








--

9/10/2006 

BLIND MODULATION CLASSIFICATION OF 

LINEARLY DIGITALLY MODULATED SIGNALS 

MAR 0 5 2008 

Submitted By 

Fahed Hameed 
(ID#:200388734) 

In partial fulfillment of the requirements for the 

Degree of Master of Engineering 

Faculty of Engineering and Applied Science 

Memorial University of Newfoundland 
St. John's, Newfoundland 

Copyright 2006, Fahed Hameed 



ABSTRACT 

Blind modulation classification (MC) is an intermediate step between signal 

detection and demodulation, with both military and civilian applications. MC is a 

challenging task, especially in a non-cooperative environment, as no prior information on 

the incoming signal is available at the receiver. 

In this thesis, we investigate classification of linear digital modulations in slowly 

varying flat fading channels. With unknown channel amplitude, phase and noise power at 

the receive-side, we investigate hybrid likelihood ratio test (HLRT) and quasi-HLRT 

(QHLRT) -based classifiers, and discuss their performance versus computational 

complexity. Both classifiers rely on the likelihood function (LF) of the received signal, 

and the decision is made based on the likelihood ratio test. To compute the LF, the former 

employs maximum likelihood (ML) estimates of the unknown parameters, whereas the 

latter uses method-of-moment (MoM) estimates of these parameters. It is shown that the 

QHLRT algorithm provides a low computational complexity solution, yet yielding 

performance close to the HLRT algorithm. 

We further study the pelfotmance of MoM estimators employed in the QHLRT 

algorithm, in terms of their variance. We derive Cramer-Rao Lower Bounds (CRLBs) of 

estimators of the channel amplitude, phase and noise power, for Binary Phase Shift 

Keying (BPSK) and Quadrature Phase Shift Keying (QPSK) modulated signals. CRLB 

provides a lower bound on the variance of an unbiased estimator. The CRLB expressions 

are evaluated for different signal-to-noise ratios (SNRs) and number of processed 

symbols. Variance of MoM estimators is compared with corresponding CRLB and 
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numerical results reveal reasonable accuracy of MoM method of parameter estimation, 

for the SNR range in which these estimators remain unbiased 1. 

An application of the CRLB to MC is presented, by developing an idealized 

reference for QHLRT-based classifiers2
. This is referred to as the QHLRT-IR 

(QHLRT-IR) classifier. The QHLRT-IR classifier employs unbiased and normally-

distributed estimators of the unknown parameters, with mean as the true value of the 

parameter and variance given by the CRLB of the parameter estimator. Performance of 

the QHLRT and QHLRT-IR classifiers2 are compared. QHLRT-IR provides an upper 

bound on the classification performance in the SNR range where the MoM estimators of 

the unknown parameters remain unbiased and normally-distributed 1. In this SNR range, it 

is observed that the performance of the two classifiers is close to each other, which 

indicates the reasonable accuracy of MoM method for such SNRs. It is shown that the 

classification performance improves with an increase in the number of processed 

symbols, due to the increase in estimation accuracy. 

1 These estimators are asymptotically unbiased and normally-distributed, i.e., they are unbiased and 
normally distributed in a certain SNR range when the number of processed symbols is large enough. 
2 With such classifiers, no prior information of the signal is available at the receiver. As we already 
mentioned, we assume here the channel amplitude, phase and noise power as unknown, and we blindly 
(non-data aided (NDA)) estimate these parameters. 
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CHAPTER! 

1. INTRODUCTION 

1.1. Modulation Classification: Problem Formulation 

Modulation Classification (MC) is a branch of communication theory that 

combines several aspects of communication areas, such as signal detection, channel 

monitoring, and parameter estimation. MC is an intermediate step between signal 

detection and demodulation, and plays an important role in various civilian and military 

applications. Implementation of advanced information services and systems for military 

applications, in a crowded electromagnetic spectrum, is a challenging task for 

communication engineers. Friendly signals should be securely transmitted and received, 

whereas hostile signals must be located, identified and jammed. The spectrum of these 

signals may range from high frequency (HF) to millimeter frequency band, and their 

format can vary from simple narrowband modulations to wideband schemes. Under such 

conditions, advanced techniques are required for real-time signal interception and 

processing, which are vital for decisions involving electronic warfare operations and 

other tactical actions. Furthermore, blind recognition of the modulation format of the 

received signal is an important problem in commercial systems, especially in software 

defined radio (SDR), which copes with the variety of communication systems. Usually, 

supplementary information is transmitted to reconfigure the SDR system. 

Blind techniques can be used with an intelligent receiver, yielding an increase in the 

throughput by reducing the overhead. This is achieved by transmitting useful data instead 
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of sending the modulation information of the transmitted signal. Such applications have 

emerged the need for flexible intelligent communication systems, where the automatic 

recognition of the modulation of a detected signal is a major task. A simplified block 

diagram of the system model is shown in Fig. 1. The design of a modulation classifier 

essentially involves two steps: signal preprocessing and proper selection of the 

classification algorithm. Preprocessing tasks may include, but not limited to perform 

some or all of, noise reduction, estimation of carrier frequency, symbol period, and signal 

power, equalization, etc. Depending on the classification algorithm chosen in the second 

step, preprocessing tasks with different levels of accuracy are required; some 

classification methods require precise estimates, whereas others are less sensitive to the 

unknown parameters. Noise ----------------------, 
Input 1 

sym~ :--------. 

! Modulator H Channel r ~-D-em_o_d_ul_a_to_r__. i 
I 
I 
I 

Classification 
algorithm 

Modulation 
format I 

I 
I 

R 
. I 

1 ece1ver 1 L _____________________ J 

Fig. 1. System block diagram. 

With no prior knowledge of the incoming signal, blind MC is a difficult task. 

Generally, two approaches are followed to tackle this problem: a likelihood-based 

approach, in which the likelihood function (LF) of the received signal is computed and a 

likelihood ratio test is used for decision-making [1]-[7], and a statistical pattern recognition 
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approach, in which features are extracted from the received signal and a decision is made 

based on their differences [7]-[ 11]. 

The likelihood-based methods can be divided into three categories: Average 

Likelihood Ratio Test (ALRT) [1]-[3], [5], Generalized Likelihood Ratio Test (GLRT) [3], 

and Hybrid Likelihood Ratio Test (HLRT) [3]-[4]. With the ALRT, the unknown quantities 

are treated as random variables, and the LF is computed by averaging over them. Although 

ALRT provides an optimal solution in the sense that it minimizes the probability of 

rnisclassification, it suffers from high computational complexity in many cases of practical 

interest [1], [5]. On the other hand, the GLRT treats the unknown quantities as 

deterministic unknowns, and employs maximum likelihood (ML) estimates of these 

quantities to compute the LF. GLRT has the disadvantage of failing to identify nested 

signal constellations, such as 16-QAM and 64-QAM [3]. HLRT is a combination of both 

ALRT and GLRT, in which some of the quantities are treated as random variables and 

some as deterministic unknowns. The nested signal constellation problem is overcome by 

averaging over the signal constellation points to calculate the LF [3]. 

1.2. Thesis Objectives 

The main objective of this research is to find a likelihood-based blind modulation 

classification algorithm for linear digital modulations, which is simple to implement, and yet 

provides reasonable classification performance. To achieve this objective, we investigate the 

Hybrid Likelihood Ratio Test (HLRT) -based classifier, as well as a Quasi HLRT (QHLRT)­

based classifier. These classifiers employ ML and MoM estimates of the unknown 

parameters, respectively. We study the case of unknown channel amplitude, phase and noise 
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powe?. Both classification performance and complexity of these classifiers are investigated. 

An ALRT-based classifier is used as an idealized reference for performance evaluation; this 

assumes perfect knowledge of the unknown parameters. 

The performance of the QHLRT algorithm depends on the estimators employed 

for the unknown parameters2
; therefore, we further investigate the accuracy of the MoM 

estimators of these parameters. These estimators are asymptotically unbiased1 [9], [12]. 

Their bias is investigated through simulations. The Cramer-Rao Lower Bounds (CRLBs) 

of the unknown parameter estimators are derived and used for comparison with the 

variance of corresponding MoM estimators . Note that the CRLB provides a lower bound 

only on the variance of an unbiased estimator [13]. 

The ALRT-based classifier, which assumes perfect knowledge of all the unknown 

parameters, is first used as an idealized reference to evaluate the performance of HLRT­

and QHLRT-based classifiers. Then, a QHLRT-idealized reference (QHLRT-IR) classifier 

is developed by using unbiased and normally-distributed estimators of the unknown 

parameters, with mean as the true value of the parameter and variance given by the CRLB 

of the parameter estimator. This is a more suitable idealized reference for performance 

evaluation of QHLRT-based classifiers that employ unbiased and normally-distributed 

estimators of unknown parameters. Moreover, this classifier provides an upper bound on 

classification performance for the QHLRT -based classifiers which employ asymptotically 

unbiased and normally-distributed estimators of unknown parameters, but only in a 

certain SNR range1
. For a certain estimation technique and modulation format, the SNR 
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range in which the asymptotic results apply depends on the length of the observation 

interval. 

1.3. Thesis Organization 

The thesis is organized as follows. In Chapter 2, the signal model of linearly 

digitally modulated signals is presented, followed by the proposed Hybrid Likelihood 

Ratio Test (HLRT) and Quasi HLRT (QHLRT)-based classifiers. In Chapter 3, the 

Cramer-Rao Lower Bounds of the channel parameter estimators are derived, and the 

performance of MoM estimators of these parameters assessed. Application of Cramer­

Rao Lower Bounds to Modulation Classification is given in Chapter 4. The summary and 

suggested future work is presented in Chapter 5. 
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CHAPTER2 

2. LIKELIHOOD-BASED MODULATION CLASSIFIERS FOR 
LINEARLY DIGITALLY MODULATED SIGNALS 

In this Chapter, HLRT- and quasi-HLRT (QHLRT)-based classifiers are 

investigated for modulation classification of linearly digitally modulated signals in slowly 

varying flat fading channels. In [5], a QHLRT -based classifier is investigated, for the 

discrimination of linear digital modulations, which employs method-of-moment (MoM) 

estimators of unknown channel amplitude and phase. Similarly, in [8], MoM estimators 

of channel amplitude and noise power are derived. Here, we investigate the HLRT- and 

QHLRT -based classifier by employing the estimators of three unknown parameters for 

linear digital modulations. To compute the likelihood function of the received signal, the 

former employs ML estimators of the unknown parameters, i.e., channel amplitude, phase 

and noise power, whereas the latter uses MoM estimators of these parameters. The 

comparison of computational complexity is performed here for the two classifiers. The 

performance of the two classifiers is evaluated through simulations, when discriminating 

M-ary Phase Shift Keying (M-PSK) signals in block fading channels3
. The average 

probability of con·ect classification, ~c , is used as a performance measure for the 

evaluation of performance4
. 

