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(i) 

ABSTRACT 

Chapter I gives the necessary preliminaries which may be found 

in most functional analysis texts. The theorems of Sadovskii [31] 

and Schauder [32] are also given in this chapter. 

In Chapter II a systematic and up to date summary of known 

results and the most recent papers dealing with a sum of non-linear 

operators with fixed points (i.e. Ax+ Bx = x) is given. An 

attempt is made where possible to classify these results by spaces 

(i.e. Banach, Uniformly Convex Banach, Reflexive Banach, and Hilbert). 

Some results hold in more than one space and hence this classification 

is not strictly adhered to. 

In Section 2.5 some general results due to Petryshyn [28] are 

given and in Section 2.6 semicontractions with fixed points are 

discussed. 
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(iii) 

INTRODUCTION 

The preliminaries of Metric and Normed Linear Spaces as well as 

the known results of Schauder [32] and Sadovskii [31] are given in 

Chapter I. Schauder's and Sadovskii's results are necessary in many 

proofs throughout the thesis. 

In Chapter II of the thesis a summary of results dealing with 

fixed points of operators of the form T = A + B is given. That is, 

results dealing with the existence of a point x such that 

Ax + Bx = x. 

In many problems of analysis one encounters operators which may be 

expressed in the form T = A + B where A is a contraction mapping, B 

is completely continuous and T itself has neither of these properties. 

Thus neither the Banach contraction principle nor the Schauder fixed 

point theorem applies directly in this case; and it becomes desirable 

to develop fixed point theorems for such situations. Theorem 2.1.1 due 

to Krasnoselskii [18] is the first theorem of this kind. 

Krasnoselskii's theorem is an example of an algebraic setting which 

leads to the consideration of fixed points of a sum of two operators. In 

this setting a complicated operator is split into the sum of two simpler 

operators for which fixed point theorems abound. 

There is another setting which also leads to the investigation of 

fixed points of a SQ~ of two operators. This setting arises from 

perturbation theory. Here the operator equation Ax + Bx = x is con­

sidered as a perturbation of Ax = x, or of Bx = x and one would like 

to assert the existence of a solution of the perturbed equation, given 

that the original un erturbed e uation has a solution. 
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1. 

CHAPTER I 

1.1 Metric Spaces 

Definition 1.1.1 A metric or di5tance function on a set M is a real 

valued function d defined on M and has the following properties; 

for all x,y and z ~ M 

(i) d(x,y) > 0 d(x,y) = 0 <=> x = y 

(ii) d(x,y) = d(y,x) 

(iii) d(x,y) < d(x,z) + d(z,y). 

A metric space (M,d) is a nonempty set M and a metric d 

defined on M. 

The following examples of metric spaces will help make clear the 

above definition. 

Example 1.1.2 Define d (x ,y) = c if X = y 

if X + y 

where X and y are points of a set M. 

Example 1.1.3 The set of real numbers fl9 with the distance function 

d(x,y) = lx- yj. 

Definition 1.1. 4 A sequence {x } of points of a metric space M is n 

said to converge to a point X belonging to M if given E > 0 there 
0 

exists a number N such that d (x ,x ) n o < E whenever n > N. 

Definition 1.1.5 A Cauchy (or fundamental) sequence is a sequence 

{x } of points of a metric space which satisfy the Cauchy criterion, 
n 



i.e. for any E > 0 there exists an N such that 

whenever m,n > N. 

d (x ,x ) < E m n 

Remark 1.1.6. Every convergent sequence is a Cauchy sequence. 

2. 

Definition 1.1.7. A complete metric space M is a metric space in which 

every Cauchy sequence converges to a point in M. 

Definition 1.1.8. A contraction mapping is a mapping A of an arbitrary 

metric space M into itself such that d(Ax,Ay) ~ ad(x,y) for all 

x,y £ M and 0 < a < 1. 

Remark 1.1. 9. Every contraction mapping is continuous. For, if 

then d(Ax ,Ax) < ad(x ,x) n - n 

continuous. 

implies that Ax -+ Ax. 
n 

That is.) A 

X -+ X 
n 

is 

Definition 1.1.10. A mapping A on a metric space M is nonexpansive 

if d(Ax,Ay) < d(x,y) for all x,y t M. 

Definition 1.1.11. A mapping A on a metric space M is contractive 

if d(Ax,Ay) < d(x,y) for all x,y € M and x f y. 

Theorem 1.1.12. Banach Contraction Principle.[l] 

Every contraction mapping A defined on a complete metric space 

M into itself has a unique fixed point. (i.e. there is a unique x 

such that Ax= x). 

Proof. Let x 
0 

be any point in 

and in general 

M and let x1 = Ax , 
0 

n 
X = Ax l = A X . n n- o 

xz = Ax 1 



and 

Now we show that {x } 
n 

is a Cauchy sequence. 

d(x1 ,x2 ) d(Ax
0

,Ax 1 ) ..::._ ad(x
0

,x 1 ) 

d(x2 ,x 3 ) = d(Ax 1 ,Ax2 ) ..::._ ad(x 1 x 2 ) ~a 2d(x0x 1 ) 

n 
d(xn,xn+l) = d(Axn_ 1 ,Axn) ..::._a d(x0 ,x 1 ). 

n m 
d(x ,x ) = d(A X ,A x ) 

n m o o 

n 
< a d(x ,x ) for m > n 
- o m-n 

n 
-
< a {d(x

0
,x 1 ) + d(x 1 ,x2 ) ..• + d(x 

1 
,x ) } m-n- m-n 

< 

3. 

and since a< 1 7 d(x ,x ) n m is arbitrarily small for sufficiently large 

n. This means that {x } is a Cauchy sequence and since M is complete 
n 

{x } converges to some x€_ M. n 

We set lim X = x. Now since A is continuous n n+m 

Ax = A lim X lim Ax lim X = X . n n n+l n-+oo n+oo n-+oo 

Thus A has at least one fixed point. 

Suppose A has two distinct fixed points say Ax = x and 

Ay = y, x f y. Then we get 

d(x,y) = d(Ax,Ay) ..::._ ad(x,y)J 

since a < 1 hence d(x,y) = 0 and x = y. 

This proves that there is one and only one fixed point. 



Definition 1.1.13. Let M be a metric space and S a subset of M. 

Then we say S is bounded if there exists a positive number L such 

that d(x,y) < L for all x,y t S. If S is bounded we define the 

diameter of S as diam S = l.u.b. d(x,y) , x,y ~ S. If S is not 

bounded we write diam S = oo • 

Definition 1.1.14. Let M be a metric space. The subset S of M is 

said to be totally bounded if given E > 0 there exists a finite number 

diam Sk < E (k = 1,2, ... n) 
n 

and s c U sk 
k=l 

Remark 1.1.15. I£ a subset S of a metric space M is totally bounded 

then it is bounded but not conversely. However, in hR bounded and 

totally bounded sets are equivalent. 

The following well-known theorem is the most important and useful 

property of totally bounded sets. The proof may be found in any 

analysis text. (See Goldberg [13]). 

Theorem 1.1.16. Let M be a metric space. Then a subset S of M 

4. 

is totally bounded i£ and only if every sequence of points of S contains 

a Cauchy subsequence. 

Definition 1.1.17. A set S in a metric space M is said to be compact 

if every sequence of elements in S contains a subsequence which converges 

to some x €. M. 

0~ equivalently: A metric space is said to be compact i£ it is both 
» 

complete and totally bounded. 



5. 

1.2 Normed Linear Spaces 

Definition 1.2.1. A linear or vector space is a set L of elements 

which are called vectors and satisfy the following conditions: 

I. The sum x + y is uniquely defined such that 

1. X + y = y + X 

2. x + (y + z) (x + y) + z 

3. there exists an element 0 such that x + 0 x 

forall x t. L 

I I. 

4. there exists an element -x such that 

x + ( -x) = 0 for all x E L 

a.x is defined for arbitrary a and X ~ L 

1 . a(Sx) = (aS)x 

2. 1 . X = X 

3. (a + S)x ax + sx 

4. a (x + y) = ax + ay 

such that 

A linear space is called real or complex depending on whether the 

numbers are real or complex. 

Definition 1.2.2. A linear space L is normed if for every x E L 

there corresponds a number I lxl I ~ 0 called the norm of x such that; 

1. II X II = 0 < => X = 0 

2 . I I ax I I = I a I I I x I I 

3. llx + Yll ~ llxll + IIYII. 

See Opial [23] for the definitions and results given below. 



6. 

Remark 1.2.3. By setting d(x~y) = I jx - Yl I~ we define metric in a 

normed linear space. 

Definition 1.2.4. A Banach space is a complete normed linear space. 

The following are examples of Banach spaces. 

Example 1.2.5. The space of real numbers 1Q and the space of complex 

numbers ({:_, with II x II = I xI 

Example 1.2.6. The space C[~] of continuous functions with the 

usual operations of addition and multiplication by a scalar and the 

norm defined by 1 1 £I I = max { J f c t) 1 : a < t < b J . 

Example 1.2.7. The space £ 2 ~where for two elements x = (x 1 ~x2 ,x 3 , ... ) 

the sum x + Y = (xl + Y1 ~ x2 + Y2 ' · ··· .. ) 

the scalar product ax = (ax 1 ,ax2 , ax3 . . . . ) 

and llxll = 

(X) 

!.,; ci I X. 12) 2 with 
1 l 

Ilx.j2 < oo. 
l 

Let x and y be two points in the linear space L. Then the 

segment connecting the points x and y is the totality of all points 

of the form ax + BY where a > 0, B > 0 and a + B = 1. 

Definition 1.2.8. A set S in a linear space L is said to be convex 

if, given two arbitrary points x and y belonging to S then the 

segment connecting them also belongs to S. 

In a Banach space X, B(x,r) and S(x,r) will denote respectively 

the ball and sphere centre at x and radius r. 



B(x,r) {y tf X 

S(x,r) = {y E::. X 

llx 
llx 

Yll < r} 

Y II = r} • 

Definition 1.2.9. A Banach space X is called uniformly convex if 

for any £ > 0 there is a o > 0 such that if I lxl J = I ]YI j = 1 

and II x - y II > £ then 

Definition 1.2.10. A Banach space X is called strictly convex if 

for any pair of vectors x,y €. X ]]x + Yll = llx]] + IIYII implies 

that x = Ay , A > 0. 

