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Abstract 

This thesis presents results from a model study of coupled physical-biogeochemical 

variability in the Labrador Sea. The coupled physical-biogeochemical ocean model 

(OPA-PISCES) is implemented for three monitoring stations in the Labrador Sea; 

two of these stations are located on the shelves of the western and eastern parts of 

the basin, whereas the third station is in the central Labrador Sea. The results of 

the hindcasting for 1994 are validated with available observations. The results of the 

sensitivity analysis suggest that the model response to parameter variations differs 

from region to region. The parameters with highest model sensitivity are identified for 

each station. The simulated seasonal variability of the low trophic level ecosystem dy­

namics and their relations to coupled physical-biogeochemical processes are discussed. 

The seasonal variability of dissolved inorganic carbon (DIC) is driven by the bloom 

drawdown of surface DIC and export through sinking, while the simulated surface 

pC02 concentration appears to be underestimated throughout the year. Besides the 

process study of the coupled physical-biogeochemical system at the selected regions 

in the Labrador Sea, the present study demonstrates the applicability of t he PISCES 

ocean biogeochemical model for regional coupled physical-biogeochemical modeling. 
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Chapter 1 

Introduction 

Over the last 420,000 years, the earth's climate system has operated within a relatively 

constrained domain of atmospheric C02 concentration and temperature, including 

the four glacial-interglacial cycles [27]. However , since the beginning of t he industrial 

revolution, human-induced (anthropogenic) activities have altered the global carbon 

cycle drastically [19], and subsequently, the present-day atmospheric C0 2 concentra­

tion has exceeded its natural variability [94]. Understanding the consequences of such 

change on the climate system and the potential impacts on the constituents of the 

earth system, namely the ocean and terrestrial biosphere, is essential to improve the 

predictability of t he fate of our planet in the coming century. 

The global carbon cycle describes t he continuous movement of carbon and com­

pounds involving a number of complex physical, chemical, and biological processes 

on the Earth. Figure 1.1 illustrates t he carbon exchange between and within the 

different components of t he earth system, including the atmosphere, ocean, and land. 

The total amount of carbon in t he atmosphere, in the form of carbon dioxide (C02 ) , 
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is a good indicator for characterizing the status of the cycle [108], since it is a rela­

t ively small reservoir t hat acts as a conveyer of carbon exchange between two other 

important reservoirs: the ocean and terrestrial biosphere. The ocean is the largest 

carbon reservoir in t he earth syst em, account ing for approximately 85 % of t he total 

inorganic carbon available on t he planet. This is equivalent to about 50 t imes the 

amount of inorganic carbon present in t he atmosphere. On a t imescale of decades 

to millions of years, air-sea interaction plays the dominant role in controlling the 

atmospheric C0 2 concentration [99]. 

In recent years, numerical models have become important tools in studies of the 

carbon cycle and ot her biogeochemical and climatological processes (e.g. [115, 109, 

50, 97]) . A number of collaborative research projects, such as the Coupled Model 

Intercomparison Project (CMIP; http:/ /cmip-pcmdi.llnl.gov / ), have been undertaken 

to investigate the responses and feedback of t he ocean carbonate system to ongoing 

climate change on regional to global scales. In the following sections, ocean carbon 

cycle processes and their role in atmospheric C0 2 uptake are discussed in the context 

of an open ocean. The Labrador Sea, the region of interest in the current study, is 

introduced, followed by t he goals and organization of the thesis. 

1.1 Ocean Carbon Cycle 

T he oceans play a crucial role in regulating the atmospheric C0 2 concentration as it 

exchanges vast amounts of C0 2 at t he air-sea interface within short periods of t ime. 

In fact , more than 90 Gt of inorganic carbon are transferred from the surface ocean 

to t he atmosphere and vice versa every year (Figure 1.1). 

2 



5.4 

70.6 70 2:Z.2 

M• ~ .J 
.'.. <,:t...-: 

F igure 1. 1: Schemat ic diagram for t he global carbon cycle. The reservoir sizes and 

natural fluxes of carbon prior to t he industrial revolut ion are indicated in black, and 

t he reservoir sizes and fluxes after t he revolution (therefore, ant hropogenic effects) 

are shown in red. Source: http:/ / www.ipcc.ch / graphics/ ar4-wgl /jpgj fig-7-3.jpg 
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1.1.1 Air-Sea Exchange and Marine Carbon Chemistry 

Carbon dioxide is continuously exchanged between the atmosphere and the ocean, 

primarily through molecular diffusion caused by the difference in t he partial pressure 

of gaseous C02 (pC02 ) between t he two media. The fluxes between the atmosphere 

and the ocean depend on the intensity and scale of turbulent fluctuat ions in t he near­

surface thin layer of the atmosphere. In practical ocean simulations, the turbulent 

fluxes are defined as functions of characterist ics of the atmospheric boundary layer, 

such as temperature, humidity, and wind speed [140] [89]. 

The carbon dioxide dissolved in seawater, the aqueous carbon dioxide C0 2 [aq], 

immediately reacts with water (H20) to form bicarbonate (HC0 3) ion, which may 

dissociate once more to form carbonate (Co~-) ion, according to the following chem­

ical reactions: 

(1.1) 

These three carbonate compounds comprise most of the dissolved inorganic carbon 

(DIC) in seawater1. The chain of these reactions, known as the buffer system, reduces 

t he oceanic pC02 and hence allows more atmospheric C02 uptake. The direction of 

t he above equilibria depends on the pH level of seawater. The Bjerrum plot [9] is often 

used to ident ify the dominant carbonate species at a particular pH level [1], as well as 

to track the response of carbonate system to changes in pH [141]. The typical seawater 

pH is around 8.1 [53], where t he equilibrium state of the DIC reactions (Equation 1.1) 

is HC03 . Under such circumstances, the oceanic pC02 is buffered , and therefore 

1The aqueous carbon dioxide also reacts with water to form carbonate acid (H2C0 3) . However, 

t he concentration of H2C03 is less than 0.3 % of the aqueous carbon dioxide [59] and t herefore it is 

neglected here. 
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more atmospheric C02 enters the ocean. Occasionally2
, a further chemical reaction 

of carbonate ion with calcium ion (Ca2+) takes place: 

(1.2) 

where CaC03 is calcium carbonate in solid form. While this reaction is possible 

(provided that the set of Ca2+ and co~- concentrations exceeds a certain threshold 

for the reaction to occur), it is generally prevented by the presence of other compounds 

that are taking up calcium ions for their calcification. Nevertheless, if the above 

reaction (Equation 1.2) does occur, by the Le Chatelier's principle [116], additional 

C02 would be removed from the atmosphere to compensate for the loss of carbonate 

ion. Hence, the formation of calcium carbonate enhances the oceanic C02 uptake, 

which leads to acidification and the reduction of carbonate ion concentration, and 

therefore shifts the equilibrium state of Equation 1.2 to the left. The overall effect 

of increased CaC03 formation through this process is therefore, the weakening of t he 

C02 sink. 

1.1.2 Physical and Biological Drawdown of Surface DIC 

Despite the fact that the external supply of oceanic DIC (i.e. atmospheric C02 ) 

enters from the sea surface, the DIC concentration increases with depth especially 

below 300 m, where it remains substantially higher than the surface concentration in 

all ocean basins [27]. This surface-to-deep DIC gradient is caused by a combination 

of physical, chemical, and biological processes that transport the surface DIC into the 

ocean interior. The two fundamental processes responsible for this DIC export are 

2Most CaC03 production in the ocean is biogenic and not geochemical [57]. 
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the solubility and biological pumps (Figure 1.2). The efficiency of the solubility and 

biological pumps are highly constrained by climatic condit ions which affect ocean 

circulation, stratification, temperature, salinity, wind stress, and sea-ice cover. In 

turn, these pumps determine the vertical inventory of atmospheric C02. 

Figure 1.2: Ocean carbon uptake. Source: http: / j pmel.noaa.gov / co2/ files/ pmel­

research.003.jpg 

Solubility Pump 

The solubility pump is a physico-chemical process of localized sinking of water mass 

associated with the Meridional Overturning Circulation (MOC) [19]. The pump is 

highly active in regions of cold and dense water mass formation at high latitudes, 

especially in the North Atlantic, off the coast of Greenland and Labrador, and in the 
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Southern Ocean [99] . The inorganic carbon captured in these regions sinks to deeper 

layers, where it travels latitudinally as part of the MOC until it is released back into 

the sea surface after decades to several hundred years. The solubility pump accounts 

for approximately one-third of t he surface carbon sequestration [137]. 

Biological Pump 

The other important process that contributes to ocean carbon uptake is the biolog­

ical pump. Phytoplankton, the primary producer of marine ecosystems, consumes 

dissolved C02 and other nut rients in seawat er to make plant t issue through photo­

synthesis. This process promotes the atmospheric C02 sink by reducing the surface 

pC02 concentration. Whilst most of t he C02 taken up by phytoplankton is recy­

cled through the marine food chain in the upper ocean (Figure 1.3) , a considerable 

amount (approximately 25 % [28, 61]) sinks into the ocean interior in both living and 

dead forms. The export of marine biota (of about 11 GtC/year [19]) is significant as 

it keeps the atmospheric C02 concentration 150 to 200 ppm lower t han it would be 

otherwise [61]. The C02 remineralized in the deep ocean is carried out by thermo­

haline circulation and is brought back into the atmosphere by upwelling. Although 

most of the biogenic carbon in the deep ocean is remineralized, a small port ion (0.2 

GtC/year [19]) reaches the seafloor where it is buried in the sediment. In addition 

to the t he biological pump explained above, several plankton species and corals ut i­

lize bicarbonate ion to form calcium carbonate shells and skeletons, according to the 

following chemical equilibrium: 

(1.3) 
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Figure 1.3: The low trophic level marine food web. Source: 

http: / /www 1. w hoi. ed u / generaLinfo / gallery _modeling/ slide4. html 
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While this biogenic calcification process produces one C02 molecule, two bicarbon­

ate ions (and hence two C02 modules, by the Le Chatelier 's principle [116]) are 

required for this reaction. Therefore, the overall effect of t he biological calcification is 

a net sink similar to the chemical calcification in Equation 1.2. Furthermore, sinking 

and deposition of CaC03 amplify the sink strength. Therefore, t his production and 

sequestration of biogenic calcium carbonate is called the carbonate pump [137]. 

1.2 The Labrador Sea 

As described in Section 1.1, the strength of atmospheric C02 uptake fundamentally 

depends on the efficiency of the solubility and biological pumps that maintain pC02 

of surface water below the atmospheric level. One important region that both of these 

pumps are highly active, and hence acts as a significant sink for atmospheric C02 is 

the Labrador Sea. 

1.2.1 Physical Characteristics 

The Labrador Sea is the northwestern arm of the North Atlantic Ocean. The bound­

aries of the Sea are defined as follows [ 4 7]: 

• On the North: the South end of Davis Strait and Baffin Bay. 

• On the East: a line from Cape St. Francis, Canada, to Cape Farewell, Green­

land. 

• On the West: the East Coast of Newfoundland and Labrador and the ortheast 

end of the Gulf of St. Lawrence. 
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The general circulation of the Labrador Sea is part of the intense cyclonic flow of 

the subpolar North Atlantic, whereas the interior circulation is much weaker. The 

boundary flow consists of three major currents: the Irminger Current, West Greenland 

Current, and Labrador Current (Figure 1.4). The Irminger Current travels along 

the Greenland Coast, transporting a relatively warm and salty water mass to the 

Labrador Sea. This so-called Irminger Water [145] is a northern extension of the 

North Atlantic Current, which is additionally transformed in the Irminger Sea by 

surface cooling. The West Greenland Current is the northward boundary current 

along the west Greenland Coast, which transports low-salinity and cold water from 

the Nordic Seas [14] . The southward flow at the western boundary is the Labrador 

Current, which is a continuation of the Baffin Island Current from Hudson Strait 

to the Grand Banks [118]. The transport of t he Labrador Current is considered to 

possess a strong barotropic component. The continental shelf and slope branches 

of the Labrador Current are estimated to be 3 and 16 Sv, respectively [100]. In 

the northern Labrador Sea, the branches of the West Greenland Current and the 

Labrador Current meander and interact to form mesoscale eddies and shelf waves, 

which promotes variability in this region [87]. The West Greenland Current also 

carries small icebergs north of 60-70 °N and larger icebergs off t he West Greenland 

Shelf into Baffin Bay. These icebergs are transported southward by the Labrador 

Current, where they are either recirculated wit hin the Labrador Sea or end up melting 

in the vicinity of t he North Atlantic shipping lanes. The heat exchange between 

the interior region and the boundary current system is generated via eddy-induced 

transport [64]. 
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Figure 1.4: Map of the Labrador Sea with the locations of AR7W monitoring line (in 

green) and stations (numbered 8, 15, and 25). The bathymetry contour interval is 

1000 m. 
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1.2.1.1 Seasonal Variability 

The Labrador Sea experiences substant ial seasonal variability in the surface layer [122] , 

primarily driven by variations in surface forcing. The seasonal variability in the Sea 

differs regionally in the coastal and deep areas of t he Labrador Sea. The winter cool­

ing homogenizes t he surface layer , result ing in t he formation of t he cold intermediate 

layer in the coastal regions [95]. The water temperature decreases until t he ice that 

eventually forms at the surface interrupts the connection between the ocean and the 

atmosphere. In the spring, a strong pycnocline forms the surface layer which has 

anomalously low salinity due to the process of ice melt ing. The waters of t his fresh 

surface layer are warmer over the summer and early fall. The melt ing of ice t rans­

ported into the Labrador Sea by the West Greenland and Labrador Currents also 

cont ributes to t he freshwater budget in the surface layer. 

The mean seasonal cycle in t he deep area can be characterized by two distinct pe­

riods [122]: deep convection and restratification period. T he convective period takes 

place during winter , and is associated with a cooling of surface waters due to inten­

sified surface heat fluxes. Consequent ly, severe atmospheric cooling and wind mixing 

during this season drive deep convection over a certain region in the central Labrador 

Sea. This convective process generates t he formation of dense intermediate water 

mass, known as the Labrador Sea Water (LSW ), which then sinks to depths between 

500 to 2000 m [62] where it spreads throughout the subpolar North At lant ic [101]. 

