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Abstract 

The most common approach to studying the dynamics of globular clusters is to calcu

late and analyze the position and velocity for each star. The rapid variation of these 

variables is a limitation of this approach. It is perhaps easier to study star cluster 

dynamics by analyzing more slowyly changing variables, such as the period of a star. 

In this thesis, I study two particular slow-changing variables of stars in N -body sim

ulations, these being the aforementioned theoretical period, and the angle between 

the star's closest approach to and its farthest retreat from the center of the cluster. 

Our work involves fitting these variables to ARMA models, both through careful indi

vidual analysis and through an automated procedure. While the ARMA models which 

we considered could not be successfully fit to these variables, it is possible that an 

analysis using higher order ARMA models, or possibly GARCHMA models, would be 

more successful. 

The second portion of this thesis deals with the distribution of forces in a star 

cluster. A simple approximation of this distribution was given by Holtsmark in 1917. 

This approximation assumes that the cluster has an infinite radius and a constant 

density, and thus it assumes the force distribution is not spatially dependent. We 

showed from studies of simulations that these assumptions are not valid for a real 

cluster, because stars on the edge of the cluster do not experience the same force, on 

average, as stars in the middle. A new force distribution which takes this fact into 

vii 



account must be used instead. 

It would seem that research such as the statistical time series models mentioned 

above, as well as the new force distribution, could eventually lead to the derivation 

a new set of dynamical equations for star clusters. This work is not covered in this 

thesis, but is an obvious and quite likely very fruitful continuation which we hope to 

explore in the future. 

viii 
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Chapter 1 

Introduction 

1.1 Globular clusters 

Globular clusters are groupings of 30,000 to 3,000,000 stars which are tightly packed 

together, in a close-to-spherical formations. They are found both within our galaxy 

and in other galaxies. They are of great interest in astrophysics, because they provide 

insight into many different astrophysical processes and systems. Above all, they are 

old: most are composed of very old population II stars. They are so old that they can 

provide a useful lower limit on the age of galaxies (in particular the Milky Way) and for 

that matter, the universe. Systems of globular clusters in other galaxies can provide 

valuable information about the dynamics and chemical composition of those galaxies 

in their early stages of development, and the mere existence of globular clusters within 

galaxies is probably significant in regard to the origins of these galaxies. 

Other than their great age, another advantage of globular clusters is that the 

integrated properties of the globular clusters in galaxies hundreds of Mpc away can be 

determined, while in contrast it is very difficult to study individual stars at distances 

of just a few Mpc. Thus understanding the properties of globular clusters allows 

1 



CHAPTER 1. INTRODUCTION 2 

collection of data on very distant galaxies. 

Though they are almost spherical in shape, some globular clusters are more ec

centric than others. Cluster M19 is one of the least spherical globular clusters in our 

galaxy, with a minor-to-major axis ratio of ~ ~ 0.73. This is extreme: an analy

sis of 99 globular clusters in our galaxy shows that they have a mean axis ratio of 

~ ~ 0.93. This elongation of the ellipsoidal shape of globular clusters is likely due to 

their rotation [16]. 

The ages of globular clusters are of great interest, and though uncertainty in the 

calculation of their ages is relatively high, there is considerably less uncertainty in 

the calculated age difference between various globular clusters [16]. There are many 

methods of age determination for globular clusters, a couple of examples being the use 

of main sequence termination magnitudes and red giant star luminosities [26]. Some 

of these calculations have revealed that the most metal-rich clusters are several billion 

years younger than the most metal-poor. Determination of the differences in ages of 

globular clusters within our own galaxy can reveal important information about this 

galaxy's formation. It has also been shown that differences in the ages of globular 

clusters is one of the most important factors in determining their properties [16]. 

Perhaps the biggest problem associated with globular clusters is what is com

monly known as the second parameter problem. The metallicity and age of globular 

clusters seem to determine most of their properties, but these two factors alone can

not effectively determine all of their properties. Thus, there seems to be some other 

parameter of importance, in addition to these two. There are many ideas as to what 

this parameter may be (such as variations in elemental ab)lndances), but this is still 

a topic of debate [16]. It is worth noting that this is called the second parameter 

problem simply because originally metallicity was the only parameter known to be 

of importance, and after the term was coined it was shown that variations in cluster 
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ages are also of importance [16]. 

1.2 Modeling of globular clusters 

1.2.1 Kinetic equations 

A kinetic equation is usually defined as a single equation for the phase space density 

f(x, v, t) [37]. Kinetic equations are always of the form 

of at = r(f; x, v, t) (1.1) 

where r is a functional of its arguments [37]. The phase space density is usually 

introduced in the form that we have given it here, as a function of x, v and t. It can, 

however, be expressed as a function of any canonical variables [17]. 

Now we present the physical interpretation off, and for this purpose we will use 

the form f(x, v, t), as its physical interpretation is the most intuitive. If we consider 

a cube centered on x, having side lengths dx, dy, dz, and velocities in the x, y and z 

directions which fall between Vx and Vx + dx, Vy and Vy + dy and Vz and Vz + dz, the 

average number of particles in this cube is given by 

(1.2) 

where d3x = dxdydz and d3v = dvxdvydvz. Thus the phase space density defines 

the one particle density at each point in the phase space, which is described by the 

canonical coordinate system being used. 

Kinetic equations for globular clusters 

In this section we introduce two kinetic equations currently used in modeling globular 

clusters: the collisionless Boltzmann equation and the Fokker-Plank equation. 
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The collisionless Boltzmann equation is given by [17] 

(1.3) 

Binney and Tremaine [17] describe this as the fundamental equation of stellar dynam-

ics. It describes a system in which the dynamics of the system are influenced much 

more by the density distribution than by the movements of individual elements of the 

system [17]. For a derivation of the collisionless Boltzmann equation, see appendix 

A. 

The Fokker-Plank equation is a more complex kinetic equation in which some 

effect due to close encounters is considered. It has the form [43] 

of of of 
3 

a 1 
3 

82 

-+"'"'a;-+"'"' v;- =-"'"'- (! (!::,.v;)) +-"'"' -- (! (!::,.v;l::,.vj)) (1.4) at L..... ov· L..... ax L..... av 2 L..... avav. 
i 'f, i 'l i=l 1, i,j=l 'l J 

where the right hand side of the equation is the collisional term. A derivation of this 

equation can be found in [43]. 

1.2.2 Forms of the distribution function 

While an appropriate kinetic equation outlines the behavior of the distribution func-

tion, in order to obtain a useful model of globular clusters we need to define the form 

of the distribution function. In this section we introduce some different distribution 

functions that have been used in modeling globular clusters. 

Polytropes and Plummer's model 

We will start with a quick review of polytropes. The polytropic model was first used 

in astronomy not to model star clusters, but as a model governing the structure of 

individual stars. This was a model in which conduction and radiative transport were 
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considered to be negligible, thus giving the pressure-density relationship of a classical 

ideal gas: 

p=Kp"~ (1.5) 

where K is a constant and 'Y is the ratio of specific heats at constant pressure and 

volume. This can be put into the more convenient form 

(1.6) 

where n is known as the polytropic index. For a self-gravitating sphere of polytropic 

gas the equation of hydrostatic support is given by [17] 

dp(r) = -p(r) d<I>(r). 
dr dr 

(1.7) 

Substituting eq.(1.6) for p, we have 

( 1) L1 dp d<I_> 1 + ~ Kpn dr =- dr · (1.8) 

A couple of useful concepts to introduce at this point are that of relative energy 

c and relative potential \]!. The relative energy c is given by 

s = -E + <I>o (1.9) 

where <!>0 is a reference potential, which is chosen in a convenient way. The relative 

potential \]! has the form: 

Now we can rewrite eq.(l.S) in terms of the relative potential W: 

(1 1) K 1._ 1 dp _ dw +- pn ---. 
n dr dr 

(1.10) 

(1.11) 

We use the flexibility of the reference potential and choose \]! such that \]! = 0 at the 

boundary of our system. This lets us rearrange and integrate eq.(l.ll) to obtain an 
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equation for the density in terms of the potential: 

1 1 w 
pn = ;K (1 + ~r (1.12) 

At the time of Plummer, polytropes were reasonably well understood models [1]. 

Thus, it was only natural that an attempt would be made to find a distribution 

function that would lead to a polytropic model. A convenient such function is given 

by 

{ 

F n-~ 
j(E) = E 2, 

0, 

(E > 0) 

(E::::; 0) 
(1.13) 

where F is a constant. We will now show that this function leads to a polytropic 

model. From this distribution function we can obtain an equation for density by 

using the formula 

(1.14) 

If the relative energy E is chosen such that j(E) = 0 forE ::::; 0, then this becomes [1] 

(1.15) 

Using this equation, we find that for the distribution function eq.(1.13), the density 

is given by 

(1.16) 

We note at this point that we can express the distribution function as 

f 
1 2 

j(E) = f( -E +<Po)= f( -if>- 2v +<Po) 

1 2 
f(W- 2v ). (1.17) 
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Using this expression in eq.(l.16) we get 

If we make the substitution v2 = 21}1 cos2 
"(, this equation becomes 

p(r) 2;1fFWn 1~ sin2
n-

3 "(cos2 "(sin"(d"f 

Cn 1}fn 

where the constant en is given by 

Cn = 2;1fF 1~ sin2
n-

2"(COS2"(d"f 

2l w F { 1> 'in'"-' 1d1 - 1> ein
2

n 1d1} 
(27r)~ (n- ~)!F 

n! 

7 

(1.18) 

(1.19) 

(1.20) 

For Cn to be finite, we must have n > ~· Here we note that eq.(1.19) is of the same 

form as eq.(l.12), with Cn replaced by ( ~K(l~;D )n· Thus we see that eq.(l.13) does 

indeed lead to a polytropic model. 

Recalling Poisson's equation in spherical coordinates 

1 d ( 2d<P) -- r- =47rGp 
r 2 dr dr 

(1.21) 

and using eq.(l.19) to substitute cnwn for p then 

(1.22) 

where the relative potential 1}1 has been used rather than <P. Next we substitute the 

scaled variables 8 = ~ and 1JI = J'
0 

for r and 1JI, and we have [23] 

1 d ( 2d1}1) { 
8 2 d8 

8 ds = 
0 

(1.23) 
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This equation is known as the Lane-Emden equation, and we will make use of it 

shortly. 

It is at this point that we introduce Plummer's model, given by the potential 

function 

(1.24) 

This potential function describes a polytropic system with an index of 5 (n = 5). To 

see that this is the case, we show that it satisfies the Lane-Emden equation derived 

above (eq.(1.23)). We get 

(1.25) 

Thus the Lane-Emden equation is satisfied, and eq.(1.24) describes a polytropic sys-

tern. 

From eq.(1.19) we can get the corresponding density for this potential: 

(1.26) 

This equation is known as Plummer's Law, because Plummer showed that the density 

distribution of this model is a reasonable fit for observations of some globular clusters. 

Though it is somewhat successful at modeling spherical galaxies and globular clusters 

(which are approximately spherical), this model cannot be successfully applied to 

elliptical galaxies. This is because the density of elliptical galaxies falls off less steeply 

than r- 4 , while as we can see from eq.(1.26), the density for Plummer's model obeys 

prvr-5 [1]. 
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Isothermal Models 

Though Plummer's law presented in the preceding section gives a reasonable fit for 

the observed density distributions of some globular clusters, there is definitely a need 

for better models. It turns out that the best models currently used are adaptations 

of isothermal models, and are known as lowered isothermal models. Before discussing 

these we will introduce isothermal models. 

If the polytropic index of eq.(l.6) is taken to be infinite, the equation becomes 

p=Kp. (1.27) 

This corresponds to the relationship between pressure and density of a classical ideal 

gas at constant temperature. Thus, models of this form are known as isothermal 

models. Unfortunately the Lane-Emden equation, eq.(l.23), is no longer well defined 

at n = oo. So instead we will use the equation of hydrostatic support of a self-

gravitating isothermal ball of gas [1], given by 

dp GM(r) 
dr =- r 2 p. 

Differentiating eq.(l.27) we obtain 

dp 
dr 

m dr 

(1.28) 

(1.29) 

where K = k!T, k8 being Boltzmann's constant and m being the mean mass per 

particle. Equating eq.(l.28) and eq.(l.29) we have 

m dr 

GM(r) 
r2 p (1.30) 

or, rearranging: 

(1.31) 
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The M ( r) used here is the mass interior to the radius r. Using conservation of matter, 

we see that M(r) obeys the relationship 

(1.32) 

Combining this equation and eq.(l.31), we have 

d (r2 
dp) Gm 2 - -- = -- (4nr p(r)) 

dr p dr kBT 
(1.33) 

or 

(1.34) 

As was done in the previous section, we will now present a distribution function, and 

show that it leads to an equation similar to eq.(l.34), thus showing that it describes 

an isothermal model. 

We take a distribution function of the form 

Integrating this function over all velocities, we obtain 

which we can express in terms of W: 

lnp 

where ln p1 < < ;; . Rearranging we have 

w 
lnp1 + 2 

a 
w 

(1.35) 

(1.36) 

(1.37) 

(1.38) 

Now using Poisson's equation expressed in terms of the relative potential W we have 

_I_i_ (r2 dw) = -4nGp. 
r 2 dr dr 

(1.39) 
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We combine these two equations and obtain 

1 d ( 2 d ( 2 )) -- r - a lnp = -4n-Gp 
r 2 dr dr 

(1.40) 

and rearranging we arrive at 

(1.41) 

We note that eq.(1.41) is of the same form as eq.(1.34), with a 2 = k::,_T, and thus we 

have shown that the distribution function eq.(1.35) describes an isothermal model. 

We will now move on to lowered isothermal models, where we will use a variation of 

this distribution function. 

Lowered Isothermal Models 

An isothermal model describes a system in equilibrium. For this reason, it would 

seem to make intuitive sense that an isothermal model would adequately describe a 

globular cluster. Unlike the case of a single star in which power is constantly being 

produced, globular clusters do not have any (obvious) power production mechanisms, 

and one would think that the system should reach equilibrium quite rapidly. If this 

were the case, we would not venture to find more suitable models. However, globular 

clusters never reach equilibrium, and there are three evident mechanisms responsible 

for this behavior [1]: 

1. The outer layer of a globular cluster is constantly being disrupted by tidal forces 

from its host galaxy, with stars being added to and lost from the cluster (mainly 

lost). This is accentuated by close encounters of stars giving some stars a very 

high kinetic energy. 
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2. The mass distribution changes constantly due to the fact that more massive stars 

are pulled closer to the core of the cluster. This is called the mass stratification 

instability. 

3. There is indeed a power production mechanism: gravitational contraction. This 

leads to an increase in the magnitude of the potential, providing power, but is 

incompatible with equilibrium or a steady state. 

The solution to the problems caused by these factors is to create modified isother

mal models. These models resemble the isothermal sphere at small radii, but have 

a reduced density at large radii. This reduced density is imposed in an attempt to 

account for the first of these three mechanisms: it models the absence of certain stars 

with high kinetic energies which will have been stripped from the cluster by tidal 

forces. These models are the so-called lowered isothermal models. 

One such modification of eq.(1.35) was introduced by I. King and is known there

fore as the King model [1]. This lowered isothermal model was used in much of the 

work described in this thesis. The King model has the form 

~ (e-;?J -1) 
f(c) = (27ra2)"2 

~::>0 
(1.42) 

0 ~::::;0. 

We can derive an equation for the density distribution of this model by integrating 

this distribution function over all velocities, and we obtain 

p = 4npl ~ r-./'i}f [exp (w- }v2) - 1] v2dv 
(2n0"2) 2 Jo O" 

~p1 [e~Ed ( ~)- {g (1+ ;!) ] (1.43) 

where Erf(x) is the error function given by [17] 

- 2 t -t2 2 oo ( -1)nz2n+l 
Erf(x) = ft Jo e dt = ft ~ n!(2n + 1). (1.44) 
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Using eq.(1.43) we can express Poisson's equation for this system as 

d ( 2 dw) 2 
[ "' (v'W) rgw- ( 2w)] - r - = -47rGp1r e;;'J Erf - - - 1 +- . 

dr dr a 1ra2 3a2 
(1.45) 

To solve this equation, we choose our boundary conditions and integrate numerically. 

The density of the King model decreases as r increases, until eventually the density 

becomes zero. This happens because at any given radius, the speed of stars must lie 

in the range [0, v'2\fi], and thus there can be no stars at a radius at which w(r) = 0. 

If we integrate eq.(1.45) outward, the initial conditions are ~'; = 0 and ~:~ < 0. This 

means that at some value of r, W ( r) = 0 and therefore the density at this point is 

zero. The radius at which this occurs is known as the tidal radius. 

It is important to note that the value of w(r) at r = 0 is not set for the King 

model. Using different values of W(r = 0) (which we will write as W0 henceforth) 

leads to different models. For the work described in this thesis the value W0 = 5 was 

used. 

1.3 Computer simulations of globular clusters 

There are many different algorithms that are used for numerical simulations of star 

clusters. Each of these algorithms implements what's known as an N -body simu-

lation. In these simulations, every star in the cluster is treated as a point particle, 

and it is assumed that the only important force worth considering is the gravitational 

force. 

1.3.1 N -body algorithms 

Amoung the various different algorithms used to implement N-body simulations 

of globular clusters are the particle-particle method, the particle-mesh method, the 
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treecode method, the fast multipole method and the symplectic method, just to name 

a few. The particle-particle method is the most basic of these, and it has a time 

complexity of O(N2 ). The faster methods, such as the treecode method, have a time 

complexity of O(N log N). The particle-mesh method is useful in special situations 

when softening of collisions between stars is desirable, and it has a time complexity 

of O(N + Ng log Ng), where Ng is the number of grid points used in the mesh. We 

note here that there is also a treecode method used in electrodynamics, however this 

is quite different from the N -body treecode method. From this point on when we 

discuss the treecode method, it is understood that we are are referring to theN -body 

algorithm. 

In order for algorithms such as the treecode method to achieve a time complexity 

of less than O(N2 ) some approximations must be made. In the treecode method, 

this is done by clumping together groups of stars that are far from the particular 

star in question, and treating each of these groups as one big mass. This reduces the 

time it takes to calculate the force on each individual star at each step from O(N) 

to O(log N), and thus the total time complexity of the treecode method becomes 

O(NlogN). 

Perhaps the best known treecode algorithm is the Barnes-Hut algorithm, and this 

is the algorithm which is implemented in the N-body code used in our research. The 

code we used is was written by J. Barnes, and the documentation for the code, along 

with the code itself, is available from [2]. Next we will give a description of how the 

Barnes-Hut algorithm works. 
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1.3.2 The Barnes-Hut algorithm 

There are two basic steps that the Barnes-Hut algorithm uses to calculate the force 

on a particular star. The first step is the creation of a tree structure, which contains 

information about the positional layout of the stars, and the second step involves 

traversing this tree. First we will describe the process of creating the tree. 

We start by calculating the greatest distance between any of the stars. We use 

this as the side length of a cube, which is centered at the center of the cluster, and 

thus contains all of the stars in the cluster. We then divide up this cube into octants, 

and check to see how many stars are in each octant. If there is more than one star 

in any of the octants, we recursively divide those octants up into eight more octants, 

repeating this procedure until every octant, known as "cells" [39], have either one or 

no stars in them. At each level of recursion, information about each cell is stored in 

a tree structure. Typically this information would be the center of mass and total 

mass of all the stars contained within the cell. 

Once the tree is created, in order to calculate the force on a particular star we 

must "walk the tree". If we define D as the spacial extent of the cell and L as the 

distance from the center of the cell to the star in question, then we traverse the tree 

from the top node down, and at each node we do the comparison [39] 

D 
L < e, (1.46) 

where e is a predefined parameter. 

If If is indeed less than e then the current cell will be used to calculate the force on 

the star in question due to all stars contained within the cell. Otherwise, we continue 

down the tree until the comparison (1.46) becomes true. Once an acceptable node is 

found, we travel back up the tree to the last node which has a daughter node which 

wasn't used in a force calculation yet, and repeat the process [39]. 
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This algorithm is used to calculate the force on a particular star due to every other 

star. This is done for every star at each timestep. In between these force calculations 

the implementation of this algorithm that we used in this thesis moves the stars using 

the leap-frog form of Verlet's method as the ordinary differential equation solver [2]. 

