( e and .f) are two focal vertices (respectively, focal edges) of r. 

Let r be a redex in G. Contracting rinG means creating a new graph Grfrom G by deleting 

the centre of r and merging the two focal vertices of r into one vertex s. The vertex s is 

called the sink of r in Gr. 

Suppose that G is a soliton graph. For a state M of G, let Mr denote the restriction of M to 

edges in Gr. Clearly, Mr is a state of Gr. Sometimes, however, we shall identify M with Mr 

if r is understood from the context. This identification is safe, as the state M can be 

reconstructed from Mr in a unique way. In other words, the connection M ~ Mr is a one-to

one correspondence between the states of G and those of Gr. Graph G and state M will 

often be referred to as the unfolding of Gr and Mr, respectively, with respect to redex r. 
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For any walk a in G, let trace( a) denote the restriction of a to edges in Gr . Clearly, 

trace( a) is a walk in Gr. It is also easy to see that if a is a soliton walk in G with respect to 

M, then trace( a) is a soliton walk in Gr. Moreover, the walk a can again be uniquely 

recovered from its trace by unfolding. (Remember the orientation imposed on loops in 

soliton walks.) Consequently, the connection a ---+ trace(a) is also a one-to-one 

correspondence between soliton walks in G and soliton walks in Gr. 

The following two statements have been proved in [ 11]. 

Proposition 4.8.1. The soliton automata AG and AG are isomorphic. 
r 

Proposition 4.8.2. For any state M, a is an M -alternating cycle in G if and only if trace 

(a) is an Mr- alternating cycle in Gr. 

It follows from Propositions 4.8.1 and 4.8.2 that any edge e in Gr is allowed in Gr if and 

only if e is allowed in G. As to the two focal edges of r, they can either be allowed or not in 

G, even when Gr is elementary. This issue is addressed by Lemma 4.8.3 -

Lemma 4.8.3. Let r be a redex in soliton graph G, and assume that Gr is elementary. Then 

G is elementary if and only if both focal edges of r are allowed in G, or, equivalently, each 

focal vertex of r has at least one allowed edge of Gr incident with it. 

Proof: It is sufficient to note that either focal edge of r is forbidden in G if and only if the 

other focal edge is mandatory. Moreover, an arbitrary internal edge e of G is mandatory if 

and only if all edges adjacent toe are forbidden. 
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Another natural simplifying operation on graphs is the removal of a loop from around a 

vertex v if, after the removal v still remains internal. Such loops are called secondary. 

Let Gv denote the graph obtained from G by removing a secondary loop e at vertex v. 

Clearly, if G is a soliton graph, then so is Gv, and the states of Gv are exactly the same as 

those of G. The automata Aa and Aa , however, need not be isomorphic. This follows 
v 

from the fact that any external alternating walk reaching v on a positive edge can tum back 

in G after having made the loop e twice, while this may not be possible for the same walk 

without the presence of e. Nevertheless, it is still true that for every elementary soliton 

graph G, G is deterministic if and only if Gv is such. 

There are loops, however, the removal of which preserves isomorphism of soliton 

automata. These loops are exactly the ones around the inaccessible vertices of G. Each such 

loop is impervious, so that its removal does not affect the automaton behavior of G. 

4.9 Reduced Graphs 

The results listed in the forthcoming three sections are cited from [11]. Graph G is said to 

be reduced if it is free from redexes and secondary loops. Every graph G can be 

transformed into a reduced one r(G) by a suitable reduction procedure. 

For an arbitrary graph G, contract all redexes and remove all secondary loops in an iterative 

manner to obtain a reduced graph r(G). Observe that this reduction procedure has the so 
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called Church-Rosser property, that is, if G admits two different one-step reductions to 

graphs G1 and G2, then either G1 is isomorphic to G2, or G1 and G2 can further be reduced 

to a common graph G 1,2 In this context, one reduction step means contracting a redex or 

removing a single secondary loop. As an immediate consequence of the Church-Rosser 

property, the graph r(G) above is unique up to graph isomorphism. 

In a similar fashion, the process of contracting all redexes and removing all impervious 

secondary loops is called i-reduction and the graph obtained from G after i-reduction is 

denoted by ri(G). 

4.10 Generalized Trees 

A generalized tree is a connected graph not containing even-length cycles. By this 

definition, if there are odd-length cycles present in a generalized tree, then those cycles 

must be pairwise edge-disjoint. Some important results on generalized trees are listed 

below: 

Theorem 4.1 0.1. Let G be a reduced elementary soliton graph. If G contains an even

length cycle, then it also has an alternating cycle with respect to some state of G. 

Proof: For a proof, the reader is referred to [11]. 

Theorem 4.10.2. For any graph G, ifr(G) is a generalized tree, then G is a deterministic 

soliton graph. Conversely, if G is a deterministic elementary soliton graph, then r(G) is a 

generalized tree. 

37 



Proof: See [11]. 

Corollary 4.10.3. An elementary soliton graph G is deterministic if and only ifG reduces to 

a generalized tree. 

4.11 Baby Chestnuts 

A baby chestnut is a chestnut r + a 1 such that y is a pair of parallel edges and each branch 

of a 1 consists of a single edge or two adjacent edges. Fig. 4.3 shows a typical baby 

chestnut-

Figure. 4.3: Baby chestnut 
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Some important results on deterministic soliton graphs and chestnuts are listed below -

Theorem 4.11.1. Let G be a viable connected soliton graph possessing a non-mandatory 

internal elementary component. Then G is deterministic if and only if 'i (G) is a baby 

chestnut. 

Proof (Only if:) By Theorem 4. 7.1, G is a chestnut augmented by some impervious edges 

connecting the outer internal vertices with each other. Since each internal inner vertex, 

different from the base ones, is the center of a redex, we can eliminate all of these vertices, 

except of course the last inner vertex on y, which will no longer identify a redex. After 

removing the secondary impervious loops generated during redex elimination, ri(G) 

becomes a baby chestnut. 

(If:) Blowing up y by inverse redex elimination, or stretching the trees ai in this manner 

preserves the property of being a chestnut, and any impervious loops added during this 

procedure may only stretch into impervious edges. Thus, the graph resulting from a baby 

chestnut after any number of blow-ups and stretches is still a chestnut with some additional 

impervious edges, provided that impervious mandatory edges have not been introduced 

during the unfolding procedure. 
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Theorem 4.11.2. Let G be a connected viable soliton graph. Then G is deterministic if and 

only if it satisfies one of the following two conditions. 

1. G i-reduces to a baby chestnut. 

2. Each external elementary component of G reduces to a generalized tree, and the 

subgraph of G determined by its internal elementary components has a unique 

perfect matching. 

