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Abstract 

The understanding of self-assembly and self-organization processes of colloidal 

particles are topics that in recently years have received greater attention in physics, 

in materials science, and in biology. Colloidal systems are often used as "big atoms" 

to study the fundamental physics of formation of crystals. In this thesis, electric 

fields at varying frequencies and amplit udes were applied to a charged colloidal sys­

tem. Variation of the electric field amplitude will change the strength of the self­

assembly and self-organization processes. At high frequencies and field strengths, the 

colloids experience a dipolar inter-particle interaction that will affect t he equilibrium 

structure. At low frequencies, however, the colloids will experience both dipolar and 

non-equilibrium t ime-dependent electrophoretic forces. 

The main purpose of this work was to explore this interplay between dipolar 

interactions and electrophoretic forces, and study how self-assembly and dynamics is 

affected by this interplay. From this study, we found a dynamical phase diagram that 

demonstrates the relationship between structure formation and particle dynamics as 

the frequency and field strength changes. 
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Chapter 1 

Introduction 

1.1 Motivation for Study 

The understanding of self-assembly and self-organization processes of colloidal 

particles are topics that in recent ly years have received greater attent ion in physics, in 

materials science, and in biology [2, 3]. Colloidal systems are often used as "big atoms" 

to study the fundamental physics of formation of crystals [4]. The self assembly 

of colloidal systems also has potential materials science applications in producing 

inexpensive photonic crystals and as electrorheological fluids [5, 6]. Finally colloidal 

systems have been used as an analog for cluster format ion in globular proteins [7]. 

The focus in many of these studies has been on when the system is in a equilibrium 

state. Self-assembly in a non-equilibrium system has received much less attention but 

it is nevertheless more relevant for many applications of colloidal systems [8, 9]. In 

the colloidal context, one simple example of an equilibrium system would be colloidal 

particles dispersed in a solvent, where the particles are continuously in motion due 
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to Brownian motion. Another example is that of dipolar colloidal particles in an 

suspension upon which is imposed a high-frequency AC (alternating current) electric 

field. This results in an inter-particle dipole-dipole interaction [10] . 

One example of non-equilibrium self assembly would be when there are time­

dependent or time-independent body forces on the particles (two examples are grav­

ity and electrophoresis) [9]. By studying these non-equilibrium systems, new and 

interesting phenomena might be observed which may lead to a better understanding 

of self-assembly and self-organization processes of colloidal particles. 

In this thesis, electric fields at varying frequencies and amplitudes will be applied 

to a colloidal system (refer to 3.4.1 for more detail on the colloidal suspension used). 

Variation of the electric field amplitude will change the strength of the self-assembly 

and self-organization processes. At low electric field t he forces will be weak, and 

at higher electric field the forces should be strong. In a high-frequency AC electric 

field, the dipolar interactions can be considered to be time-averaged, which results 

in time-independent inter-particle forces that are derivable from a potential. As a 

result of this, these inter-particle forces are considered to simply modify t he inter­

particle interactions in an equilibrium colloidal system. On the other hand, the 

electrophoretic forces, which can occur in either direct current (DC) or low-frequency 

AC electric fields, are regarded to be t ime-dependent forces. Thus these forces may 

be considered truly non-equilibrium. 

The main purpose of this work will be to explore this interplay between dipolar 

interactions and electrophoretic forces, and study how self-assembly is affected by 

this interplay. A colloidal model system where one can explore the interplay between 

quilibrium and non-equilibrium forces is also potentially useful because it could help 
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shed light on complex problems such as dynamics in glass-forming systems. 

1.2 Summary of Masters Work 

In this work, there will be an application of a linear external AC electric fields at 

varying frequencies and varying voltages to a electric field cell. Within this electric 

field cell, particles will be suspended of a specified shape with the electrodes in a 

certain orientation. The behaviour of the particles will be observed by a camera as 

the electric field is changed. 

1.3 Scope of Thesis 

Chapter 1 has introduced the motivation behind the research done for this thesis. 

T his chapter also contains the scope of the thesis. 

Chapter 2 outlines some of the theory relating to dynamics (flow and diffusion) in 

colloidal suspensions, interaction forces in colloids, the effects of surfaces, and finally, 

the effect of external electric fields. 

Chapter 3 presents the experimental set-up and the electric field cell design. In 

addition, the preparation of the colloidal suspension, as well as a description of the 

image acquisition and image processing techniques used, will be presented. 

Chapter 4 presents results from the electric field experiments; as well as the results 

from the rheometer for finding the viscosity of the solvent. 

Chapter 5 discusses the results of this research. This chapter will also contain the 

conclusion of the thesis and suggests some future ideas for this research. 
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In Appendix A there is the discussion on how angled electrodes are handled with 

a sample data set. 

4 



Chapter 2 

Background and Theory 

2.1 Introduction 

This chapter will define what colloids are and outline some of the theory relating 

to dynamics (flow and diffusion) in colloidal suspensions. Also interact ion forces in 

colloids, the effects of surfaces, and finally, the effect of external electric fields will be 

discussed. 

2.2 Colloidal Dispersions 

One important area of study in soft condensed matter involves t he study of structure 

formation in colloidal suspensions. One of the main reasons for this is t hat colloidal 

suspensions can be thought of as a micrometer-scale model system for atoms [4]. Also 

the structure formation of colloidal suspensions is analogous to thermodynamic phase 

transit ions in atomic systems [4, 5]. 

A colloidal dispersion is a mixture in which particles of one species are dispersed 
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throughout a second medium [9] . If the particles are evenly dispersed throughout 

the medium then it is considered to be a stable colloidal system. The typical size of 

colloidal particles ranges from tens of nanometers to a few micrometers in diameter. 

Although colloidal particles in nature tend to be very irregularly shaped objects and 

are also very polydisperse in size, it is very useful in experimental studies to have 

simple well-defined shapes and narrow size distributions. The most common colloid 

shape that is used for scientific purposes are spherical colloids but shapes such as 

rod-like, disk-like and plate-like are also studied (section 1.4 of [9]) . For example, 

bentonite clay, found in western Canada is a natural source of plate-like colloidal 

part icles (section 1.4.5 of [9]) . 

Over the years, a combination of advanced optical microscopy techniques [11] , 

as well as image processing methods have been created in connection to the study 

of structure formation in colloidal suspensions. These advances have helped in get­

t ing a better understanding of structure formation in suspensions. Also, techniques 

have been developed to synthesize fluorescent-labelled colloidal spheres that enable 

the acquisition of images in three dimensions with the possibility of single-particle 

tracking [12, 13] . 

Attractive forces within the medium, such as van der Waals forces, can cause 

the particles within the colloidal suspensions to aggregate, while other forces such as 

repulsive electrostatic inter-particle forces tend to stabilize the suspensions. This type 

of stabilization is known as charge stabilization [9] . In addition, particles with polymer 

chains attached to their surface prevent other particles from approaching close to 

them. This is known as steric stabilization. Both charge and steric stabilization 

help keep colloidal particles suspended in a solvent. However, over time, even stable 
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colloidal particles will sediment under the influence of gravity. For many of these 

colloidal dispersions the stability or phase behaviour can be altered dramatically by 

modest changes in the composition of the dispersion [14]. 

Colloidal dispersions can be divided into two classes [9]. The first class is referred 

to as lyophilic which is solvent loving. The other class is referred to as lyophobic 

which is solvent hating. The classification can be made from the ease with which the 

system can be re-dispersed if it is allowed to dry out (section 1.3 of [9]). 

Table 2.1 shows some examples of colloidal systems that are used in everyday life 

and the technical name of each colloidal dispersion (section 1.1 of [9]). 

Table 2.1: Table of the types of colloidal systems that are encountered in everyday 

life (refer to section 2.2) 

Disperse Phase Solvent Notation Technical N arne Example 

Solid Gas S/ G Aerosol Smoke 

Liquid Gas L/ G Aerosol Fog 

Solid Liquid S/ L Dispersion Ink, Paint 

Liquid Liquid L/ L Emulsion Milk 

Gas Solid G/ S Foam Fire-extinguisher foam 

Solid Solid S/ S Solid Dispersion Ruby Glass 

Liquid Solid L/ S Solid Emulsion Ice Cream 

Gas Solid G/ S Solid Foam Insulating foam 
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2.3 The Reynolds Number 

In the year 1851 physicist George Gabriel Stokes introduced the concept of a 

number which would describe the amount of turbulence within a fluid flow [9] . But 

it was not until around the year 1883 when physicist Osborne Reynolds (whom the 

number was named after) popularized its use [9, 15] . The concept of the Reynolds 

number allows fluid flow to be easily classified as laminar (absolutely steady flow) or 

turbulent (flow with unsteady fluctuations) [9]. 

Under this classification of flows, any flow with a Reynolds number less than 2, 300 

is laminar, while flow with values above 4, 000 are turbulent [15]. The range between 

these two regions is consider to be the transition region. The Reynolds number (Re) 

can be defined as: 

Re = pva 
TJ 

(2.1 ) 

where p is the density of the solvent, v is t he velocity of the relevant object, with 

a radius a, and TJ is the viscosity of t he solvent . 

The colloidal particles used in this thesis are 2 pm diameter PMMA (poly(methyl 

methacrylate)) colloids, in a solvent medium consisting of CHB ( cyclohexyl bromide) 

and decalin ( decahydronaphthalene) (refer to section 3.4 .1 for more details). This 

solvent mixture is special in that it can be used to mat ch the density and the refractive 

index of the particles. The density of the solvent is 1184.9 kg/m3 , with a viscosity of 

2.11 mPa * s. Putting this value into equation 2.1 we get : 

R e = (1184.9 kg/ m3 )(1 x 10- 6 m )v = 0_561 v 
2.11 x 10- 3 Pa * s 
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For colloidal speeds ranging from 1 f.-L / s (which is physically relevant) to 100 ~t/s 

(which is larger than any likely colloidal motion) the Reynolds number ranges from 

5.6 x 10- 7 to 5.6 x 10- 5 . Thus the fluid flow within the cell should always be laminar. 

2.4 Brownian Motion 

Around the year 1827 a well-known botanist, Robert Brown, was studying the 

sexual reproduction of plants [16]. In particular he was interested in the particles that 

were contained in grains of pollen. He found that the pollen grains were filled with 

oblong granules about 5 microns long and that these granules seem to be in a constant 

"jittery" motion. After seeing this a few times, he then repeated the experiment using 

particles of dust instead of the oblong granules, and thus was able to rule out that 

the motion was cause because the pollen particles were 'alive' , although he could 

not explain the motion tha t both the oblong granules and the part icles of dust had 

undergone [16]. It was not t ill around 1905 that both Albert Einstein and William 

Sutherland, independently of each other , proposed the t heory that still used today 

for this constant jittery random motion of objects in a fluid t hat Robert Brown 

saw [17, 18]. 

Specifically, Albert Einstein predicted that this constant jittery random motion 

of a particle in a fluid at a thermodynamic temperature T is characterized by the 

thermal excitation of the solvent molecules ekm[15]. This thermal excitation makes 

them continually collide wit h any objects in their vicinity causing this random motion 

with an associated energy on the order of I"'V k8 T (where k8 is Boltzmann's constant). 

This constant jittery random motion is known as Brownian motion. It becomes quite 
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noticeable as we examme increasingly smaller and smaller systems. Because the 

motion is a result of the thermal excitation of the solvent molecules, it is unavoidable 

at all non-zero temperatures. 

2.5 Stokes, Einstein and Sutherland 

2.5.1 Stokes Law 

In 1851, George Gabriel Stokes derived an expression, now known as Stokes' law, for 

the frictional drag (resistance) exerted on spherical objects with very small particles 

(in other words, very small Reynolds numbers) in a continuous viscous fluid. This 

expression can be written as (section 4.8.1 of [9]) : 

(2.3) 

Here FN is the frictional drag (resistance), b is the linear drag coefficient on the 

particle, rJ is the fluid viscosity, a is the radius of the spherical object, and v is the 

part icle's velocity. 

Thus by measuring the force and the velocity, and knowing the size of the sphere, 

Stokes' law can be used to calculate the viscosity of t he fluid (section 4.8. 1 of [9]). 

2.5.2 The Stokes-Einstein-Sutherland R e lation 

The equilibrium thermal excitation of colloidal part icles in a solution is directly 

related to the local time dependent frict ion drag (resistance) and thus to the linear 

viscous properties of the surrounding fluid [19]. T he relation that relates these thermal 
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fluctuations to the (Stokesian) viscous drag for spherical colloidal par t icles is due to 

Einstein [17] and Sutherland [18] and may be written as: 

D 
_ ksT _ kaT 
- -----

b 6n77a 
(2.4) 

Here D is the colloid diffusivity, b is the linear drag coefficient on the particle, 77 

is the viscosity, and a is t he radius of a colloid [19] . 

This relationship is valid for equilibrium thermal excitation of a Newtonian fluid [9]. 

However it has been shown theoretically and experimentally that this relat ion can be 

generalized to treat non-Newtonian materials, as well as materials that are not in equi-

librium [15]. Within this generalization, t he viscosity of the surrounding Newtonian 

fluid is replaced by the complex viscosity of a surrounding viscoelast ic soft material. 

