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Abstract

Reconfigurable systemis have drawn increasing attention from both academic re-
searchers and creators of commercial applications in the past few years because they
could combine flexibility with efficiency. There are two main types of reconfigurable
architectures — fine-grained and coarse-grained. The functionality of fine-grained ar-
chitecture hardware is specified at the bit level while the functionality of the coarse-
grained architecture hardware is specified at the word level. Coarse-grained recon-
figurable architectures (CGRAs) have gained currency in recent years due to their
abundant parallelism, high computational intensity and flexibility. A CGRA nor-
mally is comprised of an array of basic computational and storage resources, which
are capable of processing a large volume of applications simultaneously. To exploit
the inherent parallelism in the applications to enhance performance, CGRAs have
been structured for accelerating computation intensive parts such as loops, that re-
quire large amounts of execution time. The loop body is essentially drawn onto the
CGRA mesh, subject to modulo resource usage constraints. Much research has been
done to exploit the potential parallelism of CGRAs to increase the performance of
time-consuming loops. However, sparse connectivity and distributed register files
present difficult challenges to the scheduling phase of the CGRA compilation frame-
work. While traditional schedulers do not take routability into consideration, software
pipelining can improve the scheduling of instructions in loops by overlapping instruc-
tions from different iterations. Nodulo scheduling is an approach for constructing
software pipelines that focuses on minimizing the time between the initiations of it-

erations — the so-called initiation interval (I7). For example, if a new iteration is
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started every I cycles, the time to complete n iterations will approach I1 x n, for

large n loops, thereby maximizing performance.

The problems of scheduling (deciding when an operation should happen), placing
(deciding where an operation should happen), and routing (the problem of how in-
formation travels though space and time between operations) can be unified if they
are modelled by a graph embedding problem. The data flow graph of the loop is
embedded in a routing resource graph representing the hardware across a number of
cycles equal to the initiation interval.

Particle swarm optimization (PSO) has shown to be successful in many applica-
tions in continuous optimization problems. In this thesis, we have proposed algo-
rithms to solve scheduling, placing, and routing of loop operations simultaneously
by using PSO. We call this approach modulo-constrained hybrid particle swarm op-
timization (MCHPSQO). There are many constraints and one optimization objective,
which is the II that needs to be considered during the mapping and scheduling pro-
cedure. The scheduling algorithm tries to minimize the initiation interval to start
the next iteration of the loop under the resource and modulo constraints for the
architecture being used.

When conditional branches such as if-then-else statements are present in the loop,
they create multiple execution paths. Exploiting conditional branches through our
predicated exclusivity, the MCHPSO algorithm reuses the resources which are in
the exclusive execution paths and which may allow the loop to be scheduled with a
lower /. Finally, a priority scheme algorithm along with recurrence aware modulo
scheduling is proposed to map inter-iteration dependencies onto CGRAs, which is

able to save resources for all recurrences cycles and to map remaining operations.
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Chapter O

Introduction

0.0 Reconfigurable Computing

Reconfigurable systems [Abielmona, 2009] have drawn increasing attention from both
academic and commercial researchers in the past few years because they combine
flexibility with efficiency and upgradability [Todman et al., 2005]. The flexibility in
reconfigurable devices mainly comes from their routing interconnect. Reconfigurable
computing fills the gap between application-specific integrated circuits (ASICs) and
general purpose processors (GPPs), as described in Figure 0.0. When compared with
GPPs, reconfigurable computing has the ability to make substantial changes in the
data path, in addition to the control flow. However, when compared with ASICs,
it has the possibility to adapt the hardware during the runtime by "loading" a new
configuration in the memory. To avoid the bandwidth limitation between processor
and memory, called the Von Neumann bottleneck, a portion of the application is

mapped directly onto the hardware to increase the data parallelism in reconfigurable



computing.

Perfarmance
Y

- ASIC

-
Reconfigurable
Computing
{FPGAs, CGRASs)

[ Micro-

; processor

v

Flexibility

Figure 0.0: Advantages of Reconfigurable Computing

The principal benefits of reconfigurable computing compared with ASICs and
GPPs are the ability to design larger hardware with fewer gates and to realize the
flexibility of a software-based solution while retaining the execution speed of a more
traditional, hardware-based approach [Barr, 1998]. Due to the dynamic nature of
reconfigurable computing, it is advantageous to have the software manage the process
of deciding which hardware objects to execute.

Reconfigurable architectures are broadly classified into fine-grained and coarse-
grained. The first devices that had been used for fine-grained reconfigurable com-
puting were the field-programmable gate arrays (FPGAs). An FPGA consists of a
matrix of programmable logic cells, executing bit-level operations, with a grid of in-

terconnect lines running among them. FPGAs allow realizing systems from a low




granularity level, that is, logic gates and flip-flops. This makes FPGAs very popular

for the implementation of complex bit level operations. However, FPGAs are ineffi-
cient for coarse-grained data path operations due to the high cost of reconfiguration
performance and power [Hartenstein, 2001]. The coarser granularity greatly reduces
the delay, power and configuration time relative to an FPGA device at the expense
of reduced flexibility [Dimitroulakos et al., 2007]. However, coarse-grained reconfig-
urability has the advantage of much higher computational density compared to the

FPGAs.

0.1 Coarse-Grained Reconfigurable Architecture

Coarse-grained reconfigurable architectures (CGRAs) have been emerging as a po-
tential candidate for embedded systems in recent years. CGRAs have a data-path of
word width whereas fine-grained architectures are much less efficient and have huge
routing area overhead and poor routability. A major benefit of CGRAs over FPGAs
is a massive reduction of configuration memory, configuration time, and complexity
reduction of the Placement and Routing (P&R) problem [Hartenstein, 2001|. These
architectures combine with the high performance of ASICs and the flexibility of mi-
croprocessors, to accelerate computation intensive parts of applications in embedded
systems [Dimitroulakos et al., 2007]. However, there are still many outstanding is-
sues such as a lack of a good design methodology to exploit high performance and
efficiency on CGRAs [Vassiliadis and Soudris, 2007a].

CGRAs consist of programmable, hardwired, coarse-grained processing elements

(PEs), which support a predefined set of word-level operations while the intercon-







nemory. The configuration memory may store one or multiple configuration contexts,
but at any given time, one context is active. The controller is responsible for con-
trolling the loading of configuration contexts from the miain memory to configuration
memory, for monitoring the execution process of the reconfigurable hardware and for
activating the reconfiguration contexts. The interconnection network can be realized
by a crossbar or a mesh structure.

CGRASs can provide massive amounts of parallelism and high computational ca-
pability. Typically, the application domains of CGRAs are Digital Signal Processing
(DSP) and multimedia. These kinds of applications usually spend most of their exe-
cution time in loop structures. These computational intensive parts have high levels
of operation and data parallelism. The design of such systems requires a good cor-
respondence between the coarse-grained reconfigurable architecture and the loop’s
characteristics. Kernels (loops) of an application are mapped onto the array in a
highly parallel way. Generally, in order to schedule a kernel, it needs richer intercon-
nections. However, richer interconnections come with costs such as wider multiplex-
ors, more wires, and more configuration bits which translate to large silicon area and
higher power consumption. Moreover, even with the same amount of interconnection
resources, we can expect variation among topologies. Choosing a good topology is
an cssential step in the architecture exploration. Typically, the applications which
belong to the application domain of the CGRAs, are characterized by the high data

transfer rate between the processor and the memory [Dimitroulakos et al., 2007|.



0.2 Compiling Loops onto CGRAs with Modulo
Scheduling

There are abundant computational resources available for parallelism in CGRAs.
The target applications of CGRAs are typically telecommunications and multimedia
electronics, which often spend most of their time in critical segments, typically loops
[Mei et al., 2003b]. The massive amounts of parallelism found in CGRAs can be used
to speed up time critical loops of an application. Noreover, the loops often exhibit
high degree of parallelism and require a great deal of computation intensive resources.

In order to map the critical loops, we have to consider the data dependency within
an iteration of a loop and inter-iteration dependency. When conipiling a loop onto
CGRAs, each operation within the loop requires a resource to be executed on the
CGRA and the time at which the operation will execute. The executed operation has
to be routed to the dependent operations in the loop.

Since each loop iteration repeats the same pattern of executing operations, com-
piling loops onto CGRAs can be achieved by modulo scheduling [Hatanaka and
Bagherzadeh, 2007]. Modulo scheduling is a software pipelining technique [Llosa
et al., 2001] that overlaps several iterations of a loop by generating a schedule for
an iteration of the loop. Modulo scheduling uses the same schedule for subsequent
iterations. Iterations are started at a constant interval called the Initiation Interval
(II). The time taken to complete a loop of n iterations is roughly proportional to
II. The main goal of modulo scheduling is to find a schedule with as low an II as
possible.

The scheduling, placing and routing loops onto CGRAs faces several architectural

Ut









for coarse-grained architectures. As a result, a fast and efficient modulo scheduling

algorithm for CGRAs with parallel search is developed.

The objectives of this thesis are:

To develop a fast and efficient scheduling, placing and routing algorithm called
modulo constrained hybrid particle swarm optimization (MCHPSO) to exploit

loop-level parallelism of different target applications.

To analyze the performance of MCHPSO in various CGRA topologies and con-

figurations.

To apply MCHPSO to various benchmarks in telecommunications and in mul-
timedia applications and to compare the 11 achieved with other scheduling al-

gorithms.

To develop an algorithm to analyze the DFG with conditional code generated
from a HARdware Parallel Objects Language (HARPO/L) program and to

schedule the conditional code with MCHPSO with efficient use of resource.

To develop an algorithm to handle loop-carried dependences or recurrences in
DFG, where an operation depends on itself or another operation from previous

1terations.

0.4 Thesis Contributions

The following are the contributions of this thesis.



e Designed the solution structure for the particles in PSO to map DFG onto

a time-space graph called routing resource graph ( RRG), where each particle

represents a scheduling solution to the mapping process.

Designed and implemented NICHPSO algorithm to place, schedule and route
DFG onto CGRA. The algorithm succeeded in scheduling with lower initia-
tion interval, and with minimal usage of resources. However, the NCHPSO
algorithm did not conflict with any data dependency and satisfied the modulo

constraints for the CGRA resources.

Compared the performance of MCHPSO with other scheduling algorithms and
analyzed MCHPSO on various topologies and various CGRA configurations, the
MCHPSO algorithm achieved fast execution time and better schedule results
than other algorithms. Analyzed the speedup of NNCHPSO in intel i7 quad core
processor. The NCHPSO parallelizes well with many logical processors and

produces faster result.

Designed and implemented a predicated exclusivity MCHPSO algorithm to
map conditional code in DFG. The exclusivity algorithm was able to mini-
mize the number of resources used in the scheduling process. The exclusivity
algorithm reused the same resource for conditional code in DFG to be mapped

onto CGRAs.

Designed a preprocessing algorithm to extract information from DFG generated
by the HARPO/L program compiler. The algorithm added predicates and

symbolic information to the DFG cells (nodes and edges). Designed a niethod



to create exclusivity matrix of all DFG cells.

e Designed a method to find empty slots in MRT (modulo reservation table} using

Maximum Independent Set algorithm.

e Analyzed the performance of predicated exclusive NNCHPSO algorithm with
various CGRA configurations. Compared the performance of predicated exclu-
sive NICHPSO algorithm with non-exclusive predicated MCHPSO algorithm on

various benchmarks.

e Implemented and evaluated a method to handle loop carried dependence in

DFG to be mapped onto CGRAs.

0.5 Thesis Overview

This thesis is organized as follows. Chapter 1 provides a detailed review of modulo
scheduling in CGRAs. First, an overview of CGRA has been outlined and it is followed
by selecting a suitable CGRA for the selected problem. Secondly, an overview of
modulo scheduling has been discussed. Thirdly, the chapter discusses evolutionary
algorithms and the use of particle swarm optimization in modulo scheduling.
Chapter 2 discusses the proposed algorithm called Modulo Constrained Hybrid
Particle Swarm Optimization (MCHPSO). An overview of the compilation framework
has been discussed. The chapter also provides a review of the related work. The
encoding of particle and fitness calculation in NICHPSO are presented in this chapter.
Chapter 3 presents the simulation results for MCHPSO. The performance analysis

of NICHPSO is discussed, based on the interconnections, resource availability and

10




particle size. MCHPSO speedup is analyzed on the Intel 17 quad ¢ > processor.

Chapter 4 discusses the exploitation of conditional structure in CGRAs. This
chapter presents the predicated exclusivity algorithm. The input DFG was taken from
the HARPO/L (HARdware Parallel Objects Language) compiler and the simulation
results of predicated exclusivity algorithm are discussed.

Chapter 5 presents the recurrence handling in loops. This chapter reviews var-
ious methodologies to map recurrence relations onto CGRAs. It also presents the
recurrence aware prioritized NICHPSO algorithm and its simulation results.

Chapter 6 concludes the thesis and presents the scope for future work.
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Chapter 1

Compilation in Coarse-(Grained

Reconfigurable Architectures

1.0 Introduction

Coarse-grained reconfigurable architectures (CGRAs) have the potential to exploit
both the efficiency of hardware and flexibility of software to map large applications.
A good compiler should employ the CGRA’s resources to exploit a high amount of
operation and loop-level parallelism in the application’s loops [Tuhin, 2007]. The
compiler must carefully schedule the application’s loop body and facilitate high per-
formance at a reasonable cost.

An overview of CGRAs and the selection of target architecture is given in Section
1.1. Compiling loops to CGRAs involves the modulo scheduling process which is a
combination of 3 tasks: scheduling, placement, and routing which will be discussed

in Section 1.2. In this thesis, the modulo scheduling is done with particle swarm op-
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timization. The various kinds of evolutionary algorithms and the reason for selection

of PSO are discussed in Section 1.3. This chapter concludes with a discussion of the
different compilation procedures attempted so far in the CGRAs and the need for a

new modulo scheduling algorithm in Section 1.4.

1.1 Coarse-Grained Reconfigurable Architecture

1.1.0 Introduction

Coarse-Grained Reconfigurable Architectures have been used widely for accelerating
time consuming loops. Processing elements (PEs), available in a large number of
CGRAs, can be used to exploit the inherent parallelism found in loops to accelerate
the execution of applications. In a CGRA, the PEs are organized in a 2-dimensional

(2D) array, connected with a configurable interconnect network [Dimitroulakos et al.,

2009].

1.1.1 Overview of some CGRAs
1.1.1.0 MorphoSys

The MorphoSys architecture has been designed for multimedia applications to accom-
modate applications with data parallelism and high throughput constraints, such as
video compression [Singh et al., 2000a]. The components of the MorphoSys architec-
ture are an array of reconfigurable cells (RCs), processing units (called RC Array), a
general-purpose (core) processor ( TinyRISC) and a high-bandwidth memory inter-

face, implemented as a single chip. The computation-intensive operations are handled

13







architecture [Alsolaim et al., 1999).

1.1.1.3 DReAM

Dymnamically reconfigurable architecture for mobile systems (DReAM) [Alsolaim, 2002
was designed to be a part of a system-on-a-chip (SoC) solution for the third and fu-
ture generations of wireless mobile terminals. It consists of an array of concurrently
operating coarse-grained reconfigurable processing units (RPUs). Each RPU was
designed to execute all required arithmetic data manipulations and control-flow op-
erations. To perform fast dynamic reconfiguration, the configuration memory unit
(CMU) holds configuration data for each of the RPUs and is controlled by one re-

sponsible communication switching unit (CSU).

1.1.1.4 CHESS

The reconfigurable arithmetic array (RAA), termed CHESS [Marshall et al., 1999],
was developed by hewlett packard (HP) Labs to provide high computational density,
wide internal data bandwidth, distributed registers, and memory resources for im-
portant multimedia algorithm cores. CHESS also offers strong scalability, software
flexibility and advanced features for dynamic reconfiguration. CHESS’s functional
units are 4-bit ALUs and it reduces the number of bits of configuration memory by
having 4-bit bus connections. It allows a small configuration memory to speedup

reconfiguration.



1.1.1.5 RaPiD

RaPiD |[Ebeling, 2002] is a coarse-grained reconfigurable architecture to achieve the
low cost and high power efficiency of application-specific integrated circuits (ASICs),
without losing the flexibility of programmable processors. RaPiD architecture is
configured to form a linear computational pipeline, with a linear array of functional
units (FUs). Each RaPiD cell contains 3 ALUs, one multiplier, three 32-word local
memories, 6 general-purpose "datapath registers" and 3 small local memories. The
RaPiD array is designed to be clocked at 100MHz and reconfiguration time for the

array is conservatively estimated to be 2000 cycles [Ebeling et al., 1997].

1.1.1.6 PipeRench

PipeRench [Goldstein et al., 2000] is a reconfigurable fabric with a network of in-
terconnected configurable logic and storage elements. PipeRench contains a set of
physical pipeline stages called stripes. In each stripe, the interconnection network ac-
cepts inputs from each processing element in that stripe and one of the register values
from each register file in the previous stripe. Each PE contains an arithmetic logic
unit (ALU) and a pass register file where the ALU contains lookup tables (LUTSs)
and extra circuitry for carry chains, zero detection, and so on. PipeRench was de-
signed to improve reconfiguration time, compilation time, and forward compatibility,

increased flexibility, reduced chip development and maintenance fabrication costs.
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1.1.1.7 ADRES

The architecture for dynamically reconfigurable embedded systems (ADRES) [Mei
et al., 2005a] tightly couples a very long instruction word ( VLIW) processor and
a reconfigurable array. The architecture has 2 virtual functional views: the VLIW
processor view and the reconfigurable array view built into a single architecture [Mei
et al., 2003b]. The VLIW processor, consisting of several functional units and a nwul-
tiport register file (RF'), serves the first row of the reconfigurable array. Some FUs in
the first row can connect with memory to facilitate data access for load/store opera-
tions. The reconfigurable array is intended to efficiently execute only computationally
intensive kernels of applications [Mei et al., 2003a]. The architecture template, shown
in Figure 1.0, consists of many basic components, including computational, storage,
and routing resources.

The FUs can execute a set of word-level operations selected by a control signal.
Register files and memory blocks can store intermediate data. Routing resources,
including wires, multiplexers, and buses connect the computational resources and
storage resources defined by the topology through point-to-point connections or a
shared bus. The different instances of the architecture can be generated by a script-
based technique and by specifying different values for the communication topology,
the supported operation set, resource allocation, and latency in the target architecture
[Zalamea et al., 2004].