The LSW is one of the constit uents of the Nort h Atlantic Deep Water (NADW) [56] 

along with two other water masses t hat occupy the layers below the LSW: t he Gibbs 

Fracture Zone Water (GFZW) and t he Denmark Strait Overflow Water (DSOW) [18]. 
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These water masses possess unique physical and chemical properties, which can be 

derived from vertical sections in the Labrador Sea [142]. 

Following the convection period, the upper portion of the cent ral Labrador Sea 

starts to stratify as t he heat and moisture fluxes generate buoyancy during the warmer 

part of the year [122]. The vertical transport of heat and salt is now restricted to 

the upper layer , and hence, variations in t he LSW at intermediate depths during 

this period are related to the lateral exchange of heat and salt with surrounding 

water masses [122] . The gyre circulation in the upper layer is also reduced during 

this season, and thus permits the lateral exchange of water masses with boundary 

currents in the upper layer, including the influx of heat and salt from the lrminger 

Current . These lateral heat and buoyancy fluxes result in t he restratification of the 

interior Labrador Sea [122]. 

In addition to t he influence of atmospheric forcing on t he seasonal variability 

in t he strength of deep convection and restratification , the LSW formation is also 

suscept ible to t he freshwater supply from t he margins, including an influx of Arctic 

waters and cont inental run-off [93], as well as t ransport by offshore eddies [55, 54] . 

1.2.1.2 Interannual Variability and its connection to the North Atlantic 

Oscillation 

As described in t he previous section, t he variability of t he convective activity and 

other physical characteristics in t he upper Labrador Sea is strongly linked with the at­

mospheric variability. Over interannual to quasi-decadal timescales, t he atmospheric 

variability in the Nort hern Hemisphere is dominated by the orth At lant ic Oscilla­

t ion (NAO) [45]. Previous studies suggest a close connection between the NAO and 
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the variability of circulation and deep convection in the Labrador Sea [142]. 

The winds blowing over the North Atlantic sector are predominantly Westerlies, 

which exist quasi-permanently due to the high- and low-pressure systems over the 

Azores and Iceland, respectively [45]. The anomaly of sea level pressure difference 

between these two locations is used as a measure of the NAO. This so-called NAO 

index, is widely used to quantify the characteristics of the longer-term (great er than a 

year) climatic variability over the North Atlantic Ocean. The NAO index is a measure 

indicative of the position of the jet stream and extra-t ropical storm t racks across the 

North Atlantic; whether t hey tend to move to the north or south of the climatological 

position of the jet streams. The positive NAO index (NAO+) refers to cold and dry 

weather in t he northern North Atlantic, intensified storminess, and intense surface 

cooling over the Labrador Sea. The negative NAO index (NAO-) is associated with 

opposite variability [46]. 

On interannual t imescales, the impact of NAO on the Labrador Sea variability is 

associated with variations in t he surface heat flux, which then influence the strength 

of deep convection and LSW formation [21, 67] . For instance, the continuous NAO+ 

years during 1990-1994 (Figure 1.5) correspond to the period of t he coldest and deep­

est (> 2000 m [62]) LSW observed in t he past 50 years [102, 142]. The rate of LSW 

formation was between 5-11 Sv during this period [102]. 

The NAO- years prevailed from 1958 to 1971 , where the NAO index was all 

negative except for year 1967 (Figure 1.5). The LSW and the entire central Labrador 

Sea was warmer and saltier due to the mild winters of t hese predominantly N AD­

years [142]. Such an environment prevented t he exchange of heat and salt between 

the upper and deeper layers. Consequently, LSW had become even warmer and 
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salt ier due to lateral exchange with the surrounding intermediate wat ers [142] . The 

mean formation rat e of LSW was about 2-4 Sv during this period [142], much weaker 

than the formation rat e during the posit ive phase [102] ment ioned previously. The 

situation ended wit h the arrival of a severe winter in 1972 and 1973 [142], which 

corresponds to a quasi-decadal shift in the AO index. 

5 . 
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Figure 1.5: The North Atlantic Oscillation index. Data provided by the Climate 

Analysis Section, NCAR, Boulder , USA, Hurrell (1995). Updated regularly. Accessed 

20 July 2013. 

1.2.2 Biogeochemical Characteristics 

Recent observational studies on atmosphere-ocean carbon fluxes have revealed the 

subpolar orth Atlant ic to be a strong sink for atmospheric C0 2. Takahashi et al 

(2009) estimated this net C0 2 sink to be 0.2-0.5 Gt/yr for 1990, based on the ocean 

15 



surface pC02 measurements for the time period of 1972-1992 [127] . This influx is 

a combination of a substantial natural sink and approximately doubled uptake of 

anthropogenic C02 [41]. The subpolar orth Atlantic is one of the most intense 

anthropogenic C02 sinks per unit area of the world ocean [81]. Areas of strongest 

C02 uptake coincide with the water mass formation regions of the NADW [127], and 

hence indicate high inventories of anthropogenic C02 in the Labrador Sea. 

During winter, convective mixing enhances the C02 solubility at the sea surface, 

promoting transport of atmospheric C02 into the deeper layer on short time scales, 

where some of which may be stored for decades to hundreds of years until they travel 

across the deep Atlantic Ocean latitudinally and are brought back into the atmo­

sphere. Observations estimate that the Labrador Sea accounts for 8 - 19 % of the 

global deep carbon sequestration, where the range is primarily subject to the strength 

of winter deep convection [125]. Thus, deep convection in the Labrador Sea plays an 

important role in sustaining a vertical transport of carbon dioxide and other atmo­

spheric gases such as oxygen and the chlorofluorocarbons ( CFCs), from the surface to 

the deeper oceans [62], where the convected LSW is ventilated at intermediate depths 

through the lateral exchange with the surrounding water masses [60, 96] . 

Figure 1.6 shows the seasonal-mean climatological distribution of surface chlorophyll­

a in the Labrador Sea. The timing of the phytoplankton bloom differs region to region 

within the Sea, starting from early April to mid-July [114] . The first bloom takes 

place near the coastal regions in early spring (Figure 1.6b). The magnitude of this 

so-called early spring bloom is greater in the eastern Labrador Sea (off the Green­

land coast) than the western Labrador Sea (off the Labrador coast). The driving 

mechanism for this bloom is the combination of offshore advection, runoff, and eddies 

16 



associated with the West Greenland and Irminger Currents [58], which intensify both 

surface stratification and nutrient supply in the coastal region [32] . In the central part 

of t he Sea, t he phytoplankton growth starts later in June upon the thermal stratifi­

cation over the deep convection area [32] (Figure 1.6c) . High nutrient concentrations 

due to wintertime enhanced vertical mixing t riggers high biological productivity in 

t his region that peaks in June/July [133, 123] . In fall , a weak bloom appears on the 

Labrador coast (Figure 1.6d). 

1.2.2.1 Seasonal Cycle 

The seasonal variability of surface ocean pC02 in the Labrador Sea is t riggered by in­

tense vert ical mixing during winter and phytoplankton blooms during spring/summer. 

Physical and biological forcings enhance the solubility and biological pumps respec­

t ively, and maintain the pC02 of surface water undersaturated almost all year round [17]. 

Both observations and models suggest that the surface pC02 concentration over t he 

deep convection site is maximum in winter and minimum in summer [58]. The win­

ter maximum is associated with t he counteractive effect of deep convection [17]; In 

spite of increased solubility due to surface cooling and wind effect, intense mixing 

ventilates the vertical column, allowing respiratory C02 in the ocean interior to enter 

t he surface layer , and hence raising its pC02 level to near atmospheric equilibrium. 

The summertime pC02 minimum coincides with t he season of highly-active primary 

production and subsequent biogenic export. 
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a b 

Chlorophyll-a concentration (mg/m3) 

c d 

Figure 1.6: Seasonal-mean surface chlorophyll-a concentration in the Labrador Sea 

during a) winter, b) spring, c) summer, and d) fall. 

Source: http: / / oceandata.sci.gsfc.nasa.gov / Sea WiFS / Mapped/ 
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1.2.2.2 Interannual Variability 

Observations in the last few decades suggest a considerable decline of the ocean C02 

uptake in the subpolar North Atlant ic. The uptake rate over the sout heastern part 

of the gyre has declined by approximately 50 %, from -0.20 GtC/ yr in the mid-1990s 

to -0.09 GtC/yr in the mid-2000s [111]. Ot her observational studies further explain 

that the decline is associated with a rise in the surface ocean pC02 during both 

in summer and winter. A summertime oceanic pC02 increase across the subpolar 

region during 1982-1998 was estimated to be between 2.3 and 3.5 p,atm/yr , while the 

atmospheric pC02 increase for the same time period was only 1.5 p,atm/ yr [63]. The 

increase in winter was reported to be even greater , ranging from 5.8±1.1p,atm/ yr to 

7.2±1.3p,atm/yr for the time period 2001-2008 [78]. 

Model studies, however, do not support such weakening of the subpolar carbon 

sink. Rather, both an atmospheric inversion model [105] and a regional coupled 

physical-biogeochemical model [135] studies have shown a decadal increase of 0.03 

GtC/ yr and 0.04 GtC/yr over the same time period and same region, respectively. 

Comparison of the observational and model studies is difficult because of their lack of 

coherence in time and space [112]. Therefore, ident ifying the mechanisms for both of 

t he observed and simulated changes is essential to distinguish the decadal variability 

from longer-term trends. 

Several papers have attempted to connect the decadal pC0 2 variability with NAO. 

Corbiere et al. (2007) attributed a posit ive-to-negative NAO phase shift during the 

mid-1990s and the mid-2000s to the increased pC02 in the subpolar gyre, primar­

ily caused by warmer surface waters in this region [13]. Additionally, reduced gyre 
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circulation in the 1990s increased advective inflow of subtropical waters, and hence 

weakened t he C02 uptake in t he subpolar gyre [113] . On the cont rary, Ullman et al. 

(2009) demonst rated that t he decline in NAO led t o reduced penetration of high DIC 

from dept hs, which resulted in decreased pC0 2 at t he surface and t hus promoted the 

atmospheric carbon uptake [135] . 

However, it should be not ed that the NAO only accounts for about 30 % of climate 

variability over the North Atlant ic Ocean [71] . Therefore, additional factors may drive 

the carbon sink variability. For inst ance, Metzl et al. (2010) argues t hat t he increase 

of surface ocean pC0 2 in t he early 2000s was due to seawater carbonate chemistry 

changes, and not NAO variability [78]. Undoubtedly, the fact that the carbon sink 

is influenced by a combination of various and vigorous mechanisms makes a precise 

determination difficult, especially as they vary on interannual to decadal timescales, 

t hat are subject to both observational and model uncertainty [112]. 
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1.3 Objectives 

Given the critical role of the subpolar North Atlantic in the global carbon cycle, de­

termining the mechanisms that control the variability of the carbon sink over this 

region is a fundamental step in quantifying the oceanic response to increasing an­

thropogenic carbon emissions. Furthermore, to the best of the author's knowledge, 

no ocean carbon studies using 3-D eddy-resolving coupled physical-biogeochemical 

ocean models have yet been published for the Labrador Sea. Thus, the present study 

takes the initiative towards the development of such a model for this region. 

Using the coupled physical-biogeochemical ocean model in 1-D offline mode, the 

present thesis attempts to: 

1. examine the performance of the model implemented for three distinct locations 

in the Labrador Sea. 

2. analyze the structure of seasonal variability of the ecosystem and carbon dy­

namics and their relations to coupled physical-biogeochemical processes. 

1.4 Organization 

The rest of the thesis is organized as follows: the model and the methodology of 

the experiments are described in Chapter 2. Results from the model experiments 

and sensitivity analysis are presented for validation in Chapter 3. Simulated physical 

and biogeochemical variability and carbon cycle in the Labrador Sea are discussed in 

Chapter 4. The conclusions of the thesis are provided in Chapter 5, followed by the 

suggestions for future work in Chapter 6. 
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Chapter 2 

Methods 

This chapter describes the coupled physical-biogeochemical model used in the present 

study, and its implementat ion to the three monitoring st ations in the Labrador Sea. 

2.1 Coupled Physical-Biogeochemical Ocean Model 

Coupled physical-biogeochemical ocean general circulation models are an essent ial 

tool for describing ocean carbon dynamics, analyzing the effects of various interdisci­

plinary processes, and interpreting observational findings [23] . The present study em­

ployed the NEMO ( ucleus for European Modelling of the Ocean) system, which is a 

state-of-the-art modeling framework for oceanographic research, operational oceanog­

raphy, seasonal forecast, and climate studies ( EMO website: http: / / www.nemo­

ocean.eu/ ). The coupled system used for the present study is called OPA-PISCES, 

where OPA is the physical component and PISCES is the biogeochemical component 

of t he NEMO system [69] . 
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2.1.1 Physical Model 

Description 

The physical component of NEMO is OPA, a primitive equation ocean circulation 

model [69], which was implemented for the Labrador Sea basin based on a two-way 

nesting of the orth Atlantic model [146] . The model domain covers the Labrador Sea 

and the Northwest Atlantic basin between 36°W and 78°W, and between 32°N and 

64° . The horizontal resolution of the model is 1/ 12° in longitude and 1/ 12° x cos¢ in 

latitude where ¢ is the latitude, enabling each grid cell to be approximately square. 

Thus, the horizontal resolution is eddy resolving across the entire domain. There 

are 46 vertical levels using z part ial steps, with 13 levels in the top 100 m. The 

model is coupled to the Louvain-la-neuve Ice Model 2 [30], the sea-ice component of 

NEMO. The numerical scheme used in the model was t he finite volume method on an 

Arakawa C-grid. The radiative open boundary conditions were defined for the orth 

Atlantic model at the northern and southern boundaries using the SODA data [10] . 

The model was initialized with climatological temperature and salinity fields derived 

from the World Ocean Atlas 2005 (W"OA05) dataset [2 , 66], and run for 30 years 

with climatological atmospheric forcing. After this spin-up phase, the model was run 

using 6-hourly NCEP / NCAR reanalysis [51] as atmospheric forcing. The t ime step 

of the model simulation was 1800 seconds. The vertical mixing was parameterized by 

the 1.5 turbulent closure model [34]. Throughout the simulation period, a spectral 

nudging scheme was applied to reduce model bias [132]. 

