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Abstract 

An unsteady and strong vortical propeller wake can have significant interaction 

with a body in its race. Since the pod and strut is located downstream an operation 

propeller for a tractor-type podded propeller, it faces risks of earlier cavitation on the strut, 

severe vibration of the pod unit, and noise of the propulsor. The aim of this work is to 

develop a prediction method for the pressure fluctuation on the surface of the pod and 

strut. 

The study consists of two parts, experimental and numerical. In the experimental 

study, a podded propeller was tested in a cavitation tunnel. The tip-vortex interacting with 

the strut was visually investigated, and the strut surface pressure and the propeller shaft 

loads were measured. By using a data processing procedure, the load and pressure 

measurements were broken down into time-averaged and phase-averaged components. 

These components were then linked to the steady and dynamic performance of the 

propulsor. Pressure measurements showed that the low time-averaged pressure was 

concentrated in the area around the leading edge of the strut. The lowest pressure was 

located on the strut suction side near the junction of the strut and pod. However, the 

largest amplitude of the phase-averaged pressure occurred on the strut leading edge 

where the tip-vortex impacts the strut. Based on measurement of the propeller shaft loads, 

the wake impingement effect on the propeller performance was evaluated. The evaluation 
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was made by comparing the shaft loads measured in two tests with and without the 

installation of the pod and the strut. These showed that wake impingement had no 

significant effect on the propeller shaft loads, neither on the steady component nor the 

dynamic components. 

In the numerical study, a Wake Impingement Model (WIM) was developed and 

inserted into a panel code, PROPELLA. Simulations of the pressure variation on the strut 

surface were then conducted using the software. The WIM starts from the relaxed and 

aligned propeller wake. The motion of the wake sheet was traced step by step. For each 

time step, every wake panel moved from its previous location to a new position. The new 

position was determined by the product of the time interval and the local induced velocity. 

When the wake approached the strut, a scheme was applied to keep the wake from 

penetrating the body surface. To avoid the large numerical disturbance resulting when 

two dipole panels get too close, the two dipole panels were merged before the calculation 

of influence coefficients. Numerical simulations on the same tractor-type podded 

propeller as that in the experimental study were conducted. Although the amplitude of the 

pressure fluctuation in the tip-vortex/strut interaction zone was under-predicted, 

comparisons of the numerical results with the experimental data indicated that the 

simulated pressure was in good agreement over most of the impingement area. Both 

experimental and numerical studies with the WIM show that WI has insignificant (around 

2%) effects on the propeller thrust and torque. 
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Chapter 1 Introduction 

The world's earliest pod propeller may have been constructed by Hiram S. Maxim 

over a century ago. In fact, it was built as an apparatus to test the efficiency of various 

kinds and forms of screws, and the lifting power of airplanes of various sizes and shapes 

set at various angles (Maxim, 1891 ). As shown in Figure 1.1, the pod propeller consists 

of a four-bladed propeller, a pod that houses the propeller shaft, and a frame that connects 

the pod to the airplane. In 1990, just one century after this aerial pod propeller was made, 

the world's first application of a podded propeller to marine propulsion, Azipod, was 

installed on the vessel "Seili" by Asea Brown Boveri Ltd (ABB, 2003). 

Figure 1.1 A Podded Propeller in the 19th Century 

Seili is a buoy tender and is propelled by a single Azipod of 1.3 MW. Comparing it with 

her sister ship, which is propelled by a conventional nozzle propeller, Seili performed 

with higher efficiency and better maneuverability in heavy ice conditions both forward 



and astern (Juurmaa et al., 2002). Since the world's first commercial and successful 

introduction of an electric drive podded propeller to a marine vessel, the range of podded 

propeller applications, capacity and type have increased tremendously (Atlar, 2004). 

Applications are growing while the technology is still under development. In 

recognition of the need to increase the understanding of pod propeller hydrodynamics, 

structure, and safety and thereby improve designs and reliability of future products, a 

number of projects have been carried out by national and multi-national collaborations. 

There is a summary of these collaborations in the report by The Specialist Committee on 

Azimuthing Podded Propulsion of the 23rct International Towing Tank Conference (Atlar 

et al., 2005): Between 1999 and 2005, three large scale projects have been conducted 

under the EU Framework Programme (FP5). First, OPTIPOD brought together 14 EU 

partners to establish design guidelines for pod-driven ships. Next, PODS-in-Service 

brought together 18 partners to investigate the reliability of pods through in-service 

monitoring and measurement. Finally, F ASTPOD brought together 17 partners aiming to 

identify the maximum feasible limits when using podded propulsors on large fast 

commercial ships in an efficient, safe and environmentally friendly manner. In Canada, a 

5-year research programme was started in 2002. The research programme has several 

objectives: quantify the effect of podded propulsor configuration on performance; 

develop instrumentation for model tests and numerical methods for performance 

prediction; and quantify the blade loading effects in open water and in ice at off-design 

conditions (Veitch, 2001). In Japan, a national programme entitled "Super-Ecoship" was 

initialized. In order to promote cargo transportation from land to sea, this project aims to 
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develop novel coastal ships driven by a CRP-Podded propulsor (a pair of Contra-Rotating 

Propellers at the same end of a podded propeller) with a higher cargo capacity, propulsive 

efficiency, maneuverability and less vibration and noise (Ukon et al., 2004). In Finland, 

a Hybird CRP-Podded propulsor (a conventional propeller followed by a contra-rotating 

tractor type podded propeller) was being researched. One of the hybrid systems was 

installed on a Ropax ferry (Bushkovsky et al., 2004). 

Podded propellers can be categorized by their configurations. As shown in Figure 

1.2, there are six types of podded propellers. A similar summary has also been made in a 

report of Studio di Ingegneria Navale e Meccanica (SINM, 2004). Beside the CRP­

Podded propulsor and the Hybird CRP-Podded propulsor referred to in the previous 

paragraph, tandem-type and single propeller type podded propellers are also included. 

Both contra-rotating and single-propeller types of podded propeller are subdivided into 

tractor-type and pusher-type respectively. The two simplest configurations are the tractor­

type and the pusher-type single propeller podded propulsors. The pulling propeller (the 

propeller is located upstream from the pod where an electrical motor is housed) provides 

various advantages concerning efficiency, controllability, comfort and vessel layout 

(PODs-in-Service, 1999). The investigations include numerical simulations and scale 

model tests on the hydromechanical and structural performance. In some cases speed and 

power, as well as pressure fluctuations, have been measured during ship trials and in­

service. Juergen (2004) showed the wake field for at least a twin screw podded vessel to 

be very smooth and nearly uniform by doing a large series of model tests (cavitation 

observations, pressure fluctuation and noise measurements) with different types of pod 
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propulsors in the Hydroacoustic and Cavitation Facility (HYKAT), Hamburg Ship Model 

Basin (HSV A). The very smooth wake field results in low excitations induced by the 

propellers, both in terms of hull pressure fluctuations and shaft forces. This is one of the 

main advantages for podded propulsion concerning the vibration and noise behavior. 

Hybird-Type 

Contra-Rotating 
Tractor-Type 

Flow -

-
Tractor-Type 

Flow ------

Tandem-Type 

Flow ------
Contra-Rotating 
Pusher-Type 

Flow --
--

Pusher-Type 

Flow ------
Figure 1.2 Types ofPodded Propellers 

On the other hand, studies have shown that problems still exist with podded propulsor 

applications. A study by Carlton (2002) of sources of failure on podded propulsors of 27 
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podded propeller propelled ships showed that bearing problems accounted for 34% of 

failures of the propulsion systems. The distribution of failures was given as follows: 

Table 1.1 Relative Sources of Pod Propulsor' s Failure (-source: Carlton 2002) 

Bearings Seals Electrical Cavitation Grounding Shafting Miscellaneous 

34% 21% 20% 11% 5% 2% 7% 

This suggests that the estimated bearing forces arising from hydrodynamic loads were 

under-predicted, or considerations given to bearing forces were insufficient. Bearing 

forces transferred from propellers can be split into averaged forces and fluctuating (cyclic 

and non-cyclic) forces similar to the study on the effect of an oscillatory free-stream-flow 

on a NACA profile by Krause and Schweitzer (1990) in which the velocity and pressure 

measurements were broken down into three components. Precise evaluation of average 

components is sufficient for power and speed predictions. However, the fluctuating 

components of these forces are very important in the design of bearings, because bearing 

failures are more related to the maximum values of forces, which are equal to average 

components plus fluctuating components. This finding suggests that more accurate 

bearing force prediction methods are needed in additional to mechanical solutions in the 

prevention ofbearing failures. 

Following bearings failures, cavitations ranks as the second within these sources 

of failures related to hydrodynamics. In the case of the tractor-type podded propellers, the 

propeller is located upstream from the pod and strut, and the blade wake impacts on the 

5 



strut and pod. The pressure fluctuations on the strut and pod will be increased by the 

wake impingement compared with that of pusher-type podded propellers. The increased 

pressure fluctuation may lead cavitation inception to occur earlier on the strut of the 

tractor-type than the pusher-type podded propellers. 

Some studies have found that a vessel installed with a single-podded-propeller 

(either tractor-type or pusher-type) may face problems on the course keeping 

performance. The rotating propeller swirls the flow around the vessel stem and 

downstream of the propeller. The swirling flow generates asymmetrical hydrodynamic 

forces on the vessel as well as on the pod and strut. Grygorowicz and Szantyr (2004) 

found that in their single-pod-unit without fin, during self-propelled manned model tests, 

the tested vessel had to apply an approximate 5° drift angle to balance the lateral force 

generated by the propeller operation. Another example is the modification design of the 

Double Acting Tanker (DAT). The DAT is propelled by a single tractor-type podded 

propeller and is efficient for forward propulsion in open water conditions. The original 

design was found to not comply with the International Maritime Organization (IMO) 

Maneuvering Standards based on model tests (Tragardh et al., 2004). The main reason 

was that the lateral force generated by the propeller operation on the propulsor was too 

large. After a fin was attached to the bottom of the pod (Figure 1.3), the lateral force on 

the strut was then mostly balanced by another lateral force on the fin which was also 

induced by the rotating propeller. Although the modified design complied with the IMO 

Maneuvering Standards, it may leave room to improve the design by applying the 

knowledge of the interaction of propeller wake and strut as well as the wake impingement. 
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Without Fin With Fin 

Figure 1.3 Pod Unit With/Without a Bottom Fin 

In recognition of the wide application potential of the podded propulsor and knowing that 

some problems still exist, a group of researchers are working collaboratively to carry out 

a systematic investigation of azimuthing podded propeller performance (Veitch, 2001). 

The investigation includes the following goals: quantify the effects of podded propulsor 

configuration variations on propulsion performance; develop computational methods for 

podded propeller performance prediction; develop an extrapolation method for powering 

prediction of ships fitted with podded drives; quantify the blade load effects of propeller 

operation in steady oblique flow; quantify the blade load effects of propeller operation in 

ice; develop model propeller manufacture capability and instrumentation for performance 

evaluation of podded propellers in model scale. 

Commercial applications of podded propulsors are growing quickly while 

improvements to podded propeller hydrodynamics, structure and safety are still necessary 

(Carlton, 2002). Many investigations and studies show the tractor-type podded propeller, 

comparing it to the pusher-type, providing various advantages concerning efficiency, 

controllability, comfort, and vessel layout (POD in SERVICE, 1999). However, some 
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studies (Tragardh et al., 2004) show that the tractor-type podded propulsor has some 

problems raised by its configuration. Since the pod and strut are located in the race of the 

wake generated by the operating propeller, pressure and pressure fluctuation on the pod 

and strut surface are changed by the propeller wake impacting on the surfaces. This might 

cause cavitation to occur earlier on the strut surface and raise a larger lateral force on the 

strut than those of a pusher-type podded propeller. An experimental study on the 

mechanism of the interaction between a propeller wake and a strut has been carried out 

and is reported here. Based on the improved understanding of the wake impingement, a 

more accurate numerical prediction method on the strut pressure fluctuation is developed. 

This can be applied in designs to help avoid the types of failures noted above and 

improve podded propeller reliability. 
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Chapter 2 Review of Literature 

To provide a background for the study on strut surface pressure variation induced 

by the propeller wake impacting on the strut, the literature review will concentrate on the 

following three fields: studies on podded propellers, modeling of wake impingement, and 

improvements of panel methods. 

2.1 Podded Propeller 

The world's first azimuthing electric propulsion drive was made in ABB in 1990 

after several years of research and development (www.abb.com/marine). It was installed 

on a buoy tender, MV Seili, and was of 1.3 MW in power. Comparing Seili with her sister 

vessel driven by a conventional nozzle propeller, Seili has higher propulsion efficiency, 

better maneuverability, and higher ice breaking capability (Juurmaa et al., 2002). After 

this successful application, many high profile projects, OPTIPOD, PODS-in Service, etc, 

have been carried out and many types of podded propeller have been studied. The 

concept of an azimuthing submerged electrically driven puller propeller provides various 

economic, safety and comfort advantages. Increases up to 1 0% in the propulsion 

efficiency have been claimed, along with decreases of 30 to 60% in the noise and 

vibration levels (Pods in Service, 1999). Based on the model tests for a double acting 

tanker, Tragardh et al. (2004) found a bottom fin (Figure 2.1) was needed to improve the 

original design and to comply with IMO Maneuvering Standards. The reason was the 

lateral force on the strut induced by the propeller wake was mostly cancelled by that on 

the bottom fin. The first attempt to numerically predict the strut hydrodynamic forces are 
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Figure 2.1 Reduce the Lateral Force by Adding a Bottom Fin 
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Figure 2.2 Unsteady Strut Lift, Drag and Moment Coefficients (J=O. 5) 

(from Deaniset et al., 2003) 

thought to have been made by Deniset et al. (2003). In their study, a potential flow based 

method coupled with a RANS (Reynolds Averaged Navier Stokes) solver was used in the 
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predictions of the strut drag, lift, and moment. As shown in Figure 2.2, the unsteady strut 

hydrodynamic lift, drag and moment were dominated by the component of the blade 

passing frequency, four periods corresponding to four propeller blades. The amplitudes of 

the fluctuating components of the lift (lateral force), the drag and the moment were 

predicted to be around 113, 1/3 and 1/2 of their steady components respectively. Ohashi 

and Hino (2004) simulated the flow field around a vessel installed with either a tractor­

type or a pusher-type contra-rotating podded propeller. By using a RANS solver, 

FINFLO, Sanchez-Caja and Pylkk:anen (2004) designed a non-symmetric strut, shown in 

Figure 2.3, in order to avoid cavitation inception keeping at the same time low drag and 

low lateral forces for a tailor-made design as compared to a conventional symmetric strut. 

Figure 2.3 Illustration of an Asymmetric Strut and Pod (-source: Sanchez-Caja et al. 2004) 
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2.2 Panel Method 

Since Hess and Smith (1964) led the study of panel methods for subsonic flows 

around complex three dimensional non-lifting bodies, and arbitrary lifting bodies (Hess, 

1972), a lot of work has been done to improve the methods and/or extend the application 

of the method. 