Proof: Immediate by Theorems 4.7.1, 4.11.1 and Corollary 4.10.3. 
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Chapter 5 

An Algorithm for Graph Reduction by 
Using the Incidence Matrix of Graphs 

This, and the next two chapters describe the algorithms that we have worked out in this 

thesis. In the present chapter we discuss the first algorithm, which aims at graph reduction. 

This algorithm is very important because the output of this algorithm is used as an input to 

the other two algorithms of this thesis. Graph reduction was introduced in Chapter 4, so the 

reader is referred back to that chapter for the terms used in graph reduction. 

5.1 Representing a graph by its Adjacency Matrix 

There are two common ways to represents graphs in computers - adjacency list and 

adjacency matrix. In our algorithm we have used the adjacency matrix approach. In this 

section we will briefly introduce the mechanism of graph representation using its adjacency 

matrix. 
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To construct the adjacency matrix of a graph, first we number the vertices of the graph in 

an arbitrary manner such as 1, 2, 3, ... , lVI. For a graph G=(V,E), the adjacency matrix will 

be a I Vlxl VI sized integer matrix. For the adjacency matrix A=(aij), 

if there are n parallel edges connecting vertices i and j. 

We can use the adjacency matrix representation for both directed and undirected graphs. 

The adjacency matrix will take 0(V2
) memory space and is independent of the number of 

edges in the graph. Adjacency matrices can also be used for representing weighted graphs. 

The adjacency matrix of an example graph is given below: 

Figure. 5.1: A Graph 
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The adjacency matrix representation of the graph in Fig. 5.1 is: 

5.2 Steps of the Algorithm 

0 1 1 1 

1 0 0 1 

1 0 0 1 
1 1 1 0 

The actual reduction algorithm is discussed in this section. We know that a graph is 

reduced if it is free from redexes and secondary loops, so the main goal of this algorithm is 

to remove all redexes and secondary loops. The process is divided into two steps given 

below: 

Step 1: 

Consider the adjacency matrix A of G, and scan A in order to eliminate all secondary loops, 

and to construct the list R of all redexes in the simplified graph. Let each redex be 

represented in R by its center vertex. 

Step 2: 

Do while R is not empty: take the first redex k from R, and eliminate it by updating A in 

such a way that row/column} is added to row/column i, where i and} are the focal vertices 
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of the redex k. Abandon rows/columns k and} in A, and delete the vertices k, i, j (if present) 

from R. Reset A(i, i) to 0 or 1 by removing all secondary loops around i, and add ito R if 

the updated matrix A indicates that i has become (the center of) a redex. 

For a graph G with n vertices, the algorithm above constructs r(G) in O(n2
) time. Indeed, 

the elimination of one redex, together with the deletion of the newly introduced secondary 

loops, takes O(n) time, and the number of redexes is smaller than n. 

5.3 Example of the Reduction Algorithm 

In this section we provide a complete example of the graph reduction process. Fig. 5.2 

shows the graph to be reduced. There are eight vertices in this graph and many redexes. 

Figure. 5.2: Graph to be reduced 

Fig. 5.3 shows the graph after the first iteration step of the algorithm. In this step, the 

secondary loop from vertex 3 is removed. 
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Figure. 5.3: Graph after the first iteration 

Fig. 5.4 shows the graph after the second iteration step. Here we removed vertex 3 which 

was the centre of a redex. After removing vertex 3, the focal vertices (vertex 2 and 4) are 

merged into vertex 2. So here vertex 2 is the sink vertex of this reduction. There is a new 

secondary loop, emerging at vertex 2. 

Figure. 5.4: Graph after the second iteration 
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Fig. 5.5 shows the resulting graph after the third iteration step ofthe algorithm. In this 

iteration step, the secondary loop at vertex 2 is removed. 

Figure. 5.5: Graph after the third iteration 

Fig. 5.6 shows the graph after the fourth iteration. Here we removed vertex five which was 

the center of a redex. After removing vertex 5, the focal vertices (vertex 2 and 6) are 

merged into vertex 2. So here vertex 2 is the sink vertex of this reduction. Again, after this 

reduction there is a new secondary loop emerging at vertex 2. 
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Figure. 5.6: Graph after the fourth iteration 

Fig. 5.7 shows the graph after the fifth iteration step ofthe algorithm. In this iteration step, 

the secondary loop at vertex 2 is removed. 

Figure. 5.7: Graph after the fifth iteration 



Fig. 5.8 shows the graph after the sixth iteration step. Here we removed vertex 7, which 

was the center of a redex. After removing vertex 7, the focal vertices (vertex 2 and 8) are 

merged into vertex 2. Vertex 2 is the sink vertex of this reduction process. After this 

reduction step, there are two new secondary loops, emerging at vertex 2. 

Figure. 5.8: Graph after the sixth iteration 

Fig. 5.9 shows the resulting graph after the seventh iteration step ofthe algorithm. In this 

iteration step, one of the secondary loops at vertex 2 is removed. 
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Figure. 5.9: Graph after the seventh iteration 

Fig. 5.10 shows the resulting graph after the eighth iteration step. In this iteration step, 

another secondary loop at vertex 2 is removed. The resulting graph is our final result. 

Figure. 5.10: Graph after the eight iteration 
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5.4 Discussion of Implementation 

In this section we will provide a brief explanation of how the first algorithm is 

implemented. The implementation uses the Java programming language. There are two 

major classes - GraphReduction and Reduction Operation. Most of the operations are done 

inside the GraphReduction class, while ReductionOperation class is mainly responsible for 

reconstructing matrices after each reduction step (abandon rows/columns of the given 

matrix and generate a new matrix for the next iteration). 

Class GraphReduction accepts inputs from a file and also prints different steps of the 

reduction process into the file. For maintaining a redex list I have used an array R. There is 

a function called jindFocal for finding out the focal vertices of a redex. The function 

removeLoop is responsible for removing loops from the matrices at different stages of the 

reduction process. Updating the redex list is an important task for this algorithm so there 

are two functions for performing this task. Function buildLisrR is responsible for 

reconstructing a new redex list. On the other hand, function checklist checks for the 

necessity to reconstruct the redex list. 

