
CENTRE FOR NEWFOUNDLAND STUDIES 

TOTAL OF 10 PAGES ONLY 
MAY BE XEROXED 

(Without Author•s Permission) 







TESTS FOR EQUALITY OF CURVES VIA WAVELETS 

by 

@Pengfei Guo 

A thesis submitted to the 

School of Graduate Studies 

in partial fulfilment of the 

requirements for degree of 

Master of Science 

Department of Mathematics and Statistics 

Memorial University of Newfoundland 

August 2005 Submitted 

St. John's Newfoundland Canada 



Abstract 

In this article, we develop tests for equality of response curves. We assume that the 

mathematical expression of the response curves are unknown. Consequently, we exploit 

the adaptive properties of wavelets to construct a wavelet representation of the curves. 

Then, we develop an approach which combines the False Discovery Rate (FDR) technique 

and the universal thresholding approach, widely used in data denoising, for detecting differ­

ences between the curves. We also discuss some methods based on the general F-test. We 

consider several examples under a variety of conditions such as unequal variances, unequal 

number of observations, and distinct design points. The size and power performances of 

the tests are reported. We present two real examples at the end of this article. 
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Chapter 1 

INTRODUCTION 

A common problem in experimental work, such as toxicology and epidemiology, is the 

comparison of two mean response curves. This comparison becomes complicated when 

the response functions are unknown. 

This problem has been already investigated by a few authors using smooth nonpara­

metric estimates of the regression curve. See Hardie and Marron (1990), Hall and Hart 

(1990), and King, Hart and Wehrly (1991)). Hall and Hart (1990) discussed a bootstrap 

procedure for testing the equality of two curves. Under the assumptions that sample sizes 

are equal(n1 = n 2 ) and design points are the same(xi = ui)· King et al. (1991) proposed 

two tests both with common design points, one for normal errors and the other for non­

normal errors. It is difficult to justify the asymptotic properties of these statistics, since the 

statistics which are based on automatically chosen smoothing numbers are computationally 

demanding. Another restriction of the tests mentioned above is the requirement of equal 

sample size and same design points, which may be difficult to obtain in practice. In ad­

dition, computing p-values for these tests requires several thousands of simulation which 

an experimenter may not have the time to complete. Consequently, we feel that it is im-
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portant to investigate new methods that are relatively easy to implement with power that is 

comparable to these methods. 

Hardie and Marron (1990) propose a semiparametric test. The test involves the method 

of parametric transformation of axes. They also study estimation and testing of the parame­

ters in the transformations. Delgado (1993) proposes a test which resembles in spirit to the 

Kolmogorov-Smimov Statistic. Similar to smoothing estimates methods, these two tests 

both assume equal designs. 

In this study, we propose and investigate three wavelet-based procedures for testing the 

equality of curves. The first two methods requires equal sample sizes and same design 

points; whereas the third is a general procedure with no restrictions. In what follows, 

readers will find that the third procedure requires a larger sample size to achieve high 

power. 

Wavelet theory, which has been developing over the years has proved to be useful in 

signal processing, fast algorithms for integral transforms in numerical analysis and function 

representation. For a recent survey on the use of wavelets in signal processing, see Rioul 

& Vetterli (1991) . Due to the flexible nature ofwavelet systems, there has been growing 

interest in the application of wavelets to statistical problems. Successful statistical applica­

tions have already been made in areas such as regression, density and function estimation, 

factor analysis, modeling and forecasting in time series analysis, and spatial statistics. 

The problem we consider can be described as follows. The observed data are { (Yi , xi ) , i = 

1, ... , n l} and {(Zj, Uj ) , j = 1, ... , n 2 } with 

Yi = f (xi ) + Ei, i = 1, ... , n 1, 
(1.1) 

Zj = g(uj ) + vj, j = 1, .. . , n2, 

where Ei, i = 1, ... , n 1 and Vj , j = 1, .. . , n 2 are independent random errors for the two 

groups. We assume that in each group the errors are identically distributed with mean 0, 
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var(c) = CJ; and var(v) = CJ~, where CJ; is not necessarily equal to CJ~. However, the c/s 

are assumed to be independent of the vi's. Based on the observed data, an experimenter 

is interested in determining whether the underlying mean response functions generating 

Yi and Zi are the same. That is, the null and alternative hypotheses of interest to the 

experimenter are 

Ho : f(x) = g(x) for all x E [0, 1], 
(1.2) 

H1 : f(x) =/:- g(x) for some x E [0, 1]. 

In the sections that follow, we discuss some wavelet basics needed for the understand­

ing of the contents of Chapters 2 and 3. It is in these chapters that we develop the test 

statistics for (1.2). The test statistic in Chapter 2 arises from the false discovery rate(FDR) 

approach of Abramovich and Benjamini (1995), and the statistic in Chapter 3 is based on 

wavelet expansion. In the second part of Chapter 3, we generalize the wavelet expansion 

methods, so that the statistics can be used for the test under any condition, such as unequal 

sample sizes, different design points and repeated measurements. Two examples the metha­

choline CRC in mesenteric arteries and the mouse lymphoma assay are used to illustrate 

the techniques in Chapter 4. 

1.1 Some Background on Wavelets 

In this section we introduce some definitions and theories on wavelets relevant to our 

work. More detailed discussions can be found in Mallat (1989), Meyer (1992), Daubechies 

(1992), Abramovich and Benjamini (1995),(1996), Benjamini and Hochberg (1995), Hardie, 

Kerkyacharian, Picard, and Tsybakov (1998), and Vidakovic(1998). 

A wavelet system is a collection of dilated and translated versions of a scaling function 
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¢(x) and a primary wavelet '¢(x) defined by 

and 

respectively. The function ¢(x) and '¢(x) are chosen to satisfy the equations 

¢(x) = ~ hp¢(2x- p) (1.3) 
pEZ 

'¢(x) = ~ 9r¢(2x- r) (1.4) 
rEZ 

and 

(1.5) 

for a sequence hr of constants, called filter coefficients, with 

J ¢(x)dx = 1, J '¢(x)dx = 0, J ¢2(x)dx = 1. 

The condition 

ensures the existence of a unique solution to equations (1.3) and (1.4). Orthogonality of the 

translates of ¢( x) is ensured by the condition 

~ hphp-2j = c5j, j E Z 
pEZ 

In the theory of wavelets, the space of square integrable functions, IL2 (1R), is written as 

the limit of a sequence of close subspaces Vj where 

...... c V-2 c v_l c Vo c V1 c V2 c ..... . 
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The nested spaces have an intersection that is trvial and a union that is dense in IL2 (1R), 

(1.6) 

where we denote the closure of a set A by A. 

Mallat(l989) introduced the notion of a multiresolution analysis, the definition of which 

we recall here. 

Definition 1.1.1 A multiresolution analysis ofiL2 (1R) consists of an increasing sequence of 

closed subspaces Vj, j E Z such that 

(a) nj Vj = 0; 

(b) Ui Vj = ILz(lR); 

(c) there exists a scaling function <P E V0 such that ¢( x - k), k E Z is an orthonormal 

basis ofVo; 

(d) for all k E Z, f(x) E Vj {:=:} f(x- k) E Vj, and 

(e) f(x) E Vj {:=:} f(2x) E VJ+l· 

The intuitive meaning of (e) is that in passing from Vj to VJ+1, the resolution of the ap­

proximation is doubled. Mallat(l989) has shown that given any multiresolution analysis, 

it is possible to derive a function 'lj;(x) such that the family { '1/Jj,k(x) : j, k E Z} is an 

orthonormal basis of!L2 (1R) . 

To construct '1/Ji,k(x), we define for each j E Z the difference space Wi to be the 

orthogonal complement of Vj such that 
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That is, any function f ( x) E VJ+I can be written as a linear combination or direct sum of 

functions in wj and Vj. It can be verified that 

j-1 

v; = Vo EB EB wi. 
i=O 

Iterating this infinitely many times, we find 

j=O i=O 

This means that any f E IL2 (IR) can be represented as a series( convergent in IL2 (IR)): 

00 

f(x) = L Cj0 k</>j0k(x) + L L djk'lj;jk(x), (1.7) 
j=jo kEZ 

where Cjok. djk are some coefficients, and { '!j;ik}, k E Z is a basis for Wi. The relation 

( 1. 7) is called a multiresolution expansion off. The space Wi is called resolution level of 

multiresolution analysis. In Fourier analysis there is only one resolution level. In multires-

olution analysis there are many resolution levels which is the origin of its name. 

1.1.1 Wavelet system construction 

The general framework of wavelet system construction is as follows. 

1. Pick a scaling function ¢ such that { ¢0k} is an orthonormal system, and (1.6) is 

satisfied. 

2. Find a primary function 'lj; E W0 , probably using (1.4), such that {'!j;0k, k E Z} 

{'!j;(x- k), k E Z} is an orthonormal basis in Wi. 

3. Conclude that any f E IL2 (Z) has the unique representation in terms of an IL2-

convergent series: 

00 

f(x) = L Cj0 kcPj0k(x) + L L djk'lj;jk(x), 
kEZ j=jo kEZ 

6 



where the wavelet coefficients are 

Cj0 k = j f(x)</>iok(x)dx, dik = j J(x)'!j;jk(x)dx. 

We now outline four constructions of the "scaling function" </> found in the literature (see 

Strang(1989) and Pinheiro and Vidakovic(1997)). Once </>(x) is known, we can compute 

the primary wavelet '!f;(x) through (1.4). 

Construction 1. Iterate </>i(x) = 2:.:: hk</>i-l (2x- k) with the box function as </>0 (x). When 

h0 = 2, the boxes get taller and thinner, approximating the delta function. For ho = h1 = 1, 

the box is invariant: </>1 = </>0 • For coefficients ! , 1, ! , the hat function appears. And 

~, ~, ~, ~, ~ yields the cubic B-spline. An example that will be important in our discussion 

has coefficients ~(1 + v'3), H3 + v'3), H3- v'3), ~(1- v'3). This scaling function leads 

to orthogonal wavelets. 

Construction 2. The second construction takes the Fourier transform of ( 1.3): 

L hk j </>(2x- k)ei~xdx 

~ (L hkeik~/2) J </>(y)eiy~/2dy 
p(~)¢(~) (1.8) 

The notation P(~) = ! 2:.:: hkeik~ is a crucial function in this theory. With~ = 0 we find 

P(O) = 1(see(l.5)). Now repeat (1.8) at ~/2, ~/4, ... and recall ¢(0) = J </>(x) = 1, we get 

an infinite product: 

¢(<) ~ p m ¢ m ~ p m p m ¢ m ~ · · · ~ g p uj) . (!9) 

For h0 = 2 we find P = 1 and¢= 1, the transform of the delta function. For h0 = h1 = 1, 

the product of the P's are geometric series: 

p ({) = p ({) = .!.(1 + ei~/2)(1 + ei~/4) = 1- e~~ 
2 4 4 4(1 - et~/4) 
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As N ~ oo, this approaches the infinite product (1 - ei€)(i~). This is J
0
1 ei€xdx, the 

transform of the box function. The hat function comes from squaring P(~) which by (1.9) 

also squares ¢( ~). The cubic B-spline comes from squaring again. 

Construction 3. This construction of¢ works directly with the recursion (1.3). Suppose 

¢is known at the integer x = j, the recursion (1.3) gives ¢at the half-integers. Then it 

gives¢ at the quarter-integers, and ultimately at all dyadic point x = kj2i. This is fast to 

program. 

The values of¢ at the integers come from an eigenvector. With the wavelet coefficients 

(h0 , h1, h2, h3 ) = (H1 + v'3), H3 + v'3), H3- v'3), H1- v'3)), which is one of the 

wavelet filters in the Daubechies wavelet system and noted as Daub2 in latter section. set 

x = 1 and x = 2 in the dilation equation (1.3) and use the fact that¢ = 0 unless 0 < x < 3, 

we get: 

¢(1) = ~(3 + v'3)¢(1) + ~(1 + v'3)¢(2), 

¢(2) = ~(1- v'3)¢(1) + ~(3- v'3)¢(2). 

This is the eigenvalue problem ¢ = L¢, with matrix entries Lii = h2i-i. The eigenvalues 

are 1 and ! , and the corresponding eigenvector for A = 1 has components ¢( 1) = ! (1 + 

V3), ¢(2) = !(1 - V3). The other eigenvalue A = ! means that the recursion can be 

differentiated: ¢'(x) = I: hk2¢'(2x - k), which leads similarly to ¢'(1) and ¢'(2). For 

the hat function, the recursion matrix again has A = 1, !· From the cubic spline, the 

· I 1 1 1 1 e1genva ues are , 2, 4, 8. 

When ¢( 1) and ¢(2) are known, the dilation equation gives ¢( x) at half-integers, such 

as 

(
1) 1 1 ¢ 2 = 4(1 + v'3)¢(1) = 4(2 + v'3) 

(3) 1 1 ¢ 2 = 4(3 + v'3)¢(2) + 4(3- v'3)¢(1) = 0 
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Then the equation gives <P at quarter-integers as combinations of <P at half-integers and so 

on. 

Construction 4. The fourth construction is based on the Daubechies-Lagarias local pyra-

midal algorithm(see Daubechies and Lagarias(1991 ,1992)). The Daubechies-Lagarias al-

gorithm enables us to evaluate <P and 1/J at a point with preassigned precision. We will 

illustrate the algorithm with wavelets from the Daubechies family; however, the algorithm 

works for all finite impulse response quadrature mirror filters. 

Let <P be the scaling function of the D N wavelet with support [0, 2N - 1] . let x E (0, 1) 

and define dyad( x) = d1 , d2 , ... , dn, ... as the set of 0 - 1 digits in the dyadic representation 

ofx. That is x = L:; 1 di 2-i . By dyad(x,n ), we denote the subset ofthe first n digits 

from dyad(x), i.e., dyad(x, n) = d1 , d2 , ... , dn. let h = (ho, h1 , . . . , h2N- l ) matrices as: 

(1.10) 

Then the local pyramidal algorithm can be constructed based on Theorem 1.1.1. See 

Daubechies and Lagarias( 1992) or Pinheiro and Vidakovic( 1997). 

Theorem 1.1.1 

n->oo 

</J(x) 

</J(x + 1) 

<P(x) 

</J(x + 1) 

</J(x + 2N - 2) </J(x + 2N- 2) 

<P(x) 

</J(x + 1) 

</J(x + 2N - 2) 

The convergence of II Td1 • Td2 • • • • • T dn - Td1 • Td2 • • • • • Tdn+m II to zero for fixed 

m, is exponential and constructive, i.e. , effective decreasing bounds on the error can be 

established. 
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Example 1.1.1 Consider the Daub2 scaling function. The corresponding filter is h 

( l+l'3, 3+/'3, 3-/'3, 1- 40). According to (1 .1 0), the matrices T0 and T1 are given as 

1+.,/3 0 0 3+.,/3 1+.,/3 0 4 4 4 

To= 3-.,/3 3+.,/3 1+.,/3 T1 = 1-.,/3 3-.,/3 3+.,/3 
4 4 4 4 4 4 

0 1-.,/3 3-.,/3 0 0 1-.,/3 
4 4 4 

Let us evaluate the scaling function at an arbitrary point, for instance, x = 0.45. 