The results can be written to the distributed RF's, which are small and have fewer
ports than the shared RF, or they can be routed to other FUs. An output register

buffers each of the FU’s outputs, to guarantee timing. Multiplexers are used to route
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Figure 1.0: ADRES Architecture taken from [Mei et al., 2005c]

data from different sources. The configuration RAM stores the configuration for each
cycle. In ADRES, the integration of predicate support, distributed register files and

configuration RAM make it applicable and efficient to many applications.

1.1.2 Comparison and Selection of the Target CGRA

The various CGRAs discussed above have their advantages and disadvantages. Mor-
phoSys has a 16-bit granularity with mesh based structure, fast memory interface,
dynamic programming and requires a manual placement and routing tool [University

of California, 2009]. KressArray has a highly flexible mapper used to map massively
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to modify to generate code for different configurations and have provided a good deal

of data for comparison.

1.2 Scheduling

1.2.0 Introduction

The objective of scheduling is to minimize the execution time of a parallel computation
application by properly allocating tasks to the processors by avoiding the processor
stall cycles. Scheduling inner loop bodies is a NP-hard problem which implies that
there is no polynomial time algorithm that can give an optimal solution to the problem
(assuming P # NP) [Kwok and Ahmad, 1999]. The ultimate goal of scheduling
is to create an optimal schedule, a schedule with the shortest length of the given
application. Schedule length or makespan is measured as the overall execution-time of
a parallel program in cycles. Additionally, when a schedule is produced, the scheduling
algorithms must satisfy both resource and precedence constraints.

Depending on the constraints, scheduling may be broadly classified into 3 main

categoties [ChingandKeshab, 1993].

Time-Constrained Scheduling minimizes the number of the required resources

when the iteration period is fixed.

Unconstrained Scheduling does not have any fixed timing or resource usage dur-

ing the scheduling.

Resource-Constrained Scheduling fixes the number of resources and the objec-

tives to determine the fastest schedule, or the smallest iteration period.
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List scheduling is the most commonly used scheduling approach. It can be clas-

sified under resource constrained scheduling and time constrained scheduling. A
scheduling list is statically constructed before node allocation begins, and most im-
portantly, the sequencing in the list is not modified. List scheduling is often used for
both instruction scheduling and processor scheduling [Beaty, 1994]. In an iteration,
nodes with a higher priority are scheduled first and lower priority nodes are deferred
to a later clock cycle based on the priority functions like as soon as possible (ASAP),
as late as possible (ALAP), mobility, height-based priority etc. [Tuhin, 2007]. The
priority sorting is carried out by selecting a node based on the priorities listed above
and added to the priority sort list. The sorting is then carried out for each child node

of the selected node until all the nodes in the list are processed.

1.2.1 Software Pipelining

Software pipelining [Lam, 1988] is a scheduling technique which overlaps the oper-
ations in the successive iteration to yield processors’s fast execution rate. Software
pipelining is a global cyclic scheduling problem to exploit the instruction level paral-
lelism (ILP) available in loops. The idea is to look for a pattern of operations from
various iterations (often termed as the kernel) so that when repeatedly iterating over
this pattern, it produces the effect that iterations are initiated at a regular interval.
This interval is termed the initiation interval (/7). Thus successive iterations of the
loop are in execution with different stages of their computation. Once a schedule is
obtained, the loop is reconstructed into a prologue, a kernel, and an epilogue. Instruc-

tions in the prologue are repeated until the pipeline is filled. The prologue consists of
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code from the first few iterations of the loop. The loop kernel or steady state [Allan et
al., 1995] consists of instructions from multiple iterations of the original loop, and a
new iteration of the kernel is initiated at every II cycles. Instructions in the epilogue
are designed to comiplete the functionality of code and consist of code to complete

the last few iterations of the loop.

1.2.2 Modulo Scheduling

Modulo scheduling [Mei et al., 2003a] is a software pipeline technique which overlaps
several iterations of a loop by starting successive iterations at a regular interval.
The main goal of modulo scheduling is to simplify the process of software pipelining
by generating a schedule for an iteration of the loop and use the same schedule
for subsequent iterations at constant intervals. Modulo Scheduling ensures that it
satisfies data dependence constraints and intra- and inter-iteration dependency, and
no resource availability conflicts.

The schedule for an iteration is divided into stages so that different stages of the
successive iteration execution get overlapped. The number of stages in an iteration is
called its stage count (SC), and the number of cycles per stage is termed the initiation
interval. The Initiation Interval should be minimized to exploit as much parallelism
from a loop as is possible and modulo scheduling tries to minimize it [Tuhin, 2007].

The II is constrained either by loop-carried dependences of the loop (i.e cases where
data from an earlier iteration is used in a later iteration) or by resource constraints of
the hardware. The limit on the II set by loop-carried dependence is called recurrence

minimal initiation interval (RecMII), while the limit set by resource constraints is
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called resource minimal initiation interval (ResMII). The minimal initiation interval

(MII) is a lower bound to start the pipeline scheduling process and it is computed
as MII = max(ResMII, RecMII) [Llosa et al., 2001]. If a valid schedule cannot be
obtained by an II equal to MII, then II is incremented by one and the scheduling
process 1s repeated until a valid schedule 1s obtained or the algorithm gives up.

Modulo scheduling can be illustrated by taking an example of the dependence
graph shown in Figure 1.1b, along with a 2 x 2 architecture. The data dependence
graph unrolled for 3 iterations, is shown in Figure 1.1a. The initiation interval is 1
and so at time cycle 2, all the 3 iterations are executing at different stages.

A modulo schedule can be generated by the use of heuristics and integer linear
programming. Since modulo scheduling is based on heuristics, it may not always
give the optimal solution. There are many heuristic algorithms developed for modulo

scheduling such as

Iterative modulo scheduling [Rau, 1994]

Recurrence cycle aware modulo scheduling [Oh et al., 2009]

Clustered modulo scheduling [Sanchez and Gonzélez, 2001]

Swing modulo scheduling [Llosa et al., 1996]

Hypernode reduction modulo scheduling [Llosa et al., 1995]

Modulo scheduling with integrated register spilling [Zalamea et al., 2001].
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Figure 1.1: a)Modulo Scheduling Exaniple b)DFG and Configuration for 2x2 matrix,

modified from [Mei et al., 2003b]

1.2.3 Graph Embedding

Graph embedding is a problem in graph theory [Newsome and Song, 2003| in which
a directed guest graph G; = (V1, E)) is embedded in another directed host graph
G2 = (V4, E5) [Heath, 1997]. The embedding consists of a one to one function p, from
V1 to V2 and a function p, that maps each edge (u,v) ¢ F; to a path in G between
p(u) and p(v). There are 3 kinds of primary cost, measured in graph embedding:
dilation, expansion, and congestion [Heath, 1997]. For a given embedding (p,,p.), the

congestion of edge e, in G5 is the number of edges e; in Gy such that e, is on the
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al., 1995]. The RRG is replicated from the architecture graph for every time cycle.

RRG reserves resources by enforcing modulo constraints.

1.3 Evolutionary Algorithms

In order to find a scheduling, placing, and routing for the loops in CGRAs, we have
to find a valid schedule with the minimum number of resource usage and with the
smallest possible II and also satisfy all dependence and modulo constraints. Some
approaches have been tried to schedule loops, such as with simulated annealing [Mei
et al., 2005c],[Hatanaka and Bagherzadeh, 2007] to minimize the number of resources
used in routing. In this section, some selected evolutionary algorithms will be dis-
cussed briefly and we will conclude with the selection of an evolutionary algorithm

for our modulo scheduling algorithm.

1.3.0 Overview
1.3.0.0 Simulated Annealing

Simulated annealing (SA4) [Wang et al., 2001] is a method to solve global optimization
problems, with a metaheuristic approach, to the global minimum of a given function
in a large search space. The term simulated annealing, is derived from the roughly
analogous process of heating and controlled cooling of a material to increase the size
of its crystals and reduce the number of defects to obtain a strong crystalline structure
[Fang, 2000]. SA is often used when the search space of the problem is continuous.
SA can accept worse neighboring solutions, with a certain probability that depends

on a variable called the temperature (7). In the SA method, the temperature T is
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gradually reduced as the simulation proceeds. Initially, 7" is sct to a high value (or
infinity), and it is decreased based on a reduction ratio r, which is close to 1, at each
time step and ends with 7" = 0 at the end of the allotted time budget. The simulated
annealing process is stopped when the system reaches a frozen solution state, that is

when there is no improvement in the solution configurations.

1.3.0.1 Genetic Algorithm

Genetic algorithms (GAs) were originally developed by John Holland and his research
students. GA is the most widely used evolutionary computation technique [Uysal
and Bulkan, 2008]. GA operates on strings of data in which each string represents
a solution, in a way that resembles a chromosome in natural selection. Genetic
algorithm exhibits implicit parallelism because they analyze and modify a set of
solutions simultaneously [Song et al., 2008|.

Genetic algorithms generate random solutions as the initial population. There are

3 stochastic operators applied to the population.

Selection Is a portion of the existing population selected to breed a new generation

of population.

Crossover Is a genetic operator that generates new offsprings by randomly choosing
some crossover point and everything before this point is copied from a first
parent and then everything after a crossover point copy from the second parent.,

which hopefully retain good features from the parents.

Mutation Is a genetic operator that randomly modifies the new offspring with a

probability. It can enhance the diversity of the population and provide a chance
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to escape from local optima.

In a long run of a GA, the better (lower cost) solutions tend to stay in the popula-
tion and the worse (higher cost) solutions tend to disappear [Uysal and Bulkan, 2008|
in accordance with the theory of survival of the fittest. Genetic algorithms are able to
solve large problems with parallel nature. GA has been applied to various fields such
as neural networks, data mining, electronic circuit design, scheduling applications and

so on {Davis, 2010].

1.3.0.2 Ant Colony Optimization

Ant colony optimization (ACO) [Dréo et al., 2006], which takes inspiration from the
foraging behavior of some ant species, has been formalized into a metaheuristic for
combinatorial optimization problems. The original ant colony optimization algorithm
was known as ant system (AS) [Dorigo et al., 1996] and was proposed in the early
nineties. Each ant in the AS is a possible solution to the problem. Certain ants
lay down an initial trail of pheromones to mark some favorable path as they return
to the nest with food. A pheromone is a chemical signal that triggers a natural
response to attract other ants and serves as a guide. In the meantime, some ants do
random exploratory survey for closer food sources. Ant Systems make a probabilistic
decision by implementing a randomized construction heuristic. ACO has inherent
parallelism and gives positive feedback for good solutions. ACO can be applied to
telecommunication networks, graph coloring, scheduling, constraint handling and so

on [Shekhawat et al., 2009)].
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1.3.0.3 Particle Swarm Optimization Algorithm

Particle swarm optimization (PSO) [Kennedy and Eberhart, 1995] is an optimization

approach that follows an evolutionary metaphor. It is a population-based search
procedure in which individuals, called particles, change their positions, or states, with
time. Particles in a PSO system move in a multidimensional search space [Abdel-
Kader, 2008] to find a good solution. All the particles can share their information
about the search space with other particles. During the process, each particle modifies
its position in the search space according to its best experience and the experience of
nearby particles, and makes use of the best position met by it and other neighboring
particles [Chen and Sheu, 2009)].

A detailed explanation of PSO is given in this section, as this algorithm will be
used in the proposed modulo scheduling algorithm. The reason for choosing PSO is
explained in the next subsection. Each particle in a PSO system represents a potential
solution to the problem. At the end of the search, the best particle will hold the best
solution found. At every iteration, each particle k calculates its velocity and position

according to the expressions given below.

Viar1 = w x Vi + ary (P — Xii) + cora( Py — X i) (1.0)

Xiir1 = Xii + Vi (1.1)

where

o X, - Particle k coordinates at i** iteration
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e X1 - Particle k coordinates at i + 1** iteration

e Vi; - Velocity of particle k at i iteration

e Vi1 - Velocity of particle & at i + 1% iteration

e ¢y, co - acceleration constants in range [0, 1]

e 7,72 - random value in range [0, 1]

e P, ,; - Particle k’s personal best position found at ith iteration
e P,,- Global best particle position at it" iteration

e w - Inertia weight factor. It is calculated by

Wmax — Wmin .
W= Wpay — ———— X 1 (1.2)
tmax

where

® Wpnin and Wy, are both random numbers called minimum weight and maximum

weight respectively.

® ... 1s the maximumn number of iterations |

After calculating X;.;, we can get the new particle position to search in the
next iteration. Each particle velocity on each dimension is limited to the maximum
velocity.

In niost cases, all the particles tend to converge to the best solution quickly. PSO

has a strong search capability in the problem space and can save more computation
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i:=0,k:=0

For each particle in the PSO system
Initialize particle with random coordinates.
Initialize current particles Xy ; coordinates as

the particles best position Fj ;
End

1:=0
Do
For each particle in the PSO system
Calculate fitness value of the given particle.
If the fitness value is better than the best
fitness value pbest in history set current
coordinates value as the new P ;
End
Choose the particle with the best fitness value of all the
particles as the P,
For each particle
Calculate particle velocity using Equation (1.0)
Update particle position using Equation (1.1)
End
=1+ 1
While maximum iterations is not attained.
Algorithm 1.0: The Standard PSO Algorithm
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time for finding an acceptable solution [Wang et al., 2007]. The selection of parameters

cl and ¢2 affects the performance [Chen and Sheu, 2009].

1.3.1 Selection of PSO Algorithm

When PSO was used in the Traveling Salesperson Problem (TSP), PSO showed a
significant performance in the initial iterations when compared with ACO [Nonsiri
and Supratid, 2008]. PSO has the capability to quickly arrive at an optimal or a
near-optimal solution. ACO has a difficult theoretical analysis, sequence of random
decisions, and uncertain convergence time [Shekhawat et al., 2009)].

An advantage of PSO over GA is that PSO maintains all the solutions in the search
space and changes of inertia weight leads to convergence [Nonsiri and Supratid, 2008].
PSO keeps the history of all the particles local best fitness and the global best fitness.
When a particle gets caught in a bad solution, it can still go to its previous best
position and start searching. GA is stochastic and contains no information about the
problem [Thenorio, 2010]. GA can prematurely converge to a local optimum solution
in its reproduction process rather than the global optimum of the problem [Thenorio,
2010]. This suggest trying PSO on modulo scheduling.

The relative ease of implementation and the ability to provide reasonably good
solutions are the advantages of simulated annealing, but it takes a great deal of
computation time and a careful tuning of parameters [Elmohamed et al., 1998] to
obtain good solutions. The PSO method has the advantages of fast speed to get the
solutions, stable convergence and robustness and it is a parallel direct search method

to generate good solutions [Song et al., 2008]. PSO can be applied to various fields,

32



for example, to train artificial neural networks, function optimization, fuzzy control
system and so on [Hu, 2009]. PSO parameters are so designed that they are highly
adaptive [Acharjee and Goswami, 2009)].

Previous research on PSO [Abdel-Kader, 2008],[T.Chiang et al., 2006] shows that
instruction scheduling can be done with PSO, in this thesis, PSO with a hybrid combi-
nation of mutation operation is tried. The mutation operator is used in the proposed

nmodulo scheduling algorithm to avoid premature convergence in PSO algorithm.

1.4 Various CGRA Compilation Procedures

In recent years, the compilation of applications, written in a high-level language to
coarse-grained reconfigurable platforms, has become the subject of research. Coni-
putationally intensive kernels present in the application are represented by data flow
graphs (DFGs) where nodes represent the operations and edges form the communica-
tion between the nodes. Some selected compilation procedures are discussed in detail
in the subsequent sections. The compilation procedure differs with different mapping
algorithins, target architecture representations and handling constraints during com-
pilation. Compiling applications to CGRAs involve 3 tasks: Scheduling, Placement,
and Routing. Scheduling assigns the time cycle to execute the operation. Place-
ment assigns a functional unit and Routing takes care of moving data from producer

functional unit to consumer functional unit.
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Figure 1.3: Pseudocode of the modulo scheduling algorithm in DRESC, taken from

[Mei et al., 2002]




1.4.0 DRESC Compiler

Dynamically reconfigurable embedded system compiler (DRESC) [Mei et al., 2002], is
a retargetable compiler that is able to parse, analyze, transform, and schedule plain
C source code to the DRESC [Mei et al., 2005a] architecture. Figure 1.2 presents
the overall structure of the DRESC compiler. Source-level transformations are done
on the target C source code to rewrite the kernel in order to make it pipelinable
and to maximize the performance of the functional units. The target architecture
is described in an extensible markup language (XML). The parser and abstraction
steps transform the architecture into an internal graph representation called a modulo
routing resource graph (MRRG), which is used by the modulo scheduling algorithm.

Modulo scheduling plays a central role in the DRESC compiler, by creating high
parallelism for the kernels [Vassiliadis and Soudris, 2007a]. The task of modulo
scheduling is to produce a software pipeline schedule with a low initiation inter-
val. A MRRG [Mei et al., 2003b] is introduced in DRESC to model the architecture
internally for the modulo scheduling algorithm. The MRRG combines features of
the modulo reservation table [Lam, 1988] and the routing resource graph [Ebeling
et al., 1995]. The MRRG is a directed graph showing the time space representation
of the architecture which is constructed by composing sub-graphs representing the
different resources of the ADRES architecture [Mei et al., 2003a]. The pseudocode
of the modulo scheduling algorithm is given in Figure 1.3. The modulo scheduling
algorithm generates an initial schedule respecting dependency constraints for each II.
The inner loop of the algorithm uses simulated annealing to minimize the overuse of

resources. If simulated annealing succeeds within the time allotted then the loop is
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exited. If the algorithm cannot find a valid schedule in the time budget, it tries with

an incremented II.

1.4.0.0 Advantages and Limitations

The modulo scheduling algorithm of the DRESC compiler has some hmitations. For
large loop bodies, it has long convergence time due to the use of simulated annealing.
It does not scale well with the size of the DFGs because while taking scheduling
decisions, it does not take any information from the DFG. The overall performance is
adversely affected when there is a spare interconnection among the FUs. Moreover,
the scheduling algorithm only considers the innermost loop of a nested loop structure

[Tuhin, 2007].

