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ABSTRACT 

Type 1 diabetes mellitus (TlDM) results from the autoimmune destruction of the 

insulin producing P cells in the pancreas. In TlDM, insulin deficiency induces abnormal 

metabolism of glucose, lipids and protein that may result in elevation of reactive 

aldehydes methylglyoxal and glyoxal. Hyperglycemia and high levels ofmethylglyoxal 

and glyoxal can modify cell protein, promoting the formation of advanced glycation end

products (AGEs), which may contribute to the development of diabetic complications. In 

this research, novel high-performance liquid chromatograph coupled with tandem mass 

spectrometric detection (LC-MS/MS) methods to measure plasma methylglyoxal, glyoxal 

and some of AGEs were developed. Plasma methylglyoxal, glyoxal and one AGE (MG

Hl) were measured in young humans with complication-free TlDM. The activity of the 

ubiquitous membrane enzyme, Na+1K.+-ATPase, was also assessed. Fifty-six patients with 

TlDM (DM group), 6 to 22 years, and 18 non-diabetics (ND group), 6 to 21 years, were 

enrolled in the study. Mean hemoglobin AI C (%) was higher in the DM group (8 .5 ± 1.3; 

mean± standard deviation) as compared to the control group (5.0 ± 0.3). The mean 

plasma methylglyoxal (nmol/L) and glyoxal level (nmoVL), respectively, were found 

higher in the DM group (842 ± 238, 1052 ± 515) versus the control group (439 ± 90, 328 

± 208). Plasma free AGE, MG-Hl (mg/L), was also found to be higher in the DM group 

(2.7 ± 1.1) versus the ND group (1.7 ± 0.9), and weakly correlated with methylglyoxal 

levels but not glycemia as determined by AlC. Erythrocyte membrane Na+1K.+-ATPase 
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activity (nmol NADH oxidized/ min/mg protein) was elevated in the DM group (4.47 ± 

0.98) compared to the ND group (2.16 ± 0.59). Al C correlated with plasma 

methylglyoxal and glyoxal, and both aldehydes correlated with each other. A high 

correlation of AlC with Na+/K+-ATPase activity, and a regression analysis which showed 

that Al C was a good predictor ofthis enzyme activity, suggests that glucose may play a 

role in promoting membrane alterations. Increased plasma methylglyoxal, glyoxal, 

plasma free MG-Hl and erythrocyte Na+1K+-ATPase activity may predict the occurrence 

of future diabetic complications which may be prevented by early aggressive insulin 

treatment. 
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CHAPTER! 

INTRODUCTION AND OVERVIEW 

Type 1 Diabetes Mellitus (T1DM) is a common chronic condition in children that 

is characterized by hyperglycemia. Over time this results in complications like 

hypertension, nephropathy, retinopathy, and neuropathy. Hemoglobin Al C (A1 C) is a 

marker of glycemia and correlates with the risk of complications (Valeri et al., 2004). 

Some patients with good glycemic control develop severe complications, while others 

whose glycemic control may be inadequate remain relatively free of complications for 

long periods oftime (Forbes et al., 2005; Snieder et al., 2001). To date there is no 

biochemical test that can reliably predict clinical outcome in an individual patient. 

Determining a sensitive predictor or etiological basis of diabetic complications would 

allow for appropriate early interventions with reduction in morbidity and mortality in 

individuals with diabetes mellitus (DM) (Forbes et al., 2005). 

Advanced glycation end-products (AGEs) form as a result of a series of chemical 

reactions following glycation. In DM, hyperglycemia and altered glucose metabolism 

lead, to an excess generation of reactive aldehydes, like methylglyoxal and glyoxal 

(Ahmed and Thronalley, 2007). Both of these dicarbonyls are known to cause AGE 

formation by non-enzymatic reaction with the amino side chains of arginine or lysine, or 

the sulfhydryl groups of cysteines in proteins. AGEs and their precursors are found in 

many tissues including plasma. AGE formation may affect the structure and function of 

cellular proteins and membrane pump enzymes like Na+/K+-ATPase that control cellular 
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ions, and contribute to the pathogenesis of diabetic complications. In this study we 

developed methods to measure methylglyoxal and the structurally related dicarbonyl, 

glyoxal, and free AGE residues in plasma. The relationships between Al C, plasma 

methylglyoxal and glyoxal levels, and free AGE residues was assessed in young 

individuals with uncomplicated TlDM. We also explored the relationship between these 

factors and Na+1K.+-ATPase activity in the red blood cell (RBC) membrane. 

1.1 Type 1 Diabetes Mellitus (TlDM) 

1.1.1 Diabetes Mellitus (DM) 

DM is characterized by persistent and variable hyperglycemia (high blood glucose 

levels). The cost ofDM to healthcare and society in general is tremendous, and estimated 

at US$5.2 billion in Canada alone (Dawson et al., 2002). This includes an estimated $573 

million directly spent on DM care and another $63 7 million spent on diabetes related 

cardiovascular disease. 

DM is subdivided into 3 types depending on etiology. TlDM is caused by an 

absolute deficiency in insulin due to autoimmune destruction of islet 13 cells in the 

pancreas. Type 2 DM (T2DM) is associated with obesity and is characterized by tissue 

insulin resistance and inadequate insulin secretion. This may eventually progress through 

a number of phases finally resulting in B cell burnout and absolute insulin deficiency. A 

third type is gestational DM, a condition related to T2DM but presents as hyperglycemia 
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only during pregnancy (Canadian Diabetes Association Clinical Practice Guidelines, 

2003). 

TlDM, also known as insulin-dependent DM, childhood DM, or juvenile-onset 

DM, most commonly presents in children and adolescents. The typical age of onset is less 

than 25 years (Pepper, 2006). Also, in contrast to T2DM, TlDM occurrence is typically 

in individuals who are lean rather than obese (Ganong, 2003; Myers, 2005). The work of 

this thesis focuses on TlDM. TlDM constitutes approximately 10% of all individuals 

with DM and occurs mainly in populations of Europe and North America (Champe et al., 

2005; Gillespie, 2006; Habermann, 2006). TlDM is increasing in incidence globally at a 

rate of about 3% per year (EURODIAB ACE Study Group, 2000). There are isolated 

populations (such as in Newfoundland and Labrador) where TlDM is higher (Newhook, 

2004). In Newfoundland the incident rate ofTlDM is approximately 36 per 100,000 

compared with about 25 per 100,000 or less elsewhere in Canada. Like all types ofDM, 

TlDM is associated with increased risk for and a high incidence of certain complications. 

Hence, DM in general has been considered a syndrome of metabolic abnormalities (i.e. 

metabolic disorder of glucose, protein, lipids, water and electrolytes), microvascular 

disease (i.e. retinopathy, neuropathy, and nephropathy), and macrovascular disease (i.e. 

atherosclerosis) (Myers, 2005; Champe, et al., 2005). DM is the leading cause of adult 

blindness and amputation, and is a major cause of renal failure, heart disease, and stroke 

(Champe et al., 2005). Cardiovascular disease (CVD) is the main cause of premature 

death among people with DM - about 65% of people with DM die from heart disease or 

stroke (Geiss, 1995). TlDM patients are often young at the time of diagnosis. Although 
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the pathogenic factors are active early on, complications usually develop later as the 

disease progresses and are not as common during early stages. 

1.1.2 Potential Causes and Clinical Presentation of TlDM 

The precise triggers of the autoimmune destruction of islet B cells resulting in 

T1DM remain elusive (Wasserfall and Atkinson, 2006). However, some have suggested a 

role for CD4+ and CD8+ T lymphocytes and infiltrating macrophages in the destructive 

process (Foulis et al., 1991; Roep, 2003). B lymphocytes are also involved by producing 

autoantibodies (Brusko et al., 2005). 

The key determinants for the development ofT1DM seem to involve a genetic 

predisposition modified by environmental factors (Knip, 2003). The following 

susceptibility genes have been suggested to be involved in T1DM (Gillespie, 2006): the 

human leukocyte antigen (HLA) on chromosome 6 especially DR4-DQ8 and DR3-DQ2 

(Cudworth and Woodrow, 1975; Risch, 1987; Todd, 1995); the shorter number oftandem 

repeats, in a variable number of tandem repeats region, in the insulin gene promoter on 

chromosome 11 (Bennett et al., 1995); an allele of the gene for a negative regulator ofT

lymphocyte activation, cytotoxic T lymphocyte antigen 4 (CTLA-4) found on 

chromosmone 2q33 (Gillespie, 2006); and a variant ofPTPN22, the gene encoding 

lymphoid tyrosine phosphatase (Bottini, et al., 2004; Gillespie, 2006). All four may be 

involved in the antigen presenting process involving T -lymphocytes. Environmental 

factors also appear to play a role in T1DM and may be responsible for the increasing 

incidence, although it is difficult to identify specifically which ones are most important. 
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Studies have also identified enteroviruses (Hyoty, 2002), rotavirus (Honeyman, 2000) 

and rubella (Ginsberg-Fellner et al., 1985) as possible pathogens involved in T1DM. 

Other factors include immunoregulatory defects, and formation of anti-islet antibodies 

against glutamic acid decarboxylase (Baekkeskov et al., 1989), a protein tyrosine 

phosphatase-like molecule (IA-2) (Lan et al., 1996) and insulin (Brusko et al., 2005). 

The clinical presentation ofT1DM is insidious, appearing rapidly at a stage when 

islet B cell levels have fallen to a critically low level. The most common symptoms and 

presenting features ofDM include polydipsia; drowsiness and fatigue; polyuria and 

bedwetting in children; polyphagia; vision changes (increased myopia); weight loss; 

sweet, fruity-smelling breath (due to ketone body production) and mood changes (Pepper 

2006). These symptoms are the result of inadequate blood insulin, hyperglycemia, and 

dehydration. 

1.1.3 Diagnosis of DM and Monitoring of Glycemia 

DM is a disease ofhyperglycemia and diagnosis ofboth T1DM and T2DM rely 

on demonstrating either a fasting or postmeal hyperglycemia (Canadian Diabetes 

Association Clinical Practice Guidelines, 2003). Normal blood glucose is typically less 

than 6.0 mmol/L in a fasting state. A fasting plasma glucose level~ 7.0 mmol/L (126 

mg/dL); a random plasma glucose~ 11.1 mmol/L (200 mg/dL); or a glucose value ~11.1 

mmol/L (200 mg/dL) two hours after a 75g oral glucose load on more than one occasion 

are diagnostic criteria for DM. These diagnostic criteria are defined based on risk for 
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diabetic retinopathy (Englegau, 1997). Individuals with levels of glycemia that are 

intermediate between normal levels and levels that are consistent with DM are 

categorized as being in a prediabetic state and are at risk of developing DM later on 

(Canadian Diabetes Association Clinical Practice Guidelines, 2003). 

Following the diagnosis of diabetes, long-term glycemic control is monitored 

using glycated hemoglobin (A1C). Normal adult hemoglobin A consists oftwo pairs of 

polypeptide chains, two a chains and two ~ chains. Long-term elevation of plasma 

glucose levels lead to small amounts ofhemoglobin A being non-enzymatically glycated 

to form A1 C. This occurs by glucose attaching to theN-terminal valine in each I3 chain of 

hemoglobin (Valeri et al., 2004) and occurs through Shiffbase formation followed by 

Amadori rearrangement to form the final stable glycation product (Figure 1.1 ). As the 

average life-span of a RBC is about 3 months, A 1 C levels serve as an estimate of the 

average glycemia over the previous 90 days. An elevated level of A1 C greater than 6.0% 

is considered abnormal and is common in individuals with DM. As a therapeutic goal, 

however, levels of A1C <7.0% are considered to be consistent with "good glycemic 

control" and lower risk for microvascular and macrovascular complications (Botero and 

Wolfsdorf, 2005; Canadian Diabetes Association Clinical Practice Guidelines, 2003). 
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Figure 1.1 Formation of hemoglobin AlC. Hb A is hemoglobin A. f3A-NH2 refers to 

theN-terminal amino acid (valine) ofthe hemoglobin f3-chains. 
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1.1.4 Treatment of TlDM 

The control ofTlDM involves both lifestyle adjustments and medical treatments. 

Insulin replacement is the cornerstone of therapy for TlDM (Talreja, 2005; Canadian 

Diabetes Association Clinical Practice Guidelines, 2003). The optimal treatment 

regimens involve nutritious diet and exercise, which allow the patient to maintain a 

healthy, active lifestyle. Maintaining glycemic control is accomplished by therapeutic use 

of insulin and can prevent or minimize long-term microvascular complications ofDM 

(Habermann, 2006). Insulin must be administrated by subcutaneous injection 

(McCulloch, 2007). Many different insulin treatment regimes are used to control blood 

glucose levels. These vary in the speed and duration of a therapeutic effect and are 

variously referred to as rapid acting, short-acting, intermediate acting and long acting 

(Talreja, 2005; McCulloch, 2007). The best option depends upon a variety of individual 

factors (Habermann, 2006) and must be tempered with caution to avoid hypoglycemia. 

Conventional (standard) insulin treatment and intensive insulin treatment are the 

two main types of insulin treatment plans. These differ in the types and dose of insulin 

used and the frequency of injections. In general, intensive insulin therapy involves more 

frequent insulin injections or use of an insulin pump. Intensive insulin treatment also 

requires more frequent monitoring ofblood glucose. This type of therapy aims to more 

closely mimic insulin secretion by the pancreas and usually offers greater control of 

glycemia, (Habermann, 2006; Yki-Jarvinen, 1992), lower AlC, and therefore lower risk 

for complications (Habermann, 2006; Canadian Diabetes Association Clinical Practice 
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Guidelines, 2003). Conventional insulin treatment is an older regimen only 

recommended for selected patients (McCulloch, 2007). 

1.1.5 Complications of TlDM 

Poorly controlled T1DM carries an increased risk of developing both acute and 

chronic complications. Acute complications include diabetic ketoacidosis, hyperglycemic 

hyperosmolar coma, and hypoglycemic coma which can be life-threatening and, 

therefore, requires prompt treatment. The chronic complications are largely the effects of 

tissue damage occurring as a result of long term hyperglycemia and manifests as 

microvascular and macrovascular disease. Risk for the various complications are 

monitored by a variety of laboratory tests including A1 C, serum lipid levels, and urine 

albumin measurements, as well as clinical tests for peripheral neuropathy, blood pressure 

measurements, and ophthalmologic tests (Botero and Wolfsdorf, 2005; Canadian 

Diabetes Association Clinical Practice Guidelines, 2003). 

Both T1DM and T2DM are associated with increased risk of atherosclerosis and 

are associated with macrovascular disease like coronary artery disease (Wilson et al., 

1998; McGill et al., 1998; Giannattasio et al., 1999; Garber et al., 2003), stroke, and 

peripheral vascular disease. Coronary artery disease is twice as common in patients with 

DM as compared with non-diabetic patients and imparts greater risk of angina and 

myocardial infarction (Garber et al., 2003). Microvascular disease, including retinopathy, 

nephropathy and peripheral neuropathy, also occurs in both TlDM and T2DM owing to 
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overlap in their pathophysiology (Weiman, 2005). Diabetic retinopathy, a complication 

affecting the retina (Habermann, 2006; Myers, 2005, Talreja, et al., 2005), is the most 

common cause of blindness among non-elderly adults in western countries. Diabetic 

nephropathy involves damage to the kidney caused by the deterioration of renal blood 

vessels, which can lead to chronic renal failure, eventually requiring dialysis. DM is the 

most common cause of chronic kidney failure worldwide. Diabetic neuropathy involves 

abnormal and decreased sensation, usually starting in the feet but eventually spreading 

elsewhere. When combined with vascular disease, this can lead to diabetic foot, which 

may cause necrosis, infection and gangrene. Diabetic foot is also the most common cause 

of amputation in western countries, usually involving toes and feet (Weiman et al., 2005; 

Myers, 2005; Talreja, et al., 2005). Other forms of diabetic neuropathy may present as 

mononeuritis or autonomic neuropathy (Talreja, et al., 2005). 

1.1.6 Mechanisms of Complications 

Several mechanisms have been proposed to explain how elevated glucose levels 

may cause microvascular complications. The four main mechanisms involve 1) increased 

glucose flux through the polyol pathway (Engerman et al., 1994; Srivastava et al., 2005); 

2) increased glucose-induced activation of protein kinase C (PKC) isoforms (Koya and 

King, 1998); 3) increased production of reactive oxygen species (ROS) (Giugliano et al., 

1996); and 4) increased formation of AGE residues (Vlassara and Palace, 2002; Goldin et 

al., 2006). 
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Increased flux through the polyol pathway can cause damage in two ways. High 

glucose concentrations favor the conversion of glucose to sorbitol by aldose reductase 

activation. This also results in consumption ofNADPH and a decrease in the 

NADPH/NADP+ ratio (Srivastava et al., 2005). Oxidative stress caused by depletion of 

NADPH, and the osmotic stress induced by accumulation of sorbitol, both can result in 

tissue dysfunction and damage, leading to various complications (Srivastava et al., 2005). 