Twenty "decimals" in the dyadic representation of 0.45 obtained through an S-Plus pro-

gram are dyad(0.45, 20) = 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1. In addition to 

the value at 0.45, we get the values at 1.45 and 2.45. The values ¢(0.45), ¢(1.45) and 

¢(2.45) may be approximated as averages ofthefirst, second, and third row, respectively 

in the matrix 

0.86480582 0.86480459 0.86480336 

II Ti = 0.08641418 0.08641568 0.08641719 
iEdyad(0.45,20) 

0.04878000 0.04877973 0.04877945 

The Daubechies-Lagarias algorithm gives only the values of the scaling function. the 

following theorem gives the values of the wavelet function. 

Theorem 1.1.2 Let x be an arbitrary real number, let the wavelet be given by its filter 

coefficients {h0 , h1 , ... , h2N-d· Define vector u with 2N- 1 components as 

u(x) = {( -1) 1
-(

2
x]hi+1-(2x],i=0, ... ,2N-2 }· 

If for some i, the index i + 1- [2x] is negative or larger than 2N -1, then the corresponding 

components of u is equal to 0. 

Let the vector v be 

v(x, n) = 2N
1
- 11' II Ti , 

iEdyad( {2x},n) 
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where 1' = (1, 1, ... , 1) is the row-vector of ones. Then 

1/J(x) = limn-+oo v(x, n), 

and the limit is constructive. 

Computationally, Construction 4 is the easiest to implement. Thus, this construction 

has been used in this thesis to construct the Daubechies wavelet systems. 

1.1.2 Some important wavelet bases 

In this section we describe some commonly used families of wavelets: Haar's and Daubechies 

wavelet systems. 

Haar System: The Haar wavelet basis is the simplest example of a wavelet system on 

IT.}(IR). The scaling function is: 

¢(x) = I[o,lJ(x) = { 
0, 

1, ifO::::; X< 1; 

otherwise. 

The refining relations for the Haar wavelet basis are 

¢(x) = ¢(2x- 1) + ¢(2x) 

and 

1/J(x) = 1j;(2x) -1/J(2x - 1) 

Daubechies System: Daubechies was the first to construct compactly supported orthog­

onal wavelets with a preassigned degree of smoothness. The scaling functions and primary 

wavelets of the Daubechies (1992) wavelet systems, commonly represented as N¢(x) and 

N'l/J ( x) respectively, have no closed forms. They are constructed numerically for different 

values of the wavelet number N, which identify the number ofnonvanishing coefficients in 
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the "dilation equation" N¢(x) =I: hk ·N ¢(2x- k) used in the construction. The choice 

N = 1 yields the Haar wavelets. Once N¢(x) has been constructed, the corresponding pri­

mary wavelet is obtained from N'l/J(x) = I.:k( -1)'/vh1-k ·N¢(2x -k). The functions N¢(x) 

and N'l/J(x) have compact support with vanishing moments of order 1 toN. This property, 

commonly referred to as a moment condition, guarantees good approximation properties 

of the corresponding wavelet expansion of a response function f ( x) in N¢( x) and N'l/J ( x). 

That is, it determines how quickly the wavelet expansion will converge to the true response 

f(x). See Hardie et al. (1998) for details. 

The algorithm we have used in this thesis is the construction 4 introduced in Section 

1.1.1. Table 1.1 list the filter coefficients N hk for N = 2 through 10. In some literatures, 

the filter coefficients Nh is also denoted as DaubN. This notation is also used in this article. 

Figure 1.1 shows the plots ofthe corresponding N¢ and N'l/J, which are the scaling function 

and the primary function for DaubN, for N = 2, 3, 4, 5 and 8. Both N¢ and N'l/J have 

support width 2N - 1. 
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daub2 scaling function daub2 wavelet function 

daub3 scaling function daub3 wavelet functlon 

daub4 scaling function daub4 wavelet function 

daubS scaling function daubS wavelet function 

daubS scaling function daubS wavelet function 

Figure 1.1: Graphs of scaling functions and primary wavelet from Duabechies' family, N 

2, 3, 4, 5 and 8. 
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Table 1.1: The filter coefficients 
k Duab2 Daub3 Daub4 
0 0.4829629131445341 0.3326705529500826 0.2303778133088965 
1 0.8365163037378079 0.8068915093110925 0.7148465705529156 
2 0.2241438680420133 0.4598775021184915 0.6308807679298589 
3 -0.1294095225512603 -0.1350110200102545 -0.0279837694168598 
4 -0.0854412738820266 -0.1870348117190930 
5 0.0352262918857095 0.0308413818355607 
6 0.0328830116668851 
7 -0.0105974017850690 
k Duab5 Daub6 Daub? 
0 0.1601023979741929 0.1115407433501094 0.0778520540850092 
1 0.6038292697971896 0.4946238903984530 0.39653931948191 73 
2 0.7243085284377729 0.7511339080210953 0. 7291320908462351 
3 0.1384281459013207 0.3152503517091976 0.4697822874051931 
4 -0 .2422948870663820 -0.2262646939654398 -0.1439060039285650 
5 -0.0322448695846383 -0.1297668675672619 -0.2240361849938750 
6 0.0775714938400457 0.0975016055873230 0.0713092192668302 
7 -0.0062414902127982 0.0275228655303057 0.0806126091510830 
8 -0.0125807519990819 -0.0315820393174860 -0.0380299369350144 
9 0.0033357252854737 0.0005538422011614 -0.0165745416306668 
10 0.0047772575109455 0.0125509985560998 
11 -0.0010773010853084 0.0004295779729213 
12 -0.0018016407040474 
13 0.0003537137999745 
k Daub8 Daub9 Daub10 
0 0.0544158422431070 0.0380779473638783 0.0266700579005555 
1 0.3128715909143165 0.2438346746125903 0.1881768000776914 
2 0.6756307362973218 0.6048231236901111 0.5272011889317255 
3 0.5853546836542239 0.6572880780513005 0.6884590394536035 
4 -0 .0158291052563724 0.1331973858250075 0.2811723436605774 
5 -0.2840155429615815 -0.2932737832791749 -0.2498464243273153 
6 0.0004724845739030 -0.0968407832229764 -0.1959462743773770 
7 0.1287474266204823 0.1485407493381063 0.1273693403357932 
8 -0.0173693010018109 0.0307256814793333 0.0930573646035723 
9 -0.0440882539307979 -0.0676328290613299 -0.0713941471663970 
10 0.0139810279173996 0.0002509471148314 -0.0294575368218758 
11 0.0087460940474065 0.0223616621236790 0.0332126740593410 
12 -0.0048703529934519 -0.0047232047577513 0.0036065535669561 
13 -0.0003917403733769 -0.0042815036824634 -0.0107331754833305 
14 0.0006754494064506 0.0018476468830562 0.0013953517470529 
15 -0.0001174767841248 0.0002303857635231 0.0019924052951850 
16 -0.0002519631889427 -0.0006858566949597 
17 0.0000393473203162 -0.0001164668551292 
18 0.0000935886703200 
19 -0.0000132642028945 
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1.2 Some Wavelet Methods for Estimating Functions 

There are two main wavelet approaches for estimating functions. These are by (a)wavelet 

expansion, (b )applying a discrete wavelet transform. 

1.2.1 Wavelet Expansion 

Mallat (1989) has shown that any f E IL2 (1R) can be represented as a series (convergent in 

00 

f(x) = L Cj0 kcPj0 k(x) + L L djk'l/;jk(x). 
kEZ j=jo kEZ 

The coefficients Cjk and dik are then estimated by applying weighted least square (see 

Oyet and Sutradhar (2003)) or by a nonparametric regression estimator (see Antoniadis, 

Gregoire and McKeague (1994)). In this article, the wavelet filter we are going to use are 

Haar wavelet and Daubechies wavelet. 

1.2.2 Discrete Wavelet Transformation (DWT) 

There are several steps involved in using the DWT to estimate a function. The steps are 

discussed below. 

STEP 1: Apply a discrete wavelet transform to the observed data Y. 

Discrete wavelet transformations map data from the time domain (the original or input 

data vector) to the wavelet domain. The result is a vector of the same size. Wavelet trans-

formations are linear and they can be defined by matrices of dimension n x n if they are 

applied to inputs of size n. 

Example 1.2.1 Let the data vector be (1, 2) and let M(l, 2) be the point in JR2 with coor-

dinates given by the data vector. The rotation of the coordinate axes by an angle of~ can 
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be interpreted as a DWT in the Haar wavelet basis. The rotation matrix is 

W= 
( 

7r '71") (1 1) cos 4 sm 4 72 72 
7r • 7r 1 1 cos 4 - sm 4 72 - 72 

and the discrete wavelet transformation of(1, 2)' is W · (1, 2)' = ( ~' -~)'. 

The change of basis can be performed by matrix multiplication. Therefore, the pro­

cedure of DWT begins with the construction of an orthogonal transformation matrix W. 

We have already seen a transformation matrix corresponding to Haar's transformation in 

Example 1.2.1. 

In vector notation, we can write the }'i's in (1.1) as 

By applying W to Y, we have the wavelet image off commonly referred to as the wavelet 

coefficients given by 

d = fJ + E1 

where d = WY, fJ = Wf and E' =WE. The components ofW are constructed as follows. 

Let the length of the data be 2J, let h = { hs, s E Z} be the wavelet filter, and let 

N be an appropriately chosen constant. Denote by Hk a matrix of size (2J-k x 2J-k+1), 

k = 1, ... with entries 

hs, s = [(N- 1) + (j- 1)- 2(i- 1)] modulo 2J-k+l 

at the position (i,j). By analogy, define a matrix Gk,corresponding to the already defined 

Hk. by replacing hi by ( -1)ihN+l-i· For filters from the Daubechies family, a standard 

choice for N is the number of vanishing moments. 
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The matrix [ :: ] is a basis-changing matrix in 2J-k+1 dimensional space; conse­

quently, it is unitary. Therefore, 

and 

This implies that 

Now, for a sequence y the J -step wavelet transformation is d = W J · y, where 

( :: ).w,= ( ::) ·H1 
wl = 

G1 

( ::) ·H2 
· H1 

W3= ' ... 
G2 

G1 

Example 1.2.2 Suppose thaty = {1, 0, -3, 2, 1, 0, 1, 2} and the .filter ish= (ho, h1, h2, h3) = 

C:x. 3:J?, 3:;J1, 1:;J?). Then, J = 3 and the matrices Hk and Gk are of dimension 
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Since, 

h1 h2 h3 0 0 0 0 ho 

0 ho h1 h2 h3 0 0 0 

0 0 0 ho h1 h2 h3 0 

h3 0 0 0 0 ho h1 h2 

-h2 h1 -h0 0 0 0 0 ho 

0 h3 -h2 h1 -ho 0 0 0 

0 0 0 h3 -h2 h1 -ho 0 

-ho 0 0 0 0 h3 -h2 h1 

H 1 · y {2.19067, -2.19067, 1.67303, 1.15539} 

G1 · y {0.96593, 1.86250, -0.96593, 0.96593}. 

So the one-step Daub2 DWTofy is 

W 1y = {2.19067, -2.19067, 1.67303, 1.1553910.96593, 1.86250, -0.96593, 0.96593} 

The two-step Daub2 DWT ofy is 

W1y = {1.68301, 0.316991 - 3.28109, -0.1830110.96593, 1.86250, -0.96593, 0.96593} , 

because 

H2 · H 1 · y - H2 · {2.19067, -2.19067, 1.67303, 1.15539} 

{1.68301 , 0.31699} 

G2 · {2.19067, -2.19067, 1.67303, 1.15539} 

{ -3.28109 , -0.18301} 
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In this example, due to the lengths of the filter and the data, we can perform the transfor-

mation for two steps only, w1 and w2· 

STEP 2: The second step recommended by Donoho and Johnstone (1994) and Donoho, 

Johnstone, Kerkyacharian and Picard ( 1995) involves a technique called thresholding. First 

we estimate the error variance a 2 and use a to threshold the wavelet coefficients obtained 

in step 1. 

There are several choices for the estimation of a. Almost all methods use only the 

wavelet coefficients at the finest scale to estimate the variance of noise. This is based on 

the fact that the square of signal-to-noise ratio (SNR)2 is usually small at high resolutions 

and, if the signal is not too irregular, the finest scale should contain mainly noise. Moreover, 

the finest scale contains 50% of all coefficients. 

Some choices of the estimator of a are 

n /2 
1 2: [d~J-1) - d(J-1)] 2 

n/2- 1 i=1 t ' 

S= 

or a more robust MAD (median absolute deviation from the median) estimator 

a 1/0.6745 ·MAD [ d(1 - 1)J 

1.4826 ·MEDIAN [ ld (J- 1) - MEDIAN(d(J- 1))1] 

where d (J- 1) is the vector of finest detail coefficients associated to the multiresolution 

subspace W1-1· 

For all thresholding rules, it is common to set to 0 the coordinates of a vector d, ifthey 

are smaller in absolute value than a fixed non-negative number - the threshold .A. 

The most common thresholding policies are hard and soft. The expression for the hard-

and soft- thresholding rules are 

c5h(d, .A) = d · l (l dl > .A), A~ 0, dE lR , 
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and 

58 (d , .X) = (d- sgn(d) · .X) · l(ldl > .X) , .X~ 0, dE IR, 

Donoho and Johnstone (1994) suggest the threshold .X = a..j2log n, which they call the 

universal threshold. 

Aside from the universal thresholding, an alternative has been suggested by Abramovich 

and Benjamini (1995). 

The process of thresholding of wavelet coefficients can be viewed as a testing problem. 

For each wavelet coefficient di = ()i + a Ei , the hypothesis H 0 : ()i = 0 is tested against the 

alternative H 1 : ()i i= 0. If the hypothesis H 0 is rejected, the coefficient di is retained in the 

model. Otherwise, it is discarded. 

The universal threshold can be viewed as a critical value of a similar test in which the 

level is 

q P( ldi I > ay'2log n iHo) 

2<I>( - y'2log n) 

[<I>( -x) ~ <j; (x )jx when xis large] 

It has been shown that the power of the test against the alternative H1 ()i = ()(# 0) is 

0 ( nv'n\ogn) as well. 

