











Abstract

The ability to remotely sense ocean winds has numerous research and commercial
applications. High Frequency radar operating in ground wave mode has proven itself
to be an effective means of remotely sensing the ocean surface. This is because at
the typical operating frequencies (3-30 MHz), the radar signal can travel very large
distances. Also, wavelengths in this band interact closely with the most energetic
ocean waves. The problem that is dealt with in this thesis is the extraction of the
wind speed blowing over a radar-illuminated patch of ocean.

The Doppler spectra of the returned radar signal contain a wealth of oceanographic
information. This is owing to the various complex electromagnetic scattering mech-
anisms. The radar cross section of the ocean surface that results has many salient
features that can be used to extract particular ocean parameters. Based on the exist-
ing HF radar theory, an expression is derived that extracts the peak frequency of the
ocean spectrum from the radar cross section. This spectral peak frequency is then
linked to oceanographic models which dictate the growth of an ocean spectrum to a
given wind condition.

The models are applied to simulated noisy data. In addition, appropriate signal
processing techniques are applied to mitigate the effects of noise and to improve the
robustness of the models. Finally. the mmodels are applied to sample HF radar data
provided by Rutger’s University. This data was obtained from a Coastal Ocean Dyv-

naimics Applications Radar (CODAR) operating in Breezy Point, NY. The results are



then compared to ground truth data provided by the National Oceanic and Atmo-
spheric Administration (NOAA) from a weather station located in the vicinity of the

itluminated patch of ocean.
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winds safely and inexpensively from the shoreline. This is much easier than the ex-
isting method of deploying measurement vessels into the sometimes dangerous ocean

environment.

1.1.1 Conventional Ocean Wind Speed Measurement

Currently, ocean winds are measured either by an anemometer onboard a coastal
surveillance ship, by permanently moored wave buoys, or via satellite means. On a
ship, the anemometer measures wind the same way that it would on land. Several
drawbacks come with this method. First, a ship must be fueled and manned to survey
the ocean surface. This can be very costly. Secondly, ships can only provide the
measurement for a particular location on the ocean and at a particular time. Finally,
there is the safety consideration of the the ship and its crew which are subject to the
dangerous ocean environment.

Wave buoys are also employed. Environment Canada has deployed several buoys
along the nation’s coastline. Buoys have the advantage of not being manned, so their
operating cost is lower as is the risk of endangering human life. They also provide
continuous coverage once deployed. However, they can only monitor the one point
of the ocean surface they occupy. To provide more coverage would involve deploying
many wave buoys which would be very expensive. Also, as they are susceptible to
the harsh ocean environment. wave buoys require frequent maintainence.

Ocean winds can also be measured by satellite means, such as the SeaWinds scat-
terometer aboard the QuickSCAT satellite operated by the National Aeronautics and
Space Administration (NASA). Microwaves emitted from the satellite are scattered
by the ocean surface and the returned signal is processed to extract the ocean winds.
Implementation of sucli as system is obviously very costly. In addition, since the
satellite must orbit the Earth. it can only monitor a particular patch of ocean for a

particular time.
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Figure 1.1: Typical radar cross section for operating frequency of 15 MHz, wind speed
of 15 m/s and wind direction of 30°.

1.2 Literature Review

Crombie [1] noted that the Doppler spectrum of echo from an HF radar operating
in surface wave mode over the ocean surface exhibited peaks above and below the
carrier frequency. These discrete Doppler shifts are produced exclusively by waves
that have a length of one-half the radar wavelength: one moving away from the radar,
one moving toward the radar. He correctly deduced that Bragg scattering [2] is the
physical mechanism responsible for this behaviour. The peaks resulting from the
first-order Bragg scatter can be seen in Figure 1.1.

Crombie’s results were later verified by Barrick and Peake [3] based on a reduction
of the boundary perturbation theory of Rice [1] as applied to the analysis of backscat-
ter from a slightly rough surface. Wait [5] also cited Bragg scatter as an explanation

for the results of his analysis of backscatter from sinusoidal waves.
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Barrick [6] went on to develop a theoretical model of the first order cross section
that was consistent with Crombie’s observations. This cross section model assumed
plane-wave incidence and infinite conductivity of the scattering patch. Walsh et al.
(7] later derived a model of the first order cross section without these assumptions.
They hence produced a more realistic model with the Bragg peaks represented by
sampling functions instead of delta functions.

Surrounding the Bragg peaks is a continuum of backscatter that still needed to be
explained. Ward [8] first suggested that this continuum is due to higher order wave
interactions. Hasselmann [9] first proposed the two sources of spectral contribution:
the second order terms for scatter from Rice’s boundary perturbation theory, and
the second order terms from the hydrodynamic equations which describe the water
surface height. Hasselmann, along with Crombie [10] and Barrick [11], also suggested
that the second order backscatter could be used to recover more information about
the sea state.

Barrick [12] developed a mathematical model for the second order cross section
via perturbation analysis. He found that this cross section was related to the di-
rectional ocean wave spectruin via a non-linear two-dimensional Fredholm integral.
Barrick’s second order expression once again assumed plane-wave incidence and infi-
nite conductivity. Gill and Walsh [13] derived an expression that, more realistically,
incorporated a dipole source.

Extraction of the wind direction from the Bragg peaks of the radar return has
been extensively documented [14]. [15]. All methods involve an expression which
relates the mean wave direction to the ratio of the left and right first-order Bragg
peaks (see Figure 1.1). The onlyv uncertainty lies in the fact that the wave directional
models used in the derivation are strongly dependent on wind speed, and hence a
priori knowledge of the wind speed is required for accurate results [16]. Heron and

Rose [17], however, made the case that the ocean waves represented by the Bragg
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agreement with the ship measured counterparts.