PKC consist oftwelve isoforms with different structure and co-factor 

requirements and is involved in signal transduction pathways affecting many 

physiological processes related to vascular function (Godbout et al., 2002). One of the 

key signaling events occurring during hyperglycemia is activation ofPKC (Koya and 

King, 1998) through increased release of diacylglycerol (DAG) as an intracellular second 

messenger. The mechanism of increased DAG synthesis involves elevated triose 

phosphates, dihydroxyacetone phosphate (DHAP) and glyceraldehydes-3-phosphate 

(G3P) concentrations during hyperglycemia. (Idris and Donnelly, 2006; Itani et al, 2002; 

Rolo and Palmeira, 2006). The damage resulting from PKC stimulation to the vascular 

tissue includes increased permeability, endothelial cell activation, altered blood flow, 

leukocyte adhesion and abnormal growth factor signaling, all of which contribute to 

several pathologies of diabetic complications (Brownlee, 2001). 

Potential role ofROS in the development ofDM complications has also been 

investigated (Baynes and Thorpe, 1999; Oberley 1988; and Ceriello et al. 2000). ROS, 

like superoxide and hydrogen peroxide, are constantly being generated as a consequence 

of aerobic metabolism. Nitric oxide, one of the reactive nitrogen species, is closely linked 
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to the ROS family and is generated by endothelial cells in response to stimuli like 

acetylcholine and insulin (Moncada et al. 1991). It plays an important role in regulation 

of vasomotor tone by stimulating cGMP formation and vasorelaxation. Nitric oxide can 

also rapidly react with superoxide to generate peroxynitrite, an extremely reactive oxidant 

(Cai and Harrison 2000), that can freely cross cell membranes (Curtin et al. 2002). 

Various metabolic changes occur during DM. Substrate flux through the mitochondria 

produce increasing levels ofROS (Baynes, 1991). This in tum can damage unsaturated 

fatty acids and proteins. The reaction ofROS with nitric oxide, to produce peroxynitrite 

can deplete nitric oxide, and cause the endothelial nitric oxide synthase (eNOS) to 

produce superoxide ion (Milstien and Katusic, 1999). Production of superoxide ion is 

important to generation of other ROS species that if not balanced by antioxidant defenses 

results in oxidative stress. Excessive ROS formation and increased vasoconstriction 

reduce blood flow and oxygen delivery. ROS decreases the expression of glyceraldehyde-

3-phosphate dehydrogenase (GAPDH) resulting in increased levels of glyceraldehyde-3-

phosphate (G3P), increasing DAG generation and PKC activation, as well as increasing 

production of AGEs (Reusch, 2003). 

Finally, long term elevations of glucose and its metabolites promote formation of 

AGE residues which damage tissue proteins (Brownlee, 2001). This ultimately leads to 

damaged capillary basement membranes, vascular endothelium and other tissues, and the 

proliferation of vascular smooth muscle cells (VSMC) and platelet dysfunction- all 

contributing to the progression ofDM complications. (Goldin et al., 2006; Vlassara and 
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Palace, 2002). This final mechanism is of special relevance to this thesis and will be 

discussed in greater detail later. 

1.2 Methylglyoxal, Glyoxal and AGEs 

1.2.1 Metabolism of Methylglyoxal and Glyoxal 

The in vivo production ofmethylglyoxal and glyoxal can occur in all cell types, 

including VSMCs, and in blood plasma (Wu, 2006). Methylglyoxal (CH3-CO-CH=O or 

C3H402) (Figure 1.2) is a dicarbonyl formed as a byproduct of normal metabolism but 

has no known physiological function. It is also a highly reactive a-ketoaldehyde and can 

be produced from several sources by both enzymatic and non-enzymatic processes 

involved in glucose, lipid and protein metabolism. The major source of methylglyoxal 

involves the spontaneous transformation of triose phosphates from intermediates of 

glycolysis, including dihydroxyacetone phosphate (DHAP) and G3P (Thomalley, 1993b; 

Beisswenger et al., 2003) making it an intrinsic component of glucose metabolism via the 

glycolytic pathway (Figure 1.3). Under normal physiological conditions, glucose is 

converted to pyruvate via the glycolytic pathway forming only small amounts of 

methylglyoxal. GAPDH is a key enzyme in this process and is upregulated by insulin 

(Alexander et al., 1988). This enzyme is also believed to be modulated by a variety of 

other environmental and genetic factors, including TlDM (Beisswenger et al., 2003). 

Triose phosphates formed via the pentose phosphate pathway may also be a source of 

methylglyoxal (O'Brien et al., 2005). Factors that increase the availability of 
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methylglyoxal precursors such as increased plasma glucose (Thomalley 1988) or 

increases in fructose (Wang et al., 2006; Vasdev et al., 2003), glycine and threonine, and 

fatty acids may increase the formation of methylglyoxal. 

Glyoxal (OCHCHO or C2H202) is the smallest dialdehyde and is structurally 

related to methylglyoxal (Figure 1.2). Glyoxal's in vivo biosynthesis is also a byproduct 

of metabolism, but occurs mainly by oxidative degradation of glucose (Wells-Knecht, et 

al., 1995), lipid peroxidation (Shangari et al., 2003), oxidative degradation of DNA 

(Shangari et al., 2003), and oxidative degradation of fructosamine, a glucose-derived 

glycation product in proteins (Glomb and Monnier, 1995). Increased ROS, 

hyperglycemia, and glycated proteins containing fructosamine contribute to glyoxal 

formation in conditions like DM. 

The balance between synthesis and catabolism ofmethylglyoxal and glyoxal are 

important in maintaining their intracellular concentration. Both methylglyoxal and 

glyoxal are degraded intracellularly by reaction with glutathione, via the glyoxalase 

pathway (Abordo et al., 1999) (Figure 1.4). The altered activity of glyoxalase I and 

glyoxalase II may affect the degradation of both methylglyoxal and glyoxal (Abordo et 

al., 1999). Furthermore, factors affecting the availability of reduced glutathione like 

oxidative stress or activities of glutathione peroxidase and glutathione reductase, or 

glutathione synthase can also have profound effects on methylglyoxal and glyoxal 

catabolism through the glyoxylase pathway (Ahmed et al., 2002). 
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Figure 1.2 Structures of methylglyoxal, glyoxal, and some methylglyoxal and 

glyoxal derived advanced glycation end products (AGEs). Methylglyoxal-derived 

lysine dimer (MOLD), carboxyethyllysine (CEL), argpyrimidine, methylglyoxal-derived 

hydroimidazolones (MG-H) and Carboxyethyl-cysteine (CEC) are all products of 

methylglyoxal-induced glycation. Carboxymethyl-cysteine (CMC) is believed to be a 

product of glyoxal-induced glycation. 
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1.2.2 Formation of Methylglyoxal and Glyoxal in TlDM 

The production ofmethylglyoxal correlates with post-prandial glycemia in TlDM 

(Beisswenger et al., 2001). Plasma levels ofmethylglyoxal are higher in a group of 

combined adult T1DM and T2DM patients (Nemet et al., 2005). A number of processes 

may contribute to elevated methylglyoxal and glyoxal in T1DM. Insulin deficiency or 

inadequate insulin response, as well as altered glucose metabolism where the key enzyme 

of glycolytic pathway, GAPDH is down-regulated, can cause G3P to accumulate. This 

may lead to excess formation of methylglyoxal which also inhibits GAPDH and 

upregulates aldose reductase shunting glucose into the polyol pathway, resulting in 

accumulation ofG3P (Kashiwagi et al., 1992). Accumulation ofG3P, by both ofthese 

mechanisms, will result in excess formation ofmethylglyoxal in DM (Vander Jagt et al., 

1993; Phillips et al., 1993). 

In T1DM, insulin deficiency enhances lipolysis and may increase the generation 

of methylglyoxal during metabolism of acetone catalyzed by semicarbazide-sensitive 

amine oxidase (SSAO) or acetol mono-oxygenase (Casazza et al., 1984; Lyles and 

Chalmers, 1992). SSAO is found in high amounts within VSMCs and in plasma (Ekblom 

1998), possibly originating from VSMC secretion. Low insulin levels in T1DM also 

induce excess protein catabolism. Methylglyoxal may also form from amino acetone, an 

intermediate formed during catabolism of glycine and threonine (Ray & Ray, 1987; Lyles 

and Chalmers 1992). 

The concentrations of blood methylglyoxal and the activity of glyoxalase I and II 

are increased in T1DM and T2DM adults with complications (McLellan 1994). It has 
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been observed that in TlDM patients without retinopathy there is higher activity of 

glyoxalase II than those with retinopathy (Thomalley et al., 1989). This suggests a 

protective role for high glyoxylase II activity and a possible causal role for methylglyoxal 

in retinopathy. Oxidative stress also decreases the levels of glutathione required for the 

catabolism of methylglyoxal and glyoxal in the glyoxylase pathway. Thus, an imbalance 

between the formation ofmethylglyoxal and glyoxal, and its catabolism in T1DM results 

in their accumulation. It is, therefore, not surprising that methylglyoxal induced glycation 

is increased disproportionately in relation to the increase in glucose in DM (Ahmed and 

Thomalley, 2007). 

1.2.3 Formation and Degradation of AGEs 

Under normal physiological conditions, AGEs are formed by normal metabolism 

and aging as a result of oxidative and peroxidative stress. However, when glucose is 

elevated, or methylglyoxal or glyoxal are increased (due to increased production or 

decreased catabolism), AGEs may be formed in excess. The early glycation products 

formed by modification ofN-terminal amino groups or lysyl chains by glucose via the 

Maillard reaction are reversible and require further oxidation to produce stable products 

like that involved in A1C formation. Both methylglyoxal and glyoxal are highly 

electrophilic and react non-enzymatically with free amino (-NH2) or sulfhydryl ( -SH) 

groups of lysine, arginine or cysteine of intra- and extracellular proteins to form AGEs 

(O'Brien et al., 2005) (Figure 1.5). 
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The formation of AGEs is irreversible and stable (Wu, 2006; O'Brien et al., 

2005). Their aldehyde precursors are up to 20,000 times more reactive than glucose in 

glycation processes (Thornalley 2005) and methylglyoxal is the most reactive of the AGE 

precursors (Kilhovd et al., 2003). These modifications to protein structure can directly 

alter protein function (Goldin et al., 2006). AGE residues can also act indirectly through 

cell surface receptors such as the receptor of AGEs (RAGEs) and scavenger receptors to 

alter tissue function (Jensen et al., 2005; Horiuchi et al., 2003). 

AGE residues represent a chemically heterogenous group with over 30 different 

ones already described and possibly many more yet to be discovered. AGE residues can 

only be removed through proteolysis. The tum-over of AGE damaged proteins can be 

very slow depending on the protein and its location, but proteolysis results in the 

appearance of nonprotein-bound free AGE residues in biological fluids (Thornalley et al., 

2003). Those appearing in the blood plasma may eventually be excreted in the urine if 

there is adequate renal function (Thornalley et al., 2003). AGE residues are also formed 

exogenously by heating, or cooking, sugars with fats or proteins (Koschinsky, 1997). The 

absorption of AGE residues from these thermally processed foods in the gastrointestinal 

tract may contribute to plasma free AGE residue concentrations (Ahmed and Thornalley, 

2007). Free AGE residues re-absorbed from the kidney filtrate may also contribute to the 

plasma concentrations of free AGE residues (Ahmed and Thornalley, 2007). 

Methylglyoxal may bind free arginine in plasma but it is not known whether this 

contributes largely to free MGH-1 levels. 
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1.2.4 Methylglyoxal and Glyoxal Derived AGE Residues 

A number of AGEs form from methylglyoxal and glyoxal (O'Brien et al., 2005). 

Methylglyoxal can produce a number of stable AGEs, including Ns-carboxyethyl-lysine 

(CEL), the methylglyoxal-derived hydroimidazolones (MG-H), argpyrimidine, and 

methylglyoxal-derived lysine dimer (MOLD) (Figure 1.2). The latter is formed by cross

linking two lysine residues of proteins which can also act to crosslink different proteins in 

vivo. CELis also formed by the reaction ofmethylglyoxal with lysine. MG-H and 

argpyrimidine are formed by the reaction of methylglyoxal with arginine. The 

modification of arginine residues in proteins can be of particular functional relevance 

considering the high frequency with which arginine residues appear at ligand binding 

sites and active sites of enzymes (Thomalley, 2005). MG-H is a collection of at least 

three different isomers, MG-Hl, MG-H2, and MG-H3 which differ from each other in 

stability (Ahmed et al., 2002). MG-Hl and MG-H2 appear to be most stable at 

physiological pH, whereas, MG-H3 is rapidly broken down (Ahmed et al., 2002). The 

MG-Hl isomer occurs as two epimers and is of great physiological relevance. 

AGE residues can also form as a result of reactions involving glyoxal (O'Brien et 

al, 2005). For example, reaction of glyoxal with lysine forms glyoxal-lysine dimer 

(GOLD) and carboxymethyl lysine (CML); and reaction with arginine forms the glyoxal

derived hydroimidazolone (G-Hl ). Methylglyoxal and glyoxal are also known to react 

both reversibly and irreversibly with cysteine sulfhydryl (Zeng and Davies, 2005) 

forming carboxyethyl cysteine (CEC) and carboxymethyl cysteine (CMC), respectively, 

as the stable irreversible products (Zeng and Davies, 2005). All of these are present in 
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plasma and tissue proteins, but MG-Hl appears to dominate as the major methylglyoxal

derived AGE (Ahmed et al, 2005). Free MG-Hl also seems to be the main free AGE 

residue present in plasma, where levels of the others may be undetectable in healthy 

individuals (Ahmed et al, 2005). MG-Hl is increased in adults with TlDM (Ahmed et al., 

2005). 

1.2.5 Effects of Methylgyloxal, Glyoxal and AGE Residues 

Methylglyoxal and glyoxal have been shown to cause detrimental effects to 

protein function. Whether this occurs via a non-AGE or AGE-related mechanism has not 

been confirmed. Numerous studies show that these aldehydes form AGEs changing the 

structure and function of proteins. The effects of AGEs may also be indirect, mediated 

through AGE receptors, like RAGEs or scavenger receptors. 

1.2.5.1 Effects of methylglyoxal on gene transcription 

Methylglyoxal-derived AGE residues can also be formed by reaction with the 

guanyl residues of RNA and DNA. Reaction ofmethylglyoxal with guanyl residues in 

DNA and RNA can lead to transcriptional abnormalities (Wu, 2006) including single 

strand breaks and teratogenic effects (Vlassara and Palace, 2002). Methylglyoxal may 

also directly regulate transcription of genes that are involved in acellular capillary 

formation causing endothelial cell death and vessel regression (Yao et al., 2006; 

Ramasamy et al., 2006). A mechanism has been proposed whereby methylglyoxal 

modification ofmSin3A decreases mSin3A binding to the angiopoietin-2 promoter, 
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leading to an increase in angiopoietin-2 expression (Yao et al., 2006). Angiopoietin-2 and 

other proangiogenic factors play a key role in proliferative changes that characterize the 

advanced stages of diabetic retinopathy. 

1.2.5.2 Effects of methylglyoxal on vascular calcium homeostasis 

Methylglyoxal may contribute to enhanced vascular contractility or impaired 

endothelial-dependent vascular relaxation by altering calcium homeostasis in VSMCs 

and endothelial cells. Chronic treatment ofWKY rats with oral methylglyoxal elevates 

intracellular calcium level in platelets (Vasdev et al. 1998b ). Vascular calcification is a 

common feature in advanced atherosclerosis. High intracellular calcium levels in VSMC 

can increase vascular contractility, inducing further cardiovascular disease including 

angina and myocardial infarction (Y amagishi et al., 2007). 

1.2.5.3 Effects of methylglyoxal on reactive oxygen species and oxidative stress 

Endothelial cell function may also be affected through an inhibitory effect of 

methylglyoxal on nitric oxide synthesis, decreasing the bioavailability of nitric oxide and 

thereby increasing monocyte adhesion, platelet aggregation and VSMC proliferation 

(Wu, 2006). Methylglyoxal affects vascular function through its ability to generate ROS. 