23 



Governing Equations 

The governing equations of OPA include the incompressible, Boussinesq, hydrostatic, 

thin-shell primitive equations, the thermodynamic equations of heat and salt, and 

the equation of state for seawater: 

auh 1 2 A 1 u u ( -a = -((\7 xu) xu+ -'VU )h- Jk x uh - -'VhP + D + F 2. 1) 
t 2 Po 

ap az = -pg (2.2) 

\7. u = 0 (2.3) 

aT T T ( ) at = -\7 · (TU) + D + F 2.4 

as s s ( at= -\7 · (SU) + D + F 2.5) 

p = p(T, S, p) (2.6) 

Here, U is the velocity field such that U = Uh + wk where Uh =< u, v > denotes the 

horizontal (i , ]) component of U orthogonal to k, the local upward vector to the eart h, 

and w is t he vertical component of U. z is the vertical coordinate, f is the Coriolis 

acceleration, p is the in-situ density, p0 is the reference density, p is t he pressure, g is 

t he gravitational acceleration, T is t he potential temperature, and S is the practical 

salinity. Di and p i for i = U, T , S denote the parameterizations of sub-grid scale 

physics and the surface forcing terms, respectively. 

The kinematic boundary conditions at sea surface and bottom are defined as 

follows: 

(2.7) 

(2.8) 
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where fJ denotes the height of sea surface from a reference surface ( z = 0) and H is 

t he dept h of the sea floor from the reference surface. Additionally, no normal flow is 

assumed at the lateral boundaries: 

(2.9) 

where n is the normal vector to a solid boundary. The dynamic boundary conditions 

at the surface are given by: 

K 0
u = Tx at z = 0 

oz Po ' 

K 0v = Ty at z = 0 
oz Po ' 

(2.10) 

(2.11) 

where K is the surface vert ical eddy diffusivity, Tx and Ty are the surface wind stress 

components. 

2.1.2 Biogeochemical Model 

PISCES (Pelagic Interaction Scheme for Carbon and Ecosystem Studies) [6] is an in-

termediate complexity ocean biogeochemical model which simulates low trophic level 

ecosystem dynamics, as well as carbon and oxygen cycles. The development of t he 

model started in 1997 with the release of t he P3ZD model, a classical nitrogen-

phytoplankton-zooplankton-detritus (NPZD) model with semi-labile dissolved or-

ganic matter (DOM) [5]. After numerous improvements, a stable version of t he model 

was released in 2004, which has become freely available to NEMO users. The full de-

scription of the latest version of t he model (version 2) is currently in preparation, 

and will be available on the NEMO website some time next year [7]. PISCES is used 

in a variety of model studies by oceanographers and climate scient ists, including its 
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contribution to the Fifth Assessment Report (AR5) of the Intergovernmental Panel 

on Climate Change [124]. 

There are twenty-four state variables in PISCES (see Figure 2.1 and Table A.1): 

there are five limiting nutrients (nitrate, ammonium, phosphate, iron, and silicate) , 

four living compartments (two phytoplankton classes: nanophytoplankton and di­

atoms; and two zooplankton classes: microzooplankton and mesozooplankton), and 

three non-living compartments (semi-labile dissolved organic matter, small and big 

sinking particles). In addition to the low trophic level ecosystem model, PISCES 

also simulates dissolved inorganic carbon, total alkalinity, and dissolved oxygen. The 

latter tracer is also used to distinguish between oxic and anoxic environments for 

remineralization process. 

PISCES differs from many of the previously-developed Monod models [83] mainly 

in two aspects. First , phytoplankton growth rates are limited by multiple nutrients: 

three (Fe, P04, N03+NH4) for nanophytoplankton and four (Fe, P04, N03+NH4, 

Si) for diatoms. Previous studies have justified the importance of iron and silicat e 

in limiting phytoplankton growths even at high latitudes, such as in the Iceland 

basin [88] and in the central Labrador basin [43], respectively. 

Secondly, the elemental rat ios of Chl, Fe, and Si for the composition of both phyto­

plankton classes are not fixed by Redfield ratios. Assuming a constant stoichiometry 

of these elements to carbon is not preferable as these rat ios can vary considerably. 

For example, the Fe/ C ratio can vary by at least an order of magnitude when the 

N / C ratio varies by a factor of two. Thus, these ratios are prognostically predicted 

in PISCES based on the external concentrations of limiting nutrients as in the quota 

models [75, 25], which is t he other big family of marine biogeochemical model (as 
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oppose t o the Monod-type models). Therefore, the model is capable of simulating 

phytoplankton of different physiological compositions in terms of Chl/ C, Fe/ C, and 

Si/ C ratios. On the other hand, the phytoplankton growth rates also depend on these 

external concentrations of limiting nutrients, assuming a fixed constant Redfield ra-

t io of Fe/ P / N/ C for nanophytoplankton (or Fe/Si/ P04/ N/ C in t he case of diatoms). 

Therefore, PISCES takes a compromise between Monod and quota approaches. 

Dust deposition, Nitrogen fiXIItion, PAR8 0 Flux CO Flux • 
Rl¥er discharge & Sediment Input 1 2 " 
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Figure 2.1: Schematic diagram of PISCES 

The temporal evolution of biogeochemical tracers can be driven by chemical bio-

logical processes and/ or by advection and turbulent mixing [29] . The general form of 

the tracer conservation equation is: 

oc -- = -V · \lc+ \7 · (D · \lc) + SMS(c) at (2. 12) 

where c is t he concentration of the model state variable of interest, t is the time, 
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V is the velocity field of the ocean current, D is the eddy diffusivity, and S M S 

stands for source-minus-sink, which describes the chemical biological processes for 

the considered state variable. The SMS equations of P ISCES state variables are 

described in Appendix A. 

2.2 Experimental Design 

2.2.1 Studied Regions 

Since 1990, the Labrador Sea Monitoring group from the Bedford Institution of 

Oceanography (BIO) has been carrying out an annual hydrographic expedition across 

t he Labrador Sea (Figure 1.4). This line, referred as the Atlantic Repeat Hydrography 

Line 7 West (AR7W), consists of 28 sampling stations at which t emperature, salinity, 

dissolved oxygen, inorganic carbon, alkalinity, and nutrients are measured. Three 

stations, numbered 8, 15, and 25, are selected as points of interest for the present 

study, that are representative of the Labrador coast, the central Labrador basin, and 

the Greenland coast, respectively. Subsequently, both physical and biogeochemical 

processes at these stations are expected to be distinct from one another as described 

in Section 1. 2 of Chapter 1. 

2.2.2 Data for Model Validation and Init ialization 

BioChem D atabase 

The data used in this study are obtained from the BIO's BioChem database [20, 40], 

which includes the dataset collected at the t hree stations during four cruises that took 
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place in 1990, 1992, 1993, 1994, and 1995. These years correspond to t he positive 

NAO period in t he early 1990s. No data is available for the three stations during 1991. 

Each dataset consists of temperature, salinity, pressure, oxygen, nitrate, ammonium, 

phosphate, and DIC that are measured at various depths. In order to match the units 

for measured DIC with the model, the density was computed for a set of measured 

temperature, salinity, and pressure using the GSW Oceanographic Toolbox [77], which 

was then used to convert the units for measured DIC from from J.tmol/ kg to the model 

units of J.tmol/ L. 

Sea WiFS Climatology 

The concentration of phytoplankton can be estimated from satellite measurements of 

sea surface color. Chlorophyll-a is a specific form of pigment that is essential for most 

phytoplankton groups to photosynthesize, and therefore has been used as a proxy for 

primary productivity for many decades (e.g. Ryther and Yentsch (1957) [106]) . In 

the present study, the chlorophyll data is obtained from the Sea-viewing Wide Field­

of-view Sensor (Sea WiFS) [76, 143], which consists of weekly composites of surface 

chlorophyll-a concentration from 1997 to 2009. 

2.2.3 Model Implementation 

The coupled OPA-PISCES model is implemented in the Labrador Sea using the one­

dimensional vertical configuration [26] , in which the model equations are computed 

at every vertical level over a specified grid point of interest. The 1-D vertical con­

figuration only considers the vertical coordinate and t ime as independent variables 

in the model equations in which all the horizontal derivatives are set to zero. Thus, 
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neither advection nor lateral mixing are incorporated in this configuration, leading 

to constant vertical velocity fields of zero (i.e. w = 0) since it is zero at the surface. 

Accordingly, the advection-diffusion equation for the PISCES tracers (Equat ion 2.12) 

is simplified as: 

ac = !_ (Kac) + SMS(c) 
at az az 

(2.13) 

where K is the vertical eddy diffusivity and the rest of the terms have been described 

previously. 

Three model simulations at Stations 8, 15, and 25 were performed for one year 

in offline mode, which means that the PISCES tracer equations are solved using the 

previously-computed ocean dynamics of OPA, as opposed to online mode, in which 

the physical and biogeochemical models are computed simultaneously. The ocean 

dynamics used in the present study consists of eight physical variables (temperature, 

salinity, turbocline depth, shortwave radiation, surface concentration/ dilution water 

flux, sea-ice coverage, vertical eddy diffusivity, and atmospheric wind at 10 m above 

sea surface), which are t he daily-mean product of the model simulation for year 1994, 

which are interpolated to the temporal resolution of the model (1 hour). The temporal 

resolution of 1 day for t he ocean dynamics was chosen as a compromise between 

the need of representation of most important scales of upper ocean variability in 

this study and the requirement for computational resources and disk storage. One 

question which can be studied in the future when more computational resources will 

be available is, how significant is the contribution of daily cycle of physical processes 

(e.g. t emperature and diffusion coefficients) on the results from model simulations. 

The biogeochemical tracers are init ialized with the climatological values from 
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GLODAP (for DIC and alkalinity) [107] and World Ocean Atlas 2001 (for oxygen, 

phosphate, nit rate, silicate, DOC, and iron) [65, 12] Figure 2.2 shows the vertical 

profiles of these variables at t he beginning of model integration. The boundary con­

dit ions of nutrients included the climatological monthly-mean dust deposition [130] 

and the climatological annual-mean river discharge [68]. The atmospheric pC0 2 is 

set to a fixed value (360 J..Latm) throughout the simulated period, which is close to 

t he recorded annual-mean value for 1994 [52]. 
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Figure 2.2: Initial data for a) nitrate, b) phosphate, c) silicate, d) iron, e) oxygen, f) 

dissolved organic carbon, g) dissolved inorganic carbon, and h) total alkalinity 
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Chapter 3 

Model Validation and Sensitivity 

to Parameter Variations 

To the best of author 's knowledge, biogeochemical model simulations of the Labrador 

Sea based on P ISCES has not been done previously. Therefore, the first step in the 

model implementat ion is validation of the model and study of sensit ivity to model 

parameters. 

3.1 Model-Data Comparison 

To evaluate t he model performance, results are compared to t he 1990-1995 BioChem 

data [20, 40] and the 1999-2005 SeaWiFS climatology [76, 143]. 
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3.1.1 Vertical Structures of Physical and B iogeochemical Trac-

ers 

Simulated and observed vertical distributions of temperature, salinity, oxygen, nutri­

ents, and DIC at Station 8 are shown in Figure 3.1. The model output is averaged 

over the month of June to compare with the field data which were collected around 

June in 1990 and 1992-1995 (see Fig. 3.1 for the actual data collection date). The 

horizontal bars on the simulated profiles indicate the range of daily-mean variability 

at each model depth for June. The observed structure of t he temperature gradient 

with depth is depicted by the model in which the coldest waters are found in the 

top 50 m (Figure 3.1(a)). The simulated temperature profile fits well with t he data 

above 25 m and below 150 m but not in between. In particular, the model does 

not reproduce the magnitude of the minimum in the subsurface cold layer between 

25 and 50 m depth. The fresh and cold waters in this layer are strongly influenced 

by the discharge from the rivers and estuaries in the region that are not considered 

in t he model with this resolution. This indicates the model's deficiency in resolving 

the temperature gradient in the subsurface euphotic zone in this coastal region. In 

general, the model is able to reasonably reproduce the in-sit u vertical structures of 

salinity, oxygen, and nut rients (nit rate, ammonium, and phosphate) (Figure 3.1c-f). 

One feature missing in t he model results is the representation of oxygen saturation 

and nutrient depletion in the near surface that are driven by the diurnal cycle of pri­

mary production. This deficiency arises from the fact t hat t he model does not resolve 

the diurnal cycle of Photosynthetically Available Radiation (PAR). Instead, the daily 

average of PAR is computed at every t ime step in the model, which resulted in the 
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relatively uniform distributions of nutrients in the euphotic zone especially above 25 

m (Figure 3.1c-f) . Nevertheless, the mean depth-variations of nutrients compare well 

with the observations. The largest difference between the simulations and data occurs 

in the DIC profile. Except in the top 20m, the DIC concentration is underestimated 

by the model at all depths (Figure 3.1g). 

Similarly, the model-data comparison is done for the central Labrador Sea (Fig­

ure 3.2). The vertical profiles between the simulation and the measured data are 

in good agreement except for temperature in the deep ocean (below 2300 m) where 

the model underestimates t he measured profile, nitrogen in the intermediate layer 

(between 250 and 1750 m), and DIC below the sun-lit layer , in which the simulation 

underestimates all of these observed values (Figure 3.2a,d ,g). Furthermore, a big 

difference between the model and data appears in the representation of the depth at 

which the oxygen concent ration is dropped substantially in the intermediate ocean 

(Figure 3. 2c): a rapid decrease (of approximately 20 ~-tmol/L) of oxygen is observed 

at about 2250 m depth, whereas the model reproduces the similar feature at 1750 m 

depth, thus creating a 500 m difference between the model and the data. This differ­

ence may arise from the difference in t he position of the water masses, which may be 

attributed to the influence of the vert ical resolution of the model and uncertainties 

due to unresolved processes of vertical mixing in deep ocean. 

Figure 3.3 presents the model validation in the eastern Labrador Sea (Station 25). 

The simulated profiles in the top 250 m involve relatively large temporal variations 

for all tracers (seen as dark shaded regions in Figure 3.3), which overlap with the 

measured values. Unlike at the other two stations, t he model-data misfit of active 

tracers (temperature and salinity) appears throughout the water column below 500 
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m, in which the model simulates warmer and saltier waters (Figure 3.3a&b). Despite 

this fact, the vertical distributions of observed oxygen and nutrients are in general 

well reproduced by the model (Figure 3.3c-f). On the contrary, the simulated vertical 

profile of DIC is misrepresented with lower-than-observed values throughout the water 

column, which appears to be a systematic error of the model. 

