

Modulo Scheduling Loops onto Coarse-Grained

Reconfigurable Architectures

St. J ohn's

by Rani Gnanaolivu

© Rani Gnanaolivu

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the

requirements for the degree of

Doctor of Philosophy

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

J anuary 2013

Newfoundland

Abstract

Reconfigurable systems have drawn increasing attention from both academic re­

searchers and creators of commercial applications in the past few years because they

could combine flexibility with efficiency. There are two main types of reconfigurable

architectures - fine-grained and coarse-grained. The functionality of fine-grained ar­

chitecture hardware is specified at t he bit level while t he functionality of t he coarse­

grained architecture hardware is specified at the word level. Coarse-grained recon­

figurable architectures (CGRAs) have gained currency in recent years due to their

abundant parallelism, high computational intensity and flexibility. A CGRA nor­

mally is comprised of an array of basic computational and storage resources, which

are capable of processing a large volume of applications simultaneously. To exploit

the inherent parallelism in the applications to enhance performance, CGRAs have

been structured for accelerating computation intensive parts such as loops, that re­

quire large amounts of execut ion t ime. The loop body is essentially drav.rn onto the

CGRA mesh, subject to modulo resource usage constraints. Much research has been

done to exploit the potential parallelism of CGRAs to increase the performance of

time-consuming loops. However, sparse connectivity and distributed register files

present difficult challenges to the scheduling phase of t he CGRA compilation frame­

work. \ iVhile traditional schedulers do not take routability into consideration, software

pipelining can improve the scheduling of instructions in loops by overlapping instruc­

tions from different iterations. Modulo scheduling is an approach for constructing

software pipelines that focuses on minimizing the t ime between the initiations of it­

erations - t he so-called initiation interval (I I). For example, if a new iteration is

ll

started every I I cycles, the time to complete n iterations will approach I I x n, for

large n loops, thereby maximizing performance.

The problems of scheduling (deciding when an operation sho'Uld happen), placing

(deciding where an operation sho'Uld happen), and routing (the problem of how in­

fo rmation travels tho'Ugh space and time between operations) can be unified if t hey

are modelled by a graph embedding problem. The data flow graph of the loop is

embedded in a rout ing resource graph representing the hardware across a number of

cycles equal to the initiation interval.

Part icle swarm optimization (PSO) has shown to be successful in many applica­

tions in continuous opt imization problems. In this t hesis, we have proposed algo­

rithms to solve scheduling, placing, and routing of loop operations simultaneously

by using PSO. We call this approach modulo-constrained hybrid particle swarm op­

timization (MCHPSO). There are many constraints and one opt imization objective,

which is the II that needs to be considered during the mapping and scheduling pro­

cedure. The scheduling algorithm tries to minimize the initiation interval to start

the next iteration of t he loop under the resource and modulo constraints for the

architecture being used.

When conditional branches such as if-then-else statements are present in the loop,

t hey create multiple execution paths. Exploit ing condit ional branches through our

predicated exclusivity, t he MCHPSO algorithm reuses the resources which are in

t he exclusive execut ion paths and which may allow the loop to be scheduled with a

lower I I. Finally, a priority scheme algorithm along with recurrence aware modulo

scheduling is proposed to map inter-iteration dependencies onto CGRAs, which is

able to save resources for all recurrences cycles and to map remaining operations.

lll

Acknowledgements

First and foremost I would like to thank God for the wisdom and perseverance

that he has blessed me with during this PhD program , and indeed, throughout my

life: "He who began a good work in you will carry it on to completion until the day

of Christ Jesus." (Philippians 1: 6)

It is my pleasure to thank many people who made this thesis possible. I express

my sincere thanks to my supervisors, Dr. T . S. Norvell and Dr. R. Venkatesan, for

their intellectual assistance, financial support, and cont inuous encouragement during

my research. Their enthusiasm, inspiration and sound advice was motivational and

helped me through even the roughest patches of my graduate program. I thank

Dr. P. Gillard for taking time to read my work and offer invaluable comments and

suggestions. I thank NSERC for supporting my research at Memorial. I thank Shuang

Wu for teaching me his work in generating data flow graph from a HARPOL program.

I thank him for allowing me to use his work for my test cases in the PhD program.

Last but not the least; I thank my family for their boundless love, encouragement ,

and unconditional support , both financially and emotionally throughout my PhD

program . Especially, I thank lVIohan Gnanaolivu, my father in-law, for his valuable

editorial corrections. I also thank my loving, supportive, husband Praveen Gnanao­

livu whose fait hful support during the final stages of this PhD is so appreciated. I

would also like to thank my loving son Kevin for t he sincere everyday prayers for the

completion of my research. I thank all my friends for constantly encouraging me and

reminding me of my aspirations.

IV

Contents

Abstract

Acknowledgements

List of Tables

List of Figures

List of A lgorithms

List of Abbreviations

0 Introduction

0.0 Reconfigurable Computing

0.1 Coarse-Grained Reconfigurable Architecture

0.2 Compiling Loops onto CGRAs with f\/Iodulo Scheduling

0.3 Motivations and Objectives

0.4 T hesis Contributions

0.5 Thesis Overview . . .

11

lV

Xl

X Ill

XVI

XVll

0

0

2

5

6

8

10

1 Compilation in Coarse-Grained R econfigurable Architectures 12

1.0 Introduction 12

1.1 Coarse-Grained Reconfigurable Architecture 13

1.1.0 Introduction

1.1.1 Overview of some CG RAs

v

13

13

1.1.1.0

1.1.1.1

1.1.1.2

1.1.1.3

1.1.1.4

1.1.1.5

1.1.1.6

IVIorphoSys

KressArray

Mont ium

DReAM

CHESS

RaPiD .

PipeRench

1.1.1.7 ADRES ..

1.1.2 Comparison and Selection of the Target CGRA

1.2 Scheduling

1.2.0 Introduction .

1.2.1 Software Pipelining

1.2.2 Modulo Scheduling

1.2.3 Graph Embedding

1.2.4 Modulo Reservation Table

1.2.5 Routing Resource Graph

1.3 Evolut ionary Algorithms

1.3.0

1.3.1

Overview

1.3.0.0

1.3.0.1

1.3.0.2

1.3.0.3

Simulated Annealing

Genetic Algorithm .

Ant Colony Optimization

Particle Swarm Optimization Algorithm

Selection of P SO Algorithm . ..

1.4 Various CGRA Compilation Procedures .

Vl

13

14

14

15

15

16

16

17

18

20

20

21

22

24

25

25

26

26

26

27

28

29

32

33

1.4.0 DRESC Compiler 36

1.4.0.0 Advantages and Limitations 37

1.4.1 Compilation using Modulo Graph Embedding 37

1.4.1.0 Advantages and Limitations 38

1.4.2 Compilation using Clustering 38

1.4.2.0 Advantages and Limitations 39

1.4.3 Compilation Using Modulo Scheduling with Backtracking Ca-

pability 39

1.4.3.0 Advantages and Limitations 40

1.5 Conclusion . . 40

2 Modulo Constrained Hybrid Particle Swarm Opt imization Schedul-
ing Algorithm 42

2.0 Introduction 42

2. 1 l\1odulo Scheduling in CGRAs 43

2. 1.0 Problem Identification 43

2.1.1 Solution Structure Formalization 44

2.1.1.0 Data F low Graph . . 47

2.1.1.1 Target Architecture 48

2.1.1.2 Minimal Initiation Interval . 54

2. 1.1.3 Modulo Reservation Table 55

2. 1.1.4 Resource Routing Graph . 56

2.2 Proposed Modulo Scheduling Algorithm 61

2.2.0 Modulo Scheduling with MCHPSO 61

2.2.1 Part icle Encoding for the P roblem . 62

Vll

2.2.2 MCHPSO

2.2.2.0 Need for the mutation operator

2.2.3 Fitness Calculation

2.2.4 Configuration File and Final Schedule

2.3 Final schedule of the MCHPSO Algorithm

2.4 Conclusion

3 P erformance Analysis of MCHPSO Algorithm

3.0 Introduction

3.1 Analysis of Scheduling

3.2 Modulo Scheduling with MCHPSO

3.2.0 Experimental Set Up . . .

3.2.0.0 DFG Generation

63

69

70

72

72

73

74

74

75

76

76

76

3.2.0.1 TA Graph Generat ion 78

3.2.1 Scheduling Results 79

3.2.2 lVIapping of Nodes and Routing of Edges 85

3.2.3 Analysis of Functional Units Usage for Different Topologies . 90

3.2.4 Analysis of Register Files Usage with Different Interconnections 92

3.2.5 Effect of Varying Particle Size in MCHPSO algorithm . 93

3.2.6 Analyzing the Speedup of fCHPSO Algorithm 94

3.2.7 Functional Units Capable of Routing and Performing Compu-

tations . 95

3.3 Comparison of NICHPSO with Other Modulo Scheduling Algorithms 98

3.4 Conclusion . 101

Vlll

4 Exploiting conditional structures onto CGRAs

4.0 Introduction

4. 1 Background on HARPO /1

4.2 DFG characteristics

4.3 Handling conditional statements .

4.4 Predicated execution \vith exclusivity

4.5

4.4.0

4.4.1

4.4.2

Motivational example for exclusivity

J\Iapping \vith J\ICHPSO predicated no exclusivity algorithm

4.4.1.0 Iethod description

lapping with J\ICHPSO predicated exclusivity algorit hm .

4.4.2.0 Method description .

Results

4.5.0 Experimental Set Up

4.5 .1 DFG characteristics .

4.5.2 TA characteristics . .

4.5.3 Predicated Execution .

4.5.3.0 With Exclusivity

4.5.3.1 No Exclusivity

4.6 Comparison .

4.6.0 II achieved .

102

102

103

103

105

107

107

111

111

116

116

119

120

121

121

123

123

126

127

127

4.6.1 Usage of resources in Exclusivity vs No exclusivity in 4 x 4 CGRA129

4.6.2 Overuse of resources in Exclusivity vs No exclusivity in 4 x 3

CGRA

4. 7 Conclusion . .

IX

130

131

5 Recurrence exploitation in CGRAs 133

5.0 Introduction . 133

5.1 Recurrence Handling 134

5. 1.0 Motivational Example 135

5.1.1 Existing Recurrence Handling Approaches 137

5.1.1.0 Rotation Scheduling 138

5.1.1.1 Bidirectional Slack Scheduling . 138

5.1.1.2 Edge-cent ric Modulo Scheduling . 139

5.1.1.3 Recurrence Aware Modulo Scheduling 140

5. 1.1.4 Comparison of Existing Approaches . 140

5.2 Proposed Method 143

5.2.0 Recurrence Aware Modulo Scheduling with Priority Scheme 143

5.2.1 Architecture Extensions to Speedup Recurrence Handling . 147

5.3 Discussion of Results 148

5.3.0 Experiment Set Up 148

5.3.1 DFG with Recurrences 149

5.3.2 TA Characteristics 150

5.3.3 4 x 4 CGRA recurrence schedule results 150

5.3.4 4 x 3 CGRA recurrence schedule results 153

5.4 Conclusion . .. 154

6 Conclusions and Future Work 155

6.0 Contributions 155

6.1 Suggested Future Work . 157

6.2 Concluding Remarks 159

X

Bibliography

A HARPOL code for inhouse ifthen-else benchmarks

A.O ifthen-else benchmark -one condition .

