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Overall Abstract 

While working at depth air breathing commercial divers experience nitrogen 

narcosis and they can become hyperthermic with surface supply heating systems. It is 

unresolved to what extent narcosis and hyperthermia influence exercise or work 

ventilation. The 2 studies in this thesis examined the effects of nitrogen narcosis and 

hyperthermia on phase I and III· of exercise ventilation. The first study examined the 

effect of30% normoxic nitrous oxide (N20) induced narcosis on both phase III 

ventilation and on core temperature thresholds for ventilation in 6 male subjects 

performing an incremental exercise test to exhaustion. The second study examined 

independent effects of 30% normoxic N20 induced narcosis and core temperature on 

phase I exercise ventilation for 6 male subjects exercising in 4 separate 30 s Wingate 

exercise tests. For 2 Wingate tests subjects remained normothermic for the exercise while 

for the 2 other Wingate tests prior to exercise they were rendered hyperthermic in a 40°C 

bath for the test. The first study showed relative to exercise with air breathing that N20 

breathing significantly suppressed exercise ventilation (p < 0.05) and the frequency of 

respiration (p < 0.05) while shifting esophageal temperature (Tes) thresholds for 

ventilation to significantly higher Tes levels(p < 0.05). The second study showed a 

significant (p <0.05) decrease for total ventilation in N20 normothermic relative to N20 

hyperthermic exercise and this decrease was due to significant decreases in tidal volume 

(p<0.05). In conclusion, the results support the hypothesis that the control of exercise 

ventilation includes a neural component as evidenced by nitrogen narcosis suppressing 

and hyperthermia elevating human ventilation during high intensity exercise. 

11 



Acknowledgements 

To my family who deserve the credit for the start of this thesis and have kept me 

in high spirits until the final moments, my supervisor, my ever-faithful and oh so reliable 

subjects, all those at tech services who constantly found themselves at my lab door 

(especially Baxter) and my fellow graduate students; each of the above mentioned are 

indeed the crux and moreover the lifeblood of this research. Finally a very special 

acknowledgement to my role models of perseverance and strength, my Parents. 

Special Thanks to: Lise Petrie, Jon Power, Mike Powell, Julia Jennings, Elena 

Alexandrou, Justin Whittle, Bradley Thorne. Honorable Mentions go to Ajay Sancheti, 

Craig Cameron, Duane Button, Dwayne Taverner and Jeff Pope. 

Peer reviewed research from this thesis is published as follows: 

1. Hall, A.M., White, M.D., Jennings, J. Martin, D. Cheung, S.S. and Behm, D. Core 

temperature thresholds for ventilation during exercise with 30% nitrous oxide inhalation. 

Canadian Society for Exercise Physiology Conference, Oct 16-19, 2002, St. John's, 

Canada, CSEP Conference Proceedings, p. 33 

2. Hall, A.M., Cheung, S.S., Powell, M. E. S. and White, M.D., Effects of 30% nitrous 

oxide and hyperthermia on human ventilation during short duration, high intensity 

exercise European Undersea Baromedical Conference, Copenhagen, Denmark, Aug 27-

31,2003,p.85 

iii 



Table of Contents 

Overall Abstract ............................................................................................................. .ii 

Acknowledgements ....................................................................................................... 111 

Table of Contents .......................................................................................................... .iv 

List of Tables ................................................................................................................. vi 

List ofFigures ........................................... ; ................................................................... vii 

List of Definitions .......................................................................................................... ix 

List of Abbreviations ...................................................................................................... xi 

Chapter 1: Thesis Overview ............................................................................................ 1 

1.1 Introduction and Overview .................................................................................... 2 

1.2 Co-Authorship Statement. ...................................................................................... 4 

1.3 Reference List. ....................................................................................................... 6 

Chapter 2: Review ofLiterature ....................................................................................... 8 

2.1 Control of Resting Human Ventilation ................................................................. 10 

2.2 Control of Human Ventilation During Exercise ........................ , ........................... 11 

2.2.1 Low to Moderate Intensity Exercise .............................................................. 12 

2.2.2 Moderate to High Intensity Exercise ............................................................. 12 

2.2.2.1 Hypotheses of Mechanism(s) Underlying VTt and Low to Moderate 

Intensity Exercise Ventilation ............................................................................ 14 

2.2.3 High Intensity Exercise ................................................................................. 22 

2.2.3 .1 Hypotheses on Mechanisms Underlying VT 2 and High Exercise Intensity 

Ventilation ......................................................................................................... 22 

2.3 Exercise in a Hyperbaric Environment ................................................................. 26 

2.3.1 Ventilation as a Limiting Factor of Maximal Exertion at Depth ..................... 26 

2.3.2 The Effect of Increased Pressure on Cardio-respiratory Function .................. 26 

2.3.3 Nitrous Oxide ............................................................................................... 29 

2.3.4 Cardiovascular Effects of Nitrous Oxide ....................................................... 30 

2.3.5 Ventilatory Response to Nitrous Oxide Inhalation ......................................... 32 

iv 



2.4 Summary of Literature Reviewed ........................................................................ 34 

2.4.1.ResearchHypotheses ......................................................................................... 35 

2.4.2 Testable Questions ........................................................................................ 36 

2.5 References ........................................................................................................... 37 

Chapter 3: Influence of Normoxic 30% Nitrous Oxide on Ventilation and Core 

Temperature Thresholds for Ventilation during Exercise ............................................... 44 

3.1 Abstract ............................................................................................................... 45 

3.2 Introduction ......................................................................................................... 46 

3.3 Methods ............................................................................................................... 48 

3.4 Results ................................................................................................................. 51 

3.5 Discussion ........................................................................................................... 53 

3.6 Conclusions ......................................................................................................... 56 

3. 7 Acknowledgements .............................................................................................. 57 

3.8 References ........................................................................................................... 58 

Chapter 4: Effects of elevated core temperature and 30% normoxic nitrous oxide on 

human ventilation during short duration, high intensity exercise .................................... 65 

4.1 Abstract ............................................................................................................... 66 

4.2 Introduction ......................................................................................................... 67 

4.3 Methodology ....................................................................................................... 68 

4.4 Results ................................................................................................................. 72 

4.5 Discussion ........................................................................................................... 74 

4.6 Conclusion ........................................................................................................... 77 

4.7 Acknowledgements .............................................................................................. 78 

4.8 References ........................................................................................................... 79 

Chapter 5: Thesis Summary and Conclusions ................................................................ 89 

5.1 Thesis Summary and Conclusions ........................................................................ 90 

5.2 References ........................................................................................................... 96 

Chapter 6: Overall Thesis References ............................................................................ 97 

6.1 References (Alphabetical) .................................................................................... 98 

v 



List of Tables 

Table 3.1. Subject ages and physical characteristics ....................................................... 61 

Table 4.1. Subject ages and physical characteristics ....................................................... 82 

Table 4.2. This table summarizes the four experimental conditions employed in this 

study. Each subject had four sessions of exercise for each of the experimental 

conditions as given in the table below .................................................................... 83 

VI 



List of Figures 

Figure 3-1 (a) Mean ventilation (VE), (b) Tidal Volume (VT), and (c) Frequency of 

Respiration (FR) expressed as function of percent of maximal workload for subjects 

exercising from rest until maximal attainable level of exertion The values were 

calculated over the duration each workload ofO, 25, 40,75 or 100%. Subjects 

breathed either AIR or normoxic 30% N20 during the two trials (*p<0.05, 

***(p<O.OOOI) ....................................................................................................... 62 

Figure 3-2. Esophageal temperature (Tes) thresholds (mean± SE) for ventilatory 

equivalents for carbon dioxide production (VpjVC02) and oxygen consumption 

(VpjV02) for subjects exercising from rest until exhaustion on a seated cycle 

ergometer. Subjects breathed either AIR or 30% normoxic nitrous oxide CN20) in 

separate trials **(p<O.OOI) ..................................................................................... 63 

Figure 3-3. Sample subject's esophageal temperature (T es) thresholds for ventilation 

during an incremental exercise from rest until exhaustion. The subject breathing 

AIR (top panel) or 30% normoxic nitrous oxide (bottom panel) ............................. 64 

Figure 3-4 (a) Mean esophageal temperature (Tes), and (b) mean skin temperatures (Tsk), 

expressed as function of percent of maximal workload for subjects exercising from 

rest until maximal attainable levels of exertion The values at each workload were 

calculated over the duration of the corresponding workloads ofO, 25, 40, 75 or 

100%. Subjects breathed either AIR or normoxic 30% N20 during the two triais 

(*p<0.05, ***(p<O.OOOI) ....................................................................................... 65 

Figure 4-1. Initial esophageal temperature (Tes) prior to the Wingate exercise and the 

Final Tes at the completion of the Wingate exercise in each of the four test 

conditions. Each vertical bar represents the mean response for 6 subjects and the 

error bars present the standard error of the mean (NS =Non significant) .............. 84 

Figure 4-2. Mean total ventilation or the sum of all VT during the Wingate in each of the 

Vll 



four test conditions. Each vertical bar represents the mean response for 6 subjects 

and the error bars present the standard error ofthe mean (*p <0.05) ...................... 85 

Figure 4-3. Mean tidal volume during the Wingate test in each of the four conditions. 

Each vertical bar represents the mean response for 6 subjects and the error bars 

present the standard error of the mean .................................................................... 86 

Figure 4-4. Mean total number of breaths taken during the Wingate exercise in each of 

the four test conditions. Each vertical bar represents the mean response for 6 

subjects and the error bars present the standard error of the mean .......................... 87 

Figure 4-5. Initial and the final mean skin temperature (Tsk) prior to and following the 

Wingate exercise in each of the four test conditions. Each vertical bar represents the 

mean response for 6 subjects and the error bars present the standard error of the 

mean. (NS =not significantly different) ................................................................. 88 

viii 



List of Defmitions 

Carotid body resection: surgical removal of the carotid body (MedicineNet.com) 

Frequency of respiration: the number of breaths per minute, at rest this value is 

approximately 12-15 breaths per minute. 

Hyperpnea: breathing that is deeper and more rapid than at rest. 

Isocapnic Buffering: the phase of exercise in which the lactate entering the blood stream 

is initially buffered leading to an increase in C02 without a decrease in blood pH. 

Minute ventilation: a common measurement of pulmonary ventilation, it is the amount of 

air inspired or expired each minute, calculated as a product of tidal volume (VT) and 

frequency of respiration (FR). At rest minute ventilation is approximately 6.5 1 per 

minute. 

Nitrous oxide: a colorless, odorless gas used as an anesthetic and analgesic. 

Tidal volume: the amount of air that is inspired or expired in a normal breath, it can reach 

50% of an individual's vital capacity, at rest this value is- 0.5 1. 

lX 



Ventilation: the exchange of oxygen and carbon dioxide through the common medium of 

the inert gas, nitrogen. 

X 



List of Abbreviations 

ATA: Atmospheric Pressure Absolute 

C02: Carbon Dioxide gas (mm Hg) 

FR: Respiratory Frequency (breaths/min) 

Ir: Hydrogen ion 

MVV: Maximum Voluntary Ventilation 

N20: nitrous oxide gas 

P A C02: partial pressure of carbon dioxide in the alveoli 

P aC02: Partial Pressure of Carbon Dioxide in the arterial blood 

P A02: partial pressure of oxygen in the alveoli 

P a02: Partial Pressure of Oxygen in the arterial blood 

R: Respiratory Quotient 

Teo: Core Temperature ("C) 

Tes: Esophageal Temperature ("C) 

Tsk: Skin Temperature ("C) 

Tv: Tidal Volume (I) 

-
VE: Minute Ventilation (I• min"1) 

VC02: Volume of Carbon Dioxide (I• min-1) 

V02: Volume of Oxygen consumed (1• min"1) 

xi 



V02max: Maximum Volume of Oxygen Consumed (1• min-1) 

VT1: Ventilatory Threshold 1 (1• min-1 

VT2: Ventilatory Threshold 2 (1• min-1) 

VF}V02: Ventilatory Equivalent for Oxygen (unitless) 

VpjVC02: Ventilatory Equivalent for Carbon Dioxide (unitless) 

xii 



Chapter 1 Thesis Overview 

1-1 



1.1 Introduction and Overview 

Control of ventilation during exercise is a subject of great interest and controversy 

(7). At rest there is a consistent view of how humans control their breathing (9). 

