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Abstract 

In this study, different estimators of probability density functions and hazard rates 

are constructed under randomly right censored data. Nonparametric approaches are 

adopted under the assumption that the density and hazard rate has no specific para

metric form. Some currently available methods of density and hazard rate estimation 

are compared to a modified approach. It is shown that wavelet estimators are compet

itive with the other available methods, and that no specific method can be uniquely 

used for all subdensities. 
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Chapter 1 

Introduction 

Wavelet means small waves that can be put together to make bigger ones, or varying 

ones. The objective is to use just a few basic waves, stretch them infinitely many 

ways, and move those in infinitely many ways to produce the wavelet system which 

can make an exact model of any wave. Although, wavelet theory has a long history, 

it has drawn much attention in the last two decades and has developed now into 

a methodology with applications in several disciplines including mathematics, geo

physics, astronomy, signal processing, numerical analysis and statistics. Application 

of wavelets range from speech, music, to signal or image processing and fast algorithm 

in numerical analysis were developed using wavelet bases. 

Recently, wavelet shrinkage curve estimation has become a well-known and mathemat-
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ically sound technique for adaptively estimating functions. Software for fast wavelets 

smoothing is effectively implemented in many popular packages (Nason and Silver

man, 1994 and Buckheit and Donoho, 1995). Most current wavelet methods often 

focus on density estimation or on ordinary regression (Donoho and Johnstone,1994, 

1995; Donoho et.al., 1995 and Nason, 1996). In this study, wavelet estimators of 

probability density functions, cumulative distribution functions and hazard rates are 

constructed under randomly right censored data. 

Censored observations are often encountered in medical follow-up, survival analysis, 

reliability and other studies. In such studies, interest usually focuses on estimat

ing two functions: the underlying distribution density and the derivative of the log

survival probability known as the hazard rate. The estimation of density function and 

hazard rate has been studied extensively and many estimation methods are proposed 

including kernel and nearest neighbor smoothing method on time axis (Beran, 1981; 

Tanner and Wong, 1983; Dabrowska, 1987; Gray, 1992). Hazard rate estimation 

in the uncensored situation is discussed in Watson and Leadbatter (1964). Foldes 

et.al. (1981), McNichols and Padgett (1985) proposed estimating the hazard from 

censored data using the density estimation and nonparametric apporaches. Tanner 

and Wong (1983) approach the problem by smoothing the empirical hazard directly. 

Tanner (1983) discussed the variable kernel estimator of the hazard function from 
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censored data. Yandell (1983), Ramlau-Hansen (1983) discuss a kernel estimator. A 

practical difficulty that arises with these estimators is the selection of the smoothing 

parameter. Penalized likelihood methods have been described by O'Sullivan (1988), 

Antoniadis (1989), Antoniadis, Gregoire and McKeague (1990). In all these methods, 

the programming to implement reasonably fast algorithm is not trivial. Kooperberg 

and Stone(1992) introduced an approach based on multivariate adaptive regression 

spline models. A major limitation of their implementation is that their method tends 

to be computationally intensive. Another traditional approach to density and haz

ard rate estimation is by orthogonal series (Kronmal and Tarter, 1968; Tanner and 

Wong, 1984). Wavelet smoothing methods have been applied with success in density 

estimation (Hall and Patil, 1996; David et.al., 1996, Patil, 1997). 

Antoniadis et.al. (1999) explored the possibility of applying an ordinary nonparamet

ric wavelet smoother to the problem of estimating the density and hazard function 

of right censored data. The goal is to take advantage of fast wavelet methods and 

software for nonparametric regression and to simplify the task of implementing soft

ware for the more complex problem of hazard smoothing. Xue (2004) constructed 

a random weighted statistic of a wavelet density estimator under random right cen

sored data. The distribution of wavelet estimator is simulated by the distribution 

of random weighted statistic and the confidence interval of f(x) is obtained by the 
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quantile of the distribution of random weighted statistic which is claimed to produce 

confidence intervals with greater coverage accuracy than those obtained by bootstrap 

method (Wang, 1997; Sun and Zhu, 1999). 

The objective of this study is to compare different estimates of density and hazard rate 

available in the literature for randomly right censored data. We examined the density 

estimates suggested by Antoniadis et.al.(1999), Xue (2004) and compared them with 

that of nearest neighbor approach. To find the hazard rate we adopted the Anto

niadis approach but suggested a different estimator for the CDF in the denominator 

of the hazard function which seem to perform better than the CDF of Antoniadis et.al. 

In Section 1.1, we provide some background on wavelets. Section 1.2 describes the 

wavelet system construction and Section 1.3 introduces some important wavelet bases. 

1.1 Some Background on Wavelets 

In this section, we give a brief description on some background on wavelets. Some de

finitions and theories related to this study are also discussed briefly. The fundamental 

idea behind wavelets is to perform analysis according to scale. A wavelet system is 

formed by dilation and translation of two functions, ¢( x), a scaling function and 'ljJ ( x), 

a primary wavelet. The dilated and translated versions of the functions are defined 
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by 

(1.1) 

and 

(1.2) 

where Z is the set of all integers. 

For a sequence of constants { hr} called the filter coefficients, the functions ¢( x) and 

1/J ( x) are chosen to satisfy the equations 

¢(x) = L hp¢(2x- p) (1.3) 
pEZ 

1/J(x) = L9r¢(2x- r) (1.4) 
rEZ 

9r = ( -1Yh-r+l (1.5) 

and 

j ¢(x)dx = 1, j 1/J(x)dx = 0, j ¢2(x)dx = 1. (1.6) 

The condition 

(1. 7) 

ensures the existence of a unique solution to equations (1.3) and (1.4). Orthogonality 

of the translates of the scaling function ¢( x) is ensured by the following condition 

L hphp-2j = 6j, j E Z. 
pEZ 

5 
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In the theory of wavelets, the space of square integrable functions, £ 2 (IR), is expressed 

as the limit of a sequence of close subspaces {Yj, j E Z} where 

...... c v_2 c v_l c Vo c v1 c V2 c ...... (1.9) 

The nested spaces have an intersection that is trivial, that is, 

nv; = {0}, (1.10) 
j 

and a union that is dense in £ 2 (IR). 

(1.11) 

(see Vidakovic, 1999). 

Mallat(1989) introduced the notion of a multiresolution analysis, which is the funda-

mental concept necessary to construct and understand the wavelet paradigm. By his 

definition, a multiresolution analysis of .C2 (IR) consists of an increasing sequence of 

closed subspaces Yj, j E Z such that 

1. nj v; = {o}; 

3. there exists a scaling function ¢ E Vo such that { cj;(x- k), k E Z} is an ortho-

normal basis of Vo; that is, V0 = span{cf;(x- k), k E Z}. 
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4. for all k E Z, f(x) E Vj ~ f(x- k) E Vj and 

5. f(x) E Vj ~ f(2x) E Vj+l, meaning that in passing from Vj to Vj+l, the 

resolution of the approximation is doubled. 

Given any multiresolution analysis, it is possible to derive a function '1/J(x) such that 

the family { '1/Jj,k(x) : j, k E Z} is an orthonormal basis of .C2(IR) (see Mallat, 1989). 

To construct the primary wavelet, '1/Jj,k(x), we define for each j E Z the difference 

space Wj to be the orthogonal complement of Vj such that 

(1.12) 

So, any function f(x) E Vj+l can be written as a linear combination or direct sum of 

functions in wj and Vj. It can be shown that 

(1.13) 

Iterating this infinitely many times, we find 

00 00 

(1.14) 
jEZ j?_jo 

This implies that any f E .C2 (IR) can be expressed as a series convergent in .C2 (IR): 

00 

(1.15) 
j=jo kEZ 
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Here cjok, djk are coefficients and { ?j;jk}, k E Z is a basis for Wj. The relation is 

called a multiresolution expansion of f. The space Wj is called resolution level of 

multiresolution analysis. In multiresolution analysis, there are many resolution levels 

which is the origin of its name. 