A.1 ifthen-else benchmark -two conditions

162

178

178

179

A.2 HARPOL code ifthen-else benchmark -three conditions 181

Xl

List of Tables

200 MRT showing all the resources occupied in II t ime 0 56

201 Final schedule result of the DFG onto the TA 0 0 0 72

300 DFG characteristics of the benchmarks 77

301 8 X 8 CGRA configuration 0 0 0 0 0 0 0 81

302 Scheduled and placed results of the lattice synthesis loop kernel 82

303 Routing results of lattice synthesis loop kernel -partl 83

304 Routing results of lattice synthesis loop kernel -part2 84

305 Overall mapping results of the DSP benchmarks in 8 x 8 CGRA 89

306 Overall mapping results of the DSP benchmarks in 4 x 4 CGRA 90

30 7 Usage of Functional Units with various topologies 92

308 Variation of particle size on an 8 x 8 CGRA 0 0 0 94

309 MCHPSO algorithm speed up comparison on an Intel i7 processor 96

3010 Comparison of FU ut ilization with placement and routing 0

3011 Comparison of MCHPSO results with Mei et al work

3012 Comparing MCHPSO with Dimitroulakos's et al work 0

400 DFG characteristics of the benchmarks 0 0 0 0

40 1 Resources available in the Target Architecture

X ll

97

99

100

121

123

4.2 Exclusivity results in 4 x 4 CGRA . 125

4.3 Exclusivity results in 4 x 3 CGRA . 126

4.4 4 x 4 CGRA results without xclu ivity . 127

4.5 4 x 3 CGRA results without exclu ivity . 128

4.6 II achieved in 4 x 3 CGRA and 4 x 4 CGRA 128

4.7 Total usage of 4 x 4 CGRA 129

4.8 Total usage and overuse of 4 x 3 CGRA 130

5.0 R curr nee Benchmark Characteristics 150

5.1 Recurrence schedule results in 4 x 4 CGRA. 152

5.2 Recurrence schedule results in 4 x 3 CG RA . 153

Xlll

List of Figures

0.0 Advantages of Reconfigurable Computing 1

0.1 A Generic Coarse-Grain Reconfigurable System taken from [Vassiliadis

and Soudris, 2007a]. 3

1.0 ADRES Architecture taken from [Mei et aL , 2005c] 18

1.1 a)Modulo Scheduling Example b)DFG and Configuration for 2x2 ma-

trix, modified from [Mei et al., 2003b] 24

1.2 DRESC Compiler Framework, taken from [Berekovic et al., 2006] 34

1.3 P seudocode of the modulo scheduling algorithm in DRESC, taken from

[Mei et al., 2002] . 35

2.0 Outline of overall mapping of loop kernel of DFG onto RRG of CGRA 46

2.1 A loop body converted into a DFG 49

2.2 4 x 4 Target Architecture Instance of ADRES. 50

2.3 FU Topology (a) Mesh Topology (b) Meshplus1 Topology (c) Mesh-

plus2 Topology 52

2.4 FU and RF Topology (a) Private RF (b) P rivate RF and Column

Adjacent Topology (c) Private RF and Diagonal Adjacent Topology. 53

XlV

2.5 Various Usage of Buses (a) Row Bus Connections (b) Row and Column

Bus Connections . .

2.6 X edges in the RRG

2. 7 Y edges in the RRG. Edges from same type of source are shov.rn in

same style edge. . . .

2.8 Z edges in the RRG .

2.9 DFG showing a simple loop structure without recurrence

2.10 TA taken for the mapping of DFG

2.11 Overall mapping of loop kernel of DFG onto RRG of CGRA

2.12 Compilation flow of the proposed algorithm

2.13 Particle encoding for scheduling

54

58

59

60

63

64

65

66

68

3.0 Lattice synthesis filter code . 78

3.1 DFG description file for the Lattice synthesis filter in Figure 3.0 79

3.2 DFG corr sponding to the code in F igure 3.0 . 80

3.3 All particles currentFitness versus Iteration 85

3.4 Global best fitness for every iteration . . . 86

3.5 BestFitness of all particles v rsus Iteration 87

3.6 Percentage of register utilization in different topology 93

4.0 DFG node types, taken from [Wu, 2011] 105

4.1 ALU modification for conditional branch a)original ALU b) modified

ALU, taken from [Lee et al., 2010] 108

4.2 Exampl of HARPO / L DFG with if-then-else 109

4.3 .1\IRT Comparison of Exclusivity and o_ Exclusivity Algorithm 110

XV

4.4 Predicates of t he exclusive nodes in Figure 4.3

4.5 Predicated MCHPSO no exclusivity algorithm

4.6 SPLIT and MERGE edges

4. 7 Predicated MCHPSO with exclusivity algorithm

4.8 The first three benchmarks loop structure . . .

5.0 Motivating example a) 2 x 2 target architecture template instance, b)

RRG, c) DFG and d) Final schedule, place and route

5.1 Flowchart of RAMS algorithm, taken from [Oh et al., 2009] .

5.2 Successful final schedule for the DFG shown in Figure 5.0 ..

5.3 CGRA architecture with dedicated RFs for live values, taken from [Oh

et al., 2009]

5.4 Comparison of 4 x 4 and 4 x 3 architecture configurations .

XVI

110

111

114

117

122

136

141

147

148

151

List of Algorithms

1.0 The Standard PSO Algorithm 31

2.0 Mapping DFG onto RRG . 67

2.1 The MCHPSO algorithm . 69

2.2 Routing cost fitness value for MCPSO 71

4.0 Adding Symbolic values to DFG cells 113

4.1 Adding Predicates to DFG cells 115

4.2 Creating exclusivity set 118

4.3 Exclusivity check of TA resource . 119

4.4 Maximum Independent Set of DFG cells 119

5.0 Mapping DFG with recurrences onto CGRAs . 143

5.1 Finding recurrence cycles with Kosaraju 's strongly connected compo-

nents algorithm 0 0 • 0 0 • • • • • • • 0 • • • 144

XVll

List of Abbreviations

CGRA

FPGA

II

Mil

DFG

TA

PSO

MCHPSO

RRG

HARPO/ L

MRT

ASAP

ALAP

DRESC

MRRG

FU

RF

Coarse Grained Reconfigurable Architecture

F ield Programmable Gate Array

Initiation Interval

Minimal Initiation Interval

Data Flow Graph

Target Architecture

Particle Swarm Optimization

Modulo Constrained Hybrid Particle Swarm Optimization

Routing Resource Graph

HARdware Parallel Objects Language

Modulo Reservation Table

As Soon As Possible

As Late As Possible

Dynamically Reconfigurable Embedded Systems Compiler

Modulo Routing Resource Graph

Functional Unit

Register File

XVlll

CB

RB

SRF

IPC

MU

VLIW

DSP

ASIC

SA

ACO

GA

ILP

TLP

Column Bus

Row Bus

Shared Register File

Instruction Per Cycle

Memory Unit

Very Long Instruction Word

Digital Signal Processing

Application Specific Integrat ed Circuit

Simulat ed Annealing

Ant Colony Optimization

Genetic Algorithm

Instruction Level Parallelism

Task Level Parallelism

XlX

Chapter 0

Introduction

0.0 Reconfigurable Computing

Reconfigurable systems [Abielmona, 2009] have drawn increasing attention from both

academic and commercial researchers in the past few years because they combine

flexibility with efficiency and upgradability [Todman et al., 2005]. The flexibility in

reconfigurable devices mainly comes from their routing interconnect . Reconfigurable

computing fills the gap between application-specific integrated circuits (A SICs) and

general purpose processors (GPPs) , as described in Figure 0.0. When compared wit h

GPPs, reconfigurable computing has the ability to make substantial changes in the

data path, in addition to the control flow. However , when compared with ASICs,

it has the possibility to adapt the hardware during the runtime by "loading" a new

configuration in the memory. To avoid the bandwidth limitation between processor

and memory, called the Von Neumann bottleneck, a port ion of t he application is

mapped directly onto the hardware to increase the data parallelism in reconfigurable

0

computing.

Performance

I ASIC
i

Reconf igurable
Comput ing

(FPGAs, CGRAs}

Micro­
processor

Flexibility

Figure 0.0: Advantages of Reconfigurable Computing

The principal benefits of reconfigurable comput ing compared with ASICs and

GPPs are the ability to design larger hardware with fewer gates and to realize the

flexibility of a software-based solution while retaining the execution speed of a more

t radit ional, hardware-based approach [Barr , 1998]. Due to the dynamic nature of

reconfigurable computing, it is advantageous to have the software manage the process

of deciding which hardware objects to execute.

Reconfigurable architectures are broadly classified into fine-grained and coarse-

grained. The first devices that had been used for fine-grained reconfigurable com-

puting were the field-programmable gate arrays (FPGAs) . An FPGA consists of a

matrix of programmable logic cells, execut ing bit-level operations, with a grid of in-

terconnect lines running among them. FPGAs allow realizing systems from a low

1

granularity level, t hat is, logic gates and flip-flops. This makes FPGAs very popular

for the implementation of complex bit level operations. However, FPGAs are ineffi­

cient for coarse-grained dat a path operations due to the high cost of reconfiguration

performance and power [Hartenstein, 2001]. The coarser granularity greatly reduces

the delay, power and configuration time relative to an FPGA device at the expense

of reduced flexibility [Dimitroulakos et al. , 2007]. However , coarse-grained reconfig­

urability has the advantage of much higher computational density compared to the

FPGAs.

0.1 Coarse-Grained Reconfigurable Architecture

Coarse-grained reconfigurable architectures (CGRAs) have been emerging as a po­

tential candidate for embedded systems in recent years. CGRAs have a data-path of

word width whereas fine-grained architectures are much less efficient and have huge

routing area overhead and poor routability. A major benefit of CGRAs over FPGAs

is a massive reduction of configuration memory, configuration time, and complexity

reduction of the P lacement and Routing (P8R) problem [Hartenstein, 2001]. These

architectures combine wit h the high performance of ASICs and the flexibility of mi­

croprocessors, to accelerate computation intensive parts of applications in embedded

systems [Dimitroulakos et al. , 2007] . However, t here are still many outstanding is­

sues such as a lack of a good design methodology to exploit high performance and

efficiency on CGRAs [Vassiliadis and Soudris, 2007a].

