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Abstract

In this article, we develop tests for equality of response curves. We assume that the
mathematical expression of the response curves are unknown. Consequently, we exploit
the adaptive properties of wavelets to construct a wavelet representation of the curves.
Then, we develop an approach which combines the False Discovery Rate (FDR) technique
and the universal thresholding approach, widely used in data denoising, for detecting differ-
ences between the curves. We also discuss some methods based on the general F-test. We
consider several examples under a variety of conditions such as unequal variances, unequal
number of observations, and distinct design points. The size and power performances of

the tests are reported. We present two real examples at the end of this article.
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Chapter 1

INTRODUCTION

A common problem in experimental work, such as toxicology and epidemiology, is the
comparison of two mean response curves. This comparison becomes complic: 1 when
the response functions are unknown.

This problem has been already investigated by a few authors using smooth >npara-
metric estimates of the regression curve. See Hirdle and Marron (1990), Hall d Hart
(1990), and King, Hart and Wehrly (1991)). Hall and Hart (1990) discussed a iotstrap
procedure for testing the equality of two curves. Under the assumptions that sar le sizes
are equal(n; = no) and design points are the same(z; = u;). King et al. (1991) oposed
two tests both with common design points, one for normal errors and the other for non-
normal errors. It is difficult to justify the asymptotic properties of these statistics nce the
statistics which are based on automatically chosen smoothing numbers are compt ionally
demanding. Another restriction of the tests mentioned above is the requirement of equal
sample size and same design points, which may be difficult to obtain in practic  In ad-
dition, computing p-values for these tests requires several thousands of simulat | which

an experimenter may not have the time to complete. Consequently, we feel that it is im-



portant to investigate new methods that are relatively easy to implement with power that is
comparable to these methods.

Héardle and Marron (1990) propose a semiparametric test. The test involves the method
of parametric transformation of axes. They also study estimation and testing of the parame-
ters in the transformations. Delgado (1993) proposes a test which resembles in spirit to the
Kolmogorov-Smirnov Statistic. Similar to smoothing estimates methods, these two tests
both assume equal designs.

In this study, we propose and investigate three wavelet-based procedures for testing the
equality of curves. The first two methods requires equal sample sizes and same design
points; whereas the third is a general procedure with no restrictions. In what follows,
readers will find that the third procedure requires a larger sample size to achieve high
power.

Wavelet theory, which has been developing over the years has proved to be useful in
signal processing, fast algorithms for integral transforms in numerical analysis and function
representation. For a recent survey on the use of wavelets in signal processing, see Rioul
& Vetterli (1991). Due to the flexible nature of wavelet systems, there has been growing
interest in the application of wavelets to statistical problems. Successful statistical applica-
tions have already been made in areas such as regression, density and function estimation,
factor analysis, modeling and forecasting in time series analysis, and spatial statistics.

The problem we consider can be described as follows. The observed data are {(Y;, z;),i =

1,...,ni1}and {(Z;,u;),7 = 1,...,n2} with

Y;':f(zi)‘i‘fi, izla"'v”l)
(1.1)
Zi=g(uj)+v;, j=1,..,n
where €;,,7 = 1,...,ny and v;,7 = 1,...,ny are independent random errors for the two

groups. We assume that in each group the errors are identically distributed with mean 0,
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var(e) = 2 and var(v) = o2, where o2 is not necessarily equal to o2. However, the ¢;’s
are assumed to be independent of the v;’s. Based on the observed data, an experimenter
is interested in determining whether the underlying mean response functions generating
Y; and Z; are the same. That is, the null and alternative hypotheses of interest to the

experimenter are

Hy: f(z) =g(x) for all x €[0,1],
H, : f(z) # g(x) for some x € [0,1].

(1.2)

In the sections that follow, we discuss some wavelet basics needed for the understand-
ing of the contents of Chapters 2 and 3. It is in these chapters that we develop the test
statistics for (1.2). The test statistic in Chapter 2 arises from the false discovery rate(FDR)
approach of Abramovich and Benjamini (1995), and the statistic in Ch ter 3 is based on
wavelet expansion. In the second part of Chapter 3, we generalize the wavelet expansion
methods, so that the statistics can be used for the test under any condition, such as unequal
sample sizes, different design points and repeated measurements. Two examples the metha-
choline CRC in mesenteric arteries and the mouse lymphoma assay are used to illustrate

the techniques in Chapter 4.

1.1 Some Background on Wavelets

In this section we introduce some definitions and theories on wavelets relevant to our
work. More detailed discussions can be found in Mallat (1989), Meyer 992), Daubechies
(1992), Abramovich and Benjamini (1995),(1996), Benjamini and Hoct  rg (1995), Hardle,
Kerkyacharian, Picard, and Tsybakov (1998), and Vidakovic(1998).

A wavelet system is a collection of dilated and translated versions of a scaling function



¢(x) and a primary wavelet ¢(z) defined by
¢jx(z) = 272¢(2x — k)

and

Yik(z) = 27Y(Pr —k),j k€L

respectively. The function ¢(z) and ¥ (x) are chosen to satisfy the equations

¢(z) = D hpd(2z — p) (13)
pEZ
Y(z) =Y g:6(2x —1) (1.4)
reZ
and
gr=(=1)"horp1 (L.5)

for a sequence h, of constants, called filter coefficients, with

/cb(:r)d:r = L/zﬁ(x)dw = 0,/¢2(x)dx =1.

The condition

> hy=2

pEZ

ensures the existence of a unique solution to equations (1.3) and (1.4). Orthogonality of the
translates of ¢(z) is ensured by e condition
> hyhpoj =06, €L
pEL
In the theory of wavelets, the space of square integrable functions, Lo(R), is written as

the limit of a sequence of close subspaces V; where



The nested spaces have an intersection that is trvial and a union that is dense in Ly(R),
N;Vs = 0,0,V = Ly(R) (1.6)

where we denote the closure of a set A by A.
Mallat(1989) introduced the notion of a multiresolution analysis, the definition of which

we recall here.

Definition 1.1.1 A multiresolution analysis of Ly(R) consists of an increasing sequence of

closed subspaces V}, j € Z such that

(a) ﬂj V;=0;
(b) Uj V= Lo(R),

(c) there exists a scaling function ¢ € Vy such that ¢(x — k), k € Z is an orthonormal

basis of Vi,
(d) forallk € Z, f(z) € V; <= f(z — k) € V}, and
(@) f(x) € V; = f(22) € Vo,

The intuitive meaning of (¢) is that in passing from V; to Vj,, the resolution of the ap-
proximation is doubled. Mallat(1989) has shown that given any multiresolution analysis,
it is possible to derive a function ¥(z) such that the family {¢;s(x) : 7,k € Z} is an
orthonormal basis of Ly (R).

To construct ¥;x(x), we define for each j € Z the difference space IV, to be the

orthogonal complement of V; such that

WyoV; =V, W; LV



That is, any function f(z) € Vj4; can - written as a linear combination or direct sum of

functions in 1¥; and V;. It can be verifi  that

j—1

Vi=Voo Pwi

1=0

Iterating this infinitely many times, we find
L(R) =V, = Vo 0 PW.
=0 i=0
This means that any f € LLy(R) can be represented as a series(convergent in Ly(R)):

f@) = ciokion(z) + DY disthsu(x), (1.7)

keZ Jj=jo kEZ
where ¢jx, d;i are some coefficients, and {t;},k € Z is a basis for W;. The relation
(1.7) is called a multiresolution expansion of f. The space W is called resolution level of

multiresolution analysis. In Fourier analysis there is only one resolution level. In multires-

olution analysis there are many resolution levels which is the origin of its name.

1.1.1 Wavelet system construction
The general framework of wavelet system construction is as follows.

1. Pick a scaling function ¢ such that {¢q,} is an orthonormal system, and (1.6) is

satisfied.

2. Find a primary function ¢ € W, probably using (1.4), such that {¢ox,k € Z} =

{¢(z — k), k € Z} is an orthonormal basis in W.

3. Conclude that any f € L3(Z) has the unique representation in terms of an L,-

convergent series:

F@) = ciokdior(z) + D > dixthjx(),

kEZ J=jo kEZ















where 1 = (1, 1,..., 1) is the row-vector of ones. Then
Y(z) = limp—oov(z,n),
and the limit is constructive.

Computationally, Construction 4 is the easiest to implement. Thus, this construction

has been used in this thesis to construct the Daubechies wavelet systems.

1.1.2 Some important wavelet bases

In this section we describe some commonly used families of wavelets: Haar’s and Daubechies
wavelet systems.
Haar System: The Haar wavelet basis is the simplest example of a wavelet system on

L2(R). The scaling function is:

1, if0<z<1;
é(z) = Iy () =

0, otherwise.

The refining relations for the Haar wavelet basis are

é(z) = 2z — 1) + ¢(22)

and
Y(z) =¢¥(2zx) — Y (2x — 1)

Daubechies System: Daubechies was the first to construct compactly supported orthog-

onal wavelets with a preassigned degree of smoothness. The scaling functions and primary
wavelets of the Daubechies (1992) wavelet systems, commonly represented as y¢(z) and
~Y(x) respectively, have no closed forms. They are constructed numerically for different

values of the wavelet number NV, which identify the number of nonvanishing coefficients in

11



the “dilation equation” y¢(x) = > hi -N ¢(2xr — k) used in the construction. The choice
N =1 yields the Haar wavelets. Once y¢(x) has been constructed, the corresponding pri-
mary wavelet is obtained from yy(z) = 3, (= 1)%h1—x -~ @(2x — k). The functions v ¢(x)
and n(r) have compact support with vanishing moments of order 1 to V. This property,
commonly referred to as a moment condition, guarantees good approximation properties
of the corresponding wavelet expansion of a response function f(z) in y¢(z) and yY(x).
That is, it determines how quickly the wavelet expansion will converge to the true response
f(x). See Hardle et al. (1998) for details.

The algorithm we have used in this thesis is the construction 4 introduced in Section
1.1.1. Table 1.1 list the filter coefficients yh; for N = 2 through 10. In some literatures,
the filter coefficients yh is also denoted as Daub/V. This notation is also used in this article.
Figure 1.1 shows the plots of the corresponding y ¢ and n, which are the scaling function
and the primary function for Daub/N, for N = 2,3,4,5 and 8. Both y¢ and % have

support width 2N — 1.