1.2 Wavelet System Construction 

The general procedure for constructing a wavelet system can be summarized in the 

following steps: 

1. Choosing a scaling function <P such that { <Pok} is an orthonormal system, and 

relation (1.10) is true. 

2. Finding a primary wavelet function 1); E W0 such that { 1);0k, k E Z}is an or-

thonormal basis in W0 . Then accordingly, { ?j;jk, k E Z} is also an orthonormal 

basis in wj. 

3. Concluding that any f E .C2 (IR) has the unique representation in terms of an 

.C2-convergent series: 

CXl 

(1.16) 
kEZ j=jo kEZ 

where the wavelet coefficients are 

Cj0 k = J f(x)<Pjok(x)dx, and djk = J J(x)?j;jk(x)dx (1.17) 
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Four constructions of the scaling function¢ found in the literature (Strang, 1989 and 

Pinheiro and Vidacovic, 1997) are delineated here. The primary wavelet 1j; can be 

computed by using (1.4) if ¢(x) is known. 

Construction 1. Iterate ¢j(x) = L_ hk¢j_1(2x- k) with the box function. When 

h0 = 2 the boxes get taller and thinner, approximating the delta function. For 

h0 = h1 = 1 the box is invariant: ¢ 1 = ¢0 . For ~' 1, ~' the hat function appears. 

And k, ~, ~, ~, k, yields the cubic B-spline. An example that will be important in 

our discussion has coefficients i ( 1 + J3), i ( 3 + J3), i ( 3 - J3) and i ( 1 - J3). This 

scaling function leads to orthogonal wavelets. 

Construction 2. The second construction takes the Fourier transform of (1.3): 

¢(~) L hk I ¢(2x- k)ei€xdx 

~ L (hkeik€/2) I ¢(y)eiy€/2dy 

(1.18) 

The symbol P(f;,) = ~ 2:.::: hkeik€ is the crucial function in this theory. Iff;, = 0 we find 

P(O) = 1. Repetition of (1.17) at ~' ~' ...... and noting that ¢(0) = J ¢(x)dx = 1 we 
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get an infinite product: 

¢(()~Pm ¢m ¢m ~PmPm ¢m ~ ..... ~ fv(;) 
(1.19) 

For ho = 2, P _ 1 and ¢ 1, the transform of the delta function. For ho = h1 = 1, 

the products of the P's are geometric series: 

~ _ ~ _ 1 i~/4 _ 1 - e 
() () 

i~ 

p 2 - p 4 - 4 (1 + e ) - 4(1- ei~/4) (1.20) 

As N----+ oo this approaches the infinite product (1- ei~)( -i~). This is J0
1 ei~xdx, the 

transform of the box function. The hat function comes from squaring P(~) which by 

(1.18) also squares ¢(~). The cubic B-spline comes from squaring again. 

Construction 3. The construction of¢ works directly with the recursion(1.3). Sup-

pose¢ is known at the integer x = j. The recursion (1.3) gives¢ at the half-integers. 

Then it gives ¢ at the quarter integers, and ultimately at all dyadic points x = kj2i. 

This is fast to program. The values of ¢ at the integers come from an eigenvec-

tor. With the four Daubechies coefficient h0 = ~(1 + J3), h1 = ~(3 + J3), h2 = 

H3- J3), h3 = ~(1 - J3), set x = 1 and x = 2 in the dilation equation (1.3) and 

use the fact that ¢ = 0 unless 0 < x < 3, we get: 
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¢(1) = ~(3 + V3)¢(1) + ~(1 + V3)¢(2) 

¢(2) = ~(1- V3)¢(1) + ~(3- Vs)¢(2). 

(1.21) 

(1.22) 

This is the eigenvalue problem ¢ = L¢, with matrix entries Lij = h2i-j· The 

eigenvalues are 1 and ~' and the corresponding eigenvector for A = 1 has campo-

nents ¢(1) = ~(1 + vfs), ¢(2) = ~(1- VS), which are the heights on our graph of 

daub2 in Figure 1.1. The other eigenvalue A = ~ means that the recursion can be 

differentiated:¢'(x) = "'£ hk2¢'(2x- k) leads similarly to ¢'(1) and ¢'(2). In some 

weak sense, ¢ = D 4 has a dilative derivative. Here D 4 is the Daubechies wavelet 

with filter 8. For the hat function, the recursion matrix again has A = 1, ~- For the 

cubic spline the eigenvalues are 1, ~' ~' ~- When ¢(1) and ¢(2) is known, the dilation 

equation gives ¢ at half integers, such as 

1 1 
4(1 + V3)¢(1) = 4(2 + V3) (1.23) 

1 1 
4(3 + V3)¢(2) + 4(3- V3)¢(1) = 0. (1.24) 

Then the equation gives ¢ at quarter integers as combinations of ¢ at half integers. 

Construction 4. The fourth construction is based on the Daubechies-Lagarias lo-

cal pyramidal algorithm (Daubechies and Lagarias (1991, 1992)). The Daubechies-
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Lagarias algorithm enables us to evaluate ¢ and '1/J at a point with preassigned pre

cision. The algorithm on wavelets from the Daubechies family will be illustrated; 

however, this algorithm works for all finite impulse response quadrature mirror filters. 

Let¢ be the scaling function of the Daubechies wavelet, DN, with support [0, 2N -1]. 

Let x E (0, 1) and define dyad(x) = {d1 , d2 , ...... , dn, ...... }as the set of 0- 1 digits in 

the dyadic representation of x. That is x = 2.:;:1 dj2-i. By dyad(x, n), we denote 

the subset of the first n digits from dyad(x), i.e., dyad(x, n) = { d1, d2 , ...... , dn}· Let 

h= ( h0 , h1 , ...... , h2N _ 1) be the wavelet filter coefficients. Define two ( 2N -1) x ( 2N -1) 

matrices as: 

(1.25) 

Then the local pyramidal algorithm can be constructed based on Theorem 1.3.1(see 

Daubechies and Lagarias(1992) or Pinheiro and Vidacovic(1997)). 

cp(x) 

cp(x + 1) 

cp(x) 

cp(x + 1) 

cp(x) 

cp(x + 1) 

cp(x + 2N- 2) cp(x + 2N- 2) .. · cp(x + 2N- 2) 

12 
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exponential and constructive, i.e. effective decreasing bounds on the error can be 

established. 

The following example is taken from Vidakovic (1999) to illustrate the topic: 

Example 1.3.1 Consider the Daub2 scaling function(see Figure 1.1). The corre

sponding filter is h=C+
4
v'3, 3+

4
v'3, 3-

4
v'3, 1-

4
v'3). According to (1.24), the matrices T0 

and T1 are given as: 

0 0 

To= 3-v'3 3+v'3 l+v'3 
4 4 -4-

0 1-v'2 3-v'3 
-4- -4-

and 

3+v'3 l+v'3 0 4 4 

Tl= 1-v'3 3-v'3 3+v'3 
4 -4- -4-

0 0 1-v'3 
-4-

Let us evaluate the scaling function at an arbitrary point, for instance , x = 0.45. 