3.1.2 Seasonal Evolution of Primary Productivity 

Simulated and measured seasonal evolutions of surface chlorophyll concentrations are 

shown in Figure 3.4. The red dots show represent the weekly mean values for 1997-

2009 with the associated upper and lower limits of one standard deviation (in red 

circles). Simulated chlorophyll concentrations in nanophytoplankton and diatoms are 

averaged weekly to match t he temporal resolution of the Sea WiFS data. Here, mea­

sured data is assumed to represent the sum of the model phytoplankton groups as 

the data does not distinguish the two groups. The temporal evolution of simulated 

(sum of nanophytoplankton and diatoms) and observed chlorophyll show good cor­

relation for the central Labrador Sea basin (r=0.88; Figure 3.4b), but not for the 

coastal regions (r=0.37 and r=0.49; Figure 3.4a and c, respectively) . As mentioned 

in Section 1.2.2 of Chapter 1, the spatial variability in the magnitude and timing of 

the phytoplankton blooms is evident from these plots. 

Two distinct blooms are depicted both by the model and the data at Station 8 

(Figure 3.4a). Climatologically, the early spring bloom takes place in June, followed 

by a relatively weaker bloom in October , known as the late bloom. Simulated results 

indicate the occurrence of two blooms· one in May and another one in July, which do 
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not coincide with the observed bloom t imings. 

In the central Labrador Sea, blooms are not distinguishable from the data (Fig­

ure 3.4b). Rather, the surface chlorophyll concentration remains relatively high from 

mid-May until August. The model reproduces the peak value of about 5 mg/ m3 

in late May, matching with the observed t iming. Throughout the year, t he range 

of chlorophyll concentrations are within one standard deviation of the climatology, 

except for the second half of June in which the model exceeded this range. 

The seasonal evolution of surface chlorophyll in the eastern Labrador Sea is sim­

ilar to the western part (Figure 3.4c), which is characterized by the occurrence of 

two separable blooms; one in May and another one in the beginning of October. The 

simulated spring bloom, however, was delayed by a month, compared to the climatol­

ogy. The simulated chlorophyll concentration remained much higher (> 1.5 mg/ m3
) 

than the observed values ( < 1 mg/ m3
) during the summer, as was the case for Sta­

t ion 8 (i.e. Figure 3.4a). This may suggest the influence of other physical and/ or 

biogeochemical processes specific to coastal regions. The signature of t he late bloom 

in October is not clearly present in the model. 

3.2 Model Sensitivity to Parameter Variations 

The aim of this section is to carry out a series of sensitivity tests to assess which 

of the model parameters of PISCES have a great impact on the simulated diatoms 

bloom which was discussed in Section 3.1.2. 

A simple method is applied to examine the impact of parameter variations of the 

input model parameters for t he diatoms bloom observed in the end of July (Station 
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8) , June (Station 15) , and August (Station 25) in the standard runs (see Figure 4.3b, 

Figure 4.5b, and Figure 4.7b). The input parameters listed in Table A.3 are tunable 

at the beginning of each model simulation without recompiling the model code. For 

each parameter , ten simulations are conducted by varying the parameter value of 

consideration while keeping the values of other parameters unchanged. Starting with 

10 % of the standard value (see Table A.3) , the value of the considered parameter is 

increased by 2 % for the succeeding run. Therefore, for each sensitivity experiment, 

ten model outputs are produced, representing the simulated results with ± 10 % 

variations from its standard value with an increment of 2 %. Model simulations for 

sensitivity analysis are performed for 30 days starting from the first day of the month 

of which the diatoms bloom was observed (July for Station 8, June for Station 15, and 

August for Station 25; see Figure 3.4b) to compare the t he newly-obtained chlorophyll 

concentrations of diatoms (DCHL) at the end of the simulations (i.e. June 30, July 

30, and August 30) with t he concentrations obtained from the standard run done 

with best estimation of model parameters. The sensitivity of the varied parameter 

value was quantified in terms of t he percentage change in DCHL from its standard 

value, .6.DCHL, as follows: 

.6.DCHL = DCHLnew - DCHLstandard x 100% 
DCHLstandard 

(3 .1) 

where DCHLnew and DCHLstandard denote the chlorophyll concentration of diatoms 

on the 30th day of t he simulated month based on the sensit ivity run and the standard 

run, respectively. 

Figure 3.5 presents t he standard deviation of .6.DCHL for each of t he 80 tested 

parameters at Station 8. The difference in the model sensitivity to individual param-
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eter variations is evident from the plot; while many parameters have litt le or almost 

no impact, others appear to be fairly significant . In particular, t he following eight 

parameters are shown to have a crucial impact on DCHL as their standard deviations 

exceed 0.02: conc3m, xsi1, pislope2, chlcdm, f ecdm, wchld, and grazrat2. As one 

would expect, most of t hese parameters are directly related to determing t he func­

t ionality of diatoms (conc3m, xsi1, pislope2, chlcdm, fecdm , wchld). On the other 

hand, one parameter, grazrat2, influences DCHL indirectly, as it sets the maximum 

grazing rate of mesozooplankton, the large zooplankton class that prefers to graze 

on diatoms over nanophytoplankton. Hence, fluctuations in their grazing rate can 

modify the concentration of diatoms. 

Figure 3.6 and Figure 3. 7 show t he standard deviations of ~DCHL for t he model 

parameters at Stations 15 and 25, respectively. Similarly to Station 8, top eight pa­

rameters of highest standard deviations are considered here to be most influencial 

to DCHL. Variations in the four parameters (chlcdm , conc3m, f ecdm, wchld) are 

commonly found to be important to DCHL at all stations, all of which have effects 

on the physiological characteristics of diatoms. By comparing the top eight influential 

parameters at all three stations, an interesting trend is found. The influential param­

eters t hat are unique to Station 8 happen to be all associated with diatoms, including 

the mean silicon-to-carbon ratio (grosip) , the slope of photosynthesis-irradiance (PI) 

curve (pislope2), and the half-saturation constant for silicate uptake (x ksi 1) of di­

atoms. Therefore, the diatoms bloom is more sensitive to changes in the parameters 

that control the functionality of diatoms alone. The diatoms bloom at Station 15 

appears to be sensit ive to variations in the parameters t hat define grazing preference 

for diatoms (xpref2d ) and growth efficiency (epsher) of microzooplankton, which 

43 



suggest an important connection between diatoms and microzooplankton, specific to 

the central Labrador Sea. Finally, the diatoms bloom at Station 25 appear to be sen­

sitive to the following three parameters which are less influential at the other stations: 

grazing preference for particulate organic carbon ( xpre f c), half-saturation constant 

for grazing (xkgraz2) , and growth efficiency (epsher2) of mesozooplankton. Thus, 

in t he eastern Labrador Sea, the diatoms bloom is more sensitive to variations in the 

parameters that relates diatoms to mesozooplankton. 

Figure 3.8- 3.10 show how the magnitude of diatoms bloom changes from the 

reference value due to variations in each of the eight influential parameters at t he 

three stations. DCHL responds linearly to variations in the parameters. The range 

of .6DCHL is biggest (from -13 to 18 %) at Station 8, and relatively small at Stations 

15 and 25 (about ±5%), implying spatial dependency of model sensitivity. 

44 



Standard deviation 

Figure 3.5: Sensitivity of t he diatoms bloom to the 80 model parameters at Station 

8, quantified as the standard deviation of .6.DCHL. 
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Figure 3. 7: Same as Figure 3.5, but for Station 25 
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Chapter 4 

Simulation of Coupled 

Physical-Biogeochemical Seasonal 

Variability in the Labrador Sea 

The discussion of the model results cont inues in this chapter with analysis of seasonal 

evolutions of physical and biogeochemical tracers, followed by annual carbon cycle at 

t hree locations in the Labrador Sea. 
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4.1 Seasonal Physical and Biogeochemical Variabil­

ity 

4.1.1 Simulated Mixed Layer Depth and Surface Conditions 

Figure 4.1 presents the annual evolutions of physical variables constraining the bio­

geochemical processes at the three stations that are simulated by the 3-D OPA model. 

The annual evolution of t he simulated daily-mean turbocline are shown in Figure 4.1a. 

The turbocline is defined as the depth of certain threshold value of turbulent kinet ic 

energy (TKE) which is assumed to be the minimum TKE value for which the flow is 

still in the turbulent regions. As such the turbocline depends on the intensity of the 

two major sources of TKE in the flow: buoyancy production and shear production. 

The buoyancy production is a major source of TKE in the winter in deep convec­

t ion areas (i.e. Station 15). The shear becomes important in regions with strong 

flow shear such as the continental slope and the area of rim current. At all stations, 

strong vertical mixing prevails the mixed-layer depth (MLD) variations in winter. 

The simulated strong deep convection of 1994 starts to form a deep MLD starting in 

January, and reaches its peak in late March (in red). The maximum MLD dept h at 

Station 15 is around 1750 m, within the range of observed values [142]. At Station 

25, the model gives high MLD, which is t riggered by strong shear in the rim current 

area. 

Figures 4.1b-d show the simulated annual evolutions of surface atmospheric forcing 

and sea-ice cover for the three stations. At all stations, the surface wind possesses 

a wide range of day-to-day variability which can have profound impacts on ocean 
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temperature and vertical mixing (Figure 4.1b). The general features of the wind 

forcing are characterized by a period of strong wind (10m/ son average) from January 

to mid-May, followed by a transition to a weaker-wind (5 m/ s on average) period 

from mid-May to mid-August , which then returns back to the strong wind period 

until the end of the year. The temporal evolut ions of simulated shortwave radiat ion 

are shown in Figure 4.1c. The incoming solar radiation starts to increase gradually 

in early spring, which becomes available abundantly (> 100 W / m2
) until t he end 

of August. The mean radiative flux exceeds 200 W / m2 during June and most of 

July. Figure 4.1d shows the simulated sea-ice coverage. No sea-ice was found at 

Station 15 and 25 throughout the year. The sea-ice covered a fraction of sea surface 

at Station 8 during most of the winter (January-March) and for several days in April 

and May, which restricts the penetration of light, and hence, can limit t he growth of 

phytoplankton. 

4.1.2 Simulated Variability in the Surface 100 m Layer 

To show general features of the model simulations, the results for several variables are 

presented and described separately for each station. Only the surface 100 m layer is 

looked at as the depth of euphotic layer did not exceed 100 m during the biologically 

productive season at all stations (not shown). 

Station 8 

Figure 4.2a and Figure 4.2b show the simulated annual evolutions of t he vertical 

t emperature and salinity profiles in the western Labrador Sea, respectively. Stratifi­

cation starts to develop in June, forming a warm (above 6 °C) and fresh (below 34.4 
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PSU) surface layer extending down to about 40 m, deepening slowly until the end of 

October, and the water column begins to destratify in November. The temperature 

is below 3°C in the water column during winter , except for the adjustment period to 

init ial conditions in January. 

Figure 4.2c-h show the temporal evolution of the simulated DIC, nitrate, ammo­

nium, phosphate, iron, and silicate, respectively. Reductions in DIC, nitrate, phos­

phate, and iron in the end of May correspond to the first nanophytoplankton bloom 

(Figure 4.3a) which occurs mostly in the upper 20 m and the maximum nanophyto­

plankton concentration reaches 10 p,mol/ L. The nanophytoplankton bloom t riggers 

the growth of microzooplankton (Figure 4.3c) and t he production of ammonium (Fig­

ure 4.2e), small particulate organic matter (Figure 4.3f) and calcite(Figure 4.3h) . The 

second phytoplankton bloom is dominated by diatoms, which starts in the end of June, 

reaching its maximum value (> 15 p,mol/ L) in mid-July, and lasts unt il late fall. The 

bloom results in the depletions of DIC and all simulated nutrients (Figure 4.2c-h) , 

whereas it promotes the growth of mesozooplankton (Figure 4.3d) and the production 

of big particulate organic matter (Figure 4.3g) and biogenic silica (Figure 4.3i). 

The DOC concentration starts to increase with the first nanophytoplankton bloom 

and gradually t hroughout the rest of the year (Figure 4.3e). A considerable amount 

of DOC is found in t he subsurface (below 40 m) during late fall, which is mostly 

associated with the remineralization of sinking particles that are accumulated during 

spring and summer (Figure 4.3f-i) . The remineralization is followed by a rise in DIC 

and all nutrients (except for ammonium), which are brought back into the surface 

layer via mixing in December. 
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Station 15 

The simulated annual evolutions of the physical and biogeochemical tracers at Station 

15 are shown in Figure 4.4 and Figure 4.5. Similarly to Station 8 (Figure 4.2a&b), 

a warm and fresh surface layer is formed in the top 40 m from June to November. 

Stratification at this station generates the format ion of nutricline (Figure 4.4d-h) , 

which is more distinct than the ones at Stat ion 8 (Figure 4.2d-h). Due to substant ial 

carbon uptake by phytoplankton, the seasonal drawdown of surface DIC coincides 

with the early nanophytoplankton bloom at the end of May (Figure 4.5a) and the 

late diatoms bloom in the end of June (Figure 4.5b). The early bloom by nanophy­

toplankton at this station (Figure 4.5a) is more intense (at least twice as large) than 

the one observed in the western Labrador Sea (Figure 4.3a), whilst the strengths of 

the late blooms by diatoms are about the same between the two stations (Figure 4.3a 

and Figure 4.5b) . This leads to a greater rise in microzooplankton (Figure 4.5c), as 

well as the production and export of small particulate organic carbon (Figure 4.5f) 

and calcite (Figure 4.5h) at this station. 

Simulated variations in DOC illustrated in Figure 4.5e are concentrated in the 

surface mixed layer , and not in the subsurface as seen for the Labrador coast (Fig­

ure 4.3e). In fall, remineralization and mixing reduce the DOC concentration and 

restore nutrients and DIC concentrations in the surface layer and almost throughout 

the top 100m by the end of December. 
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Station 25 

The simulated annual evolution of vertical temperature and salinity profiles at Station 

25 are presented in Figure 4.6a and Figure 4.6b, respectively. Both the structures 

and ranges of temperature and salinity variations at this station resemble those simu­

lated for the central Labrador Sea (Figure 4.4a and Figure 4.4b) despite considerable 

differences in the initial temperature and salinity values between the two stations. 