The universal threshold controls the probability of even one erroneous inclusion of a 

coefficient. The approximate level of ( n ..j 1r log n) -l tends to zero as n increases. Subse­

quent severe decreases in power are compensated by accepting almost all H 0 , leading to 

severe underfitting. 

One way to control such dissipation of power is suggested by Abramovich and Ben-

jamini (1995, 1996), which is based on the false discovery rate(FDR) method ofBenjamini 

and Hochberg (1995). 
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Their procedure has three steps: 

(1). For each djk find its two-sided p-value, Pik in testing H 0 : ()jk = 0, 

(2). Order the Pik according to their size, P(1) ~ P(2) ~ · · · ~ P(n). Find k = max{ iiP(i) < 

(i/n) · q}. For this k calculate 

(3). Threshold wavelet coefficients at level >..k. 

If E is Gaussian, the above procedure ensures the FDR to be below q. More details about 

FDR are described in Chapter 2. 

After applying the threshold, we obtain thresholded coefficients, d, which set to 0 some 

coordinates of d, according to the thresholding rules. 

STEP 3: Invert the thresholded coefficients, by applying w-1 to d, to obtain f. Let 

tu11 tu1n 

W= 

be the matrix performing a discrete wavelet transformation, i.e., d = WY. Note that, since 

W is orthogonal, w-1 = wr. In term ofW, the wavelet shrinkage estimator off is 

(1.11) 
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"' 1.3 Large sample properties off 

Let X ,...., N(B, a2), a2 known, and 6 = 6(X, .A) be either a hard- or soft-thresholding rule 

with threshold A. Without loss of generality, we may assume that a 2 = 1. Bruce, Donoho, 

Gao, Martin (1994), Gao (1998), and Marron, Adak, Johnstone, Neumann and patil (1998) 

obtained exact expressions for the expectation and variance of 6 under squared error loss 

for hard- and soft-thresholding rules, which are, respectively: 

M1(B) 

v;(e) 

B + B[1- <I>(.A- B)- <I>(.A +B)]+ ¢(-A- B) -¢(-A+ B), 

(B2 + 1)[1- <I>(.A- B)- <I>(.A +B)] 

+(-A+ B)¢(-A- B)+ (-A- B)¢(-A +B)- (Mf(B)?, 

Mf(B)- -A[<I>(.A +B) -<I>( .A- B)], 

V.xh(e)- -A[v(.A , e)+ v(.A, -B)], 

where ¢ and <I> are the standard normal density and cumulative distribution function and 

v(-A, B)= [1 + <I>(.A- e)- <I>(.A +B)]· [(20- .A)(1- <I>(.A- B))+ 2¢(-A- B))] . 

Under certain conditions, Brillinger (1995) showed that, for each i, ji(see (1 .9)) is 

asymptotically Gaussian with standard errors estimated by 

Then we can easily construct approximate confidence intervals for fi as 

where q represents the confidence level. 
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Chapter 2 

FALSE DISCOVERY RATE (FDR) 

STATISTIC 

When pursuing multiple inferences, researchers tend to select the statistically significant 

ones for emphasis, discussion and support of conclusions. An unguarded use of single­

inference procedures results in a greatly increased false positive (significance) rate. To con­

trol this multiplicity (selection) effect, classical multiple-comparison procedures (MCPs) 

aim to control the probability of committing a type I error in families of comparisons under 

simultaneous consideration. The control of this familywise error rate (FWER) is usually 

required in a strong sense, i.e. under all configurations of the true and false hypotheses 

tested (see for example Hochberg and Tamhane (1987)). 

Benjamini and Hochberg (1995) suggest a new point ofview on the problem of multi­

plicity. In many multiplicity problems the number of erroneous rejections should be taken 

into account and not only the question whether any error was made. Yet, at the same time, 

the seriousness of the loss incurred by erroneous rejections is inversely related to the num­

ber of hypotheses rejected. From this points of view, a desirable error rate to control may 
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Table 2.1: Number of errors committed when testing m null hypotheses 

Declared Declared 

non-significant significant Total 

True null hypotheses u v mo 

Non-ture null hypotheses T s m-mo 

Total m - R R m 

be the expected proportion of errors among the rejected hypotheses, which they term the 

false discovery rate (FDR). 

Consider the problem of testing simultaneously m (null) hypotheses, of which m 0 are 

true and R is the number of hypotheses rejected. Table 2.1 summarizes the situation in a 

traditional form. The specific m hypotheses are assumed to be known in advance; R is an 

observable random variable; U, V, S and T are unobservable random variables. If each 

individual null hypothesis is tested separately at level a, then R = R(a ) is increasing in 

a . We use the equivalent lower case letters for their realized values. 

In terms of these random variables, the FWER is P (V ~ 1). Testing individually 

each hypothesis at level a/m guarantees that P(V ~ 1) ::; a. The proportion of errors 

committed by falsely rejecting null hypotheses can be viewed through the random variable 

Q = V /(V + S)- the proportion of the the rejected null hypotheses which are erroneously 

rejected. The FDR Q e is defined as the expectation of Q, 

Q e = E(Q) = E{V /(V + S)} = E(V /R) . 

If all null hypotheses are ture, the FDR is then equivalent to the FWER. In this case 

s = 0 and v = r. So if v = 0 then Q = 0, and if v > 0 then Q = 1, leading to 

P(V ~ 1) = E(Q) = Q e. Therefore, control of the FDR implies control of the FWER in 

the weak sense. 
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2.1 Test Statistic Construction 

The FDR method we are about to describe can be applied only when n 1 = n 2 = n and xi = 

ui in model (1.1 ). That is, the technique requires equal sample sizes and common design 

points in (1.1). Let Di = Yi - Zi =(!(xi)- g(xi )) + (ci- vi) · Under the null hypothesis 

we have f =g. It follows that Di = (ci- vi) · That is, D / s are white noise. By applying 

the discrete wavelet transformation(DWT) to D/ s we obtain the corresponding wavelet 

coefficients di 's. Now, following the FDR procedure of Section 1.1.6, we know that, all 

of the coefficients d/ s should be rejected. In addition, if we take Di 's as the observed 

response and estimate the mean response curve, we should obtain a line at approximately 

zero parallel to the x axis. This is therefore an approach for verifying the results of the 

FDR test. The algorithm for the FDR test is outlined below: 

STEP 1. Take the differences on both sides of ( 1.1) to obtain 

(2.1) 

where Di = Yi - Zi, h(xi ) = f( xi ) - g(xi) and 1Ji = Ei - vi. The variance of 1Ji 

becomes, a-~ = a-;+ a-~. 

STEP 2. We transform (2.1) into a model in the wavelet domain by applying DWT to (2.1) 

to obtain 

{WD}i = {Wh}i + {W1J}i, 

where D = (D1 , . . . , Dnf, h = (h1, ... , hnf and 1] = (171 , ... , 1Jn)T and rewrite (2.1) 

in the wavelet domain as 

di = ()i + ~i · 

where di = {WD }i, ()i = {Wh }i, and ~i = {W 17 k It is usual to refer to the d/ s as 
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the wavelet coefficients. Then the hypothesis (1.2) is now 

f or all i = 1, ... , n. 

in the wavelet domain. Readers who are familiar with wavelet theory would notice 

immediately that the transformation into the wavelet domain has simplified the test 

into thresholding of the wavelet coefficients. 

STEP 3. For each d i find its two-sided p-value, Pi for testing H0 : ()i = 0. 

where crl = crl; = a-~; = a-;+ a-~. The second equality holds because the matrix W 

is orthogonal. 

STEP 4. Order the Pi 's in ascending order, P (l ) :::; P (2) :::; • . • :::; P(n). If P (i) 2': * · q for every 

1 :::; i :::; n, reject the null hypothesis ( 1.2). 

As shown in section 1.1.5, The crl can be estimated by the finest scale d (J-l ). For 

small samples, we may not obtain much information from the data, so the FDR test may 

sometimes leads to inaccurate results. Hence, when n is small, we use estimates of the 

differences to validate the FDR test. The main idea is to estimate the difference h(x) = 

f(x) - g(x) and construct a confidence interval for h(x), as described in Section 1.1.6. 

Our simulation results show that if h( x) is close to zero and the interval cover zero, it is an 

indication that we cannot reject H 0 : h = 0. On the other hand, if h(x) is not close to zero, 

then we should reject H 0 . This also depends on the magnitude of a-~ . 

The confidence interval is constructed by noting that under H 0 , we have 

i = 1, ... n, 
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Considering that we conduct n two-sided tests simultaneously, we can construct a Bonferroni-

type simultaneous confidence interval of hi as 

i = 1, ... ,n. 

2.2 Simulation Studies 

In this section, we examine the size and power performance of the FDR test. The condition 

under which the simulation study was performed are: 

• Xi=Ui,fori=1,2, ... ,n. 

• n=8,16 and 32. 

• E "' N(O, CJ;) and v "'N(O, CJ~) 

• (CJ;, CJ~) = (0.5, 0.5), (0.5, 1), (1, 0.5) and (1, 1). 

• Wavelet filters used in FDR test are Haar wavelet, Daub2, and Daub4. 

• Significant level q = 0.01, 0.025 and 0.05. 

• In the simulaion for the power of the test, h( x) = constants ( d1 ( x) ), quadratic ftmc­

tions (d2 (x )) and HeaviSine ftmction (d3 (x )). where 

d1(x) (a).Vf.S, (b).2.5; 

d2 (x) (a).3(x- 0.4) 2
, (b).3(x- 0.4? + 1.2, (c).3(x- 0.4) 2 + 2; 

d3 (x) 4sin47rx- sgn(x- 0.3)- sgn(0.72- x). 

• The distributions of error terms, Ei and vj, were chosen as 
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Figure 2.1: A plot of(a). the quadratic function 3(x- 0.4) 2 ; and (b). the HeaviSine function, 

(a). Normal: Ei "' N(O, o-;) and vi "' N(O, o-~); 

(c). Chi-square: Ei "' ~o-€ · (x~ - 1) and vi"' ~o-v · (xi- 1); 

The choices (a) was used in the size and power simulation studies. Both (b) and (c) 

were used in the robustness studies in Section 2.4. 

To compute the size, we generated observations Y and Z of size n following ( 1.1) and 

(1.2) with f(x) = g(x). Using these observations we then evaluated Di = Yi - Zi and 

followed the algorithm for the FDR test to determine whether to reject H 0 or not to reject 

Ho. We repeated this process 1000 times and computed the proportion of rejections in 1000 

repeated times. This was done for various combinations of o-;, o-~, q and n. The results are 
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Table 2.2: Size of FOR test based on 1000 replications, the Haar wavelet, Ei ,...., N(O, O";) and 

Vj ,...., N(O, O"~) at significance level q = 0.01, 0.025 and 0.05. 

sample (0";, 0"~) (0.5,0.5) (0.5, 1) (1,0.5) (1,1) 

size q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 

8 .071 .097 .137 .091 .105 .130 .083 .111 .130 .085 .094 .105 

16 .031 .043 .058 .019 .040 .073 .028 .047 .052 .024 .038 .053 

32 .013 .024 .046 .015 .032 .044 .015 .025 .050 .017 .026 .046 

shown in Table 2.2. Exactly the same process described above was followed in computing 

the power in Table 2.3 except that f(x) was different from g(x). 

In Table 2.3, the difference between f(x) and g(x), h(x), is taken as the functions 

d1(x), d2 (x) and d3 (x) respectively. Compared with the results from Daub2 and Daub4, 

Haar wavelet gives the best results on sizes and powers. The distributions of errors Ei and 

vi are chosen to be normal. In the robustness simulations, error terms from t and chi-square 

distributions are used to check the robustness of FDR test. 

From Table 2.2 and 2.3, we have following conclusions: 

• The performance of the FDR test is affected by sample size and the values of a; and 

a~. The performance of the FDR test improves as the sample size gets larger. For 

example, for (a;, a~) = (0.5, 0.5), q = 0.01 and n = 8, the size was 0.071. This 

improved to 0.013 when n increased to 32. We notice the same pattern for q=0.025, 

and 0.05. 

• The power of FDR test is mainly determined by the magnitude of the difference 

between two curves. For example, for (a;, a~) = (0.5, 0.5), q = 0.01 and n = 8, 

when the difference function was d1 (a), which means h(x) = Vf.5, the power was 

0.636; when f(x) = d2 (b) = 2.5, the power increased to 0.992. 
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Table 2.3: Power of FDR test based on 1000 replications, the Haar wavelet, Ei "' N(O, O":) and 

Vj "' N(O, O"~) at significance level q = 0.01, 0.025 and 0.05. 

h(x) n (O":' O"~) (0.5,0.5) (0.5, 1) (1,0.5) (1,1) 

q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 

d1(a) 8 .636 .689 .732 .493 .550 .592 .521 .530 .589 .401 .437 .493 

16 .878 .921 .953 .711 .772 .820 .706 .766 .819 .559 .651 .674 

32 1.00 .997 1.00 .965 .970 .983 .957 .974 .983 .870 .914 .942 

dl(b) 8 .992 .998 .999 .948 .973 .984 .948 .962 .984 .885 .930 .938 

16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .995 .999 .998 

32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

d2(a) 8 .125 .150 .165 .099 .120 .158 .110 .137 .167 .117 .115 .145 

16 .073 .098 .157 .068 .095 .108 .058 .070 .127 .049 .076 .094 

32 .090 .108 .164 .048 .080 .100 .064 .082 .128 .031 .067 .081 

d2(b) 8 .808 .827 .865 .626 .683 .728 .639 .693 .775 .520 .562 .688 

16 .979 .986 .990 .889 .912 .958 .882 .916 .937 .760 .827 .867 

32 1.00 1.00 1.00 .998 1.00 1.00 .997 1.00 1.00 .982 .982 .993 

d2(c) 8 .980 .991 .994 .917 .953 .959 .915 .947 .974 .856 .896 .912 

16 1.00 1.00 1.00 .998 1.00 1.00 .998 .999 1.00 .991 .999 .999 

32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

d3 8 .000 .000 .000 .000 .000 .000 .000 .000 .001 .000 .001 .001 

16 .886 .962 .991 .793 .923 .969 .817 .891 .971 .742 .829 .908 

32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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• The power of FDR test is also affected by the magnitude of variance of errors. For 

example, for q = 0.01, n = 8 and h(x) = d1 (a), when (();, ()~) = (0.5, 0.5), the 

power was 0.636. This reduced to 0.401 when (();, ()~) = (1, 1). 

• When the magnitudes ofthe differences are on the same level, the power of FDR test 

is also affected by the complexity of the difference function (h(x )). For example, for 

(();, ()~) = (0.5, 0.5), q = 0.01 and n = 8, when h(x) = d1 (b) = JE, the power 

was 0.992. This reduced to 0.808 when h(x) = d2 (b) = 3(x- 0.4) 2 + 1.2. 

