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Abstract 

A cognitive map is considered to be a representation of relationships between distal cues 

in the environment. Support for the cognitive map theory has come from behavioural, 

lesion, and electrophysiological studies. Recently place field data have suggested that 

place cells are more closely tied to local, apparatus cues, than to distal cues. This was 

shown in a series of studies in which an apparatus was translated 33-120 em. Earlier 

translational place studies, of which there are very few, are consistent with these place 

cell recording studies. The present thesis extends the examination of place learning on a 

moveable apparatus in a larger environment to better understand the interaction bet~en 

location on an apparatus and location in a room, highlighting which conditions are 

necessary for an animal to shift from a surface dominated strategy to a strategy based on 

distal cues. In the present thesis, success and failure on the translational place problem 

was observed. The only difference between success and failure was the presence of 

multiple discriminable start points when rats were successful. It is suggested that 

multiple start points provide positional information that allows the rats to notice different 

directions to the goal, and therefore shift from a surface dominated strategy to a distal cue 

dominated strategy. Qualitative changes in surface texture did not facilitate this shift 

from a surface to a distal cue strategy. Hippocampal and sham lesioned rats were trained 

on the same translational place problem in the presence of multiple start positions. 

Lesions of the hippocampus disrupted place learning on this problem suggesting that 

simpler orientation mechanisms were not involved. Theoretical models and future 

directions are discussed. 



Place Learning m 

Acknowledgements 

I would like to thank my supervisory committee for their comments on multiple 

drafts of this thesis. Thanks to Dr. Darlene Skinner for her continued guidance and 

support throughout this project. Thanks to Dr. Gerard Martin for his always insightful 

comments, and thanks to Dr. Carolyn Harley for her suggestions. 

I would also like to thank Krista Stringer for lending me her assistance from time 

to time, and for teaching me critical procedures. Without her I would still be in the lab. I 

would also like to thank Jacqueline Whyte and multiple NSERC undergraduate students 

including, Jessica Wade, Patrick Snow, Erika Hansford, Erin Morgan, and Floyd Wood, 

for their assistance in the lab. 

All research presented was funded by NSERC grants to Dr. Darlene M. Skinner 

and Dr. Gerard M. Martin and a NSERC Postgraduate Scholarship to Murray R. Home. 



Place Learning IV 

Table of Contents 

Abstract 11 

Acknowledgements ill 

Table of Contents IV 

List ofTables VI 

List of Figures Vll 

Chapter 1 - General Introduction 1 

1.1. Cognitive Map Hypothesis 1 

1.2. Behavioural Evidence 4 

1.3. Lesion Studies 6 

1.4. Electrophysiological Evidence 8 

1.5. Translation Versus Rotation 10 

Chapter 2 - Surface Location Has Priority Over Distal and Local Cues for Place Learning 
in Translational Problems in the Rat 14 

2.1. Introduction 14 

2.2. Experiment 1 15 
2.2.1. Methods 16 
2.2.2. Results 20 
2.2.3. Discussion 20 

2.3. Experiment 2 21 
2.3.1. Methods 22 
2.3.2. Results 23 
2.3.3. Discussion 23 

2.4. Experiment 3 24 
2.4.1. Methods 25 
2.4.2. Results 26 
2.4.3. Discussion 26 

2.5. Summary and Conclusions 27 

Chapter 3- Role of the Hippocampal Formation During Place Learning On a 
Translational Problem 29 

3.1. Introduction 30 



Place Learning v 

3 .2. Methods 31 

3.3. Results 33 

3.4. Summary and Conclusions 34 

Chapter 4 - General Discussion 38 

4.1. Future Directions 44 

References 47 

Figure Captions 61 



Place Learning VI 

List of Tables 

Table 3.1 Stereotaxic Coordinates (in mm) for Hippocampal Lesions 57 



Figure 2.1 

Figure 2.2 

Figure 2.3 

Figure 2.4 

Figure 3.1 

Figure 3.2 

Figure 3.3 

Place Learning vii 

List of Figures 

Schematic Representations ofMaze Positions for Two Different 

Trial Types for Each Group in Chapter 2 

Mean Trials to Criterion for Groups in Chapter 2, Experiment 1 

Mean Trials to Criterion for Groups in Chapter 2, Experiment 2 

Mean Trials to Criterion for Groups in Chapter 2, Experiment 3 

Schematic Representations of Maze Positions for Two Different 

Trial Types for Each Group in Chapter 3 

Representative Hippocampal Lesions 

Mean Trials to Criterion for Groups in Chapter 3 

60 

61 

62 

63 

64 

65 

66 



Place Learning 1 

Chapter 1 - General Introduction 

An organism can use multiple strategies to navigate within its environment. 

Which particular strategy is used may depend on situational factors (e.g., time of day) 

and the availability of cues (Restle, 1957). The navigational strategies that have been 

observed in the laboratory include: cue/response learning (i.e., learning to approach a 

beacon, such as a light) (Redhead, Roberts, Good, & Pearce, 1997; Restle, 1957); path 

integration (Etienne, Teroni, Maurer, Portenier & Saucy, 1985; Whishaw, 1998); 

direction learning (Blodgett, McCutchen & Mathews, 1949); the use of room or maze 

geometry (Cheng, 1986; Gallistel, 1990; Margules & Gallistel, 1988); and the use of 

relations between multiple cues in the environment (O'Keefe & Nadel, 1978; Tolman, 

1948). The latter has perhaps received the most attention in the last 50 years. 

1.1. Cognitive Map Hypothesis 

The notion that rats develop a cognitive representation of the relationship between 

cues in the environment arose from work by Tolman in the 1940's. A crucial aspect of 

Tolman's idea was that it proposed that learning about space relied on the construction of 

maps, and not on associations of movements. Hull, a contemporary of Tolman's, 

suggested an explanation of a habit-family hierarchy (Hull, 1934a; Hull, 1934b). Hull's 

theory was in strict contrast to Tolman's view. Hull proposed that rats traversed a maze, 

starting in one position, and ending in the goal position, in a stimulus-response (S-R) 

fashion. According to Woodworth (1938), since response chaining, or motor pattern (i.e., 

S-R associations) could not adequately explain rats behaviour in mazes, Hull's habit-
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family hierarchy theory was rejected, while Tolman's idea that rats develop a cognitive 

representation of the relationships between cues in the environment was accepted. 

In a novel set of experiments, Tolman, Ritchie, and Kalish (1946a) trained rats to 

find a food location by following a specific route, which lead to a goal box that was 

defined by a lamp light (i.e., a distal cue). Subsequently, after the rats had learned that 

task, the rats were placed on a sunburst maze in which the original route was blocked and 

the rat had access to 18 radiating arms. They observed that 36% of the rats chose the arm 

that lead directly to the food box, and concluded that this showed evidence that the rats 

used a place disposition, in other words a cognitive representation of the environment, to 

solve the problem. In their second set of experiments, Tolman, Ritchie, and Kalish 

( 1946b) trained rats on a plus maze. The place group was trained from two start positions 

(180° apart) to find the goal box that was defined by distal cues. For example, when the 

rat was placed at one start point, the rat was required to make a right turn to find the goal 

box. Conversely, when placed at the opposite start point, the rat was required to make a 

left tum. Response rats had to make a right tum regardless of start location. It was 

concluded that while place and response dispositions were acquired by rats, place 

learning was more easily acquired and therefore was considered simpler and more 

primitive. 

The concept of cognitive mapping encompasses the idea that an animal creates a 

stored representation of the relationships between cues in the environment, and can 

access these representations or maps. The cognitive map is said to show flexibility in that 

if the spatial environment is altered (e.g., by removing a subset of distal landmarks), the 
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cognitive representation can be updated, and this removal of cues does not disrupt 

navigation based on the cognitive map. With this stored representation of the 

environment, an animal can navigate through and locate itself within its environment. 

The cognitive map allows rats to make goal-directed trajectories, and take novel paths to 

find a goal (Morris, 1981; O'Keefe & Nadel, 1978; Tolman, 1948; Tolman, Ritchie & 

Kalish, 1946a; Tolman, Ritchie & Kalish, 1946b). 

O'Keefe and Nadel (1978) extended Tolman's notion that animals form cognitive 

representations of the relationships between cues in that environment and formulated the 

cognitive map hypothesis. O'Keefe and Nadel (1978) divided navigational strategies, or 

spatial learning, into two major categories: the taxon and locale systems of navigation. 

The former can be further divided into a guidance and an orientation system. The taxon 

system is more of a local cue strategy system that includes strategies such as beacon 

learning (i.e., the guidance system) and response learning (i.e., the orientation system). 

The cognitive map hypothesis is based on the locale navigational strategy and the rat's 

ability to use distal cues to navigate through its environment. O'Keefe and Nadel (1978) 

also suggested that the hippocampus was the neural basis of the cognitive map. This 

map generates the information on which place learning is based, and can be stored in the 

hippocampal system on the basis of a single experience. Support for the cognitive map 

theory is widespread, spanning across species. Cognitive mapping has been 

demonstrated in humans (e.g., Garling, Book, Lindberg & Arce, 1990; Herman, Miller & 

Shiraki, 1987; Peruch, Giraudo & Garling, 1989; Tolman, 1948), chimpanzees (e.g., 

Menzel, 1973), rats (Morris, 1981; O'Keefe & Nadel, 1978; Tolman, 1948), birds (e.g., 
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Gould, 1982), reptiles (Lopez, Gomez, Rodriguez, Broglio, V argus, & Salas, 2001; 

Lopez, Rodriguez, Gomez, Vargus, Broglio, & Salas, 2000; Rodriguez, Lopez, Vargus; ,: 

Gomez, Broglio, Salas, 2002), fish (Lopez, Broglio, Rodriguez, Thinus-Blanc, & Sal~-. 