The limits and the validity of this generalization are however open questions [19]. 

In certain cases this unstoppable motion of the object of interest can cause practi-

cal difficult ies [9 , 15]. For example, a common issue in microscopy is particles diffusing 

from the field of view or out of the plane of focus. If one wishes to get a high resolution 

images of a particle, one has to maximize the image relative to the field of view, but 

in doing so one minimizes the amount of time it can be imaged before disappearing 

from one's field of view, thereby setting an upper limit on time scales. One must 

therefore strike a balance between the quality of data collected and t ime range over 

which we collect data. 
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2.5.3 Gravitational Height 

In this work, the entire colloidal sediment was confined to a single layer , effec-

tively a two dimensional plane near t he top surface of this three dimensional system. 

This assumption could be made assuming that most particles have risen due to the 

mismatch in densities. 

One can define a gravitational height: 

ksT 
hgrav = ...,..4---

31fa36.pg 
(2.5) 

where g is the gravitational acceleration, a is t he particle radius, 6.p is the density 

mismatch between the particles and the fluid , T is the temperature of the solution, 

and k8 is the Boltzmann constant. 

Now from section 3.4.1 the 6.p is 0.05~, and the temperature is taken to be 
em 

294K. Then from equation 2.5, hgrav = 1.976 * 10- 6m. Thus, 

hgrav 

2a 
1. 976 x 10- 6m 
----,-----::--.,...- = 0. 988 rv 1 
2(1 x 10-6m) 

(2.6) 

This implies that at steady state after sedimentation has taken place, most colloids 

will be within 1 particle diameter of the lowest energy state at the top of the electric 

field cell. Therefore the system is at least quasi-two-dimensional. 

2.5.4 Stokes Time 

Another consideration is how long one must wait for the system to reach this quasi-

two-dimensional state. 

Solving equa tion 2.3 for the velocity, 
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(2.7) 

where v5 is t he Stokes velocity, and has the value 

V 5 = 4.54 X 10- 8 m/ s (2.8) 

Now from this Stokes velocity we can find a Stokes t ime, a time which it would 

take for the particles to sediment . This time is equal to: 

T
_ J_ 

s -
Vs 

(2.9) 

where l is the length from middle of the sample to the top or bottom plate (around 

50 Jlm). Thus, T5 = 18.65 minutes . In our experience, after the experiment was set-

up, we needed to wait 15 minutes for the particle density profile to reach a steady 

state, with most particles close to the top electrode. 

2.6 Bjerrum and Debye length 

The Debye length is a parameter t hat is often used in the study of plasmas or elec-

trolytes. This parameter is a measurement of how far the electrostatic effects persist 

within a fluid [20]. The Bjerrum length is a distance at which the electrostatic effect 

between two particles compares to the thermal energy [20]. The Bjerrum length is: 

(2.10) 

For the dielectric constant of the solvent used in our experiments ( E = 6.05 from a 
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linear combination of cyclohexy l bromide ( CHB) and decalin ( decahydronaphthalene) , 

dielectric constants from [21]) i!a = 103 ± 10%A. 

2.7 Rheometer 

A rheometer is a device that measures the visco-elastic properties of fiuids. In this 

thesis, we will vary the rate of shear deformation, known as the shear rate 1, and 

measure the result ing shear stress (} . For a simple Newtonian liquid , the shear stress 

is proportional to the shear rate: 

(} = rn (2.11) 

where T) is the viscosity of the fiuid . For our measurements, we use a cone and 

plate rheometer. Figure 2.1 shows a schematic design of the cone and plate rheometer. 

r 

Figure 2.1: Schematic design for the cone and plate rheometer. 

This type of rheometer geometry is a clever design to ensure that the shear rate 
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(1 = H (r)/v(r) , where r is the radius of the cone, and H(r) is the height at a distance 

r from the tip of the cone) is constant throughout the cell. 

2 .8 Mean Square Displacement and the Diffusion 

Coefficient 

The mean squared displacement ( l'vf S D ) is the most common measure of Brownian 

mot ion in colloids ([22], [9], section 4.9.2). Albert Einstein and Marian Smoluchowski 

made this connection independently of each other in their papers on Brownian motion 

in 1905-1906. An equation relating this became known as the Einstein-Smoluchowski 

equation. The mean squared displacement of an isolated spherical part icle in one 

dimension is ([9], section 1.5.4) : 

(k T) MSD = ((x(t ) - x(0)) 2
) = 2 + t = 2Dt (2 .12) 

where k8 is Boltzmann's constant and b is the linear drag coefficient on the parti-

cle, t is the time, and Dis the diffusion coefficient of the particle (refer to section 2.5.2) 

( [9], section 1.5.4). 

Thus, in a plot of MSD versus time, t he slope of the line will be equal to two 

t imes the diffusion coefficient. When M S D ex t, the dynamics is said to be diffusive, 

because of the slope yields the diffusion coefficient. It is often useful to take the 

logarithm of both the MSD and time, thus equation 2.12 becomes: 

log(M SD) = log (2Dt) (2. 13) 

15 



log(MSD ) = log(2D ) + log(t) (2.14) 

Thus for a plot of log(MSD ) versus log(t ), t he slope of the line should be equal 

to one for normal diffusion, with they-intercept equal to log(2D). If the slope of the 

log(li1SD) versus log(t) plot is not equal to one then the diffusion can be considered 

to be anomalous. 

2.9 Anomalous Diffusion 

One could generalize diffusion and write that the MSD rv fY [9]. Thus, when the 

slope (I) of a plot of log(li1SD) versus log(t) is less than one, then the dynamics is 

considered to be sub-diffusive. When 1 is greater than 1, t hen the diffusion is termed 

as super-diffusive. A trivial cause for 1 greater than 2 is ballistic motion at very short 

times. T his is often seen in molecular dynamics computer simulations, where there 

is no solvent [23]. 

In these simulations, the diffusive regime arises after several collisions with other 

colloidal particles. This ballistic regime is not seen in colloidal experiments, where 

there is a viscous solvent and the particles undergo Brownian motion [23]. 

Apart from ballistic mot ion, deviations from simple diffusion are characteristic of 

systems exhibiting glassy behaviour [3, 24]. To get a better idea of t hree types of 

dynamics in a log(JV!SD) versus log(t) plot, a sample plot with the three types is 

shown in figure 2.2. Within this figure, t he red line shows super-diffusive behaviour 

with a slope equal to 2. The blue line shows normal-diffusive behaviour with a slope 

equa.l to 1. And the purple line shows sub-diffusive behaviour with a. slope equa.l to 
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half. 

log( time) 

Figure 2.2: A sample sketch of the three types of diffusive behaviour. The red line 

shows super-diffusive behaviour with a slope, "( , equal to 2. The blue line shows 

normal-diffusive behaviour with "! equal to 1, and the purple line shows sub-diffusive 

behaviour with "! equal to ~ . 

Figure 2.3 shows an schematic cartoons of the behaviour of log(MSD) versus 

log(time) for a system of particles in two circumstances. Figure 2.3(a) shows an 

schematic cartoon of a system of particles undergoing behaviour that is often seen 

in molecular dynamics computer simulations where the short-time super diffusive 

behaviour is ballistic motion (slope = 2, red line) and there is normal diffusion at 

longer t imes (slope = 1, blue line). Figure 2.3(b) shows an schematic cartoon of a 
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Log{MSD} 

(a) 

Log{MSD} 

(b) 

Figure 2.3: Cartoons of the behaviour of log(Mean square displacement) versus 

log( time) for a system of particles in two circumstances. (a) This behaviour is often 

seen in molecular dynamics computer simula tions where the short-time super diffusive 

b ehaviour is ballistic motion (r = 2, red line) and there is normal diffusion at longer 

times (r = 1, blue line) . (b) The sequence shown often occurs in the case of diffusion 

in a crowded environment: normal diffusion at short t imes, caging at intermediate 

times (characterized by the purple line with '"'( < 1), and escape at longer times. 
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sequence that often occurs in the case of diffusion in a crowded environment : normal 

diffusion at short times, caging at intermediate times (characterized by the purple 

line with slope less than 1) , and escape at longer t imes. 

Most studies of colloidal self assembly have focused on equilibrium behaviour. 

But some work has been clone in recent years in the non-equilibrium state. Hunter 

et al [3] review the current status in the field of glassy colloidal systems, while the 

study of colloidal systems in the presence of external forces has been reviewed by 

Lowen et al [25] and Yethiraj et al [26]. Fraclen et al [27] showed early on that 

colloidal particles in an electric field form stable clusters along the electric field lines. 

Enhanced dynamics has also been seen in anistropic rod-like colloidal systems (Hafting 

et al [28]). The work found that the evolution of the average cluster size agrees with 

the Smoluchowski equation and that at short times the colloidal clusters grow in 

length linearly. 

A recent study on a steady state system was carried out by J orclanovic et al [23]. 

In this work, the researchers used molecular dynamics simulations to investigate the 

translational dynamics of particles with dipolar interactions in homogenous external 

fields. This research investigated t he mot ion parallel and perpendicular to the field 

for a broad range of parameters, such as different concentrations, dipolar coupling 

strengths and field strengths. Graphs of t he logarithm of the mean square displace­

ment (MSD) versus the logarithm of the t ime for computer simulations of a reduced 

density colloidal suspension were obtained for both moderate and strong dipolar cou­

pling parameters (A). These two cases showed that for short periods of time (less 

than one second) , there was an initial ballistic regime where the displacement in­

creases linearly with time. Thus the log(MSD) versus log(t) plot has 1 = 2. Also 
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for both cases they observed that for longer t ime-scales (greater than 10 seconds), 

there is a diffusive ( 'Y = 1) regime. For this intermediate t ime, moderate and strong 

couplings show different behaviours. For moderate coupling parameters (..\ = 3) the 

ballistic regime directly goes into the diffusive regime (as shown in the schematic 

graph, figure 2.3(b)) . For strongly coupled parameters the ballist ic regime goes into 

a sub-diffusive regime (i.e. 'Y < 1) before the dynamics becomes diffusive again at 

long t imes. 

The same work also examines dynamics for higher-density colloidal suspensions 

with strong dipolar coupling parameters. The diffusive regime in molecular dynamics 

is reached after the particles have undergone numerous collisions with other par t icles. 

It was also found that as the densities increase the sub-difi'usive regime increased in 

SIZe. 

This study found for the first time, from molecular dynamics simulations, that the 

formation of chain-like clusters in the presence of an external electric field coincides 

with a crossover from normal to anomalous dynamics as the field strength increases. 

The anomalous dynamics involves sub-diffusion, directed motion and dynamic het­

erogeneities. 

In addit ion, the work done by Jager et al [29] focused on computer simulation 

studies of a monolayers of particles with permanent dipole moments that are driven 

by rotating external fields. This was motivated by experimental work studying layer 

formation in rotating fields [30]. Both simulation and experiment found that the 

particles in such systems self-organize into two-dimensional clusters. Also investigated 

were the field strengths and frequencies at which clusters formed, and the influence 

t hat hydrodynamic interactions had on the clusters. 
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2.10 Hydrody namic Interactions 

Diffusion according to the Stokes-Einstein-Sutherland relation assumes that par-

tides are at low enough concentrations that each particle can be considered to be 

isolated. However , this is rarely the case in real colloidal suspensions. 

When a particle immersed in a fluid moves, it exerts a force on the solvent which 

changes the fluid flow around it from its undisturbed value. The disturbance to 

the fluid , in turn, changes the viscous drag force exerted on the other particles in 

the colloidal suspension. Similarly, t he other particles can also cause a disturbance. 

By generating and reacting to a fluid 's local velocity, colloidal part icles experience 

"hydrodynamic interactions" with each other. Despite their importance being long 

recognized, t he effects of hydrodynamic interactions on collective behaviour is a com-

plex many-particle problem and as a result often too difficult to t reat properly ([9], 

section 4.8.2) . 

2.11 Faxe n 's Law 

In 1922, t he physicist Hilding Faxen introduced a correction to Stokes law for the 

friction on spherical objects in a viscous fluid , which would be valid where the object 

moves close to a wall of the container . In the presence of a spatially varying flow, but 

in the absence of any other external force, Faxen 's law takes the form: 

(2.15) 

In the above equation, v is t he sphere's velocity, u( r) is the disturbance velocity 
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(the local fluid velocity) , and a is the radius of the sphere. [14] 

Faxen's laws can be used to predict the near-wall in-plane hindered coefficient 

DJ-J 9 63 45 4 a 
-D- = [1 - -16 6 + 8 - -25-6 6 + ... ] where 6 = _H_+_a (2. 16) 

In the above, a is the radius of the colloidal part icle, D IS the bulk diffusion 

coefficient and H is the distance from the surface [31]. 

2.12 Induced Dipole Interactions 

Induced dipole forces result when a ion, a dipole, or a molecule with a induced dipole, 

induces a dipole in an atom or a molecule with no dipole. There are two types of 

induced dipole interaction. 

First there is the ion-induced dipole force, which is a weak attraction that results 

when the approach of an ion induces a dipole in an atom or in a nonpolar molecule 

by disturbing th arrangement of electrons in the nonpolar specie . 