The methods referred to above are viable. However they break down for high sea
states and higher frequencies due to the inadequacy of the non-linear wave theory in
these situations [26]. There is also an approximation in the electromagnetic scatter
theory which is violated [6]. Both methods have also been demonstrated to be subject
to contamination due to the presence of swell [27]. Wyatt [28] proposed that the swell
component of the measurement could be identified and then removed. It was later
shown that this approach could not be taken in general since the direction of swell
travel can be much different than the wind direction inferred from the first order
Bragg peaks [29].

All of the HF radar literature pertaining to wind speed extraction makes very
little reference to the temporal nature of the response of the ocean surface to a
particular wind condition. Oceanographers have documented this behaviour, the so-
called duration-limited wave growth, though not extensively. The JONSWAP project
[24] details a relation that models the growth of ocean waves as a function of both
time and wind speed. The Coastal Engineering Research Corps (CERC) 1977 Shore
Protection Manual (SPM) [30] outlines a similar model. This was updated in the
1984 SPM to use a relationship that was more consistent with the JONSWAP model.

An ocean wave modelling project headed by the SWAMP group [31] sought to
describe the evolution of the sea state as a balance of source terms. Many forms
were proposed for these source termis. The most problematic is the nonlinear transfer
source term, a six-dimensional Boltzmann integral whose evaluation is very compu-
tationally demanding. A paramaterized formn of this term, called the Discrete Inter-
action Approximation is presented by Hassehnaun ct al. [32]. Resio and Perrie [33]

later improved on this approximation.






Chapter 2

Relevant Models

When the electromagnetic signal is returned from the ocean surface. it is mixed with
a radio frequency (RF) signal and then converted to a periodogram which shows the
response of the radar return for a particular Doppler frequency. The periodogram
is frequently referred to as the radar cross section of the ocean surface. The cross
section of the ocean surface can be roughly broken down into first and second order
cross sections. Each constituent cross section is added to yield an overall cross section;
le.

o(wq) = o1(wq) + 02(wa) (2.1)

where wy is the angular Doppler frequency and o, represents the different cross sec-
tions. A depiction of a typical, ideal overall radar cross section can be seen in Figure
1.1. The constituent radar cross sections will be discussed in Section 2.2 and Section

2.3. First, several ocean wave models will be discussed.

2.1 Ocean Spectrum Models

The state of the ocean environment is mathematically characterised by a wind-wave
ocean spectrum. An ocean spectrum provides a measure of how mmuch energy a wave

with a certain frequency and in a certain direction has in a region of ocean due to a
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particular wind speed. Many mathematical models for wind wave ocean spectra exist,
including the Philips spectrum, the Pierson-Moskowitz spectrum, and the JONSWAP

spectrum. Typically a directional ocean spectrum has the form
S(f.0) = F(f)G(0) (2.2)

where F'(f) represents the prevalence of a particular ocean wave frequency f and
G(0) is the directional factor which accounts for the azimuthal direction of travel.

G(0) has the property that
/ G(0)d6 =1 (2.3)

ks

and is usually of the form

G(6) =T cos™ <9“+9"') (2.4)

where s is the spread parameter, 6 is the angle of the wind direction, and 6 is the
angle of the wave vector. I' is a proportionality constant that ensures equation (2.3)
is satisfied. It has been found that s = 2 for many applications [25], which leads to
I'=4/(3n).

The Pierson-Moskowitz spectrum for fully developed seas is still in frequent use,

and mathematically defined as

F(f)= Mexp [—0.74 <Lf>4 (2.5)

(2m) f5 21Uy 5

where apy; = 0.0081 is the Pierson-Moskowitz constant, and Ug 5 is the speed of the
wave-generating wind at 19.5 m above sea level. Figure 2.1 illustrates the Pierson-
Moskowitz spectrum for wind speeds of 10, 15. and 20 meters per second. A more
popular ocean spectrum model is the JONSWAP (Joint North Sea Wave Project)

spectrum which is tailored towards a growing wind sca. It has the same basic form

10
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as the Pierson-Moskowitz spectrum, except that it is multiplied by a shape factor v*
which accounts for fetch-limited and duration-limited spectral growth. Nathemati-

cally it is defined as

F(f) = 9 o [-0.74 (Ly] . (2.6)

(277)4f5 2rUyos5f
where
(f - fp)2]
a=exrp|— 2.7
vt 2.1
and
Xg ~0.22
ay; = 0.076 ( ) (2.8)
! Uto
where X is the fetch and
v=33 (2.9)
oy = 0.07 < f
, f </ o0

o;=009 f>f .
The wind speed Ujg used in the JONSWAP model is referenced at 10 m above sea
level. Expressions for the fetch X will be developed in Chapter 4. A plot contrasting
the JONSWAP spectrum with the Pierson-Moskowitz spectrum for a wind speed of
Ujp = 10 /s is shown in Figure 2.2. Ocean winds are frequently measured from
different heights above sea level. These can be related, however. by employing the
logarithmic profile of ocean winds over the sea surface. The governing equation is
23]

U(z) = —* log (L) (2.11)

2 2o
wlhere z is the height above sea level. u, is the friction velocity. and zq is the roughness

length. The von Karméan constant lias an accepted value of ~ = 0.4. Further. u, and
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=g are related by the Charnock relation [34]

2
Qepls
2 = L (2.12)
g

where a., = 0.0144. Hence, for a given wind speed U at a height > above the ocean
surface, the parameter zy can be found and used to extract other U values at different

heights.

2.2 First Order Cross Section

Crombie [1] showed that the mechanism primarily responsible for the first order cross
section is Bragg scattering. Electromagnetic wavelengths in the HF band are on the
order of tens of metres, which closely match the lengths of waves in the most energetic
part of the ocean spectrum. Therefore an EM wave of length A travelling along the
ocean surface will resonate over ocean waves of length A/2 when scattered. In terms

of wave numbers the Bragg condition becomes

K = 2k (2.13)

where K = w?/g is the ocean wave number and kg is the radar wave number. Bar-
rick originally modelled the Bragg scattering with Dirac Delta functions. under the
assumption that the scattering patch of ocean was infinite. Walsh et al. [7]. how-
ever. have relaxed these assumptions and modelled the first order cross section with

sampling functions. Mathematically, the first order cross section is given as

K’5/2

o1 (wqe) = 247rkg Z
m=-—1.1 \'/'a

S11(mK)Sa* [Af (K — 2A-U)J (2.14)
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where S;;(mK) is the ocean spectrum and Sa(z) = sin(z)/z is the sampling function.
Here the Doppler axis is broken down into two zones
m=1 wg <0

(2.15)
m=—1 wg>0

where the Doppler radial frequency wy = —my/¢gK. From equation (2.14) it can be
seen that the peaks occur when the argument of the sampling function is zero. That
is,

wq = ++/2gko = fwp , (2.16)

which is the Bragg frequency for a given radar operating frequency.







