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Abstract

This thesis describes a formal approach to service repository design, where

web services are centrally published by service providers and queried by

service consumers. Service behaviors are formally specified and behavioral

contracts are utilized to find functional substitutions. If no direct match is

found, composed specifications can be used to match the query. A detailed

description of an example repository and the design process are presented

in the thesis.
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Chapter 1

Introduction

Recent proliferation of service application programming interfaces (APIs)

like those offered by Google, Facebook, or Twitter has had a pronounced

impact on web application development. By using these APIs, developers

can utilize existing infrastructures of other organizations (often worth mil

lions of dollars) to quickly build and maintain applications. No longer do

application developers have to incur heavy capital investment to build the

necessary infrastructure.

However, there are hidden risks of relying on these proprietary API's. If

application developers do not architect their applications in such a way that

it is relatively easy and fast to switch to a completely different set of APIs,

they are going to face vender lock-in with all the resulting shortcomings.

Additionally, no matter how reliable a third party's service might be, there

will always be times when a particular service is not available (due to main

tenance, attacks, connectivity issues, etc). At these times service consumers



need the ability to switch quickly and automatically to an alternative service

provider.

Application developers have various ways to deal with these reliabil

ity issues. For example, one way to build more robust applications is for

application developers to create adapter layers intermediating those propri

etary APIs so that their applications can ignore the vendor differences, thus

making on-the-fly switch to alternatives possible.

But what if service providers actually have somehow standardized APIs?

Then there is no need to write adapter layers anymore, or at least the number

of adapter layers required will be significantly reduced. It would be even

better if all those APIs were not scattered all over the web waiting for you to

discover them in a lengthy searching process. Imagine that all those APIs are

nicely organized in a centralized place and well documented with necessary

usage information.

In this thesis we propose such a centralized place (called a service reposi

tory), which holds necessary information for service providers and service

consumers. When designing the repository we strive to find a common

ground between the requirements from service providers and service con

sumers. Providers will implement their services according to standard speci

fications and consumers can search for various implementations of a given

service specification. In essence, we are creating a market place where the

balance of supply and demand will eventually lead to open and stable API's

with sufficient mindshare, so that all parties involved can focus on creating

and improving their own products instead of fighting over the interfaces



and vendor lock-in. We believe this is a necessary step towards the ultimate

reusability of web applications.

To make such service repository more useful, we strive to provide the

ability to automatically query the repository and find all services suitable for

use according to some user-specified criteria. Specifically, we want to match

syntactic (e.g. input and output types) and semantic (behavioral contracts)

interfaces of services in the repository. By providing such ability, we can

make dynamic switching of services possible, without requiring service

consumers to change their business logic.

The syntactic interfaces are easier to match. There are existing tech

nologies such as Web Services Description Language to describe input and

output parameters of services. The semantic interfaces, however, are much

more challenging. In this thesis, we will adopt an approach which focuses

on treating services as relations and matching the corresponding pre- and

post-conditions.

1.1 Service Repository

From our perspective, a service repository is a central place for both service

providers and service consumers to publish and search service specifica

tions (descriptions of behaviors and interfaces). Concrete services, which

implement these specifications, are maintained by service providers on their

own servers. The repository assumes no responsibility to host those services.

Service specifications in the repository contain information about where to



locate the corresponding service, what the service actually does with respect

to its behaviors, how to communicate with the service to provide input and

receive output, how much it costs to invoke the service, and other necessary

pieces of information.

A service repository is initially set up by a group of domain experts called

repository maintainers. Service providers can only publish their services in

the repository if such services implement one of the specifications contained

in the repository. Additionally, a service provider might propose to the

repository maintainers to include a new specification for which an imple

mentation already exists. It is absolutely up to the repository maintainers

to decide if such request will be entertained. If approved, the proposed

service specification will be included in the repository. The repository is

populated as more and more specifications are added into it and links to

their implementations provided.

When a service consumer wants to find a service he needs for his ap

plication, he comes to the repository and browses the catalog of existing

service specifications. He can also specify the requirements as a query. The

repository then tries to match the query with the service specifications in

it. After identifying suitable matches, the repository returns to the service

consumer a list of matching service specifications. Each of the returned

service specifications carries an attached list of references to particular im

plementations of such specification by different vendors. The consumer can

decide then which service to use according to cost, availability, or some other

criteria.



Sometimes there will be no service specifications directly matching a

consumer's query. However, it is likely that two or more services, if properly

composed, will do what is expected. Therefore, the repository should be

smart enough to figure out those possible compositions. Due to efficiency

concerns, the repository might decide to give up the matching process if no

result is found up to a given threshold.

1.2 Organization

This thesis is organized in the following way: in Chapter 2 we describe

the motivation of building a service repository. In Chapter 3 we present

related work and compare it to our approach. Chapter 4 presents an example

scenario where a domain-specific service repository is needed and discusses

a framework to design such repository. In Chapter 5 we will complete the

design of the example repository in detail and discuss the various design

decisions, tradeoffs, and compromises being made. In Chapter 6 we briefly

introduce the logic foundation to formalize service repositories. Chapter 7

contains the formalization of all pieces of a service repository and a language

based on predicate logic to describe such a system. This is followed in Chap

ter 8 by a summary of the thesis as well as discussion of future directions to

extend our work.



Chapter 2

Motivation

2.1 Status Quo

It is a wild world out there today for service consumers. If an application

assembler wants to use any third-party services to provide needed func

tionality (which he might not have the necessary resources to implement

himself), he will have to perform excessive searches for potential providers.

If he is lucky, there might be a few providers who offer the services he needs

(although some necessary modifications are likely). Then he has to contact

the providers to inquire about the price, availability, service level, and other

things before he can actually use them. After reaching an agreement, he

has to read the detailed documentation of the provider's interfaces and find

the right combinations to call. It is almost certain that if he wants to switch

to a different provider later (due to poor performance, high price, or other

reasons), he will have to repeat the whole process all over again, since the



probability that two providers share similar interfaces is rather slim.

The situation is not any better for service providers, either. There is no

standard to follow, which means a service provider has to decide a lot of

things on her own. After investing money and resources developing her

services and spending a lot on advertising her products on various channels,

there might be a rather insignificant demand for her creation. Application

developers tend to be reluctant to utilize services because they fear that they

will get locked in the provider's system.

This is just a reflection of the current software as a service industry: pretty

much like any pre-standardization industry-things have to be custom built.

Wheels are constantly being re-invented over and over again.

2.2 The Way Out

Wouldn't it be nice if there exist some standards for both service providers

and consumers to follow, and everyone knows where to go for when they

need to provide or consume services? Building customized computers seems

a lost art nowadays, but it is a good example to illustrate the idea.

2.2.1 Centralized Stores

Before someone builds a computer, he must have some general ideas about

what different parts he needs, and he sets a budget to spend. He checks

out several big vendors, either online retailers like Newegg and Amazon,

or those with physical stores like BestBuy and Future Shop. He rarely goes



to individual manufacturers and orders there, because these big vendors

give him many more choices. In fact, major manufacturers accomplish

such a large portion of their sales in these big stores that they will assure

availability of new products in these big stores as soon as possible. Smaller

manufacturers also try their best to deliver their products to these stores.

Otherwise the market exposure to their products will be very limited. So in

the end most, if not all, suppliers and customers are doing transactions in

centralized places.

2.2.2 Standardized Products

When someone chooses a computer component from various alternatives, he

can be pretty sure that he can safely change from one manufacturer to another

as long as he sticks to the same specification. This is made possible because

for each component, there is a set of specifications that every manufacturer

has to satisfy in order for their products to play well with other components

in the whole system.

As a consumer, one only needs to know what specification to look for,

and does not need to worry if one component works well with another, even

without real testing. For example, if one needs to buy a hard drive for his

computer to be built, he only needs to remember that it must be 3.5" and

support SATA II interface. Similarly for things like monitors and graphic

cards, a customer only needs to make sure that both support DVI connector,

and that the graphic card has enough power to drive the monitor's maximum

resolution.



Standard specifications eliminate possible confusion and incompatibility,

which are major issues for multiple players in the field to cooperate with

each other to produce useful final products.

2.2.3 Assisted Discovery

Sometimes one does not know what specific products exist for her needs,

since all she has are really some specifications for potential products. Many

of the online stores offer sophisticated systems to search for products that

satisfy certain specifications.

For example on Newegg one can choose monitors with specified parame

ters such as 1920 x 1080 resolution, a DVI port, an HDMI port, and a screen

size of 24". The system will return a list of monitors that have all features

that are asked for. There are many more options to specify should one need

to nail down to fewer choices.

The ability to quickly discover intended products and filter out unfit ones

eliminates the need of manually reviewing each product, lowering the total

time to arrive at final selection.

2.3 Service Repository

What do we learn from the example of building a computer? We can identify

three key factors:

Centralized stores

Everyone is on the same platform. There is no confusion of where to



sell and buy products.

Standardized products

Due to the existence of standard specifications of products followed

by all suppliers, consumers can stick to these specifications and be

confident that the products work as expected.

Assisted discovery

There are too many products to choose from. Filtering out unnecessary

products speeds up matching of supply and demand, saving time to

manually check each product.

Can we somehow apply the same ideas to the domain of software services

so that shopping for services is as easy as shopping for products? To begin

with, there must exist some kind of centralized places that service providers

and consumers both go to when they need to publish or consume services.

We call such places service repositories.

A service repository is a centralized storage of service specifications. It

is not necessary for a service repository to host the actual services in the

repository per se, but it is vital that the repository contains the necessary

pieces of information to properly describe the functionalities of services, and

to locate and invoke those services.

2.3.1 Domain Specific Repositories

There is no silver bullet. We cannot possibly imagine a megashop that fits

the needs of everyone, although it might be the case that a supermarket is all
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one wants when he just needs to buy some groceries.

The needs of software service consumers vary from one specific domain

to another. It is highly unlikely that a single service repository can hold

all specifications of everything. Thus, a service repository is designed to

be domain-specific. There might be a repository for weather information,

another for traffic routing, etc. When a service provider wants to publish

some services, she will locate repositories in her target domain. This will

limit the choice of channels, but it is necessary to avoid overloading.

2.3.2 Curated Platform

In order to maintain a common set of specifications, a service repository

will not blindly accept anything service providers want to add. Otherwise a

service provider adds a particular specification for a service, another provider

might add a different specification which is essentially the same. Very quickly

the repository will be filled up with incompatible specifications that are

difficult to use.

We believe a better approach is to have domain experts to set some stan

dards on what to add into the repository and what to exclude. These experts

will be responsible to listen to the opinions of various service providers and

consumers to decide what service specifications are needed or expected in

the repository. A common set of vocabularies will be developed to describe

all services in the domain, so that both providers and consumers can properly

communicate with each other.

To a large extend, the success of a service repository depends on its

11



maintainers' ability to analyze the domain and to come up with a good

design that satisfies the needs of both service providers and consumers. The

maintainers will also supervise and guide the continuous development and

refinement of the repository to cope with future changes.

2.3.3 Smart Search

With a proper language to describe the functionalities being devised by

domain experts and utilized to specify services, we believe it is necessary

for the repository to be able to search for specifications in ways beyond

keywords and textual descriptions.

One important aspect of service specification is semantics, that is, what a

service does, what it expects from its input, and what it guarantees for its

output. By taking semantics into consideration, it is possible to determine

many more things. For example, it would be possible to decide if a service

can be used as a functionally identical substitution of another service. It

would also be possible to decide if two services can be chained together, so

that the output of a service is fed into another service to produce desired

results. Furthermore, it would be possible to decide if two services, if chained

together in the proper way, can be used as a replacement of another service.

With these capabilities, a service repository would allow consumers to

find services they need and be confident that the result matches functionally.

Consumers thus can dynamically query the repository and automatically

switch to alternative services without human intervention should the one

they originally use fail. We believe this is the future of services.
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Chapter 3

Related Work

The idea of formally describing services to allow automated service discov

ery and composition is not brand new. Agarwal et al. [1] present a method

of using n-calculus and description logic to describe and compose software

components. The authors establish a SQL-like language that allows users to

semantically describe services and query for them. This generates an elabo

rate, yet complicated approach for semantic queries. Syntactic information,

however, is ignored. While the described method does allow the semantic

annotation of syntactic types, true interface matching that would enable

direct integration into common technologies is not possible. We explicitly

strive for a solution that builds on top of syntactic matching principles.

Liskov and Wing [17] provide an effective base for such a solution. In

their work they present a method for describing software components. Us

ing an axiomatic approach, they employ predicates to formulate pre- and

post-conditions that specify the behavior of methods and explain how their

13



definition can be used for subtyping relations. Zaremski and Wing [23]

extend on that definition and discuss different alterations. We aim at reusing

their definition of subtyping for formulating query matches.

A different option to use for specifying services is provided by Broy et al.

[6]. In their work, services are understood as functions on input and output

streams in order to facilitate time dependent calculations. This, however,

requires the semantic specification using mathematical functions. Since we

aim at allowing consumers to query for services, this would require these

consumers to specify the desired functionality in the same way.

In a similar manner, Arbab [2] uses time relations in order to describe

communication patterns between services. Just like Broy, he models channels

between components and the temporal behaviors on these channels. While

this temporal argumentation does have its benefits, it is not required in our

scenario, since classical services such as web services operate sequentially.

Even more, we believe that it hinders functional description of independent

components.

Numerous other approaches such as the work done by Elgedawy [9], Li

and Horrocks [16], and Pilioura and Tsalgatidou [20] use domain ontologies

to describe the semantics of functions. In these ontologies, services are

tagged with keywords that describe their semantic meaning. Afterwards,

these keywords are connected with one another to allow interpretation of

relations between services.

Friesen and Borger [10] use an approach similar to service ontologies

where they define a set of goals that allows semantic description of services.

14



In order to allow service notation and discovery, these goals need to be

identified beforehand and stored at a central goal repository. While these

approaches provide a very powerful and flexible way for querying and

learning, they do not support automated composition of services.

One way to achieve both specification and composition of services is

presented by Bailly et al. [3]. Their main achievement is a formal system in

which the results of compositions (also referred to as composite builts) again

are services, thus they can be treated like any atomic services. However,

their solution does not discuss substitutability, which we require in order to

achieve successful matchmaking.

The issue of component (and thus service) substitutability is discussed in

length by Belguidoum and Dagnat [5]. While they argue extensively about

requirements, dependencies, and context sensitivity when substituting, they

do not draw a direct connection to semantic and syntactic matchmaking.

While their work has given us an informative insight into the topic in general,

it is not sufficient enough for our scenario.

An interesting approach is discussed by Lecue and Leger [15] where they

try to discover possible compositions of a finite set of services that fulfills

a given query. To achieve this, the semantic similarity between input and

output data types is calculated. Upon retrieving the query, the distance

between the different input and output components of the service in relation

to those of the query describes the level of a semantic match. An algorithm

that matches the input and output parameters and returns possible matches

for a given query is provided, just like a method of achieving service com-

15



position. Unfortunately, all semantics of a service is solely modeled based

on their parameters, rather than taking the behavior into consideration. As

a result, this solution does not allow for effective semantic matching, but

simply extends syntactic matching.