12






Table 1.1: The filter coefficients

k Duab2 Daub3 Daub4

0 0.4829629131445341 0.3326705529500826 0.2303778133088965

1 0.8365163037378079 0.8068915093110925 0.7148465705529156

2 0.2241438680420133 0.4598775021184915 0.6308807679298589

3 -0.1294095225512603 -0.1350110200102545 -0.0279837694168598
4 -0.0854412738820266 -0.1870348117190930
5 0.0352262918857095 0.0308413818355607

6 0.0328830116668851

7 -0.0105974017850690
k Duab5 Daub6 Daub7

0 0.1601023979741929 0.1115407433501094 0.0778520540850092

1 0.6038292697971896 0.4946238903984530 0.3965393194819173

2 0.7243085284377729 0.7511339080210953 0.7291320908462351

3 0.1384281459013207 0.3152503517091976 0.4697822874051931

4 -0.2422948870663820 -0.2262646939654398 -0.1439060039285650
) -0.0322448695846383 -0.1297668675672619 -0.2240361849938750
6 0.0775714938400457 0.0975016055873230 0.0713092192668302
7 -0.0062414902127982 0.0275228655303057 0.0806126091510830
8 -0.0125807519990819 -0.0315820393174860 -0.0380299369350144
9 0.0033357252854737 0.0005538422011614 -0.0165745416306668
10 0.0047772575109455 0.0125509985560998
11 -0.0010773010853084 0.0004295779729213
12 -0.0018016407040474
13 0.0003537137999745
k Daub8 Daub9 Daubl0

0 0.0544158422431070 0.0380779473638783 0.0266700579005555
1 0.3128715909143165 0.2438346746125903 0.1881768000776914
2 0.6756307362973218 0.6048231236901111 0.5272011889317255
3 0.5853546836542239 0.6572880780513005 0.6884590394536035
4 -0.0158291052563724 0.1331973858250075 0.2811723436605774
5 -0.2840155429615815 -0.2932737832791749 -0.2498464243273153
6 0.0004724845739030 -0.0968407832229764 -0.1959462743773770
7 0.1287474266204823 0.1485407493381063 0.1273693403357932
8 -0.0173693010018109 0.0307256814793333 0.0930573646035723
9 -0.0440882539307979 -0.0676328290613299 -0.0713941471663970
10 0.0139810279173996 0.0002509471148314 -0.0294575368218758
11 0.0087460940474065 0.0223616621236790 0.0332126740593410
12 -0.0048703529934519 -0.0047232047577513 0.0036065535669561

13 -0.0003917403733769 -0.0042815036824634 -0.0107331754833305
14 0.0006754494064506 0.0018476468830562 0.0013953517470529
15 -0.0001174767841248 0.0002303857635231 0.0019924052951850
16 -0.0002519631889427 -0.0006858566949597
17 0.0000393473203162 -0.0001164668551292
18 0.0000935886703200
19 -0.0000132642028945
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1.2 Some Wavelet Methods for Estimating Functions

There are two main wavelet approaches for estimating functions. These are by (a)wavelet

expansion, (b)applying a discrete wavelet transform.

1.2.1 Wavelet Expansion

Mallat (1989) has shown that any f € LL,(R) can be represented as a series (convergent in

ILQ(R)): N
F(@) = cioxtion(z) + D Y ditojx(z).

keZ Jj=jo k€Z

The coefficients c;, and d;; are then estimated by applying weighted least square (see
Oyet and Sutradhar (2003)) or by a nonparametric regression estimator (see Antoniadis,
Grégoire and McKeague (1994)). In this article, the wavelet filter we are going to use are

Haar wavelet and Daubechies wavelet.

1.2.2 Discrete Wavelet Transformation (DWT)

There are several steps involved in using the DWT to estimate a function. The steps are

discussed below.

STEP 1: Apply a discrete wavelet transform to the observed data Y.

Discrete wavelet transformations map data from the time domain (the original or input
data vector) to the wavelet domain. The result is a vector of the same size. Wavelet trans-
formations are linear and they can be defined by matrices of dimension n x n if they are

applied to inputs of size n.

Example 1.2.1 Let the data vector be (1,2) and let M(1,2) be the point in R? with coor-

dinates given by the data vector. The rotation of the coordinate axes by an angle of 5 can

15



be interpreted as a DWT in the Haar wavelet basis. The rotation matrix is

s an & 1 1
W= COs 3 sin 3 _ 7 5
b
I _gink 1l _ 1
COS 7 sin 3 5 5

and the discrete wavelet transformation of (1,2)" is W - (1,2)' = (35, —715)’.

The change of basis can be performed by matrix multiplication. Therefore, the pro-
cedure of DWT begins with the construction of an orthogonal transformation matrix V.
We have already seen a transformation matrix corresponding to Haar’s transformation in
Example 1.2.1.

In vector notation, we can write the Y;’s in (1.1) as
Y=f+¢

By applying W to Y, we have the wavelet image of f commonly referred to as the wavelet
coefficients given by

d=60+¢

where d = WY, § = Wf and ¢/ = We. The components of W are constructed as follows.
Let the length of the data be 27, let h = {h,,s € Z} be the wavelet filter, and let
N be an appropriately chosen constant. Denote by Hy a matrix of size (277% x 2/7%+1),

k =1, ... with entries
hey, s=[N—-1)4 (G —1)—2(i—1)] modulo 27~**!

at the position (¢, j). By analogy, define a matrix G,corresponding to the already defined
Hy, by replacing h; by (—1)*hx,,_;. For filters from the Daubechies family, a standard

choice for N is the number of vanishing moments.
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H
The matrix is a basis-changing matrix in 2/7%*! dimensional space; conse-

Gy

quently, it is unitary. Therefore,

’ ’ Hk ! !
[21—k+1 - ( Hk Gk ) . = Hk ‘Hk+Gk 'Gk,

and

H, H.-H, H G,
[2J—k+1 = . ( HL G,k >

Gy Gy H, Gi G,

This implies that
Hk~H,’c = [2J—k,Gk'G;c = [QJ—IC,H]C‘G;C = GkH;g = O,GHdH,;-Hk+G;c~Gk = Iy ks1.

Now, for a sequence y the J-step wavelet transformation is d = W, - y, where

H,
H1 . Hl
Wl == )W2 = G2 I
Gy
Gy
(( (=
3 ] H2
G3 : Hl
W5 = -
Go
G,

Example 1.2.2 Suppose thaty = {1,0,—3,2,1,0, 1,2} and the filter ish = (hg, hy, ha, h3) =

(1:\/‘%3, 3:\/?, 3;\/?, 14—\/‘?). Then, J = 3 and the matrices Hy and Gy are of dimension
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In this example, due to the lengths of the filter and the data, we can perform the transfor-

mation for two steps only, W, and Ws.

STEP 2: The second step recommended by Donoho and Johnstone (1994) and Donoho,
Johnstone, Kerkyacharian and Picard (1995) involves a technique called thresholding. First
we estimate the error variance o2 and use o to threshold the wavelet coefficients obtained
in step 1.

There are several choices for the estimation of o. Almost all methods use only the
wavelet coeflicients at the finest scale to estimate the variance of noise. This is based on
the fact that the square of signal-to-noise ratio (SNR)? is usually small at high resolutions
and, if the signal is not too irregular, the finest scale should contain mainly noise. Moreover,
the finest scale contains 50% of all coefficients.

Some choices of the estimator of o are

n/2

1 J-1y  =J-1]?
=\ 7Y g ] ,
° n/2—1 [ :

i=1

or a more robust MAD (median absolute deviation from the median) estimator

& = 1/0.6745- MAD [d"/V)]

= 1.4826 - MEDIAN [|d/~" — MEDIAN(d"/~1)[]

where d(/=1) is the vector of finest detail coefficients associated to the multiresolution
subspace 1V;_;.

For all thresholding rules, it is common to set to 0 the coordinates of a vector d, if they
are smaller in absolute value than a fixed non-negative number - the threshold A.

The most common thresholding policies are hard and soft. The expression for the hard-

and soft- thresholding rules are
§"(d,\) =d-1(]d] > \).A>0,d € R,
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and

0%(d, A) = (d — sgn(d) - A) - 1(|d| > A),A > 0,d € R,

Donoho and Johnstone (1994) suggest the threshold A = ¢+/2Tog n, which they call the
universal threshold.

Aside from the universal thresholding, an alternative has been suggested by Abramovich
and Benjamini (1995).

The process of thresholding of wavelet coefficients can be viewed as a testing problem.
For each wavelet coefficient d; = 8; + o¢;, the hypothesis Hy : 6; = 0 is tested against the
alternative H, : 6; # 0. If the hypothesis Hj, is rejected, the coefficient d; is retained in the
model. Otherwise, it is discarded.

The universal threshold can be viewed as a critical value of a similar test in which the

level is

g = P(|d;| > o+/2logn|Hy)
= 20(—+/2logn)
~ (ny/mlogn)™! (®(—x)

2

o(z)/x when z is large]

It has been shown that the power of the test against the alternative H, : 6; = 6(£ 0) is
0] (W?lTog_n) as well.

The universal threshold controls the probability of even one erroneous inclusion of a
coefficient. The approximate level of (n/7logn)~! tends to zero as n increases. Subse-
quent severe decreases in power are compensated by accepting almost all Hy, leading to
severe underfitting.

One way to control such dissipation of power is suggested by Abramovich and Ben-
Jamini (1995, 1996), which is based on the false discovery rate(FDR) method of Benjamini
and Hochberg (1995).
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Their procedure has three steps:

(1). For each d, find its two-sided p-value, p;i in testing Hy : 6;, = 0,
pik = 2[1 — ®(|d;k|/0)].

(2). Order the p;i. according to their size, py < py < -+ < prny. Find k = max{i|pg <

(i/n) - ¢}. For this k calculate

M = o® 11— pk)/2).

(3). Threshold wavelet coefficients at level A,.

If € is Gaussian, the above procedure ensures the FDR to be below g. More details about
FDR are described in Chapter 2.

After applying the threshold, we obtain thresholded coefficients, &, which set to 0 some
coordinates of d, according to the thresholding rules.

STEP 3: Invert the thresholded coefficients, by applying W~! to d, to obtain f. Let

Wiy . Win

Wn1 - Wnn

be the matrix performing a discrete wavelet transformation, i.e., d = 1Y . Note that, since

W is orthogonal, 1V ~! = W7 In term of W, the wavelet shrinkage estimator of f is
f =W G5,\(WY/G.)). (1.11)

Therefore, the componentf,— can be written as »_, wi(FA(WY /F)r), i =1,....n.
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1.3 Large sample properties of f

Let X ~ N(6,0?), o2 known, and § = §(X, \) be either a hard- or soft-thresholding rule
with threshold X. Without loss of generality, we may assume that 2 = 1. Bruce, Donoho,
Gao, Martin (1994), Gao (1998), and Marron, Adak, Johnstone, Neumann and patil (1998)
obtained exact expressions for the expectation and variance of 4 under squared error loss

for hard- and soft-thresholding rules, which are, respectively:

MMO) = 0+0[1l —DAN=0) —S(N+0)] + () —0) — d(\+6),
ViO) = (0*+ 11— ®(\—60) — &\ +0)]

+A +0)g(A = 0) + (A = 0)p(A + 0) — (M}(6))*,

M{(6) = M(0) = Al@(A+6) — 2(A - 0)],

V) = VHO) — Aw(N,0) +v(A, —0)],
where ¢ and ® are the standard normal density and cumulative distribution function and
v(A,0) =[1+D(A—0)—D2(A+0)]-[(260 — A)(1 — D\ —0)) + 2¢(X - 0))].

Under certain conditions, Brillinger (1995) showed that, for each 1, f}(see (1.9)) is

asymptotically Gaussian with standard errors estimated by

6
8; = &J Zwiiv,\ (-éi)
k

Then we can easily construct approximate confidence intervals for f; as

[fi - tn—]‘q/2 * Si, fi + tn—],q/Z : 51‘]
where g represents the confidence level.
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Chapter 2

FALSE DISCOVERY RATE (FDR)
STATISTIC

When pursuing multiple inferences, researchers tend to select the statistically significant
ones for emphasis, discussion and support of conclusions. An unguarded use of single-
inference procedures results in a greatly increased false positive (significance) rate. To con-
trol this multiplicity (selection) effect, classical multiple-comparison procedures (MCPs)
aim to control the probability of committing a type I error in families of comparisons under
simultaneous consideration. The control of this familywise error rate (FWER) is usually
required in a strong sense, i.e. under all configurations of the true and false hypotheses
tested (see for example Hochberg and Tamhane (1987)).