However, during exercise conditions, the precise factors involved in ventilatory control 

have not been clearly identified (5, 8, 10). Several hypotheses on the control of 

ventilation observed during exercise have been developed. Still another area of interest is 

ventilation during exercise in extreme environments such as the hyperbaric conditions in 

the undersea. Unlike exercise at sea level pressures, in which cardiovascular parameters 

limit maximal aerobic performance, it is apparent that the increased gas density and the 

work of breathing are the limiting factors to exertion at depth (1). Also the narcotic 

effect of air under pressure are thought to influence ventilation of divers (1). The 

mechanism(s) by which this exertion is limited in hyperbaric environments has/have not 

been completely resolved. 

At normal barometric pressure, it has been suggested that ventilation could be a 

thermoregulatory response and this supports temperature is a stimulus for ventilation (2). 

A body of literature is evident which supports passive and active body warming influence 

ventilation once core temperature thresholds for ventilation are reached {2, 11-13). 

However, the effect of temperature on the control of ventilation in hyperbaric or 

simulated hyperbaric conditions has received little attention in the literature (3, 6). This 

conclusion was reached at the end of the literature review in Chapter 2, where two 

1-2 



hypotheses and five testable questions were stated. Subsequently hypotheses and testable 

questions were addressed in the two studies of the thesis as described below. 

The two studies conducted for this thesis focused on two forms of exercise. First, 

incremental exercise to maximal levels was conducted in which the body's core 

temperature is naturally raised (Chapter 3). Second, a 30s duration, high intensity 

Wingate exercise test was employed which involved a short burst of maximal effort and a 

large increase in ventilation that was not accompanied by a rise of core temperature 

(Chapter 4). For the incremental exercise protocol in Chapter 3 this allowed an 

examination of the effect 30% normoxic nitrous oxide relative to air breathing on Phase 

III of exercise ventilation and its components ( 4, 1 0). In the second study the short 

duration of exercise allowed a normothermic exercise without increasing core 

temperature. As such, a passively induced hyperthermia superimposed prior to the short 

duration exercise allowed the effects of core temperature to be assessed on phase I or the 

initial abrupt increase in ventilation at the start of exercise ( 4, 1 0). Similar to study 1 in 

Chapter 3, breathing either 30% normoxic nitrous oxide or air in study 2 or Chapter 4 

allowed a separate effect of this simulated narcosis on ventilation to be assessed in during 

the Wingate exercise test. 

Chapter 5 of this thesis gives the conclusions to the two research hypotheses and 

testable questions stated at the end of Chapter 2. Chapter 5 also concludes on how these 
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experiments contribute to the existing knowledge, on the effects of both nitrogen narcosis 

and hyperthennia on human exercise ventilation. 

1.2 Co-Authorship Statement 

i) Design and identification of the research proposal 

I, the thesis author, was initially interested in occupational hazards with regards 

to maximal exercise in various working environments. Dr. Matthew White brought to my 

attention a topic area of commercial diving and maximal exertion in hyperthennic 

humans for my thesis. After an extensive review of the literature Dr. White and I decided 

to use 30% nitrous oxide to simulate the nitrogen narcosis conditions experienced at -6 

ATA without the effect of increased ambient pressure. We used an incremental and a 

short duration, high intensity exercise protocols for assessment of a diver's ventilation 

when exposed to a condition ofhyperthennia combined with nitrogen narcosis. Together 

Dr White and I designed a thesis research proposal based on my review of literature that 

was presented to the School of Human Kinetics and Recreation. 

ii) Practical aspects of the research 

As the thesis author, I was present at all experimental sessions in Dr. White's 

laboratory. I was responsible for the set-up and preparation of the equipment for each 

test and for instrumentation of each subject. I helped prepare the data acquisition and 

metabolic cart to allow measurement of the subject's ventilation, thennoregulatory and 
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cardiorespiratory responses and performance. After each test I remained with the subject 

for at least 20 min to answer any questions or concerns they might have. I was also 

responsible for the clean-up, shut down and proper disposal (if required) of all equipment 

used. Dr. White was also present at large majority of the experimental sessions. 

iii) Data analysis 

I was responsible for the time sequencing of all raw data collected and combining 

it into a single file, which was then statistically analyzed by Dr. White and I. Dr White 

and I gave a combined effort to decide which statistical tests were the most powerful and 

appropriate for the data analyses. These were used in answer our testable questions as 

given in the literature review (Chapter 2). All stats were reviewed and the results agreed 

upon by both Dr. White and I. 

iv) Manuscript preparation 

For each study and the thesis I wrote initial versions of the abstract, introduction, 

methodology, results, discussion and conclusions. These versions were reviewed and 

edited by Dr. White and myself during several exchanges of each section or chapter of 

the thesis. 
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A commercial deep-sea diver is met with considerable physiological challenges in 

his or her hyperbaric working environment. Divers are continually exposed to elevated 

ambient pressure and this has detrimental effects on the function of their cardio­

respiratory system. The increased gas density and/or nitrogen narcosis of a hyperbaric 

environment are known to impair ventilation (1, 4, 80) and work performance (22). 

Typically coupled with the increased physiological demands on the cardio-respiratory 

system in the ~old undersea work environment are deep body cooling and hypothermia. 

More recently, however, surface supply of hot water was shown to cause these divers to 

become hyperthermic (50). Little research has addressed this latter condition of a 

hyperthermic, high-pressure work environment for commercial deep-sea divers (9). It is 

the combination of hyperthermia and nitrogen narcosis, and how they may affect human 

ventilation during work or exercise in a hyperbaric environment that is the focus of this 

thesis. 

The literature review for this thesis begins with a brief discussion of the control of 

resting ventilation followed by a description of the mechanisms thought to take part in 

regulation of ventilation during low, moderate and high intensity exercise. There are 

several mediators thought to influence ventilation during high intensity exercise. These 

include core temperature that is thought to positively influence high intensity exercise 

ventilation. A second part of this literature review is given on the effect of a hyperbaric 

environment on human ventilation. The literature review indicates that the influence of 

narcosis on relationships between body temperature and ventilation during exercise has 
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not been examined clearly in the literature. A Research Hypothesis and Testable 

questions that were addressed in the two studies in this thesis are given following the 

literature review. 

2.1 Control of Resting Human Ventilation 

The main signals in resting human ventilation arise from central tissues and 

peripheral receptors that respond directly or indirectly to increases in carbon dioxide 

production (VC02). The peripheral chemoreceptors are found in both the carotid and 

aortic bodies, although the carotid bodies make the larger contribution to peripheral 

chemoreception (10, 29). Together peripheral chemoreceptors respond to lowering of 

arterial oxygen partial pressure (P a02) and to elevations in P 8C02. In addition, for the 

peripheral chemoreceptors only carotid chemoreceptors respond to a decreased plasma 

pH (54). As evidenced by a single breath hypoxic test, it is implied from resting 

responses by carotid body resection patients that the carotid bodies account for about 

90% of the ventilation response that is attributed to hypoxia (29). In these same patients 

70% of the hypercapnic response remains and this response is thought to arise from the 

central chemosensitive areas in the medulla oblongata. From this it is implied 30% of the 

C02 response of ventilation arises from the peripheral chemoreceptors (29). 

The central chemosensitive centers are found in the medulla oblongata near the 

inputs from the glossopharyngeal nerve (9th cranial nerve) that innervates the carotid 

body chemoreceptors, and from the vagus nerve (lOth cranial nerve) that innervates aortic 
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body chemoreceptors. These chemosensitive centers respond to increases or decreases of 

the pH of the cerebral spinal fluid (CSF), however, the blood brain barrier is impermeable 

to all known mediators of ventilation other than C02. The Henderson Hasselbalch 

relationship (Equation 1) describes how changes in C02 levels lead to centrally mediated 

changes in ventilation. 

C02 + H20 H H2C03 H HC03 · + W (Henderson-Hasselbach equation) ...... (!) 

By equation 1 an increase in C02 above normal will raise the concentration of W ions 

through the production of carbonic acid (H2C03) and its further dissociation into 

hydrogen ion {W) and bicarbonate (HC03 "). This decrease in pH stimulates the central 

chemosensitive areas and ventilation is increased. Likewise a raised pH by equation 1 

will lead to a decrease resting ventilation. 

2.2 Control of Human Ventilation During Exercise 

The metabolic mediators and/or neural inputs involved in the control of exercise 

ventilation have not been clearly identified (16, 68). As such this area of research has 

generated great interest and controversy (15, 59). The main problem is illustrated by an 

approximately 15 fold increase in human ventilation during high intensity exercise (68) 

despite that the normal mediators of resting ventilation (54) remaining unchanged or are 

even lowered (68). The potential mechanisms thought to influence exercise ventilation 

are generally grouped as either as metabolic/humoral or as neural ( 46). Prior to 
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reviewing these potential mechanisms that may underlie the control of ventilation during 

exer-cise in these two groups, a section is given to describe how ventilation increases at 

different exercise intensities and durations. 

2.2.1 Low to Moderate Intensity Exercise 

During low to moderate exercise the metabolic demand increases mainly from the 

increased energy demand from contracting skeletal muscle. The body's response is to 

increase ventilation so that it quickly matches this increased metabolic demand. Between 

the onset of exercise until approximately two minutes into low to moderate intensity 

exercise, ventilation has a triphasic response when expressed as a function of exercise 

intensity or oxygen consumption (14). The first phase (phase I) is characterized by an 

abrupt increase in ventilation that is maintained for approximately 10 to 20 s (14, 70). 

The second phase (phase II) shows a slower exponential rise in ventilation from the initial 

increase to a steady state that is typically completed within two to three minutes of 

exercise. Phase III is the new steady state achieved and maintained for the duration of 

moderate steady-state exercise (75). 

2.2.2 Moderate to High Intensity Exercise 

Moderate to high exercise is of sub-maximal intensity at 60 to 75% of maximal work 

capacity or maximal oxygen consumption cvo2 MAX)· Under these exercise conditions 

phase II is longer in duration and after approximately 30 min of intense exercise, 
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ventilation undergoes a gradual rise compared to the pattern seen during lower intensity 

exercise ( 45). This effect has been coined the ventilatory drift, and the precise 

mechanisms causing this drift is unclear, although a rising body temperature may be 

implicated ( 45). 

The linear relationship between ventilation and oxygen consumption maintained 

throughout Phase III is only observed for steady state exercise. If exercise is 

incrementally increased to a maximal level, additional changes in the pattern of 

ventilation are evident. As the exercise load is incremented progressively, ventilation 

begins to increase more quickly than oxygen consumption at higher intensities of 

exercise. The first break in the linear relationship between ventilation ( V E) and oxygen 

consumption occurs at approximately 40 to 70% of a person's maximum workload. This 

breakpoint was described (47) as the first ventilatory threshold {VT1). To define VTt 

during exercise hyperpnea McLellan (47) employed the ventilatory equivalents for 

. . . . 
carbon dioxide (VpjVC02) and for oxygen (VE/V02) each plotted as a function of 

oxygen consumption. The criteria to judge VT 1 from these relationships are a continued 

. . . . 
decrease in VpjV02, with an increase in VpjVC02 (47). VTt has also been referred to 

as the 'anaerobic threshold' or the 'lactate threshold' since it may coincide with rises in 

plasma lactate during exercise. Subsequent to VT 1 during incremental exercise is a 

second disproportionate increase in ventilation relative to vo2. This second ventilation 

threshold (VT 2) is thought to be of neurogenic origin and is identified by a steeper rise in 
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. . . . 
both ventilatory equivalents Vp}VC02 and Vp}V02 when expressed as a function of 

vo2 (46, 48, 63). The following sections will describe the potential metabolic and/or 

neural changes that are thought to underlie these thresholds for ventilation and the pattern 

of ventilation during moderate to high intensity exercise. 