Helm et al [11] model the semantics of components using contracts that

include pre-conditions for methods and a series of state changes that are

achieved by invoking them. While this series of state changes does allow

service composition quite easily, it requires an extensive understanding of

the domain and the internals of a service not only when describing, but

also when querying for services. Since we desire a black-box-like nature of

services that abstracts away from the internal behavior of components, their

solution is not applicable for our scenario.

In their research, Chan and Lyu [7] concentrate purely on Web services,

proposing a way of composing web services using their native Web Service

Description Language (WSDL) documents and additional interaction infor

mation. While WSDL documents model the syntactic interface of services,

interaction diagrams are not sufficient to describe semantic behaviors of

services. Furthermore, we require a solution that works for generic services,

independent of actual implementations rather than relying on specific ones.

Another approach for achieving specification composition is provided

by Herner [12]. He presents a way to describe services with pre- and post

conditions, very similar to Liskov and Wing's approach mentioned above.

Based on that, he specifies different combinators that allow users to create

combined service specifications. These aim at describing the way the re-

16



sulting service combination behaves. Unfortunately, this approach requires

users to specify the correct assembly using these combinators for each service

composition by hand, rather than supporting an automated composition.

A more formal and complex solution is presented by Hoffmann et al. [13].

Using a heuristic approach they propose an algorithm to find appropriate

service compositions for a given user requirement, called a task. Within this

algorithm, a solution is found by describing the pre-condition combined with

a set of task-specific constants as an initial state, and then iteratively adding

subsequent services to modify that state. Any combination of services that

yields a target state as described through the effect-component of the task

becomes a valid candidate. The heuristic function, based on AI Planning

techniques, optimizes the searching and provides filtering and ordering

of results. While this approach does allow a relatively easy identification

of compositions that match a given query, it does not support a formal

description of such compositions. In contrast, we aim at making composition

results reusable as normal services.
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Chapter 4

A Sample Repository

In this chapter we will look into the steps to design a service repository. We

will introduce an example of flight search applications to illustrate the steps

to analyze the problem domain and figure out necessary pieces to complete

a service repository.

4.1 Understanding the World

Suppose we are going to build a repository for services related to flight

searches, much like similar services offered by airlines and travel agents on

their websites. Before we can do anything meaningful, we have to assume

some basic understanding of the world we are modeling.

In our example, the world consists of a few countries and each country

has a number of cities with one or more airports. For simplicity we assume

each airport has only one parent city. There are a few airlines operating

flights scheduled on a daily basis among those airports, though no single

18



airline covers all flights between any pair of airports. In addition, even

though an airport is always connected by some flights to another airport,

there is no guarantee that direct flights are available between any pair of

airports.

All information about our world is available in some databases. For

example, each airline has a flight database containing details of all flights op

erated by this particular airline. A geographic database contains information

such as the locations of all countries, cities, airports, and distances between

two cities and airports.

There are several stakeholders in this imaginary world. Airlines operate

flights and they want people to search for these flights. There are also dedi

cated companies that provide services to search for flights across multiple

airlines. Together they are what we call service providers, because in general

they have some data that is needed by others and they are interested in

becoming suppliers of our repository to allow access to the data for a fee. On

the other hand, we have service consumers such as travel agencies who need

to purchase and consume these services to build final applications for their

end users (travelers in this case) to search for flights and plan their trips.

Our job as service repository maintainers is to make the right design

decisions, so that the majority of service providers can publish their services

in the repository and that service consumers can find matches to most of

their reasonable requests.

Depending on how we want to shape the service repository, we have to

make decisions about what to include in the repository and what to leave

19



out. For example we can aim at providing a giant repository to cover every

possible service related to flight searching (and possibly some related services

such as hotel reservation). Alternatively we can also choose to build a rather

small but carefully selected repository that covers only services offered by

North American airlines as long as our service consumers are happy with

the decision. There is no right or wrong about what to build, but we need to

be clear about what we are trying to achieve.

4.2 Determining Data Types

Next we need a language to describe basic concepts in the world. These

come in the form of data types, entities with specialized structure that can

hold necessary information for concepts we want to express. Throughout

this thesis, a data type will be typeset in small caps to distinguish it from

normal text.

For example, it is obvious that we need types such as FLIGHT, AIRPORT,

TIME in the domain of flight search. We will probably include CITY as well,

otherwise it is not feasible to describe services that can search for flights

between two cities. This is a design decision, though: many travel agencies

are perfectly fine to accept services that can only search for flights between

two airports, and for most cities there is only one airport anyway. Travelers

usually want to be specific which airport they are going to use should there

be multiple choices available.

For each of the data types, we will decide what information it contains.
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A FLIGHT will probably contain the flight number (usually specified by

an airline code followed by some digits) as its identifier, the departure

and destination airports, departure and arrival time, flight duration, etc.

The decision of what information to be made available in the data types is

completely up to the domain experts.

It should be noted, however, that any decisions we make have conse

quences. If we make too little information available, it might be difficult

or impossible to describe certain things. For example, we might want to

omit the departure and arrival cities in FLIGHT since we can consult some

database to lookup which cities the departure and arrival airports belong.

By doing so we enforce the constraint that services which intend to assert

on the departure and arrival cities property must be specified in a way that

involves translating airports to cities, which might or might not be a good

thing. On the contrary if we make too much information available, things

might become too complicated to manage as everyone is forced to check and

verify the integrity of input and output to spot potential mistakes. A good

design will need to strike a reasonable balance between the two extremes.

Listed below are some of the data types we choose to include in our

repository, along with the attributes that belong to them:

1. CITY: name of the city, list of airports in the city

2. AIRPORT: name of the airport, lATA airport code, parent city

3. FLIGHT: flight number, origin, destination, departure time

4. AIRLINE: name of the airline
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4.3 Choosing Predicates

The next step of the repository design is to select proper predicates to express

the relationship among data types. Predicates describe boolean functions

over data types in our repository. We form pre- and post-conditions by

combining predicates with logic connectors to assert certain properties of

input and output values, which are crucial to describe the services that we

want to include in the repository. Each predicate is represented by its name

in our repository that we call a predicate symbol. We hope the name and

some text description will give an intuitive idea what properties a particular

predicate asserts, but in general the exact meaning of a predicate is backed

by a concrete reference implementation to avoid ambiguity.

In our example repository of flight search, we are likely to include a

predicate airportinCity(AIRPORT, CITY) that asserts that an airport belongs

to a particular city in our world. A reference implementation of the predicate

will look up some geographic database and check relevant records to see

if the relationship actually holds. When we want to describe services that

involve an airport and its parent city, we could use this predicate to specify

such constraint. Another predicate flightFrornAirport(FLIGHT, AIRPORT)

might assert that a flight departs from a particular airport. A reference

implementation of the predicate could first check which airline is operating

this flight, and look up the airline's database to see its departing airport. Keep

in mind, though, that reference implementations of predicates are merely

ways to clarify the exact meaning of predicates, and we are not concerned

about their technical detail when using predicates to describe and reason
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about services.

Ideally we want to keep a small set of predicates available in the repos

itory that is powerful enough to describe all services we could reasonably

expect to be included in the repository. The reasoning is twofold: first, any

one who masters the small set of predicates should be able to specify all

services he wants, and he is also more likely to understand a specification

written by others using the same set of predicates that he is familiar with; sec

ond, the repository can mechanically reason about predicates more efficiently

if the total number of predicates is kept small.

Therefore we believe the success and usefulness of a repository will

largely depend on our selection of predicates. If we select too few predicates,

certain services that are reasonable to expect will be impossible to specify

and thus be excluded from the repository. On the other hand if we select

too many predicates, it will be a mental burden for everyone to understand

the meaning of service specifications and thus reduce the usefulness of the

repository. A set of predicates carefully chosen by skillful domain experts is

vital to a repository.

Listed below are some predicates and their meanings that we will use

in our sample repository. Notice that we include two similar predicates,

flightFromAirport(FLIGHT, AIRPORT) and flightFromCity(FLIGHT, CITY),

because we expect that some providers in our flight search repository will

likely provide services that deal only with flights departing from airports,

while other providers and travel agencies will also need to describe services

that deal with flights departing from cities in general. We do see similar

23



situation in the real world. If we leave any of the two predicates out, it would

be difficult, if not impossible, to properly specify services that deal only with

airports or cities, depending on which predicate is omitted in the repository.

validCity(CITY) : true if the city is indeed a valid city existing in some

database; false otherwise.

validAirport(AIRPORT) : true if the airport is an operational airport existing

in some database; false otherwise.

cityWithAirport(CITY) : true if there are one or more airports in the city;

false otherwise.

airportInCity(A1RPORT, CITY) : true if the airport belongs to the city; false

otherwise.

flightFromAirport(FLIGHT, AIRPORT) : true if the flight departs from the

airport; false otherwise.

flightFromCity(FLIGHT, CITY) : true if the flight departs from an airport

belonging to the city; false otherwise.

4.4 Adding Specifications

With all the building blocks being designed, now it is time to add some ser

vice specifications into our repository. For each service, we are interested in

its syntactic as well as semantic interface. The syntactic interface is described
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by the input and output type, while the semantic interface is described by a

pair of pre-condition and post-condition.

Consider a specification getFlightFromCity for a service that takes an

input city and returns a flight departing from the input city. We could specify

the service using four parameters: its input type, output type, pre-condition,

and post-condition. The definition of the service is given in specification 4.1.

Specification 4.1 getFlightFromCity

CITY -+ FLIGHT

0/: cityWithAirport(in)

1/J: flightFromCity(out, in)

Note that the"0/" symbol means pre-condition, which is the condition

under which the service can be legally invoked. The "1/J" symbol means

post-condition, which is the guarantee that the service promises for its result.

Two special names input and output are used to denote the input parameter

and output parameter of the actual service.

Now consider two additional service specifications. Service specification

getAirportOfCity is defined in specification 4.2, which says that it takes a

city and returns a valid, functioning airport that belongs to the input city.

Service specification getFlightFromAirport is defined in specification 4.3,

which says it takes a valid, functioning airport and returns a flight departing

25



Specification 4.2 getAirportOfCity

CITY --+ AIRPORT

4J: cityWithAirport(in)

tp: validAirport(out) 1\ airportInCity(out, in)

from the input airport.

Specification 4.3 getFlightFromAirport

AIRPORT --+ FLIGHT

4J: validAirport(in)

tp: flightFromAirport(out, in)

In our sample repository for the domain of flight searches, we will also

need services that can take a pair of origin and destination airports, and

return a flight that departs from the origin and reaches the destination as

specified in 4.4.

Notice that the input type (AIRPORT, AIRPORT) is a tuple, which in

this case is a pair of origin and destination airports. In the pre- and post

conditions we access the individual elements of the tuple by using their

zero-based index.

The reader might wonder what happens if there is no direct flight from

the origin to the destination? Should we return a connecting flight as a result

in this case? This is largely a design decision for the repository designers to
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Specification 4.4 searchFlight

(AIRPORT, AIRPORT) -+ FLIGHT

41: validAirport(input(O» 1\ validAirport(input(l»

1jJ: flightFromAirport(output, input(O» 1\ flightToAirport(output,

input(l»

make. It is reasonable to expect the distinction between services returning

direct flights only and services that also return connection flights in a real

world use case, and it is the repository designers' job to ensure necessary

data types and predicates are in place to facilitate the specifications of such

services. For the purpose of demonstration, we choose not to care about

such details for now, and as a consequence it is not important of what kind

of flights we get. A more detailed design will be presented in subsequent

chapters.

The key thing to remember is that a repository does not take arbitrary

specifications and put them all in. The catalog of specifications is restricted

by the design decisions made by repository designers, and everyone using

the repository is subject to such constraints. This more or less corresponds to

the real world stores: BestBuy won't stock all electronic products available

in the world, but only a selection that the management of BestBuy thinks

is a suitable fit due to factors like customer demand, profitability, physical

constraint of warehouse spacing, etc. In the software repository world, we

will not take all specifications written by everyone, but only a subset that
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the repository maintainers think will best match the needs of both service

providers and service consumers. At the same time the selection must permit

efficient reasoning about these specifications to respond to user queries.

4.5 Choosing Axioms

We specify services by constructing pre- and post-conditions using predi

cates, and we reason about them by checking the logic relationships of these

predicates.

It is trivial to see that we can invoke a service that implements specifica

tion 4.2 and supply it with a city to get an airport that serves that city. Next

we could invoke a service that implements specification 4.3 with the pro

vided airport as an input. We will get a flight that departs from the airport in

the original city. Of course, the reader can infer as a logical consequence that

the flight must also depart from the city. This is actually a proper description

of a service that implements specification 4.1.

We would like the repository to be aware of this. It requires the repository

to know that if a flight departs from an airport and the airport belongs to a

city, it follows that the flight must also depart from the city. We call such a

statement an axiom in our repository. The said axiom looks like this:

flightFromAirport(Flight, Airport) /\ airportInCity(Airport, City)

=} flightFromCity(Flight, City)
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Such axioms are crucial in our repository. Without them, the repository

will not be able to infer that services that satisfy specifications 4.3 and 4.2

can be combined to provide similar functionality as services that satisfy

specification 4.1.

Just like the decision about data types and predicates, the decision of

what axioms to include in the repository will significantly influence the

ability and usefulness of a repository. In practice, the repository maintainers

will have to be extremely careful to choose proper set of axioms due to a

couple of reasons: it is easy to carelessly include conflicting axioms that will

lead to logical errors; too many axioms will greatly increase the time needed

to reach certain conclusions, thus making the repository slow to respond.

4.6 Using the Repository

Now that we have designed a simple repository, we can try to use it from a

service consumer's perspective.

Suppose we come to the repository and want to find out if there is any

service that takes a city and returns a flight leaving from there. Since the

repository is quite small, we can just browse each specification in the reposi

tory and check if it does what we want. We Simply compare the input and

output signature of each specification, and then read its pre-condition and

post-condition to make sure its behavior is desired.

Alternatively, we can automatically search the repository (e.g. if it con

tains too many specifications for manual browsing). In this case, we need
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to write a search query to express our intention. We formulate the query by

giving four parameters: input type, output type, pre-condition, and post

condition. The query to search for service specifications that can take an

input city and return a flight departing from the input city is given in query

4.1.

Query 4.1 Sample query getFlightFromCity

CITY -+ FLIGHT

ep: validCity(in) 1\ cityWithAirport(in)

1jJ: flightFromCity(out, in)

Careful readers might notice that a query is very similar to a specification.

In fact, for all practical purposes, we will treat queries as (somewhat re

stricted) special forms of specifications. The restriction is that queries cannot

have any quantifiers in pre- and post-conditions. We will explain why in

later chapters.