Second, the dipole-induced dipole force is a weak attraction that results when 

a polar molecule (or a non-polar molecule which has a temporary dipole) induces 

a dipole in an atom or in a nonpolar molecule by disturbing the arrangement of 

electrons in the nonpolar species. This dipole-induced dipole forces can also be the 

result of a electric field disturbing the arrangement of electrons on an atom or in a 

nonpolar molecule thus inducing a dipole. 

22 



2.13 Attractive Forces 

Colloidal particles within a solvent have a strong tendency to aggregate into large 

clusters, which may be compact or fractal-like in na ture. This occurs under the influ­

ence of universal attractive forces which become increasingly potent as the particles 

size become larger [22] . 

2.13.1 London-Van Der Waals Force 

One of the main forces tha t is included within this universal attractive force is the 

van der Waals force or the induced-dipole interaction. This force was first postulated 

by the physicist Johannes van der Waals in 1827 (section 11.2 of [9]) . T his force 

exists between all atoms and molecules and does not depend on whether they are 

electrically charged or not. This force is a result s from the fluctuating of atomic and 

molecular electrical dipoles [22]. 

In 1930, physicist Fritz London was the first to recognize that this force could also 

be the result of the interaction between a temporary induced dipole on one molecule 

and the induced dipole on a neighbouring molecule. This type of van der Waals force 

is referred to as the London-Van der Waals force [22] ( [9], section 11 .2). 

2.13.1.1 Hamaker Theory 

Following Fritz London 's explanation of the origins of van der \tVaals forces, Hamaker 

in 1937 was quick to realize that such universal long-range intermolecular forces could 

give rise to the long-range attractive forces between macroscopic objects that must 

be invoked to explain the phenomenon of colloid aggregation ([9], section 11 .3) . 
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The van der Waals interaction energy VA has been solved for a few known geome-

tries ([9], section 11.3) . For two spherical colloidal particles separated by distance H, 

where His the shortest surface to surface distance between the spheres, the interaction 

potential is: 

VA = - A ( a1a2 ) , where a1, a2 >> H 
6H a1 + a2 

(2.17) 

with A as the Hamaker constant (a typical Hamaker coefficient for metal is around 

30 k~·oom (table LI.3 of [32])), a1 and a2 are the radii of the two spheres. 

Now looking at equation 2.17, it is clear that if the particles are of the same size 

(a1 = a2 =a) then this simplifies to: 

- Aa v -­
A - 12H (2 .18) 

from this equation we can see that if the par ticle size is on the order of the distance 

between them, then the van der Waals interaction energy is about 12 t imes smaller 

t hen the Hamaker constant . But if ,;H "' 1, then the van der ·waals interaction 

energy is equal to the Hamaker constant. 

For a spherical colloid next to a flat surface, [9] : 

- Aa ( H ) VA = 
6

H 1 + (2(a) + H )+ ... , where a>> H (2. 19) 

where a is the radius of the sphere and His the distance between the sphere and the 

flat surface. 

Van der Waals forces are implicated in the uncontrolled aggregation of colloidal 

spheres to each other and to the sample cell surfaces [9], so these forces are always 

somewhat relevant . 
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2.14 Electro-kinetic Effects 

We cannot neglect the effect of electrical charges that are inevitably present at the 

particle surface and in the surrounding liquid when a electric field is applied to the 

cell. There are many dynamical effects that happen within the sample cell when a 

electric field is applied . But the three main mechanisms for electric-field effects are 

electrophoresis, dielectrophoresis and electro-osmosis [9]. These mechanisms will be 

discussed in the following subsections. 

2.14.1 Electrophoresis 

Electrophoresis is the motion of dispersed particles relative to a fluid under the influ­

ence of a uniform electric field. Experimentally it was found that the particle velocity 

is proportional to the applied field strength . For spherical particles t his relationship 

is, u = /1EE, where /1E is the electrophoresis mobility of the particle. It is caused by 

the presence of a charged interface between the particle surface and the surrounding 

fluid ([9], section 8.2.3). 

2.14.2 Electro-osmosis 

Electro-osmosis is the motion of liquid induced by an applied electric field across 

capillaries or microchannels. Like electrophoresis, the velocity of this motion is also 

linearly proportional to the applied electric field, and dependent on both the material 

used to construct t he microchannel and the solution in contact with the channel wall. 

T he role of electro-osmosis is more dominant in highly polar solvents ([9], section 

8.2.1) . In this work, we used less polar solvents to minimize electro-osmotic flows. 
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2.14.3 Dielectrophoresis 

Dielectrophoresis is a phenomenon in which a force is exerted on a dielectric particle 

when it is subjected to a non-uniform electric field. In contrast to linear electrophore­

sis, it does not require that the object have a net charge. All particles exhibit di­

electrophoretic activity in the presence of non-uniform electric fields. However, the 

strength of the force depends strongly on the medium and particles' dielectric con­

stants, on the particles' shape and size, as well as on the frequency of the electric 

field (section 8.9 of [9]). 
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Chapter 3 

Experimental Methods 

3.1 Introduction 

The experiments described in this thesis involve electric-field-driven oscillatory 

motion of colloidal particles in suspension. Electric fields of varying amplitudes and 

frequencies were employed. This chapter will focus on the details of the electric 

field cell design and construction. This chapter will also address the experimental 

hardware used to carry out the experiments within this thesis. Finally this chapter 

will discuss the image acquisition methods, and the image processing software used 

to analyse the images acquired. 

3.2 Electrode Geometry and Electric Field Lines 

Figure 3.1 shows a schematic design of an electric field sample cell with electric field 

parallel to the substrate and perpendicular to gravity. In the figure, the green colour 

denotes the bottom glass, yellow denotes the spacing electrodes, and cyan denotes 
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Figure 3.1: Schematic design of a field cell with electric field parallel to the substrate 

and perpendicular to gravity. The green colour denotes the bottom glass, yellow 

denotes the spacing electrodes, and cyan denotes the top plate. (Not drawn to scale.) 

t he top plate. 
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Figure 3.2: Electric vector fields for schematic design of a field cell with electric field 

parallel to the substrate and perpendicular to gravity. The blue colour is the glass 

slides, and green are the electrodes. T he pink lines are the vector field lines and the 

red arrows are the electric vectors. 

Figure 3.2 shows an electric field vector diagram of the electric field set-up. In this 

set-up a uniform force pointing to the left on a negatively charged particle was used . 

The lines are equipotentials while t he arrows represent field vectors . T he electric 

force on the particles are achieved by voltages applied across the electrodes (shown 

in green). From this diagram, it is clear that the most uniform fields are far from 

and in between the electrodes. For t he largest applied voltages. when the particles 

will traverse t he largest distance, it is possible that field non uniformities will become 

important. 
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3.3 Designs and Construction of Electric Field Cells 

The electric field cells that were used in this thesis went though several different 

types and styles before reaching a final sample style which was used for most of the 

primary data collection. For completeness, a description of all the cell designs is 

provided here. 

3.3.1 Electric Field sample Cell Design 1 

Figure 3.3: Design 1 for an electric field cell. 

The first sample electric field cell design that was constructed is shown in fig­

ure 3.3. First a glass microscope slide was cleaned with acetone. Then two pieces of 

stainless steel were cut to size (which were used as the two electrodes) and taped 

on to the clean microscope slide using double-sided medical grade adhesive tape 

(ARcare@ 92712 C lear Polyester by Insight Adhesives Research). Then a glass 

cover slide with a thickness of around 0.13- 0.17 mm was taped on top of the two 

steel shims using the same double-sided adhesive tape. Afterward 30 gauge wires 
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were attached to the electrodes using drops of an ultraviolet-curing ( "UV" ) UV glue 

("Norland Optical Adhesive 68" by Norland Products Inc.) and cured under a an ul­

traviolet (UV) lamp (Spectroline model SB-100P) for 15 minutes. Next a connection 

was made from the wire to the electrodes using silver paste (colloidal silver paste by 

Canemco Inc.). After the silver paste had dried , the conductivity of each electrode 

was tested using a multimeter. One end on the multimeter was attached to the end 

of one of the wires and the other end of the multimeter was place on the electrode. If 

the resistance from the end of the wire to the electrode was some low number (around 

Hl) then it was good connect ion. If the resistance from the end of the wire to the 

electrode was some high number (around 1MO) the it was a bad connection, at which 

point the wire was removed , cleaned, reattached and tested again unt il it was a good 

connection. 

Next the cell was filled using one of the colloidal suspensions that were used for 

this experimental work (refer to section 3.4 for more details) . Finally the cell was 

sealed using UV glue (refer to section 3.4 for details on how the cell was sealed) . This 

first type of electric field cell had many problems with leaks, and the double-sided 

tape would also dissolve in the solvent. 

3.3.2 The Zero Field Sample Cell 

The cell in figure 3.4 shows a sample cell for an experiment where we did not 

apply a external electric field. In this case we would contain our colloidal suspension 

within a rectangular glass capillary (0.10 x l.Omm by Vitrocom Inc.). Again t he first 

step was to clean a glass microscope slide with acetone, and then on opposite side 
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Figure 3.4: A Design for a cell which did not have electrodes within it but was used 

for studying dynamics at zero fields as well as for testing the tracking code used in 

this experimental work. The black lines are guide lines, and are only used in the 

placement of the capillary tube. 

on which t he cell was to be built, guide lines are drawn. These lines only serve one 

purpose, which is to act as guide in the placement of the capillary tube. A capillary 

tube is then glued onto the microscope slide using UV glue and cured. The t ube 

was then filled with the colloidal suspension and sealed (refer to section 3.4 for more 

det ails). 

This type of cell was good for testing the code that was used to track the particle 

(discussed in section 3.6). This type of cell was also appropria te for studying dynamics 

at zero fields. Results of which can be seen in chapter 4. 

3.3.3 Electric Field Sample Cell Design 2 

The second electric field cell that was constructed is shown in figure 3.5 . Again 

the first st ep was to clean a glass microscope slide with acetone, and then on the 

opposite side from the one on which the cell was to be built , guide lines are drawn. 
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Figure 3.5: Design 2 for an electric field cell. T he black lines are guide lines, and are 

only used in the placement of the electrodes and the capillary tube. 

T hese lines only serve one purpose, which is to act as guide in the placement of the 

electrodes and the capillary tube. Next a capillary tube with an square cross section 

(0.10 x l.Omm by Vitrocom Inc.) was glued onto the cleaned microscope slide. Two 

thin wires (tungsten wire with a diameter of 0.05mm from Goodfellow Cambridge 

Limited) were then inserted through the tube to act as t he electrodes. Two metal 

shims were also attached to t he slide using UV glue and cured. The wires that were 

inserted into the tube were then attached to these shims using UV glue and cured. A 

connection was then made from the wires to the electrodes using silver paste. Then 

their conductivity was tested using a multimeter. The tube was then filled usmg 

one of the colloidal suspensions that were used for this experimental work and sealed 

(refer to section 3.4 for more details) . 

This type of electric field cell also had problems, although not as many as the 

first electric field cell design . The main problem with this type of cell was the overall 

thickness of the cell. One problem was that the wires could not be 100% straight 
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and were hard to straighten them within the capillary tube. T hus it is harder in t his 

geometry to guarantee the uniformity of the electric field. 

3.3.4 Electric Field Sample Ce ll D esign 3 

Figure 3.6: Design 3 for an Electric Field Cell. This design was used for the electric 

field experiments reported in this thesis 

The third design for the electric field sample cell that was constructed is shown 

in figure 3.6 (refer to section 3.2 for more det ail on t he electrode geometry and electric 

field lines within t he sample electric field cell). This cell follows the same idea as the 

first electric field cell design but improves the idea. First a glass microscope slide was 

cleaned wit h acetone, and t hen on the side opposite to the one on which t he cell was 

to b e built , guide lines were drawn. These lines only serve one purpose, which is to 

act as a guide in the placement of the electrodes. Again, stainless steels shims were 

used as electrodes but this time they were smaller and were machine cut for fiatness. 

Then the electrodes were placed into position on the microscope slide. A clean glass 

cover slide was then placed on top of the electrodes and carefully clamped into place 
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such that the electrodes did not move nor did the glass cover move or break. Next 

UV glue ("Norland Optical Adhesive 61" by Norland Products Inc.) was placed along 

the edge of the cover slide, and due to capillary action the glue is sucked under the 

cover slide into the electrodes and stops. A weight was placed on the cover cell to 

maintain the thickness (the glue may push the cover slide up) of the cell then it is 

cured. After wires are attached to the electrodes, t heir conductivity was tested using 

a multimeter . T he guides line on the other side of the cell were then washed off' using 

acetone. The cell was then filled using one of the colloidal suspension that were for 

this experimental work and sealed (more details are given in the following section). 

3.4 Filling the Electric Field Cell 

Filling the electric field cell consisted of pipetting the colloidal suspension near 

one entrance to the cell. Due to capillary action the suspension was sucked in to fill 

the cell. Any excess solution at the edge was then wiped off'. 

The cell was sealed using a UV glue and cured under a UV lamp for 15 minutes. 