2.2.2.1 Hypotheses ofMechanism(s) Underlying VTt and Low to Moderate Intensity 

Exercise Ventilation 

At low to moderate intensity exercise a metabolic or humoral mechanism(s) is/are 

thought to initiate changes in ventilation. There are several hypotheses on how different 

metabolites might influence VT 1 and the pattern of ventilation during low to moderate 

intensity exercise. These are now presented with the evidence supporting or refuting 

each hypothesis. 

Lactate Accumulation Hypothesis 

Lactate and hydrogen ion are products of the dissociation of lactic acid in a fluid at 

a physiological pH (33). An accumulation of lactate and a lowered plasma pH occur 

when the balance between the rate of lactate production by working muscle and the rate 

oflactate removal from the bloodstream are not equal (59). Wasserman et al. (69) stated 

that the abrupt increase observed in minute ventilation during incremental exercise to 

maximum is secondary to two changes related to lactate production. These changes are 

the added amount of non-metabolic C02 produced from buffering of hydrogen ion by 
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bicarbonate and by the raised hydrogen-ion concentration caused by the reduced 

bicarbonate concentration (70). This concept is based on the chain of events that occur in 

response to a raised hydrogen ion concentration after lactic acid dissociation, as described 

above by the Henderson-Hasselbalch equation 1. Since lactic acid readily dissociates 

into lactate and H+ ions, the elevated H+ concentration result in a left shift of the 

equilibrium and increased non-metabolic C02 production. The elevated C02 production 

is sensed by central and peripheral chemoreceptors and this increases ventilation. 

During progressive, incremental exercise the results from Glass et al. (24) do not 

favor the lactate accumulation hypothesis or the association between the onset of blood 

lactate accumulation (OBLA) and VTt. Their study showed with a normal level of 

skeletal muscle glycogen, that lactate and ventilatory thresholds occurred at a similar 

level of exercise intensity or V02. Under glycogen depletion conditions they reported 

the lactate threshold had shifted to a higher V02 in relation to VTt. This work and other 

studies (28, 32) suggest a similar view that VT 1 and OBLA can be separated after 

glycogen depletion. This suggests lactate accumulation is an unlikely stimulus or cause 

for VT 1 (24 ). 

Evidence against the lactate hypothesis can be found from patients with McArdle's 

Syndrome (25, 27). McArdle's Syndrome patients are deficient in muscle phosphorylase. 

After each glucose unit is cleaved from glycogen, this enzyme is needed to allow 
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phosphorylation of each glucose molecule to glucose-1-phosphate. Glucose-1-phospate 

enters the glycolytic pathway and subsequently lactic acid concentration rises as a 

product of anaerobic glycolysis. Since no glucose-1-phospate is produced in McArdle's 

syndrome patients, no matter how hard these patients exercise, their plasma lactic acid 

remain negligible (25). Nevertheless, the ventilation of these McArdle's syndrome 

patients (27) showed the same distinct thresholds as normal subjects not deficient in 

muscle phosphorylase. The authors suggested (25) something other than the 

accumulation of lactic acid could be operating to explain the ventilatory response to 

exercise. 

Carbon Dioxide Flow Hypothesis 

The amount of carbon dioxide flowing to, or across the lungs is suggested to be 

both the sole mediator of ventilation during exercise and to maintain the arterial isocapnia 

that can be evident during exercise (70). One basis for this relationship between C02 

. . 
flow through the lungs and ventilation is evidenced by parallel changes in V E and V C02 

during exercise at different intensities ( 17). This view is further strengthened with 

studies that demonstrated elevations or decreases in cardiac output modified in C02 flow 

across the lungs and subsequently proportional changes in ventilation (6, 72). Similarly 

an extracorporeal gas exchanger was used to raise venous carbon dioxide levels in dogs 

when cardiac output and P a C02 were at resting values (71 ). This increased C02 flow rate 

to the lungs of these dogs gave proportional increases in ventilation, while presumably 
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the peripheral and the central chemoreceptors activities were at resting levels (71). These 

studies (17, 70) supported the hypothesis that C02 flow across the lungs controlled the 

ventilation response during exercise. 

In contrast to the results supporting the C02 flow hypothesis, Heigenhauser et al. 

(28), showed that for a given work rate V E was higher in subjects with reduced muscle 

glycogen than in their control subjects with normal muscle glycogen content. 

Heigenhauser et al. (28) reasoned that muscle glycogen depletion would increase the 

reliance on fatty acids as an energy substrate and this would give a relative decrease of 

C02 flow to the lungs in their glycogen depleted group. Although both the respiratory 

exchange ratio (R) and C02 flow across the lungs remained unchanged for these 2 

groups, an increase in V E, as anticipated, still came about in the glycogen depletion 

group. This suggested other factors besides lung C02 flow are responsible for the 

exercise hyperpnea (28). Further to these results there is no evidence identifying the 

location and mechanism of these C02 "sensors" thought to exist in the pulmonary 

circulation that would signal changes in C02 flow across the lungs. Also Dempsey 

commented (16) both venous C02 loading protocols or increased C02 flow induced by 

increasing cardiac output give an elevation of P a C02. Presumably the increases in 

ventilation observed in these protocols elevate the arterial co2m+ sensed at the 

peripheral chemoreceptors and/or central chemosensitive areas and this is translated into 

an elevated ventilation. Together the results illustrate the C02 flow hypothesis can't fully 

2-17 



account for the changes in ventilation during exercise. 

Carotid Body Stimulation Hypothesis 

In order to help maintain the acid-base balance of the blood the human peripheral 

chemoreceptor sites respond to lowered P a02, pH (carotid only) and raised P aC02 (73). 

During exercise an absence of the carotid bodies was found to have no effect on 

ventilation that remained at an intensity below the anaerobic threshold or VT1 (29, 43, 

71). However when exercising above the anaerobic threshold these carotid-body­

resected subjects did not hyperventilate contrary to subjects with intact carotid bodies 

(71 ). These studies suggest that carotid body chemoreceptors are in part responsible for 

the exercise hyperpnea observed at exercise intensities above the OBLA or anaerobic 

threshold. 

In contrast to the studies cited above (43, 71) that suggest that carotid body 

stimulation at exercise intensities above the OBLA contributes to increase in ventilation, 

Mitchell et al. (51) obtained evidence of to the contrary. These authors (51) studied 4 

groups of mild to moderately exercising goats (Group 1: goats with intact carotid bodies 

and serotonin depletion, Group 2: goats with carotid body denervation, Group 3: goats 

with carotid body denervation and serotonin depletion, and Group 4: intact goats). 

Tryptophan hydroxylase inhibition by p-chlorophenylalanine was employed to deplete 

serotonin and induce a hyperventilation with or without the carotid bodies (52). Overall 
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the results suggested that exercise hyperpnea may be evident without influence from the 

peripheral chemoreceptors including those in the carotid bodies (51). As such carotid 

body stimulation is not essential for exercise hyperpnea contrary to the studies cited 

above (29, 30, 43, 71). 

Catecholamines and Ions Influencing Ventilation Hypotheses 

Catecholamines and different ions have been suggested as a mediators involved in 

the control of ventilation by stimulating carotid body discharge during exercise. Two of 

the most predominantly studied mediators are the catecholamines norepinephrine and the 

cation potassium. 

Norepinephrine Hypothesis 

Continuous intravenous infusion of norardrenaline causes a transient stimulation of 

ventilation (74) either with a fall in PAC02 (74) or without a fall in PAC02 (2). 

Cunningham et al. (11) attempted to establish the effect of noradrenaline infusion on the 

relationship between pulmonary ventilation, P A 02 and P A C02 by controlling the level of 

P A C02. It was shown that the only consistent effect of noradrenaline was to increase 

hypoxic sensitivity and they (11) suggested that in the absence of hypoxia the effect of 

noradrenaline would disappear. Their results support that although noradrenaline may 

influence ventilation, as its levels increases during exercise, it is only during hypoxia. 

Thus, noradrenaline can not fully account for exercise hyperpnea in normoxic exercising 
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subjects. 

Potassium (Kl Hypothesis 

Medbo and colleagues ( 49) suggested that doubling of the potassium concentration 

of arterial plasma in humans during muscular exercise may stimulate ventilation. These 

results (49) are in agreement with Patterson et al. (58) who showed that K+ concentration 

in the arterial plasma of humans is highly correlated with ventilation throughout exercise 

(58). Potassium moves from the working muscles to the blood at all intensities of 

exercise and the resulting hyperkalemia may directly stimulate the carotid bodies. Burger 

et al. (7) studied the effects of potassium on the discharge of carotid bodies in cats. An 

intravenous infusion of0.05 mmol • kg"1 • min"1 KCL repeatedly raised arterial K+. This 

was accompanied by an increase in chemoreceptor discharge beginning in the first minute 

of infusion. The results showed that K+ effects were enhanced by hypoxia and were 

either reduced by hyperoxia or didn't change with hypercapnia (7). Therefore, it seems 

possible that potassium during exercise may contribute to the increased slope of the 

relation between ventilation and metabolic rate, a change that is usually attributed to the 

lowered arterial pH (69). However, considering the contradictory effects in the presence 

of hypercapnia and hyperoxia, the exact contribution of potassium to the control of 

ventilation during exercise remains to be established. 
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· Metabaroreflex or Muscle Chemoreflex Hypothesis 

During exercise it has been suggested that the decreasing intracellular fluid (ICF) or 

extracellular fluid (ECF) pH of skeletal muscle is involved in the control of ventilation 

via the metabaroreflex or muscle chemoreflex. A lower tissue pH is thought to stimulate 

the group IV afferents that send a signal to the areas of the medulla that elevate 

ventilation (21 ). Evans (21) hypothesized in order for H+ to be implicated in the 

regulation of ventilation that H+ must "change concentration rapidly in the ECF, in a 

direction known to activate the ventilatory metabaroreflex, and must do so when arterial 

pH is thought to play little or no role in augmenting ventilation." Evans (21) used rats to 

test this hypothesis by stimulating the sciatic nerve to produce a "mixed lactic acidosis 

and respiratory alkalosis with no net change in arterial pH". They found (21) that the pH 

of the ECF dropped enough to initiate a ventilatory metabaroreflex and this result was 

suggested to support the metabaroreflex hypothesis. Likewise, Oelberg and colleagues 

(56) found ventilation and the pH of intracellular fluid were positively related (56) when 

the perfusion to the limbs was occluded to raise muscle acidity without a change in 

arterialized blood pH. 

In contrast to studies cited above (21), Wasserman suggested (70) from his study 

with Brown and colleagues (6) that. ventilation responded in a manner inconsistent with 

the metabaroreflex or muscle chemoreflex hypothesis. Injection of the beta adrenergic 

blocker propranolol decreased cardiac output and lowered tissue pH and P02 while tissue 

PC02 rose. These changes of tissue metabolites by the metabaroreflex or muscle 
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chemoreflex hypothesis should have increased ventilation, however the decreased cardiac 

output after injection of propranolol decreased ventilation (6). This discrepancy in the 

fmdings points to something other than a lowered ICF or ECF acidity as a mediator of 

ventilation during exercise. 

2.2.3 High Intensity Exercise 

Following the VTI threshold ventilation increases more quickly than vo2 after 

passing the second ventilatory threshold or VT2 at approximately 70 to 90% of maximal 

attainable workrates during incremental exercise (47). The mechanisms underlying this 

second observed exercise hyperpnea are unclear, however, it is generally believed that it 

is of a neurogenic origin ( 47). The main theories on possible mechanisms responsible for 

the VT 2 and potential mediators of ventilation during high intensity exercise are 

discussed below. 