Morino (1973), Morino and Kou (1974), and Morino et al. (1975) developed a 

general formulation and code of a hyperboloidal panel method for steady and oscillatory, 

subsonic and supersonic, potential linearized aerodynamic flows around complex 

configurations. Constant strengths of sources and dipoles or dipoles alone were 

distributed on each element of the hyperboloidal surface. A hyperboloidal panel can be 

used to increase the accuracy of highly roll-up wake simulation (Pyo and Kinnas, 1997). 

The expression for a hyperboloidal surface panel is given by equation (A-9) in appendix 

A and a comparison of a flat and a hyperboloidal surface panel is made in Figure 2.4. 

Maskew (1987) developed a computer program (VSAERO) for calculating the subsonic 

aerodynamic characteristics of arbitrary configurations having vortex separation and 

-Flat Panel (left) 

-Hyperboidal Panel (right) 

-Flat Panel (right) 

Figure 2.4 Comparison of a Flat and a Hyperboidal Panel 

12 



strong vortex/surface interaction. In this method, the planar panel was used to represent 

arbitrary body surfaces and wake sheet surfaces. Constant sources/sinks and doublets 

were distributed on body surfaces. On wake sheet surfaces, only doublets were 

distributed constantly on each panel. Hess and Valarezo (1985) apparently made the first 

attempt using panel methods to obtain pressure distribution on ship propellers as well as 

aircraft propellers. Kerwin et al. (1987) extended a panel method to hydrodynamic 

analysis of ducted propellers. Hoshino (1989a) applied panel methods to hydrodynamic 

analysis as well as wake modeling ofpropellers in steady flow. Comparisons of simulated 

results with LDV measurements were also made (Hoshino, 1989b ). 

Hsin (1990), and Kinnas and Hsin (1992) improved a low order panel code 

developed at the Massachusetts Institute of Technology (MIT) by using hyperboloidal 

panels, introduced a time-marching technique to the panel code, and applied the method 

to the analysis of the unsteady flow around highly skewed propellers. In the method, 

linear dipole distributions were used at the first wake panels adjacent to the blade trailing 

edge in order to render the method insensitive to the time step size and also avoid 

instability in the numerical method. Hoshino (1993) also conducted hydrodynamic 

analysis of propellers in unsteady flow by using a panel method. The surface of the 

propeller blade and hub was approximated by hyperboloidal quadrilateral panels with 

constant source and doublet distributions whose strengths varied with time. The surface 

of the trailing vortex sheet was also represented by hyperboloidal quadrilateral panels 

with constant doublet distributions. Strengths of the sources and doublets were 

determined by solving the boundary value problem at each time step. Hoshino's study has 
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shown that an iterative Kutta condition is indispensable to solve the unsteady propeller 

problem. The unsteady panel method could predict the unsteady pressure distribution on 

the blade of not only a conventional propeller but also of a highly skewed propeller. 

Richason and Katz (1993) formulated an unsteady panel method in an initial 

frame-of-reference, attached to the undisturbed stationary fluid, for multiple bodies 

moving along various paths. This choice of the frame made the numerical interpretation 

of the multiple-body, solid-surface boundary condition and the viscous wake rollup 

considerably simplified. Liu (1996) and Liu et al. (1997) developed a PM (Panel Method) 

code, OSFBEM (Oscillating Foil Boundary Element Method), and used a time domain 

panel method to predict hydrodynamic performance from an oscillating foil with both 

span wise and chord wise flexibility. The program was designed, and is able, to predict 

hydrodynamic properties for an unsteady, 3-D flexible wing. A number of features were 

implemented including the geometry of both 2-D and arbitrary 3-D planforms; large 

amplitude pitch and heave motions; non-zero trailing edge thickness; flexible motion and 

geometry parameters such as steady flow, unsteady motion, chordwise and spanwise 

flexibility; and approximate prediction of skin friction and qualitative examination of 

sectional flow patterns in terms of boundary layer growth. Simulations of whale flukes 

showed that passive spanwise flexibility reduces propulsive efficiency, but that 

propulsive efficiency of these planforms can be increased over the value for an equivalent 

rigid foil by careful control of the phase of the spanwise flexibility relative to other 

motion parameters. A time domain panel method code DF _ OSFBEM (Liu, 2006) based 

14 



on OSFBEM was recently used to evaluate and optimize the performance and motion 

parameters of a wing-in-ground effect (WIG) dual-foil oscillating propulsor. 

Panel methods have also been used in calculations of hydrodynamic forces acting 

on marine propellers with ice blockage effects, and the first application was carried out 

by Bose (1996). The inflow of the propeller was restricted by two conditions: a simplified 

inflow field estimated to account for approximately the wake behind an ice block; and the 

same inflow field in combination with a patch of panels placed upstream of the propeller 

to represent the ice blockage face. With an ice-contact-load model developed by Veitch 

(1995) and a panel method, PROPELLA, developed by Liu (1996a), Veitch et al. (1997) 

predicted the hydrodynamic load as well as the ice-contact-load on an ice-class propeller. 

A time-domain propeller-ice interaction model was used in the simulations. Liu et al. 

(1998, 2000, 2001) extended the panel code, PROPELLA, to predict ice-induced 

hydrodynamic loads on propellers due to blockage at a fixed proximity as well as variable 

proximity. 

To obtain a unique solution to a lifting flow problem in potential flow, the Kutta 

condition needs to be enforced at the trailing edge. The development and improvement of 

procedures for the numerical Kutta condition started at almost the same time as that of 

panel methods. Hess (1972) found that use of a pressure-equality Kutta condition is more 

accurate and less sensitive than the flow-tangency Kutta condition. A procedure was 

given by Morino (1974) to fulfill the Kutta condition in steady flow problems to provide 

panel methods for lifting flow with a unique solution. Before the explicit Iterative 

Pressure Kutta (IPK) condition was proposed by Kerwin et al. (1987), Katz and Weihs 
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(1981) and Poling and Telionis (1986) studied oscillating airfoil wake rollup and airfoil 

responses to periodic disturbances with a steady and an unsteady Kutta condition 

respectively. IPK is an iterative numerical procedure that solves the pressure-equality 

equation during calculations of lifting bodies in unsteady flows. Bose (1994) 

implemented an explicit Kutta condition to a 2D unsteady potential flow panel code for 

thrust and propulsive efficiency calculations of oscillating hydrofoils with chordwise 

flexibility. Liu et al. (2002) increased unsteady IPK reliability by using the Broyden 

iteration instead of the N ewton-Raphson iteration procedure; the later has been found to 

have convergence difficulties in some cases. 

A large number of calculations have been made to simulate the wake sheet by 

replacing the continuous vortex sheet with a finite number of discrete vortices or 

alternatively, by replacing the dipole sheet with segments carrying a piecewise constant 

dipole distribution (Pyo, 1995). Suciu and Morino (1976) obtained wake alignment by an 

iteration to satisfy the condition that the velocity be tangential to the surface of the wake 

and the difference of potential to be a constant along the streamlines. Based on the 

measured velocity distributions of the propeller slipstream, a two-section wake model 

was proposed by Hoshino (1989, 1990). In the wake model, the contraction and the pitch 

of the wake are considered to vary in the transition wake region, while radial positions 

and pitch of the trailing vortex sheets are kept constant in the ultimate wake region. Pyo 

(1995) and Pyo and Kinnas (1997) applied a potential based boundary element method 

for the analysis of high skewed propeller flows. A FLow Adapted Grid (FLAG) was 

developed in order to solve the convergence problem which occurred when typical grid 
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arrangements were applied to such propellers. The geometry of the trailing wake was 

decided directly from the panel method and the vortex sheet roll-up was included in the 

FLAG. In order to model the wake sheet roll-up in three dimensions, bi-quadratic 

strength dipole distributions and hyperboloidal panel geometry were used. Throughout 

the numerical calculation, rediscretization was applied as a smoothing scheme. 
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2.3 Wake Impingement Model 

Wake impingement refers to a kind of vortex/body interaction. It is described as 

vortices impacting a body. Wake impingement modeling is the simulation of the vortex 

response to the interaction and the load on the body induced by the interaction. To 

improve the understanding of this interaction, extensive studies on the flow physics and 

vortex structures have been conducted on simplified configurations. These studies 

include a normal vortex filament interacting with a blade or a cylinder (Marshall, 1994, 

Marshall and Yalamanchili, 1994, Krishnamoorthy et al., 1999), a streamwise vortex that 

splits or passes by a perpendicular blade (Mayori and Rockwell, 1994, Wittmer et al., 

1995, Gordnier and Visbal, 1997), a vortex that interacts with a parallel blade (Wilder 

and Telionis, 1998), interaction of vortex rings (Grant and Marshall, 1999), and a vortex 

ring encountering a wall (Orlandi and Verzicco, 1993, Fabris et al., 1996, Mammetti et al., 

1999). The study of a blade cutting a vortex filament by Marshall and Krishnamoorthy 

(1997) indicated that a vortex impact factor, 2;r raU If, played an important role in the 

vortex response. Here ra is the radius of the vortex filament, U is the ambient normal 

velocity passing the cylinder, and r is the vortex filament strength. The radius of a 

vortex filament is defined as the distance from the filament centre to the location where 

the vortex induced tangential velocity reaches the maximum. When the impact factor was 

less than 0.08, the vortex/blade interaction was characterized by ejections of boundary 

layer vorticity from the blade prior to impact with the vortex and subsequent wrapping of 

this secondary vorticity around the primary vortex core. When the impact factor was 

greater than 0.24, there was no separation of the boundary layer prior to the impingement 
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of the body onto the vortex core. Gordnier and Visbal (1997) and Mamou and Khalid 

(2002) used Reynolds Averaged Navier Stokes Solver (RANS) solvers in simulations of 

the flow fields around the wake impingement zone. O'Brien and Smith (2005) studied 

rotor-fuselage interactions by using various rotor models. They found simulating a rotor 

by a constant actuator disk was inadequate for most applications, but it could be easily 

improved upon by allowing for pressure variations about the blade radius and azimuth. 

On the side of engineering applications, the model of vortex/body interactions is 

greatly simplified while the complex body geometry is retained. For example, Chen and 

Williams (1987) used a panel method in the simulation of the flow around a counter­

rotating-propfan. When a wake panel shed from the upstream propfan impacted on the 

downstream propfan, the wake panel was deformed and diverted to penetrate the 

downstream body at the nearest 'gap' located between the panels representing the 

propfan. One main reason for making this kind of treatment is to avoid the 

numerical disturbance raised when a vortex filament or an edge of a dipole panel passes 

through the collocation point of a body element (Chen and Williams, 1987). In a 

simulation of propeller/duct/rudder interaction, Liu and Bose (2001) disabled the effect of 

the propeller wake when it was in the domain between the leading edge and the trailing 

edge of the rudder. Other similar methods that have been applied in practical 

hydrodynamical problems including the Vortex Lattice Method (VLM) and the method 

of a VLM coupled with an Euler solver. Li (1992, 1993) studied propeller-rudder 

interaction by a VLM and non-linear potential method. In the method, influence 

coefficients of lattices which intersected the rudder or which were located inside the 
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rudder were set to zero to avoid large numerical disturbances. An iterative technique, 

including an Euler solver and a vortex-lattice method, was introduced by Kinnas et al. 

(2001) to predict the performance of two-component propulsors. Pressure distributions on 

propulsors were first calculated respectively by the VLM, then body force distributions 

obtained by the results were input to the Euler solver for calculation of the overall flow 

field. In the next iteration, the pressure distributions on the propellers were calculated by 

the VLM and the inflow predetermined by the previous iterative result from the Euler 

solver. 

There are several studies that may be relevant to the study of wake impingement. 

Richason and Katz (1993) employed an unsteady panel method in flow simulations 

involving multiple bodies moving along various paths; this study did not consider the 

wake impingement either. However, the authors did mention that the modeling of the 

impingement would be included in their future studies. Liu and Bose (200 1) used a panel 

code, PROPELLA, in the performance simulation of a propeller/duct/rudder assembly. In 

the simulation, the effect of the propeller wake between the leading edge and the trailing 

edge of the rudder was disabled. Since the source code is accessible and the blade wake 

panels are represented and stored independently, PROPELLA was used as the platform 

for the development of a numerical wake impingement model. A two-dimensional wake 

impingement condition was introduced by Yao and Liu (1998) in a numerical study of 

two oscillating foils in tandem (Figure 2.4). The approach used to divert the wake shed 

from the oscillating foil passing by the stationary foil was extended and applied to divert 

the blade wake passing by the pod and strut. The condition for the tandem foils is based 
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on the principle that the vortices usually slide along the foil surface in an inviscid-flow 

environment. It regulates and corrects the predicted trajectory of a vortex as it approaches 

the proximity ofthe airfoil surface. Ifthe surface ofthe airfoil is defined asS(x,y)=O, 

and the current and predicted vortex positions are ;(t k) = {x k, y k } and 

;(t k+l) = {xk+l, Yk+l}, respectively, then the condition provides the following procedures: 

1) If S(xk+PYk+1 ) > 0, the predicted position is outside the airfoil surface; then the 

- - --position predicted by r(t k+l) = r(t k) + V (t k )11t is the new position for the vortex. 

2) If S(xk+PYk+1) < 0, the predicted position is inside the airfoil surface; then the 

new position must be corrected by the following equation: 

+ 

where l is the unit vector tangent to the airfoil surface measured from position 

y 

Vortex 

'l 
D 

Figure 2.5 Oscillating Foils in Tandem 
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Greco et al. (2006) developed a potential flow based, time-accurate approach to 

describe the unsteady interactions among podded propulsors components. A wake 

alignment technique and a vortex/body impingement model were developed and used to 

deal with the propeller trailing wake and its interactions with the regions of the strut 

surface that were characterized by wake impacted in a tractor-type pod configuration. 

The wake alignment was performed by allowing that the propeller wake surface can cross 

the strut first, and then removed the wake aligned inside the strut and redistributed these 

wake outside the strut by a prescribed wake function. 

Based on a review of collected literature, it has been found that most studies with 

considerations of viscous effects in wake impingement modeling are limited to problems 

having simple configurations. Although both RANS and potential flow-based method 

have been used in the simulations with considerations of wake impingement effects, for 

problems with geometric complexities the potential flow-based method is still a primary 

choice when a super computer is not accessible. The availability of the PROPELLA 

source code makes the potential flow-based method more favorable as a platform to 

develop a numerical wake impingement model in this work. 
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Chapter 3 Strategy of the Study 

This study develops a wake impingement model (WIM) using experimentally 

derived understanding of the mechanism of the propeller wake impacting on a strut. The 

wake impingement model includes implementation of the kinematical and dynamical 

conditions for vortex/body interactions. The kinematical condition is a procedure that 

diverts the incoming vortical wake to pass by the body, and the dynamical condition is a 

procedure to deal with the strength change of the individual vortex elements. The wake 

impingement model was inserted into a panel code, and the panel code was used to 

predict wake impingement effects on the propulsor performance and the pressure 

fluctuation on the strut and the pod. The predicted pressure fluctuations ( J5) on the strut 

surface was validated by comparing them with the results of an experiment in a cavitation 

tunnel. The experimental data includes the time dependent (cyclic) thrust coefficient ( K, ), 

the cyclic torque coefficient ( Kq ), and the lateral force on the strut Fst. Parameters of the 

wake impingement model were adjusted by analyzing the experimental result from a 

visual investigation on the tip vortex/strut interaction. 