Twenty decimals in the dyadic representation of 0.45 obtained through an s-plus 

code are dyad (0.45, 20) = {0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1}. In addition 

to the value at 0.45, we get the values at 1.45 and 2.45. the values ¢(0.45), ¢(1.45) 
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and ¢(2.45) may be approximated as averages of the first, second and third row 

respectively in the following matrix: 

0.86480582 0.86480459 0.86480336 

II Ti = 0.08641418 0.08641568 0.08641719 
iEdyad(0.45,20) 

0.04878000 0.04877973 0.04877945 

The Daubechies-Lagarias algorithm gives only the values of the scaling function. The 

following theorem is useful in obtaining the values of the wavelet function. 

Theorem 1.3.2 Let x be an arbitrary real number. And let the wavelet be given by 

its filter coefficients {h0 , h1 , ...... , h2N-d· Define vector u with 2N -1 components as 

u(x) = {( -1)1-[2x]hi+l-[2x]> i = 0, ...... , 2N- 2} (1.27) 

If for some i, the index i + 1 - [2x] is negative or larger than 2N - 1, then the 

corresponding components of u is equal to 0. Here [2x] represents the integer part of 

2x. Let the vector v be defined as 

v(x, n) = 2N1- 11' II 'n, 
iEdyad( {2x },n) 

where 1' = (1, 1, ...... , 1) is the row-vector of ones. Then 

'1/J(x) = limn_.oou(x)'v(x, n), 

14 
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and the limit is constructive. 

Construction 4 is the easiest to implement considered in the computational context. 

Hence this construction has been used in this thesis to construct the Daubechies 

wavelet systems. 

1.3 Some Important Wavelet Bases 

In this section, some commonly used families of wavelets are described, namely Haar 

wavelet, multiwavelet and the Daubechies wavelet system. 

Haar system 

The Haar wavelet basis is the simplest example of a wavelet system on £ 2(S). The 

scaling function is: 

{ 

1, if 0 ~X < 1, 
<P(x) = I[o,tJ(x) = 

0, otherwise 

The refining relations for the Haar wavelet basis are 

<P(x) = ¢(2x- 1) + ¢(2x) 

and 

'lj;(x) = ¢(2x) - ¢(2x- 1) 
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M ultiwavelet System 

The multiwavelet system was constructed by Alpert (1992). In multiwavelet ba-

sis, instead of a single scaling function ¢(x), there are several scaling functions 

c/Yo, ¢1, ...... , cPN-1 whose translates span the space VQ. Each scaling funciton is a di-

lated, translated and normalized Legendre polynomial in the interval [0, 1): 

{ 

-/2i + 1Pi(2x- 1), x E [0, 1) 
cPi(x) = 

0, otherwise. 

(1.33) 

where Pi(i = 0, 1, ...... , N - 1) are the Legendre polynomials. The space Vn, n E 

Z are dilates of V0 and the difference spaces Wn are as defined previously. The 

primary wavelets denoted by NWo, ...... ,NWN-1 vanish outside the interval [0, 1) and 

are orthogonal to polynomials of maximum degree, 

fsNwj(x)xidx = 0, i = 0, 1, ...... ,N -1 + j (1.34) 

When N = 1, the multiwavelet basis coincides with the Haar wavelet basis. For N=2 

the scaling functions and primary wavelets are 

c/Yo(x) = { 

0, 

1, if 0 :S: X < 1, 
(1.35) 

otherwise 
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{ v'3(2x- 1), if 0 ::; X < 1, 
(1.36) ¢1(x) = 

0, otherwise. 

\1"3(1- 4x), if 0::; X < ~' 

2wo(x) = v'3(4x- 3), if ~ ::; X < 1, (1.37) 

0, otherwise. 

6x -1, if 0 ::; X < ~' 

2w1(x) = 6x- 5, if ~ ::; X < 1, (1.38) 

0, otherwise. 

The refining relation for these multiwavelets (N = 2) are: 

¢o(x) ¢o(2x) + ¢0 (2x- 1) (1.39) 

¢I(x) 
v'3 1 

(1.40) - 2(¢o(2x- 1)- ¢o(2x)) + 
2

(¢I(2x- 1) + ¢1(2x) 

2wo(x) ¢I(2x- 1)- ¢1(2x) (1.41) 

2w1(x) 
1 v'3 

(1.42) - 2(¢o(2x)- ¢o(2x- 1)) + 
2

(¢1(2x- 1) + ¢1(2x)) 

Daubechies System 

Daubechies(1992) was the first to construct compactly supported orthogonal wavelets 
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with a preassigned degree of smoothness. The scaling functions and primary wavelets 

of the Daubechies (1992) wavelet systems, commonly represented as N¢(x) and N'l/J(x) 

respectively, have no closed forms. They are constructed numerically for different 

values of the wavelet number N. Table 1.1 lists the filter coefficients nhn for N = 2 

through 10. Both NcP and N'l/J have support width 2N- 1. 

An important feature of wavelets is that the estimated functions inherit the smooth

ness properties of the wavelets employed in the estimation procedure. A Haar wavelet 

follow the general pattern of the function but show up as a step function. Multi

wavelets show the cusps and jumps, at the points where the function changes its 

direction. Important feature of the Daubechies wavelets is their smoothness. There

fore the choice of an appropriate wavelet system is important depending on whether 

the experimenter expects the response to be a smooth function, contain discontinu

ities, or be a step function. 
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Table 1.1: The Filter Coefficients 

n Nhn n Nhn 

N = 2 0 0.4829629131445341 N =8 0 0.0544158422441072 

1 0.8365163037378077 1 0.3128715909143166 

2 0.2241438680420134 2 0.6756307362973195 

3 -.1294095225512603 3 0.5853546836542159 

N =3 0 0.3326705529500825 4 -. 0158291052563823 

1 0.8068915093110924 5 -. 2840155429615824 

2 0.4598775021184914 6 0. 0004 724845 739124 

3 -.1350110200102546 7 0.1287474266204893 

4 -.0854412738820267 8 -.0173693010018090 

5 0.0352262918857095 9 -.0440882539307871 

N =4 0 0.2303778133088964 10 0.0139810279174001 

1 0.8068915093110924 11 0. 008 7 4609404 7 4065 

2 0.6308807479398587 12 -.0048703529934520 

3 -.0279837694168599 13 -.0003917403733770 

4 -.1870348118190931 14 0. 0006 754494064506 

5 0. 0308613818355607 15 -.0001174767841248 

6 0.0328830116668852 N = 9 0 0.0380779473638778 

7 -.0105974017850690 1 0.2438346746125858 

N =5 0 0.1601023979741929 2 0.6048231236900955 

1 0.6038292697971895 3 0.6572880780512736 

2 0. 7243085284377726 4 0.1331983858249883 

3 0.1384281459013203 5 -.2932737832791663 

4 -. 2422948870663823 6 -.0968407832229492 

5 0.0322448695846381 7 0.1485407493381256 

6 0.0775714938400459 8 0.0307256814 793385 

7 -.0062414902127983 9 -.0676328290613279 

8 -.0125807519990820 10 0.0002509471148340 

9 0.0033357252854 738 11 0.0223616621236798 

N = 6 0 0.1115407433501095 12 -.0047232047577518 

1 0.4946238903984533 13 -. 0042815036824635 

2 0. 7511339080210959 14 0.001847648830563 

3 0.3152503517091982 15 0.0002303857635232 

4 -.2262646939654400 16 -.0002519631889427 

5 0.1297668685672625 17 0.0000393173203163 

6 0.0975016055873225 N- 10 0 0. 0266 7005 790054 73 

7 0.0275228655303053 1 0.1881768000776347 

8 -.0315820393174862 2 0.5272011889315757 

9 0.0005538422011614 3 0.6884590394534363 

10 0.0047772575109455 4 0.2811723436605715 

11 -.0010773010853085 5 -.2498464243271598 

N =7 0 0.0778520540850037 6 -.1959462743772862 

1 0.3965393194818912 7 0.1273693403357541 

2 0. 7291320908461957 8 0.093057364603554 7 

3 0.4697822874051889 9 -.0713941471663501 

4 -.1439060039285212 10 -.0294575368218399 

5 -.2240361849938412 11 0.0332126740593612 

6 0. 0713092192668272 12 0.0036065535669870 

7 0.0806126091510774 13 -.0107331754833007 

8 -.0380299369350104 14 0.0013953517470688 

9 -.0168745416306655 15 0.0019924052951925 

10 0.0125509985560986 16 -.0006858566979564 

11 0.0004295779729214 17 -. 0001164668551285 

12 -.0018016407040473 18 0.0000935886703202 

13 0.0003537137999745 19 -.0000132642028945 
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Figure 1.1: Scaling function and Primary wavelets of Daubechies wavelet for N = 2, 
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Chapter 2 

Density Estimation 

2.1 Notations and Model Setup 

It is not always possible to follow every subject in an experiment in which subjects 

are followed over time until an event of interest, for example, death or other type of 

failure, occurs. So some lifetimes are known exactly and the remainder lifetimes are 

known to have occurred only within certain intervals which results in censored data. 