1.3.3 Important parameters 

There are two parameters that affect the speed and accuracy of the Barnes-Hut 

treecode algorithm. The standard names for these parameters are usequad and theta 

[2]. 

The usequad parameter determines whether or not quad moments are used in the 

force calculation of the treecode. Turning it off (by setting its value as false) speeds 

up the calculation, but at the expense of some accuracy. For the most effective results, 

this parameter should be set to true, as the time saved is not worth the accuracy lost 

[13]. This parameter was set to true for all of the simulations used in this thesis. 

The theta parameter determines the value of e to be used in (1.46). Aarseth [13] 

suggests a value of 0.5 or 0.6 for the most effective accuracy /speed trade-off. A value 

of 0.5 was used in all of the simulations used in this thesis. 

1.4 Motivation for research undertaken 

1.4.1 Study of slowly-changing dynamical variables 

When analyzing the behaviour of a physical system, we typically study variables such 

as position, velocity and acceleration. These variables describe the exact motion of 

particles in the system, from one moment to the next. In the case of periodic systems, 

however, it is sometimes of more interest to study variables which describe the changes 
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in the periodic behaviour of particles over time. General properties of such a system 

are often easier to observe by analyzing these types of slowly-changing variables. 

Such, indeed, is the programme followed in celestial mechanics, where it is usual, 

in calculating the gravitational interactions amoung planets, to formulate the calcu

lations not in terms of relatively rapidly-changing variables such as orbital position 

and velocity, but in terms of orbital elements such as eccentricity which are more 

slow-varying. The best known of these are the Keplerian elements and the Delaunay 

variables [24]. 

The Delaunay variables are often used in studying astrophysical systems at the 

planetary scale. These are given by 

and 

L 

G 

H 

g 

h 

n(t- T) 

w 

5a 

J tta(1- e2 ) 

cos iJ tta(1 - e2) 

(1.47) 

(1.48) 

(1.49) 

(1.50) 

(1.51) 

(1.52) 

where n is the mean motion, a is the semimajor axis, e is the eccentricity, i is the 

inclination, w is the argument of the perigee, n is the longitude of the ascending node 

and T is the time when the satellite passes through the perigee [24]. The Delaunay 

variables make up a set of action-angle variables, where l g and h are the action 

variables, and L G and H are the angle variables. We note that L is related to 

the orbital energy of the two-body problem, while G is the magnitude of the orbital 

angular momentum and H is the Z component of the orbital angular momentum [3]. 
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Though the Delaunay variables have been used with great success in the study 

of planetary systems, no such set of variables has been developed for the study of 

stellar systems. There is no obvious reason why study of stellar systems through 

slowly-changing variables similar to the Delaunay variables would not be of interest. 

For this reason, in chapters two and three of this thesis we will perform an ARMA 

time series analysis of two such variables. 

The first of the variables that we will study is the theoretical period of the orbits 

of stars. We define the period of a star's orbit as the time it takes the particle to 

travel from r min tor max and back to r min, where r min is the periapsis of the star's orbit, 

and r max is the apoapsis. The period can be calculated using [32] 

(1.53) 

The second slowly-changing variable that we will study is the angle between r min 

and r max. The equation for this variable is [32] 

l 1rmax dr 

e = ,j'ii(i Tmin r2. (E- u (r)- _!2
-v 2mr2 

(1.54) 

We will henceforth refer to this variable simply as the angle of a star. 

In [4] we described the implementation and testing of a C program that takes the 

output of an N -body simulation and calculates the values of P and B for each star 

at each timestep. This program was used to calculate the values of these variables 

for all of the work presented in this thesis. 

1.4.2 Study of the force distribution of globular clusters 

The force distribution of stars in a globular cluster is of great interest to astrophysi-

cists. It is not a very active field of research, however, because it has been and still is 
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generally believed that an appropriate such distribution has already been successfully 

derived. Professor Holtsmark went about this task in 1917 [34], and his result has 

been accepted without much question ever since then. As we will see in chapter 4 we 

discovered, quite by accident, that Professor Holtsmark's distribution is not equiva

lent to the real force distribution of a globular cluster. Obviously this prompted us 

to go about determining why this is the case, and to examine what is involved in 

deriving the correct force distribution. 

1.5 Work done 

In chapter 2 we perform an ARMA analysis of the period of several stars in an N-body 

simulation of a globular cluster. We describe in detail the procedure used, and then 

we present the results of our analysis. These results lead us to ask several questions, 

which we determine would be best answered by performing an automated ARMA 

analysis on all of the stars in a cluster. 

In chapter 3 we outline how we designed our automated ARMA analysis. We then 

perform this analysis on both the period and the angle of every star in a number of 

different N-body simulations. We use our results, along with the results of some 

special test cases, to determine whether or not ARMA models can be successfully fit 

to these variables, and also to determine if an automated approach to ARMA analysis, 

which has not often been done before, has any merit. 

We begin chapter 4 by presenting an expanded version of Chandrasekhar's famous 

re-derivation of the Holtsmark distribution [23]. We then describe how we went 

about testing the distribution, and we show that it does not correctly predict the 

distribution of forces in a globular cluster. We go on to show the problem with 

one of the assumptions made in the derivation, and then we demonstrate how the 
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Holtsmark distribution accurately predicts the force distribution only for stars at the 

center of a globular cluster. We conclude the chapter by presenting the beginnings 

of the derivation of a more generalized force distribution, which does not make the 

incorrect assumption made in the derivation of the Holtsmark distribution. 



Chapter 2 

ARMA analysis 

2.1 Introduction 

2.1.1 What is a time series? 

A time series can be defined as any set of measurements made over a stretch of 

time or volume of space. Time series can be treated as continuous, but they are 

usually studied at discrete, evenly spaced intervals. Time series analysis of stochastic 

processes typically has two main goals. These are, first, to understand or model the 

stochastic mechanism that generates the series, and second, to predict future values 

of the series based on its past [28]. For the work done in this thesis we are only 

concerned with the former. It is worth noting that though most laws of physics are, 

in their common form, deterministic, in practice almost all processes are best modeled 

as stochastic (random) processes. 

All of the work done in this thesis is on discrete time series, and it is common 

practice to use the variable N to refer to the number of discretization points 1
. We 

1 In Chapters 2 and 3, N will be the number of discretization points and N. will be the number 
of stars in a cluster. In Chapter 1 above, however, N denoted the number of stars in a cluster, and 

21 
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will define X(t) as the value of the time series at timet, where tis an integer in the 

range 1 toN. 

2.1.2 ARMA analysis 

The AutoRegressive Moving Average (ARMA) models are a collection of very flexible 

time series models [31]. The process of determining what ARMA models, if any, fit 

a set of data is known as ARMA analysis. This process has four basic steps. First 

the data must be rendered stationary. Next a group of models that can be fit to this 

stationary data set is determined. The appropriate parameters for these models are 

then calculated. Finally the models, with the fitted parameters, undergo diagnostics 

where they are compared with the data to determine whether or not they are suitable. 

2.1.3 Motivation 

ARMA analysis of time series has been very successful in many different fields. It 

is of great interest in economics, with the emphasis being understandably given to 

its forecasting possibilities. It has found use in a variety of scientific fields, including 

hydrology, earth sciences, oceanography, marine biology, and even linguistics, where it 

has been used in modeling pronunciation networks [41]. This success makes any ARMA 

analysis that has not yet been attempted a very tempting research project. ARMA 

analysis of period and angle data from N -body simulations of globular clusters is 

one of these areas, and this is the analysis that will be presented in the next two 

chapters. 

A successful ARMA analysis of this type would be the first step towards the deriva

tion of a new set of kinetic equations describing globular cluster dynamics. The mo-

it will have the same usage in Chapter 4 
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tivation for such a set of equations is great - all one would need is the appropriate 

parameters for a particular cluster, and many important properties could be deter

mined. The derivation of these equations, while it serves as motivation for this work, 

is itself beyond the scope of this thesis. 

2.1.4 Chapter outline 

We begin this chapter with an overview of time series analysis, with an emphasis on 

ARMA time series. We then discuss how to prepare the data for modeling, how to 

identify ARMA models that may potentially fit the data, and how to go about testing 

whether or not the predicted models are a good fit to the data. We go on to describe 

the procedure we used in doing an ARMA analysis of period data from a 1000 star 

simulation, and then we present the results of our analysis. We finish the chapter 

with a discussion of these results. 

2.1.5 Software used 

All of the time series analysis done for this thesis used the "Time Series Applications 

Package" for Mathematica@. Matlab@ was used for some visualization work. 

2.2 Stationarity requirement 

In order to carry out an ARMA analysis, we require that the time series in question 

is stationary. What this means is that the probability laws governing the process do 

not change with time [28]. If, for example, the series shows a distinct trend, then it 

is the fluctuations about this trend that we wish to analyze. The full description of 

the data set can then be given by the transformations used on the raw data, and the 
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model(s) that can be fit to the transformed data. 

If we treat each value of a time series as a separate random variable, then each 

X(i) has a probability density function p(xi)· A set of X(i) fori from m to m+n has 

a joint distribution function p(xm, Xm+l, ... , Xm+n)· Formally, a set of data is deemed 

to be strictly stationary if this joint distribution function is independent of m for any 

positive integer n [14]. If this is the case the distribution function of the variable 

X(t) is the same at each point, and the joint distribution function only depends on 

the spacing of the data points, not their values [31]. 

Second-order or weak stationarity of a set of data is achieved if the following two 

conditions are satisfied 

1. !-l(t) = 1-l and a-2 (t) = a-2 for all t 

2. !'(s, r) is a function of (s- r) only, 

(2.1) 

(2.2) 

where !'(s, r) is the covariance of X(s) and X(r). Usually only weak stationarity is 

required for the analysis of time series, and it is common practice to refer to weak 

"stationarity" simply as stationarity, as we will from now on. 

In the simulations analyzed for this thesis there are no external forces acting upon 

the clusters. In this scenario, the period and angle of stellar orbits should, in theory, 

be stationary variables. We note at this point that any finite length time series may 

exhibit non-stationary behaviour due to short term effects, the most obvious example 

of which being the collision of two or more stars, which causes rapid deviations in the 

period and angle of those stars. Thus in order to analyze these variables over finite 

timescales we need to render their time series stationary. 
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2.3 Important models 

2.3.1 White noise 

The time series models that we will use require the use of normally distributed random 

variables. We define 

a(t) = aaN(O, 1) 

where N(O, 1) is a normal random variable of mean 0 and variance 1, and a(t) is an 

independent random variable associated with timestep t. 

We can now construct a very simple type of time series model known as a normal 

white noise model. It is defined by 

X(t) = a(t) (2.3) 

where tis an integer that ranges from 1 to N. This model is of theoretical usefulness, 

as we will see later. Note for a general white noise model a(t) is not required to 

be normally distributed, though normally distributed white noise is by far the most 

commonly studied. We will refer to white noise models later on in describing residual 

testing, and in that case we will not make any assumptions as to the underlying 

distribution function of these models. 

2.3.2 General linear models 

The AR, MA and ARMA models that we will introduce later in the chapter can all be 

described by a general linear model, under the right conditions. Following ref. [28] 

we define a general linear model as a linear combination of an infinite number of past 

terms of a white noise model plus the present term 

00 

X(t) = a(t) + L '1/Jia(t- i). (2.4) 
i=l 
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2.3.3 Moving Average (MA) models 

If the right hand side of eq.(2.4) is a finite series, i.e. if Wi = 0 for all i > j for some 

fixed j, then the model becomes a moving average model. Changing the notation 

from 'ljJ to -e we have 

q 

X(t) = a(t)- L eia(t- i). (2.5) 
i=l 

Such a moving average model is referred to as an MA(q) model. The name of these 

models is derived from the fact that each successive X ( t) is generated by taking the 

set of weights 1, -01, -02 , ... and moving them forward one unit of time [28]. A 

moving average model is equivalent to a general linear model with 'lj;1 to '1/Jq replaced 

by -01 to -Bq, and all Wi values with i greater than q equal to 0. 

We define the moving average polynomial as 

q 

G(x) = 1 + Leixi (2.6) 
i=l 

and the backspace operator Bi as 

BiX(t) = X(t- i). (2.7) 

We can now express eq.(2.5) in a more convenient, compact form: 

X(t) = G(B)a(t). (2.8) 

This is the standard form of MA(q) models found in most of the literature. 

2.3.4 Autoregressive (AR) models 

Autoregressive models are represented by 

X(t) = a(t) + (hX(t- 1) + ¢2X(t- 2) + ... + ¢PX(t- p). (2.9) 
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Like moving average models, autoregressive models can be expressed in a compact 

form. We define the autoregressive polynomial as 

p 

<I>(x) = 1- L c/Jixi. (2.10) 
i=l 

Using this, eq.(2.9) becomes 

<I>(B)X(t) = a(t). (2.11) 

An autoregressive model with p summation terms, such as eq.(2.10), is called an AR(p) 

model. Each term X(t) is obtained from a weighted sum of past terms of X(t) plus a 

normal random variable a(t). Thus each term in the series is obtained by regressing 

through past terms - hence the name "autoregressive" model. The autoregressive 

model can be expressed in the form of a general linear model eq.(2.4), but only if it 

is stationary, the requirements for which will be discussed later. 

2.3.5 Autoregressive Moving Average (ARMA) models 

If we combine equations eq.(2.8) and eq.(2.11), we obtain an autoregressive moving 

average model of the form 

<I>(B)X(t) = 8(B)a(t). (2.12) 

These models are known as ARMA(p, q) models. Clearly, since AR and MA models 

can be expressed as general linear models, ARMA models can as well. An ARMA(p, 0) 

model is equivalent to an AR(p) model, and an ARMA(O, q) model is equivalent to an 

MA(q) model. Thus we see that both AR and MA models can be considered as special 

cases of ARMA models. 
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2.3.6 Stationarity and invertibility conditions 

AR models are not, by default, stationary. If certain stationarity requirements are 

not met by the ¢ values, then an AR model will quickly explode. To get an idea of 

why this happens, we'll take the example of AR(1): 

X(t) = a(t) + ¢X(t- 1). (2.13) 

If we assume that this process is stationary, then a~(t) = a~(t-l) = a~. Calculating 

the variance we obtain: 

(2.14) 

Solving for a~ we get 

(2.15) 

Clearly for the variance to be finite and non-negative we must have ¢2 < 1. This is the 

stationarity condition for an AR(1) model. For the general case of an AR(p) model 

to achieve stationarity it is required that the zeros of the AR polynomial eq.(2.10) 

lie outside of the unit circle in the complex plane [5]. For the proof of this see ref. 

[14]. As was mentioned earlier, if an AR model is stationary, it can be expressed as a 

general linear model, as shown in [14] within the proof of the stationarity condition. 

While all MA models are stationary, there is a set of conditions analogous to the 

stationary conditions for AR models that we require the e values of an MA model 

to obey. The problem is that multiple MA models with different e values can have 

the same auto-correlation function. The solution is to require that MA models are 

invertible. 

An MA model is invertible if the zeros of the MA polynomial eq.(2.6) lie outside of 

the unit circle in the complex plane [5]. There is only one invertible MA model with 
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a given auto-correlation function [28], and thus if we restrict ourselves to invertible 

MA models we solve this uniqueness problem. Also, an invertible MA model can be 

expressed as an AR( oo) model, just as the stationarity condition guarantees that an 

AR model can be expressed as an MA(oo) model (which is the same as a general linear 

model). This useful property of invertible MA models will be exploited later during 

model identification and fitting. 

2.3.7 Autoregressive integrated moving average (ARIMA) 

models 

If an ARMA model is non-stationary, then it will have one or more zeros of the au

toregressive polynomial eq.(2.10) on or outside of the unit circle. However, if none 

of these zeros lie outside of the unit circle, but one or more of them lie on the unit 

circle, then we can transform the non-stationary series X(t) into a stationary one 

using an operation known as differencing. Differencing is accomplished by applying 

the operator 1- B to the series X(t), where B is the backspace operator introduced 

in section 2.3.3. If we apply this operator d times, we obtain a new series 

Y(t) = (1- B)dX(t). (2.16) 

Usually [28] differencing the series X(t) once or twice is enough to obtain a stationary 

series Y(t). We can then form a stationary ARMA model using the new transformed 

series Y ( t): 

1>(B)Y(t) = G(B)a(t). (2.17) 

Substituting eq.(2.16) in to this equation we obtain 

(1- B)d1>(B)X(t) = G(B)a(t). (2.18) 
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These types of models are known as ARIMA(p, d, q) models, or autoregressive inte

grated moving average models. 

The p and q values of an ARIMA(p, d, q) model are those of the ARMA model 

eq.(2.17), and d refers to the number of times the series X(t) was differenced to 

obtain Y(t). The values of p' and q' and the e and ¢> parameters of the original, 

non-stationary ARMA model that describes X(t) can be determined from the p, d and 

q values of this ARIMA model. The determination of p' and q' is simple: p' = p + d, 

q' = q. Obtaining the e and ¢>parameters is not overly complicated, as is shown in 

[28]. 

It was mentioned earlier that we are only interested in stationary models, and thus 

the class of ARIMA(p, d, q) models encapsulates two necessary pieces of information in 

a compact form: the original series must be differenced d times to become stationary, 

and the resulting set of data can be fit to an ARMA(p, q) model. 

2.4 Useful functions 

There are four types of autocorrelation functions that are of great interest in time 

series analysis. The four types are the autocorrelation function, the partial autocor-

relation function, the sample autocorrelation function and the sample partial auto-

correlation function. 

2.4.1 Definitions 

The following definitions require that the time series is stationary. The autocorrela-

tion function is defined by [28] 

(2.19) 
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where 'Yk is the covariance of X(t) and X(t- k) and a 2 is the variance of the time 

series. 

The partial autocorrelation function is defined by [28] 

cPKK = C orr ( (X ( t), X ( t - k) I X ( t - 1), X ( t - 2), . . . , X ( t - k + 1) ) . (2.20) 

Thus it is the autocorrelation function of X(t) and X(t- k) with all of data points 

in between treated as constants. Levinson and Durbin showed how this can be cal-

culated, an explanation of which can be found in ref. [28]. 

The sample autocorrelation function is simply an estimate of the autocorrelation 

function of the data, and it is given by [28] 

r = l:~k+l(X(t)- Jtx)(X(t- k)- Jtx) fork= 0 1 2 ... 
k l:~l(X(t)-p,x)2 ' ' 

(2.21) 

The sample partial autocorrelation function is an estimate of the partial autocor-

relation function of the data. We can obtain it using Levinson and Durbin's approach 

to calculating the real partial auto-correlation function, the only difference being that 

while the former calculation makes use of the autocorrelation function, the later uses 

the sample autocorrelation function in its place. This approach to calculating the 

sample partial autocorrelation function is know as the Levinson-Durbin algorithm. 

For more information regarding this algorithm see [6]. 

2.4.2 Usage 

The main usage of the autocorrelation function in ARMA analysis stems from the fact 

that the autocorrelation function Pk of an MA( q) model is zero for k > q [5]. While 

the sample autocorrelation function, which is what we use in practice, will not be 

exactly equal to zero in these cases, it can be shown that if 

2 
hi<VN (2.22) 
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then 95% percent of the time rk is not statistically different from zero [5]. Thus we 

can calculate the sample autocorrelation functions for a number of different lags k 

and check to see if each of these obeys eq.(2.22). If one doesn't, then there's a good 

chance that an MA model of that order will fit the data. 

The partial autocorrelation function has an analogous relationship with AR mod-

els. We check if 

(2.23) 

for a number of values of k, and if this is false for any of them then an AR model of 

that order may fit the data. 

2.5 Preparation of the data for modeling 

Earlier we examined the requirement that data must be stationary before we can fit it 

to any ARMA models. From the definition of stationarity, eq.(2.1), it is clear that we 

must render the mean and variance of the series constant. How this was accomplished 

for the work done in this thesis is shown below. 

