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Abstract 

Parkinson's disease (PD) is a highly prevalent neurodegenerative disease characterized by loss 

of motor control and resting tremor. Mutations in a number of genes, including a-synuclein 

and parkin, have been associated with inherited forms of PD and many of these genes are 

linked to the ubiquitin/proteasome degradation system (UPS). Studies of the effects of 

mutations in these genes suggest that impairment of the UPS is central to PD. Expression of 

wild-type or PD-associated forms of human a-synuclein in Drosophila melanogaster neurons 

recapitulates some of the symptoms of PD such as the loss of motor control, development of 

neuronal inclusions, and degeneration of dopaminergic neurons. Parkin, an E3 ubiquitin 

protein ligase, may be involved in targeting a-synuclein for degradation. To analyse this 

interaction I generated transgenic flies expressing parkin under the control of the yeast 

enhancer upstream activating sequence (UAS). The a-synuclein and parkin transgenes were 

expressed in combination to examine their interaction in vivo. I showed that expresion of 

parkin prevents the toxic effects of both mutant and wild-type human a-synuclein. Although 

the yeast protein Gal4 is a key component of the UAS/Gal4 ectopic expression system in 

Drosophila melanogaster, I showed that this protein can be toxic. Transgenic flies that 

express high levels of Ga/4 in the developing eye show elevated apoptosis in the eye imaginal 

disc, which leads to a disorganised ommatidia! array in the adult. Suppression of apoptosis by 

expression of the caspase inhibitor p35 prevents this. High levels of Ga/4 expression in 

dopaminergic neurons produce larvae that have excessive apoptosis in the brain and reduced 

longevity in adult flies. I showed that parkin can suppress apoptosis and development defects 

in the eye. The ability of parkin to counter the toxicity of exogenous and endogenous proteins 

may provide great insight into our understanding oftoxic protein-induced diseases. 
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Chapter 1: Models of Parkinson's disease 
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1.1 Neurodegenerative diseases and Drosophila melanogaster 

As the mean age of the population increases, age-related diseases such as Parkinson's disease 

(PD), Alzheimer's disease and sporadic cancers are gaining in prominence. Most of these 

diseases have a genetic basis, or at the least a genetic bias, and to this end research has been 

undertaken to learn the genetic factors that contribute to age-related diseases. There is much 

to be gained by observation of the behaviour patterns of aging humans and by post-mortem 

analysis, however it is not practical nor ethical to conduct experiments with chemicals that 

have unknown toxicologies, to do invasive procedures, or to conduct selective breeding 

studies to look at genetic interactions. The development of disease models in an organism that 

is short-lived, and easy to manipulate, analyse, and sacrifice, is a reasonable approach to 

understanding age-re-lated disease. Evidence supports that study of disease models is an 

extremely valuable approach in the investigation of many health problems. In order to 

understand the pathology of a disease and to test potential therapeutic compounds, a disease 

should be modeled in an organism that facilitates ready analysis. Understanding the 

mechanisms involved in disease pathology enables rational selection of possible therapeutic 

agents. 

Models of several neurodegenerative diseases have been developed using a range of methods 

and organisms (Chan, 2004; Marsh and Thompson, 2004). As an alternative to humans, 

disease phenotypes, both behavioural and morphological, can be replicated in other organisms. 

In order to develop disease models, both behavioural and biochemical analysis must be 

feasible and reproducible, and the findings must be translatable into implications for the 

disease. Model organisms, such as Drosophila melanogaster, have up to 77% of genes 
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involved in human diseases (Fortini et al., 2000; Reiter et al., 2001) and the basic cellular 

mechanisms, in terms of structure and function, are often highly conserved. Over-expression 

of human disease genes in flies has been successful in modelling the pathology of amyloid 

~ 1 _42 in Alzheimer's disease, a-synuclein in PD and expanded polyglutamine tract proteins 

similar to those found in Huntington's disease (Driscoll and Gerstbrein, 2003). The 

generation of transgenic flies is relatively simple, and cost effective, and both molecular and 

behavioural studies are feasible, which make them ideal model organisms to find or evaluate 

potential therapeutic strategies of many neurodegenerative diseases. 

1.2 Introduction to Parkinson's disease 

PD is a neurodegenerative disorder, first described nearly two centuries ago (Parkinson, 1817) 

that is characterized by muscle tremors in stationary limbs, bradykinesia and rigidity. As the 

disease develops, the balance and memory of the affected person becomes progressively 

impaired until a premature death (Spacey and Wood, 1999). Post-mortem analysis of affected 

patients reveals the selective loss of dopaminergic neurons and the presence of filamentous 

protein inclusions (Lewy bodies) within the cell bodies and neurites of the substantia nigra 

pars compacta region of the brain (Spacey and Wood, 1999). Notably, not all PD patients 

have Lewy bodies (Hayashi et al., 2000; Takahashi et al., 1994) and conversely, some non­

PD-symptomatic patients were shown to have Lewy bodies (Forno and Langston, 1993; Gibb 

and Lees, 1988; Goldberg and Lansbury, 2000). In recent years, many forms ofPD, 

particularly those with early onset, have been shown to have an inherited basis. 

Approximately 5-10% of all disease cases ofPD have an inherited basis (Mizuno et al., 2001). 

1-3 



Animal models, many generated by chemical means and, more recently, by genetic methods 

have been invaluable in the study ofPD (Betarbet et al., 2002). For example, mice or rats 

treated with methamphetamine show a reduction of dopamine production, while treatments 

with 6-hydroxydopamine (6-0HDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 

paraquat, rotenone or 3-nitrotyrosine, result in the loss of dopaminergic neurons. The loss of 

these neurons is generally through oxidative stress-induced apoptosis, a feature of PD. A 

genetic model through over-expression of human wild-type a-synuclein in mice results in the 

accumulation of a.-synuclein-rich protein-inclusions, loss of dopaminergic neurons and 

impaired motor performance (Masliah et al., 2000). A primate model ofPD was recently 

developed via specific expression of human a-synuclein in the substantia nigra of adult 

marmosets (Kirik et al., 2003). Directed expression of mutant a-synuclein, the form 

associated with familial PD (human a.-synuclein A53T), in Drosophila melanogaster led to 

degeneration of dopaminergic neurons (Feany and Bender, 2000; Giasson et al., 2002; Lee et 

al., 2002b ). Drosophila parkin null mutants have reduced life spans and locomotor defects 

along with increased sensitivity to oxidative stress and overall smaller cell size (Greene et al., 

2003; Pesah et al., 2004). Recent reports have described Drosophila DJ-1 mutants that have 

oxidative stress-induced locomotor dysfunction and disrupted oxidative stress responses along 

with increased sensitivity to environmental toxins (Menzies et al., 2005; Meulener et al., 

2005; Park et al., 2005; Yang et al., 2005). While all of these models incorporate features of 

PD, none of them completely captures the all aspects of the disease; nevertheless much insight 

has been gained from each model. 
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1.3 Non-genetic Models of Parkinson's disease 

Several animal models of PD were developed through the exposure to various chemical 

compounds in a variety of well-studied organisms. While many chemicals were explored, 

only three, MPTP, rotenone, and 6-0HDA, produced an approximate reproduction of disease 

symptoms when model organisms were exposed to these substances. Notably, the 

examination of each of these models has led to revision of the theories of potential causes of 

PD and evaluation of therapeutic agents. 

An illicit drug preparation that left three human subjects with severe permanent PD like 

symptoms was found to accidentally contain MPTP (Langston eta!., 1999; Weingarten, 1988). 

MPTP crosses the bl9od-brain barrier and is metabolized to 1-methyl-4-phenyl-2,3-

diydropyridinium (MPP+) by monoamine oxidase-B in astrocytes. MPP+ is then selectively 

taken into dopaminergic neurons via dopamine transporters (Figure 1-1) (Javitch et al., 1985). 

These patients were shown to be responsive to levodopa treatment, a typical treatment for PD, 

.in the earliest stages of their illness. Rhesus monkeys treated with MPTP showed symptoms 

similar to those of human PD patients that were subsequently relieved by treatment with 

levodopa (Burns et al., 1983). Pathologically, loss of nerve cells in the pars compacta of the 

substantia nigra and reduced dopamine content in the striatum of the brain were observed. 

Mice treated with MPTP showed an increase in reactive oxygen species, dopaminergic neuron 

loss and NADPH oxidase up-regulation, traits that are also associated with PD (Wu eta!., 

2003). MPTP-treated mice show an increase in the pro-apoptotic protein, Bax, and mutant 

mice that lack Bax are resistant to MPTP induced PD (Vila et al., 2001). The MPTP model 

has given credence to the idea that oxidative stress plays an important role in PD pathogenesis 
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and that apoptosis is the likely method of dopaminergic cell death. A conceptual discrepancy 

with this model is that MPTP administration does not recapitulate the progressive nature of 

PD; rather the onset of symptoms begins very shortly after a large dose ofMPTP. Animals 

that are administered small MPTP doses long-term can recover from motor behaviour defects, 

suggesting that perhaps, a moderate toxic dosing regime may mimic the progressive nature of 

the disease. 

An increased risk of developing PD has been found among agriculture and horticulture 

workers (Lee eta!., 2002a; Tuchsen and Jensen, 2000) and two pesticides have been 

speculated to cause PD. Rotenone is a naturally occurring compound that is used as an 

"organic" insecticide (Betarbet et a!., 2000). It is a lipophilic compound that can cross the 

blood-brain barrier, and it is a potent inhibitor of mitochondrial electron transport chain 

complex 1 (Figure 1-1). Ir has been used to model PD both in vivo and in vitro. Rotenone­

treated rats showed selective degeneration of striatal dopaminergic neurons (reviewed in 

Betarbet et a!., 2000). The nigral neurons in these rats showed an accumulation of fibrillar 

cytoplasmic inclusions that contain both ubiquitin and a-synuclein. The resulting behavioural 

phenotypes included a flexed or stooped posture, rigidity, and spontaneously shaking paws 

similar to the resting tremor seen in PD. In vitro experiments have shown that rotenone can 

induce a conformational change in a-synuclein and increase the rate of fibril formation 

(Uversky eta!., 2001), a pathological feature of a-synuclein-induced PD. This particular 

model reproduces all the main features ofPD, including the progressive and systematic 

degeneration of the nigrostriatal pathway. For non-inherited PD, this model may become a 
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very powerful model of PD and be an ideal testing ground for preliminary drug trials, as most 

of the pathogenic mechanisms of the disease are captured. 

A specific neurotoxin, 6-0HDA, uses the same catecholamine transport system as dopamine, 

and affects catecholaminergic pathways through ari oxidative stress mechanism to induce 

PD-like symptoms (Figure 1-1) (Ungerstedt, 1968). While 6-0HDA has been used to induce 

PD-like symptoms in a wide range of model organisms, from Caenorhabditis elegans to non­

human primates, the majority of research has been conducted with rats. As 6-0HDA is 

unable to cross the blood-brain barrier, this chemical must be injected into the brain in order to 

target nigrostriatal dopaminergic neurons. The dopaminergic neurons start to degrade within 

24 hours and dopamine is fully depleted from the striatum 2-3 days later (reviewed in Betarbet 

eta!., 2002). The extent ofthe lesion is dependent upon the amount of6-0HDA injected and 

it is possible to have a slower degeneration of neurons by injecting into the striatum as 

opposed to the nigrostriatal tract (Przedborski et al., 1995). This model has been used to test 

alternative non-drug therapies such as acupuncture, which was demonstrated to have 

protective effects against neuronal death (Park et al., 2003). The interesting feature of this 

model is the routine experimental protocol of injecting 6-0HDA into one hemisphere and 

leaving the other hemisphere as an internal control. While this model has some limitations, it 

has been effectively used to test the behavioural effects of widely used pharmacological 

challenges such as amphetamines, apomorphine, selective receptor agonists, and levodopa, 

and the effects of treatments that can promote recovery like neuropeptides and neurotrophins 

(reviewed in Schwarting and Huston, 1996). The 6-0HDA model produces sudden death of 

neurons instead of the progressive degeneration of neurons seen in PD. In addition, neither 

Lewy bodies nor other cytoplasmic inclusions have been observed in this model. In other 
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words, although this model has some valid applications, the progressive nature of PD is not 

recapitulated. 

While the MPTP, rotenone and 6-0HDA models are not the only models ofPD they have 

been the most heavily studied and also appear to have the closest similarity to the pathology of 

non-inherited PD of the chemical-induced models. The progressive nature of the rotenone 

model of PD is of particular interest as this is a feature that was not captured in either the 

MPTP or 6-0HDA models. While the lack of Lewy bodies in the 6-0HDA model questions 

whether this is indeed a suitable model of PD, it has been successfully used to test important 

aspects ofPD, such as the effects of selective receptor agonists, levodopa and neurotrophins 

(reviewed in Schwarting and Huston, 1996). These models all have limitations and should be 

used with great caution in the study of PD. Using the knowledge of the genetic basis of some 

PD to generate gentic models of the disease appears to be the next logical step in our 

understanding of PD. 

1.4 The genetic basis of Parkinson's disease 

Mutations in a number of genes including a-synuclein, parkin, ubiquitin carboxy-terminal 

hydrolase 1 (UCH-Ll), PTEN induced kinase 1(PINK1), DJ-1 and leucine rich repeat kinase-2 

(LRRK2) are known to be associated with PD and several more chromosomal loci have been 

implicated (Table 1-1) (reviewed in Cookson, 2005; Gasser, 2005; Healy et al., 2004; Morris, 

2005). There are two underlying common features among some of these genes. Firstly, 

several of the genes listed encode proteins that are involved in the ubiquitin proteasome 
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Table 1-1: Genes associated with Parkinson's disease 

Locus Gene 
(inheritance) name 

Map 
position 

Gene Function Phenotype 

Parkl/41 SNCA2 4q21 Synaptic? Lipid PD/DLBD3
, onset- 30-60 yrs\ rapid 

(dominant) 

Park2 Parkin 6q25 
(recessive) 

Park3 Unknown 2pl3 
(dominant) 

Park 5 UCHL1 5 4p14 
(dominant) 

Park6 PINKJ6 lp35-37 
(recessive) 

Park 7 DJ-1 lp38 
(recessive) 

Park 8 LRRK2 7 12cen 
(dominant) 

Park 10 Unknown 1p32 
(dominant?) 

Park 11 Unknown 2p34 
(dominant?) 

binding course 

E3 ubiquitin 
ligase 

Parkinsonism, onset - teens-40 yrs, 
slow course, no LB3 except one case 

PD, dementia, onset- 50-60 yrs, LB­
tangles and plaques 

Ubiquitin Typical PD, onset -50 yrs, pathology 
hydrolase/ligase unknown 

Protein kinase 
Oxidative stress Parkinsonism, onset 30-50 yrs, 
Regulates pathology unknown 
parkin 

Oxidative stress Parkinsonism, onset 20-40 yrs, slow 
response course, pathology unknown 

Parkinsonism, onset 40-60 yrs, 
variable tau and a-synuclein 
pathology 

Unknown pathology 

Unknown pathology 

1 Park 4 - is a SNCA triplication; 2 SNCA - gene name for a-synuclein; 3 DLBD - dementia 
with Lewy body disease, LB - Lewy bodies; 4yrs- years old, 5Ubiquitin C-terminal hydrolase 
L1; 6 PTEN induced kinase 1; 7 LRRK2- gene name for dadarin. Adapted from Cookson, 
M.R. (2005) and Gasser, T. (2005). 
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degradation system (UPS). The UPS is a mechanism that the cell uses to rid itself of 

damaged, misfolded or otherwise unwanted proteins by tagging and targeting these proteins to 

the proteasome, where they are degraded to amino acids (reviewed in Hershko and 

Ciechanover, 1998). Secondly, two of the genes have been implicated in oxidative stress 

mechanisms. Overall, both oxidative stress mechanisms and the UPS have been shown to play 

a role in the typical pathology of PD. 

1.4.1 The structure and functions of a-synuclein 

In a large Italian family, a single base pair change in SNCA was found to be associated with 

Autosomal Dominant PD (ADPD) (Polymeropoulos et al., 1996; Polymeropoulos et al., 

1997). This original-mutation results in an amino acid change from alanine to threonine at 

position 53 (A53T) in a.-synuclein (Polymeropoulos et al., 1997). Two further mutations, an 

alanine to proline exchange at amino acid 30 (A30P) (Kruger et al., 1998) and a glutamic acid 

to lysine (E46K) (Zarranz et al., 2004) have also been identified. Finally, triplication of SNCA 

was found to be associated with ADPD (Singleton et al., 2003). These mutations are all 

relatively rare and do not seem to be involved in non-inherited cases ofPD (Chan et al., 1998). 

Nevertheless understanding how these mutations are associated with PD is necessary. 

The a.-synuclein protein is an abundant 140 amino acid cytosolic protein found mostly at the 

pre-synaptic terminal of neurons in either a vesicle bound or soluble form (Clayton and 

George, 1998; Jakes et al., 1994). Mutant forms ofthe protein are generally found in the same 

locations but they have been also identified in the neuronal cell body and neurites throughout 
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the brain (Kahle et a!., 2000). Originally a-synuclein was identified as a non-P amyloid 

component of Alzheimer's disease amyloid plaques (Ueda et al., 1993). 

Immunocytochemistry has revealed a-synuclein to be a major component of Lewy bodies and 

indeed staining for a-synuclein is more extensive than for ubiquitin, which has previously 

been used as a marker for Lewy bodies (Spillantini et al., 1997; Spillantini et al., 1998). There 

are three basic structural domains in a-synuclein: an acidic carboxy-terminal domain, an 

amino-terminal domain organised around 7 copies of an 11 amino acid motif and a 

hydrophobic centre region, identified in amyloid plaques (Borden, 1998). The repeated motif 

in the amino-terminal domain, an amphipathic a-helical structure, and is also called class A2 

lipid-binding domain. a-Synuclein has a mainly unfolded tertiary structure but it undergoes 

large conformational changes in the presence of phospholipids and binds to synaptic vesicles 

(Davidson et al., 1998; Weinreb et al., 1996). This abundant protein is likely to be directly 

involved in protein-lipid interactions and may be involved in reuptake of dopamine. 

a-Synuclein acts to reduce the activity of tyrosine hydroxylase, the rate-limiting enzyme in 

dopamine biosynthesis (Perez et al., 2002). This suggests that loss of a-synuclein, either 

through loss-of-function mutations or aggregation, would reduce the regulation of dopamine 

synthesis and the resulting increase of dopamine would increase deleterious reactive dopamine 

metabolite levels. A more recent study has shown the a-synuclein can ameliorate the 

neurodegeneration caused by cysteine-string-protein-a (CSP-a) deficiency in mice (Chandra 

et al., 2005). The data suggests that a-synuclein acts downstream of CSPa in a cell­

autonomous manner that also requires phospholipid-binding activity of a-synuclein (Chandra 
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et al., 2005). These recent studies indicate that a-synuclein has a role in the protection of 

nerve terminals from injury, possibly in combination with CSPa and SNARE proteins on the 

presynaptic membrane interface. 

Phosphorylation of tyrosine residues in a-synuclein is thought to be important in regulating 

synaptic function and plasticity (Gurd, 1997; O'Dell et al., 1991). a-Synuclein is 

phosphorylated on both serine and tyrosine residues (Ellis et al., 2000; Nakamura et al., 2001; 

Okochi et al., 2000; Pronin et al., 2000). The G protein-coupled receptor kinase 2 (Gprk2) 

phosphorylates Ser129 in a-synuclein in vivo and enhances a-synuclein toxicity (Chen and 

Feany, 2005). Other reports show that co-expression of parkin with a-synuclein and 

synphilin-1 in cell culture formed inclusions that had ubiquitin tags, which were decreased in 

number with the expression ofS129A a-synuclein (Smith et al., 2005). These reports indicate 

that phosphorylation of a-synuclein at S 129 may be important for the formation of inclusions 

in PD or that it alters targeting to the proteasome. 

1.4.2 Protein toxicity and a-synuclein 

Over-expression studies of wild type and mutant a-synuclein in human neuroblastoma 

(SH-SY5Y) cells and other cultured neurons show that these a-synuclein species can induce 

apoptosis (El-Agnaf et al., 1998a; Saha et al., 2000). Wild type a-synuclein forms an 

insoluble fibrillar aggregate with an antiparallel ~-sheet structure in vitro, which is greatly 

enhanced by both the A30P and A53T amino acid substitutions (Conway et al., 1998; El­

Agnaf et a!., 1998b; N arhi et al., 1999). The in vitro fibril formation of a-synuclein does not 
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follow a one-step transition rather there appears to be an increase in ~-sheet conformation of 

the otherwise unfolded a.-synuclein and oligomerization of the protein into proto fibrils (Figure 

1-2). Subsequently, the protofibrils may either take on a spherical protofibrilloligomer bodies 

(Conway eta!., 2000; Goldberg and Lansbury, 2000; Harper eta!., 1997a; Harper eta!., 

1997b, 1999). Interestingly, solutions of mouse and human a.-synuclein form fibrils at a 

slower rate in the presence of the human A30P and A53T forms of a.-synuclein, which leads to 

an increase of non-fibrillar oligomers (Rochet eta!., 2000). The unanswered question 

remains, which, if any, forms of a.-synuclein are toxic? It remains unknown whether it is 

simply the aggregation of the protein that leads to cell death or whether there are other factors 

involved. 