Now we try to match the query against service specifications in the

repository. At the first glance, it is pretty obvious that the service specification

4.1 matches the query directly, since they are basically the same. What is

not so obvious though, is the fact that specification 4.2, if composed with

specification 4.3, can satisfy the query too. If a flight is leaving from an

airport and the airport belongs to a city, it is trivial to conclude that the flight

is also leaving from the city. This substitution is illustrated in figure 4.1. The
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getFlightFromCity
<t>:cityWithAirport(input)
l\J:flightFromCity(output, input)

-----------------------

getAirportOfCity
<t>:cityWithAirport(input)
l\J:validAirport(output)/\

airportlnCity(output, input)

getFlightFromAirport
<t>:validAirport(input)
l\J: flightFromAirport(output, input)

Figure 4.1: Substitution of services

reasoning is possible with the help of axiom 4.1.
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Chapter 5

Design

In chapter 4 we demonstrated the framework to design a very simple service

repository for flight search. In this chapter we will explore the repository

in detail and design additional data types, predicates, service specifications,

and axioms to make the repository more complete.

5.1 Roles

There are four major groups of stakeholders in a service repository:

Repository maintainers are people who design and maintain the reposi

tory. Throughout this chapter we will mainly look at various design

decisions from the repository maintainers' perspective.

Service providers are people who implement and operate various concrete

services according to specifications listed in the service repository.
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Figure 5.1: Four roles of a service repository

33



They hope that their services will be bought and utilized by service

Service consumers are people who have specific requirements for certain

services and are willing to purchase them. They assemble from these

services applications aimed at the end user.

End users are people who will ultimately use the applications built by ser

vice consumers upon services found through a service repository. End

users will not directly interact with the service repository, and from

their perspective the service repository and service providers do not

even exist.

In the example domain of flight searches, the thesis author will play the

role of repository maintainer. He will walk the reader through the process of

designing and maintaining a service repository. Airlines and various other

companies will be service providers who implement and advertise services

that can search for available flights between airports. Travel agents are the

primary service consumers in our example. They purchase and consume

flight searching services to build applications that end users (travelers in this

case) use to find and select routes that best fit their schedule.

5.2 Requirement Analysis

In this section, we will analyze the needs of travelers to see what kind of

functionalities are required in the flight planning applications that will be
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built by travel agents.

The most fundamental need of travelers is that when they want to fly

from an origin to a destination at a given time, they need to know what flights

are available. Travelers will then pick one of the flights based on various

factors such as departure time, flight duration, arrival time, airlines, airfares,

meals and services offered onboard, etc. For demonstration purposes and to

keep things simple, we will be concerned only with a few of these factors

such as airlines, locations and time. We will leave out other factors such as

airfares, meals, etc.

A typical flight search usually results in a quite large set of possible

flights. Many travelers will require more advanced functionalities to search

for flights to narrow down the scope. For example, some travelers are more

sensitive to time, and they will specify an exact time range that they would

like to depart from or arrive at a particular airport. Other travelers might be

less sensitive to time but more sensitive to price. They tend to choose a larger

range of time in the hope that cheaper flights will be found and returned as

a result. In reality many travel agents offer an option usually labeled "I'm

flexible with time" to address this particular need.

In addition, many airlines operate frequent flyers programs to encourage

customer loyalty by rewarding travelers if they fly more often with one

airline. As a result many travelers tend to favor some airlines to accumulate

their miles. Some airlines form alliances to acknowledge participating mem

bers' frequent flyers programs, therefore it is also necessary for travelers to

search for flights with their preferred airline alliances.
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Even the simple concept of origin and destination differs significantly

for many travelers. Many big cities have multiple airports with different

connections to other parts of the world. Some travelers might prefer a

particular airport due to reasons like convenience of local transportation

from and to that airport. Others might not care about this difference because

they can drive to any airports in a city and they are willing to take any flights

that depart from a city. Same applies to the destination when some people

would prefer certain airports to land while others are indifferent.

Many travelers need to fly to some place, stay there for a while, and then

continue to fly to other places. These so-called "multi-destination flights"

exist because airlines usually offer discounts if travelers fly longer distances

with them. Plus, should travelers miss any intermediate flights, airlines are

more inclined to figure out a backup plan if they know the travelers are

going to fly with them many more times down the road. It is also more

convenient for travelers to specify their intended routes all at once instead

of breaking the whole trip into small segments and search for each of the

segment individually. As a result, travelers tend to prefer multi-destination

flights to enjoy more convenience, better deals and services.

Clearly there are large variances of functionalities required. As we strive

to build a rather complete service repository for the domain, we would

like to accommodate the majority of services that are necessary to build

applications that can support these functionalities. On the other hand, we

are not committed to cover every single aspect of all possibilities. We are

quite happy to leave out services that are rarely used or requested. In such
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cases service consumers will need to produce their own customized code to

implement functionalities that are not present in the repository. The control

of the repository remains in the maintainers' hand.

5.3 Domain Model

Based on the requirements analyzed in the previous section, we can identify

many of the services that will be needed by service consumers to build final

applications. Before we start to analyze what services to include, a common

set of vocabularies needs to be agreed upon to describe various concepts in

our problem domain.

In our example domain, we will primarily deal with the following entities:

Flights are of primary interest in the problem domain. A flight is a segment

flown between two airports operated by an airline. It has a flight

number, origin, destination and departure/arrival times. Flights can

be either non-stop or direct.

Itineraries are ordered collections of flights. Later on we will define (with

the help of predicates) valid itineraries, which have certain restrictions

with respect to the timing of the flights in the itinerary. Itineraries can

represent non-stop, direct, connecting, round-trip or multi-destination

flights.

Airlines are carriers of commercial flights. Some airlines collaborate with

other airlines to form airline alliances to provide better services for
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customers of affiliating airlines. For simplicity, we assume each airline

can be a member in at most one airline alliance.

Airline alliances are groups of airlines that have partnership with each

other. Many airline alliances have shared frequent flyer programs

among participating airlines for customers to consolidate their mile

credits. For this reason, many travelers prefer to fly with airlines of the

same airline alliance.

Airports are places where aircrafts take off and land. They are considered

physical points in our domain that are connected by flights. Airports

are also connected to nearby cities by local transportation. We assume

each airport has exactly one parent city.

Cities are places where travelers reside or want to have access to. For most

cities there is usually only one airport that is considered accessible due

to reasons such as local transportation constraints or affiliation relation

ships. However, some cities might have multiple airports nearby and

thus travelers are free to choose which airport to use.

Time is an instant in a continuous flow. Flights are assumed to take off and

land at specific points in time.

Time interval is a range of time between two instants. When travelers

search for potential flights, they usually specify vague terms like to

morrow, next morning, or on Tuesday. These terms need to be translated

into time intervals to make sense. For example, tomorrow is really an
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Figure 5.2: Model of the sample domain of flight search

interval between midnight today and the instant 24 hours after that.

Sometimes travelers will search for flights departing at, say, 10 AM

tomorrow. In these cases it appears that they are specifying a time

point instead of an interval. In reality, though, it is highly unlikely

these travelers will consider only flights departing exactly at 10 AM.

the next day. More often the expected behavior is to search for flights

departing during a time interval that is around 10 AM. the next day,

plus or minus a threshold (for example half an hour).
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5.4 Data Types

To formally capture the essence of the domain objects mentioned in the

previous section, we design the necessary data types to hold information

about these objects. We will not be concerned about exact representation

of the data types required since existing technologies such as WSDL [8]

already handle this aspect pretty well, but we do need to have names and

concrete references. Specifically, we will have the following data types in our

repository:

FLIGHT contains information such as flight number, carrier, departure time,

flight duration, etc.

ITINERARY contains an ordered list of flights that constitutes a single trip. It

is the result of flight searches.

AIRLINE contains information such as the name of the airline, the alliances

it participates in, etc.

ALLIANCE contains information such as the name of the alliance, member

airlines.

AIRPORT contains information such as the name, 3-letter lATA airport code,

parent city, etc.

CITY contains information such as the name of the city, its affiliating airports,

etc.

TIME contains information to pin down an instant of time.
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INTERVAL contains a starting point and an end point of time to fully specify

a time interval.

5.5 Signatures of Required Services

Now we turn the attention to the question: what services are likely to be

requested by service consumers in order to build applications?

5.5.1 Search for One-Way Itineraries

The most straightforward service in demand is one that simply searches for

one-way itineraries given an origin airport, a destination airport, and a time

interval of departure time, as in signature 5.1.

Signature 5.1 searchOnewayItineraries

(AIRPORT, AIRPORT, INTERVAL) -+ [ITINERARY]

Searches for one-way itineraries between two airports.

The first element of the input is the origin airport, the second element

the destination airport. The third element specifies the interval of time

during which the traveler intends to depart.

Output is a list of candidate itineraries.

Note that the input and output of services are considered single values.

When there are multiple parameters, they need to be packed into tuples.
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In signature 5.1 the input type is a tuple with three elements, with the first

AIRPORT representing the origin airport, the second AIRPORT representing

the destination airport, and the third INTERVAL representing the time interval

of intended departure time. Collections of the same type are represented by

a parameterized list in a pair of square brackets, as is shown by the output

type, which is a list of itineraries.

We also need services that search for only direct or non-stop flights as

many travelers do not want intermediate stopovers if possible or at least

minimal transfers. Thus we have two additional signatures to address the

need.

Signature 5.2 searchDirectItineraries

(AIRPORT, AIRPORT, INTERVAL) -+ [ITINERARY]

Searches for direct itineraries between two airports.

The first element of the input is the origin airport, the second element

the destination airport. The third element specifies the interval of

intended departure time.

Output is a list of candidate direct itineraries. Each of the returned

itineraries will consist of exactly one direct flight.
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Signature 5.3 searchNonstopItineraries

(AIRPORT, AIRPORT, INTERVAL) -+ [ITINERARY]

Searches for non-stop itineraries between two airports.

The first element of the input is the origin airport, the second element

the destination airport. The third element specifies the interval of

intended departure time.

Output is a list of candidate non-stop itineraries. Each of the returned

itineraries will consist of exactly one non-stop flight.

5.5.2 Search for Multi-Destination Itineraries

In theory, service consumers could use the service that searches for one-way

itineraries to build their own version of multi-destination itineraries search

functionality by continuously searching for flights given a list of origins and

destinations.

In reality, however, a single service that can directly search for multi

destination itineraries makes a lot of sense due to the fact that repetitively

calling remote services will incur much higher overhead and latency. It is

much faster to implement and run such functionality by a single service

provider with lower overhead. Therefore we decide to include signature 5.4.

5.5.3 Search for Round-Trip Itineraries

We could also provide signatures for services to search for round-trip itineraries

as in signature 5.5. However, we choose not to include it because it is a spe-

43



Signature 5.4 searchMultidestItineraries

[(AIRPORT, AIRPORT, INTERVAL)] -+ [ITINERARY]

Searches for multi-destination itinerary given a list of tuples of origin

airport, destination airport, and departure time interval.

Input is a list of tuples, where in each tuple the first element is the

origin airport, the second element the destination airport. The last

element is the time interval of the intended departure time. Each tuple

in the input list must follow the previous tuple in time and not overlap

with each other.

Return a list of multi-destination itineraries.

cial case of signature 5.4 with the input list containing two tuples, the first

from origin airport to destination airport, the second back from destination

to origin. Should the demand for such services grow higher later, we can

then add signature 5.5 to make it more convenient to use. We leave it out

now for simplicity.

5.5.4 Search for Itineraries by Particular Airlines

For each of the service previously listed, we need extended versions of them

with additional input parameter to specify a particular airline or airline

alliances so that service consumers can use to implement advanced function

ali ties for end users to nail down the results. There are several different ways

to do this. The most straightforward one would be to design an interface
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Signature 5.5 searchRoundtripItineraries

(AIRPORT, AIRPORT, INTERVAL, INTERVAL) -+ [ITINERARY]

Searches for round-trip itineraries between two airports.

The first element of input is the origin airport, the second the

destination airport. The third element is the time interval of intended

departure time of the outward flight from origin to destination, and

the last element is the time interval of intended departure time of the

return flight from destination to origin.

Return a list of round-trip itineraries.

taking an additional airline parameter and another taking an airline alliance

parameter. However this would require two additional interfaces for each

service we designed before. A better way would be to have an interface that

takes an additional list of airlines. This way it is possible to specify just one

airline, several airlines, or all airlines in an airline alliance when the service

consumers invoke some helper service to lookup the member airlines of

an airline alliance. Therefore we decide to go with the more powerful and

flexible design.

For example, signature 5.1 is extended to signature 5.6 with an additional

element in the input type which is the preferred list of airlines. We extend

signature 5.2, 5.3, and 5.4 respectively to get signature 5.7, 5.8, and 5.9.
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Signature 5.6 searchOnewayItinerariesByAirlines

(AIRPORT, AIRPORT, INTERVAL, [AIRLINE]) --+ [ITINERARY]

Signature 5.7 searchDirectItinerariesByAirlines

(AIRPORT, AIRPORT, INTERVAL, [AIRLINE]) --+ [ITINERARY]

Signature 5.8 searchNonstopItinerariesByAirlines

(AIRPORT, AIRPORT, INTERVAL, [AIRLINE]) --+ [ITINERARY]

Signature 5.9 searchMultidestItinerariesByAirlines

[(AIRPORT, AIRPORT, INTERVAL, [AIRLINE])] --+ [ITINERARY]

5.5.5 Auxiliary Services

In addition to the basic search functionalities, our repository will also need

some auxiliary utilities to help service consumers to implement their appli-

cations.

We expect most of the service providers in our domain deal primarily

with searching functionalities given two airports, because there is less am

biguity and most scheduling is done based on airports anyway. However,

many end users (travelers) will likely specify origins or destinations using

names of cities instead of airports. Therefore service consumers (application

developers) will need to translate the names of cities to airports using addi

tional geographic information. They are likely to demand services that can

do this translation for them.

46



One of the helper utilities will search for airports accessible from a given

city. The syntactic interface is defined in signature 5.10.

Signature 5.10 lookupAirports

CITY --+ [AIRPORT]

Take a city and return a list of affiliated airports.

The reverse functionality to look up the parent city of an airport is nec

essary, too. Its syntactic interface is defined in signature 5.11. Note that we

assume every airport has exactly one parent city in the repository.

Signature 5.11 lookupCity

AIRPORT --+ CITY

Take an airport and return its parent city.

We also need two additional services to lookup the affiliating relationship

between airlines and airline alliances as shown in signature 5.12 and 5.13.

Signature 5.12 lookupAirlineAlliance

AIRLINE --+ ALLIANCE

Take an airline and return the alliance it belongs to.
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Signature 5.13 lookupMemberAiriines

ALLIANCE ---* [AIRLINE]

Take an airline alliance and return a list of member airlines which join

the alliance.