2.1. Signal Model 

The received signal is expressed as 

3 In this work, we assume block fading channel, in which the channel amplitude and phase are constant 
over the observation interval. 
4 For the definition of P.:c, see Section 2.4 
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r(t) = s(i) (t) + n(t), 0 ~ t ~ KT, (2.1) 

where T is the symbol period, K is the number of observed (processed) symbols, n(t) is 

the additive white Gaussian noise (AWGN) with zero-mean and 2-sided power spectral 

density N 0/2(Watts/Hz), and s Ul(t) is given as 

s<il (t) = Re {ae1'~' ~ s(i)u (t- (k -l)T)e12trfct} 0 < t < KT i = 1 · · · N L...,; k T ' - - ' ' ' mod' 
k=l 

(2.2) 

with a= a~2Esja;;EP as the signal amplitude, a as the channel amplitude, <p as the 

channel phase (which also includes the cmTier phase offset), Es as the normalized energy 

of the transmitted signal, cr;; as the variance of the zero-mean ith signal constellation, 

ur (t) as the rectangular pulse shape of duration T seconds and of unit amplitude, E P as 

the pulse energy, f c as the carrier frequency, and N mod as the number of constellations 

considered for classification. The sequence {s~il } is independent and identically 

distributed, with values drawn from a finite set specific to the ith modulation format, 

i = 1, .. . ' N mod • 

In this work, linearly digitally modulated signals are considered. For the constellations of 

such signals, see [14], Ch. 4. 

The pulse shape energy is given by 

(2.3) 
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Without loss of generality, we consider here unit vanance constellations, i.e., 

E{ I s Ci) 12 
} =a;, = 1, and set the transmitted signal power to one, i.e., 

Es, IT = 1, i = 1, · · ·, N moo . Thus, (2.2) becomes 

s<il (t) = Re {.JiaeN :± s~i)Ur (t- (k -1)T)ej2J!fct}, 0 ~ t ~ KT, i = 1, .. ·, N mod • (2.4) 
k=l 

The output of the receive matched filter, sampled at T seconds is given by 

(2.5) 

According to derivations in Appendix A, (2.5) can be written in a vector form as [5] 

-T N (i) . -1 N r - ae s + n, l - ' . .. ' mod ' (2.6) 

where r = [!j, · · ·, rK t is the vector of the samples taken at the output of the receive 

matched filter, s<il = [ s~il, .. ·, s~) ]t is the transmitted symbol sequence, and 

n = [np .. ·, nK ]t is the noise vector. The noise components {nk }:=t are independent zero-

mean Gaussian random variables whose in-phase and quadrature components have 

variance cr2 
• These are defined as 

(2.7) 

and t denotes the transpose. 

Without loss of generality, T is set to one, i.e., T = 1, and (2.6) becomes 

(2.8) 

With the noise power as N = 2cr2
, we define the (average) signal-to-noise ratio (SNR) as 

the ratio of the (average) signal power to the noise power, i.e. , 
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(2.9) 

with E[·] as the statistical expectation operator. 

2.2. Hybrid Likelihood Ratio Test (HLRT) - and Quasi HLRT -based Classifiers 

With the 1-ll.RT and Quasi HLRT, the likelihood function (LF) is computed by using 

ML and MoM estimators of the signal amplitude, a, phase, cp , and noise power, N , 

respectively. Assuming that the received symbols are statistically independent, the 

conditional likelihood function conditioned on the unknown quantities, i.e., unknown points 

in the signal constellation { s~i)} , and unknown parameters a, cp, and N , is given by [3] 

(2.10) 

or, equivalently, 

f(rl{s<i) } am N)= · 
1 

exp{-_!_llr -ae1'~'s <i) 112
} 

k ' '"t'• (7rNt N k ' 
(2.11) 

where II· II represents the norm of a vector. 

2.2.1. HLRT -based Classifier 

The likelihood function under the ith hypothesis, i.e., H i : the ith modulation 

was transmitted, is computed by using ML estimates of the unknown parameters, and 

averaging over all possible combinations of K symbols. With the parameters estimated 

under each hypothesis, Hi, i = 1, · · ·, Nmoct , the likelihood function under the ith 

hypothesis, LF~2RT (r), becomes 

M K 
(i) - . - 1 ~ 1 1 ~ (i) Ji.'p(i) (i) 2 . -

LFHLRT (r) - f(r, Hi) - M K L.J 1r ~ Ul K exp{-~ II r - am e "'S111 II }, z - I, .. ·,Nmod ,(2.12) 
i m=l ( N m ) Nm 
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where M; is the number of points in the ith signal constellation, a~~> , q,~> and N,~; > are 

the signal amplitude, phase and noise power ML estimates, respectively, under 

hypothesis H ; , based on the mth combination of K symbols, m = 1, · · ·, M ;K • 

For a binary-hypothesis-testing problem, the likelihood ratio test employed for 

decision on the modulation format, is given by 

MK 

-1-~ 1 ex {--1- llr-a.u>eJil>~;> s<il W} 
LF(i) ( ) MK L:- (JrN(i))K p f.rUl Ill Ill H , 

f/LRT r _ 1 tn-1 m m > 1J 
LFH<1L>RT(r) 1 MLf 1 1 ·<,.> H< iJ' 

{ II A (j) j~ (j) 112} I MK Au> K exp -~ r-a111 e "' sm 
J m=l (!rNm ) N m 

(2.13) 

i :f. j, i, j = 1," ·, N mod, 

where r7u is a threshold. 

Equally likely hypotheses are assumed and the threshold 7Ju is set to one. Hence, 

for an N moct -ary hypothesis-testing problem, the decision rule becomes 

':'- (i) 
l - arg max LFHLRT (r) , (2.14) 

i= l,-··,N,nod 

where i is the estimate of the transmitted modulation format. 

2.2.1.1. Maximum Likelihood (ML) Parameter Estimators 

For the HLRT-based classifier, the ML estimators of channel amplitude, phase 

and noise power are used. Details of the derivations of these estimators are given in 

Appendix B. Here, we only present the main results of these derivations. 

Phase ML Estimator 

By differentiating the likelihood function given in (2.11) with respect to (w.r.t.) 

the phase <p , one has 
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Cl dj(rl{sk' },a,<p,N) =O. 

d<p 
(2.15) 

After taking the derivative, applying (2.15) and performing simplifications, one obtains5 

(2.16) 

or, equivalently, 

(2.17) 

where I HI stands for Hermitian. It is now straightforward that the phase ML estimator 

under hypothesis H; is given by 

A(iJ _ 1 s r . _ . ( (i)H J 
<p ---In fiCT ' z-1, .. ·,Nmod. 

2 r s' 
(2.18) 

One can notice that the estimator depends on the sequence of K symbols, s<iJ . Thus, in 

order to compute LFtlRr (r) , an estimate of the phase is needed for each of the M ;K terms 

in (2.12), i.e., m = 1, · · · , M;K. To emphasize this dependency, we used the notation 

. ( (i)H J A UJ _ 1 sill r _ K • _ 
<f>m ---In ~, m - 1, .. ·,M;, z-l, .. ·,Nmod' 

2 r sill 
(2.19) 

Signal Amplitude ML Estimator 

By differentiating the likelihood function given in (2.11) w.r.t. the amplitude a, 

one has 

Cl dj(r I {sk' }, a, <p, N) = 
0

. 

a a 
(2.20) 

It can be shown that5 

5 Derivation of this equation is given in Appendix B. 
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(2.21) 

Hence, the signal amplitude ML estimator under hypothesis Hi is given by, 

(2.22) 

By using (2.17), (2.22) becomes 

&,Cil = Re{ ~(s(i)Hr)(rH s(i))} I II s(i) 112 , i = 1, ... , N mod. (2.23) 

For each of the MiK combinations of K symbols for the ith modulation, m = 1, · · ·, MiK, 

this can be written as 

~ul =Re{ ( CilHr)( H Cil) }lll Cil 112 =1··· MK ·=1·· · N am sm r sm sm , m , , i , l , , mod . (2.24) 

For M-PSK signals II s~l 11
2 = K, and, thus, (2.24) reduces to, 

~ (i) - R { ( (i)H )( H (i))} I K -1 M K . -1 N am - e sm r r sm , m- , ... , i , l- , ... , mod (2.25) 

Note that in (2.24) and (2.25), we emphasize the dependency on the combination of K 

symbols taken from the constellation of the ith modulation. 

Noise Power ML Estimator 

By differentiating the likelihood function given in (2.11) w .r. t. the noise power 

N, one has 

(2.26) 

This leads to the following expression for the noise power ML estimator under the 

hypothesis Hi 5, 

N~ Cil =_!_II r- aeNsCil 112 · 1 N K , z= ,. .. , mod· (2.27) 
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When joint estimation of channel amplitude, phase and noise power is performed, by 

substituting (2.16) and (2.22) into (2.27), the expression for the noise power ML 

estimator under the ith hypothesis, H; , becomes, 

fiUl =_!_(11rll2 - lrHs<il 12 /lls<il 112 ) i=1· ·· N K ' ' ' mod· 
(2.28) 

For each of the M;K combinations of K symbols for the ith modulation, m = 1, · · ·, M;K, 

this can be written as 

fl<il =_!_{llrll
2
-lrHs<il l2 /lls<il l12

) m=1··· M k i=l··· N . 
m K m m ' ' ' t ' ''mod 

(2.29) 

From (2.19), (2.24) and (2.29), one can conclude that for a certain modulation, the ML 

estimators depend on the combination of K symbols, and in order to compute the LF in 

(2.12), these have to be calculated for all M ;K symbol combinations. 

2.2.1.2. The HLRT Classification Algorithm 

After we get the expressions of the estimators of the unknown parameters, the LF 

is computed in the sequel by using these estimators. Using (2.22) and (2.16), one gets, 

(2.30) 

and, further, 

(2.31) 

Then, it can be easily shown that5 

(2.32) 

For each of the M t combinations of K symbols, m = 1, · · · ,M;K, this becomes 

13 



(2.33) 

By substituting (2.29) and (2.33) in (2.12), one can easily prove that, 

1 M ,K KK 
(i) - " LFHLRT(r) --K-L.J K • i =1,·· ·,Nmod • 

M i m; t (Jre)K (11 r W -I rH s<il 12 I II s<il 112
) 

111 m. 

(2.34) 

which can be further written as, 

LF(il ( ) - K ~ 1 . -1 ( J
K M K 

HLRT r - 2 L.J K ' l - ' ... ' N mod ' 
JreMi llrll m; t (1-(lrHs;,:) l/llrlllls;2 11f) 

(2.35) 

or, equivalently, 

( J
K K 

. K M , 1 
LF<'l r = i = 1 .. · N HLRT ( ) M II 112 L (1- (i)2 l ' ' ' mod ' Jre i r m;t Pm 

(2.36) 

with p,;? =I rH s;2 I /(II r II II s;,:l II) as the correlation coefficient between r and s;:.l . 

One can easily conclude from (2.36) that the LF for the HLRT classifier depends 

on the number of symbols K, the modulation format (through M i and s<il ) and the 

received vector, r. 

2.2.2. QHLRT -based Classifier 

With the QHLRT-based classifier, the likelihood function under the ith 

hypothesis, i.e., Hi : the ith modulation was transmitted, is computed by using MoM 

estimates of the unknown parameters and averaging over unknown constellation points. 

With these parameters estimated under each hypothesis Hi , the likelihood function, 

() 
LFQ~LRT (r) , becomes 
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LF(i) ( ) - ITK 1 ~ 1 { 1 I ~ (i) Ff>(i) (i) 12 } . - 1 N 
QHLRT r - -L.J ~eXp -~ rk -a e Sk ,m ' l- ,···, mod • 

k=l M; m=ttrN N 
(2.37) 

where a.<o, <PU> and f.r <il are the signal amplitude, phase and noise power MoM 

estimates, respectively, under hypothesis H;. 