7. 

Remark 1.2.11. Every uniformly convex Banach space is strictly convex. 

Howeve~ the converse is not true. 

Definition 1.2.12. A numerical function f defined on a normed linear 

space L will be called a functional. 

A functional f will be called linear if f(ax + Sy) = af(x) + Sf(y) 

where x,y ~ L and a,S are arbitrary numbers. 

A functional f is said to be continuous if for any £ > 0 there 

exists a o > 0 such that, 

Let X be a Banach space and X* denote its first dual space. 

That is X* is the linear space of all continuous linear functionals 
) 

f: X-+ 1f{ Let II f II = Sup{ If (x) I II x II < 1} . For a given £ > 0 

and a finite number of elements 

V(f1f2 ... f, s) = {x E X n 

of 

I fi Cx) I < 

X* we define: 

i = 1,2, ... n • 
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Let V denote the family of all sets V(f 1 ••• fn' E) for any 

E 
and any finite sequence f 1 ... fn. It is easily verified that 

v satisfies all assumptions of the definition of a basis of neigh-

borhoods of zero in a linear space. 

Definition 1.2.13. A topology defined by the basis V of neighborhoods 

of zero in X is called the weak topology of X. 

Remark 1.2.14. There always exists at least one weak topology, namely 

the discrete topology. 

The terms weakly closed, weakly compact and weak closure mean 

closed,compact and closure in the weak topology. 

Definition 1.2.15. A sequence {xn} C X converges weakly to 

(i.e. X -.. X ) 
n o if and only if f(x ) n 

converges strongly to 

for all f E::.. X*. 

X 
0 

f(x ) 
0 

Remark 1.2.16. Every weakly convergent sequence {x } is necessarily 
n 

bounded and moreover, the norm of its limit is less than or equal to 

1 im i nf I I x I I n 
n+oo 

The following theorem is a fundamental result of the geometry of 

Banach spaces. 

Theorem 1.2.17. Each closed convex set of a Banach space is weakly closed. 

Let X be a Banach space and X* its dual. For f ~ X* and for 

every vector x ~ X there is defined F : X* -+ 1{ 
X 

such that 

F is a continuous linear functional and ~he space of all 
X 

such F is denoted by X**. 
X 

It is easily shown that IIF II = llxll 
X 

and that the correspondence between X and X** is linear and one to 
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one. This isometric isomorphism is called the natural imbedding of 

X in X** (i.e. X .::: X**) . 

Definition 1.2.18. A Banach space X is called reflexive if X = X** 

or equivalentl0 if the natural imbedding of X in X** is onto. 

Remark 1.2.19. Every uniformly convex Banach space is reflexive. How-

ever the converse is not true. 
) 

The following theorems express very important properties of 

reflexive Banach spaces. 

Theorem 1.2.20. A Banach space is reflexive if and only if its unit ball 

is weakly compact. 

Theorem 1.2.21. A Banach space X is reflexive if and only if every 

bounded sequence of elements of X contains a subsequence which is 

weakly convergent. 

From theorems 1.2.17 and 1.2.20 it - follows that in a reflexive 

Banach space every bounded closed convex set is weakly compact. 

Definition 1.2.22. Let X and Y be two Banach spaces whose elements 

are denoted respectively by x and y. Let a rule be given according 

to which each x in some set S ~ X is assig~ed to some element 

y ~ Y. Then we say that an operator y = Ax has been defined on the 

set S. 

Definition 1.2.23. An operator A is said to be bounded if there 

exists a constant M such that I lAx! I .:::_ Mjjxll for all x £ S. 

Definition 1.2.24. An operator A is said to be continuous if for any 
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s > o there exists a o > 0 such that II x 1 
- x"ll < o for 

x 1 , x" E X implies that IJ Ax r - Ax" JJ < E • 

Remark 1.2.25. If the Banach space Y = ·J.R then the operator A is a 

functional. 

The following theorem is an important well-known result. (See 

Kolmogorov and Fomin [17]). 

Theorem 1.2.26. Continuity and boundedness are equivalent for a 

linear operator. 

Definition 1.2.27. The norm !lA ]J of the operator A is the greatest 

lower bound of the numbers M which satisfy 

Theorem 1.2.28. 

then I lA II ~ IIAl II + IIA211-

Theorem 1.2.29, If A = A2A1 then 
' 

]JAxll <MIJxjJ. 

Definition 1.2.30. Let X and Y be Banach spaces and let T : X ~ Y. 

Then the operator T is said to have an inverse if the equation Tx = y 

has a unique solution for every y E Y and every x ~ X. 

A few well-known results are given below, which will be used in 

later work. 

Theorem 1.2.31. The operator -1 
T which is the inverse of the linear 

operator T is also linear. 

Theorem 1.2.32. 

exists then 
) 

-1 
T 

If T is a bounded linear operato~whose inverse 

is bounded. 

-1 
T 



Theorem 1.2.33. The operator (I-A)-l where I is the identity 

operator and I IAI I < 1 can be written in the form 

(I - A)-l = 

Definition 1.2.34. An operator A which maps a Banach space X into 

itself is said to be completely continuous if it maps an arbitrary 

bounded set into a compact set. 

The following theorems are very important for the next chapter. 

Theorem 1.2.35. I£ {A } is a sequence of completely continuous 
n 

operators on a Banach space which converges in norm to an operator A 

then the operator A is completely continuous. 

Theorem 1.2.36. I£ A is a completely continuous operator and B is 

11. 

a bounded operator then the operators AB and BA are also completely 

continuous. 

Hilbert Space 

Definition 1.2.37. A pre-Hilbert space is a complex vector space H such that 

for each pair of vectors x,y of H~ there is determined a complex 

number called the scalar product of x and y denoted (x,y). Scalar 

products obey these rules: 

1. (x,y) = (y,x) 

2. (x + y,z) = (x,z) + (y,z) 

3. (Ax,y) = A(x,y) 

4. (x,x) > 0 when X f 0 



Definition 1.2.38. A Hilbert space is a pre-Hilbert space which is 

complete with respect to the norm derived from the scalar product. 

The norm and scalar product are related by I lxl ]2 = (x,x). 

12. 

Definition 1.2.39. A Hilbert space is said to be separable if it contains 

a countable dense subset. 

Theorem 1.2.40. The following conditions on a HiLbert space H are 

equivalent: 

1. H is separable. 

2. H has a countable orthonormal basis. 

Remark 1.2.41. Every Hilbert space is a uniformly convex Banach space. 

Howeve~ the converse is not true. In general the relation between the 

spaces previously mentioned can be summarized by the following diagram. 

METRIC SPACES 

BANACH SPACES I 
REFLEXIVE BANACH SPACES 

UNIFORMLY CONVEX BANACH SPACES 

HILBERT SPACES 



Schauder's Fixed Point Theorem 

This is an extension to infinite dimensional spaces of the 

celebrated fixed point theorem of Brouwer which asserts that a 

continuous map of a closed bounded convex set in En into itself 

has at least one fixed point. 

The Brouwer fixed point theorem in the form stated above does not 

hold in infinite dimensional spaces as the following example shows. 

Example 1.2.42. Consider the space ~ 2 of sequences 

13. 

with I ] x. [2 < oo 
l 

Define A as a map of the closed 

solid sphere into itself as follows For x = (x 1 , x 2 ••• ) let 

Now suppose x is a fixed point. Then [x] =]Ax]= 1. But then 

x 1 = 0 and it is seen also that x 2 = 0, x 3 = 0, ... Hence~ x = 0. 

Therefore A has no fixed point. 

Theorem 1.2.43. (Schauder's fixed point theorem-first form). [21] 

A continuous map of acompact convex set C in a normed linear space 

X into itself has at least one fixed point. 

It has been shown by Tychonoff that the theorem holds if X is a 

locally convex linear topological space. 

Theorem 1.2.44. (Schauder theorem-second form). [21] 

Let A be a completely continuous map of a closed convex set S 

in a complete normed linear space X into itself. Then A has at least 

one fixed point. 
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Definition 1.2.45. A mapping A is strongly continuous if it maps 

weakly convergent sequences into strongly convergent sequences. 

Definition 1.2.46. An operator A on a Banach space X into itself 

is a nonlinear contraction if for all x,y€: x_, I lAx- AyiJ .::_<PIIx- Yll, 

where ¢ is a real valued continuous function satisfying ¢(r) < r 

£or r > 0. 

Definition 1.2.47. Let S be an arbitrary subset of a Banach space X. 

The measure of non-compactness of S, denoted by a(S)? is defined as 

inf{s > 0 such that S can be covered by a finite number of subsets 

of diam < s}. It is clear that a(S) = 0 if and only if S is 

totally bounded [19J. 

Definition 1.2.48. I£ S is a subset of a Banach space X and A is a 

continuous mapping of S into x· , then A is called a k-set contraction 

if for any given bounded set G in S then a(A(G)) .::_ ka(G) for 

some k > 0. The sum of two k-set contractions is a k-set contraction. 

When k I we say 1-set contraction and a non-expansive mapping is 

clearly a 1-set contraction. A contraction mapping is a k-set con-

traction with k < I. [8]. 

Definition 1.2.49. An operator A from a Banach space X to a Banach 

space Y is called a densifying operator if it is continuous and for 

every bounded non-compact set S C X with a(S) > 0, a(A(S)) < a(S). [10]. 

The following theorem generalizes the fixed point principle of 

Schauder [ 32] . 
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Theorem 1.2.50. Sadovskii [31] 

If a denisfying operator A maps a closed, convex, bounded set 

s of a Banach space X into itself; (i.e. A(S) ~ S) then A has at 

least one fixed point in S. 

Definition 1.2.51. For a set DC X, we define the B0 (ball measure) 

by B
0

(A) = in£ {r > 0 such that finitely many balls of diameter r and 

center in D cover A} . We define 1-ball contraction in terms of ball 

measure as 1-set contraction is defined in terms of a . [28]. 



