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Abstract 
Multivariable processes are often found in many industries such as chemical, refinery, 

and aerospace. The complex and nonlinear nature of multi-input and multi-output 

(MIMO) systems makes multivariable control a challenging task. Multivariable con­

trol become difficult in the presence of loop interactions where different control loops 

in the multivariable system exhibits coupled behavior in the control variables. When 

the multivariable system is broken into several single-input-single-output (SISO) con­

trol systems, the individual control loops can be characterized by equal number of 

SISO control problems. However, when interactions exists, an individual control loop 

will be affected by more than one control variable in the multivariable system. There­

fore design of MIMO control systems is often a challenging research area in the area 

of multivariable control. 

There are many multivariable control techniques which have been developed to 

address the above issues, including advanced multivariable control techniques such 

as model predictive control. Among them, proportional integral derivative (PID) 

control has been the most common in industries. Application of fuzzy logic for control 

problems have been shown to improve overall performance significantly. Although 

there are many applications related to SISO based fuzzy PID systems, the application 

and design of fuzzy PID systems for multivariable systems are less common. The 

adaptive and nonlinear nature of fuzzy control allows fuzzy PID systems to handle 

nonlinear systems more efficiently than using linear PID controllers. 

The objective of this thesis is to develop a technique to design and tune PID type 

fuzzy controllers for multivariable process systems. In this work, the standard addi­

tive model (SAM) based fuzzy system is selected to design the rule base. The SAM 



inference system follows a special volume and centroid of membership based technique 

for defuzzification. A nonlinearity study has been performed to show the advantages 

of using a SAM based inference system against traditional min-max-gravity based 

inference systems. The SAM system is implemented on two fuzzy PID (FPID) sys­

tems. FPID type I is designed using Mamdani's style FPID system and constitute 

coupled rules to define the overall FPID output. FPID type II is designed using a 

rule decoupled system, in which each PID action is described using a separate rule 

base. 

FPID tuning is performed using the two-level tuning principle where the overall 

tuning is decomposed into two tuning levels, low-level and high-level. The low-level 

tuning is dedicated to devise linear gain parameters in the FPID system where as 

the high-level tuning is dedicated to adjust the fuzzy rule base parameters. The low­

level tuning method adopts a novel linear tuning scheme for general decoupled PID 

controllers and the high-level tuning adopts a heuristic based method to change the 

nonlinearity in the fuzzy output. 

The stability analysis using Nyquist array and Gershgorin band proves the ro­

bustness of the proposed method. The stability criterion is performed to define the 

hard limits for nonlinear tuning variables in the SAM system. The proposed FPID 

tuning technique guarantees the stability of the MIMO control system. 

The applicability of the proposed methods in this research is demonstrated through 

several control simulations and real-time experiments. The results show FPID sys­

tems able to handle such a complex system more robustly than using linear systems 

and also the experiments validated the design method proposed in this thesis. 
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Chapter 1 

Introduction 

1.1 Overview of Multivariable Control 

There are many industrial control systems which are required to deal with multi­

variable systems. The distillation columns is one good example used in the chemical 

and refining industry to achieve product purification. Multivariable control becomes 

a challenging task in the process industry especially when the process contains sig­

nificant interaction among loops. In addition to the dynamic coupling existing in 

multi-input-multi-output (MIMO) systems, the general limitations that are applicable 

for single-input-single-output (SISO) systems also complicates the design procedure. 

Levien and Morari [1] have discussed three such limitations on process resilience. 

• Non-minimum phase characteristics. 

• Constraints on manipulated variables. 

• Sensitivity to model uncertainty. 

The non-minimum phase characteristics are caused by the presence of time de­

lay and right-half complex plane (RHP) zeros of the process. The time delay is a 

1 



very common phenomenon in process industries , especially in chemical industries. 

The presence of time delay in a feedback control loop could be a serious barrier to 

good process performance. This problem is more complicated in the case of MIMO 

processes. The input-output loops of MIMO process usually have different time de­

lays, and for a particular loop its output could be affected by all the inputs through 

different time delays. As a result, such a plant may then be represented by a mul­

tivariable transfer function matrix having multiple time delays around a operating 

point. It is well known that the presence of RHP zeros limit the achievable closed­

loop performance. The most familiar characteristic of real RHP zeros is that they 

lead to an inverse response to a step change in input. 

Almost all processes which appears in industry operate under input constraints 

since the manipulated variables can only vary between the upper and lower limits of 

the corresponding actuator. These physical constraints on inputs make the process 

nonlinear and design of controllers more complex. 

In general, when a controller is designed using off-line simulations, a model of the 

process is considered. It is known that due to the modeling errors, there is always 

model-process mismatch. This model-process mismatch sometimes causes undesirable 

responses with unstable transient output. Therefore, the designed controller should 

be more robust to model uncertainty. 

A large number of design methods addressing the above issues are available for 

SISO systems. However, there are few commonly used techniques for MIMO systems 

which address the above issues. 

2 



1.1.1 Internal Model Control (IMC) 

The Internal model model (IMC) [2] is a model based control structure that provides 

a convenient way to tune and design a controller. Especially IMC based proportional 

integral derivative (PID) controllers are more popular. The IMC structure offers sev­

eral advantages [3] as compared to the standard feedback control such as conventional 

PID. Those includes convenient analysis of non-minimum phase characteristics and 

controllability analysis in the presence of time delay and RHP zeros. The IMC con­

trol tuning usually simplifies to a single parameter, and offers a convenient design 

procedure for optimal performance. 

The design of an IMC controller for a SISO process is quite standard. Revera 

et. al. [4] have introduced the IMC-based PID control for first-order SISO process. 

However, unlike in the scalar case, the design of an IMC controller for MIMO process 

is mathematically complex. This is tedious especially in the case of higher dimensional 

process or when the process constitutes non-minimum phase characteristics [5]. This 

non-minimum phase problem is usually solved by factorizing the process model into 

two parts; invertible and non-invertible [5]. The non-invertible part is diagonal and 

contains the time delay components and non-minimum phase zeros of the process 

model. However, the resulting closed-loop system still consists of unavoidable time 

delays and non-minimum phase zeros. 

In the absence of disturbance and model-process mismatch, the IMC structure 

has the capacity to handle the manipulated variable saturation. This is mainly due 

to existence of an openloop structure of the overall system [3]. However, in practice 

there may be model process mismatch and disturbances. The conventional remedy is 

to compensate the effects of constraints by modifying the controller input when the 

output of the controller ( manipulated variable ) is saturated. In literature, the works 
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that discuss such performance limitations include [6], [7], [8], [9], [10], [11]. 

1.1.2 Model Predictive Control (MPC) 

Model predictive control (MPC) refers to a class of computer control algorithms that 

utilize an explicit process model to predict the future response of a process over an 

extended time horizon. The MPC is more famous as one of the most attractive 

control technique especially among multivariable processes which appear in chemical, 

automotive and aerospace industries [12] [13] [14]. This real benefit of MPC is accrued 

mainly due to its explicit use of the process model and optimization technique to solve 

complex control problem such as non-minimum phase, constraints on manipulated 

variables, model uncertainty in multivariable processes [15] [16]. Especially, MPC 

has the capacity to easily handle the multivariable processes with long and varying 

time delays [3], [15], [16] in addition to inverse response behavior due to RHP zeros 

[17]. 

It is well known that model uncertainties cannot be avoided in practice, espe­

cially, in many chemical processes. There is a growing interest about this problem 

and many researchers are attempting to find solutions to compensate [18], [19], [20]. 

The parameter uncertainties are the main cause of performance degradation and in­

stability. As a remedy they tend to apply different modeling techniques to predict 

output response of process and in some cases adaptive techniques also have been 

utilized. There are two types of notable original formulations of MPC in last three 

decades. The dynamic matrix control (DMC)(Cutler and Ramaker, 1980) [21] and 

the generalized predictive control (GPC)(Clarke, et al., 1987) [22]. The DMC uses a 

step response model to predict the future output response of process while GPC uses 

a controller with auto-regressive integrated moving-average (CARIMA) model. 
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However, As most of the industrial processes display non-linearity, linear MPC 

algorithm may not exhibit satisfactory dynamics performance. Researchers recently 

began to develop nonlinear model, such as fuzzy logic based model, neural network 

based model in order to predict future output in the nonlinear MPC (NMPC) algo­

rithm [23], [24], [25], [26], (27], (28]. There is good discussion about literature survey 

of MPC techniques in [29]. 

1.1.3 Proportional Integral Derivative (PID) 

It is well known that the PID controller is the most popular and widely used con­

trol system in industries. PID controller offers simple control structure and allows 

implementation using fewer number of variables. According to the survey conducted 

by Yamamoto and Hashimoto (30], PI/PID controllers are used in more than 90% of 

control loops in Japan. Due to its popularity, researchers attempted to develop the 

advanced control techniques such as optimal control, Hrx" MPC, IMC in order to gen­

erate equivalent PID terms. In the second chapter, there is comprehensive study of 

PID controller applications in multivarialble processes and equivalent representation 

of advanced control techniques. 

1.1.4 Fuzzy Control 

Fuzzy logic was introduced by Zadeh [31] and has been widely used in many engi­

neering areas and consumer products and has gained much interest since the pioneer 

work of Mamdani [32], [33]. Fuzzy logic control (FLC) has emerged in recent years 

as promising way to approach nonlinear control problems (34]. Some applications of 

FLC for MIMO systems have been reported in [35]. 

The main challenge in fuzzy control design is in the tuning, particularly in choosing 
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correct fuzzy system and its associated fuzzy parameters. The curse of dimension­

ality during the rule explosion [36] is the main draw-back and as a result the fuzzy 

control designers are still unable to find an effective tuning algorithm. However, the 

recent increase in computing power enabled most designers to adopt numerical op­

timization techniques for generating optimum or near optimum solutions to fuzzy 

systems, such as genetic algorithm and neural network, where those techniques have 

the capacity to determine a large number of unknown parameters in fuzzy systems 

[37],[38] . However, those application are somewhat specific and unable to generalize 

for wider process specifications. Moreover, most of them are off-line optimization 

methods and cannot be used for real-time control. In many cases the optimizations 

have been performed using exact process model and any miss-match of the real the 

system does not guarantee stability or the overall performance. 

1.2 Research Motivation 

The common issues related to MIMO controller design includes; non-minimum phase 

characteristics, constraints on manipulated variables, sensitivity to model uncertainty 

on process resilience, the interactions which exist among different loop of multi variable 

processes. Among those the loop interaction is the most challenging issue in the area of 

multivariable control. When interactions are not severe one input signal mainly affects 

only a particular output. Under those circumstances, when the pairing of input­

output is not a problem, it might be sufficient to assign a number of SISO control 

loops in order to control the system. This type of control is called the decentralized 

control of multivariable process and conventional SISO tuning techniques can be 

applied to obtain desired response of the process. 