A likelihood ratio test can be developed for the QHLRT-based classifier, similar 

to that given in (2.13) for the HLRT-based classifier. The decision rule for the HLRT-

based classifier is given in (2.14), and is the same as for the QHLRT-based classifier. 

2.2.2.1. Method of Moment (MoM) Parameter Estimators 

Signal Amplitude and Noise Power MoM Estimators 

By using (2.8) with x<0 = ae1<vs<il, we define the received signal power and noise 

power respectively as, 

(2.38) 

and 

(2.39) 

Note that here we treat a as deterministic unknown. By using the results obtained in 

Appendix C for the first-, second-, third- and fourth-order moments of nk, the following 

results are derived in Appendix D. 

By using (2.38), (2.39), (C.3) and (C.4), it is straightforward that, 

M =s<o +N 
2 1 ' 

(2.40) 
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where M 2 1 = E[lr/J is the second-order (one conjugate) moment of the received signal. 

Similarly, by using (2.38), (2.39), (C.3), (C.4), (C.5), (C.6) and (C.7), it is straightforward 

that, 

or 

M = buls Ul2 + 4Sul N + 2N2 

~ ' (2.41) 

where M 42 = E[lr/J is the fourth-order (two conjugate) moment of the received signal 

Note that the parameter b(i) depends on the modulation format, i . For example, 

this is equal to 1 for M-PSK, 1.64 for 8-QAM, and 1.32 for 16-QAM [8] . 

The second- and fourth-order moments of the received signal, i.e., M 21 and M 42 , 

can be estimated respectively as [5], 

~ 1~ 2 ~ 1~ 4 
M 21 = - L.,l r k I and M 42 =-L.,l rk I . 

K k=l K k=l 

From (2.40), the noise power estimator under hypothesis Hi is thus given by 

(2.42) 

By substituting (2.42) in (2.41), one gets the MoM estimator for received signal power 

under hypothesis H i , as 

§<il = 
~ ~ 2 

M 42 -2M 2 1 . -1 
b(i) -2 ' z- ,· ·· ,Nmod . (2.43) 

16 



By using (2.38) and (2.43), the MoM estimator for the channel amplitude under 

hypothesis Hi becomes 

&,<il = S . = M 42 ~2M 21 (E[ I sul 12 J)-lt2 i = 1 ... N . 
A(i) ( A A 2 Jl/4 

E[ I s~') 12 ] b<'l -2 k ' ' ' mod 
(2.44) 

Phase MoM Estimator 

The MoM phase estimators for M-PSK and M-ary Quadrature Amplitude 

Modulations (M-QAM) signals under the ith hypothesis ( ith modulation format) are 

calculated based on the output of matched filter, and are respectively given by [15]. 

(2.45) 

and 

A(i) 1 ( .f 4) <p M -QAM = - arg - L..... rk . 
4 k=l 

(2.46) 

2.2.2.2. The QHLRT Classification Algorithm 

The LF under each hypothesis Hi, i = 1, · · ·, N mod is calculated as given in (2.37), 

with MoM-based estimates of the channel amplitude, phase and noise power computed as 

shown in Section 2.2.2.1. Then, with the LFs calculated under all N mod hypotheses, the 

criterion in (2.14) is applied for decision-making. 

2.3. Complexity Analysis of Proposed Classifiers 

With the HLRT-based classifier, the LF under each hypothesis Hi, i = 1,. .. , Nmod, 

is computed by averaging over M { possible K symbol combinations (corresponding to 
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the modulation format i, with M; points in signal constellation). Hence, the complexity 

for the ith modulation format is of the order of O(KM;K). For an Nmoct -ary 

classification problem, the computational complexity becomes O(K"'\:' Nmoo MK) • 
.L...!=l I 

This increases at a rate faster than exponential with an increase in the number of symbols 

K. Also, it increases for higher modulation schemes involved in classification. 

On the other hand, for the QHLRT-based classifier, the overall complexity 

reduces to O(KL:::oo M;), as in this case averaging over combinations of symbols is 

not required. 

It is apparent that the computation complexity is significantly reduced with the 

QHLRT-based classifier. 

2.4. Performance Measure 

We evaluate the performance of the HLRT- and QHLRT-based classifiers through 

simulations. The average probability of correct classification is used as the performance 

measure. This is defmed as 

p = N -1 "'\:' Nmoo p Cili) 
cc mod .L...i= l c ' 

(2.47) 

where ~Cilil is the conditional probability of the event that the ith modulation is received, 

when indeed the ith modulation was originally transmitted. 

2.5. Simulation Results 

We chose MATLAB as the simulation tool as it provides access to a large number 

of powerful tools and built-in functions, when compared to other simulation packages. 

Also, it gives flexibility and easy options to modify and format figures. Classification 
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results achieved with investigated HLRT- and QHLRT-based algorithms to discriminate 

M-PSK signals in block fading channel3 are subsequently presented. In addition, 

performance of an ALRT-based algorithm is shown for comparison. This is developed 

under the assumption of perfect estimates of the unknown parameters, with the likelihood 

function computed by averaging over unknown constellation points only [2]. Note that 

this serves as an idealized reference against which perfonnance of the HLRT- and 

QHLRT-based classifiers is evaluated. In the sequel, we consider BPSK, QPSK, 8-PSK 

and 16-PSK as candidate modulations, unless otherwise mentioned. Without any loss of 

generality, normalized constellations are generated in simulations, i.e., E[l s~il 12 ] = 1. The 

averaging fading power is also set to one, i.e., E[a2
] = 1. Thus, the (average) SNR is 

changed by varying the noise power only. The number of Monte Carlo trials used to 

calculate ~Uiil is 1000. 

In Fig. 2, we show classification performance of the ALRT-, HLRT- and 

QHLRT -based algorithms in Rayleigh fading channel3
. Due to the high complexity of the 

HLRT-based algorithm, simulations are run only for smaller size constellations, i.e., 

BPSK and QPSK, with K = 10 symbols. As expected, ALRT shows the best 

performance; 3.25 dB and 3.75 dB increase in SNR is required with the HLRT- and 

QHLRT-based algorithms, respectively, to achieve an average probability of correct 

classification, ~c , of 0.9, when compared with ALRT. On the other hand, one can easily 

notice that HLRT does not provide significant performance improvement over QHLRT. 
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In Fig. 3, classification results achieved with the ALRT- and QHLRT-based 

algorithms in Rayleigh fading channel3 are presented, with K = 100 and K = 1000 

symbols, respectively. Apparently, there is a significant improvement in the performance of 

both algorithms with the increase in the number of symbols. The HLRT-based algorithm 

was dropped because of its high complexity. The simulations for HLRT, when 

discriminating BPSK and QPSK with K = 10 symbols took about couple of days to 

complete but with K = 100 and K = 1000 , we suspect that the simulations would easily 

over months even with high-performance machines. 

In Fig. 4, classification performance of the ALRT- and QHLRT-based algorithms 

in Ricean fading channel is given, with K = 1000 symbols. The average probability of 

correct classification, ~c , is plotted against the Rice factor, KR 6
. The values KR = 0 and 

KR = oo correspond to the cases of Rayleigh fading and no fading, respectively [5] . 

Simulation results reveal the reasonable performance of the QHLRT-based classifier for the 

whole range of K R values. 

Note that simulation results show that the QHLRT-based algorithm can collapse 

in identifying M-PSK modulations as the SNR decreases, as the MoM method can fail to 

estimate the channel amplitude7 and consequently, the noise power. For example, at OdB 

SNR, and with K = 100 processed symbols, the MoM method failed 162 times out of 

1000 to estimate the channel amplitude and noise power, when BPSK signals are 

6 For the definition of the Rice factor, see [16] Ch. 2. 
7 As noticed from simulations, the channel amplitude MoM estimate can become a complex number. This 

is because in (2.43), the quantity inside the square root becomes negative when the estimates M 2 1 and M 42 

are not accurate enough. 
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received (see Fig. 3). Apparently, more failures occur as the SNR decreases. However, 

when recognizing BPSK, QPSK, 8-PSK and 16-PSK signals with K = 1000 processed 

symbols, there were only few failures at an SNR of 10 dB and above. 
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Fig. 2. Performance comparison of likelihood-based algorithms in Rayleigh fading, when 

discriminating BPSK and QPSK, with K = 10 symbols. 
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Fig. 3. Performance of QHLRT when discriminating BPSK, QPSK, 8-PSK and 16-PSK 

in Rayleigh fading, with K = 100 and K = 1000 symbols. 
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Fig. 4. Performance of QHLRT when discriminating BPSK, QPSK, 8-PSK, 16-PSK in 

Ricean fading, with K = 1000 symbols. 
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2.6. Chapter Summary 

The performance and complexity of the hybrid likelihood ratio test (HLRT)- and 

quasi-HLRT (QHLRT)-based algorithms are investigated for linear digital modulation 

classification in block fading channels3
, with channel amplitude and phase, and noise 

power as unknown parameters. It is shown that the HLRT-based algorithm suffers of high 

computational complexity, whereas the QHLRT is less complex, yet providing a similar 

classification performance. However, the QHLRT can fail due to the inadequacy of the 

method-of-moments (MoM) to estimate the channel amplitude and, consequently, the 

noise power, especially at low SNR. Note that the results achieved with HLRT are shown 

only for the recognition of BPSK and QPSK signals due to its high complexity. 
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CHAPTER3 

3. CRAMER-RAO LOWER BOUNDS (CRLB) OF CHANNEL 
PARAMETER ESTIMATORS 

3.1. Introduction to CRLB 

In many communication systems, it is essential to estimate the incoming signal 

parameters. Typical unknown parameters include the time-delay, frequency offset, 

channel amplitude, phase, noise power, etc. For example, timing recovery is a critical 

aspect of digital receivers. The incoming signal needs to be synchronized with the 

receiver clock in order to achieve accurate demodulation. Similarly, carrier recovery is 

important for coherent demodulation. In many applications, the parameters are estimated 

with no prior knowledge of the transmitted signal, as in case of blind modulation 

classification. Apart from computational complexity, it is important to assess the 

performance of these estimators in terms of their bias and variance. The bias of a 

parameter estimator, 8, is defined as 

bias(B) = E[B]- 8 , (3.1) 

where E[B] is the expected value of the parameter estimate and 8 is the true value of that 

parameter. 

The Cramer-Rao lower bound (CRLB) is a well-known lower bound on the 

variance of any unbiased estimator [13]. This provides an idealized reference against 

which we can compare the performance of an unbiased estimator; it indicates the 
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impossibility of finding an unbiased estimator whose variance is less than the CRLB. The 

CRLB theorem for a scalar parameter 8 is stated as follows [17]. 

Theorem: It is assumed that the probability density function (pdf) f (r; 8) satisfies the 

regularity condition 

(3.2) 

where r is the vector of the samples taken at the output of receive matched filter and the 
expectation is taken with respect to f(r;8), then the variance of any unbiased estimator 

8 must satisfy 

A 1 
var(8) 2 [ l , -E d2

ln f(r;8) 
d82 

(3.3) 

where the derivative is evaluated at the true value of 8 and the expectation is taken with 

respect to f(r;8). The expectation is explicitly given by [17] 

E[d2
ln f(r;8)] = Jd2

ln f(r;8)f(r 8)dr 
d82 d8 2 

' ' 
(3.4) 

since the second derivative is a random variable dependent on r. 