1999; Lopez, Vargus, Gomez, Broglio, Salas, 2002; Rodriguez, Duran, Vargus, Torres, & 

Salas, 1994), and insects (e.g., Gould, 1986). Evidence supporting the cognitive map 

hypothesis came from a variety of sources, including behavioural (Morris, 1981; 

Sutherland & Dyck, 1984), lesion (Jarrard, 1995; Morris, Garrod, Rawlins & O'Keefe, 

1982; Olton, Walker & Gage, 1978; Parron, Poucet, & Save, 2004), and 

electrophysiological studies (O'Keefe, 1976; O'Keefe & Dostrovsky, 1971). 

1.2. Behavioural Evidence 

The most prominent behavioural study that provided evidence of cognitive maps 

was done by Morris (1981). He placed rats in a circular pool with a hidden platform that 

remained in the same place with respect to distal cues. Over a number of trials, the rats 

learned to locate the platform by following a straight route from variable start points. 

During probe trials in which the platform was removed, the rats spent the majority of 

their time in the quadrant at which the platform was located on previous trials. Morris 

provided evidence for the cognitive map theory by systematically ruling out alternative 

strategies. When the platform was hidden in a different place with respect to distal cues 

on every trial, the rat failed to locate the platform suggesting that the rat was not using a 

guidance system of navigation. In another experiment, Morris ( 1981) positioned the 

hidden platform in a different place with respect to distal cues on every trial, but kept the 

angular relationship between the start location and the platform constant. Rats failed this 
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task, ruling out the possibility that the rats were using an orientation system of 

navigation. It was concluded that the rats were using distal cues to navigate and were 

taking straight novel paths to the submerged platform, suggesting the presence of a 

cognitive map. 

Suzuki, Augerinos, and Black (1980) studied the ability of distal stimuli to gain 

control over spatial behaviour in the rat on an 8-arm radial maze. In this study they 

surrounded an 8-arm radial with a black curtain. As in classic working memory 

experiments, all arms were baited, and a correct choice was recorded as entry in an arm 

that had not been previously visited (and therefore contained food). Also, at the end of 

seven arms, there were distinct stimulus objects, all of which remained associated with a 

particular arm during all transformations. After three forced choices, the rats were 

confined to the center platform. After a 2.5 minute delay, the rats were given a free 

choice period. All transformations occurred during the delay interval. The three 

transformations included: a control (nothing changed), a rotation (arms and objects were 

rotated 180° to see if the rats oriented themselves based on the objects, and only by those 

objects), and a transposition (arms and objects were randomly moved to new positions). 

Rats were impaired at the task in the transposition transformation, while they were 

relatively unaffected by the control and rotation transformations. Since the control and 

rotation transformations left the relationship between arms and distal cues unaffected, rats 

were not impaired. In contrast, the transposition altered the relationship between (or 

configuration of) distal cues. They concluded that rats use the configuration of distal 
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cues and that these cues can control rats' behaviour suggesting the presence of a 

cognitive map based on distal stimuli. 

As was seen with Suzuki, Augerinos, and Black (1980), many other studies 

showed that manipulating the topographical arrangement of cues, but not the number of 

distal cues, disrupted place learning (O'Keefe & Nadel, 1978). For example, Pico, 

Gerbrandt, Pondel, and Ivy (1985) trained rats in a radial arm maze with 4 distinct distal 

cues. Deletion of any one or two cues had no effect on the rat's place learning. 

However, when three cues were removed, essentially eliminating the strategy of using 

relations between multiple stimuli, rats were impaired during the place task. These 

results are consistent with Fenton, Arolfo, Nerad, and Bures (1994) who trained rats in a 

water maze with four distinct distal cues. When any two cues were removed, no 

disruption of spatial navigation was observed. Similarly, when rats were trained with two 

distal cues and two novel cues were added, little disruption occurred. However, when 

rats were trained with two distal cues and those two cues were replaced by two novel 

cues, a large disruption was observed. These behavioural data are consistent with place 

unit firing (O'Keefe & Conway, 1978) (See Subsection 1.4). 

1.3. Lesion Studies 

Neurobiological studies also provided evidence of cognitive maps. Evidence that 

the hippocampus is important for place learning came from lesion studies of rats (Jarrard, 

1995; Morris, Garrod, Rawlins & O'Keefe, 1982; Olton, Walker & Gage, 1978; Parron, 

Poucet, & Save, 2004), birds (Fremouw, Jackson-Smith, & Kesner, 1997), and turtles 

(Lopez, Gomez, Rodriguez, Broglio, Vargus, & Salas, 2001; Lopez, Rodriguez, Gomez, 
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Vargus, Broglio, & Salas, 2000). These studies show that hippocampallesioned animals 

are impaired in their ability to use distal cues (i.e., distal localization), but not in using 

local cues (i.e., proximal localization) to locate a specific place. Morris, Garrod, Rawlins 

& O'Keefe (1982) trained rats on the Morris water maze task and discovered that 

hippocampal lesions disrupted place navigation based on distal cues. Rats failed to locate 

the hidden platform located in a fixed position relative to distal cues when the 

hippocampus was lesioned. Furthermore, McDonald and White (1993) provided 

evidence that the hippocampus is involved in encoding stimulus-stimulus relations using 

an 8-arm radial arm maze. 

Temporary inactivation studies also suggest the hippocampus is the neural basis 

of cognitive maps. Packard and McGaugh (1996) trained rats on a place problem after 

temporary inactivation of the hippocampus with lidocaine. The rats that had lidocaine 

injected into the hippocampus were impaired on the place problem. Similarly, Chang, 

and Gold (2003), and Compton (2004) showed that inactivation of the hippocampus 

impaired place navigational strategies. 

Furthermore, studies using immunohistochemical techniques show an increase in 

c-Fos (an immediate early gene expressed in most brain areas when that brain area is 

activated) and phosphoylated cAMP response element binding protein (pCREB) in the 

hippocampus one hour after performance on a place problem, suggesting that the 

hippocampus is activated during performance on a place task, and that it is involved in 

the possible formation of memory for space (Columbo, Brightwell & Countryman, 2003). 
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1.4. Electrophysiological Evidence 

Some of the most compelling evidence for cognitive maps arises from 

electrophysiological studies on place cells within the hippocampus. When place cells 

were first observed in the freely moving rat (O'Keefe, 1976; O'Keefe & Dostrovsky, 

1971 ), it was observed that these cells fired when the rat passed through a particular 

location (called a place field). These place cells were further investigated, and it was 

found that place fields were highly stable, were dependant upon controlled cues, and 

were not dependant upon motivational factors (O'Keefe & Conway, 1978), temporal 

factors (Jung & McNaughton, 1993; Muller, Kubie, & Ranck, 1983), or dwell time, 

defined as a preference for a certain region (Muller, Kubie, & Ranck, 1987). O'Keefe 

and Conway ( 1978) recorded place cell activity when no food was present on the maze, 

and found that the removal of food did not disrupt the ability of the cells to discriminate 

place. On the other hand, when aT-maze was surrounded by a black curtain, to limit the 

use of environmental cues, and four distinct cues were positioned within the curtain, 

seven of eight cells loss their ability to discriminate place when all these cues were 

removed. However, when only two cues were removed, place cell activity remained 

intact. Place cells also have different place fields within different contexts (suggesting 

the hippocampus is involved in context discrimination; Kubie & Ranck, 1983) and 

multiple place fields (Muller, Kubie, & Ranck, 1987). However, although place cells 

may appear to be controlled by distal cues, few studies suggest that place cell activity can 

be maintained in the absence of controlled visual cues and in complete darkness 

(O'Keefe & Speakman, 1987; Quirk, Muller, & Kubie, 1990). These studies suggest that 
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place cells can be maintained using internally derived feedback from proprioceptive and 

vestibular signals and that place cells may be modulated by these signals. 

Although electrophysiological studies on place cells have provided compelling 

evidence for the hippocampus as a substrate for the cognitive map, one of the major 

pitfalls to this line ofthinking are the non-spatial correlates of place cell firing. 

According to Eichenbaum, Dudchenko, Wood, Shapiro, and Tanila (1999), most space 

must be represented by a set of place fields distributed uniformly throughout the 

environment. In other words, hippocampal spatial representations must be homogeneous 

in order for this theory to be plausible. We know from earlier work that hippocampal 

spatial representations are not homogeneous (Hetherington & Shapiro, 1997; O'Keefe & 

Burgess, 1996), with most place fields forming near walls with prominent local cues, and 

being controlled by distances between neighbouring stimuli (e.g., walls). These studies 

suggest the hippocampus is not involved in forming a holistic representation of every 

point in space, rather, as O'Keefe and Burgess (1996) suggested, place cells may identify 

environmental features such as walls and their directions from the rat, possibly derived 

from head direction cells. 