• When n = 8, the number of coefficients in finest scale, d(J-l), is 4, half of the number 

of total coefficients. It is therefore difficult to obtain a good estimation of (Jl. That 

explains the poor performance of the FDR method when n = 8 and n = 16. 

• When the difference between f and g is constant, we obtain good power when the 

constant difference is comparable with the standard deviation ()€ = 1. 

• When the difference between f(x) and g(x) is d2 (a), which is not large, considering 

the magnitude of() € and () v, it is natural for the magnitude of the power to be small, 

especially for small sample. When the difference is taken as d2 (b) and d2 (c), the 

power of the test improves. 

• When the difference is taken as HeaviSine function, although the absolute value of 

HeaviSine(x) is large, but the complexity of HeaviSine function increases the diffi­

culty of estimating the variances of noise for a small sample. When the sample size 

increases, the power of FDR and F1 test improves significantly. 

• When the sample size is small, the power is poor. So we need to combine the tests 

with confidence intervals as shown in Figures 2.2 and 2.3 
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Figure 2.2: A plot of the data Di = Yi - Zi i = 1, ... , n (solid line), Haar wavelet estimate 

iJ = h(x) = f ~ g(x) (dotted line), and approximate confidence bounds (dotted broken line) for 

difference h(x) = f(x)- g(x) with parameters (a), (b) n = 8 and 16, respectively, with a= 0.05, 

(o-€, o-v) = (1.6, 2.5) and h(x) = 0; (c), (d) n=8 and 16, respectively, with a= 0.025, (o-€, o-v) = 

(3.5, 0.8), and h(x) = 0.5; (e), (f) n = 8 and 16, respectively with a= 0.01, (o-€, O"v) = (2, 2), and 

h(x) = V1.5. 
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Figure 2.3: A plot of the data Di = Yi - Zi i = 1, ... , n (solid line), Haar wavelet estimate 

iJ = h(x) = f..:_ g(x) (dotted line), and approximate confidence bounds (dotted broken line) for 

difference h(x) = f(x) - g(x) with parameters (a), (b), (c) n = 8, h(x) = 3(x - 0.4) 2, and 

n = 8, h(x) = 3(x - 0.4) 2 + 2.5, and n = 16, h(x) = 3(x - 0.4)2 + 2.5, respectively, with 

a= 0.05, (uf, O"v) = (1.6, 2.5) and Filter= 4hk; (d), (e), (f) n = 8, Filter= 4hk and n = 8, 

Filter= ahk and n = 16, Filter= ahk respectively, with h(x) = HeaviSine function, a= 0.05, and 

(ue, O"v) = (1.6, 2.5). 
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Table 2.4: Size of FDR test based on 1000 replications, the Haar wavelet,q rv ~CT€ · t4 and 

Vj rv ~CT v · t4 at significance leve) q = 0.01, 0.025 and 0.05. 

sample ( cr;, cr~) (0.5,0.5) (0.5,1) (1 ,0.5) (1,1) 

size q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 

8 .074 .102 .110 .076 .112 .114 .067 .093 .119 .081 .099 .140 

16 .023 .045 .061 .027 .045 .059 .027 .044 .060 .022 .047 .078 

32 .018 .031 .045 .017 .022 .054 .015 .021 .052 .012 .025 .043 

2.3 Robustness of FDR test 

In the FDR test, it is assumed that both E and v are normally distributed. In order to check 

the robustness ofFDR test on departures from normal errors, we conduct simulation studies 

generating errors from t and x2 distributions in this section. Tables 2.4 and 2.5 show the 

size and power ofFDR test when the errors is actually from t distribution instead of normal; 

Tables 2.6 and 2.7 show the size and power ofFDR test when errors have x2 distribution. 

From Table 2.4, 2.5, 2.6 and 2. 7, we can see that, 

• When the errors are from t distribution, the performance of FDR test on size and 

power simulation is insensitive to the departure from normal distribution tot distri-

bution. 

• When the errors are from a skewed distribution, x2
, the performance of FDR test on 

size is affected slightly. The simulated power remains at a similar level as normal 

case. 
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Table 2.5 : Power of FOR test based on 1000 replications, the Haar wavelet, Ei ,...., ~CTE · t4 and 

1/j rv ~(j 11 • t4 at SignificanCe level q = 0.01, 0.025 and 0.05. 

h(x) n (CT;, CT~ ) (0.5,0.5) (0.5,1) (1 ,0.5) (1,1) 

q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 

d1(a) 8 .619 .699 .730 .475 .543 .593 .479 .520 .594 .367 .484 .484 

16 

32 

dl(b) 8 

16 

32 

d2(a) 8 

16 

32 

d2(b) 8 

16 

32 

d2 (c) 8 

16 

32 

.873 .922 

.998 1.00 

.991 .997 

1.00 1.00 

1.00 1.00 

.115 .147 

.087 .120 

.084 .104 

.792 .856 

.970 .976 

1.00 1.00 

.981 .988 

1.00 1.00 

.939 .716 .770 .834 .712 .784 .813 .535 .605 .682 

.999 .968 .975 .981 .959 .977 .986 .860 .918 .939 

.996 .954 .965 .978 .939 .973 .979 .886 .934 .953 

1.00 .999 1.00 1.00 .999 1.00 1.00 .994 .999 .999 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

.211 .120 .132 .159 .123 .136 .173 .121 .119 .158 

.140 .067 .089 .109 .055 .087 .110 .061 .072 .105 

.162 .046 .078 .117 .043 .081 .1 00 .045 .050 .078 

.870 .638 .701 .763 .660 .695 .795 .526 .612 .655 

.992 .866 .923 .934 .876 .922 .953 .764 .811 .872 

1.00 .998 .999 .999 .999 .999 1.00 .981 .985 .990 

.987 .935 .945 .963 .909 .946 .961 .857 .892 .929 

1.00 .998 .998 1.00 .998 1.00 1.00 .985 .994 1.00 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .001 

16 .885 .969 .987 .787 .917 .917 .803 .912 .965 .705 .859 .930 

32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Table 2.6: Size of FOR test based on 1000 replications, the Haar wavelet, Ei ,...., ~CTE · (X~ - 1) 

and vi ,...., ~CT11 • (x~ - 1) at significance level q = 0.01, 0.025 and 0.05. 

sample (CT;, CT~ ) (0.5,0.5) (0.5,1) (1,0.5) (1,1) 

size q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 

8 

16 

32 

.047 .071 

.015 .033 

.020 .055 

.084 .062 .1 00 .086 .046 .073 .087 .041 .077 .082 

.059 .017 .031 .070 .026 .025 .051 .023 .046 .054 

.100 .021 .062 .139 .019 .069 .119 .019 .071 .114 
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Table 2.7: Power ofFDR test based on 1000 replications, the Haar wavelet, Ei,...., ~uf ·(X~- 1) 

and lli ,...., ~0"11 • (X~- 1) at significance level q = 0.01, 0.025 and 0.05. 

h(x) n ( u;, u~) (0.5,0.5) (0.5,1) (1 ,0.5) (1, I) 

q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 

d1(a) 8 .601 .657 .684 .556 .572 .630 .512 .589 .622 .498 .549 .586 

16 .750 .812 .843 .661 .760 .763 .735 .726 .810 .627 .684 .709 

32 .931 .963 .978 .891 .928 .951 .901 .926 .964 .850 .900 .929 

dl(b) 8 .943 .949 .963 .898 .924 .933 .906 .940 .946 .874 .919 .926 

16 .989 .998 .998 .986 .992 .995 .992 .997 .998 .977 .989 .993 

32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

d2(a) 8 .094 .131 .185 .124 .160 .185 .071 .110 .146 .112 .139 .161 

16 .075 .095 .153 .075 .099 .113 .050 .060 .112 .064 .083 .120 

32 .062 .132 .191 .072 .133 .192 .054 .099 .191 .064 .103 .169 

d2(b) 8 .708 .766 .808 .661 .719 .737 .672 .711 .783 .618 .680 .717 

16 .867 .916 .930 .819 .848 .872 .839 .876 .898 .777 .814 .869 

32 .986 .994 .997 .955 .977 .990 .984 .981 .996 .956 .973 .977 

d2(c) 8 .916 .937 .944 .879 .894 .929 .901 .911 .935 .831 .897 .921 

16 .991 .991 .994 .969 .983 .998 .982 .992 .992 .963 .977 .983 

32 1.00 1.00 1.00 .999 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 

d3 8 .000 .001 .000 .000 .003 .002 .001 .001 .000 .000 .002 .002 

16 .824 .910 .945 .793 .885 .936 .763 .897 .921 .764 .866 .915 

32 .997 1.00 1.00 1.00 .999 .999 .993 .997 1.00 .992 1.00 1.00 
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Chapter 3 

WAVELET EXPANSION STATISTIC 

3.1 Wavelet Expansion Method for Equal Sample Sizes 

In this section, we discuss the simplest case of the wavelet expansion method, which re-

quires the sample sizes to be equal and design points to be the same. In Section 3 .1.1, the 

construction of the F 1 statistic is described in detail. The results of simulation studies on 

size and power of the F 1 test are reported in Section 3.1.2. 

3.1.1 Construction of F1 statistic 

Consider the model (2.1) and expand h(x) using wavelets( see Section 1.1.3) to obtain 

m 21-1 

h(x) = c</Jo(x) + L L dtk'I/Jtk(x) + r(x) 
l=O k=D 

where r(x) are the remainder terms in the wavelet expansion of h(x). That is, 

00 21-1 

r(x) = L L dtk'I/Jtk(x) 
l=m+1 k=D 

Assuming the remainders are negligible, let 

37 



and 

Then, the model (2.1) can be written as 

(3.1) 

In matrix notations, (3 .1) becomes 

D = Q{J+ry 

where 

'r/1 

D= Q= ry= 

'rfn 

Oyet and Wiens (2003) note that regression weights are useful in increasing the accu-

racy of wavelet estimation. Thus, the experimenter may consider weighted least squares 

estimation of {3: 

~ ( T )-1 T f3wLs= Q WQ Q WD 

where W =diag(w1, ... , Wn) and wi = w(xi) = J; llqm(s)dsll/llqm(xi) II· Then under the 

full model (3.1), DF,WLS = Q/JwLs, so that the residual sum ofsquares(RSS) under the 

full model is 
n 

RSSF = L wieF/, 
i=1 

where 

Under H0 : f = g which implies that h(x) = 0. Since h(x) = f(x) -g(x) ~ qT(x)/3 = 

0 and qr(x) is not a zero vector, then testing H 0 : f = g is equivalent to testing H 0 : /3 = 0. 
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In this case, the RSS becomes 

n 

RSSHo = L WieOC)l, 
i =l 

where 

Then the F -statistic can be constructed as 

F
1 

= (RSSHo- RS/!SF) jp 
RSSF/(n - - p) 

where p = 2m+l. Obviously, the null distribution of IF1 will follow a F p,n-p distribution. 

3.1.2 Simulation studies 

In this section, we examine the size and power perfoii1Uance of the F1 test. 

In Tables 3.1, 3.2 and 3.3, the difference between f(x) and g(x), h(x), is taken as the 

functions d1 (x), d2(x) and d3 (x) respectively (see Section 2.2). The filters used in the test 

are the Haar wavelet, Daub2 and Daub4. The level o~f decomposition mistaken as 0, 1, 2. 

The distributions of errors Ei and vi are chosen to be m ormal. In the robustness simulations, 

error terms from t and chi-square distributions are us ed to check the robustness of F1 test. 

In the size simulations, different filters and m getl similar results. In Table 3.1, we only 

show the results from Haar wavelet and m = 0. 

To compute the size, we generated observations "!Y and Z of size n following ( 1.1) and 

(1.2) with f(x) = g(x) . Using these observations vwe then evaluated Di = Yi - Zi and 

followed the algorithm for the F1 test to determine wliliether to reject H 0 or not to reject H0 . 

We repeated this process 1000 times and computedJ the proportion of rejections in 1000 

repeated times. This was done for various combina tions of a;, a~ , q and n. The results 

from Haar wavelet and m = 0 are shown in Table 3. 0 . Exactly the same process described 
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Table 3.1: Size of F1 test based on 1000 replications, the Haar wavelet and m = 0 with Ei '"" 

N(O, a-;) and Vj '""N(O, a~) at significance levels q = 0.01, 0.025 and 0.05. 

sample (a;, a~) (0.5,0.5) (0.5,1) (1,0.5) (1,1) 

size q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 

8 .009 .028 .052 .010 .018 .048 .011 .024 .042 .011 .030 .044 

16 .010 .020 .059 .016 .031 .046 .010 .025 .049 .007 .019 .043 

32 .011 .025 .057 .012 .030 .049 .011 .027 .059 .006 .027 .049 

above was followed in computing the power in Table 3.2 except that f(x) was different 

from g(x). 

In Table 3.2, we study the power of F1 test. Under most of the cases, the combination of 

choices ofHaar wavelet and m = 0 give the best power. When h(x) is taken as d3 , (Daub2, 

m = 2)and (Duab4, m = 2) also give comparable, or even better results, which are shown 

in the categories d3 and d3*. This is also the case in the robustness studies. When m = 2, 

the sample size n could only be larger than 8. 

From Table 3.1 and 3.2, we draw the following conclusions. 

• Similar to the FDR test, the performance of F1 test is affected by sample size. When 

the sample size is larger, the performance of the F1 test is better. However, the F1 

test appear to be able to control the size much better than the FDR test. (see Tables 

3.1 and2.1). 

• The power of F1 test is mainly determined by the magnitude of the difference be­

tween two curves. For instance, for (a;, a~) = (0.5, 0.5), n = 8 and q=O.Ol, when 

the h(x) = d1 (a) = .J1.5, the power is 0.293; when h(x) = d1(b) = 2.5, the power 

is 0.943. When the magnitude of difference increased from .Jf.5 to 2.5, the power 

increases significantly. 