Methylglyoxal is known to induce oxidative stress by a mechanism involving decreased 

levels of reduced glutathione, and lower glutathione reductase and glutathione peroxidase 

activities (Wu and Juurlink, 2002). Methylglyoxal also significantly increases superoxide, 

hydrogen peroxide production (Wu, 2006) and peroxynitrite production in VSMC (Chang 
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et al. 2005), impairing nitric oxide function. Blood cells are affected as well. For example 

methylglyoxal induces superoxide and hydrogen peroxide formation in neutrophils, 

potentially leading to kidney damage (Ward and McLeish 2004), and in the presence of 

thrombin, methylglyoxal induces a platelet peroxide accumulation and aggregation 

(Leoncini and Poggi 1996). The combined effect of increased ROS and decreased nitric 

oxide generation may include VSMC apoptosis, altered vascular tone, endothelial 

dysfunction and hypertension. 

1.2.5.4 Effects of methylglyoxal on cell signaling and vascular proliferation 

Methylglyoxal increases the activation ofNF-KB p65, a transcription activator 

involved in inflammatory and proliferative vascular response, in cultured VSMC from 

aorta (Wu and Juurlink 2002) and mesenteric artery (Wu 2005). This may occur as a 

result ofmethylglyoxal-induced oxidative stress, as hydrogen peroxide also activates NF

KB p65 in spontaneously hypertensive rat VSMC (Wu and Juurlink 2002), and 

superoxide, peroxynitrite, and hydrogen peroxide can activate NF-KB in human 

endothelial cells (Canty et al. 1999; Ogata et al. 2000;Cooke and Davidage 2002). Hence, 

methylglyoxal may also be an important promoter ofNF-KB activation, contributing to 

vascular proliferation during development of vascular disease. 

Methylglyoxal can also affect cell signaling through interaction with components 

of the mitogen-activated protein kinases (MAPK) system, which includes a number of 

serine and threonine protein kinases that can induce cell proliferation. Methylglyoxal 

induces the expression of heparin-binding epidermal growth factor in rat aortic VSMC 

25 



(Che et al. 1997) and inhibits cellular response to human insulin-like growth factor-1 

through a MEK/ERK -dependent pathway in cultured human embryonic kidney cell line 

and mouse fibroblast cell line (Du et al. 2003). Thus, methylglyoxal may cause abnormal 

cell growth. 

There is strong evidence that the accumulation of methylglyoxal modifies cellular 

protein function, gene transcription and other cell-response-related factors, thereby 

altering vascular function and mediating vascular disease. While these effects have been 

ascribed to methylglyoxal it is likely that at least some of these are mediated through 

AGE formation and/or activation of specific AGE receptors. These events may be 

involved in the pathogenesis of microvascular and macro vascular disease in DM. 

1.2.5.5 Effects of Glyoxal 

Both methylglyoxal and glyoxal have mutagenic properties (Takahashi et al., 

1989). Glyoxal has been shown to inhibit GAPDH and glutathione reductase in vitro 

(Morgan 2002). Also like methylgloxal, many of the effects of glyoxal appear to be 

mediated through formation of glyoxal AGEs. These effects may explain the increased 

susceptibility to hydrogen peroxide, increased ROS generation, reduced glutathine levels 

and decreased mitochondrial membrane potential caused by treatment with glyoxal 

(Shangari and O'Brien, 2004). Glyoxal showed site specific modification of ribonuclease 

by binding to arginine close to the enzyme active site (Cotham et al., 2004). The in vivo 

formation of GOLD has also been reported (Yamada et al, 2004; Lederer and Klaiber, 

1999). Levels of other glyoxal AGE residues like CML and CMC are increased in tissue 
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proteins in response to oxidative stress and DM (Zeng and Davies, 2005; Ahmed and 

Thomalley, 2007; Mostafa et al., 2007). Both G-H1 and CML in plasma protein 

correlates with levels of A1 C (Ahmed et al., 2005), and CML tends to accumulate in 

collagen with age (Baynes, 1991 ). The close relationship between fructosamine and 

glyoxal formation and hence the formation of glyoxal-derived AGE residues make 

glyoxal and glyoxal-derived AGE residues surrogate markers ofDM (Ahmed and 

Thronalley, 2007). This is in contrast to AGE residues derived from methylglyoxal where 

there seems to be greater dependancy on glucose metabolism than glycemia per se. 

1.2.5.6 Direct effects of AGE residues 

The formation ofmethylglyoxal-derived AGEs may be a major mechanism by 

which methylglyoxal induced cell damage and dysfunction occurs (Goldin et al., 2006). 

Methylglyoxal as well as glyoxal-derived AGEs are known to accumulate with ageing. 

Formation of AGEs can alter function of cellular enzymes, receptors, carriers and 

structural proteins. For example AGE residues are known to cross-link human vitreous 

collagen potentially contributing to progression of retinopathy (Frye et al., 1998, Stitt et 

al., 2002). AGE modification of large matrix proteins like collagen, laminin and 

vitronectin alter their molecular charge, the three dimentional matrix assembly, and 

binding properties which has significant effects on the polyanionic nature and properties 

of the basement membrane (Vlassara and Palace, 2002). Treatment ofhuman albumin 

with relatively low concentration of methylglyoxal is known to result in formation of 

MG-H residues that affect the drug binding function and esterase activity of albumin in 

27 



vitro (Ahmed et al., 2005 JBC). Heat shock protein 27 has been identified as a major 

methylglyoxal-modified protein in endothelial cells but argpyrimidine, rather than MG

Hl, appears to be the main adduct in this case and may repress cytochrome c-mediated 

caspase activation (Sakamoto et al, 2002). Heat shock protein 27 is one of the chaperones 

that protects the cell against ischemic damage and inhibits cell death (Oya-Ito et al., 

2006). AGE modification of intracellular basic fibroblast growth factor dramatically 

reduces the mitogenic activation of endothelial cell cytosol (Giardino et al., 1994) which 

may alter endothelial cell growth and basement membrane production. 

1.2.5.7 Indirect effects of AGE residues 

Circulating AGEs may interact with putative cell surface receptors for AGEs 

(Ahmed and Thomalley, 2007). These include the scavenger receptors, a specific receptor 

referred to as RAGE, and galectin 3. A number of intracellular AGE binding proteins 

have also been described (Ahmed and Thomalley, 2007). The scavenger receptors and 

galectin-3 recognizes protein highly modified with AGE residues. The scavenger receptor 

appears to be involved with clearance and degradation of AGE modified proteins by 

macrophages and macrophage-derived cells and may play a role in the pathogenesis of 

atherosclerosis (Nagai et al., 2007). Galectin-3 is also found on macrophages (Vlassara et 

al, 1995) and is believed to have a proinflammatory effect during the development of 

diabetic nephropathy (Kikuchi et al., 2004). RAGE is a membrane protein with wide 

tissue distribution and substrate-binding specificity. RAGE is expressed on endothelial 

cells, VSMCs, immune system cells, in the lung, liver, kidney and blood cells. 
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Extracellular methylglyoxal-modified protein can be removed by RAGE, internalized and 

subsequently degraded by proteolysis (Ramasamy et al., 2006). 

Activation of RAGE by AGE binding is known to activate a multitude of cellular 

signaling pathways mediating a number of intracellular events which ultimately have 

implication for chronic disease. The activation of various signal transduction cascades are 

known to result in down-stream production ofNF-kB and several other transcription 

factors (Li and Schmidt, 1997). NF-kB dependent gene expression affects cytokine, 

procoagulant, prothrombotic, and vasoconstrictive gene products including increased 

NADPH oxidase and iNOS expression (Wu et al, 2002). NF-kB increases expression of 

cellular adhesion molecules like intracellular adhesion molecule-1 (ICAM-1) which has 

been linked to general vascular disease (Barnes and Karin, 1997). Effects of RAGE on 

the suppression of glutathione and ascorbic acid levels contribute to oxidative stress and 

ROS accumulation (Lander et al., 1997; Bierhaus et al., 1997). Furthermore, the depletion 

of glutathione decreases glyoxalase I activity which compromises the ability to further 

control intracellular AGE formation via methylglyoxal and glyoxal. The binding of AGEs 

to RAGE on the endothelium also results in expression of inflammatory factors such as 

VCAM-1 and Tumor necrosis factor a (TNF-a) (Goldin et al., 2006). 
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1.2.6 Methylglyoxal, Glyoxal, AGEs and Diabetic Complications 

Methylglyoxal, glyoxal and AGE formation are believed to play a causative role 

in the vascular complications ofTlDM and T2DM (Ahmed and Thomally, 2007; 

Vlassara and Palace, 2002; O'Brien and Shangari, 2004). There is evidence in adults with 

TlDM and TlDM animal models that plasma methylglyoxal is elevated and that 

methylglyoxal- and glyoxal-derived AGEs are involved in the pathological changes in 

various tissues (Degenhardt et al., 2002; Karachalias et al, 2003; Beisswenger et al., 

2003a, 2003b) resulting in microvascular and macrovascular complications ofDM 

(Figure 1.6). Karachalais et al. (2003) showed that levels ofCML, CEL, G-Hl and MG

Hl are variably increased in proteins of renal glomeruli, retina, sciatic nerve and plasma 

of streptozotocin-induced TlDM rats, consistent with a significant role of methylglyoxal 

and glyoxal in the development of nephropathy, retinopathy, and neuropathy. Increased 

levels of protein bound AGEs in humans with DM complications suggests a relationship 

between protein-bound AGE levels and complications. In humans with DM, the levels of 

specific methylglyoxal-AGEs in plasma proteins are increased and correlates with indices 

of complications. For example, the levels of serum protein bound argpyrimidine is 

increased 2 to 3 times in middle aged and elderly adult DM patients and correlates with 

levels of glycated hemoglobin (Wilker et al, 2001). Concentrations of plasma protein 

bound CEL and CML are increased in adult TlDM patients with decreased glomerular 

filtration rate and correlates with blood concentrations of markers of endothelial 

dysfunction (Lieuw-A-Fa et al, 2004). Plasma protein bound MG-H concentrations are 

also increased in adult TlDM patients (Ahmed et al., 2005 D) and elder T2DM patients 
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Figure 1.6 Proposed role of methylglyoxal and methylglyoxal-derived AGEs in DM. 

The abbreviations are: AlC is hemoglobin AlC; MG is methylglyoxal; RAGE is receptor 

for advanced glycation end products; AGEs is advanced glycation end products; and DM 

is diabetes mellitus. 
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and correlates with CML levels (Kilhovd et al, 2003). The glycation cross-linked MOLD 

is increased in adult T1DM patients (Ahmed et al., 2005), but none of the methylglyoxal 

derived AGEs apparently correlated with A1 C levels in the adult DM patients (Ahmed et 

al., 2005; Kilhovd et al, 2003). The accumulation of AGE residues in tissues and in 

plasma protein is consistent with a role for AGEs in DM complications. 

In animal studies, the injection ofmethylglyoxal (Berlanga et al., 2005) or AGE

modified protein can induce vascular damage similar to that observed in DM (Vlassara et 

al., 1992; Vlassara et al., 1995) including increased vascular permeability, expression of 

vascular adhesion molecules, and decreased nitric oxide generation. Furthermore the 

short-term administration of exogenous AGE in normal, non-diabetic animals was 

associated with increased production of collagen IV, a basement membrane component, 

and with other findings consistent with diabetic nephropathy (Yang et al., 1994; Vlassara 

et al., 1992). This suggests a causal role for methylglyoxal and methylglyoxal-AGEs in 

DM complications. In mice with streptozotocin-induced T1DM, treatment with 

aminoguanidine (an advanced glycation inhibitor) or ALT-711 (an AGE cross-link 

breaker) reduced both vascular AGE accumulation and atherosclerosis (Forbes et al., 

2004). The accumulation ofCEL and MG-H in renal glomeruli, retina, sciatic nerve, and 

plasma proteins (Babaei-Jadidi et al., 2003) precede the development of nephropathy in 

streptozotocin-induced T1DM in rats. Subsequent treatment of these animals with high 

doses of thiamine and benfotiamine therapy to increase metabolism of G3P through 

transketolase and the pentose phosphate shunt (and thereby prevent methylglyoxal 

formation) reduced the blood levels ofmethylglyoxal, MG-H and CEL, and prevented the 
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progression to retinopathy (Hammes et al, 2003). This was accomplished without any 

change in glycemia or A1C. Pyridoxamine inhibits the formation of AGE residues and 

also inhibits the development of retinopathy and neuropathy in streptozotocin-induced 

DM in rats (Degenhardt et al., 2002; Stitt et al., 2002). Taken together these studies are 

consistent with a causal role ofmethylglyoxal and methylglyoxal-derived AGE residue 

formation as independent and contributing factors in the development ofDM vascular 

complications. 

AGEs may also play a causal role in the pathological process leading to DM 

complications through effects mediated through RAGE. Increased RAGE expression in 

the endothelium of activated vessels is observed in DM humans (Ritthaler et al, 1995; 

Feng et al., 2005) and contributes to a chronic low grade inflammation (Stehouwer et al., 

2002) and is believed to accelerate atherosclerosis (Naka et al., 2004) and hypertension 

(Schram et al., 2005). Binding of AGE residues to AGE receptors on neonatal rat 

mesangial cells in vitro results in overproduction of matrix proteins and induction of 

mesangial oxidative stress and PKC activation (Scivittaro et al., 2000), both ofwhich are 

potential mechanisms of microvascular disease. Treatment of cultured human mesangial 

cells with an anti-AGE agent, N-acetylcysteine, inhibited vascular endothelium growth 

factor (VEGF) and MCP-1 secretion and apoptosis (Yamagishi et al., 2002). 

Overexpression of RAGE in DM mice increased albuminuria, serum creatinine, renal 

hypertrophy, mesangial expansion and glomerulosclerosis compared to non-diabetic 

littermates (Yamamoto et al., 2001). These changes were restored by blockade of RAGE 
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(Wendt et al., 2003). Furthermore, a diffuse upregulation of RAGE expression occurs in 

renal glomerular podocytes in patients with diabetic nephropathy (Tanji et al., 2000). 

These studies indicate a role of RAGE in diabetic nephropathy and possibly other 

complications (Ahmed et al, 2007). 

1.2.7 Previous Methods for Measurement ofMethylglyoxal, Glyoxal and AGEs 

A number of methods have been published for quantification ofmethylglyoxal 

and other dicarbonyls with it. One of the first methods published to measure 

methylglyoxal in blood relied on derivatization with 1 ,2-diamino-4,5-dimethoxybenzene, 

followed by solid phase extraction (SPE), and finally reversed phase-HPLC 

chromatography and detection of the quinoxaline product by spectrophotometric or 

fluorescent properties (McLellan et al., 1992). Several other HPLC based techniques 

based on fluorometric or spectrophotometric detection have also been described (Ohmori 

et al., 1987; Cordeiro et al, 1996; Thomalley et al., 1999; Nemet et al., 2004; Chaplen et 

al., 1996, Espinosa-Mansilla et al., 1998). Most ofthese make use of aromatic diamino 

compounds as derivatizing agents. Recently, methods have been published based on the 

quantification of dicarbonyl adducts including methylglyoxal and glyoxal with 2,3-

diaminonaphthalene (Odani et al., 1999) or a-phenylenediamine (Randell et al., 2005) 

using electrospray ionization liquid chromatography/mass spectrometry (ESIILC/MS), or 

quantifying pentafluorobenzyl hydroxylamine adducts using gas chromatography/mass 

spectrometry (GC/MS) (Lapolla et al., 2003). Single phase LC/MS and GC/MS methods 
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lack the specificity of a LC/MS/MS method, and the solid phase extraction step included 

in a number of these methods may be cost prohibitive. 

Relatively few methods have been published for measurement ofmethylglyoxal

derived AGE residues as a group (Ahmed et al., 2002; Ahmed et al., 2005). Pure 

standards are not commercially available for any of the methylglyoxal-derived AGE 

residues. Hence, any work in this area requires synthesis of the various AGE residues as a 

first step. Most of the quantitative methods available rely on LC-MS/MS (Mostafa et al., 

2007; Teerlink et al., 2004 CC) or GC-MS (Petrovic et al., 2005) and measure only one 

or two different AGE residues. Only a few laboratories around the world have the 

capability to measure these. In general these methods are cumbersome. Thornalley et al 

(2003) recently published a method for measurement of a wide variety of free and bound 

AGE residues without derivatization. The method involves a rather complex column 

switching technique and the analysis time per sample was also relatively long (40 to 50 

min). 

1.3.1 Structure and Function ofNa+/IC-ATPase 

Na+1K+-ATPase (Sodium-potassium-activated adenosine triphosphatase) is 

present in the plasma membrane of all eukaryotic cells and helps maintain cell potential 

through maintainance of the electrochemical gradients ofNa+ and K+. Na+1K+-ATPase 
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activity also contributes to the control of cellular pH, osmotic balance and therefore cell 

volume, as well as to the Na+-coupled transport of nutrients such as amino acids and 

vitamins in all cells (Sherwood, 2001). In intestinal and renal tubular cells, it provides the 

energy for the uptake of glucose. 