Head direction cells (Ranck, 1984) are named for the fact that each cell fires 

rapidly only when the head of a freely moving rat points in a restricted range of angles in 

the horizontal plane. Head direction cells are quite abundant, and have been found in 

numerous brain regions, including the postsubiculum (Taube, Kesslak & Cotman, 1992; 

Taube, Muller & Ranck, 1990a; Taube, Muller & Ranck, 1990b), the striatum (Wiener, 

1993), the lateral dorsal nucleus of the thalamus (Mizumori & Williams, 1993), the 
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posterior cortex (Chen, Lin, Barnes & McNaughton, 1994), and the anterior thalamic 

nuclei (Taube, 1995). Like place cells, firing ofhead direction cells is dependant upon 

visual cues. By placing a salient cue, such as a white cue card, in the environment, that 

card becomes a reference for orientation. Support for this idea comes from cue rotation 

probes in which the cue card was rotated. An almost equal shift in the preferred firing 

direction ofhead direction cells was observed (Taube, 1995; Taube, Muller & Ranck, 

1990b). Recently, head direction cells were found in the hippocampus (Leutgeb, 

Ragozzino, & Mizumori, 2000). This convergence of place and direction information in 

the hippocampus may indicate that both place and direction must be integrated to form a 

cohesive cognitive map. 

More recent work shows that while head direction cells are dependant on distal 

cues, place cells may be more closely tied to local or apparatus cues (Yoganarasimha & 

Knierim, 2005). This idea that place cells fire to non-spatial cues (e.g., local or apparatus 

cues) has been shown before. Place cell firing has been correlated with local apparatus 

cues (Gothard, Skaggs, & McNaughton, 1996; Knierim & McNaughton, 2001; Young, 

Fox, & Eichenbaum, 1994), as well as selfmotion cues (Save, Nerad, & Poucet, 2000; 

Sharp, Blair, Etkin, & Douglas, 1995; Stackman, Clark, & Taube, 2002; Zinyuk, Kubik, 

Fenton, & Bures, 2000). 

1.5. Translation Versus Rotation 

Recently, Knierim's laboratory has shown that firing of the majority of place cells 

was determined by the rats' location on an apparatus rather than by the rats' location in 

the room (Knierim & Rao, 2003; Siegel, Rao, Lee, & Knierim, 2005; Yoganarasimha & 
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Knierim, 2005). They showed this in experiments in which the apparatus location was 

translated by 33-120 em, rather than rotated, relative to distal cues. When the distal 

landmarks were rotated, Knierim and colleagues showed, as previously seen, that place 

fields are correspondingly rotated, as are head direction cells (Knierim, Kudrimoti, & 

McNaughton, 1995; Yoganarasimha & Knierim, 2005). Knierim and colleagues suggest 

that the head direction cell system may modulate the firing of place cells tied to the track 

(i.e., local cues). As did O'Keefe and Nadel (1978) earlier, Knierim and Rao (2003) 

hypothesized that distal cues provide map orientation information, but that fine grained 

place information depends on path integration and location on the apparatus. 

When the distal cues or a maze within a room with prominent visual cues is 

rotated, there is an almost equal shift in place fields. When the maze is translated, place 

cells remain tied to the rat's location on the apparatus. Much of the previous behavioural 

work on place learning was conducted using a stationary maze. In the few studies where 

the maze was moved, the manipulation was essentially a rotation. Tolman, Ritchie, and 

Kalish (1946b), Packard and McGaugh (1996), and Chang & Gold (2003a) trained rats 

from two start points positioned on the north and south arms of a plus maze, essentially a 

180° rotation. One early exception was an experiment by Blodgett, McCutchan, and 

Mathews (1949). Blodgett, McCutchan, and Mathews (1949) trained rats on a 

translational version of the place problem in which the maze was translated 122 em. Rats 

were required to make different responses and approach different directions from two 

start points to find the goal located in a consistent place as defined by distal cues. When 

the rats started on the south arm of a plus maze, they were required to tum right, and go 
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east. After a translation of 122 em to the right, the rats started on the same south arm, but 

were required to make a left tum, and go west to locate the food. Blodgett, McCutchan, 

and Mathews (1949) found that rats were impaired on the place task. 

Similarly, Weisand et al. (1995) conducted an experiment that tested whether rats 

in the Morris water task were using distal landmarks to escape to the hidden platform, or 

the spatial geometry of the pool itsel£ Weisand et al. (1995) trained rats to escape to a 

hidden platform in the northeast quadrant of the pool. When the rats had reached 

asymptotic performance, the pool was shifted diagonally so the platform was now located 

in the southwest quadrant ofthe pool, but remained in the same place with respect to 

distal landmarks. If the rats were indeed using distal landmarks to locate the hidden 

platform, the rats would be expected to locate the platform since it still occupied the same 

place with respect to the distal cues. In fact, 100% ofthe rats navigated toward the 

northeast quadrant ofthe pool, supporting the idea of a local, surface boundary strategy 

with a small translation of the apparatus. Both of these studies are consistent with the 

idea that place cells are tied to the apparatus. 

Skinner et al. (2003) explicitly compared the rotational and translational versions 

of the place task in the same study. In one group, the maze was rotated 90°, while in the 

other group the maze was translated 85 em. The rotation group was successful at solving 

the place task, while the translation group was impaired. This, again, is consistent with 

place field data. It appears that place fields are stable in an apparatus with small 

translations, but place fields rotate with a clear change in direction relative to distal cues 

such as that produced by either a rotation or a large change in translational distance. 
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The present thesis extends the examination of place learning on a moveable 

apparatus in a larger environment to better understand the interaction between location on 

an apparatus and location in a room. The thesis presents evidence that place learning can 

occur with a translational version of the place problem, highlighting which conditions are 

necessary for an animal to use surface properties, and which kinds of manipulations will 

cause an animal to shift from a surface dominated strategy to a strategy based on distal 

cues. 
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Chapter 2 - Surface Location Has Priority Over Distal and Local Cues for Place 

Learning in Translational Problems in the Rat 

2.1. Introduction 

A debate over whether rats use a local surface dominated strategy or a distal cue 

dominated strategy has been around for many years. Most experiments treat the use of 

local and distal cues to navigate as two mutually exclusive strategies. Typically, a black 

curtain surrounding the maze is used to control for distal cues and cleaning the maze 

surface/rotation of arms and disorientation procedures are used to control for possible 

informative local and idiothetic cues, respectively. Similarly, much research has been 

done when these two sets of cues (local and distal) are in conflict, with rats preferring one 

over the other depending on the types of cues available. Some research suggests beacon 

learning (a local strategy) dominates place learning when local and distal cues are in 

conflict (Redhead, Roberts, Good, & Pearce, 1997; Pearce, Ward-Robinson, Good, 

Fussell, & Aydin, 2001). Restle (1957) suggested that in cue rich rooms rats use distal 

cues. In cue poor rooms, local cues are used. We know rats can use local cues for 

proximal localization and distal cues for distal localization (Morris, 1981 ), but is there a 

shift from using a local surface strategy to a distal cue strategy in the formation of a 

cognitive map, and if so, what aspects of the environment necessitate this shift? 

Earlier, O'Keefe and Nadel (1978) suggested that distal cues provide map 

orientation information, but path integration and location on the apparatus provide the 

rats with fine grained place information. When a maze is rotated 90°, the change in 

orientation (governed by distal cues) is drastically different, and rats can successfully 
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solve a place problem (Skinner et al., 2003). However, when a maze is translated a 

distance of ~33-120 em, the change in orientation is not great enough to elicit a shift from 

a surface boundary dominated strategy to a distal cue dominated strategy, and rats fail 

this problem (Blodgett, McCutchen, & Mathews, 1949; Skinner eta!., 2003; Weisend et 

a!., 1995). Recent place field data are consistent with these results, suggesting that firing 

of place cells are determined by the rat's location on an apparatus rather than by the rat's 

location in the room (Knierim & Rao, 2003; Siegel, Rao, Lee, & Knierim, 2005; 

Yoganarasimha & Knierim, 2004). 

Previous versions of the cognitive map theory suggested that rats use the 

relationship between distal cues to identify goal location. This is a simplistic 

characterization of O'Keefe and Nadel's (1978) original cognitive map theory in that it 

does not explain why rats fail a translational place problem (Blodgett, McCutchen, & 

Mathews, 1949; Skinner et al., 2003; Weisend et al., 1995). It is possible that rats use 

these distal cues to identify their start point, or at the least provide their initial orientation. 

The aim of the present chapter is to better understand the interaction between location on 

an apparatus and location in a room and to determine the conditions necessary for 

successful place learning on a translation problem. 

2.2. Experiment 1 

In Experiment 1, rats were tested with three place learning problems that varied 

the nature of the surface location information on an apparatus. In the first problem, a 

single plus maze was translated between two adjacent locations, as in the earlier 

experiments by Blodgett, McCutchan and Mathews (1949) and Skinner et al. (2003). For 
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the rat on the start arm, its location with respect to the surface of the apparatus does not 

change, but its location with respect to distal cues does change. If the earlier experiments 

are replicated, the rats will have difficulty solving this problem. In the second problem, 

two adjacent plus mazes were provided so that the rats started from two different surface 

locations with respect to the apparatus. These locations were the same with respect to 

distal cues as for Problem 1. With differentiable and consistent surface and distal cue 

locations, the rats should be successful. The third problem provided multiple, but 

unreliable surface start locations, although the start locations were at the same two distal 

cue locations as for both of the previous problems. Rats were given two adjacent plus 

mazes with an additional plus maze added to either end in a variable pattern. Thus, the 

rats had two start locations with respect to the apparatus surface, but surface location 

itself was uninformative. Specifically, the rats' start locations with respect to the distal 

cues were the same as in the previous two problems, but on some trials it started from the 

last of three plus mazes, while on other trials it started from the second ofthree plus 

mazes (see Figure 2.1). If the rats rely only on surface location on the apparatus to solve 

the problem they will fail. 

