

Some Graph Algorithms for

Molecular Switching Devices

St. John's

by

Mohammad Monowar Hossain

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the

requirements for the degree of

Master of Science

Department of Computer Science

Memorial University of Newfoundland

November 2006

Newfoundland

1+1 Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de !'edition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre reference
ISBN: 978-0-494-31256-8
Our file Notre reference
ISBN: 978-0-494-31256-8

L'auteur a accorde une licence non exclusive
permettant a Ia Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I' Internet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

L'auteur conserve Ia propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni Ia these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

Conformement a Ia loi canadienne
sur Ia protection de Ia vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans Ia pagination,
il n'y aura aucun contenu manquant.

Abstract

Molecular computing is a promlSlng area for researchers from several disciplines.

Currently many theoretical and application-oriented scientists are turning towards

molecular computing with the goal to develop a molecular computer. Digital circuits for

molecular devices are designed at the molecular level. A digital circuit will be thousands

of times smaller if we can develop switching elements from appropriate molecules by

using a direct chemical procedure. To develop such circuits we need to understand the

nature of molecular switching in principle. The concept soliton automaton has been

introduced to model this phenomena using graph matchings. The goal of my thesis was to

develop and implement graph algorithms for soliton automata.

Acknowledgements

First would like to thank my supervisor Dr. Miklos Bartha for his continuous guidance

and suggestions. Without his guidance and support this thesis would not have taken this

final form. I would also like to thank all the faculty and staff of Computer Science

Department for their assistance and support throughout my program. Finally, I would like

to thank my family and friends and others who have contributed to my research and

thesis.

11

Table of Contents

Abstract

Acknowledgements

Table of Contents

List of Figures

1 Introduction

2 Molecular Switching and Carter's Mechanism

i

ii

iii

vi

1

7

2.1 Basic Concepts .. 7

2.2 Push-Pull Olefin . 8

2.3 Soliton Gang Switching . 10

2.4 Soliton Valving .. 12

2.5 Soliton Memory Element . 13

3 Graph and Matching Theory 15

4 Soliton Automata and Their Structural Decomposition 26

4.1 Finite State Automata 27

4.2 Soliton Graphs 27

4.3 Soliton Walks... 28

111

5

4.4 Soliton Automata 30

4.5 Viable Soliton Graphs 30

4.6 Principal Canonical Class and Principle Vertex . 31

4.7 Chestnuts.. 32

4.8 Redex and Secondary Loop 34

4.9 Reduced Graphs .. 36

4.10 Generalized Trees 36

4.11 Baby Chestnuts 37

An Algorithm for Graph Reduction by Using the Incidence Matrix of

Graphs 41

5.1 Representing a graph by its Adjacency Matrix 41

5.2 Steps of the Algorithm ... 43

5.3 Example of the Reduction Algorithm .. 44

5.4 Discussion of Implementation .. 50

6 An Algorithm to decide if an Arbitrary Graph is an Elementary Deterministic

Soliton Graph 50

6.1 Steps of the Algorithm ... 53

6.2 The Depth-first Search Algorithm and Its Modification 55

6.3 Special graphs considered for generalized trees 58

6.4 Discussion of Implementation .. 60

IV

7 An Algorithm to decide if an Arbitrary Graph is a Deterministic Viable

Soliton Graph Containing an Alternating Cycle 64

7.1 Steps of the Algorithm ... 65

7.2 Further discussion on baby chestnuts, impervious loops, principle vertices and

viable soliton graphs . 66

7.3 Discussion of Implementation .. 71

8 Conclusion and Future Work

Bibliography

Appendix A

Appendix B

Appendix C

Code Examples of Algorithm 1

Code Examples of Algorithm 2

Code Examples of Algorithm 3

v

74

76

81

89

97

List of Figures

1.1 Effect of soliton in a Polyacetylene . 2

2.1 Push-Pull OLEFIN . 8

2.2 Soliton Switching . 9

2.3 Soliton switching involving two transpolyacetylene chains and two

chromophores . 1 0

2.4 Soliton Gang Switching . 11

2.5 Soliton Gang Switching with -(SN)- acceptor 12

2.6 Soliton Valving ... 13

2. 7 Soliton Memory Element . 14

3.1 An impervious edge e . 22

4.1 An example soliton walk . 29

4.2 A Chestnut . 32

4.3 Baby chestnut.. 38

5.1 A Graph ... 42

5.2 Graph to be reduced . 44

5.3 Graph after the first iteration ... 45

5.4 Graph after the second iteration .. 45

5.5 Graph after the third iteration... 46

Vl

5.6 Graph after the fourth iteration... 47

5.7 Graph after the fifth iteration . 47

5.8 Graph after the sixth iteration . 48

5.9 Graph after the seventh iteration... 49

5.10 Graph after the eight iteration . 49

5.11 Graphs used for testing the first algorithm . 51

6.1 Generalized tree . 59

6.2 Graphs containing overlapping odd length cycles.............................. 60

6.3 Graphs used for testing the second algorithm................................... 63

7.1 Graph with an impervious edge . 67

7.2 Baby chestnut with an impervious loop . 68

7.3 Chestnut with principle vertices 69

7.4 Case 1 when unfolding an impervious loop . 70

7.5 Case 2 when unfolding an impervious loop 70

7.6 Graphs used for testing the third algorithm ... 73

Vll

Chapter 1

Introduction

Molecular computing IS a promlSlng area for researchers from several disciplines.

Currently many theoretical and application-oriented scientists are turning towards

molecular computing with the goal to develop a molecular computer. Electronics is the

major obstacle in reducing the size and increasing the speed of conventional switching

devices. New principles like bioelectronics or molecular electronics have been introduced

to overcome these problems. The idea of molecular switching dates back to the early

1930's, when science fiction introduced some molecular devices [17]. Feynman was one of

the pioneer researchers who brought up the idea of building real molecular devices. He

introduced his ideas in [31]. A viram and Ranter also dealt with molecular electronic

devices in their paper [32], which encouraged F. L. Cater to continue their study. Some

further interesting ideas (e.g. biological systems) have been proposed by Adleman [33] and

Conrad[34].

1

Digital circuits for molecular devices are designed at the molecular level. A digital circuit

will be thousands of times smaller if we can develop switching elements from appropriate

molecules by a direct chemical procedure. For this type of molecular circuits, chemical

molecules will be used as electronic switches and will be interconnected by some sort of

ultra-fine conducting wires. Carter [20] introduced an idea to construct such type of

conductors. In his proposed technique, Carter used single strands of electrically conductive

plastic polyacetylene and electrons. Electrons are thought to travel along polyacetylene in

little packets called soliton. Molecular scale electronic devices are constructed from

molecular switches and polyacetylene chains, which are called soliton circuits.

Polyacetylene consists of a chain of carbon atoms held together by alternating double and

single bonds. Each carbon atom is also bonded to a hydrogen atom. Polyacetylene has two

stable states, which differ in the position of the alternating double and single bonds with

respect to the carbon atoms. A soliton is a moving wave which causes conversion between

the two states of polyacetylene. When a soliton wave passes through a polyacetylene, it

effectively selects one arrangement of bonds and ignores others. Fig. 1.1 shows how a

soliton wave affects the bonds in a polyacetylene .

... ------- +

H H H
I I I

'c'c'c'c'c'c,
I ·_;~ I_;~ I .._;If

H H H

H H H
..-._1..-._1..-._1

~ 'c/c,c/c,c/c,
I I I
H H H

I

Figure. 1.1: Effect of soliton in a polyacetylene

2

Several soliton-based computational models have been proposed in the last few years. A

good survey of such models can be found in [35]. In this thesis we have used a

mathematical model of soliton circuits known as soliton automata. The concept of soliton

automata was first introduced by J. Dassow and H. JUrgensen in 1990 [22]. The intention

behind this model was to investigate the logical aspects of soliton switching.

Graph theory plays a significant role in the study of soliton automata because the

underlying object of soliton automaton is a finite undirected graph, called a soliton graph.

In soliton graphs vertices correspond to the atoms or certain group of atoms, whereas the

edges represent chemical bonds or chains of bonds. The multiplicity of bonds (single or

double) is fixed by a weight assignment to the edges. We assume that molecules consist of

carbon and hydrogen atoms only. In a soliton graph, some vertices are distinguished as

external, and their role is to accept or donate electrons for the remaining part of the

molecular network. In the later chapters of this thesis, we will provide a detailed discussion

on soliton automata and their underlying soliton graphs. In this chapter we are limiting our

focus to the intuitive understanding of soliton graphs and automata.

The analysis of soliton automata is a complex task, and only few special cases have been

analyzed so far. These are: soliton automata with a single external vertex [23], automata

with a single cycle [24], automata obtained by the general product of strongly deterministic

soliton automata [25], and the transition monoids of tree-based soliton automata have been

studied in [26]. M. Bartha and E. Gombas first recognized the connection between soliton

3

automata and matching theory [1], which opens up a new perspective for the study of

soliton automata. They used the concept of perfect internal matching (matching covering

all internal vertices of a graph) for characterizing soliton graphs. In a soliton graph, the

edges belonging to a perfect internal matching correspond to the double bonds in an

appropriate state of a molecule chain. After the paper [1], soliton graphs and automata have

been systematically studied in a sequence of papers on the ground of matching theory

[2] [4] [5] [1 0].

When using matching theory to describe soliton automata, we are analyzing the internal

structure of a chemical compound (e.g. polyacetylene). Using matching theory for this

purpose is not a new idea. For many years, chemists have used graph matchings to analyze

different chemical compounds which have an alternating pattern of single and double bond.

Graphs corresponding to such compounds are called Hiickel graphs in the literature. For

more information on Hiickel graphs, see [28, Section 8.7]. Hiickel and soliton graphs are

quite similar, although there is an important difference between them. Hiickel graphs

generally have a perfect matching, whereas soliton graphs only possess a matching that

covers all of the internal vertices (vertices with degree greater than one).

The study of soliton switching is not limited to theory. There is also some practical

research going on. As an example, a research project funded by Circadian Technologies

shows promising results. A series of papers showed that an appropriate chemical structure,

which is able to communicate with solitons, could be used as an electronic switching

4

device [36][37][38][39]. In this thesis, however, we concentrate on the mathematical model

of soliton circuits. A thorough analysis of the mathematical model can tell us a lot about the

behavior of a soliton circuit, so we can verify certain properties of such circuits without

actually building them. Therefore, the elaboration of a proper mathematical model is a

significant step towards developing molecular switching devices.

There is an intriguing connection between soliton automata and the recent efforts by

Abramsky [41] and others to revive Girard's geometry of interaction program. As it turns

out, soliton automata can be given the structure of a self-dual compact closed category,

which qualifies such automata as simple but very efficient reversible computation models.

Research in this direction is under development.

In this thesis we have worked out three algorithms, which are all related to soliton graphs.

These algorithms will either test some important property of soliton graphs, or perform a

simplifying transformation on such graphs. To develop these algorithms, we need a

thorough understanding of matching theory and the structure of soliton graphs. We devote

separate chapters to matching theory and soliton automata in order to provide the necessary

background. Most of the terms used here to explain the algorithms will be dealt with in

later chapters.

The first algorithm reduces a graph, using its incidence matrix. The second algorithms can

decide if a given graph is an elementary deterministic soliton graph or not. The third

5

algorithm can test whether a given graph is a deterministic viable soliton graph containing

an alternating cycle. Different intermediate steps of the second and third algorithms will

also determine some other important properties of soliton graphs (e.g. being a generalized

tree or a baby chestnut).