As for the other two stations, stratification at Station 25 starts in June. The depth 

of the surface mixed layer is about 40 m, which deepens slowly and eventually the 

surface 100 m ocean is fully mixed again by the end of the year. The corresponding 

vertical distributions of DIC and nutrients (Figure 4.6c-h) are similar to those seen 

in the simulated results for the other side of the coastal region (Figure 4.2c-h). 

The vertical profiles of simulated phytoplankton and zooplankton are illustrated 

in Figure 4.7a-d. The magnitude of the simulated blooms (10-15 p,mol/ L) and the 

subsequent growth of zooplankton (1.5-3 p,mol/ L) to t he blooms are close to t hose 

simulated for the Labrador coast (Figure 4.3a-d). The concentration of nanophyto­

plankton starts to increase slowly in early June throughout the t op 100m, blooming 

in the beginning of July, and quickly diminishes by mid-July (Figure 4.2a) as a result 

of rapid grazing by microzooplankton (Figure 4.7c). Diatoms, on the other hand, 

experience a longer growing season with multiple spikes of which the maximum value 

( > 15 p,mol/ L) appears in early August (Figure 4. 7b). This extensive growth period 

is reflected on mesozooplankton, which starts to grow in late July, reaching its highest 

growth season (> 1.5 p,mol/ L in t he top 20m) from late August to mid-September, 

and decreases slowly for the remaining of the year. 
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The vertical distribution of simulated DOC is fairly uniform over the top 100 m 

layer (Figure 4. 7e), which is similar to the simulated results for Station 8 (Figure 4.3e). 

However , the positions of DOC maxima at the two coastal regions differ from each 

other; the maximum DOC concentration is found in the subsurface (below 80 m) for 

Station 8, whereas for Station 25, it is located in the top 20 m. 

As for the other two stations, t he simulated annual evolut ions of sinking part icles 

are nearly uniform in the surface 100 m with a peak in each variable corresponding to 

the timing of phytoplankton blooms or maxima in zooplankton biomass (Figure 4. 7f­

i). 

4.2 Simulated Annual Carbon Cycle 

The annual evolutions of simulated sea-air pC02 difference (.6.pC02 ) at Stations 8, 

15, and 25 are shown in Figure 4.8a. First, it should be noted that the initial pC02 

values at all stations are unreasonably low as compared to the fixed atmospheric 

pC02 level (360 11atm), which cause the development of an overly under-saturated 

waters t hroughout the year. In spite of this deficiency in the simulated results, the 

seasonal variability of .6.pC02 are reasonably reproduced by the model, and therefore, 

is discussed in this section. 

The sea-air pC02 difference is markedly increased in May at Stations 8 and 15 

(Figure 4.8a), related to the spring phytoplankton bloom as shown by the increase of 

chlorophyll concentration in Figure 4.8b. This is equivalent to a surface ocean pC02 

removal of approximately 43 11atm (Station 8) and 50 11atm (Station 15), which are less 

t han the estimated bloom drawdown of 70 11atm in 2004 based on the measurement 
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Figure 4.6: Same as Figure 4.2, but at Station 25 
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from mooring deployed in the central Labrador Sea [73]. In summer, variations in 

6pC02 are driven by the photosynthetic utilization of C02 in the strongly stratified 

surface mixed layer [126], which can be seen as a similarity between fluctuations 

of 6pC02 (Figure 4.8a) and primary productivity (Figure 4.8b). In mid-August, 

the enhanced bloom generates the maximum 6pC02 (-110 J.Latm) for Station 25 

(Figure 4.8a), which is close to the estimated value (-102 J.Latm) for 1990 in the 

western part of the Labrador Sea [127]. From September to the end of December, 

surface waters at Stations 8 and 15 maintain relatively high pC02 levels of about -100 

J.Latm and -60 J.Latm, respectively. Thus, at least from a qualitative point of view, the 

overall seasonal trends of low-pC02 primarily driven by bloom drawdown and high­

pC02 during fall and winter are consistent wit h previous model and observational 

studies of the central Labrador Sea [17, 58, 73]. 

The seasonal variability of simulated sea-air DIC flux is shown in Figure 4.8c. 

Both the magnitude of DIC flux and the amplitude of its fluctuations are in general 

greater in winter, spring, and fall , than summer. Such seasonal trends are also present 

in the simulated annual evolution of surface wind (Figure 4.1d) , which suggests the 

wind dependency of t he DIC flux variability. The net annual atmospheric C02 sink 

based on the model simulation is 9.6044 mol/ m2, 7.0605 mol/ m2, and 7.2635 mol/ m2 

for Stations 8, 15, and 25, respectively. The sink of C02 in the central Labrador Sea 

(Station 15) is about 35 % stronger than the estimated value from a 1-D box model 

(4.6 mol/ m2) [17] and 62 % stronger than the estimate from the same model for a 

different year (2. 7 ± 0.8 mol/ m2) [58] . Most of this large difference between the simu­

lated results and the previous studies can be attributed to the overly underestimated 

pC02 due to initial value problems, which create a large 6pC02. It should be noted 
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t hat t he values found in the previous studies are based on t he model simulations for 

2001 [17] and 2004 [58], which are the years of negative NAO (Figure 1.5). Hence, 

another possible reason for the intensification of t he DIC flux may arise from t he en­

hanced t urbulent flux for the present study, which is done for 1994, one of t he highest 

posit ive N AO years in the last few decades. 
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Chapter 5 

Conclusions 

The 1-D PISCES biogeochemical model was coupled to the OPA physical model in 

offline mode to study the seasonal physical and biogeochemical variability in the 

western, cent ral, and eastern Labrador Sea. The results from the model simulations 

show the model's capability in resolving the general structures of observed vertical 

nutrients and oxygen profiles at Stations 8, 15, and 25 of the AR7W line, while the 

simulated vertical DIC profiles experience misfit with the data consistently at all t hree 

locations. Persistent misfit was found between the simulated and observed profiles of 

DIC, as well as the surface structures of nutrients depletion and oxygen saturation. 

The magnitude of the misfit was found to be related to t he diurnal variations in 

PAR, which are not incorporated in PISCES, and errors due to unresolved processes 

of horizontal and vertical advection. 

The annual evolution of t he modeled surface chlorophyll concent ration was vali­

dated with the weekly composite of the Sea WiFS climatology. The model simulated 

t he seasonal cycle of primary production in the central t he Labrador Sea reasonably 
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well, with a correlation coefficient of 0.88. The model-data misfit in t he magnitude 

and t iming of t he phytoplankton was found for t he coastal regions, which arises from 

a combination of physical factors and processes that are not resolved in the 1-D offline 

model, such as vert ical advection and eddy-driven horizontal transport of diatoms. 

An additional uncertainty presumably is related to not well known coefficients in 

parameterizations used by the biogeochemical model. 

The results of t he sensitivity experiments suggest a spatial dependency of the 

model response to variations in the parameters. In particular , the magnit ude of 

the diatoms bloom appears to be most sensitive to t he mean silicon-to-carbon ratio 

(grosip) in t he western Labrador Sea, in which the amplitude of the change in the 

chlorophyll content of diatoms was about three t imes greater than t he central and 

eastern Labrador Sea. While most of the sensitive parameters were directly related 

to the diatoms, other parameters have shown to have crucial impacts on the diatoms 

bloom as well, t hat are indirectly related and specific to each of the simulated stations. 

Interestingly, two key parameters (xpre f2d and epsher) for the central Labrador 

Sea are the controlling parameters for t he physiology of microzooplankton, while for 

Station 25, three parameters (xpre f c, xkgraz2, epsher2 ) appear to be significant that 

are related to t he functionality of mesozooplankton. The diatoms bloom fluctuated 

linearly to parameter variations of the tested range for all of the parameters examined. 

The results of the model simulations were further discussed to describe the sim­

ulated seasonal variability of physical and biogeochemical processes involved in t he 

low t rophic level ecosystem and carbon dynamics in the euphotic layer. The model 

depicted the characteristics of the annual evolut ions of biogeochemical t racers specific 

to the simulated regions. The bloom drawdown of surface DIC and export through 
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sinking are captured well by the model, at least in a qualitative sense. The surface 

pC02 concentration was systematically lower than the observational estimate all year 

round, which can be attributed to the underestimated init ial condit ions for DIC. 

This study has shown the applicability of the PISCES biogeochemical model for re­

gional coupled physical-biogeochemical modeling. Furthermore, it has demonstrated 

that t he offline coupling of the 1-D PISCES model and the 3-D eddy-resolving OPA 

model can be used as a tool for model testing and improvement with relat ively low 

computational resources. 
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Chapter 6 

Future Work 

The present study has taken the initiative towards the development of community 

biogeochemical model for understanding the role of t he Labrador Sea in the global 

carbon cycle and Earth system, which is a part of the VITALS project (For more 

information about t he project, visit: http:/ j www.nserc-crsng.gc.ca/ _doc/ Professors­

Professeurs/ CCAR-RCCA_eng.pdf). Based on the results of the model simulations 

and the sensitivity analysis, the following future work is suggested for t he model 

implementation: 

• Improvement on vertical mixing in the physical model, especially for coastal 

regions. 

• Assessment of spatial variability of t he results from sensitivity analysis over the 

entire model domain. 

• Optimization of model parameters through data assimilation with surface chloro­

phyll. 
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• Implementation of the 3-D coupled model. 

• Process studies of the 3-D interannual variability. 
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Appendix A 

PISCES 

A.l Model Equations 

In the following, the source-minus-sink (SMS) equations for all model state variables 

are described briefly. Each term on the equations is associated with an underbrace 

( ) which describes its functional process. All parameters and their default values 
'-v--" 

are listed in Table A.2 of Section A.4. 

A.l.l Nanophytoplankton 

SMS(P) 

- (gz (P)Z + gM (P)M) (A.l) 

Grazing 

The first t erm is the net primary production (NPP) , which equals t he gross primary 

production (GPP) minus exudation. 5P denotes the exudation rate, mP is t he excre-

t ion rate, K m is the half-saturation constant for mortality, and wP is the aggregation 
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rate of nanophytoplankton. The productivity of nanophytoplankton depends on sev-

eral factors, including seawat er temperature, mixed layer depth , light availability, and 

external nutrients concentrations: 

- ap eChl,P p ARP 
MP = P,pg(Zmxz) f (Lday )[l- exp( L ( + b ) )]L~m 

day Mref resp 

0 bT MP = Mmax P 

(A.2) 

(A.3) 

where Mr:nax is the maximum growth rate at 0°C and b~ is the temperature (T ) 

sensit ivity for growth. From Equation A.2, bresp is the respiration rate, Mref is the 

reference growth rate, Lday is the day length, and Zmxl is t he mixed layer dept h. 

f(Lday) and g(Zmxz) impose t he dependency of growth rate to the day length and the 

mixed layer depth, respectively: 

(A.4) 

6.Z = max(O, Zmxl - Zeu) (A.5) 

T - (6.Z)2 
dark- 86400 (A.6) 

(z ) 1 
Tdark 

g mxl = - p 
Tdark + Tdark 

(A.7) 

where Zeu is the euphotic layer depth, Tdark is t he mean residence t ime of phytoplank-

ton below the euphotic zone, TJ'ark is the reference residence t ime of nanophytoplak-

ton, and 6.Z defines t he t hickness of t he unlit part of t he mixed layer. 

(A.8) 

where the limitation terms for nutrients are defined by: 

(A.9) 
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()Fe,P _ ()Fe,P 
L~e = min(l, max(O, Fe P mm )) 

()opt' 
(A.lO) 

LP _ K~H4N03 
N03 - K~o3K~H4 + K~H4N03 + K~o3NH4 

(A.ll) 

P K~0 N H4 
LNH4 = Kp K p KP 

3 

NO Kp N H N03 NH4 + NH4 3 + N03 4 

(A.l2) 

L{;m = min(L~o4 , L~e' L fro3 + LfrHJ (A.l3) 

where ()~~,P is the optimal quota for iron. The half-saturation constant for each 

limiting nut rient on nanophytoplankton growth (K f where i = P04 , N H4 , N 0 3) is 

a function of its biomass: 

P1 = min(P, Pmax) (A.14) 

P2 = max(O, P- Pmax) (A.l5) 

Kp = K P,min pl + s;.:tp2 
t t pl + p2 (A.16) 

where p max is the maximum threshold for nanophytoplankton concentration, s;.:t is 

the size ratio of diatoms to nanophytoplankton, and K{'min is the half-saturation 

constant of nanophytoplankton. 

The vertical attenuation of photosynthetically available radiation (PAR) is com-

puted using a simplified version of t he full spectral model of Morel (1988) [86]: 

(A.17) 

where PAR1 (0) , PAR2(0), and PAR3(0) are the blue (400-500 nm) , green (500-600 

nm) , and red (600-700 nm) parts of visible light at the sea surface, respectively. Ppar 

denotes the fraction of solar radiation ( SW). Below the sea surface, PAR is computed 

as follows: 

P ARP ( z ) = /3[ PAR 1 ( z ) + /3{ P AR2 ( z ) + /3[ P AR3 ( z ) (A.18) 
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where z is the vertical depth and (3f ( i=1,2,3) is t he light absorption coefficient which 

depends on the waveband and on the phytoplankton species. 

The nanophytoplankton aggregation term wP depends on the shear rate ( sh) as 

the main driving force for aggregation is the local turbulence. This shear rate is set 

to 1 s-1 in the mixed layer and to 0.01 s- 1 below. 

The new and regenerated productions by nitrate and ammonium respectively, are 

computed as follows [91] : 

A.1.2 Diatoms 

SMS(D) 

p 
1-Lno3 

p 
1-Lnh4 

NPP 
Mortality 

- (gz (D) Z + gM (D)M) 

Grazing 

(A.19) 

Aggregation 

(A.20) 

The diatoms production term is defined as for nanophytoplankton (Equation A.8) 

except t hat the limitation terms also include silicate: 

Si 

K£+Si 

min(L~o4 , L~e' L~03 + L~h4' L~i) (A.21) 

As for iron, the silicate half-saturat ion constant exibits significant spatial variabil-

ity [120, 72]. The following relationship can be inferred when plotted against maxi-

mum local yearly silicate concentration (Simax ) [98]: 

KD _ K D,min 7Si~ax 
Si - Si + K 2. + Si2 

s~ max 
(A.22) 
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where K £ 'min is the minimum half-saturation constant for silicate on diatoms growth. 