Function ClassReduction also contains printFile and printR function for printing results in 

the output file. Function printFile is responsible for printing the matrices of the different 

stages of the reduction process into a file where function printR prints the updated redex 

lists of different stages into the output file. 
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Class ReductionOperation has only one function that is columnOperation. Matrix, redex 

and its focal vertices are passed into columnOperation as parameters. This function adds 

rows and columns, abandons rows and columns k and j. We have used many graphs as 

input for testing the accuracy of the implementation and the program successfully produced 

accurate results for all of them. Some of the graphs that have been used for testing the 

program are given below: 

Figure. 5.11: Graphs used for testing the first algorithm 
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Chapter 6 

An Algorithm to decide if an Arbitrary 
Graph is an Elementary Deterministic 
Soliton Graph 

In this chapter we describe the second algorithm of this thesis. By the help of this algorithm 

we can decide if a given graph is an elementary deterministic soliton graph or not. For this 

algorithm we also have to use the reduction algorithm as a preamble. Different steps of this 

algorithm can determine some important properties of the given graphs. For example the 

second part of the algorithm can decide if the reduced graph is a generalized tree or not and 

third part of the algorithm can decide if the original graph is an elementary graph, based on 

the knowledge that the reduced graph is a generalized tree. 

Depth-first search is another important part of our algorithm. In the second step of this 

algorithm we have to use depth-first search for detecting cycles in the reduced graph. 
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Therefore in this chapter we devote a section to presenting the depth-first search algorithm 

and its modified version that we have used for detecting cycles in graphs. 

6.1 Steps of the algorithm 

In this section we discuss the three steps of this algorithms. A brief explanation of each step 

is given below: 

Step 1: 

In this step we use the reduction algorithm (first algorithm) to reduce the given graph G. 

The reduced graph r(G) is used as input for the next step. 

Step 2: 

In this step we check if the reduced graph is a generalized tree or not. This entails the 

following: 

o By the help of the depth-first search algorithm, see if the reduced graph r(G) 

contains an even-length cycle. As part of this algorithm, each odd-length cycle of 

r(G) is marked. 

o When an even-length cycle is found, the algorithm is terminated because r(G) 

is not a generalized tree, therefore G is not a deterministic soliton graph. [Theorem 

4.10.2] 

o If r(G) is a generalized tree then we move to the next step. 
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Step 3: 

In this step we check if the original graph G is an elementary graph or not. To this end, we 

have to reverse the reduction procedure. The details are given below -

o Start unfolding r(G) back into G by reversing the steps of the reduction algorithm. 

o In the process of reversing the reduction, when we add a loop to the graph, that 

loop is added as a forbidden edge. We use Lemma 4. 8.3 to decide if the unfolding of 

a redex keeps the graph elementary or not. 

o Graph G is elementary (also deterministic) if and only if a positive answer is 

obtained every time a redex is unfolded. 

The time complexity of the depth-first search algorithm is known to be O(n2
). In fact, a 

smarter implementation of this algorithm, using the adjacency list to represent a graph, has 

a liner time complexity in terms of the number of edges. Thus, Step 1 and 2 take O(n2
) time 

to execute. As to the complexity of Step 3, reconstructing graph G by inverse reduction 

takes as much time as its demolition did, that is O(n2
). Consequently, the overall time 

complexity of algorithm 2 is O(n2
). 
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6.2 The Depth-first Search Algorithm and Its Modification 

We can find a cycle in a graph by using the depth-first search algorithm (DFS). This 

algorithm therefore becomes an integral part of our decision algorithm. The reader is 

referred to [27,29,30] for a detailed analysis of the DFS algorithm. The algorithm that we 

are presenting here is also known as colored DFS. For detecting a cycle we use a modified 

version of colored DFS. 

DFS explores new edges from a recently discovered vertex v, which still has some 

unexplored edges. It explores all the edges incident with v, then it backtracks to explore 

edges leaving the vertex from which v was discovered. DFS continues this backtracking 

process until it discovers all the vertices that are reachable form the original source vertex. 

If there are any undiscovered vertices remaining, then it selects one such vertex as a new 

source vertex and repeats the search starting form that vertex. The process lasts until all 

vertices have been discovered. 

The above paragraph explains the general working process of the depth-first search 

algorithm. The pseudo code ofthe colored DFS is given below-

DFS(G) 

1 for each vertex u E V[G} 

2 do color[ u] (- WHITE 
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3 n[ u] +-- NILL 

4 time+-- 0 

5 for each vertex uc=V[G] 

6 do if color[u] =WHITE 

7 then DFS-Visit (u) 

DFS-Visit (u) 

1 color[u] +--GRAY II White vertex u has just been discovered 

2 d[u] +-time +-time+] 

3 for each v E Adj{u] //Explore edge (u, v) 

4 do if color[v] = WHITE 

5 then 1r[v] +- u 

6 DFS-Visit (v) 

7 color[u] +--BLACK I I Blacken u, it is finished 

8 f[u] +--time+- time+ 1 

In the above pseudo code 1r[u] holds the predecessor information of a vertex. There are 

also two types of timestamps - d{u], which records when u is discovered and grayed, and 

f[u], which records when the search finishes after examining u's adjacency list and 

blackening that vertex. Initially all vertices are white then they become grayed between 

time d[u] and time f[u] and finally they become blacken. In the above pseudo code time is 
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a global variable, which is used for timestamping and array color stores the color status of 

all the vertices of the given graph. Array Adj holds the vertices adjacent to a vertex. 

As mentioned before, we use a modified version of DFS algorithm to detect cycles in 

graphs. The key behind this modified DFS algorithm is that, if a node is seen the second 

time before all of its descendants have been visited then there must be a cycle. For 

example, if there is a cycle containing node X then node X must be reachable from one of 

its descendants. Therefore, when the DFS is visiting that descendant, it will see X again, 

before it has finished visiting all of X' s descendants which implies that a cycle exists. 

The modified colored DFS algorithm is as follows. As we know, all nodes are initially 

colored white, and when a node is encountered, it is marked grey. Finally when its 

descendants are completely visited then that vertex is marked black. Now, if a grey node is 

encountered before all of its descendants have been visited, then there is a cycle. The 

pseudo code of the modified colored DFS algorithm is given below: 

DFS(G) 

1 for each vertex u E V[G} 

2 do color[ u] ~ WHITE 

3 n[u] ~ NILL 

4 time~ 0 

5 for each vertex uEV{G} 
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6 do if color[u] =WHITE 

7 then DFS-Visit (u) 

DFS-Visit (u) 

1 color[u] ~GRAY II White vertex u has just been discovered 

2 d[u] +-time +-time+] 

3 for each v E Adj[u] //Explore edge (u, v) 

4 if color[v] =GRAY and 1r[u] ;;ev then 

5 return "Cycle exists" 

6 else if color[v] =WHITE 

7 then 1r[v] +--- u 

8 DFS-Visit (v) 

9 color[u] ~BLACK II Blacken u, it is finished 

10 f[u] +---time +---time + 1 

6.3 Special graphs considered for generalized tree 

According to the definition, a connected graph not containing any even-length cycles is a 

generalized tree. If there are odd-length cycles present in a generalized tree, then those 

cycles must be pairwise disjoint. In this section we present some examples which will 

clarify the properties of generalized trees. 
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Fig. 6.1 shows two examples of generalized trees. Both of the graphs have only odd length 

cycles and these cycles are pairwise disjoint. 