1.4.1 Compilation using Modulo Graph Embedding

A graph theoretic technique called modulo graph embedding (MGE) is used in [Park
et al., 2006] for compiling applications to CGRAs. Using MGE, loop bodies are
mapped onto CGRAs, subject to modulo resource usage constraints. The commu-
nication structure of the loop body was considered during mapping to make it an
effective technique. Initially, preprocessing was done to analyze the DFG and to con-
struct a skewed scheduling space. A skewed scheduling space does not allow all the F'U
slots to be available at the given schedule time. The start times of FUs are restricted
such that they stagger down the right side of the CGRA. The skewed scheduling space
dynamically changes as operations gets placed in an FU. The scheduling space of all
the FUs to the right of the placed FU are lowered to guarantee the routability.

The next step in the mapping process is followed by the main scheduling loop

37




to find a placement for all the operations at a particular height of the DFG using

modulo graph embedding. The scheduling process first constructs the affinity graph
for the given input DFG. Next the primary slots are identified to place, schedule and
route. The scheduler enters an inner loop to determine the cost of the current layout

and iteratively reduces the cost using simulated annealing.

1.4.1.0 Advantages and Limitations

Modulo Graph Embedding [Park et al., 2006] uses a skewed scheduling space and a
systematic placement decision with a search space limited to the same height. The
method achieves good convergence and fast conipilation times. This technique is not
suitable for DFG with loop-carried dependencies, as these dependencies are given the

sanie priority as intra-iteration dependencies [Oh et al., 2009).

1.4.2 Compilation using Clustering

Montium architecture [Guo, 2006] presents a framework for scheduling clusters writ-
ten in a high-level language (C++). In this work, the scheduling problem is called
the color-constrained scheduling problem where the limitations of using processors
resources with one-ALU and 5-ALU configurations are termed as color and pattern.
The color-constrained scheduling problem was tackled in this work by 3 algorithms:
the multi-pattern scheduling algorithm, the column arrangement algorithm and the
pattern selection algorithm. The multi-pattern scheduling algorithm, used in this
work, is similar to the list scheduling algorithm, with extra constraints. The algo-
rithm schedules the node in the colored graph . The successors of a node should

be scheduled after the node has been scheduled. The column arrangement algorithin
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orders the non-ordered pattern elements. In the pattern selection algorithm, a non-

ordered pattern color bag, is selected.

1.4.2.0 Advantages and Limitations

Scheduling clusters with Montium architecture exploits the high speed parallelism of
the source code and consumes low energy with few clock cycles. The performance
of the algorithm has to be improved to refine the priority functions and to decrease
the computation complexity due to a large number of candidates [Guo, 2006]. The
number of iterations of a loop in the DFG was not clearly specified and they did not

consider loop carried dependences of a loop.

1.4.3 Compilation Using Modulo Scheduling with Backtrack-
ing Capability

The compilation approach described in [Dimitroulakos et al., 2009] presents an ex-
ploration framework that automates the evaluation of CGRA architectures. The
framework, used in this approach identifies the CGRA architectures tuned for a spe-
cific application domain with modulo scheduling. In this work, an effective priority
scheme is proposed while the modulo scheduler has been equipped with backtracking
capability. The loop schedule is constructed by mapping incrementally one operation
at a time in the loop. There are 4 steps which comprise the scheduling loop: priority
scheme, enforce dependence constraints, enforce resource constraints, and mapping

decision selection.
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1.4.3.0 Advantages and Limitations

The mapping algorithm suggested in this work, proposes to reduce congestion and
map all the operations to PEs and effectively route the data values between PEs.
The experiments carried out through this algorithm, indicate that the algorithm
has a significant impact on the performance. The architecture’s performance affects
the clock frequency and instructions per cycle (IPC). A higher IPC value not only
has a negative impact on the clock frequency but it also requires more hardware

[Dimitroulakos et al., 2009].

1.5 Conclusion

This chapter discussed the background literature of the proposed research. The var-
ious CGRAs, designed during the past years, have been discussed. The existing
architecture ADRES is considered for the proposed work because of its flexible topol-
ogy and simple implementation. The basic scheduling techniques were discussed. The
basic modulo scheduling technique will be used in the proposed work. Amiong the
various evolutionary algorithins discussed, PSO will be used in the proposed work
for the following reasons: it is easy to implement, it has fast convergence, and it is
efficient.

Finally, some of the compilation approaches published, were discussed. The com-
pilation frameworks for the CGRAs have some commonality such as constructing an
acceptable application graph, abstracting information from the target architecture
and mapping to make the best use of the resources available in a CGRA. A compila-

tion framework similar to the work done in [Mei ef al., 2003a] is taken for the proposed
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research. The modulo scheduling is carried out by the Particle Swarm Optimization,

with a mutation operator.
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Chapter 2

Modulo Constrained Hybrid
Particle Swarm Optimization

Scheduling Algorithm

2.0 Introduction

This chapter gives an overview of the MCHPSO scheduling algorithm. The research
focuses on modulo scheduling algorithms for CGRAs. The study of various compila-

tion frameworks in CGRAs, as discussed in Chapter 1, indicates that not much work

more effectively. We need to efficiently use the reconfigurable resources available in
CGRAs and to keep the time low to schedule complex target applications. To solve
the modulo scheduling problem in CGRAs, an algorithm is proposed in Section 2.2.

The MCHPSO algorithim schedules, places, and routes an inner loop body represented

has been done to improve the basic modulo scheduling algorithm to map onto CGRAs
42
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by a data flow graph (DFG). The DFG is embedded into the routing resource graph

(RRG) of the target CGRAs by using particle swarm optimization (PSO), combined
with a mutation operator. The background concepts related to the NMCHPSO algo-
rithm are discussed in Section 2.1. The different steps of the NICHPSO algorithm
are discussed in Section 2.2. The evaluation, applications and comparisons of the

MCHPSO algorithm are discussed in Section 2.3.

2.1 Modulo Scheduling in CGRASs

2.1.0 Problem Identification

The objective of modulo scheduling is to find a valid schedule of one iteration of
the loop body so that it may be repeated at regular intervals. The schedule must
respect all intra-iteration and inter-iteration dependency and resource constraints and
economically use the resources and execution time [Mei et al., 2003a]. The number
of clock cycles between the start of successive iterations is termed the schedules’s
initiation interval (I1), essentially reflecting the performance of the scheduled loop.
The problem of determining the lowest possible initiation interval, and a schedule that
neets it, for a given loop on a given hardware is an NP-hard problem and therefore
there is no known way to efficiently solve it in all cases.

Several heuristic techniques have been tried to solve the modulo scheduling prob-
lem. A heuristic technique solves problems based on experience and randomization,
and uses repeated random sampling to compute the results. Nature-inspired, a bird-

flocking experience-based technique is used in the heuristic approach of the PSO algo-
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rithm for problem solving and discovery, which may be applied to problems which are

time-consuming to find a solution. When PSO is compared with ant colony optimiza-
tion (ACO) [Dorigo et al., 2006], PSO shows the ability to quickly arrive at an optimal
or near-optimal solution. An advantage of PSO over genetic algorithms (GA) [Uysal
and Bulkan, 2008 is that PSO maintains all the solutions in the search space and re-
quires less computational effort to arrive at high quality solutions. Previous research
[Abdel-Kader, 2008], [Xiaoyu Song and Cao, 2008] on PSO shows that scheduling
can be done with PSO. We enhanced PSO with a hybrid combination of mutation
operator for our modulo scheduling problem to avoid premature convergence in PSO
algorithm. Our early results showed that using PSO to solve the scheduling problem
gives a near-optimal solution. When PSO is combined with a randomization method,
discovering the near optimal solution becomes faster and the local optimal solution
can be avoided. This combination of heuristic approach and randoniization is what
we term modulo constrained hybrid PSO (MCHPSO). This is a practical approach
to solve the scheduling problem. The proposed algorithm is discussed in detail in the

following subsections.

2.1.1 Solution Structure Formalization

Most applications in mobile computing and multimedia spend a lot of tinie repeatedly
executing critical code segments called loops. Since iterations of these loops can often
be executed in parallel, we can make effective use of the abundant resources available
in CGRAs. After mapping a loop onto the CGRA, we can use the free resources in

the CGRA for another application or loop kernels. To increase the free resources of
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the CGRASs, we need a mapping algorithm that produces a valid schedule with a low

routing cost.

To address the problem of mapping a loop body of a target application onto
CGRAs, we propose a modulo scheduling algorithm by using a PSO algorithm com-
bined with a random mutation operator. The schedule length of the loop 1s its total
execution time in cycles. If a resource r of total resources (R) in the routing resource
graph (RRG) (described in Section 2.1.1.4) at time ¢ (in clock cycle) is being used, it
is reserved for all times ¢'such that t = ¢ (mod I7)(. The unavailability of the samne
resources for successive iterations is called a modulo constraint. While scheduling
loops, the algorithm has to satisfy the dependence constraints on each operator in-
volved in the loop and not violate modulo constraints to start the successive iterations
in parallel. To illustrate the overall problem, an example is shown in Figure 2.0.

The following conditions should be satisfied while scheduling a loop:

0. In a loop body, if an operation y depends on the result of operation x, then the

operation x is not scheduled to end later than operation y starts.
1. Operations which are independent of each other may be executed in parallel.

2. When a resource is occupied by an operation, it is reserved for all equivalent

times (mod IT) of the schedule length.

3. If a computational resource is free, it can also be used as a routing resource.

In Figure 2.0, the inner most loop of the target application is converted into a
DFG by using static single assignment (SSA) and dependence analysis (explained in

next subsection). The target architecture (TA) is created as a graph by using the
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Figure 2.0: Outline of overall mapping of loop kernel of DFG onto RRG of CGRA

topology and resource constraints specified in a description file. The TA is replicated

to the maximum possible schedule length to form the RRG. The RRG contains edges

between replications to represent data carried forward in time. Now the mapping
algorithm tries to map each node of the DFG to a node of the RRG and each edge of
DFG to a path in the RRG. An iteration of the target application is placed, routed
and scheduled by satisfying modulo constraints to repeat the same schedule at every

initiation interval (II) for the consecutive iterations.
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2.1.1.0 Data Flow Graph

The target application program is analyzed to find the critical loops to be mapped
onto the CGRA. In this chapter, the inner loop body of the application is considered
with no inter-iteration dependence and no nested loop dependence to explain with a
simple DFG. In the later chapters, we consider mapping in the presence of conditions
and recurrences in the DFG. The inner loop body of the application is called its
loop kernel. From the loop kernel, we created a data flow graph representation of

DFG = (N, E,,7) [Tuhin and Norvell, 2008] where

N : Set of operations in the inner loop body.
: Set of interconnection edges.

. . . . —
: is a function mapping each edge e to its source node ‘e .

. is a function mapping each edge e to its target node €.

The loop kernel is analyzed by converting it into static single assignment (SS5A)
form and then using dependence analysis to convert it into a DFG. In the SSA form,
every variable is assigned exactly once. The dependence analysis explains the de-
pendence between operations, showing which operation should be executed first i.e,
Predecessor (Pred) and which operation is the successor (Succ). Each edge of the
DFG has 2 parameters (delay,distance) which are shown in Figure 2.1. The delay
(A) is the processing time of the source node and the distance is the difference in
the iteration number between source and target nodes. If both the source and target

nodes are in the same iteration, the distance is denoted by 0. The DFG in Figure
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The TA graph (V) S) is formed from the target description file where:

V is a set of vertices. Each vertex can represent any of the resources mentioned

above. Each vertex is described by its name, capacity, and its functionality.
S is a set of directed edges, connecting pairs of resources in the graph.

Each FU can receive input from various resources of the graph and similarly
the output of each FU can be routed to various destination resources [Vassiliadis and
Soudris, 2007b]. The various topologies for the FUs are displayed in Figure 2.3: There
are (a) a mesh based architecture of 4 neighboring FU connections; (b) a meshplusl
architecture of 8 neighboring FU connections; and (c¢) a meshplus2 architecture of
4 neighboring FU connections along with row connection for every FU and column
connection for every FU.

Various topologies of TA, including register files, are presented in Figure 2.4, which
(a) shows each FU having its own private RF; (b) shows each RF is shared by the
FUs in the top and bottom row of the same column; (¢) shows cach FU has a RF and
the RF is shared among FUs adjacent in all the diagonal directions.

Various uses of buses are exhibited in Figure 2.5: (a) shows usage of row buses
where each FU is connected to its corresponding row bus; (b) shows usage of both
row and column buses where each FU is connected to its corresponding row bus and
each FU and RF is connected to its corresponding column bus.

The computational resources are FUs, which are capable of executing a set of
coarse-grained operations such as add, subtract, multiply, and shift and can also
forward information, when not performing any operation. The top row of FUs can

only perform load and store operations, termed as memory unit (MU). The storage










Figure 2.5: Various Usage of Buses (a) Row Bus Connections (b) Row and Column

Bus Connections

Figure 2.4c, and usage of both row and column buses shown in Figure 2.5b.

2.1.1.2 Minimal Initiation Interval

As discussed in Chapter 1, the minimal initiation interval (MII) is the larger value

from ResMII and RecMII, as computed in

MII = max(ResAMII, RecMIT) (2.3)

where,

e Resource minimal initiation interval (ResMII) is calculated from the resource
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usage requirements of the loop and it is derived from

ResMII = Max,er [%], where 7 is a category of resource in the TA

resources .

e Recurrence minimal initiation interval (RecMII) is calculated from the recur-
rence cycles in the DFG. Each recurrence have a distance property, which is
equal to the number of iterations separating the 2 instructions involved in the
recurrence. If a dependence edge, e(v,u), in a cycle has latency A and connects

the operations at 9., then the RecMII is calculated by RecMII = Max ¢ [ﬂ

where,

— ¢ is a recurrence cycle in the set of all cycles C of the DFG
— [ is the sum of all delay (A) in the circuit

— d is the sum of all distance 4§, ,, in the circuit, variable §,, ,,,denotes the dis-
tance between operation v and u, which means the operation u of iteration

7 depends on the operation v of iteration ¢ — d, .

In our algorithm, the availability of MU resources is checked for each load or
store meniory operation in the DFG. An example of the MII calculation is shown

in Figure 2.1.

2.1.1.3 Modulo Reservation Table

To enforce the modulo constraints, we have to generate a schedule for one iteration
of the loop in such a way that the same schedule is repeated at regular intervals with

respect to data dependence and resource constraints [Vassiliadis and Soudris, 2007b].
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This interval is called the initiation interval, as defined in the previous subsection.

The 11 reflects the performance of the scheduled loop. The modulo reservation table
(MRT) is constructed as a table, with one column per each resource in the TA and
11 rows shown in Table 2.0 for the DFG and TA shown in Figure 2.1. For every new
placement (schedule and place) and update in RRG, the MRT is checked to determine
whether the time/place is available. If the mapped node in the RRG uses (v, t;), then
(v,t; mod IT) in the MRT is filled, which marks the resource v busy for all times with
the same modulus by {(v,t;) | t; mod II =t; mod [} where j € {0,SchLength}

[Vassiliadis and Soudris, 2007b).

Table 2.0: MRT showing all the resources occupied in II time

‘Resources/II time || F1 F2 F3 | F4 | RF1 | RF2 | RB1 | RB2 | CB1 | CB2

\ 0 Opx | Opy | xz | y=z

‘ 1 Opz X7z | y-z

2.1.1.4 Resource Routing Graph

For scheduling the loops in the DFG in a 2D architecture array across time, we
employed a time-space graph called routing resource graph (RRG). Based on [Vas-
siliadis and Soudris, 2007b| and [Tuhin and Norvell, 2008], we produced a graph to
route resources between the scheduled and placed operations across time. The RRG
is obtained from the TA graph described above by replicating it once for every time
cycle € N, specifying the interconnections with X, Y, and Z edges. The RRG is

described below



RRG=(VxN,XUYUZ)

where

V x N: An infinite set of N copies of the TA’s vertex set V' .

X edges: Every incoming edge e of a FU or RB or CB in the TA graph from the FU

or RF is replicated across time as X = {z(t,e) |e € E,"e € FUURBUCB, € €
— - — _ o

FUU RF,t € N} where x(r,e) = (‘e ,t) and z(r,e) = ("e ,t). Here r is simply

some one-one function to a set of edges, 1.e. a function that generates a unique

edge for each time and TA edge.

Y edges: Every incoming edge e of a RF in the TA graph from the FU or CB
or RB is represented in the RRG as an outgoing edge from its source in the
current time cycle to the RF, CB and RB in the next time cycle. Use of
such an edge represents the writing to a register or the delay in latch to the
buses [Vassiliadis and Soudris, 2007b]. These RRG edges are given by edge

— — NP —
Y ={y(t,e)|e€ E,'e € RF, ¢ € FUUCBURB,t € N} wherey(r,e) = (‘e ,t)
—_—

and y(r,e) = ("€, t+1). Here y is some one-one function to a set of edges, which

is range-disjoint from x.

Z edges: For every RF 7 in the TA graph, we needed to hold the data across time.
= —
Hence we need RRG edges Z = {z(t,r) | r € RF,t € N} where z(r,t) = (7 ,1)

R

and z(r,t) = (

— . . o e
r,t+ 1), and z is a one-one function, range disjoint from x and

Y.

In the actual implementation, we can get away with representing only a finite

prefix of the RRG, as the number of nodes in the DFG are finite and known. In order
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Figure 2.6: X edges in the RRG

phism ~ maps nodes of the DFG to nodes of the RRG and edges of the DFG to paths
in the RRG. If h(e) = eg, ey, ...,ex_1, then we required &y = h(‘e) and ex_; = h('e),
where h is the mapping of nodes and the mapping of nodes in RRG satisfies one to
one and onto properties. There are further constraints to ensure that resources are
not overused and that different iterations of the same loop do not interfere when they
execute in parallel. An RRG corresponding to the TA in Figure 2.2 are illustrated by
the X edges in Figure 2.6, the Y edges are shown in Figure 2.7, and the Z edges are

|
to schedule, place, and route, we must embed the DFG into the RRG. A homeomor-
shown in Figure 2.8.












template and a DFG representing the inner loop part of an application. The results

of the algorithm are the scheduled time, resource placement, and routing paths of an
iteration of the loop.