T he area within the sample cell which will be looked at within the experiment was 

covered with a piece of aluminium foil or a metal plate to prevent "bleaching" from 

happening. Bleaching is the fading of the fiuorescence dye that was used. 

3.4.1 Colloidal Suspension 

T he colloidal suspension that was used within the experiment was 2,um diam­

eter PMMA (poly(methyl methacrylate)) colloids, in a mixture of 67.5% vj v (vol­

ume/volume) CHB ( cyclohexyl bromide) and 32.5% v j v decalin ( decahydronaphtha-
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lene) solvent. In table 3.1 is a list of th chemicals used and th ir refractive indexes 

and densities. 

Table 3.1: Refractive index (n), and density (p) of the solvents and colloids. 

Chemical N arne Refractive Index Density (~ ) 

P M 1A(Poly(methyl methacrylate)) 1.4914 1.18 

CHB( cyclohexyl bromide) 1.4957 1.382 

Decalin ( decahydronaphthalene) 1.4750 0.896 

Solvent Mixture (67.5o/c CHB and 32.5% decalin) 1.4890 1.23 

Note that the density for CHB in table 3.1 was found from weighing know volumes 

(taking a average of three different run ) of the solvent and using p = v. 
Now assuming that there is no volume change during mixing, the Arago-Biot 

equation can be used to find the refractive index and density of the mixed solvents. 

This equation states [33]: 

(3.1) 

with n i, (i = (1, 2)) as the refractive ind x of the two pure solvents, n 12 is the 

mixture refractive index, and ¢i, ( i = (1, 2)) as the component of the volume fraction 

of t he two pure solvents. Similarly for the densities: 

(3.2) 

with Pi, ( i = (1, 2)) as the densities of the two pure solvents, p12 is the mixture 

density. Now comparing these two value (n12 and p12 ) with the values for PMMA 
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the values should be close. Thus from table 3.1 , wit h p1 = 0.675 and P2 = 0.325, the 

mixt ure is only 0.16% off from the colloids refractive index and 4.07% off from t he 

colloids densi ty. For our experiments, this mismatch in density is actually desired in 

order to have the colloids migrate to one of the surfaces. T he Bjerrum length is t he 

separation in the solvent where the electrostatic energy between two electrons equals 

k8 T . In our solvent mixture the Bjerrum lengt h is calculated to be 103 A. 

3.5 The Control Hardware 

The experimental set-up for t he control of the electric held within the sample cell 

is shown in hgure 3.7. A funct ion generator (Tektronix AFG3002 Dual channel func­

tion generator) output is connected to both channel 1 of an oscilloscope (Tektronix 

TDS1002 Two Channel digital oscilloscope) and to a wideband amplifier (Krohn­

Hite Corporation model 7662M wideband amplifier ). T he output of the amplifier is 

connected to both channel 2 on the oscilloscope by a divide-by-10 oscilloscope probe 

(Tektronix P2220 Volt age Probe) and to t he sample cell which is mounted on a sample 

st age of a microscope which is discussed next . 

3.5.1 Optical Microscopy 

In t his work, a Nikon Eclipse 80i upright optical and confocal microscope is used . A 

Qimaging QICAM fast 1394 12-bit monochrome camera (model QIC-F-CLR-12-C) is 

mounted on the microscope rear port, and is used to image the particles that were to 

be tracked within the sample cell (with sample EHOl ). The other set of experiments 

(with sample EH02) was carried out with a camera (model P CO.Edge) capable of 
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Figure 3.7: Experimental set-up for the applied AC electric field. A function generator 

output is connected to both one channel on a oscilloscope and to a wide band amplifier . 

The output of the amplifier is connected to both a second channel on the oscilloscope 

by a divide by 10 probe and to the sample cell 
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higher frame rates. Fluorescence microscopy is used to track the part icles instead of 

bright field microscopy due its enhanced rejection of non-fluorescing objects and its 

rejection of scattered incident light . 

Bright field microscopy (BFM) uses a white light source in order to illuminate 

the entire area of interest. Places within the area of interest which have some object 

there, be it the sample or dust/ dirt , appear darker with a bright background. BFM 

normally has a lower contrast as compared to some other microscopy techniques. But 

BFM is a very simply set-up, needing only a white light source, thus is used to carry 

out initial tests of the sample. 

Fluorescence microscopy (in this case epifluorescence microscopy and not fluores­

cence confocal microscopy) uses a light source (in this case a mercury lamp) which 

emits light over a broad wavelength range. T he light is then passed by a filter such 

that only a narrow wavelength range hits the area of interest. Objects in the area 

of interest that have been "marked" with a fluorescent dye will be excited by that 

wavelength and they subsequently emit light at a longer wavelength than the input 

wavelength. T he light that comes from the area of interest is then filtered again such 

that only light at the longer wavelength can pass the filter. Thus, in our experiments, 

only the particles that fluoresce light were picked up, blocking out scattered light from 

non-fluorescing object s. T his light was recorded with a monochrome camera where 

intensity from the full range of t he emission spectrum of the fluoresce is recorded in 

one grey-scale image, under a range of 0 to 255 "grey-levels" . 

T he colloidal particles (PMMA (Poly(methyl methacrylate)) ) that were used within 

this thesis were labeled with a fluorescent dye (NDB-Cl [4-Chloro-7-nitrobenzofurazan]) 

that was excited by a blue wavelength, and emits in the green wavelength range. This 
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Figure 3.8: The Nikon Eclipse 80i Cl+ SHV confocal microscope with a Qimaging 

QICAM fast1394 12-bit monochrome camera (mounted on the rear port). 
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fluorescent dye eventually bleaches after exposures of extended duration. Bleaching 

is the fading of the fluorescence of the dye. After the particles have bleached t hen 

the experiment is continued by t ranslat ing the sample to a new unbleached area. 

3.6 Particle Tracking Software 

In this thesis, particle tracking refers to the investigation of colloidal particle 

positions as a function of time within a solvent. The list of coordinates of the particles 

over a series of t ime steps is referred to as the "par ticle tracks" . The tracks can t hen 

be analysed to identify what is happening to each particle motion as a function of 

time. 

Movies (image .tiff stacks) were acquired using t he camera (Qimaging QICAM 

fast1394 12-bit monochrome camera) software. These movies are a series of images 

taken at a frame-rate which was set within the camera software, and were checked by 

cross-calibrating by acquiring images of a stopwatch having 10 ms second resolut ion. 

After a movie was acquired, the stack was then analysed using computer pro­

grammes t hat were coded in IDL (Interactive Data Language by Exelis Visual Infor­

mation Solutions) . IDL is a programming language and is popular for data analysis of 

large sets of images. This language is often used for astronomy, medical imaging, and 

colloidal systems. The IDL data analysis code that was used follows the procedures 

outlined by Dr. John C. Crocker and Dr. David G . Grier [34] (refer to reference [35] 

for the outline of the code by Dr . Eric R. Weeks). 

Within the code, the colloidal particles are found for each image in the t iff stacks 

are assigned a particle number (or ID) as well a set of coordinates ( x,y) . Also from 
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one image to the next the particles are linked together. This is done by creating a 

circle of some distance from the place of the first set of coordinates for each particle 

and checking to see if any particle coordinates in the next set fall within this circle. 

The code then assumes that these two particles are the same and thus they are given 

the same particle ID. Thus after the tracking has finished, there is a list of particle 

IDs with a set of coordinates as a function of frame number , which in our experiments 

represents t ime. 

Since our experiments are carried out near the surface, par ticles sometimes stick 

to the surface. Thus the code identifies which particles are stuck and non-stuck next . 

This is done by taking the average distance that a particle centroid move from one 

image to the next. If this average distance is less t han some threshold value (a value of 

0.04a- 0.06a was used) then the particle is assume to be stuck. This stuck threshold 

is not set to 0, but to some small number to allow for some pixel noise in the tracking 

code. Then the code solves all the particle displacements, and from this the distance 

from starting position is calculated. The code also places circles around both the 

stuck and non-stuck particles on separate images for all the frames. This was done so 

that a. visual inspection of the assortment of the stuck and non-stuck particle could 

be made. 

The next part of t he code solves for the mean displacement (MD, < x > ), the 

mean square displacement (MSD, < x 2 > ), the mean cubed displacement (MTD, 

< x3 > ), and the mean fourth power displacement (MFD, < x4 >) of the par ticles. 

T his is done by calculating the displacement for different time steps, and finding 

the square displacement , the cubed displacement , and the fourth power displacement 

from the displacement a.t these different time steps. Next each displacement a.t each 
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time step is averaged to find their mean . Next for the MSD, the MTD, and the 

MFD, the average 'drift ' is then removed; refer to table 3.2 for each displacement 

correction equation. This drift correction was found to be quantitatively very tiny in 

our experiments (of around O.Ola) . 

Table 3.2: Table of Mean Displacements Corrected Equations 

Names Correction Equat ion 

MD <X>=< X> 

MSD < x2 >=< x2 > - < x >2 

MTD < x 3 >=< x3 > +2 * ( < x >3) - 3 * ( < x2 > * < x > ) 

MFD < x 4 > = < x 4 > + 6 * ( < .T >2 * < x2 >)- 4 * ( < x > * < x 3 > ) - 3* < .T > 4 

The final step is to cluster the particles into groups. This step of the code was 

written for this thesis. Two particles that are less than a user-defined distance apart 

are linked as members of one "cluster" . A third particle that is less than this t hreshold 

distance from any particle in this cluster belongs to this cluster as well. On each image 

the code assign the first particle with a cluster ID , then each subsequent particle is 

checked to see if it falls within a user defined distance from another part icle. If it 

does fall with that distance then those particles are assigned the same cluster ID (the 

lower of the two cluster ID 's) . Next , for each image a table is made and the particle 

number and cluster ID are placed in the table. Now the code checks to make sure 

that cluster from one image to the next have the same cluster ID, if not , the later 

cluster is reassigned a cluster ID. 

There was also an optional piece of code to handled stacks where the particles have 
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moved more than one diameter between two frames. This optional piece needed an 

additional data file. This data file comes from tracking a particle x and y posit ions 

in pixels by hand. The particle was selected after watching the movie for some 

t ime to select a particle t hat was a good reference particle for the whole movie. 

T hen the particle init ial posit ion is subtracted from all of the positions. This gives 

a displacement for that part icle and this displacement was assume to be average 

displacement for the whole stack. Next at each image the average displacement 

for that frame was subtracted from each particle. The stack was then track and the 

average displacement at each frame was added back to corrected what was subtracted 

before the tracking. 

All the data that the code has found was then outputted to .dat files which could 

be read in by plotting software (Igor Pro, Wavemetrics Inc.) and plotted. 
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Chapter 4 

Results 

4.1 Introduction 

In this chapter the results of three viscosity measurements that were done on the 

solvent of cyclohexyl bromide and decalin that was used, will be reported. Following 

this, the main experimental results on colloidal dynamics in an external electric field , 

as a function of field frequency and field strength, will be reported. 

4.2 Viscosity Measurement 

Figure 4.1 shows plots of stress versus the shearing strain for three different 

experimental nms on the solvent of 67.5% v / v (volume/volume) CHB ( cyclohexyl 

bromide) and 32.5% V / V decalin ( decahydronaphthalene) with linear fi t lines for 

each experimental run. The slope of the linear fits lines is equal to the viscosity 

of the solvent . Taking an average of the three experimental data runs one can get 

a value of about 2. 11 mPa * s. T his value was used in calculating the Reynolds 
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number is section 2.3 and in the calculations of the Stokes-Einstein equation out line 

in section 2.5 .2 and was clone in section 4.3. 
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Figure 4.1: Stress versus strain relationship for solvent mixture at T = 22°C of 67.5% 

CHB ( cyclohexyl bromide) and 32.5% clecalin( clecahyclronaphthalene) used in the 

electric field studies. Shown also arc the linear fi ts, and the viscosities fom the fitted 

slopes. 

4 .3 Stokes-Einstein-Sutherland Diffusion Coefficient 

As discussed in section 2.5.2 the colloid cliffusivity, in the absence of external forces, 

can be calculated from equation 2.4. Using the viscosity found in section 4.2: 

D = -,..----( 1_. 3_8_*_1----=0-,---
2
_
3 

....!.._fr,_)----=( 2_9_5 _K....:..)----=--_ 
6n (2.11 x 1Q- 3Pa * s)(l x 10- 6m ) 
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which works out to be DsEs = 0.102 ± 0.002 fJ,m2 j s. 

4.4 Colloidal Dynamics in Electric Fields 

Two samples were used in the experiments carried out for this thesis . These two 

samples will be referred to as EH01 and EH02. These samples both had similar 

compositions. Both were composed of 2Mm diameter P l\!IMA (poly( methyl methacry­

late)) colloids, in a refractive-index matching but density mis-matched solvent mixture 

(67.5% V / V (volume/ volume) CHB (cyclohexyl bromide) and 32.5% V / V decalin 

( decahydronaphthalene)). The stock suspensions for EH01 had particle concentra­

tions of 3.49% M/ V (mass/ volumes) and EH02 has 3.70% M/ V. However , because 

t he area packing fraction (a) of the colloidal monolayer is also a function of the sam­

ple thickness these two samples had different area fractions a (for EH01 a = 0.082 

and for EH02 a = 0.076). 