However, in many cases when a particular input signal IS varied, it not only 
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effects one variable but also several other outputs in the MIMO systems. When the 

interactions among the openloops process are severe the conventional scalar control 

tuning techniques may results in a poor performances even leading to instability of 

the control system. As a solution to the interaction problem, a dynamic decoupler 

(compensator) can be used. The dynamic decoupler requires computation of the 

inverse process model. In many cases, the resulting dynamic decoupler may not 

be physically realizable [3]. Alternatively, this problem can be solved using static 

decoupler. The static decoupler is easy to design and implement since it requires less 

information about the process model and depends only on steady state conditions of 

the process output variables. The static decoupler is effective only at steady sates 

and the interaction among loops at high frequency will not be eliminated. 

"The multivariable control becomes challenging task in process indus­

try especially when the process has significant interactions among loops." 

In order to cope with this problem, the interactions should be the main design 

criteria when a controller is designed for a multivariable process system. The advanced 

control techniques have some difficulties in dealing with interactions among loops 

specially when band widths of those loops are limited. In some cases they are operated 

in supervisory mode [39]. Since PID controller is popular, design and tuning of PID 

controller is suggested. As a result most of PID controller operate in sub-optimal 

manner. Most of industrial processes are often nonlinear systems [40]. Then design 

of classical linear controller is generally based on linearized model around a steady 

state point. Hence the PID controller can not successfully control highly nonlinear 

plants [41]. 

Fuzzy PID controller (FPID) controllers have been successfully used in industrial 

processes and have often produced results superior to those of classical PID controller 

[42], [43], [44] including its simplified versions of fuzzy proportional derivative (FPD) 
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and fuzzy proportional integral (FPI) controller [45], [46], [47]. This real benefit of 

FLC is due to the nonlinearity that exist in the fuzzy output, the heuristic nature 

associated with simplicity and effectiveness of both linear and non-linear plants [35], 

[48]. The sub-optimal PID performance can be improved while incorporating non­

liner FLC technique. 

1.3 Research Objective 

The main objective of this research is the design and tuning of FPID 

controller for multivariable process system. This research attempts to address 

the main problem of interactions among deferent loops which commonly appears on 

multivariable process system in industry. 

1.4 Controlling Process 

This research is focused on the conventional feedback strategy of a three inputs three 

outputs multivariable soil heating cell. First, the proposed FPID controllers tuning 

techniques are simulated for the finite element (FE) based 3 x 3 soil- heating processes 

[49]. Two transfer functions with different time delays are derived. A theoretical 

model is obtained using FE modeling [49]. The same model is altered by increasing 

time delay of the theoretical transfer function by two times. Finally, the proposed 

FPID controller techniques are applied to 3 x 3 soil-cell (real time experiments). 
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Figure 1-1: Flow of the systematic design and tuning of FPID for MIMO systems 



1.5 Systematic Design Procedure 

Fig. 1-1 shows the flow of design and tuning of FPID controller for the soil-cell. 

Following steps summaries the systematic design procedure. 

1. Equivalent first-order delayed models are found for all higher order sub-processes 

by analyzing the response using plant reaction curve methods. 

2. The static decoupler is obtained for MIMO process. 

3. An equivalent first-order model for overall compensated system (first-order 

model with static decoupler) is obtained using truncated Taylor series approxi­

mation at low frequencies. 

4. A measure of interaction is developed and integral gains are calculated for each 

loops at particular values of interaction indices . 

5. Using direct pole placement method [50] and Ziegler/Nichols (ZN) [51] tuning 

formulae proportional and derivative gains of linear PID controllers are calcu­

lated for low-level tuning. 

6. Standard Additive Model (SAM) is developed for MIMO process and high-level 

tuning parameters are identified in order to have optimum nonlinearity in the 

fuzzy output. 

7. Different types of FPID configurations are considered for design of SAM. 

8. Nonlinear tuning parameters (volumes of then-part fuzzy in SAM) are tuned 

for each FPID configuration so that overall system is stable. 

10 



1.6 Contributions resulted from this Thesis 

Followings are the summary of outcomes in this research. 

1. Extension of two-level tuning method for MIMO systems. The two-level tuning 

proposed in (Mann,99) is extended for a MIMO system. This is a novel attempt 

in multivariable control. 

2. Development of novel linear PID tuning technique for MIMO systems. The 

linear tuning can be applied for any n x n process systems whereas other general 

methods have limitation to the 2 x 2 systems. 

3. Investigation of Standard additive model (SAM) based fuzzy inference for MIMO 

systems. SAM based fuzzy inference allows nonlinear control. This is the first 

time application of SAM based fuzzy inference to multivariable systems 

4. Development of generalized tuning technique for n x n multivariable FPID sys­

tems. 

1. 7 Organization of the Thesis 

Chapter 2 provides an introduction of two-level tuning principle for FPID controllers. 

Two types of FPID controller are considered and detail analysis of two-level tuning 

technique for those are presented. 

Chapter 3 describe a design of linear PID system for coupled multivariable process 

system. The interaction index is introduced to choose PID parameters. Stability 

analysis demonstrated through Nyquist array, Gershgorin band, gain and phase mar­

gins in order to prove robustness of proposed controller. The performance of the 

11 



proposed controller is evaluated using two control simulations. The results compare 

with well-known biggest log modulus (BLT) [52] technique for multivariable process. 

Chapter 4 shows a non-linear FPID controller tuning technique for multivariable 

process system. SAM inference is presented and advantages of SAM is discussed 

with other commonly used fuzzy systems in the view of nonlinearity analysis. High­

level tuning parameters are identified for SAM based FPID controller. Stability of the 

controller is analyzed in order to select correct values for high-level tuning parameters. 

Two types of SAM based FPID controller are investigated. The performance of 

the proposed FPID controller techniques are evaluated using two control simulations 

and compared with its counterpart; linear PID controller tuning technique which is 

presented in chapter 3. 

Chapter 5 describes real time experiments of temperature control of a soil-cell. 

The objective of experiments is to control temperatures at three different locations 

of soil-cell using three different heaters. The soil-cell is modeled using first dead time 

models and identified using step response via process reaction curve. The different 

controller techniques; PID, FPID type I and FPID type II are implemented using 

dSAPCE controller board, SIMULINK, MATLAB and other hardware instruments 

like heaters, power suppliers etc. The performance of different controller techniques 

have been evaluated 

Chapter 6 summarize the work presented in this thesis and provides suggestion 

for further research. 
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Chapter 2 

Two-Level Tuning Principle 

2.1 Introduction 

In general the FPID design is a two-level tuning problem [53). While low-level tuning 

addresses the linear gain and overall stability, the high-level tuning provides nonlinear 

control to enable superior performance. In a rule-coupled fuzzy system, such as 

Mamdani-Zadeh based system, the inputs (error and its derivative) are coupled to 

produce a combined fuzzy PI output [53). The coupled nature of the inputs generally 

makes the nonlinear output a complex function. As a result it is difficult for one 

to isolate linear gains from the nonlinear output. In order to facilitate the two­

level tuning, apparent linear gains (ALG) and apparent nonlinear gains (ANG) are 

defined. While the ALG terms are related to the overall performance and stability of 

the system the ANG terms provides the nonlinearity that is necessary in the fuzzy 

output. In the past for SISO systems, some have attempted to provide tuning rules 

for linear gains [54], [55], [56). However the nonlinear tuning was not sufficiently or 

explicitly described. In [57], the design of conventional FPID is identified as a two­

level tuning problem and described as a way of obtaining ALG terms for conventional 
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(a) 

(b) 

Figure 2-1: FPID configurations. (a) Type I: rule-coupled FPID, (b) Type II: rule 
de-coupled FPID 

FPID type controllers. However, the non-linearity tuning was not sufficiently or 

explicitly described for implementing a two-level tuning. In the following section a 

systematic procedure is developed to devise two-level tuning methodology for general 

FPID controllers for MIMO systems. 

2.2 Fuzzy PID {FPID) Configurations 

Two types of FPID configurations are considered as shown in Fig.2-1. The type I is 

a conventional Mamdani's type FPID and has three inputs and it produces an incre-

mental FPID signal. The type II uses SISO rule inference to provide decoupled and 

14 



independent tuning for the three actions in the PID signal [58]. Using suitable scale 

factors (Swi),where w = 1, 2, 3, the feedback error terms (ei) and its corresponding 

normalized error variables (t\) at nth sampling instance can be expressed as 

ei(n) 

.6.ei ( n) 

.6. 2ei ( n) 

sli ei(n) 

s2i.6.ei(n) 

s3i.6.2ei ( n) . (2.1) 

All FLC input variables are normalized to a compact region [-1, 1]. The error variables 

are normalized by using the condition ewi =max( -1, min(1, Swiewi) ). The defuzzified 

controller output after the fuzzy inference is denoted by u. Similarly the FLC output 

is normalized by using the condition u- u/umax· 

2.2.1 High-Level Nonlinear Tuning Variables 

The nonlinear tuning variables are selected to affect ANG terms at any given local 

control point in the control surface. Since PID gains are proportional to the slopes 

of the control surface, the slope angles of the tangents drawn at a given point on 

the nonlinear control surface are considered to be the nonlinear tuning variables. For 

simplicity, two slope angles drawn at two selected points (see Fig. 2-2) on control 

surface are considered as nonlinear tuning variables. 

In order to isolate slope angles from their associated outputs of FPID type I 

controller, the slopes are measured in the planes of individual error axes. The mea­

surement of these angles with respect to a two-dimensional control surface is shown in 

Fig. 2-2(a). Fig. 2-2(b) shows a control curve that has been projected into a chosen 

error variable. In general, for a three- input coupled rule base the slope angles can 
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Figure 2-2: Nonlinear tuning variables measured at local control points for FPID 
configurations 

be described by 

(Oo)wi 

(2.2) 

Where u1 = u(ep = 0), p = 1, 2, 3 p =/= w.The fuzzy system designed for the PID 

control should allow independent variations of 00 and 01 within the range [0 90°]. 