2.2.1. Methods 

Subjects. Nineteen na1ve, male, Long Evans rats, obtained from the Charles River 

Company (St. Constant, Quebec, Canada), and weighing between 195 g- 212 gat the 

start ofthe experiment, were used. Rats were housed in clear plastic cages (45 x 25 x 21 

em) with secured metal lids and maintained on a 12-hr/12-hr light/dark cycle with lights 

on at 0700. Subjects were maintained on a food deprivation schedule by measured 
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feedings ofPurina Rat Chow, as to not allow their weights to drop below 85% of their ad 

libitum weight. All rats had continuous access to water in their home cages. Animal care 

and all procedures used in the present experiments were approved by Memorial 

University's Institutional Committee on Animal Care and followed the Canadian Council 

on Animal Care guidelines. 

Apparatus. The training room (615 em X 302 em) was rich in extra-maze cues. On the 

north wall, there was a blue door and a poster (93 em X 122 em). On the east wall, there 

was a desk (152.4 em X 61.0 em) and two wooden chairs. There was also a computer 

terminal and a black counter with a sink (245.1 em X 74.9 em). The south wall consisted 

ofwindows with the blinds open for the duration of training. On the west wall, there 

were two posters (93 em X 122 em) and a blue door. 

For the One Maze problem, a single plus maze was used (see Figure 2.1A). For 

the Two Maze problem, two adjacent plus mazes were used (see Figure 2.1B). For the 

Three Maze-Unreliable Start Location problem, two mazes formed the core problem and 

an additional single plus maze was placed either to the right or left of the two mazes (see 

Figure 2.1C) on a variable schedule. Each wooden plus maze had a square center (15.5 

em X 15.5 em) with 4 arms (38.5 em X 15.5 em) radiating out at 90° angles. At the end 

of each arm, a circular depression in the wood (diameter= 2.6 em) formed a food cup. 

The plus mazes were elevated on a wooden stool and were 61.3 em from the floor. No 

walls were present on the arms of the mazes to allow the rat a clear view of room. Any 

two plus mazes touched at one arm, as shown in Figure 2.1B. A Froot Loop® half was 

placed in the food cup at the end of the correct arm as reinforcement. 
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Training Groups. Rats were assigned to one of three groups on the basis of body weight 

such that no significant differences were observed with respect to body weight between 

the groups: the One Maze group (n = 6), the Two Maze group (n = 6) and the Three 

Maze-Unreliable Start Location group (n = 7). All groups were trained to locate the food 

reward in a consistent place with respect to distal cues. For all groups there were two 

different start locations with respect to distal cues. These start locations were identical 

across groups. The One Maze group was trained using only one plus maze that was 

translated to two locations across trials. When the rat was placed on the start arm, its 

location with respect to the surface of the apparatus did not change across trials, but its 

location with respect to distal cues did change. The Two Maze and the Three Maze­

Unreliable Start Location groups were trained on the double-plus maze. The only 

difference between the Two Maze and the Three Maze-Unreliable Start Location groups 

was that for the latter group, an additional plus maze was positioned on one side of the 

double-plus maze (on the left for half the trials and on the right for the other half; see 

Figure 2.1C). Within each group, halfofthe rats started on one oftwo arms (i.e., a & b) 

while the other half started on the other two arms (i.e., c & d). 

Procedure. During pre-training, Froot Loops® halves were spread evenly on the table 

located in the animal's housing room. Each rat was placed on the table and allowed to 

explore for 2 minutes. Once the rats moved and ate on the table, they were moved to a 

single plus maze. Initially, all arms were baited (with the exception of the start arm) with 

2 Froot Loops® pieces and an additional Froot Loop® piece in the center to encourage 

the rat to move from the start arm. Once the rats moved from the start arm only the three 
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food cups were baited. When all rats were eating the Froot Loops® from the food cups, 

the rats proceeded to training. 

On each training day, the rats were moved to the training room. Each rat was 

removed from its home cage and carried in a clockwise direction to the maze. The rat 

was then placed on the appropriate start arm facing the experimenter. For all training 

trials, rats were only allowed to travel on the single plus maze that contained the food 

reward. To accomplish this, for the first sixteen training trials all rats were restricted to 

the part of the maze that contained the food reward by placing two Plexiglas (13.5 x 20 

em) barriers at the end of either side arm. The rats were allowed to explore the maze for 

1 minute, or until they found and ate the food reward. For the remaining trials, both 

Plexiglas barriers were removed. At this point rats did not travel beyond the goal wells 

located at the end of the side arms before they were removed from the maze and thus did 

not traverse more than a single plus maze on any given trial. Following trial 16, the rat 

was removed from the maze if it had not moved from the start arm within 30 s or had 

made an incorrect choice. An incorrect choice was indicated by the presence of the rat's 

body, excluding the tail, on an un-baited arm. If the rat did not move from the start arm 

during the time limit for a trial then that trial was removed from the analysis. Each of the 

rats received 4 trials per day (inter-trial interval was 1-5 min), until a criterion of 18 

correct trials out of20 was reached. After each trial, the rat was carried back to its home 

cage in a counter-clockwise direction and the maze was re-baited for the next rat. Local 

maze cues were controlled by frequent 90° maze rotations. The maze was wiped free of 

debris (e.g., stray shavings) during training and at the end of each day the maze was 



Place Learning 20 

cleaned with soap and water. Training was stopped at 275 trials for those rats that did not 

meet criterion. 

2.2.2. Results 

Rats in the Two Maze and the Three Maze-Unreliable Start Location groups, 

which were trained on the double-plus maze, reached criterion in fewer trials than those 

in the One Maze group, which were trained on the single plus maze. Three of the six rats 

in the One Maze group failed to reach criterion. A one-way ANOVA comparing trials to 

criterion across groups revealed significant differences between the groups [F (2, 16) = 

l3.57,p < .05] (Figure 2.2). Post-hoc Newman-Keuls tests revealed that the One Maze 

group on average took more trials to reach criterion than the Two Maze and Three Maze­

Unreliable Start Location groups (ps < .05), which did not differ (p > .05). 

2.2.3. Discussion 

The One Maze group replicated the earlier findings of Blodgett, McCutchan, and 

Mathews (1949) and Skinner eta/. (2003) that rats started from a single location on a 

surface had difficulty solving a place problem when the surface was moved a short 

distance. In fact, three of the six rats in the One Maze group failed to reach criterion. 

The Two Maze group showed that rats could solve the same place problem over the same 

short displacement distance if there were two start locations relative to the surface 

boundary. The Three Maze-Unreliable Start Location group also solved the place 

problem over the same short displacement distance. The only strategy available to solve 

this problem was the use of distal cues. In this group when the rat started from a location 
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between two mazes, neither a response nor a direction strategy, nor a response based on 

surface boundaries such as 'go toward the center', permitted a solution (see Figure 2.1 C). 

The success of rats in the Three Maze-Unreliable Start Location group in going to 

the correct place using dista1 cues demonstrates that this solution was available to rats in 

the One Maze group. The question thus becomes why one group is able to shift from a 

surface boundary-dominated strategy to a distal cue-dominated strategy. Rats appear to 

benefit by the extended surface in the Three Maze-Unreliable Start Location group even 

though they have never traversed that surface in its entirety. They remain on a single plus 

maze for any given trial. 

The critical difference between the single plus maze and the double plus maze 

configurations of this problem is either the extended surface or the possibility of multiple 

start locations, relative to the surface of the apparatus. One ofthese two variables must be 

contributing to the use of distal cues. In the next experiment we assessed the role of the 

extended surface per se in place problem solution dependent on the use of distal cues. 

2.3. Experiment 2 

In Experiment 2, a Three Maze-One Start Location group was added. This group 

was used to determine whether the Three Maze-Unreliable Start Location group 

successfully used distal cues because of the extended surface or because of multiple start 

locations. For the Three Maze- One Start Location group an extended surface was 

employed, but the rat's start location relative to surface boundaries was invariant. The 

three mazes were displaced by the same distance from trial to trial such that the rat started 

from the two distal cue-defined locations used for previous groups. 
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If the rats benefited from the extended surface in solving the place problem in the 

earlier Two Maze and Three Maze groups, then the Three Maze-One Start Location rats 

should successfully solve the place problem. If the Three Maze-One Start Location rats 

are unsuccessful, as were the One Maze rats, this would suggest that the perception of 

multiple start locations relative to the surface was the feature that enabled rats in the 

previous experiment to use a distal cue strategy. 

2.3.1. Methods 

Subjects. Thirty-one naive, male, Long Evans rats, weighing between 173 g - 223 g at 

the start ofthe experiment, were used. Rats were maintained as in Experiment 1. 

Apparatus. The apparatus was the same as that used in Experiment 1. The training room 

(850 x 680) had foil covered windows taking up much of the south and west walls. The 

east wall contained a chalkboard (275 x 180 em); the north wall contained a door and was 

lined with cabinets and counters. The northeast comer of the room contained a sink and 

the south and west walls contained stacks of wooden tables and chairs. In addition, the 

room contained several wooden stools, a large garbage can, the double plus maze, and the 

rat racks, which were brought to the room at the start of the first trial of the day. These 

racks were positioned in front of the tables and chairs that lined the west wall. One of the 

tables along the south wall held the cages of the group currently being tested while all 

other rats were left on the racks. 