Figure. 6.1: Generalized trees 
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Fig. 6.2 shows two examples of graphs containing two overlapping odd length cycles. This 

implies that the graphs contain an even-length cycle, too, so that they cannot be generalized 

trees. 

Figure. 6.2: Graphs containing overlapping odd length cycles 

6.4 Discussion of Implementation 

This section provides a brief discussion of the implementation of the algorithm of this 

chapter. I will highlight most of the classes and some of the functions that have been 

designed to perform important tasks. 
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In the second step we have to decide if the input graph is a generalized tree or not. To 

perform this check I have created three Java classes. The first class 1s 

CheckGeneralizedTree. Class CheckGeneralizedTree will mainly take input from the user 

and the input file. Class CheckGeneralizedTree also uses class Vertex for storing some 

important information on a vertex of a given graph. 

Class Vertex is used to store different important information on a vertex such as its 

adjacency list, its parent and its color (color information will be used for the modified color 

DFS algorithm). The parent and color information of a vertex is very important for 

detecting a cycle in a graph. Class CheckGeneralizedTree also uses an object of class 

DFSVisit for detecting a cycle in the graph and also to figure out the length of the cycles. 

CheckGeneralizedTree passes all the information of a vertex as an object of Vertex class to 

the function dfs_visit of the class DFSVisit. 

Class DFSVisit is the most important class for the second step, where I have implemented 

the modified color DFS algorithm to detect cycles in the given graph. Inside DFSVisit, 

dfs _visit is the core function which perform most the tasks. As mentioned before, function 

dfs_vist rather than taking the whole graph as an input, takes important information on a 

vertex in the object Vertex. If a cycle is detected, then this function also counts the length 

of that cycle. If more than one odd-length cycle is detected that it also checks if these 

cycles are pairwise disjoint. 
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To implement the last step (step 3), I have used three Java classes -

PreplnputForElementary, ReverseSteps and CheckElementary. The exact reduction steps 

from the graph reduction program are stored in class PreplnputForElementary. This class 

sends this information to the class ReverseSteps. 

Class ReverseSteps is mainly responsible for reversing the reduction steps and after every 

step checks if the graph is still elementary or not. In each reverse reduction step, 

CheckElementary is used to perform the checking. All inputs and outputs are maintained in 

plain text files. 

Class CheckElementary is responsible for checking if the unfolded graph is still elementary 

or not. The basis of this checking is Lemma 4.8.3. This class is also responsible for 

producing the final result. We know that a graph is elementary (also deterministic) if and 

only if a positive answer is obtained every time a redex is unfolded. Class 

CheckElementary also uses the class Vertex. All information of a vertex is stored as an 

object of Vertex class. This class uses a function GetDegree to determine the degree of a 

vertex. For this algorithm we used many graphs to test the accuracy of the implementation. 

Some of these graphs are given below: 

62 



Figure. 6.3: Graphs used for testing the second algorithm 
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Chapter 7 

An Algorithm to decide if an Arbitrary 
Graph is a Deterministic Viable Soliton 
Graph Containing an Alternating Cycle 

In this chapter we present an algorithm to decide if an arbitrary graph is a viable soliton 

graph containing an alternating cycle. This is the third algorithm of the thesis. Baby 

chestnuts and impervious loops are the key concepts of this algorithm. First, the input 

graph is reduced by the help of the reduction algorithm. Then it is checked if the resulting 

graph is a baby chestnut or not. Finally, the reduction is reversed to see if all the loops 

eliminated during the reduction process are impervious, and impervious mandatory edges 

are not introduced. 
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7.2 Steps of the algorithm 

The three steps of this algorithm are presented below: 

Step 1: 

The first step of the algorithm is reduction, as discussed in Chapter 5. 

Step 2: 

In the second step, we check if the reduced graph r(G) is a baby chestnut or not. If it is not, 

then by Theorem 4.11.2, G is not a deterministic soliton graph containing an alternating 

cycle. If the reduced graph r(G) is a baby chestnut then we move to the next step. 

Step 3: 

In the third step of the algorithm we reverse the reduction procedure to find out if all loops 

that have been eliminated are impervious or not. Also, in a way analogous to the second 

algorithm, we need to check if an inverse reduction step preserves the viable property. This 

amounts to the following: 

o Every time a loop is added, we have to check if the loop is impervious or not. A 

loop around a vertex v of a viable soliton graph G is impervious if and only if v is a 

principal vertex in a family of elementary components in G. Technically, we must 

keep track of the principal vertices of the graph during the unfolding procedure to 

see if a particular loop vertex is principal or not. 
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o If we find a loop that is eliminated during reduction but is not around a principal 

vertex, then our answer is negative (i.e. graph G is not a deterministic viable 

soliton graph containing an alternating cycle). If all loops can be restored in G 

without finding a viable one, in other words, if all loops are added to a principal 

vertex, then the answer is positive. 

o Whenever a new vertex is introduced, use Lemma 4.8.3 to check if the unfolded 

graph remains viable. 

7.2 Further discussion on baby chestnuts, impervious loops, 
principal vertices and viable soliton graphs 

Most of the concepts that we are going to deal with in this section have already been 

defined in Chapter 4. In order to see if a graph is a baby chestnut, the following features 

must be checked: 

• A cycle y consisting of a pair of parallel edges 

• A tree attached to one of the two vertices of y, the branches of which consist of at 

most two edges. 

Impervious loops are important in this algorithm. Such loops arise during the reduction 

procedure from impervious edges of the original graph G. Fig. 7.1 shows a graph with an 
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impervious edge (connecting two principal vertices), which becomes an impervious loop 

during reduction. See Fig. 7 .2. 
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Figure. 7.1: Graph with an impervious edge 
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Figure. 7.2: Baby chestnut with an impervious loop 

There is an easy way to locate the principal vertices in graphs arising from a baby 

chestnut by inverse reduction. Clearly, the only principal vertex in a baby chestnut is 

the root of its tree component. In the course of inverse reduction, the original baby 

chestnut unfolds into a chestnut graph with some extra impervious edges, which result 

from impervious loops being added to the graph. Nevertheless, the principal vertices of 

such a graph are exactly the ones of the chestnut, that is, the vertices that are at an even 

distance from the root ofthe tree they belong to. See Fig. 7.3. 
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t Principal Vertex 

Figure. 7.3: Chestnut with principal vertices 

When unfolding an impervious loop e during inverse reduction, the following two cases 

may occur: 

Case 1: 

The loop e becomes an impervious edge of the graph that is still viable. See Fig. 7 .4. 