Pathological examinations of human brains have found two observations that do not correlate 

with the theory that Lewy bodies are the species that cause PD. Firstly, the substantia nigra 

dopaminergic neurons that contained Lewy bodies appear 'healthier', using both 

morphological and biochemical analysis, compared to the surrounding neurons (Tompkins et 

a!., 1997; Tompkins and Hill, 1997). Indeed, quantitative analysis revealed aggresomes in 

60% of non-apoptotic cells but only in 10% of apoptotic cells that express a-synuclein, and a.­

synuclein-induced apoptosis was not coupled with increased prevalence of aggresome-bearing 

cells (Tanaka eta!., 2004). Secondly, incidental Lewy bodies have been identified in the 

brains of aged individuals who had no symptoms of PD or any other neurodegenerative 

disease (Forno and Langston, 1993; Gibb and Lees, 1988; Goldberg and Lansbury, 2000). 

Experimental perturbations that reduce the number of nuclear inclusions (detected by light 
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conformation, or full fibrillization takes place followed by further aggregation into Lewy 

microscopy) actually increase the severity of disease-related abnormalities (Goldberg and 

Lansbury, 2000). PA700, the regulatory complex ofthe 26S proteasome, is likely to interact 

with the oligomers of a-synuclein preventing complete fibrillisation (Ghee et al., 2000; Ghee 

et al., 2005), which also provides another link to the UPS system. Other studies show that 

blocking phosphorylation at S 129 substantially increases aggregate formation and because 

increased number of inclusion bodies are correlated with reduced toxicity, inclusion bodies 

may protect neurons from a-synuclein toxicity (Chen and Feany, 2005). Perhaps the fibrillar 

inclusions sequester toxic species and/or divert a-synuclein from toxic assembly pathways as 

shown in Figure 1-2. Studies in animal models of other neurodegenerative diseases also 

support this theory. For instance, the detection of Alzheimer's-like abnormalities before 

fibrillar plaques appear has been reported in two different transgenic mouse models (Hsia et 

al., 1999; Moechars et al., 1999). In polyglutamine-repeat diseases, nuclear import of mutant 

ataxin-1 is required for disease pathogenesis but formation of inclusions was not (Klement et 

al., 1998). In Huntington's disease, Huntingtinprotein acts in the nucleus to induce apoptosis 

but this neuronal death does not correlate with the inclusion formation (Saudou et al., 1998). 

It appears that soluble oligomers are the principal pathogenic species that drive neuronal 

dysfunction (reviewed in Walsh and Selkoe, 2004) and it is generally accepted that the 

oligomeric species of a-synuclein are indeed the toxic forms of the protein. 

1.4.3 Parkin functions as an E3 ubiquitin ligase 

A variety of point mutations and large deletions in the parkin gene have been associated with 

Autosomal Recessive Juvenile Parkinsonism (ARJP), the second inherited form ofPD 
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identified (Kitada et al., 1998). This form ofthe disease is specifically characterized by an 

early age of onset ( -40 years old) and the relative absence of Lewy bodies (Hayashi et al., 

2000; Ishikawa and Tsuji, 1996; Mori et al., 1998). Autopsy findings have rarely shown 

typical Lewy body pathology in PD patients that possess mutant forms of parkin (Farrer et al., 

2001). The parkin protein has been localized to the neurons in the substantia nigra but also to 

unaffected regions ofthe brain such as the cerebellum and glial cells (Gu et al., 2000). This 

widespread distribution of the protein does not correlate with the specific loss of dopaminergic 

neurons in the substantia nigra when certain mutations occur in parkin. Lysates of specific 

brain segments showed parkin expression in the substantia nigra, putamen and frontal brain 

segments of control patients but a complete loss of parkin expression in the substantia nigra 

from ARJP patients. However, it should be noted that the expression of parkin in parts of the 

brain (putamen, frontal cortex) was significantly lower than in dopaminergic neurons and was 

not decreased in ARJP patients (Shimura et al., 1999). On the sub-cellular level, 

dopaminergic neurons in the substantia nigra were immuno-reactive for parkin protein in the 

cytoplasm, granular structure (golgi) and the neuronal processes (Shimura et a!., 1999). Why 

do mutations in parkin lead to the selective loss of doparninergic neurons and yet does not 

appear to affect other parts of the brain. 

The parkin gene encodes a 465 amino acid protein (Kitada et al., 1998) that functions as an 

ubiquitin ligase, which is an integral part of the protein degradation machinery (Shimura et a!., 

2000). Ubiquitin ligases act as mediators between a specific target protein to be degraded and 

an ubiquitin-conjugating enzyme, which tags the target protein with ubiquitin in a process 

called ubiquitination (Figure 1-3). Ubiquitination is a post-translational modification that uses 

ATP and three enzymes, ubiquitin activating enzyme (E1), ubiquitin conjugating enzyme (E2) 
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and ubiquitin ligase (E3) (Hershko and Ciechanover, 1998). Parkin contains a Really 

interesting new gene (RING) and inbetween RING (IBR) finger motif (RING-IBR-RING) 

(Imai et al., 2000), which has been found in other E3 ligases (Lorick et al., 1999). This motif 

acts to recruit specific E2-ubiquitin-conjugating enzymes (Joazeiro et al., 1999; Lorick et al., 

1999; Yang et al., 2000; Y okouchi et al., 1999), including ubiquitin conjugating enzyme 

human 7 and 8 (UbcH7 and UbcH8) for parkin. The polyubiquitinated protein is recognized 

and degraded by the multiple-subunit-protease 26S-proteasome complex (Figure 1-3). This 

protein degradation produces short peptides and amino acids and the polyubiquitin chains are 

returned to the monomeric state by ubiquitin carboxy-terminal hydroxylases. 

The regulation of parkin activity is likely to involve at least two mechanisms, S-nitrosylation 

and phosphorylation (Chung et al., 2004; Yamamoto et al., 2004). S-nitrosylation is evident 

in the brains of patients with PD and diffuse Lewy body disease and has been shown to inhibit 

the ubiquitin ligase activity of parkin (Chung et al., 2004). This inhibition could contribute to 

the degenerative process in these disorders by impairing the ubiquitination of parkin substrates 

(Chung et al., 2004). A recent study showed that induction of stress due to the presence of 

unfolded proteins in cells resulted in reduced parkin phosphorylation; unphosphorylated 

parkin has increased ubiquitin ligase activity compared with phosphorylated (Yamamoto et 

al., 2004). Overall levels of phosphorylation and nitrosylation appear to contribute to the level 

of ubiquitin ligase activity that parkin has in the cell. 
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1.4.4 Parkin and protein detoxification 

The accumulation of proteins due to the failure ofubiquitin-dependant processes of protein 

degradation has been proposed as a major factor in the destruction of neurons in sporadic and 

familial PD (Cookson, 2005; McNaught and Jenner, 2001; McNaught et al., 2001). The 

absence of parkin protein in the substantia nigra of ARJP patients combined with the neuronal 

cell death in this area of the brain suggests a possible cell-protective role of parkin. As one 

line of defence there is an increase in parkin protein in response to endoplasmic reticulum 

(ER) stress (lmai et al., 2000). ER stress, caused by the accumulation of misfolded proteins in 

the ER, can initiate cell death, however, parkin can prevent this via its E3 activity (lmai et al., 

2000; Mori, 2000). Specifically, a substrate of parkin, the Pael receptor (Pael-R) [a G-protein 

coupled receptor], when over-expressed in cells becomes unfolded, insoluble, and leads to ER 

stress-induced cell death (reviewed in Takahashi and Imai, 2003 and Takahashi et al., 2003). 

Parkin ubiquitinates a number of substrates, including, most notably, itself (Imai et al., 2000; 

Zhang eta!., 2000b), a glycosylated form ofa-synuclein (Shimura et al., 2001), the Pael-R 

(lmai eta!., 2001 ), CDCrel-1 (Zhang eta!., 2000b) and the a-synuclein-binding protein, 

synphilin-1 (Chung eta!., 2001). Moreover, CHIP (carboxyl terminus of the HSP/HSC70 

interacting protein), which acts as an E4 multiubiquitin assembly protein, forms a complex 

with parkin, heat shock protein 70 (HSP70) and Pael-R, and positively regulates the ubiquitin 

ligase activity of parkin (Imai eta!., 2002). CHIP and HSP70 suppress cell death due to the 

presence of unfolded Pael-R through coordination ofubiquitination and the molecular 

chaperone system. Over-expression of parkin in the presence of proteasome inhibitors leads 

to the accumulation of large protein inclusions that stain for a-synuclein, synphilin-1, parkin, 
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molecular chaperones and proteasome subunits (Junn et al., 2002). The role of parkin in 

assigning proteins for breakdown seems to be at the heart of ARJP cellular defects. 

1.4.5 Mutations in PTEN induced kinase 1 are associated with Parkinson's disease 

Mutations in P INK1 lead to early-onset Parkinson's disease (Hatano et al., 2004; Rohe et al., 

2004; Valente et al., 2004a; Valente et al., 2004b ). Initially two mutations, in the sequence 

that codes for the kinase domain, a nonsense mutation, and missence mutation were identified. 

A number of novel mutations have since been discovered in unrelated families (Hatano et al., -

2004; Rohe et al., 2004). PINKl protein is localized to the mitochondria and may 

phosphorylate mitochondrial proteins in response to cellular stress, protecting against 

apoptotic mitochondrial dysfunction. However the altered forms of PINK I do not have this 

protective effect (Valente et al., 2004a). Consistent with their role in PD for example, a 

significantly higher number of sporadic early-onset PD patients were identified as carriers of 

single heterozygous mutations in PINK1 (Valente et al., 2004b). Mutations in PINK1 are 

relatively common and in a variety of ethnic populations and appear to have an important role 

in inherited PD. 

1.4.6 Mutations in DJ-1 are associated with Parkinson's disease 

Mutations in the highly conserved gene, DJ-1, are associated with autosomal recessive early 

onset Parkinson's disease (Bonifati et al., 2003). DJ-1 is ubiquitously expressed throughout 

the mouse central nervous system (Shang et al., 2004) and functions as a homodimer; one of 

the mutations found in the gene prevents dimerization of the protein (Garner et al., 2004; 
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Moore eta!., 2003; Olzmann eta!., 2004). DJ-1 appears to be involved in anti-oxidative 

stress as mutations in this gene produce proteins that show reduced or no ability to prevent 

hydrogen peroxide (H20 2)-induced cell death (Taira eta!., 2004; Takahashi-Niki eta!., 2004). 

There are conflicted views as to whether DJ-1 is degraded via the proteasomal pathway 

(Gomer eta!., 2004; Miller eta!., 2003). Nevertheless understanding the function and 

breakdown of the DJ-1 protein is paramount in determining the prevention ofPD associated 

with DJ-1 mutations. 

1.4.7 Mutations in Ubiquitin C-terminal hydrolase-Ll are associated with Parkinson's 

disease 

Uch-L1 is a thiol pro_tease that is involved in the cleavage ofubiquitin from ubiquitin-tagged 

proteins and facilitates the recycling ofubiquitin tags (Chung and Baek, 1999). This enzyme 

shows dimerization-dependent, ubiquitin ligase activity (Liu eta!., 2002). Uch-L1 is 

expressed in nerve cells and testes/ovaries in mice where it co-localizes with monoubiquitin 

and can elongate the half-life of ubiquitin (Osaka eta!., 2003). Mutations in Uch-Ll are 

associated with ADPD (Leroy eta!., 1998). Aggresomes ofUch-L1 and other proteins are 

formed in response to proteasome impairment (Ardley eta!., 2004). Interestingly, a 

polymorphism in Uch-Ll appears to confer protection against sporadic PD in Caucasian and 

Asian populations (Lincoln eta!., 1999; Satoh and Kuroda, 2001; Zhang eta!., 2000a). Once 

again mutations in a gene that is associated with the proteasome degradation pathway are also 

associated with PD. 
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1.4.8 Mutations in leucine rich repeat kinase-2 are associated with Parkinsonism 

A genome-wide linkage analysis of a Japanese family with ADPD pinpointed a locus mapped 

to 12pl1.2-q13.1 and called Park 8 (Funayama eta!., 2002). Two groups subsequently 

determined that the gene, which causes this form ofPD, that encodes a large, multifunctional 

protein called leucine-rich repeat kinase 2 (LRRK2) also known as dadarin (Paisan-Ruiz eta!., 

2004; Zimprich et al., 2004 ). In patients with ADPD, mutations in LRRK2 are the most 

frequently found mutation (reviewed in Gasser, 2005). Clinically, patients with these genetic 

alterations have symptoms that look like typical PD, however the pathology of this form ofPD 

is variable. Along with the normal pathological changes seen in Lewy body PD, diffuse Lewy 

body disease, nigral degeneration without distinctive histopathology and progressive 

supranuclear palsy-like tau were also observed and it is thought that mutations in LRRK2 may 

be involved in other neurodegenerative disorders such as Alzheimer's (Zimprich et al., 2004). 

The protein product of LRRK2 has been assigned to a group of recently identified ROCO [Roc 

(Ras of complex proteins)/COR (c-terminal ofRoc)] family ofproteins (Bosgraafand Van 

Haastert, 2003) and it contains a protein kinase domain. 

1.5 Genetic models of Parkinson's disease 

With the discovery that some forms of PD have a genetic basis, a plethora of genetic models 

of the disease have been developed. To date these models have been based largely upon 

mutation of the a-synuclein, parkin or DJ-1 genes. The generation of animals that have a non­

functional gene or "knock outs" has resulted in further understanding of PD progression and 

provides excellent models in which potential therapeutic strategies can be tested. These 
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models have been developed in a variety of organisms ranging from Drosophila melanogaster 

to non-human primates. Of particular note is a series of models in Drosophila developed by 

ectopic expression of normal or mutant forms of a-synuclein. 

1.5.1 Mutant or altered DJ-1 models of PD 

Most studies on the effects of DJ-1 mutations suggest that it functions in oxidative stress 

responses. The recent development of mice with DJ-1 null mutations corroborates this theory. 

In one study DJ-1 null mice show increased sensitivity to oxidative insults, such as H20 2, 

which is abrogated by the over-expression of DJ-1 (Kim eta!., 2005). In another study DJ-1 

null mice did not show significant loss of doparninergic neurons but did show a change in the 

function of these neurons (Chen eta!., 2005; Goldberg eta!., 2005). These mice also showed 

a loss of motor skill in an age-dependent manner (Chen eta!., 2005; Goldberg eta!., 2005). In 

C. elegans, when DJ-1 is "knocked down", the nematodes are more sensitive to mitochondrial 

complex I inhibitors, such as rotenone, although no increase in sensitivity was noted with 

paraquat (a nonselective herbicide), or etoposide, a topoisomerase inhibitor (Ved eta!., 2005). 

A series of groups have examined the effect of mutations in DJ-1 in Drosophila. All of these 

groups showed that homozygous mutant flies had increased sensitivity to oxidative stress 

(Menzies eta!., 2005; Meulener eta!., 2005; Park eta!., 2005; Yang eta!., 2005). 

Furthermore, these flies had locomotor deficiencies and many of the other hallmarks of mutant 

DJ-1-induced PD (Menzies et al., 2005; Meulener eta!., 2005; Park et al., 2005; Yang et al., 

2005). With these relatively new PD models, many insights into the biology of DJ-1-induced 

PD, such as the role of oxidative stress, are coming to light. 
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1.5.2 Mutant or altered a-synuclein models of PD 

Mice with loss-of-function mutations in a-synuclein appear to develop normally. These mice 

do not show any dopaminergic neuron or synaptic loss, nor are any Lewy bodies observed. 

However, these mice do have slightly altered stimulus dependent dopamine release 

(Abeliovich et al., 2000). The data suggests that a-synuclein is a negative regulator of 

dopamine release, in agreement with the observations that a-synuclein is likely to regulate 

dopamine biosynthesis (Perez et al., 2002). 

In another study of mice, neuronally expressed human a-synuclein formed both cytoplasmic 

inclusions and intranuclear deposits in the neocortex, substantia nigra and hippocampus, 

although human PD patients have been noted to only have cytoplasmic inclusions (Masliah et 

al., 2000). A loss of dopaminergic terminals and motor abnormalities were also observed in 

the human a-synuclein mice, indicating a possible causal effect of the accumulation of 

a-synuclein inclusions. In particular, this difference has highlighted that lines that express 

lower levels of human a-synuclein do not show the same dopaminergic neuronal and 

behavioural deficits (Masliah et al., 2000). Interestingly, expression of either wild type or 

mutant forms of human a-synuclein in mice resulted in no neuronal inclusions although 

altered dopaminergic neuron terminals were observed (Richfield et al., 2002). In addition, 

mice that express mutant a-synuclein showed a reduced locomotor response with exposure to 

repeated doses of amphetamines, a response that may be due to a reduction of dopamine 

transporters and a resulting progressive motor impairment (Richfield et al., 2002). These 

resistant animals were characterized by increased levels ofHSP70, a chaperone protein that 

has been shown to counteract paraquat toxicity in other PD experimental models and could 
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therefore contribute to neuroprotection in a-synuclein transgenic mice. These results indicate 

a differentiation between toxic-induced a-synuclein aggregation and neurodegeneration. 

These experiments support a role for a-synuclein in toxic insults and suggest that its 

involvement in human neurodegenerative processes may arise not only from a gain of toxic 

function, as previously proposed, but also from a loss of defensive properties (Manning-Bog et 

al., 2003). An a-synuclein rat model ofPD (LoBianco eta!., 2002) was used to analyse the 

ability of parkin to suppress symptoms of the disease (LoBianco eta!., 2004). In these 

experiments, lentiviral vector delivered parkin prevented dopaminergic degeneration. 

A recently developed primate model ofPD forced the expression of human a-synuclein in the 

substantia nigra of adult marmosets (Kirik et al., 2003). In this model, a severe neuronal 

pathology was observed, that included a-synuclein-positive cytoplasmic inclusions and 

granular deposits as well as swollen, dystrophic, and fragmented neurites. At a time 16 weeks 

post-transduction of the human gene, 30-60% of dopaminergic neurons were lost and severe 

motor impairments had developed, which indicates the progressive nature of this model, a 

feature missing from most other PD models (Kirik eta!., 2003). As non-human primates are 

so similar to humans, this model offers exciting new opportunities for the exploration of new 

therapeutic targets. 

Models of PD have been generated in Drosophila melanogaster by generating transgenic flies 

that conditionally express wild type, A53T or A30P forms of human a-synuclein (Feany and 

Bender, 2000). In these models, the expression ofthe a-synuclein transgenes is dependent on 

transcriptional activation by the yeast protein, Gal4 (Figure 1-4) (Brand and Perrimon, 1993). 
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Notably Drosophila melanogaster lack an identified homologue of a-synuclein. Flies that 

express any form of a-synuclein, in either a pan-neural pattern or dopaminergic neuron 

specific manner, show a marked age dependent loss of dorsal-medial dopaminergic neurons 

(Feany and Bender, 2000). Cytoplasmic inclusions were observed in a-synuclein flies 

approximately 20 days after eclosure. Behaviourally normal flies exhibit a strong negative 

geotaxis that can be measured by timing the speed at which flies climb the sides of a sterile 

vial. a-Synuclein flies begin to lose their climbing ability at 25 days old compared with 45 

days for control flies. These features all recapitulate the main behavioural and pathological 

phenotypes observed in PD patients. Subsequent experiments with this Drosophila model have 

shown that a number of pharmacological agents such as the dopamine precursor levodopa, 

dopamine receptor agonists (bromocriptine, pergolide and SK&F38393) and the 

anticholinergic atropine, all restore or partially restore the age-dependent loss of climbing 

ability (Pendleton eta!., 2002). Furthermore, co-expression of the molecular chaperone 

HSP70 with a-synuclein prevented dopaminergic neuronal degeneration (Auluck eta!., 2002). 

Interference with endogenous chaperone activity accelerated toxicity of a-synuclein indicating 

a role of chaperones in the pathology of PD. Enhancement of endogenous heat shock protein, 

by feeding flies geldanamycin, a chemical that interferes with HSP90 (a negative regulator of 

some heat shock factors), prevented dopaminergic cell death but not the appearance ofLewy 

bodies (Auluck and Bonini, 2002). These results indicate that the Drosophila model is 

particularly good at capturing both biochemical and behavioural features of PD and so could 

be used as a first point of reference when testing out potential new drug therapies. 
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1.5.3 Mutant or altered parkin models of PD 

Mice with loss-of-function parkin mutations have nigrostriatal deficits but there is no apparent 

degeneration in the substantia nigra, a result that is inconsistent with observations in human 

patients (Goldberg eta!., 2003). An increase in extracellular dopamine and no change in the 

levels of parkin substrates such as CDCrel-1, synphilin-1, and a-synuclein were also observed 

in the parkin deficient mice (Goldberg et al., 2003), as was a decrease in the abundance and 

consequently activity of proteins involved in mitochondrial function or oxidative stress 

(Palacino et al., 2004). These mice also show a delayed weight gain. Taken together, these 

findings show that parkin is intimately involved in dopamine regulation and mitochondrial 

function (Goldberg et al., 2003; Palacino et al., 2004). The mouse model of parkin-induced 

PD has many but not a:ll of the features of the disease found in humans but not all. 