It should be noted that for both samples the electrode spacing was the same at 1 

mm, t hus for 7 volts applied to both EH01 and EH02, the electric field strength was 

7 V/mm. The main contribut ion to the error in electric field strength (± 0.1 V / mm) 

came from an uncer tainty in electrode spacing. In addit ion, since in t he experiments 

the elect ric field direction was along x and dynamics parallel and perpendicular to 

the field is monitored, the results had to be carefully corrected for small possible mis­

orientations of the camera with respect to the electric field direction. A description 

of the procedure is in Appendix A. 
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4.5 Sample EHOl: Area Fraction a = 0.082. 

Experiments on sample EH01 were carried out using a 40x oil immersion objective, us­

ing fiuorescence optical imaging and the experimental set up described in section 3.5 . 

Once the conditions under which the sample was exposed were considered to have 

reached a steady state, such t hat most of the particles are within a layer (typically 

15 minutes) the data acquisition consisted of an movie of images, typically around 

200 rv 300 frames. Results are reported first at zero electric field, and then for applied 

electric fields at different frequencies and amplitudes. 

4 .5.1 EHOl: Zero F ield 

Figure 4.2 shows a plot of log(MSD) vs log( time) at zero field for sample EHOl. From 

the linearity of this plot , we see t hat the scaling is MSD = fY . The linear behaviour is 

fitted to obtain an average value of 'Y = 1.04 ± 0.01 , which is consistent with normal 

diffusion ("! = 1). The reported error in 'Y arises from the difference between the fits 

for the < X 2 > and < Y 2 > measurements, which are in principle identical; this 

difference is larger than t he error reported in t he fits. 

Figure 4.3(a) shows the pair correlation for this sample at zero field . T he peak at 

r / rJ rv 2, with a peak height of about 1.4, indicating weak structuring in a relatively 

dilute colloidal fiuid phase. T he existence of weak structuring is inferred from that 

fact that the first peak in the g(r) arises at relatively low densities, and there are no 

visible secondary peaks. 

Finally, at zero field, we plot the MSD vs time in figure 4.3(b ). T his relationship 

is linear , and from the slope we obtain the diffusion coefficients along the x and y 
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directions, with an average value D~1°1 = 0.048 ± 0.002J.Lm2 / s. Comparing this with 

the bulk value, D sEs = 0.102 J.Lm2 j s, we see that the colloid diffusion constant is 

roughly half the expected bulk value. The reason for this slowing down was discussed 

in section 2. 11 where it was pointed out that hydrodynamic interactions with a hard 

wall can slow down colloidal diffusion. In chapter 5 section 5.4.1.1. this is used to 

quantify distance from the wall, and put a numerical value on the two-dimensionality 

of the system. 
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F igure 4.2: EH01, zero field. At zero field, the dynamics is diffusive: if one writes 

M S D = t' , then a linear fit to log(MSD) vs log( t) yields a slope 1 = 1.04 ± 0.01 

consistent with 1 = 1. 
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4.5.2 EHOl: f = 250 mHz 

Figure 4.4(a) shows a plot of log(MSD) vs log(time) at 250 mHz with voltages that 

ranged from 7 volts up to 60 volts for sample EHOl , which corresponds to an electric 

field amplitude ranging from E0 = 7 V / mm to E0 = 60 V / mm. T he data for < Y2 > 

at all of the voltages has a linear behaviour at short and long times, which will be 

looked a t more carefully in figure 4.4(b). The data for < X 2 > at all of the voltages 

roughly follows the same pattern, where as the voltage increases so does the amplit ude 

of the sinusoidal oscillations. This pattern is that at short t imes, 2 > ry > 1 meaning 

that the colloids are being directed by an external force (t he applied electric field) 

and that, a t long times, the slope trends to ry = 1 at long t ime. It should be noted 

that if one sampled the motion along X once per cycle of the applied electric field , 

this stroboscopically sampled < X 2 > behaves just like < Y2 >. 

Figure 4.4(b) show a plot of the log(< Y 2 >) vs log( time) at t he diHerent electric 

fields. The slopes at short and long t imes are different , with a plateau-like region in 

between. T his is shown be extrapolating the fit at short t imes (red dotted line on 

top curve, i.e. 60 V / mm). T hus the dynamics is diHusive at short times h "' 1), and 

sub-diffusive at intermediate t imes, which should return to nearly diffusive behaviour 

at longer t imes. 

Figure 4.5(a) shows the pair correla tion function for t his sample at the different 

electric fields. It should be noted that as the voltage increase, so does the size of the 

first peak at around 4; . This indicates that there is weak structuring in a relatively 

dilute colloidal fluid phase which get stronger as the voltage increases. Plot ted in 

figure 4.6 is the MSD vs t ime for an applied field of 7V / mm at f = 250 mHz. At 
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low fields, the mean squared displacements along y are essentially unchanged from 

t he zero-field values.The diffusion coefficient obtained along y is equal to D!fl6~~z = 

0.043 ± 0.001,um2 / s. Again comparing this with DsEs = 0.102 ,um2 / s, we see that 

this value is less than half the expected bulk value, but consistent with t he zero-field 

value in figure 4.3. This will be discussion later on in chapter 5 section 5.4.1.1. 

Another curious point is the small jump in the MSD between 7V and 20V m 

both figure 4.4( a) and figure 4.4(b). Associated with this is a noticeable shift in the 

position of the first g(r) peak. Both these effects could be related to the thin colloidal 

sediment becoming more two-dimensional. A quasi-3-dimensional sediment (where 

there are particles excursions out of plane) would result in projected distance in a 2D 

g( r) appearing smaller. This would also affect the 2D mean squared displacements. 
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Figure 4.4: (a) EH01 , f= 250mHz with voltages ranging from 7 to 60V. Results at 

each voltage are offset upwards from the previous voltage by 1 unit. (b) EH01, f= 

250mHz with voltages ranging from 7 to 60V, < Y2 > data only. Results at each 

voltage are offset upwards from the previous voltage by 1 unit. 
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Figure 4.5: (a) EHOl , f= 250mHz with voltages ranging from 7 to 60V (or electric 

field amplitudes E0 from 7 to 60 V / mm). T he pair correlation function shows a 

peak at r'/ CJ rv 4. T he height of this peak ranges from 1.4 to 4.0, indicating weak 

structuring at low fields but getting stronger at higher fields. (b) EHOl , f= 250mHz. 

Montage of area from single frames of t racked data at 7V, 20V and 60V. 
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Figure 4 .6: EHOl , f= 250mHz with 7V/ m m. < Y2 > versus time is linear, and yields 

an experimental diffusion coefficient of Dffo~~ z = 0.043 ± 0.00lp.m2 / s . The dynamics 

along the field direction, if analysed stroboscopically (looking only at the minima ) is 

also diffusive with almost the same behaviour. 
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4.5.3 EHOl: f = 500 mHz 

Figure 4.7 shows a plot oflog(MSD) vs log( time) at 500 mHz with voltages at 8 volts 

and 30 V (Eo = 8 and 30 V / mm) for sample EHOl. The data for < Y2 > at the 

lowest voltage appears to have a linear behaviour with "! '"" 1 at all t imes, which is 

consistent with normal diffusion. The data for < X 2 > at 8 V / mm follows a similar 

trend as at 250mHz where the data oscillates at the applied frequency of the applied 

electric field. At 8V / mm (as with the results at 7V, 250 mHz shown in figure 4.6), the 

oscillation appears uncoupled with the normal diffusive motion, because the minima 

of the oscillatory motion coincides with t he Y diffusion . The results for < Y 2 > at 

the higher field strength appears to be affected by the motion along X, and oscillates 

in phase with < X 2 > but with much smaller amplitude. This indicates coupling 

between x (which the force was applied along) and y (which is restricted because of 

the motion along x) driven motions at higher driving amplitudes. The mean-squared 

displacements at 30 V / mm are not plotted because t here were intermittent problems 

particle tracking in this dataset. However, the pair correlation function could be 

calculated and will be this is discussed next . 

Figure 4.8(a) shows the pair correlation for this sample at the same two field 

strengths. It should be noted that as the voltage increase from 8 to 30 V, the position 

of t he peak shifts from r / CJ = 2 to 3.5. At the same time the peak height increases from 

1.4 to over 5. This indicates that t here is weak structuring at the lower voltage but at 

the higher voltage there is much stronger structure; this can be seen in figure 4.8(b) 

where the first image is a single frame at 8 volts where t he formation of chains can 

be seen starting to happen, and the second image is a single frame at 30 volts where 
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there are well formed chains. 

Since the results along the Y direction at 8V / mm in Figure 4. 7 are consistent with 

1 = 1, we can ext ract the diffusion coefficient from a plot of MSD vs. time, shown 

in figure 4.9, also from these results, we obt ain the diffusion coefficients along the Y 

direct ion. This diffusion is equal to Dfr!r{:;~ z = 0.061 ± 0.001J.Lm2 j s. Again comparing 

this with DsEs = 0.102 J.Lm2 / s, we see that this value is roughly 60% the exp ected 

bulk value. The dynamics along the field direction is, however , sub-diffusive, and 

remarkably slower than the dynamics perpendicular to the field . 
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F igure 4.7: EH01 , 500mHz at electric fields of 8 V / mm. T he 8 V / mm results show 

normal behaviour in Y wit h weak oscillatory behaviour in X. 
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Figure 4 .8: (a) EHOl , f = 500mHz, E0 = 8 and 30 V l mm. The pair correlation 

function shows a peak between r 1 (J "' 2 for 4 v l mm, but shifts to r 1 (J "' 3.5 for 30 

V lmm. At t he same t ime the peak height changes dramatically from about 1.4 to 

over 5 indicating a significant increase in structuring. (b) Frames from sample EHOl 

at 500mHz a t 8 V and 30 V, showing the onset of chain formation and well-formed 

chains respectively. 
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Figure 4.9 : EHOl , f = 500mHz with V/ mrn. < y2 > versus time is linear, and yields 

an experimental diffusion coefficient of D[b~:;~z = 0.0611 ± 0.0003p,m2 / s. 

4.5.4 EHOl: f = 1 Hz 

Figure 4.10 shows a plot of log(MSD) v · log( time) at 1 Hz with a voltage of 10 volts 

(Eo = 10 V / mm) for sample EHOl. The results for < Y 2 > appears to have a linear 

behaviour with 1 < 1 at all times. < X 2 > follows a similar trend as for f = 250mHz 

with a sinusoidal oscillation at the frequency of the applied electric field . However , 

this is not seen as clearly because of the limited time resolu tion in this experiment . 

Figure 4.11 shows the pair correlation for this sample at this field strength. It 

should be not d that the position of the first peak happen at Tj a = 2 with a value 

of around 1.7. T his indicates that there i weak structuring as in figure 4.3(b) . 
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Figure 4.10: EH01 , 1Hz at electric fields of 10 V / mm. T he results show linear 

behaviour in Y, with 1 = 0.8, less than the 1 = 1, normal diffusion behaviour . 
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Figure 4.11 : EH01 , 1Hz at electric fields of 10 V / mm. Pair correlat ion funct ion shows 

a peak at r / CJ'"" 2. T he height of this peak is at 1.7, indicat ing weak structuring. 
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4.5.5 EHOl: f = 5 Hz 

Figure 4.12 shows a plot of log(MSD) vs log( time) at 5 Hz with a voltage of 16 volts 

(Eo = 16 V / mm) to sample EHOl. The data for < Y 2 > appears to have a linear 

behaviour wit h 1 < 1 at all times. The data for < X 2 > appears to have two linear 

but sub-diffusive regimes. The first one, at short times, appears to coincide wit h 

< Y 2 >, and the second one, at long times, appears to have a slope closer to one. 

Figure 4.13 shows the pair correlation for this sample at this field strength. It 

should be noted that the position of the first peak happens at r / CJ = 2 with a value 

of around 3.4. T his indicat es that chains are st arting to form . 
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F igure 4.12: EH01 ,f = 5Hz, E0 = 16 V / mm. < Y2 > shows a single sub-ditl'usive 

behaviour at all times, while < X 2 > shows a transition from sub-diffusive behaviour 

a t short times to somewhat less sub-diffusive behaviour at long t imes. 
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F igure 4.13: EH01 , f = 5 Hz, E0 = 16 V / mm. Pair correlation function shows a peak 

a t r'/ o- r-..o 2. T he h ight of t his peak is at 3.3, indicating that t his peak correlates to 

t he format ion of chains. T he existence of structuring is inferred from t hat fact t ha t 

t he first peak is around 3.2, with visible secondary and third peaks. 
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4.5.6 EHOl: f 10 Hz 

Figure 4.14 shows a plot of log(MSD) v log( time) at 10Hz at electric fields of E0 = 17 

and 30 V / mm. The data for both < Y2 > and < X 2 > at the lowest voltage appears 

to exhibit sub-diffusive behaviour at all times with 1 = 0.8. At the higher voltage 

the < Y 2 > data appears to exhibit ub-diHusive behaviour with = 0.54 at all 

times while the data for < X 2 > appears to have two linear regimes. The first one. 

at short times. is sub-diffusive with 1 = 0.35 and the second one. at long times, IS 

super-diffusive with 1 = 1.48. 