2.2.2 Low-Level Linear Tuning Variables 

The composed FPID control action for FPID type I is given by 

n 

upmi =Sui L .6.upmi· 
k=O 
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Assuming the fuzzy integral action and derivative actions are in the form given by, 

n 

ii[(n) = L Uw(k) 
k=O 

and uD(n) = uw(n)- uw(n- 1), the FPID action for FPID type II can be expressed 

as 

UPIDi = Sui[KPiUli + K1iTs t u2i(k) + ~Di (u3i(n)- u3i(n- 1))] (2.4) 
k=O 8 

where Kpi, Kli and KDi are the linear PID gains for ith loop and T8 is the sampling 

time. When a fuzzy system is set to produce a linear function, the FLC will become 

a linear type PID controller and is defined as an equivalent linear controller (ELC) 

[59]. Using the ELC output the ith loop linear PID output can be arranged in the 

following form; 

n 

U~mi(n) = KPaiei(n) + Kiai L ei(k)Ts + Knaib.ei(n)/Ts (2.5) 
k=O 

where KPai, K1ai and Knai are defined as the ALG terms of the FLC system. A FLC 

having linear rule base and uniform partition of universe of discourse of all variables 

is named as a linear-like fuzzy logic controller (LLFLC) [59]. The ELC defined for 

the LLFLC is used for deriving the linear tuning variables. Then the ELC output for 

type I is given by 

(2.6) 
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From (2.1),(2.5) and (2.6), the ALG terms can be found as 

(2.7) 

Similarly, ELC output for type II is given by 

(2.8) 

From (2.1),(2.5) and (2.8), the ALG terms can be found as 

(2.9) 

The gain analysis provides two-levels of tuning for PID control. The adjustment of 

Kpa, KDa and K 1a refers to a general PID tuning with the control surface normalized 

to a linear form in the normalized output space. The ANG terms refers the effect 

of changing the nonlinearity of the FPID output in the nonlinearity output space. 

This ALG and ANG decomposition allows the use two-level of tuning for fuzzy PID 

controllers. 
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Chapter 3 

Linear PID controller Tuning 

3.1 Introduction 

Design and tuning of PID controller for MIMO process is presented in this chapter. 

It is well known that the conventional PID controller is still the most popular and 

widely used controller in industries. The simple control structure allows easy design 

and tuning. Most of industrial processes are often nonlinear systems [40], [60). Then 

design of classical linear controller is generally based on linearized model around a 

steady state point. Hence the PID controller often provide sub-optimal performances 

in nonlinear plants [41],[60]. Therefore, FPID controller is proposed and is tuned 

using the two-level tuning technique which is described in the previous chapter. The 

aim of this chapter is to identified the ALG terms for two-level tuning. 

This chapter is organized as follows. First, the detailed literature review of con­

ventional PID controller for MIMO process is presented. Where it is identified that 

the available tuning techniques for MIMO processes have not sufficiently addressed 

the main problem of interactions among loops. Although there are few development 

in the past where some considerations were given on interaction, they are strict for 
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two input two output (TITO) processes [61], [39] and difficult to extend for general 

n x n MIMO processes. Secondly, the decoupling is performed while using a static 

decoupler, which has the effect of reducing interactions within individual loops. At 

steady state, the system with the static decoupler can be treated as number of SISO 

systems. Using truncated Taylor series expansion, a first-order model is obtained for 

the system with static decoupler at low frequencies. Each loop is assigned with a 

PID controller. The PID controller is designed in three steps. First, an interaction 

index is defined to reflect the low frequency interactions caused by a given loop to 

other loops in the system. The maximum interaction index is then chosen to define 

the integral gain. The proportional and derivative gains are then selected using di­

rect pole placement method and ZN tuning rule respectively so that the closed-loop 

performance is improved. 

Thirdly, stability analysis is performed for overall closed loop system using direct 

Nyquist array (DNA) stability theorem. The DNA theorem uses openloop frequency 

response characteristics of the system. The gain and phase margins are calculated for 

the MIMO process systems using method described by [62]. 

Finally, The proposed PID controller algorithm is simulated using two control 

simulations. A Nyquist array and Gershgorin bands for the system is drawn in order to 

justify the operation of controller for any frequency. The stability analysis suggest the 

controller can be safely operated with safe gain and phase margins. The performance, 

based on set point tracking and load disturbance rejection capability, of proposed 

algorithm is compared against the well known BLT technique, proposed by Luyben. 
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3.2 Background 

In literature, the PID tuning methods applicable for MIMO systems can be divided 

in to four main categories. 

In the first category, the best input-output pairing configurations are selected and 

individual PID controllers are subsequently designed while considering the diagonal 

transfer functions of the MIMO process model. The gains may be selected using 

well known ZN tuning rule. The ZN parameters are detuned by a factor in order 

to guarantee stability. Niederlinski [63J used tuning heuristics to modify the ZN 

parameters corresponding to individual PID controllers. In an other development of 

this category, the BLT tuning rule is used. In the BLT technique the pairing problem 

is assumed to have been solved. The method proposes a technique to choose the 

de-tuning factor for ZN based PID parameter. For SISO systems, the log modulus is 

defined as the magnitude of the closed-loop servo-transfer function and it expresses 

in decibels. The SISO definition is then extended to define the biggest log modulus 

and this number is directly used to calculate the de-tuning factor for ZN parameters. 

Recently, Dan and Dale [64] proposed a new definition to the ultimate gain and 

ultimate frequency which accounts the off diagonal transfer functions. The technique 

is developed using the Gershgorin bands of Nyquist plot. In case of interactions the 

method proposes a decoupler and the PID controllers are tuned by using modified 

ZN method. The de-tuning factor is arbitrarily chosen. 

Unlike in the first category, the second category avoids using any SISO based 

tuning values, such as ZN. Instead the PID parameters are chosen entirely using the 

Nyquist stability criteria. First, a compensator ( decoupler) is designed for dynam­

ically coupled systems. Using the DNA the decentralized PID controllers are then 

designed. Rosenbrock [65J pioneered to introduce the Inverse Nyquist Array (INA) 
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analysis for MIMO control designs. Recently, Ho et. al. [62] introduced a method 

to shape the Gershgorin band. First, gain and phase margins for individual loops 

of the MIMO process are specified. Using the Gershgorian band the equivalent gain 

and phase margins of diagonal transfer functions of the openloop processes are then 

calculated. While knowing those gain and phase margins the PID design problem is 

solved while treating each loop as an equivalent SISO problems and PID parameters 

are thus obtained. 

In the third category the PID tuning problem is solved using a closed loop inter­

action measure. The measure may be obtained either using steady state or dynamic 

measures. Bristol [66] has proposed a method called the relative gain array (RGA) 

to determine the interaction measure and this study was limited to steady state con­

ditions. Witcher and McAvoy [67] extended the RGA method to accommodate the 

transient or dynamic process conditions. Astrom et. al. [39] then introduced a de­

coupled PID tuning rule based on the interaction measures and the study was limited 

to a two dimensional (2 x 2) process. The PID controller is designed in such a way 

that it will minimize the interaction index of an individual loop. Recently, Lee and 

Edgar [68] considered error matrix of complimentary sensitivity functions between 

process and diagonal process to define the dynamic interaction measure. IMC based 

controller is then designed with specific value of closed loop time constant so that the 

dynamic interaction is minimized. 

In fourth category, the advanced control techniques such as optimal control, Hoo 

and MPC have being utilized to find the equivalent PID terms [69]. MPC is the most 

widely applied advanced control technique in process industries [3]. As a result pre­

dictive type PID controllers received more attention in this area of research. Moradi 

et. al.. [69] have introduced a predictive PID controller based on GPC. Most of IMC­

based PID controller proposed in literature are not decentralized PID controllers. 
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Figure 3-1: Statically decoupled multivarialble control 

Rivera et. al. [4] introduced IMC- based PID control technique for first-order SISO 

process. Lieslehto et. al. [8] proposed a heuristic tuning method for IMC-based PID 

controllers for MIMO process with minimum phase elements. Although they are be­

ing classified as PID designs, the true functionality is similar to the related advanced 

control system, such as MPC, and the PID terms represent only the equivalent form 

rather than self PID control. In other words, the control structure constitutes a non 

PID form and requires additional computing blocks, such as model identifications and 

predictions for real time control. 

Although the advanced process control techniques is becoming popular for the 

MIMO system, PI/PID control is still dominant in process industries [9]. Under 

such circumstances, it is very important to develop a PID tuning method which can 

be applied to MIMO process. It is very clear that the available techniques have 

limitations to extend for general MIMO systems, mainly due to the complex nature. 

3.3 System Description 

The conventional feedback strategy of an inputs n outputs multivariable system with 

a static decoupler and PID controller is shown in Fig. 3-1 where the multivariable 

system is assumed as a linear and open-loop stable system. Then, the transfer function 

of this MIMO system is described by, 
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G(s) = 

9ll ( s) 912 ( s) 

921(s) 922(s) 

9nl(s) 9n2(s) 

91n(s) 

92n(s) 

9nn(s) 

(3.1) 

The open-loop SISO transfer function between ith output and lh input when all other 

inputs are zero is denoted by 9ij where i, j = 1, 2, ... , n. The static decoupler D for 

the above system can be described using (3.2). 

n = c-1 (0) (3.2) 

Where it is assumed that G(O) is non-singular. 

3.4 Low-Level Tuning 

The PID controller matrix is expressed as, 

Gc(s) = diag{c1(s), ... ,cn(s)}. (3.3) 

Where 

and KPi , Kli and KDi are proportional, integral and derivative gains of the ith PID 

controller. For the above system, shown in Fig. 3-1, the overall compensated system 

i.e. process model and static decoupler can be written as, 

L(s) = G(s)D. (3.4) 
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Where G(s) is the MIMO process modeled assuming an open-loop stable first-order 

plus dead time model and D is the static de-coupler. Using the truncated Taylor 

series expansion, the above transfer function L( s) is approximated to a first-order 

model. Since higher order terms in the Taylor series expansion are made to zero, 

this approximation is valid only at low frequencies. The approximated system is thus 

given by, 

1 
K12s K1nS Tus+1 

K21s 
1 

K2nS 
L(s) ~ T22s+l (3.5) 

KnlS Kn2S 
1 

Tnns+l 

Where Iii represents the time constant of the ith SISO loop and 

represents off diagonal parameters which represent different loop interactions during 

steady state. It is clear that at low frequencies the off-diagonal terms are propor­

tional to the frequency ( s). Hence the system can be approximately decoupled if the 

bandwidth of decentralized PID controllers are low enough. 