Censoring may occur as subjects may drop out of the study and be lost to follow-up, 

or be deliberately withdrawn, or the end of the data collection period may arrive 

before the event is observed to happen. 

Let Xi, i = 1, 2, ...... , n, be the lifetimes of n independent, identical units. We assume 
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that X 1 , X 2 , ...... , Xn are non-negative and independent and identically distributed, 

iid, with common continuous cumulative distribution function (CDF) F and contin

uous density f. 

Also, associated with each Xi, let there be a random variable Ci, known as its cen

soring variable. It is common to assume that C1, C2 , ...... , Cn are non-negative and iid 

with common continuous CDF G and continuous density g. The observed random 

variables are then Zi = min(Xi, Ci) and r5i = I[xi::;ci]· Here IA denotes the indicator 

function of event A. So r5i = 1 indicates that the i-th subject's observed time is not 

censored. 

However, the marginal distribution of X and Care not identifiable from observations 

( Z, J) alone, unless specific assumptions are made on the dependence between Xi and 

Ci. The most used assumption of this kind is to let life times Xi and censoring times 

ci be independent. 

Let the density of those observations that are still to fail be f*(t), where, 

j*(t) = j(t){1- G(t)} (2.1) 

This is called the subdensity function and in this chapter, we describe the estimation 
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procedure of the subdensity function by the local histogram approach, the nearest 

neighbor approach and estimation of the density function by wavelet kernel approach. 

As we are interested in estimating the hazard rates as well, for censored data, sub-

density estimates are on main focus so that we can use these estimates in Chapter 

4. 

2.2 Estimation Procedure 

2.2.1 Local Histogram Approach 

Let X be a discrete random variable with probability mass function f(x). Consider 

the data X 1 , X 2 , ...... , Xn. Then 

A 1 n 

J(x) = - L f(x;=x)· 
n 

i=l 

(2.2) 

If X is a continuous random variable with probability density function f(x), then 

A= [x- !!:_ x + !!:.] 2' 2 ' 
(2.3) 

where his the width of the interval A, can be used as a rough estimate of f(x). 

In the censored case, for the paired observations {Zi, bi}, the histogram estimate of 

the sub density f* ( t) can be expressed as 

(2.4) 
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Antoniadis et.al.(1999) adopted this local histogram approach to obtain a crude esti-

mate of the sub density of the observed failures f* ( t) by choosing a ~ > 0 and binning 

the observed failures into K + 1 bins of length ~. By this method, estimates would 

only be computed over a finite interval [0, T] where in practice T = Z(n)· Let N be an 

integer that may depend on the sample size n and define a dyadic grid or evaluation 

points 

kT 
tk = 2N' k = 0, 1, 2, ...... , K = 2N- 1 

with the inter point distance on the grid ~ = 2-N T . Now, divide the time interval 

[0, T] into K + 1 intervals of length ~' centered on tk with end points 

and denote the k-th interval by Jk = [Tk, Tk+l], k = 0, 1, ...... , K- 1, and JK = [TK, T]. 

Using the observations, a new data set of (K + 1)n records is created consisting of 

(Yik, tk) where Yik = Ijk (Zi)c5i, i = 1, 2, ...... , n, k = 0, 1, ...... , K is the indicator that 

an uncensored event for subject i falls within the time interval Jk. Finally, let Uk 

denote the proportion of failures observed in the interval Jk. i.e. 

1 n 

uk =- LYik, k = o, 1, ...... , K. 
n i=l 
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Then ~ are crude estimators of the subdensity values f*(tk), defining a histogram 

type estimator at K + 1, a power of 2, dyadic points. The binned data ~ is 

then smoothed by a discrete fast wavelet method via an appropriate linear wavelet 

smoother. One technique which we have applied in this thesis is called discrete wavelet 

transform. See Section 1.1 for a description of the transform. The idea underlying 

this approach is the fact that we can express any square integrable function on [0, 7] 

in the form 
2i0-1 00 2iO-l 

J(t) = I: O:j0 kc/Jj0 k(t) +I: I: f3jk'l/Jjk(t) (2.6) 
j?_jo k=O 

for collection offunctions ¢io,k(t) = 2io/2¢(2jot_k),j0 , k E Z and '1/Jj,k(t) = 2J/2'1j;(2it-

k),j,k E Z which form an orthogonal basis for £ 2 ([0,7]). 

Here, ¢jo,k and '1/Ji,k are translated and dilated versions of a scaling function ¢(x) 

and a primary wavelet '1/J(x) respectively. The ¢jo,k allows an approximation off at 

resolution jo whereas '1/Jj,k's represent the detail in f at resolutions finer than j0. 

Antoniadis et.al. (1999) chose the scaling function ¢ as a coiflet (Daubechies, 1992) 

of order L, with L > m + 1 where m is the assumed order of differentiability of f. 
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The function f* admits the following generalized Fourier expansion in L2
: 

2iO -1 oo 2iO -1 

J*(t) = L < J*, ¢jok > ¢j0k(t) + L L < J*, '1/Jjl > '1/Jjz(t) (2. 7) 

with < f, g > defined by J; f(t)g(t)dt. In application it is widely assumed that 

but such an approximation is rarely justified. Antoniadis et.al. (1999) have shown 

that 

< j* r~, >~ 2-N/2 j*(t ) 0 < k < 2N- 1 , 'f'N,k k , _ _ , 

with error 

Therefore a reasonable estimate of the projection, TIN f* off* onto the finest available 

scale N is 
K 

fjy(t) = 2-N/2 L ~ ¢N,k(t) 
k=O 

(2.8) 

To smooth the data with a better rate, a resolution j(n) < N is chosen by using 

folded cross validation (See Nason, 1996). Then the wavelet coefficients of the binned 

data are computed at scale j ( n) and the resultant wavelet transform is taken as a 

smooth estimate of f*. This method is sufficiently accurate and flexible to handle 
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peaks in the middle of the data. However, it does not work very well far out in the 

tails. 

2.2.2 Nearest Neighborhood Approach 

The estimator shown in equation 2.4 is the proportion of z1 , ...... , Zn in the interval 

(x- ~' x +~)divided by a fixed window width, h, which is the smoothing parameter. 

However, one would expect that the window width should be larger when trying to 

estimate the tails of a density than in its center, when fewer observations are expected 

to be available in the former situation. Moreover, if f ( x) is small and fiat in the tails, 

it will not matter much that observations distant from x are employed. In contrast, 

when it is varying rapidly, as in the central part of the density, incorrect estimates 

are likely, unless observations close to x are used. 