CGRAs consist of programmable, hardwired, coarse-grained processing elements

(PEs), which support a predefined set of word-level operations while the intercon-

2

nection network is based on the needs of a specific architecture domain. A generic

architecture of a coarse-grain reconfigurable system, shown in Figure 0.1, encompasses

a set of coarse-grain reconfigurable units (CGR Us), a programmable interconnection

network, a configuration memory, and a controller. The coarse-grained reconfigurable

array executes the computationally-intensive parts of the application while the main

processor is responsible for the remaining parts of the application.

E.x,·c. Control
~ . !

r-----~---------------------,

Figure 0.1: A Generic Coarse-Grain Reconfigurable System taken from [Vassiliadis

and Soudris, 2007a].

The domain-specific, hardwired , CGRU executes a logical or arithmetic operation

required by the considered application domain. The CGRUs and interconnections are

programmed by proper configuration (control) bits that are stored in configuration

3

memory. The configuration memory may store one or multiple configuration contexts,

but at any given time, one context is active. The controller is responsible for con­

t rolling the loading of configuration contexts from the main memory to configuration

memory, for monitoring the execution process of t he reconfigurable hardware and for

activating the reconfiguration contexts. The interconnection network can be realized

by a crossbar or a mesh structure.

CGRAs can provide massive amounts of parallelism and high computational ca­

pability. T ypically, the application domains of CGRAs are Digital Signal P rocessing

(DSP) and multimedia . These kinds of applications usually spend most of their exe­

cution t ime in loop structures. These computational intensive parts have high levels

of operation and data parallelism. The design of such systems requires a good cor­

respondence between the coarse-grained reconfigurable architecture and the loop's

characteristics. Kernels (loops) of an application are mapped onto the array in a

highly parallel way. Generally, in order to schedule a kernel, it needs richer intercon­

nections. However, richer interconnections come with costs such as wider mult iplex­

ors, more wires, and more configuration bits which translate to large silicon area and

higher power consumption. Moreover, even wit h the same amount of interconnection

resources, we can expect variation among topologies. Choosing a good topology is

an essential step in the architecture exploration. Typically, the applications which

belong to the application domain of t he CGRAs, are characterized by the high data

transfer rate between the processor and the memory [Dimitroulakos et al. , 2007].

4

0.2 Compiling Loops onto CGRAs with Modulo

Scheduling

There are abundant computational resources available for parallelism in CGRAs.

The target applications of CGRAs are typically telecommunications and multimedia

electronics, which often spend most of their t ime in crit ical segments, typically loops

[IV!ei et al. , 2003b]. The massive amounts of parallelism found in CGRAs can be used

to speed up t ime critical loops of an application. Moreover, t he loops often exhibit

high degree of parallelism and require a great deal of computation intensive resources .

In order to map the critical loops, we have to consider t he data dependency within

an iteration of a loop and inter-iteration dependency. When compiling a loop onto

CGRAs, each operation within the loop requires a resource to be executed on the

CGRA and the time at which the operation will execute. The executed operation has

to be routed to the dependent operations in the loop.

Since each loop iteration repeats t he same pattern of executing operat ions, com­

piling loops onto CGRAs can be achieved by modulo scheduling [Hatanaka and

Bagherzadeh, 2007]. Modulo scheduling is a software pipelining technique [Llosa

et al. , 2001] that overlaps several iterations of a loop by generating a schedule for

an iteration of the loop. Modulo scheduling uses t he same schedule for subsequent

iterations. Iterations are started at a constant interval called the Init iation Interval

(II). The time taken to complete a loop of n iterations is roughly proportional to

II. The main goal of modulo scheduling is to find a schedule with as low an II as

possible.

The scheduling, placing and routing loops onto CGRAs faces several architectural

5

constraints and challenges. Modulo scheduling adds a time dimension to the combina­

tion of placement and routing, which becomes very similar to placement and routing

for FPGAs [Hatanaka and Bagherzadeh, 2007].

0.3 Motivations and Objectives

In order to solve the scheduling, placing and routing problem onto CGRAs with

modulo scheduling, several issues have to be considered in the mapping. A schedul­

ing algorithm should be capable of efficiently exploiting regular data parallelism in

CGRAs with lower initiation interval. The follmving issues motivated us to consider

a modulo scheduling algorithm for CGRAs.

• An algorithm capable of achieving a lower initiation interval to start the suc­

cessive itera tions.

• An algorithm capable of routing intermediate data betwe n the executed oper­

ations of loop.

• An algorithm that is fast and efficient with optimal usage of resources in the

final schedule.

• An algorithm capable of mapping different execution paths of a loop caused by

conditional branches.

• An algorithm able to do parallel search of solutions with placement, scheduling

and routing.

6

• An algorithm must be able to consider the hardware constraints and conserve

resources.

• An scheduling algorithm should be compatible with the front end application.

• An algorithm that is capable of mapping crit ical nodes and edges.

• An scheduling algorithm should be applicable to different CGRAs and different

topologies.

• An algorithm tha t is capable of analyzing best topology of the CGRA.

Unfortunately, the available parallelism in CGRAs has been exploited by only a

few automated design and compilation tools [Mei et al. , 2003b]. The modulo schedul­

ing algorithm used in [Hatanaka and Bagherzadeh, 2007] and [Vassiliadis and Soudris,

2007b] was not able to find optimal usage of resources and took a long time to find

the valid schedule. Several heuristic techniques were tried by researchers in solving

the modulo scheduling problem, but the techniques were not fast and efficient [Llosa

et al., 1996]. For example, t he existing scheduling algorithms find the placement and

routing solut ion wit h a sequential search for each Data Flow Graph (DFG) operation

and does not solve conditional code. Particle swarm optimization (PSO) applied to

instruction scheduling [Abdel-Kader, 2008], provides near optimal solut ions, with fast

convergence and low execution t ime for various combinatory and mult idimensional

optimization problems. A simple PSO can get stuck in a locally optimal solution and

can be made efficient in combination with mutation operators [Grundy and Stacey,

2008]. To the best of our knowledge, PSO has not been used in modulo scheduling

7

for coarse-grained architectures. As a result , a fast and efficient modulo scheduling

algorithm for CGRAs with parallel search is developed.

The objectives of this thesis are:

• To develop a fast and efficient scheduling, placing and rout ing algorithm called

modulo constrained hybrid part icle swarm optimization (MCHPSO) to exploit

loop-level parallelism of different target applications.

• To analyze the performance of MCHPSO in various CGRA topologies and con­

figurations.

• To apply MCHPSO to various benchmarks in telecommunications and in mul­

timedia applications and to compare the II achieved with other scheduling al­

gorithms.

• To develop an algorithm to analyze the DFG with conditional code generated

from a HARdware Para llel Objects Language (HARPO/ L) program and to

schedule the condit ional code with MCHPSO wit h efficient use of resource.

• To develop an algorithm to handle loop-carried dependences or recurrences in

DFG , where an operation depends on itself or another operation from previous

iterations.

0.4 Thesis Contributions

The following are the contributions of this thesis.

8

• Designed the solution structure for the particles in PSO to map DFG onto

a t ime-space graph called routing resource graph (RRG), where each particle

represents a scheduling solution to the mapping process.

• Designed and implemented MCHPSO algorithm to place, schedule and route

DFG onto CGRA. The algorithm succeeded in scheduling with lower initia­

tion interval, and with minimal usage of resources. However , the MCHPSO

algorithm did not conflict with any dat a dependency and satisfied the modulo

constraints for the CGRA resources.

• Compared the performance of MCHPSO with other scheduling algorithms and

analyzed MCHPSO on various topologies and various CGRA configurations, the

MCHPSO algorithm achieved fast execution t ime and bet ter schedule results

than other algorit hms. Analyzed the speedup of MCHPSO in intel i7 quad core

processor. The MCHPSO parallelizes well with many logical processors and

produces faster result.

• Designed and implemented a predicated exclusivity MCHPSO algorithm to

map conditional code in DFG. The exclusivity algorithm was able to mini­

mize the number of resources used in the scheduling process . The exclusivity

algorithm reused the same resource for conditional code in DFG to be mapped

onto CGRAs.

• Designed a preprocessing algorit hm t o extract information from DFG generated

by the HARPO / L program compiler. The algorithm added predicates and

symbolic information to the DFG cells (nodes and edges). Designed a method

9

to create exclusivity matrix of all DFG cells.

• Designed a method to find empty slots in MRT (modulo reservation table) using

Maximum Independent Set algorithm.

• Analyzed the performance of predicated exclusive MCHPSO algorithm with

various CGRA configurat ions. Compared the performance of predicated exclu­

sive MCHPSO algorithm with non-exclusive predicated MCHPSO algorithm on

various benchmarks.

• Implemented and evaluated a method to handle loop carried dependence in

DFG to be mapped onto CGRAs.

0.5 Thesis Overview

This thesis is organized as follows. Chapter 1 provides a detailed review of modulo

scheduling in CGRAs. First, an overview of CGRA has been outlined and it is followed

by selecting a suitable CGRA for the selected problem. Secondly, an overview of

modulo scheduling has been discussed. Thirdly, the chapter discusses evolut ionary

algorithms and the use of particle swarm optimization in modulo scheduling.

Chapter 2 discusses the proposed algorithm called Modulo Constrained Hybrid

Particle Swarm Optimization (MCHPSO) . An overview of the compilation framework

has been discussed. The chapter also provides a review of the related work. The

encoding of particle and fitness calculation in MCHPSO are presented in this chapter.

Chapter 3 presents the simulation results for MCHPSO. The performance analysis

of MCHPSO is discussed, based on the interconnections, resource availability and

10

particle size. MCHPSO speedup is analyzed on the Intel i7 quad core processor.

Chapter 4 discusses the exploitation of conditional structure in CGRAs. This

chapter presents the predicated exclusivity algorithm. The input DFG was taken from

the HARPO/ L (HARdware Parallel Objects Language) compiler and the simulation

results of predicated exclusivity algorithm are discussed.

Chapter 5 presents the recurrence handling in loops. This chapter reviews var­

ious methodologies to map recurrence relations onto CGRAs. It also presents the

recurrence aware priorit ized MCHPSO algorithm and its simulation results.

Chapter 6 concludes the thesis and presents the scope for future work.

11

Chapter 1

Compilation in Coarse-Grained

Reconfigurable Architectures

1.0 Introduction

Coarse-grained reconfigurable architectures (CGRAs) have t he potential to exploit

both the efficiency of hardware and flexibility of software to map large applications.

A good compiler should employ the CGRA's resources to exploit a high amount of

operation and loop-level parallelism in the application's loops [Tuhin, 2007] . The

compiler must carefully schedule the application's loop body and facilitate high per­

formance at a reasonable cost.