Nevertheless it is likely to be useful in understanding this form of PD. 

The Drosophila homologue of parkin has been identified and the putative protein product is 

59% similar to the human protein (Greene et al., 2003). It carries both the target 

protein-binding domain and the ubiquitin-conjugating enzyme-binding domain and also 

probably functions as an ubiquitin ligase. Transcripts of parkin were found at all 

developmental stages of the fly life cycle. A recently developed fly PD model has a mutant 

allele of the Drosophila homologue of parkin, which was generated using P-element 

mutagenesis (Greene et al., 2003). This model recapitulates some ofthe normal PD symptoms 

such as reduced lifespan and locomotor defects, however it has other defects such as male 

sterility, not normally seen in humans (Greene eta!., 2003). Interestingly, the locomotor 

defects resulted from severe disruption of muscle integrity and were not limited to the flight 
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muscles but affected climbing as well. Upon closer examination of the cellular structure, 

swollen mitochondria manifesting severe disruption and disintegration of the cristae were 

observed. Furthermore, the cells were undergoing apoptosis, a typical response of cells when 

mitochondrial dysfunction and release of cytochrome c is observed (Martin, 2001; Tatton and 

Olanow, 1999). As the sterility aspect of this model is not a feature ofPD that is seen in 

humans and it is possible that parkin is involved in other cellular functions in Drosophila that 

are performed by a different ubiquitin ligase in humans. Examination of the parkin mutants 

reveals that they have a reduced cell size that results in a lower total mass. Furthermore they 

show a greater sensitivity to oxidative stress (Pesah eta!., 2004). More recent evidence 

suggests that the oxidative stress response is induced in parkin mutants rather than the ER 

stress pathway (Greene eta!., 2005). Mitochondrial dysfunction was a feature observed in 

some of the chemically induced models of PD and is one of the key features in the Drosophila 

model of ARJP. This feature of the disease has now been genetically induced and finding 

factors that initiate this dysfunction will be important. 

A common pathway in inherited forms of PD has been revealed with the discovery that the a­

synuclein protein physically interacts with parkin (Petrucelli eta!., 2002; Shimura eta!., 

2001 ). Indeed parkin over-expression protects cells from toxicity associated with expression 

of mutant a-synuclein (Petrucelli eta!., 2002). The mutations in a-synuclein may be factors 

that prevent the protein from being targeted for degradation. Mutant parkin protein is unable 

to bind, and hence, mediate ubiquitination of aSp22 (a form of a-synuclein), which leads to 

accumulation of a-synuclein protein and, possibly, to the cells demise (Shimura eta!., 2001). 
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1.6 Thesis Objectives 

Analysis of Drosophila models ofPD may yet provide the most insight into the commonalities 

of inherited forms ofPD. This organism is simple to genetically manipulate and yet complex 

enough to provide biochemical through to behavioural data. Importantly, the majority of the 

genes associated with PD have homologues in Drosophila. The overall goal in this thesis was 

. to analyse parkin in Drosophila melanogaster and in particular in Drosophila models of PD. 

My interest in parkin came about, as, at the inception of this project, mutations in this gene 

appeared to be quite predominant in inherited forms ofPD. When this project was initiated a­

genetic model ofPD in Drosophila through ectopic expression of a-synuclein (Feany and 

Bender, 2000) had just been developed. I wanted to use this already established model of a­

synuclein associated-PD, to increase our understanding of the nature of the disease, and the 

mutations that are associated with the disease and to identify ways to prevent the progression 

of the disease. This particular model proved to be an invaluable tool in which to invoke the 

ectopic expression of parkin to study aspects of PD including prevention or suppression of the 

PD symptoms found in these flies. 

The initial goals of the project were to clone and characterize the Drosophila parkin 

homologue and to generate transgenic Drosophila with parkin under the control of the UAS 

enhancer element. I analysed the effects of parkin expression in a variety of Drosophila 

tissues in terms of behavioural and physical phenotypes and life span. I hypothesized that the 

PD-like phenotypes found in the a-synuclein-induced Drosophila PD model could be 

suppressed through expression of parkin. Analysis of the effects of the in vivo interaction 
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between parkin and either wild type or PD associated mutant a-synuclein in terms of 

behaviour, life span and morphological changes was therefore undertaken. 

Previous work has shown that excessive Ga/4 expression can cause developmental defects in 

the Drosophila eye (Kramer and Staveley, 2003). If increased expression of Ga/4 alone could 

cause development defects then perhaps excessive Ga/4 expression in the dopaminergic 

neurons could act as a toxic protein and be used as a model oftoxic protein induced-PD. 

Further characterization of the Ddc-Ga/4 transgenic line that expresses Ga/4 in a 

dopaminergic neuronal pattern was initiated to analyse the effects of varying numbers of Gal4 

transgenes. This analysis studied the behavioural effect of various levels of Ga/4 expression 

throughout the life span of the flies and also the expression patterns of the trans gene. 

If parkin can suppress the effects of a-synuclein expression then parkin may be able to 

suppress the phenotypes caused by excessive Gal4. Analysis of the effects of parkin 

expression in the developing eye with multiple copies of both transgenes was undertaken to 

see if parkin could suppress phenotypes caused by excessive expression of Ga/4. If true this 

would suggest that parkin may prevent other defects caused by toxic proteins 
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Chapter 2: Parkin counteracts symptoms in a 

Drosophila model of Parkinson's disease 

A version of this chapter has been published in BMC Neuroscience (Haywood and Staveley, 

2004). 
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2.1 Introduction 

Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by muscle 

tremors in stationary limbs, bradykinesia (slowed movement) and difficulty initiating and 

sustaining movements, and affects 1-2% of the population older than sixty years of age 

(Dawson, 2000; Giasson and Lee, 2001; Lansbury and Brice, 2002; Parkinson, 1817; Spacey 

and Wood, 1999). As the disease progresses, both the sense of balance and the memory of the 

affected individual deteriorate. Post-mortem analysis reveals the selective loss of 

dopaminergic neurons from the substantia nigra region of the brain. Filamentous protein 

inclusions, known as Lewy bodies, are found within the neuronal cell bodies of the affected 

area in most but not all PD patients (Giasson and Lee, 2001). Although the majority ofPD 

cases appear to be sp_oradic, about 5-15% have been determined to have an inherited basis (de 

Silva et al., 2000; Mizuno et al., 2001). Recently, mutations in a number of genes have been 

identified as causes ofPD, and many of these genes are associated with the 

ubiquitin/proteasome protein degradation pathway. 

Mutations in the gene encoding the a-synuclein protein lead to the development of Autosomal 

Dominant PD (ADPD) (Polymeropoulos eta!., 1996; Polymeropoulos et al., 1997). The a­

synuclein protein is an abundant 140 amino acid, cytosolic protein found at the pre-synaptic 

region of neurons (Clayton and George, 1998; Jakes eta!., 1994). a-synuclein appears to be 

involved in the biosynthesis of dopamine (Baptista et al., 2003; Perez eta!., 2002). Mutations 

in the a-synuclein gene (Polymeropoulos eta!., 1996; Polymeropoulos eta!., 1997) may lead 

to enhanced oligomerization and fibril formation of the a-synuclein protein (Conway eta!., 

1998; Conway eta!., 2000a; Conway eta!., 2000b). 
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Autosomal Recessive Juvenile Parkinson's disease (ARJP), another inherited form of PD, has 

been attributed to a number of point mutations and deletions of the parkin gene (Kitada et a!., 

1998; Munoz et al., 2000; Nisipeanu eta!., 1999). ARJP is specifically characterized by a 

very early age of onset, mostly before forty years of age, and the absence of Lewy bodies 

(Hayashi et al., 2000; Ishikawa and Tsuji, 1996; Mori et al., 1998). In humans, the parkin 

gene encodes a 465 amino acid protein (Kitada et al., 1998) that functions as one of a number 

of E3 ubiquitin protein ligases, components of the ubiquitin/proteasome degradation pathway 

(Shimura et al., 2000). Ubiquitin protein ligases act to identify damaged, misfolded, and short­

lived proteins to mediate the ubiquitination (the sequential attachment of a number of 

ubiquitin monomers) of these proteins, which are targeted to the proteasome (Hershko and 

Ciechanover, 1998; Pickart, 2001). Experiments in tissue culture have demonstrated that 

parkin can ubiquitinate a number of substrates including a glycosylated form of a-synuclein 

(Shimura et al., 2001), the Pael receptor (Imai et al., 2001), CDCrel-1 (Zhang et al., 2000), the 

a-synuclein-binding protein synphilin-1 (Chung et al., 2001 ), and parkin itself (Imai et al., 

2000; Zhang et al., 2000). The loss of parkin may lead to an accumulation of one or a number 

of proteins in sufficient quantities to cause neuronal cell death. 

The interaction of parkin with a-synuclein suggests a common mechanism underlying 

inherited forms ofPD. Indeed, elevated expression of parkin protects neuronal explants from 

the toxicity associated with expression of a-synuclein (Petrucelli et al., 2002; Shimura eta!., 

2001). The disease inducing-forms of a-synuclein may prevent its own degradation and result 

in toxic accumulation. In ARJP, functional parkin protein is lost along with the ability to 

mediate the ubiquitination of glycosylated a-synuclein and may lead to the accumulation of 
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this protein (Shimura et al., 2001). Our working hypothesis is that aspects of parkin-mediated 

protein degradation are compromised in PD. 

The first Drosophila melanogaster model of PD was generated by the conditional expression 

of human a-synuclein in transgenic Drosophila (Feany and Bender, 2000). Flies that express 

a-synuclein, in either a pan-neural or dopaminergic neuron specific manner, show a marked 

age-dependent loss of dorsal-medial dopaminergic neurons. Cytoplasmic inclusions were 

observed in a-synuclein-expressing flies approximately 20 days after eclosion. While control 

flies exhibit a strong negative geotaxis, these transgenic flies prematurely lose their climbing 

ability. In addition, expression of a-synuclein in the developing eye results in precocious 

degeneration of the retina. In this model expression of a number of genes are dysregulated 

prior to the onset of neurodegeneration (Scherzer et al., 2003). These features recapitulate the 

main behavioural and pathological phenotypes of PD and provide an excellent model system 

to study the biological basis of the disease. 

The Drosophila a-synuclein based model has been used to investigate a number of aspects of 

PD. Pharmacological agents, such as the dopamine precursor levodopa, dopamine receptor 

agonists (bromocriptine, pergolide and SK&F38393), and the anticholinergic atropine, were 

demonstrated to modify the age-dependent loss of climbing ability (Pendleton et al., 2002). 

Co-expression of the molecular chaperone HSP70 gene with a-synuclein prevented 

dopaminergic neuronal degeneration (Auluck et al., 2002). Interference with endogenous 

chaperone activity accelerated the toxicity of a-synuclein demonstrating a role for chaperones 

in the pathology of the disease. Suppression ofHSP90, a negative regulator of heat shock 
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factor 1, by feeding flies geldanamycin prevents dopaminergic neuronal cell death (Auluck 

and Bonini, 2002). Recently, the expression of human parkin has been shown to suppress the 

loss of dopaminergic neurons induced by a-synuclein in Drosophila (Yang eta!., 2003). This 

model has proven to be an effective tool in the investigation of the biological basis of PD. 

To investigate the role of parkin in the a-synuclein-based model of Parkinson's disease in 

Drosophila, we have characterized and expressed the Drosophila homologue of parkin in this 

model. Our results demonstrate that parkin can counteract the effects of a-synuclein on 

climbing activity and retinal degeneration. 

2.2 Materials and Methods 

2.2.1 Bioinformatic and sequence analysis 

The Drosophila melanogaster homologue of parkin was identified through a search of the 

Berkeley Drosophila Genome Project queried with the human parkin amino acid sequence, 

AB009973.1. A clone ofthe Drosophila parkin eDNA (SD01679) was obtained from 

Research Genetics (Stapleton eta!., 2002), sub-cloned and sequenced (Cortec DNA Service 

Laboratories Inc., Kingston, ON, Canada). The intron/exon map was constructed by 

comparison of the eDNA to the corresponding genomic region. Other homologues of parkin 

were identified with the tblastn algorithm (Altschul eta!., 1997) ofthe National Center for 

Biotechnology Information (NCB I) using the theoretical translation of SDO 1679 eDNA. The 

blast2 sequence comparison program (NCBI) was used to compare the Rattus norvegicus 

(NM_020093.1), Mus musculus (AB019558.1) and Anopheles gambiae (XM316606.1) parkin 
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protein sequences individually with the D. melanogaster parkin protein sequence (Altschul et 

al., 1997). The multi-alignment of the five parkin homologues from D. melanogaster, A. 

gambiae, R. norvegicus, M musculus and Homo sapiens was constructed by editing the results 

from the multialign ClustalW program from the Pole Bio-Informatique Lyonnaise (Thompson 

et al., 1994). 

2.2.2 Fly stocks and culture 

Dr. M. Feany (Harvard Medical School) and Dr. J. Hirsh (University of Virginia) generously 

provided UAS-a-synuclein (Feany and Bender, 2000) and Ddc-Gaf44
·
36 flies (Li et al., 2000) 

respectively. The glass mediated receptor (GMR)-Ga/4 flies (Freeman, 1996) were obtained 

from the Bloomington Drosophila Stock Center at University oflndiana, Bloomington. A 

Bgni!Xhol fragment containing the parkin eDNA (SD01679) was subcloned into the pUAST 

vector to generate the UAS-parkin transgene. Two independent transgenic lines were 

generated using heat shock nasa source oftransposase and standard injection techniques into 

w1118 embryos. Double transgenic lines with UAS-a-synuclein; UAS-parkinu and UAS-a­

synuclein;UAS-parkin2·1 were generated using standard techniques. To drive expression ofthe 

transgenes, Ddc-Gal4 (for expression in the dopaminergic neurons) or GMR-Gal4 (for 

expression in the eye) homozygous females were crossed to w1118 males (control) or UAS-a­

synuclein males with or without UAS-parkinJ.J or UAS-parkin2·1• All flies were cultured on 

standard cornmeal/yeast/molasses/agar media at 25°C. 
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2.2.3 In situ hybridization analysis 

Third instar larvae were dissected in phosphate buffered saline (PBS), fixed in 4% 

formaldehyde and dehydrated in methanol and ethanol. The carcases were probed with a DIG 

labelled anti-sense parkin RNA probe generated from a linear cut plasmid containing the 

entire parkin eDNA using the Roche Applied Science DIG Northern starter kit and reduced in 

size with carbonate buffer treatment. To visualize parkin RNA alkaline phosphatase labelled 

anti-DIG anti-bodies were incubated with the carcases and subjected to alkaline phosphate 

treatment as per the Roche Applied Science DIG application manual. The eye discs were 

dissected out completely and examined under light microscopy. The genotypes of the larvae 

examined were 1) w111s; 2) w111 s;GMR-Gal4/+; UAS-parkinl.l/+; and 3) w111 s;GMR­

Gal4/+;UAS-parkin2·1f+ and at least ten of each genotype were examined. 

2.2.4 Aging analysis 

Adult males were collected under gaseous carbon dioxide anaesthetic and aged in small 

groups ( ~ 10 or less per vial) upon standard cornmeal/yeast/molasses/agar media at 25°C in 

upright standard plastic shell vials. The flies were scored for viability every two to three days 

and transferred to fresh media without anaesthesia (Staveley et a!., 1990). The numbers of 

individuals aged are as follows: UAS-a-synuclein/+; Ddc-Gal4/+ = 191; UAS-a-synuclein/+; 

UAS-parkin2.1/Ddc-Gal4 = 292; UAS-a-synucleinl+; UAS-parkinl.I/Ddc-Gal4 = 204; w111s; 

Ddc-Gal4/+ = 173; UAS-parkinl.I/Ddc-Gal4 = 262; and UAS-parkin2.1/Ddc-Gal4 = 227. 
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2.2.5 Locomotion assay 

Flies were assayed for their ability to climb as described by Feany and Bender (Feany and 

Bender, 2000). Every five days, forty male flies from a cohort of flies were assayed for their 

ability to climb six centimetres in eighteen seconds in a sterile plastic vial. Twenty trials were 

carried out for each time point. Data shown represent the results from flies tested over ninety 

days. 

2.2.6 Scanning electron microscopy of the Drosophila eye 

Flies were of each genotype 1) wll
18

; UAS-a-synuclein/GMR-Gal4; 2) w1118
; UAS-a­

synuclein/GMR-Gal4; UAS-parkinul+; and 3) wll
18

; UAS-a-synuclein/GMR-Ga/4; UAS­

parkin2·1 I+ aged and ·frozen in a -70°C ethanol bath. Whole flies were mounted, desiccated 

overnight and coated in gold before photography at 150 times magnification with a Hitachi S-

570 SEM as per standard methods. For each condition at least six flies were analysed. 

2.2.7 Histological examination of Drosophila adult retinas 

Adult flies 1) w1118;UAS-a-synuclein/GMR-Gal4; 2) w1118;UAS-a-synuclein/GMR-Gal4;UAS­

parkinu/+; and 3) wll
18;UAS-a-synuclein!GMR-Gal4;UAS-parkin2·1f+ were aged (one or 

thirty days after eclosion), fixed in Karnovsky's fixative and embedded in epon. Tangential 

retinal sections were prepared at a thickness of 0.5 !!ill and stained with toluidine blue, 

examined by light microscopy and photographed at magnification of 800 times. 
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2.3 Results 

2.3.1 Characterisation of Drosophila melanogaster parkin 

The Drosophila melanogaster parkin homologue was identified through a search of the 

Berkeley Drosophila Genome Project (BDGP) utilizing the tBlastn search algorithm. The 

parkin gene is located on the left arm of the third chromosome, in the polytene chromosome 

section 78C within the genomic scaffolding region AE003593 (BDGP), and consists of 6 

exons over 2.2 kb (Figure 2-lA). A search of the genome for additional parkin homologues 

revealed none. Our analysis confirmed the sequence of parkin to be identical to that reported 

by the BDGP (A Y058754.1). Two potential initiation codons for the parkin protein are 

separated by 42 base pairs at the 5' region of the transcript. As the second potential start codon 

is preceded by CAAA, a match to the Drosophila Kozak consensus sequence 

(C/A)AA(A/C)ATG) oftranslation initiation (Cavener, 1987), we have assigned this as the 

most likely start codon. Furthermore, of the preceding fourteen potential codons only two use 

preferred codons (Moriyama and Powell, 1997) (data not shown). The Drosophila parkin gene 

was reported by Greene and colleagues (Greene et al., 2003), while the current experiments 

were being conducted. 
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Figure 2-1: Dipteran and mamm:1Uan p:lrkin proteins art well conserved. 
A - Schematic representation oflhe Drosophila melanog<mer parkin tniDscription unit and its 
location in the genomic scaffolding region AE003593. B- Clustal\V alignment of the 
Drosophila melanogaster parkin with homologues from Anopheles gambiae, Rattus 
rrorvegicus, M11s m11SC11lus and Homo sapiens. Highlighted are the Ubiquitio-like Domain 
(UBL) (green box); the Unique Parkin Domain (UPD) (red box); RJNGI and RJNG2 (blue 
boxes); In-Between Ring Domain (!RB) (black box). "*" and red lettering indicates amino 
acids that are identical in all sequences in llte alignment. ":" and green lettering indicates 
conserved substitutions."."' and blue lettering indicales scmi .. conscrved substitutions. 

2-53 



2.3.2 The parkin protein is well conserved 

The Drosophila melanogaster parkin protein has been reported to be 42% identical to human 

parkin (Greene et al., 2003) (Figure 2-lB). Parkin protein homologues were identified from R. 

norvegicus (NM_020093.1) and M musculus (AB019558.1) via the tblastn algorithm of the 

National Center for Biotechnology Information (NCBI). Both the R. norvegicus and M 

musculus homologues were found to have 44% identity and 60% similarity to D. melanogaster 

parkin when analysed by the blast2 algorithm (Figure 2-lB). In addition, we have determined 

that the A. s gambiae sequence XM316606.1 (Holt et al., 2002) is a homologue of parkin. Like­

D. melanogaster, the A. gambiae transcript has two potential in-frame translation start sites. 

The Kozak sequence prior to the first ATG is very poor, however the second site closely 

resembles the consensus sequence and therefore it is very likely the start site. We determined 

that the theoretical A. gambiae parkin protein has 65% identity and 79% similarity to D. 

melanogaster parkin (Figure 2-1B). The parkin protein appears to be highly conserved at the 

amino acid sequence level. 