Na+1K.+-ATPase catalyzes the hydrolysis of one mole of ATP to ADP. This energy 

is used to extrude three Na+ ions from the cell and causes the uptake of two extracellular 

K+ ions into the cell (Ganong, 2003; and Kaplan, 2002). Na+1K.+-ATPase is not a single 

protein enzyme but is part of a super family consisting of more than 300 members 

(Kaplan, 2002). Na+/K+- ATPase consists oftwo subunits, a-subunit and ~-subunit 

(Kaplan 2002; Jergensen, 2003; Ganong, 2003; Aperia, 2007) (Figure 1.7), each ofwhich 

are heterogeneous consisting of several isoforms with different tissue specificity 

(Ganong, 2003; Levenson, 1994; Sweeney and Klip, 1998; Kaplan, 2002). The ~-subunit 

ofNa+1K.+-ATPase is a glycoprotein and is involved in delivery and maintaining correct 

orientation ofthe a-subunit (Aperia, 2007, Ganong, 2003). The a-subunit ofNa+/K+

ATPase has intracellular Na+ and ATP binding sites and a phosphorylation site. The 

extracellular portion of this subunit has a K+ and an ouabain-binding site (Ganong, 2003). 

Ouabain is an inhibitor of the enzyme. The mechanism of action is relatively 

straightforward. The a-subunit ofunphosphorylated Na+/K+-ATPase binds to Na+. This is 

followed by ATP binding and hydrolysis leading to phosphorylation of the pump 

(Ganong, 2003). Phosphorylation results in reduced affinity for Na+ which is released 

into the extracellular fluid. Subsequent binding of K+ results in dephosphorylated and 

transport ofK+ into the cytoplasm (Ganong, 2003). This process helps maintain the Na+ 
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and K+ electrochemical gradients across plasma membrane and physiological function of 

the cell. 

1.3.2 Regulation of Function ofNa+/~-ATPase 

Regulation ofNa+/K+ pump activity is mainly through the a subunit. An 

important short term regulation is the intracellular concentration ofNa+ (Sweeney and 

Klip, 1998; Kaplan, 2002; ganong, 2003). Elevated intracellular Na+ concentrations 

increase the activity ofNa+/K+ ATPase resulting in rapid removal of excess Na+ and 

restore low steady-state concentrations (Sweeney and Klip, 1998; Kaplan, 2002; Ganong, 

2003). Other short term regulation is through phosphorylation and dephosphorylation, 

translocation of subunits to the plasma membrane or by modification ofNa + affinity 

(Ewart and Klip, 1995). Long term regulation of a1 subunit occurs through effects on 

gene transcription, translation and degradation of the protein (Ewart and Klip, 1995). 

Na+1K+-ATPase is upregulated by several hormones including aldosterone, thyroid 

hormone, endothelin, acetylcholine and insulin in muscle, fat, and kidney cells and 

erythrocyte (Ewart and Klip,1995; Baldini et al., 1986). Insulin stimulates the Na+/K+

ATPase by increasing intracellular Na+ concentration (Brodsky JL. 1990), stimulating 

translocation of the pump subunits, promoting phosphorylation, increasing sensitivity of 

Na+1K+-ATPase to Na+ (Feraille et al., 1994) and by increasing its biosynthesis (Sweeney 

and Klip, 1998). 
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3Na+ I \ 
ATP Phosphorylation 

Figure 1.7 Structure ofNa+/K+-ATPase in membrane. ATP is the abbreviation of 

adenosine triphosphate. 
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1.3.3 DM, Methylglyoxal and Erythrocyte Na+/K+-ATPase 

Abnormalities in Na+1K+-ATPase activity are thought to be involved in 

development ofheart disease, neuropathy, hypertension, and cataracts (Garner 1986 

EER; Jannot et al., 1999). RBC membrane Na+1K+-ATPase can be separated from 

cytoplasmic components and its activity measured. Na+/K+-ATPase levels are low in 

adult T 1 DM and are strongly related to diabetic neuropathy (J annat et al, 1999, Raccah et 

al1996). Methylglyoxal inhibited Na+/K+-ATPase activity in RBC ghost cell membrane 

of normal human subjects likely occurs via the modification of sulfhydryl groups 

(Derham et al, 2003). In young complication-free TIDM patients there was no change in 

RBC Na+1K+-ATPase activity (Deak 2003). Rats showed a biphasic response with an 

increase in activity of this enzyme in medullary thick ascending limb ofkidney 6 weeks 

after induction ofT1DM, followed by a decrease at 12 weeks (Tsimaratos 2001). A 

decrease in Na+1K+-ATPase activity compromises microvascular blood flow by affecting 

microvascular regulation and decreasing RBC flexibility leading to an increase in blood 

viscosity. The DM-induced impairment in Na+1K+-ATPase activity is identical in RBC as 

that in neural tissue. RBC ATPase activity is related to nerve conduction velocity in the 

peroneal and the tibial nerve in patients with DM. 
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1.4 Research Proposal and Objectives 

Elevations in methylglyoxal, glyoxal and AGEs may preceed and contribute to the 

pathogenesis of complications in DM. Other processes such as normal aging, impaired 

renal function, and other conditions can also contribute to the elevated levels of 

methylglyoxal, glyoxal and AGE residues found in plasma as well as in other tissues. In 

the initial phase ofTlDM, the effect ofthese processes would be of minimal impact and 

the primary factors determining methylglyoxal and glyoxal levels would be the 

availability of substrate, primarily glucose, and individual differences in metabolism 

affecting methylglyoxal and glyoxal formation and catabolism by the glyoxylase system. 

Hence, correlation withAl C is expected since glycemia is a primary determinant of flux 

through pathways forming methylglyoxal and glyoxal. A contributory role for 

methylglyoxal and glyoxal in complications may be evident ifthere is a relationship 

between these compounds and the activity of a ubiquitous membrane enzyme like 

Na+/K+ATPase, which seems to be affected early in DM. The most profound effects of 

methylglyoxal in inducing complications may be at the intracellular level. AGE residues 

formed intracellularly will be released into the blood in the form of free AGE residues 

and finally filtered by the kidney. MG-H appears to be important since it is produced in 

relatively large amounts on both intracellular and extracellular protein. Demonstrating 

elevated levels ofmethylglyoxal and glyoxal and free AGE residues in blood ofyoung 

TlDM patients may not only provide evidence for a role ofthese in the pathogenesis of 

DM complications, but offer potential clinical tests to identify TlDM patients at greatest 
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risk of complications by a diminished ability to respond to methylglyoxal and glyoxal 

production. This susceptibility to AGE formation would be manifested by increased 

blood levels ofmethylglyoxal and glyoxal and increased blood levels of free AGE 

residues like MG-H. These may, serve as predictors of future complications in T1DM 

independent of A1C. 

Previous studies have shown increased concentrations of plasma methylglyoxal 

(Beisswenger et al., 2003; Nemet et al., 2005), glyoxal (Lapolla et al., 2003) and certain 

plasma protein bound AGEs and free AGE residues (Kilhovd et al., 2003; Fosmark et al., 

2006) in T2DM patients or in adults with T1DM. The plasma free AGE residue that is 

present in largest amounts is the methylglyoxal-arginine adduct, MG-H1 (Ahmed 

2005D). Although studies showing increased concentrations of the dicarbonyls and free 

and protein bound AGEs in adults with DM may indicate an association with DM 

complications, they do not necessarily indicate a direct role of the dicarbonyls and AGEs 

in causing complications. Elevations in dicarbonyls and AGE formation prior to clinical 

presentation with complications provide much better evidence for a causal role. There are 

no reports so far describing the concentrations of plasma methylglyoxal, glyoxal and 

AGEs in young patients ofT1DM without complications. 

Methylglyoxal and glyoxal may affect the activity of various enzymes (Morgan et 

al., 2002; Park et al., 2003; Lee et al., 2005; and Jia et al., 2006) by promoting AGE 

formation. A potential candidate for such modifications is the membrane enzyme, Na+/K+ 

ATPase (Derham et al., 2003). Alteration ofNa+/K+ ATPase activity has been implicated 

in diabetic neuropathy (Raccah et al., 1996; and Djemli-Shipkolye A, et al., 2001) and 
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may play a role in other diabetic complications (Mimura et al., 1994; Tsimaratos et al., 

2001; and Koc et al., 2003). To date there has been no investigations into the potential 

relationship between plasma glyoxal, methylglyoxal, or plasma free AGE levels and the 

activity ofNa+, K+ ATPase. 

In this research, I focused on the following: 

1) Development of methods for measurement of methylglyoxal and glyoxal, 

and free AGE residues in human plasma. The study of methylglyoxal, glyoxal and 

methylglyoxal-derived AGEs presents many challenges. Owing to the high reactivity of 

methylglyoxal, effective capturing of the free methylglyoxal molecule for measurement 

is difficult. The methylglyoxal-derived AGEs, like MG-H, have only recently been 

described and as yet there are no robust or convenient methods for measurement of these. 

Moreover, the unavailability of pure samples of AGE residues amplifies the difficulties in 

designing and validating procedures to accurately quantify these. While the formation of 

methylglyoxal and methylglyoxal-derived AGEs may be a mechanism by which diabetic 

complications occur, the literature is relatively void of information on the levels of these 

found in young patients with TlDM before complications occur. This work will, 

therefore, involve synthesis ofMG-H standards and allow development of a method to 

provide quantitative information on MG-H in plasma. Use of an LC-MS/MS procedure 

will increase specificity of measurement. 

2) Establish the concentrations of methylglyoxal, glyoxal and methylglyoxal

derived AGE residues in complication-free young individuals with TlDM. Do 

increased levels of methylglyoxal and methylglyoxal-derived AGE residues precede 
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complications or do they occur secondary to other alterations that result in complications? 

Providing evidence for increased levels ofmethylglyoxal and methylglyoxal-derived 

AGE residues in complication-free young patients with TlDM may provide evidence to 

support the former. Demonstrating this may also help identify TlDM individuals at 

greatest risk of early complications independent of Al C values. 

3) Determine the relationship of Al C, methylglyoxal, glyoxal and free 

methylglyoxal AGE residues with function ofNa+/K+-ATPase activity. Information 

on the levels ofRBC membrane Na+/K+ ATPase activity in TlDM without complications 

is scant. Moreover, the relationship between the levels of this enzyme and methylglyoxal, 

glyoxal, and methylglyoxal-AGEs is largely unknown. Levels ofRBC membrane 

Na+ /K+ -ATPase activity in complication-free young patients with TlDM will be 

examined and compared with levels of glycemic control, and plasma methylglyoxal, 

glyoxal, and MG-H levels. 
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CHAPTER2 

MATERIALS AND METHODS 

2.1 Materials 

2.1.1 Study Subjects 

Blood samples from study subjects were analyzed as part ofthis parallel case

control study. In order to examine the relationship between the levels of plasma 

methylglyoxal, glyoxal and specific free AGE residues in TlDM, four cohorts of up to 20 

subjects aged 6 to 22 years with or without TlDM were recruited. Study subjects were 

recruited from patients presenting to the Diabetes Clinic at the Janeway Child Health 

Centre Health Care Corporation, St. John's, NL for routine check-up and AlC 

measurement. Nursing staff in the clinic approached patients for participation in the study 

and written informed consent was obtained (see Appendix 1). Ethics approval for the 

study was granted by the Human Investigation Committee of Memorial University, St. 

John's, Newfoundland and Labrador. 

The four cohorts were constructed consisting of: 

1. Subjects with normal levels of AlC (<6%) without biochemical evidence of 

TlDM as controls (n=l8). 

2. TlDM subjects with good glycemic control for at least 1 year and average 

Al C <8% (n = 20). 
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3. T1DM subjects with moderate glycemic control for at least 1 year and average 

A1C levelS to 9% (n = 17). 

4. TlDM subjects with poor glycemic control for at least 1 year and average Al C 

level> 9% (n = 19). 

Clinical information including: duration of diabetes, type of insulin management, 

age, sex, and the presence of diabetic complications (Hypertension, Nephropathy, 

Retinopathy, and Neuropathy) was collected by a research nurse from chart review and 

documented (See chart audit form Appendix 2). Patients consenting to participate had a 

2 ml aliquot ofblood removed from their AlC sample for analysis ofthe biochemical 

parameters. 

Outpatient blood samples (n=l8) collected in EDT A-containing tubes from 

patients aged 6 to 21 years were used as controls. The samples were retrieved over a 2 to 

3 week period by review of hematology sample logs, and age and sex ofthe individual 

was recorded. These samples were also analyzed for A1C and had AlC levels less than 

6%. 

AlC measurements were carried out using standardized clinical laboratory 

methodology on a G7 AlC analyzer (Tosoh) using an ion exchange HPLC procedure. 

2.1.2 Chemicals and Reagents 

Unless otherwise specified, chemicals and reagents were of commercial origin 

and were of the highest grade available. 
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Ethylenediarninetetraacetic acid (EDT A), tris(hydroxymethyl)amino-methane 

(Tris), methylglyoxal, glyoxal, 2,3-hexanedione, 2,3-diarninonaphthalene (2,3-DAN), 

formic acid, trichloroacetic acid (TCA), L-lysine, t-butyloxycarbonyl arginine (Na-t-BOC 

arginine), t-butyloxycarbonyllysine (Afl-t-BOC lysine), solid copper carbonate (CuC03), 

2-bromopropionic acid, sodium acetate, sodium hydroxide (NaOH), nonafluoropentanoic 

acid (NFPA), trifluoroacetic acid (TFA), sodium chloride (NaCl), 

diethylenetriaminepenta acetic acid (DETPA), and heptafluoro butyric acid (HFBA), 

potassium chloride, magnesium chloride, ethyleneglycol bis (2-aminoethyl-ether) 

tetraacetic acid (EGTA), adenosine triphosphate (ATP), phosphoenolpyruvate (PEP), 

nicotinamide adenine dinucleotide (NADH), pyruvate kinase, lactate dehydrogenase, 

ouabain, adenosine 5'-triphosphatase (ATPase) and bovine serum albumin (BSA) were 

all purchased from Sigma-Aldrich Chemical Company (St. Louis, MO, USA). 

Concentrated hydrochloric acid (HCl; 36.46%) was obtained from Fisher Scientific 

Company (Nepean, Ontario, Canada). Methanol, acetonitrile (Optima grade), ethyl 

acetate, and ammonium hydroxide were obtained from Fisher Scientific Company (New 

Jersey, USA). Sodium hydrogen phosphate was purchased from EM Science (MERCK, 

Darmstadt, Germany). L-Lysine-(4,4,5,5-D4) (d4-lysine) was purchased from Cambridge 

Isotope Laboratories Inc (Andover, MA, USA). 
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2.2 Method for Preparation of Blood Samples 

Blood samples (about 2 ml) were centrifuged at 3000 rpm for 10 min. The upper 

plasma layer was removed and centrifuged at 13,000 rpm for 5 min to remove debris. The 

plasma was then aliquoted into at least two separate fresh microfuge tubes and stored at -

70°C for the measurement of methylglyoxal, glyoxal and free AGE residues. A pooled 

plasma sample from patients without DM was also processed and used for calibration 

matrix. 

To prepare red blood cell (RBC) membranes for the measurement ofNa+/K+

ATPase activity, 200 111 of centrifuged blood cells, separated from plasma, was added to 

1.5 ml of 10 mM Tris-HCl (pH 7.6) containing 1 mM EDTA and vortexed for 20 sec as 

previously described (Vasarhelyi B, 1997). This hemolyzed the blood and the resulting 

hemolysate was centrifuged at 14,000 rpm at 4°C for 5 min to give a RBC membrane 

pellet. The pellet was then washed four times with the same solution and then re

suspended each time with fresh solution. The final hemoglobin-free pellet was re

suspended in 200 111 of 10 mM Tris-HCl (pH 7.4) and stored at -70°C for measurement of 

protein and Na+/K+- ATPase activity. 

2.3 Method for Measurement of Plasma Methylglyoxal and Glyoxal 

To carry out the work in this thesis, a new method to measure methylglyoxal and 

glyoxal was developed. Characteristics ofthis method are described in detail in chapter 3. 
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2.3.1 Preparation of Plasma Samples 

Plasma protein was precipitated by adding 500 J..ll of the plasma to 2 volumes of 

12% trichloroacetic acid (TCA) and mixing by vortex. The mixture was then centrifuged 

at 5000 rpm for 5 min. The protein free supernatant was transferred to a fresh tube for 

methylglyoxal and glyoxal measurements. 