After the design of the above algorithms, I have implemented and tested all three of them.

The algorithms are discussed in separate chapters, which also indicate the major underlying

theoretical results.

The thesis consists of eight chapters. Chapter 1 is a short introduction containing a

preliminary discussion on molecular switching devices and their history, soliton graphs and

automata. In Chapter 2, we introduce the idea of molecular switching and F. L. Carter's

mechanism for soliton switching. Chapter 3 is a revision of basis concepts in matching

theory, which are related to this thesis. In Chapter 4, the reader will find the exact

definition of soliton automata and soliton graphs. This chapter contains most of the

theoretical background used in the algorithms. This chapter also contains a detailed

discussion on the structure of soliton graphs. Chapter 5, 6, and 7 contain the description of

the first, second, and third algorithm, respectively. Finally, Chapter 8 concludes this thesis.

6

Chapter 2

Molecular Switching and Carter's
Mechanism

Before discussing soliton automata and soliton graphs in detail, we present some heuristics

about the concepts of molecular switching. This chapter will provide some answers as to

how Carter's experimental technique to explore molecular level switching leads to the

development of mathematical models like Soliton Automata. Most of the observations in

this chapter originate form Carter's paper 'Conformational switching at the molecular

level' [18]. The reader is referred to that work for more details.

2.1 Basic Concepts

A soliton is like a particle that can move in one or two dimensions on a microscopic scale.

The single-double bond rearrangement of a conjugated system is the key idea of

7

propagating a soliton through such a system. When a soliton passes through a conjugated

system, it causes the exchange of single and double bonds along its passage. In most of the

examples of his paper, Carter used polyacetylene as a conjugated system. As mentioned

before, Polyacetylene consists of a chain of carbon atoms held together by alternating

double and single bonds and each carbon atom is also bonded to a hydrogen atom. See Fig.

1.1.

2.2 Push-Pull Olefin

'Push-pull' is an important concept introduced by Carter. He showed special interest in the

push-pull distributed olefin (1,1-N, N-dimethy1-2-nitroethenamine) (See Fig. 2.1) because

it can be embedded in a transpolyacetylene and also can be switched off by the propagation

of a soliton. See Fig. 2.2.

Figure. 2.1: Push-Pull OLEFIN

8

After the horizontal soliton passage, resulting in the arrangement of bonds shown at the bottom of Fig. 2.2, the vertical
switch of the embedded push-pull olefin molecule is no longer possible.

Soliton Passage""'

Figure. 2.2: Soliton Switching

2.3 Soliton Gang Switching

Carter extended the concept of soliton switching by introducing gang switching. The

concept of gang switching implies that there may be more than one chain of polyacetylene

and push-pull structure or extended chromophores (chromophore is a part of a molecule

which is responsible for color). Carter gave an example where he had two chains and two

different push-pull structures. Fig. 2.3 shows that example. In this example the passage of a

soliton down chain 1 will tum the first chromophore on and the second off; a soliton

moving down chain 2 will tum both of them off. Turning a chromophore off means that it

is not possible to propagate a soliton through the vertical chain of alternating single and

double bonds in that chromophore.

- - -o,N~ f R,c~s

Cha;n 1 •··~"-/y~~"'-/~ ~
~ 1 ""' J I I h •

Chaln 2 "' V.Af~/'--/4~
N l I

H3c/ 'cH3 1 He~
l ~s

Fig. 2.3: Soliton switching involving two transpolyacetylene chains and two chromophores.

10

Carter even generalized the concept of soliton gang switching. In Fig. 2.4, where A, C, and

D, are generalized electron acceptors, conjugated connectors, and electron donors,

respectively. In this figure, chromophores are separated from each other by dotted lines,

which imply eight different chromophore-chain relationships relative to the conformations

of chains 1, 2 and 3. See [18] for details.

In another example, Carter extends the generalization concept to a very advanced level,

which goes beyond our meager knowledge of soliton propagation. He has replaced the

electron acceptor and donor groups with molecular 'wires' or filaments of -(SN) -. Fig. 2.5

illustrates this example.

A . A A . .

Chain 1 • • • ••• . .
c . c c . c

Chain 2 ••• ~··· . .
(

. (((.
Chain 3 ••• ~ •••

D D D D

Figure. 2.4: Soliton Gang Switching

11

Chain 1 • • •

Chain 2 •••

(SN)n ~ (SN)n
.
p

c

•••

Chain 3 • • • •••

(SN)n (SN)n (SN)n (SN)n

Figure. 2.5: Soliton Gang Switching with -(SN)- acceptor

2.4 Soliton V alving

Carter also described the valving behavior of soliton propagation in a conjugated system.

Fig. 2.6 is illustrates an example. In this example the passage of a soliton from X to Y (or

from Y to X) moves the double bond at the branch carbon from chain X to the chain Y.

Moreover, in the upper right portion of the figure, a soliton moving from Y to Z shifts the

double bond to the chain Z.

12

X -.y X

~ 'I
y

~ 'I
~ f

jv-z
fj

~

\ / If
fj f z z

~
~

z-~

~

z

Figure. 2.6: Soliton Valving

2.5 Soliton Memory Element

Finally Carter proposed a structure called a soliton memory element, which shows us a real

world use of soliton propagation. In his model, the access time of an information bit and

the number of bits clearly depend on the soliton velocity and the length of the conjugated

polymer linking the soliton generator and the electron tunnel switch. The structure of this

memory element is illustrated in Fig. 2.7.

13

This memory element can store four bits (in duplicate) at a time (two bits on the upper

chain and two bits on the lower chain). In this memory element solitons are temporarily

stored on transpolyacetelylene chains. These chains connect the soliton generator first with

the soliton reverser which reflects the solitons and with the control groups (CGs), which

regulate the depth of the potential wells and hence the pseudostationary state energies of

soliton. The control groups are gates to the multi-barrier electron tunnel detector (switch).

See [18] for more details.

+

Soliton Reverser +

Body

Figure. 2. 7: Soliton Memory Element

14

Chapter 3

Graph and Matching Theory

The underlying object of a soliton automaton is a soliton graph, and the definition of

soliton graphs is based on graph matchings. Thus, matching theory becomes an integral

part of this thesis. One must have a strong background in graph theory in order to

understand the structural analysis of soliton graphs. The goal of this chapter is to provide

an overview of the most important concepts on graphs and graph matchings. The reader is

referred to [28] for a comprehensive study of matching theory. The notation and

terminology used in this thesis is compatible with that work.

• Graph

By a graph we mean a finite undirected graph with multiple edges and loops allowed. For a

graph G, V(G) and E(G) will denote the set of vertices and the set of edges of G,

respectively. An edge e EE(G) connects two vertices v1, v2 E V(G), which are said to be

15

adjacent in G. The vertices v1 and v2 are called the endpoints of e. If v1 = v2, then e is

called a loop around v 1.

• Degree of a vertex

In graph G, the degree of a vertex v is the number of occurrences of v as an endpoint of

some edge in E(G). According to this definition, every loop around v contributes two

occurrences to the count.

• External, Internal and Isolated

If the degree of a vertex v is one, then that vertex is called external. If the degree of v is

greater than one, then v is internal, and v is isolated if its degree is 0. An edge e EE(G) is

said to be an external edge if one of its endpoints is an external vertex. Internal edges are

those that are not external. The sets of external and internal vertices of G will be denoted

by Ext(G) and Int(G), respectively.

Graph G is said to be open if it has at least one external vertex, and G is closed if all the

vertices of G are internal.

16

• Graph Matching:

A matching M of graph G is a subset of E(G) such that no vertex of G occurs more than

once as an endpoint of some edge in M. This definition implies that loops are not allowed

to participate in M. The endpoints of the edges contained in Mare said to be covered by M.

• Perfect and Perfect internal matching

A matching is called perfect if it covers all vertices of G. A perfect internal matching is

one that covers all of Int(G). Clearly, the notions perfect matching and perfect internal

matching coincide for closed graphs.

• Subgraph

A subgraph G' of G is a collection of vertices and edges of G. However, in our treatment

of open graphs we do not want to allow that new external vertices (i.e., ones that are not

present in G) emerge in G ~ Therefore, when vertex v E Int(G) becomes external in G ~ we

will augment G' with a loop edge around v. This augmentation will be understood

automatically in all subgraphs of G. The subgraph of G induced by a set of vertices

XcV(G) will be denoted by G[X}, or just by [X] if G is understood. By the standard

definition, the edges of G[X] are those of G having both endpoints in X

17

• Bipartite graph

A graph is called bipartite if its set of vertices V(G) can be partitioned into two sets A and B

such that every edge in E(G) has one endpoint in A and the other in B. Often the sets A and

B are called color classes of G and (A,B) a bipartition of G.

• Allowed, Forbidden, Mandatory and Constant edges

An edge e EE(G) is called allowed if e is part of some perfect internal matching of G, and e

is forbidden if this is not the case. Edge e is mandatory if it is present in all perfect internal

matchings of G, and e is constant if it is either forbidden or mandatory.

• Elementary Graph

Graph G is elementary if its allowed edges form a connected sub graph covering all of the

external vertices, and G is]-extendable if all of its edges, except the loops if any, are

allowed.

• Canonical Partition

The canonical partition of an elementary graph G is determined by the following

equivalence relation~ on V(G). For any two internal vertices u, vEV(G), u ~ v if the edge

e=(u, v) becomes forbidden in G +e. (The graph G+e is obtained from G by adding the

edge e).

18

• Nice and G-Permissible Graph

Let graph G have a perfect internal matching. A sub graph G 1 of G is nice if it has a perfect

internal matching, and every perfect internal matching of G 1 can be extended to a perfect

internal matching of G. A perfect internal matching of G is G '-permissible if it is the

extension of an appropriate perfect internal matching of G ~ Not all perfect internal

matchings of G are necessarily G '-permissible.

• Elementary Components of Graph

The subgraph of G determined by its allowed edges usually has several connected

components, which are known as the elementary components of G. An elementary

component C is external if it contains external vertices of G, otherwise C is internal. An

elementary component can be as small as a single external vertex of G. Such a component

is the only exception from the general rule that each elementary component is an

elementary graph.

A mandatory elementary component is a single mandatory edge e EE(G) with a loop

around one or both of its endpoints, depending on whether e is external or internal. An edge

connecting two external vertices is not mandatory in G, therefore it is not a mandatory

elementary component either.

19

• Walk, Trail and Cycle

A walk in graph G is an alternating sequence of vertices and edges, starting and ending

with a vertex, such that each edge in the sequence is incident with the vertex immediately

preceding and following it. A trail is a walk in which no edge occurs more than once, and a

path is a trail with no repetition in the sequence of vertices. A cycle is a trail that returns to

its starting point after covering a path, and then stops. A trail is called external if one of its

endpoints is such, otherwise the trail is internal.

• M-Alternating Trail, Walk and Fork

Let M be a perfect internal matching of G. A trail a= v0, e1 . . . en, Vn is alternating with

respect to M (or M-alternating, for short) if for every 1 ::; i ::; n - 1, ei EM if and only if

ei+1 !i!M. An alternating trail can return to itself only at its endpoints. Therefore we shall

specify alternating trails just by giving the set of their edges, indicating the starting point

and other particulars of the trails only in words when necessary.