The radar cross section due to this behaviour has been derived by Barrick [12]

and is given by

oop(we) =~ 2°72%k; Z Z // Sy K1) S(myKy)| Ty |?
-7 JO

mi==31mo=%1

’) (wd +miVaK + mm/ng) KidR,dOx, (2.17)

The cross section is found by integrating over all possible arrangements of K, and K,
that result from varying 6y, over the interval [—7, 7). The magnitudes K, and K,

are limited by the delta constraint of equation (2.17):

Wq + mi\/ gKy + ma/gKo (2.18)

Further, K5 is related to A} by the law of cosines
K2 = K? + K? - 2K,K cos(0x — 0x,) (2.19)

The parameters ni; and msy can take on values of 1 or -1. They therefore delineate the
different Doppler regions of the cross section. These regions and the corresponding

values of my; and m» are listed below.

m; =1 my =1 Wy < —wpg

my=—1 my=1 —wp <wg <0

(2.20)
m; =1 my=—1 0<wy < —wpg
my=—1 my=-1 wy>wpg

The vectors K} and A, trace out closed contours for different Doppler frequencies wy.
These contours can be seen in Figure 2.5 for m; = m,. Note that for Doppler frequen-

cies |wq| < v2wg. the locus surrounds only one of the two focal points. For larger

17



0.3

0.2F - BN

(rad/m)
P
N
—
TN
\
o
7

N / ~ :
s N = \
o ~ o, 1 4u)B - //
AN
\ /
-——" ——
0.2 ~ //
-0.3F
-0.4 ! L 1 t 1 1 L 1
-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

K rad/m)

1(X)(

Figure 2.5: Contours of constant Doppler for m; = mo.

magnitude Doppler frequencies, the locus will surround both focal points. Finally,
I'r is the hydrodynamic and electromagnetic coupling coefficient. The hydrodynamic
portion 'y of I'r is defined as

J
2

I 2
Ty = (K1+K2+ I (KiKy— By - Ry)Y Hw‘“’”) (2.21)

WiWa gK — (w1 +ws)?

with w, = VgKk,.
The expression in equation (2.17) can be simplified by applying the delta con-
straint to the inner integral. To do so, the arguments of the delta function must

expressed in terms of K. Lipa and Barrick [35] approach this by first defining

Y = VK, (2.22)
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with differentials related by
2YdY = dK; . (2.23)

Next, the function D), is defined as

D, = —mi\/gK1—mar\/gKs = —mi/gY —ma/g(Y + K?—2KY? cos O, )" (2.24)

such that the delta constraint becomes é(wy — D,). Finally, the differential dD, is

introduced via the Jacobian of the transformation

oY
dY = |—1{dD, 2.2
with
oY 1
= (2.26)
oD, Jall+ L(Y3—2Y kg cos(0rc, —0x))
g [Y4+4k3—4Y 2ko cos(Ok, —05))""
Hence the second order radar cross section can be expressed as
I <’ C 2 3| 9Y
ng(wd) =2'm ;{70 S(lellﬁl)S(mzl\g)IF”l (S(Q)d — DP)Y oD dedOKl
—m JDp P
(2.27)

For each Doppler frequency w,; and angle 0y, a value of Y is sought such that the
following is satisfied

Dy(Y.04,) — wy =0 (2.28)

This is typically done via numerical solving methods. such as the Newton-Raphson

root finding algorithm [36].
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2.4 Noise Model

The cross sections presented in Sections 2.2 and 2.3 are idealized models. They are
effectively the average of all measurements over all locations for each given condition.
Also, they fail to account for external noise limiting at high frequencies. The wind
paraneter extraction techniques presented in Chapter 3 are highly sensitive to noise.
It is necessary to quantify the effect of noise and develop theoretical signal processing
techniques to limit it.

The average power spectral density of the occan clutter P. as returned to the

receiving antenna array is given by the radar range equation

_ NdP,G.G|F(p,wo)|* Aco(wa)
(4m)3 "

Pe(wa) (2.29)

where P, is the average transmitter power, GGy and G, are, respectively, the gains of
the transmitting and receiving antenna array, A, is the effective cross sectional area
of the receiving array, and d, is the duty cycle of the transmit pulse. F(p,wp) is the
spherical earth attenuation function [37] for a given patch range p and radar radial
operating frequency wyg.

The power spectral density of the external noise must now be found. External
noise may be categorized as atmospheric, galactic, or manmade [38]. The effects of
these noise sources is dependent on the location, time, and frequency of operation.
The value of the noise figures can be measured for particular operating conditions,
but for the purposes of this discussion an average value will be sufficient.

It is assumed that the noise is a stationary. white. Gaussian process. Hence, the

power spectral density is [38]

kT,
Sx(w) = 2—010“'"/10 (2.30)

s
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in which & is Boltzinan's constant (1.38 x 107%* J/K), T is the reference temperature
(290K) and Fy,, is the noise figure. It should be noted that Sy(w) = 0 outside of the
noise bandwidth of the receiving array.