2.3.2 Preparation of Calibration Standards 

The calibration curve for methylglyoxal and glyoxal was prepared using 

supernatant from a plasma pool that had the protein removed by precipitation using 2 

volumes of 12% TCA. The plasma used to prepare this pool was retrieved from non-DM 

patient blood samples. This was done to ensure that a common sample matrix was used 

for both samples and calibrators. To prepare calibration standards, 0 to 100 J..ll of 840 

ng/ml methylglyoxal and 420 ng/ml glyoxal were added to tubes, followed by 400 J..ll of 

supernatant from TCA precipitated normal plasma. The concentrations used on the 

standard curve were corrected for the concentrations ofmethylglyoxal and glyoxal in 

normal plasma to allow the calibration curve to intersect zero. 

2.3.3 Derivatization of Samples 

Supernatant from TCA precipitated plasma samples were derivatized using 2,3-

DAN before measurement. Briefly, 250 J..ll of 84 ng/ml 2,3-hexanedione (as internal 

standard) was added to tubes containing 400 J..ll of TCA precipitated plasma supernatant 
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from the T1DM groups, the control group, and standards, respectively. The final volume 

for each was adjusted to 1 ml using 10 mM phosphate buffer (pH 7.4) and the mixture 

was then incubated with 100 Ill of the derivatizing agent 0.1% 2,3-DAN for 24 hours at 

4°C. The long incubation time was critical for reproducible results. The 2,3-DAN 

derivative was then extracted into 4 ml of ethyl acetate by vortexing for 20 sec and 

centrifuging at 5000 rpm for 5 min to separate layers. The upper layer containing the 2,3-

DAN derivatives was removed and dried under a stream of nitrogen gas. The dried 

extract was finally reconstituted with 200 Ill of acetonitrile for high-pressure liquid 

chromatography-tandem mass spectrometric (LC-MS/MS) analysis. 

2.3.4 Measurement of Methylglyoxal and Glyoxal by HPLC-MS/MS 

All samples were analyzed on the Waters AllianceHT 2795- Micromass Quattro 

Ultima LC-MS/MS system. Five Ill of sample was injected each time. The 2,3-DAN 

derivatives ofmethylglyoxal, glyoxal, and 2,3-hexanedione, were separated in an 

isocratic solvent system of aqueous 0.1% formic acid and acetonitrile (35:65, v/v) using a 

C8 column (Symmetry®C8 3.5 !liD 2.1 x 100 mm, WAT058961, Water, Massachusetts, 

USA) at a flow rate of 0.30 ml/min at 25°C. In this system, the derivatives of 

methylglyoxal and glyoxal elute at about 1.7 min and 1.65 min, respectively, and the 

internal standard at 2.8 min. The run time was 5 min. The methylglyoxal-DAN product 

was determined by multiple reaction monitoring (MRM) of the transition 195> 168, with 

collision energy (CE) set at 20; glyoxal-DAN product was monitored using the MRM 
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transition 181>154, with CE set at 20; and hexanedione-DAN product was monitored 

using the MRM transition 237>208, with CE set at 22. The calibration curve was 

constructed from the ratio of response of the area under the methylglyoxal-DAN peak, or 

glyoxal-DAN peak, to the area under the hexanedione-DAN peak in different standard 

solutions. Plasma methylglyoxal and glyoxal were expressed as nmol/L. 

2.4 Method for Measurement of Free MG-Hl in Plasma 

Attempts were made to synthesize four methylglyoxal derived AGEs and measure 

both free and bound AGE residues in plasma and plasma protein, respectively. This 

synthesis effort was successful in preparing sub-milligram quantities of argpyrimidine, 

MG-H, MOLD and CEL. The synthesis and method used to measure MG-H are 

described below. Information on the synthesis and performance in the same assay system 

for the other three AGE residues are described in Appendix 3. 

2.4.1 Synthesis of MG-H 

As pure standards for methylglyoxal-derived AGEs like MG-H were not 

commercially available, MG-H was synthesized in small amounts using a procedure 

previously described by Ahmed et al. (2002) for MG-H3. This procedure produces a 

mixture ofMG-H isomers including MG-H1 and MG-H3. Briefly, 311 mg oft-BOC 

arginine (1 mmol) was dissolved in 60 ml of200 mM sodium acetate buffer (pH 5.4) 

followed by adding 0.21 mL ofmethylglyoxal solution (1.2 mmol). The solution was 
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filter sterilized by passing through a 0.2Jlm filter and then incubated at 37°C for 7 days. 

The product was then lyophilized and extracted with methanol three times. The methanol 

extracts were evaporated to dryness and further purified by preparative HPLC using a 

reverse phase Cl8 column as previously described (Ahmed et al. 2002). Collected 

fractions corresponding to t-BOC-MG-Hl were lyophilized, dissolved in 0.5 M HCl and 

were allowed to stand at room temperature overnight to hydrolyze t-BOC groups. The 

solution was lyophilized once more and repurified by LC-MS/MS using a Gemini Cl8 

semi-prep column (250xl0mm; 5 )liD; Phenomenex, USA) in a solvent system consisting 

of 0.1% TF A (aqueous) and methanol. Separation and identification ofMG-H was 

accomplished by monitoring the MRM transition of 229.1 > 114 with CE set at 9 e V. The 

collected fraction was then vacuum dried and the final MG-H product was stored at-

70°C. 

2.4.2 Sample Preparation for Measurement of Free MG-Hl in Plasma 

Plasma protein was precipitated by adding 300 Jll of 20% TCA to an equal 

volume of plasma and stored on ice for 15 min. The mixture was then vortex mixed and 

centrifuged at 4°C at 3000 rpm for 5 min to separate the precipitate. The supernatant was 

removed to a 5 mL microcentrifuge tube and used for measurement of free MG-Hl in 

plasma. 
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2.4.3 Measurement of Free MG-Hl in Plasma 

2.4.3.1 Preparation of stock solution and calibration standards 

Stock solution was prepared by dissolving the purified MG-Hl sample in water to 

give an estimated final concentration of 40 mg/L for MG-Hl. The standard curve was 

constructed by diluting the stock standard in plasma to final concentrations ranging from 

0 to 16.8 mg/L for MG-Hl. Calibration curve was corrected for endogenous free MG-Hl 

in plasma. 

2.4.3.2 Extraction of samples for the measurement on HPLC 

The supernatant ofTCA precipitated plasma samples were prepared for analysis 

by first extracting on solid phase extraction (SPE) columns. Briefly, 20 j..tl of lmg/ml c4-

lysine was added as an internal standard to 380 j..tl of the supernatant from all samples and 

prepared calibration standards. Samples were then diluted by adding 2 ml of water. The 

pH of samples was checked before loading to ensure approprate acidity for SPE. The SPE 

columns (Oasis MCX lee 30 mg, Waters) were prepared by adding 1 ml of methanol and 

vacuum drying for 10 min. This was followed by adding 1 ml ofwater to each SPE 

column to prepare the sorbent for extraction. Samples were loaded on to the columns, 

followed by washing with 1 ml of O.lN HCl and 1 ml of methanol. The retained 

components from the loaded samples were eluted with 2 ml of 5% ammonium hydroxide 

in methanol and collected in fresh tubes. The elute were dried down under a nitrogen gas 

stream and resuspended in 200 !Jl of methanol/acetonitrile (25/75) for analysis. 
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2.4.3.3 Measurement of free MG-Hl in plasma by LC-MS/MS 

All extracted samples were analyzed by LC-MS/MS on the Water Alliance HT 

2795-Micromass Quattro Ultima LC-MS/MS system. Twenty J..Ll of each sample was 

injected on a Hilic Sillica column (Atlantis® Hilic Silica, 3 J..Lm, 2.1 x 50 mm, Waters 

Corporation, Massachusetts, USA). MG-H1 and d4-lysine were separated in a solvent 

system consisting of 200 mM formate buffer in methanol, water and acetonitrile at a flow 

rate of 0.5 ml/min at ambient temperature. During the 8 min chromatographic run, the 

composition of 200 mM formate buffer was held constant at 5%. The water content was 

increased from 10% to 55% during the first 2 min, returned back to 10% in the following 

2 min, and then held constant at 10% for the remainder of the run. The content of 

acetonitrile decreased from 85% to 40% during the first 2 minutes, then increased back to 

85% in the following 2 minutes, and finally held at 85% thereafter. MG-H1 and d4-lysine 

were determined by MRM. In this system, the MRM transition, CE, and retention time 

for the analytes were 229.1>114, 9 eV, and 2.58 min for MG-H1; and 151.1>88, 8 eV, 

and 2.7 min for d4-lysine, respectively. 

The calibration curve was constructed from the response ratio ofthe area under 

the peaks ofMG-H1 to the area under the d4-lysine peak in different standard 

concentrations. The concentrations used on the standard curve were corrected for the 

concentration ofMG-H1 in normal plasma to allow the calibration curve to intersect zero. 
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The concentration ofMG-H1 was determined according to the response ratio, and was 

expressed as mg ofMG-H1 per L, assuming 100% purity ofMG-H1 standard. 

2.5 Method for Measurement ofNa+OC-ATPase Activity in Red 

Blood Cell Membrane 

2.5.1 Preparation of Samples 

The red blood cell membrane samples that were stored at -70°C were resuspended 

by sonication (Virsonic, Cell disrupter, Model16-850, Gardiner, N.Y.) prior to 

measurement of protein and Na+1K+-ATPase activity. 

2.5.2 Measurement of Protein Concentration 

Protein concentration in the red blood cell membrane samples were measured 

using the Bio-Rad DC Protein Assay (Bio-Rad, Ontario, Canada), and BSA was used as a 

standard. The standard curve was prepared using 0 to 80 J,.tl of 1.5 mg/ml BSA. Standards 

or 40 J,.tl of each sample were transferred to test tubes, followed by 500 ~-tl of Working 

Reagent A (200 J,.tl of ReagentS added to 10 ml ofReagent A, an alkaline copper tartrate 

solution) and 4.0 ml ofReagent B (a dilute Polin Reagent) and incubated for 15 minutes. 

The protein concentration was measured by absorbance at 750 nm by spectrophotometer 

(Spectronic Genesys 5, Milton Roy) and calculated using the standard curve. 
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2.5.3 Measurement ofNa+/IC ATPase Activity by Spectrophotometry 

Na+/K+ ATPase activity was measured in suspended RBC membrane samples as 

previously described (Vasarhelyi et al., 1997) but with some modification. Briefly, 760 J • .tl 

ofreagent 1 (100mM NaCl, 20 mM KCl, 2.5 mM MgClz, 0.5 mM EGTA, 50 mM Tris

HCl pH 7.4, 1 mM ATP, 1mM phosphoenolpyruvate, 0.16 mM NADH, 5 kU/L pyruvate 

kinase, 12 kU/L lactate dehydrogenase) was incubated at 37°C for 5 min prior to adding a 

40 IJ.L aliquot of suspended RBC membranes. Decrease in absorbance was monitored at 

340 nm by spectrophotometry (Spectronic Genesys 5, Milton Roy) over a 10 minute 

period. From the change in absorbance during this time period, rate 1(total ATPase 

activity) was obtained. A 50 111 aliquot of reagent 2 (10 mM Ouabain) was then added to 

inhibit the ouabain-sensitive ATPase activity. The change in absorbance after adding 

ouabain was monitored for the next 10 minutes, and rate 2 (ouabain-resistant ATPase 

activity) was obtained. Ouabain-sensitive Na+/K+ ATPase activity was calculated as the 

difference between the two slopes and adjusted for protein concentration. The final 

activity was recorded as nmol NADH oxidizedlmin/mg protein. 

2.6 Statistical Analysis 

Data were analyzed using SPSS for Windows (release 14.0). Results are 

expressed as mean ± standard deviation. Independent sample t-test was used to compare 

groups. When several different groups were compared, ANOV A was performed with 

correction for multiple comparisons by Bonferroni method. The relationship between 
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methylglyoxal, glyoxal, MG-Hl, HbAlC, Na+1K+-ATPase activity, age, and duration of 

diabetes was analyzed using correlation analysis. Multiple linear regression analysis was 

also performed on HbAlC, methylglyoxal, glyoxal and MG-Hl to assess the ability of 

these variables to predict Na+/K+-ATPase activity. A p-value ofless than 0.05 was 

considered statistically significant. 
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CHAPTER3 

DEVELOPMENT OF METHODS FOR MEASUREMENT 
OF METHYLGLYOXAL, GLYOXAL 

AND AGES IN PLASMA 

3.1 Introduction 

Although a few methods have been established to measure methylglyoxal, glyoxal 

and certain specific AGEs, we sought to develop more specific, and time- and cost-

effective methods. This work presents many challenges: 1) pure standards for many 

methylglyoxal-derived AGEs are not available and must be synthesized; 2) a major 

problem with measuring alpha ketoaldehydes is their low concentration and high 

reactivity towards other endogenous compounds (Thomalley, 1996); 3) the spontaneous 

formation of methylglyoxal from triose phosphates during the preparation procedures can 

be a problem (Mclellan et al1992), which may be resolved by working under acidic 

conditions; 4) low concentrations of some methylglyoxal-derived AGEs also presents a 

challenge, and the sensitivity of some to degradation by strong acid (Ahmed et al., 2002) 

prevents good recovery following protein acid hydrolysis procedures. 

3.2 Development of Methods for Measurement of Methylglyoxal and 

Glyoxal in Plasma 

3.2.1 LC-MS/MS Method for Measurement of Methylglyoxal and Glyoxal 
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To capture and stabilize methylglyoxal and glyoxal for measurement in plasma, 

we used 2, 3-DAN as a derivatizing agent and used 2,3-hexanedione as an internal 

standard for quantification purposes. Protein was removed by using TCA precipitation 

and the protein free supernatant was used for derivatization by 2,3-DAN. Optimum 

derivatization ofthe two alpha ketoaldehydes required an incubation time of at least 24 

hours at 4 °C and calibrating standards were also prepared in the same sample matrix by 

diluting solution of pure methylglyoxal or glyoxal standards into TCA precipitated 

plasma supernatants. Figure 3.1 shows the products of derivatization ofmethylglyoxal, 

glyoxal and 2,3-hexanedione with 2,3-DAN. Formation of these products greatly 

increases the size and reduces the reactivity permitting more convenient measurement by 

chromatographic techniques. 

A LC-MS/MS based method was developed for accurate quantification of 

methylglyoxal and glyoxal. Optimum conditions for the collision induced dissociation 

(CID) products of these were determined by continuous infusion of prepared samples 

( ~ 1-10 J..Lg/mL methanol) into a Waters Micromass Quattro Ultima tandem mass 

spectrometer and using positive ion electrospray as an ion source. Optimal tuning 

conditions for the parent ion were first determined using theM+ 1 ions: 195, 181, and 237 

for methylglyoxal-DAN, glyoxal-DAN, and 2,3 hexanedione-DAN, respectively. 

Daughter ions were produced by CID by increasing the CE of argon gas until optimal 

amounts of selected daughter ions were produced. Figure 3.2 shows aCID profile for the 

methylglyoxal-DAN product. Optimum levels of the product ion of mass 168 were 
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produced when the methylglyoxal-DAN product is bombarded with argon gas at aCE of 

20 eV. The transition of 195>168 also gave sufficient specificity for selective detection of 

the methylglyoxal-DAN product and this was subsequently used in all experiments for 

specific measurement of the methylglyoxal-DAN product. Glyoxal-DAN and 2,3-

hexanedione-DAN were likewise optimally measured at the CE equal to 20 eV and 22 

eV, and using the transitions 181>154 and 237>208, respectively, to ensure selectivity 

for these products (Figure 3.3 & 3.4). 