Case 2: 

The loop e becomes a forbidden edge that is adjacent to an impervious mandatory edge. 

See Fig. 7.5. 
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Figure. 7.4: Case 1 when unfolding an impervious loop 

Figure. 7.5: Case 2 when unfolding an impervious loop 
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Obviously, our algorithm must detect the "wrong" Case 2, and if it happens, terminate 

immediately. In general, we terminate the algorithm whenever one of the two focal vertices 

of the newly introduced redex is not incident with at least one viable edge. See Lemma 

4.8.3. 

Regarding the time complexity of algorithm 3, we need to investigate Step 2 and 3. Clearly, 

Step 2 takes linear time in terms of the number of vertices. The time complexity of Step 3 

is the same as that of Step 1, that is O(n2
). As in the case of algorithm 2, the reason is that 

the reconstruction of graph G by inverse reduction takes as much time as its demolition did. 

Thus, the overall time complexity of algorithm 3 is O(n2
). 

7.3 Discussion of Implementation 

As in the last two chapters, this section is intended to provide a brief discussion on the 

implementation of this algorithm. The algorithm has three major steps to decide if a given 

graph is a deterministic viable soliton graph containing an alternating soliton graph or not. 

The first step is again reduction. In the second step of the algorithm we have to check the 

reduced graph for being a baby chestnut. In the implementation I have used three Java 

classes. One class is named Vertex and other two classes are named CheckBCNut and 

BabyChestNut. 
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The role of class Vertex in this algorithm is analogous to its role in the second algorithm. 

We need to store some important information on vertices of the given reduced graph. Like 

before, class Vertex can store a vertex's adjacency list and parent information. Class 

BabyCheastNut performs the major operations of this algorithm. This class contains a 

function FindBabyCheastNut which takes a list of Vertex type objects and some other 

information as parameters and then performs necessary checking to decide if the given 

graph is a baby chestnut or not. Finally, it sends the result back to the class CheckBCNut. 

Class CheckBCNut works like a bridge between the classes Vertex and BabyChestNut . It 

reads the input graph from a file, then creates a Vertex object for each vertex and sends 

them to BabyChestNut for checking. After receiving the requested information form 

BabyChestNut , it returns the final result. 

In the third step we have to reverse the reduction steps and check the loops that were 

eliminated. When putting the eliminated loops back to the graph, we need to check if they 

are impervious or not. For reversing the steps of the reduction process, I used the same 

procedure that was introduced in the second algorithm. Class ReverseRead starts the 

program by calling the functions of class Scanner. 

As in the second algorithm class Scanner is responsible for producing the reverse steps 

output file. Class ChceklmperviousLoop is responsible for performing the major operations 

in step three. This class will check if an eliminated loop is impervious or not. It has two 

72 



functions for performing this operation: CheckForlmperviousLoop and 

CheckSecondVertex. CheckForlmperviousLoop performs almost all the checking. I have 

used function CheckSecondVertex to locate the principal vertices of a chestnut. 

For testing the correctness of the programs, I have used couple of test graphs. Some of 

these graphs are given below: 

Figure. 7.6: Graphs used for testing the third algorithm 
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Chapter 8 

Conclusion and Future Work 

Molecular switching might tum out to be a significant step toward nanotechnology. We can 

construct unbelievably smaller devices if we are successful in designing the switches at the 

molecular level. In order to explore the computational power of such devices, we need to 

study them on abstract models. Soliton automata seem to be a perfect mathematical model 

for this purpose. The algorithms discussed in this thesis largely contribute to the research 

on soliton graphs and automata. 

We have discussed three algorithms in this thesis. The first algorithm reduces an arbitrary 

graph, making it free from redexes and secondary loops. This algorithm plays an important 

role in the other two algorithms as well, because those algorithms rely on reduction as a 

preliminary step. The second algorithm can decide if a given graph is an elementary soliton 

graph. The method of this algorithm is to first see if the input graph reduces to a 

generalized tree, and if so, reverse the reduction to see if the elementary property is 

74 



preserved. The third algorithm can decide if a given graph is a deterministic viable soliton 

graph containing an alternating cycle. To this end, the algorithm we first check if the input 

graph reduces to a baby chestnut. Then, again, the reduction is reversed to see the viable 

property and the deterministic property are both preserved. 

There are some issues that have not been dealt with in greater detail. We did not thoroughly 

analyze the time and space complexity of our algorithms. Therefore, one of the important 

future endeavours will be the analysis of the time and space complexity of these 

algorithms. 

Another aspect of future work is to test the implementation with more complex and large 

graphs. We have tested our implementation with several standard graphs, and the programs 

returned correct results for all of them. Testing with more complex graphs, however, could 

lead to the fine-tuning of our implementation. 

Reverse reduction is an important step in the last two algorithms. For implementing reverse 

reduction I have used a file to store information. However, there is an alternative approach 

(store information in the memory), which I want to explore in the future, and compare its 

efficiency with the file approach. 
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Appendix A 

Code Examples of Algorithm 1 

import j ava.io. *; 
import java. util. StringTokenizer; 

II Class GraphReduction accepts inputs from a file and also prints different steps of the 
reduction process into the file 

class GraphReduction 
{ 

public static void main(String args[]) throws IOException 
{ 

ReductionOperation ro =new ReductionOperation(); 

GraphReduction gR = new GraphReduction(); 

int [][]matrix= new int[matrixSize][matrixSize]; 

int [][] loopFreeMatrix =new int [matrixSize][]; 

loopFreeMatrix = gR.removeLoop(matrix); II removing loops for first time 

I I code for printing the first result matrix to output file 

println("\nRemoving Inner loops .... \n"); 

for (inti= 0; i < matrixSize; i++) 
{ 

for (int j = 0; j < matrixSize; j++) 
{ 
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print(loopFreeMatrix[i][j] + "\t"); 

} // end of inner for loop 

} // end of outer for loop 

II For maintaining a redex list used an array R 

int []R =new int[lO]; 

R = gR.buildListR(matrix); 

int redexListCount = 0; 

redexListCount = R.length; 

gR.printR(pw,R,redexListCount); II printing R into the output file 

int [] [] rec = new int[ matrix Size] [matrix Size]; 

int rK = 0, ri = 0, rJ =0; 

int [] [] focal Vertex =new int[ 1] [2]; 

int check= -1; //check variable will determine that ifwe have to to build a 
new redex list or not 

int newMatrixSize = matrixSize; 

rec = loopFreeMatrix; 

int [][] old_rec =new int[matrixSize][matrixSize]; 