Attempts to estimate with a fixed window width are likely to lead to under-smoothing 

in some part of the range and over-smoothing in another. A procedure that responds 

to these problems is the nearest neighborhood estimator, first suggested by Fix and 

Hodges (1951), which is another naive estimator, but one where his defined in terms 

of distances of the data points from x. Let dk(x) be the distance of x from its k-th 

nearest neighbor (k-NN) among x1 , ...... , Xn- Then taking h = 2dk(x), we have, 
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A 1 n 

f(x) = 2ndk(x) ~ I1(xi), J = [x- dk(x), x + dk(x)]. (2.9) 

To illustrate how dk(x) is computed, let x1 = 5, x2 = 3, x3 = 7 and x4 = 13. Also let 

x = 2. Then lxi- xi = lxi- 21 = 3, 1, 5, 11. After sorting the absolute differences, we 

get 1, 3, 5 and 11. Then fork= 2, dk(x) = d2(x) = 3. 

In general, we can write, for an appropriate kernel function, K(.), 

](x) = 2nd~(x) ~? u~.(~). (2.10) 

For censored data, this estimate can be expressed in the form 

or in general 

(2.12) 

The degree of smoothing (h) is controlled by an integer, k; typically k - n~. In the 
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tails of the distribution, the distance dk ( x), and hence h, will be larger than in the 

middle part of the distribution, if there are fewer observations in any given sample 

from the tail. This corrects a potential problem with the kernel estimator arising 

in the tails of the density, where, few observations will be encountered in the range, 

x ± ~, and therefore the estimate will tend to be undersmoothed. By effectively 

increasing h in the tails a smoother estimate is likely. As n --too, and k --too, dk(x) 

will tend to zero as more and more observations will be encountered that are close to 

X. 

2.2.3 Wavelet Kernel Approach 

For estimation of the density function f ( x), based on the censored data { Zi, 8i}, 

i = 1, 2, ...... , n, Xue (2004) also used the wavelet smoothing method. 

Let ¢be the scaling function of multiresolution analysis (Vm)(mEZ) where Z is the 

set of all integers. We make the following assumptions: 

• ¢is bounded function with compact support and unit integral. i.e. there exist 

constants C and L such that 

sup¢(x):::; C, 
X 

with support ¢(x) C [-L, L] , 

1: ¢(x)dx = 1 
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• ¢is of class Cr(IR) (Holder space) and every derivative up to order r is rapidly 

decreasing 

• The sequence {¢(x- k), k E Z} is an orthonormal family of L2(IR) and V0 be 

the subspace spanned. 

• If we define, ¢mk(x) = 2m12¢(2mx-k), k E Z, then { c/Jo,k, k E Z} is an orthogonal 

basis of Vm (Watler, 1994). 

For the scaling function ¢, the Meyer wavelet kernel is defined as : 

However, the kernel we used is 

Km(x, u) = nq~(x)qm(u), where q~(x) = (¢(x), '1/Jo,o(x), '1/JI,o(x), ...... , 'I/Jm,2m-1(x)). 

This kernel can be obtained as follows. Let f(x) be a square integrable mean response 

function and let y = f ( x) + E. Then, since { ¢( x), '1/Jj,k ( x)} is a basis for the class of 

square integrable functions, we can write, 

m 2m-1 
f(x) - c¢(x) + L L djk'l/Jjk(x) +remainder 

j=O k=O 
2m+l 

L f3iqi(x) +remainder 
i=l 

qT(x)/3 +remainder 
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where 

c is f(x)¢(x)dx 

1 f(x)'l/Jjk(x)dx. 

(2.13) 

(2.14) 

Now, we let S = U~=t Ai where A/s are disjoint. Here, Ai refers to the partitioning 

of the [0, 1] intervals. Then, 

c = 1 . f(u)¢(u)du = t 1. f(u)¢(u)du 
UnA, i=l A, 

(2.15) 

Since f(u) is unknown, we use the observed ( or generated) data, Yi to obtain an 

estimate of c as follows: 

c = tYi J ¢(u)du 
i=l 

(2.16) 

Similarly, 

(2.17) 

This results in 
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rn 2m-1 

!(x) c¢(x) +I: I: d1k'l/Jjk(x) 
j=O k=O 

which is the wavelet version of the Gasser Muller estimator, where 

rn 2m-1 

n¢(u)¢(x) + n L L 'ljJ1k(u)'l/Jjk(x). (2.18) 
j=O k=O 

The wavelet estimator of f(x) is then defined as: 

(2.19) 

where m = mn is a positive integer dependent on n. When the CDF of censoring 

time G is unknown, the Kaplan-Meier estimator Gn(x) of G can be used in equation 

(2.19). This estimator Gn(x) is defined as: 
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Gn(x) = { 

1, 

( 

. ) I(8(j)=O) 
1 - f1z(j):Sx n:_J.£1 ' if X< Z(n) 

(2.20) 

otherwise 

Let Sn(x) denote the Kaplan-Meier estimator of survival function S(x) = 1 - F(x), 

where 

( 
. ) 8(j) 

f1z(j):Sx n:_J~l ' if X< Z(n) 

(2.21) 

0, otherwise 

i-1 ( . ) 8(j) i ( . ) 8(j) 

II n-J II n-J 
. n-j+1 . n-j+1 
J=l J=l 

(2.22) 
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Now, 

[1 - ( n-i ) J if 
n-i+l ' 

0 if 

Substituting this value in equation (2.22), we get 

8(i). rri-1 (n- j ~ 1) 1-8ul 

n n-J 
j=l 

8(i) 

Hence, we have 
n 

fn(x) = L siKrn(X, Z(i)) (2.23) 
i=l 

The optimum value of m is usually determined through a simulation study. 
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Following the local histogram approach or nearest neighborhood approach, we may 

define the subdensity estimator as 

n 

j~(x) = L siKm(x, z(i)).8i. (2.24) 
i=l 

A limitation of this Wavelet Kernel method, used by Xue (2004) is that the estimated 

f(x) falls to zero very quickly as x goes beyond 1 even for a simple model. Another 

major limitation of this estimator is that it does not provide good estimate for den-

sities with peaks. We applied this method to estimate gamma densities and found 

that this method is not very efficient in estimating such densities. 

2.3 Average Mean Squared Error 

The average mean squared errors, AMSE's, are calculated by averaging the mean 

squared errors 

MSE(J*(t)) = ~ I)J~(tk)- J*(tk)j2. 
k 

AMSE is used to compare the estimates obtained by different approaches and the 

results are shown in the next section. 
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2.4 Simulation Studies 

To illustrate the methods, we conducted two simulation studies. First, we generated 

lifetimes xi from a gamma distribution with parameter 5 and censoring times ci from 

an exponential distribution with parameter 1/6. The choice of these parameters is to 

ensure that there is about 50 percent censoring. S-plus codes are used to perform the 

simulation study where the number of simulations was 200 with a sample of size 200. 

We applied all the methods discussed in the previous section to estimate the sub

densities. For the local histogram approach, we used the Daubechies wavelets with 

filter 16, for smoothing the crude estimates and j(n) was chosen to be 1. For Xue's 

Wavelet Kernel approach, we used m = 1. Finally we constructed Figure 2.1 based 

on the estimates obtained from different methods. 

From Figure 2.1, we observe that the subdensity by the local histogram approach 

(subdensity LH) works fairly well to estimate the true subdensity but it overestimates 

the true curve. The nearest neighbor approach (subdensity NN) results in some 

underestimation of the true curve. The wavelet kernel approach (subdensity WK) 

does not appear to be a good approximation for this subdensity. 

We also compared the estimates based on their average mean squared errors, AMSE's. 
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Figure 2.1: Subdensity estimates by different methods, Xi gamma(5, 1), ci f"V 

exp(1/6) . 