Benjamini and Hochberg (1995) suggest a new point of view on the problem of multi-
plicity. In many multiplicity problems the number of erroneous rejections should be taken
into account and not only the question whether any error was made. Yet, at the same time,
the seriousness of the loss incurred by erroneous rejections is inversely related to the num-

ber of hypotheses rejected. From this points of view, a desirable error rate to control may
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Table 2.1: Number of errors committed when testing m null hypotheses

Declared Declared
non-significant significant Total
True null hypotheses U A% mo
Non-ture null hypotheses T S m— my
Total m—R R m

be the expected proportion of errors among the rejected hypotheses, which they term the
false discovery rate (FDR).

Consider the problem of testing simultaneously m (null) hypotheses, of which myq are
true and R is the number of hypotheses rejected. Table 2.1 summarizes the situation in a
traditional form. The specific m hypotheses are assumed to be known in advance; R is an
observable random variable; U, V, S and T are unobservable random variables. If each
individual null hypothesis is tested separately at level o, then R = R(«) is increasing in
a. We use the equivalent lower case letters for their realized values.

In terms of these random variables, the FWER is P(V > 1). Testing individually
each hypothesis at level a/m guarantees that P(V > 1) < «. The proportion of errors
committed by falsely rejecting null hypotheses can be viewed through the random variable
Q = V/(V +8) - the proportion of the the rejected null hypotheses which are erroneously

rejected. The FDR (. is defined as the expectation of Q,
Qe =E(Q) = E{V/(V +8)} = E(V/R).

If all null hypotheses are ture, the FDR 1is then equivalent to the FWER. In this case
s =0andv =r. Soifv = 0then Q = 0, and if v > 0 then Q = 1, leading to
P(V > 1) = E(Q) = Q.. Therefore, control of the FDR implies control of the FWER in

the weak sense.
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2.1 Test Statistic Construction

The FDR method we are about to describe can be applied only when n, = ny = nandx; =
u; in model (1.1). That is, the technique requires equal sample sizes and common design
pointsin (1.1). Let D; =Y, — Z;, = (f(x:) — g(x;)) + (& — v;). Under the null hypothesis
we have f = g. It follows that D; = (¢; — v;). That is, D,’s are white noise. By applying
the discrete wavelet transformation(DWT) to D;’s we obtain the corresponding wavelet
coeflicients d;’s. Now, following the FDR procedure of Section 1.1.6, we know that, all
of the coefficients d;’s should be rejected. In addition, if we take D;’s as the observed
response and estimate the mean response curve, we should obtain a line at approximately
zero parallel to the x axis. This is therefore an approach for verifying the results of the

FDR test. The algorithm for the FDR test is outlined below:

STEP 1. Take the differences on both sides of (1.1) to obtain
D; = h(z;) +n; (2.1)

where D; = Y; — Z;, h(z;) = f(z;) — g(x;) and 7, = €; — v;. The variance of 7;

2 __ 42 2
becomes, o, = 0. + 0,,.

STEP 2. We transform (2.1) into a model in the wavelet domain by applying DWT to (2.1)
to obtain

{WD}: = {Wh}, + {Wn},,

where D = (D, ..., D,)T, h = (hy,...,h,)T and n = (1, ..., n,)T and rewrite (2.1)
in the wavelet domain as

di - 91+€1

where d; = {IWD},, 8, = {IWh},, and & = {Wn},. It is usual to refer to the d;’s as
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the wavelet coefficients. Then the hypothesis (1.2) is now
Hy:0,=0 foralli=1,...,n.

in the wavelet domain. Readers who are familiar with wavelet theory would notice
immediately that the transformation into the wavelet domain has simplified the test

into thresholding of the wavelet coefficients.

STEP 3. For each d; find its two-sided p-value, p; for testing Hy : 6; = 0.
pi = 2[1 — ©(|d;|/o¢)]

where 07 = 0} = 02 = 0 + o}. The second equality holds because the matrix W

is orthogonal.

STEP 4. Order the p;’s in ascending order, p(1y < p2) < ... < py. Ifpy = %‘q for every

1 < i < n, reject the null hypothesis (1.2).

As shown in section 1.1.5, The o can be estimated by the finest scale d/~"). For
small samples, we may not obtain much information from the data, so the FDR test may
sometimes leads to inaccurate results. Hence, when n is small, we use estimates of the
differences to validate the FDR test. The main idea is to estimate the difference h(z) =
f(z) — g(z) and construct a confidence interval for h(x), as described in Section 1.1.6.
Our simulation results show that if A(z) is close to zero and the interval cover zero, it is an
indication that we cannot reject Hy : h = 0. On the other hand, if A(z) is not close to zero,
then we should reject Hy. This also depends on the magnitude of 0,2].

The confidence interval is constructed by noting that under H,, we have
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Table 2.2: Size of FDR test based on 1000 replications, the Haar wavelet, ¢; ~ N(0,02) and

v; ~ N(0,02) at significance level ¢ = 0.01, 0.025 and 0.05.

sample (02,02) (0.5,0.5) (0.5,1) (1,0.5) (L,n)
size q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05
8 071  .097 .137 .091 .105 .130 .083 .111 .130 .085 .094 .105
16 .031 .043 058 .019 .040 .073 .028 .047 .052 .024 .038 .053
32 013  .024 .046 .015 .032 .044 .015 .025 .050 .017 .026 .046

shown in Table 2.2. Exactly the same process described above was followed in computing
the power in Table 2.3 except that f(z) was different from g(z).

In Table 2.3, the difference between f(z) and g(z), h(x), is taken as the functions
di(z), d2(z) and d3(z) respectively. Compared with the results from Daub2 and Daub4,
Haar wavelet gives the best results on sizes and powers. The distributions of errors ¢; and
v; are chosen to be normal. In the robustness simulations, error terms from ¢ and chi-square
distributions are used to check the robustness of FDR test.

From Table 2.2 and 2.3, we have following conclusions:

e The performance of the FDR test is affected by sample size and the values of 2 and
o2, The performance of the FDR test improves as the sample size gets larger. For
example, for (02,02) = (0.5,0.5), ¢ = 0.01 and n = 8, the size was 0.071. This
improved to 0.013 when n increased to 32. We notice the same pattern for ¢g=0.025,

and 0.05.

e The power of FDR test is mainly determined by the magnitude of the difference
between two curves. For example, for (02,02%) = (0.5,0.5), ¢ = 0.01 and n = 8,
when the difference function was d;(a), which means h(x) = /1.5, the power was

0.636; when f(x) = dy(b) = 2.5, the power increased to 0.992.
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Table 2.3: Power of FDR test based on 1000 replications, the Haar wavelet, ¢; ~ N(0,0?) and

vj ~ N(0,02) at significance level ¢ = 0.01, 0.025 and 0.05.

h(z) n (02, 02) (0.5,0.5) (0.5,1) (1,0.5) (1,1)
g 001 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05
di(a) 8 636 689 .732 493 .550 .592 .521 .530 .589 .401 .437 .493
16 878 921 953 711 .772 .820 .706 .766 .819 .559 .651 .674
32 1.00 997 1.00 965 .970 .983 .957 974 .983 .870 914 .942
di(b) 8 992 998 999 948 973 984 948 962 .984 885 .930 .938
16 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .995 .999 .998
32 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
da(a) 8 125 150 165 .099 .120 .158 .110 .137 .167 .117 .115 .145
16 073 098 .157 .068 .095 .108 .058 .070 .127 .049 .076 .094
32 .09 .108 .164 .048 .080 .100 .064 .082 .128 .031 .067 .08l
da(b) 8 808 .827 .865 .626 .683 .728 .639 .693 .775 .520 .562 .688
16 979 986 .990 .889 .912 .958 .882 916 .937 .760 .827 .867
32 1.00 1.00 1.00 998 1.00 1.00 .997 1.00 1.00 .982 .982 .993
da(c) 8 980 991 .994 917 953 959 915 .947 974 .856 .896 .912
16 100 1.00 1.00 998 1.00 1.00 .998 .999 1.00 .991 .999 .999
32 100 100 1.00 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
dy 8 .000 .000 .000 .000 .000 .000 .000 .000 .001 .000 .001 .00l
16 886 962 .991 .793 923 969 .817 .891 .971 .742 .829 .908
32 1.00 1.00 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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The power of FDR test is also affected by the magnitude of variance of errors. For
example, for ¢ = 0.01, n = 8 and h(x) = di(a), when (¢2,02) = (0.5,0.5), the

€Y v

power was 0.636. This reduced to 0.401 when (02,02) = (1,1).

When the magnitudes of the differences are on the same level, the power of FDR test
is also affected by the complexity of the difference function (h(z)). For example, for
(6%,02) = (0.5,0.5), ¢ = 0.01 and n = 8, when h(x) = d;(b) = V1.5, the power

was 0.992. This reduced to 0.808 when h(x) = dy(b) = 3(x — 0.4)% + 1.2.

When n = 8, the number of coefficients in finest scale, /Y, is 4, half of the number
of total coefficients. It is therefore difficult to obtain a good estimation of o7. That

explains the poor performance of the FDR method when n = 8 and n = 16.

When the difference between f and g is constant, we obtain good power when the

constant difference is comparable with the standard deviation o, = 1.

When the difference between f(r) and g(r) is d2(a), which is not large, considering
the magnitude of o, and o, it is natural for the magnitude of the power to be small,
especially for small sample. When the difference is taken as dy(b) and dy(c), the

power of the test improves.

When the difference is taken as HeaviSine function, although the absolute value of
HeaviSine(x) is large, but the complexity of HeaviSine function increases the diffi-
culty of estimating the variances of noise for a small sample. When the sample size

increases, the power of FDR and F test improves significantly.

When the sample size is small, the power is poor. So we need to combine the tests

with confidence intervals as shown in Figures 2.2 and 2.3
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Figure 2.2: A plot of the data D; = Y; — Z; ¢ = 1,...,n (solid line), Haar wavelet estimate
D=hz)=f Z g(z) (dotted line), and approximate confidence bounds (dotted broken line) for
difference h(z) = f(z) — g(z) with parameters (a), (b) n = 8 and 16, respectively, with o = 0.05,
(0¢,0,) = (1.6,2.5) and h(z) = 0; (c), (d) n=8 and 16, respectively, with a = 0.025, (o,,0,) =
(3.5,0.8), and h(x) = 0.5; (e), (f) n = 8 and 16, respectively with a = 0.01, (o, 0,) = (2,2), and

h(z) = V1.5.
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Figure 2.3: A plot of the data D; = Y; — Z; ¢ = 1,...,n (solid line), Haar wavelet estimate
D = iL(x) =f= g(x) (dotted line), and approximate confidence bounds (dotted broken line) for
difference h(z) = f(x) — g(z) with parameters (a), (b), (c) n = 8, h(z) = 3(xz — 0.4)2, and
n = 8, h(z) = 3(x — 0.4)?> + 2.5, and n = 16, h(z) = 3(x — 0.4)? + 2.5, respectively, with
a = 0.05, (0.,0,) = (1.6,2.5) and Filter = 4hy; (d), (e), (f) n = 8, Filter = 4h and n = 8,
Filter = ghy and n = 16, Filter = gh,, respectively, with h(z) = HeaviSine function, o = 0.05, and

(0e,o0,) = (1.6,2.5).
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Table 2.4: Size of FDR test based on 1000 replications, the Haar wavelet,e; ~ 71506 - t4 and

vj ~ 715@, - t4 at significance level ¢ = 0.01, 0.025 and 0.05.

sample (02,02 (0.5,0.5) (0.5,1) (1,0.5) (1,1)

size g 001 0025 005 001 0.025 0.05 001 0025 0.05 001 0.025 0.05
8 074 .102 110 .076 .112 .114 .067 .093 .119 .081 .099 .140
16 023 045 061 .027 .045 059 .027 .044 .060 .022 .047 .078
32 018 031 .045 017 .022 .054 .015 .021 .052 .012 .025 .043

2.3 Robustness of FDR test

In the FDR test, it is assumed that both ¢ and v are normally distributed. In order to check
the robustness of FDR test on departures from normal errors, we conduct simulation studies
generating errors from t and x? distributions in this section. Tables 2.4 and 2.5 show the
size and power of FDR test when the errors is actually from ¢ distribution instead of normal;
Tables 2.6 and 2.7 show the size and power of FDR test when errors have x? distribution.