5.6 Additional Predicates

In order to properly describe properties of data types, we need many addi

tional predicates. One of the design decisions is that we will expose to service

providers and consumers only a language based on propositional logic. The

specifications will be easier to understand, to reason about, and to verify by

a machine. Specifically, we will restrain ourselves from using universal and

existential quantifiers. We believe the omission of quantifiers will make it

easier for people not very familiar with logic to correctly use repositories,

as quantifiers tend to make it rather complicated to understand and write

specifications. (Although in the underlying formal system we must allow

quantifiers to deal with specification composition-see next chapter)

The consequence of the decision is that we will have multiple predicates

to describe similar conceptual ideas. We do not lose much of the expres

siveness by eliminating quantifiers since we can design extra predicates that

fulfill the objective of using quantifiers. For example, let's consider a service

specification that describes direct itinerary searches. A list of itineraries

should be returned. We want to assert that for each of the itineraries in the

output, the first flight must depart from the origin airport. We introduce
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a dedicated predicate called allItinerariesDepartFromAirport([ITINERARY],

AIRPORT). It takes a list of itineraries and an airport and asserts that for each

itinerary in the list, the first flight of that itinerary departs from the same ori

gin airport. Similarly we will have a predicate allItinerariesArriveAtAirport(

[ITINERARY], AIRPORT) that asserts all itineraries in a list arrive at the same

destination airport. If we were to use a universal quantifier, the expression

would take the form (Vi E is : itineraryArrivesAtAirport(i, a)), where is is a

set of itineraries.

The other necessary predicates will be explained in subsequent sections

when they appear for the first time.

5.7 Complete Specifications

We now add the necessary pre- and post-conditions to the signatures de

scribed before.

5.7.1 Search for One-Way Itineraries

Signature 5.2 assumes three input parameters: the origin airport, the desti

nation airport and the departure time interval. It returns a list of one-way

Itineraries. We include the proper pre- and post-conditions to describe its

semantic interface and we get specification 5.1 as a result.

The predicate validAirport(AIRPORT) asserts that an airport is considered

valid, i.e. operational in our imaginary world. The predicate allItineraries

DepartureTimeWithin( [ITINERARY], INTERVAL) asserts that in a list of
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Specification 5.1 searchOnewayItineraries

(AIRPORT, AIRPORT, INTERVAL) -+ [ITINERARY]

I/Y: validAirport(in(O)) 1\ validAirport(in(l))

1jJ: allitinerariesDepartFromAirport(out, in(O)) 1\

allitinerariesArriveAtAirport(out, in(l)) 1\

allitinerariesDepartureTimeWithin(out, in(2)) 1\

completeListOfOnewayItineraries(out, in)

itineraries all initial flights depart within a given time interval. The ex

act meanings of these predicates are left to reference implementations, which

are not the primary concerns of this thesis.

Two special names, in and out, are used to designate the input and output

value of services being specified. Notice that to access each element of the

input tuple, a zero-based indexed scheme is used, therefore in(O) means the

first element of the input tuple, while in(l) refers to the second element.

At the first glance it may not be apparent why we have completeListO

fOnewayItineraries(out, in) in the post-condition. It may seem that the

previous three predicates are sufficient to describe the output which is a list

of flights. After careful consideration, though, it can be found that a lazy

service that always returns an empty list will also satisfy the post-condition.

We want to exclude these lazy services by putting more restrictions on the

output. We would like to guarantee that services which properly implement

this specification should indeed return all (or at least most) itineraries leaving
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from the origin airport to the destination airport during the specified window

of departure time. For this reason we added the predicate completeListO

fOnewayItineraries( [ITINERARY], (AIRPORT, AIRPORT, INTERVAL)). Its

reference implementation would check if the output list does indeed include

every itinerary (but nothing else) that satisfies the input condition. There

is a catch however: the definition of a complete list of itineraries is rather

vague. A Toronto-Frankfurt itinerary might fly a traveler from Toronto to

Vancouver first, then to Beijing and finally to Frankfurt. Should such itinerary

belongs to the list of results if the traveler searches for flights from Toronto to

Frankfurt? Technically it should, but it does not make much sense for sane

people. So when explaining the meaning of the predicate to users (service

providers and consumers) we would impose some reasonable restrictions on

the reference implementation. These restrictions might be rather elaborate

(e.g. return true only if the list contains itineraries with no more than three

connections and where the longest itinerary takes maximum double the

miles than the shortest one and where the longest itinerary cannot take more

than 12 hours more than the shortest). The nice thing about it is that when

using the predicate in specifications and queries we just need to remem

ber completeListOfOnewayItineraries( [ITINERARY], (AIRPORT, AIRPORT,

INTERVAL) ). Even for outsiders, the predicate name carries a substantial

amount of information.

The similar signature 5.2 for searching direct itineraries between two

airports is completed with semantic interface as listed in specification 5.2.

Signature 5.3 receives similar treatment, resulting in specification 5.3.
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Specification 5.2 searchDirectItineraries

(AIRPORT, AIRPORT, INTERVAL) ~ [ITINERARY]

ep: validAirport(in(O» 1\ validAirpoort(in(l))

tp: allItinerariesDepartFromAirport(out, in(O)) 1\

allItinerariesArriveAtAirport(out, in(l» 1\

allItinerariesDepartureTimeWithin(out, in(2)) 1\

completeListOfDirectItineraries(out, in)

Specification 5.3 searchNonstopItineraries

(AIRPORT, AIRPORT, INTERVAL) ~ [ITINERARY]

ep: validAirport(in(O)) 1\ validAirport(in(l))

tp: allItinerariesDepartFromAirport(out, in(O» 1\

allItinerariesArriveAtAirport(out, in(l» 1\

allItinerariesDepartureTimeWithin(out, in(2)) 1\

completeListOfNonstopItineraries(out, in)

5.7.2 Search for Multi-Destination Itineraries

Services that search for multi-destination itineraries turn out to be rather

difficult to specify due to the variable length of input sequence. The chal

lenge is that we can not easily describe the properties of elements in the

variable-length input sequence, as our current approach is geared to static

descriptions. To compensate our inability to specify the dynamic details,
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we rely on elaborate predicates such as validMultidestSequence([( AIRPORT,

AIRPORT, INTERVAL )]). There are a few things this predicate asserts, namely,

1. The origin airport in each tuple of the sequence must be valid.

2. The destination airport in each tuple of the sequence must be valid.

3. The time interval in each tuple of the sequence must follow the previous

interval without any overlapping.

In the post-condition, we use the predicate completeListOfMultides

tItineraries( [ITINERARY], (AIRPORT, AIRPORT, INTERVAL)) to assert a list

of itineraries are all indeed multi-destination itineraries and it contains all

the sensible results that satisfy the input condition. Predicate allMutlides

tItinerariesSatisfy( [ITINERARY], [( AIRPORT, AIRPORT, INTERVAL)] ) asserts

that each of the multi-destination itinerary in the list designated by the first

parameter satisfies the constraints of sequence in the second parameter. The

constraints include

1. Each segment of a multi-destination itinerary must depart from origin

airport for destination airport within the given time interval listed in

the sequence.

2. The segments of each multi-destination itinerary must be in the same

order as listed in the sequence.

The specification of services that search for multi-destination itineraries

is defined in specification 5.4 using signature 5.4.
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Specification 5.4 searchMultidestItineraries

[(AIRPORT, AIRPORT, INTERVAL)] -t [ITINERARY]

4>: validMultidestSequence(in)

tjJ: completeListOfMultidestItineraries(out, in) 1\

allMultidestItinerariesSatisfy(out, in)

As we see in the previous examples, there are varying degrees of granular

ity when choosing predicates. On one hand, we can have very fine-grained

predicates that describe limited aspects of properties so that we can easily

compose many of them to describe more complex relationships; on the other

hand we can have coarse-grained predicates that by themselves describe

rather elaborate properties of complicated structures. The choice of what to

use depends on many factors and the repository maintainers have to make

good decisions.

5.7.3 Search for Round-Trip Itineraries

We mentioned earlier that we are not going to include specifications for

services that search for round-trip itineraries. Nonetheless, it is a good

exercise to try to formally define the specification in case we need it later due

to popular demand.

To search for round-trip itineraries we will need to supply two departure

time intervals, one for the outward flight and one for the return flight. There

is an additional constraint that the departure time of the return flight should
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be later than the arrival time of the outward flight, otherwise the traveler

will not be able to take the flights given our current understanding of time

in physics (no time traveling!). A new predicate isLaterThan(INTERVAL,

INTERVAL) is introduced to express the relationship that the first interval of

time follows the second without overlapping.

Round-trip itineraries are specified separately by its outward and return

flights. We want the outward flight to leave from the origin for the destina

tion during the first departure time interval, and the return flight to leave

from the destination back for the origin during the second departure time

interval. Predicate allOutwardFlightsDepartFrom([ITINERARYJ, AIRPORT)

asserts that the outward flights of a list of round-trip itineraries in the first

parameter has the same origin airport as specified by the second parameter.

Similarly, predicate allOutwardFlightsArriveAt([ITINERARYJ, AIRPORT) as

serts that the outward flight of a list of round-trip itineraries arrives at a given

airport. Predicate allOutwardFlightsDepartureTimeWithin([ITINERARYJ,

INTERVAL) asserts the departure time of the outward flight of the list of

round-trip itineraries should lie in the interval indicated by the second pa

rameter of the predicate. Three more similar predicates are introduced to

assert the properties of the return flights. The complete definition is illus

trated in specification 5.5 using signature 5.5.

5.7.4 Search for Itineraries by Airlines

Remember for each specification listed previously, we also have an extended

version that takes an additional list of airlines in the input to specify preferred
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Specification 5.5 searchRoundtripItineraries

(AIRPORT, AIRPORT, INTERVAL, INTERVAL) -+ [ITINERARY]

4>: validAirport(in(O)) /\ validAirport(in(l)) /\ isLaterThan(in(3), in(2))

tjJ: allOutwardFlightsDepartFrom(out, in(O)) /\

allOutwardFlightsArriveAt(out, in(l)) /\

allOutwardFlightsDepartureTimeWithin(out, in(2)) /\

allReturnFlightsDepartFrom(out, in(l)) /\

allReturnFlightsArriveAt(out, in(O)) /\

allReturnFlightsOepartureTimeWithin(out, in(3)) /\

completeListOfRoundtripItineraries(out, in)

airlines. We will write down their specifications here.

For example, the extended version of specification 5.1 is given in spec

ification 5.6. The additional predicate validAirlines([AIRLINE]) asserts the

list of airline instances must be valid, and in the post-condition predicate

allItinerariesOperatedByAirlines([ITINERARYJ, [AIRLINE]) guarantees that

each itinerary in the result list must be operated by one of the airlines given

in the input.

Similar treatments are applied to all specifications listed previously and

we get additional specification 5.7,5.8, and 5.9.
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Specification 5.6 searchOnewayItinerariesByAirlines

(AIRPORT, AIRPORT, INTERVAL, [AIRLINE]) ---* [ITINERARY]

<p: validAirport(in(O)) 1\ validAirport(in(l)) 1\ validAirlines(in(3))

tp: allItinerariesDepartFromAirport(out, in(O)) 1\

allItinerariesArriveAtAirport(out, in(l)) 1\

allItinerariesDepartureTimeWithin(out, ineZ)) 1\

allItinerariesOperatedByAirlines(out, in(3)) 1\

completeListOfOnewayItinerariesByAirlines(out, in)

Specification 5.7 searchDirectItinerariesByAirlines

(AIRPORT, AIRPORT, INTERVAL, [AIRLINE]) ---* [ITINERARY]

<p: validAirport(in(O)) 1\ validAirpoort(in(l)) 1\ validAirlines(in(3))

tp: allItinerariesDepartFromAirport(out, in(O)) 1\

allItinerariesArriveAtAirport(out, in(l)) 1\

allItinerariesDepartureTimeWithin(out, ineZ)) 1\

allItinerariesOperatedByAirlines(out, in(3)) 1\

completeListOfDirectItinerariesByAirlines(out, in)

5.7.5 Auxiliary Specifications

The auxiliary utility to lookup accessible airports from a city given in sig

nature 5.10 assumes a valid city (predicate validCity(CITY) ) with at least

one airport (predicate cityWithAirport(CITY)) as input, and returns a list
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Specification 5.8 searchNonstopItinerariesByAirlines

(AIRPORT, AIRPORT, INTERVAL, [AIRLINE]) ---+ [ITINERARY]

ep: validAirport(in(O» 1\ validAirport(in(l» 1\ validAirlines(in(3»

1jJ: allItinerariesDepartFromAirport(out, in(O» 1\

allItinerariesArriveAtAirport(out, in(l» 1\

allItinerariesDepartureTimeWithin(out, in(2» 1\

allItinerariesOperatedByAirlines(out, in(3» 1\

completeListOfNonstopItinerariesByAirlines(out, in)

Specification 5.9 searchMultidestItinerariesByAirlines

[(AIRPORT, AIRPORT, INTERVAL, [AIRLINE])] ---+ [ITINERARY]

ep: validMultidestSequence(in) 1\ validAirlines(in(3»

1jJ: allMultidestItinerariesSatisfy(out, in) 1\

allItinerariesOperatedByAirlines(out, in(3» 1\

completeListOfMultidestItinerariesByAirlines(out, in)

of airports that belong to the input city. The predicate allAirportslnCity(

[AIRPORT], CITY) asserts that a list of airports in its first parameter belong to

the given city indicated by its second parameter. The complete specification

is provided in 5.10.

Likewise, the reverse to lookup the parent city of an airport given in sig

nature 5.11 is extended to specification 5.11 with semantic information. The
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Specification 5.10 lookupAirports

CITY -7 [AIRPORT]

ep: validCity(in) 1\ cityWithAirport(in)

tp: allValidAirports(out) 1\ allAirportsInCity(out, in)

predicate airportInCity(AIRPORT, CITY) is similar to the previous predicate

allAirportsInCity([AIRPORT], CITY), but deals with a single airport as its

first parameter instead of a list of airports. It asserts the airport is in the city

given by the second parameter.

Specification 5.11lookupCity

AIRPORT -7 CITY

ep: validAirport(in)

tp: validCity(out) 1\ airportInCity(input, output)

Signature 5.12 and 5.13 are extended to specification 5.12 and 5.13 re

spectively. Predicate validAirline(AIRLINE) asserts the input airline must be

valid, and predicate airlineInAlliance(AIRLINE, ALLIANCE) asserts the air

line given by the first parameter is a member of the airline alliance given by

the second parameter. Similarly, predicate allAirlinesInAlliance([AIRLINE],

ALLIANCE) asserts all airlines given by the first parameter are members of

the airline alliance given by the second parameter.
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Specification 5.12 lookupAirlineAlliance

AIRLINE -+ ALLIANCE

</1: validAirline(in)

tp: airlineInAlliance(input, output)

Specification 5.13 lookupMemberAirlines

ALLIANCE -+ [AIRLINE]

</1: validAlliance(in)

tp: allAirlinesInAllince(out, in)

5.8 Axioms and Composing Services

We include in our repository service specification 5.14 which for any given

flight returns the destination airport. Furthermore we include in the repos

itory service specification 5.15, which returns the city in which the input

airport is located.