CRLB can be extended to the case of vector parameter 0 = [81 82 • • ·8P]t , with the 

assumption that the estimator of the vector parameter, 0 , is unbiased [17]. The CRLB for 

the vector parameter estimator allows us to place a bound on the variance of each 

element. The CRLB is the [i, i] element of the inverse of a matrix or, 

(3 .5) 
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where 1(0) is the p x p Fisher Information Matrix (FIM) [ 17]. The [i, j] element of the 

FIM is defined as 

[I(O)J. = - E [ (flnf(r;O)l 
I} ae.ae . ' 

I j 

(3.6) 

with i = 1, 2, · · ·, p , and j = 1, 2, · · ·, p . In evaluating the above expression, the true value 

of 0 is used. Note that in the scalar case (p = 1), 1(0) = /(8) and we have the scalar 

CRLB [17]. With three unknown parameters (our case here), the FIM can be written as, 

r

[I(O) t I [1(0) ],2 [1(0) L j 
1(9) = [1(9) ]21 [1(9) ]22 [1(9) ]23 . 

[leo) L, [1(9) L2 [1(9) ]33 

(3.7) 

In this work, we considered the vector of unknown parameters as 9 = [a N <p ]t , 

with N = 2cr2 as the noise power. Thus, (3.7) can be further written as 

-E(a2
ln f(r I 9)J 

aa2 

1(9) = -E(a2

ln f(r 1 9)J 
aNa a 

-E(a2
ln f(r I O)J 
a<paa 

(3.8) 

In [18], CRLB of the estimators of SNR for BPSK and QPSK are derived, while 

m [19], this is derived for the phase estimators. In this Chapter, we derive CRLB 

expressions of the unknown channel amplitude, phase and noise power NDA estimators 

for BPSK and QPSK signals. After that, we compare the variance of MoM (NDA) 

estimators of these unknown parameters, against their respective CRLBs. This gives us 

28 



an indication about the degree of accuracy of the MoM estimators (for the SNR range in 

which these estimators are unbiased1
). The bias of these estimators was investigated 

through simulations. 

3.2. CRLBs of Channel Amplitude, Phase and Noise Power Estimators for BPSK 

We present here the results obtained for CRLBs of channel amplitude, phase and 

noise power estimators for the BPSK signals8
. 

By averaging (2.10) over s~BPSK), (s~BPSK) E { -1, 1}) , one can easily show that 

(3.9) 

with the subscript 'B ' standing for the BPSK signals. This result is derived m 

Appendix E. Taking the natural logarithm of (3.9), one obtains 

ln j 8 (r I 0) = -Kln(ll'N) _ _!_ " K (1\k) + Q2 (k) +a}) 
N L.. k=l 

+ "K ln(cosh(
2a (I(k)cosm+Q(k)sinm))), 

L..k=l N '~' '~' 

(3.10) 

where l(k) and Q(k) are the real and imaginary parts of observed signal samples rk, 

respectively, known at the receive-side. With 0 = [aN cp]t as unknown parameters and 

for BPSK constellation, the FIM becomes8 

N -Nft(y) aJ;(y) 0 

I (0) = 2K aft(y) 
1 a 2 

0 (3.11) ---ft(y) 
B N2 2 N I 

0 0 a 1N -a1Nj2(y) 

where y = a 2 IN= a 2 I 2cr2 is the (instantaneous) SNR, 

8 The derivations are given in Appendix F. 
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+ ) _ exp( -y) [ u
2 

exp( -u
2 
I 2)d 

;,(y- r;::;-::_ r::;:: u, 
....;2tr ~ cosh(u-v2y) 

(3.12) 

and 

exp(-y) [ exp(-u2 
/2)d 

f2(y) = r;::;-::_ r::;:: u . 
....; 2tr cosh(u-v 2y) 

(3.13) 

One can notice that the functions ~ ( y) and ! 2 ( y) depend only on the instantaneous 

SNR, y , and not on the actual values of the parameters a, N or <p . 

By taking the inverse of the FIM in (3.11) and using (3.12) and (3.13), one gets the 

following expressions of the CRLBs 

1 
2 -- ~(y) 

CRLB (a)- [r'(O)] -a --2
--'--Y __ _ 

8 - 8 II- K l- ft(y)-2yft(y)' 
(3.14) 

A N 2 1- + (y) 
CRLB (N) = [1~'(0)]22 = 11 

, 8 K 1- ft(y)-2y~(y) 
(3.15) 

and 

CRLB A - r 1 o - 1 1 
8(<p)-[ 8 ( )]33- 2yK 1- f2(y) (3.16) 

One can easily notice the dependency of the CRLBs of the parameter estimators on y 

and K. CRLBs of the estimators of a, N and <p are inversely proportional to K, i.e., 

the bound values decrease as K increases. This is in agreement with the behavior of the 

estimators, that their variance decreases as the size of the observation interval K 

increases, due to the improvement in the estimation accuracy. Furthermore, CRLBs of the 

estimators of a and N also depend on the actual value of the parameter, whereas the 
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CRLB of the estimator of cp does not. Therefore, for the same SNR value, CRLB of the 

estimators of the former parameters will be different for different values of the parameter, 

whereas, this is not the case with the latter parameter. 

3.3. CRLBs of Channel Amplitude, Phase and Noise Power Estimators for QPSK 

Next, we present the results of the derivation of CRLBs of the estimators of the 

parameters, a, N and <p, for the QPSK signals. These results can be similarly derived, 

as presented for BPSK signals in Appendix F. The log-likelihood function, obtained by 

averaging (2.1 0) over s~QPSK) , with 

and taking the natural logarithm, is given by 

ln f.Q(r 19) = -Kln(nN) _ _!_ " K (l2 (k) + Q2 (k) + a 2
) 

N~k=l 

" K aJ2 . + ~k=1 ln(cosh(N(l(k)cos<p+ Q(k) sm cp))) 

L
K aJ2 . 

+ ln(cosh(--(-/(k)sm m+Q(k)cosm))). k=l N '~" '~" 

With 9 = [aN cp]t as unknown parameters, the FIJ\1 for the QPSK signals becomes 

N-A:ft(~) a~(~) 0 

I (9) = 2K 
Q N z a~(~) _!__ a2 

~(1) 
2 N I 2 

0 

0 0 a
2
N -a2

N(1 +y)/ 2 (~) 
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where ft 0 and / 2 0 are defined in (3.12) and (3.13), respectively and the subscript 'Q' 

stands for QPSK signals. The CRLB expressions of the estimators of a, N and <p are 

obtained by taking the inverse of FIM in (3.18) and using the functions given in (3.12) and 

(3.13). They thus become 

(3.19) 

(3.20) 

and 

(3.21) 

Again, it can be noticed that the CRLB expressions in (3.19), (3.20) and (3.21) depend on 

y and K . The bound values decrease with an increase in the size of the observation 

interval K . Also, the CRLBs of the a and N parameter estimators vary with the actual 

parameter values, whereas the CRLB of the <p parameter estimator does not. 

3.4. Numerical Results 

With the functions in (3.12) and (3 .13), calculated through numerical integration, 

the CRLB expressions derived for the estimators of the channel amplitude, a, channel 

phase, <p, and noise power, N, are evaluated for both BPSK and QPSK signals. 
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CRLBs of the estimators of the channel amplitude and noise power depend on the actual 

value of the parameter, whereas CRLB of the <p parameter estimator does not. Results 

are shown here for AWGN channel, i.e., a constant (a= 1) and with K = 100 and 

K = 1000 symbols, respectively. Note that the CRLB expressions are also valid for 

fading channels. 

Fig. 5, Fig. 6 and Fig. 7 show the CRLBs of the estimators of channel amplitude 

a, phase, <p, and noise power, N , respectively for BPSK and QPSK signals. For a given 

SNR and for a certain parameter estimator, the CRLB for BPSK is lower compared with 

that obtained for QPSK. This is because estimation for BPSK can be more accurate than 

for QPSK. Furthermore, at low SNR, the difference between the CRLBs of the parameter 

estimators for BPSK and QPSK is more significant. Apparently, for both BPSK and 

QPSK, the CRLB becomes lower as K increases. 

In Fig. 8 - Fig. 13, variance of MoM estimators of a, <p and N for BPSK and 

QPSK are shown along with corresponding CRLB. This variance is calculated based on 

the Monte-Carlo trials out of 1000, in which the MoM estimators do not fail. It can be 

noticed that the variance of MoM estimators becomes lower than the CRLB below a 

certain SNR value. This can easily be explained by the fact that MoM estimators are 

asymptotically unbiased [9], [12], i.e., unbiased as K reaches infinity. However, with a 

finite K, as the SNR decreases below a certain limit, these estimators become biased. 

With both K = 100 and K = 1000 symbols, and at low SNR, the MoM estimators 

become biased and thus, the CRLBs no longer remain applicable. With K = 100 

symbols, the MoM estimators of a, <p and N for QPSK become biased at SNR value of 
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around -1.5 dB (see Fig. 9, Fig. 11 and Fig. 13), whereas for BPSK, the MoM estimators 

of a and <p become biased around -20 dB and -10 dB, respectively (see Fig. 8 and Fig. 

10). Interestingly, the MoM estimator of N for BPSK remains unbiased in the 

investigated SNR range, i.e., between -30dB and OdB (see Fig. 12). To be noted that the 

SNR value at which MoM estimators become biased is shifted to lower SNR as K 

increases, due to increased estimation accuracy. In the SNR range where CRLBs hold for 

the estimators, the variance of MoM estimators of a, <p and N for BPSK and QPSK is 

reasonably close to their corresponding CRLBs. Furthermore, this difference reduces 

with an increase in SNR and number of symbols, K . 
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Fig. 5. Cramer-Rao lower bounds of channel amplitude estimators for BPSK and QPSK 

signals, with different observation interval lengths K . 
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Fig. 6. Cramer-Rao lower bounds of channel phase estimators for BPSK and QPSK 

signals, with different observation interval lengths K . 
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3.5. Chapter Summary 

In this Chapter, we presented the expressions of CRLBs of channel amplitude, 

phase and noise power estimators, for BPSK and QPSK signals. These expressions are 

evaluated for a broad SNR range and with K = 100 and K = 1000 processed symbols. 

The variance of MoM estimators, which are used with the QHLRT classifier, is compared 

with corresponding CRLB. For the SNR range in which these estimators remam 

unbiased1
, numerical results reveal reasonable accuracy of MoM estimators. 
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CHAPTER4 

4. APPLICATION OF CRAMER-RAO LOWER BOUND (CRLB) TO 
MODULATION CLASSIFICATION 

In this work, we have considered the modulation classification of linearly digitally 

modulated signals, and investigated the performance of the HLRT- and QHLRT-based 

classifiers. The QHLRT algorithm, which employs MoM estimators of the unknown 

parameters, has been shown to be a better solution in terms of computational complexity, 

yet with reasonable classification performance. The ALRT -based classifier with perfect 

knowledge of the unknown parameters was used as an idealized reference against which 

performance of the HLRT- and QHLRT -based classifiers was evaluated. This approach is 

too optimistic, because error free estimation is not possible in real systems, and estimates 

deviate from the true parameter values. 

In this Chapter, we propose an alternative idealized reference for blind QHLRT-

based classifiers which employ unbiased and nmmally-distlibuted estimators of the 

unknown parameters. This is refened to as the QHLRT-idealized reference (QHLRT-IR) 

classifier. 