An overview of CGRAs and the selection of target architecture is given in Section

1.1. Compiling loops to CGRAs involves the modulo scheduling process which is a

combination of 3 tasks: scheduling, placement, and routing which will be discussed

in Section 1.2. In this thesis, t he modulo scheduling is done with particle swarm op-

12

timization. The various kinds of evolutionary algorithms and the reason for selection

of PSO are discussed in Section 1.3. This chapter concludes with a discussion of the

different compilation procedures attempted so far in the CGRAs and the need for a

new modulo scheduling algorithm in Section 1.4.

1.1 Coarse-Grained Reconfigurable Architecture

1.1.0 Introduct ion

Coarse-Grained Reconfigurable Architectures have been used widely for accelerating

time consuming loops. Processing elements (PEs), available in a large number of

CGRAs, can be used to exploit the inherent parallelism found in loops to accelerate

the execution of applications. In a CGRA, the PEs are organized in a 2-dimensional

(2D) array, connected with a configurable interconnect network [Dimitroulakos et al. ,

2009].

1.1.1 Overview of some CGR As

1.1.1.0 MorphoSys

The .IVIorphoSys architecture has been designed for multimedia applications to accom­

modate applications with data parallelism and high throughput constraints, such as

video compression [Singh et al., 2000a] . The components of t he MorphoSys architec­

ture are an array of reconfigurable cells (RCs), processing units (called RC Array), a

general-purpose (core) processor (TinyRISC) and a high-bandwidth memory inter­

face, implemented as a single chip. The computation-intensive operations are handled

13

by the single instruction multiple data (SIMD) array of coarse-grained reconfigurable

cells (CGRCs) . The sequential processing and the RC array operation controls are

performed by the TinyRISC [Singh et al., 2000b]. A context word is loaded into the

RC's context register for every execution cycle.

1.1.1.1 KressArray

KressArray (al o known as rDPA) has a 32-bit-wide data path with an array of recon­

figurable processing elements. The KressArray reconfigurable architecture features

arithmetic and logic operators on the level of the C programming language, making

the mapping simpl r than for FPGAs [Hartenstein et al., 2000]. It consists of a mesh

of PEs, also called rDPUs (reconfigurable Data Path Units), which are connected to

each of their 4 nearest neighbors by 2 bidirectional links with a data path width of

32- bits, wh r "bidirectional 11 means a direction is selected at configuration time.

1.1.1.2 Montium

The coar -grained reconfigurable part of the Chameleon system-on-chip is called the

Montium Tile [Heysters and Smit, 2003]. The Montium Tile is especially designed

for mobile computing and targets the 16-bit digital signal proce sing (DSP) algo­

rithm domain [Smit et al. , 2007]. Iontium supports both integ r and fixed-point

arithmetic, with a 16-bit datapath width. The tile is interfaced with the outside

world with the communication and configuration unit (CCU). The tile has 5 identi­

cal arithmetic and logic units (ALUl. . . ALU5) that can exploit spatial concurrency

to enhance performance. Dedicated input output units (DIGs) are used to handle

fast and parallel transfers of input/ output data that are placed around the array

14

architecture [Alsolaim et aL, 1999].

1.1.1.3 DReAM

Dynamically reconfigurable architecture for mobile systems (DReAM) [Alsolaim, 2002]

was designed to be a part of a system-on-a-chip (SoC) solution for the third and fu­

ture generations of wireless mobile terminals. It consists of an array of concurrently

operating coarse-grained reconfigurable processing units (RP Us) . Each RPU was

designed to execute all required arithmetic data manipulations and control-flow op­

erations. To perform fast dynamic reconfiguration, the configuration memory unit

(CMU) holds configuration data for each of the RPUs and is controlled by one re­

sponsible communication switching unit (CSU) .

1.1.1.4 CHESS

The reconfigurable arit hmetic array (RAA), termed CHESS [Marshall et al., 1999],

was developed by hewlett packard (HPJ Labs to provide high computational density,

wide internal data bandwidth , distributed registers, and memory resources for im­

portant multimedia algorithm cores. CHESS also offers strong scalability, software

flexibili ty and advanced features for dynamic reconfiguration. CHESS's functional

units are 4-bit ALUs and it reduces the number of bits of configuration memory by

having 4-bit bus connections. It allows a small configuration memory to speedup

reconfiguration.

15

1.1.1.5 RaPiD

RaPiD [Ebeling, 2002] is a coarse-grained reconfigurable architecture to achieve the

low cost and high power efficiency of application-specific integrated circuits (ASICs),

without losing the flexibility of programmable processors. RaPiD architecture is

configured to form a linear computational pipeline, with a linear array of functional

units (FUs). Each RaPiD cell contains 3 ALUs, one multiplier , three 32-word local

memories, 6 general-purpose "datapath registers" and 3 small local memories. The

RaPiD array is designed to be clocked at 100MHz and reconfiguration t ime for the

array is conservatively estimated to be 2000 cycles [Ebeling et al., 1997].

1.1.1.6 PipeRench

PipeRench [Goldstein et al., 2000] is a reconfigurable fabric with a network of in­

terconnected configurable logic and storage elements. PipeRench contains a set of

physical pipeline stages called stripes. In each stripe, the interconnection network ac­

cepts inputs from each processing element in that stripe and one of the register values

from each register file in the previous stripe. Each PE contains an arithmetic logic

unit (AL U) and a pass register file where the AL U contains lookup t ables (L UTs)

and extra circuitry for carry chains, zero detection, and so on. PipeRench was de­

signed to improve reconfiguration time, compilation time, and forward compatibility,

increased flexibility, reduced chip development and maintenance fabrication costs.

16

1.1.1.7 ADRES

The architecture for dynamically reconfigurable embedded systems (ADRES) [Mei

et al., 2005a] t ightly couples a very long instruction word (VLI W) processor and

a reconfigurable array. The architecture has 2 virtual functional views: the VLIW

processor view and the reconfigurable array view built into a single architecture [Mei

et al., 2003b]. The VLI\iV processor, consisting of several functional units and a mul­

t ipart register file (RF) , serves the first row of the reconfigurable array. Some FUs in

the first row can connect with memory to facilitate data access for load/ store opera­

tions. The reconfigurable array is intended to efficiently execute only computationally

intensive kernels of applications [f\!Iei et al. , 2003a]. The architecture template, shown

in Figure 1.0, consists of many basic components, including computational, storage,

and routing resources .

The FUs can execute a set of word-level operations selected by a control signal.

Register fi les and memory blocks can store intermediate data. Rout ing resources,

including wires, mult iplexers , and buses connect the computational resources and

storage resources defined by the topology through point-to-point connections or a

shared bus. The different instances of the architecture can be generated by a script­

based technique and by specifying different values for the communication topology,

the supported operation set, resource allocation, and latency in t he target architecture

[Zalamea et al. , 2004].

The results can be written to the distributed RFs, which are small and have fewer

ports than the shared RF, or they can be routed to other FUs. An output register

buffers each of the FU's outputs, to guarantee timing. Multiplexers are used to route

17

.' --- .. -~- ~- - - ·- - -- - ---- - - - - ·- ·- - - - -- ·-- - ~ -- ------- ·- - -· '"' - -- ·--- ·- -·- ... ,
I
I

'

' \
: VLIW view

R econfi gurable array view

Figure 1.0: ADRES Architecture taken from [Mei et al., 2005c]

data from different sources. The configuration RAM st ores the configuration for each

cycle. In ADRES, the integration of predicate support , distributed register files and

configuration RAM make it applicable and efficient to many applications.

1.1.2 Comparison and Selection of the Target CGRA

The various CGRAs discussed above have their advantages and disadvantages. Mor-

phoSys has a 16-bit granularity with mesh based structure, fast memory interface,

dynamic programming and requires a manual placement and routing tool [University

of California, 2009]. KressArray has a highly flexible mapper used to map massively

18

communication-intensive applications [Hartenstein et al., 2000] and provides area ef­

ficient and throughput efficient design. KressArray can be used only for limited

applications with regular data dependencies [Becker et al., 1998]. Montium focuses

on providing sufficient flexibility, provides abundant parallelism, but has limited con­

figuration spaces [Guo, 2006] . ADRES uses the VLIW processor for non-kernel code

and reduces the communication cost between the VLIW and reconfigurable matrix

through the shar d RFs for resource sharing [Vassiliadis and Soudris, 2007a]. DReAM

was designed for modern wireless communication system and provides an acceptable

trade off between flexibility and application performance [Becker et al., 2000].

CHESS offers strong scalability, dynamic reconfiguration but it has a constraint

that the ALU and switchbox should be of the same size and the need of long wires

for the transfer of data [Marshall et al., 1999]. RaPiD features static and dynamic

control to map a range of applications but it has the disadvantage of a data path with

an implicit directionality [Ebeling, 2002]. PipeRench trades off configuration size

for compilation speed by hardware virtualization and improved compilation time,

reconfiguration time, and forward compatibility. PipeRench has a low bandwidth

between main memory and processor, which limits the type of applications which

require speed up [Goldstein et al., 2000].

Among the various coarse-grained architectures discussed , the ADRES architec­

ture was considered for the proposed research. T he reason for this choice was that

the ADRES architecture is a flexible architecture template, with low communication

costs. The loops present in an application can be mapped onto the ADRES array in

a highly parallel way with ease of programming. The compiler within the ADRES

template is automatically retargetable i.e., it has been designed to be relatively easy

19

to modify to generate code for different configurations and have provided a good deal

of data for comparison.

1.2 Scheduling

1.2.0 Introduction

The objective of scheduling is to minimize the execution time of a parallel computation

application by properly allocating tasks to the processors by avoiding the processor

stall cycles. Scheduling inner loop bodies is a NP-hard problem which implies that

there is no polynomial time algorithm that can give an optimal solution to the problem

(assuming P =J NP) [Kwok and Ahmad, 1999] . The ultimate goal of scheduling

is to create an optimal schedule, a schedule with t he shortest length of the given

application. Schedule length or makespan is measured as t he overall execution-time of

a parallel program in cycles. Additionally, when a schedule is produced , the scheduling

algorithms must satisfy both resource and precedence constraints.

Depending on the constraints, scheduling may be broadly classified into 3 main

categories [ChingandKeshab, 1995].

Time-Constrained Scheduling minimizes the number of the required resources

when the iteration period is fixed.

Unconstrained Scheduling does not have any fixed timing or resource usage dur­

ing the scheduling.

Resource-Constrained Scheduling fixes the number of resources and the objec­

tives to determine the fastest schedule, or the smallest iteration period.