From Table 2.4, 2.5, 2.6 and 2.7, we can see that,

e When the errors are from ¢ distribution, the performance of FDR test on size and
power simulation is insensitive to the departure from normal distribution to ¢ distri-

bution.

e When the errors are from a skewed distribution, x?, the performance of FDR test on
size is affected slightly. The simulated power remains at a similar level as normal

casc.
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Table 2.5: Power of FDR test based on 1000 replications, the Haar wavelet, ¢; ~ 7150.: - t4 and

vj ~ 7130,, - t4 at significance level ¢ = 0.01, 0.025 and 0.05.

h(z) n (02,02) (0.5,0.5) (0.5,1) (1,0.5) (1,
g 001 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05
di(a) 8 619 699 730 475 543 593 479 520 .594 .367 .484 .484
16 873 922 939 716 .770 .834 .712 .784 813 .535 .605 .682
32 998 1.00 999 968 .975 981 .959 977 986 .860 .918 .939
di(b) 8 991 997 996 954 965 978 939 973 979 .886 .934 .953
16 1.00 1.00 1.00 999 1.00 1.00 .999 1.00 1.00 .994 .999 .999
32 100 100 100 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
da(a) 8 115 147 211 120 .132 159 .123 .136 .173 .121 .119 .158
16 087 .120 .140 .067 .089 .109 .055 .087 .110 .061 .072 .105
32 084 104 162 .046 .078 .117 .043 .081 .100 .045 .050 .078
do(b) 8 792 856 .870 .638 .701 .763 .660 .695 .795 .526 .612 .655
16 970 976 992 866 .923 934 876 .922 953 .764 811 872
32 100 1.00 1.00 998 999 .999 .999 999 1.00 .981 .985 .990
da(c) 8 981 988 987 .935 945 .963 909 .946 961 .857 .892 .929
16 100 100 1.00 .998 998 1.00 .998 1.00 1.00 .985 .994 1.00
32 100 100 100 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
dz3 8 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .001
16 885 969 987 .787 917 917 803 912 .965 .705 .859 .930
32 1.00 100 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2.6: Size of FDR test based on 1000 replications, the Haar wavelet, ¢; ~ 71506 . (xf - 1)

and v; ~ 7150,, - (x? — 1) at significance level ¢ = 0.01, 0.025 and 0.05.

sample (02,02) (0.5,0.5) 0.5,1) (1,0.5) (LD

size g 001 0.025 0.05 001 0.025 005 001 0.025 0.05 0.01 0.025 0.05
8 047 071 .084 .062 .100 .086 .046 .073 .087 .041 .077 .082
16 015 .033 059 .017 .031 .070 .026 .025 .051 .023 .046 .054
32 020 .055 .100 .021 .062 .139 .019 .069 .119 .019 .071 .114
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Table 2.7: Power of FDR test based on 1000 replications, the Haar wavelet, ¢; ~ 71505 (x2-1)

and v; ~ 7150,, . (xf — 1) at significance level ¢ = 0.01, 0.025 and 0.05.

h(z) n ( (0.5,0.5) (0.5,1) (1,0.5) (1,1
0.01 0.025 0.05 001 0.025 0.05 001 0.025 0.05 0.01 0.025 0.05
di(a) 8 601 657 684 556 572 .630 512 589 .622 498 .549 .586
16 750 812 843 661 .760 .763 .735 .726 .810 .627 .684 .709
32 931 963 978 .891 .928 951 901 .926 .964 .850 .900 .929
dy(b) 8 943 949 963 898 924 933 906 .940 .946 .874 919 .926
16 989 998 998 986 .992 .995 .992 .997 .998 .977 .989 .993
32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 100 1.00 1.00 1.00
do(a) 8 094 131 185 .124 .160 .185 .071 .110 .146 .112 .139 .161
16 075 095 153 075 .099 .113 .050 .060 .112 .064 .083 .120
32 062 .132 191 .072 .133 .192 .054 .099 .191 .064 .103 .169
da(b) 8 708 766 808 .661 .719 .737 672 .711 .783 618 .680 .717
16 867 916 930 .819 .848 .872 839 876 .898 .777 .814 .869
32 986 994 997 955 977 .990 .984 981 .996 .956 .973 .977
da(c) 8 916 937 944 879 894 929 901 911 935 .831 .897 .921
16 991 991 994 969 .983 .998 .982 .992 .992 .963 .977 .983
32 1.00 1.00 1.00 999 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00
ds 8 000 .001 .000 .000 .003 .002 .001 .001 .000 .000 .002 .002
16 824 910 945 .793 885 .936 .763 .897 921 .764 .866 .915
32 997 1.00 1.00 1.00 .999 .999 .993 .997 1.00 .992 1.00 1.00
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Table 3.1: Size of F) test based on 1000 replications, the Haar wavelet and m = 0 with ¢; ~

N(0,02) and v; ~ N (0, 02) at significance levels g = 0.01, 0.025 and 0.05.

sample (02,02) (0.5,0.5) (0.5,1) (1,0.5) (1,1

size g 001 0.025 005 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05
8 009 028 .052 .010 .018 .048 .011 .024 .042 .011 .030 .044
16 010 020 .059 .016 .031 .046 .010 .025 .049 .007 .019 .043
32 011 .025 057 .012 .030 .049 .011 .027 .059 .006 .027 .049

above was followed in computing the power in Table 3.2 except that f(x) was different
from g(z).

In Table 3.2, we study the power of F; test. Under most of the cases, the combination of
choices of Haar wavelet and m = 0 give the best power. When h(z) is tak¢ as d3, (Daub2,
m = 2)and (Duab4, m = 2) also give comparable, or even better results, which are shown
in the categories d; and d3*. This is also the case in the robustness studies. When m = 2,
the sample size n could only be larger than 8.

From Table 3.1 and 3.2, we draw the following conclusions.

e Similar to the FDR test, the performance of F test is affected by sa1 »le size. When
the sample size is larger, the performance of the F) test is better.  wever, the I}
test appear to be able to control the size much better than the FDR  st. (see Tables

3.1and 2.1).

e The power of F) test is mainly determined by the magnitude of the difference be-
tween two curves. For instance, for (62,02) = (0.5,0.5),n = 8a .¢=0.01, when
the h(z) = d1(a) = V1.5, the power is 0.293; when h(z) = d,(b) = 2.5, the power
is 0.943. When the magnitude of difference increased from /1.5 to 2.5, the power

increases significantly.

e When the magnitudes of the differences are on the same level, the wer of F test
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Table 3.2: Power of the F} test based on 1000 replications and the Haar ,Daub2(*) and Daub4(**)

wavelet with €; ~ N(0,02) and vj; ~ N (0, 02) at significance levels ¢ = 0.01, 0.025 and 0.05.

h(z) n (02,02 (0.5,0.5) (0.5,1) (1,0.5) (1,1)
g 001 0025 005 0.01 0025 0.05 0.01 0.025 0.05 0.01 0.025 0.05
dy(a) 8 293 492 669 .180 .355 464 .159 324 510 .129 224 .362
16 897 960 .981 .714 816 .903 .681 .802 .903 .543 .689 .814
32 1.00 1.00 1.00 .981 .994 1.00 .989 .998 1.00 .948 .981 .91
dy(b) 8 943 991 997 804 937 976 .802 .926 .988 .658 .841 .926
16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 .998
32 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
do(a) 8 013 041 .098 .014 .038 .076 .016 .035 .085 .013 .026 .068
16 044 100 .165 .025 .057 .136 .034 .063 .118 .027 .060 .114
32 144 202 305 059 .138 214 .066 .169 234 .046 .110 .180
da(b) 8 449 670 823 306 489 .667 .308 .498 .684 210 .360 .553
16 980 .990 1.00 .888 .956 .987 .865 .941 .984 .738 .867 .940
32 1.00 1.00 1.00 .999 1.00 1.00 .999 1.00 1.00 .993 .999 .999
da(c) 8 881 957 991 .706 .881 .954 .720 .884 .950 .566 .779 .882
16 100 1.00 1.00 100 1.00 1.00 1.00 1.00 1.00 .994 .997 1.00
32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ds 8 000 .000 .010 .002 .005 .025 .003 .005 .017 .003 .015 .040
16 828 973 .994 .703 909 .972 .719 .898 .967 .613 .820 .924
32 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
a8
16 880 967 995 .749 .887 .970 .762 .910 .966 .633 .810 .924
32 .00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
a3 8
16 886 976 .994 771 916 .958 .727 920 975 .641 .807 .933
32 1.00 1.00 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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is also affected by the variances of errors. For example, for h(z) = di(a), n = 8
and ¢=0.01, when (¢2,02) = (0.5,0.5), the power is 0.293; when (02, 02) = (1,1),
the power reduced to 0.129. Increasing the variances of errors has the same effect
as reducing the magnitude of difference. In this case, an increase in the sample size
leads to an increase in the power. For example, when n is increased to 16, the powers

increases to 0.897 and 0.543 respectively.

When the magnitudes of the differences are on the same level, the power of Fj test
is also affected by the complexity of the difference function h(x). For example, for
(62,02) = (1,1), n = 8 and ¢=0.01, when h(z) = d;(b) = 2.5, the power is 0.658;
when h(z) = da(b) = 2(z — 0.4)* + 2, , the magnitude of difference is on the

comparable level with d;(c), for this case, the power reduced to 0.566.

The F; test performs well in controlling the size, regardless of the choice of filter and

m.

When the difference function (h(x)) is simple (constants and quadratic functions),
we tend to obtain higher power with the Haar wavelet filter and m = 0. When the
difference function is complicated, e.g. d3(x)(HeaviSine function), we tend to obtain
higher power with the choices Daub2 wavelet and m = 2 and Daub4 wavelet and

m = 2 (see Table 3.2 for d3, d3 and d3*).

The choice of filter could be determined by the complexity of the difference function,

h(x). When h(x) is more complicated, a longer-length filter is necessary for test.

The choice of m could be determined by the fluctuation of A(z). The more compli-

cated the fluctuation of h(z) is, the larger m is needed.