If a= vo, e1 ... en, Vn is an M-alternating path and e1 EM (e1 fi!M), then we can say that a is

positive (respectively, negative) at its v0 endpoint. An external alternating path leading to

an internal vertex is positive (negative) if it is such at its internal endpoint. An internal

alternating path is positive (negative) if it is such at both ends. A positive M-alternating

fork is a pair of disjoint positive external M-alternating paths leading to two different

20

internal vertices. Even if this sounds odd, a positive alternating fork is said to connect its

two internal endpoints.

• Crossing, M-alternating Loop, Cycle and Network

A perfect internal matching of G is often called a state. For any state M, an M-alternating

path connecting two external vertices of G is called a crossing. An M-alternating loop

around vertex vis an odd M-alternating cycle starting from v. Clearly, the first and the last

edge of any M-alternating loop must not be in M. Since we now have a distinct name for

odd alternating cycles, we shall reserve the term "alternating cycle" for even length ones.

An M-alternating unit is either a crossing or an (even length) alternating cycle with respect

to M. An external alternating path is one that has an external endpoint. Making an M

alternating unit a (or switching on a) means changing the status of each edge appearing in

a regarding its being present or not present in M.

An M-alternating network r is a set of pairwise disjoint M-alternating units. Again, by

making r in state M we mean creating a new state S(M, I) by making the units in r one by

one in an arbitrary order. It was proved in [3] that for every two states M and M' there

exists an M-alternating network r such that M' = S(M, I) and M =S(M',I). This network r

is called the mediator-alternating network between states M and M~

21

• Accessible Vertex, Impervious and Viable Edges

An internal vertex v of G is called accessible in state M if there exists a positive external

M-alternating path leading to v. An edge e is impervious in state M if neither of its

endpoints are accessible in M. Edge e is viable if it is not impervious. Fig. 3.1 is showing a

graph containing an impervious edge e. In this figure, double lines connecting two vertices

indicate edges in the given matching M.

' e

Figure. 3.1: An impervious edge e

• Some important claims and Corollaries

Some of the important claims and corollaries regarding the above definitions are listed

below:

Claim 3.1. [1 OJ An internal vertex vis accessible in state M if and only ifv is accessible in

all states of G.

22

Proof: Let us augment G by a new external edge at v, that is, by an edge e = (v, v }, where

v' fi! V(G). If G + e denotes the augmented graph, then G + e still has a perfect internal

matching, moreover, G is a nice subgraph of G + e. Obviously, there is only one way to

extend any perfect internal matching of G to G + e, i.e., by not including the edge e in that

matching. We shall therefore identify each state of G by its unique extension to G +e. By

assumption, there exists an M-alternating crossing a in G + e passing through the edge e.

Consider the state S(M, a), and switch to any G-permissible state M' of G + e by making

the mediator alternating network rbetween S(M, a) and M~ It is clear that r contains a

unique crossing fJ going through e. Stripping fJ from the edge e results in the desired

positive external M~alternating path in G leading to vertex v.

By virtue of Claim 3.1 we can say that an internal vertex v is accessible in G without

specifying the state M relative to which this concept was originally defined.

Corollary 3.2. [10} An edge e is impervious in some state of G if and only if e is impervious

in all states of G.

Claim 3.3. Every internal vertex of an open elementary graph G is accessible.

Proof: It was proved in [3] that, for every two allowed edges e1,e2 of an elementary graph,

there exists a state M such that both e 1 and e2 are contained in an appropriate M-alternating

unit. Let v be an arbitrary internal vertex of G. Clearly, there exists an edge e EM incident

23

with v. If e is external, then we are done. Otherwise, since e is allowed, for any external

edge e 'of G there exists a state M' and a crossing with respect toM' such that goes through

e and e ~ Thus, vis indeed accessible (e.g. in state M).

Claim 3.4. Let C1 and C2 be two different external elementary components of G. There

exists no alternating path fJ with respect to any state M connecting C1 and C2 in such a way

that the two endpoints of fJ, but no other vertices, lie in C1 and C2.

Proof: Assume, by contradiction, that there exists an M-alternating path fJ connecting

vertex v1 in C1 with vertex v2 in C2 as described in the claim. Clearly, fJ must be negative at

both ends. Moreover, v; (i =1,2) can be external only if C; = { v;}. Take a positive external

M-alternating path a; leading to v; inside C; if v; is internal, otherwise let a; be the empty

path. The path a; exists by Claim 3.3 above. Combining a1, fJ, and a2 then results in a

crossing through both components C1 and C2, which contradicts that C1 :F Cz.

Claim 3.5. If v 1 and v2 are two internal vertices of an elementary graph G, then vrv2 if and

only if one of the following conditions are met in any state M of G:

(a) there exists a positive M-alternating path connecting v1 and v2,

(b) there exists a positive M-alternating fork connecting v 1 and v2.

Proof. Consider the extra edge e = (v1, v2) in the graph G +e. Since G is a nice subgraph of

G + e, the edge e cannot be mandatory. Therefore e is not forbidden if and only if there

exists an Me-alternating unit passing through e in any state Me of G + e.

24

Identifying the G-permissible states of G + e with those of G, this is equivalent to saying

that e is not forbidden in G + e if and only if there exists an M-altemating unit passing

through e in any state M of G. This unit opens up to either a positive M-altemating path or

a positive M-altemating fork connecting v1 and v2 when the edge e is deleted from G+e.

25

Chapter 4

Soliton Automata and Their Structural
Decomposition

Soliton automata are the main focus of this research. The algorithms that we have worked

out in this thesis are related to soliton automata (actually soliton graphs which are the

underlying objects of soliton automata). Different steps of these algorithms can determine

many important properties of soliton automata. This chapter will provide a brief overview

of soliton automata. There are many complex results on soliton automata, which are very

hard to cover in one chapter. Therefore, in this chapter we will mainly concentrate on those

results that will help us to elaborate the algorithms of this thesis. Most of the results listed

in this chapter originate from papers [2][4][1 0][11].

26

4.1 Finite State Automata

An alphabet is a finite, nonempty set of symbols. A non-deterministic finite state

automaton is a triple A =(S, X, 8), where Sis a non-empty finite set, the set of states, X is an

alphabet, the input alphabet, and S: S x X -)- 28 is the transition function. Generally we use

the term "automaton" to mean "non-deterministic finite automaton".

An automaton A =(S, X, 8) is deterministic if for each s ES and x EX, I S(s,x) I .::; 1.

4.2 Soliton Graphs

The underlying object of a soliton automaton is a so called soliton graph. Such a graph is

the topological model of a hydrocarbon molecule (or chain of molecules) along which

soliton waves travel. In this model, soliton graphs come with a perfect internal matching,

i.e., a matching that covers all the vertices with degree at least two. These vertices, called

internal, model carbon atoms, whereas vertices with degree one, called external, represent a

suitable chemical interface with the outside world. The states of the corresponding

automaton are perfect internal matchings of the underlying graph, and transitions are

carried out by switching on alternating walks.

A soliton graph is an open graph G having a perfect internal matching. External vertices in

G provide an interface by which the corresponding soliton automaton A(G) can be

controlled from the outside world. The states of A(G) are the perfect internal matchings of

G, and the inputs are pairs of external vertices in G. A state change of A(G) in state (perfect

internal matching) M on input (v1, v2) is carried out by selecting an alternating walk a

27

connecting v1 to v2 with respect to the current state M, and exchanging the status of each

edge along a regarding its being present or not present in M. The resulting new state will

be denoted byS(M,a). There might be several alternating walks connecting the same pair

(v1, v2) of external vertices. The formal definition of alternating (soliton) walks and

automata is given in the next two sections.

4.3 Soliton Walks

Let Mbe a state of G. The set of external alternating walks, together with the concept of

switching on such walks is defined recursively as follows -

1. The walk a= v0ev1, where e = (v0 , v1) with v0 being external, is an external

alternating walk, and the set S(M,a) r;;;, E(G) is defined by S(M,a) = M EE> {e}.

(The operation EE> is symmetric difference of sets).

2. If a = v0e1 ... en vn is an external alternating walk ending at an internal vertex vn ,

and en+!= (vn, Vn+l) is such that en+! E S(M,a) if and only if en E S(M,a), then

a'= aen+Ivn+l is an external alternating walk and S(M,a') = S(M,a) EE> {en+!}. It

is required, however, that en+l *en unless en E S(M,a)is a loop.

It is clear by the above definition that S(M,a) is a state if and only if the endpoint vn of

a is external, in which case the walk is called complete. A soliton walk is a complete

external alternating walk, which therefore connects two external vertices of G. Intuitively,

28

when making a soliton walk a in state M, one changes the sign of every edge immediately

after having traversed that edge. No backtrack is allowed on the edge e that was traversed

last, unless this is a must, i.e., e is a loop currently being positive. To exclude the

possibility of making a backtrack altogether, we assign a direction to the loops occurring in

soliton walks (e.g. clockwise/anticlockwise). Then we insist that once a loop has been

traversed in one direction, it must be traversed in the same direction immediately

afterwards. In Fig. 4.1 let M ={e, h1, h2}. A possible soliton walk from u to v with respect

toM is a= uewgzihiz2l2z3h2z4lizigwfv. Switching on a then results in S(M, a) = {f, h /2}.

Figure. 4.1: An example soliton walk

29

4.4 Soliton Automata

The underlying object of a soliton automaton is a graph G having a perfect internal

matching. Graph G gives rise to an automaton A(G), the states of which are the perfect

internal matchings of G. The input alphabet for A(G) is the set of all (ordered) pairs of

external vertices in G, and the state transition function 8 is defined by -

S(M, (vi, v2)) = {S(M,a)l a is a soliton walk from VI to Vz)

A soliton automaton A(G) is deterministic if for every state M and input (v J. v2),

1£5 (M, (vi, v2JJI :::; 1,

where

J (M, (vi, v2)) = {S(M, a)l a is a soliton walk from vi to Vz }.

Soliton graph G is deterministic if the automaton A(G) is such.

4.5 Viable Soliton Graphs

An edge e E E(G) is viable in state M if there exists an M-alternating path e I, ... , en from

some external vertex of G to one of the endpoints of e such that

(i) e ~edor any i E [n];

(ii) en and e are M-alternating in the sense that en EM if and only if e !i! M.

The edge e is impervious if it is not viable (in state M).

30

Thus, an edge e is viable in state M if there exists an M-alternating path that starts from an

external vertex, reaches one endpoint of e without passing through e itself, and it can be

continued on e in an alternating fashion. It is easy to see that the present definition of viable

and impervious edges is equivalent to the one given in Chapter 3.

If a graph is free form impervious allowed edges, then it is called a viable soliton graph.

The concept of viable soliton graphs is important for one of our algorithms (Chapter 7). By

that algorithm we can decide if a given graph G is a deterministic viable soliton graph

containing an alternating cycle.

4.6 Principal Canonical Class and Principal Vertex

Elementary components are classified as external or internal, depending on whether or not

they contain an external vertex. An elementary component of G is viable if it does not

contain impervious allowed edges. A viable internal elementary component C is one-way if

all external alternating paths (with respect to any state M) enter C in vertices belonging to

the same canonical class of C. This unique canonical class is called principal and vertices

belonging to this class are principal vertices. A viable elementary component is two-way if

it is not one-way.

31

4. 7 Chestnuts

A connected graph G is called a chestnut if it has a representation in the form

G = r + a 1 + ... +a k with k ~ 1, where ~ is a cycle of even length and each ai (i E [k D is tree

subject to the following conditions:

1. V (a J n V (a) = 0 for I :S: i ,.: j :S: k;

11. V (a;) n V (r) consists of a unique vertex- denoted by vi- for each i E [k J

111. v , and v j are at an even distance on y for any distinct i, J E [k]

tv. Every vertex w, E v (a,) with d (w,) > 2 is at even distance from vi in a, for each

i E [k]

Figure. 4.2: A Chestnut

The following theorem provides a characterization of chestnuts. For a proof, the reader is

referred to [7].