2.2.3.1 Hypotheses on Mechanisms Underlying VT 2 and High Exercise Intensity 

Ventilation 

Neurogenic Hypotheses 

The neurogenic hypotheses relating to the control of ventilation suggests 

mechanisms involving either or the central nervous system (CNS) or the peripheral 

nervous system (PNS). Krough et al. ( 41) suggested the CNS controls ventilation with 

irradiation from the brain to the respiratory centers ( 41 ). The authors used a Bergonie 
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apparatus to apply a gradual current to the subjects' limbs so as to initiate limb 

movement. They found ventilation increased upon this externally induced limb 

movement ( 40) and the results support that CNS sensors detect this movement that is 

relayed to respiratory control centers that increase ventilation. Their study, however, 

does not support that movement of the limbs alone could be responsible for the increases 

in ventilation. Kao (36) electrically stimulated skeletal muscle without limb movement 

and this increased ventilation. They concluded that the exercise hyperpnea was 

stimulated by "ergoreceptors" located in the muscles themselves and that a neural 

pathway stimulated the respiratory centers to increase ventilation during exercise (36). 

Raised Core Temperature Hypothesis 

Another neurogenic hypothesis implicates core temperature as another centrally 

mediated stimulus influencing ventilation during exercise (77). This follows from studies 

of passive human body warming in a hot tub, when ventilation was observed to increase 

disproportionately relative to metabolic needs (8, 12, 26, 62). Core temperature has been 

associated to the regulation of ventilation at elevated core temperatures at rest (8) or 

during high intensity exercise (77). With (77) or without (8) exercise these ventilation 

thresholds were evident after body warming and at higher core temperatures than these 

thresholds ventilation and core temperature increased in direct proportion (8, 77). This 

suggested an important role of core temperature in the control of human exercise 

ventilation since its relationship to ventilation was evident by passive or active means of 

body warming. 
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The increased ventilation as a function of core temperature during exercise was 

shown by Sancheti and White ( 61) to result from an initial increase in tidal volume. This 

was followed by a plateau at maximal tidal volume values and subsequently the 

frequency of respiration and ventilation both increased proportionately to esophageal 

temperatures ( 61 ). These results suggested that hyperthermia induces a vestigial panting 

response (55, 77). Other support for this temperature hypothesis came from reproducible 

relationships between.core temperature and each of tidal volume (61), frequency of 

respiration (61) and ventilation (76). In addition Mariak (44) showed that intra-cranial 

temperatures decreased up to 0.1 oc • min -I as a result of subjects breathing intensively for 

three minutes. The air inhaled through the nasal cavity and upper airways is suggested to 

cool the temperature of the upper airways by counter-current heat exchange and this may 

help cool the brain during hyperthermia. Overall the results support that ventilation may 

act as a thermoregulatory effector response at elevated core temperatures. 

A possible role for core temperature in the control of ventilation during exercise is 

by temperature influencing the sensitivity of central chemosensitive areas and/or 

peripheral chemoreceptors to carbon dioxide (12, 62). Saxton (62) and others (12) 

showed passive heating of core temperature increased ventilation and data from their 

experiments suggest there is an increased sensitivity of ventilation to C02 with rising 

body temperature (12, 62). Sancheti and White (61) strengthened this view when they 

showed C02 sensitivity increased following exercise during post-exercise hyperthermia. 
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In humans, maximal levels of ventilation during exercise can occur prior to any rise 

in core temperature. An example is the rapid increase in ventilation, prior to core 

temperature rise (67), during short duration, high intensity exercise (e.g.30 sec Wingate 

test). This might suggest that the effects of core temperature on the control of ventilation 

is limited to an exercise -induced hyperthermia. There is little evidence on how 

temperatUre influences ventilation during a short duration, high intensity exercise ( 67). A 

single study demonstrated during a short duration, high intensity exercise test that 

hyperthermia elevated the respiratory rate (f) during first 2 breaths after the onset of 

exercise and during the first two breaths after the cessation of exercise (67). This 

suggested that hyperthermia at the onset .and cessation of exercise may interact with the 

central respiratory control centers (67). It is not clear if and how a passively induced 

hyperthermia, prior to an exercise induced increase core temperatt.Ire, would influence 

ventilation during these intense exercise protocols. 

In contrast to the evidence presented above, that supports that hyperthermia elevates 

human ventilation, in the hyperbaric conditions of the undersea work environment there 

is a suppression of ventilation. This effect is discussed in the next section. 
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2.3 Exercise in a Hyperbaric Environment 

2.3.1 Ventilation as a Limiting Factor of Maximal Exertion at Depth 

Several studies on exertion in hyperbaric conditions involves submaximal 

exercise tests (22, 42, 53, 64, 65). This is since it has been shown that maximal exertion 

is severely limited in the hyperbaric environment, when compared to surface pressure or 

1 ATA (5). Unlike exercise at sea level pressures, where cardiovascular parameters limit 

maximal aerobic performance, it is apparent that ventilation is the limiting factor to 

exertion at depth (5). This change appears to arise in part due to the increased gas density 

and the associated increase in the work of breathing in this environment (22, 79). This is 

especially evident at extreme depths (64). Divers working at depths of 49.5 ATA have 

reported inability to sustain moderate levels of exertion due to feelings of dyspnea (64). 

During compressed air dives the effect of elevated nitrogen that is loaded on to human 

tissues also has a narcotic affect and is also implicated in the changes in ventilation (3, 

13, 23, 65). This is since inert gas narcosis is thought to influence ventilation either 

stimulating it (23) or suppressing it (1, 3, 65). 

2.3.2 The Effect of Increased Pressure on Cardio-respiratory Function 

In a study by Fagraeus, Hesser and Linnarsson (22), the effects of increased 0 2 

and N2 pressures on cardiorespiratory responses to graded exercise were studied in three 

separate conditions: (i) air at 1.0 ATA, (ii) 100% 0 2 at 1.0 ATA, and (iii) air at 4.5 ATA. 

Comparison of cardiorespiratory responses in air at 1.0 ATA or at 4.5 ATA showed that 

2-26 



elevated N2 and 02 pressures were associated with increased oxygen consumption, end-

tidal C02 (as indicative of carbon dioxide retention) and reduced heart rate. The elevated 

0 2 and N2 pressures and/or the added work of breathing were though to suppress 

. . . . 
ventilation as indicated by lower V1/VC02 and V1/VC02 during exercise. These results 

. . 
further suggest that the rise in V 02 and V C02 were in part from elevated 0 2 pressure 

and improved oxygen delivery to the tissues. Also the elevated tissue N2 pressure and the 

increased gas density that increased the work of breathing were implicated in the elevated 

V02 at 4.5 ATA. The reduced heart rate they reported was thought to arise from the 

elevated 02 pressure (22). They suggested (22) that elevated N2 pressure does not give an 

additive decrease in ventilation over and above the increased work of breathing. Despite 

this latter conclusion their study did not allow them to separate the influences on 

ventilation from the increased work of breathing and the effect of elevated N2 pressure. 

Elevated N2 pressures are well known to have a narcotic effect on the central nervous 

system (3) and it remains to be shown whether this depressant effect extends to exercise 

ventilation at elevated pressures. 

Oxygen consumption and oxygen tissue delivery at depth were shown to increase 

by Fagraeus, Hesser and Linnarsson (22). This result suggests that exercise would at 

depth have a smaller anaerobic component. Neubauer et al. (53) assessed the blood 

lactate changes during graded exercise at both normal (1 ATA) and hyperbaric (3 ATA) 

conditions. They found a significantly lower mean blood lactate concentration in 

hyperbaria than for the same moderate and heavy workloads performed at sea level. 
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They (53) postulated that the lower blood lactate may indicate that either the oxygen 

demand during exercise at hyperbaria was being met faster during hyperoxia or an overall 

improvement in lactate metabolism took place at elevated pressure. This suggests the 

lower ventilation at depth is in part attributed to by the enhanced oxygen delivery to the 

tissues. 

Tetzlaff et al. (65) looked specifically at the ventilation responses to exercise for 

subjects at ambient pressures of 0.1 Mpa or 0.4 Mpa (3 ATA). These authors (65) 

reported that it has already been shown that hyperoxia itself causes a decrease in exercise 

ventilation at moderate workloads. At maximal workloads, however, they pointed out the 

decrease in exercise ventilation during hyperoxia is negligible (Pimay, 1973, as cited by 

(65)). In Tetzlaff et al. 's study a 19% decrease in ventilation at maximal workloads was 

found at 3 AT A while the inspired P02 was kept equal to that at sea level. Therefore, 

these authors contributed the decrease in V E more to hyperbaria than to hyperoxia ( 65). 

In other studies ( 1, 34, 79) similar decreases in ventilation were reported for subjects 

exercising in air under elevated pressure. From these (1, 34, 65,-79) and similar studies 

(22) it was not possible to separate the influences of increased gas density from the 

possible influence of elevated tissue N2 pressures. 

In summary, the literature on exercise or work performance in hyperbaric 

conditions supports that ventilation is limited in part by mechanical factors (64). As well 

the literature recognizes that the elevated partial pressure of inert gas (e.g. nitrogen) at 

depth may pose additional limitations on cardio-respiratory function. The centers 
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responsible for the control of ventilation in the medulla oblongata may have a depressed 

response as a function of elevated inert gas partial pressures. In a hyperbaric 

environment, however, it is not possible to assess this contribution of inert gas on 

ventilation independently from the effects of increased density of gas on ventilation. 

Another approach is to employ subanesthetic levels of nitrous oxide that gives similar 

narcotic effects and that can be breathed at 1 ATA with normal gas density (9). The 

following section reviews nitrous oxide and its influences on cardiorespiratory function 

in humans. 

2.3.3 Nitrous Oxide 

Nitrous oxide is a colorless, odorless gas used as an anesthetic and analgesic. 

Nitrous oxide's narcotic effects become evident for humans when it makes up only a low 

percentage of an inhalate. These effects include an insensibility or stupor such as that 

associated with any anesthetic drug, natural or synthetic, that has morphine like actions 

(3 5). As mentioned above, the second potential limitation to ventilation at depth is 

hypothesized to be due to inert gas narcosis associated with breathing compressed air. In 

order to study diving ventilation independent of changes in gas density, studies have used 

breathing mixtures including sub-anesthetic levels of nitrous oxide (9, 13, 20, 66, 80). 

The sub-anesthetic gas mixture of 30% nitrous oxide (N20), 21% oxygen and 49% 

nitrogen simulates the breathing of compressed air at 7-10 ATA. Thus nitrous oxide has 

been used to mimic inert gas narcosis experienced by divers and to study the 

cardiovascular and respiratory systems changes during this inert gas narcosis (9). 
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2.3.4 Cardiovascular Effects of Nitrous Oxide 

There is some controversy on the cardiovascular response to breathing sub­

anesthetic concentrations of nitrous oxide. During resting conditions, Kawamura (3 7), 

showed no significant change in cardiovascular effects over a two-hour period with 

subjects breathing gas mixtures including 20% or 40% normoxic N20 (37). In the same 

study subjects breathing gas mixtures with 60% normoxic N20 had transient increases in 

cardiac output as well as decreases in systemic vascular resistance that returned to control 

levels after lhr of continuous N20 breathing. The results were attributed to the elevated 

P a C02 and its effect as a peripheral vasodilator during 60% normoxic N20 inhalation 

(37). Other work also showed no influence with 50% normoxic N20 on heart rate or 

blood pressure (38, 66). Another body of evidence reviewed by Jastek and Donaldson 

(3 5) supports the contrary, that nitrous oxide does indeed possess significant cardiac 

depressant effects (35). Eisele employed 40% normoxic nitrous oxide and found small 

but significant decreases in heart rate and cardiac output but this did not influence blood 

pressure (20). Despite these significant depressions in cardiovascular variables, with 

inhalation of normoxic N20 at concentrations of 40% or greater, Jastek and Donaldson 

(35) state (p. 145) that the depressant effects of nitrous oxide are 'clinically unimportant'. 