The AMSE's are shown in Table 2.1. For the first example, we found the average mean 

squared error (AMSE) is the least for the estimates obtained by nearest neighbor ap-

proach which is a little smaller than the AMSE of the estimates by local histogram 

approach by Antoniadis et. al. (1999) The AMSE for Wavelet Kernel approach used 

by Xue (2004) is higher than that of Antoniadis et.al's estimates and nearest neighbor 

estimates. 

However, Antoniadis et.al.(1999), in their paper reported the AMSE for the same 

situation to be .00025 which is a little lower than the one we reported for the same 
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Table 2.1: Table of AMSE of the subdensity estimates, Xi"' gamma(5, 1) and Ci"' 

exp(l/6) 

Estimates AMSE 

f~(t)LH 0.0009 

f~(t)NN 0.0006 

f~(t)wK 0.0032 

approach. And it should also be mentioned that the AMSE calculated in their paper 

was calculated restricting the sum over time to points with tk :::::; 6. 

Secondly, we generated lifetimes Xi from an exponential distribution with parameter 

1 and censoring times Ci from another exponential distribution with parameter 3/4. 

Again the parameters are chosen to ensure that there is about 40 percent censoring 

in the data. Sample size and the number of simulations were 200. All the methods 

described in Section 2.2 are again applied to estimate the subdensities. And we con

structed Figure 2.2 based on the estimates obtained from different approaches. 

From Figure 2.2 we observe that both smoothed local histogram approach and near

est neighbor approach underestimates the true curve to some extent and at the right 

tail, they are very close to the actual curve. Wavelet Kernel approach overestimates 
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Figure 2.2: Subdensity Estimates by different methods, Xi ,....., exp(l) , Ci ,....., exp(3/4). 

the curve at the beginning, and underestimates the curve at the right tail. 

The estimates are also compared based on their AMSE's as shown in Table 2.2. For 

the second example, we found that the average mean squared error (AMSE) is the 

least for the estimates obtained by nearest neighbor approach which is a little smaller 

than the AMSE of the estimates by smoothed local histogram approach suggested 

by Antoniadis et. al. The Wavelet Kernel approach has very close AMSE which 

is a little bigger than the two other estimates. So for the case where lifetimes are 

generated from an exponential distribution with parameter 1 and censoring times are 
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Table 2.2: Table of AMSE of the subdensity estimates, Xi ,...., exp(l) and Ci ,...., 

exp(0.75) 

Estimates 

f~(t)LH 

f~(t)NN 

f~(t)wK 

MSE 

0.0174 

0.0172 

0.0179 

also generated from another exponential distribution with parameter 3/4, all three 

approaches have very close average mean squared errors. 
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Chapter 3 

Estimation of Distribution 

Function 

3.1 Notations and Model Setup 

In this Chapter, we discuss the estimation of the distribution function of Zi = 

min(Xi, Ci) where, Xi's are lifetimes and C/s are censoring times as defined in Chap

ter 2. By definition, the distribution function of the random variable Z is 

L(t) = P(Z ~ t) = 1- P(Z > t). 
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Now, 

P(Z > t) P[min(X, C) > t] 

P[(X > t) and (C > t)J 

P(X > t)P(C > t), from independence 

[1- P(X:::; t)J[1- P(C:::; t)J 

[1- J?(t)][1- Ci(t)] 

where F(t) and Ci(t) are the distribution functions of lifetimes and censoring times 

respectively. Therefore, 

L(t) P(Z:::; t) 

1- P(Z ~ t) 

1- [1 - F(t)J[1- Ci(t)J, t ~ 0. 

So, the observed Zis have a distribution function L satisfying 

1- L(t) = P(T ~ t) = [1- F(t)J[1- Ci(t)], t ~ 0 

(3.1) 

(3.2) 

The function 1 - L(t) is commonly referred to as the survival function for censored 

data. 

Given the set of iid observations Z 1 , Z 2 , ...... , Zn, from the common distribution func-

tion L, the standard non-parametric estimator of Lis the empirical distribution func-

42 



tion Ln defined as 

(3.3) 

In the absence of additional information about the shape of L, the empirical distrib-

ution function Ln is the optimal estimator for L in the asymptotically minimax sense 

(Dvoretsky et.al, 1956). 

In Section 3.1, the procedure based on density function described by Antoniadis 

et. al. (1999) is discussed. Section 3.2 elaborates the estimation procedure by Series 

expansion. Kronmal and Tarter's (1968) approach followed by a Wavelet modification 

is discussed there. A Modified Kaplan-Meier estimate discussed by Diehl and Stute 

(1988) is described in Section 3.3. Finally in Section 3.4 we compare the estimates 

obtained by these approaches. 

3.2 Estimation based on the Density Function 

Considering that a continuous estimator of L is better adapted to fully account for 

the smoothness of L, Antoniadis et.al. (1999) defined an estimator of the distribution 

function L by 

(3.4) 

where in is a traditional histogram type estimator of the density l of L. Let ¢(t) = 
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I[o,rj(t) be the indicator function of [0, T] and denote by cPj,k(t) the translated and 

dilated functions, ¢j,k = 2J12¢(2Jt- k). 

Let ](n) be a sequence of scales such that ](n) ---+ oo as n---+ oo. The resolution ](n) 

was chosen by folded cross validation (Nason, 1996). Then, 

A - 1 ~ ](n)/2 -ln(t) - -:;; L...t 2 cPj(n),o(t- Zi)· 
i=l 

(3.5) 

For the Haar wavelets, 

¢(t) = I[O,l)(t). 

Thus, ln(t) = ~ l.::~=l 2](n)/2¢](n),o(t- Zi) can be viewed as a Haar wavelet histogram 

type estimator of the density function of the random variable Zi = min(Xi, Ci)· Now 

define 

Then 

(3.6) 

is an integrated Haar transform estimator of the distribution function of Z. This 

estimator can be viewed as a wavelet estimator of L(t) and we denote it by Ln(t)nF· 

44 



3.3 Estimation by Series Expansion 

Kronmal and Tarter (1968) suggested an estimation procedure of cumulatives by 

Fourier series expansion. We propose a non-parametric modification of Kronmal and 

Tarter's estimates of CDF by using its wavelet substitute. The most commonly used 

estimate of the population cumulative L is the sample cumulative or step function, 

L*. Suppose, the set {Z(i)} represents the set of n order statistics corresponding to 

the censored random sample { Zi} and a < Zi < b. The step function L * ( t) can be 

defined as 

(3.7) 

For L*(t) = L Ak<t?k(t) and Ak = J <t?k(t)L(t)w(t)dt, Kronmal and Tarter(1968) de-

fined their estimated CD F as 

m 

Lm(t) = L Ihrpk(t) (3.8) 
k=O 

where the set <t?k(t) consists of functions orthogonal with respect to a weight function 
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w(t). Here 

Bk j 'Pk(u)L(u)w(u)du 

1 n J -:;;, L 'Pk(u)c(u- Zi)w(u)du, 
i=l 

where 

0, if u < 0 

c(u) = 

1, ifu 2: 0 

The limitation of this approach is that it depends on the characteristic functions of 

the particular density of interest and hence is not very flexible. 