The study is divided into three steps: develop a three-dimensional wake 

impingement model for panel method; validate the wake impingement model with 

experimental data; and study podded propeller wake impingement on a strut by using the 

validated numerical model. The wake impingement model was developed first, and then 

assembled into two low-order panel codes, DF _ OSFBEM and PRO PELLA, for 

debugging, validations, and simulations. A podded propeller model test in a cavitation 

23 



tunnel was conducted and the time variation of the pressure distribution over the strut 

surface was measured. The validation of the wake impingement model was then made by 

comparing the numerical results with these data obtained from the tests. 

3.1 Development of Wake Impingement Model 

The development of the wake impingement model includes implementations of 

the kinematical and dynamical conditions for vortex/body interactions. The kinematical 

condition is a procedure that diverts the incoming vortical wake to pass by the body, and 

the dynamical condition is a procedure to deal with the strength change of the individual 

vortex element. 

3.1.1 Kinematic Condition 

The kinematic condition is a procedure that diverts the incoming vortical wake to 

pass by a body. This procedure prevents the vortical wake from penetrating the body 

surface. Since the wake is a flow structure carried by fluid particles, preventing the wake 

from penetrating the body is essential to satisfy the non-penetration boundary condition. 

It took two steps to develop the non-penetration boundary condition for the three­

dimensional wake impingement. The first step was to mathematically extend a wake 

impingement condition introduced by Y ao and Liu (1998) from two-dimensional to 

three-dimensional. The second step was to implement the three-dimensional condition in 

a style of case-by-case assessment. Details of the development are described in Chapter 4. 
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3.1.2 Dynamic Condition 

The dynamical condition is a procedure to simulate the strength variation of 

vortices attached to the body and in wake panels when they interact with each other and 

when wake panels are re-meshed. The procedure includes the merger of the vortex 

strengths of two or more vortex elements, and the vortex transfer between an impacting 

wake panel and the corresponding impacted body panel. The main principle to follow is 

conserving the total vortex strength. 

When two wake panels get too close to avoid a numerical difficulty (singularity) 

in the induced velocity calculation, the two wake panels merge. The vortex strength of 

the older wake panel is assigned zero after its strength is transferred to the younger panel. 

When a wake panel carrying vortex (;~ Jncidem impacts on a body panel carrying 

vortex (; 1 ),mp between the time of t and t + M , the vortex strengths for the impacting 

panel (;I+M Jnctdent and the impacted panel (Q;I+t.l )mp after the impact are corrected by 

following equations: 

(Q;I+t.l lncidenl = (Q;I lncidenl + (Q;I Jmp k2 

(a;l+t.l )mp = (1- k2 )x (a;t lmp 
(3.1.1) 

where k2 is a factor to be determined by numerical tests. These two equations do not 

keep two vortex strengths conserved independently, however they do maintain the sum of 

the two vortex strengths conserved. 
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3.2 Experimental Study 

To increase understanding of the mechanism of the propeller wake impingement 

on the strut and to provide validation data for the numerical wake impingement model, 

the outcome of the model test included: 

• the movement response of the blade wake due to the wake impingement, 

• the time varied pressure distribution on the strut surface, 

• the wake impingement effect on the propeller performance, and 

• the wake impingement effect on the strut surface pressure. 

With considerations of these objectives, accessibility of experimental facilities and 

instrumentation the model test included: 

• a visual investigation of tip vortex/strut interaction on a tractor type podded 

propeller model in a cavitation tunnel, 

• measurements of the time varied pressure distribution over the strut surface at a 

high sampling rate up to 5000 Hz, and 

• measurements of the propeller shaft loads at the same sampling rate. 

To evaluate the wake impingement effects on the propeller performance and the 

strut surface pressure variation, a data processing technique was used to break down each 

measurement to three components: the time-averaged, the phase-averaged, and the 

fluctuation component. The phase-averaged component was then linked to the 

contribution of wake impingement, and finally the wake impingement effect was 

evaluated. 
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Chapter 4 Numerical Method 

A wake impingement model was developed for simulations including wake 

impingement effects. The model development was conducted and debugged with a panel 

code, PROPELLA. A tractor-type podded propeller that was geometrically similar to the 

model in the experiment was chosen for simulations. As the panel code was developed 

and described by Liu (1998), the description of the numerical method in this chapter 

focuses on the wake impingement model. 

The wake impingement model includes two parts, a kinematic condition and a 

dynamic condition. The kinematic condition guarantees that wake panels shed by 

propeller blades will not penetrate a body surface. It was implemented by two treatments. 

The first treatment was re-meshing the wake panels after they had been cut by the leading 

edge of a strut, behind a propeller in a tractor type podded propulsion unit, and the second 

treatment was diverting the wake panel when it was going to pierce the body. 

Maintaining a minimum distance between wake panels and wake/body panel is necessary 

to avoid large numerical disturbances in the calculations of both the induced velocity and 

the induced velocity potential (IVP). The dynamic condition models the variation of the 

wake panel's doublet strengths, the body panel's doublet strengths and their equivalent 

vortex filament strengths. The implementation of the dynamic condition also consists of 

two treatments, i.e., merging of two overlapped dipole panels (either two wake panels or 

a wake and a body panel) and vortex diffusion. In the merger of two overlapped wake 

panels, the vorticity carried by the older panel is transferred to the younger panel. The 
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age of a wake panel is defined by the time starting from the moment when the wake panel 

sheds from a blade. In the merger of a wake and a body dipole panel, the dipole strength 

of the wake panel is transferred to the body panel. Vortex diffusion is considered by an 

empirical formulation introduced by Greene (1986) and Modi (2002). 

4.1 Overview of the Wake Impingement Model 

In the inertial coordinate system, OXYZ, the wake sheet is represented by wake 

panels which are positioned and oriented by their comers. On each of these panels, 

dipoles, f.lu , are constantly distributed. They can also be represented as an equivalent 

rectangular vortex ring (Katz and Plotkin, 2001) with circulation r!i , aligned on the 

boundaries as shown in Figure 4.1. 

Figure 4.1 Vortex Wake Presentation by Dipole Panels 
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The implementation of the kinematical condition for wake impingement starts 

from tracing the wake panels once they are shed from the blade trailing edge. Each wake 

panel is geometrically represented by four comers, and the movement of the four comers 

is traced step by step. For each time step, the locations of the wake shed at the present 

time step are defined by the trajectory of the blade trailing edge, while other wake panels 

-shed in previous time steps are marched from the position of the previous time step " to 

their new locations ;;:: . The marching distance is the product of the time interval and the 

local induced velocity V: . 
- - --+ 

"+!1t =" + ~M (4.1.1) 

where~ is the induced velocity at the comer of the wake panel at time t, and M is the 

time interval. Induced velocities from constant distributions of sources and dipoles on a 

hyperboliodal panel are derived from the formulae given by Morino et al. (1974). 

Formulations for these induced velocities are given in Appendix A. 

A three-dimensional non-penetration condition was used to assess and treat every wake 

panel at every time step. For each time step, all wake panels are classified into three 

scenarios as shown in Figure 4.2. 

Scenario 1: When the trajectory of a wake panel (panel 1 in Figure 4.2) keeps a "friendly 

distance" (a minimum allowable distance is required to keep the calculation from 

numerical disturbances, (Chen and Williams, 1987) from the body surface at any time 

during the time interval), the panel passes by the body along a track predicted by equation 

( 4.1.1 ). "Friendly distance" is a notion that helps to define how close two vortex elements 
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can be placed while their inter-influence coefficients can still be reasonable calculated. If 

an element gets into another element diameter, the influence coefficient can not be 

correctly estimated b the formula of inviscid flow method since in the vortex core zone, 

within the vortex diameter, the viscous effect is significant. The "friendly distance" 

should be set to the sum of radii of the two vortex filaments. 

Scenario 2: If a wake panel (panel 2 in Figure 4.1.2) is predicted to go through the body, 

the panel is diverted to slip over the body surface (non-penetration condition) by 

eliminating the velocity component in the direction normal to the body surface at the 

impacting point. 

z 

~X 
v I'll 

panel 3(1) 

Figure 4.2 Classifications of Wake Impingement Cases 

(Passing by, slipping over, and being cut) 
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Scenario 3: If the panel is cut into two parts by the leading edge, known as a stagnation 

line in general, as shown in Figure 4.2, the bigger part of the panel is kept as the 

"inheritor" of the panel while the smaller part is merged into its nearest neighbor (details 

are given in the following section). 

The flowchart in Figure 4.3 shows the overview of the implementation of the non­

penetration condition. lwp is the index of the wake panel. Ibp is the panel index of the body 

in the wake. Mbp is the total number of body panels. Ipc is the index of the panel comer. 

les is the index of a line segment of the rear foil leading edge. Mes is the total number of 

the line segments. Details of the assessment of wake panel cuts and their re-meshing are 

presented in section 4.2, and the description of the method of diverting the wake panel to 

slip over the body is given in section 4.3. 

The dynamic condition for the wake impingement governs the modeling of the 

wake panel's doublet strength variation. Based on different scenarios of interactions 

between dipole panels, the modeling of the doublet strength variation on the wake panel 

is subdivided into two cases. One scenario is when a wake panel overlaps or wraps 

around the strut before it is cut into 2 pieces, another scenario is when a wake panel 

stands alone without close interaction with others. For the first scenario, the dipole 

strength of the wake panel is merged or transferred to the body panel and zero dipole 

strength is assigned to the wake panel after the transfer. Although either keeping a 

"friendly distance" or merging dipole strength could avoid numerical disturbances, 

merging dipole strength is necessary to keep the simulation close to the wake response 

investigated when a wake panel impacts vortically on a body panel. For example, when a 
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Figure 4.3 Diagram of Wake Impingement Flow Chart 
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wake panel of a blade is blocked and stretched by the leading edge of a strut, another 

wake panel shed from the following blade approaches and overlaps the stretched wake 

panel. In this case, the first wake panel is frozen around the leading edge while the 

second panel is approaching the first wake panel. Details are described in 4.5. For the 

second scenario, the dipole strength variation is dominated by vortex diffusion. It is 

modeled by an empirical formula. The method is discussed in section 4.6. 
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4.2 Wake Panels to be Cut andRe-meshed 

When a wake panel from the propeller encounters the leading edge and is going to 

be cut in the next time step, the wake panel is re-meshed with one of its neighbors to 

prevent the wake panel from intersecting with body panels. In the panel re-meshing, one 

of the panel sides and the corresponding side of the neighbor panel are relocated to where 

it is going to encounter the leading edge. The relocation of the panel side guarantees that 

all re-meshed wake panels have their four comers located on the same side of the body. 

The description of a panel cut by a leading edge is decomposed into intersections of the 

leading edge with its four individual sides. The assessment of the intersection is based on 

a linear interpolation. As shown in Figure 4.4, during the time interval, a line segment of 

the leading edge moved from la1lh1 to laib2 while a side of a wake panel moves from 

ralb! to ra2rb2 , and they intersect each other (Spiegel and Liu, 1999). The trajectories of 

the leading edge segment and the panel side can be represented as: 

i = T: + (!: -/,;} + (1: -T:h + (1: -I; -C +Z:hr where 17 E [0,1] r E [0,1] (4.2.1) 

and 

; =;: + {;:-;:} + {;:- ;:); + {;:- ;=:--;: + ;:);, where ¢" E [0,1] r E [0,1] (4.2.2) 

After linearization of the two equations above, the impacting time r , impacting locations 

on the leading edge 17, and the wake panel side ¢" can be solved by setting l = r . If, and 

only if, solutions for¢", 17 and r all fall within [0,1] the intersection of the leading edge 

and the wake panel side is confirmed. 
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Figure 4.4 An Edge of a Wake Vortex Panel being Cut by a Leading Edge 

After the assessment for all four sides of the panel has been finished the panel 

cutting is classified into three kinds, 10 cases in total as shown in Figure 4.5. The re-

meshing of the panel is then performed case by case. The re-meshed panels 

corresponding to those in Figure 4.5 are plotted in Figure 4.6. 
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Figure 4.5 Classification of the Panel to be Cut 
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Figure 4.6 Re-meshed Panels Corresponding to Those in Figure 4.5 
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4.3 Wake Panels Slipping over the Body 

All wake panels that have been predicted to impact on the body by equation ( 4.1.1) 

are diverted to pass by the body with a "friendly distance." A minimum allowable 

distance is required to keep the calculation from numerical disturbances. As shown in 

Figure 4.2, wake panel 2 is predicted to go through the body during the time interval and 

is diverted to slip over the body surface by eliminating the relative velocity component in 

the direction normal to the body surface at the impacting point. An impacting point, Pimp 

as shown in Figure 4.7, is a point on the body surface where a wake panel comer 

impinges, and an impacting panel is a body panel on which a wake panel comer interacts. 

To identify the impacting point and the impacting panel for each comer of each wake 

panel against each body panel within the impingement zone, an assessment was 

performed as follows: 

r)t)B1 xrw(t)B; r)t)l'w(t+M)~O rw (t )B2 X rw (t )B; rw (t )l'w (t + M) ~ 0 

r)t )B3 x rw (t )B~ r)t )l')t + M) ~ 0 r)t)B~ xr)t)B: · r)t)l'w(t+M)~ 0 (4.3.1) 

Pimpr)t) · ~ ~ 0 

Here B1 , B2 , B3 , and B4 are four comers of a body panel, rw (t) and rw (t + M) are 

positions of a wake comer at time t and time t + M respectively, and Pc is the center 

point of the body panel. rw (i )Bi is the vector from rw (i) points to B, , ~ is the normal 
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vector of the body panel. These conditions are combined based on principles of solid 

geometry and vector analysis. The first four conditions in Figure (4.7) contain the 

rw(t)B4B1 • The last two conditions in (4.3.1) guarantee that the point rw(t) is outside the 

body and the point r w (t + M) is inside the body. 

r (t+ilt) 

n 

Figure 4.7 Identify Body Panel on Which a Wake Panel Impacts 
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4.4 Induced Velocity Potential of a Thick Dipole Panel 

As reviewed in chapter 2, many studies have been conducted to improve the panel 

method by varying the distribution functions of the dipole and source strengths on the 

panel surface. All of these low and high order panel methods distribute sources and 

dipoles over the panel of zero-thickness. Concentrating the sources and dipoles within the 

zero-thickness panel does not make a difference on the induced velocity potential 

calculation when the field point is far from the panel. For cases of high Reynolds number 

and thin boundary layer, concentrating the sources and dipoles on the surface does not 

worsen the results unless the calculation of the field point is very close to the panel 

surface. In the case of a propeller wake panel (dipole panel) approaching a solid body (a 

strut), the distance between the wake panel and the approached body panel could be the 

same order as that of the boundary layer thickness or the same order of the diameter of 

the vortex in the wake. As the wake response is greatly dependent on the induced velocity 

contributed by the sources and dipoles on the impacted panel, the source and dipole 

strength distributions along the panel thickness direction will affect the wake body 

interaction significantly. To evaluate the difference on the induced velocity potential 

between a thin and a thick dipole panel, a formula for the induced velocity potential by a 

thick panel is derived, and comparisons of calculations are made in this section hereafter. 