Training Groups. Rats were assigned to one of four groups on the basis of body weight 

and included a One Maze group (n = 8), a Two Maze group (n = 8), a Three Maze­

Unreliable Start Location group (n = 8), and a Three Maze-One Start Location group (n = 
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7). The first three groups were trained as in Experiment 1. For the Three Maze-One 

Start Location group, the rats always started on the center arm and the three mazes were 

moved such that the arm varied between the two distal cue-defined start locations as for 

the other groups (see Figure 2.1D). 

Procedure. Pre-training procedures, training procedures and criterion levels were 

identical to Experiment 1. Training was stopped at 300 trials for those rats that did not 

meet criterion. 

2.3.2. Results 

Rats in the Three Maze-One Start Location and the One Maze groups were 

impaired relative to the other groups. None of the rats in the One Maze group reached 

criterion on the place problem. Only one rat in the Three Maze-One Start Location group 

reached criterion. A one-way ANOV A comparing trials to criterion across groups 

revealed significant differences among the groups [F (3,27) = 21.81, p < .05] (Figure 

2.3). Follow up Newman-Keuls tests showed that the rats in the Two Maze group 

reached criterion in fewer trials than the Three Maze-Unreliable Start Location group (p 

< .05), which reached criterion in fewer trials than the Three Maze-One Start Location 

and One Maze groups (p < .05), which did not differ (p > .05). 

2.3.3. Discussion 

The comparable performance of the One Maze group and the Three Maze-One 

Start Location group suggests rats do not use distal cues simply because they have an 

extended surface. Multiple start locations, as in Experiment 1, did enable the rats to use 

distal cues. Within the multiple start locations groups, the Two Maze group required 
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fewer trials than the Three Maze-Unreliable Start Location group. The Three Maze­

Unreliable Start Location group may have used surface boundaries initially, and then 

shifted to distal cues, while the Two Maze group could succeed with either strategy. In 

Experiment 1, these two groups were not significantly different, but trials to criterion 

showed a similar trend to that seen here. 

The data from the Three Maze-Unreliable Start Location condition suggest that 

rats will shift from a surface location strategy to a distal cue strategy to solve the place 

problem when surface location is variable and uninformative. Rats do not use a distal cue 

strategy when an apparently stable start location is available, even though the positional 

shift of the rat with respect to distal cues is the same (One Maze group or Three Maze­

One Start Location group). In the next experiment, we evaluated whether another source 

of unreliable surface information can induce a strategy shift to distal cues. We gave rats a 

change in surface texture and assessed whether variable surface texture would induce a 

strategy shift to distal cues. 

2.4. Experiment 3 

In Experiment 3, all rats were tested on the one maze problem. An Unreliable 

Surface Texture group was used to assess the hypothesis that an uninformative change in 

surface texture would induce a shift to distal cues. For this group, when the single plus 

maze was moved between the two start locations, surface texture changed from rough to 

smooth in a variable pattern. Two control groups were included. For one control group, 

the Reliable Surface Texture group, surface texture changed from rough to smooth, if and 

only if, the start location changed. The second control group was a Constant Surface 
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Texture group, which was the equivalent of the One Maze group from the previous 

experiments. 

If any surface change is sufficient to promote distal cue use, then rats in the 

Unreliable Surface Texture group should perform better than rats in the Constant Surface 

Texture group. On the other hand, if rats in the Unreliable Surface Texture group and rats 

in the Constant Surface Texture group do not differ, this result, together with the results 

of the earlier experiments, would suggest location changes with respect to surface 

boundaries lead to distal cue use, while qualitative changes in surface properties do not 

promote the use of distal cues. 

2.4.1. Methods 

Subjects. Twenty-five naive, male, Long Evans rats, weighing between 189 g-215 gat 

the start of the experiment, were used. Rats were maintained as in Experiment 1. 

Apparatus. The same maze and training room were used as in Experiment 1. All groups 

were trained on a single plus maze. A wire mesh was placed over the plus maze to create 

the rough surface texture condition. 

Training Groups. Rats were assigned to one of three groups on the basis ofbody weight 

and included an Unreliable Surface Texture group (n = 9), a Reliable Surface Texture 

group (n = 8), and a Constant Surface Texture group (n = 8). All groups were trained to 

locate the food reward in a consistent place with respect to the distal cues (as in Figure 

2.1A). For the Reliable Surface Texture group, the surface cues were consistent with 

respect to maze position (e.g., when the maze was on left, the surface was always rough, 

and when the maze was on the right, the surface was always smooth or vice versa). For 
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the Constant Surface Texture group, the surface cues were the same regardless of maze 

position, (e.g., always rough or always smooth) making this group equivalent to the One 

Maze groups in Experiments 1 and 2. For the Unreliable Surface Texture group, when 

the maze was on the left, the surface was rough for half the trials and smooth for the other 

half of the trials. Similarly, when the maze was on the right, the surface was rough for 

half the trials and smooth for the other half of the trials, making the surface cues 

uninformative with respect to goal location. 

Procedure. Pre-training procedures, training procedures and criterion levels were 

identical to Experiment 1. Training was stopped at 298 trials for those rats that did not 

meet criterion. 

2.4.2. Results 

A one-way ANOVA comparing trials to criterion across groups revealed 

significant differences among the groups [ F (2,22) = 11.85, p < .05] (Figure 2.4). The 

Reliable Surface Texture group reached criterion in fewer trials than the Unreliable 

Surface Texture and the Constant Surface Texture groups (Newman-Keuls test, p < .05), 

which did not differ (p > .05). Five out of nine rats and three out of eight rats failed to 

reach criterion in the Unreliable Surface Texture and Constant Surface Texture groups 

respectively. 

2.4.3. Discussion 

An unreliable qualitative change in the surface properties of the plus maze did not 

promote distal cue use. Rats were sensitive to the qualitative change in surface since the 

Reliable Surface Texture group readily solved the problem. The Reliable Surface 
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Texture group readily solved the problem because this task is essentially a conditional 

discrimination task which is easily solved by rats (Guillamon, Valencia, Cales, & 

Segovia, 1986; Modo, Sowinski, & Hodges, 2000). The Unreliable Surface Texture 

group was comparable to the Constant Surface Texture group. Thus, animals do not 

readily use distal cues to solve a place problem when they start at a single point on 

surfaces that have either constant or unreliable textures. The failure of random variations 

in surface texture to promote place learning based on distal cues occurs despite evidence 

that this type of surface information can modulate hippocampal place fields (Knierim 

2002). In conjunction with the results of Experiments 1 and 2, these results suggest 

variable surface location with respect to surface boundaries has a unique role, relative to 

other qualitative surface properties, in promoting the use of distal cues. 

2.5. Summary and Conclusions 

The present experiments demonstrate both success and failure to solve a place 

problem with an identical translational position change. The only difference between 

failure and success is the existence of multiple start positions when rats are successful. 

The present experiments replicated the impairment in place learning when a rat's location 

on the maze apparatus is unaltered, even though its location in the larger environment 

with respect to distal cues is changed by a 93 em translation (Experiments 1, 2, and 3). 

Place learning can occur with the same 93 em displacement in start locations ifboth 

locations are part of a larger apparatus surface consistent with place fields being 

controlled by apparatus boundaries (Wills, Lever, Cacucci, Burgess, & O'Keefe, 2005) 

(Experiments 1 and 2). The new finding in the present studies is the demonstration that 
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discriminable, but uninformative, start locations on a larger apparatus also promote place 

learning (Experiments 1 and 2). Control experiments demonstrated that discriminable, 

but uninformative surface texture changes do not lead to place learning (Experiment 3), 

nor do large surfaces in the absence of multiple start locations (Experiments 2). 

These experiments replicated the earlier reports of Blodgett, McCutchan, and 

Mathews (1949) and Skinner eta!. (2003), which showed impairments in place learning 

with apparatus translations of85-122 em. Similarly, Weisend eta!. (1995) reported that 

when a Morris water maze was shifted to a new location in a familiar larger environment, 

rats navigated relative to apparatus boundaries, not distal cues. It appears that the 

apparatus surface dominates mapping with small translational distances. If this is the 

case then the rats in the Blodgett, McCutchan, and Mathews (1949), Skinner eta!. 

(2003), Weisend eta!. (1995), and the present study would be predictably insensitive to 

the translational change of apparatus location in the room environment. 

How does the identification of multiple start points promote distal cue use over 

the 93 em translation? It has been suggested that since rotations of distal cues cause most 

place fields on an apparatus to rotate, distal cues confer direction (Yoganarasimha & 

Knierim, 2005). I suggest that the identification of multiple start points necessitates 

different directional information in an egocentric framework, meaning that multiple start 

points may aid the rats in distinguishing two different path directions to the food relative 

to its start location. This type of direction information differs significantly from the type 

of direction information encoded by head direction cells. Head direction cells encode 

allocentric direction in some global framework. Providing two start locations, as in the 
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present experiments, leads rats to appreciate that there are different directions to the fixed 

goal. Distal cues are then used to discriminate direction as in the better studied rotational 

experiments. Larger translations also impose larger directional changes relative to a goal 

and may modulate distal cue mapping in the same way. This hypothesis predicts that 

distal cue control will be demonstrable whenever the rat notices a directional change (i.e., 

a new travel possibility). 