42



e When the difference between f and g is constant, we obtain good power when the

constant difference is comparable with the standard deviation o,.

e When the difference function is taken as da(a), which is not large, considering that
the magnitude of h(zx), it is natural for the power of the test to be small. When the

magnitude of h(z) increases (d2(b) and dy(c)), the power of F) test improves.

e When i(x) is taken as the HeaviSine function, the complexity of the HeaviSine func-
tion increases the difficulty of estimating the error variances, especially with a small
sample. Considering that the degree of freedom of Fj is (2™+!, n — 2™*1), the de-
nominator degree of freedom, n — 2™*!, may be very small, when n is small and
m is relatively large, which may lead to poor results. From the simulation results in

Table 3.2, this happens whenn = 8, m = 1l andn = 16, m = 2.

e Since n — 2™*! must be positive, the value of m must be less than 2 when n = 8.

3.1.3 Robustness of I test

In the F) test, we assume that ¢ and v are normal distributed. In this section, we will
investigate the robustness of F test on departures from normal errors. The errors we have
used are from ¢ and x? distribution instead of normal. Tables 3.3 and 3.4 show the size
and power simulation of ] test when the errors are from ¢ distribution. Tables 3.5 and 3.6
show the size and power simulation of F} test when the errors are from x? distribution. The
distributions of errors, for both ¢ and x?, are set to guarantee that the variances of errors
remain the same as those of normal case.

From Tables 3.3, 3.4, 3.5 and 3.6, we can see that, the size of F] test is slightly but

not seriously affected by the non-normal error distribution. The power is a little lower, but
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Table 3.5: Size of Fy test based on 1000 replications, the Haar wavelets and m = 0 with ¢; ~

71506()(% — 1) and y; ~ 7150,,()& — 1) at significance levels ¢ = 0.01, 0.025 and 0.05.

sample (02,02) (0.5,0.5) (0.5,1) (1,0.5) (1,1)

size g 001 0025 005 001 0.025 005 0.01 0025 0.05 0.01 0.025 0.05
8 001 .008 .023 .006 .014 .036 .007 .011 .037 .009 .004 .023
16 007 014 030 .004 .021 .040 .004 .013 .042 .006 .018 .045
32 006 .022 049 .005 .019 .047 .008 .018 .051 .003 .025 .050

where r(z) and t(u) are the remainder terms in the wavelet expansions of f(z) and g(u).

That is,

r(r) = Y2 22 o ditie (),
t(u) = Zl_m+122 o dik i (u).

Assuming the remainders are negligible, let
ﬁ = (C, d0,0vdl,Oadl,lv '-'7dm,2’"*1)7
a = (avb0,0abl,Ovbl,la "'7bm,2m_1)7
and
q"(z) = (¢o(z), Yoo(x), Y10(z), Y11(T), ... Ymom-1(z)) .
Then (3.3) can be written as
f@) = d'(z)- B,
g(u) = ¢"(u) «
and the model (3.2) can be written as
Yi; =q"(z) - B+ ey,

Zie = ¢ (w) - a+ v

(3.4)
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Table 3.6: Power of the F} test based on 1000 replications and the Haar, Daub2(*) and Daub4(**)

wavelet with €; ~ 71506()(% —1)andy; ~ 7150”()(% — 1) at significance levels ¢ = 0.01, 0.025 and

0.05.
h(z) n (02,02) (0.5,0.5) (0.5,1) (1,0.5) (1,1)
g 0.01 0.025 0.05 0.01 0025 0.05 0.01 0.025 0.05 0.01 0.025 0.05
di(a) 8 353 491 633 305 441 595 269 410 .545 .248 .380 .502
16 740 841 .899 659 .763 .836 .688 .807 .870 .626 .712 .840
32 977 989 989 938 976 .983 .955 .980 .992 .908 .960 .977
di(b) 8 811 .897 949 .761 .853 913 .767 .872 .951 .715 .830 .878
16 994 1.00 1.00 977 992 997 993 .996 .999 .982 .996 .996
32 100 100 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
da(a) 8 016 .038 .088 .019 .059 .079 .018 .032 .060 .009 .037 .057
16 036 .096 .139 .050 .108 .159 .029 .055 .107 .027 .065 .111
32 098 169 269 .087 .176 267 .066 .123 208 .055 .133 .199
da(b) 8 469 625 765 377 559 .683 .384 560 .690 .343 517 .610
16 876 919 964 .808 .859 .925 817 .924 .949 .750 .843 916
32 997 996 998 992 995 .993 .995 .999 999 .981 .985 .999
da(c) 8 777 .891 948 697 .822 900 .733 .852 911 .640 .778 .878
16 992 993 996 .972 979 .995 989 .995 .996 .962 .987 .992
32 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ds 8 000 .006 .013 .002 .003 .026 .000 .005 .013 .001 .007 .022
16 755 896 965 .717 872 .943 .724 863 .926 .638 .846 915
32 1.00 1.00 1.00 1.00 1.00 1.00 .998 1.00 1.00 1.00 1.00 1.00
dy 8
16 784 895 954 724 848 947 .707 .823 .902 .662 .820 910
32 100 1.00 1.00 998 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00
dy 8
16 793 899 957 712 .849 .949 748 876 .928 .640 .829 .902
32 1.00 1.00 1.00 1.00 .999 1.00 .998 1.00 1.00 .999 1.00 1.00
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Define

( Y1 q" (1) 0 \ ( €n

Yir, (IT(JUI) 0 €1r,

Yan q" (zn,) 0 €ny1

v Yoy ra, X q7 (zn,) 0 R €nyra, ’

Zn 0 q" (w) Vi

Zhs, 0 q" (uy) Vs,

Znn 0 q" (tn,) Vnsl

Znsng \ 0 q(un) \ nson,

we have the new model

V=Xvy+u (3.5)

B
where v = ,and we have u ~ N(0,C), where C = 032, and

L, ©

2

0 %I,

In order to obtain equal variance errors in the model, we multiply both sides of (3.5) by

Y-



ich we write as

ere V' = 277 . V,X* = ¥ - X,and u* = $-3

V=X +u’,

weighted least squares estimator (see Oyet and Wiens (2003)) of ~ is

€re

w;

wy

finer =

wLs = (X*TWX*)_1 xXTwv*

diag(Wiy ..o, Wiy ooy Wiy s oeey Wiy y Wiy 41y ooy Wiy 410 vy Wiy 4mgs -y Waytng)
—_—— ~ ~ ~ %

v s v
™1 Tny S1 Snyp

1
w(r;) = [ llgm(s)ds||/llgm(z)ll  for i=1,..n,
0

(3.6)

‘u.ut ~ N(0,021,, 4n,). In (3.6),

1
w(“i—nl) = / HQm(S)dSH/HQm(ui—m)” for i=n;+1,...,n +ny,
0

M 71+ 312, 5. Then under the full model (3.5), Vi1 s = X Jwis.

We note that when Hy : f = g is true, the wavelet expression of f and g will be the

ne. That is, the null hypothesis becomes Hj : # = « and the expression (3.4) becomes

Yy = ¢"(z:) B +ey,

Ze = ¢ (w)- B+ vy

sing matrix notations, we write (3.7) as

V =Qg +u,

3.7

nere Q = (q(z1),...,q(z1) -y @(Zny ), -y @(Tny ), q(ur), ...,q(ul),...,q(un,_,),...,q(un2))T.

milar to (3.6), we have

ith

V*:Q*/B_'_u*’

Bwis = (QTWQ") T QTWV*,
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as an estimate of the regression parameter [ and
owvrs = Q" Bwers.

as the estimated response under Hj,.

Using the general regression approach, we now construct an F' test for Hy : 7 = a with

.
RSSH, = E wieaiz,
i=1

RSSFp = 2’: wie},iz,

i=1

where

bl

* * Crx _ * * \T
e =V = Viwrs = (€1, €0,

and

* * o * * T
v — F,WLS_(eF,lv"'7eF,r) .

e =
Then the F-statistic can be constructed as

(RSSHO — RSSF) /p
RSSg/(r — 2p)

F2=

where p = 2™*! and the null distribution of F; is Fp (r—2p).-

3.2.2 Simulation Studies

In this section, we examine the size and power performance of F3 test. Since we do not take
the difference of two group of data, in the size simulation, different signal functions will
lead to different results. Hence, in the simulation for the size of the test, we use different
signal functions which are indicated below.

In Table 3.7, the conditions under which the size simulation study was performed are:

e We used different signal functions s,(z), so(z) and s3(z) for z € (0, 1), where
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(a).Sl(.‘L') = 0’
(b).so(x) = 3(x — 0.4)2, which is dy(z)(a),

(c).s3(x) = 4sindnx — sgn(z — 0.3) — sgn(0.72 — x), which is d3(x).

Sample sizes in two groups are taken as (n; = 12, n, = 16) and (n; = 16, n, = 20).

Ty, T3, ..., Tn, are taken as equally spaced points between 0.001 and 0.999. u;, ug, ..., Un,

are taken as equally spaced points between 0.001 and 0.999.

€ ~ N(0,0?%) and v ~ N(0,02).

The wavelet filter and m used in the F; test were (Haar, m = 0) and (Daub4, m = 3).
The combination (Haar, m = 0) is used when the difference between f and g is not
very complicated, such as constant and quadratic. (Daub4, m = 3) is used when the

difference is complicated, e.g. HeaviSine.

The significance levels ¢ = 0.01, 0.025, and 0.05 were considered.

The distributions of error terms, ¢; and v;, were chosen as
(a). Normal: ¢; ~ N(0,02) and v; ~ N(0,02);
(b). t: € ~ 715@ -ty and y; ~ 71501, - ta;
(c). Chi-square: ¢; ~ 71505 (x}-1)and y; ~ 7150,, (X3 —-1);

The choice (a) was used in the size and power simulation studies. Both (b) and (c)

were used in the robustness studies in Section 3.2.3.

In the size and power simulations, (Haar, m = 0) gave the best results for most of the

cases and (Daub4, m = 3) gave the best results when both f(z) and g(x) are complicated,
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Table 3.7: Size of F, test based on 1000 replications, the combination of (Haar, m = 0) and

(Daub4, m = 3) with ¢; ~ N(0,02) and v; ~ N(0, 02) at significance levels ¢ = 0.01, 0.025 and

0.05.
Haar wavelet filter, m=0
f = g sample (02,02) (0.5,0.5) (0.5,1) (1,0.5) (1,1)
size g 001 0.025 0.05 001 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05
51 12,16 012 021 .039 .004 .009 .024 .003 .022 .040 .010 .012 .034
16, 20 006 .014 037 .003 .009 .025 .009 .017 .044 .005 .022 .041
so 12,16 005 007 .019 .006 .005 .019 .003 .009 .020 .003 .018 .038
16, 20 003 011 .018 .002 .005 .017 .002 .011 .029 .006 .009 .036
s3 12,16 003 009 26 .001 .008 .011 .002 .011 .026 .003 .015 .036
16, 20 003 006 .014 .004 .007 .014 .006 .011 .025 .004 .015 .026
Daub4 wavelet filter, m=3
f = g sample (02, 02) (0.5,0.5) (0.5,1) (1,0.5) (1,1)
size g 001 0.025 05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05
s3 12,16
16, 20 003 013 .039 .000 .007 .011 .018 .055 .077 .009 .018 .043

e.g., HeaviSine. So in Table 3.1, w¢  nly show the results from (Haar, m = 0) and (Daub4,
m = 3) for f(z) = g(x)=HeaviSine.