The thin dipole is defined as a panel with dipoles evenly distributed over the area of the 

panel of zero-thickness. The thick dipole panel is defined as a panel with dipoles evenly 

distributed over the domain of the panel of a non-zero-thickness. The wake thickness is 
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defined as the diameter of the vortex in the wake panel. As shown in Figure 4.8, a wake 

panel s is placed on XOYplane. Dipole fls is evenly distributed over the panel, whose 

(x, y, z) 

z 

y 

Panel 

X 

Figure 4.8 Zero Thickness Dipole Panel 

thickness is assumed to be zero. The induced velocity potential at a field point (x, y, z) is 

given as (p.247 Katz & Plotkin, 2001): 

(4.4.1) 

Here, fls is the density of the dipole strength distributed over the panel surface. 

(x0 , Yo, z 0 ) is the point of the integral over the wake panel. 

(x, y, z) is the field point. 
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If the dipole distribution over the panel is considered to be vertically extended from - r (Y 

X 

Figure 4.9 Thick Dipole Panel 

to r(Y, as shown in Figure 4.9, the calculation of the induced velocity potential by this 

thick dipole panel turns out as, 

(4.4.2) 

Here, J.iv is the dipole strength density distributed over a wake panel of 2h thickness, and 

V is the domain of integration. 

When the panel is considered to be a square with lengths 2a, the above integrations for 

thin (zero thickness) and thick dipole panels are progressed to 
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for zero thickness panel (4.4.3) 

for thick panel (4.4.4) 

Induced velocity potentials of a thin and a thick dipole panel along two identical routes 

are investigated and compared. Both thin and thick panels are the same size, 2 x 2 (a = 1 ). 

However, the thin panel is distributed with dipole Jls = 1 over its surface 2 x 2 , while the 

thick panel is evenly distributed with dipole Jlv = 1 within the rectangular volume of 

2x2x(0.5+0.5). One investigated route was from (o, 0, -6) to(O, 0, 6), and another 

route was from (1, 1, -6) to (1, 1, 6 ). 
.. 
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Figure 4.10 Induced Velocity Potential by Thin and Thick Dipole Panel (Route 1) 
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Figure 4.11 Induced Velocity Potential by Thin and Thick Dipole Panel (Route 2) 
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Since no analytical solution for the integral (4.4.4.) has been found, the thick 

dipole panel induced velocity potential calculation was carried out by Simpson's method 

(Spiegel and Liu, 1999). When comparing this with the induced potential by the thin 

panel along route 1 in Figure 4.10 and route 2 in Figure 4.11, it was found that the 

calculated induced velocity potentials for both thin and thick panels are almost the same 

outside of the thickness of the panel. Within the thickness of the panel, the induced 

potential by the thin panel continues to increase in magnitude until it reaches its 

maximum at the centre plane of the panel, while the induced potential by the thick panel 

drops in magnitude until it reaches zero at the centre plane of the panel. The patterns of 

the induced potential by a thick dipole panel in Figure 4.10 and 4.11 are very similar to 

the thin-dipole-panel induced-potential calculation with a linear cut-off treatment. The 

linear cut-off treatment linearly interpolated the tangential velocity profile inside the core 

of the vortex filament or inside the thick panel. The cut-off value is a half of the panel 

thickness. As the panel thickness is defined as the diameter of the vortex filament in the 

wake panel, the cut-off value is equivalent to the radius of the vortex filament. This 

indicates that the induced velocity potential of a thick dipole panel can be well estimated 

by the thin dipole formula with a properly chosen cut-off treatment. 

To obtain a well estimated cut-offvalue that is equal to the radius of the vortex in 

the wake for numerical simulations, an estimation method for the tip vortex diameter by 

using the pressure measurement on the strut leading edge is made in section 5. 7. The 

estimated tip-vortex diameter was used to set the cut-off value in the numerical 

simulations in chapter 6. 
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4.5 Merging of Overlapped Dipole Panels 

A wake panel approaching a body panel of the pod and strut was dynamically 

modeled by a dipole panel approaching another dipole panel with a source in addition. 

This is because a wake panel can be simulated by a dipole panel while the simulation of a 

body panel needs both dipole and source distributed. Although keeping the wake panel a 

"friendly distance" away from the body panel can avoid numerical disturbances in 

calculations of induced velocities and induced velocity potentials, it is not applicable to 

all scenarios of the blade wake interacting with the strut around the leading edge. Similar 

to other studies reviewed in chapter 2, the visual investigation of tip vortex/strut 

interaction (chapter 5) found that parts of the tip vortex (broken ends) were immersed 

into the boundary layer around the strut leading edge after it was bent and cut. To retain 

the natural response of the blade wake during the interaction with the strut leading edge, 

the wake panel should be dynamically moved closer than a "friendly distance" to the 

body panel. In this case, the dipole strength of the wake panel was merged to the dipole 

strength of the body panel to avoid numerical disturbances in the velocity and the 

velocity potential calculations. 

The procedure of merging the wake dipole panel to the body dipole panel was 

conducted when the distance between the two panels was found to be smaller than the 

"friendly distance" and the impacting angle flimp was smaller than 45°. The impacting 

angle is defined as the angle formed by the normal vector of the impacted body panel 

BIB2B3B4and the trajectory ofthe wake panel center rwc(t)rwc(t+.M) in Figure 4.12. In this 

case, the dipole strength of the wake panel was transferred to the body panel. After the 
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transfer, the dipole strength of the wake panel was assigned zero and the dipole strength 

of the body panel was the summation of the dipole strengths of the wake panel and the 

body panel before the transfer. 

Figure 4.12 Definition oflmpacting Angle 

To assess the change on the induced velocity potential led by merging two 

overlapped dipole panels, comparisons of induced velocity potentials by two closely 

orientated dipole panels and the merged panel were made in Figure 4.13 and 4.14. For the 

sake of simplicity, the two dipole panels were assumed to be squares, and their side 

lengths were 2. The center of the body panel was placed in the origin of the local 

coordinate system. The wake panel was located above the body panel with a distance of 
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dw. The induced velocity potential by the body panel, wake panel and the merged panel 

are described in equations (4.5.1), (4.5.2) and (4.5.3) respectively. 

A. - Jib 
'f'b--

4Jl" 

A. = f.ib + f.iw 
'f'm 4Jl" 
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wake dipole panel (4.5.2) 

dipole panel after merge (4.5.3) 



Variations of the induced velocity potential before and after the merger were compared 

along a vertical line from the center of the impacted panel. Similar patterns were found 

for different distances between the body panel and the wake panel. As an example to 

discuss, the distance was set to be half of the length of the panel side. It is shown in 

Figure 4.13 that the induced velocity potential by the merged panel fit well with the 

induced velocity potential summation by the body and the wake panel when the distance 

is large. However, within the vertical distance of 3 times of the half length of the panel 

side, the difference between induced velocity potentials before and after the merge 

increased quickly when the distance decreased. In the range between the body panel and 

the wake panel, the trend of induced velocity potential by the merged panel was smooth 
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Figure 4.13 Comparison oflnduced Velocity Potential 
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and completely different from the summation by the body panel and the wake panel. This 

indicated that substituting the induced velocity potential by a pair of interacting wake and 

body panels with the induced velocity potential by the merged panel successfully 

eliminated the numerical disturbance (sharp change) around the point pdist in Figure 4.13, 

although there is a large error in the difference between calculated induced velocity 

potentials before and after the panel merged when it is near the panel. In fact, the big 

change on the induced velocity potential near the wake panel is necessary to reduce the 

numerical disturbance, and the calculation of the induced velocity potential around the 

wake panel and between the wake and the body panel should be avoided. There are two 

ways to avoid the numerical disturbance for this case, keep or divert the wake panels far 

away from each other or merge them together before they get too close. 

-1 panel#! 

-0.4 
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panel#2 3 
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Figure 4.14 Comparison of Induced Velocity Potential 

49 

7 



Calculated induced velocity potentials on the neighboring panels by the 

summation of body and wake dipole panels and the merged dipole panel are shown in 

Figure 4.14. There is almost no difference in calculated induced velocity potentials 

between the merged panel and the summation of the panels when the horizontal distance 

is larger than 1.6. For simplicity, body panels are assumed to be uniform in their sizes. 

The horizontal distance from the center of a neighboring panel to the impacted body 

panel center is 2. The merging of the two overlapped dipole panels has almost no effect 

on induced velocity potential calculations for its neighboring panels. 

4.6 Vortex Diffusion 

Vortex diffusion is considered by adjusting vortex strengths at every time step. 

For each time step, the strength of every vortex element was corrected by using a 

simplified model introduced by Greene (1986). The model used by Modi et al. (2002) in 

airplane vortex wake simulations is 

( 4.6.1) 

Here, r 1 and rt+L'lt are vortex strengths at timet and time t + M respectively, Sis the 

span of the airplane, and ~ is the vortex velocity. 

V:=l 
t 2nS (4.6.2) 

Substitute Eq. ( 4.6.2) for Eq. ( 4.6.1) and the panel side length, a, to the span, S, and the 

corrected equation for vortex strength decay in open field flow for the present model is 

shown as 
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rt+~t - I k Atrt -r - - ~-2-

1 a 

where k1 is a factor to be determined by numerical tests. 

4.7 Summary 

(4.6.3) 

A wake impingement model has been described. The model traces the propeller 

wake by using numbers of dipole panels. When a wake panel approaches a body, the 

wake panel is assessed to determine if it is going to pierce a panel of the body. All wake 

panels that are likely to pierce the body without being cut by the leading edge of the strut 

are diverted to pass by the body at a "friendly distance". Wake panels to be cut by the 

leading edge are re-meshed. These implementations satisfied the non-penetration 

condition for the wake/body interaction. 

Variations of the wake strengths are modeled by two treatments: vortex diffusion 

and the merger of dipole panels. Strength variations by the vortex diffusion are 

considered by an empirical method for all vortex elements. For these wake panels several 

things of note occurred: they impact on body panels; dipole strengths of these wake 

panels are transferred to impacted body panels when the impacting angles are smaller 

than 45°; otherwise, these wake panels sweep over the body surface with their dipole 

strengths. Transferring dipole strengths from impacting wake panels to these impacted 

body panels avoided numerical difficulty but have little effect on the solution. 

The induced velocity potential by a thick dipole panel can be well modeled by the 

formulae for the dipole panel of zero thickness with a cut-off treatment. 
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Chapter 5 Experimental Study 

This chapter describes an experimental study m a cavitation tunnel on the 

wake/strut interaction of a podded propeller model ( D P =0.27m). The primary objective 

of the experiment is to provide data for the strut surface pressure comparison with 

numerical results. The study includes surface pressure measurements on the strut around 

the leading edge, and visual investigations of cavitation tip vortices. The region of 

pressure measurements on the strut ranges from 0.6 to 1.2 of the propeller radius, RP, and 

from the leading edge downstream to 0.4 of the chord length on both sides of the strut. 

Within this region, the pressure measurements at fifty six different locations were 

conducted by repeating the tests after changing the position of a seven-pressure­

transducer assembly. All tests were performed with the propeller running at a constant rps, 

and each test consisted of five flow speeds which varied the advance coefficient, J , from 

0.55 to 0.87. The pressure measured on the strut surface was broken down into three 

components and analyzed: time average, phase average, and fluctuation components. 

Definitions and calculations of these three components are given in section 5.2. In the 

visual investigation, the propeller tip vortex was observed by lowering the tunnel 

pressure so cavitating vapor formed in the vortex. The tip vortex was found to bend at the 

leading edge of the strut when the vortex approached the strut; the vortex then kept a 

minimum distance from the leading edge of the strut while it moved along the leading 

edge away from the shaft centerline. After the tip vortex was bent, stretched, and 

gradually faded out around the leading edge, it appeared to be separated around the two 

sides of the strut and propagated downstream. The vortex turned from a continuous 
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helical line into segments. The segmented vortex was compressed on one side of the strut 

and stretched on the other side. The vertical distance from the end of the segmented 

vortex to the shaft centerline on the stretched side remained a constant. However, this 

vertical distance increased on the compressed side with the increase of the axial distance 

from the propeller. The increment at a lower advance coefficient was larger than that at a 

higher advance coefficient. 

The pressure measured at points located within 0.9 to 1.1 of the propeller radius 

showed that they were dominated by the Blade Passing Frequency (BPF). The 

measurements outside of this range rarely showed significant variation. The largest 

amplitude of pressure variation was found at the leading edge of the strut near RP = 1.0 

for all tested advance coefficients. The location of the lowest pressure was found on the 

stretched side near the leading edge of the strut near the intersection of the pod and the 

strut. In cases of low advance coefficient, the pressure at some measurement points on or 

close to the leading edge on the compressed side demonstrated a double-trough shape 

within a single period of filament impact (see Figure 5.15 for example). 

The rest of this chapter is divided into sections. After a description of the model 

and instrumentation, procedures of pressure measurements and data reduction are 

introduced. Then results of the time averaged and phase averaged components are 

discussed and reasons for pressure variation patterns are explained. The pitch of the tip 

vortex and the tip vortex nominal diameter measurements are also briefly introduced in 

this chapter. Finally, a description of the tip vortex responses to the vortex/strut 

interaction is provided followed by a summary. 
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5.1 Model and Instrumentation 

The goal of the test was acquisition of the time varied strut surface pressure 

distribution around the wake impingement zone, which provides validation data for 

numerical methods. The wake impingement zone is an area where the wake and body 

interact strongly. In the case of the blade wake interaction with the strut, the wake 

impingement zone is around the strut's leading edge. As the number of pressure 

transducers was limited to seven and the total number of measurement locations was set 

to be fifty-six, the test design required that the transducers be easily relocated between 

runs of the test. To meet the requirement, the model strut was designed and manufactured 

as several separable sections. 

The set up of the model test in the cavitation tunnel at the Institute for Ocean 

Technology (lOT), National Research Council Canada (NRC) is shown in Figure 5.1. 