This hypothesis also explains why rats in the One Maze group performed so 

poorly. It is possible that rats in the One Maze group could not appreciate that the goal 

location was in a different direction from the two start points because the rats may not 

have realized the maze had moved positions. If rats identifY their start points, or at the 

least obtain their initial orientation from distal cues, rats in the One Maze group would 

have had great difficulty in noticing that there were two different directions to the goal 

because there was great overlap in the array of distal cues the rat would have used in 

discriminating between the two start locations. 
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Chapter 3 - Role of the Hippocampal Formation During Place Learning On a 

Translational Problem 

Author's Note: The logic of this experiment has been questioned as the results seem to be 

predictable and redundant given the results of the behavioural work presented in chapter 

two of this thesis. It must be made clear that this experiment was conducted at the same 

time as Experiment 1. I used behavioural and lesion techniques to answer the same 

question. 

3.1. Introduction 

Traditionally, the hippocampus has been known as the neural substrate of the 

cognitive map (O'Keefe & Nadel, 1978). Evidence for this arises from lesion studies 

(Compton, 2004; Fremouw, Jackson-Smith, & Kesner, 1997; McDonald & White, 1994), 

temporary inactivation studies (Chang & Gold, 2003; Packard & McGaugh, 1996), and 

studies using immunohistochemical techniques looking at cfos and pCREB (Colombo, 

Brightwell, & Countryman, 2003; Teather, Packard, Smith, Ellis-Behnke, Bazan, 2005). 

Compelling evidence for cognitive mapping in the hippocampus also comes from cell 

recording studies that have shown that place cells (cells that fire only when the rat is in a 

specific place) are located in the hippocampus (O'Keefe, 1976; O'Keefe & Dostrovskey, 

1971). It was also shown that place cell firing was controlled by distal cues (O'Keefe & 

Conway, 1978). In contrast, Knierim and colleagues have shown that the firing of the 

majority of place cells is determined by the rat's location on an apparatus rather than by 

the rat's location in the room (Knierim & Rao, 2003; Siegel, Rao, Lee, & Knierim, 2005; 

Y oganarasimha & Knierim, 2004). 
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If the suggestion in Chapter 2 is correct, that the existence of multiple start 

locations with respect to a fixed goal necessitates different direction information, and 

therefore promotes distal cue use (for orientation), hippocampal lesions should impair 

place learning on the Two Maze problem (see Figure 2.1B). Hippocampal impairment 

would provide neurobiological evidence that rats have shifted from a surface boundary to 

a distal cue dominated strategy. If rats are using a surface boundary dominated strategy 

(i.e., moving towards the centre of the maze) then lesioned rats might not be impaired. 

3.2. Methods 

Subjects. The subjects were 27 naive, male, Long Evans rats, weighing between 274 g-

316 g at the start of the experiment. Rats were maintained as in Chapter 2, Experiment 1. 

Surgery. Fifteen rats were given neurotoxic lesions of the hippocampus. Each rat was 

anaesthetized with an initial dose of Avertin (2 mL/100 g, i.p.), and then placed in a 

standard stereotaxic instrument in the skull-flat position. Supplements of approximately 

~of the initial dose of Avertin were given when necessary throughout surgery. An 

injection ofMarcaine (0.2 mL) was given below the surface of the scalp to reduce 

bleeding during surgery. After the scalp incision was made, six holes were drilled, three 

over the right hemisphere, and three over the left hemisphere (AP -2.8 and ML +/-2.0; AP 

-4.2 and ML +/-3.0; AP -5.6 and ML +/-5.0). Bregma was used as the reference point for · 

all drilling and injection sites. N-methyl-D-Aspartate (NMDA) was dissolved in 

phosphate buffered saline (pH 7.4) at 20 mg/mL. Injection sites, and volumes ofNMDA 

injected are shown in Table 3.1. A 33-gauge cannula was used for the injection, as well 

as a microinjector instrument. The NMDA solution was injected at a rate of0.1 J..tLimin. 
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The cannula was set in position, and left in place for 30 seconds prior to an injection to 

allow brain tissue to settle around the cannula. At the end of the injection, the cannula 

remained in place for an additional120 seconds before removal to prevent back-flow. 

This process was repeated for the remaining injection sites. After the injections were 

completed, the rats were sutured, and placed under a heat lamp until the rats could eat and 

drink. Eleven rats were sham controls. Five of these rats were given the anaesthetic and 

nothing else (un-operated controls), and six rats had holes drilled, but no cannula 

placement, or injections (operated controls) were conducted. All rats were allowed to 

recover for a one-week period before pre-training began, while remaining on ad libitum 

food and water. 

Apparatus. The same maze and training room were used as in Chapter 2, Experiment 1. 

All groups were trained on the two maze configuration (See Figure 3.1) 

Training Groups. Rats were assigned to one of two groups on the basis ofbody weight: a 

Direction group (n = 13), and a Place group (n = 14). The Direction group contained 5 

shams (2 operated; 3 un-operated) and 8 lesions. The Place group contained 6 shams ( 4 

operated; 2 un-operated) and 8 lesions. The Direction group was trained to go in a 

constant direction (east or west) to find the food reward (See Figure 3.1B), and the Place 

group was trained to locate the food reward located in a constant place with respect to 

distal cues (See Figure 3.1A). Both groups were trained using two mazes. The Direction 

group was included in the present study as a behavioural verification of the effectiveness 

of hippocampal lesions. It has been shown that hippocampal lesions impair direction 

learning on a similar task (Stringer, Martin, & Skinner, 2005). 
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Procedure. Pre-training procedures, training procedures and criterion levels were 

identical to Chapter 2, Experiment 1. Training was stopped at 240 trials for those rats 

that did not meet criterion. 

Histology. After behavioural training was completed, each rat was anaesthetized with 

Avertin (3 mL/100 g, i.p.), and decapitated. The brains were removed, and submerged in 

2-methyl butane that had been cooled in a -70°C freezer. The brains were allowed to 

freeze completely. To verify the extent of the lesions, each brain was cut into 40 Jlm 

cryostat sections, and mounted on slides, and stained with cresyl violet. A hippocampal 

lesion was considered acceptable if more than 50% ofthe hippocampus was damaged in 

each hemisphere. A trained observer who was blind to the experimental setup was used 

to determine the extent of the lesions to reduce experimenter bias. 

3.3. Results 

Histology Results. Upon completion of behavioural testing, a blind histological analysis 

was carried out. Six rats were excluded from the behavioural analysis because the 

hippocampal damage was restricted to one hemisphere, or because damage was not 

sufficient. The exclusion ofthese rats resulted in the following group sizes: Direction 

group (4lesions, 5 shams), and Place group (6lesions, 6 shams). 

In the remaining rats, 3 out of 4 and 4 out of 6 rats in the Direction and Place 

groups respectively had more extensive damage in the dorsal hippocampus than in the 

ventral hippocampus. All rats had shrinkage of fibers in the fimbria-fornix as well as 

some or total damage to all subfields of the hippocampus (i.e., CAl - CA3, DG). There 
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was little damage to adjacent structures, and little or no evidence of damage to overlying 

cortex. Figure 3.2 is a photograph showing a representative hippocampal lesion. 

Behavioural Results. Rats with hippocampal lesions were impaired on both the direction 

and place problems. A two-way ANOV A [Group (sham or lesion) x Problem (Direction, 

or Place)] comparing trials to criterion revealed significant main effects of Group 

[F(1,17) = 42.26,p < .05], Problem [F(1,17) = 47.02,p < .05], and a significant Group x 

Problem interaction [F(1,17) = 7.82,p < .05]. A Newman-Keuls test on the Group x 

Problem interaction revealed that sham rats reached criterion in fewer trials than lesioned 

rats on both the Direction and Place problems (p's < .05) (Figure 3.3). Lesioned rats 

trained on the place problem required more trials to criterion than both Direction shams 

and lesions (p's < .05). In fact two of the six lesioned Place rats failed to reach criterion. 

The Place shams and Direction lesions did not differ on trials to criterion (p > .05). 

3.4. Summary and Conclusions 

In the present experiment, the majority ofhippocampallesions were restricted to 

the dorsal hippocampus. Few studies have shown both ventral and dorsal hippocampal 

contributions to spatial learning, unless the task was highly sensitive to hippocampal 

function (Ferbinteanu, Ray, & McDonald, 2003). The majority of the literature has 

shown the dorsal hippocampus involved in spatial navigation, while lesions to the ventral 

hippocampus produce no clear spatial deficits (Bannerman, Good, Y ee, Heupel, Iversen, 

& Rawlins, 1999; Long & Kesner, 1996; Moser, Moser, & Anderson, 1993). In view of 

these studies, behavioural data from rats that had lesions restricted to the dorsal 
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hippocampus (bilateral) were included. Rats with hippocampal lesions were impaired, 

relative to controls, on both the direction and place problems. 

In Chapter 2 it was suggested that the existence of multiple start points promotes 

distal cue use for orientation. These results provide evidence that rats are not using a 

surface boundary dominated strategy such as learning to approach the centre of the maze. 

It is more likely that in the presence of multiple start locations, the rats shift to a distal 

cue dominated strategy. The impairment in the Place group is consistent with the 

hypothesis that hippocampal lesions disrupted place learning based on distal cues 

(Jarrard, 1995; Morris, Garrod, Rawlins, & O'Keefe, 1982; McDonald & White, 1995; 

Packard & McGaugh, 1996). It is also consistent with the electrophysiological data. The 

presence of place cells (O'Keefe, 1976; O'Keefe & Dostrovskey, 1971), and the fact that 

head direction cells provide orientation based on distal cues (O'Keefe & Nadel, 1978; 

Y oganarasimha & Knierim, 2004), suggested the involvement of hippocampus in this 

task was predicted. Also, head direction cells are suspected to guide movement on arms 

of mazes (Dudchenko & Taube, 1997) and possibly modulate place field activity 

(Yoganarasimha & Knierim, 2004). 