Specification 5.14 getDestinationAirport

FLIGHT -+ AIRPORT

</1: validFlight(in)

tp: flightToAirport(input, output)
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Specification 5.15 getParentCity

AIRPORT -+ CITY

ep: validAirport(in)

t/J: airportInCity(input, output)

Now let's consider the situation where a service consumer requires a

service that takes a flight and returns the arrival city. The specification is

provided in 5.16.

Specification 5.16 getDestinationCity

FLIGHT -+ CITY

ep: validFlight(in)

t/J: flightToCity(input, output)

Our repository does not include such specification. Still, it is obvious

to the human observer that we could combine a service that implements

specification 5.14 with a service that implements specification 5.15. First

we determine the destination airport for the flight and then we use the

second service to obtain the corresponding city. When we combine the

two specifications we get specification 5.17 (see section 7.5 for details about

composition).

If this new specification matches specification 5.16, our repository could

return the composition path of specification 5.14 and 5.15 as a result to a
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Specification 5.17 composedSpecification

FLIGHT ~ CITY

ep: validFlight(in)

1jJ: 3tmp (validFlight(in) 1\ flightToAirport(input, tmp) 1\

validAirport(tmp) 1\ airportInCity(tmp, output))

query to search for specification 5.16 and service consumer who queried for

specification 5.16 could safely combine the mentioned services.

Unfortunately, the underlying logic system is not able to deduce this

dependency. To address this issue, we include in the repository a set of

axioms. Such axioms encode a valid human knowledge about the domain.

In our example the axiom

flightToAirport(flight, airport) 1\ airportInCity(airport, city)

~ flightToCity(flight, city)

will do the trick and enable the derivation of the desired matching relation.

Note that for this to work we need to assert that

3tmp (validFlight(in) 1\ flightToAirport(input, tmp)

I\validAirport(tmp) 1\ airportInCity(tmp, output))

~ flightToAirport(flight, airport) 1\ airportInCity(airport, city))

More on this in Chapter 7.
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5.9 Complex Composition of Services

Some compositions of specifications are not that simple, though. For exam

ple, currently we do not have specifications for services that search for flights

between two cities. It is possible to combine services that search for flights

between airports and services that lookup affiliated airports of a given city

to create such functionality.

The approach is to first lookup all affiliated airports of the origin city and

all affiliated airports of the destination city. For each pair in the Cartesian

product of the list of origin airports and the list of destination airports, invoke

the services that search for flights between the pair of airports and get a list

of possible itineraries. Finally concatenate the resulting lists of itineraries for

each pair of airports to produce a complete list of itineraries that depart from

the origin city and arrive at the destination city.

Ideally we would like the repository to automatically figure out the pos

sibility of combining multiple specifications to generate new ones. The

challenge is that the repository is not smart enough to map individual ele

ments of a tuple to meet the requirement of another specification reliably

without human guidance. Therefore we need to encode the necessary in

formation to help the repository in the form of additional specifications,

predicates, and axioms.

Using the previous example, the first step is to make the repository know

that it can transform the input tuple (CITY, CITY, INTERVAL) into a new

tuple ([AIRPORT], [AIRPORT], INTERVAL) as defined in specification 5.18.

The transformation should preserve as much information as possible from

63



the original input in the transformed result, which is expressed in the form

of post-condition of the specification.

Specification 5.18 cityCityIntervalToAirportsAirportsInterval

(CITY, CITY, INTERVAL) -+ ([AIRPORT], [AIRPORT], INTERVAL)

ep: validCity(in(O» 1\ cityWithAirport(in(O» 1\ validCity(in(l» 1\

cityWithAirport(in(l»

tp: allValidAirports(out(O» 1\ allAirportsInCity(out(O), in(O» 1\

allValidAirports(out(l» 1\ allAirportsInCity(out(l), in(l» 1\

sameInterval(out(2), in(2»

In specification 5.18 we put the necessary predicates to guarantee that the

returned list of origin airports must all belong to the origin city, the returned

list of destination airports must all belong to the destination city, and the

departure time interval must stay untouched.

The second step is that we have to take the transformed input and pro

duce the necessary result. The specification is defined in 5.19. Notice that

since now we have more than one airport as the origin and destination, we

have to guarantee that the itineraries returned as a result must depart from

one of the origin airports and arrive at one of the destination airports. Two

new predicates, allItinerariesDepartFromAmong([ITINERARY], [AIRPORT])

and allItinerariesArriveAtAmong([ITINERARY], [AIRPORT]), are introduced

for this purpose.

64



Specification 5.19 searchItinerariesAirportsToAirports

([AIRPORT], [AIRPORT], INTERVAL) -7 [ITINERARY]

ep: allValidAirports(in(O» /\ allValidAirports(in(l»

tp: allItinerariesDepartFromAmong(out, in(O» /\

allItinerariesArriveAtAmong(out, in(l» /\

allItinerariesDepartureTimeWi thin(out, in(2»

The actual implementation of specification 5.19 can be relayed back to

service consumers as instructions on how to invoke the services since their

task is to assemble ready-made service components to make final applica

tions. The repository will provide them with necessary pieces to get the job

done, but not necessarily babysit them all the time.

5.9.1 Composed Specification

With the extra specifications in hand, it is now pOSSible to combine them as

the output type of specification 5.18 matches the input type of 5.19, and the

post-condition of specification 5.18 implies the pre-condition of specification

5.19. As a result of the composition we will get a new specification as in 5.20.

The special name tmp in the post-condition designates the intermediate

output from specification 5.18 and used as the input to specification 5.19. It

is introduced because we would like to preserve as much as possible the

guarantees of the original specifications. More on this in section 7.5.
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Specification 5.20 composedSearch

(CITY, CITY, INTERVAL) ---+ ([AIRPORT], [AIRPORT], INTERVAL) ---+

[ITINERARY]

ep: validCity(in(O» 1\ cityWithAirport(in(O» 1\ validCity(in(l» 1\

cityWithAirport(in(l»

1jJ: 3tmp (allValidAirports(tmp(O» 1\ allAirportsInCity(tmp(O), in(O» 1\

allValidAirports(tmp(l» 1\ allAirportsInCity(tmp(l), in(l» 1\

sameInterval(tmp(2), in(2» 1\ allItinerariesDepartFromAmong(out,

tmp(O» 1\ allItinerariesArriveAtAmong(out, tmp(l» 1\

allItinerariesDepartureTimeWithin(out, tmp(2»)

5.9.2 Additional Axioms

We also need additional axioms to help reasoning about the composed

specification. It is obvious that, if a list of itineraries all depart from some

airports, and all these airports belong to a particular city, we can conclude

that the itineraries must depart from the given city as a result. The following

axiom restates this:

allItinerariesDepartFromAmong(Itineraries, Airports)

l\allAirportsInCity(Airports, City) (5.1)

=* allItinerariesDepartFromCity(Itineraries, City)

The same logic applies when a list of itineraries all arrive at some airports

which all belong to a city, these itineraries therefore all arrive at the particular
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city. Thus we have the following axiom:

allItinerariesArriveAtAmong(Itineraries, Airports)

l\allAirportsInCity(Airports, City) (5.2)

* allItinerariesArriveAtCity(Itineraries, City)

5.9.3 Instructions versus Service Implementations

The more complicated form of composition introduced in this section il

lustrates the limitation of completely automated composition done by the

repository: the repository is only smart enough to do the simplest form of

chaining without additional human knowledge. Advanced composition like

the one shown in this section requires human insight to guide the repository.

The extra specifications designed to help the repository to reason about com

position might not necessarily have concrete service implementations. They

might be instructions that service consumers need to read and understand

that they have to write some clue code in order to properly compose services.

This is less a concern in our current design, though.
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Chapter 6

Logic Foundation

In this chapter we will introduce the logic foundation of the language we will

use to describe service repositories. Our treatment is based on standard first

order logic and we summarize the main concepts and results throughout this

chapter. The treatment is primarily based on [4] with minor modifications to

fit our context.

6.1 First-Order Language

We define the syntax of a first-order language in this section.

6.1.1 Constants

Constants are names to some objects we are concerned. A constant refers to a

concrete object. The same object can have multiple constants as its name. For

example, we use the constant "Toronto" to refer to the city with that name
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in Canada, and we use the constant"AC698" to refer to a flight operated by

Air Canada.

6.1.2 Predicate Symbols

Predicate symbols are used to express some property of objects and relations

between objects. For example, a predicate can express the relation that flight

AC698 departs from Toronto: depart(AC698, Toronto). In this example,

flight AC698 and Toronto are called the arguments of the predicate "depart".

The number of arguments of a predicate is called its arity. In the previous

example, predicate "depart" has two arguments, so it has arity of two. A

predicate with arity of n is said to be n-ary. There are some special names:

unary for n = 1, binary for n = 2, and trinary for n = 3.

The order of a predicate's arguments is important. The expression de

part(AC698, Toronto) has a different meaning than depart(Toronto, AC698).

The latter does not make sense if the predicate defines a relation that its first

argument departs from the second argument.

6.1.3 Atomic Sentences

An atomic sentence is a formed by a predicate followed by the same number

of arguments as its arity. Sentences make claims, which can have a truth value

of either true or false. We will explain more about this in the subsequent

section.
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6.1.4 Logic Connectives

We use logic connectives to join simpler sentences to form more complex

sentences. The five logic connectives we will use include conjunction (symbol

A), disjunction (symbol V), negation (symbol-,), material conditional (symbol

=}), and material biconditional (symbol {::}).

The negation symbol -, expresses the opposite case of the sentence fol

lowed by it. For example, we want to express the case that flight AC698

does not depart from Toronto. We could write -,depart(AC698, Toronto). The

sentence has the negated truth value as depart(AC698, Toronto).

The conjunction symbol A joins two sentences. The result is true only if

both sentences are true. For example, we want to express the case that flight

AC698 departs from Toronto and that flight AC150 departs from Vancouver.

We write depart(AC698, Toronto) A depart(AC150, Vancouver).

The disjunction symbol Vjoins two sentences. The result is true if either

sentence is true (they could both be true). For example, depart(AC698,

Toronto) V depart(AC150, Vancouver) means that either flight AC698 departs

from Toronto, or flight AC150 departs from Vancouver.

The material conditional symbol =} is used to combine two sentences. The

sentence t/J =} I/J is equivalent to -,t/J V I/J.

The material biconditional symbol {::} is used to combine two sentences.

The sentence t/J {::} I/J is equivalent to (t/J =} I/J) A (I/J =} t/J).
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6.1.5 Variables and Quantifiers

Variables are placeholder symbols that can appear as arguments of predicates.

However, they do not refer to concrete objects. They indicate relationships

between quantifiers and the arguments of predicates.

We use the universal quantifier (symbol V) to express universal claims

that usually contain words like every, all, and each. The universal quantifier

is always used together with a variable to bind it. For example, \/x means

"for every object x". The expression \/x depart(x, Toronto) says that every

object x departs from Toronto.

Similarly, we use the existential quantifier (symbol 3) to express existen

tial claims that usually contain words like some, there is one, and at least one.

The existential quantifier is always used together with a variable to bind it.

For example, 3x means "there is an object x". The expression 3x depart(x,

Toronto) says that there is an object x that departs from Toronto.

6.1.6 Formulas

An expression of a predicate followed by its arguments (either constants or

variables) is called an atomic well-formed formula. Later we will just say atomic

formulas for short. For example, the expression depart(AC698, x) is an atomic

formula where x is a variable.

Complex formulas can be built by combining simpler formulas with logic

connectives. If 1/J and I/J are both formulas, so is

.--,1/J
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• 1/JV4J

• VX1/J, any occurrence of x in 1/J is said to be bound

• 3x1/J, any occurrence of x in 1/J is said to be bound

The precedence of logic connectives is, " 1\, V, =>, ¢:?, from highest to

lowest. V and 3 quantifiers bind the variable in the formula following them.

Parentheses are necessary if the formula is not an atomic one.

Variables appearing in formulas without corresponding quantifiers to

bind them are said to be free or unbound. Otherwise, they are bound. Sentences

are formulas with no free variables.

The expression 1/J[v f- v'] is the formula 1/J with all free occurrences of

variable v replaced by a new variable v'.

6.2 First-Order Structures

So far we have defined the syntax of first-order languages. We now consider

their semantics. We introduce the notion of first-order structures to give

meanings to constants and predicates in first-order languages. A first-order

structure contains a set of objects and a set of predicates that determine the

truth values of sentences in a first-order language.
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Definition 1. Let £ be afirst-order language. A first-order structure !.m for £ is

a tuple (O'1Jl, p'1J1, N'1Jl) where 0'1J1 is a nonempty set ofobjects called the domain

of discourse; p'1Jl is a function from predicates in £ to their extensions; N'1J1 is a

naming function from constants in £ to objects in 0'1J1.

Variables, universal quantifiers, and existential quantifiers range over

objects in 0'1J1. The naming function N'1J1 assigns objects in 0'1J1 to constants

in £. If c is a constant in £, N'1J1(c) is the object in 0'1J1 that it refers to.

An n-ary predicate p is represented in!.m by its extension p'1J1, a subset of

the set of n-tuple (h, t2, t3,"" tn ) for t1, t2, t3,"" tn E 0'1J1. Each tuple in p'1Jl is

a fact that the relation described by p holds for the objects in that tuple. For

a predicate p, its extension p'1J1 is given by p'1J1(p).

6.2.1 Variable Assignment

In a first-order language, we need to deal with variables appearing in formu

las.

Definition 2 (Variable assignments). Let!.m be a first-order structure with a

domain of discourse 0'1J1. A variable assignment is a (possibly partial) function

defined on a set ofvariables and taking values in O'1Jl.

We use the notation [Vi H 0;] to denote a variable assignment which

assigns object 0i to variable vi. For example, [VI HOI, V2 H 02] assigns

objects 01 and 02 in 0'1J1 to variables VI and V2, respectively.

Definition 3 (Appropriate variable assignments). Let!.m be afirst-order struc

ture for afirst-oder language £ with a domain ofdiscourse 0'1J1. A variable assign-
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ment is appropriate for a formula t/J in £ if it assigns objects in D'YJl to each free

variableoft/J·

Given a variable assignment g = [VI HOI, ..., Vk H ok ..., vn H on], the

expression g(Vk) gives the corresponding object ok in the assignment. g

can be modified using the notation g[vtlotl. The modification changes the

assignment such that the domain of g is extended by VI and VI is assigned

object 01. The rest of the assignment stays unchanged. There is a special

assignment called the empty variable assignment that does not assign objects

to any variables.