Alignment of D. melanogaster parkin protein sequences with the A. gambiae, R. norvegicus, 

M musculus and H sapiens homologues reveals conservation of the protein throughout a 

number of characteristic domains, including the Ubiquitin-like Domain (UBL), the Unique 

f.arkin Domain (UPD), the Really Interesting New Gene finger 1 (RING 1) domain, the In­

Between Ring (IBR) domain, and the RING2 domain (Figure 2-1B). In the amino-terminal 

region of the proteins, the first 15 amino acids are well conserved between A. gambiae and D. 

melanogaster, but absent in the mammalian proteins. The human UBL shows very high 

similarity (62%) to human ubiquitin (Kitada et al., 1998). Correspondingly the Drosophila 
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UBL (Figure 2-lB, green box) was found to have 43% identity and 67% similarity to 

Drosophila ubiquitin (AAA29007; data not shown). The second highly conserved region is 

unique to parkin and has been termed the unique parkin domain (UPD) (Kahle et al., 2000) 

(Figure 2-1, red box). D. melanogaster and A. gambiae share a similar eight amino acid 

insertion in the UPD (Figure 2-lB). There are two RING-finger domains that are defined by 

the consensus sequence C-X2-C-X9 ... 39-C-XI...3-H-X2 .. .3-C/H-X2-C-X4...4s-C-X2-C where X can 

be any amino acid (Figure 2-lB, blue boxes) (Freemont, 2000). These RlNG-finger domains 

flank a cysteine-rich domain designated the In-Between Ring (IBR) domain (Figure 2-1B, 

black box) (Morett and Bork, 1999). These three domains are responsible for binding to 

specific E2 ubiquitin conjugating enzymes (Imai et al., 2000; Shimura et al., 2000; Zhang et 

al., 2000). Between the RlNGl and the IBR domains there is an eighteen amino acid stretch of 

high conservation with the sequence 

(N/H)S(LIF)I(KIE)(E/D)(IIL)HHF(K/R)(LII)LX(RIE)E(E/Q)Y. A 41 amino acid segment 

separates the IBR and R1NG2 domains, and while the first half of this segment is not well 

conserved the second half is highly conserved with the sequence 

AX(E/Q)ARW(D/E)XA(S/T)(N/K)X(T/A)IKX(S/T)TKP. The carboxy-terminus is well 

conserved and has the following sequence M(G/ A)XHWF(G/D)( -N), suggesting a possible 

conserved function for the tail of the protein. As parkin undergoes self-ubiquitination (Zhang 

et al., 2000), conserved potential ubiquitination sites (lysine residues) were identified. There is 

a lysine residue that is completely conserved at K-42 of the dipterans and this corresponding 

residue is K-27 in mammals (Figure 2-1B, black arrow). The mouse and rat parkin 

homologues have been recently compared to Drosophila parkin (Bae et al., 2003), however a 

number of the above features were not discussed. Overall parkin appears to be highly 
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conserved between mammalian and dipteran species suggesting conservation of function 

among these species. 

2.3.3 Parkin suppresses degeneration of the ommatidia! array in flies that express a­

synuclein in the eye 

We generated stable transgenic flies that can conditionally express parkin when the UAS/Gal4 

expression system is utilized (Brand and Perrimon, 1993). In situ hybridization was used to 

confirm parkin expression in transgenic Drosophila (data not shown). Expression of parkin 

was directed to the developing eye using the GMR-Gal4 transgene resulting in no obvious 

alteration of the eye (data not shown). In vitro and cell culture research suggests that parkin 

can prevent a-synuclein-induced toxicity (Oluwatosin-Chigbu et al., 2003; Petrucelli et al., 

2002). Expression of human a-synuclein in the Drosophila eye causes premature deterioration 

of the retina (Feany and Bender, 2000). To examine if parkin could prevent a-synuclein­

induced degeneration, we co-expressed parkin with human a-synuclein in the developing eye. 

Cross-sections of the retinas of one-day-old flies that express a-synuclein appear to be intact, 

as previously described (Figure 2-2A) (Feany and Bender, 2000). The retinas of one-day-old 

flies that express both a-synuclein and parkin also appear normal (Figure 2-2B and C). As 

previously described, the retinas of thirty-day-old flies that express a-synuclein show signs of 

premature degeneration (Feany and Bender, 2000). Degeneration of the normal architecture of 

the eye is apparent (Figure 2-2D, black arrows) and reflects the disruption of the normal 

placement and alignment of the photoreceptors and supporting cells. In contrast, thirty-day-old 

flies that express a-synuclein and parkin maintain their ommatidia! arrays and morphology 
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Figure 2-2: Expression of parkin suppresses a.-:symcc/ein-induced retinol degeneration. 
Flies that express <>·>ynuclein with and without parkin were aged to I or 30 days old. They 
were fixed and embedded in epon. Tangential sections (0.5 IUD thick) of the retina were cut, 
stained with toludine blue and examined by light microscopy. Panels A-C represent one-day­
old Oies and panels D-F represent thirty-day-old flies. Black arrows indicate degeneration of 
the ommatidia! architecture. Tbe genot)'PCS are (A,D) w1118

; UAS·a·:synuclein/GMR-Ga/4, 
(B,E) w1118

; UAS-a-synuclein/GMR-Ga/4; UAS-parkin11/+, and (C,F) w1118
; UAS·a· 

synuclein/GMR-Ga/4; UAS-parkin'·' f+. Scale bar is 15 p.m. 
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(Figure 2-2E and F). This observation demonstrates that directed expression of parkin 

suppresses a-synuclein-dependent degeneration of the ommatidia! array. 

Retinal damage can be observed by examining an optical effect termed the pseudopupil, which 

is lost in aged flies that express a-synuclein (Feany and Bender, 2000). We examined flies that 

co-express a-synuclein and parkin, and there appeared to be some retention ofthis optical 

effect compared with flies that express a-synuclein alone (data not shown). Scanning electron 

microscopy of eyes revealed no obvious deterioration of the surface in flies that express a­

synuclein (Figure 2-3A and D) or flies that co-express a-synuclein and parkin (Figure 2-3B, C, 

E and F). Although a-synuclein causes degeneration of the ommatidia! array, the external 

structure of the eye is unaffected. 

2.3.4 Directed-expression of parkin to dopaminergic neurons does not affect climbing 

ability 

Young wild-type adult Drosophila exhibit a strong negative geotaxis, which is increased by 

mechanical stimulation (Le Bourg and Lints, 1992; Miquel et al., 1976). In order to measure 

climbing ability, flies are placed in a vial, gently tapped to the bottom and allowed to climb up 

the sides (Feany and Bender, 2000). When parkin is expressed in the dopaminergic neurons, 

these flies do not show any change in their climbing ability over their life span when 

compared with controls (Figure 2-4A). In addition, expression of parkin in dopaminergic 

neurons does not alter life span (Figure 2-4B). These results demonstrate that parkin 

expression in the dopaminergic neurons has little effect upon climbing ability or life span. 
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Figure 2-3: Expression of a-synuclein with and without parkin does not affect the 
external morphology of the eye. 
Scanning electron microscopy of flies that express a-synuclein with and without parkin shows 
no change in their external morphology over thirty days. Panels A-C represent one-day-old 
flies and panels D-F represent thirty-day-old flies. The genotypes are (A, D) w1118

; UAS-a­
synuclein/GMR-Gal4, (B, E) w1118

; UAS-a-synuclein/GMR-Gal4; UAS-parkinul+, and (C, F) 
w1118

; UAS-a-synuclein!GMR-Gal4; UAS-parkin2
·
1f+. Scale bar indicates 200 J.liD. 
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2.3.5 Parkin suppresses a-synuclein induced loss of climbing ability 

Flies that express a-synuclein, specifically in their dopaminergic neurons through the activity 

of the Ddc-Ga/4 transgene, were assayed for their climbing ability over their life span, and 

were found to prematurely lose their climbing ability (Figure 2-SA). Co-expression of parkin 

with a-synuclein suppresses this premature loss of climbing ability (Figure 2-SA). This 

suggests that parkin expression can act to prevent the deleterious effects of a-synuclein 

expressiOn. 

Aging assays were carried out in tandem with the climbing assays described above in order to 

account for changes in climbing ability as a result of premature senescence. Median survival 

age for flies that exp~ess a-synuclein is similar to flies that co-express a-synuclein with parkin 

(Figure 2-SB). This indicates that differences in climbing ability were not due to differences in 

life span. 

2.4 Discussion 

Drosophila parkin has a high degree of similarity to the mammalian and A. gambiae 

homologues. The five characteristic domains of the parkin protein, the Ubiquitin- like Domain 

(UBL), Unique £arkin Domain (UPD), Really Interesting New Gene finger 1 (RING 1) 

domain, In- Between Ring (IBR) domain and RING2 all show a high degree of similarity. In 

addition, the two dipterans, D. melanogaster and A. gambiae, have a highly conserved extra 

segment of 15 amino acids at the amino-terminal of the protein. The regions between the three 

carboxy-terminus domains are also highly conserved, which may indicate conservation of 
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function. Patients with ARJP caused by mutations in the UBL domain exhibit signs of lost 

substrate binding (Shimura et al., 2000). The UBL domain also appears to be involved in 

binding the Rpn10 subunit ofthe 26S proteasome as the R42P amino acid substitution in this 

domain was identified in ARJP patients and results in impaired proteasome binding of parkin 

(Figure 2-6) (Sakata et al., 2003 ). Alterations of the RING 1, RING2 and IBR domains of 

parkin result in an almost complete loss of ubiquitin conjugating enzyme H7 (UbcH7)-binding 

activity, which indicates that all three domains are functionally important in recruiting specific 

E2 ubiquitin conjugating enzymes (Tanaka et al., 2001). The RING I and RING2 domains are 

thought to collaborate to trap UbcH7 (Figure 2-6) (Tanaka et al., 2001 ). Amino acid 

substitutions in the RING 1 domain change the subcellular localization of parkin and enhance 

cytoplasmic and nuclear inclusions (Cookson et al., 2003). In addition, the amino acid 

substitutions C289G and C418R, which replace conserved cysteine residues in the RING 

domains, significantly decrease the solubility of parkin in cells (Gu et al., 2003). 

Ubiquitination generally occurs near the amino-terminus of proteins and ubiquitin monomers 

are attached to lysine residues (Pickart, 2001). Several lysine residues are absolutely 

conserved, including one in the UBL and two in the UPD, and these may be targets for 

ubiquitination. The existence of orthologues of mammalian parkin in invertebrates but not 

plants nor fungi (Marin and Ferrus, 2002) suggests an animal specific function for parkin 

activity. The highly conserved protein domains and sub-domains suggest the probable 

conservation of each domain's function, and given the high degree of similarity we suggest 

that the function of the Drosophila parkin protein is similar to that of the human parkin 

protein. 
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We demonstrate that the directed expression of parkin in the dopaminergic neurons and 

developing eyes leads to no obvious adverse effects. The unaltered phenotype observed when 

parkin is expressed in dopaminergic neurons is likely due to substrate specificity and to the 

ability of the parkin protein to target itself for degradation (Zhang et al., 2000). Under 

conditions of over-expression, parkin does not seem to target and tag essential proteins for 

degradation promiscuously. This may represent an excellent fail-safe mechanism the cell has 

developed to balance the levels of both parkin and its substrates. 

The Drosophila model of ADPD has been used to examine the effect of various 

pharmacological agents (Auluck and Bonini, 2002; Pendleton et al., 2002) and other genetic 

aspects ofthe disease (Auluck et al., 2002; Yang et al., 2003). We expressed parkin along 

with a-synuclein and found the suppression of a-synuclein-induced retinal degeneration and 

premature loss of climbing. These results indicate that parkin may target a-synuclein for 

degradation in vivo (Figure 2-6). Although co-immunoprecipitation studies have shown that 

parkin does not interact with or ubiquitinate non-modified a-synuclein (Chung et al., 2001), 

parkin will ubiquitinate 0-glycosylated a-synuclein (Shimura et al., 2001). Since we show 

suppression of the a-synuclein-induced phenotype, we believe that ectopically expressed a­

synuclein is modified in Drosophila, enabling its ubiquitination by parkin. A model of the 

modification of a-synuclein and subsequent ubiquitination by parkin is presented in Figure 

2-6. 

In order to select rational potential therapeutic agents, the molecular mechanisms behind 

disease progression must be characterized. Gene function studies with homologues of disease-
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causing genes in model organisms have been made practical through the advent of genome 

projects. Over-expression of parkin has no apparent adverse consequences and it suppresses 

the a-synuclein-induced PD symptoms in Drosophila. If this relationship is conserved in 

humans, we suggest that up-regulation of parkin should be a viable treatment for PD, and the 

selection of therapeutic strategies should be directed towards this end. 

2.5 Conclusion 

Our experiments demonstrate that the directed expression of the parkin gene counteracts the 

PD-like symptoms in the a-synuclein-induced Drosophila model of PD. Manipulation of the 

ubiquitin/proteasome degradation pathway in such a specific manner apparently remedies the 

toxic accumulation of a-synuclein. This study demonstrates the success of selective targeting 

of toxic proteins for degradation as an approach to address neurodegenerative conditions such 

as Parkinson;s disease. The development of therapies that regulate parkin expression or parkin 

protein activity may be crucial in the treatment of PD. 

2.6 Additional data for Chapter 2 

2.6.1 Testing of transgenic response to Gal4 

Generation of the stable transgenic lines that allow the conditional expression of parkin have 

been described previously (Haywood and Staveley, 2004). Expression of parkin was directed 

to the developing eye using the GMR-Gal4 transgene (Freeman, 1996). In situ hybridization 

of parkin was performed on the eye discs of GMR-Gal4 /+; UAS-parkin /+ and control GMR­

Gal4 /+; +I+ third instar larvae to determine transgenic expression (Figure 2-7). The blue 
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Chapter 3: Parkin reduces mutant a.-synuclein­

induced degeneration in a fly model of 

Parkinson's 

A version of this chapter is in press in Genome (Haywood and Staveley, 2006) 
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3.1 Introduction 

The neurodegenerative disorder Parkinson's disease (PD) is characterized by the progressive 

loss of motor control, difficulty initiating and sustaining movements and the selective loss of 

dopaminergic neurons from the substantia nigra region of the brain (Dawson, 2000; Parkinson, 

1817; Spacey and Wood, 1999). By the time the disease is diagnosed, generally 80% of these 

neurons are lost as between 50% and 60% of the nigral neurons can be lost with no obvious 

clinical consequence (Lansbury and Brice, 2002). Although the majority ofPD cases are 

apparently sporadic, approximately 5 to 15% have been determined to have an inherited basis 

(de Silva et al., 2000; Mizuno et al., 2001 ). Recently, mutations in a number of genes have 

been identified as causes ofPD, and many of these genes are associated with the 

ubiquitinlproteasome protein degradation pathway. 

One of the first identified genetic causes ofPD was mutations in a-synuclein (Polymeropoulos 

et al., 1996; Polymeropoulos et al., 1997). The a-synuclein protein is found at the 

pre-synaptic region of neurons (Clayton and George, 1999; Jakes et al., 1994; Kahle eta!., 

2000) and appears to be involved in the biosynthesis of dopamine (Baptista eta!., 2003; Perez 

et al., 2002). Three independent non-synonymous point mutations·in a-synuclein, have been 

identified as causes ofPD (Kruger eta!., 1998; Polymeropoulos eta!., 1996; Polymeropoulos 

et al., 1997; Zarranz et al., 2004). Alteration of the primary structure of the a-synuclein 

protein may enhance oligomerization and fibril formation (Conway et al., 1998). Whether 

these fibrils are a cause of toxicity or act in a mechanism to sequester toxic oligomers of a­

synuclein is an unresolved question. As triplication of the a-synuclein locus has been shown 
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to lead to the development ofthe disease (Singleton eta!., 2003), both the composition and the 

dosage of a-synuclein appear to play roles in the development of PD. 

A number of point mutations and deletions of the parkin gene cause Autosomal Recessive 

Juvenile Parkinson's disease (ARJP) (Kitada eta!.; 1998; Nisipeanu eta!., 1999). The parkin 

gene encodes a 465 amino acid protein (Kitada et a!., 1998), which functions as one of a 

number ofE3 ubiquitin protein ligases (Shimura eta!., 2000). Ubiquitin protein ligases 

mediate ubiquitination, the sequential attachment of a number of ubiquitin monomers, of 

damaged, misfolded and short-lived proteins, which are subsequently targeted to the 

proteasome for degradation (Hershko and Ciechanover, 1998; Pickart, 2001). In vitro 

ubiquitination assays demonstrate that the parkin protein can ubiquitinate a glycosylated form 

of a-synuclein (Shimura et a!., 2001 ). Elevated expression of parkin protects neuronal 

explants from the toxicity associated with expression of mutant a-synuclein (Petrucelli et a!., 

2002). The loss of parkin may lead to an accumulation of its protein substrates and 

endoplasmic reticulum stress (Imai et al., 2000; Imai et a!., 2001 ), which then may trigger the 

activation of cellular suicide mechanisms (Rao et a!., 2002). The role of parkin appears to be 

the protection of cells from the toxic effects of inappropriate protein behaviour. 

The conditional expression of human a-synuclein in transgenic Drosophila melanogaster 

provides an excellent model ofPD (Feany and Bender, 2000). Pan-neuronal expression of 

both wild type and mutant a-synuclein leads to premature loss of climbing ability, a feature 

that control flies retain into old age (Feany and Bender, 2000). In addition, the expression of 

a-synuclein in the developing eye results in precocious degeneration of the retina. Expression 
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of Drosophila melanogaster parkin can suppress the PD-like phenotypes caused by directed 

expression of wild type a-synuclein (Haywood and Staveley, 2004). These features 

recapitulate the main behavioural and pathological phenotypes of PD and provide an excellent 

model system to study the biological basis of the disease. 

The A30P mutant form of a-synuclein, that substitutes the alanine at position 30 with a 

proline, causes Autosomal Dominant PD in humans (Kruger eta!., 1998). In Drosophila 

melanogaster, expression of A30Pa-synuclein in a pan-neuronal fashion has a deleterious 

effect on climbing ability without affecting lifespan (Feany and Bender, 2000). Recently, we 

have demonstrated that co-expression of parkin with wild type a-synuclein counteracts the 

Parkinson's-like effects of a-synuclein expression (Haywood and Staveley, 2004). From the 

literature it is unclear as to whether alterations in a-synuclein inhibit its ability to be targeted 

for degradation by parkin in vivo. Should the A30P amino acid substitution prevent parkin 

from mediating a-synuclein ubiquitination then the loss of climbing ability and retinal 

degeneration caused by altered a-synuclein will not be inhibited by co-expression of parkin. 

To determine if parkin has the ability to suppress the deleterious effects of mutant a­

synuclein, we have co-expressed parkin withA30Pa-synuclein and compared the flies 

climbing ability and retinal degeneration with flies that express mutant a-synuclein alone. We 

demonstrate that parkin can counteract the effects of mutant a-synuclein-induced retinal 

degeneration and improve the flies climbing activity. This is the first demonstration that a 

directed increase in parkin expression can counteract the effects of mutant a-synuclein in an 

experimental organism. 
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3.2 Methods 

3.2.1 Fly stocks and culture 

Dr. M. Feany (Harvard Medical School) generously provided the UAS-A30Pa-synuclein flies 

(Feany and Bender, 2000) and, similarly, Dr. J. Hirsh (University of Virginia) provided the 

Ddc-Gal44
·
36 stock (Li et al., 2000). The GMR-Gal4 flies (Freeman, 1996) were obtained 

from the Bloomington Drosophila Stock Center oflndiana University at Bloomington. The 

two lines, UAS-parkin1
·
1!TM3 and UAS-parkin2

·
1
, were independently derived through standard 

Drosophila transgenic techniques as previously reported (Haywood and Staveley, 2004). 

These lines were used to generate double transgenic lines of the genotypes 

UAS-A3 OP a-synuclein/CyO; UAS-parkinu /TM3 and 

UAS-A30Pa-synuclein/Cy0;UAS-parkin2.1/TM3 using standard techniques. To drive 

expression of the transgenes, Ddc-Gal44
·
36 (for expression in the dopaminergic neurons) or 

GMR-Gal4 (for expression in the eye) homozygous females of these lines were crossed to 

UAS-A30Pa-synuclein males with or without UAS-parkin1
·
1 or UAS-parkin2

·
1

. All flies were 

cultured on standard cornmeal/yeast/molasses/agar media at 25°C. 

3.2.2 Climbing ability assay 

Flies were assayed for their ability to climb as by a standard method (Feany and Bender, 

2000). Every five days, eighty male flies from a cohort were assayed for their ability to climb 

six centimetres in eighteen seconds in a sterile plastic vial. Twenty trials were carried out for 

each time point. Flies were tested for up to ninety days. This experiment was repeated and 

the results compiled and statistically analysed through Prism 4.02 software. Initially the data 
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was graphed with the standard errors of the mean and subjected to a one-way ANOVA, this 

was followed up by linear regression curve fit analysis with 95% confidence intervals. 