CHAPTER II 

Sum of Non-linear Operators With Fixed Points 

2.1. Some Results in Banach Spaces. 

Several algebraic and topological settings in the theory and 

application of nonlinear operator equations lead to the investigattion 

of fixed points of a sum of two nonlinear operators in Hilbert sp~ce, 

uniformly convex Banach space and more generally in Banach spaces~ 

Fixed point theory in topology and nonlinear functional analysis 

is usually based on certain properties, such as complete continuiLy 

rnonotonicity etc; that the operator considered as a single entity 

16. 

must satisfy. For example, the Banach contraction principle states that 

a contraction mapping of a complete metric space into itself has a 

unique fixed point and the Tychonov fixed point theorem states that a 

mapping T on a closed convex set C in a Hausdorff locally convex 

topological vectdr space X into C with T(C) contained in a compact 

set has a fixed point. 

In many problems of analysis one encounters operators which may be 

expressed in the form T = A + B where A is a contraction mapping, B 

is completely continuous and T itself has neither of these properties. 

Thus neither the Banach contraction principle nor the Schauder fixed 

point theorem applies directly in this case; and it becomes desir able 

to develop fixed point theorems for such situations. The following 

theorem due to Krasnoselskii [1~ is the first theorem of this kind 

introduced in 1955. 

Theorem 2.1.1. Krasnoselskii [ 18] 

Let X be a Banach space, C a closed bounded convex subset of X 
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and let A and B be operators on C ~X such that: 

1. Ax + By t. C, for all x,y € C ? (K) 

2. A is a contraction mapping 
.J 

i.e. I I Ax - Ay I I ~ q I I X - y I I for all x,y E C, 0 .::_q < 1. 

3. B is completely continuous ) 

i.e. B takes bounded sets to precompact sets. 

Then the equation Ax + Bx = x has a solution in C. i.e. 

A+ B has a fixed point in C. 

Krasnosel skii 1 s theorem is an example of an algebraic setting l~hich 

leads to the consideration of fixed points of a sum of two operators. In 

this setting a complicated operator is split into the sum of two s~pler 

operators for which fixed point theorems abound. 

There is another setting which also leads to the investigationof 

fixed points of a sum of two operators. This setting arises from 

perturbation theory. Here the operator equation Ax + Bx = x is con-

sidered as a perturbation of Ax = x, or of Bx = x and one would like 

to assert the existence of a solution of the perturbed equation, give n 

that the original unperturbed equation has a solution. [7]. 

Sehgal [ 33] shows that Krasnoselskii 1 s Theorem 2 .1.1. remains valid 

on any closed convex subspace C (not necessarily bounded) of a Banach 

space X when B(C) is bounded. 

Zabreiko and Krasnoselskii [41] proved the following stronger 

variation of Krasnoselskii 1 s theorem. 
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Theorem 2.1.2. Let X be a Banach space and c = {x € xl llxll .::._ p} 

be a ball. Let T A + B map c into c such that A is a 

contraction and B is completely continuous. Then T has at least 

one fixed point in the ball c. 

The above theorem remains true if the assumption on the invariance 

of the ball C is replaced by the more general assumption that: 

Tx = AX on the boundary (aC) of C implies A < 1. The proof in this 

case does not change. 

The following two theorems are extensions of Krasnoselskii's 

theorem. 

Theorem 2.1.3. Nashed and Wong [20]. 

Let X be a Banach space, C a closed bounded convex subset of X 

and A, B are operators orr . C such that: 

1. Ax + By ~ C, for all x,y ~ c/ 

2. A is a nonlinear contraction , 

3. B is completely continuous. 

Then the equation Ax + Bx = x has a solution in C. 

The following lemma is required in the proof of Theorem 2.1.3. 

This lemma, given by Boyd and Wong [3 ], is an extension of the con-

traction mapping principle. 

Lemma 2.1.4. If A is a nonlinear contraction on X, then A has a 

unique fixed point x £ X and all successive approximations 
0 

converge to X €. X. 
0 

(K) 



Proof of 

a unique 

Let X n 

Now 

and 

Theorem 2.1.3. Since A is 

fixed point by the lemma and 

Ax n = 

X n 

X 
m 

(1 

= 

- A)x = yn and 
n 

Ax + Yn , 
n 

Ax + y rn m 

a nonlinear 

therefore 

llYn - Y0 II 

Hence, x - x = Ax + y - Ax - y n m n n m m 

19. 

contraction, A has 

(1 - A)-1 exists. 

-+ 0 as n -+ 00 

=> lim sup II x n m,n -+ oo 

- x I I ~ 1 im sup ( cp I I xn - x I I) + 1 irn sup ( I I y - ym II ) m m n m,n -+ oo rn,n -+ oo 

=> lim sup llx n m,n -+ oo 

- x I I < cp 1 irn sup II x m n - x I I + 1 im sup I I y rn n - Y II m m,n-+ oo m,n -+ oo 

=> lim sup II x - x II = 0, n m m,n -+ oo 

=> (1 - A)-l is continuous. 

Now Ax+ Bx = x is equivalent to x = (1 - A)- 1 Bx , * 

The operator 
'V 
Ax = Ax + By maps c into itself for each y E:- c, and 

since A is also a nonlinear contraction and C is closed, the operator 

(1 - A)-lB also maps C into itself. 

Since (1 - A)-lB is the product of a continuous and a completely 

continuous operator it is also compretely continuous and therefore 

a solution by the Schauder fixed point theorem. 

That is, 
-1 x = (1 - A) Bx has a solution ~ 

or equivalently A + B has a fixed point . 
.I 

* 

Remark 2.1.5. If A is linear and I I Ax - Ay II < cp~ I x - y I I) for all 

x,y F X then A is a contraction since 

has 



II~ 
IJX-11 

implies 

= 
IIAtxll 
lltxjj 

< 

< 

inf 
t>O 

<P (t II X ll) 
tjjxjj 

¢Ctllxll) 
t II XII 

Theorem 2.1.6. Nashed and Wong [20]. 

= 

20. 

for all t > 0, t real, 

iilf <P (u) 
< 1. 

O<U<= 
u 

Let A be a bounded linear operator on C such that some iterate 

Ap (p is a positive integer) of A is a nonlinear contraction and B 

is completely continuous. Then Ax + Bx = x has a solution in C. 

Lemma 2.1.7. If Ap is a nonlinear contraction for some positive 

integer p then A has a unique fixed point in X. 

Proof. Ap has a unique fixed point by Lemma 2.1.4. Let x be this 
0 

fixed point (i.e. 

Then implies 

that is Ax is also a fixed point of AP. 
' 0 

But Ap has a unique fixed 

point. Therefore Ax = x . 
0 0 

(i.e. A has a unique fixed point). 

ru 
Proof of Theorem 2.1.6. For each y ~ c we define Ax =Ax + By. 

Since A is linear, AP(x) = Apx + Ap-lBy p-2 + A By + By 

and then !!APex) - A:P ex,) II = II Apx - Apx' II 

since Ap is a 

nonlinear contraction. ruAp Therefore 
1 

it follows from Remark 2.1.5. that 
rvp 
A 

is a nonlinear contraction. 

is a contraction. 

'V ruAp Now a nonlinear contraction implies A has a unique fixed 
ru 

point by Lemma 2. 1. 7, that is, Ax = x for each y t: C. 

(i.e. Ax+ By= x for each y e C). 

Then, 



Define an operator L mapping y to x such that 

Ly = ALy + By y € c 

= A(ALy + By) + By 

= A2 Ly + ABy + By • 

By repeating this process~ we get 

Ly 

Ly 

APLy + Ap-lBy 

= APLy + 
p-1 
I AiBy 
0 

-1 p-1 
= (1 - Ap) I AiBy 

0 

. + By 

Now L is completely continuous, since A is bounded and B is 

completely continuous, therefore L has a fixed point by Schauder's 

theorem. That is, 

Ly = ALy + By = Ay + By = y and thus A + B has a fixed point. 

Replacing the condition Ax + By ~ C by a considerably weaker 

condition Ax+ Bx E C for all x E C Sadovskii [31], Furi and 

Vignoli [10], Reinermann [30] proved the following theorem independ-

ently. 

21. 

Theorem 2.1.8. Let X be a Banach space and, C a closed bounded convex 

sub s et of X. Let A and B be operators on C such that: 

1. Ax + Bx t. C i.e. A + B : C ~ C, 

2. A is a contraction, 

3. B is completely continuous. 

Then A + B has at least one fixed point in C. 
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Proof. A is a contraction implies A is densifying. B is complete­

ly continuous and hence is densifying, therefore A + B is densifying. 

Now by the fixed point principle of Sadovskii ~1] A+ B has a fixed 

point. 

The following result is due to Singh ~5]. 

Theorem 2 .1. 9. Let X be a Banach space and s a nonempty weakly 

compact subset of X. If T = A + B s -+ s is a nonlinear operator 

such that A s -+ s is nonexpansive and B . s -+ s is completely 

continuous and (1 T) is convex. Furthermore, if infllx - Tx II 
then T has a fixed point. 

Proof. S is weakly compact and I lx - Txl I is weakly lower semi-

continuous on S, (as a convex continuous real valued function on a 

Banach space is weakly lower semicontin uous), therefore I lx- Txl J 

has its infimum on S. That is, there exists X E s 
0 

IIC1 

This implies that 

T)x II 
0 

Tx = x . 
0 0 

inf IJ ( 1 - T) x II = 0. 
x ES 

such that 

The following theorem due to Srinivasacharyulu [38] becomes a 

corollary to Theorem 2.1.9. 

= 

Theorem 2.1.10. Let X be a reflexive Banach space and let C be a 

0 

nonempty, closed, bounded, convex set containing the origin as interior 

point. Let A : C 7 X be nonexpansive and B C + X be strongly 

continuous and Ax + By act from C x C -+ C. If (1 - A - B) is 

convex then A + B has a fixed point in C (i.e. there exists a 

solution for Ax+ Bx = Tx = x). 
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Proof. C is weakly compact since it is a closed, bounded, convex, 

subset of a reflexive Banach space. Also I lx - Txj I = I lx -Ax - Bxl I 

is weakly lower semi-continuous on C, since a convex continuous 

real valued function on a Banach space is weakly lower semi-continuous. 