The diatoms aggregation term ( w~) is increased in case of nutrient limitation 

since it has been shown that diatoms cells tend to excrete a mucus which increase 

t heir stickiness, leading to a more efficient aggregation [117, 16]: 

(A.23) 

A.l.3 Chlorophyll in nanophytoplankton and diatoms 

The chlorophyll content in nanophytoplankton and diatoms are parameterized based 

on the photoadaptative model of Geider et al. (1998) [37]: 

s M S(IChl) = PI (1 - b'I) (12BChl,I + (eChl,I - eChl,I)piChl) III I- mi I I Chl 
Chl mm max m m ,_.., Km + I 

NPP 

- (sh)wi I I Chl- eChl,I (gz (I )Z + gM (I )M) 
~ 

Aggregation Grazing 

Mortality 

(A.24) 

where I is the phytoplankton class (either P or D) , ec hlJ is the chlrolophyll-to­

carbon ratio of the considered phytoplankton type. Picht denotes the rat io of energy 

assimilated to energy absorbed. Following Geider et al. (1996) [36], this is defined 

as: 

v i 
1-L = 

144ji/ I 
ry_I I ChlPAR 

Lday 

- aiec hlJ PARI 
/-[pg(Zmxl)(1 - exp( L LI ))Lfim 

day/-LP lim 

(A.25) 

(A.26) 

where 144 refers to the square of the molar mass of carbon and is used to convert 

from mol to mg as the standard unit for chlorophyll is generally in mgj m 3. 
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A .1.4 Iron in nanophytoplankton and diatoms 

The iron content of phytoplankton JFe is computed as follows: 

Mortality 

- (sh)wi I ! Fe - eFe,I (g z ( I )Z + gM (I)M) 
~ 

Aggregation Grazing 

(A.27) 

where eFe,I is the iron-to-carbon rat io in phytoplankton. The growth rate (J-/Fe) is 

parameterized as follows: 

1 
_ ()Fe,! 

!Fe - eFe,I LIFe LIFe (}:;.;;I 
f..t - max lim,l lim ,2

1 
OS _ ()Fe,! J..t p 

. B!."dl 
(A.28) 

where B~i; is the maximum iron-to-carbon ratio. L{t;~ 1 is the iron limitation term 
' 

defined as: 

L1Fe _ bFe 
lim, l - bFe + K~:e 

(A.29) 

KJFe - KJFe,min Jl + Sf.atJ2 
Fe - Fe 1

1 
+ h (A.30) 

h = max(O, I - I m ax) (A.31) 

(A.32) 

where bFe is the bioavailable iron concentration which is defined in Section A.1.19. 

K~:e,min is the minimum half-saturation constant for iron content of t he considered 

phytoplankton type, Imax is t he threshold concentration for size dependency, and 

Sf.at is the size ratio of phytoplankton. L {i::_,2 accounts for an additional limitation 

on iron biomass growth due to surge uptake, as observations have revealed that iron 

uptake was enhanced for some species at low iron concentrations [42, 24]. In PISCES, 
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this is parameterized as: 

LIFe _ 4 - 4. 5L~e 
lim,2 - L~e + 0.5 (A.33) 

The minimum iron-to-carbon ratio is defined as the demands for iron that are reuired 

for phytosynthesis, respiration, and nitrate/ nitrite reduction. The parameterization 

follows the work done by Flynn and Hipkin (1999) [31]: 

eFe,I = 0.0016gChl,I 1.21 X 10- 5 X 14 X p 1.15 X 10- 4 X 14 p 

mm 55.85 + 55.85 X 7.625 LN X 1.5 + 55.85 X 7.625 LNo3 (A.34) 

where the three terms in the equation correspond to photosynthesis, respiration, and 

nitrate/ nitrite reduction, in t he order of apprearance. 

A.1.5 Silicon in diatoms 

M ortality 

(A.35) 

Aggregation Grazin g 

The silicon-to-carbon ratio (e;;'tD) is diagnostically computed as it has been observed 

to vary by a factor of about 4 to 5 over t he global ocean with a mean value of 0.14±0.13 

molSi fmolC [110]. Heavier silification occurs in case of light, nitrogen, phosphorous, 

or iron stress (e.g. [128, 33, 72]) possibly due to the physiological adaptation of the 

silicon uptake by phytoplankton, depending on the growth rate and on the G2 cycle 

phase in which silicon is incorporated [72, 11]. On the other hand, lighter silicification 

can only result from silicate limitation. Following these remarks, the variations of the 

Si/ C ratio is parameterized using the method proposed by Bucciarelli et al. (2002, 
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unpublished manuscript): 

()S i,D _ Si D D Si . [ ( -4 23FvSi D Si ) D Si ) ] 
opt - ()m ' L lim ,l mm 5.4, 4.4e . lim, I Flim,2 + 1 (1 + 2Lzim,2 

if ¢< 0 

if ¢> 0 

A.l.6 Microzooplankton 

SMS(Z) ez(g~ + gz(D) + gz(POC) )Z - mz f z (T)Z2 

"-...---' 
Grazing Mortalit y 

z 
- rz f z (T)(Km + Z + 3Ll(0 2))Z 

Mortality/ Excretion 

(A.36) 

(A.37) 

(A.38) 

(A.39) 

(A.40) 

(A.41) 

As for phytoplankton growth, the grazing rate of zooplankton depends exponent ially 

on temperature: 

(A.42) 

f z (T) = b~ (A.43) 

In the above equation, g~~x represents the maximum grazing rate and b~ is the 

temperature sensitivity term for grazing where T denotes the temperature. 

Grazing on each food resource I is defined following the Michaelis-Menten param-

eterizat ion with no switching and a threshold (Ft%resh ) [38]: 

F = L PJ max(O, J - J t%resh ) 

J 
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Flim = max(O, F- Fttresh ) (A.45) 

z _ z (Ftim)Pf max(O, I- It~resh) 
9J - 9m F Kg + LJ PJ J 

(A.46) 

where J denotes all t he resources microzooplankton can graze on (i.e. P , D , and 

POC) and pJ is t he preference microzooplankton has for J. 

Growth efficiency of microzooplankton ( ez) depends on t he food quality: 

'""' Pz g N,I I 
Z Z · (1 ~I I ) 

eN = emax min ) BN c '""' Z I 
' ~I PI 

g N,C min(1 , 0.5 + 0.5 L fv L['f'J.LP) 
J.L 

if IE {P, D} 

if I= POC 

(A.47) 

(A.48) 

where e~ax denotes the maximum growth efficiency of microzooplankton. Hence, 

ez decreases as food quality of their preys deteriorates (i.e. either gFe,I or gN,I of 

phytoplankton is reduced) . 

A.l. 7 Mesozooplankton 

SMS(M) 

Grazing 

(A. 50) 

P redation 
Mortalit y/ E xcretion 

In addition to the grazing parameterization which depends primarily on food con-

centrations, PISCES considers flux feeding, which has a potent ial impact on t he fate 

of sinking particles below the euphotic layer [22, 121]. In PISCES, only the largest 
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particles are consumed by mesozooplankton via flux feeding as they are the fastest 

sinking particles: 

(A.51) 

where gp:!F is the flux feeding rate of mesozooplankton. 

The predation term in Equation A.50 is a sink for mesozooplankton due to grazing 

by the higher, non-resolved trophic levels. 

A.1.8 Dissolved organic carbon 

SMS(DOC) 6P J-LP P + 6D J-LD D + >..*p00POC - (Remin + Denit ) 
"-,..--' 

Exudation Degradation R emineralization 

+ (1 _,z)(1- ez - az) L 9z(N)Z + (1 _ , M)(1- eM - aM) 
N 

(L gM(N) + l;fp(GOC))M- (<I>foc + <I>foc + <I>foc ) (A. 52) 
N Aggregation 

S loppy F eeding 

where a 1 denotes the fraction of ingested food which is used for fecal pellets produc-

t ion. (1 - e1
- a1

) refers to non-ingested part of grazing, known as sloppy feeding. A 

fraction (1 -11
) of sloppy feeding produces DOC. N includes all t racers zooplankton 

can graze on. 

Remineralization of semi-labile DOC is parameterized as follows: 

( 0 2 ( ) ( ) ) bact B act ) Remin = min o ut' >..vocfp T (1- ~ 0 2 L B DOC 
2 act ref 

(A. 53) 

N03 Bact 
Denit =min(-*- , Avocfp(T)~ (02)Lbact B DOC) 

rN03 act ref 
(A. 54) 

where Avoc is t he remineralization rate. Remineralization can occurs under both oxic 

(Remin) and anoxic (Denit) conditions, which are are determined by ~(02), which is 
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defined in Equation A.90. It has been suggested that remineralization may be limited 

by nutrients as bacteria may take up nutrients depending on the quality of DOC [39, 

131]. Thus, the limitation term for DOC degradat ion (L?f:;n is parameterized as 

follows: 

L bact L bact Lbact 
lim DOC (A. 55) 

L bact DOC 
(A. 56) DOC 

DOC+KDoc 

L bact 
lim 

min ( L bact L bact L bact) 
N H4' P04 ' Fe (A.57) 

Lbact bFe 
(A. 58) Fe bFe + K bact 

Fe 

Lbact P04 
(A. 59) P04 PO + K bact 4 P04 

L bact _ L bact + L bact 
N - N03 NH4 (A.60) 

K bact N H 
L bact N03 4 (A.61) NH4 Kbact Kbact + K bact N 0 + Kbact N H 

N03 NH4 NH4 3 N03 4 

£bact 
K bact N O 

N H 4 3 (A.62) N03 -
Kbact Kbact + K bact N 0 + Kbact N H 

N03 NH4 NH4 3 N03 4 

where K fact (i = N H 4 , N 0 3 , P04 , Fe) is the half-saturation constant for DOC rem-

ineralization. In PISCES, bacteria is not explicit ly modeled: 

Zmax m ax(Zmxl, Z eu ) (A.63) 

{ 

min(0.7(Z + 2M), 4J-Lmol j l) 

Bact( z max ) ( ~ )0
·
683 

Bact 
if Z :::; Zmax 

(A.64) 
Otherwise 

Here, the bacterial concent ration is estimated as 0.7(Z +2M) , which decreases with 

depth below Zmax according to a power-law function [129, 4]. 
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The aggregation terms (<I>f00 , where i = 1, 2, 3) are defined as follows: 

<I>f0 0 = (sh)(a1DOC + a2POC)DOC 

<I>f0 0 = (sh)(a3GOC)DOC 

(A.65) 

(A.66) 

(A.67) 

Both turbulence-induced and Brownian aggregation processes are considered for dis-

solved organic matter. 

A.1.9 Small particulate organic carbon 

Particulate organic matter (carbon and iron content) is modeled based on two different 

size-classes: POC for small (1-1001-lm) and GOC for bigger (100-50001-lm) organic 

matter. The temporal evolution of POC is expressed as follows: 

Egestion Grazing 

( 

p p p ') ) 
+ (1- 0.5RcacoJ m Km + PP + w p-

Mortality/ Aggregation 

D Z 
+0.5mD D + rz zz + m z Z2 + >.;,0 c(GOC- POC) 

Km + D Km + 
Mortality 

D egradation 

aPOC ( if..DOC if..DOC if..) 
- Wpoc OZ + '±' 1 + '±'3 - '±' 

~ 

(A.68) 

Sinking 
A ggregation 

where Wpoc is the sinking speed. The fate of mortality and aggregation of calcifying 

organism (nanophytoplankton) depends on the calcite production rate (RcacoJ. In 

PISCES, 50 % of the dead calcifiers is assumed to form POC where the other half 

goes to calcite. 
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The degradation rate >-:Poe depends on temperature, and is reduced under anoxic 

conditions following Mooy et al. (2002) [136]: 

(A.69) 

where Apoc is the reference degradation rate for POC. 

The aggregation of POC is modeled as follows: 

<P = (sh)a6POC2 + (sh)a7POC(GOC) + a8POC(GOC) + a9POC2 (A.70) 

where the first two terms refer to turbulent aggregation and the latter two terms 

correspond to differential settling aggregation. 

A.l.lO Big particulate organic carbon 

SMS(GOC) 
M 

(JM (L gM(I) M + gljp(GOC)M)+rM K + MM +~ 
I m Predation 

Egestion 
M ortality 

( 
p p p 2) D D + 0.5Rcaco3 m K m + PP + w P + 0.5m K m + DD 

Mortality/ Aggregation Mortality 

D 2 * fJGOC DOC + w D - .Ap0 cGOC - wcoc 
0 

+ (<P2 + <P) (A.71) 
"--v-' "'-v-"' z ~ 

Aggregatwn Degradation ~ Aggregation 
Smkmg 

Similarly to t he formulation for the fate of dead nanophytoplankton, 50 % of diatoms 

mortality is considered to become GOC, while the other half is t ransformed into 

biogenic silica. 

Observational studies have shown that the average sinking speed of particulate 

organic matter increases with depth [8]. Given this fact , the sinking speed of GOC 
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is formulated, where the parameters are adjusted using a model of Gehlen et al. 

(2006) [35], as follows: 

· ( min (200 min ) max(O, z - Zmax ) ) 
Wcoc = mm Wcoc + - Wcoc 5000 ' Wmax 

A.l.ll Small particulate organic iron 

(A.72) 

(A.73) 

The iron content of the particulate organic matter for small size-class is modeled 

explicitly: 

SMS(SFe) 
z 

(Jz L eFe,I gz (I)Z + eFe,Z (rz f z(T) K + zz + mz fz(T)Z2
) + X'GocBFe 

I m 

p D 
+BFe,P(l- 0 5R )(mp P + (sh)wp P 2) + eFe,DO 5mD __ _ . caco3 Km + p . Km + D 

+AFe(POC)Fe' + Coagfel- )..7:>0 0 SFe - BFe, POC<I!- eFe,Poc gM (POC)M 

S Oc fJSFe 
+ r;, Fe Bact f e - eFe,P gz (POC)- w --Bact POC fJz (A.74) 

where AFe is the slope of iron scavenging rate, eFe,Z and eFe,POC are the Fe/ C ratios 

for microzooplankton and POC, respectively. The description and formulation of Fe', 

Coagfel, and Bactfe will be provided in Section A.1.19. 
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A.1.12 Big particulate organic iron 

The temporal evolut ion of bigger particulate organic iron is computed in the similar 

way as POC: 

SMS(BFe) O"M[L eFeJ gM (I) +t hetaFe, GOClJF(GOC)]M - A.?oc BFe 
I 

M oBFe 
+BFe,M[rM !M(T) K m + MM + mM !M(T)M2

] - wcoc oz 

+BFe,D(0.5mD D D + (sh )wD D 2 ) + K,BFe Bactfe 
K m + D Bact 

+A.Fe(GOC)Fe' + eFe,POCcp + Coagfe2 - eFe,GOC gf!F(GOC)M 

+eFe,Po.5R (mP P P + (sh)wP P 2 ) (A.75) CaC03 K m + p 

Again, all processes by different forms of iron will be discussed in Section A.1.19. 