• When the magnitudes of the differences are on the same level, the power of F 1 test 
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Table 3.2: Power of the F1 test based on 1000 replications and the Haar ,Daub2(*) and Daub4(**) 

wavelet with Ei "'N(O, a:;) and Vj "' N(O, u~) at significance levels q = 0.01, 0.025 and 0.05 . 

h(x) n (u;,u~) (0.5,0.5) (0.5,1) (1,0.5) (1,1) 

d1(a) 8 

16 

32 

dl(b) 8 

16 

32 

d2(a) 8 

16 

32 

d2(c) 8 

16 

32 

d3 8 

16 

32 

dj 8 

q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 

.293 .492 .669 .180 .355 .464 .159 .324 .510 .129 .224 .362 

.897 .960 .981 .714 .816 .903 .681 .802 .903 .543 .689 .814 

1.00 1.00 1.00 .981 .994 1.00 .989 .998 1.00 .948 .981 .991 

.943 .991 .997 .804 .937 .976 .802 .926 .988 .658 .841 .926 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 .998 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

.013 .041 .098 .014 .038 .076 .016 .035 .085 .013 .026 .068 

.044 .100 .165 .025 .057 .136 .034 .063 .118 .027 .060 .114 

.144 .202 .305 .059 .138 .214 .066 .169 .234 .046 .110 .180 

.449 .670 .823 .306 .489 .667 .308 .498 .684 .210 .360 .553 

.980 .990 1.00 .888 .956 .987 .865 .941 .984 .738 .867 .940 

1.00 1.00 1.00 .999 1.00 1.00 .999 1.00 1.00 .993 .999 .999 

.881 .957 .991 .706 .881 .954 .720 .884 .950 .566 .779 .882 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .994 .997 1.00 

1.00 1.00 

.000 .000 

.828 .973 

1.00 1.00 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

.010 .002 .005 .025 .003 .005 .017 .003 .015 .040 

.994 .703 .909 .972 .719 .898 .967 .613 .820 .924 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

16 .880 .967 .995 .749 .887 .970 .762 .910 .966 .633 .810 .924 

32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

dj* 8 

16 .886 .976 .994 .771 .916 .958 .727 .920 .975 .641 .807 .933 

32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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is also affected by the variances of errors. For example, for h( x) = d1 (a), n = 8 

and q=0.01, when (a; , a~)= (0.5, 0.5), the power is 0.293; when (a;, a~)= (1 , 1) , 

the power reduced to 0.129. Increasing the variances of errors has the same effect 

as reducing the magnitude of difference. In this case, an increase in the sample size 

leads to an increase in the power. For example, when n is increased to 16, the powers 

increases to 0.897 and 0.543 respectively. 

• When the magnitudes of the differences are on the same level, the power of F 1 test 

is also affected by the complexity of the difference function h(x). For example, for 

(a;, a~) = (1 , 1), n = 8 and q=0.01, when h(x) = d1 (b) = 2.5, the power is 0.658; 

when h(x) = d2 (b) = 2(x - 0.4) 2 + 2, , the magnitude of difference is on the 

comparable level with d1 (c) , for this case, the power reduced to 0.566. 

• The F1 test performs well in controlling the size, regardless of the choice of filter and 

m. 

• When the difference function (h(x)) is simple (constants and quadratic functions), 

we tend to obtain higher power with the Haar wavelet filter and m = 0. When the 

difference function is complicated, e.g. d3 ( x )(HeaviSine function), we tend to obtain 

higher power with the choices Daub2 wavelet and m = 2 and Daub4 wavelet and 

m = 2 (see Table 3.2 for d3 , d3 and d3*). 

• The choice of filter could be determined by the complexity of the difference function, 

h(x). When h(x) is more complicated, a longer-length filter is necessary for test. 

• The choice of m could be determined by the fluctuation of h( x ). The more compli­

cated the fluctuation of h( x ) is, the larger m is needed. 
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• When the difference between f and g is constant, we obtain good power when the 

constant difference is comparable with the standard deviation a~. 

• When the difference function is taken as d2(a), which is not large, considering that 

the magnitude of h(x ), it is natural for the power of the test to be small. When the 

magnitude of h(x ) increases (d2 (b) and d2 (c)), the power of F1 test improves. 

• When h(x) is taken as the HeaviSine function, the complexity ofthe HeaviSine func­

tion increases the difficulty of estimating the error variances, especially with a small 

sample. Considering that the degree of freedom of F 1 is (2m+1 , n - 2m+1 ), the de­

nominator degree of freedom, n - 2m+1, may be very small, when n is small and 

m is relatively large, which may lead to poor results. From the simulation results in 

Table 3.2, this happens when n = 8, m = 1 and n = 16, m = 2. 

• Since n - 2m+1 must be positive, the value of m must be less than 2 when n = 8. 

3.1.3 Robustness of F1 test 

In the F1 test, we assume that E and v are normal distributed. In this section, we will 

investigate the robustness of F1 test on departures from normal errors. The errors we have 

used are from t and x2 distribution instead of normal. Tables 3.3 and 3.4 show the size 

and power simulation of F1 test when the errors are from t distribution. Tables 3.5 and 3.6 

show the size and power simulation of F 1 test when the errors are from x2 distribution. The 

distributions of errors, for both t and x2
, are set to guarantee that the variances of errors 

remain the same as those of normal case. 

From Tables 3.3, 3.4, 3.5 and 3.6, we can see that, the size of F 1 test is slightly but 

not seriously affected by the non-normal error distribution. The power is a little lower, but 
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Table 3.3: Size of F1 test based on 1000 replications, the Haar wavelets and m = 0 with Ei ""' 

~cr€ · t4 and Vj ""'~cr11 • t4 at significance levels q = 0.01, 0.025 and 0.05. 

sample ( cr; , cr~) (0.5,0.5) (0.5,1) (1,0.5) (1,1) 

size q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 

8 .005 .021 .043 .008 .020 .039 .012 .018 .045 .009 .024 .042 

16 .008 .012 .038 .004 .027 .050 .008 .034 .050 .011 .021 .055 

32 .007 .017 .048 .006 .033 .049 .010 .027 .044 .006 .025 .041 

still comparable to the results in Table 3.2. This shows that F1 is robust to departures from 

normality. 

3.2 Generalized Wavelet Expansion Method 

Sometimes, it is possible to encounter data for testing equality of curves for which the 

assumption of equal sample sizes and same design points does not hold. In this section, we 

modify the wavelet expansion method in Section 3.1, so that it can be used more widely. 

3.2.1 Construction of F2 statistic 

Suppose we have repeated observations { (Yij, xi), i = 1, ... , n 1 , j = 1, 2, ... , ri} and {(Z1k, u1), j = 

1, ... , s1} from 

Yij 

zlk g( ul) + vlk· 

Ifwe expand f(x) and g(u) using wavelets, we have 

f(x) 

g(u) 

c¢o(x) + I:.:;:o 2::.:~::01 dlk'!/Jlk(x) + r(x), 

a¢o ( u) + I:.:;:o 2::.:~::01 blk 1/Jlk ( u) + t ( u), 
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Table 3.4: Power of the F 1 test based on 1000 replications and the Haar, Daub2(*) and Daub4(**) 

wavelet with £i """ ~O" f • t4 and Vj """ ~O" v · t4 at significance levels q = 0.01, 0.025 and 0.05. 

h(x ) n (O";, O"~) (0.5,0.5) (0.5,1) (1,0.5) (1 ,1) 

d1(a) 8 

16 

32 

dl(b) 8 

16 

32 

d2(a) 8 

16 

32 

d2(b) 8 

16 

32 

d2(c) 8 

16 

32 

d3 8 

16 

32 

dj 8 

16 

32 

dj* 8 

q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 

.254 .431 .578 .206 .365 .497 .210 .346 .500 .161 .283 .447 

.762 .846 .923 .713 .796 .879 .638 .778 .877 .569 .737 .808 

.984 .991 .994 .956 .978 .993 .965 .981 .986 .939 .958 .986 

.846 .928 .968 .785 .894 .939 .769 .904 .950 .714 .846 .919 

.994 .998 .999 .995 .998 .998 .994 .995 .996 .992 .992 .996 

.999 1.00 1.00 .999 .998 1.00 1.00 .999 1.00 .999 1.00 1.00 

.021 .030 .081 .010 .042 .065 .010 .042 .085 .015 .042 .082 

.040 .068 .149 .028 .061 .114 .026 .072 .145 .025 .061 .120 

.097 .142 .260 .074 .130 .235 .076 .143 .210 .059 .110 .177 

.389 .571 .735 .328 .488 .648 .314 .512 .657 .243 .440 .596 

.887 .944 .974 .844 .896 .956 .825 .915 .953 .789 .856 .920 

.996 1.00 1.00 .993 .997 .996 .995 .995 .996 .991 .993 .999 

.761 .904 .953 .706 .840 .924 .701 .862 .925 .619 .795 .875 

.992 .995 .999 .983 .990 .999 .990 .994 .995 .971 .982 .995 

.999 .999 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 .999 .999 

.000 .005 .014 .002 .008 .018 .000 .005 .029 .001 .010 .028 

.744 .906 .965 .680 .858 .947 .666 .869 .958 .617 .834 .916 

1.00 .999 1.00 1.00 .999 1.00 1.00 .999 .999 1.00 .999 .999 

.774 .914 .967 .709 .859 .942 .721 .877 .944 .653 .795 .910 

1.00 1.00 .999 .997 .997 1.00 1.00 1.00 1.00 .998 .999 .998 

16 .804 .932 .971 .733 .898 .941 .739 .865 .938 .647 .841 .906 

32 1.00 1.00 .999 1.00 1.00 1.00 .996 1.00 1.00 .998 .999 .999 
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Table 3.5: Size of F 1 test based on 1000 replications, the Haar wavelets and m = 0 with Ei '"'"' 

~oAx~- 1) and vi '"'"' ~o"v(x~- 1) at significance levels q = 0.01, 0.025 and 0.05. 

sample ( cr;' crz) (0.5,0.5) (0.5,1) (I ,0.5) (1,1) 

size q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 

8 .001 .008 .023 .006 .014 .036 .007 .011 .037 .009 .004 .023 

16 .007 .014 .030 .004 .021 .040 .004 .013 .042 .006 .018 .045 

32 .006 .022 .049 .005 .019 .047 .008 .018 .051 .003 .025 .050 

where r(x) and t(u) are the remainder terms in the wavelet expansions of f(x) and g(u). 

That is, 

r(x) L~m+l I:%~~1 dzk'lj.;lk(x), 

t(u) L~m+l I:%~01 dzk'lj.;zk(u). 

Assuming the remainders are negligible, let 

and 

qT(x) = (<l>o(x), 'lj.;o,o(x), 'lj.;l,o(x), 'lj.;1,1(x), ... , 'lj.;m,2=-l (x)). 

Then (3.3) can be written as 

f(x) = qT(x) · /3, 

g(u) qT(u) ·a, 

and the model (3.2) can be written as 

}ij = qT(xi) · /3 + Eij, 

Zzk = qT(uz) ·a+ Vzk · 
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Table 3.6: Power of the F1 test based on 1000 replications and the Haar, Daub2(*) and Daub4(**) 

wavelet with Ei'"" ~oAxi -1) and Vi'"" ~av(Xt -1) at significance levels q = 0.01, 0.025 and 

0.05. 

h(x) n (a;,a~) (0.5,0.5) (0.5,1) (1 ,0.5) (1, 1) 

q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 

dt(a) 8 .353 .491 .633 .305 .441 .595 .269 .410 .545 .248 .380 .502 

16 .740 .841 .899 .659 .763 .836 .688 .807 .870 .626 .712 .840 

32 .977 .989 .989 .938 .976 .983 .955 .980 .992 .908 .960 .977 

dt(b) 8 .811 .897 .949 .761 .853 .913 .767 .872 .951 .715 .830 .878 

16 .994 1.00 1.00 .977 .992 .997 .993 .996 .999 .982 .996 .996 

32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

d2(a) 8 .016 .038 .088 .019 .059 .079 .018 .032 .060 .009 .037 .057 

16 .036 .096 .139 .050 .108 .159 .029 .055 .107 .027 .065 .111 

32 .098 .169 .269 .087 .176 .267 .066 .123 .208 .055 .133 .199 

d2(b) 8 .469 .625 .765 .377 .559 .683 .384 .560 .690 .343 .517 .610 

16 .876 .919 .964 .808 .859 .925 .817 .924 .949 .750 .843 .916 

32 .997 .996 .998 .992 .995 .993 .995 .999 .999 .981 .985 .999 

d2(c) 8 .777 .891 .948 .697 .822 .900 .733 .852 .911 .640 .778 .878 

16 .992 .993 .996 .972 .979 .995 .989 .995 .996 .962 .987 .992 

32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

d3 8 .000 .006 .013 .002 .003 .026 .000 .005 .013 .001 .007 .022 

16 .755 .896 .965 .717 .872 .943 .724 .863 .926 .638 .846 .915 

32 1.00 1.00 1.00 1.00 1.00 1.00 .998 1.00 1.00 1.00 1.00 1.00 

d* 3 8 

16 .784 .895 .954 .724 .848 .947 .707 .823 .902 .662 .820 .910 

32 1.00 1.00 1.00 .998 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 

d** 3 8 

16 .793 .899 .957 .712 .849 .949 .748 .876 .928 .640 .829 .902 

32 1.00 1.00 1.00 1.00 .999 1.00 .998 1.00 1.00 .999 1.00 1.00 
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Define 

0 En 

0 

0 

V= X= U= 

0 

0 

0 

0 

we have the new model 

V=X1+u (3.5) 

where"/~ ( : ) , and we have u ~ N(O, C), where C ~ a~E, and 

In order to obtain equal variance errors in the model, we multiply both sides of (3.5) by 
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which we write as 

V * = X *!+ u*, (3 .6) 

the weighted least squares estimator (see Oyet and Wiens (2003)) of 1 is 

where 

Wi = w(xi) = 11 
llqm(s)dsll/ llqm(xi)ll for i = 1, ... , n1, 

Wi = w(ui-n1 ) = 11 
llqm(s)dsll/llqm(ui-nJII for i = n1 + 1, .. . , n1 + n2, 

Define r = L.::~1 ri + L.::;!1 Sz . Then under the full model (3.5), V F,WLS = X *i'wLS· 

We note that when H 0 : f = g is true, the wavelet expression off and g will be the 

same. That is, the null hypothesis becomes H 0 : f3 =a and the expression (3.4) becomes 

Yi j 
(3.7) 

Using matrix notations, we write (3.7) as 

V = Qf3+ u, 

where Q = (q(x1), .. . , q(x 1) ... , q(Xn 1 ) , • •• , q(xnJ, q(u1), ... , q(u1), ... , q(unJ, ... , q(un2 )?. 
Similar to (3 .6), we have 

V * = Q*f3 + u *, 

with 
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as an estimate of the regression parameter {3 and 

V~,WLS = Q*/JwLS· 

as the estimated response under H 0 . 