3.2.3 Aging analysis 

Adult males were aged in small groups (n ~ 20 individuals) in vials upon standard media at 

25°C and scored for viability every two to three days as described previously (Staveley et al., 

1990). The total numbers of individuals aged were: w1118
; Ddc-Gal44

·
36!+ = 180, 

UAS-A30Pa-synuclein/+; Ddc-Gal44
·
36!+ = 218, 

UAS-A3 OP a-synuclein/+; UAS-parkinu I Ddc-Gal44
·
36 

= 182, 

UAS-A30Pa-synuclein/+; UAS-parkin2
·
1 /Ddc-Ga/44

·
36 = 245. The data was subjected to a log 

rank test and the mean life spans were also compared using Prism 4.02 software. 

3.2.4 Histological examination of adult Drosophila melanogaster retinas 

Nine adult flies of each genotype were aged (one or thirty days after eclosion), fixed in 

Karnovsky's fixative and embedded in epon as previously described (Feany and Bender, 

2000). Tangential retinal sections were prepared at a thickness of 0.5 ~m and stained with 

toluidine blue, examined by light microscopy and photographed at magnification of 800 times. 

Eight eye slices from separate 30-day-old flies were analysed by counting the number of 

ommatidia in that slice. These numbers were collated and an average percentage of disrupted 

ommatidia calculated and statistically analysed through Prism 4.02 software. 
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3.3 Results 

3.3.1 Directed expression of parkin increases the climbing ability of flies that express 

mutant a-synuclein 

Aging assays were carried out in tandem with the climbing assays described above in order to 

account for changes in climbing ability as a result of premature senescence. Comparison of 

survival curves indicates that there is no difference between the longevity of flies that express 

A30Pa-synuclein with and without the UAS-parkin1
·
1 transgene (Figure 3-lA). A Logrank test 

shows the two curves are not significantly different. The survival curve of flies that express 

A30Pa-synuclein and UAS-parkin2
·
1 show a slight and significant decrease in median survival 

age compared with flies that express A30Pa-synuclein alone (Figure 3-lA). 

Flies that express mutant a-synuclein with and without parkin in their dopaminergic neurons 

were assayed for climbing ability. Flies that express bothA30Pa-synuclein and parkin 

trans genes, specifically in the dopaminergic neurons under the control of Gal4, show an 

extention of climbing ability at later ages compared with flies that express mutant a-synuclein 

alone (Table 3-1 and Figure 3-lB). This suggests that parkin can act to prevent any 

deleterious effects mutant a-synuclein expression may have and certainly acts to improve the 

climbing ability of these flies over their lifespan. On the basis of the aging assay, apparently 

the improved climbing ability in later life is not due to increased mean lifespan. 

3-78 



A 

B 

100 

90 

80 

70 

iii 
.i:! 60 
~ 
::s 
Ill 50 .... c 
Ql 
u 40 .. 
l. 

30 

20 

10 

0 
0 

25 , 
Ql 

..CI 

.5 u .... c 50 Ql 
u .. 
Ql 
ll.. . 
0 
0 ... 

75 

--- W 1118; UAS-A30P a-synucleinl+; Ddc-Ga/4 4·
36!+ 

--.-- w1118;UAS-A30Pa-synucleini+;UASparkin 1
·
1/Ddc-Ga/4 4

·
36 

--- w1118; UAS-A30P a-synuc/einl+; UASparkin 2· 
1/Ddc-Ga/4

4 36 

10 20 30 40 50 60 70 80 90 100 110 120 130 

Age (days after eclosion) 

• w'"";UAS-A30Pa-synucleini+;Ddc-Ga/4 4·
36!+ 

"' W 1118;UAS-A30Pa-synucleini+;UASparkin 11/0dc-Ga/4
4

·
36 

• W 1118;UAS-A30Pa-synucleini+;UASparkin 2·
1/Ddc-Ga/4 4

·
36 

1001+---~---r---r--~--~----r---.---~--.---· 
0 10 20 30 40 50 60 70 80 90 100 

Age (days after eclosion) 

Figure 3-1: Expression of parkin increases climbing ability of flies expressing a-synuclein 
A- The life spans of flies that express A30Pa-synuclein with and without parkin are shown. 
Genotypes are w1

IJ
8;UAS-A30Pa-synuclein/+;Ddc-Gal44·36!+ (square); wii 18;UAS­

A30Pa-synuclein/+;UAS-parkinu/Ddc-Gal44·36 (triangle); w1118;UAS­
A30Pa-synuclein/+;UAS-parkin2·1!Ddc-Gal44·36 (circle). Logrank test comparison of flies that 
express mutant a-synuclein with and without parkin1·1 are not significantly different, p = 
0.1106. However comparison flies that express mutant a-synuclein with and without parkin2·1 

are significantly different, p = 0. 0001. B - Aged flies that express parkin and mutant 
a-synuclein climb significantly better than flies that express mutant a-synuclein. The 
percentage of flies that climbed successfully was subtracted from 100. The genotypes are 
marked the same as in A. The error bars show the standard error of the mean of twenty trials 
at each point. Note the error bars are mostly within the symbols. 
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Table 3-1: Comparison of the non-linear fitted curves for climbing ability showing slopes 
(K), standard error (SE), and confidence intervals (CI). 
The slope of the fitted curve for the flies that express mutant a-synuclein with and without 
parkin are 0.05 and 0.08 or 0.07 and do not overlap within a 95% confidence interval. 

Genotype Slope (K) Standard error 95% Confidence 
(SE) intervals (CI) 

UAS-A30P a-synucleinl+; 
0.05 0.0009 0.050 to 0.054 

Ddc-Gal4/+ 
UAS-A30P a-synuclein/+; 
Ddc-Gal4/UAS-parkin1

·
1 0.08 0.0012 0.074 to 0.078 

UAS-A30P a-synucleinl+; 
Ddc-Gal4/ UAS-parkin2

·
1 0.07 0.0016 0.070 to 0.076 
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3.3.2 Directed expression of parkin suppresses mutant a.-synuclein-induced 

degeneration of the ommatidial array 

Ectopic expression of parkin prevents premature wild type a.-synuclein-induced degeneration 

in the Drosophila melanogaster eye (Haywood and Staveley, 2004). To determine if parkin 

has a similar ability to suppress mutant a.-synuclein-induced premature degeneration, A30Pa­

synuclein and parkin were co-expressed in the Drosophila eye. Cross-sections of the retinas 

of one-day-old flies that express A30Pa-synuclein or both mutant a-synuclein and parkin 

appear intact and normal (Figure 3-2A and B). As previously described, the retinas of 

thirty-day-old flies that express mutant a-synuclein show signs of premature degeneration 

(Feany and Bender, 2000), such as disintegration ofthe outer ring of the ommatidia and 

distortion of the nor~ally close arrangement ofrhabdomeres (Figure 3-2C, black arrows). On 

average approximately 40 percent of ommatidia had a defect including degeneration of the 

outer ring of the ommatidia or separation of the normally close arrangement of rhabdomeres 

(Figure 3-2E). In contrast thirty-day-old flies that express both A30Pa-synuclein and parkin 

appear to maintain an intact ommatidia! array (Figure 3-2D), with only 5% of ommatidia 

having any defect (Figure 3-2E). Retinal deterioration can be observed by examining an 

optical effect termed the pseudo-pupil, which is lost in aged flies that express mutant 

a-synuclein (Feany and Bender, 2000). When 20-day-old flies that co-express mutant 

a-synuclein and parkin were examined, there appeared to be retention ofthis optical effect 

compared with flies that express mutant a-synuclein alone (data not shown). Overall, 

expression of parkin suppresses degeneration of the ommatidia! array caused by the 

expression of mutant a-synuclein. 
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Figure 3-2: Expression of parkin suppresses a;-yuucleiu-induced retinal degeneration 
A and S are 0.5 ~m tangential sections from one-day-old flies and C and Dare 0.5 ~ 
tangential sections from thirty-day-old flies. The genotypes are (A and C) 
w1118;UAS-AJ0Pa-synuclein/GMR-Ga/4, (Band D) -..l'18;UAS· 
AJOPa-synuclein/GMR-Ga/4;UAS·parkin11/+. Black arrows indicate degeneration of outer 
edges of ommatidia. Scale bar is 15 ~lm. E ·The distorted ommatidia in a single section from 
eight separate 30-day-old fly eyes were counted and displayed as a percentage oftotal 
ommatidia. 
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3.4 Discussion 

Our experiments demonstrate that the directed expression of parkin in the developing eye 

negates the retinal defects resulting from mutant a-synuclein expression. In addition, we 

demonstrate that increased parkin expression in the dopaminergic neurons extend the climbing 

ability of aged flies that express mutant a-synuclein. This suggests that parkin can suppress 

the degeneration resulting from the mutant a-synuclein expression in spite of the amino acid 

substitution present in the mutant form of a-synuclein that is thought to lead to a 

conformational change in the protein (Conway et al., 1998). While the exact mechanism of 

phenotype suppression is not clear these result indicate that mutant a-synuclein is likely a 

target of parkin's ubiquitin ligase activity. 

Co-immunoprecipitation studies have suggested that the parkin protein does not interact with 

or ubiquitinate unmodified a-synuclein (Chung et al., 2001) but will ubiquitinate 

0-glycosylated a-synuclein (Shimura et al., 2001). We have established the suppression of 

mutant a-synuclein-induced retinal degeneration by the ectopic expression of parkin. 

Therefore, we believe that mutant a-synuclein protein is modified in Drosophila 

melanogaster in a manner that will enable it to be ubiquitinated by the parkin ubiquitin protein 

ligase then targeted to the proteasome for degradation. 

Transgenic Drosophila melanogaster that express either the wild-type or mutant form of a­

synuclein in their central nervous systems, via the pan-neural elav-Ga/4 transgene, have shown 

an age-dependent reduction in climbing ability when compared with control flies (Feany and 
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Bender, 2000). Notably flies that express mutant a-synuclein under the control of elav-Ga/4 

show a greater reduction in climbing ability. Although flies that express wild-type a-

synuclein in their dopaminergic neurons show a marked premature loss of climbing ability 

(Haywood and Staveley, 2004 ), expression of mutant a-synuclein results in only a slight 

premature loss of the ability to climb (Auluck et al., 2002). Nevertheless, over-expression by 

both of the parkin trans genes has the effect of extending the climbing ability of flies that 

express A30Pa-synuclein when compared to the controls. Thus the premature loss of climbing 

ability arising from a mutant form of a-synuclein that is known to cause PD in humans is 

prevented by the directed expression of parkin. 

Over-expression of parkin suppresses the PD-like symptoms induced in Drosophila 

melanogaster by wild-type (Haywood and Staveley, 2004) and mutant a-synuclein with no 

apparent adverse consequences. We suggest that the manipulation of the ubiquitin/proteasome 

degradation pathway in such a specific manner acts to remedy the toxicity of the accumulation 

of a-synuclein. Activation of parkin may be a viable treatment for PD caused by increased 

levels or mutant forms of a-synuclein and we suggest that the selection of therapeutic 

strategies should be directed towards this end. 
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Chapter 4: Analysis of parkin expression in the 

developing adult eye and wing 

This chapter has not been published and is supplemental to Chapters 2 and 3. 
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4.1 Introduction 

Autosomal Recessive Juvenile Parkinson's (ARJP) disease arises from mutations in 

parkin (Kitada et al., 1998). The parkin protein functions as an E3 ubiquitin protein 

ligase that acts to mediate the ubiquitination of a number of target proteins (Chung et al., 

2001; Imai et al., 2001; Shimura et al., 2000; Zhang et al., 2000), to be subsequently 

degraded by the proteasome. The mutations in the parkin gene associated with ARJP are 

believed to lead to either a non-functioning protein or complete lack of protein. The 

predicted consequence of little or no parkin protein ubiquitin ligase activity should be the 

accumulation of the proteins that parkin that would normally target for proteasomal 

degradation. In tum, the abnormal elevated levels ofthese proteins may cause an ER 

stress-induced cell death response (Imai et al., 2000; Imai et al., 2001; Rao et al., 2002). 

The role of parkin is clearly important in neuronal survival. 

The Drosophila parkin mutant model of PD exhibits a premature loss of climbing and 

flying ability (Greene et al., 2003). These mutants display a dropped-wing phenotype 

that is the result of premature apoptotic muscle degeneration induced by mitochondrial 

dysfunction. Other features of these flies are decreased mass and cell size along with 

decreased longevity. These phenotypes are not typically observed in humans (Pesah et 

al., 2004). In addition, the male parkin mutant flies are sterile and surprisingly there is a 

distinct lack of dopaminergic degeneration in both male and female flies (Greene et al., 

2003; Pesah et al., 2004). As the expression ofhumanparkin in Drosophila can suppress 

these phenotypes, the similarity of the human and Drosophila form of parkin is evident 

(Greene eta!., 2003). The non-neuronal phenotypic consequences of parkin loss appear 
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to be much more severe in flies than those observed in human PD, which may suggest 

that parkin plays a greater role in non-neuronal Drosophila. To examine the effect of 

parkin expression at different developmental stages and tissues expression of parkin was 

directed to the developing eye and wings. 

4.2 Materials and Methods 

4.2.1 Fly stocks and culture 

The GMR-Gal4 flies (Freeman, 1996), eyeless-Gal43
-
8 (w[*];{w[+m*]=Gal4-ey.H}3-8) 

and apterous-Ga/4 (y1 w 111s; P{GawB}apmct544/Cy0) (Calleja et al., 1996) flies were 

obtained from the Bloomington Drosophila Stock Center at the University oflndiana, 

Bloomington. The C5-Gal4 flies were a kind gift from G. Boulianne, University of 

Toronto (Gustafson and Boulianne, 1996). The UAS-parkin2
·
2 transgenic flies were 

generated by standard injection techniques into w111s embryos of the pUAST -parkin 

transgene (a Bglii/Xhol fragment containing the parkin eDNA (SD01679), sub-cloned 

into the pUAST vector) such that the full-length parkin eDNA is located on the second 

chromosome. To drive expression of the transgene, ap-Gal4 and C5-Gal4 (for 

expression in the wing) and ey-Gal4 and GMR-Ga/4 (for expression in the eye) females 

were crossed to w1118 (control), UAS-parkin2
·
2 males. All flies were cultured on standard 

cornmeal/yeast/molasses/agar media at 25°C. 
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4.2.2 Wing mounts and wing length analysis 

Flies ofthe genotypes 1) w 1118 ;C5-Gal4; 2) w 1118;UAS-parkin2.2/+;C5-Gal4/+; 3) 

w 1118;ap-Gal4, and 4) w 1118;UAS-parkin2
·
2!ap-Gal4 were aged for at least one day but not 

more than five days, collected and then quick-frozen in an ethanol bath at -70°C. Flies 

were dissected in 95% ethanol so that the whole dorsal region was intact (wings and 

upper thorax). These were incubated in 1M NaOH for 20 minutes to remove excess 

tissue and then washed in 50:50 glycerol:ethanol and mounted in this medium. The 

tissue was arranged to look at the wings from an overhead or dorsal view and covered 

with a cover slip and allowed to dry for several hours before the cover slips were sealed 

with clear nail varnish. The left wing from three males and three females of each 

genotype were examined by light microscopy and photographed at 1 OX magnification. 

The photograph negatives of the wings were scanned and the wing lengths measured 

from the wing tip to the intersection of wing veins L4 and L5 using Image J software. 

Wing lengths differences were analysed statistically by a two way ANOVA using Prism 

4.02 software. 

4.2.3 Scanning electron microscopy of the Drosophila eye 

Flies of each genotype 1) w 1118 ;GMR-Gal4, 2) w1118;UAS-parkin2
·
2!GMR-Gal4, 3) 

w 1118;ey-Gal4/+, and 4) w1118 ;UAS-parkin2
·
2!ey-Gal4 were collected within 24 hours of 

eclosion, aged for one day and frozen in a -70°C ethanol bath. Whole flies were mounted, 

desiccated overnight, coated in gold and then photographed at 150X magnification with a 

Hitachi S-570 SEM as per standard methods. For each genotype at least six male flies 

were observed. 
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4.3 Results 

The Drosophila eye is a highly regular structure, composed of some 800 individual units, 

such that any disruption of the structure is markedly apparent. As previously shown, 

expression of parkin in the developing eye disc, via the GMR-Gal4 transgene, does not 

alter the normal phenotype of either male or female adult eye (Figure 4-1) (Haywood and 

Staveley, 2004). This result is not unexpected as parkin functions as a ubiquitin ligase 

one would expect that it would only mediate the ubiquitination of its specific target 

proteins and not mediate the promiscuous ubiquitination of proteins simply because those 

protein are in excess. Actually, parkin can target itself for ubiquitination in a self­

regulating loop to prevent too much of the protein from being in the cell (Imai et al., 

2000; Zhang eta!., 2000). The expression of parkin under the control of the ey-Ga/4 

trans gene, shows no alteration of the normal architecture and configuration of the adult 

eye (Figure 4-2). However both male and female flies that express parkin have eyes that 

appear slightly smaller than controls (Figure 4-2). 

Expression of parkin in the developing eye has no effect on the gross morphology of the 

eye nor does there appear to be any effect on climbing or longevity when parkin is 

ectopically expressed in the dopaminergic neurons (Haywood and Staveley, 2004). To 

assess the effect of ectopic expression of parkin in other tissue types parkin expression 

was directed to the developing wing under the control of the C5-Gal4 transgene. No 

variation in the normal architecture of the adult wing was observed with parkin 
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Figure 4-1: Expression of parkin in the morphogenetic furrows does not affect the 
adult eye. 
Scanning electron microscopy of one day old fly eyes that express parkin appear the 
same as control fly eyes. Panels A and B are male fly eyes and panels C and D are female 
fly eyes. The genotypes are (A, C) w 1118;GMR-Gal4/+, (B, D) w 1118;UAS-parkin2

·
2!GMR­

Gal4. 
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Figure 4-2: Expression of parkin early in the developing eye results in slightly 
smaller adult eyes. 
Scanning electron microscopy of adult male Drosophila eyes that express parkin appear 
slightly smaller than control. Panels A,B are male fly eyes and panels C, D are female fly 
eyes. The genotypes are (A, C) w 1118 ;ey-Gal4, (B, D) w 1118;UAS-parkin2

·
2!ey-Gal4. 

4-93 



expression (Figure 4-3 panel A), nor was there a change in the average wing length of 

male or female flies (Figure 4-3 panel B, Table 4-1 ). Conversely, when parkin was 

expressed in the presumptive dorsal region of the wing imaginal disc via the ap-Ga/4 

transgene, a reduction in the wing size was observed for both the male and female flies 

that was not accompanied by gross morphological variations in the layout and structure 

ofthe wing (Figure 4-4 panel A). A 17% reduction in the wing length of the adult male 

flies and a 7% reduction in the wing length of the female flies was measured (Table 4-1, 

Figure 4-4 panel B). 

4.4 Discussion 

The directed expressiOn of parkin in the differentiating eye disc and the dopamine 

producing neurons has been shown to have no obvious deleterious effects (Haywood and 

Staveley, 2004). However, differences in wing length when parkin is expressed in the 

dorsal wing disc via the ap-Ga/4 transgene cannot be discounted. Other than this there is 

no evidence to suggest that the expression of parkin results in any other adverse effects. 

The phenomenon revealed by the genetic combination of ap-Ga/4 and UAS-parkin may 

provide valuable insight in the biological role of parkin. The ap-Gal4/UAS-parkin 

phenotype can also be exploited in order to genetically screen for modifiers of the parkin 

gene. 
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Figure 4-3: Expression of parkin in the developing wing does not alter the overall 
structure of the wing or wing length. 
Panel A: Left wings of two-day-old adult Drosophila were removed, mounted and 
photographed. A, Bare male and C, Dare female. The genotypes are (A, C) w 1118;C5-
Gal4; (B, D) wll

18 ;UAS-parkin2
·
2!C5-Gal4. Scale bar indicates 0.5 mm. Panel B: The 

average wing length of three wings of each genotype and gender shows there is no 
significant difference in the wing lengths. 
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Figure 4-4: Expression of parkin in the dorsal wing margin reduces the size of the 
wing. 
Panel A: Left wings of two-day-old adult Drosophila were removed, mounted and 
photographed. A, B are male and C, D are female. The genotypes are (A, C) w1118;ap­
Gal4; (B, D) w1118

; UAS-parkin2
·
2!ap-Gal4. Scale bar indicates 0.5 mm. Panel B: The 

average wing length of three wings of each genotype and gender shows there is a 
significant difference in the wing lengths of flies that express parkin compared with 
control. 

4-96 



Table 4-1: Wing length of flies that express parkin in the developing wing pouch via 
the C5-Gal4 wing trans gene 

Males Females 
Genotype 

Length SEM N Length SEM N 

w1118;C5-Gal4/+ 1.623 0.053 3 1.785 0.045 3 

w111 /j;parkin2
·
2!C5-

1.565 0.034 3 1.801 0.066 3 
Gal4 

Table 4-2: Wing length of flies that express parkin in the presumptive dorsal region 
of the wing imaginal ~isc via the ap-Ga/4 trans gene. 