Figure 4.15(a) shows the pair correlation for this sampl at the same two field 

strengths. It should be noted that as the voltage increase from 17 to 30 V, the 

position of the peak remains at r/ CJ '"'"' 2. At the same time the peak height increases 

from 3.6 to over 4.4. This indicates that there is weak structuring at the lower 

voltage but a t the higher voltage there is much stronger structure; this can be seen in 

figure 4.15 (b) where the first image is a single frame at 17 volts where the formation 

of chains can be seen to be starting to happen, and the second imag is a single frame 

at 30 volts where there are well formed chains. 
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Figure 4.14: EHOl , f= 10Hz at electric fields of 17 and 30 V / mm. The 17 V / mm 

results exhibit sub-diffusive behaviour at all times with ry = 0.8. The 30 V / mm results 

(offset upward by 1 unit) show the < Y2 > data exhibit sub-diffusive behaviour at all 

times while < X 2 > appears to have two linear regimes, at shor t times is sub-diffusive 

and at long times is super-diffusive. 
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Figure 4. 15: (a) EH01, f = 10Hz at electric fields of 17 and 30 V / mm. Pair correlation 

function shows a peak at r / o- rv 2. The height of this peak increases as field increase, 

indicating that the chain stiffness increases. (b) Frames from sample EH01 at 10Hz 

at 17 V and 30 V, showing the onset of chain formation and well-formed chains 

respectively. 
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4.6 Sample EH02: Area Fraction a= 0.074. 

Experiments on sample EH02 were carried out usmg a camera capable of higher 

frame rates and with a 20x air objective, using fluorescence op tical imaging and the 

experimental set up described in Section 3.5. 

Once the condit ions under which the sample was exposed were considered to 

have reached a steady state (typically 15 minutes) the data acquisition consisted of 

an image series of 1000 images at 30 frames/ second. Results are reported first at 

zero electric field , and t hen for applied electric fields at different frequencies and 

amplit udes. 

4.6.1 EH02: Zero Field 

Figure 4 .16 shows a plot of log(MSD) vs log( time) at zero field for sample EH02. 

From the linearity of this plot , we see t hat the scaling is MSD = f Y. T he linear 

behaviour is fit ted to obtain an average value (! = 1.006 ± 0.002) , which is consistent 

wit h normal diffusion (! = 1). 

F igure 4.17 shows the pair correlation for this sample at zero field . It shows no 

peak indicating that is no structuring in the relatively dilute colloidal fiuid . The 2-

dimensional pair correlation functions show a broad crossover from zero to 1 because 

the 2D image projects out-of-focus particles, the result is a non-zero g(r) even at 

r < a. 

Finally, at zero field, we plot the MSD vs t ime in figure 4 .18. T his relationship 

is linear , and from the slope we ob tain the diffusion coefficients along the X and 

Y directions, with an average value D~~02 = 0.039 ± 0.001tDn2 js. Comparing this 
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with DsEs = 0.102 f.Lm2 / s, we see that this value is roughly half the expected bulk 

value. The reason for this slowing down was discussed in section 2.11 where it was 

pointed out that hydrodynamic interactions with a hard wall can slow down colloidal 

diffusion. 

The faster camera enabled data to be captured at a higher frame rates, and a 

lower magnification objective was used enabling a larger field of view and therefore 

gaining better statistics. However, the sample itself was made from a different batch 

of colloidal suspension, and the ionic strength of the solvent mixture (which was 

determined after viewing data was taken via pair correlation function measurements) 

was found to be higher then that of EHOl. Thus this second sample provided a 

window into the role of another experimental parameter, the ionic concentration or 

t he related Debye length, on t he colloidal dynamics. 
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Figure 4.16: EH02. zero field. At zero held , the dynamics is diffusive: if one writes 

MSD = t-r , then a linear fit to log(MSD) vs log(t ) yields a slope 'Y = 1.004 ± 0.002 

which is consistent with 'Y = 1. < X 2 > is offset by 0.25 for better visualization. 
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Figure 4.17: EH02, zero held. Pair correlation function shows no peak, indicative of 

fiuid-like structure expected for dilute colloidal suspensions. 
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Figure 4.1 : EH02, zero field. Mean square displacement ( < X 2 >. < Y2 >) versus 

time is linear , and yields an experimental diffusion coefficient of D~%02 = 0.0394 ± 

0.0002p,m2 /s. < X 2 > is offset by 0.25. 
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4.6.2 Unwanted Particle Drift at High Voltages 

When the movies acquired were later reviewed, it was noticed that there was fluid flow 

in t he sample at higher voltages. To visualize this, at each frequency and field strength 

a sub-stack was made with 1 frame per cycle. In this stroboscopic sub-stack movie, the 

directed motion is removed , so what is left is diffusive motion . Drift was detectable 

as a subtle directed motion, typically along a direction uncorrelated with the applied 

field. All the images in this substack can then be averaged. Figure 4.19 shows a 

montage of these averaged images as a funct ion of frequency and applied voltage. 

Each row corr sponds to a different frequency with each column corresponding to 

different voltages there were applied to the cell. Each image is a average of the sub­

stack and is a zoomed in area highlighting only a few part icles to see if there was 

indeed drift . A particle that is not drifting is seen as a solid circular object . while 

a drifting particle is seen as a blurred particle track. Images acquired at applied 

voltages and frequencies to the right of the red line were determined to be drifting -

t hese datasets were discarded from further analysis . 
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Figure 4 .19: The average of several frames sampled stroboscopically at the frequency 

of the applied field yields information about drift. Solid white circles are roughly static 

due to the stroboscopic sampling which renders the oscillatory motion invisible. Any 

left over drift manifests itself as a blurred particle track. This drift was observed to 

occur for experimental conditions (applied voltage and frequency) to the right of the 

red line. 
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4.6.3 EH02: f = 250 mHz 

Figure 4.20 shows a plot of log(MSD) vs log( time) at 250 mHz with a voltage of 7 volt s 

(Eo = 7 V / mm) to sample EH02. The data for < Y 2 > appears to have roughly a 

linear behaviour to the eye with 1 rv 1 at all times. < Y2 > data appears to alternated 

from slight ly larger t hen to slightly less then 1. The data for < X 2 > at short t imes, 

2 > 1 > 1 meaning that the colloidal are being move with not only Brownian motion 

but with some addit ional force (the applied electric field) and trending to 1 = 1. It 

should be noted that at the end of every cycle of the applied electric field, the < X 2 > 

data returns to the < Y2 > data. 

Figure 4.21 shows the pair correlation for this sample at zero field shows no peak 

indicating that is no structure. 

Finally, at this field strength, we plot the MSD vs time in figure 4.22 . This rela­

tionship is linear along < Y2 >, and from the slope we obtain the diffusion coefficients, 

Dg~:;?Hz = 0.039 ± 0.001Jtm2 / s. Compared this with DsEs = 0.102 pm2 / s, we see 

t hat this value is roughly half the expected bulk value. The reason for this slowing 

down was discussed in section 2.11 where it was pointed out that hydrodynamic in­

teractions with a hard wall can slow down colloidal diffusion, this will be discussion 

later on in chapter 5 section 5.4.1.1. 
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Figure 4.20: EH02, 250 mHz at electric fields of 7 V / mm. The results show linear 

behaviour in Y 
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Figure 4.21: EH02, 250 mHz at electric fields of 7 V j mm. Pair correlation function 

shows no peak, indicating no structuring of colloids. 
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Figure 4.22: EH02, f = 250mHz with 7V / mm. < Y 2 > versus time is linear, and 

yields an experimental diffusion coefficient of D!fs~~.~z = 0.039 ± 0.0002Mm 2 / s. 

4 .6 .4 EH02: f = 500 mHz 

F igure 4.23 shows a plot of log(MSD) vs log(time) at 250 mHz with a voltage of 7 

volts and 30 V (Eo = 7 and 30 V / mm). The data for < Y 2 > at t he lowest voltage 

appears to have a linear behaviour with 1 rv 1 at all t imes, which is consistent with 

normal diffusion. T he data for < X 2 > at both 7 V / mm and 30 V / mm follow a 

similar trend as at 250mHz where the data oscillates at the applied frequency of the 

applied electric field. 

At 7 V / mm, the oscillation of the < X 2 > data appears to uncoupled < Y 2 >, 

because the minima of the oscillatory motion coincides with the Y diffusion. The 

data for < Y 2 > at the higher field strength appears to be affected by the motion 

along X, causing a change in the slope of < Y 2 > at the higher voltage at long t ime. 

Figure 4.24 shows the pair correla tion for this sample a t the same two field 
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strengths. It should be noted that this plot shows no peak, indicating that 1s 1s 

no structure. 

Since the results along the Y direction at 7V / mm in Figure 4.23 are consistent 

with 1 = 1, we can extract t he diffusion coefficient from a plot of MSD vs. time. 

shown in figure 4.25. We obtain the diffusion coefficients along the Y direction. 

Dffr}{;;.)-Iz = 0.039 ± 0.00111m2 / s. Again comparing this with DsES = 0.102 ~tm2 / s, we 

see that this value is roughly half the expected bulk value. This will be discussion 

later on in chapter 5 section 5.4.1.1. 
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Figure 4.23: EH02, 500 mHz at electric fields of 7 and 30 V / mm. The results show 

linear behaviour in Y at 7 V / mm .. At 30 V / mm, the MSD appears to show a subtle 

1 > 1 behaviour. 
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Figure 4.24: EH02, 500 mHz at electric fi lds of 7 and 30 V / mm. Pair correlation 

function shows no peak, indicating no structuring of colloids. 
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F igure 4.25: EH02, f = 500mHz with 7V j mm. < Y2 > versus time is linear , and 

yields an experimental diffusion coefficient of Dfo~~~z = 0.039 ± 0.000lJJm2 j s. 
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4.6.5 EH02: f = 1 Hz 

Figure 4.26 hovv a plot of logC IISD) v log( time) at 1 Hz with voltages ranging from 

7 V to 30 V (Eo = 7 to 30 V / mm). Again, the dynamics along X exhibits oscillatory 

behaviour that appears decoupled with diffusive motion, except at the highest field 

studied (similar to the 500 mHz case). Figure 4.27 show a plot of the log(< Y 2 >) vs 

log(time) at the different voltages with slopes at both short and long times. At 7 and 

30 V / mm, 1 rv 1 at all times. which is consi tent with normal diffusion. At 50V j mm 

and long times, the dynamics is noticeable super-diffusive, more o than at 500 mHz. 

The pair correlations, shown in figure 4.28, show little field-induced structuring. 

For E0 = 7 and 30 V / mm, we extract the diffusion coefficient along Y from a 

plot of MSD vs. time, shown in figure 4.29. vVe obtain the diffusion coefficient 

along the Y direction, Df//z02 = 0.036 ± 0.001J-Lm2 / s. Again comparing this with 

DsEs = 0.102 J-Lm2 / s, we see that this value is roughly one/ third the expected bulk 

value. 
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Figure 4.26: EH02, 1 Hz at electric fields ranging from 7 to 30 V / mm. 
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F igure 4.27: EH02, 1 Hz at electric fields ranging from 7 to 30 V / mm. < Y2 > data 

only. Each voltage offset from the previous voltage by 0.25 unit . 
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Figure 4.28: EH02, 1 Hz at electric fields ranging from 7 to 30 V / mm. Pair correlation 

function shows no peak at low volt ages only at the highest voltage . 
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Figure 4 .29: EH02, f = 1Hz with 7V / mm. < y2 > versus t ime is linear , and yields 

an experimental diffusion coefficient of Dfk~02 = 0.036 ± 0.0001{trn2 / s . 
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4.6.6 EH02: f = 5 Hz 

Figure 4.30(a) shows a plot of log(MSD) vs log(time) at 5 Hz with voltages ranging 

from 7 V to 70 V (Eo = 7 to 70 V / mm). The behaviour here is similar to that at f 

= 1Hz. There is normal diffusion in Y (shown clearly in Figure 4.30(a), where the 

Y dynamics is fit to a power law 1 of 1). Along X, there is the familiar "Normal+ 

Oscillatory" behaviour, except at long times at the highest field, where the dynamics 

appears super-diffusive. 

The global fitting was done by restricting the slopes to be the same but leaving 

the y-intercept free. 

Figure 4.31(a) shows the pair correlation for this sample at the same field strengths. 

It should be noted that this plot shows a peak at around r/ J ""' 2 with the height 

ranging from 1.2 to 1.9. indicating that is weak structure. 

Since the results along theY direction at 7 V / mm in Figure 4.30(b) are consistent 

with 1 = 1, we can extract t he diffusion coefficient from a plot of MSD vs. time, 

shown in figure 4.32. We obtain the diffusion coefficients along the Y direction, 

Df/;~02 = 0.0332 ± 0.0001J-Lm2 j s. Again comparing this with DsEs = 0.102 J-Lm2 j s, we 

see that this value is roughly one/third the expected bulk value. 