Using the general regression approach, we now construct an F test for H 0 : {3 =a with 

r 

RSSH0 = L wie~,i 2 , 
i=l 

r 

RSSF = L wie;.,/, 
i=l 

where 

* V* VA * ( * * )T eo = - o w LS = eo 1' · · ·' eo r ' 
' ' ' 

and 

* V* VA * ( * * )T eF = - FWLS = eFl' ... , eFr · 
' ' ' 

Then the F -statistic can be constructed as 

F
2 

= (RSSHo- RSSF) jp 
RSSF/(r- 2p) 

where p = 2m+I and the null distribution of F 2 is Fp,(r-2p) · 

3.2.2 Simulation Studies 

In this section, we examine the size and power performance of F2 test. Since we do not take 

the difference of two group of data, in the size simulation, different signal functions will 

lead to different results. Hence, in the simulation for the size of the test, we use different 

signal functions which are indicated below. 

In Table 3.7, the conditions under which the size simulation study was performed are: 

• We used different signal functions s 1 (x), s 2 (x) and s3 (x) for x E (0, 1), where 
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(a).s1 (x) = 0, 

(b).s2 (x) = 3(x- 0.4)2, which is d2(x)(a), 

(c).s3 (x) = 4sin47rx- sgn(x- 0.3)- sgn(0.72- x), which is d3(x). 

• Sample sizes in two groups are taken as (n1 = 12, n 2 = 16) and (n1 = 16, n 2 = 20). 

• x 1 , x2 , ... , Xn1 are taken as equally spaced points between 0.001 and 0.999. u 1 , u2, ... , Un2 

are taken as equally spaced points between 0.001 and 0.999. 

• The wavelet filter and mused in the F2 test were (Haar, m = 0) and (Daub4, m = 3). 

The combination (Haar, m = 0) is used when the difference between f and g is not 

very complicated, such as constant and quadratic. (Daub4, m = 3) is used when the 

difference is complicated, e.g. HeaviSine. 

• The significance levels q = 0.01, 0.025, and 0.05 were considered. 

• The distributions of error terms, Ei and vi, were chosen as 

(a). Normal: Ei "' N(O, a;) and vi "' N(O, a~); 

(b). t: Ei rv ~a€ · t4 and !li"' ~av · t4; 

(c). Chi-square: Ei rv ~a€. (xi- 1) and l/i rv ~av. (xi- 1); 

The choice (a) was used in the size and power simulation studies. Both (b) and (c) 

were used in the robustness studies in Section 3.2.3. 

In the size and power simulations, (Haar, m = 0) gave the best results for most of the 

cases and (Daub4, m = 3) gave the best results when both f(x) and g(x) are complicated, 
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Table 3. 7: Size of F2 test based on 1000 replications, the combination of (Haar, m = 0) and 

(Daub4, m = 3) with Ei "" N(O, a;) and Vj "" N(O, a~) at significance levels q = 0.01, 0.025 and 

0.05. 

Haar wavelet filter, m=O 

f = g sample (a;, a~) (0.5,0.5) (0.5,1) (1 ,0.5) (1, 1) 

size q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 

81 12, 16 .012 .021 .039 .004 .009 .024 .003 .022 .040 .010 .012 .034 

16,20 .006 .014 .037 .003 .009 .025 .009 .017 .044 .005 .022 .041 

82 12, 16 .005 .007 .019 .006 .005 .019 .003 .009 .020 .003 .018 .038 

16,20 .003 .011 .018 .002 .005 .017 .002 .011 .029 .006 .009 .036 

sa 12, 16 .003 .009 .026 .001 .008 .011 .002 .011 .026 .003 .015 .036 

16,20 .003 .006 .014 .004 .007 .014 .006 .011 .025 .004 .015 .026 

Daub4 wavelet filter, m=3 

f = g sample (a;, a~) (0.5,0.5) (0.5,1) (1,0.5) (1, 1) 

size q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 

sa 12, 16 

16,20 .003 .013 .039 .000 .007 .011 .018 .055 .077 .009 .018 .043 

e.g., HeaviSine. So in Table 3.1, we only show the results from (Haar, m = 0) and (Daub4, 

m = 3) for f(x) = g(x)=HeaviSine. 

To compute the size, we generated observations Y1 , ... , Yn1 and Z1 , ... , Zn2 following 

(3 .2) with f ( x) = g ( x) and observation repeat once at each point. Using these observations 

we then evaluated V = (Y1 , ... , Ynp Z1 , ... , Zn2 f and followed the algorithm for the F 2 

test to determine whether to reject H0 or not to reject H 0 . We repeated this process 1000 

times and computed the proportion of rejections in 1000 repeated times. This was done 

for various combinations of CT;, CT~, q and ( n 1, n 2 ). The results from (Haar, m = 0) and 

(Daub4, m = 3) are shown in Table 3.7. Exactly the same process described above was 

followed in computing the power in Table 3.8 except that f(x) was different from g(x). 

We found that the power performance of the F 2 test is affected by the magnitude of 
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the difference, the complexity of the difference between f and g and the complexity of the 

signal function. In order to see the effect of these three factors, we take the functions f and 

g as follows. 

(a). f = 81 and g = 81 + Jl.S, 

(b). f = 82 and g = 82 + 2.5, 

(c). f = 83 and g = 83 + 2.5, 

(d). f = 82 and g = 282, 

(e). f = 82 and g = 282 + 1.2, 

(f). f = 82 and g = 282 + 2, 

(g). f = 83 and g = 283, 

The results of power simulation for these different choices of f and g are shown in Table 

3.8. 

In the simulations, for most of the cases, (Haar, m = 0) gave the highest power com­

pared with other combinations, except when the difference between f and g was compli­

cated, such as HeaviSine, we used the combination (Daub4, m = 3). 

From Tables 3.7 and 3.8, we have the following conclusions: 

• The performance of the F2 test is affected by the complexity of signal function, sam­

ple size, values of a; and a~. The performance of the F2 test improves as the the 

signal function is simpler. 

• In the simulation for size, we showed the size of F2 test from combination of (Daub4, 

m = 3) in Table 3.7(g). When using (Daub4, m = 3) for f = g = 8 3 , for most of 
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Table 3.8: Power of F2 test based on 1000 replications, the combination of (Haar, m = 0) and 

(Daub4, m = 3) with Ei '"" N(O, a-;) and Vj ,....., N(O, oD at significance levels q = 0.01, 0.025 and 

0.05. 

Haar wavelet filter, m=O 

J, g sample (a-;, a-;) (0.5,0.5) (0.5,1) (1 ,0.5) (1,1) 

size q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 

(a) 12, 16 .785 .881 .938 .465 .600 .694 .505 .627 .716 .408 .572 .670 

16,20 .922 .966 .980 .615 .750 .843 .671 .779 .861 .606 .719 .820 

(b) 12, 16 .996 1.00 1.00 .948 .974 .984 .968 .982 .990 .973 .987 .996 

16,20 .998 1.00 1.00 .990 .997 .998 .990 .998 1.00 .996 .997 1.00 

(c) 12, 16 .996 .999 .999 .952 .972 .989 .967 .976 .989 .974 .989 .995 

16,20 .999 1.00 1.00 .987 .992 .999 .989 .998 .998 .998 .998 .999 

(d) 12, 16 .013 .032 .065 .008 .024 .045 .016 .034 .057 .012 .014 .053 

16,20 .018 .058 .089 .013 .028 .055 .015 .048 .071 .017 .041 .052 

(e) 12, 16 .880 .934 .964 .612 .745 .827 .579 .727 .805 .543 .690 .788 

16,20 .971 .988 .994 .790 .880 .939 .770 .850 .900 .778 .879 .929 

(f) 12, 16 .994 .999 .997 .923 .973 .980 .916 .954 .970 .937 .976 .992 

16,20 .999 1.00 1.00 .978 .992 .999 .974 .990 .996 .998 .996 .999 

Daub4 wavelet filter, m=3 

(g)* 12, 16 

16,20 .585 .795 .918 .263 .454 .681 .594 .827 .942 .309 .549 .716 

54 



the cases, the size of F2 test is conservative. When (a;, a~) = ( 1, 0. 5), the sizes are 

a little larger than the significance levels. 

• Similar to the F1 test, the power of the F2 test is mainly determined by the magni­

tude of the difference between two curves. For example, for (a;, a~) = (0.5, 0.5), 

(n1 , n2 ) = (12, 16) and q=O.Ol, when the signal function are (a), which means f = s1 

and g = s 1 +Jf.5, the power is 0.785; for (b), which means f = s1 and g = s1 +2.5, 

the power is 0.997. When the magnitude of difference increases from Jf.5 to 2.5, 

the power increases significantly. 

• When the magnitudes of the differences are small and on the same level, the power 

of F2 test is also affected by the variances of errors. For example, for case (a), 

(n1 , n2 ) = (12, 16) and q=O.Ol, when (a;, a~) = (0.5, 0.5), the power is 0.785; when 

(a;, a~) = (1, 1), the power reduces to 0.408. Increasing the variances of errors has 

the same effect as reducing the magnitude of difference. In this case, an increase 

in the sample size lead to an increase in the power. For example, when ( n 1 , n 2 ) is 

increased to (10,20), the power increases to 0.922 and 0.606 respectively. 

• When the magnitudes of the differences are on the same level, the power of F2 test is 

also affected by the complexity of the difference between f and g. For example, for 

(a;, a~) = (1, 1), (n1 , n2) = (12, 16) and q=O.Ol, for case (b), which means f = s1 

and g = s 1 + 2.5 and the difference between f and g is constant, the power is 0.973. 

For case (f), which means f = s2 and g = 2s2 + 2 and the difference is quadratic 

function, the magnitude of difference is on the comparable level with (b), for this 

case, the power reduced to 0.937. 

• When the difference between f and g is simple (constants and quadratic functions), 

we obtained higher power with the Haar wavelet filter and m = 0, which is shown in 
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the Table 3.8. When the difference function is complicate (HeaviSine function), we 

obtain higher power with the choices Daub4 wavelet and m = 3. 

• The choice of filter could be determined by the complexity of difference between 

two signal functions, When the difference is complicated, a longer-length filter is 

necessary for the test. 

• The choice of m could be determined by the fluctuation of the difference. The more 

complicated the fluctuation is, the larger m is needed. 

• For case (d), f = 8 2 and g = 282, the difference is 8 2 . considering the magnitude 

of 82, ranging form 0.48 to 1.08 on (0, 1), it is natural to get a low power. When the 

magnitude of difference increases 8 2 + 1.2 and 8 2 + 2, in (e) and (f), the power of F2 

increases significantly. 

• For case (g), (Daub4, m = 3) is more appropriate to be used in F2 test due to the 

complexity ofHeaviSine function. Although the magnitude of the difference is large, 

the complexity of signal function and difference, which are both HeaviSine function, 

reduce the power of F2 test. Case (d) and (g) are comparable but magnitude of the 

difference is larger in case (g), which explains why the power in (g) is higher than 

the power in (d). 

3.2.3 Robustness of F2 test 

In the F2 test, we also assume that E and v are normally distributed. In this section, we will 

investigate the robustness of F2 test on departures from normal errors. The errors we have 

used are from t and x2 distribution instead of normal. Tables 3. 9 and 3.10 show the size and 

power simulation of F 2 test when the errors are from t distribution. Tables 3.11 and 3.12 
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Table 3.9: Size of F2 test based on 1000 replications, the combination of (Haar, m = 0) and 

(Daub4, m = 3) with ti rv ~0"€. t4 and Vj rv ~O"v. t4. at significance levels q = 0.01, 0.025 and 

0.05. 

Haar wavelet filter, m=O 

j, g sample (u;, u~) (0.5,0.5) (0.5,1) (I ,0.5) (1, 1) 

size q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 

81 12, 16 .004 .010 .027 .003 .010 .015 .004 .014 .024 .005 .014 .031 

16,20 .009 .015 .021 .006 .035 .030 .006 .014 .034 .003 .016 .035 

82 12, 16 .001 .006 .020 .002 .008 .016 .002 .011 .019 .002 .007 .026 

16,20 .001 .009 .011 .000 .015 .011 .004 .009 .022 .003 .009 .016 

83 12, 16 .000 .003 .011 .001 .009 .008 .002 .012 .017 .001 .012 .016 

16,20 .002 .006 .012 .000 .013 .010 .002 .005 .022 .006 .007 .019 

Daub4 wavelet filter, m=J 

j,g sample (u;,u~) (0.5,0.5) (0.5,1) (1,0.5) (1,1) 

size q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 

83 12, 16 

16,20 .005 .017 .036 .006 .012 .026 .025 .050 .102 .017 .042 .056 
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Table 3.10: Power of F2 test based on 1000 replications, the combination of (Haar, m = 0) and 

(Daub4, m = 3) with Ei "' ~o-E · t 4 and Vj"' ~o-11 · t 4. at significance levels q = 0.01, 0.025 and 

0.05 . 

Haar wavelet filter, m=O 

j , g sample (a-;, o-~ ) (0.5 ,0.5) (0.5,1) (1 ,0.5) (1 ' 1) 

size q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 

(a) 12, 16 .732 .789 .870 .481 .615 .702 .551 .663 .707 .424 .545 .645 

16, 20 .866 .918 .940 .629 .727 .798 .664 .754 .821 .613 .701 .772 

(b) 12, 16 .963 .976 .988 .917 .927 .937 .921 .929 .957 .917 .951 .959 

16,20 .980 .988 .990 .939 .967 .982 .950 .961 .976 .955 .973 .983 

(c) 12, 16 .973 .970 .989 .889 .928 .952 .902 .946 .943 .905 .941 .942 

16, 20 .990 .989 .987 .948 .966 .979 .951 .964 .984 .956 .970 .971 

(d) 12, 16 .009 .021 .072 .009 .021 .042 .013 .024 .046 .010 .026 .042 

16, 20 .010 .032 .084 .014 .023 .071 .012 .026 .051 .012 .033 .046 

(e) 12, 16 .782 .877 .894 .570 .705 .788 .607 .694 .780 .536 .690 .771 

16, 20 .899 .932 .964 .746 .833 .870 .774 .810 .871 .715 .811 .875 

(f) 12, 16 .942 .966 .977 .874 .897 .934 .879 .917 .934 .883 .930 .946 

16, 20 .982 .983 .993 .941 .947 .967 .946 .942 .970 .945 .959 .975 

Daub4 wavelet filter, m=3 

(g)* 12, 16 

16, 20 .603 .813 .917 .367 .532 .722 .637 .837 .934 .396 .588 .762 
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Table 3.11: Size of F2 test based on 1000 replications, the combination of (Haar, m = 0) and 

(Daub4, m = 3) with Ei rv ~o-t: ·(XI -1) and Vi rv ~o-v ·(XI -1) at significance levels q = 0.01, 

0.025 and 0.05. 