Principal dimensions of the test section of the cavitation tunnel are 0.5 x 0.5 x 2.2 meters. 

The test set up consisted of a propeller dynamometer, a propeller (not shown in the 

figure), a pod model mounted on the shell of the dynamometer shaft, and a strut seated on 

the bottom window of the cavitation tunnel. The model strut shown in Figure 5.2 includes 

a base section at the bottom, three pairs of spacers in the middle, and a seven-transducer­

assembly on the top. The assembly could be moved up and down along the strut spanwise 

by swapping its location with a pair of spacers. The tube connected to the assembly in 

Figure 5.2 provides transducers with a duct for wiring and ventilation. The seven­

transducer-assembly with seven ENDEVCO 8010C pressure transducers installed is 

shown in Figure 5.3. The propeller model in Figure 5.4 used in this test was one model of 

a series of four propellers, whose geometry details can be found in a propeller design note 
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(Liu, 2006a). The geometry of the pod and propeller model and the profiles of the pod 

and strut are listed in Table 5.1 and Table 5.2 respectively. The distance from the 

propeller plane to the leading edge of the strut was 0.1 meter. The pod centerline was 

coincident with the centerline of the test section of the cavitation tunnel. The Reynolds 

number based on the blade chord length at 0.7RP was higher than 1.4 million. 

Inflow 

Figure 5.1 Test Set-up in the Cavitation Tunnel 
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Figure 5.2 Strut Model 
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Figure 5.3 Seven Transducer Assembly 
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Figure 5.4 Propeller Model in the Test 

Table 5.1 Parameters of the Tested Propeller 

Diameter (m) 0.27 

No. ofblade 4 

Design J 0.8 

Hub-Diameter ratio, mean 0.26 

Angular speed (rps) 23, left handed 

Section thickness form NACA 66, Modified 

Section mean-line NACA=0.8 

Expanded area ratio, EAR 0.60 

Pitch distribution Constant, P/D=l.O 

Skew distribution Zero 

Rake distribution Zero 
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Table 5.2 Geometry of the Tested Pod and Strut 

Pod Strut 

X(mm) R(mm) X(mm) Y(mm) 

0.00 0.00 0.00 0.00 

4.09 13.72 0.29 1.89 

12.32 23.83 1.12 3.61 

27.67 34.71 17.48 17.60 

43.02 45.59 37.79 24.71 

70.50 59.29 113.43 29.85 

100.84 64.00 189.06 24.71 

224.79 64.00 209.38 17.61 

348.74 64.00 225.73 3.61 

361.79 63.15 226.56 1.89 

374.62 60.60 226.85 0.00 

432.48 44.46 Distance between origins of the Pod 

and the Strut=142.62 
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5.2 Pressure Measurement 

The measurement of the strut surface pressure was conducted in the cavitation 

tunnel while a constant tunnel pressure was maintained. In order to reduce the risk of the 

pressure transducer damage and maximize the measurement resolution to the surface 

pressure variation, the tunnel pressure was set to the pressure of the atmosphere. The 

measured time series of the pressure, p(tl, was obtained by subtracting the measurement 

when the propeller was at rest (0.5 rps) from the measurement when the propeller was 

rotating (23 rps) under the same tunnel flow speed, V. The measured pressure was then 

broken down into three components shown as follows 

' P(t) = p- +(pU)- p-)+ P(t) (5.2.1) 

The time averaged pressure, p-, the phase averaged (blade phase angle) pressure, p~l, 

and the pressure of fluctuation, p~t) , are defined as followings 

- - 1 me ) p --II P(t) 
m 

(5.2.2) 

t E [O,T] (5.2.3) 

' 
P(tl = P(t)- P - P&) (5.2.4) 

Here, m is the total number of sampling points, n is the total number of sampled 

propeller revolutions, i is the index of revolutions of the propeller shaft, Tis the total 

sampling time, and TP is the period of propeller rotation. For each measurement in this 

test, pressure and force signals were sampled at 5000Hz for 15 seconds. Parameters for 

the measurements are listed in Table 5.3. 
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Table 5.3 Test Settings and Pressure Transducer Locations 

Test Parameters Transducer Location 

rps v J No XIC Zl RP 

23 3.4 0.55 #7 0.381 1.14 

23 4.2 0.68 #5 0.303 1.07 

23 4.6 0.74 #3 0.207 0.99 

23 5.0 0.81 #1 0.000 0.92 

23 5.4 0.87 #2 -0.164 0.84 

#4 -0.267 0.77 

#6 -0.354 0.70 

0.62 

Here, Z is the vertical distance from the centerline of the propeller shaft to the location of 

the pressure transducer, and RP is the radius of the propeller. C is the chord length of the 

strut, and X is the chordwise distance starting from the leading edge. X is positive for 

the compressed side and negative for the stretched side. The stretched side is defined as 

the side of the strut where the propeller wake is stretched after it is split by the leading 

edge of the strut. For a left-handed tractor-type podded propeller, the port side of the strut 

is the stretched side and the starboard side is the compressed side. Left hand propeller 

rotates counterclockwise when viewed astern facing forward. All pressure components 

are transformed and represented in dimensionless coefficients of CP . 

(5.2.5) 

where p is a component of pressure [Pa], pis the water density [kg/m/\3], and OJ is the 

propeller angular speed [rad/sec]. The whole set of processed data in terms of phase 

averaged pressure coefficient on the strut surface is plotted in Appendix B. 
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The propeller thrust and torque, T and Q, were also recorded simultaneously by 

the same data acquisition system as that of the strut surface pressure. As there was no 

transducer for the propeller blade phase angle, the propeller torque was used as a 

reference signal to determine the phase angle differential between pressure measurements 

at different locations, Z I RP. The starting time for all pressure variations was set to 

points corresponding to peaks of propeller torque. 

5.3 Time Averaged Component 

The time averaged pressure coefficients for five different advance coefficients are 

shown in Figures 5.5 to 5.9. It can be seen that the pressure on the leading edge of the 

strut varies very little from the dimensionless vertical distance Z I RP = 0.6 

to Z I RP = 0.85 , then, it drops sharply close to zero around Z I RP = 1.1 . Here Z is the 

vertical distance from the propeller shaft centre, and RP is the radius of the propeller. 

The value of the pressure coefficient on the leading edge within the range of Z I RP from 

0.6 to 0.85 decreases as the advance coefficient increases. It changes from 0.8 atJ = 0.55 

to 0.55 at J = 0.87. The pressure on the compressed side of the strut changes only 

slightly either chordwise or spanwise while the pressure on the stretched side changes 

significantly. For a left-handed tractor-type podded propeller, the port side of the strut is 

the stretched side, and the starboard is the compressed side. The change of the pressure 

on the stretched side along the chord is small outside of the propeller plane, but it 

increases almost linearly with the increase of the distance from the propeller shaft. The 
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pressure change becomes very rapid near the intersection of the pod and strut. In the case 

of J = 0.87 and Z I RP = 0.62 , the pressure coefficient drops from 0.58 at the leading 

edge to -1.63 at X I C = 0.16 and recovers to -1.27 at X I C = 0.35. The lowest point 

of the time-averaged pressure coefficient in the test was detected to be -1.63. It was 

located on the stretched side, near the leading edge, around the intersection of the strut 

and the pod at J = 0.87. The steepest drop on the time-averaged pressure coefficient was 

found around the leading edge of the strut near the pod/strut intersection. The change of 

the time-averaged pressure coefficient on the stretched side was sharper than that on the 

compressed side. 

Comparing the pressure coefficients on the two sides of the strut, it was found that 

the pressure measured on the compressed side was always higher than that on the 
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stretched side. The differential of the pressure on the sides leads to an asymmetric force 

(the side force) on the strut. This difference on the pressure distributions on the two sides 

of the symmetrical strut is led by a non-zero effective angle of attack even if the strut is 

operated in a straight course. The non-zero effective angle of attack results from the wake 

swirl induced by the rotating propeller. 
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5.4 Phase Averaged Component 

Representations and discussions of the phase averaged component are divided 

into two parts, the amplitude of the component and the time variation of the component. 

The amplitude of the phase averaged pressure coefficient is defined as 

(5.4.1) 

The amplitudes of phase averaged pressure coefficients are shown in Figures 5.10 to 5.14. 

The largest amplitudes of the phase averaged pressure components for all cases appear 

aroundZ I RP = 1.0. The vertical position (Z I RP) of the amplitude peak increases when it 
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occurs downstream on the compressed side. However, the vertical position of the peak 

amplitude stays near Z I RP = 1.0 on the stretched side. 

Based on the investigation of the amplitude of the phase averaged component, it 

has been found that large pressure variations appear only around the position of 

Z I RP = 1.0 . In the visual investigation of the blade tip vortex/strut interaction, it was 

found that the blade tip vortices impacted on the strut right around the area where the 

highest pressure variation was measured. Scanning the whole set of time varied pressure 

coefficients of the phase averaged component in Appendix B, it was also found that the 

blade passing frequency BP F dominated the variation of the pressure on the leading edge 

in the region from the vertical distance Z I RP = 0.844 to Z I RP = 1.141. The location of 

the maximum pressure variation left the leading edge around Z I RP = 1.0 and went 

downstream. It drifted up to Z I R P = 1.141 on the compressed side and dropped down to 

Z I RP = 0.95 on the stretched side when it reached X I C = 0.4 . In this case, the 

discussion on the pressure time variation will focus on the area around Z I RP = 1.0 . 

Among these phase averaged variations dominated by the blade passing frequency, there 

were two patterns of variations. One has a single trough and a single peak pattern as 

shown in Figure 5.15, and another has double trough and double peak as shown in Figure 

5.16. A comparison of these two Figures shows the amplitude of the double trough 

variation is only about 60% of that of the single trough variation. Checking the position 

of the measurement points where double troughs were measured, it was found that all of 

them were located very close to the trajectories of the two ends of the tip vortex which 
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was broken apart by the strut leading edge. This finding might be used to reduce the 

amplitude of pressure variation by changing the pressure variation from the single trough 

shape to the double-trough shape. This could be done by redesigning the strut's leading 

edge, or by breaking up the incoming vortex before it impacts on the strut. 
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5.5 Double trough pressure variation 

This section examines how a single trough or a double trough pressure variation 

occurs. A simple model of a single vortex filament placed in uniform flow was 

considered, and the pressure variations along different routes crossing the filament center 

were estimated by using the Bernoulli equation. 

A vortex filament can be simply described by two parameters: its size, and its 

nominal circumferential velocity~ _max. The size of the core of the vortex is defined as 

the nominal diameter d a, which is two times the radius r,. . The azimuthal velocity of a 

vortex filament is a function of the distance from the vortex centre. When the distance 

from the vortex centre is larger than r,., the rotational velocity decreases and goes to zero 

at "infinity". Below this distance, the rotational velocity is approximated by different 

models. The vortex model introduced by Vatistas (1998) is a general vortex model which 

was discussed by Bhagwat and Leishman (2002). The generalized model is described as: 

n = 1 Kaufmann vortex model 

n = 2 similar to Lamb- Oseen model ( 5.5 .1) 
n ~ oo Rankine vortex model 

A vortex filament, whose strength was represented by r = JTd,.~_max, was placed in an 

uniform flow (u, 0, 0) as shown in Figure 5.17. The symbol r is the route which goes 

through the vortex filament with an angle of f3 to the uniform flow direction, and offset 
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from the vortex centerline at a distance of e . The angle f3 can also be defined as the 

blade/vortex incision angle. The pressure variations 

p ;::,. u Leading edge 

r 

Figure 5.17 A vortex filament placed in Uniform Flow 
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along the routes were estimated and analyzed against parameters of f3 and e . The 

combined velocity field of the vortex filament and the uniform flow can be expressed as: 

{
vx} {u + v~ cos fJ} 
VY = v; smfJ 
vz 0 

(5.5.2) 

This ensures the pressure far away from the vortex center was p1 = 0 , where velocity was 

undisturbed V] = U , and ignoring the gravity contribution Jq = hz = o . Application of the 

Bernoulli equation 

1 2 1 2 
p, +- pv; + pg~ = P2 +- pV2 + pgh2 = C 

2 2 
(5.5.3) 

to the combined velocity in equation (5.5.2) the pressure variation along different routes, 

e = 0 and changing fJ from 0° to 90° in an increment of 15°, was calculated and 

plotted in Figure 5.18. It was found that when fJ was 0° a double trough pressure 

variation pattern occurred. For those fJ higher than 15° , their pressure variations 

demonstrated a shape of a mirror image of "N". In other words, when a filament impacts 

on and is then cut by a leading edge, the pattern of the pressure on the strut induced by 

the cutting depends on the incision angle ,8 . If the incision angle is smaller than 15 ° , the 

pressure variation on the leading edge will have a double trough shape with reduced 

amplitude of pressure variation. Otherwise, the pressure variation exhibits a single trough 

pattern. 
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5.6 Pitch of the Tip Vortex 

The wake pitch distribution of an operating propeller is desired for both numerical 

method validation and propeller wake tracing. Although the wake pitch distribution can 

not be surveyed from the blade root to the blade tip in this model test, the pitch of the 

wake shed from the blade tip was visualized by the tip vortex cavitation. As the strut 

intruded into the wake race, the tip vortex pitch varied with the circumferential angle 

around as well as the axial position along the centre line of the propeller shaft. 

Photographs of cavitating tip vortices were taken at ten different advance coefficients 

varying from 0.52 to 0.81. Two of them are shown in Figure 5.19 and 5.20. Tip vortex 

positions down of the pod bottom, x , ranged from xI D P = 0 to xI D P = 1.2 were read 

from the photos, and the readings were formulated by regression. Here xI D P is the axial 

dimensionless distance from the propeller plane. A predetermined second order, two 

polynomial parameters ( J and xI D P ) and the least squares method were used in the 

regression. The tip vortex pitch, Htipvortex, for this podded propeller model resulted as: 

Htipvortex = (0.0864- 0.0168J)xl DP + 0.828J + 0.4228 

J E [0.52, 0.81] and xI DP E [0, 1.2] 

(5.6.1) 

The formula is only valid for advance coefficient from 0.52 to 0.81 and the distance from 

the propeller smaller than 1.2 times of the propeller diameter. 
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Figure 5.19 Tip Vortex (23 rps, V=3.2 mls) 

Figure 5.20 Tip Vortex (23 rps, V=4.2 m/s) 
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5. 7 Tip Vortex Diameter 

In this section, a method for estimating the tip vortex diameter around the strut 

leading edge based on the pressure measurement on the strut surface is introduced and 

estimations are performed. It has been discussed in previous sections that setting the cut-

off value to be the vortex filament radius is important to carry out accurate simulations on 

the induced velocity. The estimated tip vortex diameter is helpful in setting parameters 

properly in numerical simulations. 