81 



0.8 

0.4 

0.0 

0 -0.4 

~ -0.8 --0) -1 .2 
0 
_J -1.6 

-2.0 

-2.4 

1.0 

0.5 

..- 0.0 0 
en 
~ -0.5 --0) 
0 
_J 

-1 .0 

-1 .5 

f= 5 Hz 

<X
2
>, <Y

2
>, Voltage applied 

--+- , -·• -· 7 v 
--+- , - · -· 30 v 
--+- , - · - 50 v 
--+- , -·· -· 70 v 

-1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

-1 .2 -0.8 -0.4 

Log(Time) 

(a) 

e 70V e 50V 
e 30V e 7V 

- Global fit for 7V, 30V, 50V, 70V: 
y = 1.044 ± 0 .005 

0.0 0.4 0.8 1.2 

Log(Time) 

(b) 

1.6 

Figure 4.30: (a) EH02, 5 Hz at electric fields ranging from 7 to 70 V / mm. The 

dynamics along X shows oscillatory motion superimposed on diffusive dynamics at 

short t imes; t his diffusive dynamics is seen for all times along Y. At high fields and 

long times, the motion along X is faster than diffusive. (b) EH02, 5 Hz at elect ric 

fields ranging from 7 to 70 V / mm. < Y2 > data only. Each voltage offset from the 

previous voltage by 0.25 unit. The dynamics along < Y 2 > is seen to be diffusive at 

all field amplitudes. 
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F igure 4.31: (a) EH02, 5Hz with electric fields ranging from 7 to 70 V / mm. Pair 

correla t ion funct ion shows a peak at r / J "' 2. The height of th is peak is ranges from 

1.2 to 1.9, indicating some structuring only at the highest field (70V / mm). (b ) Frames 

from sample EH02 at 5Hz a t 7 V and 70 V, showing the onset of chain formation and 

formed chains respectively. 
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Figure 4.32: EH02, f = 5Hz with 7V / mm. < Y2 > versus time is linear , and yields 

an experimental diffusion coefficient of Dfrfz02 = 0.0332 ± 0.0001pm2 / s. 

4.6. 7 EH02: f = 10 Hz 

Figure 4.33(a) shows a plot of log(MSD) vs log( time) at 10Hz with volt ages ranging 

from 7 V to 100 V (Eo = 7 to 100 V / mm). < X 2 > at all voltages follows a similar 

trend as at 250mHz, with sinusoidal oscillations (not very well resolved as we only 

acquire 3 frames per cycle) at the applied frequency of the applied electric field. At 

7 V / mm, 30 V / mm and 50 V / mm, the oscillat ion appears uncoupled with normal 

diffusive motion. The data for log < Y2 > vs log(time) at the higher field strength 

appears to be affected by the motion along X, causing a change in slope at the higher 

voltage At the 3 lowest fields applied, log( < Y2 >) exhibits linear diffusive ( 1' rv 1) 

behaviour. which will be looked at more carefully in figure 4.33(b). Figure 4.33(b ) 

show a plot of the log(< Y2 > ) vs log( time) at the different applied fields with fits at 
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short and long t ime for 70V and 50V, and single fits for 30V and 7V were 'Y "' 1 at 

all times, which is consistent with normal diffusion . 

Figure 4.34 shows the pair correlation for this sample at the same field strengths. 

It should be noted that this plot shows a peak at around r / O" "' 2 with the height 

ranging from 1.2 to 2.3. indicating that is weak structure at the lower voltages but 

noticeable structure at 30, 50, and 70 V / mm. 

Since the results along the Y direction at 7 V / mm in figure 4.33(b) are consistent 

with 'Y = 1, we can extract the diffusion coefficient from a plot of MSD vs. time, 

shown in figure 4.35. We obtain the diffusion coefficients along the Y direction, 

DfrffR2 = 0.035 ± 0.001t-Lm2 / s. Again comparing this with Dses = 0.102 f-Lm2 / s, 

we see t hat this value is roughly one/ third the expected bulk value. This will be 

discussion later on in chapter 5 section 5.4.1.1. 
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F igure 4.33: (a)EH02, 10 Hz at electric fields ranging from 7 to 100 V / mm. At these 

largest fields. and at long t imes, the dynamics is faster than diffusive along the field 

direction, and to a lesser extent, perpendicular to t he field direction as well. (b ) 

EH02, 10Hz at electric fields ranging from 7 to 100 V / mm. < Y2 > data only. Each 

voltage off et from the previous voltage by 0.25 unit . At short times, the dynamics is 

diffusive. At the largest fields, and at long times,the dynamics is faster than diffusive. 
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Figure 4.34: EH02, 10Hz with voltages ranging from 7 to 100. P air correlation 

function shows a peak at r-j CJ r--J 2. T he height of t his peak is ranges from 1.2 to 2.3. 

indicating that is weak structure at the lower voltages but at the higher voltage there 

is much stronger structure. 
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Figure 4.35: EH02, f = 10Hz with 7V / mm. < y2 > versus t ime is linear, and yields 

an experimental diffusion coefficient of Dfr/f-,~2 = 0.035 ± 0.0003j.Lm2 j s. 

4.6.8 EH02: f = 100 H z 

Figure 4.36 shows a plot of log(MSD) vs log(time) at 100 Hz with voltages ranging 

from 7 V to 70 V (Eo = 7 to 70 V / mm) for sample EH02. The data for both < X 2 > 

and < Y 2 > at all voltages have a linear behaviour. This linear behaviour is fi tted to 

obtain an average value (r = 1.00 ± 0.01) , which is consistent with normal diffusion 

(r = 1). 

Figure 4.37(a) shows the pair correlation for this sample at f= 100 Hz at elect ric 

fields ranging from 7 to 70 V / mm. The pair correlation function shows no peak, 

indicating no structuring of colloids. The absence of structuring at f = 100 Hz (which 

can be seen in figure 4.37(b) which is a montage from single frames of tracked data 

at 7V, 30V and 70V) for the field amplit udes less than 100 V / mm brings up an 
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interesting point. At these frequencies, the field likely oscillates too rapidly to polarize 

the ionic double layer, and the dielectric polarization mechanism is too weak to induce 

chain formation. This is an indication that the structuring at low frequencies is almost 

entirely due to the ionic polarization mechanism 

Since the results along the Y direction at 7 V / mm in Figure 4.36 are consistent 

with 'Y = 1, we can extract the diffusion coefficient from a plot of MSD vs. time, 

shown in figure 4.38. We obtain the diffusion coefficients along the Y direction, 

Dfcfci1~~ = 0.038 ± 0.0002f.Lm2 / s. Again comparing this with DsEs = 0.102 f.Lm2 / s, we 

see that this value is roughly one/ third the expected bulk value. 
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Figure 4.36: EH02, 100Hz at electric fields ranging from 7 to 70 V / mm, shows simple 

diffusive behaviour both along and perpendicular to the field for all applied voltages. 
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Figure 4.37: (a) EH02, 100 Hz at electric fields ranging from 7 to 70 V / mm. Pair 
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Shows no chainlike structures even at the highest fields. 
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Chapter 5 

Discussion and Conclusions 

5 .1 Introduction 

This chapter will discussed the results that were outline in chapter 4. This will 

include discussion of normal, sub-, super- diffusion behaviour, as well as an example 

of each type of diffusion behaviour that was seen. After that there will be a phase 

diagram to highlight the different behaviour, and the transition from each phase to 

the next. Finally at the end there will be a conclusion of the work done within this 

thesis as well as future work ideas. 

5.2 Electrophoretic Mobility 

The particles respond to the electric field E by electrophoretic motion with a speed 

u . By measuring particle motions, we can extract the electrophoretic mobility ~tE 

using the equation u = ~tEE at different frequencies and field amplitudes. T his is 

shown in figure 5.1(a) . Given the noise in the data, there is no obvious trend for the 
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electrophoretic mobility as a function of field strength. The small-amplitude response 

(at low voltage) is shown in figure 5.1 (b) as a function of frequency. Here too, there is 

no clear trend of any dependence on frequency. The average value of electrophoretic 

mobilit ies are 3.7 ± 0.1 x 10- 10m2 / Vs (sample EH01) and 5.9 ± 0.1 x 10- 10m2 / Vs 

(sample EH02). This may be compared with the range 4.0 x 10- 10 to 6.0 x 10- 10m2 / Vs 

obtained by Vissers et al in a similar system [1]. For all of the different voltages at all 

the different frequencies t he electrophoresis mobilit ies were calculated to see if there 

was a pattern. From figure 5.1(a) and figure 5.1 (b) it is clear that there is no pattern 

to the electrophoresis mobility. But the mobilities that were found wit hin this thesis 

due compare well with previous reported mobilities from Vissers et al [1]. 
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Figure 5.1 : (a) Electrophoretic mobility for samples EH01 and EH02 for a range of 

frequencies ranging from 250mHz to 100 Hz. (b) The small-amplitude electrophoretic 

response (shown for samples EH01 and EH02) shovved no strong trend as a function 

of frequency. The average values reported are 3.7 ± 0.1 x 10- 10m2 / Vs and 5.9 ± 

0.1 x 10- 10m2 / Vs respectively and compare with values ranging from 4.0 x 10- LO to 

6.0 x 10- 10m2 / Vs reported previously in a similar system [1]. 
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5.3 Pair correlation functions at zero field for Sam-

ples EHOl and EH02 
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Figure 5.2: Shown are 2D pair correlation functions corresponding to samples EH01 

and EH02 (circle and square symbols, respectively, data for EH02 is shifted down by 

1 unit for clarity) along with calculated pair correlations for the shown values of ionic 

concentration (c) , particle charge(Q) , and particle (area) fraction ¢ . 

The pair correlation functions at zero field was used to get an better idea on the 

differences in ion concentrat ion between samples EH01 and EH02. Previous work 

( [36]) has shown that the typical values of charge per particle are in the range of 

Q= 100-200, while typical ionic concent rations can be as low as the nanomolar range 

with Debye lengths up to the micron range. T he Bjerrum length for our solvent 

mixture is 103 ± 10%A.. 
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Figure 5.3: (a)Sample EHOl image. Particle area fractions of a= 0.082. (b) Sample 

EH02 image. Particle area fractions of a = 0.076. 
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At such small ion concentrations. it i. easy to get sample-to- ample variability of 

the De bye length. Typical methods to control the De bye length (using surfact ant-like 

salts such as tetrabutylammonium chloride [37]) can result in other complications, 

and are thus avoided in this study. 

We can get a rough idea of ion concentrations by comparing the pair correlation 

functions to on s calculated for representative values of ionic concentration (1 nM) and 

particle charge (Q= 100) for the experim ntally determined particle area fractions but 

with different ionic concentrations (a = 0.082 and c = 1 nM for EH01 and a = 0.076 

and c = 30nM for EH02). Note that since the calculated pair correlation functions 

are for 3 dimensions, these are not true fi ts but just guide . It is reasonable to 

suggest t hat the difference in interparticle correlations that are seen in the dynamics 

arise simply from differences in ion con entrations: given such low ion concentrations, 

these differences are easier to monitor (via pair correlations) than to control. 

5.4 Dynamical Phase Diagram 

Figure 5.4 shows a phase diagram for the diffusion behaviour at different frequency 

at different electric field strength, showing the interplay between dipolar interactions 

and electrophoretic forces. Region I (inside the blue box) refers to normal diffusion 

( ) . Region II (inside the red box) refers to normal diffusion at hort times which 

changes to super diffusion at long time (- -Super). Region III (inside the purple box) 

refers to sub diffusion at short times which changes to super diHusion at long t ime 

(Sub-Super) along X. Region IV (insid the black box) refers to sub diffusion (Sub). 

Region V (inside the orange box) refers to normal diffusion along Y and sub diffusion 
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Figure 5.4: Dynamical Phase Diagram for samples EHOl and EH02. T his diagram 

shows normal diffusive behaviour at low field strengths for all frequencies and also 

at high frequencies for all field strengths studied. A range of anomalous diffusive 

behaviours are observed in the low frequency regime but at higher field strengths. 
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along X (Ny , subx) · And finally Region VI refers to the diffusion switching from 

normal to sub and back to normal. 

5.4.1 R egion 1: Normal Diffusion 

Normal diffusion behaviour happens when MSDrv f Y with 1 = 1. This typ ically 

happens at zero field and also can occur for fields where thermal energy dominates 

over the other external forces (see section 4.6.6 at low field strength) . This can also 

happen when the applied external force changes at a rate faster than what the particles 

can respond at , if the field does not result in larger scale structures. Figure 5.5 shows 

a montage of 5 frames about 0.8 seconds apart of a small region of tracked data. The 

red circles highlight particles undergoing normal diffusion behaviour due to Brownian 

motion. 