Typically a radar sends out a stream of many pulses. In this case, Gill [19] has
shown that for sampling at the pulse centre, the external Doppler noise spectral

density becomes
[52c]
Pn(wq) = deSy(w) Z Sa[mmnd,] (2.31)

m=| 5|
The power spectral densities of clutter in equation (2.29) and noise in equation (2.31)
are based on an infinite time series. More realistically, a radar cross section is based
on a finite time series. This can be emulated by employing Pierson’s model for a
single variable stationary Gaussian process [39]. For a given spectral form (either

clutter or noise) F'(w), the finite time signal becomes

f(t) = Bejw’ej‘\/F(w)dw (2.32)

where € is a random phase term which has a uniform distribution over the interval
e € [0,2m). The differential under the square root precludes the possibility of an
analytical expression for f(¢); however, the integral can be approximated by the

summation

Fle) =) el /F(w) Aw . (2.33)

k=0
As in [19], the time series of both the ocean clutter and the external noise are calcu-
lated and then added to get a representation of the total returned signal. The signal
is then converted back into the frequency domain via Fourier transformation to yield

a simulated noisy cross section.
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Chapter 3

Recovering Wind Information

3.1 Wind Direction

The Bragg peaks of the first order cross section can be used to obtain the wind direc-
tion. The derivation, originally done by Stewart and Barnum [14] is straightforward.
The value of the first order cross section at the negative Bragg peak (wp) is given by
substituting m = 1 and K = 2k into equation (2.14). The sampling function reduces

to unity, giving

K2 [ap), —0.74¢* 4 O — 0

N o 412 PM g 25 K U

U](LL)B) =27 kO \/g [41(4 exp <W>} l37 COS (—2—>] . (31)
Similarly. the positive Bragg peak (w}) is given by substituting m = —1 and K = 2k,

into equation (2.14):

K52 [« —0.74¢° 4 L (T4 0k —0
172 PM g 2 K U .
01 ((,J+) =27 A’D \/g l41\,4 exp (W):I |:§ cOs (#)] (52)

Only the directional factors differ in these two equations. Making use of the identity

cos(x + m/2) = — sin(x). and dividing equation (3.2) by equation (3.1) gives
5 O — Ok
Jl(wl_g) = tan®* <7l R ) (3.3)
o(wgy) 2
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which is easily solved for 6, to obtain

o1 ((.d+) 1/2s
Oy = Oy + 2tan™! ((01 (wZ)) ) (3.4)

For monostatic operation, this wind direction is ambiguous. That is, it cannot be

determined whether the wind is blowing from the left or the right of the radar beam.
Usually this ambiguity can be resolved by additional meteorological information. For
example, winds blow in a counterclockwise fashion around a low pressure system in
the Northern hemisphere. Huang et al. [25] have recently developed another method
for resolving this ambiguity, involving minimizing the sum of differences from three
readings representing three different angles.

This method of wind direction extraction assumes that the Bragg waves (w = wg)
are travelling in the same direction as the wind. Ocean waves respond to a given
wind condition with different time scale responses according to their length. Heron et
al {17] have concluded that the waves represented by the Bragg peaks are relatively
short and will therefore respond very quickly to thie local wind conditions. The time
response is typically under ten minutes, and hence it is reasonable to assume that the

wind direction extracted via this method is accurate.

3.2 Wind Speed

As noted in Section 2.3, the second order radar cross section exhibits peaks surround-
ing the Bragg peaks of the first order cross section. These second order peaks are
highly dependent upon the wind speed. Also, they can be clearly distingnished from
the first order cross section, as they are typically 10 to 20 dB higher than the first
order cross section. Figure 3.1 shows the second order cross section for wind speeds
of 10 m/s. 15 m/s, and 20 m/s. As can be seen. the peaks grow and become more

prominent at a higher wind speed. Also, the position of the peaks on the Doppler axis
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Figure 3.1: Second order cross section for different wind speeds.
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changes: for higher wind speeds, the peaks are located closer to the Bragg frequency.
From this it should be possible to relate both the power of the peak as well as the

position of the peak to the wind speed.

Relating by Power

The power of the second order peaks depend on many factors other than the wind

speed:
1. Ocean spread parameter (s)
2. Wind direction (6,,)
3. Range of the illuminated patch from the radar
4. Operating frequency

Hence relating by power requires a priori knowledge of all of these parameters
before the wind speed can be inferred. The operating frequency and range are of-
ten known, but determining the spread parameter can be very difficult. The wind
direction can be calculated from the derivation given in Section 3.1. However this
procedure is sensitive to noise and also assumes that the wind has been blowing

sufficiently long to saturate the directional spectrum.

Relating by Position

The position of the second order peaks on the Doppler axis depends only on operating
frequency and wind speed. Since the directional factor of the wave spectrum is not
a function of frequency, it does not affect the location of the spectral peak. It only
scales the value of the spectral peak. Hence the two coustituent parameters 6, and s
need not be known to relate the wind speed to the location of the second order peak

on the Doppler axis.



3.3 Differentiating the Second Order Cross Sec-
tion

From elementary calculus, the derivative of any continuous function is zero at a
local maximum. The location of the maximum of a second order cross section is of
interest. The expression given in equation (2.17) can be differentiated with respect
to the Doppler frequency. By setting the result to zero. an expression can be derived
which relates the wind speed to the position of the second order peak on the Doppler
axis.

In attempting to differentiate the second order cross section, several approxima-
tions must be made. Underlying these approximations is the knowledge that the

range of the typical locations of the second order peaks is given by
0.95wp < wWpear < 0.75wp . (3.5)

Figure 3.2 shows the contours of constant Doppler which constrain the vectors K,

and K. 5.