2.5.1 Non-constant mean 

Removing a non-constant mean (usually referred to as a trend) from a set of data 

is known as detrending the data, and this can be done in various ways. If we use a 

polynomial of degree d to describe the trend, then we can fit the parameters of the 

polynomial to the data, and then subtract the polynomial from the data to obtain 

the detrended series. While we wish to use this idea, differencing the data d times is 

equivalent to this method, and not only is it faster, it is also more convenient. If the 

transformed data can be fit to an ARMA(p, q) model, then the untransformed data 
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will fit an ARIMA(p, d, q) model. As shown in section 2.3.7, ARIMA(p, d, q) models are 

equivalent to ARMA(p+d, q) models, so using this method of detrending makes it easy 

to obtain an ARMA(p', q') model for the original data from the calculated ARMA(p, q) 

model obtained for the detrended data. This is the method used in this thesis to 

detrend data. 

An example of the removal of a non-constant mean is shown in figures 2.1 and 

2.2. 

Period 
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Time 
40 60 80 100 120 140 

Figure 2.1: Plot of the period of a star, untransformed. We can see that it has an upward trend 

and a non-constant variance. 

2.5.2 Non-constant variance 

A non-constant variance is usually dealt with by using a non-linear transformation, 

such as a square root or a logarithm. For all the work done in this thesis a logarithm 

was used to remove a non-constant variance. An example of using a logarithmic 

transform to deal with a non-constant variance is given in figure 2.3. 
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Figure 2.2: The period data from figure 2.1, differenced once. We can see that the upward trend 

is gone. 

2.6 Model identification and fitting 

2.6.1 Information criteria 

Before we discuss the procedure used in this thesis for model identification and fitting, 

we will introduce two very useful information criteria. The first of these is known as 

Akaike's information criterion, or AIC, and it uses the statistic [5] 

ln(&2) + 2(p + q) 
n 

(2.24) 

where &2 is an estimate of the noise variance of a model. There are other definitions of 

this statistic, but we will use this one, following [5]. The second information criterion 

we will use is known as the Bayesian information criterion, or BIC, and it uses the 

statistic [5] 

l (
A 2) ln(n)(p+q) 

na + . 
n 

(2.25) 

These two criteria are used to rank a number of different models which are all being fit 

to the same data. The smaller the statistic associated with the information criterion 

is, the better the model is considered to be. 
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Period 

6 0 4 

6 0 3 

Time 
140 

Figure 2.3: The period data from figure 2.1, with a log transform applied. There is little visible 

difference in the graphs, but we can see that the range is much smaller. 

The first term in both of these functions can be thought of as a penalty for 

underfitting - fitting a model that does not have enough parameters. To see this, we 

note that if a model uses less than the necessary number of parameters, the estimates 

of the noise variance &2 will be large, and thus ln(G-2 ) will be large. The second 

term in these functions can be thought of as the opposite of the first - a penalty for 

overfitting. The principle of parsimony, an important axiom of time series analysis, 

dictates that if two different models fit the data, but one has less parameters, then 

that is the best one to use. Simply put, the more terms that are used, the greater 

(p+q) will be, and thus the larger the second term of eq.(2.24) and eq.(2.25) will get. 

These two functions have been carefully designed to try and balance the need for 

enough parameters to model the data properly with the principle of parsimony. 

2.6.2 The Hannan-Rissanen algorithm 

There are many methods different algorithms that have been developed to identify 

suitable models for a set of data and estimate the parameters of these models. For 
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the work done in this thesis we used the Hannan-Rissanen algorithm. This algorithm 

has the following steps [5]: 

1. Use the Levinson-Durbin algorithm to fit the first kmax AR models to the data 

(see [5] for a full description of the Levinson-Durbin algorithm). 

2. Of these kmax AR models, choose the one with the smallest AIC statistic. 

3. Calculate the residuals obtained from fitting this AR model to the data and use 

these as estimates of the noise terms a(t) (for a definition of the residuals see 

section 2.7.1). 

4. Use the least squares approach to estimate the parameters of every ARMA model 

with p < min(Pmax, k) and q < qmax, where Pmax and qmax are specified by the 

user. 

5. Calculate the BIC statistics for all of these ARMA models and use this to rank 

them in order of preference. 

An estimate of the variance of the noise for these models is given by [5] 

(2.26) 

where t' = Max(q + k,p). The fact that we only haveN- k noise estimates is the 

reason this is not summed over all N points. The restriction p < Min(Pmax, k) in 

step four is in place for the same reason. 

The implementation of the Hannan-Rissanen algorithm that is included with the 

time series add-on package for Mathematica@ takes four parameters as input: Pmax, 

qmax, kmax and h, where h is the number of models to be returned. Each time we 

used the Hannan-Rissanen algorithm we set kmax = 10, which is more than enough to 
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assure an appropriate AR model is chosen in step one. We chose appropriate values 

of the rest of the parameters depending on the usage. 

2.6.3 Conditional maximum likelihood method 

While the Hannan-Rissanen algorithm produces reasonable approximations of the 

parameters of a model, there are other algorithms designed to produce more reliable 

results when the values of p and q of the model are known. One of these is known as 

the maximum likelyhood method, and though it is quite effective, it is also extremely 

computationally time consuming [5]. An approximate version of this algorithm known 

as the conditional maximum likelyhood method also improves upon the parameter 

estimates given by the Hannan-Rissanen algorithm, and consumes much less time 

than the full maximum likely hood method. We made use of the conditional maximum 

likely hood method a number of times in our analysis. A description of the method is 

somewhat complicated, and can be found in refs. [33] or [44]. 

2. 7 Model Diagnostics 

There are various ways of testing the hypothesized models against the original data, 

the most common of which is residual testing [5]. If we take the difference of the 

original data and the predicted model, we get a set of data called the residuals (it 

should be noted that there are other definitions of the residuals, but it is this defi

nition, taken from [5], that we will use). If the model is a good fit to the data, the 

residuals should behave like a white noise model with zero mean and constant vari

ance ([5], [28]). It is easier to compare the behaviour of the residuals to a white noise 

model than it is to compare the behaviour of the original set of data to an arbitrary 

ARMA(p, q) model, and this is why residual testing is used. 
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There are many tests that can be used to determine if the residuals act like a 

white noise model [5]. Three of these tests were used in the work done for this thesis. 

These are the Portmanteau test, the turning points test and the difference-sign test. 

It should be emphasized before continuing that the purpose of these tests is to try 

and disprove the idea that the residuals have the properties of a white noise model. 

There is no way to provide positive proof that a data set is equivalent to a particular 

distribution, and so these tests try instead to disprove this idea. The more tests that 

fail to disprove an assertion, the more likely that assertion is correct, and for this 

reason we perform all three tests on all sets of residuals. 

2. 7.1 Portmanteau test 

The Portmanteau statistic, also known as the modified Box-Pierce statistic, is given 

by [28] 

h 2 

( ) '""" rk Qh = n n + 2 L...J n _ k' (2.27) 
k=l 

where rk is the kth value of the sample autocorrelation function of the residuals. This 

test is designed to determine if the first h sample autocorrelation function values de-

viate significantly from zero, which would suggest that the residuals are not behaving 

as white noise. If the ARMA model in question is valid, then Qh should have a dis

tribution very similar to a chi-squared distribution with h- p- q degrees of freedom 

[28]. Thus we can calculate Qh, subtract the mean of x2(h- p- q) and determine 

within how many standard deviations of x2(h-p-q) Qh lies. A value of his required 

to do this test, and the value h = 35, suggested by [5], is the one used in the work 

done for this thesis. 

This test as described above was implemented in a Mathematica@ function Port-

manteauTest as follows: 
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PortmanteauTest[res_, p_, q_, h_]:= 

Block[{test, average, std}, 

test= PortmanteauStatistic[res, h); 

average= Mean[ChiSquareDistribution[h- p- q]]; 

std = StandardDeviation[ChiSquareDistribution[h- p- q]]; 

Abs[test - average]/std 

]; 

2.7.2 Turning point test 

39 

The turning point test is performed by counting the number of turning points that 

the residuals have, and comparing this value to the expected number. A turning point 

can be defined [5] as a data point X(t) which satisfies 

X(t) > X(t- 1) and X(t) > X(t + 1) (2.28) 

or 

X(t) < X(t- 1) and X(t) < X(t + 1). (2.29) 

In other words, this data point is a local extremum. The number of turning points T 

is a random variable, and for a white noise model this variable has a mean [5] 

and a variance 

N-2 
f.,lr=2--

3 

2 16N- 29 
(JT = 90 

(2.30) 

(2.31) 
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where N denotes the length of the residuals (since they are the same length as the 

original series). T has an asymptotic normal distribution for a white noise model [5]. 

We use the same approach as with the Portmanteau test, that is we calculate the 

number of turning points T for the residuals, subtract the mean /JT, and determine 

within how many standard deviations (J"y the value lies. 

The Mathematica@ function we wrote to implement this is given below: 

TurningPointsTest [res_):= 

Block[ { n, signs, test, average, std}, 

n = Length[res); 

signs= Sign[Drop[res, 1)- Drop[res, -1]); 

test= Count[Drop[signs, 1) * Drop[signs, -1), -1); 

average= 2(n- 2)/3; 

std = Sqrt((16n- 29)/90]; 

Abs(test - average]/std 

); 

2.7.3 Difference-sign test 

To do the difference-sign test, we count the number of times 

X(t) - X(t- 1) > 0 

fort from 0 to N, and we call this D. Dis a random variable whose mean is 

N -1 
fJD=--

2 

(2.32) 

(2.33) 
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for a white noise model, as there should be an equal number of positive and negative 

differences between data points. The variance of the difference-sign test is [7] 

2 N + 1 
a-D=~· (2.34) 

It should be noted that this is reported incorrectly by [5] to be (n + 1)/2. Like T, 

D has an asymptotic normal distribution for a white noise model [5]. Once again, 

we calculate D for the residuals, subtract the mean, and determine the number of 

standard deviations that D is within. 

The Mathematica@ function used to do this test is shown here: 

DifferenceSignTest [res_]:= 

Block[{ n, signs, test, average, std}, 

n = Length[res]; 

signs= Sign[Drop[res, 1]- Drop[res, -1]]; 

test= Count[signs, 1]; 

average= (n- 1)/2; 

std = N[Sqrt[(n + 1)/12]]; 

Abs[test - average]/std 

]; 

2. 7.4 Evaluation of the residual testing procedures 

Once the three residual tests were implemented in Mathematica@ it was necessary to 

verify that they produced the expected results. First the turning points and difference

sign tests were run on a set of 100000 normally distributed numbers. Since normally 

distributed numbers are a normal white noise model, and T and D are asymptotically 

normally distributed for a white noise model, we would expect approximately 68.3 
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percent ofT and D to fall within one standard deviation, 95.4 percent to fall within 

two standard deviations and 99.7 percent to fall within three standard deviations [8]. 

The results of these tests performed on time series of lengths 150, 250 and 1000 are 

shown in tables 2.1, 2.2 and 2.3 respectively. 

Test 1o- 2o- 3o-

Difference-sign 74.1 95.2 99.8 

Turning points 66.9 94.8 99.7 

Table 2.1: Percentage passes of Difference-sign and Thrning points tests on white noise, N = 150 

Test 1o- 2o- 3o-

Difference-sign 72.7 95.3 99.8 

Turning points 67.5 94.9 99.7 

Table 2.2: Percentage passes of Difference-sign and Thrning points tests on white noise, N = 250 

Test 1o- 2o- 3o-

Difference-sign 67.6 95.2 99.7 

Turning points 67.0 95.2 99.7 

Table 2.3: Percentage passes of Difference-sign and Thrning points tests on white noise, N = 1000 

As we can see, the results were very good, with the exceptions of the difference

sign test for n = 150 and n = 250, where the number of test values falling within 

one standard deviation was slightly higher than expected. This is due to the fact 

that D, the value calculated in this test, has an asymptotic normal distribution. The 

results for two and three standard deviations, however, were very close to the expected 

values, and since we did not reject a model unless one of the test values was greater 
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than two at the very least, this slight difference for one standard deviation was of no 

consequence. 

Evaluation of the Portmanteau test was more difficult. When this test is used 

on a set of residuals, it takes as input the p and q values of the model being fit to 

the data. If we generated a realization of a particular ARMA model, and then fitted 

this model to the generated data, the residuals resulting from this fit should pass 

the Portmanteau test; that is to say the distribution of Qh should behave similar 

to x2(h - p- q). Since we used a value of 35 for h, the chi-squared distributions 

we dealt with behaved almost identically to the normal distribution. The expected 

percentage of instances of these chi-squared distributions falling within one, two and 

three standard deviations was within 0.5% of what we would expect for the normal 

distribution, and thus the results of this test were comparable to the results shown 

in tables 2.1, 2.2 and 2.3. 

We also performed the turning points and difference-sign tests on these residuals, 

and we determined how often the residuals passed all three tests. Cut-off points of 

two and three standard deviations were used. The higher the percentage was in each 

of these cases, the fewer good model fits would be rejected incorrectly if this number 

of standard deviations was to be used as a cut-off point. 

For this test we used seven different ARMA models. These models were: AR(0.2), 

AR(0.34, 0.52), AR(0.12, 0.1, 0.34), MA(0.55), MA(0.48, 0.82, 0.12), ARMA( {0.3, 0.23}, {0.6}) 

and ARMA( {0.17, 0.22, 0.41 }, {0.15, 0.23} ). The results of all the tests were then av

eraged and they are shown in tables 2.4,2.5 and 2.6. These tables show the results 

when 500, 1500 and 5000 instances of each model were used. Each time, like above, 

time series lengths of 150, 250 and 1000 were tested. 



CHAPTER 2. ARMA ANALYSIS 44 

N Portmanteau Portmanteau Portmanteau All tests All tests 

10" 20" 30" 20" 30" 

150 62.6 89.0 95.8 81.7 95.4 

250 62.1 89.8 96.7 81.4 96.5 

1000 64.7 92 98.4 83.4 97.9 

Table 2.4: Average percentage passes of Portmanteau test and all three tests on 500 instances of 

seven different ARMA models 

N Portmanteau Portmanteau Portmanteau All tests All tests 

10" 20" 30" 20" 30" 

150 61.7 89.0 96.5 81.7 96.3 

250 63.8 91.0 97.3 82.9 96.5 

1000 65.0 91.7 98.1 83.5 97.6 

Table 2.5: Average percentage passes of Portmanteau test and all three tests on 1500 instances of 

seven different ARMA models 
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N Portmanteau Portmanteau Portmanteau All tests All tests 

1cr 2cr 3cr 2cr 3cr 

150 62.4 89.3 96.3 81.3 96.0 

250 63.9 91.9 97.1 82.4 96.7 

1000 65.3 93.0 98.5 84.0 97.7 

Table 2.6: Average percentage passes of Portmanteau test and all three tests on 5000 instances of 

seven different ARMA models 

We note that the Portmanteau test does not quite perform as well as hoped in 

all of these cases, this being a result of the fact that this statistic only approximately 

behaves as a chi-squared distribution. As a consequence of this, the pass rate would 

be < 85% if two standard deviations was used as a cut-off. In contrast, the pass 

rate would be > 95% if three standard deviations was used as a cut-off. Clearly 

this indicates that an estimated model should not be automatically rejected simply 

because one of the residual tests turned out greater than 2, but if any of the tests 

had results greater than three it would be reasonable to reject the model. 

It is also noteworth that the results are very similar for each different number of 

instances used, indicating that 500 instances is a reasonable sample size when the 

model type is known. Also, the difference in the results for the different values of the 

time series length N is minimal, since N = 150 has only slightly worse overall pass 

rates than N = 1000. 

2.8 Smoothing of the spectrum 

In order to compare the calculated spectrum of a data set with the spectra of various 

models we need to do some type of smoothing. For the spectral analysis done in this 
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work we used a simple Daniell window - a rectangular window with equal weights 

defined by [5] 

W(k) = { 
1 

2M+l' 

0, 

for lkl <= M 
(2.35) 

otherwise 

Chatfield [25] suggests using an M value of approximately M = N/40, experimenting 

with values slightly bigger and smaller than this, and this is what we did. 

2.9 Description of procedure 

The first results we obtained were for the periods of individual stars (analysis of 

angle data will be shown in the next chapter). These stars were sorted according to 

their initial radius, with star 1 being the closest to the center, and star N. being the 

farthest from the center, where N. is the number of stars in the simulation. For all 

of the individual analysis, we used a cluster of size N. = 1000. 

Each analysis followed the same basic procedure. First, we plotted the data, and 

visually determined if it was stationary. If it was not, we differenced the data until we 

obtained a time series with a constant mean, and we applied a log transformation to 

get rid of any non-constant variance. Next we inspected plots of the first thirty values 

of the sample autocorrelation function and sample partial autocorrelation function. 

If any points within the first ten or so were located outside of the bounds given by 

eq.(2.22) and eq.(2.23), this indicated that an AR model, in the case of the sample 

autocorrelation function, or an MA model for the sample partial autocorrelation func-

tion may have been an appropriate fit to the data. If points greater than ten were 

located outside of the bounds, this indicated that the data may have been in need of 

seasonal differencing. 
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Next we used the Hannan-Rissanen algorithm to obtain a list of six models that 

could possibly fit the data. We calculated the AIC and BIC statistics of these models, 

and we used the results of the sample autocorrelation function and sample partial au

tocorrelation function test described above, along with the AIC and BIC statistics of 

the six models provided by the Hannan-Rissanen algorithm, to pick three models that 

were likely to fit the data. Once we had picked these models, we used the conditional 

maximum likelyhood method to obtain better estimates of their parameters. 

We then performed a residual analysis on each model individually. We started 

the residual analysis the same way we started the analysis of the original series -

we visually inspected a plot of the residuals. If there was no obvious trend or non

constant variance present, then we calculated and plotted the autocorrelation function 

of the residuals, and compared this to the cutoff given by eq.(2.22). In 95% of cases 

the values of the sample autocorrelation function of a white noise process should be 

within this bound. Thus if one or more of the rk values was outside the bound this 

was an indication that the residuals were not acting like a white noise process, and 

if this was the case then the model in question was not a good fit. However, a model 

usually can't be eliminated purely on this basis, and thus unless many rk values were 

outside of the bound, we needed to do more tests. 

The next step was to apply the residual tests discussed in section 2.7. If the 

results of all three tests were within two standard deviations, then the model passed 

the residual tests. Test results of between two and three standard deviations may have 

been acceptable, depending on how many of them were in this range and whether or 

not any values of rk were located outside of the bounds. Whether or not a model 

should be rejected in this situation is a complicated matter, and depends greatly on 

the exact results. If any of the test results were greater than three standard deviations, 

the model was rejected. 
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If the residual tests passed, the final step was to calculate and smooth the spectrum 

of the data, and compare it to the spectrum of the model in question. A visual 

inspection of these graphs placed on the same plot was used to determine if the 

spectrum was a reasonable fit. We then combined all of the infomation gathered to 

determine whether to accept or reject the model. 

2.10 Results of individual analysis 

Nine stars were picked at random from a cluster of size N* = 1000, to be subjected 

to individual analysis. The stars picked were numbers 7, 107, 273, 391, 395, 406, 883, 

898 and 928, where the stars were sorted by their distance from the cluster center. 

The results of the various stages of analysis are shown in table 2.7 at the end of the 

chapter. A key for the column headings of table 2.7 is given in table 2.8, and the 

fitted parameters of each model tested are shown in table 2.9. 

2.10.1 Analysis of results 

When we look at the results of these individual analysis, we note a number of things. 

First of all, in each case that worked it was found that one log transform and one 

differencing of the data was all that was required to render the data sufficiently 

stationary. In cases that didn't work, two and three differencings were attempted, 

both with similar negative results. All of the results shown in table 2.7 were obtained 

by applying one log transform to the data, and then differencing the data once. 

The second thing worth mentioning is that the models suggested by the points that 

lay outside of the correlation bounds were mostly quite different from the models that 

were predicted by using the Hannan-Rissanen algorithm combined with an evaluation 

of the AIC and BIC statistic of each model. This could be in part due to the varying 
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degree to which points were located outside of the bounds, since the farther outside 

the bounds the outlying points lay, the more likely the model they predicted would 

work. 