Therefore l lx - Txll has its infimum on C (i.e. there exists 

such that IICl- T)x
0

ll = infiiCl- T)xll). 
X t.:.C 

It suffices now to show that inf I I (1 - T)xl I = 0. 
x t.C 

Consider kT, w~ere 0 < k < 1. Then since C is convex, 

X € C 
0 

kTx t C for all x <::. C. Thus, there exists a point xk ~ C such that 

kTxk = xk by a theorem of Sadovskii. Let k be a sequence of numbers 
n 

0 < k < 1 
n 

such that k -+ 1. 
n 

Then X -
k 

Since T maps bounded sets into bounded sets we have 

I I Txk I J 2_ K, 

II xk 
n 

and therefore 

- Bxk I I 2_ ( k n - 1) K -+ 0 J 

n 

and this implies that inf I lx - Ax - Bxj I = 0, 
X C 

(i.e. A+ B has a fixed point in C). 

Much work has been done by Petryshyn in this area so it is 

necessary to define some terminology before giving his results. The 

following definitions and theorems are due to Petryshyn [26]J[29]. 

X is assumed to be a real Banach space such that there exists a 

pair of sequences ({X}, {P }) where each X is a finite dimensional 
n n n 

subspace of X and p 
n 

is a linear projection of X onto 

that P x -+ x as n -+ = for each x in X. n 

X 
n 

such 
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Definition 2.1.11. A nonlinear operator A of D(A) CX into X is 

called generalized P-compact or P -compact if P A is continuous in r n 

for all sufficiently large n and if there exists a constant 

r > 0 such that for any p - > 0, p ~r and any bounded sequence {x } 
n 

with xn ~ Xn ~ D(A) the strong convergence of the sequence 

{P Ax - pxn} implies the existence of a strongly convergent subsequence 
n n 

{x } and an element x £ D(A) such that 
n. 

l 

x -+ x and 
n. 

l 

P Ax -+ Ax as n. n. 
l l 

n. -+ oo 
l 

Definition 2.1.12. An operator A satisfies condition: 

(~ <) if for some x in ac (the boundary of C, a closed bounded 
]J 

convex set) the equation Ax - x = a (x - x ) ' holds then a < 11. 
0 0 

< 
(n 1-) if for some x in ac the equation Ax =ax holds then a < 1. 

The condition is more general than the following: 

1. A c -+ c (where C = closure of C) 

OR 2. A : ac -+ C (where ac is the boundary of C). 

It is easily seen that either 1. or 2. implies 

< 
Using condition (n 1-) Petryshyn [27] recently gave a more general 

theorem than those mentioned above. We give his theorem without proof. 

Theorem 2.1.13. (Petryshyn [27]) Let X be a Banach space and C an 

open ball about the origin in X. If A and B are operators on C 

such that 

1. A C -+ X is a contraction J 

C -+ X is completely continuous 
J 

2. B 
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3. (A + B)x = ax for x ~ 3C implies a < 1. 

Then A + B has at least one fixed point in C. 

The following theorem is given without proof also. 

Theorem 2.1.14. (Petryshyn and Tucker (29].) Suppose II P II = 1 for n 

all n and T = A + B maps X into X where A is a contraction 

and B is completely continuous. If on the boundary 3(C) of some 

closed bounded convex set C with an interior, the mapping T satisfies 

condition (n 1 ~), then T has a fixed point in (C- 3C). 

On the one hand Theorem 2.1.14 is weaker than Krasnoselskii's 

Theorem 2.1.1 since the conditions are imposed on the entire Banach 

space X, but on the other hand Theorem 2.1.14 is stronger than 

Krasnoselskii's since the condition (n 1 ~) on the boundary 3C is 

much weaker and more convenient for applications than the strong and 

restrictive condition 1. of Krasnoselskii's theorem. 

Definition 2.1.15. A mapping T : B ~ B is demi-closed if, for any 

sequence (x ) such x __.:::.. x (weakly) 
n n 

have Tx = y. 

and Tx ~ y (_strongly), we 
n 



2.2 Some Results in Reflexive Banach Spaces 

The fcllowing theorem has been given by Singh [34]. 

Theorem 2.2.1. Let X be a reflexive Banach space, C a nonempty 

closed bounded convex subset of X and let A : C -+ X , B : C -+ X 

such that T = A + B : C -+ C and 

1. A is nonexpansive and (1 - A) demiclosed, 

2. B is strongly continuous. 

Then T has a fixed point. 

Proof. Let k be a fixed positive number less than 1. Then the 

mapping kA + kB is a densifying mapping and has a fixed point by 

a theorem of Furi and Vignoli [10], Sadovskii [31]. Let k be a 
n 

sequence of numbers such that 0 < k < 1 and k -+ 1. Let 
n n 

be a sequence of points such that 

= , c. 

26. 

Since X is a reflexive Banach space and {xk } is bounded, therefore 
n 

the sequence {xk } has a weakly convergent subsequence {xk } 
n n. 

converging to X say, in 

Then the fact that 

and Bxk converges to 
n. 

1 

strongly to Bx. 

c. 

Bx 

= (k - 1) (Ax 
n. k 

1 n. 
1 

+ Bxk ), 
n. 

1 

strongly, imply that 

By assumption (1 - A) is demiclosed, therefore 

(1 - A)x = Bx 

i.e. Ax + Bx = x. 

- Ax 

1 

k n. 
1 

converges 



The following well-known result due to Reinermann [30] can be 

obtained as a corollary. 

Theorem 2.2.2. Let X be a uniformly convex Banach space and C be 

a nonempty closed bounded convex subset o£ X. Let A : C ~ X and 

27. 

B : C ~ X such that A is nonexpansive and B is strongly continuous. 

Then T A + B : C ~ C, has at least one fixed point in C. 

Proof. I£ X is uniformly convex and A is non-expansive then (1 A) 

is demiclosed (Browder [ 6]), and a uniformly convex Banach space is a 

reflexive Banach space. Thus all the hypotheses o£ Theorem 2.2.1. are 

satisfied and the result follows. 

The following theorem, which is more general than the previous 

theorem is also due to Singh [36]. It is given without proof. 

Theorem 2.2.3. Let X be a reflexive Banach space, C a nonempty, 

closed, bounded, convex subset o£ X, and let A : C ~ X and 

B : C ~ X be such that 

1. A is a 1-set contraction and (1 - A) is demiclosed 1 

2. B is strongly continuous , 

3. T = A + B : C ~ C. 

Then A + B has a fixed point in C. 

The following known theorem due to Srinivasacharyulu [37] can be 

obtained as a corollary to Theorem 2.2.3. 

Theorem 2.2.4. Let X be a reflexive Banach space and D be a unit 

ball in X. Let A : D ~ X and B D ~ X be such that 



1. Ax+ ByE: D for all x_,yE D, 

2. A is nonexpansive and (1 - A) is demiclosed 

3. B is strongly continuous. 

Then A + B has a fixed point in D. 

In the following theorems of Petryshyn1 X is a separable Banach 

space with a projectionally complete system ({Xn} .. {Pn}) and 

I IP I I = 1. D is a closed ball about the origin of radius r > 0 
n 

and aD is the boundary of D. The following theorem, given without 

proof, is required in the proof of later theorems by Petryshyn. 

Theorem 2.2.5. (Petryshyn [24].) Suppose that T is P-compact and 

suppose further that for given r > 0 and ~ > 0 the operator T 

satisfies uhe condition: 

(n~) If for some x in aD the equation 

Tx = ax holds then a < ~ , 

then there exists at least one element x in (D - aD) such that 
0 

Tx - ~x = 0. 
0 0 

Theorem 2.2.6. (Petryshyn [26].) Suppose X is reflexive and 

T = A + B maps D into X where A is a contraction on D and B 

is completely continuous on D. Suppose also that for each y > 0 

and any k > Y the mapping Ak = A - ki satisfies the following 

condition: 

(c 1 ) For any subsystem ({X },{P }) 
n n and any sequence 

{x lx E X l'l D} m m m 

the relation x - x and P A kx -+ h m m m 

implies that Akx = h. 

28. 



If for any fixed ~ > Y the operator T = A + B satisfies the 

condition: 

(n < ) If the equation Tx 
~ 

aX holds for some X £ dD then 

Then there exists x
0 

- (D - 3D) such that 

Ax + Bx = ~x 
0 0 0 

Proof. To show first that A is P compact, let 
r 

{x I x c. X f"\ D} be any sequence such that for some 
n n n 

p > y _, g = P Ax - px ~ g for some g in X. n n n n 

29. 

Now because X is reflexive, {x } is bounded and D is weakly 
n 

closed there exists a subsequence X of X m n and an element X E. D 

such that X ~ X and gm = P Ax - px ~ g. m m m m 

With k = p > y and A = A - pi we get 
p 

gm = p (A + pi)x - px ~ g 
m p m m 

gm = p A X ~ 

g ' m p m 

which implies by condition (c 1 )that A X = g. 
p 

p ~ y > q and A is a contraction on D with 

ratio q < 1, P x £ D and for m > 1 
m 

II P A P x - P A x II = II Pm(A mpm mpm 

= II p AP X m m P p lP x - P Ax + P p rx I I m m m m m m 

~ p II ~mx - xm II - II p m (AP mx - Axm) II 

~ P II p mx - xm II - q II p m (P mx - xm) II 

~ (Y- q)l IPmx- xml I with Y- q > 0. 
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Since P Ax + g P A P x + Ax and A x = g, 
mpm mpm p p 

taking the 

limit of the above inequality we get I jPmx - xml I + 0, (i.e. x + x). 
m 

This and the continuity of A show that 

p -compact. 
r 

P Ax + Ax. m m 

Since B is completely continuous and A is 

Hence A is 

P -compact then 
r 

A + B is P -compact by a 
r 

result of Petryshyn [25]. 

Now by Theorem 2.2.5 there exists at least one 

such that 

Ax + Bx = ~x . 
0 0 0 

X 
0 

in D - 30 

Corollary 2.2.7. If T =A+ B satisfies the conditions of Theorem 

2.2.6 for ~ = r = 1 ( > q) then T has a fixed point in (D- 30). 