Males Females 
Genotype 

Length SEM N Length SEM N 

w1118;ap-Gal4/+ 1.645 0.035 3 1.848 0.038 3 

w111 /j,parkin2
·
2fap-

1.377 0.004 3 1.730 0.023 3 
Gal4 
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Chapter 5: A method to generate truncated 

parkin transgene 

This chapter has not been published and is supplemental to Chapters 2 and 3. 
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5.1 Introduction 

In order to understand the function of parkin and its target proteins, an alternative genetic 

model of PD is desirable than the ones currently available. The parkin protein can be 

divided into two main domains; the Ubiquitin-like Domain/Unique .E_arkin Domain 

(UBL/UPD) region, which binds target proteins, and the RING-box (RING1-IBR­

RING2) region, which recruits specific E2 ubiquitin conjugating enzymes that act to 

attach ubiquitin monomers to the target protein (Tanaka et al., 2001 ). Expression of a 

truncated form of parkin that includes only the E2 binding domain could act in a 

dominant negative fashion by binding the specific E2 enzymes that full-length parkin 

would normally bind, which would prevent normal parkin from mediating the attachment 

of ubiquitin molecules to proteins that need to be destroyed. This in turn could lead to a 

build oftoxic proteins. Over-expression ofringbox (RB) parkin will be used to 

determine if such inhibitory effects exist and if truncation mutations in parkin lead to 

stress induced apoptosis. 

5.2 Materials and Methods 

5.2.1 Generation of plasmid with a truncated form of parkin 

Utilizing the parkin eDNA (SDO 1679) (Haywood and Staveley, 2004; Stapleton et al., 

2002) from Research Genetics as a template the RING-BOX region of parkin was 

generated by PCR. The primers were designed to generate a Bg!II restriction enzyme site 

at the 5' end and to adjust the sequence to generate a Drosophila Kozak consensus 
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translation initiation sequence (C/A)AA(A/C)ATG) (Cavener, 1987). The sequence 

selected for redesign is located just prior to the segment of the gene encoding the RING 

BOX. This particular sequence was: 

GAA AGT CTG GAG GTG GCC TGC GTG GAC and the changes made were: 

GAA .T c~ ITI GCC TGC GTG GAC to generate the dparkCtermBgl!I 

primer that included a stretch of 12 nucleotides of perfect match towards the 3' end ofthe 

primer, to facilitate specific annealing. The commonly used PMOOJ primer (CGT TAG 

AAC GCG GCT ACA AT) was selected for the 3' end, which encompasses the 

remainder of the multiple cloning site of the vector for flexibilty of cloning. The PCR 

cycle was designed to create maximal product with little non-specific product, several 

reactions were set up with varying salt and template concentrations. The best result was 

obtained with a final concentration of 1x PCR buffer, 2.75 mM MgCh, 0.1 mM dGTP, 

0.1 mM dTTP, 0.1 mM dATP, 0.1 mM dCTP, 0.1~-tM PMOOJ primer, 0.1~-tM 

dparkCtermBgl!I primer, 10 units of Taq DNA polymerase, 0.01 )lg of template and the 

cycle parameters of 1x 95°C for 3 minutes, then 20 x 95°C for 1 minute, 50°C for 30 

seconds, 72°C for 1.5 minutes followed by a final extension time of 4 minutes at 72°C 

before being cooled to 5°C. The resulting PCR reactions were run on a 1% agarose gel 

with a standard 1 kb ladder to confirm that the resulting product was of the expected size. 

The single resulting band at 900 base pairs was cut from the gel and the DNA extracted 

using the Qiagen Gel Extraction kit. A 1 ~-tl aliquot of the extracted sample was 

electrophoresed on a 1% agarose gel to confirm the product was retrieved. The 

remaining sample was digested with BgTII/Xhoi, subjected to a phenol/chloroform 

extraction to remove proteins and ligated into a BgTII!Xhoi cut pUAST vector with DNA 
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ligase enzyme in a slow melt bath (cup of ice left at room temperature) overnight. This 

ligated vector was transformed into E. coli and small-scale preparations checked for 

correct insert orientation before a large-scale preparation was performed. The insert will 

then be sequenced to check if the correct portion of the parkin gene has been amplified 

and cloned. 
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Chapter 6: Dopa decarboxylase (Ddc)-Ga/4 

dramatically reduces life span 

A version of this chapter has been published in Drosophila Information Service 
(Haywood et al., 2002). 
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6.1 Introduction 

The UAS/Gal4 ectopic expression system (Brand and Perrimon, 1993; Phelps and Brand, 

1998) has become an extremely useful approach for the study of specific genes in 

Drosophila melanogaster. This expression system relies upon Gal4 to bind the upstream 

activation sequence (UAS) in order to activate transcription of the target gene. A variety 

of transgenic Drosophila lines are readily available that express Gal4 in specific tissues 

or cell types. Our laboratory is interested in models of neurodegenerative diseases and 

we have initiated work with the Dopa decarboxylase (Ddc)-Gal4 transgenic expression 

lines to model Parkinson's disease in Drosophila by expressing genes in dopaminergic 

neurons. 

The first Drosophila melanogaster model of Parkinson's disease was developed by the 

generation of transgenic lines bearing wild-type and mutant forms of the human a­

synuclein gene cloned downstream of the UAS yeast promoter (Feany and Bender, 2000). 

There is no apparent Drosophila homologue of a-synuclein but expression of the human 

a-synuclein protein in the Drosophila nervous system recapitulated some features of 

Parkinson's disease. Expression of a-synuclein in the dopaminergic neurons (Feany and 

Bender, 2000) was driven by a transgene comprised of the Ddc gene promoter cloned 

upstream of Gal4. Originally, this transgene was developed to examine a Drosophila 

model of cocaine addiction (Li et al., 2000). The Parkinsonian flies, apparently normal at 

a young age, demonstrated a premature loss of locomotor (climbing) ability, loss of 

dopaminergic neurons and accumulation of a-synuclein-containing inclusions. In 
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addition, GMR-Ga/4 driven expression in the developing eye resulted in age-dependent 

retinal neurodegeneration. Subsequent treatment of the transgenic a-synuclein 

expressing flies with a number of pharmacological agents such as the dopamine precursor 

L-DOPA, dopamine receptor agonists (bromocriptine, pergolide and SK&F38393) and 

the anticholinergic atropine, all restored or partially restored the age-dependent loss 

ofclimbing ability (Pendleton eta!., 2002). Further, this model has been used to examine 

the suppression of the a-synuclein toxicity by the molecular chaperone, HSP70 (Auluck 

et a!., 2002). 

A good understanding of the effects of Ddc-Ga/4 expression in Drosophila melanogaster 

is essential to properly interpreting this model system. As a prelude to our exploration of 

models of Parkinson's disease in Drosophila, we began to investigate the biological 

properties ofthe Ddc-Ga/4 driver lines. We have shown that Ddc-Ga/4 causes reduced 

viability and is therefore not inactive in D. melanogaster. 

6.2 Materials and Methods 

6.2.1 Fly stocks and culture 

Ddc-Gaf44
·
3

D and Ddc-Ga/44
·
36 flies (Li eta!., 2000) were obtained from Jay Hirsh at the 

Department of Biology, University ofVirginia and wlll
8 flies were obtained from Dr. 

Howard Lipshitz at the Hospital for Sick Children in Toronto. To obtain heterozygotes, 

Ddc-Ga/4 homozygous males were crossed to w1118 females. All flies were cultured on 

standard cornmeal/yeast/molasses/agar media at 25°C. 
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6.2.2 Aging analysis 

Adult males were aged in small groups upon standard media at 25°C and scored for 

viability every two to three days as described previously (Staveley et al., 1990). The 

number of individuals aged were as follows: Ddc-Gal44·3D homo zygotes n = 1 02; Ddc­

Gal44·36 homozygotes n = 133; Ddc-Gal44·3D heterozygotes n = 280; Ddc-Gal44·36 

heterozygotes n = 119; w1118 n = 83). 

6.2.3 Locomotion assay 

The flies were assayed for their ability to climb in a manner similar to that described by 

Feany and Bender (2000). Every 4 to 5 days, 10 male flies of a cohort of aged flies were 

assayed for their ability to climb to the top of a vial within a period of 18 seconds. 

Twenty trials were carried out for each time point. 

6.3 Results and Discussion 

An investigation of the baseline biological consequences of Gal4 expression as directed 

by the Ddc promoter is essential to our studies of Parkinson's disease models in 

Drosophila. We began by crossing the Ddc-Gal443
D and Ddc-Gal44

·
36 driver lines to 

w1118 to conduct climbing assays. It quickly became apparent that the stocks ofboth Ddc­

Gal4 insertion lines required extra care to maintain and that the flies were apparently 

short-lived in both cases. As a result we decided to conduct longevity trials. 
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Homo zygotes of both insertions of the Ddc-Gal4 trans gene display a greatly reduced life 

span (Figure 6-1). For example only 43% and 44% of homozygous males for Ddc­

Gati·30 and Ddc-Gafi·36 respectively were alive by Day 6 after eclosion. While 50% 

of Ddc-Ga/44
·
30 male heterozygotes survive past the age of 88 days and Ddc-Ga/44

·
36 

male heterozygotes past 70 days of age. We assigned w1118 as the control strain in these 

experiments, 50% of which survived between 58 and 60 days. The shorter median life 

span of the control may reflect an insufficiency of the w1118 stock rather than an increase 

in viability of the heterozygotes. It is important to note that the very similar longevity 

profiles of the two independent insertions of Ddc-Gal4 suggest that the reduction in life 

span is due to the expression of the trans gene and not the site of insertion. 

The reduced viability of the Ddc-Gal4 homozygotes forced us to examine the locomotor 

activity of the Ddc-Ga/4 heterozygotes (Figure 6-2). However, the Ddc-Ga/44
·
30 and 

Ddc-Ga/4436 heterozygotes retain their ability to climb with age in a manner similar to 

the w1
II

8 controls. Due to greatly reduced viability, the locomotion ofhomozygotes was 

not measured. 
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Figure 6-1: Ddc-Gal4 reduces life span. 
Male homozygotes of the independent insertions of the Ddc-Gal4 trans gene, Ddc-Gal4 
4

·
30 (large triangles) and Ddc-Ga/4 4·

36 (small triangles) both display a greatly reduced life 
span. The heterozygotes of Ddc-Gal4 4·

30 (solid circles) and Ddc-Ga/4 4·
36 (solid 

diamonds), however display a normal, if not extended life span when compared to the 
control w1118 (solid squares) individuals. 
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Figure 6-2: Ddc-Ga/4 heterozygotes have normal locomotor (climbing) activity. 
The heterozygotes of Ddc-Ga/44

·
30 (solid circles) and Ddc-Ga/44

·
36 (solid diamonds) 

display a normal level of climbing ability when compared to the control w1118 (solid 
squares) flies. The locomotion ofhomozygotes was not measured due to poor viability. 
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The UAS/Gal4 ectopic expression system has made it possible to express genes and test 

the effects of overexpression in a variety of tissues. The Ddc-Gal4 driver has been used 

for expression of transgenes in the dopaminergic neurons including expressing the a-

synuclein gene to model Parkinson's disease (Feany and Bender, 2000). Although no 

UAS (cggagtactgtcctcc) promoter sequences are naturally found in D. melanogaster 

(Berkeley Drosophila Genome Project, pers. comm.), our laboratory has demonstrated 

that expression of Gal4 in the eye with the GMR-Gal4 transgene leads to increased levels 

of apoptosis and morphological defects (Kramer and Staveley, 2003). Although the 

mechanism by which Gal4 induces cell death is unclear, death of the dopaminergic 

neurons could certainly result in premature lethality in these flies. 
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Chapter 7: Analysis of apoptosis in Drosophila 

melanogaster with multiple inserts of 

the Ddc-Ga/4 transgene 

This chapter is supplemental to Chapter 6 and is part of a paper in preparation. 
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7.1 Introduction 

The UAS/Gal4 ectopic expression system (Brand and Perrimon, 1993; Phelps and Brand, 

1998) is widely used in the study of the effects of directed ectopic expression of specific 

genes in Drosophila melanogaster. Ga/4 expression is believed to be benign as there are 

no upstream activation sequence (UAS) sites or sequences in the Drosophila genome. 

Contrary to this belief expression of Gal4 appears to have negative consequences 

particularly when multiple copies of the transgene are present (Kramer and Staveley, 

2003, Sheppard, Haywood, Saunders and Staveley, in preparation). Expression of Gal4 

in the dopaminergic neurons leads to a shorter lifespan (Haywood et al., 2002) and 

expression of Gal4 in the developing eye causes a rough eye phenotype and appears to 

lead to excessive cell death (Kramer and Staveley, 2003). 

As I use the Ddc-Gal4 Drosophila line, which expresses Ga/4 in the dopaminergic 

neurons, a further understanding of the effects of Ddc-Gal4 expression was required in 

order to accurately interpret data generated from the progeny of these flies. Here, I 

specifically looked in the third instar larval brain to see where Ga/4 is expressed through 

directed expression of Green Fluorescent Protein (GFP). Third instar brains of flies that 

have multiple copies of the Ddc-Gal4 trans gene were then analysed for their level of 

apoptosis using the vital dye Acridine Orange. 
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7.2 Materials and Methods 

7.2.1 Fly stocks and culture 

UAS-GFP lines were obtained from the Bloomington Stock Center. Ddc-Gal4 4·
3

D and 

Ddc-Gal4 4·
36 flies (Li eta!., 2000) were obtained from Dr.Jay Hirsh at the Department of 

Biology, University ofVirginia and w1118 line was obtained from Dr. Howard Lipshitz at 

the Hospital for Sick Children in Toronto. Ddc-Ga/44
·
36 and Ddc-Gal44

·
3
D transgenic 

lines were combined using standard genetic techniques as follows. They were stably 

balanced onto a multiple balanced line w1118
; L/CyO,· Ki ftz!TM3, Sb e or w1118

,· L/CyO; 

Kifti0!TM6B, Tb Hue by an initial cross and a then backcross to obtain lines that were: 

wll1
8
; L/CyO; Ddc-Ga/436 ITM6B and wlll

8
; Ddc-Gal43

D /CyO; Kiftz/TM6B. These 

were then crossed together to obtain a stable line that had at least one insert of Ddc-Ga/4 

transgene on both the second and third chromosome. Initially these lines were very weak 

and were difficult to maintain however over time they became stronger and more viable, 

possibly due to selection of beneficial quantitative modifiers. All flies were cultured on 

standard cornmeal/yeast/molasses/agar media at 25°C. To obtain the various genotype 

combinations in the adults, specific parents were crossed such that the chromosome could 

be followed to ensure that the offspring had the correct genotype. For larval analysis a 

separate mating scheme was developed to ensure that 100% of offspring had the 

appropriate genotype for subsequent brain analysis. These mating schemes are shown in 

Table 7.1. 
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Table 7-1: Mating scheme to obtain larval Drosophila with multiple copies of the 
Ddc-Gal4 transgene 

Male 

Female 

w 1118 
· Ddc-Ga/4/Ddc-, 

Ga/4; Ddc-Gal4/Ddc-Gal4 

w1118
; Ddc-Gal4/Ddc­
Gal4; +/+ 

w1118
; Ddc-Gal4/Ddc­

Gal4; Ddc-Ga/4/+ 
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7.2.2 Acridine Orange staining of Drosophila larval brains 

This protocol was adapted from Bonini (2000). Third instar larvae that were crawling up 

the sides of vials were dissected in phosphate buffered saline (PBS) with 0.1% Tween20 

(PBT) to prevent the carcasses from sticking to the plastic of the 1.5 ml microfuge tubes 

and pipette tips. The carcasses were incubated in 0.5Jlg/ml Acridine Orange solution for 

5 minutes. The carcasses were rinsed in PBT and further dissected before being wet­

mounted in PBS (Bonini, 2000). The brains were visualized by fluorescent optics and 

photographed. 

7.2.3 Visualisation of GFP in Drosophila larval brains 

Ddc-Gal436 homozygous females were crossed to UAS-GFP males and raised at 25°C on 

standard cornmeal/yeast/agar. Crawling third instar larvae were dissected in PBT and 

wet mounted in PBS. The brains were visualized by fluorescent optics and 

photographed. 

7.3 Results and Discussion 

The double Ddc-Ga/4 lines produce progeny that had 2, 3 or 4 copies ofthe insert, 

notably homozygotes were viable albeit weak. Flies homozygous for the Ddc-Ga/4 

trans gene on the second chromosome that had at least one more copy of the trans gene on 

the third chromosome were sterile, which combined with the fact that I did not have a 

larval marker for the second chromosome made it impossible to obtain larva with four 

copies of Ddc-Ga/4 transgene. Other combinations were attempted unsuccessfully. 
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To determine the expression pattern of Gal4 by the Ddc-Gal4 transgenes GFP expression 

was directed under the control of the UAS via the Ddc-Gal436 transgene and third instar 

larval brains were dissected and examined. The predominant staining pattern is observed 

in the base of the larval brain in two distinct spots on each side of the larval brain (Figure 

7-lA and B). Based on an atlas of the Drosophila brain, this region appears to be the 

noduli, which are two ball-like neuropils that receive connections from protocerebral 

bridge neurons that, en route, provide collaterals to the staves of the fore brain (Hansen, 

1995-2000). There is further staining in the central nervous system (CNS) in distinct 

places that appear to be the cell bodies of serotonergic nerves (Figure 7-lA). This 

staining was not in the expected regions of the brain that are annotated in Figure 7-1 C. 

Previous studies have shown that overexpression of Gal4 can cause apoptosis and 

developmental defects when expressed in the eye imaginal disc (Kramer and Staveley, 

2003, Kramer, Haywood, Sheppard and Staveley submitted). To determine if 

overexpression of Gal4 in the dopaminergic neurons causes apoptosis we expressed Gal4 

through three copies of the Ddc-Gal4 transgene and examined the brains of crawling 

third instar larvae for apoptosis. Apoptotic cells were observed ubiquitously in the lobes 

of both the control and triple insert Ddc-Gal4 flies (Figure 7-2). However excessive 

apoptosis was observed in the two brain lobes of the triple insert Ddc-Gal4 flies 

compared with the control fly brain with no Ddc-Gal4 transgene (Figure 7-2). 
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Figure 7-1: Dopamine•·gic specific expression of GFP shows staining in the 
dopaminergic neurons and seroteroneurgic neurons. 
The brain and central nervous system (CNS) ofw1118;UAS-GFPI+; Ddc-Ga/4361+ lhird 
instar larvae visualized by fluorescent optics show staining in distiOC( regions of the brain 
aod CNS. Both figures A and Bare (be same geoo(ype bu( from a different angle. C • a 
schematic diagram of the dopaminergic neurons in a larval brain. Six clusters in the brain 
and several in the veotral ganglion. DM • dorsoposterior region of the superior 
protocerebrum near midline, DL I - Dorsal region fo brain lobes, more latereal and more 
posterior than DM, DL2- Posteromedial region of brain lobes, Sb-Subesophageal 
ganglion, posterior. Th- Prothoracie segment, merlials, ThL-Thoracic segments, 
laterals, AbU- Abdominal segmeots, medials, AbL - abdominal segments, laterals. 
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To reconcile the ubiquitous staining for apoptotic cells we speculate that the expression 

of Gal4 in the dopaminergic neurons has already caused the death of these neurons and 

downstream of their demise other cells, that they would normally signal to keep alive, are 

dying. 
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Chapter 8: Gal4-induced cell death is suppressed 

by parkin 

A version of this chapter has been submitted to BMC Biology (Haywood, Kramer, 
Sheppard and Staveley, 2006). 
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8.1 Introduction 

Drosophila melanogaster have emerged as one of the most successful models for the 

analysis of human disease genes in neurological disorders (Bier, 2005). The UAS/Gal4 

ectopic expression system is widely used in D. melanogaster to carry out studies of gene 

function and regulation (Brand and Perrimon, 1993; Phelps and Brand, 1998). This 

bipartite expression system utilizes the yeast transcription factor Gal4 and its target 

sequence, UAS (Upstream Activation Sequence), to which Gal4 binds in order to activate 

gene transcription. Gal4 can be expressed under the control of Drosophila-specific 

promoters with little effect on the organism. However, in certain tissues, expression of 

Gal4 can have adverse effects (Kramer and Staveley, 2003). For example, expression of 

Gal4 in the developing eye using the glass multiple reporter (GMR)-Gal4 transgene leads 

to a disorganised ommatidia! array in the adult. This phenotype had been previously 

described (Freeman, 1996; Helms et al., 1999; Hiesinger et al., 1999; White and Jarman, 

2000), however, no biological basis had been determined. As neurodegenerative diseases 

are often characterised by the accumulation of toxic proteins (Taylor et al., 2002), the 

ectopic expression of Gal4 could provide a system to examine components that could act 

to counter toxic protein accumulation. 