20

List scheduling is the most commonly used scheduling approach. It can be clas­

sified under resource constrained scheduling and time constrained scheduling. A

scheduling list is statically constructed before node allocation begins, and most im­

portantly, the sequencing in the list is not modified. List scheduling is often used for

both instruction scheduling and processor scheduling [Beaty, 1994]. In an iteration ,

nodes with a higher priority are scheduled first and lower priority nodes are deferred

to a later clock cycle based on the priority functions like as soon as possible (ASAP),

as late as possible (ALAP) , mobility, height-based priority etc. [Tuhin, 2007]. The

priority sorting is carried out by selecting a node based on the priorities listed above

and added to the priority sort list. The sorting is then carried out for each child node

of the selected node until all t he nodes in the list are processed.

1.2.1 Software Pipelining

Software pipelining [Lam, 1988] is a scheduling technique which overlaps the oper­

ations in the successive iteration to yield processors's fast execution rate. Software

pipelining is a global cyclic scheduling problem to exploit the instruction level paral­

lelism (ILP) available in loops. The idea is to look for a pattern of operations from

various iterations (often termed as the kernel) so that when repeatedly iterating over

this pattern, it produces the effect that iterations are initiated at a regular interval.

This interval is termed the initiation interval (II). Thus successive iterations of the

loop are in execution with different stages of their computation. Once a schedule is

obtained, the loop is reconstructed into a prologue, a kernel, and an epilogue. Instruc­

tions in the prologue are repeated unt il t he pipeline is filled. The prologue consists of

21

code from the first few iterations of the loop. The loop kernel or steady state [Allan et

al. , 1995] consists of instructions from multiple iterations of the original loop, and a

new iteration of the kernel is initiated at every II cycles. Instructions in the epilogue

are designed to complete the functionality of code and consist of code to complete

the last few iterations of the loop.

1.2.2 Modulo Scheduling

Modulo scheduling [Mei et al. , 2003a] is a software pipeline technique which overlaps

several iterations of a loop by starting successive iterations at a regular interval.

The main goal of modulo scheduling is to simplify the process of software pipelining

by generating a schedule for an iteration of the loop and use the same schedule

for subsequent iterations at constant intervals. Modulo Scheduling ensures that it

satisfies data dependence constraints and intra- and inter-iteration dependency, and

no resource availability conflicts.

The schedule for an iteration is divided into stages so that different stages of the

successive iteration execution get overlapped. The number of stages in an iteration is

called its stage count (SC), and the number of cycles per stage is termed the initiation

interval. The Init iation Interval should be minimized to exploit as much parallelism

from a loop as is possible and modulo scheduling tries to minimize it [Tuhin, 2007].

The II is constrained either by loop-carried dependences of the loop (i.e cases where

data from an earlier iteration is used in a later iteration) or by resource constraints of

the hardware. The limit on the II set by loop-carried dependence is called recurrence

minimal initiation interval (R ecMII), while the limit set by resource constraints is

22

called resource minimal initiation interval (ResMII). The minimal initiation interval

(MII) is a lower bound to start the pipeline scheduling process and it is computed

as Mil = max(R esMII , RecMII) [Llosa et al., 2001]. If a valid schedule cannot be

obtained by an II equal to Mil, then II is incremented by one and the scheduling

process is repeated until a valid schedule is obtained or the algorithm gives up.

Modulo scheduling can be illustrated by taking an example of the dependence

graph shown in Figure 1.1b, along with a 2 x 2 architecture. The data dependence

graph unrolled for 3 iterations, is shown in Figure 1.1a. The initiation interval is 1

and so at time cycle 2, all the 3 iterations are executing at different stages.

A modulo schedule can be generated by the use of heuristics and integer linear

programming. Since modulo scheduling is based on heuristics, it may not always

give the optimal solution. T here are many heuristic algorithms developed for modulo

scheduling such as

• Iterative modulo scheduling [Rau, 1994]

• Recurrence cycle aware modulo scheduling [Oh et al., 2009]

• Clustered modulo scheduling [Sanchez and Gonzalez, 2001]

• Swing modulo scheduling [Llosa et al., 1996]

• Hypernode reduction modulo scheduling [Llosa et al. , 1995]

• Modulo scheduling with integrated register spilling [Zalamea et al., 2001].

23

f~l fu3 fu4 fu2

t = C•

t = 1

t =

t = }
/

/
steady s t a te

t 4 ~---nl) a)
' -·-< I \

/ \

tl r-~ ~~ .Eu l fu2
.-. 't . ~'I (nL : n~ 1 , __ \ 7/

fu3 fu4 -.,_j'
-

(n.i\
b) \. ___ /

Figure 1.1: a)Modulo Scheduling Example b)DFG and Configuration for 2x2 matrix,

modified from [Mei et al., 2003b]

1.2.3 Graph Embedding

Graph embedding is a problem in graph theory [Newsome and Song, 2003] in which

a directed guest graph G 1 = (V1 , E 1) is embedded in another directed host graph

G2 = (V2, E2) [Heath, 1997]. The embedding consists of a one to one function Pv from

V1 to V2 and a funct ion Pe that maps each edge (u , v) E E 1 to a path in G2 between

p(u) and p(v) . T here are 3 kinds of primary cost , measured in graph embedding:

dilation, expansion, and congestion [Heath, 1997]. For a given embedding (pv,PJ , the

congestion of edge e2 in G2 is the number of edges e1 in G1 such that e2 is on the

24

path Pe(e1); the congestion of an embedding is its maximum edge congestion. The

length of the longest assigned path is called the dilation of the graph embedding. The

ratio ~ ~~ ~ is called the expansion of the graph [Heath , 1997]. Using graph embedding,

the performance of one network (guest graph) over another network (host graph) can

be investigated. Graph embedding provides a systematic approach to various node­

node communication problems [Newsome and Song, 2003]. The concept of graph

embedding can be extended to solve many problems [Guattery and Guattery, 1997].

Graph models are successfully employed in various applications such as computer

aided circuit layout, network topologies, data-centric applications in sensor networks,

and so on [Newsome and Song, 2003], [Levi and Luccio, 1971]. Graph embedding

is effective in scheduling, placing and routing because it can take into account the

communication structure of the loop body and scales well with respect to the number

of operations [Park et al., 2006].

1.2.4 Modulo Reservation Table

In software pipelining, the modulo reservation table (MRT) is used in determining if

there is a resource conflict while allocating resources. MRT can be used to represent

the resource usage of the steady state by mapping the resource usage at time t to

that at timet mod s [Lam, 1988].

1.2.5 Routing Resource Graph

When modulo scheduling is applied to the data flow graph , the intermediate operands

are routed by allocating resources in the routing resource graph (RRG) [Ebeling et

25

al., 1995]. The RRG is replicated from the architecture graph for every t ime cycle.

RRG reserves resources by enforcing modulo constraints.

1.3 Evolutionary Algorithms

In order to find a scheduling, placing, and routing for the loops in CGRAs, we have

to find a valid schedule with the minimum number of resource usage and with the

smallest possible II and also satisfy all dependence and modulo constraints. Some

approaches have been tried to schedule loops, such as with simulated annealing [Mei

et al., 2005c],[Hatanaka and Bagherzadeh, 2007] to minimize the number of resources

used in routing. In this section, some selected evolutionary algorithms will be dis­

cussed briefly and we will conclude with the selection of an evolut ionary algorithm

for our modulo scheduling algorithm.

1.3.0 Overview

1.3.0.0 Simulated Annealing

Simulated annealing (SA) [\iVang et al., 2001] is a method to solve global optimizat ion

problems, with a metaheuristic approach, to the global minimum of a given function

in a large search space. The term simulated annealing, is derived from the roughly

analogous process of heating and controlled cooling of a material to increase the size

of its crystals and reduce the number of defects to obtain a strong crystalline structure

[Fang, 2000]. SA is often used when the search space of the problem is continuous.

SA can accept worse neighboring solutions, with a certain probability that depends

on a variable called the temperature (T) . In the SA method, the temperature T is

26

gradually reduced as the simulation proceeds. Initially, T is set to a high value (or

infinity) , and it is decreased based on a reduction ratio r, which is close to 1, at each

t ime step and ends with T = 0 at the end of the allot ted time budget. The simulated

annealing process is stopped when the system reaches a frozen solution st ate, that is

when there is no improvement in the solution configurations.

1.3.0.1 Genetic Algorithm

Genetic algorithms (GAs) were originally developed by John Holland and his research

students. GA is the most widely used evolutionary computation technique [Uysal

and Bulkan, 2008] . GA operates on strings of data in which each string represents

a solution, in a way that resembles a chromosome in natural selection . Genetic

algorithm exhibits implicit parallelism because they analyze and modify a set of

solutions simultaneously [Song et al., 2008].

Genetic algorithms generate random solut ions as the initial population. There are

3 stochastic operators applied to the population.

Selection Is a portion of the existing population selected to breed a new generation

of population.

Crossover Is a genetic operator that generates new offsprings by randomly choosing

some crossover point and everything before this point is copied from a first

parent and then everything after a crossover point copy from the second parent .,

which hopefully retain good features from the parents.

Mutation Is a genetic operator that randomly modifies the new offspring with a

probability. It can enhance t he diversity of the population and provide a chance

27

to escape from local optima.

In a long run of a GA, the better (lower cost) solutions tend to stay in the popula­

t ion and the worse (higher cost) solutions tend to disappear [Uysal and Bulkan, 2008]

in accordance with the theory of survival of the fittest. Genetic algorithms are able to

solve large problems with parallel nature. GA has been applied to various fields such

as neural networks, data mining, electronic circuit design, scheduling applications and

so on [Davis, 2010] .

1.3.0 .2 Ant Colony Optim ization

Ant colony optimization (A GO) [Dn~o et al. , 2006], which takes inspiration from the

foraging behavior of some ant species, has been formalized into a metaheuristic for

combinatorial optimization problems. The original ant colony op timization algorithm

was known as ant system (AS) [Dorigo et al., 1996] and was proposed in the early

nineties. Each ant in the AS is a possible solution to the problem . Certain ants

lay down an initial t rail of pheromones to mark some favorable path as t hey return

to the nest with food . A pheromone is a chemical signal t hat t riggers a natural

response to attract other ants and serves as a guide. In the meantime, some ants do

random exploratory survey for closer food sources. Ant Systems make a probabilistic

decision by implementing a randomized construction heuristic. ACO has inherent

parallelism and gives positive feedback for good solut ions. ACO can be applied to

telecommunication networks, graph coloring, scheduling, constraint handling and so

on [Shekhawat et al., 2009].

28

1.3.0.3 Particle Swarm Optimization Algorithm

Particle swarm optimization (PSO) [Kennedy and Eberhart, 1995] is an optimization

approach that follows an evolutionary metaphor. It is a population-based search

procedure in which individuals, called particles, change their positions, or states, with

t ime. Particles in a PSO system move in a mult idimensional search space [Abdel-

Kader, 2008] to find a good solut ion. All the particles can share their information

about the search space with other particles. During the process, each particle modifies

its position in the search space according to its best experience and the experience of

nearby particles, and makes use of the best position met by it and other neighboring

particles [Chen and Sheu, 2009].