32

Theorem 4. 7.1. Let G be a connected deterministic soliton graph having no impervious

edges. The graph G has a non-mandatory internal elementary component, if and only if G

is a chestnut.

Chestnuts are bipartite graphs. A vertex of a chestnut G is called outer if its distance from

any of the vertices vi appearing in ii of the definition above is even, and inner if this

distance is odd. Then the inner and outer vertices indeed define a bipartition of G.

Moreover, the degree of each inner vertex is at most 2. Coming up with a perfect internal

matching for G is simple: just mark the cycle y in an alternating way, and then the

continuation is uniquely determined by the structure of the trees ai. Thus, G has exactly

two states. It is also easy to see that the inner internal vertices are accessible, while the

outer ones are inaccessible. Thus, the cycle y forms an internal elementary component with

its outer vertices constituting the principal canonical class of this component.

In terms of families of elementary components introduces in [10], the cycle y forms a

stand-alone internal family in G. The rest of G's families are all single mandatory edges

along the trees ai, or they are degenerate ones consisting of a single inner external vertex.

Their rank in the partial order::; G [10] is consistent with their position in the respective

trees ai, following a decreasing order from the leafs to the root. The family {y} is the

minimum element of ::; a, and G has no impervious edges. See [10] for the precise

definition of the precise partial order ::; G of families of soliton graph G.

33

As it was proved in [22], every chestnut G is a deterministic soliton graph. Moreover, G is

strongly deterministic in the sense that, for each pair (v1, v2) of external vertices, there exists

at most one soliton walk from v1 to v2 in each state of G. For every connected soliton graph

G having no impervious edges, but possessing a non-mandatory internal elementary

component, G is deterministic if and only if G is a chestnut.

4.8 Redex and Secondary Loop

A redex r in graph G consists of two adjacent edges e = (u, z) andf= (z, v) such that

u =f:. v are both internal and the degree of z is 2. The vertex z is called the centre of r, while u

and v (e and .f) are two focal vertices (respectively, focal edges) of r.

Let r be a redex in G. Contracting rinG means creating a new graph Grfrom G by deleting

the centre of r and merging the two focal vertices of r into one vertex s. The vertex s is

called the sink of r in Gr.

Suppose that G is a soliton graph. For a state M of G, let Mr denote the restriction of M to

edges in Gr. Clearly, Mr is a state of Gr. Sometimes, however, we shall identify M with Mr

if r is understood from the context. This identification is safe, as the state M can be

reconstructed from Mr in a unique way. In other words, the connection M ~ Mr is a one-to

one correspondence between the states of G and those of Gr. Graph G and state M will

often be referred to as the unfolding of Gr and Mr, respectively, with respect to redex r.

34

For any walk a in G, let trace(a) denote the restriction of a to edges in Gr . Clearly,

trace(a) is a walk in Gr. It is also easy to see that if a is a soliton walk in G with respect to

M, then trace(a) is a soliton walk in Gr. Moreover, the walk a can again be uniquely

recovered from its trace by unfolding. (Remember the orientation imposed on loops in

soliton walks.) Consequently, the connection a ---+ trace(a) is also a one-to-one

correspondence between soliton walks in G and soliton walks in Gr.

The following two statements have been proved in [11].

Proposition 4.8.1. The soliton automata AG and AG are isomorphic.
r

Proposition 4.8.2. For any state M, a is an M -alternating cycle in G if and only if trace

(a) is an Mr- alternating cycle in Gr.

It follows from Propositions 4.8.1 and 4.8.2 that any edge e in Gr is allowed in Gr if and

only if e is allowed in G. As to the two focal edges of r, they can either be allowed or not in

G, even when Gr is elementary. This issue is addressed by Lemma 4.8.3 -

Lemma 4.8.3. Let r be a redex in soliton graph G, and assume that Gr is elementary. Then

G is elementary if and only if both focal edges of r are allowed in G, or, equivalently, each

focal vertex of r has at least one allowed edge of Gr incident with it.

Proof: It is sufficient to note that either focal edge of r is forbidden in G if and only if the

other focal edge is mandatory. Moreover, an arbitrary internal edge e of G is mandatory if

and only if all edges adjacent toe are forbidden.

35

Another natural simplifying operation on graphs is the removal of a loop from around a

vertex v if, after the removal v still remains internal. Such loops are called secondary.

Let Gv denote the graph obtained from G by removing a secondary loop e at vertex v.

Clearly, if G is a soliton graph, then so is Gv, and the states of Gv are exactly the same as

those of G. The automata Aa and Aa , however, need not be isomorphic. This follows
v

from the fact that any external alternating walk reaching v on a positive edge can tum back

in G after having made the loop e twice, while this may not be possible for the same walk

without the presence of e. Nevertheless, it is still true that for every elementary soliton

graph G, G is deterministic if and only if Gv is such.

There are loops, however, the removal of which preserves isomorphism of soliton

automata. These loops are exactly the ones around the inaccessible vertices of G. Each such

loop is impervious, so that its removal does not affect the automaton behavior of G.

4.9 Reduced Graphs

The results listed in the forthcoming three sections are cited from [11]. Graph G is said to

be reduced if it is free from redexes and secondary loops. Every graph G can be

transformed into a reduced one r(G) by a suitable reduction procedure.

For an arbitrary graph G, contract all redexes and remove all secondary loops in an iterative

manner to obtain a reduced graph r(G). Observe that this reduction procedure has the so

36

called Church-Rosser property, that is, if G admits two different one-step reductions to

graphs G1 and G2, then either G1 is isomorphic to G2, or G1 and G2 can further be reduced

to a common graph G 1,2 In this context, one reduction step means contracting a redex or

removing a single secondary loop. As an immediate consequence of the Church-Rosser

property, the graph r(G) above is unique up to graph isomorphism.

In a similar fashion, the process of contracting all redexes and removing all impervious

secondary loops is called i-reduction and the graph obtained from G after i-reduction is

denoted by ri(G).

4.10 Generalized Trees

A generalized tree is a connected graph not containing even-length cycles. By this

definition, if there are odd-length cycles present in a generalized tree, then those cycles

must be pairwise edge-disjoint. Some important results on generalized trees are listed

below:

Theorem 4.1 0.1. Let G be a reduced elementary soliton graph. If G contains an even

length cycle, then it also has an alternating cycle with respect to some state of G.

Proof: For a proof, the reader is referred to [11].

Theorem 4.10.2. For any graph G, ifr(G) is a generalized tree, then G is a deterministic

soliton graph. Conversely, if G is a deterministic elementary soliton graph, then r(G) is a

generalized tree.

37

Proof: See [11].

Corollary 4.10.3. An elementary soliton graph G is deterministic if and only ifG reduces to

a generalized tree.

4.11 Baby Chestnuts

A baby chestnut is a chestnut r + a 1 such that y is a pair of parallel edges and each branch

of a 1 consists of a single edge or two adjacent edges. Fig. 4.3 shows a typical baby

chestnut-

Figure. 4.3: Baby chestnut

38

Some important results on deterministic soliton graphs and chestnuts are listed below -

Theorem 4.11.1. Let G be a viable connected soliton graph possessing a non-mandatory

internal elementary component. Then G is deterministic if and only if 'i (G) is a baby

chestnut.

Proof (Only if:) By Theorem 4. 7.1, G is a chestnut augmented by some impervious edges

connecting the outer internal vertices with each other. Since each internal inner vertex,

different from the base ones, is the center of a redex, we can eliminate all of these vertices,

except of course the last inner vertex on y, which will no longer identify a redex. After

removing the secondary impervious loops generated during redex elimination, ri(G)

becomes a baby chestnut.

(If:) Blowing up y by inverse redex elimination, or stretching the trees ai in this manner

preserves the property of being a chestnut, and any impervious loops added during this

procedure may only stretch into impervious edges. Thus, the graph resulting from a baby

chestnut after any number of blow-ups and stretches is still a chestnut with some additional

impervious edges, provided that impervious mandatory edges have not been introduced

during the unfolding procedure.

39

Theorem 4.11.2. Let G be a connected viable soliton graph. Then G is deterministic if and

only if it satisfies one of the following two conditions.

1. G i-reduces to a baby chestnut.

2. Each external elementary component of G reduces to a generalized tree, and the

subgraph of G determined by its internal elementary components has a unique

perfect matching.

Proof: Immediate by Theorems 4.7.1, 4.11.1 and Corollary 4.10.3.

40

Chapter 5

An Algorithm for Graph Reduction by
Using the Incidence Matrix of Graphs

This, and the next two chapters describe the algorithms that we have worked out in this

thesis. In the present chapter we discuss the first algorithm, which aims at graph reduction.

This algorithm is very important because the output of this algorithm is used as an input to

the other two algorithms of this thesis. Graph reduction was introduced in Chapter 4, so the

reader is referred back to that chapter for the terms used in graph reduction.

5.1 Representing a graph by its Adjacency Matrix

There are two common ways to represents graphs in computers - adjacency list and

adjacency matrix. In our algorithm we have used the adjacency matrix approach. In this

section we will briefly introduce the mechanism of graph representation using its adjacency

matrix.

41

To construct the adjacency matrix of a graph, first we number the vertices of the graph in

an arbitrary manner such as 1, 2, 3, ... , lVI. For a graph G=(V,E), the adjacency matrix will

be a I Vlxl VI sized integer matrix. For the adjacency matrix A=(aij),

if there are n parallel edges connecting vertices i and j.

We can use the adjacency matrix representation for both directed and undirected graphs.

The adjacency matrix will take 0(V2
) memory space and is independent of the number of

edges in the graph. Adjacency matrices can also be used for representing weighted graphs.

The adjacency matrix of an example graph is given below:

Figure. 5.1: A Graph

42

The adjacency matrix representation of the graph in Fig. 5.1 is:

5.2 Steps of the Algorithm

0 1 1 1

1 0 0 1

1 0 0 1
1 1 1 0

The actual reduction algorithm is discussed in this section. We know that a graph is

reduced if it is free from redexes and secondary loops, so the main goal of this algorithm is

to remove all redexes and secondary loops. The process is divided into two steps given

below:

Step 1:

Consider the adjacency matrix A of G, and scan A in order to eliminate all secondary loops,

and to construct the list R of all redexes in the simplified graph. Let each redex be

represented in R by its center vertex.

Step 2:

Do while R is not empty: take the first redex k from R, and eliminate it by updating A in

such a way that row/column} is added to row/column i, where i and} are the focal vertices

43

of the redex k. Abandon rows/columns k and} in A, and delete the vertices k, i, j (if present)

from R. Reset A(i, i) to 0 or 1 by removing all secondary loops around i, and add ito R if

the updated matrix A indicates that i has become (the center of) a redex.

For a graph G with n vertices, the algorithm above constructs r(G) in O(n2
) time. Indeed,

the elimination of one redex, together with the deletion of the newly introduced secondary

loops, takes O(n) time, and the number of redexes is smaller than n.

5.3 Example of the Reduction Algorithm

In this section we provide a complete example of the graph reduction process. Fig. 5.2

shows the graph to be reduced. There are eight vertices in this graph and many redexes.

Figure. 5.2: Graph to be reduced

Fig. 5.3 shows the graph after the first iteration step of the algorithm. In this step, the

secondary loop from vertex 3 is removed.