PD is a highly prevalent neurodegenerative disease with symptoms that include stationary 

muscle tremors, difficulty initiating movement and muscle rigidity (Spacey and Wood, 

1999). Loss of dopamine and dopamine-producing neurons is at the root of these 

symptoms. The loss of dopaminergic neurons, likely apoptotic in nature, may be 

activated through the accumulation of toxic proteins leading to stress of the endoplasmic 

8-121 



reticulum (ER) (Takahashi et al., 2003). Inherited forms ofPD account for 

approximately 5-10% of all PD patients (Mizuno eta!., 2001) and many of these genes 

are linked to the ubiquitin/proteasome protein degradation system (UPS) (Betarbet et a!., 

2005). The accumulation of toxic proteins due to the failure of the ubiquitin-dependent 

process of protein degradation has been proposed as a major factor in the destruction of 

neurons in sporadic and familial PD (Cookson, 2005; McNaught and Jenner, 2001; 

McNaught et al., 2001 ). Mutations in the parkin gene are the leading cause of early­

onset PD accounting for 49% of familial and 19% of sporadic cases with a mean age of 

onset less than 45 years old (Kruger, 2004; Lucking et al., 2000). The parkin protein 

functions as an E3 ubiquitin ligase (Shimura et a!., 2000), which mediates ubiquitination 

of specific target proteins (Chung et al., 2001; Imai eta!., 2001; Shimura et al., 2000; 

Zhang et a!., 2000). Ubiquitin-tagged proteins are subsequently digested by the 

proteasome. Recently, we have shown that parkin expression in Drosophila prevents the 

toxic effects of both wild type and mutant human a-synuclein (Haywood and Staveley, 

2004; Haywood and Staveley, 2006). The role of toxic protein accumulation in PD may 

become clear as more targets of parkin ubiquitination are identified. 

To address concerns about the effects of Gal4 expression, I showed that the rough eye 

phenotype caused by GMR-Gal4 is largely a result of Gal4-induced apoptosis during 

development and can be suppressed by inhibition of caspase activity. Furthermore, I 

addressed the possibility that parkin expression could suppress the consequences of high 

levels of Gal4, in the developing eye. I found that parkin can suppress developmental 

defects and apoptosis caused by Gal4. The ability of parkin to counter the toxicity of 
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exogenous and endogenous proteins may provide great insight into our understanding of 

neurodegenerative disease. 

8.2 Materials and Methods 

8.2.1 Fly stocks and culture 

The GMR-Ga/4 (Freeman, 1996) and UAS-p35 flies were obtained from the Bloomington 

Drosophila Stock Center, Indiana University at Bloomington. The GMR-DIAP2 fly line 

was obtained from Dr. John Nambu (Wing et al., 1998). UAS-parkin2
·
1 flies were 

generated as previously described (Haywood and Staveley, 2004). Dr. Howard Lipshitz 

provided the w 1118 flies. Stable double transgenic lines GMR-Gal4/GMR-Gal4; 

UAS-parkin2
·
1!UAS-parkin2

·
1 and GMR-Gal4/GMR-Gal4;GMR-DIAP2/+ genotypes were 

generated using standard techniques. All flies were cultured on standard 

cornmeal/yeast/molasses/agar media at 25°C. 

8.2.2 Scanning electron microscopy of the Drosophila eye 

Flies were collected and aged for two days after eclosion before being frozen at -70°C. 

Whole flies were mounted, desiccated overnight and coated in gold before photography 

at 150X magnification with a Hitachi S-570 scanning electron microscope as previously 

described (Kramer and Staveley, 2003). For each condition at least six flies were 

analysed. 
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8.2.3 Histological examination of Drosophila adult retinas 

Nine adult flies of each genotype were collected two days after eclosion, fixed in 

Karnovsky's fixative and embedded in epon as described in Feany and Bender (2000). 

Tangential retinal sections were prepared at a thickness of 0.5 J.lm and stained with 

toludine blue, examined by light microscopy and photographed. 

8.2.4 Acridine Orange staining of imaginal discs 

Crawling third instar larvae were dissected in phosphate buffered saline (PBS) pH 7.5 

and the carcass, with attached discs, was incubated in 0.5 j..tg/ml Acridine Orange solution 

for five minutes according to standard methods (Bonini, 2000). The carcass was then 

rinsed in PBS; dissection was completed and the imaginal discs wet-mounted in PBS. 

The imaginal discs were viewed by fluorescent optics using a Nikon Eclipse fluorescent 

microscope and photographed immediately using a Nikon 35 mm camera attached to the 

microscope. 

8.3 Results 

8.3.1 High levels of Gal4 expression cause apoptosis 

The GMR-Gal4 transgene produces a high level of Gal4 in the eye imaginal discs in cells 

posterior to the morphogenetic furrow (Freeman, 1996). This expression causes 

pronounced developmental defects in the adult eye (Figure 8-lB) when compared to 
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Figure 8-1: Expression o(p35 inhibits developmental defects nod apoptosis in GMR­
GaU bomozygotes. 
SEM (A-D) reveals the rough eye phenotype seen in GMR-Ga/4ltomozygotes (B) as 
compared to a control (A). The rough eye phenotype is inhibited in the presence of one 
(C) or two (D) copies of the UAS-p35 transgeoe. Acridine Orange staining reveals 
apoptotic cells in the eye imaginal discs of third instar larvae. T he amount of apoptosis is 
greater in GMR-Ga/4 homozygotes (F) than in control larvae (E). The presence of one 
(G) or two (H) copies of UAS-pj5 essentially e~minates aU apoptosis from the eye 
imaginal discs. Genotypes are w1118 (A, E), w;GMR-Ga/4/GMR-Ga/4 (B, F), w;GMR­
GaU/GMR-Ga/4;UAS-p35/+ (C, G), w;GMR-Ga/4!GMR-Oa14;UAS-p35/UAS-p35 (D, 
H). The scale bar is 88 1'01. 
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control flies (Figure 8-lA) that do not contain the GMR-Gal4 transgene. Flies that are 

homozygous for the GMR-Ga/4 transgene also show a high level of apoptosis in the eye 

imaginal disc in the area posterior to the morphogenetic furrow (Figure 8-1 F) (Kramer 

and Staveley, 2003). In contrast, control flies show some, but much less, apoptosis in the 

eye imaginal discs (Figure 8-lE). This suggests thatthe presence ofGal4 in the GMR­

Gal4 homozygotes induces excessive apoptosis during development. 

To further examine this possibility, we co-expressed the caspase inhibitor p35 along with 

Ga/4 in the eye imaginal discs. Flies that are homozygous for the GMR-Ga/4 transgene 

and either one (Figure 8-lG) or two (Figure 8-lH) copies of the UAS-p35 transgene show 

a nearly complete elimination of apoptosis during eye development. The disorganization 

of the ommatidia! array observed with GMR-Ga/4 homozygotes (Figure 8-lB) is reduced 

in the presence of one (Figure 8-lC) and two (Figure 8-lD) copies of UAS-p35. This 

strongly suggests that Gal4 can cause caspase-mediated apoptosis in the developing eye 

to result in developmental defects. 

8.3.2 Expression of parkin prevents Gal4-induced ommatidia} disarray 

As the expression of Ga/4 acts to cause cell death, bought on by the accumulation of 

toxic proteins, we tested if expression of parkin could prevent Gal4-induced phenotypes 

in the developing eye. Co-expression of parkin almost completely ameliorates the Gal4-

induced rough eye ultra-structure (Figure 8-2C compared to B). While the overall size of 

the eye is still slightly smaller than the control, the structure is very similar to that of the 

control flies eye (Figure 8-2A). 
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Figure 8-2: Expression of parkin prevents Gal4-induced ultra-structure disarray 
Scanning electron micrograph of adult male flies show the rough eye phenotype caused 
by Gal4 expression is sugiJressed in a dose-dependant fashion by expression of parkin. 
The genotypes are A- w 18

; B - GMR-Gal4/GMR-Gal4; C - GMR-Gal4/GMR-Gal4; 
UAS-parkin2

·
1fUAS-parkin 2

·
1 and D- GMR-Gal4/GMR-Gal4;GMR-DIAP2/TM3. The 

scale bar is 8 8 )liD. 
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8.3.3 Expression of DIAP2 does not prevent Gal4-induced defects 

As parkin appears to prevent the disrupted ommatidia! array caused by Gal4 and it is 

known to function as an ubiquitin ligase, we tested if the anti-apoptotic ubiquitin ligase, 

Drosophila inhibitor of apoptosis 2 (DIAP2) could repress the Gal4-induced rough eye 

phenotype. The GMR-DIAP2 transgene was used to express the anti-apoptotic E3 

ubiquitin ligase directly in the developing eye along with Ga/4. Analysis of these eyes 

showed no variation of phenotype compared with the Drosophila eyes that expressed 

Gal4 alone (Figure 8-2D), which indicates that DIAP2 has no effect on Gal4 induced 

developmental defects. To test the functionality of GMR-DIAP2, we determined that this 

transgene retained the ability to suppress the rough eye and teardrop shape that results in 

flies that express GMR-rpr (White et al., 1996; Winget al., 1998) (data not shown). The 

ability to prevent phenotypes produced by excessive Gal4 is specific to the parkin E3 

ubiquitin ligase. 

8.3.4 Parkin mildly suppresses Gal4-induced disorganisation of the ommatidia! 

array 

Tangential sections of adult Drosophila GMR-Ga/4 eyes were found to have a vastly 

different structure compared to control flies (Figure 8-3B and A). Overall, the typical 

crystalline array of ommatidia was not present and large gaps and areas of indistinct 

tissue were present. On closer examination, the normal circular structure of each 

ommatidia! region with seven of the eight photoreceptors visible within each circle was 

completely disrupted (Figure 8-3E vs D). Co-expression of parkin with Ga/4 appears to 

mildly suppress the disorganisation of the ommatidia! array (Figure 8-3C and F). 
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Figure 8-3: Expression of parki11 prevents Ga/4'-induccd apoptosis in the developing 
eye imaginal disc but only mildly suppresses retinal disarray 
Light microscopy of toludine blue stained 0.5 fllD sections of epon embedded one-day­
old adult feo1ale Drosophila retinas. Whole slices are shown (A-C) with an enlarged 
image of a portion of the slice below (D-F). The size marker is 80 f1m forD-F. Acridine 
Orange staining of 3"' instar larval eye imaginal discs (G-1) showing the level of 
apoptosis caused by Ga/4 is diminished in the eye imaginal disc in a dose dependant 
fasbion by parkin. Tbe genotypes are w1118

- (A, D, GJ, w1118;GMR-Gal4/GMR-Ga/4 (B, 
E, H) and w1118;GMR-Ga/4/GMR-Gal4; UAS-parkin2 IUAS-parkin2

•
1 (C. F, I). 
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8.3.5 Expression of parkin prevents Gal4-induced apoptosis 

The GMR-ga/4 rough eye phenotype is caused by excessive apoptosis in the developing 

eye disc (Figure 8-3H) (Kramer and Staveley, 2003). As expression of parkin can alter 

the phenotype caused in the adult eye by excessive Ga/4, the influence of parkin upon 

apoptosis in the developing eye disc was examined. Co-expression of two copies of the 

parkin transgene dramatically reduced the level of apoptosis (Figure 8-31), though not 

quite to the control levels (Figure 8-3G). 

8.4 Discussion 

When Ga/4 is expressed at a low level, little evidence of abnormal phenotypes is 

apparent. Adverse phenotypes arise when the Ga/4 gene is expressed from a highly 

active promoter region or multiple copies of the trans gene are present or when incubation 

temperatures are increased (Brand eta!., 1994; Kramer and Staveley, 2003). How does 

Gal4 cause apoptosis? One possibility is that elevated levels of Gal4 may cause 

transcription of genes involved in apoptosis. This seems unlikely, as there are no UAS 

sequences (cggagtactgtcctcc) in the D. melanogaster genome (Kramer and Staveley, 

2003). Alternatively, Gal4 may act as a toxic protein that can activate an apoptotic 

cascade. As Gal4 mediated apoptosis is inhibited by the caspase inhibitor p35, we 

suggest that Gal4 may act as a toxic protein that activates the cell suicide machinery. 

A potential mechanism by which high levels of Gal4 protein may activate the cell suicide 

machinery is through the unfolded-protein response (UPR). Accumulation of misfolded 

8-130 



or excessive levels of proteins in the ER leads to 'ER stress', which initiates the UPR, in 

addition to other responses (Forman eta!., 2003; Lindholm et al., 2006; Paschen and 

Mengesdorf, 2005; Rao et al., 2004). This, in turn, may lead to a reduction in protein 

synthesis followed, in some instances, by the initiation ofER stress-induced cell death. It 

is likely that the accumulation of Gal4 may induce a similar response to result in the 

appearance of the apoptotic phenotypes. Expression of Gal4 in specific region of the 

body may provide a useful model for elucidating the molecular mechanisms that play a 

role in toxic protein-induced apoptosis and could act as a model of toxic protein induced 

degenerative diseases such as PD. 

Parkin can prevent ER stress caused by the accumulation of misfolded proteins via its E3 

activity (Imai et al., 2000; Mori, 2000). As parkin expression does not seem to suppress 

the expression of other GMR-Gal4/UAS transgene phenotypes, such as GMR-Gal4/UAS­

rpr (data not shown), we believe that parkin selectively suppresses phenotypes that arise 

from high levels of Gal4 expression. It is possible that high levels of Gal4 expression 

result in a misfolded or misfolded-like protein that can be a substrate for parkin's 

ubiquitin ligase function, which tags proteins for destruction. Another possibility is that 

parkin may prevent Gal4 from initiating a toxic protein-induced apoptotic pathway 

through an indirect means that has not yet been described. It has been shown that parkin 

protein levels increase in response to ER stress (Imai et al., 2000) and it is likely that the 

ectopic expression of parkin in conjunction with high levels of Gal4 is enough to 

abrogate the stress inducing properties of Gal4. This is comparable with the ability of 

parkin to suppress phenotypes caused by mutant and/or excessive a-synuclein. 
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Expression of Gal4 at higher levels should provide a unique model of toxic protein 

induced cell death. Further analysis of the suppression of Gal4-induced phenotypes by 

parkin expression will provide insight into the role of parkin in opposition to toxic 

proteins that may lead to Parkinson's disease. The UAS/Gal4 expression system, while 

extremely useful in the study of ectopic expression of genes in Drosophila, has its 

limitations and should be properly controlled, as expression of Gal4 is not as benign as 

first thought. 
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Chapter 9: Concluding discussion and future 

directions 
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9.1 How do a-synuclein and parkin interact? 

Mutations that lead to amino acid changes in, or the triplication of, the a-synuclein gene 

are associated with a form of Parkinson's disease designated ADPD. The first 

Drosophila model of this disease was developed by the directed expression of mutant and 

wild-type forms of human a-synuclein, a gene not native in Drosophila, in the 

Drosophila central nervous system (Feany and Bender, 2000). These flies displayed 

dopaminergic neuronal degeneration coupled with an age-dependent loss of climbing 

ability. This neuronal degeneration was also demonstrated in the developing eye. The 

Drosophila model of ADPD has been used to examine the effect of various 

pharmacological agents (Auluck and Bonini, 2002; Pendleton et al., 2002). In studies 

that comprise this thesis, genetic suppression of this remarkably simple model has been 

shown by co-expression of parkin (see Chapters 2 and 3). 

The expression of parkin in the doparninergic neurons (Chapter 2) and developing eye 

and wing (Chapters 2-4) does not produce any obvious adverse effects. These 

experiments indicate that parkin, when over-expressed, does not seem to randomly target 

and tag essential proteins for degradation. This is likely due to the high substrate 

specificity of parkin (Shimura et al., 2001) and its ability to target itself for degradation 

(Zhang et al., 2000). This apparently represents an excellent fail-safe mechanism cells 

have developed to balance the levels of both parkin and its substrates. 

The age-dependent loss of dopaminergic neurons caused by expression of a-synuclein in 

Drosophila has been shown to be suppressed by the expression of parkin (Yang et al., 
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2003). In addition, our research has found that the co-expression of parkin with a­

synuclein suppresses both retinal degeneration and the premature loss of climbing­

induced by the latter (Haywood and Staveley, 2004). Co-immunoprecipitation studies 

show that parkin will only ubiquitinate 0-glycosylated a-synuclein in vitro (Chung et al., 

2001 ), a recent tissue culture study shows that parkin ubiquitination of a.-synuclein is 

unaffected by PD associated mutations in a.-synuclein (Lim et al., 2005b) and we have 

demonstrated suppression of the mutant a-synuclein-induced phenotype by parkin 

(Chapter 3). This work suggests that Drosophila is able to modify ectopically expressed 

human a.-synuclein. Our experiments indicate that parkin may target a.-synuclein for 

ubiquitination and subsequent degradation in vivo in Drosophila. 

While the wild-type form of a.-synuclein appears to undergo 0-glycosylation and this 

allows subsequent ubiquitination by the parkin E3 ubiquitin ligase, it was unclear if the 

mutant form of a.-synuclein could interfere with these processes to result in the disease 

state. The retinal defects that result from mutant a-synuclein expression originally 

described by Feany and Bender (2000) are prevented by the co-expression of parkin 

(Chapter 3). Moreover, ectopic parkin expression in the dopaminergic neurons augments 

the climbing ability of aged flies that also express mutant a-synuclein. These data 

suggest that the amino acid substitution present in the mutant form of a-synuclein does 

not interfere with the neutralization of its toxic effects by parkin. This suggests that the 

A30P substitution found in a PD-inducing form of a.-synuclein does not impair 

0-glycosylation of the protein and allows it to continue to be a target of parkin. 
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In order to select rational potential therapeutic agents, the molecular mechanisms behind 

disease progression must be characterized. Gene function studies with homologues of 

disease-causing genes in model organisms have been made practical through the advent 

of genome projects. The data herein presented shows that over-expression of Drosophila 

parkin has no apparent adverse consequences (Chapters 2 and 4) and that parkin can 

suppress the PD symptoms in Drosophila caused by increased levels of wild type or 

mutant forms of human a-synuclein (Chapters 2 and 3). If the human homologue of 

parkin has the same abilities as its Drosophila counterpart then up-regulation of parkin 

could be a viable treatment for a-synuclein induced PD. 

9.2 The Gal4 phenomenon: Can it be used to model toxic 

protein-induced diseases? 

The UAS/Gal4 ectopic expression system has made it possible to express genes and test 

the effects of over-expression of genes of interest in Drosophila. This system has been 

widely used in the Drosophila research community and, of concern, a number of papers 

about the effects of expression of apoptotic genes have been described. These papers on 

the whole have been well controlled and the results attributed to the expression of the 

apoptotic gene. What has not been widely studied nor apparently given much 

consideration is the effect of Gal4 expression alone. 

A precise match to the UAS (cggagtactgtcctcc) enhancer sequence, to which the Gal4 

transcription factor would bind to and enhance transcription, does not appear to be 
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present in the D. melanogaster genome (Kramer and Staveley, 2003). The Drosophila 

research community has not widely examined the possibility that Gal4 expression has 

independent effects in Drosophila. It has been demonstrated that increased levels of 

Gal4, either through one versus two GMR-Gal4 transgenes or increased incubation 

temperatures of 29°C versus 25°C, leads to morphological defects in the adult eye and 

increased levels of apoptosis in the larval eye imaginal disc during development (Kramer 

and Staveley, 2003). We have demonstrated that populations of flies that are 

homozygous for either insert of the Ddc-Gal4 transgene exhibit greatly reduced life spans 

(Chapter 6). Furthermore flies with multiple copies ofthe Ddc-Gal4 transgene show 

increased levels of apoptosis in the larval brain lobes (Chapter 7). Our laboratory has 

shown that flies with multiple copies of the Ddc-Gal4 trans gene have an inverse 

relationship between the number of copies of the trans gene and life span; also male flies 

are sterile with three or more copies of the trans gene, a phenotype also shown in the 

parkin mutant flies (Sheppard, 2003). The Ddc-Gal4 driver has been used to examine the 

expression of trans genes in the dopaminergic neurons including expression of a­

synuclein to model PD (Feany and Bender, 2000). As Gal4 transgenes are such an 

integral part of modem Drosophila research it was prudent to investigate this 

phenomenon further. 

The mechanism by which Gal4 induces cell death is unclear. High levels of Gal4 may 

cause transcription of genes involved in apoptosis in a direct manner. However, this 

seems unlikely, as no UAS sequences are found in the Drosophila melanogaster genome 

for the Gal4 transcription factor to bind and activate transcription of components of the 
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apoptotic machinery. Alternatively, excessive Gal4 may act as a "toxic" protein that can 

activate the cell suicide machinery through the unfolded-protein response (UPR). In 

brief, the UPR is believed to be initiated by the accumulation of misfolded or excessive 

levels of proteins in the ER that in turn leads to 'ER stress' (reviewed in Forman et al., 

2003, and Rao et al., 2004). Following the initiation of the UPR there is an overall 

reduction in protein synthesis; if this does not resolve the stressful situation then ER 

stress-induced cell death is initiated. Accumulation of excessive Gal4 may lead to ER­

stress induced cell death. Furthermore, we have demonstrated that the cell death process 

acts through the caspase pathway as Gal4-induced apoptosis is inhibited by the caspase 

inhibitor p35 (Chapter 8; Haywood, Kramer, Sheppard and Staveley, submitted). While 

the specific mechanism through which toxic proteins activate apoptosis is unknown, 

over-expression of Ga/4 in Drosophila tissues may provide a useful model for elucidating 

the molecular mechanism that play a central role in toxic protein-induced apoptosis. 