For convenient measurement of methylglyoxal and glyoxal from biological 

samples a liquid chromatographic separation method was developed and coupled with 

MS/MS detection. Reversed phase chromatography performed on a C8 column 

(Symmetry® C8 3.5 Jlm 2.1 x 100 mm, WAT058961) using a simple isocratic solvent 

system consisting ofO.l% formic acid in water and acetonitrile (35:65, v/v) was finally 

adopted to accomplish separation. Figure 3.5 shows a typical chromatogram achieved for 

2,3-DAN derivatization products ofmethylglyoxal, glyoxal, and 2,3-hexanedione in a 

serum sample by this LC-MS/MS method. Apart from the peaks of interest there was no 

evidence of potentially interfering substances at the region of the chromatogram where 

the analytes eluted. As all blood plasma has detectable levels of methylglyoxal and 

glyoxal it was necessary to correct calibration curves for this endogenous methylglyoxal 

and glyoxal. Figure 3.6 and Figure 3.7 shows typical calibration curves for methylglyoxal 

and for glyoxal, respectively. Both were linear over the range of concentration examined. 
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Figure 3.1 The products of derivitization of methylglyoxal, glyoxal and 2,3-

hexanedione with 2,3-diaminonapthalene (DAN). The products are 2,3-hexanedione-

DAN, methylglyoxal-DAN, and glyoxal-DAN products from top to bottom. 
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Figure 3.2 CID profile for the methylglyoxal-DAN product. Spectrum was produced 

at aCE of20 eV. Capillary voltage was set at 3.0 kV; cone voltage: 90 V; source 

temperature 100°C; and desolvation gas flow was set of 461 Llhr. Protonated molecular 

ion (M+ 1) corresponds to the peak identified as 195. Positively charged ions 168, 127, 

and 115 represent daughter ions produced from the protonated molecular ion. Size ofthe 

peaks represents relative amounts. The abbreviations are: CID is collision induced 

dissociation; DAN is diaminonaphthalene; and CE is collision energy. 
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Figure 3.3 CID profile for the glyoxal-DAN product. Spectrum was produced at a 

CE of20 eV. Capillary voltage was set at 3.0 kV; cone voltage was 90 V; source 

temperature was 100°C, and desolvation gas flow was 461Lihr. Protonated molecular ion 

(M+1) corresponds to the peak identified as 181. Positively charged ions 154 represent 

the daughter ion produced from the protonated molecular ion. Size of the peaks 

represents relative amounts. The abbreviations are: CID is collision induced dissociation; 

DAN is diaminonaphthalene; and CE is collision energy. 
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Figure 3.4 CID profile for the 2,3 hexanedione-DAN product. Spectrum was 

produced at a collision energy of22 eV. Capillary voltage was set at 3.0 kV; Cone 

voltage: 90 V; Source temperature 100°C; and desolvation gas flow was set of 461 Llhr. 

Protonated molecular ion (M+ 1) corresponds to the peak identified as 23 7. Positively 

charged ions 208, 209 and 222 represent the daughter ions produced from the protonated 

molecular ion. Size of the peaks represents relative amounts. Abbreviations are: CID is 

collision induced dissociation; DAN is diaminonaphthalene; and CE is collision energy. 

63 



MRM of 3 Channels ES+ 

100 2.81 237 > 208 
1.84e5 

I# 

0 
0.00 1.00 2.00 3.00 4.00 5.00 

MRM of 3 Channels ES+ 

100 1.69 195 > 1 68 
7.9283 

~ 0 

0 
0.00 1.00 2.00 3.00 4.00 5.00 

MRM of 3 Channels ES+ 

100 1.66 181 > 154 
996 

* 
0 Time 
0.00 1.00 2.00 3.00 4.00 5.00 

Figure 3.5 A typical LC-MS/MS chromatograph of methylglyoxal, glyoxal, and 2,3-

hexanedione derivatized with 2,3-DAN from a normal plasma sample. Levels of 

methylglyoxal and glyoxal measured in this sample were 0.52 ng and 0.26 ng, 

respectively. The profiles are 2,3-hexanedione, methylglyoxal and glyoxal from top to 

bottom. The unit of time is minutes. The abbreviations are: LC-MS/MS is liquid 

chromatography-tandem mass spectrometry; and DAN is Diaminonaphthalene. 
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Figure 3.6 Calibration curve for methylglyoxal in serum. The response ratio was 

calculated as the area under the curve (AUC) for methylglyoxal divided by the AUC for 

the internal standard. 
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Figure 3. 7 Calibration curve for glyoxal in serum. The response ratio was calculated 

as the area under the curve (AUC) for glyoxal divided by the AUC for the internal 

standard. 
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3.2.2 Discussion 

This method represents the first developed using LC-MS/MS to measure 

methylglyoxal and glyoxal in plasma and makes use of2,3-DAN as a derivatizing agent. 

Most previously described methods used HPLC and fluorescence detection, 

spectrophotometer detection, or single ion monitoring mass spectrometry to measure 

methylglyoxal in cell culture, plasma or urine. Essentially all of these relied on formation 

of diamino aromatic products for capture and detection of the dicarbonyls. In particular a

phenylenediamine (Chaplen et al., 1996; Randell et al., 2005; Ohmori et al. 1987), and 

1,2-diamino-4,5-dimethoxybenzene (McLellan et al., 1992, Nemet et al, 2004) was 

previously used for blood samples. In our early studies we attempted to increase the 

analytical specificity for methylglyoxal using a-phenylenediamine derivatives and LC

MS/MS. However, because of poor sensitivity due to inadequate fragmentation of this 

product in the collision chamber these efforts were abandoned. Odani et al. (1999) used 

2,3-DAN and 3,4-hexanedione as internal standard to measure methylglyoxal, glyoxal 

and 3-deoxyglucosone using an electrospray ionization LC/MS technique with 

chromatography on a C18 column. This method had relatively long chromatographic 

times in excess of35 minutes. Because ofthe greater potential of2,3-DAN derivatives 

for MS/MS analysis we used this as a derivatizing agent. This new method is an 

improvement in that it provides greater reproductility and takes advantage of the 

increased specificity of tandem mass spectrometry with less likelihood of interference 

from products with the same mass (isobaric compounds). 
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Analyte analogues labeled by stable isotopes are the best internal standard for 

MS/MS because they have similar chromatograph and fragmentation characteristics as 

the analyte itself and thereby aid in correcting for sample specific ion suppression effects 

that can affect the accuracy of any determination (Annesley, 2003 CC). Stable isotope 

labeled analogues of methylglyoxal or glyoxal are not commercially available so instead 

2,3-hexanedione was used as an internal standard because of its dicarbonyl structure. It 

was added to the protein free supernatant after precipitation of protein and helped correct 

for variable losses of derivatization products during subsequent extraction steps. All 

products are relatively similar structurally and are expected to have similar physical 

properties and extraction efficiency. 

This new method for measurement of methylglyoxal and glyoxal has the 

following advantages: 1) Improved selectivity owing to use of tandem mass 

spectrometry; 2) Shorter analysis times using 2,3 DAN as a derivatizing agent; 3) 

Measurement of both glyoxal and methylglyoxal in a single analytical run. This method 

also has the potential to measure tissue and intracellular glyoxal and methylglyoxal 

concentration as it makes use of the rather robust process of TCA precipitation to remove 

proteins and involves liquid-liquid extraction of the final derivatized products for 

analysis. It is has not yet been determined if deoxyglucosone, the other major reactive 

dicarbonyl involved in formation of AGEs, can also be measured in the same 

chromatographic run. The ability to measure deoxyglycosone would allow measurement 

ofthe three most important dicarbonyl AGE precursors present in vivo. 
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3.3 Development of Methods for Measurement of AGEs in Plasma 

3.3.1 LC-MS/MS Method for Measurement of AGEs 

A LC-MS/MS procedure was developed with the goal of analyzing levels of 4 

different methylglyoxal derived AGE residues present in free form in plasma and 

released from protein by acid hydrolysis. These four, including MG-H (Ahmed et al., 

2002), argpyrimidine (Shipanova et al., 1997), CEL (Ahmed et al., 1997) and MOLD 

(Nagaraja et al., 1996), were first synthesized by procedures described in the literature. 

However, only MG-H1 was successfully measured in this work and its measurement is 

described below. The published procedures allowed us to prepare adequate amounts of 

MG-H1 for a semi-quantitative assessment of the levels present in plasma. The relatively 

small amounts made during this work, however, was not sufficient to allow rigorous 

assessment of the purity of the preparation. Figure 3.8 shows CID mass spectra produced 

by a daughter scan of products ofMG-Hl. The identity was confirmed in comparison 

with CID characteristics previously described (Thomalley et al., 2003) 

MG-H1 and other methylglyoxal-derived AGE residues were separated on a 

Waters High Performance Liquid Chromatography system (2795 separators module 

equipped with a temperature controller) and a Micromass Quattro Ultima PT for 

ESIIMS/MS. Various sample components were resolved on a Atlantis HILIC Silica 3 J..lm 

(2.1 x 50mm) HPLC Column in an water gradient (10% to 55%) against 10 mM Formate 

Buffer and 5% Methanol in Acetonitrile over the first 2 minutes followed with isocratic 
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conditions in the high water solvent for the next 2 minutes. Flow rate was held constant at 

0.5 ml/min and the column maintained at ambient temperature. The MS method used 

positive ion electrospray with capillary spray voltage held at 3.5 kV and cone voltage of 

35 V. The elution of AGE residues were monitored by MS/MS at ionization source 

temperature of 120 °C; Desolvation gas temperature 350 °C; and desolvation gas flow of 

550 Llhr. MS parameters for amino acids and specific AGEs in our system are indicated 

in Table 3.1. Figure 3.9 shows the chromatogram for a mixture of synthesized standards 

of the AGEs separated in this system. 

A solid phase extraction (SPE) procedure on MCX columns were used to help 

clean up biological samples prior to analyses. For measurement ofthe free non protein

bound MG-H1 the plasma protein was first precipitated by 20% TCA and this 

supernatant was mixed with d4-lysine as an internal standard prior to SPE and 

measurement ofMG-Hl. 

3.3.1.1 Chromatographic properties of MG-Hl 

Figure 3.10 shows a typical chromatogram of free MG-H1 residues from a plasma 

sample from a healthy volunteer and the same sample but with an amount of purified 

MG-H1 added immediately prior to SPE. In the spiked sample MG-Hl appears at elution 

time of about 2.6 minutes. This is similar to the chromatogram obtained for a highly 

purified sample ofMG-Hl. Free non-protein bound MG-H1levels are detectable in the 

plasma of the volunteer. 
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Table 3.1 MS parameters for amino acids and specific AGEs. The abbreviations 

are: MS is mass spectrometry; AGEs is advanced glycation end products; MOLD is 

methylglyoxal-derived lysine dimer; CELis carboxyethyllysine; and MG-H is 

methylglyoxal-derived hydroimidazolones. 

Compound Retention Time Transitions Collision Energy 

Arginine 2.55 175>116 7.0 

Lysine 2.61 147>84 8.0 

Argpyrimidine 2.21 255.2>192.2 13.0 

MG-H1 2.60 229.1>114 9.0 

MOLD 3.48 341.3>212.2 15.0 

CEL 2.77 219>130 8.0 
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Figure 3.8 CID profile for the MG-H. Mass spectra were produced at aCE of9 eV. 

Capillary voltage was held at 3.5 kV, cone voltage was set of35 V, source temperature 

was 120°C, desolvation gas flow was set at 500 (Lihr). Protonated molecular ion (M+ 1) 

corresponds to the peak identified as 229. Positively charged ions 114, 116, 166, 184, 

211, 212 represent the daughter ions produced from the protonated molecular ion. Size of 

the peaks represents relative amounts. The abbreviations are: CID is collision induced 

dissociation; CE is collision energy; and MG-H is methylglyoxal-derived 

hydroimidazolone. 
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Figure 3.9 Chromatogram of a pure sample of AGEs. The profiles are MOLD, 

argpyrimidine, MG-H and CEL from top to bottom. The level of each AGEs measured in 

this sample was 2 ).!g. The unit for time is minutes. The abbreviations are: AGEs is 

advanced glycation end-products; MOLD is methylglyoxal-derived lysine dimer; MG-H 

is methylglyoxal-derived hydroimidazolone; and CELis carboxyethyl-lysine. 
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Figure 3.10 A typical LC-MS/MS chromatograph of free MG-Hl from a plasma 

sample from a healthy volunteer and a similar sample spiked with an amount of 

purified MG-Hl immediately prior to SPE. Arrow points to MG-Hl peak. From top to 

bottom profiles are plasma sample from a health volunteer; plasma sample spiked with 

MG-Hl; and a pure MG-Hl standard. The unit for time is minutes. The abbreviations are: 

LC-MS/MS is liquid chromatography-tandem mass spectrometry; MG-Hl is 

methylglyoxal-derived hydroimidazolone; and SPE is solid phase extraction. 
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3.3.1.2 Standard curve for MG-Hl 

Figures 3.11 show a linear calibration curve for MG-H1. Increasing amounts of 

MG-H1 were recovered with increasing amounts of the purified MG-H1 added to 

samples prior to SPE. This indicates that AGE residues were being retained by the SPE 

column and appropriately released in a concentration dependent manner. The low 

recovery of other endogenously produced AGEs was a problem and prevented 

measurement ofthese in the biological samples. 

3.3.2. Discussion for Development of Methods on AGEs 

The goal of this work was to develop a relatively simple procedure for 

measurement of several methylglyoxal-derived AGE residues by LC-MS/MS. While the 

LC-MS/MS components of the method do allow separation and measurement ofthe four 

free methylglyoxal-derived AGE residues, the sample preparation was inadequate to 

provide adequate amounts of these AGE residues to measure. The chromatographic 

method described uses a single HPLC column with a total analysis time of about 8 

minutes (See Methods Section for details) to separate and measure the four MG-derived 

AGEs. This offered the potential for a significant improvement in analytical time 

compared to a previously described method with capability of measuring all four 

(Thomalley et al., 2003) which required run times of about 50 minutes. However, only 

MG-H1 was recovered from the precipitated samples for measurement. Another HPLC 

based method for measurement ofMG-H1 has also been published (Ahmed et al. 2002) 
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but requires 6-aminoquinolyl-N-hydroxysuccinidmdyl carbonate (ACQ) derivatization 

and chromatographic run times in excess of250 minutes. This is not practical for the 

analysis oflarge numbers of samples. 

The method described here offers sufficient sensitivity to measure MG-Hl that is 

free in plasma as well as that released by hydrolysis of protein. Free MG-derived AGE 

concentrations range from 10-9 to 10-6 M in plasma. Levels ofMG-Hl have been 

previously been reported at about 50 nmol/L in plasma on healthy individuals (Ahmed et 

al., 2005), exceeding the plasma concentration of CEL, Argpyrimidine, and MOLD, the 

latter two being undetectable in free form. The free AGE plasma component most likely 

represents that released from intracellular sources following intracellular hydrolysis of 

modified proteins. These free AGE residues are effectively removed by the kidney and 

excreted into the urine. A portion of these may also come from the diet (Thomalley et al, 

2003). The majority of plasma AGEs are bound to plasma protein and can be released by 

acid or enzyme-mediated hydrolysis (Ahmed et al., 2002). Our work using acid 

hydrolysis gave unsatisfactory results when analyzed by LC-MS-MS. Acid hydrolysis 

has been reported to result in excessive loss ofhydroimidazolone AGE residues like MG

Hl (Ahmed et al., 2002). A step-wise enzymatic hydrolysis procedure has been 

successfully used by others to prepare protein bound AGEs for LC-MS/MS analysis 

(Ahmed et al., 2002). Nevertheless, LC-MS/MS still offers the best method for 

measurement of methylglyoxal-derived AGE residues. Attempts to measure these by 

other techniques have significant limitations for providing quantitative data (Ahmed and 

Thomalley, 2007). 
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Quantitative analysis of AGEs requires availability ofmg quantities of pure 

standards. These are not commercially available but must be synthesized and purified to 

high purity to use in quantitative assay methods. Synthesis procedures have been 

published for all of the MG-derived AGEs. We were successful in the synthesis of only 

very small quantities of the various standards using instrumentation available to us. Thus, 

determination of purity and accurate and precise mass ofthe final MG-Hl product was 

not possible. We made the assumption that MG-Hl standard was 100% pure and 

expressed sample plasma concentrations as mg/L based on this assumption. 
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Figure 3.11 A linear calibration curve for free MG-Hl in serum. The 

response ratio was calculated as the area under the curve (AUC) for MG-Hl 

divided by the AUC for the internal standard. MG-Hl is the abbreviation of 

methylglyoxal-derived hydroimidazolone. 
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CHAPTER4 

STUDIES ON METHYLGL YOXAL, GLYOXAL, AGES 
AND NA+/K+-ATPASE ACTIVITY IN TlDM 

4.1 Results 

4.1.1 Study Subject Characteristics 

Fifty six young complication-free TlDM patients and 18 age matched controls 

without diabetes were recruited to study the relationships between methylglyoxal, glyoxal 

and plasma free MG-Hl levels and early risk of complications as determined by Al C 

concentrations. The relationship ofthese with Na+1K+-ATPase activity, a potential target 

ofmethylglyoxal or glyoxal damage, was also examined. Table 4.1 summarizes data 

from controls and TlDM subjects recruited. Given the young age of the control subjects 

and the normal AlC values there is very little chance that an undiagnosed TlDM or 

T2DM patient exists in this group, although sample collection was anonymous. There 

was no difference in the mean age, or in the proportion of males and females between the 

TlDM and control groups. The plasma AlC (%)was higher in the TlDM group (8.5 ± 

1.3) as compared to the control group (5.0 ± 0.3). All of the TlDM patients recruited as 

part of this study, except for one subject who had been diagnosed with TlDM 1.2 years 

prior, had their diagnosis for at least 2 years. They were all receiving insulin treatment 

and none of them had diagnosed microvascular complications. 
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Table 4.1 Characteristics of controls and TlDM subjects. Values are expressed as 

mean± standard deviation and those in brackets are the range of values within each 

category. * indicates that values are significantly different from the control group by 

student t-test (p<0.05). a indicates that values are significantly different from the control 

group by ANOV A with multiple comparison correction using the Bonferroni method. 