44

Figure. 5.3: Graph after the first iteration

Fig. 5.4 shows the graph after the second iteration step. Here we removed vertex 3 which

was the centre of a redex. After removing vertex 3, the focal vertices (vertex 2 and 4) are

merged into vertex 2. So here vertex 2 is the sink vertex of this reduction. There is a new

secondary loop, emerging at vertex 2.

Figure. 5.4: Graph after the second iteration

45

Fig. 5.5 shows the resulting graph after the third iteration step ofthe algorithm. In this

iteration step, the secondary loop at vertex 2 is removed.

Figure. 5.5: Graph after the third iteration

Fig. 5.6 shows the graph after the fourth iteration. Here we removed vertex five which was

the center of a redex. After removing vertex 5, the focal vertices (vertex 2 and 6) are

merged into vertex 2. So here vertex 2 is the sink vertex of this reduction. Again, after this

reduction there is a new secondary loop emerging at vertex 2.

46

Figure. 5.6: Graph after the fourth iteration

Fig. 5.7 shows the graph after the fifth iteration step ofthe algorithm. In this iteration step,

the secondary loop at vertex 2 is removed.

Figure. 5.7: Graph after the fifth iteration

Fig. 5.8 shows the graph after the sixth iteration step. Here we removed vertex 7, which

was the center of a redex. After removing vertex 7, the focal vertices (vertex 2 and 8) are

merged into vertex 2. Vertex 2 is the sink vertex of this reduction process. After this

reduction step, there are two new secondary loops, emerging at vertex 2.

Figure. 5.8: Graph after the sixth iteration

Fig. 5.9 shows the resulting graph after the seventh iteration step ofthe algorithm. In this

iteration step, one of the secondary loops at vertex 2 is removed.

48

Figure. 5.9: Graph after the seventh iteration

Fig. 5.10 shows the resulting graph after the eighth iteration step. In this iteration step,

another secondary loop at vertex 2 is removed. The resulting graph is our final result.

Figure. 5.10: Graph after the eight iteration

49

5.4 Discussion of Implementation

In this section we will provide a brief explanation of how the first algorithm is

implemented. The implementation uses the Java programming language. There are two

major classes - GraphReduction and Reduction Operation. Most of the operations are done

inside the GraphReduction class, while ReductionOperation class is mainly responsible for

reconstructing matrices after each reduction step (abandon rows/columns of the given

matrix and generate a new matrix for the next iteration).

Class GraphReduction accepts inputs from a file and also prints different steps of the

reduction process into the file. For maintaining a redex list I have used an array R. There is

a function called jindFocal for finding out the focal vertices of a redex. The function

removeLoop is responsible for removing loops from the matrices at different stages of the

reduction process. Updating the redex list is an important task for this algorithm so there

are two functions for performing this task. Function buildLisrR is responsible for

reconstructing a new redex list. On the other hand, function checklist checks for the

necessity to reconstruct the redex list.

Function ClassReduction also contains printFile and printR function for printing results in

the output file. Function printFile is responsible for printing the matrices of the different

stages of the reduction process into a file where function printR prints the updated redex

lists of different stages into the output file.

50

Class ReductionOperation has only one function that is columnOperation. Matrix, redex

and its focal vertices are passed into columnOperation as parameters. This function adds

rows and columns, abandons rows and columns k and j. We have used many graphs as

input for testing the accuracy of the implementation and the program successfully produced

accurate results for all of them. Some of the graphs that have been used for testing the

program are given below:

Figure. 5.11: Graphs used for testing the first algorithm

51

Chapter 6

An Algorithm to decide if an Arbitrary
Graph is an Elementary Deterministic
Soliton Graph

In this chapter we describe the second algorithm of this thesis. By the help of this algorithm

we can decide if a given graph is an elementary deterministic soliton graph or not. For this

algorithm we also have to use the reduction algorithm as a preamble. Different steps of this

algorithm can determine some important properties of the given graphs. For example the

second part of the algorithm can decide if the reduced graph is a generalized tree or not and

third part of the algorithm can decide if the original graph is an elementary graph, based on

the knowledge that the reduced graph is a generalized tree.

Depth-first search is another important part of our algorithm. In the second step of this

algorithm we have to use depth-first search for detecting cycles in the reduced graph.

52

Therefore in this chapter we devote a section to presenting the depth-first search algorithm

and its modified version that we have used for detecting cycles in graphs.

6.1 Steps of the algorithm

In this section we discuss the three steps of this algorithms. A brief explanation of each step

is given below:

Step 1:

In this step we use the reduction algorithm (first algorithm) to reduce the given graph G.

The reduced graph r(G) is used as input for the next step.

Step 2:

In this step we check if the reduced graph is a generalized tree or not. This entails the

following:

o By the help of the depth-first search algorithm, see if the reduced graph r(G)

contains an even-length cycle. As part of this algorithm, each odd-length cycle of

r(G) is marked.

o When an even-length cycle is found, the algorithm is terminated because r(G)

is not a generalized tree, therefore G is not a deterministic soliton graph. [Theorem

4.10.2]

o If r(G) is a generalized tree then we move to the next step.

53

Step 3:

In this step we check if the original graph G is an elementary graph or not. To this end, we

have to reverse the reduction procedure. The details are given below -

o Start unfolding r(G) back into G by reversing the steps of the reduction algorithm.

o In the process of reversing the reduction, when we add a loop to the graph, that

loop is added as a forbidden edge. We use Lemma 4. 8.3 to decide if the unfolding of

a redex keeps the graph elementary or not.

o Graph G is elementary (also deterministic) if and only if a positive answer is

obtained every time a redex is unfolded.

The time complexity of the depth-first search algorithm is known to be O(n2
). In fact, a

smarter implementation of this algorithm, using the adjacency list to represent a graph, has

a liner time complexity in terms of the number of edges. Thus, Step 1 and 2 take O(n2
) time

to execute. As to the complexity of Step 3, reconstructing graph G by inverse reduction

takes as much time as its demolition did, that is O(n2
). Consequently, the overall time

complexity of algorithm 2 is O(n2
).

54

6.2 The Depth-first Search Algorithm and Its Modification

We can find a cycle in a graph by using the depth-first search algorithm (DFS). This

algorithm therefore becomes an integral part of our decision algorithm. The reader is

referred to [27,29,30] for a detailed analysis of the DFS algorithm. The algorithm that we

are presenting here is also known as colored DFS. For detecting a cycle we use a modified

version of colored DFS.

DFS explores new edges from a recently discovered vertex v, which still has some

unexplored edges. It explores all the edges incident with v, then it backtracks to explore

edges leaving the vertex from which v was discovered. DFS continues this backtracking

process until it discovers all the vertices that are reachable form the original source vertex.

If there are any undiscovered vertices remaining, then it selects one such vertex as a new

source vertex and repeats the search starting form that vertex. The process lasts until all

vertices have been discovered.

The above paragraph explains the general working process of the depth-first search

algorithm. The pseudo code ofthe colored DFS is given below-

DFS(G)

1 for each vertex u E V[G}

2 do color[u] (- WHITE

55

3 n[u] +-- NILL

4 time+-- 0

5 for each vertex uc=V[G]

6 do if color[u] =WHITE

7 then DFS-Visit (u)

DFS-Visit (u)

1 color[u] +--GRAY II White vertex u has just been discovered

2 d[u] +-time +-time+]

3 for each v E Adj{u] //Explore edge (u, v)

4 do if color[v] = WHITE

5 then 1r[v] +- u

6 DFS-Visit (v)

7 color[u] +--BLACK I I Blacken u, it is finished

8 f[u] +--time+- time+ 1

In the above pseudo code 1r[u] holds the predecessor information of a vertex. There are

also two types of timestamps - d{u], which records when u is discovered and grayed, and

f[u], which records when the search finishes after examining u's adjacency list and

blackening that vertex. Initially all vertices are white then they become grayed between

time d[u] and time f[u] and finally they become blacken. In the above pseudo code time is

56

a global variable, which is used for timestamping and array color stores the color status of

all the vertices of the given graph. Array Adj holds the vertices adjacent to a vertex.

As mentioned before, we use a modified version of DFS algorithm to detect cycles in

graphs. The key behind this modified DFS algorithm is that, if a node is seen the second

time before all of its descendants have been visited then there must be a cycle. For

example, if there is a cycle containing node X then node X must be reachable from one of

its descendants. Therefore, when the DFS is visiting that descendant, it will see X again,

before it has finished visiting all of X' s descendants which implies that a cycle exists.

The modified colored DFS algorithm is as follows. As we know, all nodes are initially

colored white, and when a node is encountered, it is marked grey. Finally when its

descendants are completely visited then that vertex is marked black. Now, if a grey node is

encountered before all of its descendants have been visited, then there is a cycle. The

pseudo code of the modified colored DFS algorithm is given below:

DFS(G)

1 for each vertex u E V[G}

2 do color[u] ~ WHITE

3 n[u] ~ NILL

4 time~ 0

5 for each vertex uEV{G}

57

6 do if color[u] =WHITE

7 then DFS-Visit (u)

DFS-Visit (u)

1 color[u] ~GRAY II White vertex u has just been discovered

2 d[u] +-time +-time+]

3 for each v E Adj[u] //Explore edge (u, v)

4 if color[v] =GRAY and 1r[u] ;;ev then

5 return "Cycle exists"

6 else if color[v] =WHITE

7 then 1r[v] +--- u

8 DFS-Visit (v)

9 color[u] ~BLACK II Blacken u, it is finished

10 f[u] +---time +---time + 1

6.3 Special graphs considered for generalized tree

According to the definition, a connected graph not containing any even-length cycles is a

generalized tree. If there are odd-length cycles present in a generalized tree, then those

cycles must be pairwise disjoint. In this section we present some examples which will

clarify the properties of generalized trees.

58

Fig. 6.1 shows two examples of generalized trees. Both of the graphs have only odd length

cycles and these cycles are pairwise disjoint.

Figure. 6.1: Generalized trees

59

Fig. 6.2 shows two examples of graphs containing two overlapping odd length cycles. This

implies that the graphs contain an even-length cycle, too, so that they cannot be generalized

trees.

Figure. 6.2: Graphs containing overlapping odd length cycles

6.4 Discussion of Implementation

This section provides a brief discussion of the implementation of the algorithm of this

chapter. I will highlight most of the classes and some of the functions that have been

designed to perform important tasks.

60

In the second step we have to decide if the input graph is a generalized tree or not. To

perform this check I have created three Java classes. The first class 1s

CheckGeneralizedTree. Class CheckGeneralizedTree will mainly take input from the user

and the input file. Class CheckGeneralizedTree also uses class Vertex for storing some

important information on a vertex of a given graph.

Class Vertex is used to store different important information on a vertex such as its

adjacency list, its parent and its color (color information will be used for the modified color

DFS algorithm). The parent and color information of a vertex is very important for

detecting a cycle in a graph. Class CheckGeneralizedTree also uses an object of class

DFSVisit for detecting a cycle in the graph and also to figure out the length of the cycles.

CheckGeneralizedTree passes all the information of a vertex as an object of Vertex class to

the function dfs_visit of the class DFSVisit.

Class DFSVisit is the most important class for the second step, where I have implemented

the modified color DFS algorithm to detect cycles in the given graph. Inside DFSVisit,

dfs _visit is the core function which perform most the tasks. As mentioned before, function

dfs_vist rather than taking the whole graph as an input, takes important information on a

vertex in the object Vertex. If a cycle is detected, then this function also counts the length

of that cycle. If more than one odd-length cycle is detected that it also checks if these

cycles are pairwise disjoint.