The open-loop transfer function of the system shown in Fig. 3-1 is written as, 

Q(s) = G(s)DGc(s) = L(s)Gc(s) 
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Q(s) = (3.6) 

where 

i =I= j 
(3.7) 

The close-loop relation for this system is expressed as, 

y = [J + Q(s)Gc(s)t 1Q(s)Gc(s)r. (3.8) 

Where r and y are input and out put vectors respectively. Then, the closed transfer 

matrix H ( s) between y and r can be written as, 

H(s) = [J + Q(s)Gc(s)t 1Q(s)Gc(s) 

hn (s) h12(s) hln(s) 

H(s) = 
h21 (s) h22(s) h2n(s) 

(3.9) 

hnl ( S) hn2(s) hnn(s) 

3.4.1 Tuning 1st loop 

When all other loops are open, the elements in first column of H(s) can be written 

as, 
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where sl = (1 + qu(s))- 1 is defined as sensitivity function of the first loop [50]. 

Thus, for a step input change in the first loop, the interactions to other loops at low 

frequencies can be computed as, 

lim qil (s)S1 
s-tO 

limKi1s(Kp1 + Kn + KDis)S1 
s-tO S 

Then the upper bound of interaction is given by, 

(3.10) 

where (S1)max is the maximum value of S1 and max(l Ki1 I) is the maximum absolute 

value of Ki1 ; i =/= 1. Hence we can introduce interaction index of first loop as, 

h = max(l Kil I) I Kn I (Sdmax· 
iofl 

(3.11) 

The value of Kn can be calculated at particular value of (S1)max so that the interaction 

index, ! 1 is kept as low as possible. Then, the rest of interactions can also be reduced 

according to the inequality (3.10). The proportional gain, Kp1 of PID controller 

is computed using time constant of the first-order approximated process and the 

designed integral gain. The derivative gain, Km is chosen from ZN formula as, 

(3.12) 
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Where Tm and Tn are derivative and integral time constants for PID controller at 

the first loop. Then, 

(3.13) 

In order to find Kp1 , In this analysis we use direct pole placement method [70] as 

follows. The closed loop transfer function of the first loop with reduced first-order 

model and PID controller is given by, 

(3.14) 

Considering second order dynamics of the numerator in (3.14), the cross over fre­

quency of first loop can be written as, 

and the proportional gain is given by, 

(3.15) 

Where ( 1 is the damping constant of second order system. From (3.13) and (3.15), 

(3.16) 

The same procedure is repeated for other loops and tuned while keeping interaction 

index as minimum. 
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3.4.2 Tuning ith loop: 

This section introduce generalized interaction index for n x n MIMO process system 

as follows. 

(3.17) 

where 

is the maximum value of ith loop sensitivity function and the reasonable range of 

(Si)max is 1.3 to 2 [70]. The max(J Kij J) is the maximum absolute value of Kij; i =/= j. 

The integral and proportional gains of each loop can be evaluated as, 

(3.18) 

and 

(3.19) 

By selecting suitable value for (i, Kpi can be calculated. Then, 

(3.20) 

3.5 Stability Analysis 

3.5.1 Direct Nyquist Array (DNA) Stability Theorem 

An analytical expression for the ith Gershgorin band of Q ( s) is given by 

29 



Where 

Ri(w) = L I qij(jw) I for i = 1,2, ... ,n 
i,i:f.j 

(3.21) 

is radius of ith Gershgorin circle. Then, DNA stability theorem [71],[72],[62] is ex­

pressed as follows. 

When the Gershgorin bands based on the diagonal elements qii(s) of Q(s) exclude 

the point ( -1 + j 0) and the ith Gershgorin band encircle the point ( -1 + j 0), Ni 

times anticlockwise, then the closed-loop system is stable if, and only if, 

n 

LNi =po 
i=l 

where p0 is the number of unstable poles of Q( s). In this work it is assumed that the 

open-loop stable process, Q( s) since most of industrial process are open-loop stable 

systems [73]. Then, p0 = 0 for this stability analysis. Hence, if the Gershgorin bands 

do not encircle, nor include, the critical point( -1, jO) Vi the closed-loop system is 

stable. 

3.5.2 Gain and Phase Margins Calculation 

Ho et. al. [62] has given the definitions for gain and phase margins of MIMO system 

process as follows. Fig. 3-2 shows a Nyquist diagram with Gershgorin circle at the 

gain crossover frequency (defined as w9i) of ith loop. The Gershgorin circle intersects 

the unit circle at A. At the phase cross over frequency (defined as Wpi), the Gershgorin 

circle intersects the negative real axis at C as shown in Fig. 3-3. Then the phase and 

gain margins for the MIMO system are defined as , 

¢~ = 1r + arg(AOB) and (3.22) 
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I 1 
ai =I oc I. (3.23) 

In order to grantee stability, according to the DNA theorem, the Gershgorin bands 

should be shaped based on predefined values of¢~ and a~ so that it excludes and does 

not encircle the point ( -1 + J 0). As a rule of thumb [62], ¢~ and a~ should satisfy 

the following conditions, 

(3.24) 

2 ~a~~ 5. (3.25) 

The <Pi in Fig. 3-2 and ai in Fig. 3-3 are phase and gain margins in the SISO system 

respectively. Then from Fig. 3-2 the following expression can be derived for <Pi 

A.' 2 . (:Ei,ih I Qij(jwgi) I) 
VJi + arcsm I ( . ) I 2 Qii ]Wgi 

A.' + 2 . ( :Ei,i;tj I 9ij (jwgi) I) 
VJi arcsm I ( . ) I . 2 9ii ]Wgi 

(3.26) 

From the Fig. 3-3, ai 

(3.27) 

The equivalent gain and phase margins for MIMO system are calculated using (3.26) 

and (3.27). 
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Figure 3-4: Schematic view of soil-cell (a) and finite element based model for soil-cell 
(b) 

3.6 Control Simulation 

The proposed PID controllers tuning techniques are applied for a multi variable process 

with the FE based 3 x 3 soil- heating processes which is shown in Fig. 3-4. [49]. Here, 

two transfer functions are derived. The first one is obtained directly from FE method 

and the second one is obtained by increasing time delay given in FE based model by a 

factor of two. In addition, the equivalent delayed first-order models for all the higher 

order sub-processes are obtained by analyzing the response using "plant reaction curve 

methods" [7 4]. Then equivalent first-order models with dead time are used to design 

of PID controllers. Since the models and the processes are mismatch the controllers 

are more robust for uncertainty. The BLT tuning method also simulated to confirm 

the superiority of the PID controllers techniques. 
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3.6.1 Example 1 

The dynamics of transfer function between heat input (w) and temperature output 

(° C) is described by; 

0.028Se- 0·6• 0.0119e-1. 2• 0.00028e- 3 ·6• 
6.605s2+5.14s+l 97.02s2+19.7s+l 23.52s2+9.7s+l 

0.0141e-1. 2• 0.0295e-0·6• 0.0035e- 1·8• 

10.11s2+6.36s+l 5.523s2+4.7s+l 23.52s2 +9. 7 s+ 1 
(3.28) 

0.0015e-3 ·6• 0.0143e-l.Ss 0.0282e-0.6s 
17.56s2 +8.38s+ 1 6.605s 2+5.14s+l 7.29s2+5.4s+l 

The equivalent first-order model from plant reaction curve is given by; 

0.0288e-l. 85• 0.0119e-6• 0.00028c 5·95• 
4.35s+l 16.05s+l 8.ls+l 

0.0141e- 2·85• 0.0295e-1.85• 0.0035e- 4·258 (3.29) 
6.6s+l 3.9s+l 7.95s+l 

0.0015e-5·65• 0.0143e- 3 ·05• 0.0282e-L9• 
6.6s+l 4.2s+l 4.5s+l 

The set points were increased by 50°C, 55oC and 60°C at the beginning of the sim­

ulation. Once the outputs reached the initial set points, all variables were changed 

to lOOoC at 70 minute. In order to measure load disturbance rejection capability, a 

step load disturbance was given to the third input (y3 ) of the process. Fig. 3-5 shows 

responses of this system to step input(reference) and step load disturbance. The 

system with PID controller has fast set-point tracking and better load disturbance 

rejection though it has more overshoots compared to the BLT. Tables 3.1 and 3.2 

show the comparisons of performance indices of proposed method with BLT method. 

The controller tuning parameters for individual loop are shown in table 3.3. The 

gershgorin bands for closed loop system is shown in Fig. 3-6 and the gain and phase 

margins are shown table 3.4. 
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Figure 3-6: Example 1, Nyquist array and Gershgorin bands of system 
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3.6.2 Example 2 

In this example a new transfer function is derived by increasing the time delay two 

times of each subsystem. The dynamics of this process is described by; 

0.0288e-1. 2s 0.0119e- 2 · 4• 0.00028e- 7 · 2• 

6.605s2+5.14s+ 1 97.02s2+19.7s+l 23.52s2+9.7s+l 

0.014le- 2·4• 0.0295e-L 2• 0.0035e- 3 ·68 (3.30) 
10.11s2 +6.36s+ 1 5.523s2 +4. 7 s+ 1 23.52s2+9.7s+1 

0.0015e- 7 ·2• 0.0143e- 3 ·6• 0.0282e-1. 2• 

17.56s 2 +8.38s+ 1 6.605s2+5.14s+l 7.29s2+5.4s+ 1 

The equivalent first-order model obtained from plant reaction curve is given by; 

0. 0288e- 2 · 458 0.0119e-?.4Ss 0.00028e- 9 ·7• 

4.35s+l 16.05s+l 8.ls+l 

0.0015e- 3 ·5• 0.0295e- 2.4• 0.0035e- 6 ·05• (3.31) 
6.6s+l 3.9s+1 7.95s+1 

0.0015e- 9·5• 0.0143e- 4·9• 0. 0282e- 2 ·58 

6.6s+l 4.2s+l 4.5s+1 

The set points were increased by 40°C, 50°C and 40°C at the beginning of the simu­

lation. Once the outputs reached the initial set points, all variables were changed to 

100°C at 80. In order to measure load disturbance rejection capability, a step load 

disturbance was given to the first input (y1) of the process. Fig. 3-7 shows responses 

of this system to step input(reference) and step load disturbance. The system with 

PID controller has fast set-point tracking though it has bit overshoots compared to 

BLT. However, all the system show same capability of load disturbance rejection. 

Tables 3.5 and 3.6 shows the comparisons of performance indices of proposed method 

with BLT method. The controller tuning parameters for individual loop are shown 

in table 3.7. The gershgorin bands for closed loop system is shown in Fig. 3-8 and 

the gain and phase margins are shown table 3.8. 
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Figure 3-8: Example 2, Nyquist array and Gershgorin bands of system 
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3. 7 Performance Analysis 

The proposed algorithm is developed while minimizing the loop interactions at low 

frequencies which leads to first-order model reduction. Hence, in order to justify 

the operation of this controller for any frequency, a stability analysis has been then 

preformed. Nyquist array and Gershgorin bands for the two soil heating examples 

are drawn for any frequency. In simulations the second order plant has been modeled 

using plant reaction curve and model/plant mismatch has been already considered. 