Remark 2.2.8. Suppose that instead of the reflexivity of X and of 

the condition (c 1 ) in Theorem 2.2.6 we assume that Ak satisfies the 

following condition: 

(h) For any subsystem ({X },{P }) and any sequence m m 

{x I X t. X n D} the relation p Akx + h implies the m m m m m 

existence of an element x in D such that Akx = h. 

Then Theorem 2.2.6 and Corollary 2.2.7 remain valid. 

The following theorem is due also to Petryshyn [26]. 

Theorem 2.2.9. Suppose X is reflexive and T =A+ B maps D into 

X where A is nonexpansive on D and B is strongly continuous on 

D. Suppose also that Ak = A - ki satisfies condition (c 1 ) for each 

k > 1. If T = A + B satisfies condition (n 1~) on 30 then T has 
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a fixed point in (D-aD). 

Definition 2.2.~0. Let f eX* 
1

the conjugate space of X and let 

~(r) be a continuous strictly increasing real-valued function on reals 

1JR with ~(o) = 0. A mapping J of X into X* is called a duality 

mapping with guage function ~ if (Jx, x) = I IJxl I I lxl J and 

II Jx II = ~ (II x II) for each x E X. A weakly continuous duality mapping 

is continuous from the weak topology of X to the weak topology of X*. 

From Theorems 2.2.6 and 2.2.9 it is seen that for general reflexive 

Banach spaces the condition (c 1 ) imposed on A or Ak plays an 

important role in the derivation of the fixed poipt theorems for 

T = A + B. In view of this Petryshyn has investigated additional 

conJitions on X which would imply fulfillment of condition (c 1 ) and 

he has arrived at th·e- following two theorems as special cases of the 

above mentioned theorems [24J. 

Theorem 2.2.11. Suppose X is reflexive, X* strictly convex and X 

has a weakly continuous duality mapping J. If T =A+ B is a mapping 

of D into X such that A is a contraction on D, B is completely 

continuous on D and T satisfies condition on aD. Then 

T =A+ B has a fixed point in (D-aD). 

Theorem 2.2.12. Suppose X is reflexive, X* strictly convex and X 

has property H 

(H) X is strictly convex and if the relations X .....::. X 
n 

and llx II + llxiJ n 
imply X + X. 

n 

and a weakly continuous duality mapping J. If T = A + B is a mapping 

of D into X such that A is nonexpansive on D, B is strongly 



continuous on D and T satisfies the condition (n 1~) on aD. 

Then T = A + B has a fixed point in D. 

32. 



2.3 Some Results in Uniformly Convex Banach Spaces 

The following theorem and lemma were proved by Reinermann [30]. 

Lemma 2.3.1. Let X be a uniformly convex Banach space and S a 

closed bounded convex subset of X~ 

is nonexpansive and X - B (x ) -+ y 
n n 

{x} €. s 1N 
n ~ 

X ___::. X 
n 

then x - B(x) = y. 

B s-+ s 

33. 

Theorem 2.3.2 . Let X be a uniformly convex Banach space~ S a closed 

bounded convex subset of X. Let T = A + B map S into S such that 

A is nonexpansive on S and B is strongly continuous on S. Then 

T = A + B has a fixed point. 

Proof. Without loss of generality let 

{A. } -+ 1 
n 

as n-+ =. For any n t- IN 

B = A. B. 
n n 

0 E: S and A. E ( 0 ~ 1) 
n 

we define A = A. A n n ~ 

with 

Because of (A. (A + B)) S C S ~ A is a contraction with ratio n n 

A. and B is strongly continuous and so completely continuous. Thus 
n n 

we have the conditions of Theorem 2.2.2 and therefore there is 

{ x } E=. S 1"1 with A x + B x = x . 
n n n n n n Because S is weakly compact 

there is a subsequence 

Now x' Ax' n n 

where (A. - 1) -+ 0 and n 

{x '} 
n 

Bx' 
n 

Bx' 

= 

= 

= 

n 

of {x } 
n 

A x' + B n n n 

:\ (Ax' + n n 

and x E. S with x ' .....!~. x. 
n 

x' Ax' Bx' n n n 

Bx' ) Ax I Bx' n n n 

(A. - 1) (Ax' + Bx' ) n n n 

-+ Bx 

therefore x' -Ax' -+ Bx and by Lemma 2.3.1 we get 
n n 

x - Ax = Bx (i.e. A+ B has a fixed point). 



The following theorem, given without proof, is due to Petryshyn 

and Tucker [29]. It was also proved independently by Browder [5 ]. 

Theorem 2.3.3. Let X be a uniformly convex Banach space with a 

weakly continuous duality mapping J of X into X* and with 

llPnll = 1 for all n. Let T = A + B be a mapping of X into 

where A is nonexpansive and B is strongly continuous. Suppose 

that for some bounded closed convex set C with 0 in int C T 

Then there exists a point 

Ax + Bx = x . 
0 0 0 

X 
0 

in (C - 3C) such that 

X, 

34. 



2.4 Some Results in Hilbert Space 

In the following theorem Zabreiko~ Kachurovskii and 

Krasnoselskii [42] have set down a simple proof by combining their 

own work with the arguments of some other well-known mathematicians. 

Theorem 2.4.1. Let S be a bounded closed convex set in a real 

Hilbert space H. Let the nonlinear operator A + B transform S 

into itself where A satisfies the Lipschitz condition: 

I I Ax - Ay I I .::_ q I I X - y I I (1) 

and either (a) q < 1 and B completely continuous 

or (b) q = 1 and B strongly continuous. 

Then A + B has a fixed point. 

Proof. To each x ~ H we associate a point Lx E S such that 

I lx- Lxl I = d(x,S). Clearly Lx = x for xES. Let 

Ly = Lx + I ILx- Lyl le, Lx fLy, I lei I = 1. The convexity of S 

implies that Lx + E e, Ly - E e £ S for small 

for these E : II x - (Lx + E e) 11
2 

> II x - Lx 11
2 

II Y - (Ly - E e) 11
2 

> I I y - Ly II~ 
2 2 

Now II x - (Lx + E e) II > II x - Lx II 

E > 

and 

0 . , therefore 

35. 

=> (x - Lx, x - Lx) + (x - Lx, - E e) + (- E e~ x - Lx) + (- E e, - E e) 

> ( x - L x , x - Lx) 

2 
=> (x - Lx~ - E e) + (- E e, x - Lx) + II- E e II > 0 

=> - 2E (x - Lx ~ e) + E 2 > 0 and similarly 

2E(y - Ly~ e) + E2 > 0. 

From these it follows that (x - Lx, e) < 0 
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and (y - Ly, e) > 0 and using these we get 

II y - x II > (y - x, e) (y - Ly, e) + (Ly - Lx, e) + (Lx - x, e) 

> II Ly - Lx II (2) 

Therefore L is nonexpansive for all x,y t._ H. 

Now let condition (a) hold. Define Tx = Ax + Bx on all of H. 

(1) and (2) imply IIALy - BLxll < qiiY - xll for all x,y €: H. 

Therefore the equation z = ALz + f has a unique solution z = Rf in 

H for all f £ H. Rf 1 

that 

I I Rf 1 - Rf 21 I < q I I Rf l - Rf 2 I I + I I f 1 - f 2 I I 

I I Rf 1 - Rf 21 I < ( 1 
1

- q) I I f 1 - f 211 • 

Thus the operator R satisfies a Lipschitz condition. 

The equations x = RBLx = ALx + BLx and x = Tx are equivalent. 

BL is completely continuous on H and the set of its values coincides 

with the compact set of values of B on S, therefore RBL is also 

completely continuous and the set of its values on all of H coincides 

with the compact set RB(S). 

By Schauder's principle RBL has at least one fixed point 

x* ~ H and this fixed point is also a solution of the equation x = Tx. 

Now x* ~ S since T(H) c S and x* = Tx* = Ax* + Bx* . 

Now let condition (b) hold. By what has been shown each operator 

T x = rTx + (1 - r)Tx 
r o has a fixed point 

(i.e. X r T X 
r r 

rTx + (1 - r)Tx ), 
r o 

X 
r 

in S, (0 < r < 1, X 
0 

S) . 



Infllx - Txll = 0 since llxr - Txrll 

= (1 - r) II Txr - Txo II 

This means that a sequence x E S Nay be chosen such that 
n 

I lx - Tx I I + 0. Without loss o£ generality we may assume that the 
n n 

sequence X 
n 

converges weakly to some element x* €.. S. 

II Bxn - Bx* I I + 0 and therefore I I xn - Axn - Bx* II + 0. 

Then 

From (1) and (2) it follows for any fixed x E H that 

(x - ALx - x + ALx , x - x ) > 0 n n n - (n = 1, 2, ... ) which gives 

(x ALx- Bx*, x - x*) > 0 by passing to the limit. Letting 

x = x* + th (h ~ H; t > 0) we get the following; 

(x* - AL(x* + th) - Bx*, h) + t(h, h)~ 0 from which it follows that 

(x* - Ax* - Bx*, h) = (x* - ALx* - Bx*, h) > 0 (h t:. H) . 

Hence x* Ax* + Bx*. 

For condition (b) Theorem 2.4.1. was proved independently by 

Edmunds [ 9]. Other contributions for Hilbert space were made by 

Fucik [11] and Petryshyn [26]. 

The following result is due to Petryshyn [2 0]. 

Theorem 2.4.2. In Hilbert space H or £ -space if T = A + B maps 
p 

D into D where A is a contraction on D and B is completely 

continuous on D and A satisfies condition on aD then 

A+ B has a fixed point in (D-aD). 

The proof follows as a special case of Theorem 2.2.6. 

37. 

Fucik has investigated the question concerning the fixed points of 

T when A and B are from the class of mappings which contains strongly 
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continuous, completely continuous, weakly continuous, nonexpansive 

and contractive operators. The following examples due to Fucik [11] 

show that T has a fixed point only if A is completely continuous 

(resp.strongly continuous) and B is contractive (resp. nonexpansive), 

Example 2.4.3. Let H be a separable Hilbert space, 

{y . n n , 0, ±1, ±2, ... } be an orthonormal basis for H and define 

A and B as follows: 00 

X = I anyn 
-00 

00 

Ax= (1 - llx II )Y
0 • Bx = L a y n n+l 

-00 

Now T = A + B maps the unit ball U into itself. 