A detailed explanation of PSO is given in this section, as this algorithm will be

used in the proposed modulo scheduling algorit hm. The reason for choosing PSO is

explained in the next subsection. Each part icle in a PSO system represents a potent ial

solution to the problem. At the end of the search, the best particle will hold the best

solution found . At every iteration, each particle k calculates its velocity and position

according to the expressions given below.

(1.0)

(1.1)

where

• Xk i - Particle k coordinates at i th iteration .,

29

• Xk,i+l - Particle k coordinates at i + 1 th iteration

• Vk ,i - Velocity of particle k at ith iteration

• Vk ,i+l - Velocity of particle k at i + 1 th iteration

• c1 , c2 - acceleration constants in range [0, 1]

• r1, r2- random value in range [0, 1]

• P k ,i - Particle k's personal best position found at ith iteration

• P9,i- Global best particle position at ith iteration

• w - Inertia weight factor. It is calculated by

W m ax - Wmin
W = Wmax - Xi

2m ax
(1.2)

where

• W min and W m ax are both random numbers called minimum weight and maximum

weight respectively.

• imax is the maximum number of iterations

After calculating X i+l , we can get the new particle position to search in the

next iteration. Each particle velocity on each dimension is limited to the maximum

velocity.

In most cases, all t he particles tend to converge to the best solution quickly. PSO

has a strong search capability in the problem space and can save more computation

30

i := 0, k := 0
For each particle in the PSO system

Initialize part icle with random coordinates.
Initialize current particles Xk,i coordinates as
the particles best position h ,i

End
i := 0
Do
For each part icle in the PSO system

End

Calculate fi tness value of the given par ticle.
If the fitness value is better than the best
fitness value pbest in history set current
coordinates value as the new P k,i

Choose the particle with t he best fitness value of all the
particles as the P9

For each particle

End

Calculate particle velocity using Equation (1.0)
Update particle posit ion using Equation (1.1)

i := i + 1
\ i\Thile maximum iterations is not att ained.

Algorithm 1.0: The Standard PSO Algorithm

31

time for finding an acceptable solution [Wang et al. , 2007]. The selection of parameters

c1 and c2 affects the performance [Chen and Sheu, 2009].

1.3.1 Selection of PSO Algorithm

When PSO was used in the Traveling Salesperson Problem (TSP), PSO showed a

significant performance in the initial iterations when compared with ACO [Nonsiri

and Supratid, 2008]. PSO has the capability to quickly arrive at an optimal or a

near-optimal solution. ACO has a difficult theoretical analysis, sequence of random

decisions, and uncertain convergence time [Shekhawat et al. , 2009] .

An advantage of PSO over GA is that PSO maintains all the solut ions in the search

space and changes of inertia weight leads to convergence [Nonsiri and Supratid, 2008].

PSO keeps the history of all the particles local best fitness and the global best fitness.

When a particle gets caught in a bad solution, it can still go to its previous best

position and start searching. GA is stochastic and contains no information about the

problem [Thenorio, 2010]. GA can prematurely converge to a local optimum solution

in its reproduction process rather than the global optimum of the problem [Thenorio,

2010] . This suggest trying PSO on modulo scheduling.

The relative ease of implementation and the ability to provide reasonably good

solutions are the advantages of simulated annealing, but it takes a great deal of

computation time and a careful tuning of parameters [Elmohamed et al., 1998] to

obtain good solutions. The PSO method has the advantages of fast speed to get the

solutions, stable convergence and robustness and it is a parallel direct search method

to generate good solut ions [Song et al., 2008]. PSO can be applied to various fields ,

32

for example, to train artificial neural networks, function optimization, fuzzy control

system and so on [Hu, 2009]. PSO parameters are so designed that they are highly

adaptive [Acharjee and Goswami, 2009].

Previous research on PSO [Abdel-Kader, 2008],[T.Chiang et al. , 2006] shows that

instruction scheduling can be done with PSO, in this thesis, PSO with a hybrid combi­

nat ion of mutation operation is t ried. The mutation operator is used in the proposed

modulo scheduling algorithm to avoid premature convergence in PSO algorithm.

1.4 Various CGRA Compilation Procedures

In recent years, the compilation of applications, written in a high-level language to

coarse-grained reconfigurable platforms, has become the subject of research . Com­

putationally intensive kernels present in the application are represented by data flow

graphs (DFGs) where nodes represent the operations and edges form the communica­

tion between the nodes. Some selected compilation procedures are discussed in detail

in the subsequent sections. The compilation procedure differs with different mapping

algorithms, target architecture representations and handling constraints during com­

pilation. Compiling applications to CGRAs involve 3 tasks: Scheduling, P lacement,

and Routing. Scheduling assigns the t ime cycle to execute the operation. Place­

ment assigns a functional unit and Routing takes care of moving data from producer

functional unit to consumer functional unit .

33

E:•:tern<ll to d

C ode gen>l!rabcn

. , ,
~

'

... ,
'

'
' •• ...

L EsterelsinliJI;,tor

Figure 1.2: DRESC Compiler Framework, taken from [Berekovic et al., 2006]

34

sonops n;
II := Mil (DDG);

whil• not >'> :;hed:u:cd do
Irtit 1-!rrg (II f ;
lnitTernperac~re {) :

Tn i tP ! ace:l,ndRo".J:.e f) ;

while not scheduled do
tor each op in .sorted opecatlon 1iso;:

RipUpOp (J;

for i ; '" 1 to rar.dom_pos_co_try do
poe ' ~ Ge!"\Random~q·.,; { i ;
.s•.Jc::ess : = Place.~.ndRouteOp(poE i;

if success then
r.ew cos:: : ~ Gomp\lte:::or..t •: opl ;
a::c;pt.ed .- Evalua:.eNe-..•Po.s (J:
it ,<cc<:pr. ed t.llcn

break;
ele•e

co::J.t.im.;e ;
•n<Hf

end for

if noc acccpccd tben
P.e>.toreCp < ~ ;

else
Cc:nr.l it:Op () i

if 3er. a val .id r.c~erlu l e then
rctur·n s ~~hcdl..'l.l t.!d;

OM:dfor

if StopCri r.er iaO tllen
bt:'C~k;

UpdatcOve r ascl'ena.: t y r ;, ;
Updatt~":e n pcraXlU't~ (j ;

end;while
11++:

endwhile

Figure 1.3: P seudocode of the modulo scheduling algorithm m DRESC, taken from

[Mei et al., 2002]

35

1.4.0 DRESC Compiler

Dynamically reconfigurable embedded system compiler (DRESC) [Mei et al., 2002], is

a retargetable compiler that is able to parse, analyze, transform, and schedule plain

C source code to the DRESC [Mei et al. , 2005a] architecture. Figure 1.2 presents

the overall structure of the DRESC compiler. Source-level transformations are done

on the target C source code to rewrite the kernel in order to make it pipelinable

and to maximize the performance of the functional units. The target architecture

is described in an extensible markup language (XML) . The parser and abstraction

steps transform the architecture into an internal graph representation called a modulo

routing resource graph (MRRG) , which is used by the modulo scheduling algorithm.

Modulo scheduling plays a central role in the DRESC compiler , by creating high

parallelism for the kernels [Vassiliadis and Soudris, 2007a]. T he task of modulo

scheduling is to produce a software pipeline schedule with a low initiation inter­

val. A MRRG [Mei et al. , 2003b] is introduced in DRESC to model the architecture

internally for the modulo scheduling algorithm. The MRRG combines features of

the modulo reservation table [Lam, 1988] and the routing resource graph [Ebeling

et al., 1 995]. The MRRG is a directed graph showing the time space representation

of the architecture which is constructed by composing sub-graphs representing the

different resources of the AD RES architecture [Mei et al., 2003a] . The pseudocode

of the modulo scheduling algorithm is given in Figure 1.3. The modulo scheduling

algorithm generates an initial schedule respecting dependency constraints for each II.

The inner loop of the algorithm uses simulated annealing to minimize the overuse of

resources. If simulated annealing succeeds within the time allotted then the loop is

36

exited. If t he algorithm cannot find a valid schedule in the t ime budget, it t ries wit h

an incremented II.

1.4.0.0 Advantages and Limitations

The modulo scheduling algorithm of the DRESC compiler has some limitations. For

large loop bodies, it has long convergence time due to the use of simulated annealing.

It does not scale well with the size of the DFGs because while taking scheduling

decisions, it does not take any information from the DFG. The overall performance is

adversely affected when there is a spare interconnection among the FUs. Moreover ,

the scheduling algorithm only considers the innermost loop of a nested loop structure

[Tuhin, 2007] .

1.4.1 Compilation using Modulo Graph Embedding

A graph theoretic technique called modulo graph embedding (MGE) is used in [P ark

et al., 2006] for compiling applications to CGRAs. Using MGE, loop bodies are

mapped onto CGRAs, subject to modulo resource usage constraints. The commu­

nication structure of the loop body was considered during mapping to make it an

effective technique. Initially, preprocessing was done to analyze the DFG and to con­

struct a skewed scheduling space. A skewed scheduling space does not allow all t he FU

slots to be available at the given schedule t ime. The start t imes of FUs are restricted

such t hat they stagger down the right side of the CGRA. The skewed scheduling space

dynamically changes as operations gets placed in an FU. The scheduling space of all

t he FUs to t he right of the placed FU are lowered to guarantee the routability.

The next step in the mapping process is followed by the main scheduling loop

37

to find a placement for all the operations at a part icular height of the DFG using

modulo graph embedding. The scheduling process first constructs the affinity graph

for the given input DFG. Next the primary slots are identified to place, schedule and

route. The scheduler enters an inner loop to determine the cost of the current layout

and iteratively reduces the cost using simulated annealing.

1.4.1.0 Advantages and Limitations

Modulo Graph Embedding [Park et al. , 2006] uses a skewed scheduling space and a

systematic placement decision with a search space limited to the same height. The

method achieves good convergence and fast compilation t imes. This technique is not

suitable for DFG with loop-carried dependencies, as these dependencies are given the

same priority as intra-iterat ion dependencies [Oh et al. , 2009].

1.4.2 Compilation using Clustering

Montium architecture [Guo, 2006] presents a framework for scheduling clusters writ­

ten in a high-level language (C++). In this work, the scheduling problem is called

the color-constrained scheduling problem where the limitations of using processors

resources with one-ALU and 5-ALU configurations are termed as color and pattern.