Normal range for hemoglobin Al C (Al C) is 4- 6%. Good glycemic control was defined 

as mean AlC <8 for one year; Moderate glycemic control as mean AlC 8 to 9; and Poor 

glycemic control as mean AlC >9. The abbreviation N/A represents not applicable. 

Control TlDM Good Moderate Poor 
(whole group) control control control 

Numbers 18 56 20 17 19 

Age (years) 
14.6 ± 4.6 15.0 ± 4.2 13.3 ± 4.4 15.3±5.1 16.2 ± 2.8 

(6-22) (6-21) (6-21) (8-21) (11-20) 

Sex 
lOP, 8M 28P, 28M lOP, 10M 9P, 8M 9P, 10M 

(female, male) 

Duration ofDM 
N/A 

7.5 ± 4.2 6.6± 3.7 8.8 ± 4.8 7.2 ± 4.3 
(years) (1.2-20) (1.2-14) (3.5-20) (2-18) 

AlC (%) 
5.0 ± 0.3 8.5 ± 1.3 * 7.5±0.7a 8.5 ± 0.5 a 9.5 ± 1.4 a 
(4.6-5.4) (6.1-12.3) (6.1-9.1) (7.7-9.8) (6.7-12.3) 

Insulin Therapy 
(number/group) 

Conventional 
NIA 9 1 4 4 

(2 injections/day) 

Multiple (3 
N/A 13 2 3 8 

injections/day) 

Multiple (4 
N/A 14 3 5 6 

injections/day) 

Insulin pump NIA 20 14 5 1 
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4.1.2 Levels ofMethylglyoxal, Glyoxal, Free MG-Hl and Na+/~-ATPase Activity 

in TlDM 

Levels of plasma methylglyoxal, glyoxal, plasma free MG-H1 and RBC 

membrane Na+1K.+-ATPase activity were determined in both control and T1DM patients 

(Table 4.2). The mean plasma methylglyoxal (nmol/L) and glyoxal level (nmol/L), 

respectively, were higher in the TIDM group as a whole (842 ± 238, 1052 ± 515) versus 

the controls (439 ± 90, 328 ± 208) (Figure 4.1 & 4.2). Plasma free MG-H1 (mg/L) was 

also higher in the DM group (2.7 ± 1.1) versus the control group (1.7 ± 0.9) (Figure 4.3). 

RBC membrane Na+1K.+-ATPase activity (nmol NADH oxidized/min/mg protein) was 

elevated in the DM group (4.47 ± 0.98) compared to the control group (2.16 ± 0.59). 

Figure 4.4 shows Na+/K+-ATPase activity in controls and T1DM patients 

separated according to glycemic control. Individuals in the T1DM group were separated 

into two subgroups, those with a duration of diabetes of less than or equal to 7 years, and 

those with a duration greater than 7 years (based on median value for duration of 

diabetes). There was no difference in the level ofNa+1K.+-ATPase activity between these 

two subgroups. 
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Table 4.2 Levels of plasma methylglyoxal, glyoxal, free MG-Hl according to the 

levels of glycemic control in study subjects. Good glycemic control was defined as 

A1C <8; Moderate glycemic control as A1C 8 to 9; and Poor glycemic control as A1C 

>9. Values are mean± standard deviation. *indicates significantly different from control 

group by student t test. a indicates significantly different from control group by ANOV A 

with multiple comparison correction using Bonferroni method. The abbreviations are: 

MG-H1 is methylglyoxal-derived hydroimidazolone; and NADH is reduced nicotinamide 

adenine dinucleotide. 

TlDM 
Good Moderate 

Control (whole 
control control 

Poor control 
group} 

Plasma 
439 ± 90 842 ± 238 * 751 ± 236 (l 819± 153(l 944 ± 250 (l 

methylglyoxal 
(278-597) (431-1403) (431-1403) (653-1125) (583-1375) (nmol/L) 

Plasma glyoxal 328 ± 208 1052 ±515 * 724 ± 396 1224 ±552 (l 1241 ± 552 (l 
(nmol/L) (34-638) (379-2396) (379-1414) (707-2206) (586-2396) 

Plasma 
freeMG-H1 1.7 ± 0.9 2.7 ± 1.1 * 2.8±1.1 2.6 ± 1.2 2.5 ± 0.9 
(mg/L) (0.7-4.0) (1.4-5.9) (1.4-5.0) (1.4-5.9) (1.6-5.0) 

Na+1K+-ATPase 
activity (nmol 2.2± 0.6 4.5 ± 1.0 * 4.0 ± 0.8 (l 4.2 ± 0.7 (l 5.1±l.Oa 
(NADH oxidized (1.1-3.1) (2.4-7.6) (2.4-5.3) (2.9-5.3) (3.4-7.6) 
/min/mg protein) 
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Figure 4.1 Levels of plasma methylglyoxal in controls and TlDM subjects 

separated according to the level of glycemic control. Good glycemic control was 

defined as AlC <8; Moderate glycemic control as AlC 8 to 9; and Poor glycemic control 

as AlC >9. Results are mean± standard deviation.* indicates significantly different from 

control group by ANOV A with multiple comparison correction by Bonferroni method. 

The abbreviations are: TlDM is Type 1 diabetes mellitus; and AlC is hemoglobin AlC. 
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Figure 4.2 Levels of plasma glyoxal in controls and TlDM subjects separated 

according to the level of glycemic control. Good glycemic control was defined as 

AlC <8; Moderate glycemic control as AlC 8 to 9; and Poor glycemic control as 

AlC >9. The results are mean± standard deviation.* indicates significantly different 

from control group by ANOV A with multiple comparison correction by Bonferroni 

method. The abbreviations are: TlDM is Type 1 diabetes mellitus; and AlC is 

hemoglobin AlC. 
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Figure 4.3 Levels of plasma free MG-Hl in controls and TlDM subjects 

separated according to the level of glycemic control. Good glycemic control was 

defined as AlC <8; Moderate glycemic control as AlC 8 to 9; and Poor glycemic 

control as AlC >9. The results are mean± standard deviation. Values were not 

significantly different between groups as assessed by ANOV A with multiple 

comparison correction by Bonferroni method. The abbreviations are: MG-Hl is 

methylglyoxal-derived hydroimidazolone; TlDM is Type 1 diabetes mellitus; and 

AlC is hemoglobin AlC. 
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Figure 4.4 Erythrocyte membrane Na+/~-ATPase activity in controls and 

TlDM subjects separated according to level of glycemic control. Good glycemic 

control was defined as AlC <8; Moderate glycemic control as AlC 8 to 9; and Poor 

glycemic control as AlC >9. The results are mean± standard deviation.* indicates 

significantly different from control group by ANOV A with multiple comparison 

correction by Bonferroni method. TlDM is the abbreviation of Type 1 diabetes 

mellitus. 
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4.1.3 Relationships between Plasma Methylglyoxal, Glyoxal, MG-Hl and AlC 

in TlDM 

Pearson correlation analysis was carried out to determine ifthere was a 

relationship ofmethylglyoxal, glyoxal and MG-Hl with AlC and with each other. AlC 

correlated with both plasma methylglyoxal (r = 0.635, p<O.OOl) and plasma glyoxal (r = 

0.523, p<O.OOl) levels but not with MG-Hl. Plasma methylglyoxal and glyoxal 

correlated strongly with each other (r = 0.705, p<O.OOl). MG-Hllevels correlated weakly 

with methylglyoxal concentrations (r = 0.265, p=0.05) but not with glyoxal 

concentrations. 

4.1.4 Relationships of Plasma Methylglyoxal, Glyoxal, and AlC with Na+/K+

ATPase Activity in RBC Membrane in TlDM. 

Correlation analysis of all subjects revealed that Na + /K+ ATPase activity was 

strongly correlated with methylglyoxal (r = 0.449, p<O.OOl), glyoxal (r = 0.554, 

p<O.OOl), and AlC (r = 0.730, p<O.OOl) (Figure 4.5) (Table 4.3). Multiple linear 

regression analysis showed that Al C was a strong predictor ofNa+ /K+ -ATPase activity 

(R2=0.582, p<O.OOl), and in the presence of this information, the information on 

methylglyoxal and glyoxal did not add significantly to the predictability ofNa+/K+

ATPase activity. Correlation analysis within each group (TlDM and controls) revealed 

no additional or stronger relationships. 
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Table 4.3 Relationships assessed by correlation analysis. The abbreviations are: 

NADH is reduced nicotinamide adenine dinucleotide; and MG-H is Methylglyoxal-

derived hydroimidazolone. 

Variable Variable r value p value 

Hemoglobin A1C (%) Methylglyoxal (nmol/L) 0.635 0.001 

Hemoglobin A1C (%) Glyoxal (nmol/L) 0.523 0.001 

Methylglyoxal (nmol/L) Glyoxal (nmol/L) 0.705 0.001 

Na+1K+-ATPase activity (nmol 
Hemoglobin A1C (%) 0.730 0.001 

NADH oxidized /min/mg protein) 

Na+/K+-ATPase activity (nmol 
Methylglyoxal (nmol/L) 0.449 0.001 

NADH oxidized /min/mg protein) 

Na+1K+-ATPase activity (nmol 
Glyoxal (nmol/L) 0.554 0.001 

NADH oxidized /min/mg protein) 

Free MG-H1 (mg/L) Methylglyoxal (nmol/L) 0.265 0.05 

88 



R Sq Linear=0.582 

Figure 4.5 Linear regression of hemoglobin AlC with Na+/K'"-ATPase activity. 

(ND: non-diabetes controls; DM: patients with Type 1 diabetes) 
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4.2 Discussion 

This work demonstrates for the first time that plasma levels of both methylglyoxal 

and glyoxal, and the free plasma methylglyoxal-arginine adduct MG-Hl are elevated in 

young patients with TlDM in the absence of diabetic complications. As these patients 

had no documented renal disease, it is likely that these elevations are not due to decreased 

excretion by kidney. There is little published data on levels of plasma methylglyoxal and 

glyoxal, or plasma free MG-Hl residues in DM. Blood methylglyoxallevels have been 

shown to be elevated in a group of individuals with insulin-dependent and non-insulin 

dependent diabetes with complications compared with controls (McLellan et al., 1994). 

When compared with normoglycemic individuals, a combined group of mainly adult 

patients (ages 15 to 82 years) with TlDM and T2DM with complications showed 

significantly elevated levels of methylglyoxal in plasma, but showed no significant 

difference when whole blood levels were used (Nemet et al., 2005). Plasma 

methylglyoxal and glyoxal were higher in older adult individuals with T2DM (Odani et 

al., 1999), and remained higher than normal controls even after an intervention which 

significantly improved glycemic control (Lapolla et al., 2003). Although all TlDM 

subjects in the present study were receiving insulin therapy, the average A 1 C level was 

still significantly higher than that of the normal control group indicating a general lack of 

glycemic control. As high glucose is one source of elevated methylglyoxal and glyoxal, 

lack of glycemic control may partially explain their elevated levels. The high correlation 

between AlC and plasma levels of these aldehydes substantiates this. The high 
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correlation between methylglyoxal and glyoxal also suggests that they arise from the 

same source. As methylglyoxal- and glyoxal-derived AGEs are implicated in 

complications of diabetes (Hammes et al., 1991; Misselwitz et al., 2002; Lieuw-A-Fa et 

al., 2004; and Hwang et al., 2005), this finding underscores the need for stringent 

glycemic control in patients with T1DM. 

Although levels ofmethylglyoxal and glyoxal are elevated in patients in the 

T1DM group, they have yet to develop demonstrable complications. However, the 

presence of increased glyoxal likely indicates that they are already experiencing oxidative 

stress. Likewise, other sub-clinical changes may be occurring. For instance, Elhadd et al. 

(1999) demonstrated an increase in markers of oxidative stress and endothelial 

dysfunction in young patients without clinical diabetic angiopathy. It may be that the 

magnitude of elevations in aldehydes seen in our study must be sustained for a longer 

interval in order for detrimental effects to become clinically apparent. As uncontrolled 

diabetes progresses, and tissue AGEs continue to accumulate, patients may begin to 

experience complications. We have shown, in an older group ofT1DM and T2DM 

patients, that the cysteine AGEs, CEC and CMC, derived from methylglyoxal and 

glyoxal respectively, are elevated in plasma and are associated with diabetic nephropathy 

(Mostafa et al., 2007). 

The levels ofmethylglyoxal in plasma also correlated weakly with the levels of 

free plasma MG-H1, whereas the levels of glycemia as determined by Al C did not. This 

is not surprising considering that MG-Hl is a MG-derived AGE. Increased levels of free 

MG-Hl observed in individuals with diabetes, however, is not merely the result of short 
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term changes in methylglyoxallevels but also the result of intracellular proteolysis of 

intracellular and extracellular proteins modified by methylglyoxal over longer periods of 

time depending on the half-life of the protein. In the present study, levels ofMG-Hl were 

60% higher in T1DM than in controls. Others have reported a more substantial difference 

in free MG-H1levels of7 to 10 times higher when older T1DM and T2DM individuals 

are examined (Ahmed et al., 2005) or when healthy controls are compared with renal 

failure patients on dialysis where differences are greater than 10 times (Thomalley et al., 

2003). It is possible that increasing age and duration ofDM are significant factors in 

determining the accumulation of AGEs in proteins and therefore the amount of free MG

H1 residue produced once these are hydrolysed. The impact of renal impairment in some 

older individuals may be another factor (Thomalley et al., 2003). Nevertheless, higher 

free MG-H1levels in complication free young T1DM patients suggests that even at this 

very early stage in the disease process, significant amounts ofmethylglyoxal mediated 

damage is occurring. 

The activity of a ubiquitous membrane enzyme, Na + IK+ -ATPase, in RBC was also 

measured in this research. Na+1K+-ATPase regulates active transport of sodium and 

potassium across plasma membranes, and alteration in activity of this enzyme has been 

implicated in diabetic neuropathy (Raccah et al., 1996; Djemli-Shipkolye et al., 2001) 

and may be involved in other diabetic complications (Mimura et al., 1994; Tsimaratos et 

al., 2001; Koc et al., 2003). Previous studies have shown a decrease in RBC Na+/K+

ATPase activity in TIDM patients ranging in age from late teens to 70 years of age, and 

with and without diabetic complications (Raccah et al., 1996; Baldini et al., 1989; Besch 
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et al., 1995; Finotti and Palatini, 1986; and Jannot et al., 2002). Methylglyoxal, glyoxal, 

and AGEs are known to cause inhibition of enzymes such as glyceraldehyde-3-phosphate 

dehydrogenase, nitric oxide synthase, and glutathione peroxidase and reductase (Morgan 

et al., 2002; Park et al., 2003; Lee et al., 2005; Xu et al., 2003) causing changes 

characteristic of diabetes including altered glucose metabolism, endothelial dysfunction 

and oxidative stress ( Rodriguez-Manas et al., 2003; Elhadd et al., 1999). We anticipated 

that if methylglyoxal and glyoxal levels were high in T1DM, then RBC membrane 

Na+1K+-ATPase activity would be decreased. However, we found that the activity ofthis 

enzyme was significantly higher in DM group patients versus patients in the ND group. 

Another study in a similar group of complication-free children and adolescents with 

T1DM showed no difference in Na+1K+-ATPase activity in RBC's compared to healthy 

non-diabetic controls (Deak et al., 2003). This may be due to the shorter duration of 

diabetes (3-10 years) and better glycemic control ofthese study subjects as compared to 

subjects in other reported studies. In a study of streptozotocin-induced diabetic rats, 

Tsimarato et al. (2001) showed that Na+1K+-ATPase activity in medullary thick ascending 

limb of kidney was increased in rats at 6 weeks, but decreased at 12 weeks, after 

induction of diabetes, when compared to normal control rats. Collectively these studies 

suggest that there may be a biphasic time-dependent response in Na+1K+-ATPase activity 

in diabetes. 