A is nonexpansive, completely continuous and B is weakly continuous 

and nonexpansive but T has no fixed point in U. 

Example 2.4.4. Let H, U and B be as in Example 2.4.3 and set 

Ax = ~ ( 1 - I I x I I ) Y · 
0 

Then T : U -+ U A is completely continuous and contractive, B is 

weakly continuous and nonexpansive but T has no fixed point in U. 

Example 2.4.5. Let A1x = 1/3(1 - I lxl j)y + l/2Bx, and B1x = l/2Bx 
0 

with H, U, and B as in Example 2.4.3. 

Then T = A1 + B1 : U -+ U where A1 is a contraction, B1 is a 

contraction and weakly continuous and T has no fixed point in U. 
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2.5 A Few General Results on Fixed Points 

In this section we give a few results due to Petryshyn, which are 

more general than most of the results listed earlier. We would like 

to express our sincere thanks to Petryshyn for providing us with his 

unpublished material entitled - "Fixed point theorems for various 

classes of 1-set contractions and 1-ball contraction mappings in 

Banach spaces". [28]. 

Theorem 2.5.1. Let X be a real Banach space, D a bounded, open 

subset of X and T either a 1-set contraction or a 1-ball contraction 

mapping of .5 ~ X, (D means closure of D), for which the following 

conditions are satisfied: 

(a) There exists X in D such that if Tx - X = a. (x - X ) 
0 0 0 

holds for some X in aD, (the boundary of D), then 

a. < 1. 

(b) If {x } is any sequence in .5 such that n 

X - Tx ~ 0 as n ~ oo, then there exists an x' in 5 n n 

such that x' Tx' = 0. 

Then T has a fixed point in 5. 

Theorem 2.5.1 remains valid if condition (a) is replaced by D 

convex and T(aD) C D or T(D) C 5. 

Theorem 2.5.2. Let D be a bounded open subset of X, A : 5 ~ X a 

contraction and B : 5 ~ X completely continuous such that T A + B 

satisfies condition (a) of Theorem 2.5.1 or equivalently the Leray-

Schauder condition x
0 

+ A.(x- x
0

) for all x €. aD, all A. > 1, 

and some x ~ D. Then T has at least one fixed point in .5. 
0 

Tx 

.5 ~ ) 



Proof. T = A + B : B + X is a k-set contraction with k < 1 and 

thus a 1-set contraction. Furthermore T satisfies condition (b) 

on D. for if {x } 
n 

is any sequence in D such that x - Tx + 0 
n n 
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as n + =, then since {x } is bounded and B is completely continuous 
n 

we may assume that Bx + y for some y € X and therefore 
n 

s 
n 

x - Ax 
n n 

X 
n 

Tx + Bx + y as n + = 
n n 

Consequently 

I Is - s I I + 0 as m,n + = and since n m 

I I s n - s m I I > I I xn - xm I I - I I Axn - Axm I I 

> (1 - k) II xn - xm IJ 

we see that X + X for some X E 5. This and the n 0 0 

and B imply that X - Ax = y = Bx (i.e. Tx = 
0 0 0 0 

Hence T has a fixed point in D by Theorem 2.5.1. 

continuity 

X). 
0 

of A 

If D is convex, then condition (a) or Leray-Schauder condition 

is implied by the assumption that T(aD) C D and in particular by the 

condition T (D) C 5. 

Krasnoselskii [18] gave this theorem under the additional hypothesis 

that D is convex and that T = A + B is such that 

Ax + By c:. D for all x,y t D (K) 

When X is a separable Hilbert space, D is convex and T 

satisfies condition (a) on aD the above theorem was established by 

Petryshyn ~6]/and independently by Zabreiko, Kachurovskii and Krasnoselskii 

[42] for X separable and T (D) C 5. 
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If D is the ball B(o, r) in a Banach space, and T(D) C D, 

the above theorem was established by Zabreiko and Krasnoselskii [41] 
J 

and by Petryshyn [26] for a Banach TI 1 space with a weakly continuous 

duality mapping. 

Theorem 2.5.3. Let X be a uniformly convex Banach space and D a 

bounded open convex subset of X. If T : D + X is nonexpansive such 

that condition (a) is satisfied, then T has a fixed point in D. 

Proof. T is a 1-set contraction. From a result of Browder 16 ] it 

follows that (1 - T) is demi-closed and hence condition (b) is 

satisfied. Then by Theorem 2.5.1 T has a fixed point. 

If T(D) C D then this theorem was given independently by Browder 

[ 4], Gohde [12], and Kirk [14]. If T(aD) C 5 it was given by Browder 

[ 4] . 

Theorem 2.5.4. Let X be a real Banach space, D a bounded open subset 

of X, A a nonexpansive map of 5 + X and B a completely continuous 

map of 5 + X. If the mapping T A + B . . D + X satisfies conditions 

(a) and (b). Then T has a fixed point in B. 

Proof. Since A is nonexpansive and B is completely continuous 

T = A + B is a 1-set contraction and hence the theorem follows. 

In the above theorem condition (b) can not be dropped. Consider the 

following example due to Browder [ 5]. 

Let X be a Hilbert space ~ 2 and D = B1 (o, r) C ~ 2 . Then the 

mappings A B1 + ~ 2 and B : B1 + ~ 2 given by 



A(x) = 

B(x) 

(0~ Xl~ Xz~ ... )~ 

2 
(1- llxll, 0, 0, 0, ... ) 

arenonexpansive and completely continuous respectively~ T =A + B : 

s 1 + B1 i.e. T satisfies condition (a)~ but T has no fixed points 

in B1 • 

Theorem 2.5.5. Let X be a uniformly convex Banach space, D a 
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bounded open convex subset of X~ A : D + X a nonexpansive mapping and 

B : D + X a strongly continuous mapping. If the mapping T = A + B : D + X 

satisfies condition (a) then T has a fixed point in D. 

Proof. Since X is uniformly convex and thus reflexive and B strongly 

continuous on D~ a(B(S)) = 0 for each subset S of D. Hence 

T = A + B is a 1-set contraction map of D + X. Furthermore, T 

satisfies condition (b) on D. Indeed~ if {x } is any sequence in fi 
n 

such that X - Tx + 0, then assuming that X - X in D and using 
n n n 0 

the strong continuity of B we get that Bx + Bx as 
n 0 

therefore x 
n 

Since (1 - A) 

Ax = x - Tx + Bx + Bx as n + oo n n n n o 

is demiclosed it follows that x 
0 

Ax 
0 

n + 00 and 

Bx i.e. 
0 

x - Tx = 0 and thus T satisfies condition (b). Hence the result 
0 0 

follows from Theorem 2.5.1. 

The following theorem is due to Singh [36]. 

Theorem 2.5.6. Let X be a reflexive Banach space, D a bounded, open 

convex subset of X, 

A D + X is nonexpansive and (1 - A) is demiclosed, and 

B D +X is strongly continuous. 

If T A + B : D + X satisfies condition (a) then T has a fixed point. 
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Proof. T satisfies condition (b) by the same argument used in 2.5.5. 

T = A + B is also a 1-set contraction. The result then follows from 

Theorem 2.5.1. 

Theorem 2.5.5 now becomes a corollary to Theorem 2.5.6. 

Nussbaum [22] generalized the fixed point theorem of Browder, 

Kirk, Gohde for nonexpansive mappings as well as a fixed point theorem 

of Browder [ 5] for maps of semicontraction (see Section 2.6) type to 

locally almost nonexpansive mappings (Lane mappings), where the latter 

is defined to be a continuous mapping T of 5 into X such that, 

given any X t 5 and E: > 0, there exists a weak neighbourhood 

of x in 5 (depending also on s) for which 

IITx Ty I I ~ I I X - y I I + E: for all x,y in N . 
X 

N 
X 

It was shown in [22] that if X is a reflexive Banach space, D a 

bounded open convex subset of X and T a lane mapping of 5 into 

X, then T is a 1-set contraction, moreover, if X is also uniformly 

convex, then 1 - T is a demiclosed mapping of 5 + X. 

The following theorem is due to Petryshyn [28]. 

Theorem 2.5.7. Let X be a uniformly convex Banach space, D a bounded, 

open convex subset of X, L a lane mapping of 5 + X, and B a 

strongly continuous mapping of 5 + X. If the mapping T = L + B . 5 + X . 

satisfies condition (a) on dD, then T has a fixed point in 5. 

Proof. Since X is reflexive, B : D +X is strongly continuous and 

L : 5 + X is a lane mapping, we get T = L + B is a 1-set contraction. 

Also T satisfies condition (b) by the same argument used in 2.5.5. T 

then has a fixed point in 5 by Theorem 2.5.1. 



When X is a reflexive Banach space with weakly continuous 

duality mapping and T a semicontraction~ Theorem 2.5.5 was first 

proved by Browder [5 ] for T defined on all of X and satisfyi.ng 

condition (K) on D. Independently Edmunds [ 9] proved Theorem 
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2.5.5 for Hilbert space and condition (K), and Zabreiko, Kachurovskii, 

Krasnoselskii [42] proved it for Hilbert space and T(D) e.. D. When D 

is a ball B1 (o, r) in reflexive Banach n
1 

space with weakly 

continuous duality mapping and property (H) Petryshyn [26] established 

Theorem 2.5.5. 

Belluce and Kirk [2 ] introduced a generalized contraction mapping 

defined as a mapping such that for each x £ D there exists a number 

a (x) < 1 with the property that II Tx - Ty II .2_ a (x) IJ x - y II for each 

y E 5. Generalized contractions provide an example of a class of mappings 

of diminishing orbital diameters (_see Belluce and Kirk [2 ]) and thus 

the fixed point theorem obtained for mappings of this latter type applies 

to generalized contractions. The main motivation for the study of 

generalized contractions is the close relationship of these mappings to 

Frechet differentiable mappings. (See Kirk [16]). In fact it was shown in 

[16] that if D is a bounded open convex subset of X and T : D + X 

is continuously Frechet differentiable on D, then T is a generalized 

contraction on D if and only if I IT'xl I < 1 for each x £ D where 

T'x is the Frechet derivative of T at x in D. 