First, the minimum initiation interval is computed as discussed in subsection
2.1.1.2. Second, ASAP (as soon as possible) and ALAP (as late as possible) times
were calculated as in Equations (2.0 and 2.1) [Llosa et al., 2001] for the given DFG to
create a dfglist. Next the edges to be routed were sorted using sort method according
to the critical path delay of the loop and the maximum schedule length is calculated
from the maximum ALAP with a relaxation factor using findschLength method. The
relaxation factor is the time cycle adjustment to place and route the leaf nodes. The
relaxation factor can vary for different DFGs during the experiment setup. The RRG
is generated from the TA graph. The initial placement, schedule and route may
overuse resources. The MCHPSO algorithm is used to reduce overuse with a minimal
routing cost. Now, starting with the minimal initiation interval the NICHPSO is
used to try to find a good scheduling, placement and routing at successively larger

initiation intervals. The flow of the MCHPSO algorithm is described in Figure 2.12.

2.2.1 Particle Encoding for the Problem

To frame the solution for the scheduling problem by using the particles, various
dimensions for each particle, size of DFG and the schedule time should be considered.
To establish a complete modulo scheduling solution, the particles of PSO were created
with multiple dimensions to solve the critical issues in specified problem domain. It is

necessary to search for a good-quality candidate solution for the scheduling probleni,
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Figure 2.9: DFG showing a simple loop structure without recurrence

and then to choose the best candidate solution into the next iteration according to
various objectives mentioned in the fitness function.

Therefore, the particles are encoded as an array of vectors, where each vector
represents a particle. In the swarm, each particle P is represented by a mapping from
the N nodes of the DFG to a RRG nodes, i.e., to time/resource pairs, as explained

in Figure 2.13, and an array list to hold the routing path of cach of the edges in the

DFG.

2.2.2 MCHPSO

The pseudocode 1s shown in Algorithm 2.1. In MCHPSO, inputs are the RRG, the
sorted DFG from the main loop of the ModuloSch Place Route Algorithm 2.0, and
a goal II.

The number of operations in the DFG is initialized to the number of nodes, N, for
each particle. Each particle in the PSO takes, for each node initial value for the place

and a randomly chosen initial time in the range of [ASAP, ALAP] that satisfies all
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Procedure NICHPSO (sortDFG, RRG, II, schLength)
begin
for each operation in sortDFG do
Initialize Particles
Initialize MRT(#FUs,II)
end for

repeat NLOOPS times
for each particle in Particles do
Find the fitness value from GetRoutingCost (RRG, particle)
if the fitness value is better than the best fitness then
Set current fitness value as the new particle best fitness
end if
end for
Find the global best particle
for each particle do
Calculate the new particle position according to the Equations 2.4, 2.5,
2.6, and 2.7
Update particle search position
end for
end repeat
if validSchedule (bestparticle) then return true

else return false
end if

end

Algorithm 2.1: The MCHPSO algorithm
the particles stay within the size of routing resource graph size during placement,
schedule and route. In the MCHPSO, there is no usage of ¢; and c¢g values. In the
preliminary investigation of PSO, usage of ¢; and ¢ did not help the particles to

modulo schedule, so they are not used in the update.

2.2.2.0 Need for the mutation operator

In modulo constrained particle swarm without a mutation operator, we found particles
stay in the same solution for a long time in some iteration. When there was no

mutation operator in that execution, the particles could not come out of that local
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optimum to find a valid solution. Mutation operator is needed to avoid local minimum

because as the iteration increases the particles tend to get close to each other and
can get caught in a local solution. Mutation operator helps the particles to perform
more local search when they are closer to the solution.

MCHPSO does not use velocity, or w or ¢; or ¢; to update particles position.
Instead the particles get updated to search near the current position or a local best

position or a global best position with the help of a mutation operator.

2.2.3 Fitness Calculation

The pseudocode of the fitness calculation is given in Algorithm 2.2. The fitness cal-
culation algorithin (GetRoutingCost) considers multiple objectives from the routing
paths produced by Dijkstra’s shortest-path algorithm (i.e, the getShortest Path method
in the algorithm) [Dijkstra, 1959]. The 3 main objectives considered in this work are
that no resource in the TA is overused, all edges in the DFG are routable, and fewest
resources are used to route. The routing cost is computed by accumulating the cost
of all used RRG nodes incurred by the placement and routing of all the edges.

In every iteration, each particle’s fitness value (say p) is compared with its local
best fitness value (say ¢), from the previous iteration. If p’s number of routable edges
value is greater than g, then p is chosen else ¢ is chosen. If still both p and g are the
same then check if p’s number of overused resources is lesser than g, then p is chosen
else g is chosen. If still both p and ¢ are same then check if p’s total routing cost is
less than ¢, then p is chosen else ¢ is chosen. If p’s values are chosen then the local

best position of the particle is updated with the current position values. Sinnlarly,
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the above comparison is done for each particle’s local best fitness values (say p) with

the global best fitness values (say ¢), from the previous iteration. The global best
position is updated based on the best particle’s local best position.

Each node in the RRG has a capacity, base cost [Mei et al., 2003a], availability,
and number of times used. Majority of RRG nodes, have a capacity of 1 whereas a few
types of nodes such as register files have a capacity larger than 1. The Findroutingcost
method calculates the usage of each resource in the routing and also calculates if a

resource is overused that its capacity (findPathoverused).

Procedure GetRoutingCost(RRG,psoPart)
begin
rcost:=0
notRoutableEdges:=0
overusedNodes: =0
edgeSet:={Scheduled and Placed PSOparticle}
for each edge e in edgeSet
u:=e.source
v:=e.target
path:=getShortestPath(u,v)
if(path # NULL) then
rcost+=Findroutingcost(path);
overusedNodes+=findPathoverused(path);
else
notRoutableEdges++
endif
endfor
return (rcost, notRoutableEdges, overusedNodes)
end

Algorithm 2.2: Routing cost fitness value for MCPSO
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2.2.4 Configuration File and Final Schedule

Once the MCHPSO algorithm is completed, it generates the final schedule of one
iteration such that the modulo constraints and dependence constraints are met. The
MRT generated for the final schedule, produces a configuration text for each time cy-
cle. The configuration text contains the operation for each FU of the TA, reservation
of routing resources and the memory unit operations in each cycle. An example final

schedule is shown in Table 2.1 and for the DFG, in Figure 2.9.

Table 2.1: Final schedule result of the DFG onto the TA

Resources/

Schedule length  F1 f2 F3 F RF1 RF2 RB1 RB2 (Bl (82
0 2 1 2x cl-x
1 4 94 Op x cl-x 0:2-x | rliclx
2 Cpy rlix-2 4-y o2y
3 rli-2 y-2
4 - rix-r | rhy-z X1
5 | Opz y-2 y-1 r&-z | rly %I

2.3 Final schedule of the MCHPSO Algorithm

To evaluate MCHPSO algorithm, a slightly modified architecture from ADRES [Mei
et al., 2005a) was used. Various digital signal processing (DSP) benchmarks [Texas
Instruments. inc, 2009], [Texas A&M University-Kingsville, 2009], [University of
Patras, 2009] were used to evaluate the performance of the MCHPSO algorithm. The
implementation of NNICHPSO algorithm is written in Java. The TA and loop body
description are given in files to the proposed algorithm. The evaluation is done to

check whether MCHPSO was able to solve intra-dependent inner loop body mapping
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Chapter 3

Performance Analysis of MCHPSO

Algorithm

3.0 Introduction

In this chapter, the performance data of the modulo-constrained hybrid particle
swarm optimization (MCHPSQ) is discussed. The proposed algorithm is designed
to solve the problem of mapping a Data Flow Graph (DFG) for a loop body in the

application onto the resource and routing graph (RRG). The MCHPSO algorithm

the combination of Particle Swarm Optimization (PSO) algorithm and a mutation
operator. The results obtained from the analysis of the work are discussed in the
following sections. These results help us to understand the research problem and
to extend the algorithm to map loops with different characteristics, as discussed in

Chapters 4 and 5.

|
|
|
|
|
has been explained in Chapter 2. The MCHPSO algorithm, effectively maps with
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3.1 Analysis of Scheduling

Scheduling a loop onto the coarse-grained reconfigurable architectures (CGRA) con-

sists of 3 main parts:

0. Placement of each operation of the DFG onto the CGRA computing resource,

FU;
1. Scheduling the execution time of each operation of the DFG;

2. Routing every edge in the DFG as a path in the RRG.

The most important constraint in a scheduling algorithm is getting a valid result
for the schedule, with no interference among the placed, scheduled, and routed re-
sources. When an architecture is considered, the constraints in the architecture such
as interconnection topologies, and availability of computing and memory resources
play a major role in finding a schedule for the loop kernel. Therefore, different archi-
tecture parameters were tried so that the performance of the algorithm could be tested
on a number of architectures. The number of nodes and edges in the DFG determine
the complexity of the kernel to be mapped onto the CGRA. The usage of resources,
mapping time, and schedule density were estimated to analyze the performance of

mapping algorithm.




3.2 Modulo Scheduling with MCHPSO

3.2.0 Experimental Set Up

The NCHPSO scheduling algorithm was written in Java and executed on an Intel
Core 2 Duo CPU with 4 GB RAM and a clock speed of 2 GHz. To schedule a loop
onto the CGRAs, 2 main inputs were required for the MCHPSO scheduling algorithm.
The first input is the DFG generated from the benchmark loops. The loop extraction
process is described in Chapter 1. The second input for the MCHPSO is the CGRA
architecture. The target architecture ( TA) graph is created from the TA configuration
file as described in Chapter 2. An example of DFG generation is discussed in the next
subsection.

Other than the 2 main inputs, DFG and TA, MCHPSO requires the following
parameters: the number of particles is 10, the relax-factor is the II, the number of
trials for each initiation interval (I1) is the difference of schedule length and II, and
the number of iterations per trial is 20. A relax-factor is used to adjust the as late as
possible (ALAP) values, when the scheduler finds difficulty in a very tight range to

start the next iteration while finding a place for leaf nodes.

3.2.0.0 DFG Generation

One of the main inputs to the MCHPSO scheduling algorithm is the DFG generated
from the application loop kernel. The generation of the DFG and its parameters
are described in Chapter 2. The benchmarks taken for the algorithm are shown in
Table 3.0. The first 4 benchmarks were derived from the C reference code of Texas

Instruments (77) Inc. [Texas Instruments. inc, 2009]. The next 2 benchmarks
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Table 3.0: DFG characteristics of the benchmarks

Initial
Schedule
Benchmarks [[# Nodes | # Edges |MII| length
8x8
IDCY _hor 78 108 3 9
4X4 FFY 67 107 3 10
aX3
FDCT_hor 74 102 4 8
8X8
FDCT_ver 73 100 3 8
latasynth 20 20 1 8
latanal 20 21 i 5
FIR_cplx 25 33 2 6
Volterra 28 35 2 5
IR 36 a1 2 10
IIR_biquad | 35 36 | 3 8

were based on lattice filter [Texas A&M University-Kingsville, 2009]. The last 4
benchmarks were taken from [University of Patras, 2009],written by the authors of
[Dimitroulakos et al., 2007].

We will now consider the lattice synthesis filter benchmark as an example to create
a DFG. The lattice synthesis filter application code is shown in Figure 3.0. The
benchmark was analyzed to find the inner loop body (Figure 3.0) of the application
code. A description file of the loop kernel is created as shown in Figure 3.1. From
the description file, the DFG created for the loop kernel of the application is shown
in Figure 3.2. Once the DFG is created, it is ready to be passed to the scheduling

algorithm to be mapped onto the RRG.
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/{ Lattice LPC Synthesis Filter
g =tength{residu};
N =250;
betold = zeros(1,P1};
for seg = 1:g/N,
s =xcl{seg-1}*N+lL:seg*N};
K =trans{{seg-1})*P+liseg*P};
far n=1:N,
eps(P1} =sinj;
fori=pi:-1:+2
eps(i-1} = eps{i} +K{i-1}¥betold(i-1};
bet{i} =betold(i-1} - K{i-1}*eps(i-1};

end
bet{l} =epsil};
betold = bet;
x{(seg-1)*N+n} =eps(1};
end /{ End of the synthesis filter
end

Figure 3.0: Lattice synthesis filter code
3.2.0.1 TA Graph Generation

The TA graph was generated from the configuration shown in Table 3.1, along with the
interconnection between the resources specified in the architecture connection file. To
have a comparable architecture with other works and rich interconnections, an 8 x 8
CGRA array were employed. The 8 x 8 CGRA array comprises of Meshplusl FU
topology, row and column buses, private RFs that connects with diagonally adjacent
register files (RFs) and shared RF (SRF) for the memory unit (MU) connections.
The private RFs could only handle data and not predicates. The number of resources
and topology are similar to the work reported in [Vassiliadis and Soudris, 2007a]. The
RRG was generated by replicating the TA for each cycle, along the time axis until

the maximum schedule length was reached. The edges of the RRG are explained in
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operation will be executed is shown in the schedule time.
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Figure 3.2: DFG corresponding to the code in Figure 3.0

DFG shows where the operation will be executed. The time at which the placed
All the particles, with

schedule and place values, go through the router to discover how many edges are

The best particle is chosen based on the fitness constraints explained in

Section 2.2.3 of Chapter 2. The algorithm stops once all the edges are routable and

A schedule and place schedule result for the DFG in Figure 3.2, is shown in Table






Table 3.2: Scheduled and placed results of the lattice synthesis loop kernel

DFGname |SchTime|PlacedFU
bet 0 1
betold 0 18
K 0 3
eps 0 4
1 0 17
i 0 19
iml 1 37
kim1 2 58
betoldim1 |2 50
epsi 1 39
mulkbetold |3 59
epsimlnew |4 43
epsim1 5 33
mulkeps 6 47
betnewi 7 46
beti 1 12
betout 9 20

depicted in Figure 3.5. Some particles are penalized if they cannot find a valid route
by a fitness of 0 and that is shown as the missing particles in the Figure 3.5. From
the local-best fitness vector of every particle, a global best particle is chosen, depend-
ing on the fitness value found. The best fitness value found for selected iterations is

shown in Figure 3.4.
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Table 3.3: Routing results of lattice synthesis loop kernel -partl

Edge
no

SourceDFG
name

Path from Source-Target in
RRG

TargetDFG
name

Path
cost

0]

bet

Fltime-0->Fltemptime-0->R2time-1-
=Flitime-1->Filitemptime-1-
~Fl2time- 1

beti

A

betold

F18time-0->F1Btemptime-0-
~R1S5time-1->C32time-1->R47time-2-
»F500ime-2

betoldiml

F3time-0->F3temptime-0->R2time-1-
>CR2time-1->R14time-2->~C22time-2-
>R50time-3->»R50time-4->R5M¢inme-5-
>R5Otime-6->R50time-7->R50time-8-
»REOtime-9->R50time.- 0. »R5Nime- 1.
»RE0time-2->F58time-2

kiml

15

eps

Fdtime-0->F4temptime-0-~>C01time-0
>R28time-1->F35time-1

epsi

eps

FAtime-0->FAtemptime-0-»R3time-1-
=F1O0time-1->F10temptime-1-
=R9tirme-2.>C1l1time-2-»R25time-3-
>R25time-4->R25time-5->F33time-5

epsiml

F17time-0-~Fl7temptime-0-
>CL2time - 0-»F53time-1.-
>T53temptime-1->F40time-1-
>F4dO0temptime-1->F37time-1

Fl9time.O-=F1%tematime.0-
>R16time-1->CO2time-1-~R44time-2-

>CBS5time-2->R26time-3->R26time-4-

=R26time-5->R26time-6->R26time-7-
>RZ6time-8-2R2Z6time-9->2R26time-0-
»R26tinme-1->F37time-1

iml

F19time-0->Fl9te mptime-0-
=F31time-0-»F31ltemptime-0-
=FS1itime-0-=F31temptime-0-
=Ra&time-1-»F57time-1-
>F57temptime-1->f44time-1-
>Fddtemptime-1->F33time-1

F19time-0-»F19temptime-0-
>R14time-1-=F25time-1-
>F25temptime-1->F12time-1

epsi

10

beti

iml

F37time-1-=F3/temptime-1-
~R29time-2->R29time-3-2R29time-4-
=R29time-5->F34time-5-
=~F3dtemptime-5-=F33time-5

epsimi

10

iml

F37time-1->F37temptime-1-
>CBG6time-1->R45time-2->F58time-2

kiml
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Table 3.4: Routing results of lattice synthesis loop kernel -part2

Edge
No

SourceDFG
name

Path from Source-Target in
RRG

TargetDFG
name

Path
cost

11

imi

F37time-1-»F37temptime-1-
AFA2tIme 1 =FAR emptime. 1
>R3Ittime-2->7F36time-2-
»F3btemptime-2->-F49time-2-
=FA9temptime-2-=F5Hime-2

betoldimi

8

12

kim

FSRtime-2->FSBtematime-2-
>R50time-3-=F59%time-3

muilkbetold

i3

kimil

F58time-2-»FhBtemptime-2-
»R53time-3-»CBBlime- 3. »R39time- 4.
>R3g9time-5->R39time-6->F47time-6

mulkeps

14

netoldiml

F50time-2->F50temptime-2-
=RA7me . 3. >E59me. 3

mulkbetold

15

netoldimt

F50time-2- = 50temptime-2-
»RA47time-3-»FL0time-3-
raltemptime-3-»CB/time-3-
=R35time-4->R35time-5.->R35%time- 6.
>R35time-7-=f46time-7

betnewi

16

epsi

F3gtime-1->»F38temptime-1-
»R31time.2-=R31time-3-~R31time-4.
>F43time-4

epsimlnew

17

18

mulkbetold

epsimlnevs

F59time-3->=F59%temptime-3-
=HoAtime-3-=FbAtemptime-3-
~Fa1time 3. >F61temptime. 3
=F48time-3-x=F48temptime-3-
»RA40time-4->-F43time-4
F43time-4.=F43temptime. 4.
>R3IAtime-5-2F33time-5

epsiminew

epsiml

19

epsiml

F33time-5-=F33temptime-5-
>FA5time-5%-~F4htemptime-5-
»R34timp 6 »FA478ima &

mulkeps

20

.21,

mulkeps

betnewi

F47time-6-=T47temptime-6-

»R3dtime-7-~Fibtima-7

F4btime- /-=Ldbte mptirr;e’-(h o
>C21tinve-7-»REtime-8->F5time-8-
>FStemptime-8->5R1time-9-
=F20time-9

betnewsi

betout

22

Fl2time 1. »F12temptime. 1-
>R1ttime-2->CBAtime-2->R23time-3-
=R23time-4->R23time-5->*R23time-6-
=R23time- /-=R23time-B8-»R23time-9-
=E28time-9-~F2R1emptime- 9«
=F20time-9

betaut

12z
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Best fitness versus iteration
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Figure 3.4: Global best fitness for every iteration

N _Instruction

IPC =
pPC i

(3.0)

the Equation (3.1).