Therefore the results justify the robustness of the proposed method. The gain and 

phase margins for individual loop are shown in table 3.4 and 3.8 for both examples 

respectively. The results revel that gain and phase margins for both the examples 

are within the specified limits as proposed in Ho et. al. [62]. Therefore both the 

examples confirm to the DNA stability theorem. 
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Output Set Point Tracking 
Rise Time (minute) Overshoot% Setting Time (minute) 
PID BLT PID BLT PID BLT 

Y1 5 17 19 0 15 27 
Y2 5 13 25 0 14 32 
Y3 5 8 33 0 19 30 

Table 3.1: Performance characteristic indices of proposed PID method and BLT 
method for set point tracking in example 1 

Output Load Disturbance 
Overshoot% Setting Time (minute) 
PID BLT PID BLT 

Y1 2.6 0.64 0 0 
Y2 5 4.36 0 0 
Y3 28 46 10 34 

Table 3.2: Performance characteristic indices of proposed PID method and BLT 
method for load disturbance in example 1 

Loop No PID BLT 
p I D p I D 

(1) 2.61 0.61 2.79 1.13 0.12 1.00 
(2) 2.03 0.57 1.82 0.97 0.11 0.90 
(3) 1.70 0.52 1.40 1.14 0.12 1.08 

Table 3.3: Tuning parameters of example 1 for PID and BLT controllers 
loop No Gain Margin Phase Margin 

1 2.2 32° 
2 2.6 31° 
3 8.1 41° 

Table 3.4: Gain and Phase Margins of each loop of example 1 
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Output Set Point Tracking 
Rise Time (minute) Overshoot% Setting Time (minute) 
PID BLT PID BLT PID BLT 

Y1 10 11.6 37 0 30 15 
Y2 9 10.3 8 0 22 14 
Y3 5 8.4 20 0 6 9 

Table 3.5: Performance characteristic indices of proposed PID method and BLT 
method for set point tracking in example 2 

Output Load Disturbance 
Overshoot% Setting Time (minute) 
PID BLT PID BLT 

Y1 34 31 14 26 

Y2 12 18 13 20 
Y3 1 4 0 0 

Table 3.6: Performance characteristic indices of proposed PID method and BLT 
method for load disturbance in example 2 

Loop No PID BLT 
p I D p I D 

(1) 0.56 0.25 0.32 1.33 0.17 1.63 
(2) 1.45 0.23 2.29 1.22 0.16 1.46 
(3) 2.34 0.39 3.54 1.35 0.17 1.69 

Table 3.7: Tuning parameters of example 2 for PID and BLT controllers 
loop No Gain Margin Phase Margin 

1 3.2 24° 
2 3.0 40° 
3 8.0 56° 

Table 3.8: Gain and Phase Margins of each loop of example 2 
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Chapter 4 

Non Linear Fuzzy PID Controller 

Tuning 

4.1 Introduction 

Fuzzy high-level control of a MIMO process is presented in this chapter in the view 

SAM fuzzy inference. While the previous chapter presented the way of finding ALG 

terms (Kp, Kd, and Ki), the objective of this chapter is to find ANG terms for two 

level tuning of FPID controller. 

This chapter investigates application of SAM based FPID controller for multivari­

able processes in the view of designing ANG terms for high-level tuning. This chapter 

is organized as follows: First, conventional SAM theorem is described. Secondly, a 

comprehensive study of two types of FPID configurations are presented. The type I is 

a conventional Mamdani's type FPID and has three inputs and it produces an incre­

mental FPID signaL The type II uses SISO rule inference to provide decoupled and 

independent tuning for the three actions in the PID signal. Thirdly, design of SAM is 

described in the view of FPID controllers for MIMO processes. In this section, high-
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level tuning variables which effect nonlinearity of fuzzy output are identified. Finally, 

the validity of proposed FPID control algorithm is justified with two simulations. 

4.2 Background 

Some successful applications of FLC have been achieved since the introduction of the 

first fuzzy controller in 1974. There is a huge volume of FPID applications which 

are available in the literature where the control has been performed for variety of 

processes, including nonlinear systems. Almost all of these applications belongs to 

SISO process systems. Only in a very few applications the MIMO systems processes 

have been considered. Chieh and Pey [75] used pre-compensator to decouple the 

MIMO process and it is based on Rosenbrock- Nyquist Array (RNA) method. In 

the design the FPID parameters have been chosen arbitrary. Gamero and Medrano 

[48] used FPID controller to control a biotechnology process. They have used dy­

namic decoupler in order to reduce loop interactions. The controller is based on a 

two- dimensional Mamdani type fuzzy rule base which uses the feedback error and 

its rate as inputs. The application of dynamic decoupler for multivariable process 

is sometimes not physically realizable [3]. Dynamic decoupler is also shown to be 

more sensitive to plant and process mismatch and therefore is less popular in process 

control. In another application, Rahmati et. al. [42] used FPID controller for HVAC 

plant. They have presented similarity between conventional digital PID control al­

gorithm and Takagi-Sugeno based FPID control. Recently, Shaoyuan et. al. [76] 

presented coordinated control strategy for boiler- turbine control using fuzzy rea­

soning and auto-tuning techniques. Self-organizing FPID controller is presented by 

Hassan et. al. [77] for robot arm. In these applications fuzzy logic controllers are 

used at supervisory level for self tuning of conventional PID gains at the lower level. 
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4.3 High-Level Tuning : Nonlinearity Tuning 

4.3.1 Standard Additive Model (SAM) 

FLC is a rule-based controller and it does not require a very precise mathematical 

model of the processes under control. The FLC uses fuzzy linguistic variables (if-then 

rules) to solve the complex system control problems. This model freedom improves 

the modeling power of FLC. These input(error) maps output(control action). An 

additive fuzzy system (controller) fire all rules in parallel to some degree. Then the 

system weights and average then-part fuzzy set to infer output fuzzy set [78], [79]. 

Finally, the system defuzzifies the output fuzzy set using centroid or other operation 

which maps input to fuzzy output. Simply, an additive fuzzy system is a function 

approximator and the SAM is the simplest form of an additive fuzzy system. Bart 

Kosko was the pioneer to introduce SAM [36]. According to Kosko, an additive FLC 

divides the global conditional mean in to a convex sum of local conditional means 

while the conventional centroids type FLC computes the conditional mean as output. 

The then-part fuzzy set of the SAM consist of centroid and area or volume. The SAM 

theorem, [36] which is described in next section allow to compute these volumes and 

centroids in advance. 

Consider fuzzy rules of the form 

IF X A~ THEN Y B/3 

where X and Y be nonempty sets. When ..\ and ( be nonempty index sets, the 

A~: : a E ..\ and B 13 : f3 E ( represent input fuzzy set of X and output fuzzy sets of Y 

respectively. An additive fuzzy system stores m number of above fuzzy rules. These 

rules describe fuzzy subsets or fuzzy patches in the Cartesian product space X x Y as 
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Figure 4-1: Function approximator: Additive fuzzy system 
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Figure 4-2: General framework of additive fuzzy system 

y = F(x) 

shown in the Fig.4-l. Hence an additive fuzzy system (collection of IF-THEN rules) 

approximates a function F : X -+ Y. 

The general framework for a feed forward additive fuzzy system is shown in Fig. 

4-2. The each input x fires the if-part of all m rules to some degree in parallel. Then 

the system weights (using rule weight wm) the then-part to give the new fuzzy sets 

B~ and then sums these to form the output sets B as, 
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m 

B = L w13 B~(x). (4.1) 
(3=1 

The weights Wj is used to reflect rule credibility or frequency and then it gives an 

extra term for a learning system to tune. In practice the rule weights are assumed to 

be equal to unity: w 1 = . . . Wm = 1 The SAM is a special case of the additive 

model framework. 

The inference of the SAM algorithm is as follows, 

1. The fired then-part set B~ is the fit product a13 (x)B13 • Where the fit value 

a13 (x) (a13 is called membership function) express the degree to which the input 

x belongs to the if-part fuzzy set A0 • Then the output set can be expressed as, 

m 

B = L Wf3a13 (x)B13 (x). (4.2) 
/3=1 

2. The system output F(x) computes as centroid of output set B(x) when it 

defuzzifies B ( x) to scalar or vector. 

F(x) = Centroid (t, w~ap(x)B~(x)) (4.3) 

The centroid gives the structure of a conditional expectation to the fuzzy system F 

and it acts as an optimal nonlinear approximator in the mean-squared sense. 
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4.3.2 SAM Theorem 

Suppose the fuzzy system F : Rn -+ RP is a standard additive model as 4.3. Then 

F(x) is a convex sum of them then-part set centroids: 

F(x) 
L:P=l Wf3a/3 (x) v/3c/3 

L:P=l w 13a13(x)V13 

( 4.4) 

The convex coefficients or discrete probability weights p1 ( x), ... , Pm ( x) depends on 

the input x through the ratios 

(4.5) 

v/3 is the finite positive volume ( or area if p = 1 in the range space RP) and c/3 is 

the centroid of then-part set B 13 : 

V13 = J b13(Y1, ... , Yp)dyp > 0 (4.6) 

RP 

(4.7) 

The popular scalar case of p = 1 reduces ( 4.6) and ( 4. 7) to 

(4.8) 
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00 

J ybf3(y)dy 

C 
-00 f3 = _00 ___ _ (4.9) 
J b{J(y)dy 

-00 

Then SAM theorem allows us to calculate these volumes and centroids (or local 

conditional means) in advance. They change only when the system learns or tunes 

its rules or when a user varies them in the system. Each input x requres to compute 

only the m13 fit values, a13 (x), and then update the ratio in (4.4). The consequent 

fuzzy sets B13 can take the form of triangular or trapezoidal or bell type curves where 

area and centroids of those shapes can easily be computed. The SAM structure ( 4.4) 

lets us replace all then-part fuzzy sets (consequent) B 13 with rectangle or non fuzzy 

sets R13 that have the same volume V.s and centroid CfJ without rather changing the 

output value F(x). 

