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Abstract 

The objective of this thesis is to design and develop a numerical simulation tool for the 
class of unsteady free surface flows with arbitrarily moving rigid bodies. The major 
technical issue encountered in the solution of free surface problems is the appearance 
of numerical instabilities that arise due to the description of the mesh movement to 
track the moving boundaries, nonlinearity of the governing equations and boundary 
conditions implementation at the free surface and rigid body surface. 

In the present computational model, a fluid flow governed by the full Navier-Stokes 
equations is only modeled within a two-dimensional computational domain. The 
motion of the air is neglected and the effect of the ambient pressure exerted on 
the fluid by the air is taken into consideration. The method of solution is based 
on a finite volume discretization of the unsteady Navier-Stokes equations in their 
pressure-velocity formulation on a fixed Cartesian grid. A special integral form of 
the governing equations is derived by extending the Reynolds transport theorem and 
then applying it to control volumes containing a fluid interface for the first time. The 
combined volume of fluid and fractional area/volume obstacle representation method, 
and the cut cell method are employed to track the fluid-air and fluid-body interfaces. 
This combined method is based on techniques used in the commercial fluid dynamics 
simulation package FLOW-3D developed by Flow Science, Inc. A sparse linear system in 
pressure and velocity components is solved by using the generalized minimal residual 
method with ILUT preconditioner to advance the simulation of unsteady flow in time. 

Creative use of object oriented programming, data abstraction and template metapro
gramming paradigms enables us to implement principle computational fluid dynamics 
concepts, directly, into the computer code developed in this thesis. This results in a 
computer program that is easier to understand and maintain. The C++ programming 
language is chosen as the implementation language since it provides direct support of 
these modern programming paradigms. Automatic generation of the program code 
from templates augmented with compile time optimizations and function inlining re
duces the size of a manually written code up to four times and meets the high level 
code efficiency requirements at the Fortran level. 

This numerical simulation tool is applied to the problem of unsteady, laminar, two
dimensional flow of a viscous incompressible fluid past a transversely oscillating cir
cular cylinder in the presence of a free surface. The results of this thesis represent 
the first comprehensive numerical study conducted on this problem to date. The 
code validations are presented in special cases and good comparisons with previous 
experimental and numerical results are obtained. 
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Chapter 1 

Preliminary discussion and 

mathematical model 

1.1 Introduction 

This thesis describes the design and development of a numerical simulation tool within 

an object oriented software framework for the solution of a class of free surface prob

lems with arbitrarily moving rigid bodies. This numerical simulation tool is applied to 

the problem of unsteady, laminar, two dimensional flow of a viscous incompressible 

fluid past a transversely oscillating circular cylinder in the presence of a free sur

face. The unsteady hydrodynamic forces on a moving body and resulting free-surface 

deformations are of considerable importance in many engineering applications and 

theoretical interest. Offshore structures, towing and rapidly deployable cables, water 

1 



1.1. Introduction 2 

vehicles, and power generation equipment that captures energy contained in water 

mass due to tides are all representative examples of where this model can find practi

cal applications. A large number of bluff structures found in engineering applications 

are horizontal cylindrical structures with circular cross-sections. 

The problem of flow past a cylinder, placed in a fluid flow of an infinite extent, has 

been a subject of interest to engineers and scientists for a great many years. The prac

tical significance of this problem has led to a large number of fundamental studies, 

many of which are discussed in the comprehensive reviews of King (1977), Bearman 

(1984), Griffin and Hall (1991), Williamson (1996), Rockwell (1998), Williamson and 

Govardhan (2004), Sarpkaya (2004) and in book chapters by Naudascher and Rock

well (1993), Sumer and Freds0e (1997), Zdravkovich (1997), Anagnostopoulos (2002). 

Relatively few studies have been conducted on the problem of flow past a cylinder 

in the presence of a free surface. This problem has been principally investigated in 

the experimental studies by Sheridan et al. (1997), Zhu et al. (2000), Carberry et al. 

(2001), Cetiner and Rockwell (2001), Carberry (2002). 

Free surface problems including bluff bodies have also received attention from com

putationalists. Ananthakrishnan (1991) employed a finite difference method based 

on boundary fitted coordinates to investigate surface waves generated by translat

ing two-dimensional surface-piercing bodies with emphasis on the assessment of the 

nonlinear viscous effects at a Reynolds number R ( = LUI v) of 103 and at the range 

of Froude numbers Fr ( = U I v!Lg) between 0.2 and 0.8. Here, L is the draft of the 

body defined as the width of the body, U is the translational body velocity, g is 

the acceleration due to gravity, and v is the kinematic viscosity of the fluid. Fekken 



1.1. Introduction 3 

(2004) studied transverse oscillations of a rectangular body partly submerged into 

a fluid using the cut-cell method originally developed by Verstappen and Veldman 

(2000) for Cartesian non-boundary fitted grids, in conjunction with the volume of 

fluid (VOF) method due to Hirt and Nichols (1981). Simulations were carried out at 

a Reynolds number R ( = CJ B 2 I v) of 103 and at Froude numbers Fr ( = CJ vfl379) of 

1.0, 1.5 and 2.0. The dimensionless amplitude, alB, is taken to be 0.1 and 0.2; the 

dimensionless draft of the body, dl B, is 0.5. Here, B is the beam of the body defined 

as the distance from the waterline to the bottom of the body, CJ is the frequency of 

the body oscillations, v is the kinematic viscosity of the fluid and g is the acceleration 

due to gravity. 

To date, the numerical treatment of the problem of uniform flow past a circular 

cylinder in the presence of a free surface has remained relatively unexplored. To the 

author's knowledge, only numerical studies by Reichl (2001), Reichl et al. (2005) and 

Yan (2000) discuss stationary and oscillating circular cylinders in the presence of a 

free surface. Reichl et al. (2005) numerically investigated two-dimensional flow past 

a stationary cylinder close to a free surface at a Reynolds number R( = dU I v) of 180, 

where d is the cylinder diameter, U is the uniform free stream velocity and v is the 

kinematic viscosity of the fluid. The simulations are conducted at Froude numbers 

Fr (= UIVCT9) between 0.00 and 0.70 and gap ratios h(= h*ld) between 0.1 and 5.0. 

Here, g is the acceleration due to gravity and h* is the distance between the top of 

the cylinder and the position of the undisturbed free surface. The simulations are 

carried out using the computational fluid dynamics software package FLUENT based 

on the finite volume method to solve the two-phase flow model as described by Hirt 

and Nichols (1981). The quadratic upstream interpolation for convective kinematics 
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method of Leonard (1979) is employed for the spatial discretization, which is second-

order accurate. The temporal discretization is only first-order accurate as the VOF 

method is employed. Reichl et al. 's work demonstrated that the problem shares many 

features with flow past a cylinder close to a no-slip wall at low Froude numbers where 

the surface experiences little or no deformation. At larger Froude numbers in excess 

of 0.3 - 0.4, surface deformation becomes substantial which results in significant 

surface vorticity altering the development of Strouhal vortices from the top shear 

layer, affecting wake skewness and suppressing the absolute instability. Reichl et 

al. 's work also demonstrated that the flow becomes more two-dimensional at smaller 

submergence depths and shedding ceases at very small gap ratios (rv 0.1- 0.2). 

Yan (2000) considered the uniform, two-dimensional flow past a circular cylinder sub

merged beneath the free surface of a viscous fluid of infinite depth to investigate the 

influence of imposed steady current on the resulting steady streaming. The cylinder 

itself performs a prescribed small-amplitude oscillatory motion with amplitude A* 

and frequency w*( = 2n}*). Yan employed both numerical and perturbation schemes 

to calculate the viscous flow and focused on relatively slow flow by choosing the 

magnitude of the steady current as O(c) where E = A* ja « 1 with a being the 

cylinder radius. The viscous flow simulations are conducted at Reynolds numbers, 
2 * 

Rb = a w , of 0(1). Boundary conditions at the free surface and at large distances 
v 

from the cylinder are obtained from the inviscid flow solution. This is done by ex-

panding the velocity potential in powers of E and using the boundary element method 

described by Riley and Yan (1996). Yan's investigation is based on the second-order 

accurate Crank-Nicolson scheme to solve the full unsteady Navier-Stokes equations in 

their stream function- vorticity formulation. An important finding of Yan's work is 
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that when the magnitude of the steady current is small, the Reynolds stress produced 

by the oscillation becomes significant in the neighbourhood of the cylinder which re

sults in the induced steady streaming of the classic four-cell structure for rectilinear 

cylinder oscillations unlike the case when the magnitude of the steady current is rela

tively large. However, the circulation around the cylinder due to the induced steady 

streaming is almost independent of the magnitude of the steady current when the 

cylinder performs uniform orbital motion. 

The major technical issue encountered in the solution of free surface problems is the 

appearance of numerical instabilities that arise due to the description of the mesh 

movement to track the moving boundaries, nonlinearity of the governing equations, 

and boundary conditions implementation at the free surface and rigid body surface. 

In the present computational model, fluid flow governed by the full Navier-Stokes 

equations is only modeled within a two-dimensional computational domain, which is 

occupied by three substances: the air, the fluid, and the solid body. The motion of 

the air is neglected and the effect of the ambient pressure exerted on fluid by air is 

taken into consideration. The motion of the body is predefined. Specifically, forced 

harmonic oscillation of a circular cylinder placed horizontally in uniform stream of a 

viscous incompressible fluid in the presence of a free surface is considered. The motion 

of the fluid is captured by computing flow parameters at a large but finite number 

of points (or knots) located within the computational domain. Each knot belongs to 

a computational cell. Cells are organized into a computational grid. The choice of 

computational grid is one of the major steps in determining the numerical approach 

to be employed. There are three main types of computational grids: structured/un

structured, boundary fitted/non-boundary fitted, and the Lagrangian/Eulerian grids. 
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A computational grid is called structured if it has a regular topology: all grid cells 

have the same number of faces, and all cell vertices are surrounded by the same 

number of cells. Each cell of a two-dimensional structured grid can be identified by 

two indices ( i, j). A structured grid is called Cartesian if any two cell faces are either 

parallel or perpendicular to each other. All grids that are not structured are called 

unstructured grids. Structured, and specifically, Cartesian grids are easier to deal 

with, while unstructured grids allow more freedom in mesh refinement. 

A grid is called boundary fitted if any part of fluid domain boundary coincides with 

cell faces of the grid. In a non-boundary fitted grid the fluid domain boundary passes 

through computational cells. The main advantage of using a boundary fitted grid is 

that discretization of boundary conditions is easy since grid cells are aligned with the 

fluid boundary. However, the generation of either a structured or an unstructured 

boundary fitted grid is a difficult task. In the presence of a free surface, the genera

tion of a boundary fitted grid is required at each time iteration step, which is both 

difficult and time consuming. However, the use of a non-boundary fitted grid requires 

additional methods to track the fluid boundary as the fluid moves through the mesh. 

A grid is called the Eulerian grid if all grid knots are fixed throughout the computa

tion. In the Lagrangian grid, knots are treated as fluid particles carried by fluid flow. 

If the Lagrangian grid is of the boundary fitted type at the initial time, it will then 

remain boundary fitted throughout the simulation. However, fluid flow may lead to 

crowding of a large number of knots in certain locations as well as large fluid regions 

containing no knots at all. In such cases, a remeshing procedure is required, which 

leads to two major difficulties: (i) the determination of conditions under which the 
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remeshing procedure should be initiated; and (ii) the implementation of a specific 

remeshing algorithm. 

Flow irregularities such as steep and breaking waves may occur at the free surface. 

Also, at low submergence depths, the cylinder may pierce the free surface, thus chang-

ing the fluid domain topology. Severe grid distortions make use of the Lagrangian 

grid impractical. The use of the Eulerian grid requires an interface tracking method 

to capture the exact location of the free surface which passes through computational 

cells. Two interface tracking methods are widely used: the level set method and 

the VOF method. In the level set method introduced by Osher and Sethian (1988), 

the interface is implicitly defined as a zero level set of the level set function ¢. The 

interface is evolved by considering a numerical approximation of the following level 

set evolution equation on a fixed grid 

8¢ - + u. \!A.= 0. 8t - 'f' 
(1.1) 

A comprehensive review of the level set methods is provided in the work by Sethian 

and Smereka (2003). The VOF method introduced by Hirt and Nichols (1981) em-

ploys a discrete characteristic function which defines volume fractions occupied by the 

fluid within all computational cells to track the fluid domain. The exact free surface 

location is reconstructed and advected via geometrical procedures. A comprehensive 

review of the VOF method can be found in the works by Rider and Kothe (1998), 

Scardovelli and Zaleski (1999), Pilliod and Puckett (2004). Both the VOF and the 

level set methods are capable of handling large interface distortions and topology 

changes. However, the VOF method is much less prone to mass conservation errors 
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since it is based on geometrical procedures for interface reconstruction and advection. 

This makes the use of a structured Cartesian grid more practical for simulations of 

free surface flow problems. 

A number of methods that treat rigid bodies of arbitrary geometry in Cartesian grids 

have been developed. In the fractional area/volume obstacle representation (FAVOR) 

method by Hirt and Sicilian (1985), curved boundaries are represented in rectangular 

grids with variable porosity which changes abruptly from unity to zero across a rigid 

boundary. The numerical representation of a variable porosity formulation is defined 

in terms of fractional areas and volumes open to flow, which are employed in numerical 

approximations of the governing equations. In the cut cell method by Udaykumar 

et al. (2001), the interface is tracked by marker particles and reconstructed using 

piecewise linear segments. Computational cells cut by the interface are reshaped 

by discarding the cell parts occupied by solid body. Small cells resulting from the 

reshaping procedure are merged with neighbouring cells thus forming trapezoidal 

control volumes. A complex two-dimensional polynomial interpolation function is 

used for accurate approximation of the mass, convective and diffusive fluxes in the 

finite volume formulation. In addition, a number of so-called diffuse interface methods 

have been developed. The immersed boundary method by Peskin (1977) tracks the 

body interface in a fixed Cartesian grid with a set of marker particles. The presence 

of the body is modeled with surface force incorporated into the governing equations. 

The interface between the fluid and the body has finite thickness due to smoothing 

of material properties across the boundary within a transition zone that is twice the 

grid step. In the fictitious domain method by Glowinski et al. (2001), moving rigid 

bodies are filled with surrounding fluid, which is then constrained to perform a rigid 
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body motion. Variational formulation involving the Lagrange multipliers is derived to 

match velocities of the fluid inside and outside of the body. Unlike the cut cell method 

and the FAVOR method, the fictitious domain method and the immersed boundary 

method model a rigid body with surface force and do not treat the body surface as 

a sharp interface. Since the interface between the fluid and the cylinder should be 

treated as a sharp interface for the problem under consideration, the methods by Hirt 

and Sicilian (1985) and Udaykumar et al. (2001) are more appropriate for numerical 

simulation of free surface flows past an oscillating cylinder. 

A number of difficulties arise when combining the above mentioned methods with 

the VOF method. For example, a substantial modification of the cut cell method 

by Udaykumar et al. (2001) is developed in the works by Verstappen and Veldman 

(2000) and Gerrits (2001) to enable numerical simulation of free surface flows with 

stationary rigid bodies. The second order fractional time step method, employed 

by Udaykumar et al. (2001), is replaced with the first order explicit forward Euler 

method due to the fact that the region occupied with fluid changes with time. A 

staggered storage of fluid velocity components is used to avoid pressure decoupling 

problems and guarantees exact mass conservation. The finite volume discretization is 

done in such a way that there is no need to avoid small cells, so that no cell merging 

procedure is required. In addition, the modeling of rigid bodies moving through 

fixed computational grid poses great difficulties. For example, unavoidable numerical 

pressure spikes due to moving bodies are encountered in the recent works by Fekken 

(2004) and Kleefsman (2005) which are extensions of Gerrits' method for moving 

bodies. 
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In this thesis, the non-boundary fitted Eulerian grid of Cartesian type is used. This 

type of grid is easy to generate since it does not move with the fluid and does not 

require remeshing procedures. Fluid-air and fluid-body boundaries are tracked with 

the VOF and the FAVOR methods, respectively. The finite volume approximation of 

the governing equations is employed after the modification of the cut cell method by 

Gerrits (2001). 

1.2 Governing equations 

In the subsequent sections of this Chapter a new mathematical model for a class of 

flows including free surface flows with arbitrarily moving bodies is presented. First 

the governing equations are given and then the boundary conditions are stated. 

The standard approach for obtaining a mathematical description of fluid flow is as 

follows (see, for example, Serrin (1959)). The fluid is treated as a continuum consist

ing of an infinite number of infinitesimal fluid particles. The evolution of an arbitrary 

material volume (i.e., the volume consisting of the same fluid particles at all times) is 

considered, and conservation laws are applied to it. The Reynolds transport theorem 

is then used to reformulate the conservation laws for a control volume which is fixed 

in space. This results in the integral form of the governing equations corresponding to 

a control volume. Numerical approximation of these integral equations correspond

ing to each computational cell results in a large system of equations to be solved 

computationally. 
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The above mentioned procedure considers volumes containing only fluid. It does not 

account for fluid interfaces. The use of the non-boundary fitted grid in this thesis 

makes passage of the fluid interface through computational cells possible. Thus, in 

order to apply conservation laws to all computational cells, the Reynolds transport 

theorem is extended for control volumes containing the fluid interface. 

1.2.1 The Reynolds transport theorem 

The detailed derivation of the well-known Reynolds transport theorem may be found, 

for example, in Serrin (1959). In this subsection a sketch of a typical application 

of this theorem is given. First, a computational cell Vcv is considered. At time t0 , 

this cell contains a material volume V(t), which consists of all fluid particles located 

within Vcv at t = t0 . This material volume V(t) does not change its mass with time, 

i.e., 

:t J pdV = 0. (1.2) 

V(t) 

Here, the mass of material volume is obtained as an integral of fluid density p over 

the material volume V(t). The Reynolds transport theorem is then used to express 

equation (1.2) in terms of the computational cell Vcv and its boundary Scv 

:t J p dV = :t J p dV + J p(~ · 11) dS. (1.3) 

V(t) Vcv Scv 

Here, ~ is the velocity vector and 11 is the outward normal to the computational cell 

boundary. Thus, the application of the Reynolds transport theorem to the mass of 
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the material volume V(t) results in equation (1.3), which states that the time rate 

of change of mass within the material volume is equal to the sum of the time rate of 

change of mass within the computational cell and the flux through the computational 

cell boundary. 

1.2.2 Extension of the Reynolds transport theorem for con

trol volumes containing a fluid interface 

Equation (1.3) is not valid for control volumes that contain a fluid interface. However, 

it can be extended for this type of control volumes, and this extension plays a key 

role in the design of the numerical simulation tool developed in this thesis. In this 

section, a sketch of this derivation is given. The full details of this derivation will be 

reported elsewhere. This extension is based on the theory of generalized functions 

and is originally introduced in the work of Hirt and Sicilian (1985) to obtain a special 

form of the governing equations valid for inviscid fluid flows. These equations are 

called FAVOR equations and their technique is named as FAVOR method. 

The majority of the previous theoretical studies conducted on generalized functions 

provide mathematically rigorous but extremely abstract representations, which can 

hardly be used in applications. Thus, engineers and scientists working with applica

tions of generalized function theory sometimes employ various ad hoc methods, which 

are not mathematically strict but seem to work in practice. The link between the 

theory and applications of generalized functions is established by Farassat (1996), 

where utilization of generalized functions in applications is discussed using a rigor-
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ous mathematical approach. Hirt and Sicilian (1985) did not clarify the generalized 

function properties used in the derivation of the FAVOR equations. This thesis uses 

the techniques discussed in Farassat (1996) to extend the Reynolds transport the

orem for control volumes containing fluid interfaces. It is noted that the FAVOR 

approximation is a powerful and relatively simple modeling technique, yet it is not 

widely used. One of the advantages of the FAVOR method is that it can be combined 

with the VOF method for tracking the free surface in a straightforward manner. In 

general, volume-fraction methods are efficient provided that they are supplemented 

with special considerations for boundary conditions and for numerical stability (see, 

for example, Hirt (1992)). Hirt and his co-workers have applied the combined VOF

FAVOR method to a variety of free surface problems, including the problem of fluid 

slosh in cylindrical and spherical tanks, ship-wave resistance problems and the mod

eling of shallow flows over uneven surfaces, including wetting and drying phenomena 

(see Hirt and Sicilian (1985), Hirt (1992)). This combined method is based on tech

niques used in the commercial fluid dynamics simulation package FLOW-3D developed 

by Flow Science, Inc. This program is designed for unsteady, three-dimensional flows 

involving a free-surface and conforming to a complex geometry. Its strength as a 

robust analysis tool arises from the use of two special numerical techniques: VOF 

and FAVOR methods. 

1.2.3 Generalized Reynolds transport theorem 

A computational cell Vcv which is partly occupied with fluid is considered as shown 

in Figure 1.1. At t = t 0 , it contains a material volume V(t) which consists of all 
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Vcv 

Figure 1.1: Control volume,Vcv, containing the fluid interface, 5 2 . 

fluid particles located within Vcv at this specific time. The boundary of this material 

volume oV(t) at t = t0 can be divided into two parts: 51 is the part which coincides 

with the control volume boundary, and 5 2 is the fluid boundary located within the 

computational cell Vcv- Following the work of Farassat (1996), the level set repre-

sentation of boundaries 51 and 5 2 is used. 51 is associated with a level set function 

fi (.;!2), which is equal to zero at all ;;r. E 51 , greater than zero within material volume 

V(t) and less than zero otherwise. 52 is associated with the level set function f2. 

The level set functions are used to represent the mass of material volume V(t) as an 

integral over the entire three dimensional space 1Ft 

J p dV = J h(JI)h(h)P dV, (1.4) 

V(t) lR 

where h( ~) is the Heaviside step function 

{ 

1, 
h(~) = 

0, 

~ > 0, 
(1.5) 

otherwise. 