To compute the size, we gener :d observations Y}, ...,Y,, and 24, ..., Z,, following
(3.2) with f(x) = g(z) and observe n repeat once at each point. Using these observations
we then evaluated V = (Y1,...,Y,,, Z1, ..., Z,,,)T and followed the algorithm for the F;
test to determine whether to reject  or not to reject Hy. We repeated this process 1000
times and computed the proportic of rejections in 1000 repeated times. This was done
for various combinations of o2, 02, ¢ and (n;,n2). The results from (Haar, m = 0) and
(Daub4, m = 3) are shown in Ta® 3.7. Exactly the same process described above was
followed in computing the power i Table 3.8 except that f(x) was different from g(z).

We found that the power perf nance of the F; test is affected by the magnitude of
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the difference, the complexity of the difference between f and g and the complexity of the
signal function. In order to see the effect of these three factors, we take the functions f and

g as follows.
(a). f=s1and g = s; + V1.5,
(b). f = s, and g = s5 + 2.5,
(©). f =s3and g = s3 + 2.5,
(d). f = so and g = 28,
(€). f =ssand g = 2s5 + 1.2,
). f=s2and g = 255 + 2,
(8). f = s3and g = 2s3,

The results of power simulation for these different choices of f and g are shown in Table
3.8.

In the simulations, for most of the cases, (Haar, m = 0) gave the highest power com-
pared with other combinations, except when the difference between f and g was compli-
cated, such as HeaviSine, we used the combination (Daub4, rn = 3).

From Tables 3.7 and 3.8, we have the following conclusions:

e The performance of the F test is affected by the complexity of signal function, sam-
ple size, values of 02 and o2. The performance of the F, test improves as the the

signal function is simpler.

e In the simulation for size, we showed the size of Fj, test from combination of (Daub4,

m = 3) in Table 3.7(g). When using (Daub4, m = 3) for f = g = s3, for most of
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Table 3.8: Power of F, test based on 1000 replications, the combination of (Haar, m = 0) and

(Daub4, m = 3) with ¢; ~ N(0,02) and vi ~ N(0, o?) at significance levels ¢ = 0.01, 0.025 and

0.05.
Haar wavelet filter, m=0
f,g sample (02,02 (0.5,0.5) (0.5,1) (1,0.5) (LnH
size q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05
(a) 12,16 785 881 938 465 .600 .694 .505 .627 .716 .408 .572 .670
16, 20 922 966 .980 .615 .750 .843 .671 .779 .861 .606 .719 .820
(b) 12,16 996 1.00 1.00 .948 .974 984 968 .982 990 .973 .987 .996
16, 20 998 1.00 1.00 990 .997 .998 .990 .998 1.00 .996 .997 1.00
(c) 12,16 996 999 999 952 972 989 .967 976 .989 .974 .989 .995
16, 20 999 1.00 1.00 .987 .992 999 989 .998 .998 .998 .998 .999
(d) 12,16 013  .032 .065 .008 .024 .045 .016 .034 .057 .012 .014 .053
16, 20 018 .058 .089 .013 .028 .055 .015 .048 .071 .017 .041 .052
(e) 12,16 .880 934 964 .612 745 .827 .579 .727 805 .543 .690 .788
16, 20 971 988 994 .790 .880 .939 .770 .850 .900 .778 .879 .929
H 12,16 994 999 997 923 973 980 916 954 970 937 976 .992
16, 20 999 1.00 1.00 978 .992 999 974 990 .996 .998 .996 .999
Daub4 wavelet filter, m=3
(g)* 12,16
16, 20 585 795 918 263 454 .681 .594 .827 .942 309 .549 .716
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the Table 3.8. When the difference function is complicate (HeaviSine function), we

obtain higher power with the choices Daub4 wavelet and m = 3.

The choice of filter could be determined by the complexity of difference between
two signal functions, When the difference is complicated, a longer-length filter is

necessary for the test.

The choice of m could be determined by the fluctuation of the difference. The more

complicated the fluctuation is, the larger m is needed.

For case (d), f = s; and g = 2s,, the difference is s;. considering the magnitude
of s, ranging form 0.48 to 1.08 on (0, 1), it is natural to get a low power. When the
magnitude of difference increases s; + 1.2 and s3 + 2, in (e) and (f), the power of F3

increases significantly.

For case (g), (Daub4, m = 3) is more appropriate to be used in F; test due to the
complexity of HeaviSine function. Although the magnitude of the difference is large,
the complexity of signal function and difference, which are both HeaviSine function,
reduce the power of Fj test. Case (d) and (g) are comparable but magnitude of the
difference is larger in case (g), which explains why the power in (g) is higher than

the power in (d).

3.2.3 Robustness of I} test

In the F; test, we also assume that € and v are normally distributed. In this section, we will

investigate the robustness of F; test on departures from normal errors. The errors we have

used are from ¢ and x? distribution instead of normal. Tables 3.9 and 3.10 show the size and

power simulation of F5 test when the errors are from ¢ distribution. Tables 3.11 and 3.12
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Table 3.9: Size of F» test based on 1000 replications, the combination of (Haar, m = 0) and

(Daub4, m = 3) with ¢; ~ 71506 -ty and v; ~ 715@ - t4. at significance levels ¢ = 0.01, 0.025 and

0.05.
Haar wavelet filter, m=0
f,g sample (02,02) (0.5,0.5) 0.5,1) (1,0.5) (1,1)
size g 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05
s1 12,16 004 010 .027 .003 .010 .015 .004 .014 .024 .005 .014 .031
16, 20 009 015 .021 .006 .035 .030 .006 .014 .034 .003 .016 .035
sy 12,16 001 .006 .020 .002 .008 .016 .002 .011 .019 .002 .007 .026
16,20 001 .009 .011 .000 .015 .011 .004 .009 .022 .003 .009 .016
s3 12,16 000 .003 .011 .001 .009 .008 .002 .012 .017 .001 .012 .016
16, 20 002 .006 .012 .000 .013 .010 .002 .005 .022 .006 .007 .019
Daub4 wavelet filter, m=3
f,g sample (02,02) (0.5,0.5) 0.5,1) (1,0.5) (1,1)
size g 001 0025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05
s3 12,16
16, 20 005 017 .036 .006 .012 .026 .025 .050 .102 .017 .042 .056
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Table 3.10: Power of F} test based on 1000 replications, the combination of (Haar, m = 0) and

(Daub4, m = 3) with ¢; ~ 71506 ~tgand vj ~ 7’50,, - t4. at significance levels ¢ = 0.01, 0.025 and

0.05.
Haar wavelet filter, m=0
f,g sample (02,02) (0.5,0.5) (0.5,1) (1,0.5) (1,1
size q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05
(a) 12,16 732 789 870 481 .615 .702 551 .663 .707 .424 .545 .645
16, 20 866 918 940 .629 727 .798 .664 .754 .821 .613 .701 .772
(b) 12,16 963 976 .988 917 .927 937 921 .929 957 917 951 .959
16, 20 980 988 .990 939 967 982 950 .961 976 .955 973 983
(c) 12,16 973 970 989 .889 .928 .952 902 .946 943 .905 .941 942
16, 20 990 989 987 .948 966 .979 951 .964 984 956 970 971
(d) 12,16 009  .021 .072 .009 .021 .042 .013 .024 .046 .010 .026 .042
16, 20 010 .032 .084 .014 .023 .071 .012 .026 .051 .012 .033 .046
(e) 12,16 782 877 .894 570 .705 .788 .607 .694 .780 .536 .690 .771
16, 20 .899 932 964 .746 .833 870 .774 .810 .871 .715 .811 .875
®H 12,16 942 966 977 874 .897 .934 879 917 .934 .883 .930 .946
16, 20 982 983 .993 941 947 967 .946 .942 970 .945 .959 975
Daub4 wavelet filter, m=3
()" 12,16
16, 20 603 813 917 367 .532 .722 .637 .837 .934 .396 .588 .762
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Table 3.11: Size of F; test based on 1000 replications, the combination of (Haar, m = 0) and

(Daub4, m = 3) with ¢; ~ 7150’6 (x?3—1)andy; ~ 7150,, -(x% —1) at significance levels ¢ = 0.01,

0.025 and 0.05.

Haar wavelet filter, m=0

f,g sample (Uf, 03)

(0.5,0.5)

(0.5,1)

(1,0.5)

(1,1)

size q 0.01

0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05

s1 12,16 001 .007 .012 .001 .008 .009 .001 .005 .017 .002 .003 .013
16, 20 001 007 .015 .002 .013 .015 .002 .010 .016 .006 .004 .010
sy 12,16 003 .00l .005 .000 .005 .015 .001 .004 .007 .000 .001 .005
16, 20 000 .003 .009 .004 .002 .011 .001 .005 .013 .003 .004 .007
s3 12,16 000 .001 .003 .000 .004 .002 .001 .004 .007 .001 .003 .004
16, 20 000 .003 .003 .000 .000 .005 .000 .004 .009 .000 .002 .005
Daub4 wavelet filter, m=3
f = g sample (02, 02) (0.5,0.5) (0.5,1) (1,0.5) (1,DH
size g 001 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05
s3 12,16
16, 20 041 049 .078 .027 .041 .069 .087 .118 .162 .067 .073 .133
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Table 3.12: Power of F5 test based on 1000 replications, the combination of (Haar, m = 0) and
(Daub4, m = 3) with ¢; ~ :}505- (x}-1)andy; ~ :}501, -(x? —1) at significance levels ¢ = 0.01,
0.025 and 0.05.

Haar wavelet filter, m=0

f,g sample (02, 02) (0.5,0.5) (0.5,1) (1,0.5) (1,1
size q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05
(a) 12,16 640 710 776 .487 547 .613 .503 .566 .679 .389 .501 .615
16, 20 756 816 .872 .606 .644 .713 .643 728 .787 .529 .647 .707
(b) 12,16 599 726 758 .483 .560 .627 .395 .536 .645 .365 .474 .565
16, 20 762 793 .862 .558 .656 .696 .534 .699 .751 .524 .604 .697
(c) 12,16 582 703 743 414 521 .606 .381 .481 .604 .323 438 .555
16, 20 726 793 846 .562 .637 .688 .539 .655 .748 470 .595 .646
(d) 12,16 913 953 956 .818 .846 .861 .877 .901 .919 .824 .875 .908
16, 20 968 976 979 .876 .899 .936 .936 .950 .952 917 .933 .958
(e) 12,16 912 930 951 .801 .828 .873 .873 .881 .909 .833 .859 .892
16, 20 967 974 977 .889 .892 902 .932 941 .968 912 .930 .947
H 12,16 .897 922 931 .821 .866 .870 .845 .874 .930 .817 .852 .885
16, 20 962 968 985 .862 .892 .923 914 .945 .965 .901 .935 .937
(g) 12,16 .006 .005 .030 .013 .023 .037 .003 .006 .0!4 .007 .014 .021
16, 20 .009 015 .047 .008 .033 .064 .001 .003 .017 .003 .009 .022
(h) 12,16 701 784 829 563 .640 .703 .544 .659 .740 476 .604 .699
16,20 .847 .889 906 .687 .731 .770 .686 .787 .832 .657 .729 .775
(i) 12,16 .889 926 .937 .796 .811 .863 .827 .875 .891 .782 .815 .873
16, 20 942 963 973 856 .878 .909 .900 .929 .948 874 916 .932
Daub4 wavelet filter, m=3
G)r 12,16
16,20 660 817 914 415 .630 .700 .673 .843 914 451 .623 .756
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show the size and power simulation of F} test when the errors are from y? distribution. The
distributions of errors, for both ¢ and x?, are set to guarantee that the variances of errors
remain the same as those of normal case.