The principle of the tip vortex nominal diameter estimation method is based on 

the distance that is the product of the tip vortex propagation speed v and the time interval 

between the trough and the peak or between the peaks. This can be formulated as: 

d =V·t (F (F 

Here t u = { f peak -(trough 

f peak2 - f peak! 

in case of Figure 5.21 

in case of Figure 5.22 

t peak is the time where the pressure reaches its maximum, 

ttrough is the time where the pressure reaches its minimum 

ttrough! is the time where the pressure reaches its first trough 

ttrough 2 is the time where the pressure reaches its second trough 

The tip vortex propagation speed was calculated by 

V = Htipvortex 

T 

(5.7.1) 

(5.7.2) 

(5.7.3) 

where Tis the period of the propeller revolution and Htipvortex is calculated by Eq. (5.6.1). 
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The estimations of the tip vortex diameter are plotted against advance coefficients in 

Figure 5.23. 
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5.8 Tip Vortex I Strut interaction 

In the visual investigation, the pressure transducer assembly was substituted by a 

dummy strut, and the tunnel was depressed to -41.36 kPa ( -6 psi) relative to the 

atmospheric pressure. Running the test under this pressure maintained the tip-vortex 

cavitation steady and visible. The cavitation provided a clear view of the tip-vortex 

movement response to the vortex/strut interaction. The tunnel pressure in this test was 

different from that in the strut surface pressure measurement, since it was necessary to 

keep the tunnel pressure the same as the atmosphere pressure to protect the pressure 

transducers and maximize the measurement resolution to the pressure variation. The 

visible tip vortex response under the pressure of -41.36 kPa was similar to that invisible 

under the pressure of 0 kPa (relative to the atmosphere) during the pressure measurement. 

A well known form of derivations from the Navier-Stokes equations is the 

vorticity-transport equation governing the flow of an incompressible Newtonian fluid. 

The equation shown as follows indicates that the transportation of vorticity IS 

independent of the pressure, since there is no pressure term included in the equation. 

Dro 8ro 2 
-=-+u·Y'ro=ro·Y'u+vY' ro 
Dt at 

(5.8.1) 

where D I Dt is the total derivative, u = (u, v, w) is the velocity vector, ro is the vorticity 

which is defined as the curl of the velocity vector, v is the kinematic viscosity and t is 

the time. The equation (5.8.1) implies the tunnel pressure variation does not change the 

vortex transportation directly. 

The tip vortex was bent by the leading edge when it approached the strut (Figure 

5.25, 5.30), and then kept a minimum distance from the leading edge while it moved 
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along the leading edge away from the shaft center (Figure 5.31, 5.32). After the tip vortex 

was bent, stretched, and gradually weakened around the leading edge (Figure 5.33), it 

appeared to be separated around the two sides of the strut and propagated downstream 

(Figure 5.34). A cycle of the tip vortex/strut interaction is demonstrated by two sets of 

pictures from Figure 5.24 to 5.35. One set was taken from the front and another was 

taken from the side. Test parameters during these two sets of pictures were the same. The 

tunnel flow speed was Vflow = 3.4 ml s, the propeller revolution speed was 15 rps and 

the tunnel pressure was maintained at -41.36 kPa (-6 psi). For one revolution of the 

propeller, four tip vortex curves were found turning from continuous helical lines into 

segments around the strut's leading edge. While a segmental vortex propagated 

downstream, it was compressed on one side of the strut and stretched on the other side. 

The vertical distance from the end of the segmental vortex to the shaft centerline on the 

stretched side remained a constant. However, the distance increased on the compressed 

side: the lower the value of the advance coefficient, the faster this distance increased. 

There was no merger of broken ends of tip-vortex investigated downstream the trailing 

edge of the strut. The pressure measured at points located within 0.9 to 1.1 of the 

propeller radius showed that they were dominated by the blade passing frequency. The 

pressure measured outside of this range rarely showed significant fluctuation. The largest 

amplitude of fluctuation was found at the leading edge around 1.0 RP for all tested 

advance speeds. For some low advance coefficient cases, the pressure at the measurement 

point close to the leading edge on the compressed side demonstrated a double-hollow 

shape within a single filament impacting period. 
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Figure 5.24 Top View of Tip Vortex/Strut Interaction; approach 

Figure 5.25 Top View of Tip Vortex/Strut Interaction; touch 
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Figure 5.26 Top View of Tip Vortex/Strut Interaction; bend 

Figure 5.27 Top View of Tip Vortex/Strut Interaction; stretch 
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Figure 5.28 Top View of Tip Vortex/Strut Interaction; split 

Figure 5.29 Top View of Tip Vortex/Strut Interaction; start the next cycle 
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Figure 5.30 Side View of Tip Vortex/Strut Interaction; approach 

Figure 5.31 Side View ofTip Vortex/Strut Interaction; touch 
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Figure 5.32 Side View of Tip Vortex/Strut Interaction; bend 

Figure 5.33 Side View of Tip Vortex/Strut Interaction; stretch 
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Figure 5.34 Side View of Tip Vortex/Strut Interaction; split 

Figure 5.35 Side View of Tip Vortex/Strut Interaction; start the next cycle 
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5.9 The Pod and Strut Effects on the Propeller Performance 

It was found from open water tests that the presence of the pod and strut in the 

race of the propeller wake affected the propeller performance significantly. Two open 

water tests of the same propeller were carried out in the cavitation tunnel at the Institute 

for Ocean Technology. One test was without the pod and another test was with the pod 

and the strut installed. The flow speed V, propeller rotation speed rps, propeller shaft 

torque Q , and propeller shaft thrust T were measured. These measurements were then 

presented in non-dimensional coefficients, torque coefficient K q = ~ 
5 

, thrust 
pnD 

coefficient K
1 
= ~ 

4 
, and propeller efficiency 17 = _:!_ K1 

• Comparisons of the mean 
pn D 2n Kq 

results (time-averaged component) are made in Figure 5.36. It was found that both K 1 

and Kq increased when the pod and strut were installed in the test. Increases of K1 and 

Kq grew with the advance coefficient. At the point of J=0.9, K1 increased 0.031 and Kq 

increased 0.0028. The propeller efficiency also increased after the pod and strut were 

installed. The peak efficiency increased from 71.4% to 81.6% while the advance 

coefficient for the peak efficiency moved from 0.86 to 0.94. 

The increase in the efficiency of the propeller resulted from a larger increase of 

the propeller thrust coefficient than that of the propeller torque coefficient. The wake 

impingement contributed very little to the increase of the propeller efficiency since the 

amplitudes for K1 and Kq of the propeller varied only about 0.01 and 0.02 respectively 

86 



(Figure 5.39). The reason may be that the presence of the pod and strut build a higher 

pressure on the pressure side of the propeller plane. 
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Figure 5.36 Comparisons of the Propeller Performance 

The amplitudes of the fluctuations of the propeller shaft forces were not 

significant. Time varied thrust and torque coefficients for five different advance 

coefficients of one propeller revolution (processed by phase-average) were plotted in 

Figure 5.37 and 5.38 respectively. The plots demonstrated that both K, and Klf change 

very little in their magnitudes for all advance coefficients. After the variation amplitudes 

of K, and Klf were evaluated and plotted in Figure 5.39, ratios ofthe thrust and torque 

87 



0.40 ~ 

-- J=0.55 ---- J=0.68 ....... J=0.74 -.--- J=0.81 -.--. J=0.87 

'-----........----------------~-~--------~-J=0.55 0.30 y 

~------------~---------------- 1=0.68 

0.20 -·-----~---------------------------~---~----·----·---------------·- J=O. 74 

J=0.81 

J=0.87 
0.10+-----------------~----------------~-----------------, 

0.000 0.015 0.030 t (second) 0.045 

Figure 5.37 Variations of the Propeller Thrust Coefficient 
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Figure 5.38 Variations of the Propeller Torque Coefficient 

coefficients were also drawn in Figure 5.40. The variation amplitude of K, and Kq in 

Figure 5.39 are defined as: 

Amplitude (Kq) = max(K q)-min(Kq) 
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Definitions of variation amplitudes and fluctuation ratios of the thrust and torque 

coefficients in Figure 5.40 are given as following: 

max(K1)- min(K1 ) Amplitude(K1 ) 
RK = = -~------'-

( 2Average(K
1

) Average(K
1

) 

max(Kq)- min(Kq) Amplitude(Kq) 
R JG = = --------''----

'! 2Average(Kq) Average(Kq) 

Although the variation amplitude of K 1 and Kq decreased with increase of the advance 

coefficient as shown in Figure 5.39, the fluctuation ratios of thrust and torque coefficients, 

0.04 ~ 
0 ...... o Variation Amplitude of Kt 

0.03 1::. Variation Amplitude of 1 OKq 

0.02 

0.01 
0.---------;~--)T----~---B U n Q 

J 

0.00 +---------,,----------,-----------, 

0.4 0.6 0.8 1.0 

Figure 5.39 Variation Amplitudes of K 1 and Kq 

as it was shown in Figure 5.40, increased with the increase of the advance coefficient. 

This indicates that although the fluctuation amplitudes and the time averaged values of 

K
1 

and Kq decrease with the increase of the advance coefficient, the decreasing speed of 

the fluctuation amplitudes are slower than that of the time averaged values. 
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5.10 Summary 

A set of time series of pressure distributions on the surface of a strut impacted by 

tip vortices from an operating propeller has been measured by means of multiple pressure 

transducers. These measurements can be used in validations of numerical methods and in 

the assessment of the effects on the pressure and cavitation that are induced by the 

interaction of the propeller tip vortex and the strut. Based on the pressure measurements 

and the visual investigation of the tip vortex/strut interaction, the following conclusions 

can be made: 

1. The lowest pressure measured was found to occur on the stretched side near the 

leading edge near the intersection of the pod and the strut. For a left-handed tractor-type 

podded propeller, the port side of the strut is the stretched side. 

2. For all tested advance coefficients, the largest amplitude of pressure variation was 

found on the leading edge of the strut around RP = 1.0. 

3. In cases of low advance coefficients, the pressure at some of the measurement points 

on the compressed side demonstrated a double-trough shape within a single period of the 

vortex filament impacting process. 

4. An empirical formula for the tip vortex pitch (Eq. 5.6.1) was obtained which gives 

input reference information for parameter settings in numerical simulations. Specifically 

for the wake alignment or initialization of wake locations. 

5. Tip vortex nominal diameters estimated by using the pressure measurement results 

were formulated against the advance coefficient. This result is helpful in the 

determination of the cut-off value in numerical simulations. Since the inviscid flow 
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simulation provides only the vortex filament strength, a method to determine the vortex 

filament radius (cut-off value) is necessary in order to calculate the induced velocity 

contribution near the filament. Before the method is available the cut-off value in most 

cases was based on numerical tests. 

6. The presence of the pod and strut had almost no effect on the variation amplitudes of 

the propeller shaft forces. 

7. The presence of the pod and strut increased the propeller thrust coefficient by 10% and 

increased the torque coefficient by 5%. These increases led to a 5% increase in the 

propeller efficiency. 
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Chapter 6 Numerical Simulations 

Before calculations on podded propellers, numerical simulations with applications 

of the developed wake impingement model on a simple configuration are conducted. In 

the simple configuration, a pitching foil, acting as a vortex generator, is located upstream 

of a stationary foil. The pitching foil is operated by a prescribed function. Lifts on the two 

foils in tandem are calculated by using a panel method, OSFBEM (Liu, 1996), with and 

without the wake impingement model. Comparisons on the lift are made among 

calculations with and without using the wake impingement model as well as the data 

from surface pressure measurements published by Booth (1986). The comparison on the 

rear foil lift shows that the panel methods with the wake impingement model give results 

closer to the experimental data than that without applications of the wake impingement 

model. Details of the preliminary simulations can be found in a paper by He et al. (2007). 

In the rest of this chapter, calculations of a podded propeller using three different 

wake panel sizes are first described. Results are compared and discussed before a panel 

size is chosen for further simulations. The comparison and discussion include the thrust 

and the torque coefficient of the propeller, and the surface pressure coefficient on the pod 

and strut in terms of distributions of the time-averaged and at an instant. Simulations of 

the same podded propeller with and without using the wake impingement model are then 

conducted. Results are compared and discussed to assess how much difference results by 

introducing the wake impingement model into the simulation. The comparison consists of 

the blade wake trajectories, the thrust and torque coefficients, and the surface pressure 

distributions on the pod and strut. To evaluate the effectiveness of the numerical method 
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with the wake impingement model on the simulation of the pressure on the strut surface, 

comparisons with experimental data are performed and discussions are made in this 

chapter as well. As it was found in the experimental study introduced in chapter 5 that the 

strongest pressure variation was around the leading edge of the strut, comparisons and 

discussions on the time-varied pressure concentrate along the leading edge. The pressure 

distribution over the whole measured area on the strut is also compared in terms of the 

time-averaged components of five different advance coefficients from 0.55 to 0.87. 

Discussions of possible reasons for the differences between the simulations and the 

measurements are discussed and followed by suggestions for the further improvement in 

the simulation method. 
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6.1 Simulations Using Different Panel Sizes 

Three panel sizes, coarse, medium and fine, were used in simulations of a podded 

propeller. Results of the propeller performance and the pressure patterns on the pod and 

strut using the three different panel sizes at J=0.55 were selected and compared. After a 

brief discussion of the results, a panel size was chosen for further simulations. 

Since the interest was to investigate the panel size effects on the propeller 

performance and the strut surface pressure induced by the propeller wake, the size 

changes were made only to the blade wake panels. Combining the changing of the blade 

panel and the time interval, both radial and circumferential sides of the blade wake panels 

were changed. The panelized propulsor by three panel sizes are plotted in Figure 6.1 to 

6.3 and the panel number distributions are summarized in Table 6.1. 

Table 6.1 Summary ofPanel Arrangements 

Blade Hub+Cone Pod Strut No. of Degrees Time Comp 

Blade no. x Blade no. x Spanwise x Total of the steps Time by 

Panel radial x axial x Axial x Chord wise body blade per a PC 

size chord wise circular+ circular x sides panels sweep prop. 1.7GHz 

x sides axial x circular per step rev. lGRAM 

Coarse 4x8x8x2 4x5x8+3x8 30x32 18x 16x2 2232 15 24 4.8 hrs 

Medium 4x 12x 12x2 4X5X 12+3X 12 30X32 18Xl6X(2) 2964 10 36 21.3 hrs 

Fine 4x 16x 12x2 4X5Xl2+3xl2 30X32 18X 16X(2) 3348 7.5 48 33.2 hrs 
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Figure 6.2 Panelized Podded Propeller (medium) 
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Figure 6.3 Panelized Podded Propeller (fine) 

Simulated propeller thrust and torque coefficients of the propulsor by using three 

different panel sizes are plotted in Figure 6.4. It was found that the two coefficients, 

propeller K, and propeller Kq, obtained by using fine panels were the highest, and the 

coefficients obtained by using coarse panels were the lowest. Coefficients of K, and Kq 

increased with the increase of the total number of panels. However, the increases 

resulting from the change of the panel size from medium to fine were much smaller than 

those resulting from the panel size change from coarse to medium. Both thrust and torque 

coefficients obtained using the medium size panel, were almost the same as those 

obtained using the fine panel size. Their relative differences are all less than 3%. A trend 

is shown in Figure 6.5 that the calculated K, and Kq are approaching constants when the 
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total panel number is larger than 3000. This suggested the medium panel size was fine 

enough to eliminate significant effects on the propeller thrust and torque coefficients 

from the panel size used in the simulations. 
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Simulated pressure distributions on the pod and strut using three different panel 

s1zes are shown in Figure 6.6, 6.7 and 6.8. The advance coefficient for these three 

simulated cases was 0.55. These pressure distributions were time-averaged over the last 
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Figure 6.6 Time-Averaged Pressure DistributionJ=0.55 (coarse panel) 
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revolution of the simulations. Most simulations needed four revolutions and some others 

(low J) needed five or more revolutions to carry out results without significant difference 

from the blade wake truncation. In the case of using a coarse panel, the pressure 
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Figure 6.7 Time-Averaged Pressure Distribution J=0.55 (medium panel) 
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distribution was obtained by averaging the pressure distributions of the last 24 time steps. 