1. 2. Governing equations 15 

It is noted that fluid density, p, should also be analytically extended over the entire 

space in order to define the integral on the right hand side of equation (1.4). The 

time rate of change of the material volume mass can be then expressed by 

! J p dV = ;t J h(JI)h(h)P dV, (1.6) 

V(t) lR 

d 
where dt is the generalized time derivative which can be moved inside the integral 

based on generalized functions theory. Equation (1.6) can therefore be written as 

:t J p dV = J cd(h~2)P) . h(JI) + dh~{l) . h(h)P) dV. (1.7) 

V(t) lR 

Following the works of Hirt and Sicilian (1985) and Farassat (1996), this equation 

can be written as 

:t J p dV = :t J p dV + J p (11. 2£) dS, (1.8) 

VW V A 

where V is the volume of the fluid located within computational cell Vcv at t = t0 and 

A is the part of the computational cell boundary which is located in fluid. Equation 

(1.8) can be used to derive the mathematical description of the conservation of mass 

expressed in terms of fractional volumes V and fractional areas A open to flow. Sim-

ilarly, the time rate of change of linear momentum of material volume V(t) can be 

expressed as 

:t J P!£ dV = :t J P!£ dV + J P!£ (11 · 2£) dS. (1.9) 

V(t) V A 
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Equations (1.8) and (1.9) form a basis for the derivation of equations governing 

the fluid flow which are suitable for both the computational grid and the numeri

cal method employed in this thesis. 

1.2.4 Derivation of the governing equations 

It is important to note that equations (1.8) and (1.9) are valid for an arbitrary con-

tinuum. In this subsection, the governing equations describing the motion of a New-

tonian incompressible viscous fluid are derived. The conservation of mass requires 

that the left hand side of equation (1.8) is equal to zero, i.e., the mass of fluid within 

V does not change. Consequently, equation (1.8) can be rewritten as 

:t j dV + j n · y dS = 0, (1.10) 
V A 

after making use of the fact that incompressible fluid density is constant. 

The second governing equation is obtained by applying the Newton's second law of 

motion which states that the linear momentum of a material volume V(t) changes 

due to external forces acting on it, i.e., 

:t J PY:.dV =F. (1.11) 

V(t) 

There are two types of external forces which comprise F: volumetric and surface 

forces. Volumetric forces act on the entire material volume, while surface forces affect 
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only a very thin area at the material volume boundary (see, for example, Serrin 

(1959)) 

:t J P1& dV = J pH: dV + J .rr · g dS. (1.12) 

V(t) V(t) 8V(t) 

Surface forces are determined using the stress tensor g of the form 

(1.13) 

Here, pis the fluid pressure, Lis the identity tensor, IL is the dynamic fluid viscosity, 

and f.LV'1& is the viscous stress tensor. Substitution of (1.13) into (1.12) yields the 

integral form of the momentum equation 

:t J p 1& d V = - J p 1l dS + 1L J 1l · V' 1& dS + J pH: d V (1.14) 

V(t) 8V(t) 8V(t) V(t) 

The left hand side of this equation can be written as 

:t J P1& dV + J P1& (.rr·1&) dS = - J P1l dS + 1L J .rr· V'1& dS + J pH: dV, (1.15) 

V A 8V(t) 8V(t) V(t) 

after making use of equation (1.9). It is noted that the boundary of the material 

volume, 8V(t), at t = t0 consists of the fractional area, A, open to flow, and the 

fluid interface, TI, located within the computational cell. Integrals of volumetric forces 

over material volume V(t) can be replaced by integrals over the fractional volume V. 
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Equation (1.15) can then be written as 

:t I 1£ d v + I 1£ (n. . y) dS = - I p' Jl dS + v I Jl . "\1 1£ dS + I fl. d V, (1.16) 

v A Aun Aun v 

after eliminating the constant fluid density, p. Here, v = p,j p is the kinematic fluid 

viscosity and p' = pj p. Equations (1.10) and (1.16) are the integral form of the 

Navier-Stokes equations describing the motion of a Newtonian incompressible fluid. 

1.3 Boundary conditions 

In this section, boundary conditions are stated at the solid boundary and at the free 

surface. 

1.3.1 Solid body conditions 

At the solid boundary, the no-slip boundary condition for a viscous fluid 

(1.17) 

is applied, which states that the solid boundary is impermeable and the flow sticks 

to the wall due to viscous effects. 
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1.3.2 Free surface conditions 

Free surface boundary conditions for the velocity and the pressure result from bal

ancing the surface forces on the contact line between the air and the fluid (see, for 

example, Rood (1995)). The tangential free surface condition 

(1.18) 

states that the air exerts no tangential stress on the fluid since the motion of the air 

is neglected throughout this thesis. The normal surface force condition is given by 

OUn 
2v O'!J. - p = -po. (1.19) 

In these equations Un and U 7 are the normal and tangential fluid velocity components, 

respectively. Equation (1.19) states that the air exerts ambient pressure p0 on the 

fluid. It is noted that surface tension is neglected since a class of flows in which 

gravitational force plays a more important role than the surface tension is considered. 

1.4 Problem specification 

In the present study, the mathematical model introduced in the previous section is 

applied to the problem of unsteady, two-dimensional, laminar uniform free surface 

flow past a transversely oscillating circular cylinder as shown in Figure 1.2. The 

upstream uniform flow velocity is U and the cylinder is submerged a distance, h*, 
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below the position of the undisturbed horizontal free surface. The diameter of the 

cylinder is d. The characteristic length and velocity scales are taken to be the cylinder 

h* --u --y* ( t) - - - - - - - - -----
x*(t) 

Figure 1.2: Sketch of the problem. 

diameter, d, and free stream velocity, U, respectively. The dimensionless parameters 

are the Reynolds number 

R= Ud 
' l/ 

(1.20) 

where v is the kinematic viscosity of the fluid; the amplitude of the cylinder oscillation, 

the frequency ratio, f /fa, with 

and 

A* 
A=d, 

df* 
f=u, 

fa= dfo 
u 

(1.21) 

(1.22) 

(1.23) 

being the dimensionless forcing frequency of the cylinder oscillation and the natural 

vortex shedding frequency of a stationary cylinder, respectively; the submergence 
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depth 

and the Froude number 

h* 
h=d, 

u 
Fr = Vcf9' 

21 

(1.24) 

(1.25) 

where g is the acceleration due to gravity. Throughout this thesis the specific values 

d = 1 and U = 1 are used for simplicity. Thus, R = 1/v and Fr = 1/ yf§. It is 

noted that due to the presence of a free surface the acceleration due to gravity exerts 

an influence and must be considered. Here, A* is the dimensional amplitude of the 

cylinder oscillation, f* is the dimensional forcing frequency of an oscillating cylinder, 

f~ is the dimensional natural vortex shedding frequency of a stationary cylinder, and 

h* is the dimensional submergence depth. 

The cylinder is initially at rest in a uniform flow with velocity U and then, at time 

t = 0, the cylinder starts to perform a predefined motion which is described by means 

of three dimensionless generalized coordinates 

( ) 
_ x*(t) 

X t - d , y(t) = y*jt)' a(t) = a*(t), (1.26) 

so that at t = t0 , the center of the cylinder cross-section is located at 

(xo, Yo, 0) = (x(t0 ), y(t0 ), 0), and the angular displacement of the cylinder is a0 =a( to) 

as shown in Figure 1.2. The dimensionless cylinder velocity 1!<body at any point (x, y, 0) 

on the cylinder boundary, which is required to apply the no-slip boundary condition, 



1.4. Problem specification 22 

can be then determined as follows 

1£body = (i:- a(y- Yo), y + a(x- Xo), 0). (1.27) 

Thus, appropriate choices for x(t), y(t) and a(t) define the cylinder motion. For 

example, the following specific choices for these coordinates 

x(t) = 0, y(t) = -Acos(21rjt), a(t) = 0 (1.28) 

define the time dependent motion for the case of a transversely oscillating cylinder 

so that 1£body = (0,2An-jtsin(27rjt),O). Here, tis the dimensionless time defined in 

terms of the dimensional time, t*, as 

Ut* 
t=-d . 

The dimensionless period of the cylinder oscillation, T, is defined as 

(1.29) 

1 
T = j· (1.30) 

For transverse oscillations the range near f / fo ~ 1.0 constitutes the fundamental 

lock-on regime. 

The dimensionless force exerted by the cylinder on the fluid, 

(1.31) 
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has two components, Gn and GL, the dimensionless drag and lift coefficients, respec-

tively. They are defined as 

(1.32) 

where GnP and GLp are the contributions due to the pressure gradient, and Gnv and 

GLv are the contributions due to the viscous shear forces. The pressure and viscous 

contributions are computed as 

211" 

Gnp= j pease dB, 

0 

211" 

1 j au 
Gnv = R on dB, 

0 

211" 

GLp = j psine de, 
0 

211" 

1 j av 
GLv = R on dB. 

0 

(1.33) 

(1.34) 

Here, !J. = (cos( B), sin( B), 0) is the outward unit normal to the cylinder boundary. 

Two different techniques can be employed to incorporate the motion of the cylinder 

into the computational model: (i) the cylinder moves through a stationary computa

tional grid; (ii) the cylinder is stationary with respect to the grid which moves with 

respect to an inertial frame of reference. In this work, both methods are enabled by 

considering three reference frames: X is the inertial reference frame, X9 is the refer

ence frame in which the computational grid is defined, and Xc is the reference frame 

that moves and rotates with the cylinder. X9 is restricted to move without rotation, 

so its axes are always parallel to the axes of the inertial system. The cylinder motion 

(1.28) is specified with respect to the grid reference frame X9 . Thus, the equations of 

motion of the grid reference frame X9 with respect to the inertial reference frame X 
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are provided to complete the specification of the cylinder motion 

(1.35) 

In general, X9 is not inertial. As it is shown in Appendix A, this can be accounted 

for by modifying the gravitational acceleration g0 = (0, g0 , 0) 

(1.36) 

For example, by choosing x(t) = 0, y(t) = 0, a(t) = 0, x9 = 0, y9 = -A cos (27r jt), 

the problem set-up corresponding to a cylinder which is stationary with respect to a 

transversely oscillating grid can be obtained, which is equivalent to the problem of 

a transversely oscillating cylinder with respect to the inertial frame of reference. In 

summary, the governing equations and boundary conditions for the problem under 

consideration are 

:t j dV + j n · .Y: dS = 0, 
V A 

:t j u dV + j u (n· .Y:) dS =- j p nx dS + ~ j n· Vu dS, 
V A AUTI AUTI 

:t j v d V + j v (n · .Y:) dS = - j p ny dS + ~ j 1:l · V v dS 

V A AUTI AUTI 

+ j (F~2 - 4A7r
2 
j

2 
cos (21r jt)) dV, 

v 

(1.37a) 

(1.37b) 

(1.37c) 

(1.37d) 
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and 

u = 0, v = 0 at the cylinder boundary, (1.37e) 

OUn OU7 - + - = 0 at the free surface, 
or.. an 

(1.37f) 

2 OUn 
-- - p = -Po at the free surface. 
Ran 

(1.37g) 



Chapter 2 

Numerical model 

The theoretical development of fluid dynamics focuses on the construction and solu

tion of the governing equations for different categories of fluid dynamics and the study 

of various approximations to those equations. The steady improvement in the speed 

of computers and the memory size since the early 1950s has led to the emergence 

of computational fluid dynamics (CFD). This branch of fluid dynamics complements 

experimental and theoretical fluid dynamics by providing an alternative cost-effective 

means of simulating real flows. As it can be seen from the previous Chapter, flows 

and related phenomena can be described by partial differential (or integra-differential) 

equations, which cannot be solved analytically except in special cases. Much as the 

accuracy of experimental data depends on the quality of the tools used, the accuracy 

of computational methods depends on the quality of the discretizations used. In the 

previous Chapter the basic governing equations are presented in a special integral 

form, which serves as a starting point for an important class of numerical methods. 

26 
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There are three well-known discretization approaches: finite difference, finite element, 

and finite volume methods. In finite difference methods, the derivatives appearing 

in the governing equations are approximated with finite differences, which are the 

discrete analog of the derivatives. Finite difference methods are mostly used on 

structured and especially Cartesian grids, where finite differences can be derived by 

Taylor-series expansions. The literature on finite difference methods in computational 

fluid dynamics is adequately documented in many books such as Patankar (1980), 

Fletcher (1988) and Anderson (1995). In finite element methods, the computational 

domain is divided into discrete volumes called finite elements. The solution is approx

imated with a linear combination of basis functions defined for every element. This 

approximation is substituted into the weak form of the governing equations which 

is obtained by multiplying the governing equations with test functions and integrat

ing by parts, resulting in a set of linear equations for the solution. The book by 

Gresho and Sani (1998) is dedicated to the application of finite element methods to 

the incompressible fluid flow problems. Other literature on finite element methods is 

referenced in the work by Chung (2002). Finite volume methods apply conservation 

principles for every computational cell (control volume) by computing convective, 

diffusive and mass fluxes through cell faces. Physical quantities such as mass and 

momentum are conserved by choosing control volumes in such a way that every cell 

face belongs to exactly two cells, so that fluxes that leave one control volume are 

gained in adjacent ones. Comprehensive information on finite volume methods can 

be found, for example, in the books by Versteeg and Malalasekera (1995) and Lomax 

et al. (2001). 

Finite difference methods are straightforward and very effective on structured grids. 
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However, for unstructured grids such methods are prohibitive, and curved grid lines 

must be transformed into orthogonal coordinates so that the finite difference expres

sions can be formulated. This restricts finite difference methods to simple geometries. 

On the contrary, complex geometries and unstructured grids are easily accommodated 

in finite element and finite volume methods without coordinate transformations. The 

underlying principles and formulations of finite element methods involve intricate 

mathematical analysis, which makes these methods harder to apply than finite dif

ference and finite volume methods. Finite volume methods involve simple underlying 

principles based on direct invocation of conservation laws and at the same time pro

vide the geometrical flexibility of finite element methods. 

In this thesis, a Cartesian non-boundary fitted Eulerian grid is used. In the previous 

Chapter, the governing equations are represented in a form which is suitable for finite 

volume discretization. Boundary conditions are stated at the solid boundary and at 

the free surface in Section 1.3. Well-posed boundary conditions are enforced at the 

inflow and outflow boundaries to ensure the correct physical development of the flow 

near computational flow boundaries. 

2.1 Computational grid 

The motion of the fluid is determined by computing fluid velocity and pressure at 

certain discrete locations (knots) on each time iteration. A finite volume discretization 

is applied to computational cells (control volumes) which are built around these knots. 

It is noted that for incompressible fluids, only the pressure, p, and two components 
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of the velocity vector, Jl = ( u, v, 0), are required to describe the flow. In the presence 

of a free surface, the VOF function, F, is needed to describe the configuration of the 

fluid domain as explained in Section 2.2. 

In this thesis, a staggered grid is used. In Cartesian coordinates, the staggered ar-

rangement introduced by Harlow and Welsh (1965) has several advantages over the 

collocated arrangement. For example, it prevents pressure oscillations observed on 

collocated grids since the approximation of pressure gradients on this type of grids 

includes the pressure difference between two adjacent grid knots, and not between al-

ternate ones. In a full staggered arrangement, velocity knots are located on the edges 

of computational cells corresponding to pressure knots as shown in Figure 2.1. The 

y 

vi,J+l 

u·. 
t,) Pi,J Ui+l,j 

yJ 
v·. t,) 

X 

Figure 2.1: Staggered arrangement of pressure/velocity knots. 

staggered grid involves three different sets of knots: pressure knots Pi,j, X-velocity 

knots ui,j, andY-velocity knots vi,j· Specifically, the knot coordinates are defined as 

Pi,J = (x?,yJ,o), ui,J = ( x}, y}, 0) , vi,J = ( x7, yJ, 0) . (2.1) 
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Indices i and j run along the X and Y axis, respectively, and i = 0 ... N - 1, 

j = 0 ... M - 1. If there are N x M pressure knots, there will be ( N + 1) x M 

u-velocity knots and N x (M + 1) v-velocity knots. The velocity knot coordinates are 

computed as follows 

0 + 0 
2 Yj-1 Yj 

Y· = 
J 2 (2.2) 

Here, x~ 1 and y~ 1 are the ghost knots with coordinates such that (x~-xg) = (x8-x~1 ) 

and (y~- yg) = (yg- Y~1). 

Three types of control volumes corresponding to knots Pi,j, ui,j and vi,j are shown 

in Figure 2.2. Control volumes P( i, j) define the primary computational cells used 

throughout this thesis. 

Figure 2.2: Control volumes corresponding to the pressure (left), u-velocity (middle), 
and v-velocity (right) knots. 

2.2 Tracking the fluid domain 

The numerical approach used in this work requires a special algorithm for tracking the 

fluid region within the computational grid. This is done by using the VOF method 
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due to Hirt and Nichols (1981). This method consists of two parts. First, the fluid 

boundary is reconstructed using the VOF function, 0 :( F :( 1, which denotes the 

fractional volume of a computational cell (fluid fraction) that is occupied by the fluid. 

For example, Fi,j = 1 corresponds to the computational cell P( i, j) which is entirely 

filled with fluid and Fi,j = 0 means that there is no fluid in the computational cell. 

Second, the fluid region is advected in time to its new position with the fluid velocity 

field based on the fluid domain configuration reconstructed at the previous time step. 

2.2.1 Fluid interface reconstruction 

Computational cells that contain both the fluid and the air are called interface cells 

(mixed cells). The exact free surface location in interface cells can be reconstructed 

from the values of the VOF function F. In each mixed cell, the fluid interface is 

approximated with a straight line segment. The equation of the line is specified by 

its unit outward normal n = (nx, ny, 0) and the distanced from the coordinate system 

origin 

(2.3) 

First, n is approximated and constant d is then computed so that the interface line 

should cut out exactly the same amount of fluid within the computational cell Pi,j 

as specified by the VOF function Fi,j· The Brent's root finding algorithm is used to 

computed (see Rider and Kothe (1998)). 

The algorithm for finding the interface normal, n, is not unique. The basic idea 

for estimating n is based on the values of F in the neighbourhood of the cell under 
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consideration. Several estimation algorithms can be found in a comprehensive study 

by Pilliod and Puckett (2004). In the present work, the algorithm due to Gerrits 

(2001) is used, in which the analytical interface normal 

\IF 
Jl= IVFI (2.4) 

is approximated by discretizing equation (2.4) with respect to all the neighbours of 

the interface cell. This results in a 2 x 2 linear system for J1 = ( nx, ny, 0) which is 

then solved using Cramer's method. 

2.2.2 Fluid advection 

The fluid region is advected with the fluid velocity field at each time step. The ad

vection algorithm computes the new values, Fk+l, of the VOF function in all compu

tational cells based on the old values, Fk, and the fluid velocity field JJ.k = ( uk, vk, 0). 

Here, superscripts k and k+ 1 correspond to the time step numbers and tk+1 = tk + flt, 

where flt is the time step. 

A number of different advection algorithms exists (see, for example, Hirt and Nichols 

(1981), Rider and Kothe (1998), Aulisa et al. (2003), Pilliod and Puckett (2004)). 

In this thesis, the area-preserving advection method due to Aulisa et al. (2003) is 

adopted, where an area-preserving linear mapping IIxy is used to transform the fluid 

region at time step k, tk, into the fluid region at time tk+1 . IIxy is a combination of 

two linear mappings Ilx and Ily along the X and the Y directions, respectively. 
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The first mapping, IIx : x'-----+ x, maps the rectangle A' B'C' D' onto the computational 

cell P(i,j) which is the rectangle ABCD (see Figure 2.3), where the X-coordinates of 

computational cell corners A and Bare x1 and x2 , respectively, and the X-coordinates 

of points A' and B' are Xteft = x1 - ui,jt:lt and Xright = x2 - ui+l,jt:lt, respectively. 

The first linear mapping IIx performs a linear transformation of coordinates x' into 

y y 

Ytop ····· ··· ·· ··· ······ D' I C" 

D' D c C' Y2 ·· ··· ·· ··· ·· ··· ···])· 
v!J+l 

c 
f------ ---u·. •,J Ui+l,j 

I 
~ 1:3 s .............. }!. 

v . 
,J 

B 

Ybottom - - - - - - A'T B" 

Xz Xright X X 

Figure 2.3: The linear mappings IIx and Ily: IIx maps the rectangle A' B'C' D' onto 
ABCD (left) and II~ maps the rectangle ABCD onto A"B"C"D" (right). 

x according to the following rule 

x =ax'+ b, where a=-----
Xright - Xteft 

and (2.5) 

The second linear mapping IIy : y-----+ y" maps rectangle ABCD onto A"B"C"D", 

where the Y-coordinates of computational cell corners A and D are y1 and y2 , re-

spectively, and the Y-coordinates of points A" and D" are Ybottom = Y1 + vi,jt:lt and 

Ytop = y2 + vi,J+lt:lt, respectively. IIy performs a linear transformation of coordinates 
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D' D 
D" C" 

A' A B B' 
(a) 

D' D 

• 
Pi-l,J 

A' A B B' 
(b) (c) 

Figure 2.4: The fluid advection: (a) fluid polygons contained in the rectangle 
A'B'C'D'; (b) fluid polygons after applying the first mapping IIx; (c) fluid polygons 
after applying the second mapping Ily-

y into y" according to the following rule 

y" = cy + d, where Ytop - Ybottom c = -=--'-----=---
Y2- Y1 

and d = Ybottom - cy1. (2.6) 

The linear mapping, IIxy, is a combination of the two mappings IIx and IIy. In 

the work by Aulisa et al. (2003), it is shown that this mapping preserves the area, 

provided that the fluid velocity field is divergence free. Thus, the fluid volume and 

mass are conserved exactly when using this advection algorithm in two dimensions. 