Expression of Ga/4 in specific tissues at specific stages of development may act as a 

model of a number of toxic protein-induced degenerative diseases including PD. 

9.3 Parkin suppresses toxic protein-induced cell death 

Parkin can prevent ER-stress caused by the accumulation ofmisfolded proteins via its E3 

activity (Imai et al., 2000; Mori, 2000). Levels ofthe parkin protein increase in response 

to ER stress (Imai et al., 2000). If Gal4-induced cell death is the result of an ER-stress­

induced apoptotic pathway, it may be likely that the ectopic expression of parkin can act 

to abrogate the ER-stress inducing properties of Gal4. We have shown that parkin can 

prevent Gal4-induced apoptosis in the developing eye (Chapter 8, Haywood, Kramer, 
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Sheppard and Staveley, submitted). Expression of parkin does not appear to suppress the 

expression of other phenotypes driven by GMR-Gal4, in particular cell death genes 

reaper and hid (data not shown). Note that in these instances the number of GMR-Gal4 

trans genes is only one and hence the level of Gal4 is not at a "toxic" level. This leads us 

to believe that parkin can selectively suppress the cell death phenotype that arises from 

excessive Gal4 expression. 

How does parkin prevent Ga/4-induced developmental defects? We speculate that the 

Gal4 protein may take on a toxic form, such as a misfolded form or a multimeric 

conglomeration with other proteins, when produced in high levels. As parkin is an 

ubiquitin ligase, parkin may bind to and mediate the ubiquitination of this form of Gal4 

protein to target it for destruction thus preventing Gal4-induced developmental defects. 

Another possibility is that parkin may prevent Gal4 from initiating a toxic protein­

induced apoptotic pathway through an indirect means that has not yet been described. 

Questions remain as to the mechanism by which parkin expression is able to prevent the 

defects caused by Gal4. Is there a specific interaction between the parkin protein and 

Gal4? Are there other intermediary proteins involved? We demonstrate that the 

expression of the anti-apoptotic E3 ubiquitin ligase DIAP2 does not prevent Gal4-

induced disruption of the ommatidia! array (Chapter 8), however could other ubiquitin 

ligases act to prevent Gal4-induced defects? It is possible that high levels of Gal4 

expression result in a misfolded protein target that parkin can recognise and subject to its 

ubiquitin ligase function and, eventually destruction. This is comparable with the ability 

of parkin to suppress phenotypes caused by mutant and/or excessive a-synuclein 
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(Chapters 2 and 3 Haywood and Staveley, 2004; Haywood and Staveley, 2006). Analysis 

of parkin prevention of Gal4 toxicity may lead to a greater understanding of the role of 

parkin in repression of toxic protein induced diseases. 

9.4 Future research 

The results from chapters 2 and 3 demonstrate that there are genetic approaches that can 

be used to prevent phenotypes induced by a-synuclein expression in a Drosophila model 

of PD. Examination of the interaction of parkin with other PD-associated forms of a­

synuclein, such as A53T and E46K, will provide a greater understanding of the ability of 

parkin to suppress PD-like phenotypes in Drosophila. Analysis of the function of a­

synuclein phosphorylation and nitrosylation through the generation of transgenic flies 

with non-phosphorylatable or non-nitrosylatable human a-synuclein could also yield 

unique alternative PD models. Analysis of proteins that interact with these different 

forms of a-synuclein through immune-precipitation experiments or through genetic 

screens for modifiers of mutant a-synuclein phenotypes will increase our understanding 

of the function of a-synuclein. Of particular importance will be the analysis of 

interactions between a-synuclein, parkin and other genes associated with PD or other 

neurodegenerative disorders. 

The parkin gene may have a more central role in PD than we currently realise. Certainly 

parkin can act to ubiquitinate a-synuclein in vitro (Shimura et al., 2001) and abrogates a­

synuclein-induced phenotypes in vivo (Chapters 3 and 4, Haywood and Staveley, 2004; 
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Yang et al., 2003). Recently, parkin was shown to interact with DJ-1 in varying ways 

that depended on the aberration in the DJ-1 gene (Moore et al., 2005). Parkin has also 

been shown to have a novel, proteasomal-independent, catalytic activity that mediates a 

non-classical, K63-linked ubiquitin multi-chain assembly on synphilin-1 that is distinct 

from the classical, degradation-associated, K48-linked ubiquitination (Lim et al., 2005a; 

Lim et al., 2005b ). Interestingly, two other PD-linked gene products, a-synuclein and 

UchL1, have recently also been associated with K63-linked ubiquitination (Lim et al., 

2005b). Understanding how parkin interacts with other genes associated with inherited 

forms ofPD I believe may be integral to understanding PD. We still do not understand 

why dopaminergic neurons are selectively vulnerable in PD patients. 

The ability to generate a potential model of toxic protein-induced cell death, through 

Gal4 expression in specific parts of the Drosophila anatomy, has two resulting points of 

interest. First of all, it indicates that excessive expression of Gal4 has consequences. 

Any genetic analysis/research utilising this system must ensure that it is properly 

controlled, particularly when using cell death genes under the control of the UAS/Gal4 

bipartite system. As the expression of Gal4 is fundamental in the expression of many 

different genes in Drosophila, it is vital that we are aware of the consequences of Gal4 

expression alone. We have shown that expression of Gal4 is not as benign as was first 

thought and a solid understanding of the nature of the phenotypes that arise from Gal4 

expression is required (Chapters 6 and 7). Second, that Ga/4 expression could be used to 

generate a potential model of toxic protein-induced disease is another useful tool in the 

tool belt of a scientist. While further work needs to be done to examine this potential 
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model it could be used in genetic screens to find modifiers of the Gal4 phenotype. 

Expression of genes that modify this phenotype may have a role in toxic protein-induced 

diseases and could provide further insight into the basic mechanisms that cause such 

diseases. 

As we found that expression of parkin can suppress the Gal4 phenotype further 

examination of this interaction may provide a wealth of information (Chapter 8). Do 

these two proteins physically interact? Does parkin ubiquitinate Gal4 in vivo? By 

analysing the properties of Gal4, when co-expressed with parkin, we should be able to 

determine if it can be ubiquitinated. Should parkin ubiquitinate Gal4 directly then further 

analysis, through mutagenesis studies, will yield clues to the substrate specificity function 

of parkin. In conclusion selective targeting of toxic proteins for degradation appears to 

be a useful approach to address neurodegenerative conditions such as PD. The use of 

parkin and its apparent involvement in many aspects of inherited PD could lead to the 

development of therapeutic strategies. 
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Appendix I - Overexpression of phosphatidylinositol 3-0H 
kinase (PI3K) in dopaminergic neurons 
dramatically reduces life span and climbing 
ability in Drosophila melanogaster 

Lisa D. Saunders, Annika F.M. Haywood, and Brian E. Staveley. 

Note this paper was published in the Drosophila Information Service (Saunders et al., 

2003) 
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Abstract 

Parkinson's disease (PD) is a prevalent neurodegenerative disease marked by the selective 

loss of dopaminergic neurons that is accompanied by resting tremors and other 

symptoms. The study of organismal models ofPD, including the well-studied a­

synucleinopathic model, in Drosophila melanogaster has lead to a greater understanding 

of the biological basis of the disease. In an attempt to establish additional Drosophila 

models ofPD via the manipulation of cell survival signaling, the UAS/Gal4 system was 

used to overexpress two forms ofphosphatidylinositol 3-0H kinase (PI3K) in the 

dopaminergic neurons of flies. The directed expression of PI3K in this manner 

dramatically reduces life span and climbing ability while an inhibitory form, a dominant 

negative version of PI3K, reduces life span in a far less dramatic way. These novel 

models should provide the basis for a series of investigations into the role of cell survival 

signaling in Parkinson's disease. 

Introduction 

Parkinson's disease (PD) is a common, age-related neurodegenerative disease 

characterized by muscle rigidity, resting tremors, and postural instability (Lansbury and 

Brice, 2002; Spacey and Wood, 1999). Post-mortem analysis of patients reveals that PD 

appears to be due to the selective loss of dopaminergic neurons in the substantia nigra 

region of the brain. The underlying cause of this distinctive loss of neurons may be 

classified as either sporadic or familial in origin. Although the underlying mechanism is 

not well understood, defects in several genes as well as a number of environmental toxins 

have been linked to the cause of this neuronal loss. As it is difficult to research the 

9-147 



pathogenesis of PD in living patients, a number of animal models (Dawson, 2000; 

Hashimoto et al., 2003), including a well-established Drosophila model (Feany and 

Bender, 2000), have been developed to investigate aspects of PD. 

A promising series of investigations into the biological basis of PD have been initiated 

through the generation of a PD model by the conditional expression of human a­

synuclein in transgenic Drosophila (Feany and Bender, 2000). The expression of a­

synuclein, in both a pan-neural and dopaminergic neuron-specific manner, produces an 

age-dependent loss of dopaminergic neurons. The neuronal loss is accompanied with the 

premature loss of climbing ability and the formation of cytoplasmic inclusions in the 

dopaminergic neurons. In addition, expression of a-synuclein in the developing eye 

results in an age-dependent degeneration of the retina. In further experiments, the 

dopamine precursor levodopa, dopamine receptor agonists, and the anticholinergic agent 

atropine act to counter the age-dependent loss of climbing ability (Pendleton et al., 2002). 

Expression of the molecular chaperone gene hsp70 with a-synuclein prevents 

dopaminergic neuronal degeneration (Auluck et al., 2002). The expression of parkin can 

suppress the loss of dopaminergic neurons (Yang et al., 2003 ), the premature loss of 

climbing ability and the age-dependent degeneration of the retina (Haywood and 

Staveley, in preparation) induced by a-synuclein in Drosophila. In addition, another 

model has recently been established with the description of mutants in the parkin gene 

(Greene et al., 2003). The Drosophila models ofPD are proving to be very effective 

tools in the investigation of the biological basis of this disease. 
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Dopaminergic neurons may die as a result of apoptosis in PD (for review Lev et al., 

2003). This process may be caused by the accumulation of endogenous toxic proteins or 

environmental toxins. Exploration of the role of cell survival signaling in the selective 

loss of dopaminergic neurons in Drosophila may provide further insight into the basis of 

PD. The insulin receptor (InR)/ PB kinase/ akt anti-apoptotic signaling pathway is 

highly conserved between mammals and Drosophila (Datta eta!., 1999; Fernandez et al., 

1995; Leevers eta!., 1996; Oldham eta!., 2000; Staveley eta!., 1998). To initiate this 

signal, insulin or insulin-like growth factors bind to receptor tyrosine kinases at the cell 

membrane and activate the protein phosphatidylinositol3-0H kinase (PBK) via 

phosphorylation (Vanhaesebroeck et al., 2001). In tum, PBK phosphorylates inositol 

lipids on the inner membrane of the cell, which leads to the co-localization of akt and 

phosphoinosotide-dependent kinase 1 (PDK-1) and, as a result, the activation of akt. An 

anti-apoptotic or cell survival signal results from activated akt. Consequently, 

manipulation of the InR/PBK/akt pathway in the dopaminergic neurons of Drosophila 

melanogaster may produce selective apoptotic death of those cells and produce flies with 

symptoms similar to other models of PD. As PBK is an essential component of this 

pathway, it is a good candidate for manipulating cell survival signaling. 

The UAS/Gal4 ectopic expression system (Brand and Perrimon, 1993) was used to 

overexpress wild type and mutant forms ofPBK in the dopaminergic neurons. Climbing 

and longevity assays were performed and the results demonstrate that overexpression of 

PBK dramatically reduces climbing ability and viability ofthe flies from the time of 
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eclosion. Overexpression of an inhibitory PI3K also reduces the length of life span when 

compared to controls but does not prematurely reduce the climbing ability of the flies. 

Materials and Methods 

Fly stocks and culture: The Ddc-Gal44
·
3

D and Ddc-Gal44
·
36 transgenic lines (Li et al., 

2000) were obtained from Dr. Jay Hirsh at the Department of Biology, University of 

Virginia. The UAS-Pl3K-dpll0 and UAS-Pl3K-dpllOD954
A flies were obtained from Dr. 

Sally Leevers at the Ludwig Institute for Cancer Research and the Department of 

Biochemistry and Molecular Biology, University College, London. The w1118 strain was 

provided by Dr. Howard D. Lipshitz of the Hospital for Sick Children and the University 

of Toronto. All flies were cultured on standard cornmeal/yeast/agar medium at 25°C. 

Transgene Expression: The UAS/Gal4 ectopic expression system (Brand and Perrimon, 

1993) was used to express wild type and mutant forms ofphosphatidylinositol 3-0H 

kinase (PI3K; Leevers et al., 1996) in the dopaminergic neurons using Ddc-Gal4 

trans genes (Li et al., 2000). The progeny of crosses of the Ddc-Gal4 lines to transgenic 

UAS-PI3K-dpll0 flies will express the catalytic subunit ofPI3K (dpllO) in the 

dopaminergic neurons. The same Ddc-Ga/4 driver lines were crossed to UAS-PI3K­

dpll oD954
A to induce the expression of an inhibitory form of this subunit ofPI3K. The 

controls were produced by crossing w1118 to the Ddc-Ga/4 transgenics. 

Aging assay: Adult male flies were collected within 24 hours of eclosion and scored for 

viability every two to three days to determine the adult life span characteristics as 
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previously described (Staveley et al., 1990). Flies were maintained under non-crowded 

conditions of approximately 5 to 15 individuals upon standard cornmeal/yeast/agar 

medium at 25°C. 

Climbing assay: The climbing ability of male flies of the same age were assayed every 

four days to determine their locomotor abilities throughout their life span as previously 

described (Feany and Bender, 2000). To be precise, the proportion of a cohort often (or 

fewer) flies to climb a distance of 8 centimetres within a period of 18 seconds was 

determined. In total, twenty trials were carried out at each time point. From this data, the 

average number of flies that successfully completed the climb at each time point was 

calculated. 

Data Analysis: Data from the aging and climbing assays were compiled and graphed 

using Microsoft Excel. 

Results and Discussion 

Transgenic flies expressing one of the two forms of PI3K in the dopaminergic neurons 

were tested for viability with an aging assay (Figure AI-l). Overexpression of PI3K­

dpll 0 with both of the Ddc-Gal4 trans genes greatly decreased the life span of the flies. 

The median age of survival (50%) for flies expressing PI3K-dpll0 was between 18 and 

20 days when expressed by Ddc-Gal44
·
3

D and between 12 and 14 days when expressed by 

Ddc-Gal44
.
36

. Expression ofthe dominant negative form of PI3K (PI3K-dpll0°954
A) 

produced a small decrease in survival. The median age of survival (50%) was between 
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Figure AI- 1: Survival of flies expressing wild type (Pl3K) and dominant negative 
PI3K (PI3K?N) in the dopaminergic neurons. 
Adult males that express the wild type version of PI3K in the dopaminergic neurons Ddc­
Gal44·36/UAS-P 13K-dpll 0 (large solid triangles) and Ddc-Gal44·3D/UAS-P 13K-dpll 0 (large 
solid squares) have a greatly reduced life span when compared to controls. Expression of 
the dominant negative PI3Ktransgene under the same circumstances, Ddc-Gal44·36!UAS­
PI3K-dpiioD954A (small solid triangles) and Ddc-Gal44·3D/UAS-PI3K-dplloD954A (small 
solid squares), leads to a slightly reduced life span, when compared to the Gal4-expressing 
controls, Ddc-Gal44·36/+: (small open triangles) and Ddc-Gal44·3D!+: (small open squares). 
The number of individuals aged was as follows: Ddc-Gal44·36/UAS-PI3K-dpll0, n = 122; 
Ddc-Gal44·3D/UAS-PI3K-dpll0, n = 129; Ddc-Gal44·36/UAS-PI3K-dplioD954A, n = 107; 
Ddc-Gal44·3D/UAS-PI3K-dr>lloD954A n = 195· Ddc-Gal44·36/+ n = 119· Ddc-Gal44·3D/+ n = 

r ' ' ' ' ' 
280. 
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58 and 60 days under the control of the Ddc-Ga/44
·
36 driver and between 68 and 70 days 

with the Ddc-Gal44
·
3

D transgene. The Ga/4 heterozygotes, Ddc-Gal44
·
3

D and Ddc-Ga/44
·
36

, 

were tested and the results show a median age of survival between 70 and 72 days for the 

former and between 82 and 84 for the latter. The expression of PI3K-dpll (/J954
A resulted in 

a decrease in median survival of approximately 14 days when compared to the Ddc-Ga/4 

heterozygote controls while the expression of P 13K-dpll 0 resulted in a major decrease in 

life span by between 50 and 70 days. 

To monitor the effects upon locomotion, the climbing ability of these transgenic flies 

were tested (Figure AI-2). Flies that express the wild type version PJ3K-dpll 0 under the 

control of Ddc-Ga/4 climb poorly while those expressing P 13 K-dp 11 oD954
A appear to 

climb as well as the controls throughout the duration of the experiment. 

In addition to the defects in climbing ability and the greatly reduced life span, flies 

overexpressing PJ3K-dpll 0 exhibit a blistered wing phenotype shortly after emerging 

from the pupae cases (data not shown). Within a day or so, most adult Ddc-Gal4/UAS­

PI3K-dpll 0 flies have shriveled wings. This defect may be indirectly caused by 

neuronal loss. 
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Figure AI- 2: The measurement of climbing ability of flies expressing wild type 
(Pl3K) and dominant negative Pl3K (Pl3K?N) in the dopaminergic neurons. 

BO 

Adult males that express the wild type version of PI3K in the dogaminergic neurons Ddc­
Gal4436/UAS-PI3K-dp110 (large solid triangles) and Ddc-Gal4 30/UAS-PBK-dpllO 
(large solid squares) have a poor ability to climb when compared to controls. Expression 
of the dominant negative PI3K transgene under the same circumstances, Ddc­
Gal44·36/UAS-PI3K-dpl100954A (small solid triangles) and Ddc-Gal4430/UAS-PI3K­
dp1100954A (small solid squares), maintain the ability to climb in a manner similar to the 
controls, Ddc-Gal44·36/+ (small open triangles) and Ddc-Gal44·30/+ (small open squares). 
The climbing experiments were discontinued when death reduced the number 
significantly. 
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Overexpression of PI3K in the dopaminergic neuron during development may lead to 

selective apoptotic death of these neurons. Contrary to the common role of P !3K in 

supporting cell survival, overexpression of PI3K has been shown to cause apoptosis. In 

cultured rat embryo fibroblasts, prolonged activation of PI3K in the absence of other 

stimuli (serum) results in apoptosis (Klippel et al., 1998). Prolonged overexpression of 

PI3K increases in the proportion of cells in G2/M and induces apoptosis in Drosophila 

(Vanhaesebroeck et al., 2001 ). This may be due to deregulation of the cell cycle or the 

induction of an apoptotic feedback program by the hyperactivation of many signaling 

pathways. The selective loss of the dopaminergic neurons via a cell death mechanism 

could be responsible for the observed poor climbing ability and reduced life span of adult 

Ddc-Gal4/UAS-PI3K-dpll0 flies. 

Although active PBK acts to prevent apoptosis of cells, larvae survive for twenty days 

without PBK (Weinkove et al., 1999). In contrast, the inhibitory form of PI3K has been 

shown to cause cell death when expressed in embryos (Scanga et al., 2000). In our 

experiments, the expression level of PI3K-dpll OD954
A may have been sufficient to induce 

neuronal loss only in late life. The small decrease in life span may have resulted from 

this late loss in neurons in the Ddc-Gal4/UAS-PI3K- dpll OD954
A flies. 

In conclusion, this experiment analyzed the viability and climbing ability of flies 

expressing two forms of P !3K in an attempt to model characteristics of Parkinson's 

disease. Unexpectedly, the ectopic expression of PI3K showed dramatically reduced life 

span coupled with poor climbing ability. Unlike Parkinson disease patients, the 
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locomotor dysfunction begins early, rather than arising in a gradual manner, which may 

be due to the larval expression of P 13K, and subsequent loss of dopaminergic neurons at 

that stage. The dominant negative version of P 13K reduced life span by a modest amount 

but did not seem to influence the ability of these flies to climb. In summary, our 

experiments show that the overexpression of P I3K in dopaminergic neurons can produce 

defects that may recapitulate some aspects of Parkinson's disease in Drosophila 

melanogaster. 
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