The schedule density, without routing, considers the number of FUs used in the
placement. The schedule density, with routing, considers the count of FUs used in
the placement as well as in routing of edges. The fifth column shows the schedule
density without routing and the sixth column shows the schedule density of FU, with

routing, which are calculated as follows

IPC
(number of FU
N _Instruction + FU used in routing

number of FU in RRG

schDensity NO R = ) x 100 (3.1)

st " Tensity . WR = no of stagesx ( )x100 (3.2)

where,

e schDensity NO_R: Schedule density of the FUs with only placement.
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N _Instruction + totalResUsed

Total Util = ber of st 100 3.3
otal Util = number of stages * ( RRC sige E (3.3)
where,

e N Instruction : Number of Instructions in the DFG

e totalResUsed : Total RRG resources used in the routing path.

dR
resUsedPercentage = number of stages x (use'—es) x 100 (3.4)
availRes

where,

e resUsedPercentage : Percentage of resources used with overlap.

e usedRes : Number of resources of the particular type such as FU, RF, CB, RB,

and SRF used in routing.

e availRes : Available resources of the particular type in the RRG.

The last column shows the time taken in seconds to schedule the loop kernel. The
mapping results show that the proposed scheduling algorithm MCHPSO utilizes from
31.25% to 79.69% of the total FUs available in the CGRA. The FU usage depends on
the size of the DFG and the number of stages of the loop. The largest loop kernels,
such as IDCT hor (horizontal pass) and FFT, are scheduled within a maximum of
105.89 seconds. The time to schedule a loop kernel depends on the size of DFG,
II and the modulo constraints. The larger the loop, the higher the constraints on

resources and longer the time the algorithm takes to complete the mapping process.
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Table 3.5: Overall mapping results of the DSP benchmarks in 8 x 8 CGRA

Schedule| Schedule
OPC | Density | Density | Total Exe
{without | (with CGRA # |[Time in
Benchmarks | #ops| MII | &1 routing) | routing) | Ttil % |Stages|]Seconds
FIR complex | 25 2 2 125 1875 39.06 12.59 4 8.72
Lattice syath | 20 1 1] 20 29.69 79.69 22.06 10 12.58
Volterra 28 2 2| W 21.88 34.38 14.06 3 6.87
IR 36 2 2| 18 28.13 62.5 21.14 4 1253
IR _biquad 35 3 31| 1719 31.23 §.25 4 16.93
SX8
IDCT_hor 78 3 3] 2 40.63 7344 2947 3 93.11
4X4 FFT 67 3 31223 3438 7552 29.66 3 105.89
8X$
FDCT hor 74 4 4 | 185 2969 63.28 18.34 3 27.01
8X38
FDCT Ver || 73 3 3 ]1243 373 78.13 21.2 4 55.67

Experiments show that the MCHPSO algorithm could handle a wide range of loops
with different number of operations.

The MCHPSO was experimented on an 4 x 4 CGRA configuration with FU that
can either place or route as well as on an 4 x 4 CGRA configuration with FU reuse.
The schedule, place, and route results from NICHPSO of all the selected benchmarks
on an 4 x4 CGRA configuration with FU reuse is shown in Table 3.6. The first column
shows the benchmark name, the second column denotes the number of operations in
the loop kernel, and the third column shows the initiation interval at which the loop
body is mapped. The fourth column shows the schedule density without routing, as
calculated by the Equation (3.1). The schedule density, without routing, considers
the count of FUs used in the placement. The fifth column shows the schedule density

of FU, with routing, as calculated by the Equation (3.2). The last column shows the
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Table 3.6: Overall mapping results of the DSP benchmarks in 4 x 4 CGRA

Bench- # ScheduleDensity | ScheduleDensity | Time in
Marks | Ops |[MII] 17 | (without routing) | (with routing) |Seconds
FR oplk | 23] 3| 3 50 68.75 0.84
latasynth 00 2 2 36.25 78.13 0.66
latanal 20 21 2 36.23 68.75 0.53
Volterra 28 4 4 4373 5781 1.36
IR 36 4 26.2% 78.13 217
[IR._biquad 33 > 43,75 61.25 1.77
§X8
IDCT _hor 78 6 7 08.75 §9.29 1.2
4X4 FFT 67 5 7 56.25 §1.23 9.86
8XE
FDCT _hor 74 N7 68.75 90.18 643

execution time taken in seconds on an Intel Pentiunmi M with 1 GB RAM and a clock
speed of 1.73 GHz.

From the mapping results, it is clear that the higher the number of loop operations,
the larger the routing resources required. Our MCHPSO scheduling algorithm was
able to map the benchmarks, for both the 4 x 4 and the 8 x 8 CGRA configurations.
The II achieved to map the benchmarks were the minimal Il in most cases, and close

to the minimal in others.

3.2.3 Analysis of Functional Units Usage for Different Topolo-
gies

The various topologies of FU are explained in Section 2.1.1.1 of Chapter 2. In this
section, the flexibility of each topology and its usage are discussed. The interconnec-

tion topologies are (1) a mesh based architecture of 4 neighboring FU connections;
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(2) a meshplusl architecture of 8 neighboring FU connections; and (3) a meshplus2
architecture of 4 neighboring FU connections along with every FU connected with
all other FUs in the same row and the same column (please refer to Figure 2.2 of
Chapter 2). Table 3.7 shows the comparison of Functional Unit usage using various
topologies. This experiment is done on a 4 x 4 CGRA. The first column shows the
2 benchmarks taken for comparison. IDCT hor and FFT benchmarks were chosen
because they did not schedule with the minimal II. The FU usage of the mapped
IT schedule is compared with the previous initiation intervals (like 77 — 1,11 — 2).
The second column shows the minimal /7. The third column shows the I'] achieved
to find a schedule without any overuse of resources. The fourth column shows the
percentage of FU usage, considering only the placement. The fifth, sixth seventh,
eighth columns show the FU usage after scheduling, placement, and routing in mesh,
meshplusl, meshplus2 and star topologies. The topologies which overuse in schedul-
ing, placement, and routing have more than 100% usage. From rowl, row3 and row4,
it shows that the overuse of FUs is reduced when the interconnections were increased.
Maximum FU utilization is achieved in the case of mesh topology. When the intercon-
nections are increased in the other topologies, the utilization of same FUs is reduced
and other FUs are explored and used. When a benchmark has a lot of edges to route,
the flexible interconnection helps the MCHPSO scheduling algorithm to achieve a

valid schedule, with no overuse of resources.
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Table 3.7: Usage of Functional Units with various topologies

MeshPlus2

Mesh MeshPlusl [MeshPlus2 |and Star

Bench-

Marks [Min IO| I P P&R P&R P&R P&R
8X8 ] §1.23 1123 19728 19938 10104
IDCT_hor $ - 6573 9196 23.18 80.18 §3.2¢
3 §1.23 12873 128.73 12258 12058
5 58.73 10521 10321 102.08 10447
AXAFFT 3 - 3625 $5.714 78371 83328 $3.714

3.2.4 Analysis of Register Files Usage with Different Inter-

connections

The usage of registers in the RFs was studied, with different numbers of RFs and
their interconnections. The various interconnections are (1) each FU having its own
private RF; (2) each RF is shared by the FUs in the top and bottom row of the same
column; (3) each FU has a RF and the RF is shared among FUs adjacent in all the
diagonal directions, as shown in Figure 2.3 of Chapter 2. Figure 3.6 shows the usage
of registers for the various register file topologies.

This experiment was done on a 4 x 4 CGRA with each register file having 4
registers, 4 read ports and 4 write ports. The percentage of register usage with
corresponding benchmarks are shown in the graph. When the register usage is above
100%, it is considered as an overuse of registers, and which will not produce a valid
schedule. The highest of overuse of registers is found in dedicated RF topology. The
shared 4 RFs topology uses the limited number of registers efficiently, but for large
benchmarks such as the last two, 8 x 8 FDCT hor and 4 x 4 FFT, it overuses the

registers by nearly 20% to 100%. The shared 12 RFs topology utilizes the registers
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efficiently when compared with dedicated RF topology. Therefore, the shared 12 RFs

topology works the best for all the benchmarks with no overuse of registers.
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Figure 3.6: Percentage of register utilization in different topology

3.2.5 [Effect of Varying Particle Size in MCHPSO algorithm

To determine how many particles should be used in the NMCHPSO scheduling algo-
rithm, it was experimented by varying the number of particles used by the algorithm.
This experiment was done on an tel® Core™ i7-860 Processor, with a clock speed
of 2.8GHz, using all the 4 cores for an 8x8 simulated CGRA configuration.

The algorithm was not able to come out of the local optimum of the best par-
ticle’s fitness value when only 5 particles were used. However, a valid schedule was

achieved with 10 particles. Table 3.8 shows the comparison of execution time with
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Table 3.8: Variation of particle size on an 8 x 8 CGRA

‘Execuotion time {in seconds} of
MCHPSO

Benchmarks| 10 | 25 30 35 40
8X8 223 24.0|1 269] 313 355
IDCT hor
4X4 FFT 22.00 49.0| 48.1] 38.6] 66.7
8X8 12.1] 187 21.0] 24.4| 278
FDCT ver

different. particle numbers. The first column shows the 3 large benchmarks taken for
comparison. The second to sixth columns show the execution time for particle counts
10, 25, 30, 35 and 40. In all the particle count variations, the MCHPSO algorithm
was able to get the valid schedule, with the same usage of resources. The quality
of the solution was the same in all the particle size variation. Since there was the
same usage in all the different particle counts, it is concluded that 10 particles are

sufficient.

3.2.6 Analyzing the Speedup of MCHPSO Algorithm

The Intel Core i7-860 processor (Intel 17-860 processor, 2009) features 4 cores, with
a clock speed of 2.8 GHz. It features symmetric multithreading (hyper-threading) so
that each core supports 2 threads, for a total of 8 hardware threads. It can run at
a maximum clock frequency of 3.46 GHz with Intel Turbo Boost technology. When
one core is active, 17 processor operates at a frequency of 3.46GHz. When 2 cores
are active, 17 processor operates at a frequency of 3.33GHz. When 3 or 4 cores are
active, 17 processor operates at a frequency of 2.93GHz.

To analyze the speedup of our MCHPSO scheduling algorithm, the execution
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times of the algorithm were compared, for 1 to 8 processing threads on the quad core
processor done in the same environments. Table 3.9 shows the speedup of MCHPSO
algorithm on various benchmarks. The first column shows the benchmarks taken
for comparison by using logical processors (P) in Intel i7 machine. The second to
the ninth columns show the execution time of NNCHPSO algorithm. The MCHPSO
execution on Intel 17 machine scheduled at the same II as given in Table 3.6. While
using 2 processing threads and 2 cores, the speedup was more than 1.5 timmes than
with a single processing thread. While using 4 processing threads, 1 on 4 cores, the
speedup is more than 2.5 times than with a single processing thread. While using
8 processing threads on 4 cores, the speedup was more than 3.5 times than with a
single processing thread execution. The multithreading, available in the cores, helps
the algorithm to process the particle arrays faster. The proposed NICHPSO works
faster, with more processing threads. The MCHPSO algorithm did not achieve a
lower II than the II given in Table 3.6 in spite of the speedup available by the logical
threads. The sublinear speedup was due to the pipelines that don’t contend for ALUs,
and the memory pipe is to the level 2 cache (the largest cache). MNemory contention

is probably the most important of those.

3.2.7 Functional Units Capable of Routing and Performing
Computations

The computational resources in a CGRA are the functional units, which are capable
of executing a set of coarse-grained operations such as add, subtract, multiply, and

shift. First, we designed the FUs only to perform computation and to forward in-
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Table 3.9: NICHPSO algorithm speed up comparison on an Intel 17 processor

Benchmarks MCHPSO in IntelE Core™ i7 Processor
Execution Time{Seconds)

OneP|2 P's|3 P's|4 P's|S P's|6 P's|7 P's P's
FIR cplx 729 4.23] 3.1 298] 299 268 22 208
latasynth 6.96] 4.17] 3.31] 3.26] 3.2] 3.07] 249 243
latanal 289 1.76] 139 136] 13f 1.25] 115 1.06
Volterra 6.26] 3.45] 259 236] 234 2.17] 1.86] 1.76
IIR 9.13| 537 392 3.65] 334 332 2181] 21.68
IR _biguad 13.6] 7.61) =S4 s5.12] 516 4.36] 398] 3.68
8X8
IDCT _bor | 79.31| 42.44] 32.24] 28.82] 28.33] 27.51] 22.69] 22.29
4X4 FFT 84.46| 44.23] 33.16] 31.54] 29.65] 27.38] 22.73 22
8X8
FDCT hor | 2328| 13.14] 997 939] 877 841 7.13 694
8X8
FDCT ver | 44.28] 23.97] 18.23| 17.12] 15.87| 15.02] 12.3] 12.07
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Table 3.11: Comparison of MCHPSO results with Mei et al work

Comparing Results reported in (Vassiliadis
algorithms § x § MCHPSO & Soudris, 2007)
Schedule Exe Schedule Exe
Density Time Density Time
4 (with in | & (with in
Benchmarks| MII | ops | I | routing) | OPC | Secs |ops | IT | routing) | OPC | Secs
8X8
IDCT her 3 |83 M 26 |93.11(128] 3| 90.10% | 42.7 | 340
4X4 FFT 3 ev)3) a2 24 11059 79| 4] 7500% | 138 | 34

tecture has 2 scratch pad memories L0 and L1 and there are 2 memory buses per row
in the 2D CGRA to fetch data from scratch pad memory L1 which quickly loads the
data into the PE. The L0 scratch pad memory exploits this capability for reducing the
memory accesses to L1 by reducing the data transfer bottleneck. That is achieved
by storing the data reused values in the LO and not fetching them again from the
L1 memory. The topology used with our MCHPSO algorithm closely resembles the
topology in PEIT1, described in Table 4 of [Dimitroulakos et al., 2007]. Therefore,
the work done in [Dimitroulakos et al., 2007] based on PEIT1, was compared with
the NICHPSO algorithm. The first column in Table 3.12 shows the benchmarks taken
for comparison. The second and fifth columns show the number of operations in the
benchmark. The third and sixth column show the II at which the algorithms were
able to map the benchmarks. The fifth and ninth columns show the schedule density
of FU (with routing) as calculated in Equation 3.2.

This comparative study has established that NICHPSO algorithm has a lower II
for all benchmarks in spite of not using scratch pad memory, which has been used in

[Dimitroulakos et al., 2007]. The fifth benchmark 8 x 8 IDCT-hor depicts a typical case
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of showing that the proposed algorithm maps at a lower II with the same nunmber of
operations and schedule density compared with results in [Dimitroulakos et al., 2007].

The number of operations are different for the comparing algorithms because of
the different analysis and transformation phase carried out in [Vassiliadis and Soudris,
2007a] and [Dimitroulakos et al., 2007]. Not withstanding this discrepancy, the su-
perior performance of the MCHPSO algorithm is evident. The MCHPSO algorithm
finds schedules, with a minimal II, for all the benchmarks taken for comparison to

the work done in [Vassiliadis and Soudris, 2007a] with a lower use of resources.

Table 3.12: Comparing MCHPSO with Dimitroulakos’s et al work
4X4 MCHPSO |Results reported in

(Dimitroulakos,
Comparing Galanis, & Goutis,
algorithms 2007)

Benchmarks |MIT |# of Ops |II (Schedule |# of Ops |IT |Schedule
Density Density
latasvnth | 2 20 2 3| 18 [6] 73
Volerra 4 28 4 518y 27 |7 03
IR 4 36 4 8131 39 81 593
4X4 FFT § 67 o812 95 |17 696
$X8 IDCT horp 6 78 89290 79 |14 831
banal | 2 | 20 | o] @3] 18 [3] 65
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3.4 Conclusion

In this chapter, we discussed the analysis of the Modulo Constrained Hybrid Parti-
cle Swarm Optimization (MCHPSO) algorithim for the loop scheduling problem in
CGRAs. The results from MCHPSO algorithm indicate that the algorithm can find
a valid schedule, placement and routing for the given benchmark loops, often with a
minimal initiation interval, and with a low use of resources. To study the paralleliz-
ability of the MICHPSO algorithm, we have executed it on a quad-core machine with
8 logical processors and found good speedup. We also analyzed the NNCHPSO algo-
rithm with 2 different FU configurations. The experiment helped us to understand
the enhancement in FU configuration increases the usage of FUs. Various intercon-
nections in all FUs showed that increase in each additional edge produces a flexible
routing process, thereby increasing the usage of resources. The size of RFs and the
effect of topology have been studied to know the usage of registers and which topol-
ogy worked the best for our scheduling problem. Shared RFs with each FU gave the
lowest usage of registers. In the MCHPSO algorithim, the number of particles to be

considered was studied and reported.
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Chapter 4

Exploiting conditional structures

onto CGRAs

4.0 Introduction

Coarse-grained reconfigurable architectures (CGRAs) have been structured for accel-
erating computation intensive parts like loops that require large amount of execution
time. Loops, with conditional branches, have multiple execution paths which are dif-
ficult to perform software pipeline. In this chapter we review work done in handling
conditional branches of loop, with if-then-else structures. We present an algorithm for
scheduling predicated execution, with exclusivity feature, to exploit the conditional
branches of loops. The performance of the proposed algorithm is compared with the
predicated execution scheduling algorithm, with no exclusivity feature. The proposed

algorithm finds a lower initiation interval for all the loops considered.
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4.1 Background on HARPO/L

In this chapter we have taken DFGs generated from a HARPO/L program (stand-
ing for HARdware Parallel Objects Language). A HARPO/L program consists of a
set of classes, interfaces, objects, and constants. The class declarations and inter-
face declarations add new types to the type system, and the object declarations and
constant declarations add objects to the object graph. The details of object decla-
rations and constant declarations are similar to other object-oriented programming
languages [Wu, 2011]. The grainless semantics of HARPO/L allows the object in-
stantiation and connection to be done at compile-time, and at the run-time, there is
no reference/pointer assignment.