K> is roughly constant

For this region of intcrest, A, is typically niuch larger than A’y and roughly constant
over the range of 0g,. K, will be roughly the same magnitude regardless of how the
vector K; is arranged along the contour. Furthermore, this magnitude is roughly that
of the Bragg wave vector K = 2ky. To show this mathematically, the cosine law of

equation (2.19) is rearranged as a completed square:

(K) — KcosOy,)* + Ksin?0y, = K3 . (3.6)
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become more and more eccentric. For the region of interest, circular loci can be as-
sumed. Treating the cosine law of equation (2.19) as a quadratic in K, A, can be

solved for explicitly via

Ky = K cosO, — \/K2 cos? Ok, — (K2 — K3) . (3.12)
Only the negative radical yields a possible configuration, since A} < K. Differenti-
ating with respect to 0y, results in

dK,  Ksinf + K2 cosfp, sinfg, -
dir, VEK2cos?0y, — (K2 — K2)

(3.13)

If the approximation K, ~ K is made here, the bracketed term in the radicand

disappears. After all cancellations

dl\’l
~0. 3.14
. 0 (3.14)

Hence for the region of interest, K, is roughly independent of . Figure 3.3 shows
the variation of K, with 6, for different Doppler frequencies. Note that this approx-
imation becomes less valid for lower magnitude Doppler frequencies. For a Doppler
frequency of 0.9 fg, the peak error in assuming I, is constant with respect to O, is
about 12 %, whereas for a Doppler frequency 0.75 fp the peak error is about 30 %.

The Jacobian of the transformation is also assumed to be constant with respect
to Ok,, since it is only a function of K;. The hydrodynamic coupling coefficient,
however, cannot be assuined to be constant, since it varies significantly with respect
to its mean value.

Before beginning the differentiation, several symibols are defined to simply the

algebraic manipulation.
oY
oD,

J= ’ (3.15)

91\'1
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9K + (w4 wp)?
a 9K — (w1 + wy)?

(U (3.16)
A=K +K,+B (3.17)
B = mymeoy/ I(]A’QQ,ZJ (318)

With these definitions, the hydrodynamic portion of the coupling coefficient I'y; from

equation (2.21) is now
FH = % (A — B(’OS(OK2 - 01{1)) (319)

The Y3 = K?ﬂ factor is grouped in with the spectrum for the wave K, resulting in

a - —0.744°
Sl(Kl) — g/\l ]Xl 5/2 exp (]\f(j{?) G] (91\’1) . (320)
1

The spectrum for the wave K, is left as

«a —0.74¢?
S2(K2) = g]\[ [{;4 exp <K2—U4Q) G2(0K2) . (321)
1

With these substitutions the second order cross section of equation (2.17) becomes

Oop = C/ SISQ|FH]2ﬁd9K1 (322)

where C = 2772k}. It was mentioned earlier in this chapter that the directional
factors G (0k,) and G,(0k,) have no effect on the location of the peak. so these can
be treated as constants for the purposes of this discussion and absorbed into a new
constant C' = ("G1G5. Now the factors S, S, and 3 are approximately independent

of Oy, and can thercfore be taken outside of the integral. Expanding the |T'y|? term
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yields
dB(K1)
dK,

) _dR(K ,

F(K,U)B(K)R(K)) +

Or, solving for F(K;,U)

F(K,U) = — . ) (3.29)

|

where primed functions indicated differentiation with respect to ;. The function
F(K,U) can now be inverted to find an expression for the wind speed U. The delta
constraint of equation (2.18), along with the fact that \/gK, =~ wg, is used to find

K from the Doppler frequency where the second order peak occurs.

2
K, — Watmaws) (3.30)
g

Figure 3.4 shows a plot of equation (3.29), as well as a plot of the locations of
spectral peak locations from the second order model for differing wind speeds. The
second order peak used in this plot is the one immediately to the right of the receding
(negative) Bragg peak, with fgp = 0.3951 Hz and a radar operating frequency of fy =
15 MHz.

The slope of this graph becomes large for higher wind speeds. This means that
a small error in locating the Doppler frequency of the second order peak results
in a larger error in the calculated value for the wind speed. It was found that U =
30 m/s = 108 km/h was the practical limit for wind speed extraction via this method.
However, the maximum wind speed recoverable is more limited by radar saturation
[6]. Conversely. for lower wind speeds, the approximation made in equation (3.10)
becomes less valid. This is seen in Figure 3.4 where the two plots diverge more for
low wind speeds. However, it should be noted that for verv low wind speeds, the

second order peaks become less discernable from the radar return.
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It should also be noted that this derivation has only taken into consideration the
second order, double patch scatter cross section of the radar return. Theoretically.,
the peaks in question could be contaminated somewhat by the first order cross section
and the other second order cross sections. However, it is found [19] that the second
order, double patch scatter cross section is much larger at the peaks than all of the
other cross sections.

One nice advantage of this method is that there are up to four second order peaks
to work with. Equation (3.29) can be us  for the four different peaks by varying
the parameters m; and ms to reflect the Doppler regions from which they are taken
(see equation (2.20)). Hence, U can be calculated for the four different peaks and
average the results to get an overall more accurate estimate for the wind speed. Also,
note that a similar procedure can be used for any ocean wave spectrum model - not
just the Pierson-Moskowitz spectrum - to derive an equation that relates Doppler

frequency to wind speed.
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Chapter 4

Spectral Growth

In Sections 3.1 and 3.2 methods have been outlined for extracting the wind direction
and wind speed from a given radar cross section. A major constraint on these methods
is the assumption that the wind has been blowing sufficiently long to result in a fully
developed sea. It is therefore entirely possible that the radar can take a snapshot
of the sea state in a particular locale where a given wind speed has been blowing
for a time less than that required for full development, resulting in an inaccurate
measurement. From a given snapshot, it is impossible to tell if the generating wind
speed is weaker and has been blowing for a long time, or if a much stronger wind
speed has been blowing for a shorter time. Compounding the difficulty is the wind
direction. A stronger wind will cause the propagation direction of the ocean waves
to shift more quickly.