Nitrous oxide has also been studied for its influence on cardiovascular function 

during exercise. Ostlund et al. (57) compared supine and upright dynamic leg exercise on 

an ergometer mounted on a tilt board. They (57) observed no effect of breathing air or 

30% normoxic N20 on steady state heart rate or mean arterial pressure for supine or 
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upright subjects. However, following either an up-tilt or a down-tilt, there was a 

significant 16% decrease in baroreflex sensitivity as reflected by the measurements 

obtained from dividing the maximum change in heart rate by the maximum change in 

carotid distending pressure (57). The postulated mechanism for this change was due to 

N20 suppressing vagal and not sympathetic induced modulations of heart rate. This is 

since vagally induced responses are faster and follow short lasting baroreflex stimuli such 

as a body tilt. In contrast, sympathetically induced autonomic autoflow to the heart is 

slower and is responsible for adjustments to steady state levels of heart rate. It was 

concluded from this paper that 30% nitrous oxide attenuates baroreflex sensitivity via a 

vagally induced response (57). This is in contrast to the original thinking that nitrous 

oxide has inherent sympatho-stimulation (18). Ostlund et al. (57) also suggested that 

since no alteration in mean heart rate and mean arterial pressure were observed, inert gas 

narcosis alone cannot account for the relative bradycardia in subjects breathing dense and 

narcotic gases in hyperbaric conditions (57). 

Under resting or submaximal exercise conditions nitrous oxide does not appear to 

have an effect on oxygen utilization (9). However, during maximal exercise for the same 

subjects a significant seven percent increase was reported for maximal V02 (9). The 

authors (9) suggested that a possible mechanism for the increased maximal V 0 2 reported 

was a decreased affinity of haemoglobin for 02 as a consequence ofN20 interfering with 

the 02-Fe bond in haemoglobin. This would limit oxygen exchange in the lungs but 

would enhance 02 release to the tissues. Therefore, the observed narcosis-induced 
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increase in maximal vo2 may be due to a progressive increase in sensitivity of 

haemoglobin to pH drop that arises from lactate accumulation at higher exercise 

intensities; that is, lowered pH caused hemoglobin to release more oxygen to the tissues 

(Bohr effect) (9). 

2.3.5 Ventilatory Response to Nitrous Oxide Inhalation 

In subanesthetic doses nitrous oxide is not thought to depress respiration but the 

gas can affect ventilation at rest and during exercise. Breathing nitrous oxide at rest at 

1. 55 AT A of pressure, amongst other symptoms, increased f although this response was 

subsequently absent when pressure was reduced to 1.1 ATA (31 ). The increased f is 

coupled with a decreased Vr proportional to the inspired concentration ofN20 (19). This 

decreased V r is compensated by a corresponding increased f and the net result is a 

modest increase in resting ventilation (19, 35). Fothergill et al. (23) showed for resting 

subjects breathing normoxic 23% N20 that tidal volume increased which gave an 

increase of ventilation (23). Another fmding related to exercising ventilation with 23% 

N20 (23) was a slightly larger respiratory effort as indicated by a larger mouth occlusion 

pressure (Po.I) with no change in expiratory reserve volume. However, this stimulatory 

effect was not strong· enough to overcome an added inspiratory load that was imposed on 

their subjects (23). Fothergill et al. (23) also found at high workloads during exercise 

that the N20 narcosis raised fsignificantly but did not change Vr (23). At rest or during 

exercise some reports indicate a small increase in ventilation when breathing nitrous 
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oxide (19, 23, 35). In contrast to the results of Fothergill (23), Ciammaichella (9) found 

no changes in ventilation between subjects at 1 ATA breathing 30% normoxic N20 oxide 

or air during incremental exercise to maximal attainable workrates. 

Concentrations of 40% normoxic nitrous oxide but not 20% normoxic nitrous 

oxide were also shown to effect steady state ventilation during unloaded breathing at rest 

( 60). Royston and colleagues showed that the inspiratory time and PETC02 decreased 

while the frequency of ventilation increased for their exercising subjects (60). They (60) 

also showed a decrease in ventilation on first breath with 40% normoxic N20 upon 

increasing the inspiratory load. They suggested this decrease was due to a reduced ability 

to sense the load. during mild narcosis and concluded that 40% norm oxic nitrous oxide 

was a mild stimulant for ventilation in resting humans. 

The chemoreflex loop for ventilation has also been studied during nitrous oxide 

induced narcosis (13, 39, 78, 80). Dahan et al. (13) found no effect of subanaesthetic 

concentrations of20% normoxic N20 on the chemoreflex loop (13). In contrast, Yacoub 

et al. (80) found large decreases in the hypoxic ventilation response with breathing of 30 

to 50 % normoxic N20 and others found the ventilation response hypercapnia was also 

suppressed by N20 inhalation (39, 78). 

In conclusion to the section on nitrous oxide, there does not appear to be a 

consistent view in the literature on the effects of nitrous oxide on ventilation at rest or 
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during exercise. Breathing nitrous oxide at concentrations over 20% does provide a 

means of assessing the affects of the narcosis on human ventilation independently from 

the affects of elevated gas density that are evident in hyperbaric conditions. 

2.4 Summary of Literature Reviewed 

The Research Hypotheses and Testable Questions of this thesis follow the four 

summary points, as given below. 

1. Many hypotheses exist on the regulation of ventilation during exercise from low to 

high intensities. No single hypothesis has received unified support and is able to account 

for all aspects of the control of exercise ventilation. Core temperature is one 

hypothesized mediator of human ventilation during moderate to high intensity exercise 

(8, 77). Inconsistent with this hypothesis of core temperature as sole influence on 

ventilation is that during short duration, high intensity exercise ventilation can increase to 

maximum prior to any rise in body temperature. This is a topic that remains to be 

investigated. 

2. Ventilation is a limiting factor for maximal physical exertion of divers at high ambient 

pressure ( 5). The increased work of breathing due to an increased gas density at depth 

plays a significant role in the limits placed on ventilation while at depth (64). Nitrogen 

narcosis is also thought to influence the respiratory control centers in the medulla for 

individuals working in hyperbaric conditions. 
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3. The use of sub-anesthetic levels nitrous oxide in nonnoxic mixtures provides a means 

to separate the influences of gas density and the narcotic effects of inert gases under 

pressure on ventilation. Evidence in the literature (35) suggests that nitrous oxide 

influences the central respiratory control center for ventilation by changing the sensitivity 

of central chemosenstive areas and/or peripheral chemoreceptors to mediators of 

ventilation {13, 39, 78, 80). 

4. For commercial divers working in hyperbaric conditions, with elevated or 

hyperthermic body temperatures (50), it is unclear how the separate effects of 

hyperthermia and nitrogen narcosis influence exercise ventilation. Core temperature is 

shown to be positively associated to ventilation (8, 77) and nitrogen narcosis is known to 

impair ventilation. 

2.4.1 Research Hypotheses 

Research Hypothesis #1: If ventilation is neurally mediated at high exercise 

intensities ( 46, 48, 63) it is hypothesized that the relationship between ventilation and 

core temperature (8, 77) will be influenced by inhalation of nonnoxic nitrous oxide. 

Research Hypothesis #2: If ventilation is neurally mediated at high exercise 

intensities (46, 48, 63), it is hypothesized that ventilation during short duration, high 

intensity exercise will be influenced by both normoxic nitrous oxide and passively 
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induced hyperthermia (8, 77). 

2.4.2 Testable Questions 

1. How do the core temperature thresholds for ventilatory equivalents of carbon 

dioxide and oxygen consumption (8, 77) compare during the same incremental 

exercise sessions from rest to maximal attainable workrates with subjects 

breathing either air or normoxic nitrous oxide? 

2. How do tidal volume and frequency of respiration compare during identical 

incremental exercise sessions from rest to maximal attainable workrates with 

subjects breathing either air or normoxic nitrous oxide? 

3. Does ventilation during short duration, high intensity exercise change for a 

hyperthermic relative to a normothermic core temperature? 

4. Does ventilation during short duration, high intensity exercise change for 30% 

normoxic nitrous oxide versus air breathing? 

5. Are the effects of hyperthermic core temperatures and norm oxic nitrous oxide on 

ventilation short duration, high intensity additive or do they interact? 
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3.1 Abstract: 

In this study we hypothesized if human ventilation during high intensity exercise 

has a neurally mediated component, that exercise ventilation would be affected by a sub-

anesthetic level of a narcotic breathing gas. To test this hypothesis 6 untrained college-

aged (23.6 ± 0.3 y) males of normal height (1.80 ± 0.01 m), weight (77.2 ± 4.1 kg) and 

physique (Body Mass Index= 24.8 ± 1.1 kg • m"2) performed a progressive incremental 

exercise test on a seated cycle ergometer to voluntary fatigue in 2 sessions on 2 days. 

Subjects breathed room air was in one session (AIR) and 30% nitrous oxide (N20), 21% 

oxygen (02) and 49% nitrogen (N2) gases in the other session (N20). During exercise, 

oxygen consumption ('V02), carbon dioxide production CV C02) and ventilation CV E) 

were measured on a breath-by-breath basis with a metabolic cart while esophageal 

temperature (Tes) was recorded by a temperature data logger. From each session 

ventilatory equivalents for oxygen consumption ( V pf V 02) and carbon dioxide production 

(VF!V c02) were expressed as a function ofTes. The results showed mean Tes thresholds 

. . . . 
of for VpfV co2 (p=0.0002) and VF!Vo2 (p = 0.0001) in the AIR trial were significantly 

lower than in the N20 trial. Also, ventilation in the N20 session was significantly lower 

than in the AIR session at 75% (p=0.03) and 100% (p=0.0001) of the mean maximal 

workrate. In conclusion, the results support that normoxic N20 inhibited V E, and this 

influenced the relationship of V E and T es· The results support the hypothesis that the 

control of ventilation during intense exercise includes a neurally mediated component. 
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3.2 Introduction 

Across numerous studies (9) of the control of human ventilation (VE) during 

incremental exercise from rest until the point of exhaustion, a consistent observation is 

that there are two inflection points or thresholds in the relationship between ventilation 

and oxygen consumption (V02). There is not a single hypothesis to explain the pattern 

of ventilation during exercise and the mediators that may account for these changes in 

ventilation at, or about the exercise intensity at these thresholds (9). The first ventilatory 

threshold (VT 1) occurs at 40 to 70% of the maximal attainable work rates and is thought 

to be of metabolic origin (17, 21). Subsequently, a second VE threshold {VT2) occurs at 

approximately 70 to 95% of maximum attainable work rates and it is thought to be 

neurally mediated (17, 21). One hypothesis on the origin VT2 and the subsequent 

hyperpnea of intense exercise is the response is thermolytic and that it contributes to 

cranial heat loss in hyperthermia (7, 16, 24). This follows from studies that indicated 

VT 2 coincides with thresholds for core temperature (T es) for V E during exercise (25, 26), 

T es thresholds for V E were also evident for passively induced hyperthermia (7) and that 

even small increases in ventilation were shown to decrease direct measures of human 

intracranial temperatures (16). 

The potential mechanisms underlying VT 2 and the hyperpnea of intense exerCise 
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were the focus of this study. Specifically, we investigated whether a simulated nitrogen 

narcosis, that was induced with a normoxic sub-anesthetic level of nitrous oxide, 

influenced ventilation and its relationship to Teo (25, 26) during incremental exercise 

from rest to maximal attainable work rates. We hypothesized that breathing a narcotic 

gas N20 would suppress ventilation and influence its relationship with Teo {7, 24-26) if 

the control of ventilation during intense exercise has a neural component. 
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3.3 Methods 

3.3.1 Subjects 

The subjects' physical characteristics appear in Table 3-1. All participants were 

made aware of any risks associated with the protocol used in this experiment. After 

reading a detailed outline of the study all participants signed informed consent. The 

sample size was determined using a power calculation. The difference worth detecting 

was set at 10%, with an alpha level of 0.05, a beta value of 0.8 and a standard deviation 

of 7% of the estimated mean scores. The proposed research was approved by two ethical 

review boards for human experimentation at Memorial University and at Dalhousie 

University. 