The fluid advection process consists of three steps which are shown in Figure 2.4. 

First, fluid polygons located within the rectangle A' B'C' D' are identified. The fluid 

from three computational cells P(i- l,j), P(i,j) and P(i + l,j) may contribute to 

these polygons. Next, mappings IIx and IIy are applied to each of these fluid polygons. 

The images of fluid polygons shown in Figure 2.4 (c) are intersected with all eight 
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neighbours of the cell P( i, j) as well as the cell P( i, j) itself. The normalized areas 

of the intersections contribute to the values of the VOF function at time step k + 1, 

pk+l, corresponding to these cells. This procedure is repeated for each computational 

cell. 

2.3 Classification of the pressure cells and the ve-

locity knots 

The unknown values of the pressure P7,}1 and the two velocity components u7,-r, v:,j1 

at tk+1 are approximated by solving a linear system. A linear equation for pk+l uk+l 
1,) ' 1,) ' 

v7,j1 is associated with each computational knot. 

Since the non-boundary fitted grid is used in this thesis, the computational knots may 

be located either inside the fluid, the air, the solid, or at the boundary of the com-

putational domain. All of the knots are categorized into classes, and linear equations 

of different types are associated with each computational knot, depending on which 

class the knot belongs to. Following the classification of Gerrits ( 2001), all of the 

knots are divided into the six classes listed in Table 2.1 and illustrated in Figure 2.5. 

The classification of the pressure/velocity knots induces the classification of the pres-

sure/velocity cells due to a one-to-one correspondence between the cells and the knots. 

In this thesis, the classification of the pressure knots/cells is referred to as the classi

fication of cells whereas the classification of the velocity knots/cells is referred to as 
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Type Cell/Knot location 

E in the air 

F in the fluid 

X in the solid 

s at the fluid-air interface 

B at the fluid-solid interface 

D 
at the computational 
domain boundary 

Table 2.1: Classification of the pressure 
and the velocity knots. 

Figure 2.5: An example of the pressure 
and the velocity knot labeling. The 
fluid domain is shaded. 

the classification of knots in order to distinguish these classifications. 

In the cells/knots classification, the geometry of the solid body is accounted for by 

the volume of solid function, 0 ~ S ~ 1, which denotes the fractional volume of a 

computational cell (solid fraction) that is occupied by the solid body. For example, 

Si,j = 1 corresponds to the computational cell P( i, j) which is entirely filled with solid 

and Si,J = 0 means that there is no solid in the computational cell. The classification 

of the pressure cells uses the values of the VOF function Fi,j as well as the values of 

the volume of solid function Si,j corresponding to each computational cell P( i, j). The 

fluid fractions are known due to the VOF reconstruction and advection, as discussed 

in Section 2.2. On the other hand, solid fractions Si,j are considered to be known due 

to the specified solid body geometry. 

The classification of the pressure cells is performed in three steps. In the first step, 
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the solid, the air and the fluid cells are assigned labels. All of the cells with Si,j > 0.5 

are marked as X -cells. All of the cells which are not X -cells are then marked either 

E-cells, if Fi,j = 0, or F-cells, otherwise. In the second step, cells located near fluid-air 

and fluid-solid interfaces are labeled. Every F-cell that has at least one neighbour cell 

which is E-cell, is marked as a S-cell. Every X-cell that has at least one neighbour 

which is F-cell, is marked as a B-cell. In the third step, labels are assigned to the 

pressure cells located at the boundary of the computational domain. Each cell P( i, j) 

with either i = 0 or j = 0, or i = N- 1, or j = M- 1 is marked as aD-cell. 

The classification of the velocity knots is performed as follows. Every u-velocity knot 

ui,j is located on the vertical edge shared by the computational cells P(i- 1,j) and 

P( i, j), while every v-velocity knot vi,j is located on the horizontal edge shared by 

the computational cells P( i, j - 1) and P( i, j). Thus, each velocity knot is assigned a 

label based on the labels of two pressure knots corresponding to these computational 

cells. Initially, all of the velocity knots are marked as F-knots. Then, the velocity 

knot located between two E-cells is marked as an E-knot. Velocity knots located 

between an E-cell and a F-cell are marked as S-knots. If at least one of the two 

cells surrounding a velocity knot is a X -cell, then this velocity knot is marked as a 

X-knot. If at least one of the two cells surrounding a velocity knot is a B-cell, then 

this velocity knot is marked as a B-knot. Finally, all the velocity knots residing on 

edges of D-cells are marked as D-knots. 

The various types of linear equations added for each type of pressure cell/velocity 

knot are summarized in Section 2.8. 
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2.4 Discretization of the governing equations 

A distinct method of obtaining a linear equation associated with cells/knots of this 

type is introduced for each pressure cell and velocity knot type. In this thesis, these 

methods are called discretization patterns. In what follows, discretization patterns 

corresponding to all types of cells and knots are described. 

2.4.1 Computation of fractional areas/volumes open to flow 

Equation (1.10), 

:t j dV + j n · 1! dS = 0, 
V A 

represents the integral form of conservation of mass. It is applied to the computational 

cell P(i,j) as shown in Figure 2.6. In equation (1.10), Vis approximated by the 

AT .. ,t,J 

AL .. 
,~,] 

h 

! ABiJ' ' , , 
w 

Figure 2.6: Fractional areas and volume open to flow corresponding to the computa
tional cell P( i, j). Solid body is shaded. 

fractional volume, Vi,j, open to flow in the cell P( i, j), which is computed from 
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the value of the volume of solid function Si,j and the dimensions w and h of the 

computational cell P( i, j) using 

V· · = (1- S· ·)wh. IJ IJ (2.7) 

In equation (1.10), A is split into four parts corresponding to the left, right, top and 

bottom edges of the computational cell P(i,j). Fractional areas AL,i,i' AR,i,i' AT,i,j 

and AB,i,j are computed by intersecting the edges of the cell P( i, j) with the solid 

body. In this thesis fractional areas and volumes are not normalized with respect to 

total areas and volumes of control volume, unlike the studies by Gerrits (2001) and 

Hirt and Nichols (1981). This simplifies the discretization of the governing equations 

since the edge and volume dimensions are already incorporated into Ai,j and Vi,j. 

In the case when the solid body moves through the computational grid, two sets of 

fractional areas and volumes are considered at each time step: Vk and A k which 

correspond to time tk, and Vk+1 and Ak+l which correspond to time tk+1. 

2.4.2 The continuity equation 

The computational cell shown in Figure 2.6 is considered as a control volume for the 

discretization of the continuity equation (1.10), 
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which consists of the unsteady and convective terms. The unsteady term is the time 

derivative of the fractional volume open to flow Vi,J· This term is approximated as 

follows 

(2.8) 

The convective term is split into four integrals along the fractional areas. Since 

the edges of the computational cell P( i, j) are either vertical or horizontal, the scalar 

product ]!;·Jl can be calculated for each edge. This leads to the following approximation 

of the convective term 

J(n. u) dS;::::::: -Ak+l uk+l + A_k+l uk+l_- A_k+l. vk+l + A_k+l vk+l . (2.9) 
- - L,t,J t,J R,t,J t+l,J B,t,J t,J T,t,J t,J+l 

A 

Substitution of (2.8) and (2.9) into (1.10) yields the following linear equation 

vk+l _ vk. 
t,J t,J A k+l k+l A k+l k+l A k+l k+l A k+l k+l 0 

b..t - &L,i,J ui,J + &R,i,J ui+l,J - &B,i,J vi,J + &T,i,J vi,J+l = · (2.10) 

On the right hand side of this equation, the sum of contributions made by the unsteady 

and convective terms appears. There are four unknowns in equation (2.10): u~J 1 , 

u~:N,J, vtj\ and vf,j~1 . The values of the fractional areas and volumes for both times 

tk and tk+l are to be computed beforehand. This equation is a numerical counterpart 

of the continuity equation (1.10) applied to P(i,j). 

All of the terms free of unknowns can be moved to the right hand side of equation 

(2.10). However, this is not done with the intention of keeping the discretization 

of different terms separate. The following process is used for implementing this in a 
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computer program. The discretization is started with the trivial linear equation 0 = 0. 

Discretization of each term adds contributions to the left hand side of this equation. 

After discretization of the last term is complete, the equation is ready to be added 

to the linear system under construction. With this approach, large equations with 

explicit summation of contributions made by all the terms, like (2.10), are never used. 

2.4.3 The momentum equation 

Equation (1.16), 

:tJy_dV+ JY.(!l·Y.)dS=- J p!J.dS+~j Jl·\7y_dS+ J[J_dV, 
V A AUll AUTI V 

represents the integral form of the momentum equation. Here [!_ = (0, 1/Fr2
, 0) and 

p denotes the reduced pressure p' of equation (1.16). This vector equation has two 

scalar projections on the X and Y axes. Both projections are discretized using the 

same techniques. In this subsection the spatial and temporal discretizations of (1.16) 

are discussed. 

Unification of the discretization of vector equation components 

An extensive literature survey shows that the discretization of vector equations is 

usually described for one component only, while the second component is stated to be 

discretized in the same way (see, for example, Gerrits (2001)). In this thesis, a special 

notation is introduced to provide a single explanation of the discretization procedure, 
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which covers both components at the same time. In addition, the discretization of only 

one component has to be implemented in the computer code. The present code that 

implements the discretization of the remaining component is generated automatically 

by the compiler. This is done by introducing the longitudinal ( L) and transversal 

(T) axes. Each component of equation (1.16) is then associated with a mapping 

that defines the correspondence of the (L, T) axes with the (X, Y) axes. For the X 

component, the L axis is equivalent to the X axis, and the Taxis is equivalent to the 

Y axis, i.e., L =X, T = Y. L = Y and T =X for theY component. The L axis 

is called the longitudinal axis, since it is always directed along the coordinate that 

corresponds to the projection of equation (1.16) under consideration. The T axis is 

called the transversal axis. The velocity components u and v are replaced by u L and 

Ur. For the X component, uL = u and uT = v, while for theY component, uL = v 

and uT = u. Indices i and j that run along the X and Y axes, respectively, are 

mapped to indices l and t which run along the L and T axes. For the X component, 

i = l and j = t, while for the Y component i = t and j = l. Then, the velocity 

knot ui,j-1 is equivalent to uL z,t-l for the X component and to uT Z-l,t for the Y 

component. 

The discretization for the L component of equation (1.16) has the following form 

:t j uL dV + j uL (JJ:.·JJ.) dS+ j p nL dS- ~ j JJ:.· \JuL dS- j 9L dV = 0. (2.11) 

V A Aull Aull V 

The linear equation that results from the discretization of (2.11) is expressed in 

(L, T) terms. To obtain the discretization of the X component, one should take 

u L = u and uT = v, and transform the ( l, t) indices into ( i, j) indices. For the Y 
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Figure 2. 7: Discretization of the momentum equation. 
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L 

component, uL = v and uy = u. This procedure seems to be complicated. However, 

there is no need to obtain discretizations for the X and Y components manually. In 

implementation, the discretization of both X and Y components is generated by the 

compiler from the single discretization corresponding to the L component. 

Equation (2.11) is discretized for the control volume UL(l, t) which is shown in 

Figure 2. 7 as a rectangle with bold black edges. The equation consists of unsteady, 

convection, pressure, diffusion and volumetric force terms. Contributions made by 

each term are considered separately. 
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Unsteady term 

The unsteady term in (2.11) is 

The following approximations are performed. First, uL is considered to be constant 

within volume V. Second, since the velocity knot uL is located on the edge shared by 

cells P(l- 1, t) and P(l, t), the fractional volume V corresponding to the cell UL(i,j) 

is approximated by the average of the fractional volumes vl-l,t and vl,t 

k+l (\ITk+l \\rk+l) k (\Irk \Irk ) 
UL l t "'l-l t + "~! t - UL l t "~l-l t + "~l t dV;:::::::: ' ' ' ' ' ' . 

2fl.t 
(2.12) 

Convection term 

The convective term in (2.11) is 

This term consists of four fluxes of the Vh velocity component through the edges of 

the control volume UL(l, t). The edge located in the negative direction of the L axis 

from the center of the control volume is £ 0 , whereas the edge located in the positive 

direction of the L axis is £ 1 . Two other edges, T0 and T1 , are defined in a similar 

way with respect to the Taxis. Edges £ 0 , £1, T0 and T1 corresponding to the control 

volume UL(l, t) are shown in Figure 2.7. 



2.4. Discretization of the governing equations 45 

For each edge, a characteristic value of uL as well as a characteristic mass flux Fare 

defined, which leads to the following approximation 

J u L (11 · 11) dS ~ u L F. 

A 

(2.13) 

The values of uL and F are defined for edges L 0, L1 , T0 and T1 as follows. For the 

edge L0 , the characteristic velocity uL is the average of the Vh velocity components 

located on the edges of the cell P(l- 1, t) parallel to the T axis 

k+l k+l 
UL l-l,t + UL l,t 

2 
(2.14) 

The unweighted average is used due to the reasons explained in the work by Gerrits 

(2001). The characteristic flux F corresponding to the edge L0 is the average of the 

fluxes through the edges L0 and L1 of the cell P(l - 1, t), which are taken to be 

negative since the normaln corresponding to the edge L0 of the cell UL(l, t) is ( -1, 0) 

k A_k k A_k 
UL l-l,t La l-l,t + UL l,t L1l-l,t 

2 
(2.15) 

Here, the velocity components are determined at the time tk. Thus, their values 

are known, and the convection term discretization results in a linear equation. The 

resulting approximation of the convective flux through the edge L0 is 

(2.16) 
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Similarly, the velocity flux through the edge L1 is approximated as 

J ( ) dS ~ 1 ( k+ 1 k+ 1 ) 1 ( k A k k A k ) UL !} . Jl ~ 2 UL l,t + UL l+1,t 2 UL l,t Lo l,t + UL l+1,t L 1 l,t · (2.17) 

It is noted that approximations (2.16) and (2.17) contain the fractional areas corre

sponding to the pressure control volumes P(l- 1, t) and P(l, t). The fractional areas 

corresponding to the control volume UL(l, t) are not used and thus there is no need 

to compute them. 

For the edge T0, the characteristic velocity uL is the average of the Vh velocity 

components uL l,t- 1 and uL l,t 

k+1 k+1 
UL l,t-1 + UL l,t 

2 
(2.18) 

The characteristic flux F consists of two terms 

F = -Ak+1 uk + -Ak+1 uk . 
I 

1 1 
To 2 To l-1,t T l-1,t 2 To l,t T l,t (2.19) 

Thus, velocity flux through the edge T0 is approximated as 

j uL (n· JJ) dS ~ -t(uli~- 1 + u1i,~) (tA~~L 1 ,t u~ l-1,t + tA~~f,t u~ l,t). (2.20) 

A To 

Similarly, the velocity flux through the edge T1 is approximated as 

(2.21) 
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Equations (2.16), (2.17), (2.20) and (2.21) are the contributions made by the convec-

tive term in (2.11) due to the discretization of the momentum equation. 

Diffusion term 

The diffusion term in equation (2.11) is 

~ J !l · \luL dS. (2.22) 

Aurr 

This term is discretized using a technique introduced by Gerrits (2001), where the 

integrand is represented in the following form 

(2.23) 

The normal derivative is approximated as the difference between the characteristic 

velocity u L at the boundary of the control volume U L ( i, j) and the velocity component 

at the control volume center uL z t' divided by the distance between these velocities , 

~ j 8uL dS::::::: ~ j uL - ULz,t dS 
R an R lnl · (2.24) 

AUIT AUIT 

The control volume boundary is split into eight parts: segment 1 corresponds to the 

edge L1 , segments 2 and 3 correspond to the edge T1 , segment 4 corresponds to the 

edge L 0 , segments 5 and 6 correspond to the edge T0 , and segments 7 and 8 correspond 

to the fluid-solid interfaces located in cells P( l- 1, t) and P(l, t), respectively (if there 

is no fluid-solid interface, its length is set to zero, which results in no contribution 
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made by the interface terms). Segments 1 - 6 are shown in figure 2. 7. For each 

segment k, the distance lnkl which has the dimension of the length is approximated 

as a certain volume Vk corresponding to the segment divided by the length Ak of the 

segment 

(2.25) 

Substitution of (2.25) into (2.24) for segment k gives 

(2.26) 

Here, uk is the Dh velocity component at segment k. The central velocity uL l,t is 

taken at time tk+1
. Once uk, Ak and Vk corresponding to all segments are defined, 

their substitution into (2.26) will give the contributions made by the diffusion term. 

uk, Ak and Vk are chosen according to Gerrits's work as follows 

- k+l A 1 (Ak+l Ak+l ) v, - yk+l. (2.27a) U1 - UL l+1,t' 1 = 2 La l,t + L1l,t ' 1- l,t ' 

k+1 
U2 = UL l,t+1' 

1 k+1 
A2 = 2ATll,t' 

v.: _ 1 (vk+1 yk+1 ) . 
2 - 4 l,t + l,t+l ' (2.27b) 

k+1 
U3 = UL l,t+1' 

1 k+1 
A3 = 2AT11-1,t' 

v 1 (vk+1 yk+l ) . 
3 = 4 l-1,t + l-1,t+1 ' (2.27c) 

k+1 
U4 = UL 1-1,t' 

A 1 (Ak+1 Ak+1 ) 
4 = 2 La l-1,t + L1l-1,t ' 

v:: yk+1 . 
4 = l-1,t' (2.27d) 

k+1 A - ~Ak+1 v; - 1 (Vk+1 yk+l ) . (2.27e) U5 = UL l,t-l' 5- 2 Tal-1,t' 5 - 4 l-1,t + l-l,t-l ' 

k+l 
U5 = UL l,t-1' 

1 k+l 
A6 = 2ATal,t' 

-v; _ 1 (vk+l yk+1 ) . 
6 - 4 l,t + l,t-1 ' (2.27f) 

- k+1 
U7- UL body' 

1 k+l 
A1 = 2rrl-l,t, 

- 1 k+1 . 
V7 - 2 "l-1,t ' (2.27g) 

k+1 A - ~rrk+1 1 k+l (2.27h) Us= UL body' 8- 2 l,t ' Vs = 2"1,t . 
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In (2.27g) and (2.27h), ut"'b~cty is the body velocity at the midpoint of the interface 

segments Il~1~t and II2i1 located in the cells P(l- t, t) and P(l, t), respectively. 

Although (2.27a) - (2.27h) are obtained based on the work by Gerrits (2001), there 

are three minor differences due to different definitions of the geometry of the control 

volumes partly occupied by the solid body. First, A1 and A4 in (2.27a) are computed 

by averaging, while in Gerrits' work these quantities are computed as the areas of 

control volume boundary located in the cells P(l, t) and P(l - 1, t), respectively. 

Second, u7 and Us in equations (2.27g) and (2.27h) are computed using the solid 

body velocity, whereas a mirrored velocity is used in Gerrits' work based on the 

assumption that body velocity is always zero. Third, in this work interface lengths 

A 7 and As are approximated with half of the interfaces passing through the cells 

P(l- 1, t) and P(l, t), while in Gerrits' work each of these interfaces is considered as 

a whole or not considered at all, depending on control volume geometry. 

Substitution of (2.27a) - (2.27h) into (2.26) gives the contributions made by the 

diffusion term in (2.11) due to the discretization of the momentum equation. 

Pressure term 

The pressure term in (2.11) is 

J p nL dS. (2.28) 

AUIT 

Since only the Vh component of the normal to the boundary appears in this equation, 

integration over the edges T0 and T1 gives zero. Following the work of Gerrits (2001), 
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the parts of the boundary in the cells P(l- 1, t) and P(l, t) not parallel to the L axis 

are both approximated as Al!t,t, which results in the following approximation of the 

pressure term contribution 

J ds "-' ( k+ 1 k+ 1 ) f:.. k+ 1 
pnL ""' Pz,t -Pz-1,t &L0 z,t· 

AUTI 

Volumetric force term 

The volumetric force term in (2.11) is 

J gL dV. 
v 

(2.29) 

(2.30) 

As it is pointed out in the work by Gerrits ( 2001), the discretization of the volumetric 

force term should be consistent with the discretization of the pressure term. This is 

due to the fact that a static fluid in the presence of gravity force is considered and thus, 

the discretized volumetric force cancel the hydrostatic pressure term. This affects the 

computation of the volume V in equation (2.30). Taking the length parallel to the T 

axis as Al!t,t gives 

J 9L dV ~ gLAl!t,t(Xp- Xp_1). (2.31) 

v 

Here, xp is the Vh coordinate of the pressure knot whose £-index is equal to l, so 

(X?- xp_ 1) is the length of the control volume along the L axis. 
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2.5 Boundary conditions at fluid interfaces 

The discretization of the governing equations (1.10) and (2.11) is done only inside the 

fluid region of the computational domain. At the free surface and at the solid body 

interface, the boundary conditions, presented in Section 1.3, are discretized. 

2.5.1 Pressure interpolation at the free surface 

In S-cells, a value for the pressure is needed. This is provided by boundary condition 

(1.19) for the pressure at the free surface 

2 OUn 
-- -p= -po. 
Ron 

The first term ( ~ ~~) on the left hand side of this equation is neglected due to the 

relatively small viscosity assumption used in this thesis, and the value of the normal 

velocity derivative is typically very small (see, for example, Hirt and Nichols (1981), 

Gerrits (2001)). Thus, the value of the pressure at the free surface, p, is equal to the 

ambient air pressure, p0 , i.e., 

P =Po· (2.32) 

This equation is discretized in every S-cell by defining the pressure in this type of cell. 