The quantity of interest in this chapter is the ocean spectral peak frequency; that is,
the frequency at which the ocean spectrum is a maximum. Through straightforward
differentiation of equation (2.5) with respect to wave frequency, the wind speed for a

fully developed sea is found to be related to the spectral peak frequency via

~ 0.14g
Uros

I (4.1)
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Hence for a wind speed reading extracted from a radar return, the spectral peak
for the illuminated patch of the ocean can be found. Note that the wind speed in
most oceanographic models is normally measured from ten metres above sea level,
and denoted simply as U. Using the logarithmic profile of wind speed above the sea
surface [40], an expression for U in terms of the Pierson-Moskowitz peak frequency is

obtained as
0.13¢g

The total energy density of the wave spectrum is also of interest. This is found by

integrating equation (2.5) over all frequencies:

o aPMg
Bow = [ (S 5(2nf,)t (43)

4.1 Description of spectral growth

A constant wind speed blowing over a hypothetically calm extent of ocean (called
the fetch), will result in small waves due to the pressure fluctuations caused by the
turbulent flow of air over the ocean surface. Pressure differences resulting from the
wind blowing over these small waves will then cause them to grow. This is an unstable
process since larger waves cause larger pressure differences [23]. Nonlinear effects
between these pressure-induced waves will then result in longer, lower frequency waves
[41]. The peak frequency of the ocean wave spectrum therefore decreases with time.
Eventually, the sea spectrum will saturate and no further wave growth will occur.
This is preciselv what the Pierson-Moskowitz spectrum of equation (2.5) reflects.

In the case that the wind has not been blowing over the fetch for a sufficiently

long time to saturate the spectrum, the spectrum is said to be duration limited.
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Two notable studies have explicitly examined duration limited growth: the Shore
Protection Manual (SPM) of the U. S. Army Coastal Engincering Research Centre
(CERC) [30], [42] and the JONSWAP project [24]. The results of these studies can
be used to construct curves of spectral peak frequencies as functions of time and wind
speed. Before describing these methods, several parameters must be defined [43]. The
non-dimensional fetch x is given by

_9X

X= 172 (4.4)

where X is the length of the fetch. The non-dimensional duration < is given by

== (4.5)

where t is the duration for which the wind speed has been blowing in seconds. Finally,

the non-dimensional frequency v is given by

U
v = f—p- (4.6)
g
The 1977 SPM by CERC [30] gives a relation between ¢ and x as
¢ = 6.5882 exp [\/0.0161 In” y — 0.36921n y + 2.2024 + 0.8798 In xl (4.7)
The non-dimensional frequency is given by:
0.133
(4.8)

v tanh(0.077y0-2%) ;

Thus. equation (4.7) can be solved for different values of ¢ from equation (4.5), and

the spectral peak frequency f,, can be recovered via equation (4.8) and equation (4.6).
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The JONSWAP results [24] give a much simpler relation between x and < as

S "

and a correspondingly simpler expression for the non-dimensional frequency as
v =35y"% (4.10)

It is easily deduced from equations (4.10), (4.9), (4.5), (4.6), and (4.4) that 1

£, =29.0 %t“% (4.11)

The 1984 SPN by CERC [42] gives a slightly different variation of the JONSWAP

method, whereby the non-dimensional fetch and duration are given by

_9X

c= 2 4.12
and
_ 9t (4.13)
o UA .

where Uy = 0.71U'?? is the so-called adjusted wind speed. From equations (4.10),
(4.9). (4.13). (4.6), and (4.12). f, may be explicitly expressed as

fr = 30.7/gt 2 U5 (4.14)

which. upon comparison, is not appreciably different from equation (4.11).
Plots of spectral peak frequency as functions of time and wind speed, from both the
1977 SPM and JONSWAP project. are given in Figure 4.1. Note that there is definite

discrepancy between the two curves. but botli show the near-asymptotic approach of

39



Spectral peak frequency (Hz)

25

1.5

0.5¢

- T T T 1 T T T T
—— JONSWAP
SPM (1977)
1 1] 1 R | - 1 1 1 1
1 2 3 4 5 6 7 8 9 10
Time (s) x 10°

Figure 4.1: JONSWAP and SPM growth curves.

10




09— —— —— : : : : : —

0.7

0.6 "‘l 4

051 . B

0.4+ ¥ B
\

0.3 \» R

0.2+ .

Spectral Peak Frequency (Hz)

0.1+ [ B |

Time (s) x 10°

Figure 1.2: JONSWAP growth curves for different wind speeds.

the spectral peak to a saturated value. A plot of the JONSWAP growth curves for
different wind speeds is given in  igure 4.2. This demonstrates that the wind speed
dictates not only the saturation value but the rate of change of the spectral peak.
Stronger winds will cause the spe ral peak to change more quickly during early stages
of sea development. Hence. given a peak frequency, and a time derivative of the peak
frequency, a wind speed reading can be recovered at any stage of the spectral growth
process.

Straightforward differentiation of equation (4.11) results in

; Ofp 9,3
fr = T 14.5‘/Ut (4.15)
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Chapter 5

Tests on Simulated Noisy Data

The theory developed in Chapter 3 and Chapter 4 has assumed ideal data; that is, the
effects of noise have not been accounted for. In this chapter, the robustness of these
models is tested on simulated noisy data which is generated as outlined in Section
2.4. Various signal processing techniques are also mentioned that will condition the

noisy data for use in these models.

5.1 Extracting Simulated Wind Speed

In Section 3.2 an equation was derived that related the location of the second order
peaks on the Doppler axis to the saturated wind speed. As can be seen from Figure
3.4, a slight error in locating the second order peak can result in a large error in the
calculated wind speed, especially for peaks located nearer to the Bragg frequency. It
is obvious that noise may threaten the effectiveness of this expression.

Figure 5.1 shows a typical simulated noisy cross section for a radar operating at
25 MHz and with a wind speed of 15 m/s and a wind direction of 90° to the radar
beam direction. The second order peaks are not discernable from this cross section,
and hence signal processing is required. A logical approach would be to take many

of these noisy cross sections and average them. with the hope that the contribution
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Figure 5.2: Ten averaged Doppler spectra.

of noise to the cross section will average to nearly zero. Figures 5.2 and 5.3 show the
results of averaging ten and twenty-five cross sections respectively. Notice that the
second order peaks are now discernable. However automated location of the peak is
still difficult because of the jagged edges of the graph.