From Tables 3.9, 3.10, 3.11 and 3.12, we can see that,

e When the errors are from ¢ distribution, the size of Fj test becomes more conserva-

tive. The power is a little lower, but remains at a similar level as normal case.

e When the errors are from a skewed distribution, x2, the size of F} test becomes even
more conservative. The power is a little lower than those for ¢ distribution, but still

comparable.
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Chapter 4

APPLICATIONS AND CONCLUING

REMARKS

4.1 Application : Two Case Studies

In this section, we apply the proposed methods to two real data sets. Tt data set from
CRC example satisfies equal sample size and same design points and is u | to check the
performance of FDR test, F} test and the confidence interval method. Tl data set from
mouse lymphoma assay has different sample sizes and design points and the F3 test is the

appropriate choice for this example.

4,1.1 Case Studies: Methacholine CRC in Mesenteric Ar ries

This example contains the data from a Methacholine CRC in mesenteric arteries from
4 months male rats and 7 months male rats. For each case(4 months and 7 months), we

compare the means response (as shown in Figure 4.1) with L-Name and without L-Name.
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Figure 4.1: Methacnoline CRC in mesenteric arteries from 4 months(a) and 7 months(b) male rats:

Solid line: Observations without L-NAME; dotted line: Observations with L-NAME.

Since this data satisfies the conditions of equal sample sizes and same design points,
we use the FDR procedure and F} test to analyze the data. From our simulation results,
we have seen that when the sample size is small, the power of the FDR and F) tests are
very low especially when the error variances are large. In such cases, confidence interval

estimates of the difference was found to be very useful.

Confidence interval method:

From Figure 4.2, we can see that
e For (¢), (d) and (e), the s; goes to zero, so the confidence interval are not visible.
e For four months data, Daub2 gives the best estimation of the difference function.

For seven months data, Daub4 gives the best estimation of difference function. This
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Table 4.1: Results of FDR test for CRC data at significance level ¢ = 0.01, 0.025 and 0.05.

Data filter Conclusion of FDR test at ¢ =
0.01 0.025 0.05
4 months Haar Reject Hy Reject Hyy Reject Hy
Daub2 Reject Hy Reject Hy Reject Hy
Daub4 Reject Hy Reject Hy Reject Hy
7 months Haar Reject Hy Reject Hy Reject Hy
Daub2 Reject Hy Reject Hy Reject Hy
Daub4 Reject Hy Reject Hy Reject Hy

suggested that Daub2 and Daub4 are the appropriate choice for four months data and

seven months data.

e For four months data, the confidence interval based on Daub2 is far from includ-

ing zero. This suggests that hA(x) is not zero, which means f(x) and g(r) are not

the same. Although Haar and Daub4 gave poor estimation of (z), the confidence

intervals based on them are also away from zero.

e For seven months data, the confidence interval based on Daub4 is far from including

the zero. This suggests that the A(x) is not zero, which means f(x) and g(x) are not

the same. Although Haar and Daub2 gave poor estimation of 71(:1:), the confidence

intervals based on them are also away from zero.

FDR test:

In Table 4.1, we show the results of the FDR test on CRC data. No matter which

wavelet filter is used, Haar, Daub2 or Daub4, FDR test rejects the null hypothesis for both

four months and seven months data at significance levels ¢ = 0.01, 0.025 and 0.05.

F1 test:
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Table 4.2: Results of F) test for CRC data with Haar, Daub2, Daub4 and m = 0 and 1 at signifi-

cance level ¢ = 0.05.

Data filter m Fy p-value Conclusion
4 months Haar 0 4.48 0.064 Do not reject Hy
1 1.54 0.342 Do not reject Hy
Daub2 0 5.43 0.045 Reject Hy
1 1.91 0.273 Do not reject Hy
Daub4 0 0.59 0.583 Do not reject Hy
1 2.40 0.209 Do not reject Hy
7 months Haar 0 2.28 0.184 Do not reject Hy
1 1.59 0.333 Do not reject Hy
Daub2 0 2.92 0.130 Do not reject Hg
1 1.85 0.284 Do not reject H
Daub4 0 0.28 0.762 Do not reject Hg
1 6.86 0.444 Reject Hy

is needed for F; test. From Table 4.2, the F test suggests that Hy should not be rejected in

most cases. This conclusion is not reliable due to the small sample size.

4.1.2 Case Studies: Mouse Lymphoma Assay

The example of mouse lymphoma assay studied the mutant frequency of mouse at different
levels of concentrations under substance A and B. The observations are shown in Figure
4.5. In this experiment, repeated measurements are taken at 3 design points for substance

A and at 4 design points for substance B.

The estimations of f(x) and g(x) are shown in Figure 4.6. The results of the F; test

for mouse lymphoma assay data are shown in Table 4.3. We can find the combination of
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Table 4.3: Results of I test for mouse lymphoma assay data with Haar, Daub2, Daub4 and m = 0,

1 and 2 at significance level ¢ = 0.05.

filter m F p-value Conclusion
Haar 0 5.32 0.009 Reject Hy
1 25.23 0.000 Reject H

2 9.89 0.000 Reject Hy

Daub2 0 9.76 0.000 Reject Hy
1 20.23 0.000 Reject Hy

2 0.07 1.000 Accept Hy

Daub4 0 41.95 0.000 Reject Hy
1 35.09 0.000 Reject Hy

2 0.02 1.000 Accept Hy

wavelet filter and m, which give a good estimate for h(x), and then refer to the correspond-

ing results in Table 4.3.

From Figure 4.6, we can find that (d):(Daub2, m = 0) and (g):(Daub4, m = 0) give
relatively better estimations. Then from Table 4.3, we see that for (d), F» = 9.76 and p-
value=0; and for (g), F, = 41.95 and p-value=0. Both of them suggest rejecting the null
hypothesis. The simulation studies shows that we are more likely to commit a type II error
unless the difference between the curves is large. The results of the test suggests that the

difference is large and therefore H, should be rejected.

4.2 Conclusion and Remarks

In this study, we have developed three tests for testing the equality of curves via wavelets.

The FDR test involves the discrete wavelet transformation of observations into wavelet do-
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Table 4.4: Size of King’s test based on 1000 replications with ¢; ~ N (0,02), v; ~ N(0,02) and

bandwidth h = 0.1, 0.3 and 0.5 at significance levels ¢ = 0.01 and 0.05.

¢=0.01
sample (02,02) (0.5,0.5) (0.5,1) (1,0.5) (1,1)
size h 01 03 05 01 03 05 01 03 05 01 03 05
8 011 010 .011 .016 .011 015 .017 .013 .012 .005 .006 .017
16 010 .017 .012 .012 .011 006 .016 .005 .008 .012 .005 .009
32 011  .009 .014 .009 .009 .007 .014 .009 .005 .014 .006 .013
q=0.05
sample (02,02) (0.5,0.5) 0.5,1) (1,0.5) (1,1
size h 01 03 05 01 03 05 01 03 05 0.1 03 05
8 060 .045 .047 .056 .045 048 .047 .052 .048 .053 .051 .050
16 053 .051 .041 .055 .031 .051 .049 .043 .063 .038 .048 .046
32 046 058 061 .051 .058 .049 .043 .045 .053 .051 .053 .054

main. The F) and F; tests exploit the flexibility of wavelet approximations to approximate
the unknown response curve by its wavelet expansion.

In Chapter 2, we have described the construction of FDR test in detail. This method
is based on the false discovery rate suggested by Benjamini and Hocheberg (1995). We
investigate the FDR test by a series of simulation studies on different combinations of
sample size, difference function and error variance at different significance levels. The
results of simulations show that the performance of FDR test controlling the size improves
when sample size increases. We obtain power comparable with the tests proposed in other
literature, but is much faster. The robustness of FDR test is also studied in Chapter 2 by a
series of simulations. The results of simulations show that FDR test is robust against the
departures from normal distribution to t and x? distributions.

In Chapter 3, we proposed two F tests based on the wavelet expansion of functions.

First, we constructed the F test, which requires the sample sizes to be equal and the design
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Table 4.5: Power of King’s test based on 1000 replications with €; ~ N(0,02), v; ~ N(0,02) and

bandwidth A = 0.1, 0.3 and 0.5 at significance level ¢ = 0.01.

¢=0.01

h(z) n (02,02) (0.5,0.5) (0.5,1) (1,0.5) (1,1)
R 01 03 05 01 03 05 01 03 05 01 03 05
di(a) 8 335 340 417 188 229 249 181 .229 .261 .152 .166 .203
16 658 835 910 423 .637 .710 443 .647 .724 310 .462 .568
32 992 998 999 913 980 .985 .903 .988 .987 .782 936 .956
dy(b) 8 914 931 966 .766 .822 .857 .741 .803 .854 .604 .676 .740
16 999 1.00 1.00 .993 999 1.00 .991 .999 1.00 .969 .991 998
32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
do(a) 8 023 .020 .026 .017 .015 .028 .030 .017 .023 .016 .015 .021
16 038 048 049 .036 .025 .025 .029 .031 .038 .034 .023 .024
32 100,105  .114 053 .064 .067 .042 .062 .058 .046 .124 .149
do(b) 8 474 502 596 317 363 381 295 336 .397 .248 258 302
16 871 950 970 .666 .819 .866 .693 .829 .890 .524 .667 .757
32 100 1.00 1.00 .994 995 .998 .992 .999 .999 .943 989 .995
dy(c) 8 849 881 928 .696 .757 .772 670 .733 .790 .536 .600 .651
16 998 1.00 1.00 978 .994 998 976 .996 1.00 .924 980 .990
32 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 5 1.00 1.00 1.00
ds 8 000 .000 .000 .000 .000 .000 .000 .000 . ) .000 .000 .000
16 836 034 014 .659 .036 .014 .641 .027 .028 .557 .039 .025
32 100 1.00 .985 1.00 .996 .926 1.00 .995 .911 .963 .801 .975
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Table 4.6: Power of King’s test based on 1000 replications with e; ~ N(0,02), v; ~ N(0,02) and

bandwidth h = 0.1, 0.3 and 0.5 at significance level g = 0.05.

q=0.05

h(z) n (02,02) (0.5,0.5) (0.5,1) (1,0.5) (1,1)
h 01 03 05 01 03 05 01 03 05 01 03 05
di(a) 8 598 676 723 432 490 569 463 510 .577 .340 .390 .453
16 900 .972 989 .739 .861 948 .725 .890 921 .594 .772 .829
32 998 1.00 1.00 .984 996 1.00 .980 .994 1.00 .943 .966 .995
di(b) 8 993 999 999 959 979 981 .945 982 .980 .861 .916 .960
16 100 1.00 1.00 999 1.00 1.00 1.00 1.00 1.00 .997 1.00 1.00
32 100 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
da(a) 8 081 .106 .097 .084 .094 .070 .073 .083 .080 .085 .062 .069
16 138 173 1153 120 .135 .126 .111 .135 .107 .087 .092 .094
32 292 307 288 .193 211 200 .202 .197 .161 .139 .124 .149
dy(b) 8 776 840 865 .613 .648 734 597 .662 .760 491 .541 .647
16 975 998 997 891 .972 985 .885 971 .976 .802 .912 .939
32 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00
da(c) 8 972 990 999 920 .957 961 .899 .940 .974 .847 .883 .920
16 100 1.00 1.00 .999 1.00 1.00 .997 1.00 1.00 .988 .998 1.00
32 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
d3 8 .000 .000 .000 .000 .000 .001 .000 .000 .002 .002 .001 .002
16 998 381 256 .984 321 222 986 .285 .237 .953 282 214
32 100 1.00 1.00 1.00 1.00 .999 1.00 1.00 .992 1.00 1.00 .975
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Table 4.7: Size of King’s test based on 1000 replications with ¢; ~ 71506 by, Vj ~ 715% -ty and

bandwidth h = 0.1, 0.3 and 0.5 at significance levels ¢ = 0.01 and 0.05.

q=0.01
sample (02,02) (0.5,0.5) 0.5,1) (1,0.5) (1,1)
size h 01 03 05 01 03 05 01 03 05 01 03 05
8 010 .007 .006 .007 .009 .011 .013 .009 .007 .010 .008 .014
16 007 .007 .009 .009 .005 .006 .009 .006 .009 .006 .007 .008
32 005 .014 008 .006 .010 .010 .006 .009 .011 .011 .011 .013
q=0.05
sample (02,02) (0.5,0.5) (0.5,1) (1,0.5) (1,1)
size h 01 03 05 01 03 05 01 03 05 01 03 05
8 043 041 051 .039 .048 .053 .057 .036 .052 .036 .034 .057
16 059 053 .032 .041 .046 .054 .048 .042 .046 .040 .048 .046
32 048 052 .045 057 .044 042 052 .050 .042 .040 .043 .045

points to be the same. Then we constructed the F, test which relaxes these assumptions
and can be used more widely. The simulation studies show that the F test control the size
very well. At the same time, F] test gave power comparable with FDR test and King’s test.