This is done based on the interpolation of the pressure at the free surface and the 

pressure in the neighbouring fluid cell, PN· This method is illustrated in Figure 2.8, 

where S-cell P(i,j) under consideration is referred to as the base cell, PB· The free 

surface orientation is approximated in the vicinity of the base cell by computing the 
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following differences of the VOF fractions along the X and Y axes 

~X= [F.k++11.- pk+111 
t ,J '1,- ,J ' 

A - [Fk+l pk+1 I uy - · '+1 - · ·-1 · 2,] t,] (2.33) 

The orientation of the free surface is stated to be horizontal if ~x < ~y, or vertical, 

otherwise. The neighbouring pressure cell of type F is selected based on the free 

surface orientation. This neighbouring cell, p N, is also referred to as the interpolation 

neighbour of the surface cell. In the case of the horizontal free surface, cell PN is 

either P(i- 1, j) or P(i + 1, j), whereas for the vertical free surface orientation PN is 

either P( i, j - 1) or P( i, j + 1). In Figure 2.8 the horizontal free surface orientation 

is chosen and cell PN is P(i,j -1). Since the free surface is perpendicular to the line 

y 

B 

I 

N ------

Figure 2.8: Interpolation of the free surface pressure, PI, to the S pressure knot, PB, 
using the neighbouring fluid pressure, PN· 

that joins pressure knots PN and PB, the interface location PI along this line can be 

computed from the known fluid fractions in the base cell and neighbouring cell (see 

Figure 2.8). Once the coordinates B, Nand I are known, the pressure PB in the base 
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cell P(i,j) can be computed based on linear interpolation of PI and PN 

(I- N)pB + (B- I)pN + (N- B)pi = 0. (2.34) 

The interfacial pressure, PI, is equal to the ambient air pressure p0 . Thus, the dis

cretization of (1.19) yields the linear equation for P7J1 

(2.35) 

2.5.2 Extension of the velocity field to the free surface 

The velocities of type S can appear in the discretization of the momentum equation 

(1.16) corresponding to the neighbouring velocity knots and thus require special con

sideration. In this thesis, S-velocities are computed following the work by Gerrits 

(2001). The S-velocity knot uL l,t is considered in Figure 2.9. According to the cell 

and knot classification described in Section 2.3, one of the pressure cells P(l - 1, t) 

or P(l, t) is a S-cell as shown in Figure 2.9. If uL l,t is the only velocity of type S 

in the S-cell, this velocity can be obtained from the mass conservation discretization 

pattern applied to this S-cell. Otherwise, uL 1 t can be set equal to the neighbouring , 

fluid velocity knot uL nbr in the fluid direction 

k+1 k+1 0 
U L l t - U L nbr = ' , (2.36) 

h k+1 . f k+1 k+1 k+1 d k+1 h · F' 2 9 w ere uLnbr 1s one o uLl-1,t, uLl+1,t, uLl,t-1 an uLl,t+1 ass own 1n 1gure .. 
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UL l,t+1 

E s 

• • 
UL l-1,tPl-1,t ULl,t Pz,t 

• 
UL l,t-1 

Figure 2.9: S-velocity discretization. In the case when conservation of mass cannot be 
used, uL 1 tis set equal to the neighbouring fluid knot chosen from the knots marked , 
as black squares. 

2.5.3 Tangential velocity boundary condition at the free sur-

face 

The majority of the velocity knots of type E are located in the air and thus are set 

to zero: uti~ = 0. However, certain E-velocities are required in the discretizations of , 

the momentum equation for the neighbouring S-velocity knots. An example is shown 

in Figure 2.10, where E-velocity uL l,t is required in the discretization pattern corre

sponding to S-velocity uLz,t_1. Following the work by Gerrits (2001), the tangential 

boundary condition (1.18) is used to define such E-velocities in this thesis. The free 

surface is assumed to be horizontal if E-velocity is the X-velocity component, and 

vertical if E-velocity is the Y-velocity component. Thus, the normal and tangential 

directions are always aligned with the coordinate axes, and equation (1.18) can be 
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E E 

• • 
ULl,t 

UT l-1,t Urz,t 

• • 
UL l,t-1 

s s 

Figure 2.10: Application of the tangential boundary condition for velocity knot uL 1 t· , 

discretized using finite differences. 

The case when the free surface is horizontal is illustrated m Figure 2.10 so that 

f) f) f) f) d h d" . . l . 
f)J1 = at, f)r_ = fJl, an t e lSCretlzatiOn resu ts Ill 

uk+1 _ uk+1 uk+1 _ uk+1 
T l,t T l-1,t + L l,t L l-1,t = 0. (2.37) 

T T L L 
Xz - Xz-1 xt - xt-1 

Here, xf is the Vh coordinate of the knot Ur z,t, and xf is the Tth coordinate of the 

knot uL 1 t· , 

2.5.4 No-slip boundary condition 

The no-slip boundary condition given by equation (1.17) states that the fluid velocity 

at each point of the fluid-solid interface should be equal to the solid velocity at that 

point. Due to the use of a non-boundary fitted grid in this work, the velocity knots 

are not located at the fluid-solid interface. This complicates the discretization of the 

no-slip boundary condition. In this work, a method similar to the one presented in 
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Section 2.5.1 for the pressure interpolation at the free surface is used. The technique 

for discretizing the no-slip boundary condition for the velocity knot u L z,t is illustrated 

in Figure 2.11. The knot uL 1 tis labeled as the base knot uB. Four neighbours uL 1_ 1 t' , , 

uL l+1,n uL z,t-1 and uL z,t+1 are searched for a neighbouring fluid knot (i.e., for the 

velocity knot of type F). If no fluid neighbour is found, then the velocity uL z,t is 

set to the solid body velocity. The neighbouring fluid knot is denoted as UN. The 

fluid-solid interface is approximated as the perpendicular to the line that joins knots 

uB and UN as shown in Figure 2.11. The line that joins uB and UN is either parallel 

T T 

L 

Figure 2.11: No-slip boundary condition: uB is the base velocity knot, UN is the 
neighbour fluid velocity knot, I is the estimation of location of the fluid-solid interface. 
Approximated solid fractions are shown with gray color. 

or perpendicular to the L axis as displayed in Figure 2.11. In the case when this line 

is parallel to the L axis, the coordinate of the approximate interface location I in the 

direction of the line is obtained from the known solid fractions in the pressure cells 

that have the base velocity, uB, on one of their edges. In the latter case, I is obtained 

as the mean value of two estimated interface locations I 1 and I 2 . 
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Once the coordinates B, Nand I along the axis parallel to the line that joins UB and 

UN are determined, the velocity uB at the base knot can be computed from linear 

. t 1 t" f k+l d k+l Ill erpo a lOll 0 UN= UL Nan UJ = UL solid 

(2.38) 

where u1~~lid is the Vh component of the solid velocity at the point I. All the 

velocities are taken at time tk+1
. This interpolation may lead to unphysical high 

values of the base velocity when the fluid-solid interface I is close to the neighbour 

velocity knot N. To prevent this, (2.38) is applied only when IB - II < IN - Jl. 

Otherwise, the base velocity is set to the solid body velocity. 

2.6 Boundary conditions at the computational do-

main boundary 

The numerical method presented in this Chapter aims to solve the two-dimensional, 

unsteady, incompressible Navier-Stokes equations in their integral form in a semi-

infinite domain to model the hydrodynamic environment around a transversely oscil-

lating cylinder in the presence of a free surface. The numerical solution of unbounded 

problems requires the proper representation of the boundary conditions after repre-

senting the unbounded domain by a finite computational domain. 

The computational domain boundary, shown in Figure 2.12, is divided into four parts: 

the inflow boundary on the left; the outflow boundary on the right; the inviscid wall 
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boundary located at the bottom which truncates the infinite fluid region at a certain 

depth and the inviscid wall boundary at the top which truncates the upper part 

of the computational domain. Both the lower and upper inviscid wall boundaries 

inviscid wall 

inflow outflow 

inviscid wall 

Figure 2.12: The computational domain boundaries. 

are modeled similarly to enable numerical simulations of a transversely oscillating 

cylinder in this infinite medium of fluid. 

The velocity knots of type D are located on the edges of D-cells. D-velocity knots 

which are located on the computational domain boundary or belong to the corner 

cells in the computational domain are not used in other discretization patterns and 

thus can be set to zero. These excluded knots are shown in Figure 2.13. All the 

remaining velocity knots of type D are used to apply the boundary conditions on 

the computational domain boundary. In what follows, the boundary conditions are 

described and discretized for each of the four walls of the domain boundary. 
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] 

-o-

] I -o------

Figure 2.13: Excluded knots on the computational domain boundary. 

Inflow boundary condition 

At the inflow boundary, the fluid velocity is denoted as 

(2.39) 

where lfo is a prescribed velocity. It is noted that when the inflow boundary is placed 

far away from the cylinder, this boundary condition provides a good approximation 

of the mathematical boundary condition 1f = lfo at infinity. Thus, at this wall, both 

J U1 · ,J 
~ 

vo,j 

Figure 2.14: The velocity knots used to apply the inflow boundary condition. 

components of the fluid velocity are set equal to the prescribed velocity, as shown in 



2. 6. Boundary conditions at the computational domain boundary 60 

Figure 2.14, 

k+l 
vo,j = Vo. (2.40) 

lnviscid wall boundary condition 

At a sufficiently large depth below the free surface, the fluid flow is approximated 

by the uniform flow, i.e., streamlines are represented by straight lines. Thus, one of 

these streamlines is chosen as the computational domain boundary, which acts as an 

av 
inviscid wall, and at this wall the tangential velocity v does not change, i.e., ay = 0. 

Thus, only the normal fluid velocity u is prescribed at this wall. Figure 2.15 displays 

J U· 1 ., 
~ 

Vi,l 

J U· 0 ., 

Figure 2.15: The velocity knots used in the inviscid wall boundary condition at the 
bottom boundary of the computational domain. 

the velocity knots involved at the bottom wall, and their discretization is given by 

(2.41) 

Similarly, the discretization for the inviscid wall boundary condition at the top wall 

is given by 

k+l k+l 0 
u.M 1- u.M 2 = t, - 2, - ' 

k+l 
vi,M-1 = Vo. (2.42) 
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Here, j'vf is the number of pressure cells along the Y axis. 

Outflow boundary condition 

The outflow boundary condition is applied at the right boundary of the computational 

domain as shown in Figure 2.16. The normal and tangential velocity components, 

[UN-.,j 

PN-2,j 

fN-l,j 

-o-
VN-2,j VN-l,j 

Figure 2.16: The pressure and velocity knots used in the application of the outflow 
boundary condition. 

uN-l,j and VN-l,j, correspond to boundary conditions 

(2.43) 

and 

Jav 
ax dS = 0, (2.44) 

s 

respectively. Derivation of these boundary conditions will be reported elsewhere. 

They are approximated based on the assumption that the integrands in 2.43 and 2.44 
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are constant along the boundary S. This results in discretized equations 

k+1 k+1 
1 UN-1,j- UN-2,j k+1 h 
R 1 1 - PN-2,j = -po- -F 2' 

XN-1- XN-2 r 
k+1 k+1 0 

VN-1,j- VN-2,j = · (2.45) 

Here, the depth of submergence, h, can be computed from either the actual or the 

required fluid elevation at the outflow at time tk+1 . 

2. 7 Initial conditions 

The cylinder motion starts impulsively from the rest at t = 0. The potential flow 

assumption is made, i.e, 

v(x,y) (2.46) 

at the initial time t = 0. At time t = o+, the free-slip velocity boundary condition 

at the cylinder surface, suddenly changes to the no-slip condition, :g = Y:.body' due to 

the viscous flow development. This results in development of boundary layers at the 

cylinder surface, where the potential flow velocity rapidly decays to zero. As it is well 

known, the initial flow is governed by the usual boundary-layer theory in which a 

layer of thickness (t/R) 1
/

2 surrounds the cylinder following the sudden start at t = 0. 
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2.8 Correspondence between cell classification and 

discretization patterns 

The types of pressure cells and velocity knots and their discretization patterns are 

displayed in Table 2.2. Subsection numbers corresponding to non-trivial discretization 

patterns are provided in parentheses. 

Pressure cell type 

E 

F 

X 

s 
B 

D 

Velocity knot type 

E 

F 

X 

s 
B 

D 

Discretization pattern 

Pk+l = 0 
t,] 

conservation of mass equation: Section (2.4.2) 

Pk+l = 0 
t,J 

pressure interpolation at the free surface: Section (2.5.1) 

Pk+l = 0 
t,] 

Discretization pattern 

tangential velocity boundary condition at the free surface: 
Section (2.5.3) 

the momentum equation: Section (2.4.3) 

uk+l = 0 
L l,t 

extension of the velocity field to the free surface: Section (2.5.2) 

no-slip boundary condition: Section (2.5.4) 

velocity boundary conditions at the computational domain 
boundary: Section (2.6) 

Table 2.2: Correspondence between the pressure cell/velocity knot types and dis
cretization patterns. 
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2.9 Simulation workflow 

The numerical simulation begins with the initialization of fluid velocity components 

u?,j, v?,1 and the values of the VOF function Fi~j at time t0
, which are taken either 

from the known initial conditions or from previously computed results. It is noted 

that the discrete pressure field P?,j does not need to be initialized since there are no 

explicit pressure contributions in the discretization of the governing equations and 

boundary conditions. The values of the VOF function Fi~j are used to reconstruct the 

fluid interface and compute the fractional areas A?,j and volumes V?,j corresponding 

to all computational cells. The pressure cells and the velocity knots are then assigned 

labels lL~,i,J' lL~,i,J' lLe,i,J according to the procedure described in Section 2.3. 

After this initialization procedure, the computation of the discrete pressure and ve

locity fields P7J\ u7,·r, vt}1 as well as the VOF fractions Fi7t corresponding to 

successive time instants tk, k = 0 ... K is performed. The computation is divided 

into cycles. On each cycle, the computations required to advance the solution to 

the next time instant are done. Computational steps corresponding to one cycle are 

displayed in Figure 2.17. The first step consists of the advection of the VOF function 

Fi~J with local fluid velocity (uf,J, vf,j, 0). As a result of this, the values of the VOF 

function Fi7f1 corresponding to the new time instant, tk+1
, are obtained. Then, the 

new values Fi7f1 are used to reconstruct the fluid interface and compute fractional ar

eas A7,j1 and volumes V7,j1
. The third step consists of assigning the new labels JL;t,~, 

lL~~'~' JL~t,~ to the pressure cells and the velocity knots based on the values Fi7t. In 

the fourth step a linear system is formed by applying discretization patterns corre

sponding to every pressure and velocity knot. The linear system is then solved which 
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Start 
Advect the fluid region to obtain 
Fi:f 1 based on ( u~J, vf.J) 

Reconstruct new fluid interface and 
compute _Ak+ 1 and vk+l based on 

t,J t,J 
1 

Assign labels JI}+1 JI}+1. JI}+1 
p,t,J' U,t,J' V,IJ 

based on Fk+1 
t,J 

Build the linear system by applying 
discretization patterns to pressure 
and velocity knots and solve this 
system to obtain pk+1 uk+1 vk+1 

2,J ' tt,J ' 'l.,J 

true 
Finish------------< 

false 

Figure 2.17: Simulation workflow. 
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results in the discrete pressure and velocity fields P7,}
1

, u7,J
1

, vtj
1 corresponding to 

the new time level tk+1 . After the determination of the pressure and velocity, the new 

time tk+1 is checked against the final time tK to determine whether to continue or 

stop the numerical simulation. Before entering the next computational cycle, all the 

. bl k+1 k+1 k+1 pk+1 ]Lk+1 JLk+1 JLk+1 d t k k k pk vana es Pi,j , ui,J , vi,J , i,J , p,i,J' u,i,J' v,i,J are rename o Pi,J' ui,J' vi,J' i,J, 

JLPk i 1., lL~ i 1., lL~ i 1-, respectively. 
'' '' '' 



Chapter 3 

CFD code design: Implementation 

and validation 

The development of a powerful and efficient high-level framework for simulations of 

Navier-Stokes problems is an active research topic. In this context, to be effective we 

explore the implementation of principle CFD concepts into a computer program to 

solve the free surface problem under consideration. This is done by making use of the 

numerical techniques described in the previous Chapter and a high-level programming 

language C++. There are two reasons for choosing C++ as the programming language: 

its performance and expressiveness. Performance plays the greatest role in computa

tional fluid dynamics since results are often limited by available computing resources. 

A good use of the language expressiveness results in a computer program that is easier 

to understand and maintain. C++ provides high-level abstraction mechanisms while 

retaining and even exceeding the performance of the Fortran programming language 

66 
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(see, for example, Stroustrup (2004)). The use of a high-level programming language 

C++ allows us to represent concepts in the application domain of computational fluid 

dynamics such as computational grids, discretization patterns and linear equations 

as C++ classes. Classes are used to encapsulate object behaviour and make it available 

to other objects by means of a well-defined interface. This results in a computer 

program which is easier to comprehend and maintain than a program expressed using 

low-level concepts such as arrays, data structures and simple loops. Powerful features 

of C++ templates as well as modern compilers that provide optimizations specific to 

C++ can be employed to achieve the performance comparable with the performance of 

the Fortran programming language. The C++ classes and templates do not introduce 

performance penalty, unlike other object-oriented languages such as Java and Python. 

For example, Java templates are run-time entities, while C++ templates are solely used 

at compile-time. An expensive feature such as run-time type information is optional 

in C++, while it is embedded in Java and Python. 

The code written for this work employs a combination of various programming styles 

supported by C++. The data abstraction paradigm is used to create a data type suitable 

for storing the values of the computed pressure and velocity. The use of a generic 

programming paradigm facilitates the implementation of discretization patterns and 

reduces the size of the corresponding code up to four times. During compile time, 

the code corresponding to both components of the vector equations is generated from 

a single template by the C++ compiler. An object-oriented paradigm is applied to 

represent the code as a set of classes, where each class is responsible for a distinct task. 

During run time, objects of these classes are created to perform a fluid flow simulation 

in collaboration with each other. In the subsequent sections of this Chapter, the use 
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of these paradigms is described in detail. 

3.1 Data type for pressure and velocity variables 

The values of the pressure p7,j1 and velocity components u7,r, vtf are computed at 

each time step as the solution of a system of algebraic equations of the form 

Ax= b. (3.1) 

Here, A = ( ai,j) is the matrix of this linear system, b is the vector of free terms, 

and x is the vector of unknowns. Since unknowns are stored in a one-dimensional 

vector x, a single index is associated with each pressure and velocity component P7t; 
u7,j1

, vt:J1
. This ordering of unknowns influences the sparsity pattern of A, which, in 

turn, may affect the time and memory required to solve the system of equations (3.1) 

(see, for example, Benzi (2002)). The values of the pressure and velocity components 

computed as the solution of (3.1) are used to form the system of equations for the 

next time step. At this time, it is more convenient to refer to these values using 

multiple indices rather than a single one. Thus, the vector of variables possesses 

a dual behaviour, i.e., it is a one-dimensional array and a set of two-dimensional 

matrices at the same time. 

In this thesis, the PolyMatrixArray abstract data type suitable for storing and accessing 

the vector of unknowns is introduced. Stroustrup (2000) showed that std: :valarray 

can be used as a container for all variables which is optimized for numerical cal-
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culations. An effective way of addressing within this container is provided by the 

std:: slice class. Using these as building blocks, the PolyMatrixArray class is created 

which can be seen as a one-dimensional array and a set of two-dimensional matrices 

at the same time 

enum{P = 0, U, V}; 

void a_function(PolyMatrixArray & a) 
{ 

} 

a[P] [3] [2] = 7.0; //use matrix notation 
size_t i = a.index(P, 3, 2); 
a.array()[i] = 14.0; //use vector notation 

Here, the value of p3,2 is set to 7.0. The single index corresponding to this knot is 

then computed, and the PolyMatrixArray object is finally accessed as a one-dimensional 

array to set p3,2 equal to 14.0. In addition to this easy access provision to pressure and 

velocity variables, PolyMatrixArray encapsulates a particular ordering of unknowns. In 

the case where there is a need to change the ordering, modifications are done within 

this class only so that the rest of the code is not affected. Triple index addressing is 

implemented as follows 

class PolyMatrixArray 
{ 

std::valarray<double> array; 
public: 

} j 

typedef PolySliceiterator iterator; 
iterator operator[](size_t i); 
std::valarray<double> & array(); 

class PolySliceiterator 
{ 
public: 

} j 

typedef Sliceiterator iterator; 
i terator operator[] (size_ t i); 

class Sliceiterator 
{ 
public: 

double & operator[](size_t i); 
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} ; 

Expression a[PJ[i][j] is parsed as ((a[P])[i])[j]. Subexpression a[P] returns a 

PolySliceiterator object, which represents the a-th matrix within a. If this object 

is denoted as psi, then our expression becomes (psi [i]) [j]. Object psi has its own 

operator[], which results in another object si of type Sliceiterator. The expression 

turns out to be si [j]. Object si has its own operator [J, which finally returns the 

reference to element a [PJ [i] [j]. In the first instance, this procedure may not seem to 

be efficient. However, this is not the case. First, all operator[] methods are inlined. 

The name return value optimization is then used to prevent construction of copies 

of iterator objects returned by these methods. Iterator objects are created on the 

stack, so no dynamic memory allocation takes place. As a result, the tests show no 

difference in performance between indexing with a single index and indexing with a 

triple index. 

The PolyMatrixArray class and its iterators do optional range checks. When compiled 

in debug mode, each operator [J method verifies that the corresponding index is not 

out of bounds. The standard assert macro is used for verification. In release mode, 

this macro expands to nothing, so no run time penalty appears in this case. 