4.3.3 Design of SAM; Identification of High-Level Tuning 

Variables 

Consider two control regions in the controller output space. The first region is when 

the normalized error variables are -1 :::; ei < 0. The local control in this region 

affects steady state, load disturbance and overshoot properties. The second region 

is when 0 :::; ei :::; 1. The control in this region affects the speed of response during 

the transient, undershoot and steady state properties. The aim is now to realize 

independent adjustment of FLC parameters in the view of changing ANG terms at 

the chosen control points. The membership functions ( ai) for the if-part fuzzy in 

SAM is defined as triangle functions as shown in the Fig. 4-4. The slope angle 8 for 

type II (see figure 4-3(b)) can be described by, 

50 



I 
0 ------ -------1 

-1 0 t e 

(a) (b) 

Figure 4-3: Nonlinear tuning variables measured at local control points of SAM 

Figure 4-4: Membership functions for if-part in SAM 
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()= 
for - 1 ::::; ei < 0 

arctan(- v2i"':li(-C2;+~1;)) 
(Vue;- Vu- V2;e;)2 

In this analysis, the then-part centroids Cwi are selected as, 

Coi = -1, C1i = 0 and C2i = 1. 

(4.10) 

(4.11) 

The overall gain of the system can also be changed by ANG. Therefore, in order to 

maintain stability the maximum and minimum ANG terms are evaluated and they 

should be controlled while follow the stability theory. In the SAM this occurs at 

ei = -1, ei = 0 and ei = 1. Thus, the slope angle at selected four points (see 

figure4-3) are, 

(ao)wi 

arctan(V1i/Voi) 

arctan(VodVli) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

It is clear, the pairs { (()0 )wi, (ao)wi} and { (el)wi, (a1)wi} form right angle. i.e There are 

two independent angle over the control surface of SAM corresponding to two regions 

-1 s ei < 0 and 0 $ ei s 1. (eo )wi and ( ()l)wi are selected as two independent slope 

angles which can be controlled within the range of [0- 90°]. 

In order to find two independent angles, the then-part volume for second membership 
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function is selected as unity: vli = 1. 

Then, 

arctan(1/Vo) 

arctan(1/V2) 

Hence the terms V0 and V2 are the nonlinear tuning variable for the SAM. 

(4.16) 

( 4.17) 

4.4 Nonlinearity Analysis of Fuzzy SAM output 

The superiority of fuzzy control over linear control is mainly due to the nonlinear 

mapping in the inference system. This will permit the system to change the con­

troller gains adaptively with the change of error. In a properly designed fuzzy con­

troller the high-level tuning generally provides the improved control performance. 

In fact there are many other fuzzy systems available, such as Zadeh-Mamdani's 

"max-min-gravity" (MMG), Mizumoto's "product-sum-gravity" (PSG) and "Takagi­

Sugeno-Kang" (TSK) schemes to achieve the same nonlinear mapping. However, the 

properly designed fuzzy system should allow the controller to have a greater degree of 

nonlinearity variation to accommodate better control. The work shown in [80] com­

pares different fuzzy systems against nonlinearity. The nonlinearity measures identify 

admissible area drawn in a nonlinearity variation diagram. 

The study of nonlinearity variations is quite novel at present. As described be­

low two quantitative indices [81], [82], [80] which demonstrate how to implement a 

systematic design for nonlinearity variation is considered. 

1) Nonlinearity Variation Index (NVI): 
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Suppose any design parameters related to fuzzy structures are called nonlinear 

tuning parameters. By increasing the number of these parameters will increase the 

nonlinearity variations, but this will make the nonlinearity evaluation difficult. For 

simplicity and without losing generality, it is considered the simplest rules (say, two 

or three in this work) and two nonlinear tuning parameters for the comparative study. 

Since a one-input fuzzy controller only involves a control curve design, the nonlinearity 

analysis will be based on a two-dimensional space. The eo and e1 are the angles in 

radians corresponding to the curve slops ( 8
8~l) at e=-1 and e=1 respectively. ew, 

To examine the nonlinearity variations approximately, the admissible area (or 

curve) of the nonlinearity diagram on the e0 and e1 plane is drawn. The eo and e1 are 

called nonlinearity examination parameters. A point within the admissible area (or 

on the admissible curve) means that the control curve corresponding to the chosen 

point and can be produced by the controller. The larger the admissible area, the 

greater the flexibility of the system in generating the nonlinear functions. The NVI 

is defined in a dimensionless form as, 

NVI(.ZV: N N) = admissible region in Ne dimensional space 
v, t, e whole region in Ne dimentional space 

(4.18) 

where Nv, Nt and Ne are the total number of input variable, non linear tuning 

parameters and non liner examination parameters, respectively. 

2) Linearity Approximation Index (LAI): 

A conservative design strategy for a FPID controller is proposed [82]: A FPID 

controller should be able to perform a linear, or approximately linear, PID function 

such that the system performance is no worse than its conventional counterpart. 

If the controller is able to generate a perfect linear function,it is a guaranteed-PID­

performance (GPP) system. Along the line of this strategy, a safe performance bound 
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Figure 4-5: Admissible area (grey) of nonlinearity diagram for SAM controller 

is produced for the FPID system from the performance analysis of its counterpart 

that has the same PID connective structure. For examining the system on this aspect, 

an LAI is given by, 

LAI = 1 _ max I u1(e) - flt(e) I 
max I u1(e) I (4.19) 

where u1(e) is a linear function which is imposed to pass through the origin point, 

u1(e)(e = -1) and the ending point u1(e)(e = 1) . This index, representing the most 

linearity approximation that can be produced by the controller, is normalized within 

a range of [0, 1] . When LAI=1, it corresponds to a perfect linear PID controller. The 

larger the value of LAI, the higher degree of linear approximation the FPID controller 

produces. This index is a quantitative measure of confidence in using a GPP bound 

calculated from the linear PID controller. 

Fig. 4-5 shows the nonlinearity variation diagram for SAM which is designed 

in previous section. Since the angle 00 and 01 can independently changed it has 

full contour of admissible area. The point C, corresponding to the linear function 
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Fuzzy system NVI(1,2,2) LAI 
MMG 0.755 0.974 
PSG Admissible line 1 
TSK 0.695 1 
SAM 1 1 

Table 4.1: Nonlinearity variation indices for different fuzzy systems 

approximation of SAM and it is located at eo = el = 7r I 4. The table 4.1 summarize 

the nonlinearity evaluation indices for different fuzzy systems (most popular) along 

with SAM. As it can be seen in the table 4.1, the SAM scheme produces the highest 

score in terms of nonlinearity variations. 

4.5 Stability Analysis 

4.5.1 Maximum values of PID parameters 

In order to grantee the stability we can specify the predefined gain margin a~ and 

phase margin ¢~ of MIMO process so that it satisfy (3.24) and (3.25). The Limits of 

PID parameters can then be calculated for ith loop. Following four equations can be 

used to calculate the four unknowns, Wpi, w9i, KPi and K 1i in ith loop. 

1 
( 4.20) ai I 9ii(jwpi)ci(jwpi) I 

arg[gii (jwpi)ci (jwpi)] -'Jr ( 4.21) 

¢i 7r + arg[9ii(jw9i)ci(jw9i)] (4.22) 

I 9ii(jw9i)ci(jw9i) I 1 (4.23) 
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Substituting from (3.26) and (3.27) in (4.20)-(4.23), 

h,i ( 4.24) 
i,if.j 

h,i arg[gii(jwpi)ci(jwpi)] + 7r = 0 (4.25) 

h,i [ ( . ) ( . )J ""' . ( I:i,i;ij I 9ij (jw9i) I) 
w + arg 9ii JWgi Ci JWgi - '+'i- 2 arcsm I ··(. ·) I 

2 9n )Wgz 

0 (4.26) 

I 9ii(jw9i)ci(jw9i) 1
2

- 1 = 0 (4.27) 

Then it can be defined 

KPimax and Krimax ( 4.28) 

as maximum values of PI parameters at a given ¢~ and a~. From (3.13), 

K K~imax 
Dimax = K · 

4 limax 
(4.29) 

The Newton-Raphson methods can be used to solve (4.24)-(4.27)as follows, 

8!1,; I 8!1,; I 811,; I 811,; I 
8Kp; Kf;/ 8K1; KJ:) 8Wpi (r) 8w9 ; (r) 6i:) J(r) Wp; wgi l,i 

8!2,; I 8!2,; I 8!2,; I 8!2,; I 6~:) /r) 
8Kp; Kf;/ 8K1; Ki:) 8wp; (r) 8wg; (r) 

Wp; wgi 2,i 
(4.30) 

8Js,; I 8!3,; I 8!3,; I 8!3,; I 6~:) j(r) 
8Kp; Kf;;l 8K1; Kj:l 8Wpi (r) 8w9 ; (r) 3,i 

Wp; wgi 

8!4,i I 8!4,i I 8f4,i I 8f4,i I 6i:) /r) 
8Kp; Kf;/ 8K1; KJ:) 8Wpi (r) 8w9 ; (r) 

4,i 

Wp; wgi 
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For each iteration,Kpi, Kli, Wpi and w 9i are updated as follows, 

K(r+1) 
Pi 

K(r) 
Pi ot) 

K(r+1) KJ~) bt) li 
+ (4.31) 

wr+l r 6~:) p2 wpi 

wr:f-1 r bi:) 
92 Wgi 

Since PID gains are proportional to the slopes of the control surface shown in Fig. 

4-3, we can find maximum values of slopes angle corresponding to KPimax, K 1imax 

and KDimax· 

For instance, let the proportional SAM based fuzzy controller for ith has high-level 

tuning parameters:Vo and 1/2. From (4.16):(4.17) following expression can be derived 

Vo min = V2 min 

Vo max = V2 max 

Then limiting angles for 00 , a 0 , 01 and a 1 can expressed as, 

Oo max = ao max = 01 max = a1 max 

Oo min = ao min = 01 min = a1 min 

( 4.32) 

( 4.33) 

( 4.34) 

If {KPimax/KPi 2 1.571}, the fuzzy controller has independent variations of 00 

and ()1 within the range [0 90°]. Otherwise, it has feasible stability region as shown 

in Fig. 4-6. 
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4.6 Control Simulation 

Here, two examples which are previously simulated in the last chapter are re-simulated 

with FPID controllers. 

4.6.1 Example 1 

The dynamics of transfer function between heat input (W) and temperature output 

(°C) is described by; 

0.0288e- 0 ·6• 0.0119Cl. 2• 0.00028e- 3 ·6 • 

6.605s2 +5.14s+ 1 97.02s2 +19.7s+1 23.52s2 +9.7s+1 

0.0141e-1. 2• 0.0295e- 0 ·6• 0.0035e-1. 8• 

10.1ls2 +6.36s+ 1 5.523s2+4.7s+l 23.52s2+9.7s+l 
(4.35) 

0.0015e- 3 ·6• 0.0143e-l.Bs 0.0282e- 0 ·6• 

17.56s2+8.38s+l 6.605s2+5.14s+1 7.29s2+5.4s+l 
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The equivalent first-order model from plant reaction curve is given by; 

0.0288e-l.SSs 0.0119e- 6• 0.00028e- 5·958 

4.35s+l 16.05s+l 8.1s+l 

0.0141e-2.85s 0.0295e-1. 85• 0.0035e- 4·25• ( 4.36) 
6.6s+l 3.9s+l 7.95s+l 

0.0015e- 5·65• 0.0143e- 3 ·058 0.0282e-1. 9• 
6.6s+l 4.2s+l 4.5s+l 

The set points were increased by 50°C, 55°C and 60°C at the beginning of the sim­

ulation. Once the outputs reached the initial set points, all variables were changed 

to lOOoC at 70 minute. In order to measure load disturbance rejection capability, 

a step load disturbance was given to the third input (y3 ) of the process. Fig. 4-7 

shows responses of this system to step input(reference) and step load disturbance. 