Next we consider the models that were chosen for each star. These were mostly 

quite low order, with AR(l) and MA(l) being the most common by far, AR(l) being 

chosen six times and MA(l) being chosen five times. Of course these lower order 

models are preferentially chosen by the information criterion, and thus it isn't clear 

from these results whether or not higher order models would work very often. 

We can see that when a star can be fit, it can be fit to multiple different models. 

As we just mentioned, lower order models such as AR(l) and MA(l) are preferred by 

the information criterion, and since the AIC and BIC statistic are what we used to 

determine which models to try and fit, fitting of these models was attempted more 

often than other models. However it seems that they are not the only models that fit 

the data in these situations, indicating that some stars may simply be easy to fit to 

any model, while others are not. A clear question that arises from this is whether or 

not for these stars higher order models could also be successfully fit. 

The predicted parameters of the models were distributed over a wide range, vary

ing from less than 0.1 to over 0. 5. Models that worked for multiple different stars 

such as AR(l) and MA(l) had widely varying parameters each different time they were 

successfully fit. 

It is quite noticeable that as we look at the results of the residual tests and the 

spectral analysis, the spectra are mostly great or at least reasonable fits, which does 

not correspond with the results of the residual testing. A number of the stars that 

fail the residual testing do well in the spectral analysis, the most notable example of 

this being star 883, which despite having very nice spectral fits has very bad residual 

testing results. An example of the spectral fit for the ARMA(l, 2) model fit to star 
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883 is given is figure 2.4, and we can see that the spectrum of the model fits the data 

extremely well. 

Figure 2.4: 

0.00006 

0.00004 

0.00002~~~--~~~~~~::--~ 
0.5 1 2.5 3 

Smoothed spectral data and the 

ARMA( { -0.00379617}, {0.533336, 0.499463}) model for star 883 

spectrum of an 

A number of interesting questions arise from these results. Does transforming the 

data by applying a log transform and differencing it once work best for all of the 

stars? How many models can be fit to each data set that can be fit to any models? 

How often do various models fit the data sets? One way to find an answer to these 

questions was to do an analysis of data from a large group of stars. The easiest way 

to do this was to automate the ARMA analysis, and how this was done is the subject 

of our next chapter. 
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Star OCB OPCB Best 3 Port Thrn Diff Spect Fit? 

7 MA(l) None AR(l) 1.40 0.78 1.13 Great Accept 

ARMA(l, 1) 1.41 0.39 1.41 OK Accept 

MA(2) 0.87 0.39 1.13 Great Accept 

107 None None MA(l) 1.16 1.56 1.41 OK Accept 

AR(l) 1.16 1.56 1.41 OK Accept 

ARMA(l, 1) 1.30 1.56 1.41 OK Accept 

273 MA(l) None AR(2) 1.06 0.20 0.57 OK Accept 

AR(3) 0.43 0.20 1.13 Great Accept 

MA(l) 2.04 1.37 0.28 OK Accept 

391 MA(l) None MA(3) 2.43 2.93 1.13 Great Border 

MA(4) 2.46 2.93 0.0 Great Accept 

ARMA(l, 3) 2.04 2.54 1.70 Great Accept 

395 None AR(4), AR(5) AR(l) 1.06 2.54 2.26 OK Accept 

AR(2) 0.31 2.54 3.39 OK Reject 

MA(l) 1.22 2.54 2.26 OK Accept 

406 MA(l) None AR(l) 0.58 2.35 1.13 OK Accept 

MA(l) 0.29 1.56 1.41 OK Accept 

ARMA(l, 1) 0.70 1.95 1.13 OK Accept 

883 MA(l) AR(2) MA(2) 2.96 9.19 3.96 Great Reject 

ARMA(l, 2) 2.87 9.19 3.68 Great Reject 

AR(3) 2.62 10.36 2.83 Great Reject 

898 MA(6) AR(5) AR(l) 1.97 6.84 5.09 Bad Reject 

AR(2) 1.04 6.06 3.39 OK Reject 

AR(3) 0.99 6.45 3.68 Great Reject 
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Star OCB OPCB Best 3 Port Diff Thrn Spect Fit? 

928 MA(l) None AR(l) 1.73 0.98 0.28 Great Accept 

MA(l) 1.45 0.59 0.28 Great Accept 

ARMA(l, 1) 1.62 0.98 0.28 Great Accept 

Table 2.7: Results of ARMA analysis of nine different stars 

Star = Star number 

OCB = Suggested by point outside of autocorrelation function bounds 

OPCB = Suggested by point outside of partial autocorrelation function bounds 

Best 3 = Best three models 

Port = Result of Portmanteau test 

Diff = Result of Difference-sign test 

Thrn = Result of Turning points test 

Spect = Quality of spectral fit 

Fit? =Whether we decided to accept or reject the model 

Table 2.8: Key for table 2.7 
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Star Model Fitted parameters 

7 AR(1) 0.35 

ARMA(1, 1) {0.57}, {-0.26} 

MA(2) {0.31, 0.19} 

107 MA(1) 1.8 E-2 

AR(1) 1.9 E-2 

ARMA(1, 1) {3.1 E-2}, {-1.3 E-2} 

273 AR(2) {0.21, 0.10} 

AR(3) {0.22, 0.13, -0.17} 

MA(1) 0.19 

391 MA(3) {0.48, 0.18, -4.0 E-2} 

MA(4) {0.48, 0.17, -6.3 E-2, -4.8 E-2} 

ARMA(1, 3) {-0.11}, {0.61, 0.17, 1.5 E-2} 

395 AR(1) 0.15 

AR(2) {0.13, 0.15} 

MA(1) 0.13 

406 AR(1) 0.27 

MA(1) 0.26 

ARMA(1, 1) {0.25}, {1.3 E-2} 

883 MA(2) {0.52, 0.50} 

ARMA(1, 2) {-3.8 E-3}, {0.53, 0.50} 

AR(3) {0.52, 0.20, -0.32} 

898 AR(1) -3.1 E-2 

AR(2) {-2.5 E-2, 0.13} 

AR(3) {-3.5 E-2, 0.13, 9.2 E-2} 



CHAPTER 2. ARMA ANALYSIS 54 

Star Model Fitted parameters 

928 AR(1) 0.31 

MA(1) 0.30 

ARMA(1, 1) {0.29}, {1.8 E-2} 

Table 2.9: Fitted parameters for the models from table 2.7 



Chapter 3 

Automation of ARMA Analysis 

3.1 Introduction 

3.1.1 Motivation 

Many ARMA analysis can be done effectively by studying only 10 or 20 sets of data (for 

example [42] and [30]), and in this situation there is a clear advantage to examining 

the data by eye and doing a careful individual analysis. We did this in the last 

chapter, only to find that we could draw no clear conclusions. Many of the questions 

which were posed in the end of the last chapter would be very difficult to answer by 

performing more individual analysis, because a very large number of analysis would 

be required. An automated approach, such as the one we describe in this chapter, 

turns out to be an effective tool in answering these questions. 

This thesis is not the first academic work to suggest automating an ARMA analysis. 

Professor Broersen first suggested the idea in ref. [18], and has since expanded on 

it in several papers (refs. [21], [19], [20], [22]). In ref. [20] he outlines some basic 

criteria involved in fitting time series models to data in an automated way, and 

55 
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then discusses an algorithm that he has developed to perform automated time series 

analysis. He says "As far as the author is aware, the algorithm of Section VI is the 

first successful attempt to automatically identify a time series model for measured 

observations without interaction from the user" [20], indicating that this is a very new 

idea. His five papers on the subject have been cited by other publications at least 71 

times [9] to this date, indicating general interest in professor Broersen's method. 

The algorithm that Professor Broersen uses, which he named "ARMAsel", picks 

out a single ARMA model that best fits the given data. We can clearly see from the 

results of the last chapter that there is no one particular model which will fit the 

period of all of the stars in a cluster. Thus our approach was designed to determine 

how many times each ARMA model (of the 35 types considered) could be successfully 

fit to our data, and thus try and conclude which model(s), if any, best describe the 

behaviour of the period and angle of all of our stars. We also used our automated 

script to compile statistics which could be used to answer many of the questions we 

have posed thus far. 

Ultimately there were two fundamental questions we looked to answer by perform

ing this automated ARMA analysis. The main question was, simply put, can ARMA 

models be used to effectively model period and angle data for stars in a globular clus

ter? A secondary question we considered addresses the usefulness of the approach 

itself - is an automated ARMA analysis of a large number of time series an effective 

means by which to determine if ARMA models can be fit to this data? We will address 

both of these queries again at the conclusion of the chapter. 
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3.1.2 Chapter outline 

We begin with a description of how we classified the data. Next we discuss the the 

design of the automated procedure. We go on to explain how we tested our automated 

script, and then we provide the results of our analysis applied to period and angle data 

using time series oflengths N = 150, N = 250 and N = 1000. After showing that no 

trends were present in the data, we apply a number of test cases to our automated 

script, to determine its behaviour under controlled conditions. Using the outcome of 

these test cases we interpret our results. We conclude by discussing possibilities for 

further work. 

3. 2 Classifying the data 

We took advantage of the benefits of an automated procedure to add a classification 

of the data. A plot of the period or angle of a typical star is composed of small 

perturbations interspersed with occasional large jumps due to close encounters with 

other stars. We decided that for the automated analysis we should divide the stars 

in each cluster into two categories: stars with large jumps and stars without large 

jumps. 

In order to determine whether or not a particular time series contains large jumps 

we used the following method. First, we divided the time series up into ten segments. 

Next we calculated the standard deviation of each of these segments. We took the 

mean of these ten standard deviations, and then compared each standard deviation 

to this mean. If any of these local standard deviations was significantly greater than 

the mean, this meant that this portion of the time series changed more rapidly than 

the rest, indicating a high probability that this star has collided with another star 
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during this period of time. 

While performing the above procedure using N - sizewindow points would provide 

more accurate results, this would take too long to do a large number of times. The 

above method cuts down on the number of standard deviation calculations that are 

required and provides reasonable results. 

The brunt of our analysis was performed on stars which were accepted by this 

classification procedure, however we briefly examine the rejected stars in section 3.6.1. 

3.3 Parts of the individual analysis that were re

moved 

There were three elements of the individual analysis that were not incorporated in 

the automated approach. First of all, the analysis of the autocorrelation function and 

partial autocorrelation function was not very helpful in the individual analysis, and 

automating this process effectively would be quite challenging. Thus it was decided 

that this portion of the individual analysis would not be included in our automated 

script. 

As we discussed in chapter 2, the results of the spectral analysis seemed to be much 

more accepting than the residual tests, and thus this analysis did not contribute a 

great deal to our conclusions. Spectral analysis is typically accomplished using the 

mark-one eyeball and a degree of human intuition, and thus, as with the analysis of 

the correlation functions, it is not an easy process to automate. For these reasons the 

spectral analysis was also cut from our automated script. 

The last element we did not incorporate in the automated script was the analysis 

of the AIC statistic of models picked by the Hannan-Rissanen procedure. The reason 
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this was not included is simple - we no longer chose from a number of models 

predicted by the Hannan-Rissanen algorithm, rather we decided to perform residual 

tests on all of the models that the Hannan-Rissanen algorithm chose! We set the 

total number of models picked by this algorithm to ten, which assured that all the 

models that were most likely to fit the data were considered. 

3.4 Remainder of the procedure 

In each of the individual star analysis performed in chapter 2, the raw data were 

non-stationary. Each time we were able to render the data stationary by differencing 

the data once and applying a logarithmic transformation. We assumed that this 

method would be acceptable for all of the stars, and thus we used it in the automated 

analysis. We re-examine this assumption in section 3.9, and again in section 3.12.2. 

After rendering the data stationary, we subtracted the mean of the data from the 

data. 

As was done in the individual analysis, the Hannan-Rissanen algorithm was used 

to determine a suitable set of models along with their parameters. Earlier we posed 

the question "How many models can be fit to each data set?" In order to answer 

this question, we decided to increase the number of models that the Hannan-Rissanen 

algorithm returned from six to ten. The value of kmax was kept at ten, as mentioned 

above, and the values of Pmax and Qmax were set to five. 

Next we performed the residual tests described in section 2. 7 on each model pre

dicted by the Hannan-Rissanen algorithm. If the results of all three tests each fell 

within three standard deviations, we accepted the model. Each time a model passed 

the residual tests we stored the model type and each of the fitted parameters. 

Since Pmax and Qmax were set to five, as mentioned above, this meant that there 
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were five AR models, five MA models and 25 ARMA models being tested. AR(p) models 

are equivalent to ARMA(p, 0) models and MA(q) models are equivalent to ARMA(O, q) 

models, and thus the easiest way to present the results was with a table consisting 

of six rows and six columns, with p = 0 through p = 5 as the rows and q = 0 and 

q = 5 as the columns. The table gave the percentage of times that each model was 

identified by the procedure and passed the residual tests. Thus the percentage of each 

AR model that was successfully fit was given in the first column, the MA results were 

placed in the first row, and the rest of the table showed the percentage of successful 

fits for the other ARMA models. 

Along with this table eight statistics were calculated and displayed. We describe 

these statistics below, along with the abbreviations we will use to represent each one 

when we present the results. 

• The number of stars that left the cluster during the simulation (starsLeft) 

• The number of stars that were rejected due to large jumps (starsRejected) 

• The number of stars that were analyzed (starsAnalyzed) 

• The percentage of stars for which at least one model could be fitted ( atLeastOne) 

• The average number of models that were successfully fit, ignoring stars which 

could not be fit to any models (Average) 

• The percentage of times the best ten models for a given star all failed the 

Portmanteau test (failedPort) 

• The percentage of times the best ten models for a given star all failed the turning 

points test (failedTurn) 
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• The percentage of times the best ten models for a given star all failed the 

difference-sign test ( failedDiff) 

Stars that left the cluster could not be analyzed, due to the fact that they were no 

longer orbiting the center and thus did not have a meaningful period or angle. Clearly 

the number of stars analyzed was given by N*- starsLeft- starsRejected. 

3.5 Testing of the automated script 

In order to assure that the automated script was functioning correctly, we tested 

it using the nine stars that were analyzed in the previous chapter. For each star 

we obtained the results of the residual tests applied to the seven models that we 

did not test in our individual analysis. We then ran each star through the script 

individually, and we compared the results of the model fitting to the results of our 

manual calculations. In each of the nine cases the results were exactly the same. 

Next we manually compiled the total percentage of fits of each ARMA model for 

these nine stars. We then ran the nine stars through the script, and compared the 

results. Again, the results were exactly the same, proving that our script gives correct 

results. 

3.6 Results for N = 150 

The initial results were obtained using time series of length N = 150. Period and angle 

data for clusters of size N* = 1000, N* = 3000 and N* = 10000 were analyzed. At 

least three simulations of each size were used. The only difference in the simulations 

was the initial conditions - for each simulation a different instance of the same 

Wo = 5 King model was used. All simulations of equal size produced roughly the 
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same results, the results being more equivalent as the simulation size increased, for 

obvious reasons. This was true for all of the results we obtained, and for this reason 

we will present one set of results per cluster size. 

We give the statistics calculated by the script for period data in table 3.1, and the 

statistics for angle data are presented in table 3.2. 

N, starsLeft starsRejected starsAnalyzed atLeastOne Average failedPort failed Turn failedDiff 

1000 41 524 435 63.4% 5.6 0.0% 32.4% 11.5% 

3000 77 1395 1528 75.7% 6.1 2.2% 12.0% 14.3% 

10000 33 4802 5165 91.8% 7.4 0.8% 6.5% 1.7% 

Table 3.1: Statistics for star periods, N = 150 

N, stars Left starsRejected starsAnalyzed atLeastOne Average failed Port failed Turn failedDiff 

1000 41 309 650 52.0% 6.0 1.4% 36.9% 10.3% 

3000 77 758 2165 76.2% 6.9 0.4% 21.2% 5.6% 

10000 33 2436 7531 84.1% 7.2 0.4% 14.0% 4.0% 

Table 3.2: Statistics for star angles, N = 150 

The first thing we notice when analyzing these results is that about 20% more of 

the angle data are accepted by our classification scheme as compared to the period 

data. It seems that the angle data are less affected by collisions. Other than this 

difference, the angle and period data seem to behave in a similar fashion. 

A number of trends can be spotted in these results. The number of stars that can 

be fit to at least one model gets larger as the cluster size goes up. The same is true 

for the average number of models that can be fit to these particular stars. Clearly 

the bigger the cluster, the more successfull the ARMA analysis is. For all cluster sizes 
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this average was greater than five. This result is significant, and we will refer to it 

below. 

l\'ext we present the results of the model fitting in tables 3.3 through 3.8. 
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q=O q=l q=2 q=3 q=4 q=5 

p=O 38.9 42.1 45.7 37.9 36.1 

p=l 34.5 35.6 20.2 9.7 2.5 1.1 

p=2 11.7 12.9 4.6 0.7 0.9 0.5 

p=3 7.8 4.6 0.5 0 0.5 0.7 

p=4 3.7 1.1 0.0 0.0 0.2 0.0 

p=5 0.9 0.7 0.0 0.2 0.0 0.0 

Table 3.3: Percentage of star periods that can be fit to ARMA(p, q) models, with N. = 1000, 

starsAnalyzed = 524, N = 150 

q=O q=l q=2 q=3 q=4 q=5 

p=O 43.2 40.9 41.7 37.4 36.6 

p=l 36.0 39.4 23.8 13.5 4.9 0.8 

p=2 11.2 10.5 4.5 0.2 0.9 0.6 

p=3 4.8 4.0 0.0 0.2 0.3 0.3 

p=4 3.1 0.6 0.2 0.0 0.2 0.2 

p=5 0.9 0.2 0.2 0.0 0.0 0.0 

Table 3.4: Percentage of star angles that can be fit to ARMA(p, q) models, with N. = 1000, 

starsAnalyzed = 650, N = 150 
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q=O q=l q=2 q=3 q=4 q=5 

p=O 47.0 49.7 50.3 42.7 37.0 

p=l 46.7 46.4 30.0 15.0 5.4 1.6 

p=2 19.2 18.7 8.8 1.4 1.0 0.8 

p=3 13.2 9.2 1.2 0.3 0.1 0.5 

p=4 6.3 2.4 0.2 0.1 0.1 0.3 

p=5 2.2 0.4 0.1 0.1 0.1 0.2 

Table 3.5: Percentage of star periods that can be fit to ARMA(p, q) models, with N. = 3000, 

starsAnalyzed = 1528, N = 150 

q=O q=l q=2 q=3 q=4 q=5 

p=O 61.6 61.1 60.3 52.8 49.3 

p=l 59.0 57.1 38.1 17.3 5.1 0.9 

p=2 16.5 15.0 7.1 0.8 0.2 0.2 

p=3 8.6 4.4 0.4 0.1 0.1 0.1 

p=4 4.5 0.4 0.1 0.0 0.0 0.0 

p=5 1.5 0.2 0.0 0.0 0.0 0.0 

Table 3.6: Percentage of star angles that can be fit to ARMA(p, q) models, with N. = 3000, 

starsAnalyzed = 2165, N = 150 
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q=O q=l q=2 q=3 q=4 q=5 

p=O 77.1 78.4 77.7 62.7 53.7 

p=l 75.8 70.2 44.5 18.3 5.1 1.8 

p=2 30.8 27.4 12.5 1.7 1.0 0.6 

p=3 17.3 8.8 0.8 0.2 0.2 0.2 

p=4 9.3 2.1 0.3 0.0 0.1 0.2 

p=5 2.7 0.4 0.0 0.0 0.0 0.0 

Table 3. 7: Percentage of star periods that can be fit to ARMA(p, q) models, with N, = 10000, 

starsAnalyzed = 5165, N = 150 

q=O q=l q=2 q=3 q=4 q=5 

p=O 71.4 70.9 70.9 62.4 56.7 

p=l 70.5 67.5 43.1 18.1 4.8 1.0 

p=2 19.2 17.7 8.4 0.7 0.3 0.3 

p=3 9.7 5.2 0.5 0.1 0.1 0.2 

p=4 4.8 0.8 0.1 0.0 0.0 0.1 

p=5 1.5 0.3 0.1 0.0 0.0 0.0 

Table 3.8: Percentage of star angles that can be fit to ARMA(p, q) models, with N, = 10000, 

starsAnalyzed = 7531, N = 150 

We can see from observation of these tables that there are some minor differences 

in the results for period and angle data. For N. = 1000 the results of the two different 

variables are very similar. For N. = 3000 the angle data are noticeably easier to fit, 

and for N. = 10000 the period data seem slightly easier to fit. The general structure 

of the tables for both of these variables, however, is almost identical. 