For cases using medium and fine panels, the time steps were increased to 36 and 48 

respectively. All of these pressure patterns captured the main characteristic that was 
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Figure 6.8 Time-Averaged Pressure Distribution J=0.55 (fine panel) 
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found in the pressure measurement, two low pressure pockets were located on the two 

sides of the strut near the junction of the leading edge and pod. However, the pattern from 

the fine panels demonstrated more similarities with the pattern using the medium panels 

than that using the coarse panels. For example, the pocket size of the large pressure 

gradient on the pod near the strut leading edge simulated by using fine panels and by 

using medium panels was similar, while those simulated by using coarse panels were 

much smaller. There were not many pockets in the middle of the pod for both simulations 

using fine and medium panels while the simulation using coarse panels showed several 

big pockets there. On the surface of the strut, all pressure patterns obtained by using fine 

panels and medium panels were almost the same. Comparing the result using the coarse 

panels with the others it was found that the size and the shape of the low pressure pockets 

near the junction of the pod on the strut starboard side were different. This indicated that 

the medium and fine panels were fine enough while the coarse panel was not enough to 

eliminate significant effects on the time-averaged pressure pattern. 

The pressure distributions calculated by using the three different panel sizes at an 

instant are demonstrated in Figure 6.9 to 6.11. All three patterns were taken at the same 

propeller blade angle, four revolutions after the propeller started to rotate from the initial 

position. There were lots of details of the pressure distribution in the simulated results. 

The most significant characteristics were the helical strips of the pressure distribution on 

the pod surface and two low pressure pockets on the strut's sides near the leading edge 

and around the junction with the pod. In general, the pressure distribution on both the pod 

and the strut showed more in common between results using medium and fine panels than 
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those using coarse panels. To quantify the difference of the pressure distribution led by 

using different size panels, three parametrical pressures were selected for comparison. 

They were the area-averaged, the maximum of 95% coverage, and the minimum 
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Figure 6.9 The Pressure Distribution at One InstantJ=0.55 (coarse panel) 
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of95% coverage of the pressure over the surface of the pod and strut. The reason of using 

95% coverage maximum and minimum to represent the maximum and the minimum 

pressure over the surface is to eliminate the effect from unavoidable numerical 

0.3 

0.25 

l .. \ 

0.2 < 
0.15 

0.1 

0.05 

0 

-0.05 

-0.1 
-0.5 -0.45 -0.4 -0.35 ·0.3 -0.25 -0.2 -0.15 -0.1 -0.05 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

0 

-0.05 

-0.1 '--~L.,--:"----'-c:---'--_J__---L_--l __ L.__ _ _J____._..!._ 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

Figure 6.10 The Pressure Distribution at One Instant J=O. 55 (medium panel) 
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disturbance to the pressure on some panels. The maximum pressure of 95% coverage is 

defined as the lowest pressure in the top 5% highest pressure over the pod and strut 

surface, and the minimum pressure of 95% coverage is defined as the highest pressure 
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Figure 6.11 The Pressure Distribution at One Instant J=O. 55 (fine panel) 
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in the 5% lowest pressure over the pod and strut surface. It is indicated in Figure 6.12 that 

the simulated area-average, the maximum and the minimum of 95% coverage pressure 

over the pod and strut surface change very little when the total panel number increases 

from 2964 to 3348. All these changes are less than 5% relative to their simulated values 

by using 2964 panels. This implies that the panel size effect on the pressure distribution 

should not be significant when the medium or the fine panel is used. 

From the comparisons of the simulations using the three different sizes of blade 

wake panels, coarse, medium, and fine, a conclusion was made that the medium panel 

was fine enough to eliminate significant effects. These effects included the propeller 

thrust and torque coefficients, static and dynamic pressure distributions on the pod and 

strut. 
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6.2 Simulations with and without Wake Impingement Model 

Simulations of the podded propeller with and without using the wake 

impingement model were conducted, and results were compared to evaluate the effects of 

the wake impingement model on the simulation of the blade wake, propeller performance, 

and the pressure variations on the pod and the strut surfaces. 

For most potential flow based lifting surface methods, the deformation of the 

blade wake due to wake impingement is not properly considered. Therefore, the wake 

geometry after the collision with a body in the propeller race might not have been 

realistically presented and some hydrodynamic properties, such as the pressure and force 

fluctuations on the afterbody might not be accurately predicted. When they are applied to 

a tractor type podded propeller, the influence of the part of the blade wake that originally 

goes through the pod and strut as shown in Figure 6.13 (upper) has been cancelled in the. 

work by Liu and Bose (200 1) or artificially reduced in the work by Chen and Williams 

(1987). The blade wake simulated by the panel code with wake impingement model is 

shown in Figure 6.13 (lower). The wake panels that have a tendency to go through the 

body surface have been diverted to pass around the body. The continuous helical wake 

sheet has been cut into pieces, forming a set of spring washer shaped wake sheets (Figure 

6.13) after it passes the strut. The blade wake simulated by using the wake impingement 

model appears to be more realistic. 

The simulated propeller open water characteristics with and without using the 

WIM are plotted in Figure 6.14. The propeller thrust coefficient, K1 = T ;{Pn2 D 4 ), 
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Figure 6.13 Simulated Blade Wake without WIM (upper) and with WIM (lower) for J = 0.81 
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simulated with the wake impingement model was around 1% lower than that simulated 

without using the wake impingement model. The difference decreased as the advance 

coefficient increased. Comparing the simulated torque coefficients, K q = Q l~n2 D5
) , with 

and without the WIM shows that they intersected each other. The intersection point is 

aroundJ = 0.8. The simulated Kq using the WIM was lower than that without using the 

WIM whenJ < 0.8. For J >= 0.8, the simulated Kq using the WIM was higher than that 

without using the WIM. The differences of both K1 and Kq all over the range of the 

advance coefficient from 0.55 to 0.95 were very small, not higher than 2%. 
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Figure 6.14 Open Water Characteristics with and without Using ofthe WIM 
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The above comparisons show that there was no significant difference found in the 

propeller thrust coefficient and the torque coefficient between simulations with and 

without using the WIM. This indicates that the use of the WIM had little influence on the 

propeller performance prediction. 

Pressure distributions on the pod and strut surface at an instant by the panel code 

with and without using the WIM are compared in Figure 6.15. The simulated distribution 

by the panel code using the WIM shows more variations than that without using the 
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WIM did. For example, the pressure variation of the helical strips on the pod induced by 

the blade root vortex and the large pressure gradient around the leading edge of the strut 

are not shown in the result without using the WIM while they do in the result with using 

the WIM. Although the pod surface has not been included in the surface pressure 

measurement, the pressure measurement on the strut surface in chapter 5 shows the large 

pressure gradient and high pressure variation around the leading edge. Comparisons of 

these details on the pressure distributions with experimental data are made in the 

following section. 
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6.3 Pressure Variation on the Leading Edge 

As described in Chapter 5, there were eight positions along the strut leading edge 

where surface pressures were measured at five different advance speeds. Simulated 

pressure variations on the strut leading edge are compared with the measurements and are 

discussed in this section. Calculated pressures at the locations of the measurement were 

interpolated from the pressures at the panel centers. Comparisons for the five different 

advance coefficients are made in Figure 6.16 to 6.20 respectively. 

It is shown in Figure 6.16 that amplitude of the pressure variations from both the 

measurement and the numerical simulation are large near Z I RP = 1.00 when the 

propeller is heavy loaded, J = 0.55 . The means of the simulated pressure 

for Z I RP = 0.99, Z I RP = 1.07, and Z I RP = 1.14 were found to be close to the 

measurements. However, simulated pressure means for these Z I R P <= 0.92 were under 

predicted around 0.23 referring to the measurements. Comparing with the experimental 

results the amplitude of the pressure fluctuation at Z I RP = 0.99, the result was under-

predicted by 0.60 or 57% while these for Z I RP = 0.84, and Z I RP = 0.77 were over­

predicted by 55%. The troughs of the pressure variation at Z I RP = 0.99 were well 

modeled while the peaks were not. The simulated pressure variation pattern at 

Z I R P = 1.07 was close to that of the measurement. The simulated amplitude was only 

4% higher than that by the experiment and the time-averaged pressure by the simulation 

was 0.15 or 12% higher than measurement. In spite of these differences, experimental 
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and numerical results show a similar sketch of a peak between two troughs that represent 

a cycle of a blade wake impingement. The calculated and the measured pressure 

variations at Z I R P = 1.14 in Figure 6.16 are almost exactly the same. The reason is 

potential flow-based panel methods work better in the area with weak viscous effect 

( Z I R P >= 1.14) than in the area with strong viscous effect. The flow in the race of the 

blade wake and the vicinity of the pod and strut is considered to be highly vortical. In 

addition to this, it was also found in Figure 6.16 that all simulated pressure coefficients 

within Z I RP ::::; 0.92 were under-predicted by about 0.3. In general, potential flow-based 
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Figure 6.16 Comparison of the p on the L.E. (J=0.55) 
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methods over-predict the velocity, hence under-predict the pressure in the vicinity of a 

solid boundary. These imply that including the viscous effect may lead to improvements 

on the precision of the present method in the area near the pod and strut. 

The calculated pressure means on the leading edge for J = 0.68 in Figure 6.17 

were also found to be about 0.3 lower than the corresponding measurements for these 

positions of Z I RP <= 0.84, but for other locations of Z I RP >= 0.92 the calculated 

results were close to the measurements. Both the simulated and the measured pressures at 

Z I R P = 1.14 were around zero. The means of calculated pressure for the vertical distance 
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Z I RP of 1.07 and 0.99 were larger than the measurements by 0.2 and 0.1 respectively. 

At the location of Z I RP = 0.92, the simulated mean was 0.3 lower than that of the 

experiment. The amplitudes of the pressure variation calculated at Z I RP = 0.77 and 

0.92 were about 0.25 higher than those of the measurements. However, the simulated 

amplitude at Z I RP = 0.99 was lower than the measurement by 0.44. The predicted 

amplitudes at Z I RP = 1.07, 0.92, and 0.84 were very close to the experimental results. 

Similar to the two comparisons made above, both measured and simulated 

pressure variations along the strut leading edge were plotted in Figure 6.18. The 
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differences between calculations and measurements at Z I RP = 0.77, Z I RP = 0.84 and 

Z I RP = 0.92 were comparatively smaller than those in Figure 6.16 and Figure 6.17. It 

indicated that the simulation method gives better result for moderate advance coefficient 

than for low advance coefficient. 

Comparisons of the pressure variations between the calculations and the 

measurements for J = 0.81 and 0.87 were made in Figure 6.19 and 6.20 respectively. It 

was noted that the differences between the experimental and the theoretical results at 
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these two high advance coefficient conditions were smaller than those at the low advance 

coefficient conditions. The difference between simulations and measurements dropped 

from around 0.3 at J = 0.55 to less than 0.2 at J = 0.87 . Although the amplitude of the 

phase-averaged components was still under-predicted compared to the measurement, the 

differences had also been reduced significantly. For example, the amplitude difference at 

Z I RP = 0.99 dropped from 0.60 at J = 0.55 to 0.24 at J = 0.87 . In the case of 

J = 0.87 all simulated results were very close to the measurements except the amplitudes 
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of phase-averaged pressure were slightly over-predicted at Z I RP = 0.84 and 

Z I RP = 0.92. 

The time-averaged pressure along the leading edge against the advance coefficient 

was plotted in Figure 6.21. It clearly shows that the differences between simulated results 

and measurements for all locations of Z I RP decreases as the advance coefficient 

increases. The simulated pressures at these locations of Z I RP >= 0.99 were higher than 

the measurements by 0.15. However, the simulated pressures at locations of 

Z I RP <= 0.92 were lower than the measurements by 0.20. It was also found that the 
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differences between the measurement and the simulation out of the propeller wake race 

( Z I R P > 1.0) were smaller than those within the propeller wake race. These differences 

might be explained partially due to viscous effects, which are not modeled in the 

calculation. 

The amplitudes of the phase-averaged pressure against the advance coefficient 

were shown in Figure 6.22. It is obvious that the amplitude of the phase-averaged 

pressure decreased with the increase of the advance coefficient, especially for those at 

Z I RP > 1.07 and Z I RP > 0.99. The calculated results were in good agreement with the 

measurements except for the locations of Z I R P > 1.07 and Z I R P > 0.99 . In general, the 
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simulations matched with the experimental data in the high advance coefficient range 

(J>O. 7) better than in the low advance coefficient range (J<O. 7). The largest difference 

occurred at the position of Z I RP > 0.99 where the tip-vortex impacted on the leading 

edge. The calculated phase-averaged amplitudes were about half of the corresponding 

measurements for the range of the advance coefficient from 0.55 to 0.87. 
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6.4 Comparisons of the Strut Pressure Distribution with Experimental Data 

Simulated pressure distributions of the time-averaged component are compared 

with the measurements in Figure 6.23 to 6.27. Each figure demonstrates the pressure 

contours for one ofthe five advance coefficients, 0.55, 0.68, 0.74, 0.81, and 0.87. Since 

the measurement covered only a part of the strut surface around the leading edge, the 

comparison could only be made within the measurement zone. The zone was marked 

with a rectangle in the figures. Based on the comparison of the pressure contours for 

J = 0.55 in Figure 6.23, it was found that there were more variations in the simulated 

result than in the measurement. The simulated magnitude of the pressure away from the 

leading edge was closer than around the leading edge. Comparing the calculated with the 

measured on the left side of Figure 6.23, sizes and shapes of pressure contours of -0.5 and 

-0.75 are very similar. Both the simulation and the measurement showed a joint on the 

leading edge which separates the pressure contours into two, upper and lower groups. 

This joint is considered to be the intersection point of tip-vortex and the leading edge. 