Figure 5.5: Montage of 5 frames about 0.8 seconds apart of a small region of tracked 

data of sample EHOl. The red ellipses highlight particles undergoing normal diffusion 

behaviour due to Brownian motion. 
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F igure 5.6: Plot of the diffusion coefficient for Stokes-Einstein-Sutherland (black line) , 

EHOl (blue squares) , and EH02 (red circles) 

5.4 .1.1 Stokes-Einste in-Sutherland D iffusion 

In section 4.3 the diffusion coefficient was worked out to be D = 0.102J..lm2 / s but 

both the diffusion coefficient for EHOl and EH02 differ from this value. The reason 

for this is primarily hydrodynamic interactions with the substrate. Using Faxen 's 

law, (equation 2.16) we can estimate the surface-to-surface distance of the particles 

from the wall at zero field to be 0.113 ~tm and 0.006 pm for samples EHOl and EH02 

respectively. 

An interesting point tha t we note is that the lowest field diffusion coefficient is 

systematically lower than t he ones a t higher fields. This could also arise from the 

system being more two-dimensional a t higher electric fields due to increased particle 

interactions. The projection of quasi two-dimensional sediment onto a 2-dimensional 

image has the effect of producing some apparent distances that are shorter t han the 
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true dist ances. This was noted is section 4.5.2. 

5.4.2 R egion II: Transition from Normal to Super-Diffusion 

In sample EH02, at high fields (ranging for 30 V / mm to 100V / mm) and in the 

frequency range 500 mHz to 10 Hz, we can see loose, fiexible chainlike st ructures 

(shown in Figure 5.7). Individual colloidal particles appear free to diffuse at short 

t imes, but at long times we see slow reorganization of these chains. It is likely 

this directed motion of chains (i.e. chains being attracted by nearby chains and 

reconfiguring the structure) t hat manifests it self as super-diffusive behaviour (see 

also figure 4.30) at long t imes. A good example of this type of behaviour is shown 

in figure 5.7 which is a montage of 3 frames 10 seconds apart, of a small region 

of tracked data (sample EH02, f= 5Hz, E0=30 V / mm). T he red circles highlight 

part icles undergoing this chain reconfigurat ion a t long times. 
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Figure 5.7: Montage of 3 frames 10 seconds apart , of a small region of t racked data of 

sample EH02 at 5Hz, 70 V / mm. The purple circles highlight chains that are breaking 

and forming new chains. 
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5.4.3 R egion Ill: Transition from Sub-Diffusive to Super-

Diffusive B ehaviour 

At high field strength (rv30V / mm) and intermediate frequency (rv lOHz) colloidal 

particles have form chains. The particles within these chains are restricted to maintain 

the chains, thus exhibit sub-diffusive behaviour (with 1 < 1). As compared to region 

II , where the short- t ime behaviour is diffusive, the chains (see figure 5. 7) are much 

stiffer and the particles are seen to be restricted by the chain structure more. This is 

the likely reason for the sub-diffusive behaviour at short times (figure 4.14) 

The super-diffusive behaviour at long times has the same origin as in region II, and 

seems to correlate with the chains reorganizing themselves. A good example of this is 

when colloidal chains have formed at 10 Hz with 30 V / mm applied to sample EH02 

(figure 4 .14) and these chains diffuse into each other. Figure 5.8 shows a montage of 

5 frames at about 1 second of a small region of tracked data. The red circles highlight 

tracked particles in a chain that attaches to another chain . 
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Figure 5.8: Montage of 5 frames at 1 second apart, of a small region of tracked data 

of sample EHOl at 10Hz, 30 V / mm. The red circles highlight tracked particlesin a 

chain that attaches to another chain. 
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5.4.4 Region IV: Sub-Diffusive Behaviour 

Sub-diffusive behaviour is observed (figure 4.10, or figure 4.12) when the mot ion of 

colloidal particles are restricted to within chains for the duration of the observations. 

The chains themselves seem to have formed (figure 5.9) a large laterally extended 

cluster, so there is no transition to normal diffusion of chains, which might be expected 

for particles in an isolated chain at long t imes. A good example of this is when 

colloidal chains are starting to form at 5 Hz with 16 V / mm applied (sample EH01 ). 

Figure 5.9 shows a montage of 5 frames at .4 seconds apart, of a small region of 

tracked data of sample EH01 at 5Hz, 16 V / mm, highlighting particles within chains. 

Figure 5.9: Montag of 5 frames at .4 seconds apart, of a small region of tracked data 

of sample EH01 a t 5Hz, 16 V / mm, highlighting particles within chains. 

5.4.5 R egion V: Anisotropic normal and sub-diffusive b e­

haviours 

In Region V, we observe that the dynamics perpendicular to the field direction (Y) 

is diffusive, while the dynamics along the field direction is sub-diffusive with '"'! = 0.8. 

For example, when 500 mHz was applied with a field strength of Eo = 8 V / mm, what 

we saw was very weak particle alignment along the field direction (see figure 4.8(b) , 

top image). T hus particles execute normal diffusion at short times since the alignment 
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was weak, but at long t imes, the par ticles are more likely to be obstructed along the 

field direction . 

5.4.6 R egion VI: Sub-Diffusive B ehaviour at Intermediate 

Times. 

In sample EHOl , when 250 mHz was applied what appears to happen along the 

non-applied direction is switching from normal diffusive to sub-diffusive to normal 

diffusive behaviour for all field strength. Even at the largest fields where there is 

clear chain formation, the chains appear to be undulating and not rigid. Thus, at 

short times colloids are free to diffuse. In addit ion there is, of course, a short t ime 

oscillatory mot ion along the field direction . At intermediate times the presence of 

chain structures restricts motion along X and Y. We see this clearly in the slopes of 

the log( < Y 2 >) vs log( t ime) in figure 4.4. At long times, the chains themselves can 

diffuse, and there is not much chain-chain association. This gives rise to diffusion 

again at long t imes. 

5.5 Conclusion 

In this thesis we see regimes of normal diffusion, as well as regimes where one ob­

serves both restricted and enhanced motions, which has been seen in other colloidal 

systems. Reduced particle motions are normally accompanied by cooperative motion 

all directions [24]. This type of motion has also been seen in glass-forming systems 

(Chaudhuri et al [24]) . Enhanced mobility on the other hand, is seen in systems 

with anisotropy, e.g. rod-like colloidal systems (Hafting et al [28]) and self-propelled 
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bacteria ( Golestanian et al [38]). 

Also in this thesis, we have measured the response of charged colloids to electric 

fields at a wide range of frequencies and amplitudes. We see that t here was no 

obvious trend for the electrophoretic mobility as a function of field strength nor for 

the small-amplitude response electrophoretic mobility as a function of frequency. But 

the electrophoretic mobilities found within this thesis compare well with ones obtained 

by Vissers et al in a similar system [ 1]. 

Our results are summarized in a dynamical phase diagram where both dipolar 

forces and time-dependent electrophoretic forces on the colloidal part icles. As the 

frequency goes from low to high the force acting on the colloidal part icles goes from 

dipolar interactions to electrophoretic force. 

At the highest frequency that was probed , t here is very lit tle effect of the field 

on the colloidal particles. T his is understandable as t he amplitudes of t he field were 

small (less than 100 V / mm). Previous experiments have shown that one needs fields 

on the order of rv 1000 V / mm for (dielectric) dipolar forces to be important . T his 

implies that even the dipolar forces induced here are driven by ionic (not dielectric) 

polarization, i.e. deformation of the double layer around the colloids. 

At the lowest electric field strength, motions along X and Y (parallel and perpen­

dicular to the electric field) seem to be uncoupled from each other. But as t he electric 

field strength increases, X and Y motions are more coupled . This transit ion from nor­

mal to sub-diffusive behaviour and the subsequent normal diffusion at long t imes has 

been seen in molecular dynamics simulations of Joranovich et al [23]. This behaviour 

is seen qualitatively along x (the field direction) and along y, but is easier to detect 

along y, because there is no oscillatory motion. The complex dynamics along y indi-

106 



cates that there is coupling between the driving force (along x) and the response along 

y. Additionally as the electric field strength increases, the hydrodynamic force and 

electrophoretic force increase as well and we start to see "collective" dynamics of the 

colloidal particles and chain motion which results in different anomalous behaviours. 

5.6 Future Work 

Our main intention for future work is to try to get a clearer picture of the different 

phase that were observed in the phase diagram and to reproduce the results already 

found with in this thesis. Additionally, the role of the third dimension is not clear, and 

it would be useful to make the system more two-dimensional than what was studied 

with this thesis. This could be achieved by introducing a laser light pressure which 

would force the colloidal closer to one of the walls [39]. Another possibility would be to 

density match the system and carry out a fully 3-dimensional of frequency-dependent 

electric-field driven colloidal dynamics. 
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Appendix A 

Image Orientation Corrections 

Since the re ults of this work was based on experiments with an applied uniaxial 

electric field, then there is a chance that the horizontal plane of the image may not be 

exactly along the x direction. To test to see if this is the case, one of the experiment 

data sets was used. For each experiment , an image orientation correction was applied 

using the following procedure. 

This experiment data set was then artificially rotated for a series of degrees to 

compare the MSD data with the non-rotated data. In figure A.l a sample schematic 

of this angle measurement is shown. The blue line shows the original position, and 

the red line shows the rotated position from the original position by the angle ¢. 

Equation A.l shows the rotation equation for this, where ( x', y' ) is parts of the rotated 

position, and (x, y) is parts of the original position. 
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( x·, y') 

Figure A.l: Samples figure for the rotation angle problem. 

(
x' ) = ( cos(¢) -sin(¢) ) ( x ) 

y' sin(¢) cos(¢) y 
(A.l ) 

Tow adding in a time dependence to the positions and subtracting out the first 

position to equation A.l : 

(

x'(t)- x'(O)) = ( cos(¢) 

y'(t)- y'(O) in(¢) 

- sin(¢)) ( x(t )- x(O)) 

cos(¢) y(t ) - y(O) 
(A .2) 

Now setting !::::...T' = x'(t ) - x' (O), !J.x = .T(t ) - .T(O), !::::.. y' = y'(t) - y'(O), !::::..y = 

y(t ) - y(O) and solving out equation A.2 get : 
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(

6.x') ( cos (¢)6..r -sin(¢) 6.y) 

6.y' - sin(¢ )6.x cos(¢ )6.y 

Now squaring, and choosing the t=O value as (0,0) for equation A.3 we get: 

(x')2 = x2 cos2(¢ ) + y2sin2(¢)- 2y2x2 (sin(¢) cos(¢ )) 

(y')2 = y2cos2(¢) +x2sin2(¢) + 2y2x2(sin(¢)cos(¢)) 

Now if we take the average for equation A.4, we get : 

< (x')2 >=< x2 > cos2(¢)+ < y2 > sin2(¢)- 2 < y2x2 > (sin (¢) cos(¢)) 

< (y' )2 >=< y2 > cos2(¢)+ < x2 > sin2(¢) + 2 < y2x2 > (sin(¢ ) cos(¢)) 

(A.3) 

(A.4) 

(A.5) 

Now if we assumed that < y2x2 > = 0 (value was found to be rv 2.0 x 10- 5
) in 

equation A.5 , then: 

< (x' )2 >=< x2 > * cos2(¢)+ < y2 > * sin2(¢) 

< (y' )2 > = < y2 > * cos2(¢)+ < x2 > * sin2 (¢ ) 

Now if we add these two equations we get: 

< (x')2 > + < (y')2 > 

< x2 > + < y2 > (Independent of ¢) 

(A.6) 

(A.7) 

Clearly from equation A.7 it can be seen that total MSD value ( < (x')2 > + < 

(y')2 > ) of the rotated data sets, at some ¢ , is independent of ¢ . We first used this 

to check that the invariant quantity in the rotated data is indeed invariant of ¢ . This 

can be seen in figure A.2, where all the data sets lie on top of the non-rotated data. 
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ow, directly from equation A.6 you can see that since the true directed motion is 

along < (x' )2 >. then the rotation angle that minimizes < (y') 2 > will correspond 

to the correct orientation. This typically should happen at c/J = 0 if there is no 

misorientation. To find the angle at which will minimizes this, one rotates the frame 

of reference by some small angle ( 73) till this minimum happens. Thus this 73 is the 

angle that the data needs to be corrected by. 

A.l R esults of Angle Measurements 

In figure A.2 it can be seen that all rotated data lies on top of the original data set. 
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F igure A.2: Plot of log(MSD) vs log(time) , where all the data sets lie on top of the 

non-rotated data. 
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In figure A.3(a) there is a plot of the Log(< x2 >) versus Log( t ime) for the x 

component for a list of angle including both t he posit ive (solid lines) and the negative 

(dash lines) rotation of t hat angle with t he the insert as the blown up area of the 

black square. Similar for they component in figure A.3(b). In figure A.3(a) as the 

angle increases t he strength of < x2 > decreases but the overall shape stay the same. 

Similar for figure A.3(b) as the angle increases the strength of < y 2 > increases while 

the overall shape stay the same. 
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Figure A.3: In principle, the electric field (E) should be parallel to X., but could 

be rotated by a small amount . A t est to determine the true direction of the E , by a 

rotating the frame of reference. The data that was used was at a frequency of 250mHz 

a t 20 voltages. The inserts in both (A) ,(B) are blown up areas of the black sqaures. 

T he dotted lines correspends to negative of the degrees. A) As the degree increases, 

MSD along x decreases. B) As the degree increases, MSD along y increases. 
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