The system with FPID type II controller has less over shoot and better load distur-

bance rejection. Tables 4.2 and 4.3 show the comparisons of performance indices. 

The controller tuning parameters for individual loop are shown in table 4.4. 

4.6.2 Example 2 

In this example a new transfer function is derived by increasing the time delay two 

times of each subsystem. The dynamics of this process is described by; 

0.0288e-1. 2• 0.0119e- 2·4• 0.00028e- 7·2• 
6.605s2+5.14s+l 97.02s2+19.7s+l 23.52s 2+9.7s+l 

0.0141e- 2·4• 0.0295e-1. 2• 0.0035e- 3 ·6• ( 4.37) 
10.1ls2+6.36s+l 5.523s2+4.7s+l 23.52s 2+9.7s+l 

0.0015e- 7·2• 0.0143e- 3 ·6• 0.0282e- 1 ·2• 
17.56s2+8.38s+l 6.605s2+5.14s+l 7.29s2+5.4s+l 
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The equivalent first-order model obtained from plant reaction curve is given by; 

0.0288e- 2.4Ss 0.0119e-7 .4Ss 0.00028e- 9 · 7• 

4.35s+l 16.05s+l 8.1s+l 

0.0015e- 3 ·5• 0.0295e- 2·4• 0.0035e-6.05s ( 4.38) 
6.6s+l 3.9s+l 7.95s+l 

0.0015e- 9·5• 0.0143e- 4 ·9• 0.0282e- 2 ·5• 

6.6s+l 4.2s+l 4.5s+l 

The set points were increased by 40°C, 50°C and 40°C at the beginning of the simu­

lation. Once the outputs reached the initial set points, all variables were changed to 

lOOoC at 80. In order to measure load disturbance rejection capability, a step load 

disturbance was given to the first input (y1 ) of the process. Fig. 4-8 shows responses 

of this system to step input(reference) and step load disturbance. The system with 

FPID type II controller has less over shoot though it show bit slow response compared 

to linear PID system. However, all the systems show same capability of load distur-

bance rejection. Tables 4.5 and 4.6 shows the comparisons of performance indices. 

The controller tuning parameters for individual loop are shown in table 4.7. 
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Output Set Point Tracking 
Rise Time (minute) Overshoot% Setting Time (minute) 

PID FPID1 FPID2 PID FPID1 FPID2 PID FPID1 FPID2 

YI 5 11 5 19 11 17 15 26 11 

Y2 5 11 5 25 6 16 14 20 9 
Y3 5 11 6 33 8 25 19 14 20 

Table 4.2: Performance characteristic indices of proposed FPID methods and PID 
method for set point tracking in example 1 

Output Load Disturbance 
Overshoot% Setting Time (minute) 

PID FPID1 FPID2 PID FPID1 FPID2 

YI 2.6 3.6 1.6 0 0 0 
Y2 5 5 1 0 0 0 
Y3 28 32 75 10 13 7 

Table 4.3: Performance characteristic indices of proposed FPID methods and PID 
method for load disturbance in example 1 

Loop No PID FPID1 FPID2 
p I D 

p I D VI V3 VI V3 VI V3 VI V3 

(1) 2.61 0.61 2.79 0.7 0.9 2.2 1.3 2.3 1.5 1.8 1.1 
(2) 2.03 0.57 1.82 0.9 1.1 4.0 1.4 3.5 1.6 3.8 1.4 
(3) 1.7 0.52 1.40 0.9 1.0 2.0 0.6 1.8 0.8 2.3 1.3 

Table 4.4: Tuning parameters of example 1 for FPID controllers 
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Output Set Point Tracking 
Rise Time (minute) Overshoot% Setting Time (minute) 

PID FPID1 FPID2 PID FPID1 FPID2 PID FPID1 FPID2 

Y1 10 17 15 37 10 7 30 30 35 
Y2 9 20 11 8 0 6 22 23 22 
Y3 5 15 6 20 0 6 6 22 7 

Table 4.5: Performance characteristic indices of proposed FPID methods and PID 
method for set point tracking in example 2 

Output Load Disturbance 
Overshoot% Setting Time (minute) 

PID FPID1 FPID2 PID FPID1 FPID2 

Y1 34 38 17 14 16 23 

Y2 12 19 16 13 20 10 

Y3 1 2 3 0 0 0 

Table 4.6: Performance characteristic indices of proposed FPID methods and PID 
method for load disturbance in example 2 

Loop No PID FPID1 FPID2 
p I D 

p I D Vl V3 vl V3 vl V3 vl V3 

(1) 0.56 0.25 0.32 1.1 0.8 5.5 0.35 4.2 0.5 3.5 0.2 
(2) 1.45 0.23 2.29 0.8 1.0 1.1 0.80 1.3 0.9 1.1 1.8 
(3) 2.34 0.39 3.54 0.9 1.2 1.5 0.50 1.8 0.2 0.9 0.6 

Table 4.7: Tuning parameters of example 2 for FPID controllers 
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Chapter 5 

Real-Time Experiments 

5.1 Introduction 

This chapter describes real time experiments of temperature control of a soil-cell. The 

objective of experiments is to control temperatures at three different locations of soil­

cell using three different heaters. The system identification is performed for soil-cell 

via classical step response method. Openloop tests (step response) are carried out for 

the soil- cell process and transfer function matrix is developed using plant reaction 

curve method [74]. Different type of control algorithm are executed for temperature 

control in the soil-cell in order to maintain desired temperatures in three different 

locations. 

This chapter is organized as follows. First, overview of system modeling and in­

demnification is presented. The soil-cell is modeled with first-order dead time models 

and identified using conventional step response method. The plant reaction curve 

methods is used to identified the openloop transfer functions of soil-cell using open 

loop tests data. 
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5.2 System Modeling and Identification 

The system modeling and identification play one of major roles in control engineering. 

The identified model can be used for output prediction, system design and control 

in diverse engineering applications [83]. In order to successfully model and identify a 

system, Ljung [84] pointed out three major procedures; 

1. Model structure selection. 

2. Model order estimation. 

3. Parameterizations. 

In this chapter, the selection of model structure and the order is discussed under 

the modeling of the system and parameterizations is discussed under the system 

identification. 

There are two basic types of modeling problems. They are dynamic modeling of 

measured input/output and stochastic modeling problems. In each of these cases, a 

modeling consists basically of mathematical equations which can be used to under­

stand the behavior of the system. The first type of modeling is the model estimation 

process of capturing system dynamics using measured data (inputs and outputs) [84], 

[85]. The relationship between outputs and the inputs can be formulated through 

a set of mathematical equations. In general, there are two ways to determine these 

equations. By writing set of equilibrium equations based on mass and energy bal­

ance and other physical laws, the relationship between outputs and inputs can be 

determined for given a system. A more common method is to use an empirical model 

approach (black box method). The empirical modeling is more common in engineer­

ing practice than its counterpart due to easiness of formulate the relationship between 

outputs and inputs. 
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The stochastic modeling arises when there is uncertainty about system inputs 

which causes the system outputs. For example, in large number of problems concerned 

with environmental, social and engineering systems, although the outputs are easily 

observed, it not possible to observe or measure the causes or the inputs. In this 

chapter, the dynamics modeling of measure input/output is described relating to 

soil-cell since outputs and inputs of the soil-cell are already identified. 

5.2.1 Dynamic Modeling : Soil-cell 

Although, in practice, most industrial processes are nonlinear (like soil-cell), linear 

models for such processes are often used due to their simplicity [40]. In this case, a 

high order process can be considered as a linear process for small changes when it is 

operated around its steady states [7 4]. 

In literature, [86] and [87] indicate that first-order models of process dynamics 

may frequently be sufficient for multivariable process control applications. And this 

assumption is well observed in classical control. The reason for first-order model 

selection is that most industrial processes are composed of many dynamics elements, 

usually first-order [40]. Hence the overall process would be of an order equal to number 

of elements and this high order process would be difficult to use for design and tuning 

of a controller. However, it is possible to approximate the process dynamics of such 

higher order process by a model with one time constant and a dead time as shown in 

[88]. 

Consider a process having N (positive integer) first-order elements in series. This 

type of process can be represented by, 

1 
G(s) = (1 + ';)N 
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(5.3) 

Where Tij is time constant and ( rd)ij is dead time of the process. The off-diagonal 

transfer functions of soil-cell model represent the interaction among output temper­

atures caused by different heaters (power output) while diagonal transfer functions 

represent the direct effect of heaters (power output) to the corresponding temperature 

outputs 

5.2.2 Identification : Soil-cell 

The parameterizations is next step to perform once the correct model is defined for 

the soil-cell. i.e. choosing the correct values for K, T and Td of each transfer function 

in (5.3). In general, parameterizations can be divided in to two categories. They are 

"on-line" and "off-line" system identifications. 

The on-line system identification is common in especially adaptive control and it 

is necessary to identify the system in a fairly short time. Then the data are processed 

to estimate the parameters of the model while maintaining cost function. The best 

example of on-line system identification method is recursive least-square technique 

[89], [90]. 

The off-line identification requires a collections of data (inputs and outputs) for 

long period of time. Then, in off-line identification, there is a greater flexibility choos­

ing a technique without any restriction on computing time. This may enhance the 

accuracy of the estimated model. There are well-known off-line classical techniques 

as step response, impulse response and frequency response. As their name imply 

these techniques use different kind of input to system and examined the outputs of 

the system. Among them the simplest input which can be applied to the process is a 
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Figure 5-2: Determination of first-order dead time model using process reaction curve 
method 

step input. In practice this may be one the scenarios of sudden switching on (or off) 

of input voltage or current, sudden opening (or closing) of input valve, so on. 