Haar wavelet filter, m=O 

J,g sample ( o-;, o-~) (0.5,0.5) (0.5,1) (1,0.5) (1 '1) 

size q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 

81 12, 16 .001 .007 .012 .001 .008 .009 .001 .005 .017 .002 .003 .013 

16,20 .001 .007 .015 .002 .013 .015 .002 .010 .016 .006 .004 .010 

82 12, 16 .003 .001 .005 .000 .005 .015 .001 .004 .007 .000 .001 .005 

16,20 .000 .003 .009 .004 .002 .011 .001 .005 .013 .003 .004 .007 

83 12, 16 .000 .001 .003 .000 .004 .002 .001 .004 .007 .001 .003 .004 

16,20 .000 .003 .003 .000 .000 .005 .000 .004 .009 .000 .002 .005 

Daub4 waveletfilter, m=J 

f = g sample (o-;, o-~) (0.5,0.5) (0.5,1) (1 ,0.5) (1, 1) 

size q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 

83 12, 16 

16,20 .041 .049 .078 .027 .041 .069 .087 .118 .162 .067 .073 .133 
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Table 3.12: Power of F2 test based on 1000 replications, the combination of (Haar, m = 0) and 

(Daub4, m = 3) with Ei rv ~a-€ · (X~ - 1) and Vi rv ~o-11 • (X~ - 1) at significance levels q = 0.01, 

0.025 and 0.05. 

Haar wavelet filter, m=O 

j , g sample (a-;, a-~) (0.5,0.5) (0.5,1) (1 ,0.5) (I ,1) 

size q 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 

(a) 12, 16 .640 .710 .776 .487 .547 .613 .503 .566 .679 .389 .501 .615 

16, 20 .756 .816 .872 .606 .644 .713 .643 .728 .787 .529 .647 .707 

(b) 12, 16 .599 .726 .758 .483 .560 .627 .395 .536 .645 .365 .474 .565 

16,20 .762 .793 .862 .558 .656 .696 .534 .699 .751 .524 .604 .697 

(c) 12, 16 .582 .703 .743 .414 .521 .606 .381 .481 .604 .323 .438 .555 

16, 20 .726 .793 .846 .562 .637 .688 .539 .655 .748 .470 .595 .646 

(d) 12, 16 .913 .953 .956 .818 .846 .861 .877 .901 .919 .824 .875 .908 

16,20 .968 .976 .979 .876 .899 .936 .936 .950 .952 .917 .933 .958 

(e) 12, 16 .912 .930 .951 .801 .828 .873 .873 .881 .909 .833 .859 .892 

16,20 .967 .974 .977 .889 .892 .902 .932 .941 .968 .912 .930 .947 

(f) 12, 16 .897 .922 .931 .821 .866 .870 .845 .874 .930 .817 .852 .885 

16,20 .962 .968 .985 .862 .892 .923 .914 .945 .965 .901 .935 .937 

(g) 12, 16 .006 .005 .030 .013 .023 .037 .003 .006 .014 .007 .014 .021 

16, 20 .009 .015 .047 .008 .033 .064 .001 .003 .017 .003 .009 .022 

(h) 12, 16 .701 .784 .829 .563 .640 .703 .544 .659 .740 .476 .604 .699 

16, 20 .847 .889 .906 .687 .731 .770 .686 .787 .832 .657 .729 .775 

(i) 12, 16 .889 .926 .937 .796 .811 .863 .827 .875 .891 .782 .815 .873 

16, 20 .942 .963 .973 .856 .878 .909 .900 .929 .948 .874 .916 .932 

Daub4 waveletfilter, m=3 

(j)* 12, 16 

16, 20 .660 .817 .914 .415 .630 .700 .673 .843 .914 .451 .623 .756 
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show the size and power simulation of F2 test when the errors are from x 2 distribution. The 

distributions of errors, for both t and x 2 , are set to guarantee that the variances of errors 

remain the same as those of normal case. 

From Tables 3.9, 3.10, 3.11 and 3.12, we can see that, 

• When the errors are from t distribution, the size of F2 test becomes more conserva­

tive. The power is a little lower, but remains at a similar level as normal case. 

• When the errors are from a skewed distribution,x2
, the size of F2 test becomes even 

more conservative. The power is a little lower than those for t distribution, but still 

comparable. 
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Chapter 4 

APPLICATIONS AND CONCLUDING 

REMARKS 

4.1 Application : Two Case Studies 

In this section, we apply the proposed methods to two real data sets. The data set from 

CRC example satisfies equal sample size and same design points and is used to check the 

performance of FDR test, g test and the confidence interval method. The data set from 

mouse lymphoma assay has different sample sizes and design points and the F2 test is the 

appropriate choice for this example. 

4.1.1 Case Studies: Methacholine CRC in Mesenteric Arteries 

This example contains the data from a Methacholine CRC in mesenteric arteries from 

4 months male rats and 7 months male rats. For each case(4 months and 7 months), we 

compare the means response (as shown in Figure 4.1) with L-Name and without L-Name. 
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Figure 4.1: Methacnoline CRC in mesenteric arteries from 4 months( a) and 7 months(b) male rats: 

Solid line: Observations without L-NAME; dotted line: Observations with L-NAME. 

Since this data satisfies the conditions of equal sample sizes and same design points, 

we use the FDR procedure and F1 test to analyze the data. From our simulation results, 

we have seen that when the sample size is small, the power of the FDR and F1 tests are 

very low especially when the error variances are large. In such cases, confidence interval 

estimates of the difference was found to be very useful. 

Confidence interval method: 

From Figure 4.2, we can see that 

• For (c), (d) and (e), the si goes to zero, so the confidence interval are not visible. 

• For four months data, Daub2 gives the best estimation of the difference function. 

For seven months data, Daub4 gives the best estimation of difference function. This 
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Figure 4.2: Confidence intervals of h(x) for CRC data. (a),(b) and (c): for 4 months; (d), (e) and 

(f): for 7 months. (a) and (d): Haar wavelet is used. (b) and (e): Daub2 wavelet is used. (c) and (f): 

Daub4 wavelet is used. Solid line: Observed difference; dotted line: Estimated difference; dashed 

lines: bounds of95% confidence interval of h(x). 
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Table 4.1: Results ofFDR test for CRC data at significance level q = 0.01, 0.025 and 0.05. 

Data filter Conclusion ofFDR test at q = 

0.01 0.025 0.05 

4 months Haar Reject Ho Reject Ho Reject H 0 

Daub2 Reject Ho Reject Ho Reject Ho 

Daub4 Reject Ho Reject H 0 Reject Ho 

7 months Haar Reject H 0 Reject Ho Reject Ho 

Daub2 Reject Ho Reject Ho Reject Ho 

Daub4 Reject Ho Reject Ho Reject Ho 

suggested that Daub2 and Daub4 are the appropriate choice for four months data and 

seven months data. 

• For four months data, the confidence interval based on Daub2 is far from includ­

ing zero. This suggests that h(x) is not zero, which means f(x) and g(x) are not 

the same. Although Haar and Daub4 gave poor estimation of h(x), the confidence 

intervals based on them are also away from zero. 

• For seven months data, the confidence interval based on Daub4 is far from including 

the zero. This suggests that the h(x) is not zero, which means f(x) and g(x) are not 

the same. Although Haar and Daub2 gave poor estimation of h(x), the confidence 

intervals based on them are also away from zero. 

FDR test: 

In Table 4.1, we show the results of the FDR test on CRC data. No matter which 

wavelet filter is used, Haar, Daub2 or Daub4, FDR test rejects the null hypothesis for both 

four months and seven months data at significance levels q = 0.01, 0.025 and 0.05. 

F1 test: 
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Figure 4.3: CRC Four months data. Solid line: Observed difference h(x); dotted line: Estimated 

difference h(x). (a), (b) and (c): m = 0; (d), (e) and (f): m = 1; (a) and (d): Haar wavelet is used. 

(b) and (e): Daub2 wavelet is used. (c) and (f): Daub4 wavelet is used. 
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Figure 4.4: CRC Seven months data . Solid line: Observed difference h(x); dotted line: Estimated 

difference h(x). (a), (b) and (c): m = 0; (d), (e) and (f): m = 1; (a) and (d): Haar wavelet is used. 

(b) and (e): Daub2 wavelet is used. (c) and (f): Daub4 wavelet is used. 

From Figure 4.3 and 4.4, we see that, the estimation of h(x) is better when m = 1. 

Since h(x) is complicated, we need relatively larger value of m to get good estimation. 

However, the sample size n = 8 stop us from using m larger than 1. We recall that the 

degree of freedom of F1 is (2m +I, n - 2m+ 1 ), where the denominator degree of freedom 

is n- 2m+l = 4 when n = 8 and m = 1. This very small value for the denominator d.f. 

leads to the poor results in Table 4.2. In order to obtain better results,a larger sample size 
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Table 4.2: Results of F1 test for CRC data with Haar, Daub2, Daub4 and m = 0 and 1 at signifi-

cancelevelq = 0.05. 

Data filter m F1 p-value Conclusion 

4 months Haar 0 4.48 0.064 Do not reject Ho 

1 1.54 0.342 Do not reject Ho 

Daub2 0 5.43 0.045 Reject Ho 

1 1.91 0.273 Do not reject Ho 

Daub4 0 0.59 0.583 Do not reject Ho 

2.40 0.209 Do not reject Ho 

7 months Haar 0 2.28 0.184 Do not reject Ho 

1 1.59 0.333 Do not reject Ho 

Daub2 0 2.92 0.130 Do not reject Ho 

1 1.85 0.284 Do not reject Ho 

Daub4 0 0.28 0.762 Do not reject Ho 

6.86 0.444 Reject Ho 

is needed for F1 test. From Table 4.2, the F 1 test suggests that H 0 should not be rejected in 

most cases. This conclusion is not reliable due to the small sample size. 

4.1.2 Case Studies: Mouse Lymphoma Assay 

The example of mouse lymphoma assay studied the mutant frequency of mouse at different 

levels of concentrations under substance A and B. The observations are shown in Figure 

4.5. In this experiment, repeated measurements are taken at 3 design points for substance 

A and at 4 design points for substance B. 

The estimations of f(x) and g(x ) are shown in Figure 4.6. The results of the F2 test 

for mouse lymphoma assay data are shown in Table 4.3. We can find the combination of 
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Figure 4.5: Mouse Lymphoma Assay data with substance A and B 
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Table 4.3: Results of F2 test for mouse lymphoma assay data with Haar, Daub2, Daub4 and m = 0, 

1 and 2 at significance level q = 0.05. 

filter m F2 p-value Conclusion 

Haar 0 5.32 0.009 Reject Ho 

25.23 0.000 RejectHo 

2 9.89 0.000 Reject Ho 

Daub2 0 9.76 0.000 Reject Ho 

20.23 0.000 Reject Ho 

2 0.07 1.000 Accept Ho 

Daub4 0 41.95 0.000 Reject Ho 

1 35.09 0.000 Reject Ho 

2 0.02 1.000 AcceptHo 

wavelet filter and m, which give a good estimate for h( x), and then refer to the correspond­

ing results in Table 4.3. 

From Figure 4.6, we can find that (d):(Daub2, m = 0) and (g):(Daub4, m = 0) give 

relatively better estimations. Then from Table 4.3, we see that for (d), F2 = 9. 76 and p­

value=O; and for (g), F2 = 41.95 and p-value=O. Both of them suggest rejecting the null 

hypothesis. The simulation studies shows that we are more likely to commit a type II error 

unless the difference between the curves is large. The results of the test suggests that the 

difference is large and therefore H 0 should be rejected. 

4.2 Conclusion and Remarks 

In this study, we have developed three tests for testing the equality of curves via wavelets. 

The FDR test involves the discrete wavelet transformation of observations into wavelet do-
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Figure 4.6: Mouse Lymphoma Assay data with substance A and B: (a), (b) and (c): Haar wavelet 

is used; (d), (e) and (f): Daub2 wavelet is used. (g), (h) and (i): Daub4 wavelet is used. (a), (d) and 

(g) : m = 0; (b), (e) and (h): m = 1; (c), (f) and (i): m = 2. 
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Table 4.4: Size of King's test based on 1000 replications with fi,....., N (O, a}), Vj ,....., N(O, a~) and 

bandwidth h = 0.1, 0.3 and 0.5 at significance levels q = 0.01 and 0.05. 

q=O.Ol 

sample (<7; ,a~) (0.5,0.5) (0.5, 1) (1,0.5) (1 ' 1) 

size h 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 

8 .011 .010 .011 .016 .011 .015 .017 .013 .012 .005 .006 .017 

16 .010 .017 .012 .012 .011 .006 .016 .005 .008 .012 .005 .009 

32 .011 .009 .014 .009 .009 .007 .014 .009 .005 .014 .006 .013 

q=0.05 

sample (a;, <7~) (0.5,0.5) (0.5,1) (1,0.5) (1 ,1) 

size h 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 

8 .060 .045 .047 .056 .045 .048 .047 .052 .048 .053 .051 .050 

16 .053 .051 .041 .055 .031 .051 .049 .043 .063 .038 .048 .046 

32 .046 .058 .061 .051 .058 .049 .043 .045 .053 .051 .053 .054 

main. The F1 and F2 tests exploit the flexibility of wavelet approximations to approximate 

the unknown response curve by its wavelet expansion. 

In Chapter 2, we have described the construction of FDR test in detail. This method 

is based on the false discovery rate suggested by Benjarnini and Hocheberg (1995). We 

investigate the FDR test by a series of simulation studies on different combinations of 

sample size, difference function and error variance at different significance levels. The 

results of simulations show that the performance of FDR test controlling the size improves 

when sample size increases. We obtain power comparable with the tests proposed in other 

literature, but is much faster. The robustness of FDR test is also studied in Chapter 2 by a 

series of simulations. The results of simulations show that FDR test is robust against the 

departures from normal distribution tot and x2 distributions. 

In Chapter 3, we proposed two F tests based on the wavelet expansion of functions . 