A.1.13 Biogenic silica 

Biogenic silica is considered only in the big form, the same size criterion as GOC: 

Mortality 
Aggregation Grazing 

(A.76) 

Dissolution 
S inking 

where the dissolut ion rate of PSi is parameterized based on Ridgwell et al. (2002) [104] : 

Sieq 

Sisat 
Sieq- Si 

Sieq 

Aps; [ 0 225 ( 1 + ~) Si,., + 0 775 ( ( 1 + 4~0) 
4 

Si,at ) '] 
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X 
{ 

0 
X lab 

X
o exp(-(.\lab . - Aref)(z- Zmax)) 
lab P St P S t waoc 

if Z ::; Zmax 
(A.80) 

Otherwise 

d ab (1 ) ' ref 
Xlab /\PSi + - Xlab /\PSi (A.81) 

A.1.14 Calcite 

Calcite is the only form of calcium carbonate simulated in PISCES. Hence, aragonite, 

the other major constituent of calcium carbonate, is not considered. Furthermore, 

calcite is assumed to exist in the big form only, as for PSi. 

The temporal evolution of calcite involves the following three processes: 

SMS(CaC03) = * &CaC03 
Pcaco3 - Acaco3CaC03- Wcoc a 
'--v--" z 

(A.82) 

Calci f ication Dissolution Sinking 

where the production term is defined as: 

Pc aco3 = R caco3(rtz gz (P)Z + rtM gM (P)M 

p 2 p p ( ) 
+0.5(w P + m K m + PP)) A.83 

caco3 T P max(O, PAR- 1) 30 
rcacoJ Llim 0.1 + T max(1, 2) 4 +PAR 30 +PAR 

-(T - 10)2 50 
x (1 + exp( )) min(1, -Z ) (A.84) 

25 mxl 

Here, the rain ratio (Rcaco3) is parameterized based on Zondervan (2007) [147]. Only 

a fraction of the grazed shells ( rt1 where i = Z , M) will be t ransformed into calcite. 

The remmanant is considered to be dissolved in the acidic guts of zooplankton [48]. 

The dissolution rate is defined following [35]: 

(A.85) 

(A.86) 
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A.1.15 Nitrate 

- (J-t~o3P + f-t~o3D -RNH)'NHJ:::,. (02)NH4 

GPP 

+Nitri f- RNo3 Denit (A.87) 

where nitrification (Nitrif) is a bacterial oxidation process which utilizes ammonium 

to form nitrate: 

Nitrif 

PAR1 + PAR2 + PAR3 

o min,l- 0 
min(1, max[O, 0.4 2 

. 2 
2 

)] 
o~m, + 02 

(A.88) 

(A.89) 

(A.90) 

where PAR is the PAR averaged over t he mixed layer, )INH4 is the maximum nitrifi-

cation rate, R1 (where I= N H4, N03) is the N/ C stoichiometric ratios, and ~(02 ) 

defines the oxic-anoxic conditions which varies between 0 (oxic) and 1 (anoxic). O~in,i 

(where i = 1, 2) is the oxygen half-saturation constant for denitrification. 

When the waters become suboxic (i.e. ~(02) > 0) , nitrate is ut ilized instead of 

oxygen for the remineralization of organic matter. This process is known as denitri-

fication (Den it): 

(A.91) 

In PISCES, ammonium is assumed to be released from organic matter during deni-

t rification. 
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A.1.16 Ammonium 

GPP 

+ ,..,/ (1 - ez - O"z) L gz (I)Z + "'M (1 - eM - O"M) (L gM (I) + gljp ( GOG) )M 
I I 

Sloppy Feeding 

+Remin + Denit - Nitrif 

where nitrogen fixation (Nfix) is a process by which the gaseous form of nitrogen in 

the atmosphere (N2 ) is converted to ammonia (N H3 ) . In PISCES, it is a source to 

ammonium and is formulated based on previous studies (e.g. [82, 74, 144]): 

Nfix = NJ;x max(O, /JP - 2 . 15)L~iaz 

LDiaz 
N 

. bFe P04 PAR 

X ( )(1 -Efix mm D. , P . - e 
K wz + bFe K ,mm + PO 

Fe P04 4 

{ 

0.01 

1- LP 
N 

if z 2:: 0.8 

Otherwise 

where Nffx is t he maximum rate of nitrogen fixation. 

A.1.17 Phophate 

(A.93) 

(A.94) 

- (JJP P + JJD D) + Remin + Denit + "(z (1 - ez - O"z) L gz (I )Z 

GPP I 

+ 'YM(1- eM - O"M)(L gM(I) + glfp(GOC))M (A.95) 
I 

Sloppy F eeding 

where all terms in the above equation have been described previously. 
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A.1.18 Silicate 

(A.96) 

NPP Dissolution 

where all terms in the above equation have been described previously as well. 

A.1.19 Iron 

SMS(Fe) - [(1- 5P)J.LpFe P + (1- 5D)p_DFe D] - Goagfe1- Goagfe2- Aggfe 

NPP 

+ max[O, ( 1 - o-2 ) I:t::~(;)( I ) - e~eFe,z] z; g2 (I) z 

[L gM (I )M + g'fF( GOG)]+ >.*p00S Fe - Scav - B actje 
~ 

I Dissolution 
Sloppy Feeding 

(A.97) 

where scavenging of iron by lithogenic particles (Scav) [138] is formulated following 

Honeyman et al. (1988) [44] and Parekh et al. (2004) [92]: 

>.;,e >.r;;n + AFe(POG +GOG + GaG0 3 + B Si) + >.}~st Dust (A.98) 

In the seawater, iron is present largely as colloids. In P ISCES, t he aggregation of 

t hese colloids are represented as Goagfe1 and coag f e2: 

Goagf e1 

Goag f e2 sh(a3GOG)Fecoll (A.101) 
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Aggfe is the loss term due to enhanced scavenging which is triggered when 

dissovled iron concentration exceeds the total ligand concentration (Lr ): 

Aggfe = lOOOJ.Fe max(O, F e - Lr )F e' (A.102) 

The uptake of iron by heterotrophic bacteria is parameterized as follows: 

F e Bactfe = u L BacteFe,Bact B act 
rP ltm max K:~l + F e 

(A.103) 

where e~~!act represents the maximum iron-to-carbon ratio of bacteria. 

As seen in the previous equations, dissolved iron (Fe) is expressed in two different 

forms: free inorganic iron (Fe') and dissolved complexed iron (F eL) : 

-(1 + K{qe Lr- K {qe Fe)+ V(l + K fc/ Lr- Kfc/ F e)2 + 4Kfc/ F e 
Fe'=--------------------~--~-----------------------

Lr 

F e 

F ecoll 

2KFe 
eq 

F eL+L' 

F eL+Fe' 

F eL 

L'Fe' 

0.5FeL 

max[0.6, 0.09(DOC + 40) - 3] 

A.1.20 Dissolved Inorganic Carbon 

I 

SloppyFeeding 

I 

(A. 104) 

(A.105) 

(A.l06) 

(A.107) 

(A. lOS) 

(A.109) 

- (1-"P P + 1-"D D) +Rem in + Denit + Xcaco3C aC03 - Pcaco3 
'--v-" 

GPP Dissolution Calcification 
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where all terms in the above equation have been defined in the previous sections. At 

t he sea surface, C02 is exchanged betwen the ocean and t he atmosphere. The gas 

exchange coefficient is computed following the work of Wanninkhof (1992) [139]: 

(A .111) 

Here, % ice denotes t he sea-ice coverage. Atmospheric pC02 is an additional parameter 

of PISCES which is constant both in space and time throughout t he simulation period. 

A.1.21 

SMS (Alk) 

Total alkalinity 

eN,C { (f.L~o3P + f.l,D D - f.L~H4p - f.L~H4D + Remin + (r?vo3 + 1)D enit 

GPP 

+ "fz (1- ez - O"z ) L gz (I) Z 
I 

+"fM (1 - eM - O"M)( L gM (I)M + g%j. (GOC )M) 
I 

S loppy F eeding 

+Nfix + !::. (0 2)(r7YH
4

- 1)ANH4N H4 - 2Nitr i f } 

(A.112) 

Dissolution Calci f icat ion 

where all t erms have been defined previously in this appendix . 

The carbonate chemistry (i.e. DIG and Alk ) follows the CMIP protocols except 

t hat alkalinity considers only carbonat e, borate and water. 
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A.1.22 Dissolved oxygen 

The temporal evolut ion of oxygen is computed as follows: 

SMS(02 ) = o ut( 11P P + 1P D) + (Out+ onit)(uP p + un D) 
2 rNH4 rNH4 2 2 rN03 rN03 

GPP 

- o~t(rZ(l- ez - o-z) L 9z(I)Z 
I 

+1M(1 - eM - o-M)(L gM(I) + glfF(GOC))M) 
I 

S loppyFeeding 

-O~tRemin- O~itNitrif + O~itNfix (A.113) 

where R2t is the oxygen-to-carbon ratio when ammonium is converted to organic 

matter and R~it denotes the rate of oxygen comsumption during nitrification. 

As for C02 exchange at the air-sea interface (see Section A. l.20), the exchange 

of oxygen gas is modeled using the parameterization of Wanninkhof (1992) [139] 

for calculation of the gas exchange coefficient (see Equation A.111) . The atmospheric 

oxygen concentration is constant over t ime and the the model domain, which however, 

cannot be set by the user. 

A.2 External supply of nutrients 

The model incorporates three different sources of nutrient input to the ocean: atmo-

spheric dust deposition, river discharge, and sediment mobilization. 
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A.2.1 Atmospheric dust deposition 

The model incorporates the supply of iron, silicon, phosphorus, and nitrogen part icles 

by atmospheric dust deposit ion. The iron supply is estimated using the monthly-mean 

climatology of iron dust deposit ion [130] . The iron content of dust and its solubility 

in seawater of dust are set to a constant value of 3.5 % and 2 %, respectively. The 

dust deposition of silicon and phosphorus is also computed from the same input data 

and by following the method of Moore et al. (2001) [84] and Moore et al. (2004) [85], 

respectively. The phosphorus content of dust is set to 750 ppm [70] and its solubility 

in surface seawater is set to 10 % [103, 70]. Atmospheric deposition of nitrogen is 

modeled separately from the deposition of other dust elements that are estimated 

from the input data of iron dust. Upon the deposition in the surface seawater, all 

nitrogen dust are assumed to dissolve. 

The dust concentration (Dust ) is computed in the following way: 

Dust= Ddust 
Wdust 

(A.114) 

where Ddust and wdust are the amount of dust deposited at the sea surface and the 

constant dust sinking speed, respectively. 

A.2.2 River discharge 

In the model, river runoff provides DIC and DOC, as well as all other nutrients (iron, 

nitrogen, phosphorus, and silicon) to the ocean. Dissolved organic matter is assumed 

to remineralize immediately at the river mouth, and therefore, DOC is t reated in the 

model as a source to DIC. The annual-mean climatological river discharge data [68] 

from the Global Erosion Model (GEM) is used for DIC and DOC input. The supply 
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of particulate organic carbon is neglected here as most of it is lost in the estuaries 

and in the coastal zone [119]. River input of iron, phosphorus, nitrogen, and silicon 

are calculated from the carbon supply by assuming a constant Fe/ P / N/ Si/ C ratios 

in the rivers from the global estimates [79] [134] [15] . 

A.2.3 Reductive Mobilization of Iron from Marine Sediments 

Iron conentrations in the sediment pore waters are usually several orders of magni-

tude greater than in the seawater. Previous studies have revealed that this substantial 

iron increase in the coastal areas is due to reductive mobilization from marine sedi-

ments [49, 15, 85]. In the model, this iron supply is parameterized as follows [85] : 

Zjesed 

(jesed 

F esed 

z 
min(8, ( 

500 
tl.5

) 

-0.9543 + 0.7662ln(Zjesed)- 0.235(ln (Zjesed) )2 

. (1 exp( (jesed)) min ) _ ___;_..:....._____:_ 
0.5 

(A.115) 

(A.116) 

(A.117) 

where all terms have been defined previously. Finally, t he iron flux is calculat ed as: 

F sed F sed F d at 
Fe = e Fe,max X ese X IOsed (A.118) 

where %sed denotes the ratio of t he corresponding horizontal grid size of ETOP05 

dataset [90] to the model grid size of PISCES. The above treatment is applied to 

account for the effect of sub-grid scale bathymetric variations on the iron source 

function. 
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A.2.4 Bottom Boundary Conditions 

For all sinking tracers (particulate organic matter, biogenic silica, and calcite), the 

losses due to burials in the sediments are exactly balanced by the external supply 

from atmospheric dust deposition and river discharge. Hence, for particulate organic 

matter and biogenic silica, the non-buried part of particles at the bottom ocean is 

assumed to redissolve back to the water column instantaneously. The proportion of 

organic matter degradation due to denitrification is determined as follows [80]: 

log(Pdenit) = -2.2567- 1.185 log(Foc)- 0.221(log(Foc))2 + 0.4721 log(max(10, 02)) 

-0.3995log(max( l , N03 )) log(max(lO, 0 2)) + 1.25log(max(l , N03 )) 

- 0.0996log(z) + 0.4256 log(Foc) log(max(lO, 0 2 )) (A.119) 

where the units for the tracer concentrations are in J-lmol / L and Foe denotes the 

organic carbon flux at the bottom. The flux of nitrate to the sediment due to deni-

trification is then computed: 

F denit R p D 
N03 = N03 denitroc (A.120) 

The permanent burial of calcite is considered as a function of the saturation level 

of the overlying waters [3]: 

0.2 - D 
%caco3 = min(l , 1.3 

0
) 

0.4-
(A.121) 

where D is the saturation level of calcite. The permanent burial of calcite is deter-

mined by %caco3 . 