Direction learning was also impaired in lesioned rats. DeCoteau, Hoang, Huff, 

Stone and Kesner (2004) showed an involvement of the hippocampus in working 

memory for direction information. The present study replicated Stringer, Martin, and 

Skinner (2005) showing direction and place learning share a common neural substrate. It 

is possible that direction can be perceived as a crude place problem (always approaching 

a certain array of cues, such as a specific wall). It is also possible that rats could be using 
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conditional discrimination strategy to solve the direction task (e.g., if starting at A, turn 

right; if starting at C, tum left), which previous studies (Murray & Ridley, 1999; 

Sutherland, McDonald, Hill, & Rudy, 1989) have shown to be hippocampal dependent. 

Rats could also be using a sense of direction that guides path integration (Whishaw, 

1998). Recent electrophysiological studies show head direction cells (Leutgeb, 

Ragozzino, & Mizumori, 2000), and place cells (O'Keefe, 1976; O'Keefe & 

Dostrovskey, 1971), as well as place-by-direction cells (Cacucci, Lever, Wills, Burgess, 

& O'Keefe, 2004) are located in the hippocampus. Disrupting these cells may impair 

place and direction learning. It is possible that these head direction cells, as observed by 

Leutgeb, Ragozzino, and Mizumori (2000) might be responsible for orientation during 

initial cognitive map formation, therefore disrupting these cells would explain the 

impairment observed in the present study. 

It is also possible that other brain regions may be responsible for encoding 

direction information independent of the hippocampus. Head direction cells are found in 

multiple brain areas including the postsubiculum (Taube, Kesslak & Cotman, 1992; 

Taube, Muller & Ranck, 1990a; Taube, Muller & Ranck, 1990b), the striatum (Wiener, 

1993), the lateral dorsal nucleus of the thalamus (Mizumori & Williams, 1993), the 

posterior cortex (Chen, Lin, Barnes & McNaughton, 1994), and the anterior thalamic 

nuclei (Taube, 1995). Also, evidence suggests that the hippocampus is not the only site 

capable of path integration (Alyan & McNaughton, 1999). These studies suggest that 

other areas may compensate for the hippocampus when needed. This may explain why, 
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in the present study, all direction rats eventually reached criterion. Further investigation 

on the convergence of place and direction information in the hippocampus is warranted. 
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Chapter 4 - General Discussion 

The behavioural and neurobiological evidence in the present thesis are consistent 

with recent place field data (Knierim & Rao, 2003; Siegel, Rao, Lee, & Knierim, 2005; 

Yoganarasimha & Knierim, 2005). In those studies, place fields were insensitive to maze 

translations of33-120 em, and were predominantly anchored to the apparatus rather than 

to the distal cues of the room. In the present experiments, when the maze was translated 

93 em, rats failed to use distal cues to solve the place problem. This failure to solve the 

place problem was not due to the rats' inability to use distal cues, but rather rats' inability 

to discriminate between multiple start points. The same 93 em difference was associated 

with place learning success when rats had multiple discriminable, even though 

uninformative, start positions on the apparatus. It was also determined that only local 

cues that provide positional information aid rats' ability to incorporate distal cues into a 

cohesive cognitive map. Although apparatus texture changes supported learning, 

discriminable uninformative textures did not promote distal cue use when the apparatus 

was translated. 

These results replicate earlier behavioural studies that show a local surface 

boundary dominated strategy with small translational distances (Blodgett, McCutchan, & 

Mathews, 1949; Skinner eta!., 2003; Weisend eta!., 1995). Ifthe apparatus surface 

dominates spatial mapping with small translational distances, then the rats in the studies 

by Blodgett, McCutchan, and Mathews (1949), Weisend eta!. (1995), Skinner et al. 

(2003), and the present study would be insensitive to the translational change of 

apparatus location in the larger room. It is suggested that the overlap of the distal cue 
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array is too great to elicit a change in orientation from the two start locations. Since there 

is much similarity between the arrays of distal cues, the rat does not realize the maze has 

changed positions, therefore, the rats fail to receive correct orientation information from 

the distal cues at the two start positions and the shift to a distal cue strategy is prevented. 

In contrast, an apparatus rotation causes an immediate change in orientation due to the 

difference in distal cues, and rats are able to solve the place tasks. This same shi~ to 

distal cue use would be predicted with larger translational distances because the larger 

separation would provide a large noticeable difference in distal cues. With successful 

orientation, rats appreciate that there are different paths to the goal and are able to solve 

the place problem. 

McDonald and White (1993) developed a task in which two arms on a radial arm 

maze were available to the rat. One arm was paired with food, while the other arm 

contained no food. Paired and unpaired arms were separated by at least one other arm. 

This task was called the Conditioned Cue Preference task. For half of the trials, rats were 

placed on the paired arm and remained there for 30 minutes. For the other half of the 

trials, the rats were left on the unpaired arm for 30 minutes. On test day, no food was 

placed on the maze and rats had free access to both arms for 20 minutes. Time spent in 

each arm was recorded. The Conditioned Cue Preference paradigm was originally 

developed to examine the function of the amygdala with respect to stimulus-affect 

memory, but it could also be used as a behavioural measure of place learning. McDonald 

and White (1995) used a different variation of the Conditioned Cue Preference task that 

emulates that of a small translational problem on the radial arm maze. Rats placed at the 
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ends of adjacent radial arms, 50 em apart, with food on only one of the two arms, did not 

show a place preference for that arm. Simple placement on the closely spaced arms from 

the home cage is treated as a single position, and as in the translational experiments in the 

present studies, is associated with insensitivity to distal cue differences at the two 

positions. The present experiments demonstrate, however, that when procedures are used 

that enable rats to identifY two positions on the apparatus (multiple discriminable start 

locations), rats successfully solve the place problem. In the McDonald and White (1995) 

paradigm two procedures enable the rats to show place preference learning with adjacent 

arms. These include travelling between food-paired and food-unpaired arms during 

training (McDonald & White, 1995), or multiple successive arm relocations within a 

training session (i.e., passive movement) (White & Ouellet, 1997). I suggest, as in the 

present study, these procedures provide positional information that enables the rat to 

successfully discriminate between two positions on the apparatus, therefore showing 

evidence of distal cue use. Similarly, McDonald and White ( 1995), and White and 

Ouellet (1997) observed that rats failed to show a place preference when the fimbria 

fornix was lesioned. The present results, showing that hippocampal lesions disrupt place 

learning on an apparatus that has multiple discriminable start points, are consistent with 

these findings. The findings of McDonald and White (1995), White and Ouellet (1997), 

and the present study, suggest that positional information aids rats' use of distal cues, and 

further promotes the formation of a cognitive map based on those cues. The use of distal 

cues is hippocampal dependant, consistent with the view that the hippocampus is the 

neural substrate for the cognitive map (O'Keefe & Nadel, 1978). 
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Why do uninformative texture changes not promote distal cue use? It is unlikely 

that changes in surface textures were not perceptible to the rats because surface texture 

promoted learning when and only when the surface texture was reliable. The Reliable 

Surface Texture problem is comparable to a conditional discrimination task. During 

these tasks, discrimination between surfaces followed by a context specific response is 

required (e.g., when the surface is rough, tum right; when the surface is smooth, tum 

left). Conditional discrimination tasks are easily acquired by rats (Guillamon, Valencia, 

Cales, & Segovia, 1986; Modo, Sowinski, & Hodges, 2000) and insects (Zhang, Bartsch, 

& Srinivasan, 1996). Rats are successful at most conditional discrimination tasks 

including ones that involve black/white discriminations (Murray & Ridley, 1999; 

Sutherland, McDonald, Hill, & Rudy, 1989), brightness oflight (Sutherland, McDonald, 

Hill, Rudy, 1989) and surface textures (sandpaper versus rubber) (Trobaon, Chamizo, & 

Mackintosh, 1992). In other behavioural paradigms, failure to take notice of surface cues 

or qualitative changes in the apparatus to solve spatial tasks is not uncommon. Rats fail 

to take notice offeatural information (colour and texture) in experiments of 

apparatus/room geometry (Cheng, 1986), odour trails on maze surfaces fail to direct 

choice behaviour in the rat (Olton & Collision, 1979), and in general olfactory cues fail to 

interfere with the rats spatial navigational abilities (Zoladek, & Roberts, 1978; Maki, 

Brokofsky, & Berg, 1979). Unlike positional cues (e.g., multiple start points), unreliable 

surface textures failed to support place learning based on distal cues. 

Phylogenetic mechanisms may account for why rats failed to use qualitative 

changes in surface cues. It has been shown that caching birds rely on global cues to 
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relocate their food, because local cues are unstable, and are susceptible to change 

(Brodbeck, 1994; Clayton & Krebs, 1994). This same line of reasoning maybe applied 

to rats. In the natural environment, surface textures may not be reliable cues to 

successfully find food, or return home after an outward journey. It is possible that 

surface textures are constantly changing, therefore over time, evolutionary mechanisms 

may have suppressed rats' disposition to use these cues. This is consistent with the view 

that the environment to which an organism is exposed governs which cues will be used 

by the organism, and suggests that previous experience may have a fundamental 

influence over whether local or distal cues are used. Odling-Smee and Braithwaite 

(2003) took three-spined sticklebacks from unstable river and stable pond habitats. They 

proposed that since in rivers, the flow of water would render the use oflocal visual 

landmarks unreliable, these fish would rely on visual cues less than fish inhabiting 

visually stable habitats (i.e., ponds). When these fish were trained in a water T-maze, the 

fish learned at similar rates, but their dependency upon what they used to navigate their 

environment was different. The fish from the unstable river habitats relied on a turning 

response and were less affected when the local landmarks were repositioned (having 

fewer pauses than the pond fish). 