II Other parts of the reduction operation 

for(int i = 0; i <= redexListCount;i++) 
{ 

if( check == 1) II we have to build a new redex list 
{ 
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i = 0; 

R = gR.buildListR(rec ); 

if(R.length == 0) break; 

focalVertex = gR.findFocal(rec,R[i]); 

rK = R[i]; 

ri = focalVertex[O][O]; 

rJ = focalVertex[O][l]; 

redexListCount = R.length; 

old_rec = rec; 

rec = ro.columnOperation(rec,newMatrixSize,newMatrixSize,rK,ri,rJ); 

newMatrixSize = rec.length; 

println("Before removing loop ... \n"); 

matrix_ marker++; 

I I printing information for reverse writing 

println("<"+matrix _marker+">"); 

gR.printFile(pw,rec ); 

gR.printFile(pw2,rec ); 

println("end _matrix"); 

if(newMatrixSize > 2) 
{ 

rec = gR.removeLoop(rec); 
} 

else if(newMatrixSize <= 1) break; 

gR. printR(pw ,R,redexListCount); 
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println("Reduction continue .... \n"); 

gR.printFile(pw,rec ); 

i++; 

} //end of'if part 

check= gR.checkList(rec,old_rec,R); //checking the status ofR 

} I I end of for loop 

} //end of main function 

II removeLoop() function remove the loops from the given graph 

public int [] [] removeLoop(int matrix[][]) 
{ 

int mSize = matrix.length; 

for (inti= 0; i < mSize; i++) 
{ 

for (intj = 0; j < mSize; j++) 
{ 

if( (i == j) && (matrix [i][j] >=1 )) 
{ 

matrix[i][j] = 0; 
} 

} //end of inner loop 
} I I end of outer for loop 

return matrix; 

} I I end of removeLoop function 

II findFocal() function will find the focal vertices of a redex 

public int[][] findFocal (int matrix[][], intj) 
{ 

int matrixSize = matrix.length; 
int focalCount = 0; 

int [][]focal= new int[1][2]; //focal is an array with one row and two columns 
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for(int i=O; i < matrixSize; i++) 
{ 

} 

if(matrix[j] [i] == 1) 
{ 

} 

focal[O][focalCount] = i; 
focal Count++; 

return focal; 
} II end offindFocal function 

II buildList() function will build the new list R for given matrix 

public int[] buildListR(int matrix[][]) 
{ 

int [] R =new int[10]; 

for(int i=O; i < 10; i++) 
{ 

R[i] = -1; 
} 

int redexCount = 0; 
int redexListCount = 0; 
int nonRedexCount = 0; 

int matrixSize = matrix.length; 

for(int i = 0; i < matrixSize; i++) 
{ 

for(int j = 0; j < matrixSize; j++) 
{ 

} 

if(matrix[i][j] == 1) 
{ ' 

redexCount++; 
} 
if(matrix[i][j] > 1) 
{ 

nonRedexCount++; 
} 

if(redexCount == 2 && nonRedexCount == 0) 
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{ 
R[redexListCount] = i; 
redexListCount++; 

} 

redexCount = 0; 

nonRedexCount = 0; 
} 

int [] new_R =new int[redexListCount]; 

for(int i=O; i < redexListCount; i++) 
{ 

new_R[i] = R[i]; 
} 

return new_ R; 

}II end ofbuildListR function 

II checkList() function check the necessity to build new list R 

public int checkList(int [][]matrix, int [][] old_ matrix, int[] R) 
{ 

int mLength = matrix.length; 
int mOldLength = old_matrix.length; 

int rLength = R.length; 
int check = 0; 
if (mLength < mOldLength) check= 1; 
if(rLength == 1) check= 1; 
if( check == 1) return 1 ; 
else return 0; 

} II end of checkList() function 

} II end of graphReduction class 
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II Class ReductionOperation function adds rows and columns, abandons rows and columns 
k and} by using columnOperation function 

class ReductionOperation 
{ 

public int[][] columnOperation(int matrix[][], int mRow, int mCol, int k, inti, int j) 
{ 

for(int m = 0; m < mCol; m++) 
{ 

matrix[i][m] = matrix[i][m]+matrix[j][m]; 
} 
I I adding columns 

for(int n = 0; n < mCol; n++) 
{ 

matrix[ n ][i] =matrix[ n][i]+matrix[n][j]; 
} 

II Abandoning rows/columns ofk andj 

int [][] modMatrix_l =new int [mRow- 2][mCol]; 

int mine= 0; 

I I code for row deletion 

for (int rowCount = 0; rowCount < mRow; rowCount++) 
{ 

if ( k != rowCount && j != rowCount) 
{ 

for (int col Count = 0; col Count< mCol; col Count++) 
{ 

modMatrix _1 [mine] [col Count] = matrix[ rowCount] [col Count]; 
} 

mine++; II increase mine 
} II end of if 

} II end of for loop 

II New matrix for column deletion 
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} 
} 

int [][] modMatrix_2 =new int [mRow- 2][mCol- 2]; 
intm; 

I I code for delete column 

for (int rowCount = 0; rowCount < mRow - 2; rowCount++) 
{ 

m=O; 
for (int n = 0; n < mCol; n++) 
{ 

if(k != n &&j != n) 
{ 

modMatrix _ 2 [ rowCount] [ m] = modMatrix _1 [ rowCount] [ n]; 
m++; 

} II end of if 
} 

} I I end of for loop 

return modMatrix _ 2; 

88 



Appendix B 

Code Examples of Algorithm 2 

I I Class CheckGeneralizedTree will mainly take input from the user and the input file. It 
also uses class Vertex for storing some important information on a vertex of a given graph 

class CheckGeneralizedTree 
{ 

public static void main( String [] args )throws IOException 
{ 

Vertex [] vertex = new Vertex[ v]; 

DFSVisit dv =new DFSVisit(); 

I I reading the input adjacency matrix from the input file 

for(int i = 0; i < v; i++) 
{ 

text = fileRead.readLine(); 
StringTokenizer st =new StringTokenizer(text); 
int temp_list []=new int[v]; 

for(int j = 0; j < v; j++) 
{ 

inputString = st.nextToken(); 
matrixlnput = Integer.parseint(inputString); 
temp _list[j] = matrixlnput; 

} I I end of inner loop 
vertex[i] =new Vertex(temp_list); 
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} 