For the QHLRT-based classifiers which employ asymptotically unbiased and normally-

distributed estimators of unknown parameters, this idealized reference classifier applies 

only in a certain SNR range1
. 

4.1. Proposed QHLRT -idealized reference (QHLRT -IR) Classifier 

With the QHLRT-IR classifier, the likelihood function under the ith hypothesis, 

i.e., H;: the ith modulation was transmitted, is computed by averaging over unknown 
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constellation points and using unbiased and normally-distributed estimators of the 

unknown parameters2
, with mean as the true value of the parameter and variance given 

by the CRLB of the parameter estimator. Hence, the likelihood function under the ith 

hypothesis, LFci~LRr-8 (r), can be written as 

(3.22) 

where a<il, q,ul and fl<il are normally-distributed unbiased estimates of the channel 

amplitude, a, phase, <p, and noise power, N, under hypothesis Hi, respectively, i.e., 

N (e<il , CRLB
90

>), with e<il as any of these parameters under Hi and N stands for 

normal distribution. Then, with the LFs calculated under all N mod hypotheses, the criterion 

in (2.14) is applied for decision-making. 

In general, the QHLRT-IR classifier provides an upper bound on the classification 

performance of blind QHLRT-based classifiers, which employ unbiased and 

normally-distributed estimators of the unknown parameters. For the QHLRT-based 

classifiers which employ asymptotically unbiased and normally-distributed estimators of 

unknown parameters L, this provides the upper bound on classification performance in a 

cettain SNR range1
. With a certain estimation technique and for a specific modulation 

format, the SNR range in which the asymptotic results apply, depends on the number of 

processed symbols, K . In such cases, the asymptotic SNR range can be found 

beforehand from simulations for a given value of K. 
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Simulation results achieved with the QHLRT-IR and QHLRT (which employs 

MoM estimators of the unknown parameters) classifiers2 are presented in the sequel. 

Note that the MoM estimators of these unknown parameters are asymptotically unbiased 

[9], [12] and normally-distributed1 (according to our simulation results). 

4.2. Simulation Results 

Classification results achieved with the ALRT, QHLRT-IR and QHLRT 

classifiers to discriminate between BPSK and QPSK signals in additive white Gaussian 

noise (AWGN) channel are presented, with 9 =[aN <p]t as unknown parameters. Note 

that these classifiers can also be extended for block fading channels3
. The average 

probability of correct classification, ~c , defined in (2.47) is used as performance measure. 

The number of Monte Carlo trials used to calculate P,;(ili) in (2.47) is 1000. 

In Fig. 14, the average probability of correct classification, P,;c , is plotted against 

SNR. These results are obtained with K = 100 processed symbols. Apparently, ALRT 

performs the best. For example, a P,;c of 0.9 is achieved with the ALRT, QHLRT-IR and 

QHLRT algorithms at an SNR of -5 dB, -2.8 dB and -1.6 dB, respectively. 

The classification performance of the QHLRT-IR classifier is better than the QHLRT 

classifier above a certain SNR value (-4.5 dB in Fig. 14), whereas below this SNR, the 

performance of the QHLRT-IR classifier is lower than the performance of the QHLRT 

classifier. With K = 100 processed symbols, the QHLRT-IR classifier provides the upper 

bound on the classification performance of the QHLRT classifier at SNR greater than 

-4.5 dB. This is because the MoM estimators of channel amplitude, phase and noise 
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power (employed by the QHLRT classifier) are asymptotically unbiased [9], [12] and 

normally-distributed1 (according to our simulation results). 

Note that with the average probability of correct classification as performance 

measure, these classification results reflect the performance of all parameter estimators 

for both BPSK and QPSK. Thus, at low SNR, we see the combined effect of parameter 

estimators, for both BPSK and QPSK. The -4.5 dB SNR value is in between the SNR 

values at which MoM parameter estimators for BPSK and QPSK become biased1 

(see Fig. 8-Fig. 13, Section 3.4, for the SNR values at which MoM parameter estimators 

become biased). 

In Fig. 15, the average probability of correct classification, ~c , achieved with 

K = 1000 processed symbols is plotted against SNR. A better estimation accuracy is 

achieved when a longer observation interval is available at the receive-side, and thus, the 

SNR at which the curves for the QHLRT-IR and QHLRT classifiers cross-over, is lower 

than with K = 100, i.e., -8.7 dB compared to -4.5 dB. Note that this is in agreement with 

the results presented for the variance of the MoM parameter estimators and corresponding 

CRLBs (see Fig. 8-Fig. 13, Section 3.4). 
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Fig. 14. Performance comparison of ALRT, QHLRT-IR and QHLRT classifiers in 

A WGN, when discriminating BPSK and QPSK, with K = 100 symbols. 
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A WGN, when discriminating BPSK and QPSK, with K = 1000 symbols. 

50 

------------------------------------------------------~ ---



--

4.3. Chapter Summary 

In this Chapter, we apply the CRLB in modulation classification, by developing a 

QHLRT-idealized reference (QHLRT-IR) classifier based on the CRLB of the parameter 

estimators. Unbiased and normally-distributed estimators of unknown channel amplitude, 

phase and noise power, with mean as the true value of the parameter and variance given 

by corresponding CRLB, are employed with this classifier. QHLRT-IR provides an upper 

bound on classification performance of proposed QHLRT classifier, in the SNR range in 

which the MoM estimators of the unknown parameters remain unbiased and normally­

distributed1. 
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CHAPTERS 

5. SUMMARY AND FUTURE WORK 

In this thesis, likelihood-based blind modulation classification (MC) algorithms 

for linearly digitally modulated signals are investigated, with unknown channel 

amplitude, phase and noise power. A low complexity algorithm, yet providing reasonable 

classification performance, is sought. In addition, idealized reference classification 

algorithms are investigated, against which performance of proposed classifiers are 

compared. 

The major contributions of this thesis include the following: 

• Performance and complexity of Hybrid Likelihood Ratio Test (HLRT)- and Quasi 

HLRT (QHLRT)-based algorithms are studied for linear digital modulation 

classification in slowly-varying flat fading channels3
, with unknown channel 

amplitude, phase and noise power. It is shown that the HLRT-based algorithm suffers 

from high computational complexity, whereas the QHLRT is less complex, yet 

providing a similar classification performance. However, the QHLRT algorithm can 

fail due to the inadequacy of method-of-moment (MoM) to estimate the channel 

amplitude7 and noise power, especially at low signal-to-noise ratio (SNR). Note that 

the HLRT is only simulated for BPSK and QPSK signals due to its high complexity. 

• The performance of MoM estimators is further studied in terms of their variance. 

Cramer-Rao Lower Bounds (CRLBs) of the estimators of the unknown channel 

amplitude, phase and noise power are derived for BPSK and QPSK signals. It is 
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shown that the variance of MoM estimators is close to corresponding CRLBs, as long 

as the MoM estimators remain unbiased1 (high enough SNR). When these estimators 

become biased (at low SNR), the Cramer-Rao bound ceases to provide the lower 

bound for the variance of the MoM estimators. An increase in the number of 

processed symbols, K, leads to a reduction in the SNR at which the MoM estimators 

become biased. This is due to improved estimation accuracy with a longer 

observation interval. 

• An idealized reference classification algorithm (QHLRT-IR) which employs unbiased 

and normally-distributed estimators of channel amplitude, phase and noise power, with 

mean as the true value of the parameter, and variance given by the CRLB of the 

parameter estimator, is developed. This is only a theoretical algorithm, and cannot be 

realized in practice. This classifier provides an upper bound on classification 

performance of blind QHLRT-based classifiers2
, which employ unbiased and normally­

distributed estimators of the unknown parameters. For the QHLRT-based classifiers, 

which employ asymptotically unbiased and normally-distributed estimators of 

unknown parameters1
, this classifier provides the upper bound on classification only in 

certain SNR range1
. 

• Performance of Average Likelihood Ratio Test (ALRT), QHLRT-IR and QHLRT 

classifiers are studied for BPSK and QPSK signals in additive white Gaussian noise 

(A WGN) channel, with unknown channel amplitude, phase and noise power. 

As expected, ALRT outperforms the other two classifiers. On the other hand, the 

performance of the QHLRT-IR classifier is better than QHLRT, as long as the MoM 
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estimators of the unknown parameters for BPSK and QPSK remain unbiased and 

normally-distributed1
. In this SNR range, QHLRT performance is close to the 

QHLRT-IR classifier. These results are useful to analyze the performance of QHLRT 

for different SNRs and a specific value of processed symbols, K. 

Suggested future work is as follows: 

• CRLBs for higher constellations, such as M-PSK and M-QAM (M 2:: 8) can be 

derived and compared with the variance of corresponding MoM estimators. 

• The QHLRT-IR classifier can be extended for constellations other than BPSK and 

QPSK. 

• We have observed that the QHLRT-based classifier may fail due to the inadequacy of 

the MoM estimators of channel amplitude7 and noise power (especially at low SNR). 

Therefore, accurate and low complexity techniques for parameter estimation in a 

large SNR range need to be sought. 

• The classifiers studied here need to be further extended to more unknown parameters, 

such as carrier frequency offset, timing offset, pulse shape, etc. 

• CRLBs of estimators of unknown parameters, other than those studied here, can be 

similarly derived and studied. 

Following the above steps, one can move closer to the development of a more 

general kind of modulation classifier, which is simple, and works for all linear digital 

modulations and a larger number of unknown parameters. 
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APPENDIX A 

Signal at the output of receive matched filter 

Substituting (2.1) and (2.4) in (2.5), one obtains the output of the receive matched 

filter, sampled at t = kT , as follows . 

rk = .J2 r~l)T[Re{ .J2a.ejcp S~i)Ur (t- (k -l)T)e j2"fct} + n(t)]e-j2"f/ dt, 

k = 1, .. ·, K, 0::; t::; KT, i = 1, 00 

·, N mod , 

.J2Lr r;::: . D r. =- ....;2a.e1cps' u (t-(k-1)T)dt 
k 2 k-I)T k T 

+ .J2 f"T .J2a.e-jcps(i)*u (t-(k-1)T)e-j4" 1c1dt+.J2 f"T n(t)e-j2" 1c1dt 
2 h - t)T k T h - t)T 

, k = 1, 00 

• , K , 0 ::; t ::; KT, 

As r-r a.e- jcp s<il* u (t - (k - 1)T)e-j4
" 1c1 dt = 0 (A.2) becomes, 

~k-I)T k T ' 

or, equivalently, 

with nk = .J2 f"T n(t)e- jZKfct dt, k = 1, 00 
· , K. 

h - t)T 

The result in (A.4) is used in (2.6), Section 2.1. 
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APPENDIXB 

Derivation of (2.16), (2.21), (2.27) and (2.32), from Section 2.2.1.1 

Subsequently, derivation of (2.16), (2.21), (2.27) and (2.32), given in Section 

2.2.1.1, is performed. 

Derivation of(2.16) 

Substituting the expression of the LF given in (2.11) into (2.15), it becomes 

a 1 1 . o 2 
-[ exp{--llr-ael'Ps' II }]=0, 
a<p (ffN)K N 

(B.l) 

1 1 . (.) 2 a 1 . (.) 2 
---exp{--llr-ae1'1's' II }-[--llr-ael'Ps' II ]=0, 
(ffN)K N a<p N 

(B.2) 

1 1 . () 2 1 
with K :;t: 0, exp{--11 r-ae1'~'s' II } :;t: 0, and - ::;t: 0. 