6.2.2 Satisfaction and Truth

Definition 4 (Satisfaction). Let 9Jl be afirst-order structure (D9J1,p'YJl, N9J1 ) for

afirst-order language £. Let t/J, cp, and w be formulas in £. Let g be a variable

assignment in 9Jl that is appropriate for t/J.

• If t/J is an atomic formula P(tl, t2,'''' tn) where p is an n-ary predicate, then g

satisfies t/J if.f([tlllr, [t2llr, .. ·, [tnllr) E p'YJl where [tkllr isg(tk) iftk is

a variable in £, or N'YJl(tk) iftk is a constant in £for k E {l,2, ...,n}.

• If t/J is ,cp, then g satisfies t/J iffg does not satisfy cp.

• If t/J is cp 1\ w, then g satisfies t/J iffg satisfies both cp and w.

• If t/J is cp V w, then g satisfies t/J iffg satisfies either cp or w, or both.

• If t/J is cp => w, then g satisfies t/J iffg does not satisfy cp or g satisfies w or

both.
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• If t/J is cp {=} w, then g satisfies t/J iffg satisfies both cp and w or neither.

• Ift/J is Vxcp, then g satisfies t/J iffforevery a E D'.JJt, g[x/o] satisfies cp.

• Ift/J is :3xcp, then g satisfies t/J ifffor some a E D'.JJt, g[x/o] satisfies cp.

Ifa variable assignment g satisfies aformula t/J in 9J1, we write 9J1 F t/J[g].

Definition 5 (Truth). Let 9J1 be afirst-order structure for afirst-order language

£. A sentence t/J is true in 9J1 iff the empty variable assignment satisfies t/J in 9J1.

Otherwise t/J is false. We write 9J1 F t/J if t/J is true in 9J1.

Definition 6 (Theory and Model). A set of sentences T in a given first-order

language £ is a called a theory. A structure 9J1 that satisfies every sentence in T is

called a model for T, denoted by 9J1 F T

Oefinition 7 (First-Order Consequences). A sentence t/J is a first-order conse

quence ofa theory Tifffor every model 9J1 of T, 9J1 F t/J.

6.3 Deductive System

Given a theory T and a sentence t/J, we want to know if there is a proof of t/J

from the premise T We write T I- t/J if there is a proof. We arrive at proofs

with the help of a deductive system. There are many kinds of deductive

systems. We use the deductive system Fin [4] with the following rules:

Axiom

TI- cp,forall cp E T
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Conjunction Introduction

Conjunction Elimination

Disjunction Introduction

TI-1jJ Tl-lfJ
TI-1jJVlfJ TI-1jJvlfJ

Disjunction Elimination

TI-1jJvlfJ TI-1jJ~w Tl-lfJ~w

TI-w

Negation Introduction

Negation Elimination

Conditional Introduction
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Conditional Elimination

Universal Introduction
Tl--tp(c)

Tf-Vxt/J(x)

c is an arbitrary constant that does not occur outside the subproof of

t/J(c) where it is introduced.

Universal Elimination
Tf-Vxt/J(x)

Tf-t/J(c)

c is an arbitrary constant.

Existential Introduction
Tf-t/J(c)

Tf- 3xt/J(x)

c is an arbitrary constant.

Existential Elimination

Tf-3xt/J(x) TU{t/J(c)}f-1/J
Tf-I/J

c is an arbitrary constant that does not occur outside the subproof of I/J

where it is introduced.

Theorem 1 (Soundness of F). IfT f- t/J, t/J is afirst-order consequence ofT.
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The theorem states that if we can prove a sentence t/J from a set of sen

tences T using deductive system F, then t/J must be true in every structure

9R in which sentences in T are true.

Theorem 2 (Completeness of F). If t/J is a first-order consequence of T, then

Tf-t/J.

The theorem states that if t/J is true in every structure 9R in which sen

tences in T are true, then we can prove t/J from premise T using deductive

systemF.

Proofs of the two theorems listed above can be found in [4].

78



Chapter 7

Repository Formalization

In the previous chapter we defined first-order languages and structures. In

this chapter we will use them to formally define various pieces of service

repositories.

A service repository is a collection of service specifications. Each specifica

tion has a corresponding set of services offered by different service providers

that implement it. Although these actual services will eventually be invoked

by service consumers, they playa rather secondary role in our discussions.

Service specifications provide us with information about services' signature

(input and output types) and the pre- and post-conditions that a service must

satisfy. We need a collection of data types admissible in a repository and a

collection of predicates over these data types that we use to formulate pre

and post-conditions. The choice of data types and predicates is part of the

repository design.

Service repositories are domain-specific. When we formalize a service
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repository, we always consider a particular set of objects in a domain and

a particular set of relations between these objects. Using the terminology

introduced in the previous chapter, we have a fixed first-order structure

9Jl = (D'JJl, p'JJl, N'JJl) for a service repository with a fixed first-order language

£. It should be noted that all semantic definitions introduced below will

implicitly assume such a structure 9Jl.

7.1 Data Types

Data types are one of the fundamental building blocks of service repositories.

A repository will have a finite set of basic data types that can be used to

express the most basic concepts. These basic data types include primitive

data types such as STRING, INTEGER, FLOAT, BOOLEAN, and various others

like the ones usually found in a mainstream programming language, as well

as domain specific data types identified during the design phase.

Collectively, these basic data types are denoted by the symbol ']['8. We

construct the set of all possible data types in a service repository, denoted

by the symbol '][', with the help of a few collection type constructors such as

LIST, MAP, and TUPLE.

Definition 8. Let ']['8 be afinite set ofbasic data type names. We inductively define
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'I, the set ofrepository data type names, as

"It E 'I : LIST[t] E'f

Vt1, t2 E 'I : MAP[t1, t2] E 'I

Vtb t2 E 'I: TUPLE[lt, t2] E'f

Each repository data type specifies a particular kind of objects. Any object

that follows the specification is regarded as an instance of the type. The sum

of those instances define the semantics of any data type t E 'f. The union of

all instances of each data type constitutes the domain of discourse D'JJl. In

other words, the semantic meaning of a data type in a service repository is a

subset of the corresponding domain of discourse D'JJl.

For each type t E 'I, there is a corresponding predicate Tt that has a single

variable. Tt(O) is true if 0 is of type t.

7.1.1 Implementation of Data Types

All data types are backed up by concrete implementations in a given host

language chosen by service providers and service consumers. The choice of

host languages is not the concern of the service repository, though, since the

repository will contain only names referring to these data types.

Nevertheless, to clarify our intentions in this chapter we will choose Scala

as a host language. Scala [19] is a statically-typed language built on top of

Java Virtual Machine with a clear and concise syntax.
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In our case, each data type corresponds to a Scala class. We only need the

class to have necessary attributes to contain information about a particular

instance of a data type. Because these data instances are immutable, we

do not need the class to contain other methods. In other words, think of

these classes more like data records. We define an operator to show the

relationship between a data type name and its reference implementation.

Let T E 1I' be a data type. The expression @(T) means the reference

implementation of T in the chosen host language. For example, in our

chosen host language Scala, the implementation of the data type AIRPORT

is backed up by a class called Airport, with the necessary attributes to hold

information related to the data type. The attribute name stores the name

of the airport, while the attribute code stores the unique three-letter lATA

airport code of the airport.

@(AIRPORT) = class Airport(name: String, code: String)

The semantic meaning of a data type can be understood as the collection

of all instances of the reference implementation in the host language.

Definition 9. Let T E 1I' be adata type. The meaning ofT is defined by all instances

ofa corresponding reference implementation of T in a host language.

[T] = {a lois an instanceof@(T)}

For example, the following piece of Scala code demonstrates the creation

of three instances of the AIRPORT type. The collection of all instances of
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airports in our imaginary world defines the meaning of the type AIRPORT.

J val airportl = new Airport("Toronto Pearson International", "YYZ")
val airport2 = new Airport("Vancouver International", "YVR")

3 val airport3 = new Airport (" St. John's International, ", "YYT")
, val airport4 = new Airport("Ottawa International", "FRA") II 7

Note in the previous example, the last instance is considered problematic

because in the real world Ottawa International Airport has the lATA code

YOW while the code FRA belongs to Frankfurt International Airport in

Germany. Still, airport4 belongs to [AIRPORTD. Whether an instance is

considered valid in our context depends on predicates.

7.2 Services and Service Specifications

The actual services that providers host and consumers eventually invoke

are not our primary concern in a service repository since we are interested

only in their specification. Nevertheless, we define them formally in order to

have a context to describe service specifications later.

Definition 10 (Service). A service f in model !m is a binary relation on the domain

ofdiscourseO'.JJl.

Definition 11 (Total Service). A service f is total iff the corresponding binary

relation is left-total, i.e.

\Ix E olJJl 3y E o'.JJ! (x, y) E f
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In practice, most services are defined only on some subsets of Dry)l. The

behavior of a service taking an input out of range is undetermined. The most

common way to describe the range of input a service accepts and the range

of output a service produces is to specify the input and output type.

Definition 12. The combination ofinput and output type ofa service is called the

service's signature, or its syntactic interface.

For example, a service that takes an airport and returns a flight departing

from that airport will have the signature

getFlight : AIRPORT x FLIGHT

where AIRPORT is its input type and FLIGHT is its output type.

We describe a set of services sharing the same signature, pre-condition,

and post-condition with a service specification.

Definition 13 (Service Specifications). Let £ be afirst-order language. An £

service specification is a pair offormulas (<P, tp) where <p contains one free variable

in, and tp contains two free variables in and out.

Let'][ be a set of types. We write (7f, w, <p, tp) as a syntactic sugar for an

£-specification (Trr(in) /\ <p(in), Trr(in) /\ Tw(out) /\ tp(in,out)), where 7f E '][ is

the input type, w E '][ is the output type.

If it is clear from the context which £ we are talking about, we will

just say service specifications. The previous example service that returns

a flight departing from an airport can be described by the following spec

ification (TAIRPORT(in) /\ validAirport(in), TFLIGHT(out) /\ validFlight(out) /\
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flightFromAirport(out,in)). An equivalent notation is (AIRPORT, FLIGHT,

validAirport(in), validFlight(out) 1\ flightFromAirport(out, in)).

The meaning of a service specification is the collection of actual services

that can be described by the specification.

Definition 14. Let .£ be a first-order language. Let 9J1 be a model for .£ with a

domain ofdiscourse Om. The meaning ofan .£-specification (<P, TjJ) in 9J1 is defined

by the set ofservices that implement the specification.

[(<p, TjJ)]m = {f ~ Om x Dm IV(x,y) E f9J1 F (<P '* TjJ)[in H x,out H y])

(see definition 4for the meaning of9J1 F TjJ[gj.)

7.3 Service Repositories

Definition 15. Let.£ be afirst-order language. 5£ is the set ofall possible .£-service

specifications, and 57 C 5£ is the set of all possible quantifier-free (no V or 3)

.£-servicespecifications.

A service repository consists primarily of service specifications. There

are infinite number of quantifier-free service specifications in a first-order

language. A service repository can contain only a finite number of them.

In addition, each specification in a repository must point to a number of

concrete services that implement it.

Definition 16. A repository n is a tuple ('][',.£, T, 9J1, S~, mn), where '][' is the

set of data types, .£ is afirst-order language, T is an .£-theory, 9J1 is afirst-order
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structure for .£ such that 9J1 F T, 5~ c 57 is afinite set of quantifier-free .£

service specifications and mn is a mapping from 5~ to the power set of Vn such

that mn(s) C [s]. Here Vn = UsESji [s] is the set of concrete services.

7.4 Matching of Service Specifications

It is common to have services that satisfy multiple service specifications. As

a special case, we are interested in the situation where all services satisfying a

particular service specification happen to satisfy another service specification,

because then we can treat the former specification as if it were the latter

specification. This is vital for querying a service repository later when we

introduce queries.

Definition 17 (Matching). Let (epl, tpl) and (</>2, tp2) be two .£-service specifica

tions. We say that (epl, tpd matches (ep2, tp2) under theory T, denoted by

ifandonlyif

T f- "lin (</>2 => epl)

T f- "lin "lout (</>2/\ tpl => tp2)

(7.1)

(7.2)

The reader might wonder why we have such conditions as in (7.1) and

(7.2). At first glance, the two conditions seem rather counter-intuitive. The

idea is that if an input is valid under </>2 and it is to be fed into services
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described by (4)2, t/J2), it should also be valid under 4>1 so that we can feed

the value into services described by (4)1, t/J1). Similarly, if an input and an

output value of services described by (4)1, t/J1) satisfy t/J1, we should be able

to use the result in any context a result from services described by (4)2, t/J2) is

expected. Only in this way can we say that services described by (4)1, t/J1) are

also described by (cf>z, t/J2).

One extra technicality in condition (7.2) is the presence of cf>z, which seems

to be unnecessary at first. The reason it is there is to preserve maximum

possibility of matching. It is best explained by an example.

Suppose we have a specification 51 = (4)1, t/J1) for services that take an

integer input value and produce an integer output value such that the input

value is dividable by two, and the output value is two times the input value.

We write 4>1 = DivByTwo(in) and t/J1 = TwoTimes(out, in).

Now suppose we have another specification 52 = (4)2, t/J2) for services

that take an integer input value and produce an integer output value such

that the input value is dividable by six, and the output value is dividable by

four. We write cf>z = DivBySix(in) and t/J2 = DivByFour(out).

Human experts have no problem deducing that 51 ~T 52 based on the

fact that

and

DivBySix(in) ~ DivByTwo(in) (7.3)

DivBySix(in) 1\ TwoTimes(out, in) ~ DivByFour(out) (7.4)

We can encode the human knowledge of the two facts and add them as
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axioms to the system. With the help of condition (7.2) we can deduce that

51 ~752'

If, however, condition (7.2) comes in the form

T f- \lin \lout (t/J1 => t/J2)

even with the added axioms the system will not be able to deduce that

51 ~752'

Proposition 1 (Reflexivity of ~7). Let 5 = (<p, t/J) be an £-5pecification and let

T be a theory in £. Then 5 ~7 5.

Proof This is very straightforward:

Tf-\lin(<p => <p)

T f- \lin\lout(<p 1\ t/J => t/J)

o

Proposition 2 (Transitivity of ~7). Let 511 52, and 53 be three £-5pecification5

and let T be a theory in £. If 51 ~7 52 and 52 ~7 53, then 51 ~7 53

Proof Let

51 = (<P1,t/J1)

52= (<P2,t/J2)

53= (<P3,t/J3)
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Because 51 !;;;;T 52 and 52 !;;;;T 53, we have

T I- Vin(lfJ2 =} lfJ1)

T I- VinVout( lfJ2 A 1/71 =} 1/72)

T I- Vin(lfJ3 =} lfJ2)

T I- VinVout(lfJ3 A 1/72 =} 1/73)

By (7.5) and (7.7)

By (7.7)

By (7.6)
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By (7.8)

Therefore, SI ~T S3· o

7.4.1 Matching of Specifications and Subset of Services

Our original intention to define the matching relationship of two service

specifications is to clarify the subset relationship of the underlying services

they describe. We give a brief proof that the idea holds.