The color-constrained scheduling problem was tackled in this work by 3 algorithms:

the mult i-pattern scheduling algorithm, the column arrangement algorithm and the

pattern selection algorithm. The multi-pat tern scheduling algorithm, used in this

work, is similar to the list scheduling algorithm, with extra constraints. T he algo­

rit hm schedules the node in the colored graph G. The successors of a node should

be scheduled after the node has been scheduled . The column arrangement algorithm

38

orders t he non-ordered pattern elements. In the pattern selection algorithm, a non­

ordered pattern color bag, is selected.

1.4.2.0 Advantages and Limitations

Scheduling clusters with Montium architecture exploits the high speed parallelism of

the source code and consumes low energy with few clock cycles. The performance

of the algorithm has to be improved to refine the priority functions and to decrease

t he computation complexity due to a large number of candidates [Guo, 2006] . The

number of iterations of a loop in the DFG was not clearly specified and they did not

consider loop carried dependences of a loop.

1.4.3 Compilation Using Modulo Scheduling with Backtrack­

ing Capability

The compilation approach described in [Dimitroulakos et al., 2009] presents an ex­

ploration framework that automates the evaluation of CGRA architectures. The

framework, used in this approach identifies the CGRA architectures tuned for a spe­

cific application domain with modulo scheduling. In this work, an effective priority

scheme is proposed while the modulo scheduler has been equipped with backtracking

capability. The loop schedule is constructed by mapping incrementally one operation

at a t ime in the loop. There are 4 steps which comprise the scheduling loop: priority

scheme, enforce dependence constraints, enforce resource constraints, and mapping

decision selection.

39

1.4.3.0 Advantages and Limitations

The mapping algorithm suggested in this work, proposes to reduce congestion and

map all the operations to PEs and effectively route the dat a values between PEs.

The experiments carried out through this algorithm, indicate that the algorithm

has a significant impact on the performance. The architecture's performance affects

the clock frequency and instructions per cycle (IPC). A higher IPC value not only

has a negative impact on the clock frequency but it also requires more hardware

[Dimitroulakos et al., 2009].

1.5 Conclusion

This chapter discussed the background literature of the proposed research. The var­

ious CGRAs, designed during the past years, have been discussed . The existing

architecture ADRES is considered for the proposed work because of its flexible topol­

ogy and simple implementation. The basic scheduling techniques were discussed . The

basic modulo scheduling technique will be used in the proposed work. Among the

various evolutionary algorithms discussed , PSO will be used in the proposed work

for the following reasons: it is easy to implement, it has fast convergence, and it is

efficient.

Finally, some of the compilation approaches published, were discussed. The com­

pilation frameworks for the CGRAs have some commonality such as constructing an

acceptable application graph, abstracting information from the target architecture

and mapping to make the best use of the resources available in a CGRA. A compila­

tion framework similar to the work done in [Mei et al. , 2003a] is taken for the proposed

40

research . The modulo scheduling is carried out by the Particle Swarm Optimization ,

with a mutation operator.

41

Chapter 2

Modulo Constrained Hybrid

Particle Swarm Optimization

Scheduling Algorithm

2.0 Introduction

This chapter gives an overview of t he MCHPSO scheduling algorithm. The research

focuses on modulo scheduling algorithms for CGRAs. The study of various compila­

t ion frameworks in CGRAs, as d iscussed in Chapter 1, indicates that not much work

has been done to improve the basic modulo scheduling algorithm to map onto CGRAs

more effectively. We need to efficiently use the reconfigurable resources available in

CGRAs and to keep t he time low to schedule complex target applications. To solve

the modulo scheduling problem in CGRAs, an algorithm is proposed in Section 2.2.

The MCHPSO algorithm schedules, places, and routes an inner loop body represented

42

by a data flow graph (DFG) . The DFG is embedded into the rout ing resource graph

(RRG) of the target CGRAs by using particle swarm optimization (PSO) , combined

with a mutation operator. The background concepts related to the MCHPSO algo­

rithm are discussed in Section 2.1. The different steps of the MCHPSO algorithm

are discussed in Section 2.2. The evaluation, applications and comparisons of the

MCHPSO algorithm are discussed in Section 2.3.

2.1 Modulo Scheduling in CGRAs

2.1.0 Problem Identification

The objective of modulo scheduling is to find a valid schedule of one iteration of

t he loop body so that it may be repeated at regular intervals. The schedule must

respect all intra-iteration and inter-iterat ion dependency and resource constraints and

economically use the resources and execut ion t ime [Mei et al. , 2003a]. The number

of clock cycles between the start of successive iterations is termed the schedules's

initiation interval (II) , essentially reflecting the performance of the scheduled loop.

The problem of determining the lowest possible init iation interval, and a schedule that

meets it, for a given loop on a given hardware is an NP-hard problem and therefore

there is no known way to efficiently solve it in all cases.

Several heuristic techniques have been tried to solve the modulo scheduling prob­

lem. A heuristic technique solves problems based on experience and randomization ,

and uses repeated random sampling to compute the results. Nature-inspired , a bird­

flocking experience-based technique is used in the heuristic approach of the PSO alga-

43

rithm for problem solving and discovery, which may be applied to problems which are

t ime-consuming to find a solution. When PSO is compared with ant colony optimiza­

t ion (ACO) [Dorigo et al., 2006], PSO shows the ability to quickly arrive at an optimal

or near-opt imal solution. An advantage of P SO over genetic algorithms (GA) [Uysal

and Bulkan, 2008] is that PSO maintains all the solutions in the search space and re­

quires less computational effort to arrive at high quality solutions. Previous research

[Abdel-Kader , 2008], [Xiaoyu Song and Cao, 2008] on PSO shows that scheduling

can be done with PSO. We enhanced PSO with a hybrid combinat ion of mutation

operator for our modulo scheduling problem to avoid premature convergence in PSO

algorithm. Our early results showed t hat using PSO to solve the scheduling problem

gives a near-optimal solution. When PSO is combined with a randomization method,

discovering the near optimal solution becomes faster and the local optimal solution

can be avoided. This combination of heuristic approach and randomization is what

we term modulo constrained hybrid PSO (MCHPSO). This is a practical approach

to solve the scheduling problem. The proposed algorithm is discussed in detail in the

following subsections.

2.1.1 Solution Structure Formalization

Most applications in mobile computing and multimedia spend a lot of time repeatedly

executing critical code segments called loops. Since iterations of these loops can often

be executed in parallel, we can make effective use of the abundant resources available

in CGRAs. After mapping a loop onto the CGRA, we can use the free resources in

the CGRA for another application or loop kernels. To increase the free resources of

44

the CGRAs, we need a mapping algorithm that produces a valid schedule with a low

routing cost .

To address the problem of mapping a loop body of a target application onto

CGRAs, we propose a modulo scheduling algorithm by using a PSO algorithm com­

bined with a random mutation operator. The schedule length of the loop is its total

execution t ime in cycles. If a resource T of total resources (R) in the rout ing resource

graph (RRG) (described in Section 2.1.1.4) at t imet (in clock cycle) is being used, it

is reserved for all times t' such that t = t' (mod I I) (. The unavailability of the same

resources for successive iterations is called a modulo constraint. While scheduling

loops, the algorithm has to satisfy the dependence constraints on each operator in­

volved in the loop and not violate modulo constraints to start the successive iterations

in parallel. To illustrate the overall problem, an example is shown in Figure 2.0.

The following conditions should be satisfied while scheduling a loop:

0. In a loop body, if an operation y depends on the result of operation x, t hen the

operation x is not scheduled to end later than operation y starts.

1. Operations which are independent of each other may be executed in parallel.

2. When a resource is occupied by an operation, it is reserved for all equivalent

t imes (mod I I) of the schedule length.

3. If a computational resource is free, it can also be used as a routing resource.

In F igure 2.0, the inner most loop of the target application is converted into a

DFG by using static single assignment (SSA) and dependence analysis (explained in

next subsection). T he target architecture (TA) is created as a graph by using the

45

Create TA graph

Target Application

Identi fy the inner loop body
of the application

Create a DFG

Loop scheduling algorithm

Mapping executab le code

Figure 2.0: Outline of overall mapping of loop kernel of DFG onto RRG of CGRA

topology and resource constraints specified in a description file. The TA is replicated

to the maximum possible schedule length to form the RRG. The RRG contains edges

between replications to represent data carried forward in t ime. Now the mapping

algorithm tries to map each node of the DFG to a node of the RRG and each edge of

DFG to a path in the RRG. An iteration of the target application is placed , routed

and scheduled by satisfying modulo constraints to repeat the same schedule at every

initiation interval (II) for the consecutive iterations.

46

2.1.1.0 Data Flow Graph

The target application program is analyzed to find the crit ical loops to be mapped

onto the CGRA. In t his chapter, the inner loop body of the application is considered

with no inter-iteration dependence and no nested loop dependence to explain with a

simple DFG. In the later chapters, we consider mapping in the presence of conditions

and recurrences in the DFG. The inner loop body of the application is called its

loop kernel. From the loop kernel, we created a data ftow graph representation of

DFG = (N, E, <---, ---*) [Tuhin and Norvell, 2008] where

• N : Set of operations in the inner loop body.

• E : Set of interconnection edges.

• <--- is a function mapping each edge e to its source node 'e.

• ---* is a function mapping each edge e to its target node f! .

The loop kernel is analyzed by converting it into static single assignment (SSA)

form and then using dependence analysis to convert it into a DFG. In the SSA form,

every variable is assigned exactly once. The dependence analysis explains the de­

pendence between operations, showing which operation should be executed first i.e,

Predecessor (Pred) and which operation is the successor (Succ). Each edge of the

DFG has 2 parameters (delay, distance) which are shown in Figure 2. 1. The delay

(A) is the processing time of the source node and the distance is the difference in

the iteration number between source and target nodes. If both the source and t arget

nodes are in the same iteration, the distance is denoted by 0. The DFG in Figure

47

2.1 shows the recurrence in the loop forming a circuit (C) from node Z to Z through

node c1 and Op X

The II calculation is discussed in th next subsection. As the complexity of the

DFG increases, the total number of nodes and total number of edg s to be mapped ,

also increases. For each operation of the loop, we created a predece sor list and

successor list . \iVhen the nodes and edges are created in the DFG, a longest path

delay priority sort is applied on the DFG to create an edge list. During the routing

process in the mapping algorithm, the edges are routed according to the list order.

To schedule the operations of DFG, the ASAP (as soon as po sible) t ime, ALAP (as

late as possible) time and mobility are calculated for each operation u in t he DFG

according to the following equations.