To eliminate the spectral roughness, the cross section was convolved with a Ham-
ming window. Figures 5.4, 5.5, and 5.6 show the results of convolving 5, 10, and
15-point Hamming windows, respectively. with the twenty-five averaged spectra in
Figure 5.3. Generally, the longer the window, the more pronounced the second order
peaks become. The length cannot be too great. however. because then the second
order peaks will be convolved with the Bragg lines.

While averaging and windowing the cross sections minimizes the impact of noise.
the sccond order peaks are still variant: that is. the locations of the peak is still quite

inconsistent. among several cross sections. To address this issue. the wind speed is
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calculated at each of the available second order peaks, and all of the results averaged.
Figure 5.7 show the results of the extraction algorithm of Section 3.2 when the above
mentioned signal processing techniques are employed. Twenty-five generated cross
sections were averaged for an operating frequency of 25 NHz, and this was done for
wind speeds ranging from 8 m/s to 23 m/s in increments of 1 m/s. As can be seen,

the results are quite good with a maximum error of less than 6%.

5.2 Extracting Wind Speed from Spectral Growth

In Section 4.1 a model was developed that would counvert a time series of spectral

peak frequencies as read from the radar spectra to a time series of wind speeds. The




S

governing differential equation from equation (1.16) is

. U 3
S 1

Ty 1687.4g° 7’ (5-1)

and f, is obtained by employing the method outlined in Section 3.2 to find U and

then using

0.13
J (5.2)

==
|

It was demonstrated that U could be recovered from a typical noisy radar return 1
to within 10%. Hence the recovered values for f, should be recovered to 10% as |
well. Unfortunately, the differential equation is of order fg Hence a 10% error in
measurement can result in a 33% errvor in calculating the wind speed. Also. since
discrete differentiation is required, the errors could add up to 20% for the subtraction

required in calculating fp. This will lead to even more significant error. A method is l

sought which will suppress the noise of the f,(n) discrete time series.
One noticeable property about wind blowing over the ocean surface is that it has a

a very smooth distribution and sudden large changes in wind speed are unlikely. Also. f

the time response of the ocean to a given wind condition is quite slow, as dictated ‘

by the large denominator on the right-hand side of equation (5.1). As such, sudden “

changes in the spectral peak frequency f,(n) are impossible. |
Figure 5.8 shows the ocean spectral response to a wind speed of 10 m/s increasing

to 15 m/s, over a period of 10,000 seconds, with an initial peak frequency of 0.4 Hz.

Figure 5.9 shows the same time series distorted by a normally distributed 6% noise.

That is J
fp.noisy(“) = fp(n)[l + d)] (53) l

where ¢ is a normally distributed random variable with a mean of ¢ = 0. A normal
distribution is chosen because the central limit theorem will apply to averaging many

radar cross sections with a uniform distribution [44]. Further. the standard deviation
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Figure 5.8: Ocean spectral growth for a wind speed of 10 m/s increasing to 15 m/s.

of the distribution of ¢ is taken to be o4 = 6%/\/55 = 1.2%, as per the formula in
[44].

Low-pass filtering seems like an obvious solution to the problem. Applying a
Hamming window or Butterworth filter indeed results in a “smoother” signal. The
key problem to be addressed here is that there are only a certain range of slopes
for the signal f,(n) which represent physically possible wind conditions. Assuming a
maximum wind speed of 30 m/s suddenly applied to a fairly calin sea state having an

ocean spectral peak frequency of 2 Hz | this range of slopes is (from equation (5.1))
0< f, <0.0145 72 (5.4)

It is possible to find an average slope along many poiuts using a regression line

technique. This approach poses two problems. First, the result would represent the
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average of the wind speeds present in the time encompassed by the f,(n) points.
Secondly, a suitable number of points must be determined. Even then it is possible
to have a slope outside the acceptable range. It would therefore be preferable to
generate a non-linear curve, according to the differential equation in equation (5.1).
which best fits the given data. For this. a non-linear fitting algorithin is required, such
as the Gauss-Newton least squares method [45]. The shaping parameters would be
the vector of wind speeds, and an initial spectral peak frequency. The results of using
this approach can be seen in Figure 5.10. As can be seen. the curve-fitting method
yields acceptable results, with a peak error of roughly 20%. Note that the recovered
results near the end of the time series are more deviant that those in the beginning
and in the middle. This is owing to the nature of the least-squares curve fitting
algorithm and the differential equation in equation (5.1). An error in an estiinated

wind speed toward the beginning of the time series will accumulate to a verv large
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Figure 5.10: Recovered wind speed from noisy f,(n) time series.




square error overall. In comparison, the effects of an error later in the time series will
have a much smaller impact on the overall square error. Hence more importance is
shifted towards the convergence of earlier time series points than later ones. Later

time series points can hence be expected to be more erroneous.




Chapter 6

Application of Models

HF ground wave radar data were collected from a Coastal Ocean Dynamics Applica-
tions Radar (CODAR) unit. that Rutgers University operates at Breezy Point, New
York. The scanned patch of ocean is at 40°30" N latitude and 73°54° W longitude.
The run was over a seven hour period on August 31, 2004, from 14:11:20 EDT to
21:11:39 EDT. Ground truth data were acquired from the National Occanic and At-
mospheric Administration (NOAA) website. NOAA has a weather station deployed
in the Atlantic Ocean at 40°27’ N latitude and 73°48" W longitude, which is very near
where the Breezy Point CODAR unit operates.