3.3.2 Instrumentation 

A Vmax229 series metabolic cart (Sensormedics, CA, USA) was employed to 

measured the expired gases. Breath-by-breath samples were collected from a sample line 

fitted close to the subject's mouthpiece. Gases were analyzed for 0 2 with a paramagnetic 

gas analyzer and for C02 content with an infrared gas analyzer. A mass flow sensor was 

employed to measure expired gas flow. Prior to all trials the analyzers were calibrated 

against gases of known concentration. The pneumotach was calibrated before each 

experiment using a syringe of known volume. The influence of 30% nitrous oxide on 

infrared carbon dioxide sensing (13) were accounted for in these calibrations. 
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Esophageal temperature (T es). was measured as an indice of core temperature. A 

Tes probe (size 9Fr, Mallinkroft Medical Inc., StLouis, MO, USA) was inserted via the 

nostril into the esophagus to the level of the left ventricle (19). Mean unweighted skin 

temperatures were estimated from sites at the chest and forehead with surface copper 

constantan thermocouples. All thermocouples were connected to a 32-channel data 

acquisition converter (National Instruments, SCXI - 1000, USA) and controlled by a 

National Instruments software package (Labview version 5-1) and values were 

continually displayed on a computer screen. 

The gas inhalate included either nitrous oxide (30% N20, 21% 02, balance N2, Air 

Liquide Canada, INC.) or air that were stored in a Tissot spirometer (Model 1464, 

Boston, Massachusetts, USA) and supplied to the subject in an open circuit via 

corrugated Collins respiratory fiber tubing. 

3.3.3 Protocol 

Each subject performed two incremental exercise tests from rest until exhaustion 

while breathing either air or normoxic nitrous oxide. Trials were performed 1 week apart 

and all participants were asked to refrain from ingesting nicotine or coffee for a 12 hr 

period prior to testing. In the control session subjects inspired room air and in the test 

session normoxic nitrous oxide. Each trail included an incremental exercise test to 

maximal exertion using a seated, electrically braked, cycle ergometer (LODE, Excalibur, 

The Netherlands). The test protocol used was an adapted form of the Thoden protocol 
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(23). Each subject had a 5 min warm-up period consisting of a 2 min familiarization 

while pedaling at 40 revolutions per minute (rpm) with a load of 20 Watts (W) followed 

by a 3 min warm up at a cadence of 70 rpm and a workload of 40 W. The intensity was 

then increased by 40 Watts every two min thereafter until the subject met any one of the 

following 3 conditions: could no longer maintain the 70 rpm pedaling speed, reached 

their V02max or their reached age predicted maximal heart rate. Room temperature was 

-24 ± 1.0°C during the trials. 

3.3.4 Statistical Analyses 

An ANOV A model was employed with repeated factors of Gas Type (Levels: 

. . . . 
AIR, N20) & Threshold Type (Levels: Vp)VC02, Vp)V02) for comparison of 

esophageal core temperature thresholds for ventilatory equivalents for V p)V C02 and 

V p)V 02 between conditions. A second ANOV A model was employed with repeated 

factors of Gas Type (Levels: AIR, N20) & Exercise Intensity (Levels: 0, 25, 50, 75 and 

1 00% of V 02MAX) to compare ventilation, tidal volume and frequency of respiration 

between exercise conditions. A priori orthogonal contrasts were employed for means 

comparisons and the level of significance was 0.05. 
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3.4Results 

Ventilation (Fig. 3-1a), tidal volume (Fig. 3-lb) and frequency of respiration (Fig. 

3-1c) are each plotted as a function of percentage of maximal exercise intensity in Figure 

3-1. Values for ventilation increased in an approximately linear manner until 50% of the 

maximal workload. Subsequently their slope of ventilation versus workload increased 

more steeply until 75% of the maximal workload and then again more steeply from 75% 

to 100% of the maximal workload. Between AIR and N20 trials .ventilation was 

significantly greater at 75% (p=0.03) and 100% (p=0.0001) of the maximal workload. 

Between AIR and N20 trials there were no significant differences for tidal volume 

(Vr). ·The mean tidal volume values tended to increase in a similar manner from a resting 

level of 1.0 L • breath-1 to a maximal level of2.5 L • breath-1 at 100% of V02MAX (Fig. 3-

1b). 

Frequency of respiration (FR) increased in both conditions in approximately linear 

manner until 50% of the maximal workload (Fig 3-lc). Subsequently, similarly for VEin 

Fig 3-1a, the slope of FR versus workload increased more steeply until 75% of the 

maximal workload and then again more steeply from 75% to 100% of the maximal 

workload. Between AIR and N20 trials, there was no significant differences of FR at 0, 

25 and 75% of the maximal workload (Fig 3-lc). However, at during 100% of the 
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workload attained, FR in the AIR trial of 51.1 ± 3 breaths • min-1 was significantly 

greater (p=0.02) than the corresponding maximal FR of 45.3 ± 2.6 breaths • min-1 in the 

" . . . 
Esophageal temperature thresholds for VpjVCOz (p=0.0002) and for VpjVOz 

(p=O.OOO.l) were found to occur at significantly higher Tes during the NzO trail than 

during the AIR trial (Fig 3-2). In addition, within a given trial for AIR or NzO, Tes 

thresholds for Vp}VC02 and VpjVOz were not significantly different (Fig 3-2). It 

. . . . 
follows that the pooled mean thresholds for VpjVCOz and Vp)VOz for AIR versus NzO 

trials were also significantly different (p=O.OOOl). A sample subject's Tes thresholds for 

ventilatory equivalent for oxygen in these exercise conditions (Fig. 3-3). 

The Tes and Tskin AIR and N20 trials are given in Figure 3-4 as a function of the 

percentage of the maximal work load achieved. The mean Tes of 37.25 ± 0.07°C in the 

N20 trial was significantly greater than the Tes of37.10 ± 09°C in the AIR trial (Figure 3-

4). There were no significant differences in Tsk between conditions. 
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3.5 Discussion 
- .. - ·-

The main findings in this study were that for the exercise with N20 relative to the 

control exercise with AIR, phase III ventilation was reduced for subjects exercising at 

levels of exertion greater than 75% of their maximal workload (Fig. 3-Ja). In addition, 

the Tes thresholds for ventilation were delayed to higher Tes in the N20 condition (Fig. 3-

2). The source of the decrease in ventilation appears to have arisen from the lower 

frequency of ventilation in the N20 relative to the AIR exercise (Fig. 3-1c) since tidal 

volume was similar between conditions (Fig. 3b). The results support that, at exercise 

intensities greater than approximately 75% of the maximal workload, the increases in 

ventilation are neurally mediated since breathing of the narcotic gas N20 reduced 

. ventilation. Reports in the literature support that compressed nitrogen gas has a narcotic 

effect on ventilation of divers (2, 4). 

White and Cabanac (7, 24) demonstrated Teo thresholds for ventilation with both 

passively (7) and actively (24) induced hyperthermia. Following these Teo thresholds, 

ventilation and T co increased in direct proportion and the results supported an association 

between elevated T co and increased ventilation during exercise. These T co thresholds for 

ventilation were shown to be at an intensity of exertion that was significantly greater than 

VT 1 (26), that has been suggested to be of metabolic origin ( 17, 21 ). In addition it was 

reported (17, 21) these Teo thresholds were not significantly different than VT2. The 

second ventilatory threshold at VT2 is suggested to be neurally mediated (17) and 

together with the present results this supports the view that the hyperpnea of intense 
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exercise is a vestigial panting in humans (24). Evidence supportin this view was given by 

Nybo and Nielsen (20) who showed hyperthermia superimposed on a submaximal 

exercise session at -57% of V 02MAX gave a hyperventilation relative to exercise without 

the superimposed hyperthermia. Overall it appears that ventilation is a neurally mediated 

response that acts to help heat loss from the upper airways as evidenced by its direct 

influence on human cranial temperatures at higher levels of exertion (16). 

The literature is not consistent on effects of N20 on ventilation during exercise. 

Ciammaichella and Mekjavic (8) in a similar exercise protocol to that employed 

presently, saw no influence of 30% normoxic N20 on ventilation at all levels of exertion 

from rest until maximal work rates. In contrast Fothergill et al. (11) focused on the 

response of minute ventilation rate with inhalation of 23% N20 during both submaximal 

and maximal exercise and reported a 2% increase in V E during maximal exercise. The 

current study supports the view that N20 impairs exercise ventilation (14, 28). 

At sea level the limitation to muscular work is attributed from the inability of the 

circulatory system to supply oxygen (02) to the tissues quickly enough at high exercise 

intensities. However, for work or exercise in hyperbaric conditions, the limiting factors 

for maximal exertion are from gas density, which increases the work of breathing (3), and 

from the narcotic effects of nitrogen gas in central nervous system tissues, which impedes 

action potentials and synaptic transmission. This mechanism is hypothesized to lead to 

decreased ventilation (2, 3). Several studies have illustrated a decrease in exercise 
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ventilation in hyperbaric conditions (1, 12, 22, 27), however, these studies have not 

separated the limitations placed on ventilation by either an increased gas density or the 

narcotic effects of nitrogen gas. Linnarson and colleagues. (1 5) studied the ventilation 

responses to exercise at successive workloads of SO, 150 and 250 W at 5.5 Bar with a 

mixture of nitrogen and oxygen, that has effects similar to N20, and compared them with 

air at 1.0 Bar. They found a decreased heart rate (HR), maximal voluntary ventilation, 

but did not see an effect of hydrostatic pressure on ventilation in their study ( 1 5). The 

current study employing normoxic nitrous oxide supports ventilation at depth would in 

part be limited by narcosis, if the assumption that elevated N2 and N20 partial pressures 

have the same effects on ventilation (5, 6). Despite a higher Tes (Fig. 3-5) for the N20 

trial, a lower ventilation (Fig. 3-2) was evident supporting its central narcotic effects on 

ventilation. 

Nitrous oxide is known to influence temperature regulation and was found to 

significantly enlarge the null zone for Teo (18). In this study by Mekjavic and Sundberg 

(18) subjects performed submaximal exercise while immersed in a 28"C water bath (18). 

While there was no difference in the Teo threshold for cessation of sweating in their study 

( 18), the T co threshold temperature for the onset of shivering was shifted significantly to 

lower Teo· The null zone measured byTes was increased from -0.6°C to -0.9°C with the 

inhalation of 30% N20 (18). Nitrous oxide was suggested to affect neural mechanisms 

(18) through modifications to synaptic transmission (Bennet, 1982, as cited by (18)) and 

the propagation of action potentials (Carpenter, 1954 as cited by (18)). Our results 
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suggest that Tes thresholds for ventilation were also influenced by N20 through a similar 

mechanism as suggested by Mekjavic and colleagues (Figure 3-2). 

Another possible mechanism that may have contributed to changes in ventilation 

was that N20 acted at cortical level and subjects consciously breathed less. This may be 

complementary or in addition to a direct narcotic effect on the respiratory control center 

where the frequency and depth of ventilation are thought to originate. In the absence of 

exercise, Eisele (1 0) examined the cardiovascular responses to 40% N20 and reported 

without providing any reported experimental data that "respiration appeared to be slower 

and deeper" (I 0). This observation was also reported during exercise by Mekjavic and 

Sundberg (18) in their study of human exercise immersed in 28"C water with inhalation 

of 30% N20. They found, although not statistically significant, that there was a tendency 

for ventilation to be lower during N20 breathing (18). 

3.6 Conclusions 

For subjects exercising from rest until maximum levels of exertion, inhalation of 

normoxic 30% N20 significantly decreased ventilation at higher exercise intensities. 

This type of exercise with nitrous oxide inhalation raised T es thresholds for ventilation. 

Together the results support that at higher exercise intensities, a neural component is 

evident in regulation of human ventilation. 
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Table 3.1. Subject ages and physical characteristics. 