Theorem 2. 5. 8 {L .~Let X be a reflexive Banach space, D a bounded, open 

convex subset of X. A 5 + X a generalized contraction 

B 5 + X strongly continuous 



If T = A + B satisfies condition (K) then T has a fixed point in 

5. 

Proof. Since T = A + B is a 1- set contract ion on 5 and T (D) c 5, 

by Theorem 2.5.1 for 

condition (b) on 5. 

X = 0 
0 

it suffices to show that T satisfies 
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Let {x } be a sequence in 5 such that X - Tx -+ 0 as n -+ oo. 
n n n 

Assuming that X __::.. X in D and since B is strongly continuous, 
n 0 

we get Bx -+ Bx and X Ax = X Tx + Bx -+ Bx as n-+ 00 . 
n 0 n n n n 0 

Since by (K)' Ax + Bx C:... 5 for each x € 5, we have X - Ax = Bx 
0 0 0 0 

or x 
0 

Tx = 0 (i.e. T satisfies condition (b)). Hence T has a 
0 

fixed point in 5. 

Theorem 2.5.9. Let X be a reflexive Banach 

let A 81 -+ X be a generalized contraction 

c 81 -+ X be strongly continuous . 

If T = A + c satisfies the condition: 

and 

then T has a fixed point in B1 . [28]. 

= 
x + A(x) 

2 
and = 

C(x) 
2 

space, D B1 (o, 

for 

Now A1 : 81 -+ X is a generalized contraction, c1 is strongly 

continuous and T1 has the same fixed points as T in B1 • 

r) and 



-
Set x = 

rx for x E B1 with x + 0. Since A is a 

generalized contraction on B1 and (K1 ) holds, we have; 

x + Ax 
2 

2_1/2llxll 

2_ l/2]lx1J 

1/211 xll 

+ 1 I 2 I J Ax - AX I I + 11211 Ax + Cyjj 

+ 1/ 2]] X - X II + 1/2 (r) 

+ l/2(r - llxii)II11~1Jil + 1/2(r) 

r J for all y E. Bl and all X €. Bl ' with 

On the other handJif x' is any point in 3B 1 then for any 

y E::. B1 we get: 

IIA1 (o) - Cr (y) II = 1/2ljA(o) + C(y) II 

.::_ l/2j]A(o) - A(x') II + 1/2JjA(x') + C(y) II 

.::_ 1/2 a(o)r + l/2(r) 

< r • 
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X f 0. 

T 1 satisfies condition K and therefore T has a 

fixed point by Theorem 2.5.8. 
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2.6 Semicontractions 

A semicontraction is a generalization obtained by the inter-

twining of nonexpansive mappings with strongly continuous mappings. 

It seems that Browder [5 ] was first to develop fixed point theorems 

in this area. Further contributions were made by Browder [6 ], Nussbaum 

[ 22] , Petryshyn [26], Kirk [lSJ, Webb [39], [40], and others. 

In the following let X be a real Banach space and C a nonempty, 

closed bounded convex subset of X. 

Definition 2.6.1. A mapping T is a semicontraction if there exists 

a mapping S of X x X into C such that Tx = S(x, x) for x € C 

and for fixed x f X, S(·, x) is nonexpansive and S(x, •) is strongly 

continuous. 

Definition 2.6.2. A mapping T is a weak semicontraction if there 

exists a mapping S of X x X into C such that Tx = S(x, x) for 

x - C and for fixed x X, S(·, x) is nonexpansive and S(x, •) 

completely continuous. 

Definition 2.6.3. A mapping T is a strict semicontraction if there 

exists a mapping S of X x X into C such that Tx = S(x, x) for 

x £ C and for fixed x ( X, S(•, x) is a contraction and S(x, ·) 

is completely continuous. 

A strict semicontraction is not necessarily a semicontraction. 

Browder [ 5] has given the following example. Let T : C + C, where 

C is a closed unit ball in .Q,2 
' be defined by Tx = S(x, x) where 

S(x, y) = (1 -IIYII2, AXI, AXz, .•. ), X = {x } E .Q,2 , 
n and A is a 

is 
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positive constant less than 1. Nussbaum [2~ has shown that a strict 

semicontraction is densifying. The following theorem, stated without 

proof, is due to Browder [5]. 

Theorem 2.6.4. Let X be a reflexive Banach space for which there exists 

a weakly continuous duality mapping J from X to X* for some gauge function 

~ Let T be a semicontraction of X into X which maps C into 

itself. Then T has a fixed point in C. 

Remark. If we assume that X is reflexive and D convex then every 

mapping T : D + X of semicontraction type is also a weak semicontraction. 

Browder obtains the above theorem as a consequence of the following 

more general result which we also state without proof. 

Theorem 2.6.5. $rowder [5 ] ) Let X be a reflexive Banach space with a 

weakly continuous duality mapping, T a w~ak semicontraction of C into 

C. Suppose that (1 - T) C is closed in X. Then T has a fixed 

point in C. 

Petryshyn [26] gave the following version of Theorem 2.6.5, which 

is slightly more general than that of Browder but uses the same arguments 

as Browder. 

Theorem 2.6.6. Let X be a reflexive Banach space with property (H) 

and with a weakly continuous duality mapping J. Let Tx = S(x, x) be 

a weak semicontraction of c into c such that (1 - T)C is closed 

in X. Then T has a fixed point in c. 

Proof. For 0 < q < 1 let T (x) = T(qx) J11ap c into c. Since X 
q 

is reflexive and (1 - T)C is closed in X it can be shown (see 
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Browder I 5]) that T has a fixed point in C if T has a fixed point 
q 

in C. Thus it is sufficient to show that T has a fixed point in C 
q 

for each q, 0 < q < 1. 

Redefine T = T for a given q < 1. Then Tx = s (x, x) where, 
q 

for each fixed X E c , s (· ' x) = s is a contraction of c into c 
X 

with ratio q < 1 and S(x, . ) is a completely continuous mapping of 

c into c. Hence there exists a unique point y (£ c such that 

s (y) = S(y, x) = y for each fixed X E. c. 
X 

This equation defines a mapping R of c into c given by 

Rx = y such that X is a fixed point of T in c if and only if 

x is a fixed point of R in C. Now it can be shown that R is com~ 

pletely continuous and then the result follows by the Schauder fixed 

point theorem. 

For details of the proof that R is completely continuous see 

Petryshyn [26] . 

By combini.ng Theorem 2. 6. 6 with some other results, Petryshyn [26] 

obtains Theorem 2.6.4 and the following theorem which was also given 

independently by Browder [ 5]. 

Theorem 2.6.7. Let X be a reflexive Banach space with property (H) 

and a weakly continuous duality mapping J. Let T be a semicontraction 

of C into C and let K be a completely continuous mapping of C 

into C such that for every sequence {x } c.. C the condition x ~ x 
n n 

and (xn- x- S(xn' xn) + S(x, xn)' J(xn- x)) ~ 0 implies that 

Kx ~ Kx. Then T + K has a fixed point in C. 
n 



Theorem 2.6.5 is not true for all weak semicontractions and the 

additional condition that (1 - T)C be closed or some other condition 

is necessary. The following theorem of Browder I 5] shows that 

completely continuous perturbations, even by simple addition of a 

completely continuous operator, allow the disappearance of the fixed 

points of semicontractions or even nonexpansive operators in Hilbert 

space. 

Theorem 2.6.8. Let H be an infinite dimensional Hilbert space, C 

the closed unit ball of H, then there exists a weak semicontraction 

T of H into C which has no fixed point. 

Proof. Without loss of generality assume that H is the sequential 

Hilbert space ~2. Then the elements of H are sequences 

s(x) = (0, x 1 , x 2 , •.•. ) 

II x 11 2 
= I. x . 2 . Let s be the mapping 

J J 

K be the completely continuous mapping 

K(x) 
2 

= (1 - II X II , 0, 0, 0 .... ) of c into c. Then the mappi_ng 

S(x, y) = s(Qx) + K(Qy) is a weak semicontraction, where Q is the 

natural radial retraction of H on C, 

i.e. Qx = X xEC 

X 

ITXTI' X f C 

and S(x, x) has no fixed points in H. 

50. 

Browder [5 ] extends the proof of Theorem 2.6.5 to general Banach 

spaces without assumptions on reflexivity or duality mappings but at the 

expense of the complete continuity of the second variable. 
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The following theorem (given without proof) is due to Browder 

[ 6]. It is required for the proof of a theorem due to Kirk [15]. 

Theorem 2.6.9. Let X be a Banach space, C a closed, bounded, convex 

subset of X with 0 in its interior, T a mapping of c into X 

such that for each X on the boundary ac of c, Tx f A.x for any 

A. > 1. Suppose that for given k < 1 and a mapping s of C X c into 

X, T(x) = S(x, x) for all X c::c while II sex, z) - s (y, ~II :::._ kjjx - Y II, 
(x, y, z £ C), and the map X + s (.' x) is completely continuous from 

c to the space of maps from c to X with the uniform metric. Then 

a. If k < 1, T has a fixed point in C. 

b. If k < 1 and (1 T)C is closed in X , T has a 

fixed point in C. 

The following definitions are due to Kirk [15]. 

Definition 2.6.10. Let X be a Banach space and C c K where C and K 

are subsets of X. The mapping A : K + X is called uniformly strictly 

contractive on C relative to K if for each x ~ K there exists a 

number a(x) < 1 such that 

u E. c. 

II Au - Ax II :::._ a (x) II u - x II for each 

Definition 2.6.11. Let X be a Banach space, C C X and let 

S : X x C + X. The mapping Tx = S(x, x) for x ~ C is strongly semi­

contractive on C if: 

(a) for fixed x ~ C, S(·, x) is uniformly strictly contractive 

on C relative to X. 
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(b) for fixed x t C, S(x, •) is strongly continuous from C 

to X, uniformly for x in bounded subsets of C. 

This class of mappings generalizes mappings of the form A + B 

with A uniformly strictly semicontractive on C relative to X and 

B strongly continuous. 

Theorem 2.6.12. ~irk [15]) Let X be a reflexive Banach space and C 

a closed, bounded; convex subset of X with 0 ~ int c. Let T be a 

strongly semicontractive mapping of c into X such that for each 

X in the boundary of c, T(x) + AX if A > 1. Then T has a 

fixed point in c. 