First, we constructed the F1 test, which requires the sample sizes to be equal and the design 
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Table 4.5: Power of King's test based on 1000 replications with fi rv N(O, (j;), Vj rv N (0, (j~) and 

bandwidth h = 0.1, 0.3 and 0.5 at significance level q = 0.01 . 

q=O.Ol 

h(x) n ( (j; ' (j~) (0.5,0.5) (0.5,1) (1 ,0.5) (1,1) 

h 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 

d1(a) 8 .335 .340 .417 .188 .229 .249 .181 .229 .261 .152 .166 .203 

16 .658 .835 .910 .423 .637 .710 .443 .647 .724 .310 .462 .568 

32 .992 .998 .999 .913 .980 .985 .903 .988 .987 .782 .936 .956 

d1 (b) 8 .914 .931 .966 .766 .822 .857 .741 .803 .854 .604 .676 .740 

16 .999 1.00 1.00 .993 .999 1.00 .991 .999 1.00 .969 .991 998 

32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

d2(a) 8 .023 .020 .026 .017 .015 .028 .030 .017 .023 .016 .015 .021 

16 .038 .048 .049 .036 .025 .025 .029 .031 .038 .034 .023 .024 

32 .100 .105 .114 .053 .064 .067 .042 .062 .058 .046 .124 .149 

d2(b) 8 .474 .502 .596 .317 .363 .381 .295 .336 .397 .248 .258 .302 

16 .871 .950 .970 .666 .819 .866 .693 .829 .890 .524 .667 .757 

32 1.00 1.00 1.00 .994 .995 .998 .992 .999 .999 .943 .989 .995 

d2(c) 8 .849 .881 .928 .696 .757 .772 .670 .733 .790 .536 .600 .651 

16 .998 1.00 1.00 .978 .994 .998 .976 .996 1.00 .924 .980 .990 

32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

d3 8 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

16 .836 .034 .014 .659 .036 .014 .641 .027 .028 .557 .039 .025 

32 1.00 1.00 .985 1.00 .996 .926 1.00 .995 .911 .963 .801 .975 
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Table 4.6: Power of King's test based on 1000 replications with Ei ,...., N(O, cr;), Vj ,...., N(O, cr~) and 

bandwidth h = 0.1, 0.3 and 0.5 at significance level q = 0.05. 

q=0.05 

h(x) n ( cr;, cr~) (0.5,0.5) (0.5,1) (1,0.5) (1,1) 

h 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 

d1 (a) 8 .598 .676 .723 .432 .490 .569 .463 .510 .577 .340 .390 .453 

16 .900 .972 .989 .739 .861 .948 .725 .890 .921 .594 .772 .829 

32 .998 1.00 1.00 .984 .996 1.00 .980 .994 1.00 .943 .966 .995 

dl (b) 8 .993 .999 .999 .959 .979 .981 .945 .982 .980 .861 .916 .960 

16 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 .997 1.00 1.00 

32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

d2(a) 8 .081 .106 .097 .084 .094 .070 .073 .083 .080 .085 .062 .069 

16 .138 .173 .153 .120 .135 .126 .111 .135 .107 .087 .092 .094 

32 .292 .307 .288 .193 .211 .200 .202 .197 .161 .139 .124 .149 

d2(b) 8 .776 .840 .865 .613 .648 .734 .597 .662 .760 .491 .541 .647 

16 .975 .998 .997 .891 .972 .985 .885 .971 .976 .802 .912 .939 

32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 

d2(c) 8 .972 .990 .999 .920 .957 .961 .899 .940 .974 .847 .883 .920 

16 1.00 1.00 1.00 .999 1.00 1.00 .997 1.00 1.00 .988 .998 1.00 

32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

d3 8 .000 .000 .000 .000 .000 .001 .000 .000 .002 .002 .001 .002 

16 .998 .381 .256 .984 .321 .222 .986 .285 .237 .953 .282 .214 

32 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 .992 1.00 1.00 .975 
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Table 4.7: Size of King's test based on 1000 replications with Ei rv ~a€ · t4, vi rv ~a11 • t4 and 

bandwidth h = 0.1, 0.3 and 0.5 at significance levels q = 0.01 and 0.05. 

q=0.01 

sample (a;, a~) (0.5,0.5) (0.5, 1) (1 ,0.5) (1,1) 

size h 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 

8 .010 .007 .006 .007 .009 .011 .013 .009 .007 .010 .008 .014 

16 .007 .007 .009 .009 .005 .006 .009 .006 .009 .006 .007 .008 

32 .005 .014 .008 .006 .010 .010 .006 .009 .011 .011 .011 .013 

q=0.05 

sample (a;, a~) (0.5,0.5) (0.5, 1) (1,0.5) (1,1) 

size h 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 

8 .043 .041 .051 .039 .048 .053 .057 .036 .052 .036 .034 .057 

16 .059 .053 .032 .041 .046 .054 .048 .042 .046 .040 .048 .046 

32 .048 .052 .045 .057 .044 .042 .052 .050 .042 .040 .043 .045 

points to be the same. Then we constructed the F 2 test which relaxes these assumptions 

and can be used more widely. The simulation studies show that the F 1 test control the size 

very well. At the same time, F 1 test gave power comparable with FDR test and King's test. 

In Tables 4.4-4.12, we show the simulation results of the test proposed in King et. al 

(1991) for different combination of sample size, difference function, error variance and 

bandwidth at significance levels q = 0.01 and 0.05. After comparing the results of Table 

4.4-4.12 with the corresponding results for FDR test and F 1 test, we find that 

• The FDR test can control the size when sample size is large. The F 1 and King's test 

can control the size very well. 

• The FDR test and F 1 test gave comparable power with King's test. 

• King's statistic does not have a regular distribution, so a simulation is required to 

obtain the ?-values of the statistic. In King, Hart and Wehrly (1991), they sug-
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Table 4.8: Power ofKing's test based on 1000 replications with Ei,....., ~cr£ · t4, vi ,....., ~CTv • t4 and 

bandwidth h = 0.1, 0.3 and 0.5 at significance level q = 0.01. 

q=0.01 

h(x) n (cr;, cr~) (0.5,0.5) (0.5,1) (1,0.5) (I, 1) 

h 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 

d1(a) 8 .296 .265 .337 .229 .237 .271 .199 .241 .274 .190 .192 .229 

16 .550 .696 .777 .452 .629 .679 .442 .621 .719 .371 .556 .621 

32 .925 .976 .983 .848 .959 .968 .856 .948 .969 .792 .929 .945 

dl(b) 8 .775 .855 .881 .746 .780 .831 .737 .777 .831 .691 .740 .776 

16 .986 .992 .999 .975 .986 .992 .975 .985 .991 .951 .975 .979 

32 1.00 1.00 1.00 .999 1.00 1.00 .997 .999 1.00 .999 .999 .998 

d2(a) 8 .019 .021 .019 .017 .019 .021 .025 .018 .012 .017 .017 .027 

16 .038 .026 .030 .028 .031 .032 .028 .025 .029 .027 .018 .021 

32 .062 .067 .076 .052 .061 .060 .049 .057 .063 .045 .058 .058 

d2(b) 8 .418 .393 .489 .363 .362 .409 .324 .364 .407 .293 .302 .349 

16 .764 .851 .891 .660 .794 .836 .643 .805 .869 .603 .734 .780 

32 .986 .993 .994 .965 .988 .989 .955 .988 .992 .930 .980 .985 

d2(c) 8 .705 .794 .817 .685 .705 .768 .680 .699 .777 .619 .663 .711 

16 .978 .984 .989 .948 .981 .986 .952 .975 .982 .919 .956 .964 

32 1.00 1.00 1.00 .998 1.00 .997 .996 .999 1.00 .998 .998 .998 

da 8 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

16 .705 .026 .022 .679 .033 .024 .622 .028 .029 .545 .036 .028 

32 1.00 .984 .928 1.00 .977 .863 1.00 .980 .868 .999 .961 .820 
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Table 4.9: Power of King's test based on 1000 replications with Ei "" ~O"~ • t4, Vj "" ~O" v · t4 and 

bandwidth h = 0.1, 0.3 and 0.5 at significance level q = 0.05. 

q=0.05 

h(x) n (u:, u~) (0.5,0.5) (0.5, 1) (1,0.5) (1,1) 

h 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 

d1(a) 8 .522 .607 .632 .442 .524 .563 .466 .522 .567 .412 .489 .519 

16 .773 .907 .924 .696 .849 .898 .709 .844 .888 .592 .798 .862 

32 .983 .996 .998 .937 .981 .992 .943 .984 .996 .923 .983 .990 

dl(b) 8 .951 .960 .974 .910 .940 .955 .907 .947 .960 .893 .925 .946 

16 .994 1.00 1.00 .986 .996 .998 .990 .996 .998 .992 .992 .996 

32 .999 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 .999 I.OO I.OO 

d2(a) 8 .086 .065 .107 .097 .089 .069 .095 .082 .093 .072 .091 .095 

16 .134 .133 .I34 .Ill .123 .113 .1I 0 .113 .110 .Ill .099 .I22 

32 .228 .232 .228 .176 .196 .189 .I91 .211 .I64 .141 .162 .161 

d2(b) 8 .687 .749 .794 .607 .678 .701 .626 .662 .715 .558 .629 .657 

16 .9I5 .968 .979 .863 .937 .952 .847 .933 .947 .777 .90I .940 

32 .998 1.00 .999 .986 .993 .997 .987 .997 .999 .979 .997 .997 

d2(c) 8 .927 .943 .965 .876 .907 .930 .873 .922 .943 .847 .895 .918 

I6 .99I .998 .998 .982 .995 .997 .984 .995 .997 .983 .986 .996 

32 .999 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 .999 1.00 1.00 

d3 8 .OOI .000 .000 .OOI .001 .001 .000 .OOI .000 .000 .000 .002 

16 .982 .354 .235 .959 .340 .224 .969 .316 .221 .948 .293 .233 

32 .999 .996 .988 1.00 .996 .975 1.00 .997 .981 1.00 .991 .963 
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Table 4.10: Size of King's test based on 1000 replications with Ei ,...., ~uf: · (x~ - 1), vi 

~lTv· (x~- 1) and bandwidth h = 0.1, 0.3 and 0.5 at significance levels q = 0.01 and 0.05. 

q=O.Ol 

sample ( u; , u~) (0.5,0.5) (0.5,1) (1,0.5) (1,1) 

size h 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 

8 .006 .004 .006 .007 .004 .003 .002 .006 .001 .005 .002 .003 

16 .012 .002 .004 .008 .002 .006 .008 .006 .005 .006 .004 .008 

32 .007 .005 .007 .014 .006 .009 .006 .007 .007 .009 .010 .010 

q=0.05 

sample ( u;, u~) (0.5,0.5) (0.5,1) (1,0.5) (1 '1) 

size h 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 

8 .036 .030 .027 .047 .039 .033 .037 .027 .036 .030 .031 .041 

16 .039 .025 .034 .037 .043 .038 .037 .036 .040 .031 .032 .051 

32 .034 .041 .042 .026 .034 .040 .042 .042 .040 .038 .049 .055 

gested 8000 simulations. This greatly reduce the speed of King's test which makes 

it unattractive to experimenter. Even if only 1000 simulations was used to obtain the 

p-values for King's statistic, it took the King's test several days to complete compu-

tation that can be done in about an hour using the FDR or F1 test. 

Apart from what we have discussed, work is needed on the following directions: 

• How to choose the appropriate wavelet filter and level of decomposition m more 

efficiently. 

• How to increase the power when the difference is complicated or sample size is small. 

We hope that this work will motivate further research in the direction of construction 

tests for equality of curves by wavelet methods. 
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Table 4.11: Power of King's test based on 1000 replications with Ei rv ~0"~ . (x~ - 1), Lli rv 

~O"v ·(X~- 1) and bandwidth h = 0.1, 0.3 and 0.5 at significance level q = 0.01. 

q=0.01 

h(x) n ( 0";' 0"~) (0.5,0.5) (0.5,1) (1 ,0.5) ( 1 '1) 

h 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 

d1 (a) 8 .327 .384 .421 .301 .344 .381 .252 .287 .345 .227 .275 .348 

16 .546 .674 .767 .499 .644 .685 .481 .638 .690 .452 .589 .633 

32 .897 .968 .970 .844 .918 .945 .860 .955 .972 .803 .904 .925 

dl(b) 8 .785 .830 .871 .749 .787 .800 .745 .797 .815 .692 .739 .758 

16 .979 .993 .995 .945 .973 .983 .956 .986 .994 .929 .975 .982 

32 1.00 1.00 1.00 .998 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

d2(a) 8 .020 .018 .020 .027 .027 .033 .011 .007 .007 .020 .017 .011 

16 .043 .030 .039 .048 .040 .036 .025 .019 .022 .032 .024 .033 

32 .077 .095 .075 .087 .077 .093 .056 .069 .065 .045 .057 .068 

d2(b) 8 .477 .502 .546 .421 .452 .497 .385 .419 .466 .334 .392 .446 

16 .742 .826 .879 .662 .781 .812 .674 .790 .836 .610 .731 .765 

32 .968 .992 .993 .943 .977 .984 .965 .987 .994 .922 .970 .970 

d2(c) 8 .747 .778 .820 .701 .725 .763 .687 .742 .764 .659 .679 .699 

16 .963 .979 .984 .922 .952 .972 .930 .973 .986 .904 .950 .970 

32 .999 1.00 1.00 .998 1.00 1.00 .998 1.00 1.00 .997 1.00 .999 

d3 8 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

16 .714 .035 .019 .636 .030 .018 .677 .027 .021 .583 .036 .025 

32 1.00 .981 .927 .999 .973 .882 .999 .947 .848 1.00 .940 .813 
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Table 4.12: Power of King's test based on 1000 replications with Ei ,....., ~O"€ · (x~ - 1), vi ,....., 

~O"v • (x~- 1) and bandwidth h = 0.1, 0.3 and 0.5 at significance level q = 0.05. 

q=0.05 

h(x) n ( 0";, 0"~) (0.5,0.5) (0.5,1) (1,0.5) (1,1) 

h 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 

d1(a) 8 .561 .659 .700 .501 .559 .631 .523 .551 .607 .466 .505 .571 

16 .766 .875 .910 .691 .818 .888 .700 .858 .889 .678 .800 .822 

32 .968 .994 .992 .941 .976 .980 .959 .984 .998 .916 .967 .981 

dl(b) 8 .937 .947 .958 .882 .929 .944 .894 .937 .961 .880 .890 .904 

16 .995 1.00 1.00 .980 .994 .999 .991 .998 .999 .980 .995 .994 

32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

d2(a) 8 .099 .105 .095 .115 .102 .106 .068 .071 .074 .083 .071 .088 

16 .122 .143 .143 .137 .163 .118 .104 .102 .100 .095 .104 .177 

32 .222 .242 .215 .198 .219 .209 .171 .163 .188 .154 .190 .186 

d2(b) 8 .693 .752 .795 .625 .666 .723 .671 .683 .732 .594 .626 .692 

16 .881 .944 .959 .820 .907 .943 .846 .946 .946 .808 .893 .910 

32 .992 .998 .999 .977 .998 .995 .994 .999 1.00 .976 .986 .997 

d2(c) 8 .915 .931 .937 .851 .896 .923 .866 .912 .940 .844 .856 .877 

16 .991 .997 1.00 .970 .988 .996 .986 .996 .997 .968 .993 .990 

32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

ds 8 .000 .000 .002 .000 .000 .001 .000 .000 .001 .001 .001 .000 

16 .967 .355 .274 .952 .313 .218 .944 .378 .228 .927 .328 .255 

32 1.00 .998 .983 1.00 .996 .974 1.00 .991 .960 1.00 .992 .958 
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