Subject Age Height Weight BMI 

(yrs) (m) (kg) (kg • m2) 

1 25.0 1.76 68.6 22.9 

2 23.0 1.76 65.9 21.3 

3 24.0 1.81 86.4 26.5 

4 24.0 1.74 77.3 25.5 

5 22.0 1.78 88.0. 27.8 

6 24.0 1.73 70.9 23.7 

Mean 23.6 1.77 77.2 24.8 

SE 0.5 0.01 4.1 1.1 
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Figure 3-1 (a) Mean ventilation (VE), (b) Tidal Volume (VT), and (c) Frequency of 

. Respiration (f) expressed as function of percent of maximal workload for subjects 

exercising from rest until maximal attainable level of exertion The values were 

calculated over the duration each workload ofO, 25, 40, 75 or 100%. Subjects breathed 

either AIR or normoxic 30% N20 during the two trials (*p<O.OS, ***(p<O.OOOl). 
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4.1 Abstract 

The influence of normoxic 30% nitrous oxide and passively induced hyperthermia 

on phase I exercise ventilation were examined during short duration, high intensity 

exercise. Six college age males (24.0 ± 0.8 y; mean ± SE), of normal physique (BMI, 

23.8 ± 1.0 kg • m"2), performed 4 separate 30-sWingate tests on an electrically braked, 

seated, cycle ergometer. Subjects were monitored for total ventilation (V E) in 30 s, 

oxygen consumption and carbon dioxide production on a breath-by-breath basis as well 

as for esophageal temperature (T es) and skin temperatures. Prior to 2- Wingate tests 

subjects Tes was elevated to -38.5 ± 0.04°C in a 40°C bath. For the 2 other Wingate tests, 

subjects were not pre-warmed and exercise Tes remained at a normothermic level of 

-36.8± 0.05°C. For hyperthermic or normothermic conditions, subjects had one Wingate 

test with room air inhalation (AIR) and in another Wingate test with 30% normoxic 

nitrous oxide (N20) inhalation. Results indicated the VE of 43. 5 ± 5.1 I • 30 s"1 in the 

normothermic N20 condition of was significantly lower (p<0.05) than the hyperthermic 

N20 VE of61. 5 ± 8.7 • 30 s·1• The normothermic N20 tidal volume (Vr) of 1.71 ± 0.21 

was significantly lower {p<0.05) than both the normothermic AIR Vrof 1.99 ± 0.151 and 

the hyperthermic N20 Vr of 1.94 ± 0.20 1. In conclusion, the results support that the 

control of exercise ventilation in these conditions has a neural component since narcosis 

in normothermic exercise suppressed tidal volume and total ventilation while 

hyperthermia combined with normoxic N20 increased both tidal volume and total 

ventilation. 
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4.2 Introduction 

As ambient pressure increases in hyperbaric environments, the air is compressed 

and this has detrimental effects on a diver's performance. Divers breathing compressed 

air between 4 and 6 ATmospheres Absolute (ATA) of pressure experience nitrogen 

narcosis, the effects of which are similar to breathing 30% normoxic nitrous oxide (N20) 

under normobaric conditions (5). Thirty-percent-nitrous-oxide has been studied for its 

effects on psychomotor performance (6), cardiorespiratory function at rest (5, 11, 15, 23) 

and during exercise (9, 15, 22) and on human thermoregulation (8, 9, 18). The nature of 

human ventilation during intense exercise for divers under nitrogen narcosis has, 

however, received considerably less attention (9). 

Divers conducting physical work at depth can be rendered hyperthermic with hot 

water from a surface supply warming system (19). This gives divers working with three 

potentially interacting influences on their ventilation. These are nitrogen gas under 

pressure (3), compressed air with a higher gas density (4), and elevated body 

temperatures (10, 29). At depth both the increased density and the narcotic effects of 

compressed air are thought to inhibit ventilation (4), although the relative contributions of 

these influences are difficult to assess. In contrast, an elevated core temperature (T co) is 

known to stimulate human ventilation at rest (7, 16) or during exercise (10, 21, 29). In 

divers working in hyperbaric environments, each factor of elevated Teo, gas density, and 

effects of narcotic gases on peripheral chemoreceptors and/or central respiratory control 
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centers need to be considered to explain changes in their ventilation during exertion. 

The present study was conducted to study the separate influences of hyperthermia 

and narcotic gases on human ventilation during intense exercise. To induce a large initial 

increase in ventilation without time for a change in Teo, a 30-s Wingate exercise test was 

employed in 4 exercise sessions. This is also described as phase I of exercise ventilation 

(12, 28). Narcosis was induced during the Wingate tests with inhalation of 30% 

normoxic nitrous oxide at 1 ATA. To allow a test of the separate effect of hyperthermia 

on ventilation, subjects were also immersed in a 40°C bath prior to two Wingate tests. As 

such, hyperthermic narcotic subjects', normothermic narcotic subjects', and hyperthermic 

air breathing subjects' responses were all compared to the control condition of 

normothermic subjects breathing air. It was hypothesized that N20 would inhibit 

ventilation (4) and that increased Teo would enhance ventilation in these exercise 

conditions (10, 29). 

4.3 Methodology 

4.3.1 Subjects 

The subjects' physical characteristics appear in Table 4-1. All participants were 

male, physically fit, non-smokers and made aware of any risks associated with the 

protocol used in this experiment. After reading a detailed outline of the study all 

participants signed informed consent. The sample size was determined using a power 

calculation. The difference worth detecting was set at 10%, with an alpha level of0.05, a 
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beta value of 0.8 and a standard deviation of 7% of the estimated mean scores. The 

proposed research was approved by ethical review boards for human experimentation at 

Memorial University and at Dalhousie University. 

4.3.2 Instrumentation 

A Vmax229 series metabolic cart (Sensormedics, CA, USA) was employed to 

measured the expired gases. Breath-by-breath samples were collected from a sample line 

fitted close to the subject's mouthpiece. Gases were analyzed for 02 with a paramagnetic 

gas analyzer and for C02 content with an infrared gas analyzer. A mass flow sensor was 

employed to measure expired gas flow. Prior to all trials the analyzers were calibrated 

against gases of known concentration. The pneumotach was calibrated before each 

experiment using a syringe of known volume. The influence of 30% nitrous oxide on 

infrared carbon dioxide sensing were accounted for in these calibrations. 

Esophageal temperature (T es) were estimated using an esophageal temperature 

probe (size 9Fr, Mallinkroft Medical Inc., St Louis, MO, USA) and the probe was 

inserted to the level of the left ventricle (20). Mean unweighted skin temperatures {T sk) 

were estimated from sites at the chest, thigh and forehead with surface copper constantan 

thermocouples. All thermocouples were connected to a 32-channel data acquisition 

converter (National Instruments, SCXI - 1000, USA) and controlled by a National 

Instruments software package (Lab view version 5-l) and values were continually 

displayed on a computer screen. 
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The gas inhalate included either normoxic nitrous oxide (30% N20, 21% 02, 

balance N2, Air Liquide Canada, INC.) or AIR that were stored in a Tissot spirometer 

(Model 1464, Boston, Massachusetts, USA) and supplied to the subject in corrugated 

Collins respiratory fiber tubing. 

4.3.3 Protocol 

Following instrumentation the subject exercised in one of four 30-s Wingate tests 

on an electrically braked, seated, cycle ergometer (2). Trials were performed 1 week apart 

and all partiCipants were asked to refrain from ingesting nicotine or coffee for 12 hr prior 

to exercise tests. Subjects inhaled either room air or 30% normoxic N20 in a given 

Wingate test. The subjects were normothermic (Tes-36.8"C) in two Wingate tests and 

hyperthermic in two other Wingate tests (Te5-38.5"C). Prior to the hyperthermic session 

subjects were warmed in a 40°C water bath and they started exercise within 

approximately 2 minutes after exciting the bath. This gave four conditions of exercise as 

shown in Table 4-2. The esophageal temperature (T es) levels in the four conditions are 

given in Figure 4-1. 

At the start of the test the subject was seated on the cycle ergometer and began 

breathing air or NzO through the mouthpiece for 4.5 min baseline, followed by a 30 sec 

warm-up at 40 W to initiate a pedaling cadence between 80 to 90 rpm. The subject was 

given a 5 second countdown to the time of the end of warm-up and then proceeded to 

perform a 30 second Wingate test, with instructions to go and pedal as hard and as fast as 
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possible with a resistance of 0.09 kp (0.88 N)lkg and an approximate cadence of 80 to 90 

rpm. 

4.3.4 Statistical Analysis 

The dependent variables of interest were the total ventilation, mean YT, and mean 

FR during the 30s Wingate tests. An ANOV A model {Table 4-2) was employed with 

repeated factors of Gas Type (AIR, N20) inhaled and Thermal State (Normothermic and 

Hyperthermic) of the subject. A priori orthogonal contrasts were employed to compare 

means and results were considered significant at 0.05. 
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4.4Results 

The T es prior to and following each test Wingate test are given in Figure 4-1. The 

level ofTes in both normothermic trials were similar (e.g. -36.8°C). This Tes level was 

significantly lower than the Tes of -38.5°C in the two hyperthermic conditions. The 

means ofT es in the two hyperthermic trials were not significantly different. 

Figure 4-2 gives the mean total ventilation over 30 s during the four Wingate 

exercise conditions. The total ventilation was lowest at 43.5 1 ± 5.1 liters • 30 s"1 during 

the normothermic N20 condition. Total VE was at similar levels of 55.1 ± 4.5 liters• 30 

s·' in the normothermic AIR and of 54.6 ± 8.2 I • 30 s"1 in hyperthermic AIR. The 

highest total ventilation was of 61.5 I ± 8. 7 I • 30 s"1 in the hyperthermic N20 condition 

and this value was significantly greater (p <0.05) than the level seen in the normothermic 

N20. 

The lower total ventilation in normothermic N20 condition was contributed to by 

a lower mean tidal volume in that exercise condition (Figure 4-3). There were significant 

decreases in the mean tidal volume to 1. 7± 0.2 1 in normothermic N20 relative to the that 

of 2.0 ± 0.2 1 (p<0.05) in the normothermic AIR condition and of 1.9 ± 0.2 I (p<0.05) tn 

the hyperthermic N20 condition. 

The total number of breaths taken by each subject during the Wingate is given in 
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Figure 4-4. Across the four conditions there were no significant differences in total 

number of breaths. 

The mean skin temperature (Tsk) responses are given in Figure 4-5 in each 

experimental condition. The level ofTsk was not significantly different between the start 

and the end of a given Wingate rest. There was no effect of gas type or thermal state on 

Tsk although there was a tendency for an interaction between gas type and thermal state 

(F=4.7, p =0.08) that was explained by a trend for a higher Tskin the hyperthermic N20 

condition. 
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4.5 Discussion 

By employing normoxic nitrous oxide inhalation during exercise our results 

separated the combined effects of narcosis and elevated ambient pressure that are thought 

to decrease exercise ventilation in hyperbaric conditions (14, 27). Also the pre-warming 

of subjects provided a means to assess the separate effect hyperthermia on initial exercise 

ventilation (12, 28). The results supported that N20 inhalation significantly inhibited V E 

under normothermic conditions as relative to hyperthermic conditions with N20 (Fig. 4-

2). This change in ventilation appears to have resulted due to a decrease in tidal volume 

in the normothermic N20 condition (Fig. 4-3) since frequency of ventilation was not 

significantly different between conditions (Fig. 4-4). 

Exercise ventilation during diving conditions appears to be inhibited by the 

combined effects of increased ambient pressure and nitrogen narcosis. Tetzlaff and 

colleagues found a significant decrease in VE and VTduring exercise at 0.4 MPa (4 ATA) 

relative to exercise at 0.1 MPa (1 ATA) (27). The current finding that N20 decreases 

total ventilation under intense exercise is in agreement with Tetzlaff and colleague's 

study (27) as well as results of Fagraeus and colleagues (14). Fagraeus and colleagues 

(14) also showed a decrease in VE during heavy exercise (100 W, 150 W) at4.5 ATA 

breathing compressed air as compared to 1.0 ATA breathing air. The current results 

support that the central narcotic effect of N20, or possibly nitrogen gas in the CNS for 

divers breathing air, should be considered in addition to the decrease in ventilation in that 
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is attributed to the increased density of air in hyperbaric conditions (25). 