(JrN) N N 

This leads to 

(B.3) 

(B.4) 

(B.5) 

[(fj -aeNsiil)(jae-Nsiil*)+(fj* -ae-j'~'s?l* )(-jaej'~'siil )]+oo• 

• • 0 + [(rK - aej'~' s~l )(jae-N s~l* ) + (r;- ae- jq> s~l*)(- jcxeN s~l)] = 0, 
(Bo6) 

e-N[r. s(il* + 0 0 0 + r sUl*]- a[s(il s<iJ• + · 0 0 + s<il s<il* ]- ej'~'[r.* sUl + · 0 0 + r * s<il] 
ll KK I l K K l l KK (B.7) 

+a[sUl s<il• + · 0 0 + s<il s<il* ] = 0 
I I K K ' 

(B.8) 
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The result in (B.8) is given in (2.16), Section 2.2.1.1. 

Derivation of (2.21) 

Substituting the expression of the LF given in (2.11) into (2.20), one gets 

a 1 1 . () 2 -[ exp{--llr-ae1'Ps 1 II }]=0, aa (trN)K N 
(B.9) 

1 1 . < .) 2 a 1 . < .) 2 ---exp{--llr-ae1'Ps 1 II }-[--llr-ael'Ps 1 II]= 0, 
(trN)K N aa N 

(B.10) 

1 1 . (.) 2 1 
with * 0 exp{--11 r-ae 1'Ps 1 II } :FO and -:F 0. 

(trN)K ' N ' N 

This leads to 

(B.ll) 

(B.12) 

(B.13) 

[(fj - aeN s~iJ )( -s~iJ• e-N)+ (fj* - ae- N s?l*)( -s~il eN)]+ .. · 

.. · + [(rK - aej<p s~l)( -s~l· e-N) + (r;- ae- N s~l* )( -s~l eN)]= 0, 
(B.l4) 

e-N[r.sUJ• + · · · + r suJ•]- a[sUJ sUJ• + · · · + suJ sUJ• ] + ej'P[r. * sUJ + · · · + r * s<il] 
II KK I I K K I I KK 

-a[suJ sUJ• + · · · + sUJ sUJ•] = 0 
I I K K ' 

(B.l5) 

and finally, 

(B.16) 

The result in (B.16) is given in (2.21), Section 2.2.1.1. 
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Derivation of (2.27) 

Substituting the expression of the LF given in (2.11) into (2.26), one gets 

a 1 1 . <.) 2 
-[ exp{--llr-ae1"'s 1 II }]=0 
aN (:rN)K N ' 

(B.17) 

1 a 1 . o 2 a 1 1 . c) 2 
--K [exp{--llr-ae1"'s 1 II }]+-[ K ]exp{--llr-ae1"'s 1 II } =0, (B.18) 
(:rN) aN N aN (:rN) N 

(B.19) 

and finally under the hypothesis Hi , (B.19) becomes 

fl <il =_!_llr-ae1"'s<il 11
2 i =1 ·· · N K ' ' ' mod · 

(B.20) 

The result derived in (B.20) is given in (2.27), Section 2.2.1.1. 

Derivation of (2.32) 

The norm in the LF given in (2.12) can be expanded as 

= [r.r.* + · · · + r r * ]- & UleJii>u> [r.* s(il + · · · + r * s(il ] 
II K K I I K K 

-&Ul e- Jii><n [r.s<il* + · · · + r sUl* ] + a <il2[s<il sUl* + · · · + s<il sUl* ] 
I I K K 1 I K K 

(B.21) 

By substituting (2.30), (2.31) and (2.23) into (B.21), one can easily show that, 

(B.22) 

The result derived in (B.22) is given in (2.32), Section 2.2.1.1. 
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APPENDIXC 

First-, Second-, Third- and Fourth-Order Moments of Noise 

The channel noise can be expressed in terms of in-phase and quadrature-phase 

components as nk = In ,k + jQn,k, with In ,k and Qn,k independent zero-mean Gaussian 

random variables. We also have that 

var{ln,k} = E[l,;,k J = N I 2, and, (C.l) 

var{Qn k} = E[Q~ k] = N I 2. . . (C.2) 

Using these results, the first-, second-, third- and fourth-order moments of the noise are 

as follows. 

(C.3) 

(C.4) 

= E[l,;,k ]-E[Q,;,k ]- j2E[In,k ]E[Qn,k ] 

N N 
=---=0 

2 2 . 
(C.5) 

N N 
=---=0 2 2 . 

(C.6) 
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= E[l: k] + 2E[l,; k ]E[Q,; k] + E[Q: k] . 
' ' ' ' 

For a Gaussian random variable, the fourth cumulant is zero, i.e., 

Similarly, 

Therefore, 

(C.7) 

The results obtained from (C.3) to (C.7) are used in Section 2.2.2.1. 
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APPENDIXD 

Second- and Fourth-Order Moments of the Received Signal 

The second-order moment (one conjugation) of the received signal in (2.8) is given as, 

(D.1) 

(D.2) 

By using (2.38), (2.39), (C.3) and (C.4) this becomes, 

M2t =sol +N. (D.3) 

Similarly, the fourth-order moment (two conjugations) of the received signal is given as, 

= E[l x~il 14 ] + E[x~il
2 

]E[(n;)2
] + 2E[x~il I x~il I2 ]E[n; J + E[n; ]E[(x~il*)2 ] 

+ E[l nk 1
4

] + 2E[xkil*]E[nk ]E[I nk 12 ] + 2E[xkil I x~il 12 ]E[nk] 

+ 2E[ x~il ]E[ n; ]E[I nk 12 ] + 4 E[l x~il 12 ]E[I nk 12 ] 

By using (2.38), (2.39), (C.3), (C.4), (C.5), (C.6) and (C.7), this becomes, 

M = E[l x<n 14 ] + 2N2 + 4Sul N or 
42 k ' 

M = b<ilsUl 2 + 4SUl N + 2N2 
42 ' 

(D.4) 

(D.5) 

(D.6) 

(D.7) 

Eq. (D.3) and (D.7) are given as (2.40) and (2.41), respectively in Section 2.2.2.1 

64 



APPENDIXE 

Derivation of (3.9) 

From (2.1 0), with 9 = [aN <p ]t as unknown parameters we have 

(E.1) 

It can be written as 

Averaging (E.2) over BPSK symbols, i.e., sCil E { -1, 1}, this becomes 

(E.3) 

IT
K 1 1 2 2 2a '~' f

8
(r l9)= -exp{--(lrk I +a )}cosh(-Re{rke-1 

}). 

k=t trN N N 
(E.4) 

The result in (E.4) is used in (3.9), Section 3.2. 
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APPENDIXF 

Derivation of Fisher Information Matrix (FIM) for BPSK and QPSK 
Signals 

In this Appendix, we present the derivations of the FIM for BPSK and QPSK 

signals with the channel amplitude, a, phase, <p, and noise power, N , as unknowns. 

Results derived here are presented in Sections 3.2 and 3.3. 

From (2.8), we have 

r. e- N = as + n e-1~ k = 1 · · · K 
k k k ' ' 

0 (F.1) 

It is well known that multiplication of a complex Gaussian process by a random phase 

produces another complex Gaussian process with the same statistics [19]. Thus, 

(F.2) 

is a complex Gaussian process, and (F.1) becomes 

(l(k) + jQ(k))(cos <p- j sin <p) =ask + w~ + jwf , 

or, equivalently, 

(l(k) cos <p+ Q(k) sin <p) + j( -/(k) sin <p+ Q(k) cos <p) =(ask + w~ ) + jwf , (F.3) 

where rk = I(k ) + jQ(k) with !(k) and Q(k) , the in-phase and quadrature-phase 

components, respectively. 

Derivations of FIM, with 9 =[aN <p]t as unknown parameters and for the BPSK 

signals, is presented in the sequel. Derivations for the QPSK can be similarly carried out. 

The FIM for BPSK signals is given as 
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(F.4) 

Henceforth, we use the following notations to represent the elements of the FIM in (F.4), 

(F.5) 

Each element of the FIM in (F.4) is solved separately, as follows. 

a) Calculation of [18 (0)]12 

By differentiating the log-likelihood function given in (3 .10) w.r.t. a 9, one gets 

a In f 8 (r I 0) = _ 2K a 

aa N 

+~ LK (l(k)cos<p+Q(k)sin<p)tanh(
2a (l(k)cos<p+Q(k)sin<p)). 

N k= l N 

(F.6) 

Differentiating (F.6) w.r.t. N 9
, this becomes 

a2 In f 8 (r I 0) _ 2Ka 
aaaN - ----;;z 

-2
2 
"K (l(k)cos <p+ Q(k) sin <p) tanh(

2
a (J(k)cos <p+ Q(k) sin <p)) (F.7) 

N ~bl N 

-
4

a
3 
"K (l(k) cos <p+ Q(k) sin <p) 2sech 2 

(
2
a (l(k) cos <p+ Q(k) sin <p)). 

N ~k=l N 

By applying expectation w.r.t. r, as in (3.4), this can be written as 

9 l(k) and Q(k) are the real and imaginary parts of observed signal samples rk , respectively, which are 

thus known at the receive-side. 
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(F.8) 

Ea2 =E["K _ _3:_
2 

(l(k)cos<p+Q(k)sin<p)tanh(
2
a (l(k)cos<p+Q(k)sin<p))], and 

L,k;t N N 

Ea3 =E["K- 4
a
3 

(l(k)cos<p+Q(k)sin<p)2 sech2
(
2a (l(k)cos<p+Q(k)sin<p))J. 

L,~ N N 

As 2K a I N 2 is independent of r , it is straightforward that 

(F.9) 

The second expectation, given in (F.8), can be wdtten as 

(F.lO) 

with Re{rke-N} = I(k)cos<p+ Q(k)sin <p. By using (3.4) and (3.9) in (F.lO), this becomes 

Ea - [ · · · [ "A(r. )f (r, · · · r I 9)dr, · · · dr 2- L, k B l K l K" 
~k 

K 

As { rk} :;1 are independent of each other, thus, (F.ll) becomes 

E; = L::;
1 
[··· [ A(rk)[/8(/'j 19)···/8(rK 19)]d1j ···drK. 
'-------v--' 

K 

(F.ll) 

(F.l2) 

Combining the fact that A(1j) depends on 1j and not on the remaining rk 's, and that 
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[··· [ [f8 (r2 1 0)··· f 8 (rK I O)]dr2 · ··drK =l , 
'-y----1 

K-1 

(F.13) 

the expectation of A('i) is just an integral over the variable 'i. The same applies for all 

k 'sand so we can drop the subscript k in (F.12), and this becomes 

E~ = K [ A(r)f8 (r I O)dr 

= KE[A(r)]. 

By dropping the dependency on k , this can be further written as 

E~ = KE[-~2 (I cos <p+ Qsin <p) tanh(~ (I cos <p+ Q sin <p))]. 