61

To implement the last step (step 3), I have used three Java classes -

PreplnputForElementary, ReverseSteps and CheckElementary. The exact reduction steps

from the graph reduction program are stored in class PreplnputForElementary. This class

sends this information to the class ReverseSteps.

Class ReverseSteps is mainly responsible for reversing the reduction steps and after every

step checks if the graph is still elementary or not. In each reverse reduction step,

CheckElementary is used to perform the checking. All inputs and outputs are maintained in

plain text files.

Class CheckElementary is responsible for checking if the unfolded graph is still elementary

or not. The basis of this checking is Lemma 4.8.3. This class is also responsible for

producing the final result. We know that a graph is elementary (also deterministic) if and

only if a positive answer is obtained every time a redex is unfolded. Class

CheckElementary also uses the class Vertex. All information of a vertex is stored as an

object of Vertex class. This class uses a function GetDegree to determine the degree of a

vertex. For this algorithm we used many graphs to test the accuracy of the implementation.

Some of these graphs are given below:

62

Figure. 6.3: Graphs used for testing the second algorithm

63

Chapter 7

An Algorithm to decide if an Arbitrary
Graph is a Deterministic Viable Soliton
Graph Containing an Alternating Cycle

In this chapter we present an algorithm to decide if an arbitrary graph is a viable soliton

graph containing an alternating cycle. This is the third algorithm of the thesis. Baby

chestnuts and impervious loops are the key concepts of this algorithm. First, the input

graph is reduced by the help of the reduction algorithm. Then it is checked if the resulting

graph is a baby chestnut or not. Finally, the reduction is reversed to see if all the loops

eliminated during the reduction process are impervious, and impervious mandatory edges

are not introduced.

64

7.2 Steps of the algorithm

The three steps of this algorithm are presented below:

Step 1:

The first step of the algorithm is reduction, as discussed in Chapter 5.

Step 2:

In the second step, we check if the reduced graph r(G) is a baby chestnut or not. If it is not,

then by Theorem 4.11.2, G is not a deterministic soliton graph containing an alternating

cycle. If the reduced graph r(G) is a baby chestnut then we move to the next step.

Step 3:

In the third step of the algorithm we reverse the reduction procedure to find out if all loops

that have been eliminated are impervious or not. Also, in a way analogous to the second

algorithm, we need to check if an inverse reduction step preserves the viable property. This

amounts to the following:

o Every time a loop is added, we have to check if the loop is impervious or not. A

loop around a vertex v of a viable soliton graph G is impervious if and only if v is a

principal vertex in a family of elementary components in G. Technically, we must

keep track of the principal vertices of the graph during the unfolding procedure to

see if a particular loop vertex is principal or not.

65

o If we find a loop that is eliminated during reduction but is not around a principal

vertex, then our answer is negative (i.e. graph G is not a deterministic viable

soliton graph containing an alternating cycle). If all loops can be restored in G

without finding a viable one, in other words, if all loops are added to a principal

vertex, then the answer is positive.

o Whenever a new vertex is introduced, use Lemma 4.8.3 to check if the unfolded

graph remains viable.

7.2 Further discussion on baby chestnuts, impervious loops,
principal vertices and viable soliton graphs

Most of the concepts that we are going to deal with in this section have already been

defined in Chapter 4. In order to see if a graph is a baby chestnut, the following features

must be checked:

• A cycle y consisting of a pair of parallel edges

• A tree attached to one of the two vertices of y, the branches of which consist of at

most two edges.

Impervious loops are important in this algorithm. Such loops arise during the reduction

procedure from impervious edges of the original graph G. Fig. 7.1 shows a graph with an

66

impervious edge (connecting two principal vertices), which becomes an impervious loop

during reduction. See Fig. 7 .2.

... ·
•"

..

... ..

. .

. .

. .
•
" •

" • ... " ~
"

.. ,. Principal vertex

Figure. 7.1: Graph with an impervious edge

67

Figure. 7.2: Baby chestnut with an impervious loop

There is an easy way to locate the principal vertices in graphs arising from a baby

chestnut by inverse reduction. Clearly, the only principal vertex in a baby chestnut is

the root of its tree component. In the course of inverse reduction, the original baby

chestnut unfolds into a chestnut graph with some extra impervious edges, which result

from impervious loops being added to the graph. Nevertheless, the principal vertices of

such a graph are exactly the ones of the chestnut, that is, the vertices that are at an even

distance from the root ofthe tree they belong to. See Fig. 7.3.

68

t Principal Vertex

Figure. 7.3: Chestnut with principal vertices

When unfolding an impervious loop e during inverse reduction, the following two cases

may occur:

Case 1:

The loop e becomes an impervious edge of the graph that is still viable. See Fig. 7 .4.

Case 2:

The loop e becomes a forbidden edge that is adjacent to an impervious mandatory edge.

See Fig. 7.5.

69

Figure. 7.4: Case 1 when unfolding an impervious loop

Figure. 7.5: Case 2 when unfolding an impervious loop

70

Obviously, our algorithm must detect the "wrong" Case 2, and if it happens, terminate

immediately. In general, we terminate the algorithm whenever one of the two focal vertices

of the newly introduced redex is not incident with at least one viable edge. See Lemma

4.8.3.

Regarding the time complexity of algorithm 3, we need to investigate Step 2 and 3. Clearly,

Step 2 takes linear time in terms of the number of vertices. The time complexity of Step 3

is the same as that of Step 1, that is O(n2
). As in the case of algorithm 2, the reason is that

the reconstruction of graph G by inverse reduction takes as much time as its demolition did.

Thus, the overall time complexity of algorithm 3 is O(n2
).

7.3 Discussion of Implementation

As in the last two chapters, this section is intended to provide a brief discussion on the

implementation of this algorithm. The algorithm has three major steps to decide if a given

graph is a deterministic viable soliton graph containing an alternating soliton graph or not.

The first step is again reduction. In the second step of the algorithm we have to check the

reduced graph for being a baby chestnut. In the implementation I have used three Java

classes. One class is named Vertex and other two classes are named CheckBCNut and

BabyChestNut.

71

The role of class Vertex in this algorithm is analogous to its role in the second algorithm.

We need to store some important information on vertices of the given reduced graph. Like

before, class Vertex can store a vertex's adjacency list and parent information. Class

BabyCheastNut performs the major operations of this algorithm. This class contains a

function FindBabyCheastNut which takes a list of Vertex type objects and some other

information as parameters and then performs necessary checking to decide if the given

graph is a baby chestnut or not. Finally, it sends the result back to the class CheckBCNut.

Class CheckBCNut works like a bridge between the classes Vertex and BabyChestNut . It

reads the input graph from a file, then creates a Vertex object for each vertex and sends

them to BabyChestNut for checking. After receiving the requested information form

BabyChestNut , it returns the final result.

In the third step we have to reverse the reduction steps and check the loops that were

eliminated. When putting the eliminated loops back to the graph, we need to check if they

are impervious or not. For reversing the steps of the reduction process, I used the same

procedure that was introduced in the second algorithm. Class ReverseRead starts the

program by calling the functions of class Scanner.

As in the second algorithm class Scanner is responsible for producing the reverse steps

output file. Class ChceklmperviousLoop is responsible for performing the major operations

in step three. This class will check if an eliminated loop is impervious or not. It has two

72

functions for performing this operation: CheckForlmperviousLoop and

CheckSecondVertex. CheckForlmperviousLoop performs almost all the checking. I have

used function CheckSecondVertex to locate the principal vertices of a chestnut.

For testing the correctness of the programs, I have used couple of test graphs. Some of

these graphs are given below:

Figure. 7.6: Graphs used for testing the third algorithm

73

Chapter 8

Conclusion and Future Work

Molecular switching might tum out to be a significant step toward nanotechnology. We can

construct unbelievably smaller devices if we are successful in designing the switches at the

molecular level. In order to explore the computational power of such devices, we need to

study them on abstract models. Soliton automata seem to be a perfect mathematical model

for this purpose. The algorithms discussed in this thesis largely contribute to the research

on soliton graphs and automata.

We have discussed three algorithms in this thesis. The first algorithm reduces an arbitrary

graph, making it free from redexes and secondary loops. This algorithm plays an important

role in the other two algorithms as well, because those algorithms rely on reduction as a

preliminary step. The second algorithm can decide if a given graph is an elementary soliton

graph. The method of this algorithm is to first see if the input graph reduces to a

generalized tree, and if so, reverse the reduction to see if the elementary property is

74

preserved. The third algorithm can decide if a given graph is a deterministic viable soliton

graph containing an alternating cycle. To this end, the algorithm we first check if the input

graph reduces to a baby chestnut. Then, again, the reduction is reversed to see the viable

property and the deterministic property are both preserved.

There are some issues that have not been dealt with in greater detail. We did not thoroughly

analyze the time and space complexity of our algorithms. Therefore, one of the important

future endeavours will be the analysis of the time and space complexity of these

algorithms.

Another aspect of future work is to test the implementation with more complex and large

graphs. We have tested our implementation with several standard graphs, and the programs

returned correct results for all of them. Testing with more complex graphs, however, could

lead to the fine-tuning of our implementation.

Reverse reduction is an important step in the last two algorithms. For implementing reverse

reduction I have used a file to store information. However, there is an alternative approach

(store information in the memory), which I want to explore in the future, and compare its

efficiency with the file approach.

75

Bibliography

[1] M. Bartha, E. Gombas, A structure theorem for maximum internal matchings in graphs,

Information Processing Letters 40 (1991), 289-294.

[2] M. Bartha, E. Gombas, On graphs with perfect internal matchings, Acta Cybernetica 12

(1995), 111-124.

[3] M. Bartha, H. JUrgensen, Characterizing finite undirected multigraphs as indexed

algebras, Research Report # 252, Department of Computer Science, The University of

Western Ontario, London, Canada, 1989.

[4] M. Bartha, M. Kresz, Elementary decomposition of soliton automata, Acta Cybernetica

14 (2000), 631-652.

[5] M. Bartha, M. Kresz, On the immediate predecessor relationship in soliton graphs,

Congressus Numerantium 150 (2001), 15-31.

[6] M. Bartha, M. Kresz, Characterizing soliton graphs, in Abstracts of the Fourth Joint

Conference on Mathematics and Computer Science (200 1).

[7] M. Bartha, M. Kresz, Deterministic soliton graphs, manuscript (2004).

76

[8] M. Bartha, M. Kresz, Isolating the families of soliton graphs, Pure Mathematics and

Applications 13 (2002), 49-62.

[9] M. Bartha, M. Kresz, Soliton graphs and graph-expressions, in Abstracts of the 3rd

CSCS Conference (2002).

[10] M. Bartha, M. Kresz, Structuring the elementary components of graphs having a

perfect internal matching, Theoretical Computer Science 299 (2003), 179-210.

[11] M. Bartha, M. Kresz, Deterministic soliton automata defined by elementary graphs, in

Proceedings of the Kalmar Workshop on Logic and Computer Science (2003) pp. 69-79.

[12] M. Bartha, M. Kresz, Thtte type theorems in graphs having a perfect internal

matching, Information Processing Letters 91 (2004), 277-284.

[13] M. Bartha, M. Kresz, Redex elimination in graphs, in Abstracts of the Fifth Joint

Conference on Mathematics and Computer Science (2004).

[14] M. Bartha, M. Kresz, The Berge formula, and a calculus of barriers for maximum

internal matchings in graphs, in Abstracts ofthe Graph Theory 2004 Conference (2004).