Radar information was grouped in range bins of 10 km each. A Doppler spec-
trum was generated every 256 seconds. The data, as received, were represented as a
discrete-time series of complex voltages as received by the three receiving antennas of
the CODAR. Lipa and Barrick [46] have derived the relationship between the three

antenna voltages as

Vi(@)l®) | (Va(@)P)

(V)P = | (6.1

where V;(w) and V,(w) are the complex frequency spectra obtained from the two loop
antennas, and V3(w) is that of the monopole. The constants a, and a, are normally
found by fitting the data using a least-squares algorithm [16]. With an interest in

reducing computation time. only the monopole voltage will be used to construct
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Figurc 6.1: Sample cross scection from Breezy Point run.

the Doppler spectra that will be used for wind speed extraction. This is a valid
approach, since recall that the extraction method of Section 3.2 does not depend on
the magnitude of the second order peaks, but rather their positions along the Doppler
frequency axis. Figure 6.1 depicts a sample radar cross section taken from a range bin
at 14:11:20 EST. As can be seen. the cross section requires the conditioning outlined
in Section 5.1.

Figure 6.2 shows the same cross section convolved with a twenty-point Hamming
window, with the first nine and last ten points truncated. The second order peaks are
now recognizable, and it is entirely possible to apply the method outlined in Section
3.2 to obtain an assumed saturated wind speed from this cross section. First. however,
the effects of surface currents must be removed from the cross section.

Surface currents result in a shift of the idealized cross section along the Doppler

axis. To undo the effects of surface currents. a new zero-Doppler point must be
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identified on the axis. Zero-Doppler occurs halfway between the two Bragg peaks
when there are no surface currents present. Hence. it will be assumed that the
average of the two indices representing the Doppler location of the left and right
Bragg lines will be the index of effective zero-Doppler, n...,. Given the indicial
distance between effective zero-Doppler 1., and the Bragg line ng that is closest to
the second order peak of interest, the index of the second-order peak ngop can be
normalized between zero (zero-Doppler) and one (Bragg line). Mathematically, the
radial Doppler frequency wsop of the second order peak is given as
Nsop — Nzero

wWsop = ———————————————Wpg (62)
np — Nzero

and it is this value that will be used in the method outlined in Section 3.2. Using
the second order peaks identified in Figure 6.2, and reading from left to right, values
of 10.57, 9.52, 9.26, and 9.33 are obtained for wind speeds in metres per second.
Averaging these four quantities gives a saturated wind speed of Uy, = 9.67 m/s, and
an implied spectral peak of f, = 0.1319 Hz.

Performing this same method over all of the Doppler spectra acquired during the
duration of the run, a series of U,, readings is obtained and presented in Figure
6.3. Note that the trend suggests that the wind speed is increasing. This series of
Usqt values was then converted to implied spectral peak frequencies using the relation
given in equation (4.2).

Finally, a Gauss-Newton least-squares fitting algorithim was used to fit the dif-
ferential equation in equation (5.1) to the radar-inferred data using 100 wind speeds
corresponding to the 100 time points reflected by the data as fitting parameters. Fig-
ure 6.4 shows the spectral peaks inferred from the radar. as well as a plot of the fitted
curve.

The wind speeds which were recovered via this method are shown against the
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Figure 6.7: Radar recovered values using techniques in Section 4.2.

seems to follow the trend rather faithfully. However, the recovered wind speeds seem
to be off by a constant factor of about 30 %. This is quite possibly due to the clioice
of the S;,, term, recalling from Section 4.2 that there are many such models available.
Also, it is noted that there is significant computation time required to fit this model

using a Gauss Newton algorithm.
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Chapter 7

Conclusions and Recommendations

In Chapter 3, an expression was derived that related the saturated wind speed to the
position of the second order radar cross section peaks along the Doppler axis. This
was done by differentiating the mathematical model based on certain assumptions
that could be made in the regions of interest. Using the resulting expression, it was
possible to extract the saturated wind speed from siimulated, ideal radar cross sections
to a very high degree of accuracy.

From the radar-inferred saturated wind speed it is possible to calculate the peak
frequency of the ocean spectrum. The dependence of ocean spectral growth with
respect to both time and local wind conditions was addressed in Chapter 4. A differ-
ential equation was derived based on existing JONSWAP models that related wind
speed, time, and the spectral peak frequency. By solving this equation using a dis-
crete approximation, it is possible to extract a wind speed record from a time series of
ocean spectral peaks. It is also possible to recover the wind speed from spectral peaks
using numerical spectrum growth techniques such as the SWANMP project. However,
it was found that this method is much more computationally demanding.

The models developed in Chapters 3 and 4 are quite vulnerable to noise. Signal
processing techniques were discussed in Chapter 5 that would mitigate the effects of

ordinary HF radar noise. These techniques and the nodels themselves were tested
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against simulated noisy data. Finally, in Chapter 6, these methods were applied to
real HF radar data obtained by Rutger’s University from a CODAR unit operating
over the ocean surface near Breezy Point, NY. The wind speeds extracted from the
radar data were compared to ground truth data acquired from a weather station
operated by NOAA. The results were very encouraging, with an error of less than

20% for the majority of the time series.

7.1 Suggestions for Further Work

More Doppler spectra of the HEF ocean echo could be obtained and averaged to yield
more accurate saturated wind speed values and hence more accurate spectral peak
frequency readings. In addition, more spectral peak frequency readings could be
obtained over the same period of time — that is, readings could be taken closer than
256 seconds apart. This would result in a better curve fit for the method outlined in
Section 5.2.

Note that all of the spectral peak frequency time series was used in the wind speed
recovery algorithm. Also the last few wind speed points that were recovered were quite
deviant as compared to the rest of the time series. With this in mind, and using the
outlined methods, future spectral peak readings are required to obtain an accurate
current wind speed reading. A higher density of spectral peak readings would help
to lessen this problem, as well as to iinprove the accuracy. Also, more rescarch could
be conducted to develop more sophisticated signal processing techniques than those
uientioned in Chapter 5 to yield more accurate results.

More research needs to be conducted on decaying sea states. The spectral peak
frequency of the illuminated patch of ocean cannot keep decreasing. Eventually, the
swell will mmove out of the fetch region and result in lower or less developed ocean

state. The models presented in Chapter 4 do not address an increase in the spectral
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peak frequency, though this obviously must happen at some point. The literature
appears to be quite scarce on the nature of decaying sea states. This subject needs to

be studied further before the presented models can be expanded to incorporate them.
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