The iterators described above can be viewed as lightweight objects that represent 

certain parts of the entire array 

void f(PolyMatrixArray & a) 
{ 

} 

PolyMatrixArray: :iterator P(a[O]); 
p [3] [2] = 4. 0; 
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In function f 0 only the pressure variable is used, so it is convenient to define an 

object which refers to the pressure submatrix of the entire array. This submatrix is 

then used as a two-dimensional matrix. One can even pass P to another function by 

value, which is equivalent to the creation of another reference to unknown variables 

stored in a single location in memory. This is both efficient and convenient. 

3.2 Discretized equations 

Discretization of the governing equations and boundary conditions results in linear 

equations in unknowns P7,j1
; u7,j1

, v:,·r. These equations are obtained by considering 

the contributions made by various terms such as unsteady, convective, diffusive and 

volumetric force terms. An object of class DiscretizationEquation is used to accumu-

late these contributions in the computer code 

void discretize(DiscretizationEquation * eq, size t i, size t j) 
{ 

} 

//start with triviaL Linear equation "0 = 0" 
eq->reset (); 

//add contributions 
eq->add_explicit( 1.0, P, i, j); 
eq->add_implicit(-1.0, P, i, j); 
eq->add_free_term(-2.0); 

Here, three contributions are added: 1 · p~J, -1 · Ptr and -2. As a result, the 

constant term becomes p~j- 2 and -1 appears at the column corresponding to Pi,j· 

It is noted that one can reset the DiscretizationEquation object before putting entire 

new equation into it. This enables reuse of a single eq object throughout the entire 

simulation. 
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After all the terms are processed and all contributions are taken into consideration, 

the DiscretizationEquation object is used to fill up the current row in the sparse matrix 

A and the free term vector bin the linear system (3.1). Specifically, for each implicit 

variable in the DiscretizationEquation object, the single index is computed. Then, 

the coefficient corresponding to the variable is inserted into the current row of the 

matrix A. The column number of this coefficient is taken to be the single index of 

the variable. The free term in the DiscretizationEquation object is inserted into the 

current row of the vector b. The equation corresponding to the next unknown is then 

discretized, and the resulting DiscretizationEquation object is used to fill the next 

row. Thus, the DiscretizationEquation object decouples the part of the code which 

provides discretization routines and the part of the code which assembles and solves 

the system of linear equations (3.1). 

3.3 Explicit and implicit time levels 

The discretization involves two sets of pressure and velocity variables. The first set 

corresponds to the explicit time level t = tk, the second set corresponds to the implicit 

time level t = tk+1. The same discretization pattern may be used twice: the first time 

with explicit variables, the second time with implicit variables. It is highly desirable 

to write a single function that acts differently depending on the time level 

void do_crank_nickolson(Eq * eq) 
{ 

} 

add_diffusive_term<Explicit>(eq); 
add_diffusive_term<Implicit>(eq); 
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Here, the add_diffusive_termO function is a function template. A time level appears as 

a template parameter that toggles explicit or implicit discretization. If the TimeLevel 

parameter is Explicit, all contributions should be made via the add_explicitO 

method; if the time level parameter is Implicit, all contributions should be made via 

add_implici t 0 method. This selective behavior is implemented via the Contributor 

class 

template<typename TimeLevel> class Contributor; 

Contributor has two template specializations corresponding to the implicit and explicit 

time levels 

class Implicit{}; 

template<> class Contributor<Implicit> 
{ 
public: 

static void add(Eq * eq, double k, size_t var, size t i, size_t j) 
{ 

eq->add_implicit(k, var, i, j); 
} 

} ; 

class Explicit{}; 

template<> class Contributor<Explicit> 
{ 
public: 

static void add(Eq * eq, double k, size_t var, size t i, size_t j) 
{ 

eq->add_explicit(k, var, i, j); 
} 

} ; 

The add_diffusive_termO function uses Contributor to unify the implicit and explicit 

contributions made by the same discretization pattern 

template<typename TimeLevel> 
void add_diffusive_term(Eq * eq) 
{ 
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} 

typedef Contributor<TimeLevel> C; 

C : : add ( 1 . 0 , U, i , j ) ; 
C::add(-1.0, U, i+1, j); 

14 

Both Contributor specializations have a single trivial function, which is easily inlined 

by any up to date C++ compiler. Since these functions are static, there is no need to 

create an object to call them. Consequently, the result of compilation of the above 

code is essentially the same as the result of compilation of the following code 

void add_diffusive_term_explicit(Eq * eq) 
{ 

} 

eq->add_explicit( 1.0, U, i, j); 
eq->add_explicit(-1.0, U, i+1, j); 

void add_diffusive_term_implicit(Eq * eq) 
{ 

} 

eq->add_implicit( 1.0, U, i, j); 
eq->add_implicit(-1.0, U, i+1, j); 

Thus, there are no differences at run time. Of course, the latter code requires less 

compilation time. However, it demands maintenance of two functions while the former 

code has a single discretization routine. In our code this routine occupies more than 

200 lines of code, and this is much easier to maintain compared to 400 lines of code 

split into two functions with slightly different implementations. The Contributor 

specializations are reused in the discretization of all terms in the governing equations 

and boundary conditions, which results in less maintenance with no runtime penalty. 

There is another advantage of using Contributor. If only one of the two 

add_diffusive_term specializations is actually used, the second one is not generated 

at all. C++ compilers are sophisticated enough to make a decision whether to gen-

erate a particular template specialization based on whether or not it is being used. 
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Thus, the generation and compilation of unused specializations are automatically 

suppressed. 

3.4 Discretization of the vector equations 

Equations corresponding to the velocity knots have two scalar components. In the 

previous Chapter, the unified (L, T) notation is introduced to provide a single expla-

nation of discretization procedures which is valid for both components of the equations 

at the same time. 

This approach can be expressed directly in the code with the use of C++. For each 

discretization pattern, a single discretization routine is created. Then, two mappings 

corresponding to the X and Y components are defined. Each discretization routine 

is a C++ template function that takes a mapping as a template parameter. The C++ 

compiler generates two discretization routines for both components automatically 

from this single template. This greatly reduces the size of the discretization code 

without any loss of performance as shown below. 

The mappings are defined as C++ traits templates (see Alexandrescu (2001) and Van

devoorde and Josuttis (2002) for comprehensive studies of traits). The X and Y 

component traits are as follows 

class XAxis 
{ 
public: 

enum{l_axis = 1, t_axis = 2}; 

typedef LeftWall Edge_lO; 
typedef RightWall Edge_l1; 
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typedef BottomWall Edge_tO; 
typedef Top Wall Edge_t1; 

static size t l(size_t i' size t j ) {return i;} 
static size_t t(size_t i' size t j ) {return j;} 
static size_t i(size_t 1' size_t t) {return 1;} 
static size_t j (size_t 1' size_ t t) {return t;} 

} ; 

class YAxis 
{ 
public: 

enum{l_axis = 2' t_axis = 1}; 

typedef BottomWall Edge_lO; 
typedef Top Wall Edge_l1; 
typedef Left Wall Edge_tO; 
typedef RightWall Edge_t1; 

static size t l(size_t i' size t j) {return j ; } 
static size_t t(size_t i' size t j) {return i;} 
static size_t i(size_t 1' size_t t) {return t;} 
static size_t j(size_t 1' size_t t) {return 1;} 

} ; 

Each mapping defines the correspondence between the ( i, j) and (l, t) indices as well 

as the correspondence between the left, right, bottom and top walls and the L 0 , Lb 

T0 , T1 edges of the control volumes. All of the discretization routines accept axis 

traits as a template parameter. For the convective term, we have 

template<typename TimeLevel, typename Axis> 
void MomentumConvectiveTerm: :get_discretization 

(DiscretizationEquation * eq, size_ t i, size t j) 
{ 

} 

size_t 1 = Axis::l(i, j); 
size_t t = Axis::t(i, j); 

//edge LO 
add_convection_through_l_edge<TimeLevel, 

//edge L1 
add_convection_through_l_edge<TimeLevel, 

//edge TO 
add_convection_through_t_edge<TimeLevel, 

//edge T1 
add_convection_through_t_edge<TimeLevel, 

Axis>(eq, 

Axis>(eq, 

Axis>(eq, 

Axis>(eq, 

1' t' 1-1); 

1' t' 1 +1); 

1' t' t -1); 

1' t' t +1); 
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Here, the convective term is discretized by taking fluxes through all four edges of the 

control volume into account, i.e., U(i,j) if Axis is XAxis; and V(i,j) if Axis is YAxis. 

Functions add_ convection_ through_l_edge () and add_ convection_ through_ t_edge () are 

implemented using information provied by classes XAxis and YAxis. This informa-

tion is processed during compile time to generate functions corresponding to the X 

and Y components from a single function template. Methods of classes XAxis and 

YAxis are inlined by any modern C++ compiler. Since all template specializations are 

created at compile time, the code generated has the same optimization capacity as 

a nontemplate C++ code. Note that the get_discretization() routine has two inde-

pendent template parameters TimeLevel and Axis which allows it to be used in four 

different ways 

void discretize(DiscretizationEquation * eq, 
{ 

} 

//for controL voLume U(i, j) 
conv_term->get_discretization<Implicit, 
conv_term->get_discretization<Explicit, 

//for controL voLume V(i, j) 
conv_term->get_discretization<Implicit, 
conv_term->get_discretization<Explicit, 

size t i' 

XAxis>(eq, 
XAxis > (eq, 

YAxis>(eq, 
YAxis>(eq, 

size t j ) 

i' j ) ; 
i' j ) ; 

i' j ) ; 
i' j ) ; 

Thus, there is a single discretization routine instead of four routines with slightly 

different implementations, and there is no run time penalty in comparison to the 

code written by a programmer. The same technique is used for implementing all of 

the discretization routines corresponding to the velocity knots listed in Table 2.2. 
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3.5 Program architecture 

Classes such as PolyMatrixArray and DiscretizationEquation represent abstract 

data types. The code which is written in terms of PolyMatrixArray and 

DiscretizationEquation uses these data types as elementary building blocks. Thus, 

such code is written at the higher level of abstraction than the code which implements 

these data types. A brief understanding of the structure of the code can be obtained 

by analyzing classes written at the highest level of abstraction. In this section, the 

key high-level classes are discussed. It is shown what these classes are responsible for, 

and how they interact with each other to achieve the desired functionality. 

3.5.1 High-level classes 

Solver 

This is a central class which is equivalent to a conductor if the rest of the program is 

viewed as an orchestra. It creates all of the objects required during computations and 

provides access to information required by other objects to perform their computa

tions. For example, it creates PolyMatrixArray which stores the values of the pressure 

and velocity variables, as well as two matrices that store fluid fractions in each com

putational cell at the explicit and implicit times. The memory required by these large 

objects is allocated once upon creation of the Solver object. The memory allocated 

is released in Solver destructor. 
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FluidAdvector 

This class is responsible for the computation of a new time step estimation using the 

Courant-Friedrichs-Levy condition as well as advection of fluid fractions with local 

fluid velocity. It implements the advection part of the VOF method which is described 

in Section 2.2. 

InterfaceReconstructor 

This class corresponds to the reconstruction part of the VOF method. It provides in

formation about the exact location of the fluid interface and computes fractional areas 

and volumes open to flow. Both the fluid-air and the fluid-solid interfaces are recon

structed with the help of two low-level classes FreeSurfaceinterfaceReconstructor and 

BodyinterfaceReconstructor, respectively. InterfaceReconstructor unifies these low

level classes and serves as a unique source of information about the fluid region 

geometry for the rest of the program. There are two objects of this class within a 

single Solver object. One of them corresponds to the implicit time and the other one 

corresponds to the explicit time. 

CellClassificator 

This class implements the classification of pressure cells and velocity knots which 

is described in Section 2.3. It provides information which is required to choose the 

discretization pattern for each computational knot. 
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SystemB uilder 

This class applies the discretization routines to each pressure cell and velocity knot 

based on the knot type which is known from CellClassificator. Each discretization 

routine populates a DiscretizationEquation object, which is then used to fill up the 

next row in a sparse matrix and the free term of the linear system to be solved. 

LinearSystem 

LinearSystem stores the matrix and the free term column of the linear system. In 

addition, this class is responsible for the solution of the linear system. Currently, it 

uses the AztecOO library to solve the system using the generalized minimal residual 

method with ILUT preconditioner. The AztecOO library is a part of Trilinos project 

which is available under the conditions of the GNU Lesser General Public License 

v.2.1 at http:/ jsoftware.sandia.gov /trilinosj. The solution is placed directly into the 

PolyMatrixArray object that stores the pressure and velocity components. 

3.5.2 Solver life cycle 

The simulation of the unsteady flow is performed by an iterative call to the 

Solver: :life_ cycle() method, which is implemented by using classes described earlier 

void Solver: :life_cycle() 
{ 

dt = fluid_advector->advect_fluid(&vof_values); 
interface_rctor->reconstruct_interface(vof_values); 
cell_classificator->do_cell_classification(interface_rctor); 
system_builder->build_system(&system); 
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} 

system->solve (); 
curr_time += dt; 
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Upon completion of the call to this method, solver has new values of the pressure 

and velocity stored in its PolyMatrixArray object. These values can be written to a 

file to store the simulation results. 

It can be noted that the code functionality is divided among well-separated objects. 

Each object is responsible for a well-defined task. Each object accomplishes its task 

with the help of a number of low-level objects; the same is true for non-trivial low-

level objects as well. This is another application of the well-known "divide et impera" 

principle, which results in significant simplifications in writing, understanding and 

maintaining object-oriented programs (see, for example, Booch (1994)). 

Due to the creative use of expressiveness of the C++ programming language, the code of 

the life_cycleO function corresponds directly to the simulation workflow description 

provided in Section 2.9. 

3.6 Validation of uniform flow simulations 

The numerical simulation tool developed in this thesis can be applied to a class of free 

surface problems with arbitrarily moving rigid bodies. Here this numerical simula

tion tool is applied specifically to the problem of unsteady, laminar, two-dimensional 

flow of a viscous incompressible fluid past a transversely oscillating cylinder in the 

presence of a free surface. These results and their analysis will be presented in the 
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Figure 3.1: The computational grid. The uniform grid region is shaded. 
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next Chapter. In this Chapter, the validation of the numerical simulation tool is 

presented for uniform flow past (i) a stationary cylinder (no forced oscillations); (ii) 

a cylinder undergoing forced rotational oscillations and (iii) a cylinder undergoing 

forced transverse oscillations in the absence of a free surface, in addition to uniform 

flow past a stationary cylinder in the presence of a free surface. 

3.6.1 Grid specification 

Before presenting the numerical simulation results, there are several parameters of 

the grid geometry which must be specified. The computational grid used for nu-

merical investigation of flow around a circular cylinder is shown in Figure 3.1. The 

computational domain geometry is defined with respect to the mean position of the 

cylinder. In the non-stationary case, the cylinder is moving or oscillating around its 

mean position. In the vicinity of the mean cylinder position, the grid has fine reso-



3. 6. Validation of uniform flow simulations 83 

lution and is uniform. The uniform grid region is shaded in Figure 3.1. Outside of 

the shaded region, the grid expands exponentially towards the four boundaries of the 

computational domain. The computational domain dimensions are defined by spec-

.f . l t X X X X l th X . d y y y y l 1 ymg sea e parame ers Sz, Smz, smr' sr a ong e axis an sb, smb' smt' st a ong 

the Y axis. Physical dimensions are obtained by multiplying these parameters by the 

cylinder diameter. The initial elevation of the fluid is specified by sh. To consider the 

case of uniform flow past a cylinder in the absence of a free surface, it is sufficient to 

define sh so that it is greater than s~t + s¥. 

The values of n'[', n~ and n~ specify the number of knots in the left, middle, and right 

areas of the computational grid, respectively. The values of n~, n~ and n¥ specify 

the number of knots at the bottom, middle, and top areas of the computational grid, 

respectively. Grid steps in the uniform grid region h~ and h~ are computed as 

y + y 
hY = Smb 8mt d. 

m n~ -1 
(3.2) 

The exponential expansion of the grid is defined as follows. Let { ~i}f=1 be a uniform 

distribution of n knots in the interval [0, 1] 

i = 1 .. . n. (3.3) 

The exponential distribution of n knots { xi}f=1 in the interval [xa, xb] is then given 

by 

i = 1 .. . n. (3.4) 

The parameter a is chosen so that the first grid step of the exponential grid at the 
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end attached to the uniform grid region is equal to the uniform grid step h~. This is 

done by finding the root of the following function 

ea/(n-1) _ 1 
:F(a) = h':n- (xb- Xa) 

1 
. 

ea-
(3.5) 

The exponential grid parameter, a0 , satisfying :F(a0) = 0 is determined numerically 

using Brent's algorithm (see Brent (1973)). Four exponential grid parameters corre

sponding to the left, right, bottom, and top parts of the computational domain are 

computed automatically. Thus, the parameters shown in Figure 3.1 are sufficient to 

describe the grid specification completely. 

3.6.2 Choice of computational parameters 

Numerical solution depends on a number of computational parameters such as the 

time step, 6.t, and the grid geometry parameters: sf, s~l' s~r' s~, s~, s~b' s~t' 

y X X X y y y d Al b f . l . t st, nl , nm, nr, nb, nm, nt, an sh. arge num er o numenca expenmen s are 

performed to choose the values of the grid parameters. It is observed that numerical 

solutions obtained using computational domain sizes larger than sf = 10, s~ = 20, 

s~ = s¥ = 15 differ only slightly from each other. For example, in the case of uniform 

flow past a stationary cylinder in the absence of a free surface the results obtained 

are accurate for Strouhal numbers to about 2.5%. These grid parameters are found 

to be sufficient to allow us to neglect the computational domain boundary effects. 

The grid parameters used in this thesis are consistent with the grid parameters used 

in the studies of flow past cylinders conducted by other researchers (see, for example, 



3. 6. Validation of uniform flow simulations 85 

Reichl (2001) and Reichl et al. (2005)). 

To test the influence of the size of the time step, numerical simulations corresponding 

to two values of the time step, 10-2 and 5 x 10-3 , were performed. The difference in 

the peak values of the lift force coefficient obtained from numerical simulations with 

these time steps vary within 1.6%; the difference between Strouhal numbers is found 

to be 1%. This difference is considered to be acceptable for the present thesis. The 

time step of 10-2 is chosen since it reduces the actual time required to perform the 

numerical simulations. 

The grid resolution near the cylinder boundary and in the near wake region is critical. 

This is determined by the values of grid scale parameters s~r' s~1 , s~b' s"/nt as well 

as the knot numbers n~ and n"fn. The grid resolution can be expressed in terms 

of the number of grid cells per cylinder diameter. The structured grid used in this 

thesis is less flexible compared to unstructured grids. Computational knots cannot 

be added individually at the desired points in space using such a grid. Only an entire 

row or column of knots may be added in order to increase the grid resolution near 

the cylinder. Adaptive grid refinement suggested by Berger and Oliger (1984) can be 

used to overcome this drawback of structured grids, but this is not implemented in the 

present work since it would add extra complexity to the problem. From the numerical 

experiments conducted with different grid resolutions, it is found that setting the 

number of cells per cylinder diameter to 20 - 30 is sufficient to obtain reasonably 

accurate results. 
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3.6.3 Flow past a stationary circular cylinder 

To verify the accuracy of the present algorithm, numerical results are first obtained 

at small times and compared to the results from the numerical methods of Li et al. 

(2004) and Ploumhans and Winckelmans (2000). Li et al. implement the lattice

Boltzmann method to solve the problem of impulsively started flow past a circular 

cylinder for a Reynolds number of R = 550. Ploumhans and Winckelmans use a 

two-dimensional vortex method based on the vorticity-stream function formulation 

of the Navier-Stokes equations in combination with the particle strength exchange 

scheme for diffusion. The values of the computational parameters used in the present 

numerical simulation are specified in Table 3.1. 

fl.t sx s:::nz s:::nr sx nx nx nx sY y y sY nY nY nY 
l r l m r b 8 mb 8mt t b m t 

10-3 20 1 1 40 70 80 140 17 1 1 17 60 80 60 

Table 3.1: The values of the computational parameters corresponding to the present 
numerical results shown in Figures 3.2 and 3.3. 

The development of the vorticity at small values of time is compared with the results 

of Li et al. (2004) in Figure 3.2. This figure shows that the present numerical 

solution accurately calculates the size, location, and the shape of the developing 

vortices. In addition, corresponding to an impulsive start, the initial formation of 

vortices behind the cylinder is observed, with the increase of time, a second vortex 

(at t = 1.5) develops and then interacts with the original vortex. The resulting drag 

coefficient calculation is displayed in Figure 3.3. The result which is compared with 

that obtained by Li et al. (2004) and Ploumhans and Winckelmans (2000) shows 
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Figu~ 3.2: f.Awivorticity patterns for the case of uniform flow past a slationnry 
cylinder in ihc absence of a free :>ltrfA.c~ At n = 550: Li et ol. {2004) (left) . present 
work (right) . t = 0.5 (top) , t = 1.5 (middle), t = 2.5 (botlOIH). 
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Figure 3.3: Early time development of lhf• drag for('(' t'1>effident. Co. for unifonn flow 
past a stationary cylinder in the ab...,ne<> of n frP<' •urf~e~ at R = 550: (i) - Li eta/. 
(2004), (ii) - Ploumbans and Winckclmans (2000). (iii) - p..-m work. 
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a good agreement. There is a local minimum in the time interval between 0.2 and 

0.4 and a local maximum in the interval between 1.4 and 1.6. The value of the drag 

coefficient at the local maximum observed in present study is higher than the one 

obtained by Li et al. (2004) and Ploumhans and Winckelmans (2000). It is believed 

that the higher drag coefficient is due to the use of different boundary conditions: Li 

et al. use periodic boundary conditions for the lattice-Boltzmann equations at the 

upper and lower boundaries of computational domain, whereas inviscid wall boundary 

conditions are employed in the present study. 