In each table it is clear that, with the exception of the MA models, models above 
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order two do not fit the data very often, with the best fit of any of these models being 

less than 20% in all cases. Of the lower order models, AR(1), ARMA(1, 1) and all 

five MA models have fairly similar results, with MA(4) and MA(5) being just slightly 

worse. The results improve greatly as the cluster size grows, with almost 80% pass 

rates for N* = 10000. All of the clusters share the property of uniform fits among 

AR(1), ARMA(1, 1) and the MA models, with no one model standing out as significantly 

better than the rest. 

If we combine our analysis of the statistics calculated in tables 3.1 and 3.2 with 

our analysis of the fitting results, we start to question whether low order models are 

simply easy to fit to any data when our criterion is used. If this was the case, it would 

probably indicate that the periods and angles of stars do not truly behave like any 

of these ARMA models. We will examine this possibility further in section 3.6.2, after 

we compare our results to the results of the rejected stars. 

3.6.1 Testing of the rejected stars 

To see if the stars being rejected by our classification scheme were truly more difficult 

to fit to ARMA models, we ran the same tests again, this time using the period data 

that were rejected by our classification scheme. The results are given in table 3.9. 

starsRejected atLeastOne Average failedPort failed Turn failedDiff 

524 36.8% 4.2 6.9% 57.3% 19.5% 

1395 43.0% 4.6 4.9% 45.6% 20.1% 

4802 58.1% 6.0 4.7% 35.8% 5.0% 

Table 3.9: Statistics for star periods that were rejected, N = 150 

If we compare this table with table 3.1, we see that the rejected stars are indeed 
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more difficult to fit. 

3.6.2 Cross-fitting 

Next we decided to look at how many times stars could be successfully fit to an AR(1) 

model and an MA model. In order to represent our results, we created tables with 

two rows and six columns. The first row of the table simply restated the results for 

the fitting of the MA models, giving the percentage of stars that were successfully fit 

to each MA model. The second row of the table showed the percentage of stars that 

were successfully fit to an AR(1) model in the first column, and the next five columns 

showed the percentage of stars that were successfully fit to both an AR( 1) model and 

each corresponding MA model. 

We will refer to this procedure as cross-fitting. The cross-fitting results for the 

simulations analyzed in the last section are presented in tables 3.10 through 3.15. 

Only AR(1) MA(1) MA(2) MA(3) MA(4) MA(5) 

Only MA 77.1 78.4 77.7 62.7 53.7 

AR(1) 75.8 71.9 71.0 68.5 54.2 47.0 

Table 3.10: Percentage of star periods that can be fit to both an AR(l) model and an MA(q) model, 

with N. = 1000, starsAnalyzed = 435, N = 150 
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Only AR(l) MA(l) MA(2) MA(3) MA(4) MA(5) 

Only MA 43.3 40.9 41.7 37.4 35.5 

AR(l) 36.0 34.0 32.1 31.8 28.2 26.6 

Table 3.11: Percentage of star angles that can be fit to both an AR(l) model and an MA(q) model, 

with N. = 1000, starsAnalyzed = 650, N = 150 

Only AR(l) MA(l) MA(2) MA(3) MA(4) MA(5) 

Only MA 47.0 49.7 50.3 42.7 37.0 

AR(1) 46.7 38.4 39.3 37.0 30.0 26.6 

Table 3.12: Percentage of star periods that can be fit to both an AR(1) model and an MA(q) model, 

with N. = 3000, starsAnalyzed = 1528, N = 150 

Only AR(1) MA(1) MA(2) MA(3) MA(4) MA(5) 

Only MA 61.6 61.1 60.3 52.8 49.3 

AR(1) 59.0 55.6 54.7 52.4 45.1 41.5 

Table 3.13: Percentage of star angles that can be fit to both an AR(1) model and an MA(q) model, 

with N. = 3000, starsAnalyzed = 2165, N = 150 
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Only AR(1) MA(1) MA(2) MA(3) MA(4) MA(5) 

Only MA 77.1 78.4 77.7 62.7 53.7 

AR(1) 75.8 71.9 71.0 68.5 54.2 47.0 

Table 3.14: Percentage of star periods that can be fit to both an AR(1) model and an MA( q) model, 

with N. = 10000, starsAnalyzed = 5165, N = 150 

Only AR(1) MA(1) MA(2) MA(3) MA(4) MA(5) 

Only MA 71.4 70.9 70.9 62.4 56.7 

AR(1) 70.5 66.4 65.5 63.9 55.4 50.0 

Table 3.15: Percentage of star angles that can be fit to both an AR(1) model and an MA(q) model, 

with N. = 10000, starsAnalyzed = 7531, N = 150 

From examination of these tables, we can easily see that AR(1) and MA(1) through 

MA(5) tend to be successfully fit to the same stars, since for each entry in the second 

row the percentage of times the data was successfully fit to both an AR( 1) and an 

MA(q) model is only slightly less than min(AR(1), MA(q)). Thus this suggests that no 

particular ARMA model is a great fit to the data, but rather it is relatively easy to fit 

AR(1), ARMA(1, 1) and the first five MA models to a certain percentage of the data. 

3. 7 Results of extended runs, N = 250 

At this point we decided to extend the simulations, adding another 100 data points 

on to the end of each time series and re-running the script on each cluster. We first 

present the statistics that were calculated by the script. Statistics for period data are 

given in table 3.16, and the statistics for angle data are given in table 3.17. 
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N, stars Left starsRejected stars Analyzed at Least One Average failed Port failed Turn failedDiff 

1000 55 470 475 37.7% 4.8 1.3% 55.4% 30.9% 

3000 117 1172 1711 52.5% 5.2 3.3% 23.0% 34.1% 

10000 51 4229 5720 83.5% 7.3 1.0% 13.1% 4.4% 

Table 3.16: Statistics for star periods, N = 250 

N, stars Left starsRejected starsAnalyzed atLeastOne Average failed Port failed Turn failedDiff 

1000 55 294 651 40.9% 6.0 1.2% 54.7% 22.1% 

3000 117 817 2066 63.5% 6.7 1.0% 33.7% 13.9% 

10000 51 2589 7360 73.8% 7.2 0.6% 23.3% 8.9% 

Table 3.17: Statistics for star angles, N = 250 

These statistics are very similar to the those presented in tables 3.1 and 3.2, with 

one important distinction. For each cluster, the percentage of stars that were success

fully fit to at least one model is between 8% and 25% lower than the corresponding 

statistic in the N = 150 case. Clearly it becomes more difficult to fit these ARMA 

models to the data as the series length becomes longer. 

The results of the model fitting for these time series are shown in tables 3.18 

through 3.23. 
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q=O q=l q=2 q=3 q=4 q=5 

p=O 20.0 18.7 20.4 17.7 17.7 

p=l 14.9 18.7 21.4 4.4 1.1 0.6 

p=2 8.0 9.9 4.6 0.2 0.0 0.2 

p=3 4.2 3.6 0.0 0.0 0.0 0.0 

p=4 1.3 0.8 0.0 0.0 0.0 0.0 

p=5 1.3 0.2 0.2 0.0 0.0 0.0 

Table 3.18: Percentage of star periods that can be fit to ARMA(p,q) models, with N. = 1000, 

starsAnalyzed = 475, N = 250 

q=O q=l q=2 q=3 q=4 q=5 

p=O 28.0 26.6 27.5 24.4 22.9 

p=l 24.0 24.7 18.1 9.0 3.8 1.1 

p=2 7.7 7.7 3.7 0.2 0.3 0.6 

p=3 5.5 2.9 0.5 0.3 0.3 0.0 

p=4 4.1 0.9 0.2 0.0 0.0 0.0 

p=5 0.6 0.3 0.2 0.2 0.0 0.0 

Table 3.19: Percentage of star angles that can be fit to ARMA(p,q) models, with N, = 1000, 

starsAnalyzed = 651, N = 250 
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q=O q=l q=2 q=3 q=4 q=5 

p=O 26.5 27.5 27.6 21.5 20.7 

p=l 27.0 27.9 21.6 9.6 2.9 1.4 

p=2 12.6 11.9 5.7 1.2 0.6 0.5 

p=3 8.8 6.6 0.8 0.1 0.1 0.1 

p=4 4.8 2.0 0.2 0.1 0.1 0.1 

p=5 2.7 0.5 0.2 0.0 0.0 0.0 

Table 3.20: Percentage of star periods that can be fit to ARMA(p, q) models, with N. = 3000, 

starsAnalyzed = 1711, N = 250 

q=O q=l q=2 q=3 q=4 q=5 

p=O 51.7 48.5 48.4 41.7 38.0 

p=l 48.7 46.5 32.9 13.9 3.7 0.6 

p=2 13.8 13.9 5.4 0.4 0.2 0.1 

p=3 8.1 4.4 0.2 0.0 0.0 0.1 

p=4 4.2 0.4 0.1 0.1 0.0 0.2 

p=5 1.2 0.3 0.2 0.1 0.1 0.1 

Table 3.21: Percentage of star angles that can be fit to ARMA(p, q) models, with N. = 3000, 

starsAnalyzed = 2066, N = 250 
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q=O q=l q=2 q=3 q=4 q=5 

p=O 68.7 69.0 68.2 52.9 45.6 

p=l 66.6 63.7 41.0 16.2 4.1 1.4 

p=2 28.3 25.8 11.4 1.2 0.7 0.5 

p=3 16.9 8.6 0.8 0.2 0.2 0.2 

p=4 8.7 1.4 0.1 0.0 0.1 0.1 

p=5 2.1 0.3 0.0 0.0 0.0 0.1 

Table 3.22: Percentage of star periods that can be fit to ARMA(p, q) models, with N. = 10000, 

starsAnalyzed = 5720, N = 250 

q=O q=l q=2 q=3 q=4 q=5 

p=O 63.6 62.0 62.0 51.7 46.8 

p=l 62.5 60.7 40.0 15.2 3.5 0.6 

p=2 18.8 17.9 7.1 0.5 0.2 0.2 

p=3 10.2 5.2 0.3 0.1 0.1 0.1 

p=4 4.7 0.4 0.0 0.0 0.0 0.0 

p=5 1.0 0.1 0.0 0.0 0.0 0.0 

Table 3.23: Percentage of star angles that can be fit to ARMA(p, q) models, with N. = 10000, 

starsAnalyzed = 7360, N = 250 

These results are strikingly similar to the results for N = 150, with the clear dif

ference being, as expected, a decrease across the board in the percentage of successfull 

model fits. 
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3.8 Results for N = 1000 

The next sensible step to take at this point was to try analyzing even longer time 

series, to see if the models would eventually stop fitting the data all together. In 

order to do this we decided to use the same time series as above, but increase the 

resolution by four times so that the series would now be of length N = 1000, with 

timesteps one quarter of their previous size. This would show us if the percentage 

fits for each ARMA model continue to drop as the series length increases. We also 

note that we used series of length N = 1000 in section 2.7.4, where we saw that the 

residual tests perform marginally better for N = 1000 than they do for N = 150 or 

N = 250. 

We present the statistics calculated by the script for these time series in tables 

3.24 and 3.25. 

N. starsLeft starsRejected starsAnalyzed atLeastOne Average failed Port failed Turn failedDiff 

1000 69 359 572 0% 0 10.1% 99.1% 98.6% 

3000 135 900 1965 5.1 E-4% 9 10.4% 99.6% 99.2% 

10000 56 3275 6669 1.3 E-3% 1.3 12.5% 99.3% 92.8% 

Table 3.24: Statistics for star periods, N = 1000 

We can see from these tables that the ARMA models no longer fit the data at all! 

While this seems to show that these ARMA models simply cannot be fit to this data, 

there are a few burning questions that remain. Why is it that AR(1), ARMA(1, 1) and 

the first five MA models can be fit to the data 40% to 50% of the time for N* = 1000 

and almost 80% of the time for N* = 10000? Are these models simply easy to fit to 
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N, stars Left starsRejected stars Analyzed atLeastOne Average failedPort failed Turn failedDiff 

1000 69 201 730 1.4 E-1% 5 14.8% 99.3% 94.4% 

3000 135 528 2337 4.3 E-4% 1 12.4% 99.6% 90.9% 

10000 56 1734 8210 1.9 E-1% 1.1 12.2% 99.5% 84.1% 

Table 3.25: Statistics for star angles, N = 1000 

random data at series lengths of N = 150, and if so, how long a time series do we 

need to use before we get correct results? Do the fitting results have anything to do 

with the resolution of the data? 

To investigate the effect of the resolution of the data on our fitting procedure, 

we extended our runs from sections 3.6 and 3.7 so that we would have time series 

of length N = 1000 with the same resolution as our N = 150 and N = 250 runs. 

The result was the same as above - the ARMA models could no longer be fit to the 

data. We also decided to examine the first 150 points of the time series with increased 

resolution. To our surprise, no models were successfully fit. The discrepancy in the 

results for time series of length N = 150 at different resolutions indicated that there 

could be something special about the resolution that was used to obtain the results 

in sections 3.6 and 3. 7. 

3.9 Testing for trends in the data 

At this point we decided to try applying various differencing transformations to the 

data. The results of the last chapter suggested that applying a log transformation 

and then differencing the data once was enough to render the data stationary. This 

conclusion is based on the fact that these transformations were necessary and sufficient 

to render all nine of the stars we individually analyzed stationary. 
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In order to test how often it was necessary to difference the data in order to achieve 

stationarity, we used the same algorithm that we used to classify the stars, except 

this time we looked at the mean of the data and not the standard deviation. Thus, 

we calculated the mean of ten individual segments of the data, took the mean of 

these means, and then compared this value to the mean of each individual segment. 

If the mean of any of the individual segments differed significantly from the mean 

of the means, we differenced the data once and repeated the procedure. We used 

normally distributed noise, which is a stationary time series, as a comparison point 

to determine how we defined "significantly" . 

When this test was applied to the time series of length N = 150 analyzed in 

section 3.6, we discovered that each star required exactly one differencing, exactly 

as predicted. Never the less, we tried differencing all of the stars twice and running 

them through the script again. This resulted in none of the stars being successfully 

fit. Three differencings were also tried, with the same result. The same tests were 

done on the extended N = 1000 data sets of the same resolution, and the result was 

the same. Thus differencing the data once, and only once, produced the best fitting 

results for N = 150, and made no difference for N = 1000. 

When this test was applied to the more resolved time series analyzed in the pre

vious section, the majority of the stars required only one differencing. However we 

found that for the N* = 1000 cluster there were 83 stars which needed to be differ

enced more than once, a number of these required that they were differenced three 

times. We ran the script on this data differencing the stars twice, and again differ

encing them three times. In each case the results were the same as before - at this 

level of resolution, none of the stars were successfully fit to any ARMA models for 

both N = 150 and N = 1000. 

Seasonal differencing was also attempted on the more resolved data set, to see if 
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the apparent correlation of every fourth point was preventing the data from being 

successfully fit. Using a seasonal period of four the data was seasonally differencing 

once, and then twice, but the script was unable to successfully fit any ARMA models 

to either of these tests. 

It appears from the results of this section that the fitting problems were not the 

result of trends in the data. 

3.10 Results of the script run on known models 

In order to better interpret our results for different time series lengths, and to de

termine the overall level of effectiveness of our procedure, we decided to see how our 

script would behave given instances of actual ARMA models as input data. The results 

of these test cases would give us a better idea as to how well the script identifies an 

ARMA model when we know that the model fits the data, and these results would also 

indicate the number of false positives we could expect at different time series lengths. 

To implement our test cases, we used the same seven ARMA models that were used 

in evaluating the performance of the residual tests in section 2.7.4. We generated 

the test cases using time series of length 150 and 1000, and using 500 and 5000 

instances of each model. We will present the results of the AR(0.12, 0.1, 0.34) and 

ARMA( {0.17, 0.22, 0.41 }, {0.15, 0.23}) test cases, as their results are quite instructive. 

The statistics computed when the script was run on the data generated using these 

two models are given in tables 3.26 and 3.27. Note that we no longer include the 

statistics starsLeft, starsRejected or starsAnalyzed, for obvious reasons. 
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N N* atLeastOne Average failedPort failed Turn failedDiff 

150 500 100% 9.1 0% 0% 0% 

1000 500 99.6% 9.2 4.0 E-1% 0% O% 

150 5000 99.8% 9.1 2.4 E-1% 0% 0% 

1000 5000 99.8% 9.2 2.4 E-1% 0% 0% 

Table 3.26: Statistics for the AR(3) model 

N N* atLeastOne Average failedPort failed Turn failedDiff 

150 500 99.6% 9.1 4.0 E-1% 0% 0% 

1000 500 99.8% 9.6 2.0 E-1% 0% 0% 

150 5000 99.8% 9.1 1.6 E-1% 0% 0% 

1000 5000 99.6% 9.5 3.2 E-1% 0% 0% 

Table 3.27: Statistics for the ARMA(3, 2) model 

When we examine the statistics for N = 150, we immediately notice that they are 

quite different from tables 3.1 and 3.2. Almost all of the test cases can be fit to at 

least one model, and the average number of fits for each of these stars is greater than 

nine. Considering that we are examining ten ARMA models in each case, we see that 

almost every single ARMA model is successfully fit to the data! It is also interesting to 

note that the results do not vary much when the number of instances increases from 

500 to 5000, nor do they vary greatly with series length (though the average number 

of successful fits goes up slightly). 