(F.14) 

(F.15) 

By using (F.3) with the dependency on k dropped and changing the variables, (F.15) 

becomes 

As the above expectation is equal for each BPSK symbol [19], therefore, averaging over 

BPSK symbols (sE {-1,1}) makes no difference. Thus, (F.16) can be written as 

E~=K [[ L 
2 SE(-J ,J} 

( 
2 1 2a 1 J --

2 
(as+w )tanh(-(as+w )) 

( 

~ 1 N 2a ) dwl dwQ. 
x -exp{--((as+w1

)
2 +(wQ)2 +a2)}cosh(-(as+w1

)) 

trN N N 

(F.17) 

By applying the summation over the BPSK signal constellation (sE {-1,1}), (F.17) 

becomes 
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E"-2-

With the change in variables, u = a+ wi and v = -a+ wi in the first and second term on 

right hand side of (F.18), respectively, this becomes 

a 2 
2Kexp{-- } ( Q)2 2 2 E~ =-

3 
N [ exp{-~}dwQ [ uexp{-~}sinh( au)du. 

~N N - N N 
(F.19) 

2 2 2 

By using 3.562-3 in [20], i.e., [uexp{-~}sinh( au)du =a J1iN exp{~}, (F.l9) 
N N 2 N 

reduces to 

E"=_2Ka 
2 N2 · 

(F.20) 

The third expectation, given in (F.8), can be written as 

(F.21) 

with Re{rke-j<J>} = l(k) cos <p+ Q(k) sin <p. By using (3.4) and (3.9) in (F.21), this becomes 

E;= [···[ LA(rk)f8 (lj···rKIO)dlj·· ·drK. 
'--v--' k 

K 

As {rk}:=
1 

are independent of each other, thus, (F.22) becomes 
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E; = L:=t [ · · · [ A(rk )[j8 (I) I 9) · · · j 8 (rK I 9)]d1J · · · drK 
'-----,-----­

K 

(F.23) 

Combining the fact that A(IJ) depends on 'i and not on the remaining rk 's, and that 

[ ··· [ [f8 (r2 1 9)··· f 8 (rK I 9)]dr2 ·· ·drK = 1, 
'--.r---' 

K - 1 

(F.24) 

the expectation of A(IJ) is just an integral over the variable 'i. The same applies for all 

k 'sand so we can drop the subscript k in (F.23), and this becomes 

E; = K [ A(r)f8 (r I 9)dr 

= KE[A(r)]. 

By dropping the dependency on k , this can be further written as 

(F.25) 

(F.26) 

By using (F.3) with the dependency on k dropped and changing the variables, (F.26) 

becomes 

As the above expectation is equal for each BPSK symbol [19], therefore, averaging over 

BPSK symbols (s E { -1, 1}) makes no difference. Thus, (F.27) can be written as 
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E; =K [[ L 
2 SE{-1,1) 

(- ~~ (as+w1 )2 sech 2 (~ (as+w
1
))) 

w1dwQ. 

x(-1-exp{-l._((as + w1
)
2 + (wQ)2 + a 2)} cosh(

2
a (as+ w1

))) 

trN N N 

(F.28) 

By applying the summation over the BPSK signal constellation (sE {-1,1}), (F.28) 

becomes 

a2 
2Kaexp{-- } ( Q)2 

E; =-
4 

N [ exp{-~}dwQ 
trN N 

1 
(a+ w1 

)
2 exp{--(a + w1 

)
2} 

[ N dwl 
2a 

cosh(- (a+ w1
)) 

N 

(-a+ w1
)
2 exp{-l._( -a+ w1 

)
2} 

+ [ 2a N dwl 
cosh(- (-a+w1

)) 
N 

(F.29) 

a+w1 - a+w1 

With the change in variables, u = .JN/2 and v = .JN/2 in the first and second term 
N 12 N /2 

on right hand side of (F.29), respectively, this reduces to 

E
a =- 2Ka exp{-y} [ u2 exp(-u2 

/2)d 
3 2 ~ r;::;:: u 0 

N "\121! ~ cosh(u-y2y) 
(F.30) 

By substituting (F.9), (F.20), (F.30) and (3.12) in (F.8), this becomes 

(F.31) 

b) Calculation of [18 (0)]11 

By differentiating the log-likelihood function given in (3.10) twice w.r.t. a 9, one gets 
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a ln f 8 (r 19) 2K a 
=---aa N 

+~ "x (l(k)cos <p+ Q(k)sin <p) tanh(
2a (J(k)cos <p+ Q(k)sin <p)), 

N~t~ N 

and 

d2 ln f 8 (r I 9) _ 2K 

aa2 N (F.32) 

+ 
4

2 
L x (I(k) cos <p+ Q(k) sin <p) 2 sech 2 

( 
2a (l(k) cos <p + Q(k) sin <p)) 

N t~ N 

By applying expectation w.r.t. r, as in (3.4), this can be written as 

(F.33) 

where E~ = E[-
2
:] and 

E
2
b = E["x 4

2 
(l(k) cos <p+ Q(k) sin <p)2 sech2

( 
2
a (l(k) cos <p+ Q(k) sin <p))]. 

~t;1 N N 

As - 2K IN is independent of r , it is straightforward that 

(F.34) 

The second expectation given in (F.33) can be derived by following same steps as for E; 

and is given as 

E~ = 2K exp{-y} [ u
2 

exp(-u
2 

/2) du. 
N J27i ~ cosh(u.j2Y) 

(F.35) 

By substituting (F.34), (F.35) and (3.12) in (F.33), this becomes 

(F.36) 
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c) Calculation of [18 (9)]22 

By differentiating the log-likelihood function given in (3 .10) twice w.r.t. N 9
, one gets 

dlnf8 (rl9) =- K +-1-"K (12(k)+Q2(k)+a}) 
dN N N 2 L.. k=l 

-
2~ I K (I(k) cos<p+ Q(k) sin <p) tanh(

2
a (l(k)cos <p+ Q(k)sin <p)), 

N k=l N 

and 

d
2

ln f 8 (r 19) = ( K _ 2Ka
2

) _ __3:_ "K (12(k) + Q2(k)) 
dN2 N 2 N 3 N 3 L..k=l 

+ 
4a

4

2 
I K (l(k) cos <p + Q(k) sin <p)2sech2( 

2
a (I(k) cos <p + Q(k) sin <p)) (F.37) 

N k=I N 

+ 
4a

3 
""K (I(k) cos <p + Q(k) sin <p) tanh( 

2a (l(k) cos <p+ Q(k) sin <p)). 
N L..k= l N 

By applying expectation w.r.t. r, as in (3.4), this can be written as 

E [-
a 2_ln--'f.'--"'-8 -::-( r_l 9--'--) l = Ec Ec Ec Ec 

dN2 I + 2 + 3 + 4 ' 
(F.38) 

E~ =E["K 
4
a

4

2 
(l(k)cos<p+Q(k)sin<p)2sech2(

2
a (I(k)cos<p+Q(k)sin<p))l and 

L..k=l N N 

E~ = E[ I :=I ~~ (I(k)cos<p+Q(k)sin <p) tanh(~ (l(k)cos<p+Q(k)sin <p)) l 
As (K I N 2

)- (2Ka2 I N 3
) is independent of r, it is straightforward that 

c K 2Ka2 

EI =-2 ---3-. 
N N 

(F.39) 
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The second expectation, given in (F.38), can be written as 

this becomes 

E~ = [···[ LA(rk)j8 (fj···rKI9)dfj · ··drK. 
~k 

K 

As {rk}:=I are independent of each other, thus, (F.41) becomes 

E~ = I:=I [··· [ A(rk)[j8 (fj 19)· ··f8 (rK 19)]dfj ···drK. 
'--v----' 

K 

(F.40) 

(F.41) 

(F.42) 

Combining the fact that A(fj) depends on fj and not on the remaining rk 's, and that 

[···[ [j8 (r2 19)···f8 (rK 19)]dr2 ···drK =1, 
~ 

K - 1 

(F.43) 

the expectation of A(!j) is just an integral over the variable fj . The same applies for all 

k ' s and so we can drop the subscript k in (F.42), and this becomes 

E~ = K [ A(r)j8 (r I 9)dr 

= KE[A(r)]. 

By dropping the dependency on k, this can be further written as 

(F.44) 

(F.45) 

By using (F.3) with the dependency on k dropped and changing the variables, (F.45) 

becomes 
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As the above expectation is equal for each BPSK symbol [19], therefore, averaging over 

BPSK symbols (sE {-1,1}) makes no difference. Thus, (F.46) can be written as 

By applying the summation over the BPSK signal constellation (sE {-1,1}) and 

simplifying, (F.47) becomes 

(F.48) 

With the change in variables, u = a+ w1 and v = -a+ w1 
, (F.48) becomes 
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---

a? 
8Kexp{-- } ( Q ) 2 2 2 c N [ w Q [ 2 u au E 2 = 1rN4 exp{-~}dw u exp{- N }cosh(N)du 

a 2 
8K exp{-- } ( Q)2 2 2 
-----,-

4
---'Nc.!.._ [ ( w Q ) 2 exp { -~ }dwQ [ exp {-~}cosh( au )du. 

1rN N N N 

(F.49) 

Using 3.562-6, 3.461-2 and 3.546-2 in [20], i.e., 

r 2 u
2 2au .fiN a 2 

u exp{--}cosh(-)du =--(N +2a2)exp{-}, 
N N 4 N 

r (wQ) 2 
N.JiN r u2 2au JJiN a 2 

(wQ)2 exp{---}dwQ = and exp{--}cosh(--)du =--exp{-}, 
N 2 N N 2 N 

(F.49) reduces to 

Ec _ 2K 2Ka
2 

3 - - N 2 -~. (F.50) 

By following similar derivations as for E; and E~ , the third and fourth expectation in 

(F.38) are derived, respectively, and are given by 

E
c = 2a2 exp{ -y} [ u2 exp( -u2 I 2) d 
3 3 ~ ,-;::;-:: u ' 

N ....;27r cosh(u-v2r) 
(F.51) 

and 

(F. 52) 

By substituting (F.39), (F.50), (F.51), (F.52) and (3 .12) in (F.38), this becomes 

(F.53) 
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d) Calculation of [18 (9)]33 

By differentiating the log-likelihood function given in (3010) twice w or.t. cp 9, one gets 

a ln f (r I 9) 2a LK 0 2a 0 8 =- _ (-/(k)sill<p+Q(k)coscp)tanh(-(J(k)coscp+Q(k)sill<p)), (Fo54) 
acp N k-i N 

and 

a2 ln f (r I 9) 2a "K 0 2a 0 8 
2 

= --L..k-1 (l(k) cos cp+ Q(k) Sill cp) tanh(-(J(k)cos cp+ Q(k) Sill cp)) 
acp N - N (F.55) 

+ 4a
2

2 "K ( -/ (k) sin cp + Q(k) cos cp) 2sech 2 
( la (I (k) cos cp + Q(k) sin cp))o 

N L..k=i N 

By applying expectation w or.t. r, as in (3.4), this can be written as 

(F. 56) 

where Ect
1 

= E["K - la (J(k)coscp+ Q(k)sin cp) tanh(
2
a (J(k)coscp+Q(k) sin cp))] and 

L..k~ N N 

ct [LK 4a
2 

0 2 2 2a 0 1 E
2 
=E -

2 
(-/(k)smcp+Q(k)cos<p) sech (-(J(k)coscp+Q(k)sill<p)) 0 

k=t N N 

By following a similar derivation as for E~, the first expectation in (F. 56) can be derived 

and is given as 

Ect =- 2Ka
2 

I 0 

N 
(F. 57) 

The second expectation, given in (F.56), can be written as 

(F. 58) 
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with Im{rke-Jcp} = -l(k) sin cp+ Q(k) cos cp and Re{ rke-Jcp} = l(k) cos cp + Q(k) sin cp. By 

using (3.4) and (3.9) in (F.58), this becomes 

E~ = ( · · · ( 'LA(rk)f8 (1'j .. · rK 19)dfj .. ·drK. 
'--v-----' k 

K 

As {rk}:;, are independent of each other, thus, (F.59) becomes 

E~ = L:;, ( ... ( A(rk)[/8 (1'j 19) ... / 8 (rK 19)]dfj .. ·drK . 
'-----v---' 

K 

(F. 59) 

(F.60) 

Combining the fact that A(fj) depends on 'i and not on the remaining rk 's, and that 

( .. ·[ [f8 (r2 19) .. ·f8 (rK 19)]dr2 · .. drK =1. 
'--v-----' 

K-1 

(F.61) 

the expectation of A(l'j) is just an integral over the variable 'i . The same applies for all 

k 'sand so we can drop the subscript k in (F.60), and this becomes 

E~ = K ( A(r)f8 (r 19)dr 

= KE[A(r)]. 