Theorem 3. Let SI and S2 be two £-service specifications. Let T be a theory in £

and 9n be a structure for £ such that 9n F T.

Proof. Let

SI=(<Pl,l/Jl)

S2=(</J2,1/J2)

By condition (7.1) and (7.2), we know

T I- Vin(<p2 => <PI)

T I- VinVout( <P2 1\ 1/Jl => 1/J2)
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Since 9J1 1= T, by theorem 1 it follows that

9J11= Vin(<pz => <PI)

9J11= VinVout(<pz/\ tpl => tpz)

(7.9)

(7.10)

The two sets of services represented by the two specifications, respec

tively,are

[(<PI,tpl)ll9Jl = {f E D9Jl X D9Jl
1 V(x,y) E f (9J11= (<PI => tpl)[in H x,out H yl)}

[(<Pz,tpz)]9Jl = {f E D9Jl X D9Jl
1 V(x,y) E f (9J11= (<Pz => tpz)[in H x,out H y])}

Now we need to show that an arbitrary service f E [SI]9Jl, also f E [szhn

holds. We do it by showing that for all (x, y) E f

(9J11= (<PI => tpl)[in H x,out H y])

=> (9J11= (<Pz => tpz)[in H x,out H y])
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which is equivalent to

\f (X,y) E f9J1 F ((0/1 ~ t/J1) ~ (0/2 ~ t/J2)) [in H x,out H y]

S~g 9J1 F ((0/1 ~ t/J1) ;\0/2 ~ t/J2)[in H X,out H y]

D~=? 9J1 F (.((.0/1 Vt/J1) ;\0/2) Vt/J2)[in H X,out H y]

Dis~tion 9J1 F (.((.0/1 ;\0/2) V (t/J1 ;\0/2)) Vt/J2)[in H X,out H y]

De~an 9J1 F (.(.0/1 ;\0/2) ;\.(t/J1 ;\0/2)) Vt/J2)[in H X,outH y]

De~an 9J1 F (((0/1 V.0/2);\ '(t/J1;\ 1/J2)) Vt/J2)[in H X,out H y]

Dis~ion 9J1 F ((0/1 V.0/2) Vt/J2);\ ('(t/J1 ;\0/2) Vt/J2)[in H X,out H y]

D~=? 9J1 F ((0/2 ~ 0/1) Vt/J2);\ (t/J1;\1/J2 ~ t/J2)[in H X,out H y]

which is the case by (7.9) and (7.10).

o

Corollary 1 (Semantic equivalence). Let S1 and S2 be two £-specifications. Let

T be a theory in £ and 9J1 be a structure for £ such that 9J1 F T If S1 1;;;, S2 and

S2 1;;;, S1, then [s&m = [s2ll!JJl·

Proof By theorem 3, if S1 1;;;, S2 and S2 1;;;, S1, then [s1ll!JJl ~ [s2bl and

7.5 Composition

o

Many services can be chained together to perform more complex opera

tions. We desire a way to describe the behavior of these chained services by

combining their specifications.
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Definition 18 (Composition of Specifications). Let T be afirst-order theory in

afirst-order language £. Let (qJ1, 0/1) and (qJ2, 0/2) be two £-service specifications

with free variables in1,out1 respectively in2,out2. We say that (qJ1,0/1) can be

composed with (qJ2, 0/2) under T, denoted by

ifandonlyif

The result of the composition is a new specification

with the free variables in1 and out2' The variable tmp must be chosen so that it does

not cause name collisions with existing variables in the formula.

It is pretty obvious that equation (7.11) must hold. We cannot combine

two specifications if the result from the first specification does not satisfy the

precondition of the second.

The resulting composed specification, however, deserves more attention.

The reader might ask why we could not simply use 0/2 as the post-condition

for the composed specification. The answer is that 0/2 is a formula about

the relationship between the input and output of the second specification,

while the desired post-condition of the composed specification must describe
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the relationship between the output of the second specification with respect

to the input of the first specification. This is where the mysterious inter

mediate temporary value tmp comes into play: it is the output of the first

component of the composition and the input of the second component of the

composition.

Proposition 3 (Monotonicity of composition). Let Z be afir5t-order language

and T be a theory in Z. Let 51,52,53 and 54 be Z-5pecification5. Furthermore let

51 !;;;;, 53, 52 !;;;;, 54, 52 0,51 and 54 0,53' Then 52 0,51 !;;;;, 54 0,53·

Because 51 !;;;;, 53 and 52 !;;;;, 54, we have

T f- Vin(<p3 =? <P1)

T f- VinVout(<p3 II t/J1 =? t/J3)

T f- Vin(<p4 =? <P2)

T f- VinVout(<p4 II t/J2 =? t/J4)

In addition, because 52 0,51 and 54 0,53, we have

(7.12)

(7.13)

(7.14)

(7.15)

T f- VinVout(<p1 II t/J1 =? (<P2[in +- out])) (7.16)

T f- VinVout(<p3 II t/J3 =? (<P4[in +- out])) (7.17)
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The results of the two compositions are

S2 0T Sl = (cp1,3tmp l/Jl[OUt f- tmp]/\ 1/J2[in f- tmp]) (7.18)

S4 0T S3 = (CP3, 3tmp 1/J3[out f- tmp] /\ 1/J4 [in f- tmp]) (7.19)

We need to show that

which is given by (7.12), and

T f- VinVout(cp3/\ 3tmp(1/J1 [out f- tmp] /\ 1/J2[in f- tmp])

~ 3tmp(1/J3[out f- tmp] /\ 1/J4[in f- tmp]))

which is shown by the steps below:

(7.20)

(7.21)

T f- VinVout(cp3/\ 3tmp(1/J1 [out f- tmp]/\ 1/J2[in f- tmp]))

T f- VinVout3tmp(cp3/\ 1/J1[out f- tmp] /\ 1/J2[in f- tmp])

T f- VinVout3tmp(cp3/\ c/J3/\ 1/J1[out f- tmp] /\ 1/J2[in f- tmp])

by~3) T f- VinVout3tmp(cp3/\ 1/J3[out f- tmp]/\ 1/J2[in f- tmp])

==} T f- VinVout3tmp(cp3/\ 1/J3[out f- tmp]/\ 1/J3[out f- tmp] /\ 1/J2[in f- tmp])

by~7) T f- VinVout3tmp(cp4[in f- tmp] /\ 1/J3[out f- tmp]/\ 1/J2[in f- tmp])

by~5) T f- VinVout3tmp(1/J3[out f- tmp] /\ 1/J4[in f- tmp])

o

Definition 19 (Composition of Services). Let 9J1 be a model with an domain of
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discourse D lJJl . Let f,g ~ D lJJl X D'))! be two services.

The composition of f and g, denoted by g of, is a new service

go f = {(x,z) E DlJJl x D'))!I:ly E DlJJl ((x,y) E f 1\ (y,z) E g)}

Theorem 4. Let T be a first-order theory in £ and let 9J1 be a structure for £

such that 9J11= T Moreover let S2 o,Sl' If ft E [Sl]lJJl and 12 E [S2]'))!, then

12 0 ft E [S2 0 ,Sl]lJJl.

Proof Let Sl = (I/J1,1/!1), S2 = (I/J2,1/!2) with free variables in1,oult respec

tively in2,out2. By definition of [52 0,51], we need to show that

'V (x,z) E 12 °ft 9J11= (I/J1 =} (:ltmp 1/!1[out1 f- tmp]

1\1/!2[in2 f- tmp])) [in1 H X,out2 H z]

which is equivalent to

'V (x,z) E 12 °ft 9J11= :ltmp (I/J1 =} (1/!l[oult f- tmp]

1\1/!2[in2 f- tmp]))[in1 H X,out2 H z]

Later on we will show that

'V (x,z) E 12 ° ft 9J11= (:ltmp (I/J1 =} 1/!1[out1 f- tmp])

1\(I/J2[in2 f- tmp] =} 1/!2[in2 f- tmp]))[in1 H X,out2 H z]
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and for all x,z E D'.JJ1

wt 1= (3tmp(<p1/\ 1/J1[out1 f- tmp] :=} <P2[in2 f- tmp])) [in1 H X,out2 HZ]

(7.24)

Therefore

't/ (x,z) E holt wt 1= (3tmp ((<P1 :=} 1/J1[outt f- tmp])/\

(<P2[in2 f- tmp] :=} 1/J2[in2 f- tmp]) /\ (<P1/\ 1/J1[out1 f- tmp] (7.25)

:=} i/J2[in2 f- tmp]))) [in1 H X,out2 H z]

Let now: P = <P1, Q = 1/J1[out1 f- tmp], R = <P2[in2 f- tmp], 5 =

1/J2[in2 f- tmp]. We have

(P:=} Q) /\ (R :=} 5) /\ (P /\ Q :=} R)

:=}(P:=} Q) /\ (P /\ Q:=} 5)

:=}(P:=} Q/\S)

Therefore, (7.25) implies (7.22) and we are done.

In the following subproofs we show that (7.23) and (7.24) hold. We begin

with (7.24).

Since 52 °751, by condition (7.11) we know that
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By renaming variables we get:

Since 9J1 F T, by theorem 1 we have

and therefore for all x, y E 09Jl

hence"ix E 09Jl

and because out2 does not occur in the above formula, we can extend the

assignment so that "ix, Z E 09Jl

which is (7.24).

Now we prove (7.23). The composed specification is
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Because II E [51]9J1 and 12 E [52]9J1, we know that

v (x,y) ElI 9)11= (<PI => 1f!1)[inl t-+ X,outl t-+ y] (7.26)

V (y,z) E 12 9)11= (<P2 => 1f!2)[in2 t-+ y,out2 t-+ z] (7.27)

By definition 19 we also know that

V (x,z) E 12 0 II :Jy E 09J1 ((x,y) ElI 1\ (y,z) E h) (7.28)

From (7.26), (7.27), and (7.28) we have

V (x,z) E h 0 II :Jy E 09J1((9)11= (<PI => 1f!1)[inl t-+ X,outl t-+ y])
(7.29)

1\(9)11= (<P2 => 1f!2)[in2 t-+ y,out2 t-+ z]))

We extend the assignments by adding variables that do not occur in the

formulas so that

V (x,z) E h 0 II :Jy E O'JJI

(9)11= (<PI => 1f!l)[inl t-+ X,outl t-+ y,in2 t-+ y,out2 t-+ z])

1\(9)11= (<P2 => 1f!2)[inl t-+ X,outl t-+ y,in2 t-+ y,out2 t-+ z]

Now combine the two parts

V (x, z) E h 0 II :Jy E 09J1

9)11= ((<PI => 1f!1) 1\ (<P2 => 1f!2)) [inl t-+ X,outl t-+ y,in2 t-+ y,out2 t-+ z]
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Then introduce a new variable tmp to replace outI and in2

1::/ (x,z) E h o!I 3y E D'JJl9J1 F ((<PI =} t/'I[ouh f-- tmpJ)
(7.30)

1\(<P2[in2 f-- tmp] =} t/'2[in2 f-- tmp]))[inI H x,tmp H y,out2 H z]

And finally we have

1::/ (x,z) E h o!I 9J1 F (3tmp (<PI =} t/'1)[outI f-- tmp]

1\(<P2 =} t/'2)[in2 f-- tmpJ)[inI H X,out2 H z]

which is (7.23).

o

7.6 Queries

Let R be our repository. A query q for R is a quantifier-free service specifi

cation in 57 (see definition 15 for the meaning of 57)' A query is submitted

to a service repository in order to find possible matches. Theorem 3 states

that if we have a specification that matches a query, all services that satisfy

the specification also satisfy the query. Our matching algorithm introduced

further down will follow this idea.

7.6.1 Querying Results

Service consumers submit queries to a service repository to retrieve match

ing service specifications so that they can in turn find actual services that
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implement these service specifications. Therefore the result of submitting

a query to a service repository should contain service specifications that

directly match the query, as well as chains of service specifications such that

the composition of each specification in a chain in the given order matches

the query.

Definition 20. Let R be a seroice repository. With [S1' S2, ..., Sn]07 we describe

a sequence of specifications in S~ such that (sn 0T (... 0T (S2 0T S1))) holds.

We write c :: Sn+1 for the new sequence [S1,S2, ...,Sn,Sn+1]07' The function

Compose([s1' S2, ..., snl 0 7) sequentially composes all specifications in the sequence

into the specification (S/1 0T (... 0T (S2 0TS1))), whereby Compose([s]) = s.

Definition 21 (Querying Results). Let R be a seroice repository. The result of

submitting a query q to R is a set ofsequences ofcomposable specifications in S~.

For each sequence c in the result set, it must hold that Compose(c) ~T q.

Theorem 3 and 4 assure us that if for any of the returned sequences we

assemble a new service by combining services in the contained specifications,

that aggregate service will satisfy our query.

Service consumers then use metadata contained in the matching specifica

tions to get links to and invoke the actual service implementations hosted by

service providers. The exact sequence of interactions with a service reposi

tory and actual services hosted by service providers after matching is beyond

the scope of this thesis, and thus will not be discussed here.
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7.6.2 Matching Algorithm

Upon receiving a query q , the repository R will first select service spec

ifications that directly match the query. Thereafter we will try to find all

sequences of specifications such that their composition matches the query.

An algorithm is provided below.

Algorithm 1 Matching Algorithm

Base:= {[5] 15 E S~J

Result:=0

while (predefined threshold not reached) do

Result:= Result U{c I (c E Base) /\ (Compose(c) ~r q)}

Base:= {c:: 5 I (c E Base) /\ (5 E S~) /\ (5 orCompose(c))}

end while

return Result

A predefined threshold should be checked during each iteration of the

loop. For example, we can restrict that the maximum length of a composition

sequence to be no longer than three. Other constraints based on different

criteria can be utilized as the repository designers see fit.

The efficiency of the matching algorithm is not a concern in this thesis.

Complexity and potential optimizations will be dealt with in future works.

102



7.7 Decidability

We use a first-order language to formalize our repository. In order to query

the repository, we repeatedly check if a particular specification matches

another one. To accomplish this, we need to verify that we have proofs

for sentences of the form (7.1) and (7.2). The question arises if there is an

effective way to prove a sentence from a theory. We introduce the notion of

decidability here.

Definition 22 (Decidability). Let T be a theory (a set of sentences) in afirst-order

language .e. A formula t/J E .e is decidable if there is an effective method to determine

ifTf-t/J.

First-order sentences in general are not decidable. [21] proved that a frag

ment of first-order logic formulas, called the Bernays-Sch6nfinkel-Ramsey

(BSR) class of formulas, is decidable. Formulas in BSR class are those prefixed

by zero or more existential quantifiers followed by zero or more universal

quantifiers (:3*\7'*) when written in prenex normal form without any function

symbols or equality.