In the case of uniform flow past a stationary cylinder, the flow only depends on the 

Reynolds number. For Reynolds numbers below about R ~ 40, the cylinder wake is 

stable and thus vortex shedding is not present. The vortices, formed in the separate 

layer, remain attached to the cylinder surface. As the Reynolds number increases, 

however, there is a transition from the formation of the attached eddies to the shed

ding of vortices from alternate sides of the cylinder, creating the classical Karman 

vortex street as shown in Figure 3.4. The dimensionless frequency at which these 

vortices are shed is the natural shedding frequency, f 0 , defined by equation (1.23). 

In numerical studies, fluctuations that naturally occur in physical experiments are 

absent, which leads to symmetric flow patterns even for Reynolds numbers higher than 

40 (see, for example, Figure 3.2). It is necessary to introduce artificial perturbations 

in order to trigger the vortex shedding process. Braza et al. (1986) showed that these 

perturbations are required solely for switching from a symmetrical to an asymmetrical 

flow regime, and the resulting flow is independent of the particular perturbation that 

caused it. Braza et al. suggest to apply a perturbation by rotating the cylinder for 
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Figure 3.4: Karman vortex street downstream of a circular cylinder (Cesareo de La 
Rosa Siqueira (2006)). 

a short period of time at the beginning of simulation. This is the approach used in 

this thesis. 

The periodic nature of the flow is reflected in the lift and drag force coefficients. 

The dimensionless vortex shedding frequency, f 0 , (which is also known as the natural 

Strouhal number St) can be computed by calculating the power spectral density 

(PSD) of the lift coefficient CL through Fourier analysis. Table 3.2 shows the values 

of the mean drag coefficient, CD, the mean peak values of the absolute value of the 

---lift coefficient, CL, and the predicted value of the natural vortex shedding frequency, 

f 0 , for four values of the Reynolds number in the range 200 :::;; R:::;; 500. The values 

of the computational parameters used in the numerical simulations performed to 

obtain results shown in Table 3.2 are specified in Table 3.3. From Table 3.2 it can be 

observed that CD, ~ and fo agree very well for R = 200. ~remains well-predicted 

even for higher Reynolds numbers, while the CD values obtained in the present study 
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- -R CD CL fo 

(i) (ii) (iii) (i) (iii) (i) ( ii) (iii) 

200 1.3389 1.3412 1.34 0.70 0.72 0.199 0.1972 0.194 

300 1.3820 1.3769 1.41 0.96 0.97 0.211 0.2113 0.207 

400 1.4080 1.4142 1.50 1.08 1.13 0.2228 0.2198 0.214 

500 1.4433 1.4449 1.54 1.23 1.23 0.230 0.2254 0.218 

Table 3.2: The predicted m~n drag coefficient, CD, mean peak values of the absolute 
value of the lift coefficient, CL, and the natural shedding frequency, f 0 , compared with 
previous numerical studies for the case of a stationary cylinder. (i) - Poncet (2004), 
(ii) -Henderson (1997), (iii) -present work. 

/:,.t sx s~l s~r sx nx nx nx sY y y sY nY nY nY 
l r l m r b smb Smt t b m t 

10-2 15 1 3 30 40 160 80 15 1 1 15 40 80 40 

Table 3.3: The values of the computational parameters corresponding to the present 
numerical results shown in Table 3.2. 

are higher than the computed CD values by Poncet (2004) and Henderson (1997). 

The predicted values of the vortex shedding frequency are somewhat smaller due to 

numerical viscosity introduced by the relatively low-order scheme employed in the 

present study. This artificial diffusion results in a flow behaving as if it were at a 

slightly lower Reynolds number, which is consistent with smaller values observed in 

Table 3.2. 
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3.6.4 Flow past a circular cylinder under forced rotational 

oscillation 

For the case of uniform flow past a circular cylinder undergoing forced rotational 

oscillation numerical simulations are carried out at R = 100. The values of the 

computational parameters used in the present numerical simulation are specified in 

Table 3.4. The angular cylinder displacement is taken to be 

n 
a(t) = - 7r f cos(21r ft). (3.6) 

Here, f is the dimensionless frequency of rotational cylinder oscillation and D is the 

dimensionless maximum rotational speed given by 

D = amaxd 
2U ' 

(3.7) 

where CLmax is the maximum angular velocity. The flow is then uniquely defined 

by specifying the values of the dimensionless parameters D, f and the Reynolds 

number, R. In Figure 3.5, the present predictions of the equivorticity patterns for the 

rotationally oscillating cylinder immersed in a uniform flow are compared with those 

obtained from the numerical study of Choi et al. (2002) at R = 100 for four different 

flow regimes. Choi et al. employed a finite volume method to solve the Navier-Stokes 

equations in their pressure-velocity formulation on a polar 0-type grid. It can be 

seen that these results are in good agreement. 
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3.6.5 Flow past a circular cylinder under forced transverse 

oscillation 

For 1 hC' ca..,.. of umform flow p». .. t a carcular cyliodt•r uudt·rgumg fmf'Ni tnms\-en;e 

c~Ndlltttion numerical '-in111lntion~ Art" cnrri('(( out at R 200 Tltr values of t l1r 

oomplllfll ionaJ parameters tl....:•d 111 lhC' present nunu;>ricul "inmlnHon nn~ specified in 
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Table 3.5. The transverse cylinder displacement is taken to be 

y(t) = -Acos(27rft). (3.8) 

It is noted that when the computations are performed in the non-inertial frame of 

reference X.9 , the lift force coefficient, CL, in the inertial frame of reference can be 

obtained from the computed lift coefficient, Cf, in the non-inertial frame of reference 

according to 

7r 
CL = Cf + 2jj(t). (3.9) 

Meneghini and Bearman (1995) investigated the flow at R = 200 using the vortex in 

cell method. They predicted the natural vortex shedding frequency to be fo = 0.196. 

In Figure 3.6, the present equivorticity pattern results are displayed for the case 

i::,.t sx s~z s~r sx nx nx nx sY y y sY nY nY nY 
l r l m r b 8 mb Smt t b m t 

10-2 5 1 10 10 30 150 60 6 2 2 6 36 60 36 

Table 3.5: The values of the computational parameters corresponding to the present 
numerical results shown in Figure 3.6. 

R = 200: fIfo = 0.8 and A= 0.6 and compared with those obtained by Meneghini 

and Bearman (1995). The comparison between these results shows a good agreement 

in the near wake region. 

The flow is also calculated at R = 855, A = 0.13 in the frequency ratio range 

0.5 :::;; fIfo :::;; 4.0 and compared with the experimental results of Ongoren and Rock

well (1988) and numerical results of Al-Mdallal (2004). The values of the computa-

tional parameters used in the present numerical simulation are specified in Table 3.6. 
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figure 3.G: Equivorticity patterns in the case of a transversely oscillating cylinder at 
R = 200, f / f• = 0.8, A = 0.6. Meneghiui OJ•d Oeonnon ( 1995) (left), pr(-,;ent work 
(right). 

Cood qunlilat iw agrceuwnL is obtained hclv.'OC'Il these t·csults as shown in Figure ~.7. 

6 L sf s' .s!., ·• n{ n~ n: s• • ~ . s• .,. ,.. nr ml . , 
' .... ' • m 

10 2 12 3 7 20 30 180 50 12 4 4 12 30 144 30 

Table 3.6: The values of the computational parameters corresponding to the present 
numeric-al results shown in figure 3.7. 

3.6.6 Free surface flow past a stationary circular cylinder 

For the case of uniform flow past a stationary cyJinder in the presence of a free surface 

numer itAI simula.tions ArP tnrr iN:I out at ll. = ISO and in the raJ\ge of Froudc numbers 

0 ~ Fi: ~ 0.4 when tht> depth of c-ylinder s ubmt>rgenoo h i:; 0.55. T he \'fllm~ of 1 he 

computational parameters used in the present numerical simulation are specified in 

' IQhle 3. 7. Pigurf> 3.8 :;bows a oompnrison betwe-en the cqui\'orticity patterns obtained 

in the present study and those obt~ined by Reichl eta/. (2005). Reichl et (1/. use the 

comnu;-rdnl CFO l:iOfl w1uP paek».g~ FLUENT whirl• is hn.'*'<l on 1 he fin iw volume method 
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Figure 3.7: Comparison of How \•isualization by Ongoren and Rockwell (1988) (left), 
cquivorticity patterns by Al-~ldallal (200~) (middle) and present work (right) for 
uniform How past a transversely osci1lating cylinder at R = 855, A = 0.13 and 
fIfo = 0.5. 1.0, 2.0. 3.0, 4.0 (from top to bottom). 
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Figure 3.8: Comparison of the equivorticity patterns for uniform A ow J)SSL H stat ionn•·y 
cylinder in the pre•ence of a free •urfat'e at R = ISO, h = 0.55: l"r = 0 (top), 1'1· = 0.3 
(middle) , 1'1· = 0.4 (bouom). lleichl ct ()/. (2005) (left ), present work (right). 

t:l.! •t s:;,l 6!1r• s: "' z u: s: • ' sf n' nrn n' r "'" sm, Smt ' ' 
5 X J0-3 5 I 7 3 30 120 IS 5 3 2 I 50 75 15 

Table 3.7: T he \'nllte:l of the oomp•at.ntional parameters corresponding to the present 
numerical results shown in Figure 3.8. 

on a struewred, IJQtmda.ry fitted grid. In their ""-ork free surf&ee bot.mdnry oondil.ions 

A.re npplied implicitly by considering a two-phase flow model in which the air and the 

ftuid arc tracked by the VOF method. Bearing in mind that Reichl el al. (2005) did 

not use the How model and boundary condit ions as those used in the present work, 

it nmy be not(>(( that, even l:iO, th~r~ is a good q~•alita.1iv~ ngret'nwm bfotwcen the 

results. 



Chapter 4 

Free surface flow simulations: 

Forced transverse oscillations of a 

circular cylinder 

This Chapter focuses on the results for flow past a transversely oscillating cylinder in 

the presence of a free surface. The numerical simulations are conducted at a Reynolds 

number of R = 200 for a fixed submergence depth, h = 1.25, and displacement ampli

tudes A = 0.25 and 0.5 in the frequency ratio range 0.95 ~ f / fo ~ 4.0. The results 

are analyzed by means of equivorticity patterns in the near wake region as well as the 

fluid forces acting on the cylinder. The character of the vortex shedding is impor

tant as it influences the phase of lift force and, consequently, the mechanical energy 

transfer between the fluid and the body. It is noted that the classical definition of 

locked-on flow regimes is based on the existence of a dominant peak in the PSD of 

97 
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the lift coefficient. However, the determination of locked-on flow is not confined to 

the lift records. For example, Anagnostopoulos (2000) uses the PSD analysis or rep

etition of the velocity traces to classify locked-on modes and Ongoren and Rockwell 

(1988) classify lock-on regimes based on a repetition of vortex shedding in the near 

wake region over an integer number of cylinder oscillation periods. Williamson and 

Roshko (1988) explored the existence of locked-on vortex modes in the wavelength

amplitude plane for the case of a transversely oscillating cylinder in the absence 

of a free surface (symbolically represented by h = oo). In their work, the Reynolds 

number is kept within a certain range 300 < R < 1000 and the wavelength ratio is de

fined as )..j d = UTI d, where T = 1 If is the period of oscillation (i.e., R is never held 

fixed and if the parameters of the present problem characterizing the periodic motion 

are introduced then 0 <A~ 1.8 and fIfo~ 0.3). The major vortex patterns near 

the fundamental lock-on region ()..jd::::::; 5 or f::::::; f 0 ) are the three basic asymmetric 

modes: 2S, 2P and P+S, where Sand P indicate 'single' and 'pair' of shed vortices, 

respectively. For the 2S mode a single vortex of opposite rotation is alternatively 

shed from each side of the cylinder over a single vortex shedding cycle, Tv, defined by 

Tv= kT, where k is either a fractional or an integer number. The 2S mode is known 

as the classical Kirman vortex street type of mode. The 2P mode corresponds to the 

shedding of two counter-rotating pairs of vortices from each side of the cylinder per 

Tv. The P+S mode indicates a counter-rotating vortex pair is shed from one side 

of the cylinder and a single vortex is shed from the other side over one cycle, Tv. A 

map of these locked-on vortex patterns near the fundamental lock-on region observed 

by Williamson and Roshko (1988) is shown in Figure 4.1. In this thesis, the vortex 

formation modes are categorized using the terminology of Williamson and Roshko. 
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Figure 4.1: A map of the vortex lock-on patterns near the fundamental lock-on region 
observed by Williamson and Roshko. The critical curve marks the transition from 
one mode of vortex formation to another (Williamson and Roshko (1988), p. 362). 

Following the methodology of Cetiner and Rockwell (2001), the Lissajous represen-

tations of lift and drag coefficients are used to demonstrate the mechanical energy 

transfer, degree of phase-locking, or a loss of lock-on and associated phase shift. The 

Lissajous curve describes the time change of lift or drag coefficient as a function of 

cylinder displacement. The relation between the alterations of flow patterns and the 

unsteady fluid forces on the cylinder surface is discussed. An analysis of the vortex 

shedding modes in the near wake region via Lissajous patterns and PSD analysis of 

unsteady lift coefficients is also included. In PSD analysis the time dependent traces 

of lift and drag coefficients are decomposed into the sum of sine functions using Fourier 



100 

analysis. This analysis allows the representation of a spectrum of the original func-

tion as a set of frequencies with which this function oscillates. Particular harmonics 

in the spectra suggesting lock-on in the near wake are represented by sharply defined 

peaks at integer and fractional values of the natural shedding frequency, f 0 . The 

numerical parameters used in the present investigation are summarized in Table 4.1. 

It is noted that for the free surface flow calculations at f / fo = 3.0 and 4.0, the time 

step, D.t, is reduced to 2.5 x 10-3 and 5 x 10-3 , respectively. The predicted natural 

D.t sx s~z s~r sx nx nx nx sY y 
s1fnt sY nY nY nY 

l r l m r b 8 mb t b m t 

10-2 12 3 7 20 30 180 50 12 4 4 2 30 144 5 

Table 4.1: The values of the computational parameters corresponding to the present 
investigation. 

vortex shedding frequency at R = 200 is fo = 0.191 which is calculated using the PSD 

analysis of the lift coefficient for the case of uniform flow past a stationary cylinder 

in the absence of a free surface. 

The present numerical simulations are carried out on AMD Athlon 3000+ computers 

located at the Department of Mathematics and Statistics, Memorial University of 

Newfoundland. The unsteady flow calculations are conducted for large values of the 

time up to t = 120, using the computational parameters shown in Table 4.1. This 

requires about 48 hours of computational time. 

The observed features are compared with the case of a transversely oscillating cylinder 

in the absence of a free surface. A series of forced transverse cylinder oscillations in 

a steady uniform flow in the absence of a free surface is analyzed under the same 

oscillation conditions to better understand what differences result from the inclusion 
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of the free surface located at a submergence depth of h = 1.25. 

4.1 Vortex formation modes and fluid forces: 

R = 200, A = 0.25 and h = 1.25 

The case of R = 200, A= 0.25 and h = 1.25 is first considered. At this low amplitude 

A= 0.25, the transverse cylinder oscillation produces a modified form of the classical 

Karman vortex street type mode (2S mode) in all frequency ratios considered in 

0.95 ~ fIfo ~ 4.0 for h = 1.25 as well as in the case when a free surface is absent. 

Unless otherwise indicated, in all equivorticity plots that follow, the snapshots are 

taken at the instant y(t) =A and every quarter oscillation cycle thereafter marked by 

the dots on the lift curves. The positive equivorticity patterns are indicated by blue 

coloured (clockwise rotating) contours and negative ones by red coloured (counter

clockwise rotating) contours. The vortex shedding in the near wake is locked-on 

over one period of cylinder oscillation for fIfo = 0.95 and 1.0. In Figure 4.2, typical 

equivorticity patterns as well as the lift coefficient display a periodic pattern over 

one period of cylinder oscillation, T, at fIfo = 1.0: h = 1.25 and oo. The snapshots 

at t = OT (top) and t = T (bottom) are nearly identical. Therefore, the locked-on 

asymmetric 2S mode perT is observed for fIfo= 1.0. Comparison of Figure 4.2(a) 

with Figure 4.2(b) indicates that the free surface presence at h = 1.25 increases the 

vortex formation length about 12.9% at fIfo= 1.0. The shed vortex becomes weaker 

as it moves downstream due to its interaction with the free surface interface. The 

positive vorticity reaches its maximum amount at the instants t = OT and t = T; 
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Figurt> 4.2: Equivorticity patterns over one period of cylinder oscillation, T, for 
It= 200, A= 0.25 and I I/o = 1.0 (T"' 5.2, lOO.G,;; t ,;; 111.8): (o) h = 1.25 And 
(b) h = oo. The instantaneous snapshots are maa·ked in the corresponding lift C<>-

eflkient curves shown above the snapshots. 

whereas the negative vorticity t'<'Arhcs iL') ma.ximuu) t'IIT'IOunt &t the instant t = Tj2. 

\Vhen the fully developed positive vortex propag~tes from the cylinder, a negative 

peak occurs on the CL trace at t ~ T j4. Similnrly, dPvt?lopul('nt and theu propagation 

of the fully developed negative vort~x rPsults in the 0('('\tr&uce of a. pooitive peak on 
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the CL trace at t ~ 3T 14. 

At higher frequency ratios fIfo = 2.0, 3.0 and 4.0, the classical 2S mode is obtained 

per 2T, per 3T and per 4T, respectively. The equivorticity patterns at fIfo = 4.0 

are plotted over 4T in Figure 4.3. It is clear that the cylinder oscillation in this case 

produces a phase-locked pattern for the lift coefficients over 4T. The snapshots at 

t = OT (top) and t = 4T (bottom) are nearly identical. Thus, the lock-on occurs over 

four periods of oscillation at fIfo= 4.0: h = 1.25 and oo. Comparison of Figure 

4.3(a) with Figure 4.3(b) indicates that the free surface presence at h = 1.25 results 

in a significant increase ( ~ 50%) in the vortex formation length. In addition, a large 

free surface distortion is observed due to the interaction of the vortex with the free 

surface at a relatively high oscillatory speed at fIfo = 4.0. This seems to speed 

up the vortex shedding process and produces exact periodic flow patterns over 4T 

when h = 1.25 (see Figure 4.3(a)). On the other hand, Figure 4.3(b) displays quasi

periodic vorticity patterns over 4T in the absence of a free surface. Thus, as a result 

of increasing fIfo beyond 1.0 in the range 0.95 ~ fIfo ~ 4.0, the near-wake vorticity 

produces the common locked-on 2S mode of vortex shedding with different vortex 

shedding periods for h = 1.25. Period doubling, tripling and quadrupling relative to 

the classical Karman mode (2S mode perT: fIfo= 0.95 and 1.0), occurs in the cases 

fIfo = 2.0, 3.0, 4.0, respectively. Also, about 50% increase in the vortex formation 

length is observed as fIfo increases from 0.95 to 4.0 for h = 1.25. However, a 40% 

decrease in the vortex formation length is observed as fIfo increases from 0.95 to 4.0 

in the absence of a free surface. Thus, the effect of increasing fIfo in the absence of 

a free surface is to suppress the vortex shedding process. 
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Table 4.2 summarizes the effect off I fo and h on the minimum lift coefficient, CLmin, 

the maximum lift coefficient, CLmax> the mean lift coefficient, CL; the minimum drag 

coefficient, Cumin, the maximum drag coefficient, CDmax and the mean drag coefficient, 

CD. Comparison of these results in the presence of free surface located at h = 1.25 

h = 1.25 

fIfo CLrnin CLmax CL CDmin CDmax CD 

0.95 -0.7516 1.2929 0.2755 1.5803 1.9982 1.8020 

1.0 -0.8437 1.3698 0.2742 1.6216 2.1901 1.9191 

2.0 -0.6076 1.4683 0.3926 1.5215 2.4857 1.7954 

3.0 -1.1404 1.8043 0.2598 1.3538 2.7209 1.8986 

4.0 -1.8447 2.4468 0.2561 1.0779 2.8750 1.8082 

h = 00 

0.95 -0.9399 0.9404 -0.0032 1.5387 1.9739 1.7585 

1.0 -0.9757 0.9757 -0.0296 1.5866 2.1288 1.8593 

2.0 -1.1179 1.1120 -0.0135 1.0782 2.2403 1.6486 

3.0 -1.4854 1.4985 -0.0080 1.1568 2.5384 1.7099 

4.0 -2.1041 2.1044 -0.0085 0.9603 2.6651 1.6614 

Table 4.2: Instantaneous and mean values of CL and CD for R = 200, A= 0.25, 
h = 1.25, oo and 0.95 ::::; fIfo ::::; 4.0. 

with the case in which the free surface is absent indicates that the free surface presence 

at h = 1.25 does not seem to destabilize the periodicity of the lift and drag coefficients 

at low oscillation amplitude A= 0.25. This table also indicates that CL values are 

affected significantly by the free surface presence at h = 1.25 for 0.95 ::::; fIfo ::::; 4.0. 
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CL takes on positive values in the interval 0.2561 ~ CL ~ 0.3926 in the presence of a 

free surface located at h = 1.25; whereas the values of CL are nearly zero at h = oo, 

as expected. In contrast, inclusion of the free surface at a submergence depth of 

h = 1.25 has only a slight effect on Cn values for all frequency ratios. For example, 

for fIfo = 1.0 and fIfo = 3.0, the values of Cn increase by a factor of 1.03 and 

1.11, respectively. The effect of increasing the frequency ratio, f I f 0 , from 0.95 to 4.0 

increases both CLrnax and Cnrnax when h = 1.25. Table 4.2 indicates that the peak-to

peak amplitude of CL at h = 1.25 tends to (i) increase slightly for fIfo= 0.95 and 1.0; 

(ii) decrease slightly for fIfo = 2.0 and 3.0 and (iii) increase slightly for fIfo = 4.0 

when compared to h = oo. On the other hand, the peak-to-peak amplitude of Cn at 

h = 1.25 tends to (i) increase slightly for fIfo= 0.95, 1.0 and 2.0 and (ii) decrease 

slightly for fIfo= 3.0 and 4.0 when compared to h = oo. 