Diabetes is associated with oxidative stress (Jay et al., 2006), and it has been 

suggested that low levels of oxidative stress stimulate membrane ion transport, whereas 

with sustained and increasing levels of oxidative stress, oxidative membrane damage 
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results in inhibition of these functions (Stark, 2005). A recent study showed that AGEs 

enhanced sodium channel messenger RNA and sodium uptake in renal cortical collecting 

duct cells in a time- and dose-dependent manner (Chang et al., 2007). Additionally, 

hyperglycemia has been shown to increase intracellular sodium concentrations in normal 

human red blood cells (Barbagallo et al., 1993). These processes lead to increased levels 

of intracellular sodium that may activate membrane Na+1K.+-ATPase in a compensatory 

manner in order to maintain normal intracellular sodium levels. This may explain the 

elevated levels of membrane Na+/K+-ATPase activity demonstrated in the present study. 

The high correlation of A1C, methylglyoxal and glyoxal with Na+/K+-ATPase activity, 

and the results ofthe regression analysis indicating that A1C levels are good predictors of 

enzyme activity, point to a role for glucose, methylgyoxal and glyoxal in the membrane 

alteration. As hyperglycemia, aldehyde and AGE levels, and/or oxidative stress increase 

with time, alterations to the lipid environment or to Na+1K.+-ATPase itself may eventually 

result in inhibition of the enzyme with a decrease in activity (Djemli-Shipkoye et al., 

2001; Baldini et al., 1989). 

Although speculative, the foregoing explanation would seem reasonable, and 

substantiates the concept of a biphasic response. In order to test this concept, we divided 

data from the DM group into two subgroups based on median duration of diabetes as 

described in the methods section. There was no difference between the levels ofNa+/K.+

ATPase activity between these two subgroups. Thus, the reason( s) for these divergent 

reports of enzyme activity remains to be elucidated. Whatever the case, the elevated 

levels of Na + IK.+ -ATPase activity demonstrated in the present study appear to indicate 
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that membrane function is altered leading to changes in sodium/potassium handling. 

Na+1K+-ATPase is present in membranes throughout the body, and alteration in the 

activity of this enzyme lends itself to widespread impact. More direct effects on Na+/K+ 

ATPase activity are also possible due to the wide variety of metabolic abnormalities 

occuring during DM. As this change is occurring prior to development of complications, 

levels ofNa + IK+ -ATPase activity may foretell future renal, vascular or neurological 

complications. 

The findings of the present study have implications for clinical management of 

diabetes. The results of this research strengthen current thinking about the need to 

structure management to maintain stringent glycemic control, starting at diagnosis of 

diabetes. In the event that glucose is difficult to control for physiologic or behavioral 

reasons, supplemental or increased dietary antioxidants may be useful in preventing 

damage caused by hyperglycemia- or AGE-induced oxidative stress. Also, an agent such 

as lipoic acid, that has been shown to decrease AGEs in animals (Vasdev et al., 2000; 

Midaoui et al., 2003), and is already in use in DM in humans for treatment of neuropathy 

(Foster, 2007), may be considered to aid in the prevention of AGE-induced 

complications. 

We acknowledge the following limitations ofthis study. Although we measured 

two of the most likely aldehydes involved in AGEs formation and diabetic complications, 

other aldehydes produced from glucose catabolism and lipid peroxidation may also be 

involved in these processes, and may offer valuable information with regards to sub-
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clinical alterations. As discussed in Chapter 3, the inability to synthesize large quantities 

ofMG-Hl did not allow us to know with certainty the purity of our standard. 

4.3 Conclusion 

In young, complication-free patients with TIDM, plasma methylglyoxal and 

glyoxal levels are elevated, and are strongly associated with elevated hemoglobin AI C, a 

measure of glycemic control. Free plasma MG-Hl residues are also higher in TIDM 

patients compared with non-DM controls and correlated with MG levels but not mean 

glycemia as determined by Al C. These findings underscore the importance of stringent 

glycemic control in TIDM as methylglyoxal- and glyoxal-derived AGEs are implicated 

in complications ofDM. These young patients with DM also show an increase in the 

activity ofthe ubiquitous membrane enzyme, Na + IK+ -ATPase, indicating early membrane 

alteration which may also presage future complications of diabetes. 

96 



CHAPTERS 

SUMMARY AND FUTURE DIRECTIONS 

In this research, we were successful in developing novel LC-MS/MS methods to 

measure plasma methylglyoxal and glyoxal, and plasma free MG-Hl residues which 

were used to characterize concentrations of these parameters found in young 

complication free TlDM patients compared to non-DM controls. RBC membrane 

Na+1K.+-ATPase activity was also measured in the complication-free TlDM compared 

with non-DM controls. The complication-free TlDM patients had higher levels 

methylglyoxal, glyoxal and free MG-H, as well as erythrocyte membrane Na+/K+

ATPase activity. The higher levels ofNa+ /K+ -ATPase activity in complication-free 

TlDM may suggest altered function as a result of hyperglycemia at an early stage in 

disease. The elevations in methylglyoxal and glyoxal may at least partially be related to 

glycemia as measured by Al C. Higher levels of free MG-Hl may indicate increased 

AGE formation at this very early stage and is consistent with a causal role in the 

pathogenesis of complications. Intensive insulin therapy may significantly reduce free 

MG-Hl formation. Taken together these results are consistent with a role for 

methylglyoxal and glyoxal, and methylglyoxal induced AGE formation early on in 

TlDM and may indicate a role in the pathogenesis of complications. Establishing a 

stronger link to a causal role in DM complications will require a prospective study. Many 

ofthe TlDM subjects studied in this work will eventually develop microvascular 

complications. It is tempting to speculate that those with highest levels ofMG-Hl will be 
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at greatest risk for developing early complications. A prospective clinical study with 

measurement of AGE residues like plasma free MG-Hl in complication free TlDM 

patients and then routine follow-up with examinations for evidence of complications may 

provide the necessary data to place markers like MG-Hl into routine clinical use as 

potentially modifiable risk factors for DM complications. 

MG-Hl is one of several MG derived AGEs that may exist as a free residue or 

bound in protein. The amounts ofMG-Hl synthesized for these studies were inadequate 

to provide accurate quantitative information on actual MG-Hl concentrations free in 

plasma. With synthesis and purification of larger amounts of pure standards of AGE 

residues like MG-Hl, argpyrimidine, CEL or MOLD, or even glyoxal-derived AGE 

residues, we can begin to explore and quantify other blood-based markers of AGE 

formation and correlate these withAl C in this patient group. Successful synthesis of 

relatively large amounts of these AGE residues will be of great benefit to further study on 

AGEs in animal models as well. Future work in this area may also expand into 

measurement and evaluation of free AGE residues in urine or protein-bound AGEs in 

plasma or tissue as potential markers of AGE-induced damage and risk for DM 

complications. 

In this study, the relationship between AlC, methylglyoxal, glyoxal, free MG-Hl 

with type of insulin treatment in TlDM was also examined. Although it did not achieve 

statistical significance, preliminary analysis suggested that a relationship may exist 

between the type of insulin therapy and the level of free plasma AGEs. A study using a 

larger sample size of patients on conventional therapy is warranted to further examine 
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this relationship, as the results of this may have clinical significance in choosing the type 

of insulin therapy. 

Although two of the most likely aldehydes involved in AGEs formation and 

diabetic complications, methylglyoxal and glyoxal, were measured, other aldehydes 

produced from glucose catabolism and lipid peroxidation may also be involved and may 

offer valuable information with regards to sub-clinical alterations. The level of other 

aldehydes may be explored in future study. 
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Appendix 1 

October 2003 

Faculty of Medicine, Schools of Nursing and Pharmacy of Memorial 
University of Newfoundland; Health Care Corporation, St. John's; Newfoundland 

Cancer Treatment and Research Foundation 

Consent to Take Part in Health Research 

TITLE: New diagnostic markers for children and young people with Type 1 diabetes 

INVESTIGATOR(S): Drs. E Randell, L. Newhook, S. Vasdev, and V. Gadag 

SPONSOR: 

Your child/ward has been asked to take part in a research study. It is up to you to 
decide whether he/she can be in the study or not. Before you decide, you need to 
understand what the study is for, what risks your child/ward might take and what 
benefits he/she might receive. This consent form explains the study. 

The researchers will: 

• discuss the study with you 
• answer your questions 
• keep confidential any information which could identify you personally 
• be available during the study to deal with problems and answer questions 

If you decide for your child/ward not to take part or to leave the study this will not 
affect his/her usual health care. 

1. Introduction/Background: 

Al C is a lab test measured in patients with diabetes because it is related to the 
average blood sugar level. Al C is also related to the risk of developing diabetes 
related problems called complications. These complications include: vision 
problems, kidney problems, nerve damage, and high blood pressure. There is no test, 
including Al C, that can predict early on when and ifthese problems will occur in a 
patient with diabetes. A number of recently discovered chemicals in blood may be 
useful in identifying patients who will develop complications. If these chemicals are 
more useful than Al C they may allow doctors to better treat their patients. If patients 
can be better treated this could mean that many patients with diabetes can live longer 
without complications. 

-1- Initials: __ _ 



2. Purpose of study: 

We wish to study some newly discovered chemicals that are in blood to see how they 
are related to the risk of developing diabetes complications. 

3. Description of the study procedures and tests: 

If you agree for your child/ward to take part in this study, the researchers will 
measure some of these recently discovered chemicals in the blood sample that has 
been sent to the lab for AlC. A researcher will also record information from your 
child's/ward's chart. This information will include: age, sex, how long he/she has 
had diabetes, what type of insulin he/she is receiving, Al C results, and if he/she has 
experienced any complications related to diabetes. 

4. Length of time: 

Your participation in this study will involve the time required to read this form and 
consent to have your child participate. If you consent to have your child/ward 
participate the researchers will make arrangements with the Lab for the additional 
tests to be performed on his/her AlC sample. 

5. Possible risks and discomforts: 

There are no risks directly related to participating in this study. Your child/ward will 
give a blood sample for the AlC test. Some ofthis sample will be used to do the 
additional lab tests. No additional blood will be collected from your child/ward for 
this study. 

6. Benefits: 

It is not known whether this study will benefit your child/ward. 

7. Liability statement: 

Signing this form gives us your consent to have your child/ward be in this study. 
It tells us that you understand the information about the research study. When 
you sign this form, you do not give up your legal rights. Researchers or agencies 
involved in this research study still have their legal and professional 
responsibilities. 

8. Questions: 

-2- Initials: __ _ 



If you have any questions about taking part in this study, you can meet with the 
investigator who is in charge of the study at this institution. That person is: 

Dr. Edward Randell (777-6375) 

Or you can talk to someone who is not involved with the study at all, but can 
advise you on your rights as a participant in a research study. This person can 
be reached through: 

Office of the Human Investigation Committee (HI C) at 709-777-6974 
Email: hic@mun.ca 

-3- Initials: __ _ 



Signature Page 

Study title: New diagnostic markers for children and young people with type 1 diabetes 

Name of principal investigator: Dr. Edward Randell 

To be filled out and signed by the parent of the participant: 

Please check as appropriate: 
I have read the consent 
I have had the opportunity to ask questions/to discuss this study. 
I have received satisfactory answers to all of my questions. 
I have received enough information about the study. 
I have spoken to Dr. Newhook and she has answered my questions 
I understand that I am free to withdraw from the study 

• at any time 
• without having to give a reason 
• without affecting my future care 

Yes {} No {} 
Yes {} No {} 
Yes {} No {} 
Yes {} No {} 
Yes {} No {} 
Yes {} No {} 

I understand that it is my choice to have my child/ward be in the study and that 
he/she may not benefit . Yes { } No { } 

I agree that the study doctor or investigator may read the parts of my child's/ward's 
Hospital records which are relevant to the study. Yes { } No { } 

I agree to have my child take part in this study. Yes {} No {} 

Signature of participant Date 

Signature ofwitness Date 

To be signed by the investigator: 

I have explained this study to the best of my ability. I invited questions and gave answers. 
I believe that the participant fully understands what is involved in being in the study, any 
potential risks of the study and that he or she has freely chosen to be in the study. 

Signature of investigator Date 

-4- Initials: __ _ 



Telephone number: 

Assent of minor participant (if appropriate): 

Signature of minor participant Date 

Relationship to participant named above Age 

-5- Initials: __ _ 



Appendix2 

Examination of advanced-glycation end products (AGEs) in children 
with Type 1 diabetes 

Chart Audit Form 

Date: --------------------
Recruitment Date: ---------------------
Study#: ____________________ _ 

Name: -----------------------------------------
MCP#: ___________________ _ 

Age: ________________________ _ 

Sex: ---------------------------
Number of years with the diagnosis of 

diabetes: ----------------------------
Summary of past Al C values 

Date (DIMlY) AlC (%) 

1) 

2) 

3) 

4) 

5) 

6) 

Check ifthe subject has any of the following complications: 
D Hypertension 
D Nephropathy 
D Retinopathy 
D Neuropathy 

Type of Insulin management: ____________________________________ __ 

Signature of Data Collector 



Appendix 3 

In this research, synthesis for the other three methylglyoxal-derived AGE 

residues, including argpyrimidine, MOLD and CEL, were also successfully performed. 

The procedure is described as follows: 

1. Synthesis of argpyrimidine 

Argpyrimidine was synthesized as described by Shipanova et al (1997). Briefly, 

311 mg oft-BOC Arginine (1 mmol) was dissolved in 10 ml of200 mM sodium 

phosphate buffer (pH 7.4), followed by adding 0.175 ml of 1 mmol MG solution and 4 

mg ofDETPA. The mixture was incubated at 55°C for 4 days. This was followed by 

slowly adding 0.85 ml of concentrated HCl and allowing the mixture to stand at room 

temperature for 2 hours to hydrolyze the t-BOC group. The HCl was then evaporated 

under vacuum and the solution was lyophilized and purified using a C18 reverse phase 

column as previously described (Shipanova et al., 1997). The recovered argpyrimidine 

product was further purified using LC-MS/MS by a procedure similar to that used for 

MG-Hl. The peak corresponding to argpyrimidine by MRM 255.2>192.2 moniting was 

collected and lyophilized. The final argpyrimidine product was stored at -70°C for AGEs 

measurement. 

2. Synthesis of MOLD 

I 



MOLD was prepared as previously described by Nagaraj, et al. (1996). Briefly 

500 mg of ~-t-BOC lysine and 200 mg ofMG was dissolved in 5.0 ml of0.2 M sodium 

phosphate buffer (pH 7.4), and incubated at 37 °C for 16 h. The resulting solution was 

separated by cation exchange chromatography on an AG-50W-X4 (Bio-Rad) (2.5 x 7-

cm) column equilibrated with 0.02 M sodium acetate buffer (pH 5.0) at a flow rate of20 

ml!h. The column was then washed with 250 ml of buffer and eluted in a gradient of 0 to 

1M NaCl in 100 ml followed by 100 ml ofbuffer containing 1M NaCl. Fractions (3 mL) 

were then collected to which 200 Ill of2 N HCl was added and allowed to stand 

overnight to hydrolyze t-BOC group. Fractions were then pooled and lyophilized. MOLD 

was further purified by HPLC on a Synmetry Prep C18 column in a linear gradient of 

0.1% trifluoroacetic acid (TFA) in water, to 50% acetonitrile in water containing 0.1% 

TFA; 0-100% over 35 min at a flow rate of2.0 ml/min. Fractions containing MOLD were 

further purified by HPLC on a Gemini Cl8 semi-prep column and separation and 

identification of MOLD were made by MRM of the 341.3>212.2 transition. The 

collection was then vacuum dried and the final products of MOLD was stored at -70°C. 

3. Synthesis of CEL 

Synthesis of CEL was carried out based on the method described by Teerlink et 

al. (2004) which involves protecting the a-amino group oflysine by converting to its 

copper complex. To do this, 2.2g oflysine was dissolved in 5 ml of water and heated to 

100°C. Solid CuC03 was added slowly to produce a saturated copper solution. The 

copper-lysine complex was then treated with 2.3g (1.4 ml) of2-bromopropionic acid in 
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2.5 ml of2 N NaOH for 3 days at room temperature under sterile conditions. The mixture 

was finally adjusted to pH 2 with HCl and copper ion was removed by treating with 

hydrogen sulfide gas. The precipitated copper sulfide was removed by filtration. The 

remaining solution was evaporated under vacuum on rotary evaporator and further 

purified by preparative HPLC using a reverse phase prep C1s column as previously 

described (Teerlink et al., 2004). CEL was then further purified on a Gemini C18 semi

prep column (250x10mm; 5 !liD; Phenomenex, USA) with monitoring by MS/MS by 

MRM of transition 219> 130 and the peak was collected as CEL. The collection product 

was evaporated to dryness in a 2 ml plastic microfuge tube and the dried product was 

stored at -70°C for use as a standard to measure plasma AGEs. (See Figure 3.9 for 

chromatogram of these compounds) 
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