Before we draw any more conclusions from these statistics we will present the 

model fitting results for these test cases. These are given in tables 3.28 through 3.35. 
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q=O q=l q=2 q=3 q=4 q=5 

p=O 97.2 95.4 91 45 9.8 

p=l 58.6 94.6 87.2 36.8 3.6 0.6 

p=2 84.6 87.6 36.4 1.8 0.4 0 

p=3 48.6 23.8 1.4 0.4 0.0 0.0 

p=4 22.0 4.6 1.2 0.0 0.0 0.0 

p=5 3.2 0.2 0.0 0.0 0.0 0.0 

Table 3.28: Percentage of instances of the AR(3) model that can be fit to ARMA(p, q) models, with 

N. = 500, N = 150 

q=O q=l q=2 q=3 q=4 q=5 

p=O 0.0 0.2 2.4 1.6 2.4 

p=l 3.2 45.8 63.6 68.4 51.8 21.8 

p=2 61.0 65.0 37.8 43.0 14.6 3.6 

p=3 86.4 78.2 66.8 19.6 2.8 0.4 

p=4 60.8 51.2 18.2 1.6 0.2 0.0 

p=5 20.2 9.0 3.2 0.2 0.0 0.0 

Table 3.29: Percentage of instances of the ARMA(3, 2) model that can be fit to ARMA(p, q) models, 

with N. = 500, N = 150 
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q=O q=l q=2 q=3 q=4 q=5 

p=O 0.0 0.0 0.0 11.2 8.8 5.6 

p=l 0.0 0.0 0.0 48.2 76.2 51.2 

p=2 0.0 0.0 0.0 67.0 56.6 8.2 

p=3 98.8 98.8 98.4 94.6 70.8 28.4 

p=4 27.2 26.6 13.0 2.6 0.0 0.0 

p=5 15.4 11.0 2.4 0.0 0.0 0.0 

Table 3.30: Percentage of instances of the AR(3) model that can be fit to ARMA(p, q) models, with 

N. = 500, N = 1000 

q=O q=l q=2 q=3 q=4 q=5 

p=O 0.0 0.0 0.0 0.0 0.0 

p=l 0.0 0.0 5.2 5.0 50.4 54.6 

p=2 0.0 0.0 2.0 16.4 44.8 6.2 

p=3 53.6 73.8 98.6 91.8 29.4 2.6 

p=4 97.6 94.4 89.6 20.2 0.8 0.0 

p=5 55.6 44.8 17.4 0.6 0.0 0.0 

Table 3.31: Percentage of instances of the ARMA(3, 2) model that can be fit to ARMA(p, q) models, 

with N. = 500, N = 1000 
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q=O q=l q=2 q=3 q=4 q=5 

p=O 26.1 14.1 76.3 63.2 30.9 

p=l 37.9 39.7 21.1 85.1 42.1 10.8 

p=2 33.0 22.4 8.0 44.1 7.84 1.1 

p=3 96.9 92.4 64.0 25.5 4.9 1.0 

p=4 22.4 14.5 4.1 0.6 0.2 0.1 

p=5 10.1 4.5 0.9 0.1 0.0 0.0 

Table 3.32: Percentage of instances of the AR(3) model that can be fit to ARMA(p, q) models, with 

N. = 5000, N = 150 

q=O q=l q=2 q=3 q=4 q=5 

p=O 0.0 0.2 2.9 1.7 2.1 

p=l 2.6 42.0 64.7 68.4 51.0 22.6 

p=2 63.8 64.4 39.8 41.5 13.2 2.0 

p=3 85.4 76.7 65.2 22.0 3.8 0.6 

p=4 63.8 52.2 19.8 3.0 0.4 0.1 

p=5 20.2 8.4 1.7 0.2 0.0 0.0 

Table 3.33: Percentage of instances of the ARMA(3, 2) model that can be fit to ARMA(p, q) models, 

with N. = 5000, N = 150 
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q=O q=l q=2 q=3 q=4 q=5 

p=O 0.0 0.0 10.7 9.6 5.0 

p=l 0.0 0.0 0.0 49.9 73.8 49.4 

p=2 0.0 0.0 0.0 68.6 56.9 8.8 

p=3 99.0 98.9 98.6 95.0 70.4 26.1 

p=4 25.5 24.4 16.6 1.9 0.1 0.0 

p=5 15.4 12.0 2.5 0.0 0.0 0.0 

Table 3.34: Percentage of instances of the AR(3) model that can be fit to ARMA(p, q) models, with 

N. = 5000, N = 1000 

q=O q=l q=2 q=3 q=4 q=5 

p=O 0.0 0.0 0.0 0.0 0.0 

p=l 0.0 0.0 4.3 4.3 52.2 55.6 

p=2 0.0 0.4 0.9 17.4 45.3 6.8 

p=3 54.6 75.6 98.5 90.7 24.2 1.7 

p=4 97.2 96.1 89.4 19.1 0.9 0.1 

p=5 54.9 43.6 14.2 0.4 0.0 0.0 

Table 3.35: Percentage of instances of the ARMA(3, 2) model that can be fit to ARMA(p, q) models, 

with N. = 5000, N = 1000 

We can see that these tables have one extremely useful property - for N = 1000 

models of order lower than the model of the test case and all five of the MA models are 

almost never fit to the data! When we consider the fact that our statistics presented in 

tables 3.26 and 3.27 show that nearly every fit that is attempted is successful (this is 

true greater than 90% of the time for all combinations of N. and N), we can conclude 

that models of order lower than the order of the test case are not often among the ten 
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best models, as ranked by the Hannan-Rissanen algorithm. This result was also seen 

in the AR(2) and ARMA(2, 1) test cases. The MA(3) test case was a slight exception 

to this rule, with MA(2) being fitted successfully 45.7% of the time. 

These results have another important feature. For N = 1000 the model that was 

used to generate the data is successfully fitted over 98% of the time! While this 

feature is also present in some of the time series of length 150, there are notable 

exceptions, and one of them is the ARMA(3, 2) model present here, passing only 65% 

of the time when it was used to generate the test data. To see how often this feature 

was present in the rest of the test cases, we present the percentage of times the model 

that was used to generate the test case was correctly identified by our script for the 

two different series lengths and all seven ARMA test cases in tables 3.36 and 3.37. 

N* AR(1) AR(2) AR(3) MA(1) MA(3) ARMA(2, 1) ARMA(3, 2) 

500 97.6 99.2 97.2 95.4 80.6 86.6 78.2 

5000 97.2 98.0 96.7 94.7 80.7 86.1 65.2 

Table 3.36: Percentage of instances of each ARMA test case that were correctly identified, N = 150 

N* AR(1) AR(2) AR(3) MA(1) MA(3) ARMA(2, 1) ARMA(3, 2) 

500 99.2 98.8 98.8 97.2 93.8 97.6 98.6 

5000 98.4 98.6 99.0 97.9 91.7 97.6 98.5 

Table 3.37: Percentage of instances of each ARMA test case that were correctly identified, N = 1000 

As we can see, for N = 150 the AR models and the MA(1) model were identified 

over 95% of the time, while the MA(3) model and the two ARMA models were not as 

successful. This is probably due to the fact that the higher order models have greater 

values of the BIC statistic, and thus they are sometimes not among the ten models 
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that the Hannan-Rissanen algorithm choses. Clearly this problem is eliminated when 

a series length of N = 1000 is used. 

Using the results of these tests we can draw some conclusions about the behaviour 

of our script. We saw in section 2.7.4 that a series length of N = 150 is sufficient 

to assure that the residual tests behave as expected. However, time series of length 

N = 150 are not long enough for us to obtain accurate fitting data from our script. 

With a series length of N = 1000, there will be a block of very small percentages 

above and to the left of an ARMA model which can be successfully fit to the data. 

Also, if the model is not an MA model then no MA models will be identified, and the 

correct model should be identified over 95% of the time. The three AR test cases were 

correctly identified over 97% of the time using a time series length of only N = 150, 

however the results for the MA and other ARMA models were not very successfull at 

this length. It is also clear that what N = 150, lower order models will often be 

incorrectly identified. 

At this point the question of whether or not multiple different instances of a par

ticular model would always have exactly the same fitting results was worth asking. If 

this was the case, then given that enough instances of a particular model were gener

ated and fitted, the percentage of each AR, MAand ARMA model that was successfully 

fit would tell us something about the properties of that model, and we would see the 

same set of results whenever a set of data was a good fit to a specific model. 

This idea was tested by repeatedly running the script on the same test case, and 

it was indeed the case that for a particular model the percentage of each other model 

that could be fit to it was the same. However, this was only true if the parameters 

were identical - an AR(0.3) model did not have the same fit table as an AR(0.8) 

model. Thus any attempt to compare test results directly with data would require 

generation of endless test cases. 
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3.11 Discussion and conclusions 

3.11.1 Results of the ARMA analysis 

Given the results of the test cases applied to our script, combined with the fact that 

when time series of length N = 1000 were examined neither the period nor the angle 

data of stars could be successfully fit to the ARMA models we tested, we conclude 

that these ARMA models cannot be successfully fit to period or angle data from an 

N -body simulation. There are, however, various interesting results and possibilities 

to consider. 

It is clear that the data we studied initially has some kind of correlation, evidence 

of this being that when a different resolution was used, the fitting percentages all 

dropped to zero. We also note that our test cases show that models which are incor

rectly fit to the data maintain approximately the same percentage of fits for different 

values of N*. We saw in section 3.6 that as we increased cluster size, the fit percentage 

for all of the models increased drastically, with AR(2) reaching 78.4% for period data 

with N* = 10000. Clearly this indicates that, whatever is causing these results, it 

becomes more pronounced as the cluster size increases. Discovering what causes this 

correlation could yet provide interesting information about the dynamics of globular 

clusters. 

3.11.2 Effectiveness of an automated ARMA analysis on large 

sets of data 

The results of the test cases we examined in section 3.10 indicate that this approach 

to ARMA analysis is very promising. If series lengths of N = 1000 and at least 500 

instances of the data are used, a model that fits the data well is easy to determine 
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using our procedure - it should be successfully fitted about 95% of the time, and 

models of lower order will be successfully fitted very rarely, leaving a block of very 

small percentages in the fit tables above and to the left of the appropriate model. 

Detection of higher order models should also be possible, and this idea is described 

below. 

3.12 Future work 

3.12.1 Higher order models 

While we have shown that ARMA models of order five or less cannot be successfully fit 

to period or angle data from an N-body simulation, this does not mean that ARMA 

models of a higher order do not work. Testing higher order models would involve in

creasing the number of ARMA models examined, as well as the total number of models 

cleared for testing by the Hannan-Rissanen algorithm. In order to perform such an 

analysis, we would realistically require that the entire procedure was programmed 

in a language such as C, as doing such an analysis in Mathematica@ would require 

weeks or possibly even months, depending on how many models were analyzed. Also, 

the number of models chosen by the Hannan-Rissanen procedure would have to be 

carefully selected. If too many models were selected for testing, then models of order 

lower than the correct model could start to appear in the fitting tables more fre

quently. If too few models were selected, then it is possible that models that fit the 

data would not always be chosen, and we would get less of a spike than we saw in 

our test cases above. 
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3.12.2 Heteroskedastic modelling 

The classification procedure we described in section 3.2 was designed to minimize 

the number of stars with non-constant variances being analyzed. It is still possi

ble, however, that the variance of the stars which were accepted by our scheme was 

large enough to prevent us from modelling the data with an ARMA model. If this 

was the case, using models that account for heterskedasticity such as Autoregres

sive Conditional Heteroskedasticity (ARCH), Generalized Autoregressive Conditional 

Heteroskedasticity ( GARCH) or Generalized Autoregressive Conditional Heteroskedas

ticity Moving Average ( G ARCHMA) models could be more successful. 

Considering the fact that designing an automated procedure to fit data to these 

models would be a very challenging undertaking, and noting that our classification 

scheme rejected more period data than it did angle data, further individual analysis 

of angle data using these models would probably be the most sensible continuation 

of this work. 



Chapter 4 

The Holtsmark Distribution 

4.1 Introduction 

4.1.1 Motivation 

The Holtsmark distribution has been unchallenged as the definitive distribution of 

forces in a globular cluster ever since its derivation by Professor Holtsmark in 1917 

[34]. It was re-derived by Chandrasekhar in 1943 [23], and this is still the standard 

derivation in the literature today. We tested the validity of the Holtsmark distribution 

as a routine matter, and thus we were quite surprised to discover that it does not 

correctly predict the force distribution for spherical clusters of stars. 

As we will see, Chandrasekhar believed that he had proven that the dominant 

contribution to the force on any star is almost exclusively due to the nearest neighbour 

to that star, and this was used to justify the assumption that the force distribution 

of an infinite cluster would be the same as that of a real cluster with a finite radius. 

This idea and the related idea that the contribution to the force distribution made 

by distant stars is practically insignificant are usually taken as given in the literature 

89 
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([36], [40], [15]). Kandrup even goes so far as to declare "Consequently, it would 

appear that standard treatments significantly overestimate the influence of distant 

stars. A correct treatment demonstrates an appropriate cut-off for the large distance 

logarithmic divergence at a distance of the order of the mean separation between 

stars" [35]. We will see that, while these widely held beliefs are quite true for stars 

close to the center of the cluster, stars which are located in the outer regions of the 

cluster are significantly influenced by the far field. 

The distribution of forces is a fairly basic property of a globular cluster. Since 

we discovered that the Holtsmark distribution is not correct, an obvious avenue of 

interest was to find out what exactly was wrong with it, and how this could be 

corrected. The force distribution contains valuable information - it could be used, 

for example, to estimate star loss rates for clusters of various sizes. 

Another possibility would be to use the distribution of forces to run an N -body 

simulation. A typical N-body algorithm, such as the treecode algorithm described 

in chapter 1, runs in O(NlogN) time 1 . If the force distribution was to be used to 

run an N -body simulation, this would run in O(N M) time, where M is a variable 

associated with sampling from the force distribution. Thus this type of simulation 

would run faster than a standard N -body simulation for large values of N. This 

simulation would be non-physical, since there would be no continuity in the force 

experienced by a particular star at consecutive time steps. However the large scale 

properties of such a simulation would likely be similar to that of a standard N-body 

simulation. 

1 We remind the reader at this juncture that throughout this chapter N will be used to signify 
the number of stars in a cluster 
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4.1.2 Chapter outline 

In this chapter we first give an expanded version of Chandrasekar's derivation of 

the Holtsmark distribution, which can be found in [23]. Next we describe how this 

distribution was tested, and we show that it does not fit the real force distribution. 

We then explain why it is that the distribution is incorrect, and we give the beginnings 

of a (much more complicated) derivation of the force distribution in a star cluster, one 

which does not make the flawed assumptions made in the derivation of the Holtsmark 

distribution. The analytical work relating to the derivation of a generalized force 

distribution was largely carried out by J. C. Lewis in consultation with myself, and 

has not up to this point been published or disseminated. 

4.2 Derivation of the Holtsmark Distribution 

4.2.1 Markov's method 

Given a random variable y which is the sum of N independent random variables X;, 

the probability density for y is given by 

N 

PN (y) = J o (y- x1- ... - XN) IT Pi (x;) d3
x1 d3

x2 ... d3xN. (4.1) 
i=l 

Expressing o (y - x 1 - ... - x N) as a Fourier transform we have 

PN(Y) = ( 2~)
3 J d3uem·[-Y+"'1+ ... +"'Nifip;(x;) d3xld3xz ... d3xN 

( 2~r J e-m·yAN(u) d3u (4.2) 

where 
N 

AN (u) =IT J eLu·"'i p;(x;) d3xi 
i=l 

(4.3) 



CHAPTER 4. THE HOLTSMARK DISTRIBUTION 92 

is the characteristic function of pi (xi), the probability density for the random variable 

xi. If xi depends on a parameter ~i, which is a random variable with probability 

density w (~i), then the characteristic function becomes 

N 

AN (u) =IT J e'u·mi(~i) wi(~i) d~i. 
i=l 

(4.4) 

If the random variables have the same distribution, then we can remove the i sub-

scripts from eq. ( 4.4), and the characteristic function becomes 

(4.5) 

The random variables ~i may be of dimension higher than 1, and in fact in the 

derivation of the Holtsmark distribution they are of dimension 3. Eqs. ( 4.1 - 4.5) are 

the principal formulae of Markov's method. 

4.2.2 Markov's method applied to inverse-square forces 

Suppose that a star is located at the origin of a Cartesian coordinate system. Suppose 

that it is surrounded by a sphere of radius R containing N stars. 

Let xi be the position of star i in this sphere, and let the acceleration which it 

imparts to the central star be ai. Clearly 

(4.6) 

with 

(4.7) 

and 

(4.8) 

is the net acceleration experienced by the central star. 
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Here we make our first assumption. 

Assumption 1: TheN stars are independently, identically distributed. 

Because of this assumption, we can make use of Markov's method to obtain the 

characteristic function of a. This is given by 

(4.9) 

where roi (xi, Mi) is the probability density of star i. 

Another consequence of assumption #1 is that we can now replace xi, ri, Mi and 

ai with x, r, Manda. We use a to represent the acceleration due to a random star 

because a is already being used to represent the total acceleration of our test star, as 

defined in eq. ( 4.8). Thus we write the characteristic function as 

where, as explained above, 

Next if we note that 

GMx 
a= --3-. 

r 

100 1R w(x, M)d3xdM = 1 

(4.10) 

(4.11) 

(4.12) 

and we add this to and subtract it from the portion of eq.(4.10) within the brackets, 

we get 

(4.13) 

It is at this point that we make our second assumption. 

Assumption 2: The cluster can be treated as if the stars are uniformly distributed 
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over an infinite volume. 

The assumption of a uniform distribution of stars lets us divide w (x, M) into two 

parts: 

(4.14) 

We can then write the probability density w:ll in terms of the constant number density 

n as 

Thus we have 

n 3 
w:l) = N = 4nR3 ' 

3 
w(x, M) = -R3 wM, 

4n 

where 'WM is the stellar mass distribution. 

(4.15) 

(4.16) 

We implement the assumption of infinite radius by taking the limit as R---> oo in 

such a way as to keep the number density n constant. Combining these two steps we 

get 

( 4.17) 

If we then set 

(4.18) 

we have 

[ 
3 ] 4rr R

3
nj3 

A(u)=A~ 1-4nR3C(u) (4.19) 

Taking the Taylor series expansion of this, we note that in the limit of R ---> oo it is 

equivalent to the Taylor series expansion of e-nC(u), and thus 

A (u) = e-nC(u). ( 4.20) 
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We can obtain the probability density P(a) from the characteristic function using 

(4.21) 

as was shown earlier. 

4.2.3 An integral expression for the Holtsmark distribution 

C(u) given in eq.(4.18) can be expressed as a pure number. To do this, we start by 

changing the variable of integration from d3x to d3a. Recalling that 

where r = lxl, we have 

Solving for r gives us 

GMx a=-
r3 

GM 
a=lal=-2. 

r 

r= F!J. 
Dividing eq.(4.22) by eq.(4.23) we get 

which we rearrange to obtain 

Q X 

a r 

Q 

x=r
a 

If we combine this with eq.(4.24) we get 

Taking derivatives we arrive at 

( 4.22) 

( 4.23) 

( 4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 
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which is our desired change of variables. 

Substituting this change of variables in to eq. ( 4.18) we have 

C(u) = ~Q3/2 roo roo {1- em·a} lal-9/2 d3a M3f2wMdM 
2 Jo Jo 
~ a3/2 (M3f2) roo {1 _ em·a} lal-9/2 d3a. 
2 Jo (4.29) 

If a is replaced by -a in the above expression the value is unaltered; and if the two 

expressions are averaged the result is 

C (u) = ~ G3/2 (M3f2) roo 1- cos~~. a) d3a. 
2 Jo lal 

(4.30) 

Integrating this using spherical coordinates with the z axis II u we obtain 

C (u) = ~ G312 (M312) roo da (' d79sin 19 r2

7r dtp ~
2

12 {1- cos (uacos79)}. (4.31) 
2 Jo Jo Jo a 

Setting e = cos( 79), changing the variable of integration to e and doing the integration 

we get 

C(u) 

(4.32) 

The integral is obviously a pure number. Less obviously, it is a pure number which 

can be evaluated in closed form. Integrating successively by parts we have 

1
00 

d a - sin a = 
a 7/2 o a 

_~[a- sina]
00 

~ 100 

d 1- cos a 
5 a5/2 + 5 a a5/2 

0 0 

_ ~ . ~ [ 1 - cos a] 
00 

~ . ~ 100 

da sin a 
5 3 a 3/ 2 + 5 3 a 3/ 2 

0 0 

2 2 [sin a] 00 
2 2 roo cos a 

- 5 . 3 . 2 al/2 o + 5 . 3 . 2 Jo da al/2 

~ roo da cosa 
15 Jo al/2 

- da cosa2. 16100 
15 0 

(4.33) 
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It can be shown that the value of this integral is 

(4.34) 

This gives, overall, 

(4.35) 

where u = lui as usual. When eq.(A.1) is substituted into eqs.(4.20, 4.21) the result 

IS 

(4.36) 

where 

(4.37) 

Taking the z axis in the integrand to be II a we obtain 

P(a) = 1 1oo d 211 d -maw-"(u3/2 -
4 2 

uu we 
7r 0 -1 

-- dxx sinxe-"~ a: 1 100 

(x)3/2 

2n2a3 o 
(4.38) 

This probability density P (a) is isotropic in a and so we can meaningfully define a 

probability density for a. It is 

P (a) = 4na2 P (a) , (4.39) 

which gives 

2 1oo ( I )3/2 P(a)=- xsinxe-'Yxa dx. 
na 0 

(4.40) 

A more convenient form of this equation can be obtained by introducing what Chan-

drasekhar calls a "normal field" [23], defined by 

Q - 'V2/3 H-I . (4.41) 
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Then if we define the change of variables 

eq. ( 4.40) becomes 

P(a) -- x sin xe _, f3QH dx 2 100 ( X )3/2 

1rf3QH o 

- 2- roo X sin xe-(x/!3) 312 dx 
1r(3QH lo 
H ((3) 

QH 

where H ((3) is called the Holtsmark distribution and is given by 

H ((3) = _!_ roo X sin xe-(x/!3)312 dx. 
1r(3 lo 
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( 4.42) 

( 4.43) 

( 4.44) 

In comparing eq.(4.40) and eq.(4.43) we see that while the constant 1 is evaluated 

within the integral in eq.(4.40), we need only divide by QH in eq.(4.43), which is 

much cleaner. Approximations of eq.(4.44) for small and large values of (3 are given 

in appendix B. 