A.3 Model State Variables 
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Table A.l: Descript ion of the PISCES state variables 

Abbreviations Units Description 

N0 3 JLmol/ L Nitrate 

H4 JLmol/ 1 Ammonium 

P04 JLmol/ 1 Phosphate 

Si JLmol/ 1 Silicate 

Fe JLmol/ 1 Dissolved iron 

p JLmol/ 1 anophytoplankton 

D JLmol/ 1 Diatoms 

p Chl g/ 1 Chlorophyll content of nanophytoplankton 

D Chl g/ 1 Chlorophyll content of diatoms 

p Fe JLmol/ 1 Iron content of nanophytoplankton 

D Fe JLmol/ 1 Iron content of diatoms 

D Si JLmol/ 1 Chlorophyll content of diatoms 

z JLmol/ 1 Microzooplankton 

M JLmol/ 1 Mesozooplankton 

DOC JLIDOl/ 1 Dissolved organic carbon 

POC JLmol/ 1 Small particulate organic carbon 

GOC JLmol/ 1 Big particulate organic carbon 

SFe JLmol/ 1 Small particulate iron 

BFe JLmol/ 1 Big particulate iron 

PSi JLmol/ 1 Biogenic silica 
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A.4 

DIC 

ALK 

,umol/ L 

,umol/ L 

,umol/ L 

,umol/ L 

Model Parameters 

Calcite 

Dissolved inorganic carbon 

Total alkalinity 

Dissolved oxygen 

Table A.2: PISCES model parameters 

Parameter Units Default Value Description 

Phytoplankton 

0 
.Umax per day 0.06 Growth rate at ooc 

.Uref per day 1 Growth rate reference for light limita-

tion 

bresp per day 0.033 Basal respiration rate 

bp - 1.066 Temperature sensitivity of growt h 

o/ (W/m2
) -

1 / day 2, 2 Initial slope of P-I curve 

f/ - 0.05, 0.05 Exudation rate 

;3[ - 2.1, 1.6 Absorption in the blue part of light 

j3~ - 0.42, 0.69 Absorption in the green part of light 

J3i - 0.4, 0.7 Absorption in the red part of light 

KI,min 
P04 nmoljl 0.8, 2.4 Minimum half-saturation constant for 

phosphate 
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KI,min 
NH4 p,mol / l 0.013, 0.039 Minimum half-sat uration constant for 

ammonium 

KI,min 
N03 p,mol/ l 0.13, 0.39 Minimum half-saturation constant for 

nitrate 

KD,min 
Si p,mol/ l 1 Minimum half-saturation constant for 

silicate 

K si p,mol j l 16.5 Parameter for the variation of the half-

saturation constant 

Kl p,mol j l 2 First parameter for Si/ C 

K;i p,mol/ l 20 Second parameter for Si/ C 

KI,min 
Fe nmol/l 1, 3 Minimum half-saturation constant for 

iron uptake 

s:at 3, 3 Size ratio of phytoplankton 

()Si,D 
m molSi/ molC 0.156 Optimal Si/ C uptake ratio of diatoms 

()Fe,! 
opt p,molFejmolC 7, 7 Opt imal iron quota 

() Fe ,I 
max p,molFejmolC 40, 40 Maximum iron quota 

mi per day 0.01, 0.01 Phytoplankton mortality rate 

wP day- 1mol- 1 0.01 Minimum quadratic mortality of phy-

toplankton 

D 
Wmax day-1mol- 1 0.02 Maximum quadratic mortality of di-

atoms 

Km p,mol/ l 0.2 Half-saturation constant for mortality 
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echl,I max mgChl jmgC 0.033, 0.05 Maximum Chl/ C ratios of phytoplank-

ton 

eChl,I 
mtn mgC hl jmgC 0.0033, 0.0033 Minimum Chl/ ratios of phyt oplankton 

I max p,mol j l 1, 1 Threshold concentration for size depen-

dency 

Cm gj mol 12 Molar mass of carbon 

Zooplankton 

bz - 1.079, 1.079 Temperature sensitivty term 

I 0.3, 0.3 Maximum growth efficiency of zoo-emax -

plankton 

a I - 0.3, 0.3 Non-assimilated fraction 

"·/ - 0.6, 0.6 Excretion as dissolved organic matter 

gfn per day 3, 0.7 Maximum grazing rate 

M 
9FF (mmol j l) - 1 2 X 103 Flux feeding rate 

KI 
G p,m ol j l 20, 20 Half-saturation constant for grazing 

p~ - 1, 0.3 Preference for nanophytoplankton 

Pb - 0.5, 1 Preference for diatoms 

ppOCI - 0.1, 0.3 Preference for POC 

p~ - 1 Preference for microzooplankton 

F/hresh p,mol / l 0.3, 0.3 Food threshold for zooplankton 

Jtftresh p,mol j l 0.01 Specific food thresholds for microzoo-

plankton 
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I/'tresh 

v 

eF e 
zoo 

K Doc 

K Bact 
N03 

K Bact 
Fe 

p,mol/ l 0.01 Specific food t hresholds for mesozoo-

plankton 

p,mol / l 0.1 Minimum available concent ration for 

nanophytoplankton 

Zooplankton quadratic mortality 

per day 0.03, 0.005 Excretion rate 

- 0.5, 0.75 Fraction of calcit e not dissolved in guts 

p,molFejmolC 10, 10 Fe/ C ratio of zooplankton 

Dissolved organic matter 

per day 0.25 Remineralization rate 

J-Lmol j l 417 Half-saturation constant for remineral-

ization 

p,mol / l 0.03 0 3 half-saturation constant for rem-

ineralization 

p,mol / l 0.003 NH4 half-saturation constant for rem-

ineralization 

J-Lmolj l 0.003 P04 half-saturation constant for rem-

ineralization 

nmol / l 0.01 Fe half-saturation constant for reminer-

alizat ion 

Aggregation rate (turbulence) of DOC 

-+ P OC 
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a2 (J-Lmolll)-1day- 1 102 Aggregation rate (turbulence) of DOC 

----t POC 

a3 (J-Lmolll)-1day- 1 3530 Aggregation rate (turbulence) of DOC 

----t GOC 

a4 (J-Lmolll) - 1day- 1 5095 Aggregation rate (Brownian) of DOC 

----t POC 

as (J-Lmol I l) - 1 day- 1 114 Aggregation rate (Brownian) of DOC 

----t POC 

Particulate organic and inorganic matter 

A poe per day 0.025 POC degradation rate 

Wp O C ml day 2 POC sinking speed 

wmin 
GOC ml day 30 GOC minimum sinking speed 

Wdust ml s 2 Sinking speed of dust 

a6 (J-Lmol I l) - 1 day- 1 25.9 Aggregation rate (turbulence) of POC 

----t GOC 

a7 (J-Lmoll l) - 1day- 1 4452 Aggregation rate (turbulence) of POC 

----t GOC 

as (J-Lmol I l) - 1 day- 1 3.3 Aggregation rate (settling) of POC ---+ 

GOC 

ag (J-Lmol I l) - 1 day- 1 47.1 Aggregation rate (settling) of POC ----t 

GOC 

)..min 
Fe per day 3 X 10- 5 Minimum scavenging rate of iron 

A Fe ll J-Lmol l day 0.005 Slope of the scavenging rate of iron 
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).dust 
F e l / mg j day 100 Scavenging rate of iron by dust 

Acaco3 per day 0.197 Dissolution rate of calcite 

nca - 1 Exponent in the dissolution rate of cal-

cite 

0 0.31 Proportion of t he most labile phase in X tab -

PSi 

).Slow 
PSi per day 0.003 Slow dissolution rate of PSi 

). fast 
PSi per day 0.025 Fast dissolution rate of PSi 

Nutrients 

A N H4 per day 0.05 Maximum nit rification rate 

omin,l 
2 f-imol j l 6 Half-saturation constant for denit rifica-

tion 

o;~in,2 J-imol / l 1 Half-saturation constant for denit rifica-

tion 

Lr nmol j l4 0.6 Total concentration of iron ligands 

NJ1x f-imol / l / day 0.013 Maximum rate of nit rogen fixation 

Kdiaz 
Fe nmol/ l 0.1 Fe half-saturation constant of nitrogen 

fixation 

Efix W/ m2 50 Photosynthetic paramet er of nitrogen 

fixation 

F eice nmol / l 10 Iron concent ration in sea-ice 

p sed 
Fe, m in f-imol / m 2 / day 1 Maximum sediment flux of Fe 

Sol Fe - 0.02 Solubility of iron in dust 
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Stoichiometric ratios and various parameters 

out 
2 mol02l molC 1311122 OIC for ammonium-based processes 

O~it mol02l molC 321122 0 I C ratio of nitrification 

* rNH4 molCimolN 315 C IN ratio of ammonification 

* rN03 molCi molN 105116 C IN ratio of denitrification 

eN,C molN i molC 161122 N I C Redfield ratio 

rcaC03 - 0.26 Rain ratio parameter 

A .5 N arne list P arameters 

Table A.3: Model parameters listed in namelisLpisces of 

NEMO version 3.4.1 

Code name Default value D escrpt ion 

wsbio 2 POC sinking speed 

xkmort 2x 1o-7 Half-saturation constant for mortality 

ferat3 10-5 FeiC ratio in zooplankton 

wsbio 30 GOC sinking speed 

con cO x 10- 6 Phosphate half-saturation 

conc1 8x 10- 6 Phosphate half-saturation for diatoms 

conc2 10-9 Iron half-saturation for nanophytoplankton 

conc2m 3x 1o- 9 Maximum iron half-saturation for nanophytoplankton 

conc3 3x 10- 9 Iron half-saturation for diatoms 
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conc3m 8x10- 9 Maximum iron half-saturation for diatoms 

xsizedia 10-6 Minimum size criteria for diatoms 

xsizephy 10-6 Minimum size criteria for nanophytoplankton 

concnnh4 10-7 NH4 half-saturation for nanophytoplankton 

concdnh4 8x 1o-7 NH4 half-saturation constant for diatoms 

xksi1 2x 10-6 Half-saturation constant for Si uptake 

xksi2 3.33 x 10- 6 Half-saturation constant for Si/ C 

xkdoc 4.17x 1o- 4 Half-saturation constant of DOC remineralization 

concfebac 10- ll Half-saturation for iron limitation of bacteria 

qnfelim 7x 1o-6 Opt imal quota of nanophytoplankton 

qdfelim 7x 10-6 Optimal quota of diatoms 

caco3r 0.16 Mean rain ratio 

pislope 2 P-I slope 

pislope2 2 P-I slope for diatoms 

excret 0.05 Excretion ratio of phytoplankton 

excret2 0.05 Excretion ratio of diatoms 

bresp 0.00333 Basal respirat ion rate 

chlcnm 0.033 Maximum Chl/ C in nanophytoplankton 

chlcdm 0.05 Maximum Chl/ C in diatoms 

chlcmin 0.0033 Minimum Chl/ c in phytoplankton 

fecnm 4 x 1o- s Maximum Fe/ C in nanophytoplankton 

fecdm 4 x 1o- s Minimum Fe/ C in diatoms 

grosip 0.151 Mean Si/ C in diatoms 
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wchl 

wchld 

mprat 

mprat2 

mpratm 

part2 

grazrat2 

resrat2 

mzrat2 

xprefc 

xprefp 

xprefz 

xprefpoc 

xthresh2zoo 

xthresh2dia 

xthresh2phy 

xthresh2poc 

xthresh2 

xkgraz2 

epsher2 

sigma2 

0.001 

0.02 

0.01 

0.01 

0.01 

0.75 

0.7 

0.005 

0.03 

1 

0.3 

1 

0.3 

10-8 

10- 8 

10-8 

10-8 

2x 10-7 

2x 10- 5 

0.3 

0.6 

Phytoplankton quadrat ic mortality of 

Maximum quadratic mortality of diatoms 

Phytoplankton mortality rate 

Diatoms mortality rat e 

Phytoplankton minimum mortality rate 

Part of calcite not dissolved in mesozooplankton guts 

Maximal mesozooplankton grazing rate 

Exudation rate of mesozooplankton 

Mesozooplankton mortality rate 

Microzooplankton preference for nanophytoplankton 

Microzooplankton preference for POC 

Microzooplankton preference for microzooplankton 

Microzooplankton preference for POC 

Microzooplankton feeding threshold for mesozooplank­

ton 

Diatoms feeding threshold for mesozooplankton 

N anophytoplankton feeding threshold for mesozoo­

plankton 

POC feeding threshold for mesozooplankton 

Food threshold for grazing 

Half-sturation constant for mesozooplankton grazing 

Efficicency of mesozooplankton growth 

Fraction of mesozooplankton excret ion as DOM 
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unass2 

grazfiux 

part 

grazrat 

resrat 

mzrat 

xpref2c 

xpref2p 

xpref2d 

xthreshdia 

xthreshphy 

xthreshpoc 

xthresh 

xkgraz 

epsher 

sigma1 

unass 

xremik 

xrem1p 

nitrif 

xsirem 

0.3 

2x 103 

0.5 

3.0 

0.03 

0.001 

0.1 

1 

0.5 

10-8 

10-8 

10-8 

2x1o- 7 

2x10- 5 

0.3 

0.6 

0.3 

0.25 

0.025 

0.05 

0.003 

Non-assimilated fraction of P by mesozooplankton 

Flux-feeding rate 

Part of calcite not dissolved in microzooplankton guts 

Maximal microzooplankton grazing rate 

Microzooplankton exudation rate 

Microzooplankton mortality rate 

Microzooplankton preference for POM 

Microzooplankton preference for nanophytoplankton 

Microzooplankton preference for diatoms 

Diatoms feeding threshold for microzooplankton 

N ana phytoplankton feeding threshold for microzoa­

plankton 

POC feeding threshold for microzooplankton 

Food threshold for feeding 

half sturation constant for grazing 

Efficiency of microzooplankton growth 

Fraction of microzooplankton excretion as DOM 

on-assimilated fraction of phytoplankton by microzoa­

plankton 

Remineralization rate of DOC 

Remineralisation rate of POC 

NH4 nitrification rate 

Remineralization rate of Si 
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xsiremlab 0.025 Fast remineralization rate of Si 

xsilab 0.31 Fraction of labile biogenic silica 

xlam1 0.005 Scavenging rate of Iron 

oxymin 10-6 Half-saturation constant for anoxia 

ligand 6x 10-10 Ligands concentrat ion 

kdca 6 Calcite dissolution rate constant 

nca 1 Order of dissolution reaction 
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