The proof follows as a consequence of Theorem 2.6.9 and the 

following lemma. 

Lemma 2.6.13. Let X be a reflexive Banach space, C a closed 

bounded convex subset of X, T : C + X strongly semicontractive on C 

in the sense of Definition 2.6.11. 

Then (a) (1 - T) is demiclosed on C 

and (b) (1 - T)C is closed in X. 

Proof of (a). To show that (1 - T) is demiclosed on C, let 

u ~ u weakly in C and (1 - T)u. + w strongly and then show that 
j 0 J 

(1 - T) u = w • 
0 

Define F : X + X by F(x) = S(x, u ) + w , x r X. 
0 

Then for 

u ~ c, I jF(u) - F(x)l I = S(u, u
0

) - S(x, u
0
), and F is uniformly 

strictly contractive on C relative to X since T is strongly 

semicontractive. 
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Now S (u. , u.) + w - (S (u. , u ) + w) --+ 0 
J J J 0 

(i) 

strongly by condition (b) of Definition 2.6.11, and 

u. - (S (u. , u.) + w) --+ 0 (ii) 
] ] J 

strongly by condition (a) of this lemma. 

From (i) and (ii) we have u. - F (u.) -+ 0 
] J 

strongly and our problem 

now is to show that F(u ) = u , by showing that u. 
] 

converges strongly 
0 0 

to u . 
0 

Let B(u., p) denote the closed ball centred at u. with radius 
l 1 

p > 0 and let R be the set of those numbers p for which there exists 

an integer k such that: 

Let 

Then 

and 

Let 

where 

For 

X 

g. 1. b. 

00 

fl B(ui' p) =f ¢ 
i=k 

R and for each § > 0 let 

C> I 
00 n B (u. , p + §) \ f ¢ 

l 0 I i=l i=§ 

G = G§ + ¢ since each G§ is closed, bounded, and convex 
§>0 

is reflexive. 

Now Po = 0 ~ if not assume Po > 0 and seek a contradiction. 

x E G, pi llu. - Fu.ll and choose § > 0, 8 > 0 such that 
l l 

(3 = a (x) (p + §) + 8 < Po 0 

a (x) < 1 is associated with X and F as in Definition 2.6.10. 

i > N, p. < 8 and llx - u.ll < p + § . Therefore : - l l - 0 



Hence F (x) ,.: 

diction, and 

CX> 

n 
i=N 

< a(x)(p + §) + p. < S , for i > N. 
- 0 1-

B(u., S) 
1 

is nonempty, therefore we have a contra-

p = 0. 
0 
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This implies that {u.} is a Cauchy sequence and therefore converges 
1 

strongly to some u in C. 

is complete. 

That is, u. ~ u strongly and the proof 
1 0 

Proof of (b) . (1 - T)C is closed since (1 - T) is demiclosed by part 

(a) and C is weakly compact. 

Browder [6] proved Theorem 2.6.12 for the case when X is a 

uniformly convex Banach space and T is a semicontraction. Webb [39] 

proves the following theorem using the fixed point principle of 

Sadovskii [31]. 

Theorem 2.6.14. A strict semicontraction T of C into X which 

maps C into C has a fixed point in C. 

Proof. Let N be a bounded, noncompact subset of C. Then 

a(N) = o > 0 where a(N) is a measure of noncompactness defined by 

Sadovskii [31]. Let B(x, s) denote the open ball in X with centre 

x and radius s. Choose S > o and s > 0 such that AS + s < o. 

Then prove a(T(N)) < AS + s < o. 



55. 

There is a finite set of elements {xk} of X, (1 < k < n), - -n 
such that N C lJ B (xk, S) . For each X .. X, S(x ,N) is a compact 

n k=l 
set and so J scxr) is compact. Therefore given e: > 0 there 

k,;l n p 
exists zl, z such that G S(xk' N) C f.__., B (z., e:) • Now 

p k=l j =1 J 

given any X E: N choose k such that II~ - xk II < (3, and we get 

II S (x, x) S (xk, x) II 2._ A II x - xk II < A B 

and choosing j such that II S (xk, x) - z j II < e: we get 

I I S (x, x) - z . I I < A (3 + e: < o . 
J 

p 
Hence T(N) can be covered by L; B (z. , Y) for some Y < o and 

j =1 J 
a(T(N)) < a(N). Now T has a fixed point in C by Sadovskii's result. 

By omitting the word strict, Webb proves a version of the above 

theorem, which contains Theorem 2.6.4. The following theorem, stated 

without proof, is also due to Webb [39]. 

Theorem 2.6.15. Let T be either a strict semicontraction or a semi-

contraction of C, (a closed, bounded, c~nvex subset of Hilbert space 

H), into H which maps the boundary of C into C. Then T has a 

fixed point in C. 

Lemma 2.6.16. (Petryshyn [28]) Let X be a Banach space, D a bounded 

open subset of X and T a continuous map of D into X which is 

either a strict or a weak semicontraction. Then T is ;\-ball con-

tractive, where ;>._ = k or 1 depending on whether T is a strict 

or a weak semicontraction. 
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The following theorem due to Petryshyn is more general than the 

results stated above. 

Theorem 2.6.17. Let X be a Banach space, D a bounded open subset of 

X and T a continuous mapping of 5 into X such that; 

(a) There exists x € D such that Tx 
0 

x =a(x-x) 
0 0 

holds for some x in aD implies a < 1. And 

either (i) T 5 ~ X is a strict semicontraction 

or (ii) T 5 ~ X is a weak semicontraction and T satisfies 

condition (b) of Theorem 2.5.1. 

Then T has a fixed point in D. 

Proof. If T satisfies (i) then Lemma 2.6.16 implies that T is 

k-ball contractive with k < 1 and, in particular, 1-ball contractive. 

If we prove that T satisfies condition (b) the result follows from 

Theorem 2.5.1. 

Let {x } 
n 

be any sequence in 5 such that g = x - Tx ~ 0 n n n 

as n ~ =. Since x = g + Tx , a({gn}) = 0 and T is k-ball n n n 

contractive with k < l, it follows that a ·({x }) = 0. Hence there 
n 

exists a subsequence {x } and x € 5 such that 
n. o 

1 

i ~ =. This and the continuity of T imply that 

That is, condition (b) holds. 

X ~ X 
n. o 

l 

~ X 
0 

as 

Tx 
0 

= 0. 

If T satisfies (ii), then uy Lemma 2.6.16 the mapping T is 

1-ball contractive and T satisfies condition (b). Hence the result 

follows from Theorem 2.5.1. 



If condition (b) is dropped then it is necessary to strengthen 

the conditions on X~ D and S(·~ x). The following result~ stated 

without proof~ is due to Petryshyn {28] . 
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Theorem 2.6.18. Let X be a reflexive Banach space for which there 

exists a single valued weakly continuous duality mapping J of X into 

X* with guage function ~· Let D be a bounded open convex subset of 

X and T : 5 ~ X a semicontraction such that condition (a) of Theorem 

2.5.1 holds on aD. Then T has a fixed point in 5. 

If in Theorem 2.6.17 it is assumed that D is convex, then 

condition (a) follows from the assumption that T(aD) C D and in 

particular from T(D) C 5. Thus for T satisfying (i) Theorem 2.6.17 

contains a theorem of Webb [39] which generalizes the results of Browder 

[ 5] for the case when D is also convex and T(D) C D. For T 

satisfying (ii) Theorem 2.6.17 contains Theorem 2.6.5 of Browder {5 ] 

which requires additionally that X be reflexive with a weakly contin­

uous duality mapping, that T(D) C B and that (1 - T)5 be closed. 

When T( aD) C 5 Theorem 2.6.18 contains Theorem 1 of Browder [5 ] 

which requires that S map X x X into D. Theorem 2.6.18 also contains 

Theorem 3 of Webb [39] for the case when T(D) c fi. 

The following result due to Petryshyn generalizes a theorem due to 

Kirk [15] . 

Theorem 2.6.19. Let X be a reflexive Banach space, D a bounded~ open 

convex subset of X and T 5 ~ X is of strongly semicontractive type 

relative to X such that condition (a) holds on aD. Then T has a 
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fixed point in 5. 

Proof. Every T : 5 -+ X of strongly semicontractive type relative to 

X is necessarily a semicontraction and since X is reflexive and D 

convex then T is a 1-set contraction. (For details see Petryshyn [28]). 

Also Kirk [15] has shown that T satisfies condition (b), hence T has 

a fixed point in 5 by Theorem 2.5.1. 

Theorem 2. 6. 20 .[2~et X be a reflexive Banach space D a bounded, open, 

convex subset of X, and A : 5 -+ X uniformly strictly contractive on 

5 relative to X. C : D-+ X strongly continuous. 

If T = A + C : D X satisfies condition (a) on aD then T has a 

fixed point in 5. 

Proof. Since T = A + c is a 1-set contraction and satisfies condition 

(a) we need to show that T satisfies condition (b) on 5. Let {x } n 

be any sequence in 5 such that X - Tx -+ 0 as n -+ 00. Since { X } n n n 

is bounded and c is strongly continuous 

some f £ X. But then 

X 
n 

Ax = x 
n n 

Tx + Cx -+ f n n 

or x - Fx -+ 0 as n -+ oo where n n 

we assume that Cx -+ f for 
n 

F : X-+ X is defined by F(x) = A(x) + f, for x £X with F 

uniformly strictly contractive on B relative to X. Since X is 

reflexive and 5 a bounded closed convex subset of X, there exists 

a subsequence {x } 
n. 

1 

X ~x and X n. 0 n. 
1 1 

for each 

Fx -+ 0 n. 
1 

i and 

as i -+ 

an 

oo. 

element x € 5 such that 
0 



59. 

Kirk [ 15] has shown that {x } is a Cauchy sequence which 
n. 

1 

converges strongly to X so that X Fx = 0 (i.e. X - Ax = f). o' 0 0 0 0 

But then Cx -+ Cx = f as i -+ co. Hence X Tx = 0 (i.e. T 
n. 0 0 0 

1 

satisfies condition (b) on 5) and T has a fixed point on 13. 
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