How does the identification of two or more start positions on an apparatus trigger 

the use of distal cues over a 93 em translational distance? To reiterate, the existence of 

multiple start locations with respect to a fixed goal necessitates different directional 

information, and by providing two start locations and a fixed goal, leads the animals to 

appreciate that there are different directions to the goal. Another view emphasizes the 
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rat's sensitivity to surface or room boundaries. Initially this model was constructed by 

Wills, Lever, Cacucci, Burgess and O'Keefe (2005) and later extended by 

Y oganarasimha and Knierim (2005). Wills, Lever, Cacucci, Burgess and O'Keefe (2005) 

recorded place cells when rats were trained in a square apparatus and then later tested in 

morphed shapes ranging from a square apparatus to a circle apparatus, with four 

intermediate shapes that were either more square-like or circle-like. They observed 

remapping of place fields of 17 out of 20 place cells when the rat was moved from a 

square or square-like apparatus to a circle or circle-like apparatus. This study provided 

evidence that rats are sensitive to apparatus or room boundaries. Y oganarasimha and 

Knierim (2005) extended this model and suggested that this sensitivity to boundaries in 

combination with the rat's direction sense, which is controlled by distal cues, may drive 

the firing of place cells. In the One Maze problem with small translations, the rat's 

position with respect to apparatus boundaries remains unchanged, as does his sense of 

direction, and the rat fails to solve the place problem. In the Three Maze-Unreliable Start 

Location problem, the rat's position with respect to apparatus boundaries changes, 

although its sense of direction remains unchanged. The data suggest that the change in 

place field firing driven by changes in apparatus boundaries may increase the rat's 

sensitivity to room boundaries and/or distal cues. 

The data from cell recording studies (e.g., Knierim and Rao, 2003), and much of 

the behavioural data with small translations, suggest that the dominance of the apparatus 

bound place field map in the hippocampus prevents place solutions, based on a global 

room framework, to these problems. However, Chai and White (2003) have shown that 
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when the adjacent arm place preference problem is successfully solved it requires an 

intact hippocampus, consistent with the present lesion results. The hippocampus is also 

required for solution of a place problem similar to that used in the present task in which 

distinct start points were provided (Stringer, Martin, & Skinner, 2005). When rats were 

given distinct start points by a 90° rotation, normal rats were successful, but hippocampal 

lesioned rats were impaired (Stringer, Martin, & Skinner, 2005). Thus, a change in the 

hippocampal representation would be predicted to accompany instances of successful 

place learning with small translational movements of an apparatus, possibly observed in 

the remapping of place fields when the rats alternated between the two discriminable start 

positions. However, Knierim (2002) suggested two independent hippocampal 

representational systems. Knierim (2002) observed that when local cues were rotated in 

opposition to distal landmarks (mismatched trials), a subset ofplace fields followed local 

cues, and another subset of place fields (simultaneously recorded) followed distal cues. 

Given these findings I would predict that when rats are successful at the small 

translational place problem a larger proportion of place fields are being controlled by 

distal cues than by local cues. Further exploration of translational behavioural tasks 

should illuminate the relationship between hippocampal representations and behavioural 

solutions ofhippocampal-dependent place problems. 

4.1. Future Directions 

The traditional view of cognitive maps (O'Keefe & Nadel, 1978) has been given 

a simplistic characterization by many investigators over the years. It states that an animal 

can enter a room and encode the relationships between cues in the environment and form 
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a cohesive cognitive map of every point in space in a single experience. This is unlikely 

given the present results. The present research clearly supports the existence of cognitive 

maps, but how a rat reaches that point at which it has a complete map, in terms of a 

global map, was the main focus of this thesis. A rat may over time develop a global map 

of its environment, but it is unlikely that the rat encodes information in terms of a global 

framework from the beginning. It is suggested that with very little experience and little 

information, such as what is provided with small translations, rats do not have a detailed 

cognitive representation of their environment. It is likely rats have a surface boundary 

dominated strategy, and use an apparatus map (e.g., a local map) to navigate (see Skinner 

et al., 2003). Rats form a more global map if and only if there are elements in the 

environment, more specifically positional cues, which necessitate the use of distal cues. 

The present research shows that the presence of multiple discriminable start points on a 

surface is one of the elements of the environment that encourages the use of distal cues 

and the formation of a cognitive map. A change in orientation is suspected to be another 

element that may encourage the use of distal cues. The interaction between multiple start 

points and orientation needs to be further examined. Although multiple start points aid 

rats' use of distal cues, is it the only thing that can promote distal cue use? Previous 

literature would suggest not. McDonald and White (1993) showed that normal rats 

acquired a place preference when the arms were separated greater than or equal to a 90° 

change in orientation. Later, using the same paradigm, McDonald and White (1995) 

showed that normal rats do not show a place preference when using adjacent arms and a 

45° change in orientation. These studies suggest that if a change in orientation is large 
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enough, perhaps even without multiple start locations, rats will shift from a surface 

boundary to a distal cue dominated strategy. 

Other questions that arise from this work concern the view of the room. Is it 

simply just orientation, or does the view of the distal cues matter? Typically a rat on a 

maze has a view of one array of distal cues (e.g., east wall) and when the maze is rotated 

90° the rats gets another view of a completely different array of distal cues (e.g., north 

wall). What would happen if the 90° rotation occurred where the two start positions were 

facing the same array of distal cues (e.g., facing the same wall)? 

It appears that much work is needed to completely understand the interaction 

between location on an apparatus and location in the room. Many things need to be 

considered (e.g., multiple start points, orientation, and view ofthe room) before a more 

complete theory of cognitive map formation is formulated. 
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Table 3.1: 

Stereotaxic coordinates (in mm) with Bregma as 
a reference point and injection volume of NMDA 

A-P M-L D-V Volume 
-2.8 2.0 -3.4 0.4 ~L in 4 min. 
-2.8 -2.0 -3.5 0.4 ~L in 4 min. 
-4.2 3.0 -3.4 0.4 ~L in 4 min. 
-4.2 -3.0 -3.5 0.4 ~L in 4 min. 

-5.6 +1- 5.0 -7.5 0.25 ~L in 2.5 
min. 

-5.6 +1- 5.0 -6.2 0.20 ~Lin 2 
min. 

-5.6 +1- 5.0 -5.1 0.15 ~L in 1.5 
min. 

-5.6 +1- 5.0 -4.3 0.10 ~Lin 1 
min. 
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Figure Captions 

Figure 2.1. A shows the location of the plus maze for the two different trial types in the 

One Maze group. The rats in this group had one start location relative to the surface of 

the apparatus but two start locations relative to distal cues in the room. X indicates the 

location of the goal and A, B, C, D indicate start arms. The arrows show the correct 

response to locate the goal and the circles indicate the presence of food cups. Half the rats 

started at A and B, while the other half started at C and D. B shows the location of the 

double plus maze for the two trial types for rats in the Two Maze group. Rats in this 

group had two start locations relative to the surface of the apparatus and relative to distal 

cues. C shows the location of the apparatus for two of the four possible trial types for rats 

in the Three Maze-Unreliable Start Location group. When rats were started at position A, 

the extension was on the left for half the trials and on the right for half the trials. In both 

cases, the correct response was a right tum. Similarly, when the rats were started at 

position B (not shown), the extension was on the left for halfthe trials and on the right 

for half the trials. In both cases, the correct response was a left tum. D shows the location 

ofthe apparatus for the two trial types for rats in the Three Maze-One Start Location 

group. The rats in this group had one start location relative to the surface of the apparatus 

but two start locations relative to distal cues in the room. 

Figure 2.2. Mean (+SEM) trials to criterion (18/20) for rats trained on the One Maze, 

Two Maze and Three Maze-Unreliable Start Location problems in Chapter 2, Experiment 

1. 
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Figure 2.3. Mean (+SEM) trials to criterion (18/20) for rats trained on the One Maze, 

Two Maze, Three Maze-Unreliable Start Location and Three Maze-One Start Location 

problems in Chapter 2, Experiment 2. 

Figure 2.4. Mean (+SEM) trials to criterion (18/20) for rats trained on the Constant 

Surface Texture, Reliable Surface Texture, and Unreliable Surface Texture problems in 

Chapter 2, Experiment 3. All groups were trained on the One Maze place problem. 

Figure 3.1. A shows the location of the plus maze for the two different trial types in the 

Place group. Rats in this group had two start locations relative to the surface of the 

apparatus and relative to distal cues. X indicates the location of the goal and A, B, C, D 

indicate start arms. The arrows show the correct response to locate the goal and the 

circles indicate the presence of food cups. Halfthe rats started at A and B, while the other 

half started at C and D. B shows the location of the apparatus for two trial types for rats 

in the Direction group. In both cases, the correct response was to go east. Half the rats 

started at A and C (go east), while the other half started at B and D (go west; not shown) 

Figure 3.2. Representative Hippocampal lesion from Chapter 3. 

Figure 3.3. Mean (+SEM) trials to criterion (18/20) for rats trained on the Two Maze and 

Direction problems in Chapter 3. Shams and Hippocampal Lesions are indicated as black 

and white respectively. 
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