The synthesized data flow graph (DFG) generated by the compiler [Wu, 2011] is
very close to the representation of a schedulable datapath unit. All the benchmarks
considered in this chapter are written as HARPO/L programs. In this chapter, we

present limited details on HARPO/L and for more details please refer to [Wu, 2011].

4.2 DFG characteristics

This section describes the characteristics of the dataflow graph generated from the
HARPO/L program. A DFG is a directed graph represented by a 5-tuple

(N, E, type, I,0) where N is a set of nodes, E is a set of directed edges, type is
a function: N — NodeT ypes, I is a node representing the start of the graph, and O
is a node representing the end of the graph [Wu, 2011|. Each node has an ordered

set, of input edges and an ordered set of output edges, and each edge has exactly 1
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source node and exactly 1 target node. There are 2 kinds of directed edges between

data flow graph nodes : £ = C' U D where C is a set of control flow edges and D is
a set of data flow edges. A data flow edge represents the synchronized transmission
of a primitive value between data flow graph nodes. When a node is ready to receive
data from an edge, it waits for the edge to be active, and once the edge is active,
the node may receive the data and set the edge’s activeness expires. When a node is
ready to transmit data, it will transmit the data, set the edge active and wait until
the edge is no longer active. The control flow edges are the edges transmitting only
the activeness and no data. The symbols used for outgoing and incoming edges are
Z! means “activate control flow edge Z and wait until it expires and a control flow
receive operation A7 means “wait until edge A is active, and set the activeness as
expired” [Teifel and Manohar, 2004]. There are 13 types of data flow graph nodes.
The graphic representations are shown in Figure 4.0. The description of the nodes

used in the data flow graph are given below.

FETCH, VALUE and STORE: Each FETCH and STORE node are associated with
a location. The operation fetch() means “fetch the value in the location”. The
operation store(a) means “store the value of a in the location”. VALUE loads

the data from the memory.

FUNC: It performs the assigned arithmetic or logic operation when all the incoming

data edges are active.
COPY': Copies the incoming data to the various outgoing nodes.

START: The control flow of the whole graph starts from this node.
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branches in CGRAs is that the configuration text cannot control the execution ac-

cording to the computation results [Lee et al., 2010]. The conditional branches part
makes it hard to map the application onto CGRA, even though CGRAs can handle
the most time consuming computation intensive part.

To tackle this problem, various solutions have been proposed in the literature. One
of them is to perform predicated execution on the CGRA [Warter et al., 1993]. In
predicated execution, each processing element ( PE) selectively executes an instruction
according to its condition flag. This approach has the advantage of turning off unused
PEs to reduce the power consumption. Predicated Execution restricts the parallel
execution in CGRAs, because the condition should be checked before executing the
statements inside the conditional statement [Smelyanskiy et al., 2004], [eun Lee et
al., 2004].

The second approach is to run the application with speculation [Lee et al., 2010].
Speculative Execution chooses one of the solutions depending on the condition, after
executing all possible solutions first. This approach improves the performance, but
consumes more power compared to the predicated execution.

The third approach is the Hierarchical Reduction, which collapses conditional con-
structs (e.g. if-then-else) into pseudo-operations. Next, list scheduling is employed on
both the paths of the conditional construct and merging them into one path by taking
the union of the resource usages along each path [Warter et al., 1993]. Hierarchical
Reduction does not assunie special hardware support. Thus, after modulo scheduling,
the code is regenerated by expanding the pseudo-operations. The fourth approach is
called the Enhanced Modulo Scheduling [Warter et al., 1992], which takes advantage

of Predicated Execution and Hierarchical Reduction.
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To support conditional branch in the reconfigurable architecture, the target ar-

chitecture (7TA) has to be modified slightly with an extended set of operations and
additional ports [Chang and Choi, 2008], [Lee et al., 2010]. Figure 4.1, shows the
extension of arithmetic and logic unit (ALU) for predicated execution. The predi-
cated instructions contain a condition flag to be executed first, which is supported as
an additional port to the functional unit (F'U). The difficulty that arises in mapping
conditional branch on the CGRAs is to direct control flow to either stay in the current
iteration path or to begin executing operations on a different iteration path.

In our target architecture, an additional port for each functional unit is added
to support predicated operations. Predicated execution, with hardware support for
conditional branching CGRAs, will be used in our modulo scheduling algorithm. To
enhance the performance of predicated execution, we have developed an exclusivity
feature algorithm, which will be discussed in the next section. We have implemented
both the approaches of predicated execution without exclusivity and with exclusivity

to study the performance of the exclusivity feature.

4.4 Predicated execution with exclusivity

4.4.0 Motivational example for exclusivity

Consider the DFG given in Figure 4.2, generated from the HARPO/L program having
1 if-then-else structure. Each node description is explained in Section 4.2 of this
chapter. The node with number 250 in Figure 4.2, is a boolean node. There are 2

execution paths in the DFG, based on the boolean value of node 250.
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Cycle O

Ex F5={700, 5007 (1) C0L=(590-£540, 45D-24071 (L)
NO-Ex FE=15601 (0} COL=1710)
Cycle 1
Re=[T00-2320, 250-2470,
250-210, 30-4040,
Ex 500-2107 (%)
NO-Ex Re=[210-230, 250-2107(0)
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Cycle 2 Ex 250-370, 250-450%(0)
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250-4501 (0)

Figure 4.3: MRT Comparison of Exclusivity and No Exclusivity Algorithm

DFG_Cells Predicates
500 ~250

700 250

550-340 ~250
450-840 250

700-810 250

500-810 250

Figure 4.4: Predicates of the exclusive nodes in Figure 4.3
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the exclusivity feature, in addition to the predicated MCHPSO, to map if-then-else

4.4.1 Mapping with MCHPSO predicated no exclusivity al-

The MCHPSO scheduling algorithm, discussed in the previous chapter, can place
schedule and route DFG cells that have no predicates attached to them. There are

3 main updates needed to be done to the existing scheduling algorithm. We had to




update our TA graph, DFG and scheduler to handle execution paths and predicates

to map if-then-else structure with our existing NICHPSO scheduling algorithm. The
overall description of the predicated NCHPSO with no exclusivity algorithm is given

in Figure 4.5. Each update is explained in the following subsections.

Adding predicates and symbolic values The main input to the scheduling al-
gorithm is the data flow graph. In this chapter, we have generated DFG from the
HARPO L program, as described in early sections of this chapter. Each node in the
DFG has a type. The condition nodes of an if-structure is assigned the node type
FUNC and the outgoing edges of that node have an edge type BOOL. A condition
node is shown in Figure 4.2, with the node number 250. From the condition node,
the following nodes and edges in the DFG are controlled by the result of the BOOL
value, having 2 execution paths of TRUE FALSE. The outgoing edges of the con-
dition node are assigned a symbolic value, based on the executed result of condition.
Any node that has an incoming edge, with a symbolic value, assigns predicate to itself
and to its successors with a combination of symbolic value and its predicate. The

following subsection explains the assignment of symbolic values and predicates.

Assigning symbolic values When the DFG is created, all the DFG cells are
assigned a TRUE value for their predicate and a null for their symbolic values. After
all the nodes and edges are created, the symbolic values and predicates are added.
Adding symbolic values is explained in Algorithm 4.0. First, the procedure starts to
find all the condition nodes in the given DFG and adds them to the queue. Second,

the procedure finds all the edges of the condition nodes and assigns the symbolic
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Symbolicval _add(condition list, DFG cells)
Begin
For each condition node (cl) in condition list
Add condition node to Queue
¢l name:=cl.getName()
Create a propositional variable (symval)
with c1 name
Assign cl’s symbolic value as symval
While Queue not empty
Remove a node (nl) from Queue
succe  symval:=symval
For each successor(sl) of nl from DFG _cells
succ_type:=sl.getNode type()
nlsl:=Edge(nl, s1)
Assign nlsl’s symbolic value as succ synival
Assign s1’s symbolic value as succ symval
if succ_type is COPY
Add s1 to Queue
End For
End While
End For
End

Algorithm 4.0: Adding Symbolic values to DFG cells

value, based on the name of the condition node.

Assigning predicates Once the symbolic values are assigned to all the DFG
cells, it is easy to assign the predicates. The adding of predicate values is explained in
Algorithm 4.1. Each DFG cell is assigned a predicate value based on its parent cell.
Mostly, all the DFG cells are assigned the same predicate of its parent cell. There
are 3 special cases based on the node type. Figure 4.6 explains the 3 cases of node.
The first case is a Condition Node (node 30), in which assigning a predicate to this

node 1s always done with a AND operation with its existing predicate. The second

case is a SPLIT Node (node 400). A SPLIT Node is assigned the same predicate of
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its parent cell, but it predicts the predicate of its successor edge. A SPLIT Node has
2 edges, the first edge is for the TRUE value of condition and the second edge is for
the FALSE value. The same predicate of SPLIT Node is assigned to the first edge.
The negation of the SPLIT node’s predicate is assigned to the second edge. The third
case is a MERGE Node (node 810). The MERGE Node has 3 incoming edges, an
edge with a symbolic value, an edge with TRUE predicate, and an edge with FALSE

predicate. The MERGE Node is always assigned the same predicate value of the edge



Predicates _add(condition list, DFG _cells)
Begin
For each condition node (cl) in condition list
Add condition node to Queue
While Queue not empty
Remove a node (nl) from Queue
nl predicate:=nl.getPredicate()
nl_type:=nl.getNode type()
For each successor(s1) of nl in DFG_ cells
FIRST succ:=true
succ _type:=sl.getNode type()
nlsl:=Edge(nl,s1)
edge type:=nlsl.edgeType(sl)
//pass the same predicate if succ is not a SPLIT
succ pred:=nl predicate
if n1 _type is SPLIT
if FIRST succ
//FALSE execution path
Create a NOT node (not_nl) of nl_symval
Create an AND node (succ_pred) of nl _predicate
and not _nl
FIRST succ:=false
else
//TRUE execution path
Create an AND node (succ_pred) of nl _predicate
and nl _symval
Assign nlsl’s predicate as succ pred
if succ type is not MERGE or SINK
Assign s1’s predicate as succ_pred
Add sl to Queue
if edge type is BOOL and succ_type is MERGE
//pass the predicate MERGE node’s successor
Assign nl’s successor predicate as succ pred
End For
End While
End For
End

Algorithm 4.1: Adding Predicates to DFG cells
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TA predicate and control flow update The first update is done in the TA

graph. We have to update the TA to accept conditions in the DFG and to handle
the control flow in the DFG. Each functional unit in the TA was updated with an
extra input port to handle predicated DFG cells. A DUMMY node was added in the
TA to handle control flow in DFG cells. After the TA was updated, the functional
units were ready to process predicates and control flow. Now the scheduler has to be

updated to use the updated TA.

Handling control flow update in scheduling algorithm The inputs to the
scheduler are the predicated DFG and the routing resource graph of the updated TA
graph. The scheduler as presented in Chapter 3 can handle only the data flow in the
DFG. To handle control nodes and control edges in the predicated DFG, the scheduler
had to be updated. In the placement module of MCHPSO, the control nodes of the
DFG are allocated to the DUMMY node of the TA graph. In the routing module
with Dijkstra’s algorithm, the control edges are not passed to check the resource
availability to route. Instead control edges affect the schedule time of its successor

nodes.

4.4.2 Mapping with MCHPSO predicated exclusivity algo-

rithm
4.4.2.0 Method description

The MCHPSO predicated exclusivity algorithm has all the updates done in the previ-

ous section of MCHPSO predicated no exclusivity scheduling algorithm. There are 2
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extra updates done to the MCHPSO predicated no exclusivity scheduling algorithm to
add the exclusivity feature. The first update is to find all the exclusive pairs of DFG
cells. Second is to update our scheduler to handle exclusive DFG cells. The overall

description of predicated NMCHPSO with exclusivity algorithm is given in Figure 4.7.

Find exclusivity relationship When there is a condition in a predicated DFG,

we can find exclusive pair of cells which are on different execution paths. A cell can




Create Exset(Alldfgcells)
For each cell 1 in Alldfgcells
For each cell 2 in Alldfgcells such that cell 1 # cell 2
Create a boolean expression e with an AND node
combining the predicates of cell 1 and cell 2
if e is satisfiable
Add the pair {cell 1,cell 2} to the exclusivity set

Algorithm 4.2: Creating exclusivity set

be either a node or an edge in the DFG. Two cells are exclusive, when both of these
cells are on different execution paths i.e., both of these cells will not be executed
in the same iteration. Algorithm 4.2 shows the steps to find exclusive pair of cells.
Based on the predicates of each cell, all of its exclusive cells are found which are on

different execution paths.

Handling exclusivity in placement, schedule and routing The scheduler up-
date done in the predicated, no-exclusivity algorithm does not have methods to check
for exclusivity in placement and routing. We have added an exclusivity check method
both in the placement and the routing modules to place and route exclusive DFG cells.
Each TA resource in the modulo reservation table has a set of DFG cells assigned to it
during the execution of scheduling algorithm. In the MCHPSO predicated exclusivity
algorithm, we propose to reduce the usage of TA resource and reuse existing resources
based on exclusivity. Algorithm 4.3 shows the exclusivity calculation. Each DFG cell
executes Algorithm 4.3 while searching for TA resource availability in placement and
routing. The number of slots occupied in the existing DFG cells in the TA resource
are found by the Maximum Independent Set (MIS) Algorithm 4.4. When a DFG cell
wants to use a TA resource, the number of used slots in the TA resource must be less

than the capacity of the resource. Adding the exclusivity algorithm to the predicated
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exclusivelnSet( TAresource, dfgcells existing, newOP)
1. If dfgcells existing is empty add newOP and return true.
2. Else find MIS SIZE= MIS(dfgcells _existing, newOP)

a. Return MIS SIZE<Capacity(TAresource)

b. Else return false.

Algorithm 4.3: Exclusivity check of TA resource

MIS(dfgeells existing, newOP)

1. Create 2 emipty sets MIS search and MIS.

2. Add the dfgcells existing and the newOP to the set MIS search.

3. Find the degree of each cell in the set MIS search based on exclusive pair.
4. Sort MIS search set in ascending order of degree.

d. For each cell el in MIS search

If degree(el)=0 then add el to the MIS set and remove el from
MIS _search.

else
a. Check whether el is exclusive with the elements in the MIS
set.
b. If not exclusive add el to the MIS set.
c. Remove el from MIS search

6. Repeat step 5 until all MIS search is empty.
7. Return the size of MIS set.

Algorithm 4.4: Maximum Independent Set of DFG cells
MC™™SO makes room for more DFG cells to be scheduled.

Algorithm 4.4 shows the steps to find maximum independent set of given cells.

4.5 Results

Modulo scheduling algorithms reported in the literature either jointly address inner
loop mapping and predicated execution but do not consider CGRAs [Warter et al.,
1993], or consider modulo scheduling on CGRAs but cannot handle exclusivity i.e.,
can only address predicates and control flow, with no particle swarm optimization [Mei

et al., 2003b]. Thus, the novelty of our approach makes it difficult to experimentally
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Table 4.0: DFG characteristics of the benchmarks

Benchmark No of 4x4and4x3 CGRA

name No of nodes| Edges |MIl Sch_length

ifthen-1

candition 26 41 3 15

ifthen-2

canditions 52 87 6 18

ifthen-3

conditions 66 111 7 21

4.5.1 DFG characteristics

The characteristics of the DFG input to the scheduling algorithm are given in Table
4.0. The 3 benchmarks were written by me. The loop structure of the benchmarks are
given in Figure 4.8, where s represents the statement and ¢ represents the condition
in the loop. The first column in Table 4.0 describes the benchmark name. The second
and third columns list the total number of nodes and edges in the DFG to be mapped
onto the TA. The fourth and fifth columns show the minimal initiation interval and

schedule length.

4.5.2 TA characteristics

The TA graph has nodes and edges describing the details of the CGRA configuration.
A detailed explanation of the TA is given in Chapter 3. Table 4.1 shows the resources
available in a 4 x4 and 4 x 3 CGRA. The first colunin shows the number of functional

unit resources available. The second column shows the number of local registers
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available. The third column shows the number of shared registers available with

memory loads and store. The fourth and fifth columns show the number of row
and column buses available. The last column shows the number of total resources
available. We have taken 4 x 3 CGRA to compare the advantage of predicated
exclusivity in NMCHPSO. The reduced number of resources in 4 x 3 CGRA makes

it challenging for the predicated scheduling without exclusivity to place and route

the DFG.
Table 4.1: Resources available in the Target Architecture
H#FU #LRF #SRF #RB #CB # Total
4x4 —-Target
Architecture 16 48 4 4 4 6
4x3 —Target
Architecture 12 3z 4 3 4 33

4.5.3 Predicated Execution
4.5.3.0 With Exclusivity

The MCHPSO algorithm with predication execution and exclusivity feature was
tested on 2 CGRA configurations. The exclusivity feature enables the TA resources
to share the available MRT slots in routing as well as in placement. The sharing of

resources reduces the total usage of MRT resources, making the remaining resources
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available for other DFG operations. The following subsections describe the results

obtained in the 2 CGRA configuration.