[15] M. Bartha, M. Kresz, Algorithms for soliton automata, manuscript (2004).

[16] M. Kresz, Alternating cycles in soliton graphs, WSEAS Transactions on Mathematics 1

(2002),165-170.

[17] M. Kresz, Soliton automata: a computational model on the principle of graph

matchings, Ph. D Thesis, Department of Computer Science, University of Szeged,

Hungary, 2004.

77

[18] F. L. Carter, Conformational switching at the molecular level, in Molecular Electronic

Devices (F. L. Carter Ed.), Marcel Dekker, Inc., New York, 1982, pp. 51-72.

[19] F. L. Carter (Ed.), Molecular Electronic Devices, Marcel Dekker, Inc., New York,

1982.

[20] F. L. Carter, The molecular device computer: Point of departure for large scale cellular

automata, Physica D 10 (1984), 175-194.

[21] F. L. Carter (Ed.), Molecular Electronic Devices IL Marcel Dekker, Inc., New York,

1987.

[22] J. Dassow, H. JUrgensen, Soliton automata, J. Comput. System Sci. 40 (1990), 154-

181.

[23] J. Dassow, H. Jurgensen, Soliton automata with a single exterior node, Theoretical

Computer Science 84 (1991), 281-292.

[24] J. Dassow, H. JUrgensen, Soliton automata with at most one cycle, Journal of

Computer and System Sciences 46 (1993), 155-197.

[25] F. Gecseg, H. Jurgensen, Automata represented by products of soliton automata,

Theoretical Computer Science 74 (1990), 163-181

[26] J. Dassow, H. Jurgensen, The transition monoids of soliton trees, In G. Paun (editor):

Mathematical Linguistics and Related Topics. Papers in Honour of Solomon Marcus on

His 701
h Birthday. 76-87. Editura Academiei Romane, Bucuresti, 1995.

78

[27] R. E. Tarjan, Depth-first search and linear graph algorithms, SIAM J Comput. 1

(1972), 146-160.

[28] L. Lovasz, M.D. Plummer, Matching Theory, North Holland, Amsterdam, 1986.

[29] T. H. Coremen, C. E. Leiserson, R. L. Rivest, Introduction To Algorithms, MIT Press,

1999.

[30] E. G. Goodaire, M. M. Parmenter, Discrete Mathematics with Graph Theory (Second

Edition), Prentice Hall, New Jersey, 2000

[31] R. P. Feynman, There's plenty of room at the bottom, in Miniaturization (H. D. Gilbert

Ed.), Reinhold, New York, 1961, pp. 282.

[32] A. Aviram, M.A. Ratner, Molecular rectifiers, Chern. Phys. Letters 29 (1974), 277-

283.

[33] L. M. Adleman, Molecular computation of solutions to combinatorial problems,

Science 222 (1994), 1021-1024.

[34] M. Conrad, Molecular computing: The lock and key pardigm, IEEE Computer 25

(1994), 11-20.

[35] A. Adamatzky (Ed.), Collision-Based Computing, Springer-Verlag, 2002.

[36] M.P. Groves, C. F. Carvalho, C. D. Marlin, and R. H. Prager, Using Soliton Circuits

to Build Molecular Memories, Australian Computer Science Communications 15

(1993) pp. 37-45.

79

[37] M. P. Groves, C. D. Marlin, Using Soliton Circuits to Build Molecular Computers,

Australian Computer Science Communications 17 (1995) pp. 188-193.

[38] M. P. Groves, C. F. Carvalho, and R. H. Prager, Switching the polyacetylene soliton,

Materials Science and Engineering C3 (1995) pp. 181-185.

[39] M.P. Groves, Soliton Circuit Design Using Molecular Gate Arrays, in Proceedings of

the 20th Australasian Computer Science Conference (1997) pp. 245-252.

[40] M. P. Groves, Towards verification of soliton circuits, in Molecular Electronic

Devices (F. L. Carter, R. E. Siatkowski, H. Wohltjen Ed.), North-Holland,

Amsterdam, 1988, pp. 287-302.

[41] S. Abramsky, A Structural Approach to Reversible Computation, in LCCS 2001:

Proceedings of the International Workshop on Logic and Complexity in Computer

Science, edited by D. Beauquier andY. Matiyasevich, LACL 2001, 1-16

80

Appendix A

Code Examples of Algorithm 1

import j ava.io. *;
import java. util. StringTokenizer;

II Class GraphReduction accepts inputs from a file and also prints different steps of the
reduction process into the file

class GraphReduction
{

public static void main(String args[]) throws IOException
{

ReductionOperation ro =new ReductionOperation();

GraphReduction gR = new GraphReduction();

int [][]matrix= new int[matrixSize][matrixSize];

int [][] loopFreeMatrix =new int [matrixSize][];

loopFreeMatrix = gR.removeLoop(matrix); II removing loops for first time

I I code for printing the first result matrix to output file

println("\nRemoving Inner loops \n");

for (inti= 0; i < matrixSize; i++)
{

for (int j = 0; j < matrixSize; j++)
{

81

print(loopFreeMatrix[i][j] + "\t");

} // end of inner for loop

} // end of outer for loop

II For maintaining a redex list used an array R

int []R =new int[lO];

R = gR.buildListR(matrix);

int redexListCount = 0;

redexListCount = R.length;

gR.printR(pw,R,redexListCount); II printing R into the output file

int [] [] rec = new int[matrix Size] [matrix Size];

int rK = 0, ri = 0, rJ =0;

int [] [] focal Vertex =new int[1] [2];

int check= -1; //check variable will determine that ifwe have to to build a
new redex list or not

int newMatrixSize = matrixSize;

rec = loopFreeMatrix;

int [][] old_rec =new int[matrixSize][matrixSize];

II Other parts of the reduction operation

for(int i = 0; i <= redexListCount;i++)
{

if(check == 1) II we have to build a new redex list
{

82

i = 0;

R = gR.buildListR(rec);

if(R.length == 0) break;

focalVertex = gR.findFocal(rec,R[i]);

rK = R[i];

ri = focalVertex[O][O];

rJ = focalVertex[O][l];

redexListCount = R.length;

old_rec = rec;

rec = ro.columnOperation(rec,newMatrixSize,newMatrixSize,rK,ri,rJ);

newMatrixSize = rec.length;

println("Before removing loop ... \n");

matrix_ marker++;

I I printing information for reverse writing

println("<"+matrix _marker+">");

gR.printFile(pw,rec);

gR.printFile(pw2,rec);

println("end _matrix");

if(newMatrixSize > 2)
{

rec = gR.removeLoop(rec);
}

else if(newMatrixSize <= 1) break;

gR. printR(pw ,R,redexListCount);

83

println("Reduction continue \n");

gR.printFile(pw,rec);

i++;

} //end of'if part

check= gR.checkList(rec,old_rec,R); //checking the status ofR

} I I end of for loop

} //end of main function

II removeLoop() function remove the loops from the given graph

public int [] [] removeLoop(int matrix[][])
{

int mSize = matrix.length;

for (inti= 0; i < mSize; i++)
{

for (intj = 0; j < mSize; j++)
{

if((i == j) && (matrix [i][j] >=1))
{

matrix[i][j] = 0;
}

} //end of inner loop
} I I end of outer for loop

return matrix;

} I I end of removeLoop function

II findFocal() function will find the focal vertices of a redex

public int[][] findFocal (int matrix[][], intj)
{

int matrixSize = matrix.length;
int focalCount = 0;

int [][]focal= new int[1][2]; //focal is an array with one row and two columns

84

for(int i=O; i < matrixSize; i++)
{

}

if(matrix[j] [i] == 1)
{

}

focal[O][focalCount] = i;
focal Count++;

return focal;
} II end offindFocal function

II buildList() function will build the new list R for given matrix

public int[] buildListR(int matrix[][])
{

int [] R =new int[10];

for(int i=O; i < 10; i++)
{

R[i] = -1;
}

int redexCount = 0;
int redexListCount = 0;
int nonRedexCount = 0;

int matrixSize = matrix.length;

for(int i = 0; i < matrixSize; i++)
{

for(int j = 0; j < matrixSize; j++)
{

}

if(matrix[i][j] == 1)
{ '

redexCount++;
}
if(matrix[i][j] > 1)
{

nonRedexCount++;
}

if(redexCount == 2 && nonRedexCount == 0)

85

{
R[redexListCount] = i;
redexListCount++;

}

redexCount = 0;

nonRedexCount = 0;
}

int [] new_R =new int[redexListCount];

for(int i=O; i < redexListCount; i++)
{

new_R[i] = R[i];
}

return new_ R;

}II end ofbuildListR function

II checkList() function check the necessity to build new list R

public int checkList(int [][]matrix, int [][] old_ matrix, int[] R)
{

int mLength = matrix.length;
int mOldLength = old_matrix.length;

int rLength = R.length;
int check = 0;
if (mLength < mOldLength) check= 1;
if(rLength == 1) check= 1;
if(check == 1) return 1 ;
else return 0;

} II end of checkList() function

} II end of graphReduction class

86

II Class ReductionOperation function adds rows and columns, abandons rows and columns
k and} by using columnOperation function

class ReductionOperation
{

public int[][] columnOperation(int matrix[][], int mRow, int mCol, int k, inti, int j)
{

for(int m = 0; m < mCol; m++)
{

matrix[i][m] = matrix[i][m]+matrix[j][m];
}
I I adding columns

for(int n = 0; n < mCol; n++)
{

matrix[n][i] =matrix[n][i]+matrix[n][j];
}

II Abandoning rows/columns ofk andj

int [][] modMatrix_l =new int [mRow- 2][mCol];

int mine= 0;

I I code for row deletion

for (int rowCount = 0; rowCount < mRow; rowCount++)
{

if (k != rowCount && j != rowCount)
{

for (int col Count = 0; col Count< mCol; col Count++)
{

modMatrix _1 [mine] [col Count] = matrix[rowCount] [col Count];
}

mine++; II increase mine
} II end of if

} II end of for loop

II New matrix for column deletion

87

}
}

int [][] modMatrix_2 =new int [mRow- 2][mCol- 2];
intm;

I I code for delete column

for (int rowCount = 0; rowCount < mRow - 2; rowCount++)
{

m=O;
for (int n = 0; n < mCol; n++)
{

if(k != n &&j != n)
{

modMatrix _ 2 [rowCount] [m] = modMatrix _1 [rowCount] [n];
m++;

} II end of if
}

} I I end of for loop

return modMatrix _ 2;

88

Appendix B

Code Examples of Algorithm 2

I I Class CheckGeneralizedTree will mainly take input from the user and the input file. It
also uses class Vertex for storing some important information on a vertex of a given graph

class CheckGeneralizedTree
{

public static void main(String [] args)throws IOException
{

Vertex [] vertex = new Vertex[v];

DFSVisit dv =new DFSVisit();

I I reading the input adjacency matrix from the input file

for(int i = 0; i < v; i++)
{

text = fileRead.readLine();
StringTokenizer st =new StringTokenizer(text);
int temp_list []=new int[v];

for(int j = 0; j < v; j++)
{

inputString = st.nextToken();
matrixlnput = Integer.parseint(inputString);
temp _list[j] = matrixlnput;

} I I end of inner loop
vertex[i] =new Vertex(temp_list);

89

}

} I I end of outer for loop

for (int i =0; i<v; i++)
{

if(vertex[i].color == 0)
dv.dfs_ visit(vertex,i,v);