} I I end of outer for loop 

for (int i =0; i<v; i++) 
{ 

if(vertex[i].color == 0) 
dv.dfs_ visit(vertex,i,v); 

} 
} I I end of main method 

II Class Vertex is used to store different important information on a vertex such as its 
adjacency list, its parent and its color (color information will be used for the modified color 
DFS algorithm) 

class Vertex 
{ 

int color; I I 0 = white, 1 = grey, 2 = black 
int adjList[]; 
int parent; 
Vertex(int list[]) 
{ 

} 

parent= -1; 
adjList = list; 
color= 0; 

int GetDegree() 
{ 

} 

int list_length = adjList.length; 
int count_ degree = 0; 
for(int i=O; i<list_length; i++) 
{ 

} 

if(adjList[i] == 1) 
{ 

count_ degree++; 
} 

return count_ degree; 

} I I end of Vertex class 
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II Class DFSVisit for detecting a cycle in the graph and also to find out the length of the 
cycles 

class DFSVisit 
{ 

static int time_ count = 0; 
static int last_ cycle_ vertex = -1; 

public void dfs_visit(Vertex []vertex, int v_id, int v) 
{ 

vertex[ v _id].color = 1; 
time_ count++; 
boolean cycle_ check; 

for(int i=O; i<v; i++) 
{ 

if(vertex[v_id].adjList[i] == 1) 
{ 

if(vertex[i].color == 1 && vertex[ v _id].parent != i) 
{ 

System.out.println("Cycle exists"); 
if(i == 0) 
{ 

System.out.println(time _count); 
} 
else 
{ 

time_count = (time_count+ 1)-2; II finidng the exact cycle length 
} 

cycle_check = check_odd_number(time_count); 

if(i <last_ cycle_ vertex II cycle_check ==false) 
{ 

} 

System.out.println("Not generalized tree"); 
last_ cycle_ vertex = -1; 

last_cycle_vertex = (i + time_count)- 1; II storing the 
last vertex from the discoverd cycle 

} 
if(vertex[i].color == 0) 
{ 

vertex[i].parent = v _id; 
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} 

dfs _ visit(vertex,i,v); 
} 

} 
} I I end of for loop 
vertex[ v _id] .color= 2; 

I I Class ReverseSteps is mainly responsible for reversing the reduction steps and after every 
step checks if the graph is still elementary or not 

class ReverseSteps 
{ 

ReverseSteps(String filename) throws IOException 
{ 

} 

fr =new FileReader(filename); 

br =new BufferedReader (fr); 
build_ string(); 

void build_ string() throws IOException 
{ 

} 

while((str=br.readLine())!= null) 
{ 

recognize( str); 
} 

void recognize( String s) 
{ 

} 

if( s.starts With("<")) 
{ 

maximum_number = Character.getNumericValue(s.charAt(l)); 
} 

II Reverse Write function will print the matrices from where loops were removed 
I I in a reverse way 

void ReverseWrite(String fname) throws IOException 
{ 

FileReader fr2 =new FileReader(fname); 
br =new BufferedReader (fr2); 
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for(int i = maximum_number; i>O; i--) 
{ 

while((str=br.readLine())!= null) 
{ 

if((str.startsWith("<")) && 
(Character.getNumericValue(str.charAt(l)) == i)) 

{ 
while(!((str = br.readLine()).equals("end_matrix"))) 
{ 

pw.println(str); 
} 
pw. println(" end_ matrix"); 

} //end of if 
}//end ofwhile loop 

}//end of for loop 
} //end ofReverseWrite() 

//ReadForValue will read input from file 

void ReadForValue() throws IOException 
{ 

int matrix_ size = StringLength I 2 ; 
System.out.println(matrix _size); 

int [][]output_ matrix= new int[matrix_size][matrix_size]; 

while( true) 
{ 

st =new StringTokenizer(str); 
token= st.countTokens(); 

if(!str.equals("end_matrix") && token!= 0) 
{ 

System.out.println(str); 

while( st.hasMoreTokens()) 
{ 

inputString = st.nextToken(); 
System.out.println("input String"+inputString); 
matrixlnput = Integer.parselnt(inputString); 
System.out.println("i = "+i+" j = "+j); 
output_ matrix[i][j] = matrixlnput; 
j++; 
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} 

i++; 
j = 0; 

}II end of :first outer if 

if( str. equals(" end_ matrix")) 
{ 

CheckElementary ce =new CheckElementary(); 
result= ce.ISElementary( output_ matrix); 

if(result ==false) 
{ 

System.out.println("This graph is not a elementary graph."); 
break; 

else 
} 

{ 

} 
new_matrix =true; 

} I I end of second outer if 

if((str = br.readLine()) ==null) break; 
StringLength = str.length(); 

if(new_matrix ==true) 
{ 

i = 0; 
new_ matrix = false; 
matrix_ size = StringLength I 2 ; 
output_ matrix = new int[ matrix_ size] [matrix_ size]; 

} 
} II end ofwhile loop 

} II end ofReadForValue 
} I I end of scanner class 
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II Class CheckElementary is responsible for checking ifthe unfolded graph is still 
elementary or not. 

class CheckElementary 
{ 

boolean ISElementary(int[] [] input_ matrix) 
{ 

int v = input_ matrix .length; 
Vertex [] vertex = new Vertex[ v]; 
int matrixlnput; 
String inputString; 

II reading the input adjacency matrix from the input file 
for(int i = 0; i < v; i++) 
{ 

int temp _list[] = new int[ v]; 
for(int j = 0; j < v; j++) 
{ 

temp_list[j] = input_matrix[i][j]; 

} I I end of inner loop 

vertex[i] =new Vertex(temp_list); 
} I I end of outer for loop 

int vertex_degree; 
int allow_ edge = 0; 
boolean elementary _graph = false; 
boolean return_ value = false; 
System.out.println("Vertex Length: "+vertex.length); 

if(vertex.length == 2) 
{ 

} 
else 
{ 

if(vertex[O].adjList[l] == 2 && vertex[l].adjList[O] == 2) 
return_ value = true; 

for(int i = 0; i< v; i++) 
{ 

vertex_degree = vertex[i].GetDegree(); 

if( vertex_ degree== 2) 
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{ 

vertex[j].GetDegree() == 1) 

for(int j = 0; j < v; j++) 
{ 

if(vertex[i].adjList[j] == 1) 
{ 

} 

if(vertex[j].GetDegree() == 2 II 

{ 

} 
allow_ edge++; 

} //end of inner for loop 

if(allow_edge != 2) 
{ 
System.out.println("Not an elementary graph."); 

break; 
} 
else 
{ 

} 

allow_ edge = 0; 
elementary _graph = true; 