Hyperthermia has been linked to ventilation in incremental exercise (29), as well 

as in warm water immersion (7, 16). In both hyperthermic states ventilation increases out 

of proportion to oxygen consumption after T co thresholds are reached during body 

warming (7, 29). In the present short duration, high intensity exercise, however, our data 

did not support an influence of increased T es on ventilation unless it was combined with 

nitrous oxide inhalation (Fig. 4-2). This might suggest that the neurally mediated 

component, that is thought to account for the initial phase I increases in ventilation during 

exercise (12), is inhibited by narcosis and subsequently elevated byTes back to levels 

seen in for exercise with air as the inhalate (Fig. 4-2). 

When 30% normoxic NzO was inhaled during submaximal exercise (18), the null 

zone of Teo was enlarged from -0.6°C to -0.9°C due to a suppression of the core 

temperature threshold for shivering with no change in the T co threshold for cessation of 

sweating (18). Mekjavic and colleagues suggested that nitrous oxide affected neural 

mechanisms (18) through modifications to synaptic transmission and the propagation of 

action potentials (4). Our results suggest that ventilation was also influenced by 

inhalation ofNzO in terins of decreasing tidal volume during high intensity, short term 

exercise. The mechanism through which ventilation is reduced in exercise may be 

similar to what has been suggested by Mekjavic and colleagues (18), however, at the 

present time the neural pathways by which NzO may influence tidal volume are 
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unknown. These authors (18) also observed a tendency for ventilation to be lower during 

N20 breathing (18) although in a subsequent study with incremental exercise to 

maximum, ventilation was not reduced with 30% N20 breathing (9). Another 

observation made by Eisele (13) is relevant to discussion on the potential mechanisms 

responsible for N20 influencing ventilation. These authors (13) reported that inhalation of 

40% N20 under resting conditions induced slower and deeper ventilation in their subjects 

since they 'felt better', but they did not include any ventilation data in support of their 

observation. This suggested the effect of N20 on the conscious control of breathing may 

be separate or in combination with N20's influence on the respiratory control center 

where efferent outputs changing frequency of respiration and tidal volume are believed to 

originate. In any case, our results clearly show that subjects took deeper breaths while 

breathing 30% N20. A future study is envisioned to quantify how the subjects "feel" 

during the exercise trials, so as to verify or refute Eisele's (13) observation that deeper 

breathing is a conscious experience for subjects breathing N20. 

During exercise at higher intensities Teo may influence ventilation, although the 

mechanisms have not yet been clearly analyzed (17). This may result from a physical 

effect of temperature on peripheral chemoreceptors and/or central chemosensitive areas 

that may increase their responses to normal metabolic stimuli, such as seen for carbon 

dioxide with body warming (10, 24). Other possibilities include body warming that gives 

an increased central metabolic or a Qw effect and associated increased in ventilation to 

meet metabolic demands. Also the activity of hydrogen ions is higher at elevated 
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temperatures (1) possibly providing greater central and/or peripheral stimulation of 

ventilation. Finally a decreased buffer capacity for C02 by body fluids takes place at 

higher temperatures (26) and this may lead to a lowered pH and compensatory 

hyperventilation. 

4.6 Conclusion 

In conclusion, the results support the hypothesis that N20 inhibited ventilation. In 

these conditions core temperature did not affect ventilation unless combined with 

hyperthermia in this short duration, high intensity exercise. Overall this study supports 

that the effects ofN20 and Tes may have counteracting influences on exercise ventilation 

in these conditions. 
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Table 4.1. Subject ages and physical characteristics. 

Age Height Weight BMI* 

Subject# (yrs} (m} (kg) (kg • m·2) 

I 25 1.76 71.8 23.2 

2 23 1.78 65.9 20.8 

3 26 1.86 87.7 25.4 

4 22 1.73 66.8 22.3 

5 22 1.78 86.8 27.4 

6 26 1.73 70.5 23.5 

Mean 24.0 1.77 74.9 23.8 

SE (:!:) 0.8 0.02 4.0 01.0 

*Body Mass Index (BMI) 
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Table 4.2. This table summarizes the four experimental conditions employed in this 

study. Each subject had four sessions of exercise for each of the experimental conditions 

as given in the table below. 

Gas Type 

Air JO%N20 

Tes-36.8°C Normothermic Air Normothermic N20 
Thermal 

State 

Tes-38.5°C Hyperthermic Air Hyperthermic N20 
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Figure 4-1. Initial esophageal temperature (Tes, open bar) prior to the Wingate exercise 

and the final esophageal temperature (Tes, black bar) at the completion of the Wingate 

exercise are shown in each of the four test conditions. Each vertical bar represents the 

mean response for 6 subjects and the error bars present the standard error of the mean 

(NS =Non- Significant). 
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Figure 4-2. Mean total ventilation (VE) or the sum of all VT during the Wingate exercise 

in each of the four conditions. AIR conditions are open bars and N20 conditions are 

black bars. Each vertical bar represents the mean response for 6 subjects and the error 

bars present the standard error of the mean (*p <0.05). 
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Figure 4-3. Mean tidal volume during the Wingate test in each of the four conditions. 

AIR conditions are open bars and N20 conditions are black bars. Each vertical bar 

represents the mean response for 6 subjects and the error bars present the standard error 

ofthemean. 
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Figure 4-4. Mean total number of breaths taken during the Wingate exercise in each of 

the four test conditions. AIR conditions are open bars and N20 conditions are black bars. 

Each vertical bar represents the mean response for 6 subjects and the error bars present 

the standard error of the mean. 
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Figure 4-5. Initial (open bar) and the final (shaded bar) mean skin temperature (T sk) prior 

to and following the Wingate exercise in each of the four test conditions. Each vertical 

bar represents the mean response for 6 subjects and the error bars present the standard 

error of the mean. (NS =not significantly different) 
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Chapter 5: Thesis Summary and Conclusions 
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5.1 Thesis Summary and Conclusions 

It was hypothesized in this thesis that the relationship between ventilation and T co 

(1, 8) would be influenced by NzO if ventilation is neurally mediated at high exercise 

intensities (3-5). This hypothesis was addressed in the first study of this thesis in Chapter 

3, where the effect ofnormoxic NzO on ventilation was examined during phase III (2, 6) 

of the ventilatory response to exercise. 

A second hypothesis in this thesis was that ventilation during short duration, high 

intensity exercise will be influenced by both normoxic NzO and Teo (1, 8) if ventilation is 

neurally mediated at high exercise intensities (3-5). This hypothesis was addressed in the 

second study of this thesis in Chapter 4 where the effects of normoxic NzO and T co on 

ventilation were examined during phase, I (2, 6) or during the initial increases in 

ventilation that are observed at the onset of exercise. This study was made possible with 

an innovative protocol that allowed a 'normothermic' exercise to be compared to a 

passively induced 'hyperthermic' exercise. Both these conditions were compared 

between air and 30% normoxic NzO breathing conditions. 

There were five testable questions stated at the end of the literature review in 

Chapter 2 of this thesis. Given below in this chapter are these five testable questions and 

their replies. The questions are separated into the two studies that were conducted in this 

thesis. 
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Study #1: Chapter 3: Influence ofNormoxic 30% Nitrou.s Oxide on Ventilation and 

Teo Thresholds for Ventilation during Exercise 

1. How do the Tes thresholds for ventilatory equivalents of carbon dioxide and 

oxygen consumption (1, 8) compare during the same incremental exercise 

sessions from rest to maximal attainable work rates with subjects breathing 

either air or normoxic nitrous oxide? 

The results of this study indicated that, when subjects breathed a 30% normoxic 

nitrous oxide gas mixture, the core temperature thresholds (7-9) for ventilation were 

delayed to a significantly higher core temperature during incremental exercise. This was 

evidenced by a lower exercise ventilation in subjects breathing normoxic nitrous oxide 

than in those breathing air. 

2. How do tidal volume and. frequency of respiration compare during identical 

incremental exercise sessions from rest to maximal attainable workrates with 

subjects breathing either air or normoxic nitrous oxide? 

The results indicated that, for exercising subjects who breathed a normoxic 30% 

nitrous oxide gas mixture, that the tidal volume was the same at all levels of exercise 

from rest until maximal attainable workrates as that in the same exercise in a control 

condition when air was breathed. In contrast, frequency of respiration was significantly 

lower at the highest exercise workload for the 30% normoxic nitrous oxide condition 
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relative to the air-breathing-condition. This decrease in the rate of breathing accounted 

for the lower observed ventilation at the maximal level of exercise for these subjects. 

Conclusion to Chapter 3, Study #1 

In conclusion, the results of study 1 indicated during (2, 6) that normoxic nitrous 

oxide inhibited phase III exercise ventilation and influenced the relationship between 

core temperature and ventilation during exercise. The results support that ventilation at 

high exercise intensities is neurally mediated as evidenced by this narcotic gas that 

inhibited ventilation. 

Study #2: Chapter 4: Effects of hyperthermia and 30% normoxic nitrous oxide on 

human ventilation during short duration, high intensity exercise. 

In this second set of experiments, independent of nitrogen narcosis, we 

determined whether a hyperthermic core affects ventilation during a 30-s, high intensity 

Wingate exercise test. Also, independent of raised core temperature, we determined 

whether nitrous oxide influenced ventilation in these exercise conditions. Finally, when a 

hyperthermic core temperature level was combined with 30% normoxic nitrous oxide 

breathing, we determined how ventilation responded relative to levels under control, air 

breathing conditions. Replies to the testable questions to address these potential effects 

of 30% normoxic nitrous oxide and core temperature on exercise ventilation are as 
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follows: 

3. Does ventilation during short duration, high intensity exercise change for a 

hyperthermic relative to a normothermic core temperature? 

Ventilation during short duration, high intensity Wingate exercise tests was the same 

during hyperthermia and normothermia in these exercise conditions. 

4. Does ventilation during short duration, high intensity exercise change for 

30o/o normoxic nitrous oxide versus air breathing? 

Ventilation was lower during 30% normoxic nitrous oxide breathing than with air 

breathing for hyperthermic subjects during short duration high intensity exercise. The 

decrease in ventilation resulted from a significant decrease in tidal volume. The results 

support that nitrous oxide breathing inhibited ventilation through its narcotic effects on 

the central nervous system. 

5. Are the effects of hyperthermia and nitrous oxide on ventilation short 

duration, high intensity additive, or do they interact? 

When 30% normoxic nitrous oxide was combined with hyperthermia, ventilation 

was similar to that observed during air breathing (Figure 4-1 ). This suggested nitrogen 
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narcosis, induced by 30% nonnoxic nitrous oxide breathing, and core temperature have 

additive effects on ventilation. Stated otherwise, the ventilation that was lowered by 

30% normoxic nitrous oxide breathing was returned to nonnal levels when hyperthennia 

was combined with this narcotic gas treatment. 

Conclusion to Chapter 4, Study #2 

In conclusion, the results of study 2 indicated that nitrous oxide suppressed 

ventilation by decreasing the tidal volume or depth of respiration during phase I exercise 

ventilation (2, 6). The results support that ventilation is neurally mediated since nitrous 

oxide and core temperature both influence ventilation during short duration, high 

intensity exercise. 

Overall Thesis Conclusions 

Phase I and III of exercise ventilation were examined in this thesis. During phase 

III (Study 1) and phase I (Study 2) of exercise ventilation, nitrous oxide decreased 

ventilation. This effect came about differently in each phase of exercise ventilation. In 

phase III, 30% normoxic nitrous oxide decreased the frequency of respiration and as a 

result the ventilation. In phase I exercise ventilation 30% normoxic nitrous oxide 

lowered ventilation by decreasing the depth of the tidal volume and did not influence the 

frequency of respiration. Although hyperthermia alone did not influence exercise 

5-94 



ventilation in Phase I, when hyperthermia was combined with nitrous oxide the effect 

appeared additive. This thesis supports the hypothesis that the control of exercise 

ventilation in Phase I and Phase III has a neural component. 
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