The simulations that were run for this thesis used M = 1 for the mass of each 

star, so in this case P (F) = P (a), and thus eq.(4.43) also gives us the probability 

density of the force F. 

4.3 Calculation of forces 

In order to compare the forces that are predicted by the Holtsmark distribution with 

the actual forces occurring in the simulations, we had to estimate the probability 

distribution of the forces obtained from the simulations. To do this, we took the ac-

celerations output by theN -body simulation and used Matlab@ to make histograms 

showing the number of stars feeling net forces within different ranges, with each range 
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corresponding to a bin in the histogram. When the frequency of each bin was divided 

by the total number of stars in the simulation, this gave us an estimate of P (F) for 

that particular timestep (note that the distribution P (F) could change over time). 

We note here that although the Holtsmark distribution is not dependent on time, 

we decided to calculate the force distribution at various points in the simulation, to 

see if the distribution is indeed constant. 

4.4 Calculation and fitting of the Holtsmark dis-

tribution 

Calculation of the force predicted by the Holtsmark distribution was accomplished 

using the standard statistical formula [38] 

P[c:::; a:::; d] = 1d P(a)da, ( 4.45) 

where P[c :::; a :::; d] is the probability of a having a value between c and d. Since 

we created histograms using the calculated star forces, we needed to calculate the 

probability of the acceleration falling within each bin (according to the Holtsmark 

distribution) by integrating eq.(4.43) from a= c to a= d, and then we could compare 

this value with the corresponding bin of the calculated forces. Substituting eq.( 4.43) 

into eq.(4.45) gives us 

2 Jd 1 [
00 

3/2 
P[c :::; a :::; d] = nQH c {j Jo x sin xe-(x/{3) dxda. ( 4.46) 

From a = f3Q H we have 

da = df3QH ( 4.4 7) 

and since 

(4.48) 
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the limits of integration become 

c d 
(3=QH'(3=QH. ( 4.49) 

Using this change of variables eq.(4.46) becomes 

P[c ::; a ::; d] = 
2QH id/QH 11oo 3/2 -- - x sin xe-(x/,8) dxd(3 
nQH c/QH f3 o 

21d/QH 1 100 3/2 - - x sin xe-(x/,8) dxd(3 
7r c/QH (3 0 

i

d/QH 
H((3)d(3. 

c/Qh 
( 4.50) 

The value of QH used in this calculation is given in theory by combining eq.(4.37) 

and eq.(4.41) to obtain 

(4.51) 

For the simulations we analyzed G = 1 and M = 1, so Q H becomes 

(4.52) 

The problem with obtaining the value of QH using this equation is that though 

one can obtain an estimate of the number density n using 

3N 
n=--

4nR3' 
(4.53) 

if the density is not constant throughout the cluster this creates problems. While the 

Holtsmark distribution may still hold, it is possible that the effective density will be 

slightly different from this value of n. The King model, which we used to generate the 

initial conditions of our simulations, has a non-constant density, and thus we needed 

to find a method of obtaining a more appropriate value of Q H. 
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The easiest way to do this was to fit eq. ( 4.50) to the frequency of each bin of the 

histogram that we created from the calculated force data. In order to perform this 

fit we needed to make a reasonable estimate of the value of Q H. This was done using 

a guess and check method - first we choose a value of n and used this to calculate 

QH. Then we compared the force distribution given by eq.(4.50) with the calculated 

forces, and plotting the two histograms we visually determined how n needed to be 

adjusted to line the distributions up. Once an appropriate value of n was found, 

we used this to calculated the value of Q H to be used as an estimate in the fitting 

procedure. 

All of the numerical integrations and fitting calculations required for this work 

were done using Mathematica@. 

4.4.1 Implementation 

The default setting of Mathematica@'s Nintegrate function (which performs numeri

cal integration) uses Gauss-Kronrod integration [10], however this method alone does 

not work for eq.(4.44). Instead the Method---+ Oscillatory option of Nintegrate must 

be used, an option designed to handle integrals involving trigonometric functions. 

The algorithm used when Method ---+ Oscillatory is specified is often called "integra

tion between the zeroes". It finds (some of) the zeros of the oscillatory function, 

and integrates between them using Gauss-Kronrod integration. It then uses sequence 

convergence acceleration via NSum to find the approximate value of the integral [11]. 

For the fitting of QH, the Mathematica@ function NonlinearFit was used. This 

function takes as input a set of data, a function to be fit to the data, a list of 

the variables that are passed to the function, a list of the free parameters to be 

varied to fit the given function to the data, and an optional estimate of the values 
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of these free parameters. In this case the function was defined as holts[c_, d_, Q_] 

and it implemented the numerical integration discussed above, integrating eq. ( 4.50). 

The data set passed in consisted of the bin values of the histogram made from the 

calculated forces, and for each bin the limits of the bin were taken as the c and d 

values. The result that eq.( 4.50) was fit to was given by 

1 
# of stars in the bin 

resu t = --,-,-----------:--::--
# of stars in the cluster 

Thus the data set passed in had the form {{ c1,d1 , result1 }, { c2,d2, result2 }, ... , { cn,dn, resultn}}, 

where n is the number of bins used in the histogram. For the work done for this thesis 

n = 80 bins were used. The complete call to NonlinearFit was 

NonlinearFit[data, holts[c, d, Q], { c, d}, { Q, estimateQ}] 

where estimateQ was the initial estimate of the value of Q H. 

Though it does eventually give the correct result, when the NonlinearFit function 

is used in this fashion it takes a very long time to do each fit, and produces endless 

streams of error messages associated with oscillating functions and recursion. A good 

way to improve the performance of Mathematica@'s Nonlinear Fit function is to teach 

Mathematica@ the partial derivatives of the function being fitted [12]. In order to 

determine the partial derivatives of eq.(4.50) with respect to c, d and QH we let 

Then 

where 

1Q~ 
f({3, c, d, QH) = P[c ~a~ d] = ___£__ H(f3)df3. 

QH 

d 

of = ~ [/ H({3)d{3] qH = ~ [F( __!!____)- F( ~ )] 
fJc fJc ___£__ OC QH QH 

QH 

F({3) = J H({3)d{3. 

(4.54) 

(4.55) 

(4.56) 



CHAPTER 4. THE HOLTSMARK DISTRIBUTION 

Similarly we have 

and 

We taught Mathematica@ these derivatives using the commands 

Derivative[!, 0, 0] [holts] = holtsc; 

Derivative[O, 1, 0] [holts] = holtsd; 

Derivative[O,O, !][holts]= holtsQ;, 
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( 4.57) 

(4.58) 

where the function holts implements eq.(4.54) and holtsc, holtsd and holtsQ are the 

partial derivatives defined above. With these derivatives defined the fitting procedure 

worked quite well, provided that the guess given by estimateQ was fairly close to the 

best fit QH value. 

Once the value of QH that best fit the holts[c, d, Q] function to the data was found, 

eq.( 4.50) was integrated multiple times over the range of each bin of the histogram of 

the calculated forces. These values were made into a histogram to be compared with 

the histogram made using the calculated forces. The results are shown in the next 

section. 

4.5 Results 

The initial conditions for the simulations studied were generated using a King model 

with 1]!0 = 5. Results were obtained for clusters of various sizes at various points in 

the simulation. 
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4.5.1 N* = 1000 

The first tests were conducted using clusters of size N. = 1000. The results are shown 

below. 

# of stars # of stars 
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(a) Holtsmark distribution (b) Calculated distribution 

Figure 4.1: Results for N. = 1000, t = 0 
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(a) Holtsmark distribution (b) Calculated distribution 

Figure 4.2: Results for N. = 1000, t = 500 
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(a) Holtsmark distribution (b) Calculated distribution 

Figure 4.3: Results for N. = 1000, t = 1000 
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4.5.2 N* = 3000 

Next clusters of size N. = 3000 were used in the testing, and again the results are 

shown below. 
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(a) Holtsmark distribution 
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(b) Calculated distribution 

Figure 4.4: Results for N. = 3000, t = 0 
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(a) Holtsmark distribution (b) Calculated distribution 

Figure 4.5: Results for N. = 3000, t = 500 
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(a) Holtsmark distribution (b) Calculated distribution 

Figure 4.6: Results for N. = 3000, t = 1000 

4.5.3 N* = 10000 

Finally the Holtsmark distribution was tested for a cluster of size N. = 10000. The 

results are given below. 
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(a) Holtsmark distribution 
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(b) Calculated distribution 

Figure 4.7: Results for N. = 10000, t = 0 
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(a) Holtsmark distribution (b) Calculated distribution 

# of stars 

Figure 4.8: Results for N. = 10000, t = 500 
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(a) Holtsmark distribution (b) Calculated distribution 

Figure 4.9: Results for N. = 10000, t = 1000 

4.5.4 N* = 30000, 50000 and 100000 

108 

When the above results are examined, there is one very noticeable feature. The cal-

culated distribution of forces does not change very much as the simulation progresses 

- in each case it maintains the same structure. Simulations of clusters bigger than 
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N. = 10000 are very computationally expensive, and given the consistency of the 

earlier results it was decided that we would obtain results for clusters of size 30000, 

50000 and 100000 only at timet= 0. The results follow. 
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(a) Holtsmark distribution 

# of stars 
350 

200 
150 
100 

50 

(b) Calculated distribution 

Figure 4.10: Results for N. = 30000, t = 0 
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(a) Holtsmark distribution (b) Calculated distribution 

Figure 4.11: Results for N. = 50000, t = 0 
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(a) Holtsmark distribution 
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(b) Calculated distribution 

Figure 4.12: Results for N. = 100000, t = 0 

4.6 Discussion of results 

110 

It was mentioned above that in all of these results, the calculated distribution stays 

nearly constant throughout the simulation. We noted earlier that this is the prediction 

of the Holtsmark distribution, and it appears to be true to a first approximation, at 

least for the length of the simulations we studied. 

All of the calculated force results appear to have a staircase structure on the 

left side, and then drop off quite quickly on the right. While N* = 1000 is not a 

big enough cluster for this structure to be clear, it is very evident for N* ;:;; 10000. 

This structure does not match that of the Holtsmark distribution, which is almost a 

symmetric distribution. 

A possibility that was considered was that the actual distribution of forces could 

be the sum of multiple Holtsmark distributions. This was investigated, and it turns 

out that the Holtsmark distribution maintains its general shape as the value of QH 

is varied, and thus it would impossible to recreate the sharp cutoff that is seen in the 

data using the sum of multiple Holtsmark distributions. 

It was clear at this point that the Holtsmark distribution, or some combination of 
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Holtsmark distributions, did not match the calculated force distribution. The reason 

for this difference in structure was initially assumed to be the result of a computational 

bug, and thus we proceeded to examine this possibility. 

4.6.1 Testing of the force calculations 

In order to be sure that these results weren't simply the result of a bug in theN -body 

simulation's acceleration output option, we wrote a C program which reads in the 

star positions, calculates the net force on each star, and then compares this to the 

acceleration outputted by the treecode. To see how the force calculation is done, 

consider the equation 

a 
Fi=--

0 
U(r). 

Xi 
(4.59) 

We're using Cartesian coordinates, so i = 1 to 3, and Xi are the standard Cartesian 

dimensions. This is equivalent to 

Fi = -
8
8

r U' (r). 
Xi 

(4.60) 

Now since 

r = J Xf + x§ + X~ (4.61) 

%;, is given by 

or 1 2xi 

OXi 2 J xr + x§ + X~ 
Xi 

r 
(4.62) 

To calculate the second part of eq. ( 4.60), we note that the gravitational potential is 

given by 

GMm 
U(r) = ---

r 
(4.63) 
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the derivative of which is 

U'(r) = G~m· 
r 

In the simulations that were run G = 1, M = 1 and m = 1 so this becomes 

U'(r) = 12' 
r 

Therefore we can calculate each component of the force by using 
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(4.64) 

(4.65) 

(4.66) 

This equation was used to calculate the three components of the force on one star 

due to every other star, and then these were combined to give the net force on that star 

at that timestep. This was done for every star at every timestep that was analyzed, 

and then these forces were compared to the accelerations that were calculated and 

output by the N-body simulation. As mentioned above, since all the masses in these 

simulations were set to one, the forces and accelerations for each star were equal. The 

percent difference in these values was then calculated and output, and the average 

percent error for all of the stars was < 0.1% for all the calculations done for this 

thesis. This small difference in these values was expected, as the N-body simulation 

that we used makes very small approximations in the force calculations in order to 

speed up the simulation. 

The possibility that the unusual results could be the result of a computational 

bug other than faulty acceleration data (which was ruled out above) was eliminated 

through further testing, which is described in the next section. 

4. 7 Discussion and testing of assumptions 

The other possible cause of the difference between the Holtsmark distribution and 

the actual calculated force distribution was that an assumption was made in the 
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derivation of the Holtsmark distribution that was not valid. There were two major 

assumptions made, and we discuss each one below. 

4.7.1 First assumption 

Recall that the first assumption was that the stars were independently, identically 

distributed. This assumption was also made in generating the initial conditions of 

the simulations! The stars' initial positions were generated using a King model, and 

they were each generated independent of each other. Since at the beginning of the 

simulation the difference in the calculated forces and the Holtsmark distribution was 

present, this assumption could not be the cause of the problem. 

It is worth noting that Chandrasekhar predicted that at higher values of F, the 

Holtsmark distribution will differ from the actual force distribution [23]. He suggested 

that this is because binaries star systems will form over time in a globular cluster, and 

the existence of such systems goes against the assumption of randomly distributed 

stars. In order for two stars to become bound to each other, they would have to have 

more potential energy than kinetic energy. So we have [23] 

(4.67) 

where lVI is the relative velocity of the two stars. Thus, the critical distance at which 

two stars would become bound together is 

Accordingly, the force at this value of r is 

and if we substitute the mean squared velocity for the squared velocity, we get 

M2 (IVJ 2 )~v 
JFimax = 4G(Ml + M2)2 

(4.68) 

(4.69) 

(4.70) 
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Chandrasekhar argued that while the Holtsmark distribution will predict some forces 

greater than eq. ( 4. 70), the actual force distribution will very rapidly approach zero 

at this point. 

For our simulations with N* = 1000, G = Mt = M2 = M = 1 and< IVI 2 >~v"' 1, 

and thus 

IFimax ""'0.1. ( 4. 71) 

As we can see from figure 4.1, the difference in the calculated force and the Holtsmark 

distribution happens at values of IFI a couple of orders of magnitude lower than this, 

and thus this is definitely not the cause of this difference. 

4.7.2 Chandrasekhar's defense of the second assumption 

The second assumption was: "The cluster can be treated as if the stars are uniformly 

distributed over an infinite volume". Chandrasekhar defended this assumption by 

arguing that the dominant contribution to the force on each star is provided by the 

nearest neighbour of that star, and thus "the formal extrapolation to infinity of the 

density of stars obtaining only in a given region of a stellar system can hardly affect 

the results to any appreciable extent" [23]. He went on to show that, in the limit 

as F approaches infinity, the force due to the nearest neighbour of a star matches 

exactly the force predicted by the Holtsmark distribution. He thus concluded that the 

strongest forces are produced only by the nearest neighbour, and thus assumptions 

made about the general structure of the cluster should not affect the result of the 

derivation to any appreciable extent. 

While Chandrasekhar's argument may seem convincing at first glance, it is flawed. 

In Chandrasekhar's defense of this assumption, he assumed that the Holtsmark dis

tribution, derived using this assumption, is correct. He did this when he concluded 
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that the strongest forces are always produced by the nearest neighbour. If an as-

sumption is made in a derivation, the result of that derivation cannot be taken as 

true in defending the assumption, and this is effectively what he did. 

4. 7.3 Re-examination of the second assumption 

This assumption really has two parts, which are related. In breaking it down, the first 

question we ask is if the assumption of a uniform distribution of stars is acceptable. 

In our earlier tests we used clusters that were set up using a King model, and thus the 

stars were not uniformly distributed. So we decided to test some clusters that were 

set up with a uniform distribution of stars, and we obtained the following results 
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(b) Calculated distribution 

Figure 4.13: Results for N. = 10000, uniform distribution 
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(a) Holtsmark distribution (b) Calculated distribution 

Figure 4.14: Results for N. = 30000, uniform distribution 
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Figure 4.15: Results for N. = 50000, uniform distribution 
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As we can see from these results, the same sharp cutoff exists in the calculated 

distributions, and thus the assumption of uniform distribution cannot be the cause 

of the problem. Note that the Holtsmark distribution and the calculated distribution 

are no longer directly lined up. This is because we did not fit the value of Q H for the 

Holtsmark distribution, but instead calculated it using n = 4!~3 , where the position 

of the farthest star from the center was used as the radius of the cluster. We will 

discuss the reason for this below. 
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The second part of the assumption says that the cluster can be treated as if it 

is infinite. This gives us a situation where each star is assumed to be completely 

surrounded by a uniform number of stars. Clearly this is not the case for stars which 

are situated in the outer regions of the cluster, as these stars are surrounded by empty 

space on one side, and stars on the other. Not only is the density lower in the area 

surrounding these stars, but most of the force on these stars in concentrated towards 

the center of the cluster. Since there are no balancing forces pulling these stars away 

from the cluster, we might expect the magnitude of the force acting on these stars to 

be greater than it would be for stars closer to the middle of the cluster. 

If Chandrasekhar's assertion that the vast majority of the force comes from the 

nearest neighbouring star is correct, then this extra force experienced by stars in the 

outer regions of the cluster should be insignificantly small. If his assertion is not 

correct, then it's possible that this extra force causes the actual force distribution 

to be quite different from the distribution predicted by Holtsmark. Since the cluster 

being treated as infinite is the only assumption which we have not validated, this is 

presumably the case. 

In order to prove that this assumption is indeed faulty, we designed a test that 

would approximate a uniform distribution of stars over an infinite volume. Instead of 

just calculating the force on each star in a cluster, we decided to calculate the force 

on a test star situated at the center of a cluster. Of course, this only gives us one 

force. In order to obtain an accurate distribution of forces on this central test star, 

we decided to generate new uniformly distributed clusters over and over, each time 

calculating the net force on the center of the cluster. 

The only difference between this system and the one that the Holtsmark distri

bution describes is that the radius does not extend to infinity, something which we 

can't computationally recreate. However, this does remove the problem associated 
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with the varying density on the outer edges of the cluster. The cutoff is symmetric in 

all directions for this new system, while it is not for the force distribution of all the 

stars in a single cluster. 

The results of this test are given below for N. = 1000, N. = 10000 and N. = 

30000, with NConfigs = 50000, where NConfigs is the number of clusters that 

were generated in each case to obtain the force distribution. This is a sufficiently 

large value of NConfigs to assure accurate results. 

# of stars # of stars 

(a) Holtsmark distribution (b) Calculated distribution 

Figure 4.16: Results for N. = 1000, NConfigs = 50000 

# of stars 

(a) Holtsmark distribution 

# of stars 

400 

300 

200 

100 

(b) Calculated distribution 

Figure 4.17: Results for N. = 10000, NConfigs = 50000 
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# of stars # of stars 

500 500 

400 400 

300 300 

200 200 

100 100 

Log(F) Log(F) 

(a) Holtsmark distribution (b) Calculated distribution 

Figure 4.18: Results for N. = 30000, NConfigs = 50000 

As we can see from these results, the Holtsmark distribution and the calculated 

distribution are in excellent agreement for this system. Note that again we did not 

fit Q H, just like in the uniform distribution test above, because for this system it 

should be accurately determined by the number density n. As we can see from the 

agreement in the results above, this seems to be the case. 

We used the same Matlab@ and Mathematica@ scripts to generate these results 

as were used for the initial results. The only difference in the software used was the 

C programs, and since we throughly tested the C program used in our initial results, 

we can definitively say that our original results were correct. 