We propose Wavelet extension instead of Fourier expansion for Lm(x). This estima-

tion method is more general and more flexible than the method discussed above as it 

does not depend on the density function of the observations. The Wavelet extension 

can be expressed as 

m 2i-l 

Lm(t) = c¢(t) + L L djk'¢jk(t) (3.9) 
j=O k=O 
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where, 

c j w(u)L(u)¢(u)du 

(3.10) 

and 

(3.11) 

where, 

(3.12) 

We note that, for any x E [a, b), w = ~=~ E [0, 1]. Furthermore, 

Lw(w) P(W::; w) (3.13) 

p (X- a::; w) 
b-a 

P(X::; a+w(b- a)) 

Lx(x) 

Our approach is therefore to scale the values of the random variable Z into [0, 1] and 

then compute Lz(z), with w(u) = max(L,(z)). 
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3.4 Estimation Procedure Based on the Kaplan-

Meier Method 

The distribution function of the observed z:s is L such that 

1- L(t) = P(T 2: t) = (1- F(t))(1- G(t)), x 2: 0 

where 1- L(t) is the survival function for censored data. The familiar Kaplan Meier 

product limit estimator of the survival function 1-F(x) = P(X 2: x) can be expressed 

as 

( 
. )I[Z·<xo·=l] 

Tin n-J J- 'J 

j=l n-j+l x <max Zj, 1~j~n 

(3.14) 

0 otherwise 

The modified Kaplan Meier estimator of 1- G(x) can therefore be written as 

(3.15) 

0 otherwise 
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An estimate of the survival function 1- L(t) is then 1- L(t) where 

i(t) 1- [1- Fn(t)J[1- Gn(t)] (3.16) 

1-5:_j-5:_n 

1 otherwise 

We denote this estimator by Ln(t)KM· 

The average mean squared error AMSE's can be computed for all the methods by 

averaging the mean squared errors 

MSE(L*(t)) = ~ 2)in(tk)- L*(tk)] 2
. 

k 

AMSE is used to compare the estimates obtained by different approaches and the 

results are shown in the next section. 

3.5 Simulation Studies 

To illustrate the methods, we conducted two simulation studies as before. First, we 

used the lifetimes xi generated from a gamma distribution with shape parameter 

equal to 5 and scale parameter equal to 1. The censoring times Ci were generated 

from an exponential distribution with mean 6 as described in Chapter 2. Censoring 
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rate was close to 50 percent. 200 samples each of size 200 were generated in the 

simulation study. 

All the methods discussed in the previous section to estimate the cumulative dis-

tribution function were used and we constructed Figure 3.1 based on the estimates 

obtained from different approaches for the subdensity: where the lifetimes has a 

gamma distribution and the censoring time has an exponential distribution. 

"' ~----~----------------------~ 

truel(t) 
···--··· Ln(t) by KM approe.otl 

truel(l) 
·····-- Ln(t) by SE 

~~----------------------------~ 

Figure 3.1: Estimates of CDF's by different methods: Xi gamma(5, 1), Ci exp(i). 
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For the subdensity, where the lifetimes are generated from gamma(5, 1) and censoring 

times are generated from exp(l/6), we observe from the 4 graphs in Figure 3.1 that 

all the approaches used for the estimation of the distribution function are resulting 

in underestimates of the actual CDF. But among all three methods considered, the 

series expansion approach with wavelet modification (Ln(t) SE) produces better es

timates than the two other approaches, density function approach (Ln(t) DF) and 

the Kaplan Meier approach (Ln(t) KM). However, the estimates obtained by Kaplan 

Meier approach is quite close to the estimates obtained by Wavelet series expansion. 

Table 3.1: Table of AMSE of the CDF estimates, Xi "' gamma(5, 1) and Ci "' 

exp(l/6) 

Estimates AMSE 

Ln(t)nF 0.3499 

Ln(t)sE 0.0485 

Ln(t)KM 0.0550 

The estimates are also compared based on their AMSE's. Table 3.1 is constructed 

for comparing the different approaches with respect to their average mean squared 

errors. For the first example, we found the average mean squared error (AMSE) is the 

least for the estimates obtained by Series expansion approach (Modified Tarter and 
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Kronmal (1968) approach). The AMSE of the estimates by modified Kaplan-Meier 

approach is very close to the first one. The AMSE of estimates by density function 

approach suggested by Antoniadis et.al(1999) is comparatively larger than the two 

other methods considered in this study. 

~r---------======~ 

~~------~======~ 

I :::::= L~) L~ OF aproaoh 

Figure 3.2: Estimates of CDF's by different methods when Xi rv exp(l), Ci rv 

exp(3/4). 

Secondly, we generated lifetimes Xi from an exponential distribution with parameter 

1 and censoring times ci from exponential distribution with parameter 3/4 to ensure 

that there is about 40 percent censoring. All the methods are again applied to esti-
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mate the subdensities and we constructed Figure 3.2 based on the estimates. 

Table 3.2: Table of AMSE of the subdensity estimates, Xi "' exp(l) and Ci "' 

exp(0.75) 

Estimates AMSE 

Ln(t)nF 0.2596 

Ln(t)sE 0.0682 

Ln(t)KM 0.1343 

Figure 3.2 shows that for the CDF where the lifetimes are generated from exp(l) 

and censoring times are generated from exp(3/4), all the approaches used for esti

mating the distribution function are resulting in underestimates of the actual CDF. 

However, among all three methods considered, the series expansion approach with 

wavelet modification (Ln(t) SE) produces clearly better estimates than the two other 

approaches. 

The estimates are also compared based on their AMSE's as given in Table 3.2. For 

the second example, we found that the average mean squared error (AMSE) is the 

least for the estimates obtained by wavelet series expansion.The AMSE for estimates 

obtained by Kaplan Meier approach are twice and the AMSE for estimates obtained 
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by density function approach are 4 times that of Wavelet approach. 
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Chapter 4 

Hazard Estimation 

4.1 Notations and Model Setup 

In the analysis of lifetime data or time to event data, a primary interest is to assess 

the risk of an individual observing a particular event at certain times. This risk 

is what is called the hazard rate or hazard function. Let Xi, i = 1, 2, ...... , n, be 

the lifetimes of n independent, identical units. X 1 , X 2 , ...... , Xn are non-negative and 

iid (independent and identically distributed) with common continuous cumulative 

distribution function (CDF) F and continuous density f. The risk of an individual 

at time t can be measured by the hazard rate or hazard function, defined by 

'( ) _ z· P[t :S T :S t + .6.tjT 2: t] 
A t - 2ffi.6.t-+O f::lt · (4.1) 
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Hazard rate inference is a widely used method to analyze the properties of durations 

between specific events, as it reflects the instantaneous probability that a duration 

will end in the next time instant. An increasing hazard rate indicates that the prob-

ability that a spell will be completed is increasing with the duration of the event, 

which is called positive duration dependence. Similarly, a decreasing hazard rate re-

fleets negative duration dependence (Spierdijk, 2005). 

If X is a continuous random variable, then,in the absence of censored individuals, the 

hazard function can be expressed as 

-\(t) = j(t) = f(t) F(t) < 1. 
S(t) 1- F(t) 

( 4.2) 

If, Ci is the corresponding censoring time of i-th individual with pdf g and CDF G, 

and Zi = min(Xi, Ci)· Then Zi has the distribution function L such that 

L(t) P(Zi ::; t) 

1- [1- F(t)][1- G(t)], (which was given in equation 3.1). (4.3) 

Then 

1- L(t) = {1- F(t) }{1- G(t)}. (4.4) 
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Then for censored data, if G(t) < 1, we have 

j(t)(1- G(t)) 
-\(t) = (1- F(t))(1- G(t))' F(t) < 1. (4.5) 

Substituting equations ( 4.4) and ( 4.5) into equation ( 4.6) gives 

f*(t) 
-\(t) = ( ) , L(t) < 1. 1-Lt 

(4.6) 

which is the hazard rate for censored data. 