In this research the step response technique is utilized to identify the first-order 

dead-time model (K, r and rd) of the soil-cell since it can be done easily with sud-

den switching on of the heaters one by one at a time and measuring corresponding 

temperatures. These real time openloop experiments are well described in section 5.3 

As described in [74], the plant reaction curve method is used to determine the 

process parameters. Fig. 5-2 shows the step response or reaction curve for a higher 

order process (monotonically increasing). At a steady state of the process out y0 , the 

step input of flu is applied to manipulated input of the process. The process response 

is then observed and recorded until it reaches a new steady state y1 . By measuring 

the times to reach 28.3 per cent(tl) and 63.2 per cent(t2 ) of its steady state value 

fly(= y0 -y1) the process parameters can be obtained. Then the following expressions 

are used to calculate the parameters of first-order dead time model. 

K 
fly 

flu 
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Figure 5-3: First-order dead time model approximation for a higher order process 

5.3 Openloop Test 

7 1.5(t2- tl) 

t2 
1.5(tl - 3) (5.4) 

The hardware setup which is used to implement real time experiments is shown in Fig. 

5-3. The Thermofoil type heaters (each 7.H1/10V DC) from Minco Products, Inc. are 

used in the soil-cell. The heaters are placed at three different levels (equiv distance) 

on two sides (opposite to each other) of the soil-cell. At each level two heaters are 

connected in parallel and therefore maximum power available (14W) is two times of 

a single heater coil. Three RDT (Resistance Temperature Detector) (each 100 D, -200 

to 600°C) from Omega Engineering are used to measure the output temperatures at 

three different levels of the soil-cell. The tip of each RTD is placed at the center of each 
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level so that they measure the center (point) temperature. The outputs of the RTD 

are fed to the signal conditioner. The RTD and signal conditioner is set up to convert 

0-200°C to 0-lOV. The dSAPCE controller (DS1103) is configured directly to read 

this voltage out from the signal conditioner. Using three separate analog to digital 

converter (ADC) channels (1Hz sampling) on DS1103 PPC controller board of the 

dSPACE controller, this voltage output is read. The important fact about dSAPCE 

controller is, the MATLAB and SIMULINK program can directly be downloaded to 

realtime processor (rti1103). Finally this voltage output is directly read and stored as 

temperature of the soil-cell with ControlDesk interface on personal computer (PC). 

The controller algorithm, written in rtill03 processor calculate the duty cycle 

for each solid state relay and send to each relay circuit via three separate digital to 

analog converter (DAC) channels on dSPACE controller board. The switching period 

is set to 5 minutes. Thus the power at each heater sets can be varied from 0 to 14W 

depending on duty cycle which is calculated by control algorithm. 

In the first part of real time experiments three openloop tests were carried out 

to determine the parameters of the first-order dead time models described in (5.3). 

The step input was applied to the soil-cell, i.e. sudden switched on a particular 

heater set up and the rest of heater setup were kept switched off for entire period of 

openloop test. Once the temperatures at three locations arrived new steady states, 

the heater setup was switched off. This procedure was repeated with for other two 

openloop tests and step input was applied to another heater setup alternatively. The 

temperature responses are plotted with respect to room temperature. The first-order 

dead time models are found using plant reaction curve method as described in previous 

section. Fig. 5-4:5-6 show temperature responses and its corresponding models for 

the openloop tests. 

Then the dynamics of open transfer function between full duty ( = 14W) of each 
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input and temperature output (°C) of the soil-cell is described by, 

where 

911 ( s) 912 ( s) 913 ( s) 

G(s) = 921(s) 922(s) 923(s) 

931(s) 932(s) 933(s) 

911 (s) 
13.42e-548 

168s + 1 

912(8) 
5e-487s 

397.5s + 1 

913(s) 0 

921(s) 
3.019e-1848 

258s + 1 

922(s) 
19.8e-998 

-
462s + 1 

923(s) 
4.1e-271s 

313.5s + 1 

931(s) 0 

932(s) 
2.25e-553s 

358.5s + 1 

933(s) 
12.5e-55.5s 

178.5s + 1 

5.4 Implementation of Control Algorithms 

(5.5) 

Three different type of control algorithms; PID, FPID type I and FPID type II are 

implemented for soil-cell. The room temperature was around 22°C for all experiments. 

The initial set point temperature for loop 1 and 3 was 28°C and for loop 2 was 32°C. 
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Output Set Point Tracking 
Rise Time (minute) Overshoot% Setting Time (minute) 

PID FPID1 FPID2 PID FPID1 FPID2 PID FPID1 FPID2 
Y1 740 1700 445 16.7 10.0 11.7 2300 3670 1000 
Yz 730 1080 260 10.0 9.0 3.0 3750 2500 960 
Ya 700 1590 425 17.7 11.7 15.8 2050 3550 1000 

Table 5.1: Performance characteristic indices of proposed FPID methods and PID 
method for set point tracking 

Loop No PID FPID1 FPID2 
p I D 

p I X 10 -o D x10 -o vl V3 vl v3 v1 v3 vl v3 

(1) 0.16 2.5 9.5 0.5 0.8 1.8 1.5 2.5 1.8 2.1 1.3 
(2) 0.18 1.4 8.4 0.9 1.0 3.1 1.1 2.6 1.1 3.9 0.9 
(3) 0.15 2.4 9.5 0.6 1.0 2.3 0.9 1.9 1.2 1.8 1.2 

Table 5.2: Tuning parameters of FPID and PID controllers for real time experiments 
loop No Gain Margin Phase Margin 

1 2.4 40° 
2 3.6 35° 
3 5.5 45° 

Table 5.3: Gain and Phase Margins of each loop of the soil-cell 

After the all outputs reached their set point values, the set point temperatures were 

changed 34°C for loop 1 and 3, and 42°C for loop 3 at 4000 min respectively. The 

Fig. 5-7show responses of each system. 
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Chapter 6 

Conclusion and Future Work 

6.1 Conclusion 

The main objective of this thesis was to develop technique for the design and tuning 

of FPID controller for multivariable process system. This research attempt to ad­

dress main problem of interactions among different loops which commonly appears 

in multivariable process systems in industry. Two types of FPID configurations were 

considered for designing FPID controllers. The type I was a conventional Mamdani's 

type and it used rule-coupled inference to produce an incremental FPID signal. The 

type II used rule decouple inference to provide independent tuning for the three ac­

tions in the PID signal. The tuning of both FPID configurations was achieved while 

using the two-level tuning principle which was presented in chapter 2. The low-level 

tuning dealt with linear gains whereas the high-level tuning adjusted the fuzzy rule 

base parameters. The low-level tuning method adopted a novel linear tuning scheme 

for general decoupled PID controllers and the high-level tuning adopted a heuristic 

method to change the nonlinearity in the fuzzy output. 

In chapter 3, formulation of low-level tuning strategy was presented. For low-level 
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tuning a novel PID tuning technique for MIMO process had been developed. The 

proposed method was based on an interaction index. The proposed method can be 

used for any n x n dimensional MIMO process systems and guarantees closed loop 

stability. The decoupling was performed while using a static decoupler, which has 

the effect of reducing interactions within individual loops. The linear PID parameters 

were calculated for each loop by using interaction index, pole placement and ZN tun­

ing rules. The superiority of proposed low-level tuning technique was evaluated using 

control simulations and compared against well known multivariable tuning technique, 

BLT. 

In chapter 4, formulation of high-level tuning strategy was presented. Through 

nonlinearity analysis via NVI and LAI parameters of different fuzzy systems, SAM 

was selected to design high-level FPID controller. Two points of out of SAM fuzzy 

inference were selected to change the nonlinearity out of fuzzy system. However, 

change of nonlinearity at more than two points could have been done with cost of 

higher parameters complexity. For both configurations, FPID type I and FPID type 

II, high-level tuning parameters; Vo and V1 were identified. Tuning of those parame­

ters have been performed using two heuristics; increase of V0 decreases the undershoot 

of response and increase of V1 increases the overshoot of the response. Stability analy­

sis of overall system was performed through gain margin and phase margin of MIMO 

system. The superiority of proposed FPID techniques were evaluated using control 

simulations and compared against its linear counterpart. 

In order to prove validity of proposed control algorithm real time experiments 

have been conducted. A prototype of three input three output soil heating cell was 

constructed for experiments. The objective of the experiments was to control temper­

atures at three different locations of soil-cell using three different heaters. The main 

challenging task of this experiment was the presence of interactions among three loops 
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in the soil-cell. Due to the interaction, the heat input of particular heater affected 

not only corresponding output but other output as well. This was clearly seen in 

openloop tests which were conducted to identify the soil-cell. Since the proposed 

algorithm is based on interaction index, which is a measure of maximum interaction 

given by a particular loop to other loops, the issue of loop interactions was well han­

dled in the realtime experiments and could be able to have different temperatures at 

different level as desired. Due to the long time constant of soil-cell, the experiments 

had been conducted for long period of time. During this period of experiments, the 

system has undergone different temperature variations of the environment. This was 

another challenging task for experiments to provide better performance. However, the 

proposed algorithm was more robust to those external disturbances and has shown 

better performance. Based on the analysis of simulation and realtime experiments 

results it can be concluded that the proposed multivariable FPID type 2 scheme has 

better capability to exhibit satisfactory performances against its counterparts. 

Followings are the summary of outcomes in this research. 

1. Extension of two-level tuning method for MIMO systems. The two-level tuning 

proposed in (Mann,99) is extended for a MIMO system. This is a novel attempt 

in multivariable control. 

2. Development of novel linear PID tuning technique for MIMO systems. The 

linear tuning can be applied for any n x n process systems whereas other general 

methods have limitation to the 2 x 2 systems. 

3. Investigation of Standard additive model (SAM) based fuzzy inference for MIMO 

systems. SAM based fuzzy inference allows better nonlinear control against 

other inference. Application of SAM based fuzzy inference to multivariable 

systems is novel. 

89 



4. Development of generalized tuning technique for n x n multivariable FPID sys­

tems. 

6.2 Future Work 

Followings summarize the future research work: 

• In formulation of decoupled PID controller technique, the overall compensated 

(static decoupler and process model) was modeled using first-order system at 

low frequency. Alternatively, the compensated system can be modeled using 

higher-order model in order to deal with any frequency. 

• In this thesis tuning of high-level parameters for SAM was performed using 

heuristics. However, it is good to study the systematic tuning of those parame­

ters considering performance indices of multivariable system. 

• Moreover, online adaptation of those high-level tuning parameters has to be 

performed in order to cope with the discrepancy of model/process mismatch. 
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Appendix A 

Design Sketches for Realtime 

Implementation 
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Figure A.l: SIMULINK implementation of Pulse Width Modulator (PWM) of power 
suppliers for real-time experimentations 
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Figure A.2: SIMULINK implementation of I/0 interface for real-time experimentations 
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