} //end of outer if 
}//end of outer for loop 

if( elementary _graph == true) 
{ 

System.out.println("This is a elementary graph."); 

return_ value = true; 
} 

else { return_value =false;} 
} // end of most outer else 
return return_ value; 

} // end of ISElementary 
} I I end of CheckElementary class 
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Appendix C 

Code Examples of Algorithm 3 

I* Class CheckBCNut works like a bridge between the classes Vertex and BabyChestNut . It 
reads the input graph from a file, then creates a Vertex object for each vertex and sends 
them to BabyChestNut for checking. After receiving the requested information form 
BabyChestNut , it returns the final result. *I 

class CheckBCNut 
{ 

static int parallel_ edge; 
public static void main( String [] args )throws IOException 
{ 

II reading the input adjacency matrix from the input file 

for(int i = 0; i < v; i++) 
{ 

text = fileRead.readLine(); 
StringTokenizer st =new StringTokenizer(text); 
int temp_list []=new int[v]; 

for(int j = 0; j < v; j++) 
{ 

inputString = st.nextToken(); 
matrixlnput = Integer.parseint(inputString); 
temp _list[j] = matrixlnput; 

} II end of inner loop 
vertex[i] =new Vertex(temp_list); 

} II end of outer for loop 
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} 

II calling responsible method and producing the final result 

int check_ edges; 
for(int i=O; i<v; i++) 
{ 

check_edges = bcn.FindBabyCheastNut(vertex,i,v); 

if(check_edges > 2) 
{ 

} 

System.out.println("This is not a baby cheast nut."); 
break; 

} I I end of for loop 

if (parallel_ edge == 2) 

System.out.println("This is a baby chest nut."); 

else System.out.println("This is not a baby cheast nut."); 

}II end of main method 

I I BabyCheastNut class is responsible for performing necessary checking and to decide a 
given graph is a baby chestnut or not 

class BabyCheastNut extends CheckBCNut 
{ 

int FindBabyCheastNut(Vertex [] vertex, int v _id, int v) 
{ 

int count_ edge= 0; 

for(int i =0; i<v; i++) 
{ 

if(vertex[v_id].adjList[i] == 1) 
{ 

} 

if(v _id != i && count_ edge < 2) 
{ 

count_ edge++; 
} 

if( vertex[ v _id].adjList[i] == 2) 

parallel_ edge++; 
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} 

return count_ edge; 
} I I end of FindBabyCheastNut() 

} 

I* Class ChceklmperviousLoop is responsible for performing the major operations for the 
step three of the algorithm. This class will check if an eliminated loop is impervious or not. 
*I 

class CheckimperviousLoop 
{ 

boolean CheckForlrnperviousLoop(int matrix[][], int matrix_id) 
{ 

if(matrix_id == 1) II 0 =main principal vertex, 2 =another vertex 
{ 

for(int i=O;i < matrix .length; i++) 
{ 

second_ vertex = check_ second_ vertex(matrix, i); 

for(int j=O; j <matrix .length; j++) 
{ 

if(matrix[O][O] > 2) 
viable = true; 

} 

if(second_vertex ==true && (i==j) && matrix[i][j] > 2) 
{ 

viable = true; 
} 

} I I end of inner for loop 
} I I end of outer for loop 

} II end of if 

boolean self_loop =false; II indicate the vertex contain a loop 
int loop_count = 0; II count the number ofloop so ifthere is no loop it will return 0 

if( matrix _id > 1) 
{ 

for(int i =0; i<matrix.length; i++) 
{ 
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if(matrix[i][i] >= 2) 
{ 

} 

self _loop = true; 
loop_ count++; 

} I I end of outer for loop 
}II end ofifwhich checking matrix_id 

if(loop _count == 0) 
{ 

viable = true; 
} 
return viable; 

} II end ofCheckForlmperviousLoop 

II Checking for a second vertex in the given graph 

boolean check_ second_ vertex(int [][]matrix, int selected_ vertex) 
{ 

} 

int length = matrix.length; 
boolean second_ vertex = false; 

for(int i=O; i<length; i++) 
{ 

if( i != 0 && i != 2) 
{ 

for(int j=O; j<length; j++) 
{ 

ifG == selected_ vertex && matrix[i][j] >= 1) 
{ 

second_ vertex = true; 
} 

} 
} 

} 
return second_ vertex; 

} I I end of ChecklmperviousLoop Class 
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II Class Scanner is responsible for producing the reverse steps output file 

class Scanner 
{ 

} 

Scanner( String filename) throws IOException 
{ 

} 

fr =new FileReader(filename); 
br =new BufferedReader (fr); 
build _string(); 

void build_string() throws IOException 
{ 

while((str=br.readLine())!= null) 
{ 

recognize(str); 
} 

void recognize(String s) 
{ 

} 

if( s.starts With("<")) 
{ 

maximum_number = Character.getNumericValue(s.charAt(1)); 
} 

II Reverse Write function will print the matrices from where loops are removed in a reverse 
way 

void ReverseWrite(String fname) throws IOException 
{ 

FileReader fr2 =new FileReader(fname); 
br =new BufferedReader (fr2); 

for(int i =maximum_ number; i>O; i--) 
{ 

fr2 =new FileReader(fname); 
br =new BufferedReader (fr2); 

while((str=br.readLine())!= null) 
{ 

if((str.startsWith("<")) && 
(Character.getNumericValue(str.charAt(1)) == i)) 

{ 
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while(!((str = br.readLine()).equals("end_matrix"))) 
{ 

pw.println(str); 
} 
println("end _matrix"); 

} II end of if 
}II end ofwhile loop 

}II end of for loop 
} II end ofReverseWrite() 

void ReadForValue() throws IOException 
{ 

II Similar code like algorithm 2 

boolean build_ org_ matrix(int [] single _array_ matrix,int index_ size) 
{ 

int matrix _length= single_ array_ matrix .length; 

int [] [] Org_ Matrix = new int[ index_ size] [index_ size]; 
int k = 0; 

for(int i = 0; i<index_size; i++) 
{ 

for(int j=O; j<index _size; j++) 
{ 

} 

if(k < matrix_length) 
{ 

} 

Org_Matrix [i][j] = single_array_matrix[k]; 
k++; 

} I I end of for loop 

ChecklmperviousLoop cil =new ChecklmperviousLoop(); 
boolean viable = cil.CheckForlmperviousLoop(Org_ Matrix, matrix _id); 
matrix_id++; 

return viable; 

} II end ofbuild_org_matrix() 
} I I end of scanner class 
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