4.2 Estimation Procedure 

Different approaches for estimating the hazard rate is available in the literature which 

includes parametric, semiparametric and nonparametric approaches. These methods 

include penalized likelihood methods (Antoniadis, 1989, Antoniadis and Gregoire, 

1990), local likelihood methods(Loader, 1999), estimation by using orthogonal series 

(Kronmal and Tarter, 1968, Tanner and Wong, 1984), Spline models(Kooperberg and 

Stones, 1992), Kernel estimation (Ramlau-Hansen, 1983, Roussas, 1989, 1990) and 

Orthogonal Wavelet methods (Patil, 1997, Antoniadis et.al., 1999, Li, 2002). In this 
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chapter, we discuss the hazard estimates by Antoniadis et.al(1999), and compare it 

with some other possible estimates of hazard function. 

Several estimation procedures of the subdensity function, j*(t), and the cumulative 

distribution function L(t) for censored data were described in Chapter 2 and Chapter 

3 respectively. Here, we use those estimates to compute the hazard function using 

equation 4. 7. 

4.3 Results and Discussion 

We computed seven estimates of the hazard function: 

• Hazard estimate obtained by using the ratio of subdensity estimate by local 

histogram approach and CDF estimate by Wavelet expansion. We refer to this 

approach as Model 1. 

• Hazard estimate obtained by using the ratio of subdensity estimate by Wavelet 

Kernel approach and CDF estimate by Wavelet extension. This approach is 

referred to as Model 2. 

• Hazard estimate obtained by using the ratio of subdensity estimate by local 

histogram approach CDF estimate by modified Kaplan Meier approach. We 

refer to this approach as Model 3. 
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• Hazard estimate obtained by using the ratio of subdensity estimate by Wavelet 

Kernel approach and CDF estimate by wavelet extension. We refer to this 

approach as Model 4. 

• Hazard estimate obtained by using the ratio of Nearest Neighbor subdensity 

estimate and CDF estimate by wavelet extension. This model is referred to as 

Model 5. 

• Hazard estimate obtained by using the ratio of Nearest Neighbor subdensity 

estimate and CDF estimate by modified Kaplan Meier approach. We refer to 

this approach as Model 6. 

• Hazard estimate proposed by Antoniadis et.al (1999). We refer to this approach 

as Model 7. 

These estimates are used to compute the hazard rate for both the lifetimes generated 

from gamma distribution and exponential distribution as discussed in the Simulation 

studies parts of Chapter 2 and Chapter 3. The hazard functions for the subdensity 

where lifetimes were generated from gamma density are shown in Figure 4.1. 

For comparison, we computed average mean squared error (AMSE) for the hazard 

rates of all the models. The results are listed in Table 4.1. The AMSEs were estimated 
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Table 4.1: Table of AMSE of the hazard estimates, Xi "" gamma(5, 1) and Ci "" 

exp(1/6) 

Estimates AMSE 

Model 1 3.5279 

Model 2 6.5396 

Model 3 3.6819 

Model4 6.5471 

Model 5 4.4623 

Model6 4.6113 

Model 7 4.3303 

by averaging the mean squared errors 

MSE(>.) = ~ L)~n(tk) - >.(tk)f 
k 

For the first example where lifetime is generated from a gamma distribution and 

censoring times are generated from an exponential distribution, we observe from the 

Figure 4.1 and the Table 4.1 that the hazard model 1 using subdensity estimate 

by smoothed local histogram as suggested by Antoniadis et.al.'s and CDF estimate 

by Wavelet series expansion gives the smallest AMSE. We obtained similar result 

for the model 3 using the same estimate for subdensity and CDF estimate obtained 

by Kaplan Meier approach. However, from figure 4.1, we observe that none of the 

60 



estimates are very well fitted to the actual hazard function. It would be worthy to 

mention that Antoniadis et.al.(1999) in their paper, reported the AMSE for hazard 

function estimation based on 200 repetitions of the simulations for sample size n = 

200 to be 0.112. Also they reported that the hazard estimates were only computed 

at points were L(t) > 0.5 as the hazard estimates are very unstable and have little 

meaning when few subjects were left at risk. 

Table 4.2: Table of AMSE of the hazard estimates, Xi,....., exp(l) and Ci,....., exp(0.75) 

Estimates AMSE 

Modell 181.4185 

Model 2 137.2793 

Model 3 42.1125 

Model4 9.94 

Model 5 36.6551 

Model6 39.8152 

Model 7 42.09 

While both lifetime and censoring time are generated from exponential distribution, 

from Figure 4.2, it can be viewed that the hazard modell, hazard model3 and hazard 

model 6 are close to the actual curve. For comparison, we computed the AMSE for 

the hazard rates of all the models and the results are listed in Table 4.2. From Table 
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4.2, we found, that the hazard model 1 using subdensity estimate by Wavelet kernel 

approach and CDF estimate by Kaplan Meier approach produces smallest AMSE. No 

simulation studies for calculating AMSE's for this situation is available in literature. 
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Figure 4.1: Estimated Hazard functions, Xi"' gamma(5, 1) and Ci "'exp(l/6). 

63 



>! 

., 
,. 

"' 
" 

>! 

., 
,. 

"' 

" 

I 

I 

true hazara 
hazard model1 

true hazard 
hazan:l model 3 

true hazard 
nazare! model1!1 

true hazaltt 
nazan:l model 7 

I 

>! 

., 
,. 

"' 
" 

>! 

., 
,. 

I 
"' 
" 

trueh~ttl 
hazan:lmodaol:il 

truenazara 
hazard model 4 

true hazard 
hUardmodeiO 

Figure 4.2: Estimated Hazard functions Xi ,......, exp(l), Ci ,......, exp(3/4). 

64 



Chapter 5 

Concluding Remarks 

In this study, we examined the subdensity, CDF and hazard rate estimation proce

dure for two cases. First, lifetimes are generated from gamma and censoring times are 

generated from exponential distribution and there is about fifty percent censoring in 

the data. Second, both lifetimes and censoring times are generated from exponential 

densities and about forty percent censoring occurs in the data. 

For subdensity estimation, we applied local histogram approach, nearest neighbor 

approach and Wavelet Kernel approach and used wavelet smoothers for smoothing 

the crude estimate obtained by local histogram approach. For lifetimes generated 

from gamma distribution, we found that the first two approaches worked fairly well. 

Wavelet Kernel approach suggested by Xue (2002) does not provide good estimates 
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of the subdensity for this case. On the other hand, when lifetimes are generated from 

an exponential distribution, we found that all three approaches are competitive. 

For CDF estimation, we used three approaches, density function approach suggested 

by Antoniadis et.al.(1999), Wavelet series expansion by modifying the Fourier se

ries expansion suggested by Kronmal and Tarter(1968) and Kaplan Meier approach 

suggested by Diehl and Stute(1988). We found that Wavelet series expansion , i.e. 

modification of Kronmal and Tarter approach gives better estimate of the CDF than 

the two other methods adopted, for both the examples. 

While estimating hazard rate, several possible combination of subdensity estimates 

and CDF estimates (as mentioned earlier) are tried for both the cases. We computed 

the 7 hazard models with different combinations of subdensity estimates and CDF 

estimates. 

For the case where lifetime is generated from Gamma distribution and censoring 

times are generated from Exponential distribution, we found that the hazard model 

1 using Antoniadis et.al. 's subdensity estimate and CDF estimate by Wavelet series 

expansion gives the smallest AMSE. We obtained similar result for the model 3 using 

Antoniadis et.al. 's subdensity estimate and CDF estimate by Kaplan Meier approach. 
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While both lifetime and censoring time are generated from Exponential distribution, 

we found, that the hazard model 1 using subdensity estimate by wavelet kernel ap

proach and CDF estimate by Kaplan Meier approach produces smallest AMSE. 
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