4.2 Vortex formation modes and fluid forces: 

R = 200, A = 0.5 and h = 1.25 

At A = 0.5, the effect of transverse oscillations become significant which leads to 

pronounced disturbance of the free surface and a changeover from one mode of vortex 

formation to another is observed as fIfo increases from 0.95 to 4.0. The free surface 

waves, in return, interact with the oscillating cylinder and have a great influence on 

the unsteady and mean fluid forces acting on the cylinder, mechanical energy transfer, 

as well as the formation of different vortex shedding modes in the near wake region. 

In the following subsections, the distinctive features of the fluid forces acting on the 
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cylinder, the mechanical energy transfer and associated vortex shedding modes are 

analyzed in detail. 

4.2.1 Fourier analysis and Lissajous patterns of fluctuating 

fl. uid forces 

Table 4.3 summarizes the effect off I fo and h on CLmin' CLmax' CL; CDmin' CDmax and 

CD. This table indicates that the presence of free surface at h = 1. 25 causes significant 

increase in CL values at each frequency ratio considered in 0.95 ~ fIfo ~ 4.0 when 

compared to h = oo. However, CL takes on negative values near zero in the absence 

of a free surface, as expected. On the other hand, the free surface presence at a 

submergence depth of h = 1.25 has only a slight effect on CD values for all frequency 

ratios. For example, for fIfo = 1.0 and fIfo = 3.0, the values of CD increase by a 

factor of 1.04 and 1.11, respectively. The peak-to-peak amplitude of CL at h = 1.25 

tends to increase slightly for 0.95 ~ fIfo ~ 3.0; whereas the peak-to-peak amplitude 

of CL increases by a factor of 2.66 for fIfo = 4.0. The peak-to-peak amplitude of CD 

at h = 1.25 increases slightly for frequency ratios f If = 0.95 and 1.0. On the other 

hand, the peak-to-peak amplitude of CD at h = 1.25 decreases slightly for f If ~ 2.0. 

The effect of increasing the frequency ratio, f I f 0 , from 0.95 to 4.0 increases the 

magnitude of CLmin' CLmax and CDmax at h = 1.25. 

Figure 4.4 shows the time history of the instantaneous lift coefficient, CL, plotted 

with the displacement, y(t), and the PSD of the lift coefficient. This is done by 

expanding CL over ten periods of the cylinder oscillation, lOT. When fIfo = 0.95 



PSD CL(t),y(t) PSD 

2 .--~~------, 

1 ti\--.tv-.f\.:.fv.flv:\A)\.l\·.A··f\,1 1 

:~'----'-'---~~---' 0 0.2 0.4 0.6 0.8 1 65 75 85 95 105 0 0.2 0.4 0.6 0.8 1 

:WV¥NWYW1 L--.!.1.!~~---' 
2 .--~~------, 

:l~~/ 
60 70 80 90 100 0 0.2 0.4 0.6 0.8 1 60 70 80 90 100 0 0.2 0.4 0.6 0.8 1 

;~~ f 
fo 
./\ A 

2 .--~~------, 

i~ .......,Jc"--'-0---'--'-f-~"'--' 
90 95 100 105 110 0 0.2 0.4 0.6 0.8 1 90 95 100 105 110 0 0.2 0.4 0.6 0.8 1 

f :~~ LJA.J..1.

0

_ ......... 

1 

__ ..D........__, 
64 68 72 76 0 0.4 0.8 1.2 1.6 92 96 1 00 104 0 0.4 0.8 1.2 1.6 

~ f 

J \ 1 rrAANVWWJ Lf~o-----"L..l....-~--' l~L.~"-"o~~~f--..-1 
90 92 94 96 98 100 0 0.4 0.8 1.2 1.6 102 104 106 108 110 112 114 0 0.4 0.8 1.2 1.6 

t t 
(a) (b) (c) (d) 

Figure 4.4: The time variation of the lift coefficient, CL, -, and the transverse displacement, y( t), - · -, along 
with the PSD of CL for R = 200, A= 0.5 and f / fo = 0.95, 1.0, 2.0, 3.0, 4.0 (from top to bottom): (a, b) h = 1.25 
and (c, d) h = oo. 

~ 
II 

IV 
0 
0 

::z:,. 
II 

0 
01 

!;:) 
;::l 
!;:).. 

;::J-' 

II 



4.2. Vortex formation modes and fluid forces: R = 200, A= 0.5 and h = 1.25 109 

h = 1.25 

f/fo CLrnin CLrnax CL CDrnin CDrnax CD 

0.95 -1.1439 1.6221 0.2899 1.5566 2.5958 2.0896 

1.0 -1.2086 1.6830 0.2708 1.5734 2.8049 2.2106 

2.0 -1.2086 2.0274 0.4051 1.0166 3.1711 2.1239 

3.0 -3.3151 3.9645 0.2055 0.0330 4.8231 2.1772 

4.0 -6.1159 6.5296 0.1117 -1.1249 6.0852 2.3165 

h = 00 

0.95 -1.2778 1.2779 -0.0020 1.5461 2.5251 2.0297 

1.0 -1.3264 1.3216 -0.0048 1.5646 2.7080 2.1274 

2.0 -1.7160 1.7620 -0.0042 1.0646 2.9911 1.9821 

3.0 -4.1466 3.8162 -0.0389 -0.0493 4.2804 1.9555 

4.0 -7.2159 7.2186 0.0014 0.3182 3.0298 1.6431 

Table 4.3: Instantaneous and mean values of CL and CD for R = 200, A= 0.5, 
h = 1.25, oo and 0.95 ~ f / fo ~ 4.0. 

and f / fo = 1.0 the traces of CL exhibit segments of repeatable signatures every cycle 

of cylinder oscillation, T, regardless of the free surface presence as shown in Figures 

4.4(a) and 4.4(c). However, when the cylinder is submerged under the free surface 

the traces of CL are seen to be less persistent. The PSD analysis of the signatures of 

CL (see Figures 4.4(b) and 4.4(d)) shows that in all cases CL fluctuates with a single 

frequency corresponding to the forcing frequency, f, of the cylinder oscillation. 

Figure 4.5 shows the time history of instantaneous drag coefficient, CD, plotted with 

the displacement, y(t), and the PSD of the drag coefficient. This is done by expanding 
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CD over six periods of cylinder oscillation, 6T. The drag coefficient, CD, shows 

highly periodic behaviour per T 12 when h = oo and per T when h = 1.25, at both 

fIfo = 0.95 and 1.0. This is also confirmed by the PSD analysis of CD which indicates 

that CD oscillates with a single frequency, 2f, at fIfo= 0.95 and 1.0 when h = oo. 

However, the PSD analysis of CD predicts the existence of an additional frequency, 

f 0 , when h = 1.25. Consequently, the CD behaviour shows a competition between 

the dominant frequency, 2f, and this additional frequency for fIfo = 0.95 and 1.0 

when h = 1.25. 

Lissajous patterns of CL and CD are shown in Figure 4.6. These plots are obtained 

by considering at least 10 cycles of the cylinder oscillation. Regardless of the free 

surface presence, the trajectories of CL(Y) and CD(Y) show a highly repetitive con

gruent form indicating phase-locking between the cylinder loading and its motion 

for fIfo = 0.95 and 1.0. This confirms our finding, based on the PSD analysis of 

CL, that the time-dependent lift force, CL, is phase-locked to the cylinder motion. 

The effect of the presence of free surface at h = 1.25 seems to cause a shift of the 

positive (clockwise) hysteresis loops of CD (y) in the left half-plane. In Figure 4. 6 

the direction of the hysteresis loops is indicated by arrows. The Lissajous patterns 

of CL(Y) can be related to the mechanical energy transfer between the cylinder and 

the fluid for transverse oscillations of cylinder (see, for example, Blackburn and Hen

derson (1999)). Thus, for transversely oscillating cylinder, the amount of transfered 

mechanical energy can be then defined as the area enclosed by CL(Y) in Figure 4.6(a) 

when h = 1.25 and Figure 4.6(c) when h = oo. The Lissajous patterns of CL(Y) en

close a larger area within the positive hysteresis loops when h = oo when compared 

to h = 1.25 for both fIfo = 0.95 and 1.0. This indicates that the presence of a free 
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surface at h = 1.25 induces the mechanical energy transfer between the fluid and the 

cylinder when fIfo = 0.95 and 1.0. It is noted that in the absence of a free surface 

the direction of the mechanical energy transfer is from the fluid to the cylinder when 

fIfo = 0.95 and 1.0. 

At fIfo = 2.0, the presence of a free surface at h = 1.25 significantly alters CL and 

CD as shown in Figures 4.4 and 4.5. Figure 4.4(c) shows that the signatures of CL 

exhibit almost a periodic trace over three cycles of the cylinder oscillation, 3T, in the 

absence of a free surface. The presence of a free surface at h = 1.25 seems to shift 

the periodicity of CL from 3T to 5T (see Figures 4.4(a) and 4.4(c)). Regardless of 

the free surface presence, the signatures of CL are less persistent. This is consistent 

with the Lissajous patterns of CL(Y) as shown in the third row of Figure 4.6. The 

PSD analysis of CL predicts the existence of another frequency, f 0 , in addition to 

the dominant frequency, f. The lift coefficient presented in Figure 4.4 reflects the 

combined effects of these frequencies on the time-dependent CL signature. The end 

consequence of this is a loss of the persistent pattern of c£. 

The time-dependent signatures of drag coefficient, CD, clearly show the almost peri

odic behaviour over 3T 12 at fIfo = 2.0 when h = oo as displayed in Figure 4.5( c). 

The presence of a free surface at h = 1.25 seems to shift the periodicity of CD from 

3TI2 to 2T (see Figures 4.5(a) and 4.5(c)). The PSD analysis of CD exhibits two 

frequencies, fo and 3f0 , in addition to the dominant frequency, 2f, in the absence of a 

free surface (see Figure 4.5(d)). Interestingly, the additional frequency, f, is observed 

only in the presence of a free surface at h = 1.25 (see Figure 4.5(b)). 

At fIfo = 2.0, the presence of a free surface at h = 1.25 seems to shift the positive 
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Cn(Y) 

(a) (b) (c) (d) 
Figure 4.6: Lissajous patterns of CL and Cn for R = 200, A= 0.5 and 
f / fo = 0.95, 1.0, 2.0, 3.0, 4.0 (from top to bottom): (a, b) h = 1.25 and (c, d) h = oo. 
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hysteresis loops of CD(Y) into the right half-plane. The trajectories of CD(Y) are 

less congruent from one cylinder cycle to another, indicating an increase in phase 

variations between the cylinder motion and its loading. The corresponding Lissajous 

patterns of CL(Y) in Figure 4.6 indicate a generally similar form regardless of the 

free surface presence. However, the area enclosed by CL(Y) in Figure 4.6(a) is slightly 

smaller than that for h = oo (see Figure 4.6(c)). This observation emphasizes that the 

inhibiting influence of the free surface located at h = 1.25 is to reduce the mechanical 

energy transfer from the cylinder to the fluid. Figure 4.6 shows that the Lissajous 

patterns of CD(Y) and CL(Y) have well-defined trajectories but with a loss of phase

locking. The end consequence is that, at fIfo = 2.0, the cylinder loading is quasi

phase-locked to the cylinder motion regardless of the free surface presence. 

At fIfo = 3.0, CL exhibits a quasi-periodic behaviour, regardless of the free surface 

presence, as shown in Figure 4.4. CL has a repeatable but not persistent pattern 

every three cycles of cylinder oscillation, 3T, when h = 1.25 (see Figure 4.4(a)). On 

the other hand, this repeatability is observed every 4T in the absence of a free surface 

(see Figure 4.4(c)). Thus, the free surface presence at h = 1.25 seems to speed up the 

vortex shedding process, as will be confirmed in the next section. The PSD analysis 

of CL predicts two well-defined frequencies, f and fo, for both h = 1.25 and h = oo. 

The drag coefficient, CD, exhibits a quasi-periodic behaviour per 3T 12 when h = oo 

and per 3T when h = 1.25 at fIfo = 3.0. Regardless of the free surface presence, 

the traces of CD are not persistent as shown in Figure 4.5. Table 4.3 shows that 

the presence of a free surface at h = 1.25 dramatically affects the value of CDrnin at 

fIfo = 3.0 by shifting its value from -0.0493 to 0.0330. The PSD analysis of CD 
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shows two frequencies, 2f0 and 4f0 , in addition to the dominant frequency, 2f, when 

h = 1.25 and h = oo. 

The Lissajous patterns of Cn(Y) and CL(Y) show similar form regardless of the free 

surface presence as shown in the fourth row of Figure 4.6 when f / fo = 3.0. These 

patterns indicate a less congruent shape from one oscillation cycle to another. Con

sequently, in both cases there are increased phase variations between the loading and 

the cylinder motion, which emphasizes quasi-phase-locking. In Figures 4.6(a) and 

4.6(b), at h = 1.25, the CL(Y) and Cn(Y) hysteresis loops seem to show less repeat

able patterns than that for h = oo (see Figures 4.6(c) and 4.6(d)). Thus, the free 

surface presence at h = 1.25 seems to destabilize the fluctuations of the CL and Cn 

relative to the cylinder displacement, y(t). As for the mechanical energy transfer, the 

presence of a free surface causes mechanical energy transfer loss from the cylinder to 

the fluid. 

For f / fo = 4.0, the trace of CL tends to have a fully periodic behaviour per 5T 

in the absence of a free surface. Free surface presence at h = 1.25 seems to shift 

periodicity of CL per 5T to quasi-periodicity per 4T (see Figures 4.4(a) and 4.4(c)). 

The PSD analysis of CL exhibits the existence of another frequency, f 0 , in addition 

to the dominant frequency, f. The lift coefficient presented in Figure 4.4(a) reflects 

the combined effects of these frequencies on the time-dependent CL signature when 

h = 1.25. This results in a CL pattern which is less persistent at h = 1.25. 

The time-dependent signatures of the drag coefficient, Cn, exhibit quasi-periodic 

behaviour over 5T/2 when f/fo = 4.0 and h = oo as shown in Figure 4.5(c). The 

presence of a free surface at h = 1.25 seems to shift the quasi-periodicity of Cn from 
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5T 12 to 3T. Regardless of the free surface presence, the signatures of CD are not 

persistent. The PSD analysis of CD shows two frequencies, f and 3f0 , in addition 

to the dominant frequency, 2f, when h = 1.25 and h = oo (see Figures 4.5(b) and 

4.5( d)). Table 4.3 shows that the presence of a free surface at h = 1.25 dramatically 

affects the value of CDmin at fIfo= 4.0 by shifting its value from 0.3182 to -1.1249. 

The presence of a free surface at h = 1.25 seems to shift the negative hysteresis loops 

of CD(Y) into the left half-plane. The Lissajous patterns of CD(Y) at h = oo indicate 

a complex form compared with those at h = 1.25 (see Figures 4.6(b) and 4.6(d)). 

Regardless of the free surface presence, the Lissajous patterns of CD(Y) show non

congruent form, indicating a loss of phase-locking between the cylinder motion and 

its loading. Thus, at fIfo= 4.0, CD(Y) is quasi-phase-locked to the cylinder motion 

when h = oo and h = 1.25. Figures 4.6(a) and 4.6(c) show that the Lissajous patterns 

of CL(Y) are more well defined and congruent at h = oo than those at h = 1.25. The 

end consequence of all these is that, at fIfo = 4.0, there is a transition from the 

phase-locking of CL at h = oo to the quasi-phase-locking of CL at h = 1.25. The area 

enclosed by CL(Y) in Figure 4.6(a) is slightly smaller than that at h = oo (see Figure 

4.6( c)). This observation emphasizes that the presence of the free surface located at 

h = 1.25 reduces the mechanical energy transfer from the cylinder to the fluid. 

4.2.2 Vortex formation modes in the near wake region 

Figure 4.7 shows the equivorticity patterns in the near wake region for the frequency 

ratios fIfo = 0.95 and 1.0. At both of these frequencies the vortex shedding mode is 
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the locked-on asymmetric 2S mode, perT, in which two vortices are alternatively shed 

from the upper and lower sides of the cylinder over one period of cylinder oscillations 

for both h = 1.25 and h = oo. The free surface presence at h = 1.25 seems to increase 

the vortex formation length slightly ( ~ 11%). In addition, the shed vortex becomes 

weaker as it moves downstream due to its interaction with the free surface interface. 

The negative vorticity reaches its maximum amount at the instants t = OT and T, 

whereas the positive maximal vorticity amount is observed at t = T 12. When the fully 

developed negative vortex propagates from the cylinder ( t ~ T 12), a positive peak 

occurs on the CL trace. Similarly, the development and propagation of the positive 

vortex produces a negative peak on the CL trace at the instants t = OT and T. 

For frequency ratios fIfo ~ 2.0, the vortex shedding process becomes more compli

cated due to the strong interaction between the body of the cylinder and the shed 

vortices, the free surface interface and the shed vortices. The immediate coalescence of 

co-rotating vortices is observed in the near wake region for frequency ratios fIfo ~ 2.0 

regardless of the free surface presence. It is noted that Flemming and Williamson 

(2005) reported a similar phenomena in their experimental work for combined trans

verse and in-line motion of a pivoting cylinder at R ~ 700. The equivorticity plots 

over 5T are shown in Figure 4.8 for fIfo = 2.0 when h = 1.25 and h = oo. In the 

absence of a free surface, a pair of positive co-rotating vortices develops from the up

per side of the cylinder, over 3T 12, and then coalesce immediately after the shedding 

of the second vortex (3T 12 ::;; t ::;; 2T) to form a single large vortex at the instant 

t ~ 2T, as shown in Figure 4.8(b). After this time period, a pair of negative co

rotating vortices is formed from the lower side of the cylinder which causes a fully 

developed positive vortex to shed from the upper side of the cylinder at t ~ 3T. The 
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inverse process happens over the next 3T /2, which causes the shedding of a single 

large negative vortex from the lower part of the cylinder. In other words, the cylinder 

alternatively sheds a single vortex from each side over 3T, in which the develop

ment of each vortex is a result of coalescence of two weak vortices in the shear layer. 

This vortex shedding mode is designated as C(2S), per 3T, using the terminology of 

Williamson and Roshko (1988). The free surface presence at h = 1.25 seems to delay 

the vortex shedding process and the vortex shedding is characterized by the locked-on 

C(4S) mode, per 5T. In the first phase of the development of this mode, a single 

positive vortex is shed over 3T /2, and a pair of positive co-rotating vortices (which 

develop over 2T) coalesce immediately to form a single large positive vortex. After 

this time period, a single negative and a single positive vortex are shed, over 5T /2 

and 3T, respectively. In the final phase, a pair of negative co-rotating vortices (which 

develop over 9T /2) coalesce to form a single large negative vortex which is shed at 

the instant t = 5T as shown in Figure 4.8(a). This figure also shows that the presence 

of a free surface significantly deforms the shed vortex so that this vortex appears to 

be elongated and weakened in the transverse direction and propagates slowly into the 

downstream wake. 

Following the work of Flemming and Williamson (2005), the mechanism of vortex 

merging for the case of h = 1.25 over two periods is illustrated in Figure 4.9. This 

Figure shows that two positive co-rotating vortices, 1 and 2, develop on the upper 

side of the cylinder, and three negative co-rotating vortices, 3, 4 and 5, develop on 

the lower side of the cylinder (T ::::;; t ::::;; 3T /2). The two vortices, 1 and 2, coalesce 

to form a single large vortex, 1+2, in the upper vortex shedding layer (t = 2T). In 

addition, two of the three negative vortices, 3 and 4, coalesce to form the vortex 3+4 
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while the vortex 5 remains detached. Thus, a single large vortex involving 3+4 and 

5 is formed in the lower vortex shedding layer (t = 3TI2). The whole process repeats 

itself within the fourth cycle of oscillation, and the reverse process happens over the 

fifth cycle. Consequently, the vortex shedding mode is the asymmetric C( 48) mode 

per 5T. 

Futher increasing the frequency ratio to fIfo = 3.0, speeds up the vortex shedding 

process and yields C(2S) per 3T and per 4T for h = 1.25 and h = oo, respectively, 

as shown in Figure 4.10. The significant free surface distortion produces a notable 

secondary vortex in the area where the maximum inflation occurs at t = T 12, 3T 12, 

5T 12 and 7T 12. It is also seen that this inflation of the free surface rounds the 

propagating vortex. Over the first cycle of cylinder oscillation, two negative vortices 

are shed from the lower side of the cylinder and immediately coalesce to form one 

large vortex which causes the shedding of a positive vortex over the second cycle of 

cylinder oscillation. Similarly, over the next two cycles of cylinder oscillation, two 

positive vortices shed from the upper side of the cylinder and coalesce which causes 

the shedding of the negative vortex. It should be noted that the near wake structure 

shows a quasi-locked-on pattern per 3T and 4T for h = 1.25 and h = oo, respectively. 

This confirms that the effect of a free surface presence at h = 1.25 and fIfo = 3.0 is 

to destabilize the process of vortex shedding. 