}
} I I end of main method

II Class Vertex is used to store different important information on a vertex such as its
adjacency list, its parent and its color (color information will be used for the modified color
DFS algorithm)

class Vertex
{

int color; I I 0 = white, 1 = grey, 2 = black
int adjList[];
int parent;
Vertex(int list[])
{

}

parent= -1;
adjList = list;
color= 0;

int GetDegree()
{

}

int list_length = adjList.length;
int count_ degree = 0;
for(int i=O; i<list_length; i++)
{

}

if(adjList[i] == 1)
{

count_ degree++;
}

return count_ degree;

} I I end of Vertex class

90

II Class DFSVisit for detecting a cycle in the graph and also to find out the length of the
cycles

class DFSVisit
{

static int time_ count = 0;
static int last_ cycle_ vertex = -1;

public void dfs_visit(Vertex []vertex, int v_id, int v)
{

vertex[v _id].color = 1;
time_ count++;
boolean cycle_ check;

for(int i=O; i<v; i++)
{

if(vertex[v_id].adjList[i] == 1)
{

if(vertex[i].color == 1 && vertex[v _id].parent != i)
{

System.out.println("Cycle exists");
if(i == 0)
{

System.out.println(time _count);
}
else
{

time_count = (time_count+ 1)-2; II finidng the exact cycle length
}

cycle_check = check_odd_number(time_count);

if(i <last_ cycle_ vertex II cycle_check ==false)
{

}

System.out.println("Not generalized tree");
last_ cycle_ vertex = -1;

last_cycle_vertex = (i + time_count)- 1; II storing the
last vertex from the discoverd cycle

}
if(vertex[i].color == 0)
{

vertex[i].parent = v _id;

91

}

dfs _ visit(vertex,i,v);
}

}
} I I end of for loop
vertex[v _id] .color= 2;

I I Class ReverseSteps is mainly responsible for reversing the reduction steps and after every
step checks if the graph is still elementary or not

class ReverseSteps
{

ReverseSteps(String filename) throws IOException
{

}

fr =new FileReader(filename);

br =new BufferedReader (fr);
build_ string();

void build_ string() throws IOException
{

}

while((str=br.readLine())!= null)
{

recognize(str);
}

void recognize(String s)
{

}

if(s.starts With("<"))
{

maximum_number = Character.getNumericValue(s.charAt(l));
}

II Reverse Write function will print the matrices from where loops were removed
I I in a reverse way

void ReverseWrite(String fname) throws IOException
{

FileReader fr2 =new FileReader(fname);
br =new BufferedReader (fr2);

92

for(int i = maximum_number; i>O; i--)
{

while((str=br.readLine())!= null)
{

if((str.startsWith("<")) &&
(Character.getNumericValue(str.charAt(l)) == i))

{
while(!((str = br.readLine()).equals("end_matrix")))
{

pw.println(str);
}
pw. println(" end_ matrix");

} //end of if
}//end ofwhile loop

}//end of for loop
} //end ofReverseWrite()

//ReadForValue will read input from file

void ReadForValue() throws IOException
{

int matrix_ size = StringLength I 2 ;
System.out.println(matrix _size);

int [][]output_ matrix= new int[matrix_size][matrix_size];

while(true)
{

st =new StringTokenizer(str);
token= st.countTokens();

if(!str.equals("end_matrix") && token!= 0)
{

System.out.println(str);

while(st.hasMoreTokens())
{

inputString = st.nextToken();
System.out.println("input String"+inputString);
matrixlnput = Integer.parselnt(inputString);
System.out.println("i = "+i+" j = "+j);
output_ matrix[i][j] = matrixlnput;
j++;

93

}

i++;
j = 0;

}II end of :first outer if

if(str. equals(" end_ matrix"))
{

CheckElementary ce =new CheckElementary();
result= ce.ISElementary(output_ matrix);

if(result ==false)
{

System.out.println("This graph is not a elementary graph.");
break;

else
}

{

}
new_matrix =true;

} I I end of second outer if

if((str = br.readLine()) ==null) break;
StringLength = str.length();

if(new_matrix ==true)
{

i = 0;
new_ matrix = false;
matrix_ size = StringLength I 2 ;
output_ matrix = new int[matrix_ size] [matrix_ size];

}
} II end ofwhile loop

} II end ofReadForValue
} I I end of scanner class

94

II Class CheckElementary is responsible for checking ifthe unfolded graph is still
elementary or not.

class CheckElementary
{

boolean ISElementary(int[] [] input_ matrix)
{

int v = input_ matrix .length;
Vertex [] vertex = new Vertex[v];
int matrixlnput;
String inputString;

II reading the input adjacency matrix from the input file
for(int i = 0; i < v; i++)
{

int temp _list[] = new int[v];
for(int j = 0; j < v; j++)
{

temp_list[j] = input_matrix[i][j];

} I I end of inner loop

vertex[i] =new Vertex(temp_list);
} I I end of outer for loop

int vertex_degree;
int allow_ edge = 0;
boolean elementary _graph = false;
boolean return_ value = false;
System.out.println("Vertex Length: "+vertex.length);

if(vertex.length == 2)
{

}
else
{

if(vertex[O].adjList[l] == 2 && vertex[l].adjList[O] == 2)
return_ value = true;

for(int i = 0; i< v; i++)
{

vertex_degree = vertex[i].GetDegree();

if(vertex_ degree== 2)

95

{

vertex[j].GetDegree() == 1)

for(int j = 0; j < v; j++)
{

if(vertex[i].adjList[j] == 1)
{

}

if(vertex[j].GetDegree() == 2 II

{

}
allow_ edge++;

} //end of inner for loop

if(allow_edge != 2)
{
System.out.println("Not an elementary graph.");

break;
}
else
{

}

allow_ edge = 0;
elementary _graph = true;

} //end of outer if
}//end of outer for loop

if(elementary _graph == true)
{

System.out.println("This is a elementary graph.");

return_ value = true;
}

else { return_value =false;}
} // end of most outer else
return return_ value;

} // end of ISElementary
} I I end of CheckElementary class

96

Appendix C

Code Examples of Algorithm 3

I* Class CheckBCNut works like a bridge between the classes Vertex and BabyChestNut . It
reads the input graph from a file, then creates a Vertex object for each vertex and sends
them to BabyChestNut for checking. After receiving the requested information form
BabyChestNut , it returns the final result. *I

class CheckBCNut
{

static int parallel_ edge;
public static void main(String [] args)throws IOException
{

II reading the input adjacency matrix from the input file

for(int i = 0; i < v; i++)
{

text = fileRead.readLine();
StringTokenizer st =new StringTokenizer(text);
int temp_list []=new int[v];

for(int j = 0; j < v; j++)
{

inputString = st.nextToken();
matrixlnput = Integer.parseint(inputString);
temp _list[j] = matrixlnput;

} II end of inner loop
vertex[i] =new Vertex(temp_list);

} II end of outer for loop

97

}

II calling responsible method and producing the final result

int check_ edges;
for(int i=O; i<v; i++)
{

check_edges = bcn.FindBabyCheastNut(vertex,i,v);

if(check_edges > 2)
{

}

System.out.println("This is not a baby cheast nut.");
break;

} I I end of for loop

if (parallel_ edge == 2)

System.out.println("This is a baby chest nut.");

else System.out.println("This is not a baby cheast nut.");

}II end of main method

I I BabyCheastNut class is responsible for performing necessary checking and to decide a
given graph is a baby chestnut or not

class BabyCheastNut extends CheckBCNut
{

int FindBabyCheastNut(Vertex [] vertex, int v _id, int v)
{

int count_ edge= 0;

for(int i =0; i<v; i++)
{

if(vertex[v_id].adjList[i] == 1)
{

}

if(v _id != i && count_ edge < 2)
{

count_ edge++;
}

if(vertex[v _id].adjList[i] == 2)

parallel_ edge++;

98

}

return count_ edge;
} I I end of FindBabyCheastNut()

}

I* Class ChceklmperviousLoop is responsible for performing the major operations for the
step three of the algorithm. This class will check if an eliminated loop is impervious or not.
*I

class CheckimperviousLoop
{

boolean CheckForlrnperviousLoop(int matrix[][], int matrix_id)
{

if(matrix_id == 1) II 0 =main principal vertex, 2 =another vertex
{

for(int i=O;i < matrix .length; i++)
{

second_ vertex = check_ second_ vertex(matrix, i);

for(int j=O; j <matrix .length; j++)
{

if(matrix[O][O] > 2)
viable = true;

}

if(second_vertex ==true && (i==j) && matrix[i][j] > 2)
{

viable = true;
}

} I I end of inner for loop
} I I end of outer for loop

} II end of if

boolean self_loop =false; II indicate the vertex contain a loop
int loop_count = 0; II count the number ofloop so ifthere is no loop it will return 0

if(matrix _id > 1)
{

for(int i =0; i<matrix.length; i++)
{

99

{

if(matrix[i][i] >= 2)
{

}

self _loop = true;
loop_ count++;

} I I end of outer for loop
}II end ofifwhich checking matrix_id

if(loop _count == 0)
{

viable = true;
}
return viable;

} II end ofCheckForlmperviousLoop

II Checking for a second vertex in the given graph

boolean check_ second_ vertex(int [][]matrix, int selected_ vertex)
{

}

int length = matrix.length;
boolean second_ vertex = false;

for(int i=O; i<length; i++)
{

if(i != 0 && i != 2)
{

for(int j=O; j<length; j++)
{

ifG == selected_ vertex && matrix[i][j] >= 1)
{

second_ vertex = true;
}

}
}

}
return second_ vertex;

} I I end of ChecklmperviousLoop Class

100

II Class Scanner is responsible for producing the reverse steps output file

class Scanner
{

}

Scanner(String filename) throws IOException
{

}

fr =new FileReader(filename);
br =new BufferedReader (fr);
build _string();

void build_string() throws IOException
{

while((str=br.readLine())!= null)
{

recognize(str);
}

void recognize(String s)
{

}

if(s.starts With("<"))
{

maximum_number = Character.getNumericValue(s.charAt(1));
}

II Reverse Write function will print the matrices from where loops are removed in a reverse
way

void ReverseWrite(String fname) throws IOException
{

FileReader fr2 =new FileReader(fname);
br =new BufferedReader (fr2);

for(int i =maximum_ number; i>O; i--)
{

fr2 =new FileReader(fname);
br =new BufferedReader (fr2);

while((str=br.readLine())!= null)
{

if((str.startsWith("<")) &&
(Character.getNumericValue(str.charAt(1)) == i))

{

101

while(!((str = br.readLine()).equals("end_matrix")))
{

pw.println(str);
}
println("end _matrix");

} II end of if
}II end ofwhile loop

}II end of for loop
} II end ofReverseWrite()

void ReadForValue() throws IOException
{

II Similar code like algorithm 2

boolean build_ org_ matrix(int [] single _array_ matrix,int index_ size)
{

int matrix _length= single_ array_ matrix .length;

int [] [] Org_ Matrix = new int[index_ size] [index_ size];
int k = 0;

for(int i = 0; i<index_size; i++)
{

for(int j=O; j<index _size; j++)
{

}

if(k < matrix_length)
{

}

Org_Matrix [i][j] = single_array_matrix[k];
k++;

} I I end of for loop

ChecklmperviousLoop cil =new ChecklmperviousLoop();
boolean viable = cil.CheckForlmperviousLoop(Org_ Matrix, matrix _id);
matrix_id++;

return viable;

} II end ofbuild_org_matrix()
} I I end of scanner class

102