In Tables 4.4-4.12, we show the simulation results of the test proposed in King et. al
(1991) for different combination of sample size, difference function, error variance and
bandwidth at significance levels ¢ = 0.01 and 0.05. After comparing the results of Table

4.4-4.12 with the corresponding results for FDR test and F} test, we find that

e The FDR test can control the size when sample size is large. The F; and King’s test

can control the size very well.
e The FDR test and F} test gave cor arable power with King’s test.

e King’s statistic does not have a regular distribution, so a simulation is required to

obtain the P-values of the statistic. In King, Hart and Wehrly (1991), they sug-
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Table 4.8: Power of King’s test based on 1000 replications with ¢; ~ 7‘305 by, v~ 715% -t4 and

bandwidth h = 0.1, 0.3 and 0.5 at significance level ¢ = 0.01.

¢=0.01

h(z) n (0%, 02) (0.5,0.5) 0.5,1) (1,0.5) (1,
R 01 03 05 01 03 05 01 03 05 01 03 05
di(a) 8 296 265 337 229 237 271 .199 241 274 .190 .192 229
16 550 696 777 452 629 679 442 621 .719 371 .556 .621
32 925 976 983 848 .959 968 .856 .948 969 .792 .929 .945
di(b) 8 775 855 881 746 .780 .831 .737 .777 831 .691 .740 .776
16 986 992 999 975 986 992 .975 .985 .991 951 .975 .979
32 100 100 1.00 .999 1.00 1.00 .997 .999 1.00 .999 .999 .998
da(a) 8 019 021 .019 .017 .019 .021 .025 .018 .012 .017 .017 .027
16 038 026 .030 .028 .031 .032 .028 .025 .029 .027 .018 .021
32 062 067 .076 .052 .061 . 0 .049 .057 .063 .045 .058 .058
do(b) 8 418 393 489 363 362 19 324 364 .407 .293 302 .349
16 764 851 891 .660 .794 836 .643 .805 .869 .603 .734 .780
32 986 993 .994 965 .988 .989 .955 .988 .992 .930 .980 .985
do(c) 8 705 794 817 685 .705 768 .680 .699 .777 .619 .663 .711
16 978 984 989 .948 981 986 .952 .975 .982 .919 .956 .964
32 100 1.00 1.00 .998 1.00 .997 .996 .999 1.00 .998 .998 .998
d; 8 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
16 705 026 .022 .679 .033 .024 .622 .028 .029 .545 .036 .028
32 1.00 984 928 1.00 .977 .863 1.00 .980 .868 .999 961 .820
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Table 4.9: Power of King’s test based on 1000 replications with €; ~ 71505 by, v~ 71-50,, -t4 and

bandwidth h = 0.1, 0.3 and 0.5 at significance level ¢ = 0.05.

g=0.05
hz) n (02, 02) (0.5,0.5) (0.5,1) (1,0.5) (1,1)
h 01 03 05 01 03 05 01 03 05 01 03 05
di(a) 8 522 607 632 442 524 563 466 .522 567 412 489 519
16 773 907 924 696 .849 898 .709 .844 888 .592 .798 .862
32 983 996 998 937 981 .992 943 984 996 .923 .983 .990
di(b) 8 951 960 974 910 940 955 .907 .947 960 .893 .925 .946
16 994 1.00 1.00 .986 .996 .998 .990 .996 .998 .992 .992 .996
32 999  1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 .999 1.00 1.00
da(a) 8 086 .065 .107 .097 .089 .069 .095 .082 .093 .072 .091 .095
16 134 133 134 111 .123 113 110 .113 .110 .111 .099 .122
32 228 232 228 .176 .196 .189 .191 211 .164 .141 .162 .161
da(b) 8 687 749 794 607 678 .701 626 .662 .715 .558 .629 .657
16 915 968 979 .863 937 952 847 933 .947 777 901 .940
32 998 1.00 999 986 .993 .997 987 .997 .999 .979 .997 .997
da(c) 8 927 943 965 876 907 930 .873 922 943 .847 .895 918
16 991 998 998 982 .995 997 .984 .995 .997 .983 .986 .996
32 999 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 .999 1.00 1.00
ds 8 001 .000 .000 .00l .001 .001 .000 .001 .000 .000 .000 .002
16 982 354 235 959 340 224 969 316 .221 .948 293 .233
32 999 996 988 1.00 996 .975 1.00 .997 981 1.00 .991 .963
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Table 4.10: Size of King’s test based on 1000

59y - (x{ — 1) and bandwidth ~ = 0.1, 0.3 and

cations with ¢; ~ 71506 . (x% -1, v ~

at significance levels ¢ = 0.01 and 0.05.

g=
sample (02,02) (0.5,0.5) (. (1,0.5) (1,1
size h 0.1 03 05 0.1 0.3 0.5 0.1 03 05 0.1 03 05
8 006 004 .006 .007 . .003 .002 .006 .001 .005 .002 .003
16 012 .002 .004 .008 . .006 .008 .006 .005 .006 .004 .008
32 .007 .005 .007 .014 . .009 .006 .007 .007 .009 .010 .010
g=
sample (02,02) (0.5,0.5) () (1,0.5) (1,1
size h 0.1 0.3 0.5 0.1 0.5 0.1 0.3 0.5 0.1 03 05
8 036 .030 .027 .047 b .033 .037 .027 .036 .030 .031 .041
16 .039 025 .034 .037 . 038 .037 .036 .040 .031 .032 .051
32 034 041 042 026 . + 040 .042 .042 .040 .038 .049 .055

gested 8000 simulations. This greatly
it unattractive to experimenter. Even i:
p-values for King’s statistic, it took the

tation that can be done in about an hoi

Apart from what we have discussed, wor

e How to choose the appropriate wave

efficiently.

e How to increase the power when the di

We hope that this work will motivate fu

tests for equality of curves by wavelet methq

ce the speed of King’s test which makes
1000 simulations was used to obtain the
g’s test several days to complete compu-

1g the FDR or F} test.
eeded on the following directions:

ter and level of decomposition m more

nce is complicated or sample size is small.

research in the direction of construction



Table 4.11: Power of King’s test based on 1000 replications with €; ~ 71506 (X2 -1),u ~

71§al, - (x? — 1) and bandwidth h = 0.1, 0.3 and 0.5 at significance level ¢ = 0.01.

q=0.01
hz) n (02,02) (0.5,0.5) (0.5,1) (1,0.5) (1,1)
h 01 03 05 01 03 05 01 03 05 01 03 05
di(a) 8 327 384 421 301 344 381 252 287 345 227 275 .348
16 546 674 767 499 644 685 481 .638 .690 .452 589 .633
32 897 968 970 .844 918 945 860 .955 .972 .803 .904 .925
di(b) 8 785 830 871 .749 .787 .800 .745 .797 .815 .692 .739 .758
16 979 993 995 945 973 983 956 .986 .994 .929 .975 .982
32 100 1.00 100 .998 1.00 1.00 1.00 100 1.00 1.00 1.00 1.00
da(a) 8 020 018 .020 .027 .027 .033 .011 .007 .007 .020 .017 .01l
16 043 030 .039 .048 .040 .036 .025 .019 .022 .032 .024 .033
32 077 095 075 .087 .077 .093 .056 .069 .065 .045 .057 .068
da(b) 8 477 502 546 421 452 497 385 419 466 .334 392 .446
16 742 826 879 662 .781 .812 .674 .790 .836 .610 .731 .765
32 968 992 993 943 977 984 965 .987 .994 922 970 .970
da(c) 8 747 778 820 .701 .725 .763 .687 .742 .764 .659 .679 .699
16 963 979 984 922 952 972 930 .973 .986 .904 .950 .970
32 999 1.00 1.00 998 1.00 1.00 .998 1.00 1.00 .997 1.00 .999
d3 8 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
16 714 035 019 .636 .030 .018 .677 .027 .021 .583 .036 .025
32 100 981 .927 .999 .973 .882 .999 .947 .848 1.00 .940 .813
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Table 4.12: Power of King’s test based on 1000 replications with €; ~ 715cr€ -1,y ~

7150,, - (x? — 1) and bandwidth » = 0.1, 0.3 and 0.5 at significa :level g = 0.05.
g=0.05

h(z) n (of,0% (0.5,0.5) (0.5,1) (1,0.5) (1,1
h 01 03 05 01 03 05 0 03 05 01 03 05
di(a) 8 561 659 700 .501 .559 .631 5 551 .607 466 .505 .571
16 766 875 910 .691 .818 .888 .7 .858 .889 .678 .800 .822
32 968 994 992 941 976 .980 < 984 998 916 .967 .981
di(b) 8 937 947 958 882 .929 944 ¢ 937 961 .880 .890 .904
16 995 1.00 1.00 980 .994 999 ¢ 998 .999 .980 .995 .994
32 1.00 1.00 1.00 1.00 1.00 1.00 1 1.00 1.00 1.00 1.00 1.00
da(a) 8 099 105 .095 .115 .102 .106 ( .071 .074 .083 .071 .088
16 1220 143 143 137 163 118 ] 102 .100 .095 .104 .177
32 222 242 215 198 .219 .209 163 188 .154 .190 .186
da(b)y 8 693 752 795 625 .666 .723 . .683 732 .594 .626 .692
16 881 944 959 820 907 .943 . 946 946 .808 .893 910
32 992 998 999 977 998 995 999 1.00 .976 .986 .997
da(c) 8 915 931 937 .851 .896 .923 .866 .912 .940 .844 .856 .877
16 991 997 1.00 .970 988 .996 .986 .996 .997 .968 .993 .990
32 1.00 1.00 100 100 100 100 1 ) 1.00 1.00 1.00 1.00 1.00
dy 8 .000 .000 .002 .000 .000 .001 . ) .000 .001 .001 .001 .000
16 967 355 274 952 313 218 .944 378 .228 927 328 .255
32 1.00 998 983 1.00 99 974 1 ) 991 .960 1.00 .992 .958
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