4x4 CGRA Table 4.2 displays the result obtained in a 4 x4 CGRA, with predicated
exclusivity algorithm. The first column shows the benchmark description. The second
colunin shows the initiation interval (II) at which the algorithm was able to schedule
the DFG. The third column shows the percentage of total functional unit usage in
the MRT. The fourth column shows the percentage of total local register usage in the
MRT. The fifth column shows the percentage of total shared registers usage in the
MRT. The sixth and seventh columns show the percentage of total usage of column
and row buses in the MRT. The eighth column shows the total resources available
in the MRT. The ninth column shows the total resources used in the MRT. All the
benchmarks were scheduled at the minimal initiation interval (MII) and minimal
usage of resources. The total usage of the modulo reservation table of the final

schedule was calculated by

All resource types in T A
Res avail = Z (#r x Cap) x II (4.0)

Resource r

All resource in TA
Res used = Z (#slots used) (4.1)
Resource r
Usage% = (Res_used)/(Res_avail) x 100 (4.2)

where,

Res_avail: Total TA resources in MRT

Res used: Used TA resources in MRT
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Table 4.2: Exclusivity results in 4 x 4 CGRA

Total
Available Jresources
Benchmark FU LRF SRF 8 RB resources |used in
name I usage¥ |usage% |usage% |usage% |usage % |in MRT  |MRT
ifthen-1
condition 3 52.08 29.86 83.33 3333 16.65 228 84
ifthen-2
conditicns i3 5615 50.69 9L 66 1666 2083 458 231
ifthen-3
conditions 7 64.28 59.52 92.85 1785 2142 532 309
Cap: Capacity of resource r.
#r: Total number of resources of type r.
#slots _used: Number of slots used in r
II: Initiation Interval

Ex_Usage%: Total Usage with Exclusivity algorithm

The same equations can also be used to calculate individual resource types.

4 x 3 CGRA Table 4.3 displays the result obtained in a 4 x 3 CGRA, with
predicated exclusivity algorithm. The table fields description are same as explained
for Table 4.2. Nost of the benchmarks were scheduled at the NII with lower usage
of total resources compared with predicated execution with no exclusivity algorithm.

The resource usage is higher than the 4 x 4 CGRA utilizing most of the resources in

41 x 3 CGRA.




Table 4.3: Exclusivity results in 4 x 3 CGRA

Total
RB Available |resources
Benchmark FU LRF SRF CB usage |resources |used in
name ] usage% |usage % |usage % |usage% (% in MRT MRT
ifthen-1
condition 3 69.44 44.79 83.33 41.66| 33.33 165 86
ifthen-2
conditions 6 83.33 66.14 91.66 33.33| 44.44 330 225
ifthen-3
conditions 8 88.54 8C.07 81.25 34.38| 5C.0C 440 339

4.5.3.1 No Exclusivity

The MCHPSO algorithm with no exclusivity feature in the predication execution was
also tested on the 2 CGRA configurations. The MRT slots were not able to share
the resources even when there was a critical need of resources in routing as well as
in placement. Predicated execution with no exclusivity feature pushed the algorithm
to its limit in some cases and couldn’t find the schedule at lower I1. The following

subsections describe the results obtained in the 2 CGRA configuration.

4 x 4 CGRA Table 4.4 displays the result obtained in a 4 x 4 CGRA, with no
exclusivity in predicated execution algorithm. The table fields description are the
same as explained for Table 4.2. All the benchmarks were scheduled at the minimal
initiation interval. The usage of total resources was higher when compared with

predicated exclusivity algorithm.
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Table 4.5: 4 x 3 CGRA results without exclusivity

Total
RB Available (resources
Benchmark FU LRF SRF CB usage [resources |usedin
name ] usage% |usage % |usage %o |usage¥ (% in MRT MRT
ifthen-1
candition 3 89166 53.12 83.33 2500 33.33 165 160
ifthen-2
conditions 7 89.28 7410 B5.71 42.85 47 61 385 287
ifthen-3
conditions 1C 86.66 85.63 82.5C 42.50| 40.0C 550 440
Table 4.6: 1I achieved in 4 x 3 CGRA and 4 x 4 CGRA
Il achieved
4 x4 CGRA 4% 3 CGRA
Benchmark without without
name Mil exclusivity |Exclusivity |exclusivityExclusivity
ifthen-1
condition 3 3 3 3 3
ifthen-2
conditions 6 6 6 7 6
ifthen-3
conditions 7 7 7 10 8
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Table 4.7: Total usage of 4 x 4 CGRA

Usage % of total resources in MRT
4 x4 CGRA

Benchmark without

name I exclusivity|with exclusivity
ifthen-1

candition 3 43.86 36.84
ifthen-2

conditions 6 59.87 50.66
ifthen-3

conditions 7 76.69 5308

for both the scheduling algorithms with and without exclusivity feature. In 4 x 4
CGRA configuration, the II achieved was the same as the MII and thus both the
algorithms achieved the best II. In 4 x 3 CGRA configuration, predicated exclusiv-
ity algorithm was able to achieve better result at lower IT than the no exclusivity

predicated algorithm.

4.6.1 Usage of resources in Exclusivity vs No exclusivity in

4 x4 CGRA

Table 4.7 shows the usage of total resources in a 4 x 4 CGRA. Both the scheduling
algorithms, with and without exclusivity feature, have found the schedule at the same

IT'in 4 x4 CGRA configuration. The final schedule of exclusivity predicated algorithm
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Table 4.8: Total usage and overuse of 4 x 3 CGRA

Usage % of total Overuse % of total
resourcesindx 3 resourcesind x 3
CGRA CGRA
NOC- with NO- with
Benchmark name [l |exclusivity|exclusivity |exclusivity |exclusivity
|
iHhen-1 randitinn 3 60.61 52.12 .00 0.60 |
6 82.73 68.18 1.82 C.Ce
ifthorn 7 rapditinne 7 7455 A1 RA nan C.oo
8477 77.05 977 BRI
82.42 7152 5.25 060
ifthen-3 conditions | 1€ 80.0C 60.73 0.00 0.0o

recorded lower usage of resources than the predicated execution with no exclusivity.
Achieving lower usage of resources makes room in the CGRA to route more data and

to use the available resources for executing more operations.

4.6.2 Overuse of resources in Exclusivity vs No exclusivity

in 4 x 3 CGRA

Table 4.8 shows the usage and overuse of total resources in 4 x 3 CGRA. The overuse
is the percentage of resource usage above 100 percent. In most of the benchmarks,
exclusivity predicated algorithm found the schedule with lower II to be closer to the

MII. The final schedule of exclusivity predicated algorithm recorded lower usage of
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resources and lower 11 than the predicated execution with no exclusivity. The overuse

of resources in predicated no exclusivity algorithm was caused by the unavailability of
resources for placement and routing at the required time cycles. In case of exclusivity
predicated algorithm, the overuse was avoided by sharing of exclusive resources. The
exclusivity predicated algorithm made room for other DFG cells to be scheduled. The
overuse of resources in the no exclusivity predicated algorithm decreased as II was
incremented. Definitely exclusivity was able to save resources for future routing and

placement even in smaller size CGRAs.

4.7 Conclusion

The objective of this chapter is to conduct a performance evaluation of exclusivity
feature in the proposed MCHPSO algorithm with predicated execution. Under 2
different CGRA configurations, predicated MCHPSO with exclusivity was compared
with predicated NICHPSO with no exclusivity feature. The proposed predicated ex-
clusivity algorithm performance was very good even under lower resource availability.

A general conclusion from the result analysis, under 4 x 3 CGRA, predicated
exclusivity algorithm was able to achieve scheduling with a lower initiation interval.
While comparing the predicated exclusivity feature with predicated no exclusivity
algorithm in 4 x4 CGRA, the exclusivity enabled the scheduler to use fewer resources
and provided more sharing of resources. The total usage of predicated exclusivity
algori’” 1 was lower than the predicated execution with no exclusivity.

The proposed exclusivity feature in predicated execution was experimented for

if-then-else structures in the loops. It can also be extended to switch-case statements
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Chapter 5

Recurrence exploitation in CGRAs

5.0 Introduction

A loop contains an inter-iteration dependence or recurrence if an operation in an
iteration of the loop has a direct or indirect dependence upon the same operation
from a previous iteration. To software pipeline a loop, a scheduler must handle inter-
iteration dependencies, which arise from the loop’s non-trivial recurrence circuits.
In this chapter, the different approaches to solve the inter-iteration dependence in
nmodulo scheduling are analyzed. By using a dynamic priority scheme, slack scheduling
provides a novel integration of recurrence constraints and critical-path considerations.
A priority scheme along with recurrence aware modulo scheduling is proposed to
map inter-iteration dependencies onto Coarse Grained Reconfigurable Architectures
(CGRAs). Our algorithm is aware of data dependencies caused by inter-iteration

recurremnce cycles .
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5.1 Recurrence Handling

Recurrences form a cycle in the data-flow graph of the inner loop body. The schedul-
ing slot of an operation depends on the schedule of the operands’ producers, thus
some operations in a recurrence cycle need to be scheduled before their producers
have been placed. In a recurrent cycle, some operations are scheduled with only
partial information of their producers’ schedule [Oh et al., 2009] affecting the overall
performance of the loop schedule.

The II is constrained by the recurrences of the loop and by the resource constraints
in the dependence graph. Inter-iteration dependences can induce recurrences that
cause a maximum delay for the operations on the recurrence path or dependence
cycle. Memory operations (load/store) are mostly the cause of a recurrence. These
loop-carried dependences have a distance property, which is equal to the number of
iterations separating the 2 instructions involved in the recurrence. If a dependence
edge, e(v, u), in a cycle has latency A and connects the operations at d,., then the

recurrence constraint ( RecMIT), is calculated by

l
RecMII = Max ¢ {E-I (5.0)
where,
e — cisarecurrence cycle in the set of all cycles C of the DFG

— [ i1s the sum of all delay (\) in the circuit

— d is the sum of all distance 6, ,, in the circuit, variable 4, ,,denotes the dis-
tance between operation v and u, which means the operation u of iteration

i depends on the operation v of iteration i — 4, ,,.
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The resource constraint (ResMIT) is calculated from the resource usage require-

ments of the loop and it is derived from

(5.1)

ResMIT =M #r needed
CSRLIL = AR | g ailable

where,
7 is a resource in the TA resources R.
Minimal Initiation Interval (MII) is a lower bound to start the pipeline scheduling

process and it is computed as M7 = max(RecMII, ResMIT).

5.1.0 Motivational Example

The compilation flow with a motivational example is described in Figure 5.0. Consider
the architecture configuration taken in Figure 5.0a, and a data flow graph (DFG)
represented in Figure 5.0c. The architecture components in Figure 5.0a are functional
units (F'U) with a local Register File (RF). Figure 5.0b shows an routing resource
graph (RRG) created by replicating the target architecture (TA) across 2 time cycles.
The II is 3 for the DFG as it takes the maximum cycle delay from recurrences. The
final embedding of DFG on RRG is shown in Figure 5.0 d.

As we are interested in mapping the recurrences (i.e. inter iteration dependence),
we can see there is a loop carried edge from node op Z to node cl. The scheduling
algorithm maps each operation to a FU and a time and maps each edge in the DFG
to a path in the RRG. During the scheduling process, the algorithm keeps track
of the resources being used in a modulo reservation table (MRT). The operation 2

is to be executed in FU1 at time 0 and therefore the F'U1 is reserved for all cycles
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annealing (it is the DRESC method) [Vassiliadis and Soudris, 2007b], a larger 1I is

required to schedule the recurrence operations, which results in a very high execution

time.

5.1.1.0 Rotation Scheduling

Rotation scheduling [Huff, 1993] takes various loop carried dependencies into consid-
eration with its loop scheduling algorithm. In this approach, delays between loop
carried dependencies are taken as constant or a function of the loop index. Rotation
scheduling exposes parallelism across iterations with retiming. A retiming technique
is used in rotation scheduling to rearrange registers to reduce the iteration period,
that is to reduce the length of the critical path of the circuits.

Each rotation operation moves the schedule table of length L to length L + 1 and
finds a better intermediate schedule at the end of each rotation’s iteration. A node
remapping (reschedule) procedure is done at the end to reduce the static schedule.
The final schedule is split into 3 parts:- rotation prologue (RP), a repetitive loop
body (RB) and a rotation epilogue (RE). Rotation scheduling concentrates mainly
on delays as a function and obtains an optimized schedule with an improvement in

execution time.

5.1.1.1 Bidirectional Slack Scheduling

Bidirectional slack-scheduling method [Cho et al., 2007] has been implemented in a
FORTRAN compiler. This scheduler handles cyclic data dependencies, which arise
from the loop’s non-trivial recurrence circuits. Slack scheduling solves the recurrence

problem by integrating recurrence constraints and critical-path considerations into an
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operation-driven framework with limited backtracking.

The scheduler places operations one by one until either a feasible schedule is found
or the heuristics give up. Slack scheduling can accommodate a novel bidirectional
approach that attempts to schedule an operation either as early as possible or as late
as possible, depending on a sophisticated heuristic. The heuristic’s primary goal is
to minimize each value’s lifetime, in the hope that this will minimize the overall peak

register pressure.

5.1.1.2 Edge-centric Modulo Scheduling

Edge-centric modulo scheduling (EMS) [Park et al., 2008] schedules loops in an edge-
centric way with a simple height-based scheduling priority scheme. In the EMS frame-
work, the scheduling slot of an operation depends on the schedule of the operands’
producers. The data-flow graph of a recurrence forms a cycle, thus some operations
need to be scheduled before their producers have been scheduled. Consequently, some
operations are scheduled with only partial information of their producers’ schedule.
First, the DFG of the target loop is converted into a reduced form by collapsing some
nodes. The scheduling priorities of operations in the reduced DFG are calculated in
such a way that simple edges get higher priority than high fan-out edges. When the
scheduler places recurrence cycles, edges are placed even if their target operations are
not yet placed. By calling the router function recursively for all operations in the cy-
cle, the scheduler can put more effort into finding a legal mapping for the recurrence

cycles.

139



5.1.1.3 Recurrence Aware Modulo Scheduling

The recurrence aware modulo scheduling (RAMS) [Oh et al., 2009] scheme treats
recurrence cycles in the DFG as a single unit. Instead of scheduling each operation
individually, the algorithm first groups all operations in a recurrence cycle into a
clustered node. The operations of a clustered node are then scheduled together.
Clustering forms the recurrence cycles as a single node and transformis the DFG into
an acyclic graph. Single nodes have priority during scheduling. The scheduler selects
the clustered nodes according to their priority and schedules them one by one. All
producers of the clustered recurrence cycle are now scheduled first even though some
of them have a lower height than some operations in the recurrence cycle. After all
clustered nodes have been scheduled, the remaining nodes are handled. A clustered
node scheduling can be divided into 3 major steps: (1) scheduling of the incoming
tree, (2) calculating the earliest scheduling time, and (3) scheduling the nodes of the
clustered node. After all clustered nodes have been scheduled, the scheduler handles
the remaining operations. The scheduler finds it more diflicult to find a route for the
remaining operations because most routing resources are alrcady occupied.

RADMIS prevents scheduling failures that arise due to redundant time constraints
of operations that were scheduled before the recurrence cycles themselves. The whole

process of scheduling is restarted if one of the recurrence cycles fails to be scheduled.

5.1.1.4 Comparison of Existing Approaches

The sparse interconnect and distributed register files in the CGRAs presents difficult

challenges to a compiler to route the edges. Edge-centric modulo scheduling [Park et
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al., 2008] concentrates on routing operands rather than node placement alone. Edges

are categorized based on their characteristics, and the categories are used to route
them during the scheduling process. Modulo scheduling with simulated annealing
[Mei et al., 2003a], takes longer compilation time but finds a be r quality schedule.
The EMS framework requires far less time than modulo scheduling with simulated
annealing to find a schedule by sacrificing the quality of the schedule.

Recurrence aware modulo scheduling [Oh et al., 2009] was able to achieve better
quality schedules than the technique based on simulated annealing at a 170-fold speed
increase. The scheduler in [Oh et al., 2009] can only make decisions at the operation
level of each edge. If the scheduler is not able to find a placement for the recurrence
edge within II, the whole scheduling process repeats again with a larger II. In a dy-
namic priority scheme [Cho et al., 2007], slack scheduling provides a novel integration
of recurrence constraints and critical-path considerations. When the scheduler can-
not find a slot for an operation, backtracking takes place by ejecting some operations.
The bidirectional slack scheduler provides a lot of slack for the recurrence circuit to
place them at the first place.

Considering all the difficulties of the above approach, a scheduler is needed that is
fast enough to find a good quality schedule as well as give priority to the recurrence

circuit.
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RAP_PSO (DFG, TA)
begin
IT: = MIT (DFG)
Recurr cycles:= Kosaraju(DFG)
dfgList: = ComputeASAPandALAP (DFG)
dfgList: = RecurrASLAP(recur _edges)
sortedDFG: =Recurr prioritySort (dfglist)
max_schLength := findschLength(sortedDFG)
schSucess := false
trials :=0
while !schSucess&& trials< NTRIALS do
CreateRRG(TA, II, max schLength)
schSucess:=MCHPSO(sortedDFG, RRG, II, max_scl ength)
IT++
trials++
end while
end

Algorithm 5.0: Mapping DFG with recurrences onto CGRAs

5.2 Proposed Method

5.2.0 Recurrence Aware Modulo Scheduling with Priority

Scheme

In this thesis, a recurrence aware priority scheduler is proposed with a fast evolution-
ary, particle swarm optimization (PSO) called RAP _PSO. RAP PSO is an exten-
sion of predicated exclusivity NCHPSO algorithm with added procedures supporting
recurrence cycles in placement, routing and scheduling.

The recurrence cycles are modulo scheduled as early as possible when still rela-
tively many resources are unoccupied. The priority scheme is applied to the DFG to
give more priority to the nodes and edges of recurrence cycles. The overall procedure
of the scheduling algorithm is shown in Algorithm 5.0.

Modulo scheduling starts with a minimal initiation interval (MII), as discussed in
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Kosaraju(DFG)

var S : Stack[V]

topologicalSort v g)(S)

{ all nodes are on S }

var (V' E') := transpose(V, E)

{ inv I (see below)}

while S is not emipty do

val u := S.top()
{ wis in a terminal component of (V', E’) }
val U :=all nodes reachable from u in (V’, E")
{ U is a terminal component of (V', E")}
output U

remove each node in U from .S and also from (V| E)

The invariant 1 is

e The nodes in V' are the same as the nodes in S.
e For any 2 nodes u and v in different, components of (V', E'),

e if u is in a component that follows (in (V', E’)) v’s component, then in the
original graph u© — v but v — u, and so u is closer to the top of stack S
than v.

