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Abstract

This thesis presents the results of a study undertaken to evaluate the feasibility of

a low-cost Particle Tracking Velocimetry system to measure two dimensional steady flow

vectors. Emphasis was placed on the suitability of the technique for ship propulsion

research.

Experiments were conducted in a cavitation tunnel. Flow illumination was

provided by an air-cooled Argon-ion laser with a measured output of 30 mW. An

oscillating mirror was used to redirect and spread the laser light into a sheet. The water

was seeded with 40 JLmAluminium-Silicate micro-spheres and particle images recorded

using a standard Charge Coupled Device (CCD) video camera. High frequency sweeping

of the laser beam produced multiple exposures within a single video field. This allowed

the system to be used with flow speeds beyond the limit normally imposed by the

standard 30 Hz. video framing rate. A desktop computer with a frame-grabber board was

used to digitize selected video fields. Particle tracks were analyzed individually using off

the-shelf image analysis software. Velocity was computed by dividing the measured

length of the track by the shutter speed of the camera.

Experiments were carried out in four phases. Measurements were made in

uniform flow and found to be accurate and repeatable to within a single pixel. This gave

a resolution of 0.072 mls for a flow speed of 1.656 mls and a 140 mm x 110 mm field

of view. Experiments were conducted to determine the flow field around a smooth
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cylinder at a Reynolds number of 72,700. The results showed good agreement with

potential theory in the region upstream of the separation point.

To demonstrate applicability of the work to ship propulsion research a set of

experiments were done to measure the simulated nominal wake in the region behind a

model ship skeg. The static thrust and torque of a four bladed B-screw propeller, both

with and without the skeg, was measured in the cavitation tunnel. The effect of the skeg

on propeller performance has been evaluated and discussed.

For the case of no skeg, a comparison is made between the experimental results

and predictions of performance as given by lifting surface theory. The experimental

values of thrust and torque were 22 % and 12% higher respectively than what was

predicted by lifting surface theory assuming a uniform wake.

For the case with the skeg the lifting surface theory, using as input the wake

determined by the particle tracking experiments, showed qualitative agreement with

experimental measurements in predicting increases in blade thrust and torque in the

stalled flow behind the skeg.
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Chapter 1

Introduction

This thesis presents the results of a study undertaken to determine the

effectiveness of a low-cost, two dimensional Particle Tracking Velocimetry (PTV) system

to measure steady flow vectors in water. The ability to make non-intrusive measurements

of fluid flow is a powerful investigative tool. The capability to provide simultaneous

measurements over relatively large areas within a flow field gives PTV an advantage

over single point measurement techniques such as pitot tubes, Laser Doppler Velocimetry

(LDV) or Constant Temperature Anemometry (CTA). However, in general, individual

PTV measurements have a spatial and temporal resolution less than what is possible with

the other techniques.

Particle Tracking Velocimetry can be seen as an extension of classical flow

visualization. Modem techniques for qualitative visualization of flow phenomena date

back to the work of Ernest Mach in the late 191h century. A collection of examples

illustrating the different methods has been given by Van Dyke (1982). The primary

obstacle to extracting quantitative information from these techniques has been the



daunting amount of information to be processed in order to gain any useable data from

the experimental records. Another factor for consideration is the time delay inherent with

photographic equipment which captures images on chemically processed film. This delay

between capturing and processing an image can be costly in terms of time lost in

repeating experiments in order to acquire suitable images. Aside from these technical

difficulties, quantitative information on fluid flow has theoretically been available for

many years. However, until recently the time constraints have restricted the widespread

use of quantitative flow visualization, Gharib and Willert (1989).

Velocity vectors within a flow field can be computed by determining the

movement of particulate markers within some suitable time frame, Lourenco et al.

(1989). Utilizing this fundamental definition of velocity to derive quantitative data from

images of a flow field is not a new concept. However recent advances in PTV have been

aimed at increasing the accuracy of individual measurements and reducing the time and

effort required to obtain such information. The ongoing development of solid-state digital

video cameras and powerful desktop computers has contributed significantly to this effort.

Using the video camera to capture and store images greatly simplifies qualitative flow

visualization. Using commercially available software for image processing and image

arithmetic, quantitative visualization has become economically feasible. A review of the

current state-of-the-art in PTV is given by Adrian (1991).



1.1 Objectives and Scope of the Study

Particle Tracking systems utilizing multiple frames from a normal video camera

are used only in the study of low speed flows, see e.g. Okuno (1990) and Hamilton et

al. (1992). To ensure that the image of a particle is visible in two sequential frames, the

particle displacement within the time step determined by the framing rate (30 Hz.) should

not exceed, typically, one half of the field of view of the camera. The flow speeds for

which such a system could be utilized are unrealistically slow for practical applications

in naval architecture. The use of multiple exposures within a single video image avoids

the limitations of the 30 Hz. framing rate, but requires the use of an expensive high

powered pulsed, or externally modulated constant wave (CW) laser for illumination, see

e.g. Rimai et al. (1986).

Important criteria in the design of the present system was that it not be limited to

low flow speeds, and that illumination be possible using a relatively low-power air-cooled

laser. The flow speed consideration was necessary in order that the system be useful as

a tool in practical propulsion research. The restriction on the illumination source was to

keep cost as low as possible and avoid the complexities, such as special cooling

arrangements and safety precautions, associated with large laser powers.

All experiments were conducted in the cavitation tunnel at the Institute for Marine

Dynamics in St. John's, Newfoundland. The flow in the test section was illuminated



using an air-cooled Argon-ion laser with a measured output of 30mW. The laser beam

was redirected and formed into a sheet using an oscillating mirror. Particle images

formed by the laser light reflecting off particles in the flow were recorded using a digital

Charge Coupled Device (CCD) video camera. Multiple 'sweeps' of the laser beam

within the time frame defined by the shutter speed of the camera produced video fields

containing multiple exposures of the particles' motion. Using this method the basic

system satisfied both the speed and cost criteria. Digitization of the images and analysis

of particle tracks were done using an mM~ compatible desktop computer. Individual

fields from the videotape were digitized using a frame grabber board. Analysis of these

images was performed manually using commercially available image analysis software.

The length and attitude of the particle tracks were measured interactively using a screen

cursor. The magnitude of the local flow velocity vector, as defined by particle

displacement, was calculated by measuring the length of the particle track and dividing

by the shutter speed of the camera. This experimental technique has been described as

'single frame/multiple pulse, low image density, Particle Image Velocimetry', Adrian

(1991). More concisely, it is referred to in this thesis as Digital Particle Tracking

Velocimetry(DPTV). This nomenclature refers both to the method of image acquisition

(digital video camera) and the method of analysis (particle tracking).

The experimental study wasdivided into three levels, with each stage representing

an increase in complexity of the flow being investigated. To evaluate the parameters of

the system a uniform flow was selected for the initial investigation. Results indicated that
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