We note here that the uniform distribution results shown earlier in figures 4.13, 

4.14 and 4.15 show that the calculated force distribution not only doesn't seem to 

have the same shape as the Holtsmark distribution, but seems to predict much greater 

forces, on the whole, than the Holtsmark distribution. We can safely say this because 

the results of our new system line up well with the Holtsmark distribution without 

fitting of QH, and in both cases we have the uniform distribution that Chandrasekhar 

assumes in his derivation. This is something which could not be determined from 
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examination of the initial results, as the non-uniform distribution meant that QH 

had to be fit. We will discuss the reason for this in the next section. 

Clearly we can conclude from the results of this test that the second assumption 

made in the derivation of the Holtsmark distribution, that being that the cluster can 

be treated as if the stars are uniformly distributed over an infinite volume, leads to 

the wrong force distribution. It is clear that the force distribution must depend to 

some degree on radius. We examine this dependence in the next section. 

4.8 Dependence of force distribution on radius 

To see the extent of the dependence of the force distribution on radius, we decided to 

run the multiple configurations test again, this time changing the position of the test 

star. The results with the test star located at varying fractions of the total radius of 

the cluster are shown below. 
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(a) Calculated distribution at Rtest = R/ 4 
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(c) Calculated distribution at Rtest = 3R/ 4 
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(b) Calculated distribution at Rtest = R/2 
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(d) Calculated distribution at Rtest = R 

Figure 4.19: Results for N. = 30000, NConfigs = 50000 
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We can see from these results that as we increase Rtest. the lower end of the force 

distribution Fmin moves up while Fmax gets slightly larger. This means that as we 

move towards the edge of the cluster there are less small forces felt, while a small 

extra amount of force seems to be added to those stars experiencing the greatest 

forces. At R = Rtest, the distribution becomes very concentrated at about F "' e-4 . 

The explanation of this phenomena comes straight from Newton's theorem. If a 

sphere of radius R and mass M has uniform density, the net gravitational force acting 
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on a test particle located within the sphere at a radius of r is given by 

(4.72) 

where M,. is defined as the mass interior to the radius r [29]. Clearly M,. = 0 for 

r = 0 and M,. = M for r ;:::: R. Thus, as the test star is moved out towards the edge 

of the cluster, there is a greater net force from distant stars, pulling it towards the 

center of the cluster. The effect of this is to add a certain minimal force to the force 

this test star experiences due to its nearest neighbours. 

If the test star is located at the center of the cluster, cases where the closest star 

is somewhat far away would result in quite a small force (these cases account for the 

forces of about Fmin rv e-8 seen in figure 4.18). However as the test star moves farther 

towards the edge of the cluster, the unbalanced force of stars to one side pulling the 

test star towards the center assure that the minimum force Fmin increases, until at 

the edge of the cluster the majority of the force is provided by background stars, and 

not the nearest neighbours. This is why the force distribution in figure 4.19d is so 

concentrated. 

It seems that the hypothesis we put forth earlier was correct - stars in the outer 

regions experience a higher net force, due to the fact that they are not surrounded 

by stars on all sides. Rather there are many stars to one side of them, pulling them 

towards the cluster, and there is no balancing force on the other side. We can clearly 

see that there is a need for a force distribution that takes radius into account. In fact, 

we will show that this force distribution will also depend on the distribution of mass 

in the cluster. We discuss the formulation of this more generalized force distribution 

in the next section. 
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4.9 Derivation of a generalized force distribution 

The derivation of a generalized force distribution starts in much the same way as the 

derivation of the Holtsmark distribution itself. The important difference in the two 

lies in the positioning of the test star: the Holtsmark distribution simply places it at 

the center, which we now know leads to an incorrect force distribution. The more 

general derivation places the test star at position x 0 . As we will see, this complicates 

the situation greatly. 

4.9.1 Application of Markov's method 

Let xi be the position of star i and let the acceleration which it imparts to a test star 

at x 0 be denoted by 

Xi- Xo 
ai = GMil 13 . 

Xi- Xo 

The net acceleration of the test star is given by 

N 

a= l:ai. 
i=l 

Again we assume that the stars are independently, identically distributed. 

(4.73) 

(4.74) 

From this point we can follow the same steps as we did in section 4.2.2, up to our 

second assumption, to obtain 

(4.75) 

which is similar to eq.(4.13), with a couple of notable exceptions. First of all, the 

definition of a has changed to 

X- Xo 

a=GMI 13. 
X -Xo 

(4.76) 

We also note that while w does depend on M, we have not made that dependence 

explicit yet (we will later). 
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Again we use the assumption that the stars are independently distributed to ex

press the probability density w in terms of the number density p 

(4.77) 

This gives us 

(4.78) 

where 

(4. 79) 

In the derivation of the Holtsmark distribution, we took the limit R---? oo of AN(u) 

and used Taylor series expansions to simplify the expression. While we now know 

that we cannot do this, taking the limit N ---? oo seems quite reasonable, as in practice 

the value of N is usually very large. Then we have 

. 1 
AN (u) = hm (1- NC(u))N 

N->CXJ 
(4.80) 

and using the same Taylor series expansion and simplification as before we arrive at 

A(u) = e-C(u). (4.81) 

We note that if we set p( x) = n, where n is the number density in a very large 

(strictly speaking, infinite) uniform cluster, we obtain 

( 4.82) 

which makes eq.(4.81) equivalent to eq.(4.20), and thus we have retrieved the Holts-

mark distribution (it is trivial to transform to x 0 as the origin if p = n is constant). 
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4.9.2 Non-constant density 

Again we change our variable of integration from d3x to d3a. However this time the 

addition of x 0 propagates through, and we end up with 

(4.83) 

Again taking derivatives gives us 

d3x = }(GM)312a-912d3a. (4.84) 

Substituting eq.(4.83) and eq.(4.84) into eq.(4.79) we get 

C(u) = }(GM)3/2 J d3aa-9/2{1- e"u·a}p [(GM)l/2a-3/2n + xo]. (4.85) 

Note that the dependence of p on M has now been made explicit. One interesting 

feature of eq.(4.85) is that the averaging over mass becomes a complicated matter, 

because of this dependence of p on M. The mean (M312 ) no longer provides a 

complete characterisation of the effects of mass variation, as it does for the Holtsmark 

distribution. 

We will conclude this chapter with some work that has been done on two different 

approaches to solving eq. ( 4.85) for a cluster in which all of the stars have equal mass. 

In this case we can introduce the reduced variables 

and eq.(4.85) becomes 

a= (GM)a 

u = (GM)-1 u 

c (u) =} J d3aa-912 {1- e"u·O:} p [a-312a + xo] 

(4.86) 

(4.87) 

(4.88) 

For our first approach to solving this equation we will integrate using cylindrical 

coordinates, and in our second approach we will try using spherical coordinates. 
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4.9.3 Cylindrical coordinate approach 

If we combine eq.(4.88) and eq.(4.2) we obtain 

P(a) = (~~r J e-LU·ii-C(u)d3u. 

Now using the fact that 

r r2" lo d'!9 sin '!9 lo d<p ewucos{) 
1 27T- ( ewu- e-wu) 

wu 
47T . 
-s1nau 
au 

we integrate around the it direction as polar axis and get 

P (a) = a2 J d'!9ad<paP (a) 

-2 (GM)3 J 47T . (--) -c(u) d3-a -
2
- = s1n au e u 

7T au 

_ (GM)
3 j sin (au) -c(u) d3 _ a 

2 2 
_ e u. 

7T u 

Kext we assume that p is spherically symmetric, so that 

and we take the z axis for both integrals to coincide with x 0 so that 

where L is a unit vector in the z direction and 
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(4.89) 

(4.90) 

(4.91) 

(4.92) 

(4.93) 

(4.94) 
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where (all, O:j_, 'Pa) is the expression for a in cylindrical coordinates. Similarly, we 

write u in cylindrical coordinates as 

( 4.95) 

whence, from eq. ( 4.88) we have 

or 

Then eq. ( 4.91) becomes 

(4.98) 

(4.99) 

with 

(4.100) 

Hence four integrations are necessary to evaluate P. 
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A modification 

Eqn. ( 4.97) can be written as 

It is evident that 

Hence 

~ C ( u11, u.l) = ~ C ( -u11, U_j_) 

~ C ( u11, U_j_) = -~ C ( -u11, U_1_) 

with use of eqs. (4.100), (4.101) and (4.102). 

128 

(4.101) 

(4.102) 
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A Gaussian model 

We will now introduce a Gaussian model of a cluster, which is defined by 

>. 3 
nmax = (-) N. 

7r 

4.9.4 Spherical harmonic approach 

Recall eq.(4.88) 

129 

(4.104) 

(4.105) 

(4.106) 

(4.107) 

(4.108) 

(4.109) 

(4.110) 

(4.111) 

We now introduce spherical polar coordinates rather than cylindrical coordinates: 



CHAPTER 4. THE HOLTSMARK DISTRIBUTION 130 

where the angles are measured relative to L. Then (see appendix C.1) 
00 l 

e<u·& = 47r L L
1jz (uii) L Yz:n (19a, (f?a) Yzm (19u, (f?u) · (4.113) 

l=O m=-l 

If p (x) is spherically symmetric, then it depends only on x = lxl, and p [a-312a + x 0 ] 

depends on J (i-1 + 2ii-3/ 2(i · Xo + x6 and hence is axially symmetric in a about Xo. 

If p is expanded in spherical harmonics the result will be of the form 
00 

p [a-312a + xo] = L pz (ii, xo) Yio (19a, (f?a) · (4.114) 
l=O 

Substitution of eqs. (4.113) and (4.114) into eq. (4.111) leads to an expression of 

two terms, the first of which is 

C (ii\ = -Vif J diiii- 512 Po (ii, xo) (4.115) 

and the second of which is 

C ( U )2 ~ -2,-J df!adii ii -S/
2 

{ t, ,' j, ( UiX) mtl Y,;, ( ~"' \'a) l'lm ( ~ u, I' a) 

~ Pl' (ii, xo) l'l•o (~.,\'a) } (4.116) 

or 

C (ii) 2 = -27r f L
1Yio (19u, (f?u) J diiii-512jz (uii) pz (ii, xo) 

l=O 

= -Viff L1v'2T+1Pz (cos 19u) j dii ii-512 jz (uii) pz (ii, xo) 
l=O 

using the fact that 

Putting eqs. ( 4.115) and ( 4.117) together we obtain 

C (ii) = -Vif j diiii- 512 {jo (uii)- 1} Po (ii, xo) 

-,;;;rf L
1v'2f+1P1 (cos19u) J diiii- 512jz (uii) pz (ii, xo) 

1=1 

(4.117) 

(4.118) 
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or 
()() 

C(u) = VWL ~1 V2l + lxz (u, xo) Pz (cosOu) (4.119a) 
l=l 

Xo (u, xo) = J daa-512 {jo (ua)- 1} Po (a, xo) (4.119b) 

Xz (u, xo) = J daa- 512 jz (ua) pz (a, xo), l > 0. (4.119c) 

Because 

. y0i 
00 

(-lt (::_
2

)Z+2n 
Jz(x) = 2 ~n!r(n+l+~) 

it follows that 
x2 

]o ( x) - 1 = - 6 + 0 ( x4
) 

so that p0 (ua) must be bounded as a---+ 0 for the first integral in eq. (4.118) to exist. 

For l > 0 we have 

jz (x) = v: r (l ~ ~) (~)l + 0 (xl+2) 

so that PI ( ua) must go to zero faster than a112
' and pz ( ua) for l > 1 must be 

bounded, as a ---+ 0, for the integrals in the second line of eq. ( 4.118) to exist. In 

point of fact for clusters with a finite tidal radius it appears that there will be a cutoff 

for small a below which pz will be zero. 

The Gaussian model in spherical polar coordinates 

We now reintroduce a Gaussian model of a cluster, which is defined, as above, by 

( ) 
--\x2 

p X =nmaxe (4.120) 

(4.121) 

Then 

(4.122) 
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From the Rayleigh expansion (see appendix C.1) we have 

00 

eLk·x = L t1 (2l + 1) j 1 (kr) Pz (cos1) 

00 

e-k·re = L t1 (2l + 1) ]z (tkr) Pz (cos1) 
l=O 
00 

= L (-1)1 (2l + 1) iz (kr) P1 (cos1) 
l=O 

as the modified spherical Bessel function of the first kind obeys 

Hence 

2.A --3/2- ~ l ( r:::) e- "' o:·reo = ~ (-1) (2l + 1) iz 2>.x0 jvii Pz (cos19a) 
l=O 

= f ( -1)
1 

(2l + 1) iz ( 2>-.xo/V&) v2l
4

7r 1 Yzo (19a) 
l=O + 

whence 

00 

e-2 .xc;-
3

/
2
a·xo = J4:;r L ( -1)1 v'2f+1 iz ( 2>-.xo/ J&) Yzo ( 19a, Cfa) · (4.123) 

l=O 

When this is substituted into eq. ( 4.122) the result is 

00 

p [a-312& + xo] = J4:n:nmax e-.A(a-l+x5) L ( -1)1 v'2f+1 iz ( 2>-.xo/v'&) Yzo ("!9a, Cfa) 
l=O 

(4.124) 

which is of the form (4.114) with 

(4.125) 

The functions pz (0:, xo) go strongly to zero as 0:---+ 0, and also go strongly to zero as 

x0 ---+ oo. For l 2:: 1 they go to zero as x0 goes to zero or as 0: ---+ oo but Po ( 0:, Xo) 

goes to a nonzero constant as x0 ---+ 0 or 0: ---+ oo. 
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Substitution of eq. (4.125) into eq. (4.119c) yields 

Xt ( u, xo) = ( -1i J 4Ir (2l + 1) nmax e->.x5 J dii ii-5
/

2 {Jt ( uii) -ow} it ( 2..\x0/~) e->./a. 

(4.126) 

Setting ii = r 2 in the we arrive at 

Xt (u, Xo) = 2 (-1i V47r (2l + 1) nmax e->.x51
00 

dtt2 {Jt (ujt2)- Ow} it (2..\xot) e->.t
2

• 

(4.127) 
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Concluding remarks 

5.1 Slowly-changing variables 

In this thesis we performed both a standard and an automated ARMA analysis of the 

period and angle of stars in a globular cluster. We found that these variables could 

not be fit to ARMA models of order five or less. We suggested that fitting higher order 

ARMA models, or models such as GARCHMA which incorporate heteroskedasticity, 

may be possible. Continuation along either of these veins would require extensive 

work. 

While our time series analysis was not successful, there is still reason to believe 

that the study of globular clusters using slowly-changing variables is a worthwhile 

endeavour. As was mentioned in the introduction, the Delaunay variables are often 

used in the study of planetary systems, and there is no reason to believe a similar 

set of variables would not be as successful when applied to globular clusters. If a 

continuation of this work using higher order ARMA models or GARCHMA models were 

successful, this could lead to the derivation of a new set of kinetic equations describing 

globular clusters, which would be a very desirable outcome indeed. 
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5.2 Force distribution 

We also showed in this thesis that the commonly held belief that the Holtsmark 

distribution accurately describes the distribution of forces in a star cluster is incorrect. 

We discussed the properties of the real force distribution, and we explained why 

this distribution differs from the Holtsmark distribution. We then presented the 

beginnings of the derivation of a more accurate force distribution for a globular cluster. 

Much work will be required to derive the form of a fully generalized force distri

bution for globular clusters. This is a fundamental property of globular clusters, and 

thus there are many motivations, to go along with those we mentioned in chapter 4, 

which encourage us to achieve a better understanding of its behaviour. 



Appendix A 

Derivation of the collisionless 

Boltzmann equation 

Here we will present a brief derivation of the collisionless Boltzmann equation. We 

will refer to the six dimensional phase space of position and velocity for a single star 

as the f1 space. The state of each star is represented by a point in the f1 space of 

that star, and the state of the entire system is given by N points in the f1 space [27], 

where N is the number of stars in the system. 

Before developing the collisionless Boltzmann equation, we define the coordinates 

in the f1 space in terms of one vector w so that 

(A.l) 

We can express the flow of these six dimensional points in the f1 space as 

w =(:X, v) = (v, a). (A.2) 

Due to the fact that we are assuming close stellar encounters are unimportant, 

we know that stars will pass through the f1 space smoothly. Thus w must satisfy a 
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continuity equation. This is given by 

(A.3) 

Physically, the first term on the left hand side of this equation represents the rate of 

increase of stars into the particular volume being considered, while the second term 

on the left hand side is the rate at which stars exit this volume [17]. Obviously to 

have continuity the sum of these two terms must be zero. 

In order to simplify this equation we first expand it slightly: 

(A.4) 

Taking the third term of the left hand side, we have 

f~ owi = f~ (ovi + oai). 
~ow· ~ OX· ov 
i=l 2 i=l 2 2 

(A.5) 

The ( ovd oxi) term must be zero since the velocity and position coordinates are 

independent, so we get 
3 

J"' oai = 0. 
~ov· 
i=l 2 

(A.6) 

This is zero because a is independent of v. Thus we can eliminate the third term 

from the left hand side of eq.(A.4), and we have 

(A.7) 

or 

(A.8) 

and we have arrived at the collisionless Boltzmann equation. It is a special case of 

the well known Liouville's theorem [27]. 



Appendix B 

Asymptotic analysis of the 

Holtsmark distribution 

Recall eq.( 4.44) for the Holtsmark distribution 

2 100 . ( /(3)3/2 H ((3) =- xsmxe- x dx. 
n(3 o 

(B.l) 

If we make the substitution x = (3t, dx = (3dt we get 

2 100 t3/2 . H((3) = -(3 dte- t sm(Jt. 
7r 0 

(B.2) 

B.l The Holtsmark distribution for small f3 

For small values of (3 we have sin(Jt ~ (3t in eq.(B.2), and thus we have 

(B.3) 

Setting s = t312 , dt = ~s- 113 ds, we find that 

H ((3) 

(B.4) 
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where 

4 
3

7f = 0.424413 (B.5) 

B.2 The Holtsmark distribution for large f3 

To estimate the Holtsmark distribution for large (3, set x = 8 2 in eq. (B.2). Then 

H (!3) = - d88 e-s Slll8 4 100 3 3/{33/2 . 2 

nj3 o 

2 100 
-(3 d8 8

3 exp ( -8
3 I (3312 + ~82 ) + c. c .. 

~7f 0 
(B.6) 

Consider 

h = 1oo d8 exp ( -83 I (33/2 ± ~82) . (B.7) 

Set 8 = at with a = (3312 . Then 

(B.8) 

This is heading in the direction of a saddle-point expansion in the manner of Airy 

functions. 

Let us take a different tack. Write eq. (B.2) in the form 

H ((3) = ~:(31
00 

dx x exp [- (xl (3)
3
1

2 + ~x J + c.c. (B.9) 

If this is regarded as a complex integral then the path of integration can be deformed 

from the real axis to the path 

z r eLJ (B.lO) 

0 < r<oo 

0 < 8<nl3 
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Along this path the factor e "z will provide convergence. Hence expand exp [- ( z j (3) 3/
2 J 

to obtain 

(B.ll) 

Keep only the first terms in this expansion, and deform the path of integration to the 

positive imaginary axis: z = re "1r/2 . Setting 

H ((3) = 

(B.l2) 

whence 

(B.13) 



Appendix C 

Useful expansions, theorems and 

representations 

C.l Rayleigh's expansion 

If k = (k, rJ', r.p') and x = (r, rJ, r.p) then Rayleigh's Expansion can be written as 

00 l 

e'k·aJ 47f L ~~ Jl ( kr) L Y[;', ( rJ, 'P) Ylm ( rJ', rp') 
l=O m=-l 

00 

L ~~ (2l + 1) Jl (kr) Pz (cos1) (C.1) 
l=O 

COS"( 
k·x 
kr 

(C.2) 

= V 2l~ 1 Yl,o ("!) (C.3) 
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C.2 Addition theorem for spherical harmonics 

We have 

Pz (cos')') 

l 

2[4: 1 L ~;, ( 79' <p) Yzm ( 79'' <p') 
m=-l 

cos 'Y cos 79 cos 79' + sin 79 sin 79' cos ( <p - <p1
) 

(C.4) 

(C.5) 

C.3 Integral representation of Bessel functions of 

the first kind 

We have 

(C.6) 
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