Algorithm 5.1: Finding recurrence cycles with Kosaraju’s strongly connected compo-
nents algorithm

144






where,

e distance is the iteration difference between source and target node

e delay is the processing time of the node

As these loop carried edges are modulo constrained, they are affected by the II
value in the scheduling time. Once all the nodes in the DFG are assigned the correct
earliest and latest times, the RAP PSO scheduler starts with the recurrence aware
prioritized DFG and the RRG generated from the TA graph. In the recurrence aware
prioritized DFG, all the recurrence cycles are given higher priority than the remaining
operations. The routing procedure of Dijikstra’s algorithm checks every recurrence

edge satisfying the equation

source schtime + delay(source) < target schtime + distance x I (5.3)

for the placed and scheduled particles in RAP PSO scheduling algorithm. If the
particles do not satisfy the Equation 5.3, next generation of particles continue to
explore a valid quality schedule.

The RAP_PSO scheduler takes each particle to find a valid schedule, placement
and routing for all the operations and edges in the DFG. The particles are initialized
with random schedule time and placement. Next the scheduler finds the routing
resources for the edges and gives priority to loop carried edges. The routing results
with the number of edges routable and routing cost, are taken as the fitness value for
the particles. Once a final schedule is obtained, the scheduler checks whether all the
nodes and edges being mapped satisfy the resource constraints, recurrence constraints,

schedule time validity (Figure 5.2) and modulo constraint. If the schedule is not valid,
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Figure 5.2: Successful final schedule for the DFG shown in Figure 5.0

the IT is incremented by 1 and the scheduling process is repeated. The final correct
schedule for the DFG shown in Figure 5.0, is given in Figure 5.2. The schedule
satisfies modulo constraint, resource constraints, recurremnce constraints and schedule

time validity.

5.2.1 Architecture Extensions to Speedup Recurrence Han-
dling

In the existing target architecture, the memory load and stores of operands (called
live-in/live-out) were initially available in the shared register file. The top row of
functional units (FUs) were mainly used for Memory Unit (MU) operations. These
FUs were rarely used by other operations and it decreased the bandwidth to move
the live-in operands to later cycles. To increase the bandwidth, an extension has been
adapted as suggested in [Oh et al., 2009] to add a dedicated register file (RF) to each
read port of the RF that contains the live values.

Dedicated RF's do not suffer from critical path delay because it takes 1 additional
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{ RF for live values ]

Figure 5.3: CGRA architecture with dedicated RFs for live values, taken from [Oh et

al., 2009]

cycle to access a live value through a dedicated RF [Oh et al., 2009]. The sane live-in
values can be retained for several cycles in dedicated RFs and it increases the output
bandwidth. Since all FUs now have indirect access to the live-in values, the dedicated
RF reduces the number of resources used for routing live-in values. The results of

using this extended architecture and its performance are discussed in the next section.

5.3 Discussion of Results

5.3.0 Experiment Set Up

The RAP PSO with recurrence aware scheduling algorithm was written in Java and
executed on an Intel Core 2 Duo CPU with 4 GB RAM and a clock speed of 2 GHz.

To schedule an inner loop body with loop carried edges requires two main inputs. The
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first input is the prioritized DFG with recurrence cycles identified from the HARPO/L
programs. The second input is the 4 x 4 or 4 x 3 improved target architecture graph
with extensions. The RAP PSO algorithm places, schedules and routes the given
DFG onto the TA by correctly mapping the recurrence edges. The usage of target
architecture is found from the Modulo Reservation Table and is discussed in the next

section.

5.3.1 DFG with Recurrences

The characteristics of the DFG input to the RAP PSSO scheduling algorithm are given
in Table 5.0. The livermore loops benchmarks were taken from [Peters and Square,
2011] which are written in language C. The first column describes the benchmark
name. The benchmarks were selected such that they have recurrence cycles in them
for scheduling. The benchmarks were rewritten in HARPO/L language for the inhouse
compiler to generate data flow graphs. The data flow graph generated from the
compiler goes through a preprocessing and analysis stage for scheduling. In the
preprocessing and analysis stage, the DFG is optimized with variable usage and the
inner loop body is retrieved with recurrence edges in them. The second and third
column list the total number of nodes and edges in the DFG to be mapped onto
the TA. The fourth and fifth columns show the minimal initiation interval and the

schedule length.
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Table 5.0: Reci

rrence Bench

rark Cl

aracteristics

Benchmark| No of |No of

name |nodes|Edges|ResMIl [RecMIl|MIl Sch_length
Livermore _
recurregnl 11 18 2 3 3 9
Livermore_
condrecurr 28 50 4 4l 4 16
Livermore_
matrixmul 34| 49 4 4| 4 16
Livermore_
tridiagonal 8 13 2 2| 2 8
Livermore_
recurreqn2 10 15 2 2] 2 8

5.3.2 TA Characteristics

150

cycles and other data dependencies in the DFG.

The TA graph has nodes and edges describing the details of the CGRA configuration.
Figure 5.4 shows the resources available in a 4 x 4 and 4 x 3 CGRA. The reduced

number of resources in 4 x 3 CGRA makes it challenging for the routing of recurrence

5.3.3 4 x4 CGRA recurrence schedule results

Table 5.1 displays the result obtained in a 4 x 4 CGRA, with RAP_PSO scheduling
algorithm. The first column shows the benchmark description. The second column
shows the initiation interval at which the algorithm was able to successfully schedule
the DFG. The third column shows the percentage of total functional unit usage in

the MRT. The fourth column shows the percentage of total local register usage in the







Table 5.1: Recurrence schedule results in 4 x 4 CGRA

4 X 4 CGRA- MCHPSO_RAP

Total

Available resources
Benchmark FU LRF SRF CB RB resources |used in
name Il usage% |usage % |usage % |usage’% |usage % |in MRT |MRT
Livermore_
recurregnl 3 22.92 11.80 41.66 8.33 8.33 228 35
Livermore_
rendrecurr 4 64.06 28.13 81.25 31.25 18.75 304 116
Livermore_
matrixmul 4 75.00 43.22 81.25 25.00 12.50 304 150
Livermore_
tridiagonal 2 21.88 7.29 50.00 0.00| 37.50 152 21
Livermore_
recurregn? 2 28.13 9.38 62.50 50.00 0.00 152 27

MRT. The fifth column shows the percentage of total shared registers usage in the

MRT. The sixth and seventh columns show the percentage of total usage of column

and row buses in the MRT. The eighth column shows the total resources available

in the MRT. The ninth column shows the total resources used in the NMRT. All the

benchmarks were scheduled at the MII and with minimal usage of resources. The

total usage of the modulo reservation table and individual resource usage of the final

schedule are calculated as in Chapter 4.
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Table 5.2: Recurrence schedule results in 4 x 3 CGRA

4 X 3 CGRA- MCHPS0_ RAP
Total
Available (resources

Benchmark FU LRF SRF (B RB usage |resources |used in
name ] usage% |usage % |usage % |usage¥% (% in MRT MRT
Livermore_
recurreqnl 3 27.77 17.70 41.66 8.33 1111 165 34
Livermore_
condrecurr 4 83.33 40.63 81.25 58.23 40.00 220 118
Livermore_
matrixmul 4 87.50 68.75 81.25 37.50 41.66 220 154
Liverrmore_
*ridjagonal 2 29.16 10.93 50.00 12.50 33.33 110 21
Livermore_
recurregn 2 54.16 17.18 62.50 12.50 0.00 110 30

5.3.4 4 x 3 CGRA recurrence schedule results

Table 5.2 displays the result obtained in a 4 x 3 CGRA, with RAP PSO scheduling
algorithm. The first column shows the benchmark description. The second column
shows the initiation interval at which the algorithm was able to schedule the DFG
with resource and recurrence constraints. The third column shows the percentage
of total functional unit usage in the MRT. The fourth column shows the percentage
of total local register usage in the NRT. The fifth column shows the percentage of
total shared registers usage in the MRT. The sixth and seventh columns show the
percentage of total usage of column and row buses in the MRT. The eighth column
shows the total resources available in the MRT. The ninth column shows the total
resources used in the MRT. All the benchmarks were scheduled at the MII with lower
usage of resources. The total usage of the modulo reservation table and individual

resource usage of the final schedule are calculated as in Chapter 4.




Comparing the results of 4 x 4 CGRA and 4 x 3 CGRA we find that both were
able to schedule at MII. The resource usage in 4 x 3 CGRA was higher than 4 x 4
CGRA. Most of the critical resources are used in 4 x 3 CGRA and was able to route
within MII. The functional units usage was higher by 4.85% to 26.04%. The local
register files usage was higher by 3.64% to 25.53%. The row bus usage was higher by

2.78% to 29.16%.

5.4 Conclusion

In this chapter, four approaches to solve the loop scheduling problem with recurrence
were discussed. The schedule results of both edge-centric schedulers, EMS and RANS,
outperform DRESC [Mei et al., 2002] by two orders of magnitude. While the RANMS
is about 2 times slower than EMS, the superior scheduling quality of RAMS over
EMS compensates for this slowdown. An algorithm is proposed based on RAMS and
dynamic priority to solve the loop scheduling problemi with loop carried dependencies.
The proposed algorithm takes the advantage of PSO to speed up the scheduling
process combined with recurrence aware priority to obtain a good quality schedule.
The proposed RAP _PSO algorithm was tried on the livermore loops benchmarks.

The recurrence cycles found in the benchmarks was modulo scheduled at minimal II.
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coarse-grained reconfigurable architectures is NP-hard in general. Software pipelining

the loops, requires an efficient modulo scheduling algorithm. A modulo constrained
hybrid particle swarm optimization algorithm (MCHPSO) [Gnanaolivu et al., 2010a]
is proposed for scheduling critical loops.

MCHPSO combines the features of the evolutionary approach of PSO and a mu-
tation operator to find potential solutions for the modulo scheduling problem. A
particle in the PSO system finds a placement for the operations in the loop body, a
scheduling time at which an operation can be executed and a routing path for the
operands. The solution search was challenged by the critical resources available in
the CGRAs, modulo constraints to reserve the resources for repeated iteration, and
the complexity of the loop. MCHPSO managed to schedule most of the loops in the
minimal initiation interval while taking very little execution time. The proposed algo-
rithm was successfully tested on 8 standard benchmarks from digital signal processing
(DSP) applications.

In the experimental demonstration of MCHPSO [Gnanaolivu et al., 2011a], it was
found that a parallel search with 10 particles was enough to find a valid solution.
MCHPSO was able to avoid local optima by exploring and exploiting more solutions
than the DRESC [Mei et al., 2002] in the time-space graph of the target architec-
ture. It was also discovered that MCHPSO was able to increase its scheduling speed
when the interconnections between the functional units (FUs) are more flexible. The
MCHPSO was able to efliciently use shared registers in a shared register file (RF')
interconnection architecture template. NCHPSO speedup was analyzed by execut-
ing the algorithm in an Intel core i7 machine. The proposed algorithm was able to

parallelize the search for a scheduling solution in the 8 logical threads present in the
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i7 machine, and achieve good speedup. The proposed algorithm achieves better re-

source usage with lower initiation interval and efficiently maps with a minimal time
compared to DRESC [Mei et al., 2002].

Various configurations of the ADRES template were tried with the MCHPSO al-
gorithm. Out of these, results corresponding to 8 x 8, 4 x 4 and 4 x 3 CGRAs are
reported in the thesis. The most interesting challenge was to schedule conditional
loops [Gnanaolivu et al., 2010b] with if-else statements on the 4 x 3 CGRA con-
figuration. MCHPSO with predicated exclusivity feature handled the challenge to
place as well as route with lowest possible initiation interval (/7). The 4 x 3 CGRA
configuration performed as well with resource utilization as the 4 x 4 configuration.

The minimal initiation interval to repeat the modulo schedule of an iteration de-
pends on resource constraints as well as recurrence constraints. Loop carried depen-
dencies were mapped on the CGRA with a recurrence aware priority scheme applied
to MCHPSO called RAP_PSO. The proposed RAP_PSO algorithm [Gnanaolivu
et al., 2011b] was tried on 5 recurrence benchmarks from the livermore loops. The
proposed algorithm scheduled efficiently on the 4 x 3 CGRA configuration.

The proposed MCHPSO with exclusivity feature and recurrence aware scheme

was able to place, schedule and route the inner loop body of a critical application.

6.1 Suggested Future Work

The proposed modulo constrained hybrid particle swarm optimization algorithm with
exclusivity feature and recurrence awareness worked well on the benchmarks consid-

ered. NICHPSO algorithm was able to map application loops written in the C lan-
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guage and HARPO/L. Many opportunities exist to perform further research around

this work. More experiments can be done to evaluate the proposed algorithm on com-
plex benchmarks which include nested loops, switch-case statements, pointers and so
on. To find the suitability and effectiveness of the proposed algorithm, it could be
compared with various other modulo scheduling algorithms and heuristic methods
such as iterative modulo scheduling [Rau, 1994], DRESC [Vassiliadis and Soudris,
2007b}, recurrence cycle aware modulo scheduling [Oh et al., 2009], clustered modulo
scheduling [Sdnchez and Gonzélez, 2001], swing modulo scheduling [Llosa et al., 1996],
hypernode reduction modulo scheduling [Llosa et al., 1995], modulo scheduling with
integrated register spilling [Zalamea et al., 2001]. RAP PSO algorithm can be tried
on several coarse-grained architectures to compare with existing approaches RAMS
and DRESC.

The current work can be extended to place, schedule and route an entire applica-
tion with many loops and non loop statements. The target architecture configuration
can be extended to handle non loop statements and loop statements. The work could
also be extended to exploit task-level parallelism (TLP) as well as instruction-level
parallelism (/LP) and loop-level parallelism (LLP). Modulo scheduling a complex
application presents a big challenge even to existing architectures such as ADRES
[Mei et al., 2005b] due to its computational complexity. Modulo scheduling experi-
ments conducted on a H.264/AVC decoder by Mei et al. [Mei et al., 2005b] shows
that ADRES architecture and its compiler provide many features that are critical for
mapping a complex application. Hence with MCHPSO it is possible to map complex
applications imposing a performance and power usage challenge.

In order to improve the existing MCHPSO algorithim, the following enhancements
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are suggested. NICHPSO can be improved to find even lower initiation intervals by
improving the bandwidth. The resource initiation interval is normally affected by the
memory units available for the live-in values.

In mapping loops onto CGRAs, few algorithmis have been tried with the evolu-
tionary approach. NMany efficient algorithmic approaches like genetic algorithms, ant
colony algorithms or hybrid combination of evolutionary operators can be tested for
the modulo scheduling problem and compared against the proposed NCHPSO algo-
rithm. The preprocessing stages for the data flow graph can be extended to handle
complex control structures and to select which portions of an application will be
executed on the CGRA and which will be executed on a microprocessor.

There are number of open issues in the CGRAs that can be solved such as self-
reconfiguration, power efficient design of memory ports and data streaming, checking
graph isomorphism for coniplex graphs, studying the strength of functional units, and

system flexibility.

6.2 Concluding Remarks

Reconfigurable computers compute a function by configuring functional units and
they are able to achieve high speed, low energy consumption and low power re-
quirements. Reconfigurable computing systems are upgradeable and can serve as an
affordable, fast, and accurate tool for verifying electronic designs. Coarse-grained
reconfigurable architectures are efficient for long running computations, DSP, video
and image processing.

Compiling applications for CGRAs usually involves the following tasks: dataflow




analysis and optimization of the application, creation of a target architecture graph,
and the scheduling algorithm. The scheduler in the compilation process involves
3 tasks: scheduling, placement, and routing. Scheduling assigns the time cycle to
execute the operation, placement assigns a functional unit and routing takes care of
moving data from producer functional unit to consumer functional unit. An effective
compilation mainly depends on the scheduler handling all the constraints on both
the application and the architecture. In this thesis, a new scheduling algorithm is
proposed with an evolutionary approach.

Evolutionary algorithms are best employed when there is no feasible optimization
approach. In the modulo scheduling problem, the evolutionary approach is used
to determine an optimized solution in resource usage and eflicient mapping. Particle
swarm optimization is primarily suited for numerical optimization problems. To avoid
local optimal solutions, PSO with a heuristic operator is employed to solve the modulo
scheduling problem. The implementation of MCHPSO was very successful in solving
the modulo scheduling problem with optimal or near optimal initiation interval and
low usage of resource with no overuse.

Mapping loops onto reconfigurable architectures still leaves many challenges open.
For example, in our current work we assumed that loop iterations execute in the
pipeline to develop a mapping flow that works reasonably for many applications.
However, some loops might be better mapped when iterations execute in parallel.
Therefore, the mapping style could be another dimension for optimizing the map-
ping of different applications. Furthermore, the current mapping flow has several
constraints on architectures and application loops that must be relaxed. Our future

research will investigate mapping techniques for more different classes of reconfig-
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urable architectures as well as other types of loops.
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Appendix A

HARPOL code for inhouse

ifthen-else benchmarks

A.0 ifthen-else benchmark -one condition

(class ifthenex
constructor()
private obj a :=3
private obj b := 0
private obj ¢ :=1
private obj d := 1
private obj e :=1

(thread
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(if a%2=0 then

b:=a-c

e:=b+d
else

b:=a+c

d:=c+e

a:=b
thread)
class)

obj objl := new ifthenex()

A.1 ifthen-else benchmark -two conditions

(class ifthenex
¢ tructor()
private obj a := 3

private obj b :=0
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private obj ¢ := 1

private obj d := 1
private obje :=1
(thread

(if a%2=0 then

(if b<0 then

b:=a-c
e:=b+d
else
b:=a+c
d:=c+e
if)
else
ci=c+1
if )
a:=b
d:=e
thread)
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class)

obj objl := new ifthenex()

A.2 HARPOL code ifthen-else benchmark -three

conditions

(class ifthenex
constructor()
private obj a := 3
private obj b := 0
private obj ¢ := 2
private obj d := 1
private obj e := 1

(thread
e:=e*3
(if a%2=0 then
c:=c+1
(if b<0 then

b:=a-c

181




(if e>d then

d:=d+b
e:=c+d
else
b:=a+c
if)
if)
else
ci=c-1
d:i=c+e
e:=e/2
if )
a:=d
b:—e
thread)
class)

obj objl := new ifthenex()
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