The point located at z I RP of 0.95 for advance coefficient of 0.55 from the simulation 

and it laid around z I RP of 1.04 from the measurement. The reason may be that the wake 

simulated by a potential flow-based method is over-contracted since the flow is inviscid 

and it does not consider the displacement induced by the boundary layer of the pod and 

strut. Comparisons made for J = 0.68 in Figure 6.24 show the same similarities between 

simulation and measurement for J = 0.55 demonstrated in Figure 6.23. The pressure 

simulated on the right side of the figure is closer to the measurement than that on the 

right side. 
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The simulated time-averaged pressure distributions with the wake impingement 

model for J = 0.74, J = 0.81 and J = 0.87 are shown in Figure 6.25, 6.26 and 6.27. 

Most of simulated lines of the pressure contours shown at the Figure lower parts lay 

vertical and that is the same trends as the measured lines shown in the upper parts. Except 

for some small pockets near the strut leading edge on the left side in the simulated results, 

their patterns were very similar to the patterns of corresponding measurements. Some 

pressure contours (-1.25, -1.0, and -0.75) were chosen as representatives for comparisons 

in detail. On the left side in Figure 6.25, the size, the shape, and the location of the 

contour of -1.0 are almost the same as those from the measurement. On the right side of 

the figure, the simulated pocket of -0.75 is smaller than and located closer to the leading 

edge than that obtained by the experiment. Comparisons made for J = 0.81 in Figure 

6.26 shows the calculated contour of -1.25 on the left side of the figure consists of two 

parts, and the summation of the two parts is slightly larger than the correspondent from 

the experiment. On the right side, the contour of -0.75 from the simulation still shows 

most parts of a pocket containing contours of -1.0 and -1.25 while the experimental result 

demonstrates only a straight line. The reason was the measurement area was not big 

enough to cover all parts of the contour of -0.75. Comparisons made in Figure 6.27 for 

J = 0.87 show the simulated contours of -1.25 on the left and -1.0 on the right side 

match the experimental results though the contour position on the right side is closer to 

the leading edge than the experimental data. Through the comparison of the time­

averaged pressure coefficient with the experimental data, it was found that the numerical 

method captured most of characteristics of the pressure distributions with acceptable 

accuracy. 
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Chapter 7 Conclusion 

The present study included the development of a wake impingement model and 

the implementation of a set of tractor-type podded propeller tests in a cavitation tunnel. 

The set of models tests consists of the strut surface pressure measurement, the propeller 

shaft thrust and torque measurements and the tip-vortex visual investigation. The 

developed wake impingement model was incorporated into a panel code and used to 

predict the time-varied pressure distribution on a pod and strut surface subject to the 

propeller wake. The simulated surface pressure and propeller shaft forces have been 

compared with the experimental data. The comparisons indicate that the developed panel 

method wake impingement model provides an excellent model to predict the time-varied 

pressure distribution on a body surface which is acted on by a strong vortical wake. 

Based on the numerical simulations, the following points were concluded: 

• Incorporation of the wake impingement model into a panel code provides a 

numerical tool for prediction of surface pressure fluctuations on a pod and strut 

due to interaction with the propeller wake. 

• The wake impingement model affects the prediction of propeller performance 

very little in comparison with the original panel code. The differences in the thrust 

and torque coefficients, with and without using the wake impingement model 

were less than 2%. Using the wake impingement model improves the simulation 

by capturing the fluctuation pressure of the blade passing frequency on the surface 

of the pod and strut. 

128 



• Comparison of the numerical results with corresponding experimental data 

indicates that the numerically predicted pressure is in a good agreement. Hence, it 

is concluded that the wake impingement model incorporated in the panel code 

provides a tool for the prediction of surface pressure fluctuation on a strut due to 

interaction with a propeller wake. However, the amplitude of the pressure 

fluctuation in the tip-vortex/strut interaction zone is under-predicted; further 

refinement to the numerical theoretical method is necessary to improve this aspect 

of the model. 

• A no-penetration boundary condition for vortex/body interaction has been 

developed for potential based vortex numerical methods. The model satisfies the 

no-penetration condition, and accounts for the strength change of the incident 

vortex from the impingement consideration. 

• To increase the prediction precision of the amplitude of the pressure fluctuation 

around the tip-vortex/strut interaction zone it may be necessary to include 

introducing corrections of viscous effects to the wake impingement model. 

In the strut surface pressure measurement, the measured time series of pressure 

was first broken down into three components, the time-averaged component, the phase­

averaged component and the fluctuation component. After getting these components by a 

data processing procedure the time-averaged component was used in the discussion of the 

propulsive performance. The phase-averaged component was then used in the analysis of 

the wake impingement effects. Based on the pressure measurements, the following 

observations were made: 
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• The lowest time-averaged pressure within the measured area was found to occur 

on the suction side of the strut around the leading edge near the intersection of the 

pod and the strut. The lowest time-averaged pressure coefficient was about -1.7 at 

J = 0.87 

• The largest amplitude of the phase-averaged pressure was found on the leading 

edge of the strut around Z I RP = 1.0, for all tested advance coefficients. The 

amplitude of the phase-averaged pressure decreased with increases in the advance 

coefficient. The largest peak-trough amplitude was around c P =3.2 and it 

occurred at the advance coefficient of 0.55 which was the lowest tested. 

• The pressure time-variation on the strut was dominated by the blade passing 

frequency, and the large amplitude pressure variation was confined within a range 

of Z I RP from 0.9 to 1.1 where the tip vortex impact on the strut. The pressure 

measured outside of this range rarely showed significant fluctuation. 

• In cases of low advance coefficients, the pressure at some of the measurement 

points on the compressed side demonstrated a double-trough shape within a single 

period of the vortex filament impacting process. For a left-handed tractor-type 

podded propeller, the starboard side of the strut is the compressed side. The 

amplitude of the double-trough shape pressure was only about 60% of the 

amplitude of the single-trough shape pressure. Further study may lead to a new 

approach to reduce the pressure variation in the design of the strut. 

• The presence of the pod and strut in the race of the propeller wake increased the 

propeller time-averaged components, thrust, torque and efficiency of the propeller. 

However, the amplitudes of the phase-averaged thrust and torque coefficients of 
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the propeller changed less than 1% and 2% respectively. This indicates the wake 

impingement had no significant effect on the propeller propulsive performance in 

this configuration. 

The following findings come from the visual investigation of the tip vortex/strut 

interaction: 

• The tip vortex was bent by the leading edge when it approached the strut, and then 

kept a minimum distance from the leading edge while it moved along the leading 

edge. The tip-vortex drifted away from the shaft center for a certain distance 

before being shrunk and separated into two parts around the leading edge. 

• After the tip-vortex was bent, stretched, and visually weakened around the leading 

edge, it appeared to be separated into two parts. Each of the two parts propagated 

downstream on the two sides of the strut. The tip-vortex turned from a 

continuously helical line into segments. The segmental vortex was compressed on 

one side of the strut and stretched on the other side. 

• The vertical distance from the end of the segmental vortex to the shaft center on 

the stretched side remained a constant (Figure 5.33). However, the distance 

increased on the compressed side: the lower the value of advance coefficient, the 

faster this distance increases. There was no merger of the broken ends of the tip­

vortex found downstream of the trailing edge of the strut. 
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APPENDIX A 

The formulation of induced velocities for the hyperboloid panel method 

Velocity potentials induced by uniform source and dipole distribution on a quadrilateral element 

which is represented by a hyperboloid surface panel are given by Morino etc (1975) as following: 

(A-1) 

= I/)(1,1)- I/)(1,-1)- If)( -1,1) + ID( -1,-1) 

1 JJ1 b = -- -d() 
hk [ 2ff R k ]P.=Ph 

(A-2) 

=Is (1,1)- Is (1,-1)- Is ( -1,1) +Is ( -1,-1) 

where 

(A-3) 

(A-4) 

and 

(A-5) 

(A-6) 

(A-7) 

142 



(A-8) 

The panel surface is expressed as: 

- - -
P =Po + Pl + P2'l + p3cg17 (A-9) 

and 

Po 1 1 1 1 p++ 

PJ 1 1 1 -1 -1 P+-= 
p2 4 1 -1 1 -1 P-+ 

(A-10) 

1 -1 -1 1 
p3 p __ 

where 

-P-+ = (x2,y2,z2) 

are the four comer coordinates of the panel 'I'. 

Rewrite (A-3) and (A-4) as following: 

[
- .... - .... J _1 Rxa1·Rxa2 

27il0(x,y,z) = tanP 

1

_

1

_ .... .... = g(x,y,z) 
RR·a1 xa2 

(A-3') 

(A-4') 

- ... = J;(x,y,z)- J;(x,y,z)- R · ng(x,y,z) 

* (A)x represents the derivative of A to x, or 8A/ 8x; and Ax is the x component of A. 
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Components of induced velocity by sources and dipoles distributed on the panel are derivatives of 

-equation (A-1) and equation (A-2) to x, y, and z. As x, y, and z only appear inPh = Ph(x,y,z), orR, 

with equations (A-3 ')and (A-4'), we have the formula for dipole induced velocity 

_ ci"RI"R. ~~ x ~2) 2 

- ci"RI"R. ~~ x ~2)2 + c"R x ~~. "R x ~2)2 

* V(R x ~~ · R x ~2)('R'R · ~~ x ~2)- (R x ~~ · R x ~2)\T('R'R · ~~ x ~2) 
ci"RI"R . ~~ x ~2 )2 

_ [V(R x ~1) · R x ~z + R x ~~ · V(R x ~z)]('R'R · ~~ x ~z) 
- ci"RI"R. ~I X liz)2 + (R X lil. R X li2)2 

(R X lil . R X li2)[V(IRIR). ~I X liz+ ci"RIR). V(lil X liz)] 
ci"RI"R. ~I X ~z)z + (R X lil. R X liz)z 

_ [V(Rx~1)·Rx~2 +Rx~~·V(Rx~2)](1RIR·~~ x~z)-(Rx~~·RX~2)[V(IRIIh·~~ x~2] 

- ci"RIR·~t x~2) 2 +(Rx~l ·Rx~2)z 
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_ J:RJR·~J X~z 
- cJ:RJ:R.~, X~z)2 +(Rx~, ·RX~z)2 

la,z (Rzazx- Rxazz)- a,Y(Rxazy- Ryazz)- azz(Rzalx- Rxa,z) -azy(Rxa,Y- Rya,x)J 

a,z ( Rzazy - Ryazz) + a,x ( Rpzy - Ryazx) + azz ( Rzaly - Ryalz) + azx ( Rxaly - Ryalx) 

a,Y ( Ryazz - Rzazy)- a,x ( Rzazx - Rxazz) + azy ( Ryalz - Rzaly)- azx ( Rzalx - Rxalz) 

_ J:RJ:R.~, X~z 
- cJ:RJ:R .~,X ~2) 2 +(Rx ~I. Rx~z)2 

[

- 2Rx ( a,ya2Y + a1zazz) + RY ( a,xazy + a2xaly) + Rz ( a,xazz + a,zazx )] 

* Rx(a,xazy + azxa,Y)- 2Ry(a,xazx + a,zazz) + Rz(a,pzy + azza,y) 

Rx ( a,xazz + azxalz) + RY ( a,yazz + azyalz)- 2Rz ( a,xazx + a,yazy) 
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The formula for source induced velocity calculation has 3 terms. 

Term 1: 

(Rx~1 ·~) (v(R·~J)I:Rx~j-~:R·~J)vi:Rx~]IJ 
I:Rx~ 1 ~ 2 +(R·~1 )2 IRxa11 

(A-6) 
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Term2: 

(A-7) 
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Term 3: 

- --V'[(R · n)g(x,y,z)] = V'(R · n)g + (R · n)V'(g) 

= (- ny)g + (R · n)V'(g) 

(A-8) 
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Appendix 8 Phase Averaged Pressure Coefficients 

No of Figure J XIC 
Zl RP 

B-1 0.548 0.381, 0.303, 0.207, 0.0, -0.164, -0.267,-0.354 1.141 

B-2 0.548 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 1.067 

8-3 0.548 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.993 

B-3 0.548 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.919 

B-5 0.548 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.844 
B-6 0.548 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.770 
B-7 0.548 0.381' 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.696 

B-8 0.548 0.381' 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.622 
8-9 0.676 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 1.141 

B-10 0.676 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 1.067 
B-11 0.676 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.993 
B-12 0.676 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.919 
B-13 0.676 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.844 

B-14 0.676 0.381, 0.303, 0.207, 0.0, -0.164, -0.267,-0.354 0.770 
B-15 0.676 0.381, 0.303, 0.207, 0.0, -0.164, -0.267,-0.354 0.696 
B-16 0.676 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.622 

B-17 0.741 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 1.141 
B-18 0. 741 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 1.067 
8-19 0. 741 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.993 

8-20 0. 741 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.919 
B-21 0. 741 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.844 
B-22 0. 741 0.381' 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.770 
8-23 0. 741 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.696 
B-24 0. 741 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.622 
8-25 0.805 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 1.141 
B-26 0. 805 0.381' 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 1.067 
B-27 0.805 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.993 
B-28 0.805 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.919 
B-29 0.805 0.381, 0.303, 0.207, 0.0, -0.164, -0.267,-0.354 0.844 
B-30 0. 805 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.770 
B-31 0.805 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.696 
B-32 0. 805 0.381, 0.303, 0.207, 0.0, -0.164, -0.267,-0.354 0.622 
B-33 0.870 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 1.141 
B-34 0.870 0.381' 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 1.067 
B-35 0. 870 0.381, 0.303, 0.207, 0.0, -0.164, -0.267,-0.354 0.993 
B-36 0. 870 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.919 
B-37 0.870 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.844 
B-38 0. 870 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.770 
B-39 0.870 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.696 
B-40 0. 870 0.381, 0.303, 0.207, 0.0, -0.164, -0.267, -0.354 0.622 
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Figure B-18 J = 0.741, Z I RP = 1.067 
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Figure B-20 J = 0.741, Z I RP = 0.919 
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Figure B-21 J = 0.741, Z I RP = 0.844 
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Figure B-24 J = 0.741, Z I RP = 0.622 
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Figure B-25 J = 0.805, Z I RP = 1.141 
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Figure B-26 J = 0.805, Z I RP = 1.067 
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Figure B-28 J = 0.805, Z I RP = 0.919 
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Figure B-30 J = 0.805, Z I RP = 0.770 
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Figure B-31 J = 0.805, Z I RP = 0.696 
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Figure B-32 J = 0.805, Z I RP = 0.622 
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Figure B-33 J = 0.870, Z I RP = 1.141 
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Figure B-34 J = 0.870, Z I RP = 1.067 
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Figure B-35 J = 0.870, Z I RP = 0.993 
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Figure B-36 J = 0.870, Z I RP = 0.919 
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Figure B-40 J = 0.870, Z I RP = 0.622 