By dropping the dependency on k, this can be further written as 

E: ~ KE[ ~,' (-/sin cp+ Q cos <p )'sech' (~(/cos cp + Q sin cp )) l 

(F.62) 

(F.63) 

By using (F.3) with the dependency on k dropped and changing the variables, (F.63) 

becomes 
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As the above expectation is equal for each BPSK symbol [19], therefore, averaging over 

BPSK symbols (sE {-1,1}) makes no difference. Thus, (F.64) can be written as 

E~=K (( L 
2 se(-1,1} 

(
4a

2 
Q 2 2 2a 1 J N

2 
(w ) sech (N(as+w )) 

dw1dwQ 

( 
1 1 1 2 Q 2 2 2a ) x -exp{--((as+w) +(w ) +a )}cosh(-(as+w1

)) 

trN N N 

(F.65) 

By applying the summation over the BPSK signal constellation (sE {-1,1}) and 

simplifying, (F.65) becomes 

. (F.66) 

r Q 2 (wQ)
2 

Q N.JiN 
By using 3.461-2 in [20], i.e., (w ) exp{-~}dw = 

2 
, (F.66) becomes 

Ka2 exp{- a
2 }l exp{-_!_(a+w1

)
2

} exp{-_!_(-a+w
1

)
2

} ] 

E~ = .fiNN ( fa dw
1 
+ ( fa dw

1 
• (F.67) 

N trN cosh(-(a+w1
)) cosh(-(-a+w1

)) 

N N 
. . . a+w1 -a+w

1 

W1th the change m varmbles, u = ~ and v = ~ , in the first and second term 
-vN/2 -vN/2 

on right hand side of (F.67), respectively, this reduces to 

E~ = 2Ka
2 

exp{-y} ( exp(-u
2 

/2) du. 
N J2ii cosh(u.J2y) 

(F.68) 

By substituting (F.57), (F.68) and (3.13) in (F.56), this becomes 
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(F.69) 

e) Calculation of [18 (0)]31 

By differentiating the log-likelihood function given in (3.10) w.r.t. <p and a 9, one gets 

a 1n f (r I 0) 2a LK . 2a . 8 = - ( -l(k) sm <p+ Q(k)cos <p) tanh(-(l(k)cos<p+ Q(k) sm <p)), 
d<p N k=t N 

and 

d2 lnf (riO) 2 LK . 2a . 8 =- (-I(k) sm <p+ Q(k)cos <p) tanh(-(l(k)cos <p+ Q(k)sm <p)) 
d<pda N k=t N 

+ 
4
a

2 
"K ( -/(k) sin <p + Q(k) cos <p)(l(k) cos <p+ Q(k) sin <p) 

N L..k=t 

xsech2 
( la (l(k) cos <p+ Q(k) sin <p)) . 

N 

By applying expectation w.r.t. r, as in (3 .4), this can be written as 

(F.70) 

(F.71) 

where E; =E["K _3._(-/(k)sin<p+Q(k)cos<p)tanh(
2a (l(k)cos<p+Q(k)sin<p))] and 

L.. k=t N N 

E; = E[L:=, ~~ (-l(k) sin <p+ Q(k)cos<p)(l(k)cos<p+ Q(k)sin <p) 

xsech2
( la (l(k) cos <p+ Q(k) sin <p))]. 

N 

The first expectation, given in (F.71), can be written as 
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with Im{rke-N } = -/(k) sin <p+Q(k)cos<p and Re{rke-jcp } = l(k)cos<p+ Q(k)sin <p 0 By 

using (3.4) and (3o9) in (Fo72), this becomes 

E~= [ 0 0 0

[ l:A(rk)f8 (tjoo orKIO)dtj 000 drKO 
'---v-----' k 

K 

As {rk} :=1 are independent of each other, thus, (Fo73) becomes 

E~ = 2:::=
1 

[ o 
0 0 

[ A(rk )[f8 ('i 19) 0 0 0 f 8 (rK IO)]dfi 0 0 0 drK 0 

'-y---J 

K 

(Fo73) 

(Fo74) 

Combining the fact that A('i) depends on 'i and not on the remaining rk 's, and that 

[
000

[ [f8 (r2 19)ooof8 (rK IO)]dr2 ooodrK = 1, 
'---v-----' 

K - 1 

(Fo75) 

the expectation of A(fj) is just an integral over the variable 'i 0 The same applies for all 

k 'sand so we can drop the subscript k in (Fo74), and this becomes 

E~ = K [ A(r)f8 (r IO)dr 

= KE[A(r)]o 

By dropping the dependency on k , this can be further written as 

E~ = KE[~ (- /sin <p + Qcos<p) tanh(~(/ cos <p + Q sin <p))] 0 

(F.76) 

(Fo77) 

By using (F.3) with the dependency on k dropped and changing the variables, (F.77) 

becomes 

[
2
;Q tanh(~(as+w1 ))) 

E~ = K [ [ w1dwQ O (F.78) 

x(-1
- exp{-_!._ ((as + w 1

)
2 + (wQ/ +a2

)} cosh( 2a (as+ w1
) )) 

~N N N 
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As the above expectation is equal for each BPSK symbol [19], therefore, averaging over 

BPSK symbols (sE {-1,1}) makes no difference. Thus, (F.78) can be written as 

E~=K [[ L 
2 SE{-1,1) 

( 
1 1 2a ) x -exp{--((as+ w1

)
2 + (wQ)2 +a2

) }cosh(-(as +w1
)) 

ffN N N 
(F.79) 

By separating the integrals in (F.79), this becomes 

(wQ)2 
As [ wQ exp{---}dwQ = 0, therefore, (F.80) reduces to 

~ N 

(F.81) 

The second expectation, given in (F.71), can be written as 

(F.82) 

with Im{rke-1'~'} = -I(k)sin<p+Q(k)cos<p and Re{rke-1'~'} = l(k)cos<p+Q(k)sin<p. 

By using (3.4) and (3.9) in (F.82), this becomes 

E~= [ .. ·[ LA(rk)f8 ('i ... rKI9)d1j ... drK. 
~k 

K 

As {rk}:;
1 

are independent of each other, thus, (F.83) becomes 

83 

(F.83) 



E~ = L:=, [··· [ A(rk)[f8 ('! 19)···f8 (rK IS)]d'!·· ·drK. 
'-----v-----' 

K 

(F.84) 

Combining the fact that A('!) depends on 'I and not on the remaining rk 's, and that 

[···[ [f8 (r2 19) · ··f8 (rK 19)]dr2 ·· · drK =1, 
~ 

K - 1 

(F.85) 

the expectation of A('!) is just an integral over the variable 'I . The same applies for all 

k 'sand so we can drop the subscript k in (F.84), and this becomes 

E~ = K [ A(r)f8 (r I S)dr 

= KE[A(r)]. 

By dropping the dependency on k , this can be further written as 

(F.86) 

E~ = KE[~~ ( -1 sin <p+ Q cos<p)(l cos<p+ Qsin <p)sech 2
( ~(I cos<p+ Q sin <p))]. (F.87) 

By using (F.3) with the dependency on k dropped and changing the variables, (F.87) 

becomes 

[ 4a~Q (as+w')sech2
(
2

a (as+w'))) 

E~ =K [ [ N N w'dwQ_(F.88) 

x(-1-exp{-_!_((as+w1
)

2 +(wQ/ +a2 )}cosh(
2

a (as+w'))J 
trN N N 

As the above expectation is equal for each BPSK symbol [19], therefore, averaging over 

BPSK symbols (sE {-1,1}) makes no difference. Thus, (F.88) can be written as 
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E~ =K [[ L 
2 se{-1,1] 

(
4awQ 2a 1 ) --2-(as+w1 )sech2(-(as+w )) 

N N d 1d Q w w. 

( 
1 1 1 2 Q 2 2 2a 1 ))) x -exp{--((as+w) +(w ) +a )}cosh(-(as+w 

ffN N N 
(F.89) 

By separating the integrals in (F.89), this becomes 

a
2 l 1 

1 1 2 } 
2Kaexp{-- } ( Q)2 (as+w )exp{--(as+w) } 

E~= 3 N [wQexp{-~}dwQ[L 2a N w~ . 
ffN N sef- I,IJ cosh(-(as+w1

)) 

N 
(F.90) 

(wQ)2 
As [ wQ exp{---}dwQ = 0, therefore, (F.90) reduces to 

00 N 

E~ =0. (F.91) 

By substituting (F.81) and (F.91) in (F.71), this becomes 

(F.92) 

f) Calculation of [1 8 (9)]32 

By differentiating the log-likelihood function given in (3.10) w.r.t. <p and N 
9

, one gets 

a ln f (r I 9) 2a "K . 2a . a<p = N L..k~l ( -I(k) sm <p+ Q(k)cos <p) tanh(N(/(k) cos<p+ Q(k) sm <p)), 

and 
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a2 In f (r I 0) 2a K 0 2a 0 8 = --" ( -I(k) sm <p+ Q(k) cos<p) tanh(-(I(k) cos<p+ Q(k)sm <p)) 
a<paN N 2 .L..k=t N 

-
4a

3

2 

L K ( -I(k) sin <p + Q(k) cos <p)(l(k) cos <p+ Q(k) sin <p)sech2 
(
2
a (I(k) cos <p + Q(k) sin <p)). 

N ~ N 
(F.93) 

By applying expectation w.r.t. r, as in (3.4), this can be written as 

(F.94) 

where E~ =E["K -
2a

2 
(-/(k)sin<p+Q(k)cos<p)tanh(

2
a (/(k)cos<p+Q(k)sin<p))] and 

.L..k=t N N 

E~ = E[L:=
1

- ~3
2 

( -l(k) sin <p+ Q(k) cos <p)(/(k)cos <p+ Q(k) sin <p) 

xsech 2 
( 
2a (I(k) cos <p+ Q(k) sin <p))]. 
N 

By following same steps as to derive E~ and E~, the first and second expectation in 

(F.94) are derived, respectively, and are given as 

E~ =0, (F.95) 

and 

(F.96) 

By substituting (F.95) and (F.96) in (F.94), this becomes 

(F.97) 

The FIM for QPSK signals, with 0 = [aN <p]t as unknown parameters, can be 

similarly derived. Tedious computations are involved. Final results are presented in 

Section 3.3. 
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