The algorithm from the previous section relies on our ability to estab

lish the truth of certain sentences (when performing matching). With the

following proposition we show that this task is indeed decidable.

Theorem 5. For agiven repository R let (epq, t/Jq) be aquery and let c = [S1l S2, ..., sn]or'

Then Compose(c) r;;;, (epq, t/Jq) is decidable.

Proof The proof is by induction on the length of c. Recall that S1, S2, .., Sn, epq,

and t/Jq are all quantifier-free formulas.
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BASE CASE: e = [(</>,1/J)]. To verify that(</>,1/J) [;;;, (</>q,1/Jq) we need to

check (7.1) and (7.2):

T f- \:lin (</>q =} </»

T f- \:lin \:lout (</>q /\ 1/J =} 1/Jq).

Since </>' 1/J, </>q, 1/Jq are all quantifier-free, the formulas are in BSR class. Hence

the problem is decidable.

INDUCTIVE STEP: Lete = [(</>l,1/Jl), (</>2, 1/J2),"" (</>n, 1/Jn)]oT and let (</>, 1/J) =

Compose([(</>l, 1/Jl), ..., (</>n-l, 1/Jn-l)]oT)' By inductive hypothesis (</>,1/J) [;;;,

(</>q, 1/Jq) is decidable, therefore \:lin (</>q =} </» and \:lin \:lout (</>q /\ 1/J =} 1/Jq) are

decidable. We have to show that (</>n, 1/Jn) 0, (</>,1/J) [;;;, (</>q, 1/Jq) is decidable.

Now, we must be able to determine if

(</>n,1/Jn) 0, (</>,1/J) = (</>,3tmp(1/J[out ~ tmp]/\ 1/Jn[in ~ tmp]))

To accomplish this, we need to verify

T f- \:Iin(</>q =} </»

which is decidable by the inductive hypothesis, and

T f- \:Iin\:lout(</>q /\ 3tmp(1/J[out ~ tmp]/\ 1/Jn[in ~ tmp]) =} 1/Jq)
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which is equivalent to

T I- 'Vin'Vout(3tmp(cpq /\ tjJ[out f- tmp] /\ tjJn[in f- tmp]) ~ tjJq)

since tmp does not appear in CPq, which is again equivalent to

T I- 'Vin'Vout'Vtmp(cpq /\ tjJ[out f- tmp] /\ tjJ,tfin f- tmp] ~ tjJq)

by the fact that T I- (3xP(x)) ~ Q is equivalent to T I- 'Vx(P(x) ~ Q)

provided that x does not appear free in Q.

We now move 'Vtmp to the beginning so we have

T I- 'Vtmp'Vin'Vout(cpq /\ tjJ[out f- tmp]/\ tjJn[in f- tmp] ~ tjJq)

which follows from

T I- 'Vtmp'Vin'Vout(cpq /\ tjJ[out f- tmp] ~ tjJq)

which is decidable by the inductive hypothesis, and

T I- 'Vtmp'Vin'Vout(tjJn[in f- tmp] ~ tjJq)

which is also decidable since it is already in BSR class (both tjJn and tjJq are

quantifier-free.

Therefore Compose(c) ~7 (CPq, tjJq) is decidable.

o
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Chapter 8

Summary

In this thesis we have shown an approach to organize services in a centralized

location called a service repository in the hope of simplifying the process

of publishing, discovering and reusing existing services offered by service

providers. We have argued the rationale of adopting such service repositories

and their benefits. We have presented the various components needed to

build a service repository. The detailed steps to design a sample service

repository in the domain of flight search have been discussed intensively

to show many of the tradeoffs and compromises being considered when

designing a service repository. We have also formalized each component of

a service repository using a language based on first-order logic.

8.1 Future Work

What we have presented so far in this thesis is just the initial step towards

the ultimate goal of designing a feature-rich system to describe services that
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would allow advanced querying and automatic composing existing services

to produce new ones to meet the demand of service consumers.

Nevertheless, there are many severe limitations in our current design

and lots of necessary pieces are missing to allow practical usage. We will

briefly discuss many of our concerns and possible directions for future work

to extend our current approach.

8.1.1 Hierarchy of Data Types

In our original vision of a service repository we have thought about the hier

archy of data types in the hope that the subtyping relationship of existing

data types might be beneficiary to provide additional information about ser

vices, and that information could possibly direct querying and composition

of services. Later when we tried to actually design a service repository we

skipped this part to keep it really simple so we could have a better under

standing of service repositories themselves. A future direction would be to

consider how to exploit the information available from the hierarchy of data

types to infer possible matches of service specifications and compositions.

8.1.2 Generic Predicates

In the current design of service repositories, a predicate called flightFromAir

port that asserts the relationship that a FLIGHT departs from an AIRPORT is

treated completely different from a similar predicate called flightFromCity

that asserts the relationship that a FLIGHT departs from a CITY, even though
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both predicates describe conceptually the same idea. This is primarily due to

the limitation of the type system. As a consequence, the number of the predi

cates involved in a service repository is rather large. This makes learning,

using, and reasoning about predicates much more challenging.

We envision a future direction to extend the work being done is to

merge a family of predicates that assert the same property over different

data types into one generic predicate. Instead of having two predicates,

flightFromAirport(FLIGHT, AIRPORT) and flightFromCity(FLIGHT, CITY),

we would like to combine them into a single predicate, flightFrom(FLIGHT,

?), which expresses the idea that the FLIGHT departs from some place as

specified in the second argument. An even more aggressive approach would

be to simply design a generic predicate called from(?, ?) which asserts that

the first argument leaves from the second argument. Such a design might

require a major overhaul of the underlying system.

8.1.3 Services with Side Effects

So far we have assumed the services being described have no side effects.

In reality this is a very limiting assumption. Many services exist for the sole

purpose of generating side effects. Even services that can be made side-effect

free might be implemented to have side effects for various reasons such as

efficiency or convenience. Therefore it is absolutely necessary to investigate

methods to describe services with side effects.
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8.1.4 Ranking and Metadata of Services

We have expressed at the beginning of the thesis that we expect services

come with metadata other than its signature and semantic behaviors, such

as cost, reliability, etc, so that service consumers can compare and choose

when multiple services meet a query simultaneously. This is a very practical

concern in real world, even though it has less effect on the design of service

repositories. The reason we ignored this aspect in this thesis is that we believe

it is orthogonal to the designing and functioning of service repositories in

general. Furthermore, we believe the utilization of these metadata would

differ greatly in different domains as well as different usage patterns: service

consumers in mission-critical domains might be much more concerned about

reliability of services, while those in highly-competitive markets might be

more price-sensitive. We imagine there would be various different ways to

utilize these metadata on a per-domain basis.

8.1.5 Automated Verification of Pre-fPost-Conditions

The language we designed to describe the functionalities of services is only

used in the service repository as part of service specifications. It would be

greatly helpful if there were a way to automatically verify if a service indeed

matches its pre- and post-condition. Obviously it is impractical to test every

combination of input and output of a service and see if the values match

the assertions in the pre-condition and the post-condition. Nevertheless it

would cover a lot of potential bugs for the purpose of unit testing. Therefore
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a future direction to make a service repository more useful in real world is to

provide standardized unit test packages in different target languages which

are extracted from the pre-conditions and post-conditions available in the

repository.
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Appendix A

List of Data Types

1. FLIGHT

2. ITINERARY

3. AIRLINE

4. ALLIANCE

5. AIRPORT

6. CITY

7. TIME

8. INTERVAL
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AppendixB

List of Predicates

1. validAirport( AIRPORT)

2. allItinerariesOepartFromAirport( [ITINERARY], AIRPORT)

3. allItinerariesArriveAtAirport( [ITINERARY], AIRPORT)

4. allItinerariesDepartureTimeWithin( [ITINERARY], INTERVAL)

5. completeListOfOnewayItineraries( [ITINERARY], (AIRPORT, AIRPORT,
INTERVAL) )

6. completeListOfDirectItineraries( [ITINERARY], ( AIRPORT, AIRPORT,
INTERVAL) )

7. completeListOfNonstopItineraries( [ITINERARY], (AIRPORT, AIRPORT,
INTERVAL) )

8. validMultidestSequence( [ ( AIRPORT, AIRPORT, INTERVAL )] )

9. completeListOfMultidestItineraries( [ITINERARY], (AIRPORT, AIRPORT,
INTERVAL) )

10. allMutlidestItinerariesSatisfy( [ITINERARY], [ ( AIRPORT, AIRPORT,
INTERVAL )] )

11. allItinerariesOperatedByAirlines( [ITINERARY], [AIRLINE] )

12. validAirlines( [AIRLINE])

13. allItinerariesOperatedByAirlines( [ITINERARY], [AIRLINE] )
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14. completeListOfOnewayItinerariesByAirlines( [ITINERARY], (AIRPORT,
AIRPORT, INTERVAL, [AIRLINE] ) )

15. completeListOfDirectItinerariesByAirlines( [ITINERARY], (AIRPORT,
AIRPORT, INTERVAL, [AIRLINE] ) )

16. completeListOfNonstopItinerariesByAirlines( [ITINERARY], (AIRPORT,
AIRPORT, INTERVAL, [AIRLINE] ) )

17. completeListOfMultidestItinerariesByAirlines( [ITINERARY], (AIRPORT,
AIRPORT, INTERVAL, [AIRLINE] ) )

18. validFlight( FLIGHT)

19. flightToAirport( FLIGHT, AIRPORT)

20. flightToCity( FLIGHT, CITY)

21. validCity( CITY)

22. cityWithAirport( CITY)

23. allAirportsInCity( [AIRPORT], CITY)

24. airportInCity( AIRPORT, CITY)

25. allAirportsInCity( [AIRPORT], CITY)

26. validAirline( AIRLINE)

27. airlineInAlliance( AIRLINE, ALLIANCE)

28. allAirlinesInAllince( [AIRLINE], ALLIANCE)

29. allValidAirports( [AIRPORT])

30. sameInterval( INTERVAL, INTERVAL)
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AppendixC

List of Specifications

Specification C.l searchOnewayItineraries

(AIRPORT, AIRPORT, INTERVAL) --+ [ITINERARY]

ep: validAirport(in(O» /\ validAirport(in(l»

1jJ: allItinerariesDepartFromAirport(out, in(O» /\

allItinerariesArriveAtAirport(out, in(l» /\

allItinerariesDepartureTimeWithin(out, in(2» /\

completeListOfOnewayItineraries(out, in)
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Specification C.2 searchDirectItineraries

(AIRPORT, AIRPORT, INTERVAL) ~ [ITINERARY]

<p: validAirport(in(O)) 1\ validAirpoort(in(l))

tjJ: allItinerariesDepartFrornAirport(out, in(O)) 1\

allItinerariesArriveAtAirport(out, in(l)) 1\

allItinerariesDepartureTimeWithin(out, in(2)) 1\

completeListOfDirectItineraries(out, in)

Specification C.3 searchNonstopItineraries

(AIRPORT, AIRPORT, INTERVAL) ~ [ITINERARY]

<p: validAirport(in(O)) 1\ validAirport(in(l))

tjJ: allItinerariesDepartFrornAirport(out, in(O)) 1\

allItinerariesArriveAtAirport(out, in(l)) 1\

allItinerariesDepartureTimeWithin(out, in(2)) 1\

completeListOfNonstopItineraries(out, in)

Specification C.4 searchMultidestItineraries

[(AIRPORT, AIRPORT, INTERVAL)] ~ [ITINERARY]

<p: validMultidestSequence(in)

tjJ: completeListOfMultidestItineraries(out, in) 1\

allMultidestItinerariesSatisfy(out, in)
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Specification C.S searchOnewayItinerariesByAirlines

(AIRPORT, AIRPORT, INTERVAL, [AIRLINE]) --7 [ITINERARY]

4>: validAirport(in(O» 1\ validAirport(in(l» 1\ validAirlines(in(3»

1jJ: allItinerariesDepartFromAirport(out, in(O» 1\

allItinerariesArriveAtAirport(out, in(l» 1\

allItinerariesDepartureTimeWithin(out, in(2» 1\

allItinerariesOperatedByAirlines(out, in(3» 1\

completeListOfOnewayItinerariesByAirlines(out, in)

Specification C.6 searchDirectItinerariesByAirlines

(AIRPORT, AIRPORT, INTERVAL, [AIRLINE]) --7 [ITINERARY]

4>: validAirport(in(O» 1\ validAirpoort(in(l» 1\ validAirlines(in(3»

tp: allItinerariesDepartFromAirport(out, in(O» 1\

allItinerariesArriveAtAirport(out, in(l» 1\

allItinerariesDepartureTimeWithin(out, in(2» 1\

allItinerariesOperatedByAirlines(out, in(3» 1\

completeListOfDirectItinerariesByAirlines(out, in)
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Specification C.7 searchNonstopItinerariesByAirlines

(AIRPORT, AIRPORT, INTERVAL, [AIRLINE]) ---* [ITINERARY]

ep: validAirport(in(O» 1\ validAirport(in(l» 1\ validAirlines(in(3»

tp: allItinerariesDepartFromAirport(out, in(O» 1\

allItinerariesArriveAtAirport(out, in(l» 1\

allItinerariesDepartureTimeWithin(out, in(2» 1\

allItinerariesOperatedByAirlines(out, in(3» 1\

completeListOfNonstopItinerariesByAirlines(out, in)

Specification C.B searchMultidestItinerariesByAirlines

[(AIRPORT, AIRPORT, INTERVAL, [AIRLINE])] ---* [ITINERARY]

ep: validMultidestSequence(in) 1\ validAirlines(in(3»

tp: allMultidestItinerariesSatisfy(out, in) 1\

allItinerariesOperatedByAirlines(out, in(3» 1\

completeListOfMultidestItinerariesByAirlines(out, in)

Specification C.9 getDestinationAirport

FLIGHT ---* AIRPORT

ep: validFlight(in)

tp: flightToAirport(in, out)
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Specification C.lO getParentCity

AIRPORT -+ CITY

ep: validAirport(in)

tjJ: airportInCity(in, out)

Specification c.n getDestinationCity

FLIGHT -+ CITY

ep: validFlight(in)

tjJ: flightToCity(in, out)

Specification C.l2 lookupAirports

CITY -+ [AIRPORT]

ep: validCity(in) 1\ cityWitMirport(in)

tjJ: allValidAirports(out) 1\ allAirportslnCity(out, in)

Specification C.l3 lookupCity

AIRPORT -+ CITY

ep: validAirport(in)

tjJ: validCity(out) 1\ airportInCity(in, out)
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Specification C.14 lookupAirlineAlliance

AIRLINE -+ ALLIANCE

ep: validAirline(in)

t/J: airlineInAlliance(in, out)

Specification C.IS lookupMemberAirlines

ALLIANCE -+ [AIRLINE]

ep: validAlliance(in)

t/J: allAirlinesInAllince(out, in)
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