Typical equivorticity patterns for fIfo = 4.0 are plotted over 5T in Figure 4.11. The 

combined effect of a large oscillation amplitude and frequency causes a large distortion 

of the free surface. Thus, significant changes in the kinematics of the near wake 

structure are observed due to the interaction between the free surface vorticity and 
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from the lower side of the cylinder coalesce to form a single vortex at a distance of 

approximately five cylinder diameters (t = 5T/2). The inverse process leads to the 

shedding of another single vortex over 5T /2 :::; t :::; 5T as a result of the coalescence of 

two co-rotating positive vortices shed from the upper side of the cylinder. However, in 

the presence of the free surface at h = 1.25, the coalescence of vortices appears in the 

region very close to the cylinder surface. Consequently, tracking the vortex shedding 

from the cylinder is difficult. As the shed vortex propagates into the downstream, it 

enlarges and interacts with the free surface. This results in free surface inflation and 

the development of secondary vorticity (t = T /2, 3T /2, 5T /2 and 7T /2). The effect 

of the presence of a free surface at h = 1.25 seems to speed up the vortex shedding 

process since two single vortices are shed over 4T unlike the case when h = oo. Thus, 

at h = 1.25, the weak vortices decay at a shorter distance as they move away from 

the cylinder than in the case where the free surface is absent. 



Chapter 5 

Summary, conclusions and 

recommendations for future work 

The Reynolds transport theorem is extended for control volumes containing a fluid 

interface for deriving the governing equations of fluid mechanics for the first time. 

This is done by utilizing, mainly, generalized differentiation. The use of generalized 

function theory made this derivation straightforward and systematic. The resulting 

integral form of the governing equations is used to design a numerical simulation tool 

within an object-oriented software framework for solution of a class of free surface 

problems with arbitrarily moving rigid bodies. 

The fluid flow governed by the full Navier-Stokes equations is only modeled within a 

two-dimensional computational domain. The motion of the air is neglected and the 

effect of the ambient pressure exerted on the fluid by the air is taken into consider-
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ation to state the free surface boundary conditions. The no-slip boundary condition 

is implemented on the rigid body. The method of solution is based on a finite vol

ume discretization of the unsteady Navier-Stokes equations in their pressure-velocity 

formulation on a fixed Cartesian grid. The combined volume of fluid and fractional 

area/volume obstacle representation method, and the cut cell method are employed 

to track the fluid-air and fluid-body interfaces. Well-posed open boundary conditions 

are applied at the outflow part of the computational domain. Discrete pressure and 

velocity fields corresponding to successive time instants are obtained as a result of 

solving a coupled sparse linear system in primitive variables. The numerical model 

is implemented in a computer program, written in the C++ programming language, 

using object-oriented, data abstraction and template metaprogramming paradigms. 

The use of a high level programming language like C++ allows us to define concepts 

specific to the CFD application domain directly in the source code. The CFD code 

is represented as a set of objects which interact with each other to achieve the de

sired functionality. A program designed in this way turns out to be less complex and 

thus, is much easier to understand and maintain. The size of the manually written 

code is reduced up to four times without loss of run-time efficiency by automatically 

generating the code corresponding to both Cartesian axes from a single C++ template 

augmented with compile-time optimizations and function inlining. 

This numerical simulation tool is applied to the problem of unsteady, laminar, 

two-dimensional flow of a viscous incompressible fluid past a transversely oscillat

ing circular cylinder in the presence of a free surface. The numerical simulations 

are conducted at a Reynolds number of R = 200 for a fixed submergence depth, 

h = 1.25, and displacement amplitudes A = 0.25 and 0.5 in the frequency ratio range 
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0.95 ~ fIfo ~ 4.0. The results are analyzed by means of equivorticity patterns in the 

near wake region as well as the fluid forces acting on the cylinder. The main objective 

is to address the alterations of loading on cylinder and locked-on vortex formation 

modes due to the presence of a free surface. The PSD analysis of the lift coefficient, 

Lissajous representations of the lift coefficient and equivorticity patterns in the near 

wake are used to determine locked-on vortex shedding modes. The Lissajous repre-

sentations of the lift and drag coefficients are also used to demonstrate the mechanical 

energy transfer, degree of phase-locking or a loss of lock-on and associated phase shift. 

The code validations are presented in the special cases of uniform flow past (i) a sta

tionary cylinder (no forced oscillations); (ii) a cylinder undergoing forced rotational 

oscillations; (iii) a cylinder undergoing forced transverse oscillations in the absence 

of a free surface, (iv) uniform flow past a stationary cylinder in the presence of a 

free surface. Good comparisons with previous experimental and numerical results are 

obtained. 

5.1 Effect of the free surface at h = 1.25 and the 

frequency ratio, f / f 0 , on the vortex formation 

modes and fluid forces: R = 200, A = 0.25, 0.5 

Table 5.1 summarizes the combined effect of the free surface presence at h = 1.25 and 

fIfo on the vortex shedding modes, fluctuating fluid forces, CL and CD, and their 

periods. This table also displays the results obtained in the absence of a free surface 
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(h = oo) to determine the effect of the free surface at h = 1.25 on the shedding modes 

as well as CL and CD. For low frequency ratios, fIfo = 0.95 and 1.0, the classical 

h = 1.25 

fIfo Mode Period of CL Period of CD 
CL and y(t) CD and y(t) 

and modes phase locking phase locking 

0.95 2S lT lT locked locked 

1.0 2S lT lT locked locked 

2.0 C(4S) 5T 2T quasi-locked quasi-locked 

3.0 C(2S) 3T 3T quasi-locked quasi-locked 

4.0 C(4S) 4T 3T quasi-locked quasi-locked 

h = 00 

0.95 2S lT Tl2 locked locked 

1.0 2S lT Tl2 locked locked 

2.0 C(2S) 3T 3TI2 quasi-locked quasi-locked 

3.0 C(2S) 4T 3TI2 quasi-locked quasi-locked 

4.0 C(2S) 5T 5TI2 locked quasi-locked 

Table 5.1: The effects of the free surface at h = 1.25 and frequency ratio, 
0.95 ~fIfo~ 4.0, on the vortex shedding modes, CL and CD for R = 200 and 
A= 0.5. 

Karman vortex pattern (2S mode) occurs per one cycle of cylinder oscillation, T, 

regardless of the free surface presence, i.e., for both h = 1.25 and h = oo. The 

corresponding PSD of each C L confirms that the vortex shedding mode period is T 

at these low frequency ratios when h = 1.25 and h = oo. It is interesting to note that 

the effect of a free surface at h = 1.25 seems to be a period doubling in CD for the two 

frequency ratios fIfo = 0.95 and 1.0. As a result of increasing fIfo from 1.0 to 4.0 in 
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the presence of a free surface the near wake vorticity breaks up to produce different 

modes of vortex shedding: 2S perT, C(4S) per 5T, C(2S) per 3T and C(4S) per 

4T when h = 1.25. However, the common vortex shedding mode C(2S) is obtained 

for the frequency ratios fIfo ;;?: 2.0 in the absence of the free surface ( h = oo). 

Thus, in the absence of a free surface, the vortex shedding modes are 2S, per T, for 

fIfo = 0.95 and 1.0, and C(2S) per 3T, 4T and 5T, for fIfo ;;?: 2.0. This is consistent 

with the experimental findings of Williamson and Roshko at R = 200 (see Figure 4.1). 

Table 5.1 also shows that, at fIfo= 0.95 and 1.0, CL and CD are phase-locked to 

the cylinder displacement, y(t), regardless of the free surface presence. In contrast, 

at fIfo = 2.0 and 3.0, CL and CD are quasi-phase-locked to y(t) for both h = 1.25 

and h = oo. Interestingly, in the absence of a free surface at the high frequency ratio, 

fIfo = 4.0, there is a switchover from phase-locked CL to quasi-phase-locked CL 

when h = 1.25. At fIfo= 4.0, CD is quasi-locked for both h = 1.25 and h = oo. 

The effect of increasing the oscillation frequency ratio beyond fIfo = 1.0 seems to 

increase the value of the period of the vortex shedding modes from T to 5T when 

h = oo. Thus, in the presence of a free surface at h = 1.25, a changeover from one 

mode of vortex formation to another one is observed with the increase off I fo beyond 

1.0. In all cases considered CL exhibits a periodic behaviour which is consistent with 

the vortex shedding modes and their periods. This confirms our findings that vortex 

lock-on occurs in these cases. However, a changeover in the nature of the fluctuations 

of the drag coefficient is observed with an increase in the frequency ratio. 

In the fluid-cylinder interactions, the effect of the vortex shedding is to prompt a 

mechanical energy transfer between the cylinder and the fluid. The sign (direction 
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of hysteresis loops of CL) of the energy transfer determines whether transverse oscil-

lations of the cylinder will tend to increase or decrease in amplitude of the cylinder 

motion and, in many cases, knowledge of the mechanism of mechanical energy transfer 

is critical to design considerations. A signicant feature of the transverse oscillations 

of the cylinder is that the vortex formation and shedding are very sensitive to the 

frequency of the cylinder oscillation. This also affects the mechanism of mechanical 

energy transfer. The Lissajous patterns of CL in Figure 4.6 show that when A= 0.5 

at fIfo = 0.95 and 1.0 the presence of a free surface at h = 1.25 reduces the amount 

of mechanical energy transfered from the fluid to the cylinder. It is particularly inter-

esting to note that the presence of free surface also induces the transfer of mechanical 

energy between the cylinder and the fluid. For frequency ratios 2.0 ~ fIfo ~ 4.0 

the effect of increasing fIfo is to enlarge the amount of energy transfered from the 

cylinder to the fluid regardless of the free surface presence. However, a comparison of 

the areas enclosed by CL in Figure 4.6(a) with those given in Figure 4.6(c) indicates 

that the presence of the free surface at h = 1.25 reduces the amount of transferred 

mechanical energy. 

Table 5.2 shows the combined effect of the free surface presence at h = 1.25 and 

an increase of the transverse amplitude, A, from 0.25 to 0.5, on the mechanism of 

mechanical energy transfer. In this table 'f-.+' indicates a mechanical energy transfer 

between the cylinder and the fluid, '+-' indicates a mechanical energy transfer from 

the fluid to the cylinder and '--+' indicates a mechanical energy transfer from the 

cylinder to the fluid. It is clearly seen that regardless of the value of the transverse 

amplitude, the mechanical energy is always transfered from the fluid to the cylinder 

for fIfo = 0.95 and 1.0 and from the cylinder to the fluid for f / fo :;:::;: 2 when h = oo. 
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However, the presence of a free surface located at h = 1.25 dramatically alters the 

mechanism of mechanical energy transfer when A = 0.5, fIfo = 0.95 and 1.0 by 

inducing an energy transfer between the cylinder and the fluid. 

fIfo A= 0.25 A= 0.5 

h = 1.25 h= 00 h = 1.25 h= 00 

0.95 cylinder <------ fluid cylinder <------ fluid cylinder ~ fluid cylinder <------ fluid 

1.0 cylinder <------ fluid cylinder <------ fluid cylinder ~ fluid cylinder <------ fluid 

2.0 cylinder --. fluid cylinder --> fluid cylinder --. fluid cylinder --. fluid 

3.0 cylinder --> fluid cylinder --. fluid cylinder --> fluid cylinder --> fluid 

4.0 cylinder --. fluid cylinder --> fluid cylinder --> fluid cylinder --> fluid 

Table 5.2: The effect of the transverse amplitude, A = 0.25, 0.5, on the mechanical 
energy transfer between the cylinder and the fluid for R = 200, h = 1.25, oo and 
0.95 :( fIfo :( 4.0. 

Figure 5.1 summarizes the effects of increasing the frequency ratio, f I f 0 , on the equiv-

orticity patterns in the case when h = 1.25. At low transverse amplitude, A= 0.25, 

there is a substantial decrease in the vortex formation length as the frequency ratio 

fIfo increases from 0.95 to 4.0. The typical vortex shedding mode is the 28 mode 

for all frequency ratios. At A = 0.5, the 28 mode persists for fIfo = 0.95 and 1.0. 

The effect of increasing fIfo from 2.0 to 4.0 is to disturb the free surface significantly 

which, in turn, produces secondary vorticity yielding complex vortex formation pat-

terns as shown in Figure 5.1 (b). For f If 0 :? 2. 0 the typical vortex shedding modes 

are C(48) per 5T, C(28) per 3T and C(48) per 4T when h = 1.25. For frequency 

ratios beyond 1.0, the vortex formation process seems to speed up at both A= 0.25 
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A= 0.25 A= 0.5 

fifo= 0.95 

fIfo= 1.0 

fifo= 2.0 

fifo= 3.0 

fifo= 4.0 

Figure 5.1 : ThP cff('('t of the frequency •·atio, 0.95 ~ fIfo ~ 4.0, on the vortex 
formation for R = 200, h = 1.25: A = 0.25 ( left) and A= 0.5 (right). All equivorticity 
patterns are taken at instant y(t) = A. 

and 0.5. 

f inally, for sde<:ted values of f I fo = 2.0 and 3.0, the effect of the transverse oS<:illa

tion amplitude, A, on the equivort icity patterns in the presence of a free surface at 

h = L.25 is considered. Figures 5.2 and 5.3 show the equivort icity patterns over 5T for 

f / fo = 2.0 and o'·er 3T for fIfo = 3.0. respectively. At A = 0.25 and fIfo = 2.0 the 

equivorticity patterns display the asymmetric 2S mode. per 2T, of vort<>x shedding. 

However. at higher arnplitud<- A = 0.51 the immediate coalescence of two co-rotating 

vortices in the very near wake region is observed. The vortex shedding mode is C(4S) . 
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per 4T, unlike the low amplitude case A = 0.25. At low amplitude, A = 0.25, the 

2S mode, per 3T, persists in the near wake for fIfo = 3.0. At A = 0.5, the strong 

upward oscillation significantly speeds up the vortex formation process, this leads to 

the formation of stronger vortices than in the low amplitude case. A pair of two 

negative co-rotating vortices developed at t = OT on the lower side of the cylinder 

coalesce at t ~ T 12 (see Figure 5.3). The resulting vortex is then shed at t ~ 2T. The 

inverse process occurs at the time interval T :::;:; t :::;:; 3T 12, when a pair of two positive 

vortices coalesce, and the resulting positive vortex is then shed at t ~ 2T. Thus, 

for fIfo = 3.0 and h = 1.25 a changeover from the 2S mode, per 3T, to the C(2S) 

mode, per 3T, as A increases from 0.25 to 0.5 is observed. These vortex shedding 

modes are locked-on to the cylinder motion over three periods of cylinder oscillation. 

5.2 Future work 

It is believed that this thesis research has contributed to the non-boundary fitted 

Cartesian grid numerical simulation techniques and also shed some light on certain 

aspects of the free surface flows involving a transversely oscillating cylinder. It is be

lieved that the computational model of this thesis, based on the extension of Reynolds 

transport theorem for control volumes containing a fluid interface, paves the way for 

attacking a wide range of free surface flows involving moving rigid bodies, numerically. 

This thesis has also raised a number of issues that require further investigation and 

improvement. It is noted that with the assumptions made in the approximations of 
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A= 0.25 A =0.5 

OT 

1' 

21' 

3T 

4T 

57' 

Figure 5.2: The effect of the transverse &mplitud<', A, on the cquivorticity patterns 
for R. = 200, h = 1.25 and f / fo = 2.0 (T"' 2.62) . A = 0.25: 102.6 ~ t ~ 115.6 
(left) and A = 0.5: 100.6 ~ t ~ 113.8 (right). All equivorticity patt~rn• a.re taken at 
instant y(t) = A. 

th~ r .. ee surfa<'(' velocity boundary conditions discussed in Sections 2.5.2 nnd 2.5.3, it 

L~ not always possible to enforce t.he exact conS('I'WLtion of mass at the free surface. 

Under certain conditions, this mny C\'Cn cause a breakdown of computations dt1e to 

unphysical v<'locity behaviour at t he free surfat-e. This behaviour is a lso reported 



5.2. FUttJre 'wotk 136 

A= 0.25 A= 0.5 

rrr 

TJ2 

T QM'· 
3TJ2 ~ ~· 

2T ~_o ~6· 

5T/2 ~o• 

3T 

Figure 5.3: The effect of the transverse ampUtude, A, on the equivorticity pa~terus 

for R = 200. II = 1.25 and J I fo = 3.0 (T"" 1.75). A = 0.25: 112.0 .;; t .;; 117.2 
(left) and A= 0.5: 77.66 .;; t .;; 82.91 (right). All NJUivorticity patterns nrc taken at 
instant y(t) = A. 

in the works of Pekken (2004) nud Klcdsmnn (2005), who attempted to overcome 

this problem by using conl:itaut extrapolation of fluid velocities at the free surfa.('c-. 
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These studies reported that constant extrapolation is a reliable approach that does 

not lead to unphysical velocity behaviour; however, it produces unphysical pressure 

spikes. This is due to the fact that the constant extrapolation does not lead to exact 

conservation of mass at the free surface. A number of modifications of the velocity 

boundary conditions at the free surface are tested in the course of developing the 

present numerical tool. As a result of these tests, the boundary conditions suggested 

by Gerrits (2001) are chosen, since the exact conservation of mass is enforced when

ever possible, which does not lead to numerical pressure spikes. Reichl et al. (2005) 

suggested that the direct application of free surface boundary conditions can be sub

stituted with an implicit one by considering two-phase flow model which takes the 

motion of the air into consideration. A single set of governing equations is applied to 

the fluid and the air, which results in the shared velocity field for two fluid layers. In 

this approach, mass will always be conserved exactly at the free surface. 

The classification of the pressure cells and the velocity knots described in Section 2.3 

protects the discretization of the N avier-Stokes equations in computational cells where 

the solid body fraction is more than one half. This improves the robustness of the 

numerical scheme due to the fact that all cells containing small amounts of fluid are 

not considered. However, this approach leads to the loss of geometrical information 

near the fluid-body interface. The major undesired consequence is the numerical 

error introduced in the computations of the lift and drag forces acting on the body. 

An improved classification of the pressure cells and the velocity knots is presented 

in Fekken's work (see Fekken (2004)) along with additional measures to prevent the 

sharpening of the stability conditions that may arise due to a very small fractional 

areas and volumes in the case of a body moving through the computational grid. 
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Even more accurate results can be obtained (see, for example, Udaykumar et al. 

(2001), Kirkpatrick et al. (2002)) at the expense of a substantial complication in the 

discretization due to the introduction ofthe cell-merging (or cell-linking) techniques. 
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Appendix A 

Navier-Stokes equations in a 

non-inertial frame of reference 

Consider the following form of the N a vier-Stokes equations 

ou. 
;::l J = 0, 
UXj 

(A.la) 

(A.lb) 

which are valid in any inertial frame of reference (j is a dummy summation index). 

Here p denotes scaled pressure p' = pj p. 

Let X be an inertial frame of reference with associated coordinates (li., t). Consider 

another frame of reference X with corresponding coordinates ,t, i which is allowed to 

move without rotation with respect to X. In order to derive the Navier-Stokes equa-
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tions in terms of the variables (i;_, i), all variables and partial derivatives corresponding 

to X are to be expressed in terms of variables and partial derivatives corresponding 

to X and then substituted into equations (A.l). 

We start by stating relations between the coordinates. Relativity effects are not con-

sidered, so the time variables are assumed to be identical in both frames of reference 

i(;z;., t) = t. (A.2) 

Let V(t) be the velocity at the origin of X relative to the inertial frame. Since X 

moves without rotation with respect to X, the space coordinates and velocities are 

related as follows 
t 

Xi(X., t) =Xi- J Yi(T) dT' 
0 

(A.3) 

(A.4) 

Let function F(,t, i) be a fluid property. We wish to calculate partial derivatives 

of this function in terms of ;z;_ and t. We note that ,t and i depend on ;z;_ and t: 

F = F(i;_(;s;_, t), i(;s;_, t)). Then, the partial derivatives ofF with respect to time and 

space can be computed according to the theorem of differentiation of a composite 

function. Consider a point which has coordinates (x0 , t0 ) in X and coordinates (i;_0 , to) 

in X. Then, according to the theorem, 
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We can then use equations (A.2) and (A.3) to compute the following partial deriva-

tives 

(A.7) 

Substitution of (A.7) into (A.5) and (A.6) results in 

(A.8) 

(A.9) 

Equations (A.4) and (A.8) with F = u are used to derive 

(A.lO) 

which is then substituted into (A.la) to obtain the continuity equation in the non-

inertial frame of reference 

(A.ll) 

Now, consider equation (A.lb). By using (A.4) and (A.9), the first (unsteady) term 

is reduced to 

(A.12) 
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Due to (A.4) and (A.8), the second (convection) term is reduced to 

(A.13) 

Similarly, (A.4) and (A.8) are used to transform the right hand side of equation 

(A.lb). Terms involving Vj in equations (A.l2) and (A.l3) cancel each other, and the 

momentum equation in the non-inertial frame of reference takes the following form 

(A.l4) 

Equation (A.l4) has one extra term (
8ai) when compared with (A.lb). Since this 

term is the acceleration of the non-inertial frame of reference with respect to the 

inertial one, it is usually included in the volumetric force term 

(A.15) 

Thus, we have proved that the Navier-Stokes equations do not change their form in a 

non-inertial frame of reference except for the volumetric force term, which is modified 

to account for the acceleration of the non-inertial frame of reference. 

It is noted that this result is valid for arbitrary motion of a non-inertial frame of 

reference. This is illustrated using a physical approach. Acceleration of a fluid particle 

in an inertial frame is a sum of the acceleration of that particle in a non-inertial frame 

and the acceleration of the non-inertial frame relative to the inertial one 

!J. = g + !J.rel · (A.16) 
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Fluid particle acceleration is the total time derivative of the fluid velocity 

A df!:_ 
a=-. 
- dt 

(A.17) 

Newton's second law is valid in an inertial frame of reference 

a= L;f - _, (A.l8) 

where the right hand side is a sum of the surface and volumetric forces acting on the 

material volume divided by its mass. Substitution of (A.l6) into (A.l8) results in 

d:f! - "f A --L.J -a. 
dt - -

(A.19) 

Equation (A.19) is another form of equation (A.15). 