ASAP _ { ASAP,=O; if Pred (u) =o }
u - ASAP,= max(ASAPv+.>..v) ;Vv E Pred(u) (2.0)

ALAP _ { ALAP,=max(ASAPv) ; v E V }
u - ALAP,=min(ALAPv- .>..v) ;Vv E Succ(u) (2.1)

M ability _ 11, = ALAP u - ASAP u (2.2)

2.1.1.1 Target Architecture

In this thesis, a 'vide range of CGRAs are targeted, as discussed in Chapter 1. The

target description file contains enough information about the various resources, con-

straints on each resource and their interconnections of the TA graph. To start with,

an architecture similar to the ADRES [Vassiliadis and Soudris, 2007b] architecture

48

~-•• •••• • o o w•~•• • • - • ·~·~·•~•¥• •~ •• • • •• • • •• •••• • • •• •••~•• •• • • ••• • • • • • • ••••• • •• - •• • •~••·• ••••~•• • • • • ••• '' ' ' ' ••• • • • • • • • ••• • •·• ••••••• ••• •- •• •• • ••••••••••••• l

!,:, ~-----------1

I I !

I for[• "'.flJ~N:IH}(I i,,l

I X=2"d I
I Y=4+c2 I !,,_ z ,X•Y

: ~~ : I
I I I L _____

7
____ 1 !,_

I
I

T;uge:
1\ pplic:m;on
tx.p t<:cmnl

.................... 1. 1

I
-- - --- / !

(c0 "-o o 0 1
\ -<1.0:> ·:1.1_0·· . ~ · 0 ! •:1 ,(): ,-- 1,<. -"' :

I

\ . ~ I
\ ~::)/{,0> I

" (Cp Z _ i

" "- 1 · : 1.1 ,........__ --- . ;;:-- !,

- 11-MAX(f'<(;SII . Ri.:CH)-f2,:!i)~J

sc~«"" ren~r.hm~ I
L J

I
i

l
I
I
I
I
!
I
:

:._ ' '''' '' '"''' '' ' ' ''·' '''''''"''''uoo••••-•••••••• •••• ••• ••• •• ••· •~ •• ••• • •• -••••·• •·• • •••• •-•••••••• ••••• • •• •-•••••••·• •• •• • •-ooooo·• • •• ••• •• ••••••-••••• •-••:

Figure 2.1: A loop body converted into a DFG

49

~

I fiO

~~qr-~~~~~~r-

I
______ .,...__ ...

_....,. _____ ._ -- ·- - ,J

Figure 2.2: 4 x 4 Target Architecture Instance of ADRES.

template is targeted. The reason for this choice was that the ADRES is a flexible

architecture template with low communication costs. The loops present in an appli-

cation can be mapped onto the ADRES array in a highly parallel way. The compiler

within the ADRES template is automatically retargetable, i.e., it has been designed

to be relatively easy to modify to generate code for different architectures. The target

architecture forms a 2D array and it is a very flexible template specified in the de-

scription file. T he TA consists of a network of basic components, including functional

units (FUs), register files (RFs), column buses (CBs), and row buses (REs).

50

The TA graph (V, S) is formed from the target description file where:

V 1s a set of vertices. Each vertex can represent any of the resources mentioned

above. Each vertex is described by its name, capacity, and its functionality.

S is a set of directed edges, connecting pairs of resources in the graph.

Each FU can receive input from vanous resources of the graph and similarly

the output of each FU can be routed to various destination resources [Vassiliadis and

Soudris, 2007b]. The various topologies for the FUs are displayed in Figure 2.3: There

are (a) a mesh based architecture of 4 neighboring FU connections; (b) a meshplusl

architecture of 8 neighboring FU connections; and (c) a meshplus2 architecture of

4 neighboring FU connections along with row connection for every FU and column

connection for every FU.

Various topologies of TA, including register files, are presented in Figure 2.4, which

(a) shows each FU having its own private RF; (b) shows each RF is shared by the

FUs in the top and bot tom row of the same column; (c) shows each FU has a RF and

the RF is shared among FUs adjacent in all the diagonal directions.

Various uses of buses are exhibited in Figure 2.5: (a) shows usage of row buses

where each FU is connected to its corresponding row bus; (b) shows usage of both

row and column buses where each FU is connected to its corresponding row bus and

each FU and RF is connected to its corresponding column bus.

The computational resources are FUs, which are capable of executing a set of

coarse-grained operations such as add, subt ract, multiply, and shift and can also

forward information , when not performing any operation. The top row of FUs can

only perform load and store operations, termed as memory unit (MU). The storage

51

.. ,

Figure 2.3: FU Topology (a) Mesh Topology (b) Meshplusl Topology (c) Meshplus2

Topology

resources mainly refer to the RFs which can store intermediate data and multi-ported

shared RFs (SRF) used by t he MUs to hold the load and store values from the

memory [Mei et al., 2003b]. The routing resources include wires, CBs and REs to

connect various computational and storage resources.

The results of each FU can be routed to other FUs through direct connections

or routing resources or may be written to an RF for routing at a later t ime. If the

FUs are free without executing any operations, then they may be used for routing

purposes. The number of registers in the RF can be specified in the description file .

In our RF, each register has 2 read ports and 1 write port.

The target architecture taken for the MCHPSO algorithm is shown in Figure 2.2

and includes meshplus2 FU connections shown in Figure 2.3c, shared RF shown in

52

r~-·----------------·-------·--------·---------------------------1

I !
l l
l i
.i j :; !

j

(cl

Figure 2.4: FU and RF Topology (a) Private RF (b) Private RF and Column Adjacent

Topology (c) Private RF and Diagonal Adjacent Topology.

53

,-·-·-····· ······-··-··-·--·-··-· ·-· ··-··-··-·-·----·-··-··-···-··-··--~

. I

"'-' I

f'' '' '"' ' ' ''' '''''-··-··--·-···········-··-··-··-··-··-~---···--····· ·-· ······ --··-··-··-··1

{a)

I
i
I
I
I
i
i

............

11
I!
I i
i l

l

I
i -------------------:
'·•••·-·~--•-••- .. ••••••• '••••••••••• • .. •••-•~n~•-••••••-•••••• • ••• • ••• • ••••-••-•••••-•-•••• •• •• •• ••-••-3

(b)

Figure 2.5: Various Usage of Buses (a) Row Bus Connections (b) Row and Column

Bus Connections

Figure 2.4c, and usage of both row and column buses shown in Figure 2.5b.

2.1.1.2 Minimal Initiation Interval

As discussed in Chapter 1, the minimal initiation interval (Mil) is the larger value

from ResMII and RecMII, as computed in

Jvfi I = max(ResM II , RecM I I) (2.3)

where,

• Resource minimal init iation interval (ResMII) is calculated from the resource

54

usage requirements of the loop and it is derived from

Res !VI I I = Max,.ER I #~,. a~:~t:b~e l, where r is a category of resource in the TA

resources R.

• Recurrence minimal initiation interval (RecMII) is calculated from the recur­

rence cycles in t he DFG. Each recurrence have a distance property, which is

equal to the number of iterations separating the 2 instructions involved in the

recurrence. If a dependence edge, e(v , u), in a cycle has latency A and connects

the operations at bv,u , then the RecMII is calculated by RecMII = MaxcEC f ~ l

where,

c is a recurrence cycle in the set of all cycles C of the DFG

l is t he sum of all delay (A) in the circuit

dis the sum of all distance bv,u in the circuit, variable Ov,u ,denotes the dis­

tance between operation v and u , which means the operation u of iteration

i depends on the operation v of iteration i - Ov,u·

In our algorithm, t he availability of MU resources is checked for each load or

store memory operation in the DFG. An example of the Mil calculation is shown

in Figure 2.1.

2.1.1.3 Modulo Reservation Table

To enforce the modulo constraints, we have to generate a schedule for one it erat ion

of t he loop in such a way that the same schedule is repeated at regular intervals wit h

respect to data dependence and resource constraints [Vassiliadis and Soudris, 2007b].

55

This interval is called the init iation interval, as defined in the previous subsection.

The II reflects the performance of the scheduled loop. The modulo reservation table

(NIRT) is constructed as a table, with one column per each resource in the TA and

I I rows shown in Table 2.0 for the DFG and TA shown in Figure 2. 1. For every new

placement (schedule and place) and update in RRG, the MRT is checked to determine

whether the time/ place is available. If the mapped node in the RRG uses (v, ti), then

(v, ti mod II) in the MRT is filled , which marks the resource v busy for all t imes with

the same modulus by {(v,t1) I t1 mod II = ti mod II} where j E {O ,SchLength}

[Vassiliadis and Soudris, 2007b].

R esources/II t ime

0

1 x-z y-z

2.1.1.4 R esource Routing Graph

For scheduling the loops in the DFG in a 2D architecture array across t ime, we

employed a time-space graph called routing resource graph (RRG). Based on [Vas­

siliadis and Soudris, 2007b] and [Tuhin and Norvell, 2008], we produced a graph to

route resources between the scheduled and placed operations across t ime. The RRG

is obtained from the TA graph described above by replicating it once for every time

cycle E N, specifying the interconnections with X, Y, and Z edges. The RRG is

described below

56

RRG = (V x N, XU Y U Z)

where

V x N : An infinite set of N copies of theTA's vertex set V .

X edges: Every incoming edge e of a FU or RB or CB in the TA graph from t he FU

or RF is replicated across time as X= { x (t, e) I e E E, 'e E FUU RBUCB ,? E
f--- ---+

FUU RF,t EN} where x(r,e) = ('e, t) and x(r,e) = (?, t). Here x is simply

some one-one function to a set of edges, i.e. a function that generates a unique

edge for each t ime and TA edge.

Y edges: Every incoming edge e of a RF in the TA graph from the FU or CB

or RB is represented in the RRG as an outgoing edge from its source in the

current t ime cycle to the RF, CB and RB in the next time cycle. Use of

such an edge represents the writing to a register or the delay in latch to the

buses [Vassiliadis and Soudris, 2007b]. These RRG edges are given by edge

Y = {y(t , e) IeE E , 'e E RF,? E FUUCBURB , t EN} where~ = ('e, t)
-+

and y(r, e) = (?, t + 1). Here y is some one-one funct ion to a set of edges, which

is range-disjoint from x.

Z edges: For every RF r in the TA graph, we needed to hold the data across time.

+--- +--
Hence we need RRG edges Z = {z (t, r) I r E RF, t E N} where z(r, t) = (r, t)
~

and z(r, t) = cr- , t + 1) , and Z is a One-one function, range disjoint from X and

y .

In the actual implementation, we can get away with representing only a finite

prefix of the RRG, as the number of nodes in the DFG are finite and known. In order

57

I­
I
I
I
I
I
I
I
I

Time cycle 0

______ ____ _J

Time cycle 1

!

l : :::::: .. :::::: .. ::::::-.... -:::::. .. = ... :::::: .. :::::: .. :::::: .. =~-·=··='···-··..J

Figure 2.6: X edges in the RRG

to schedule, place, and route, we must embed the DFG into the RRG. A homeomor-

phism h maps nodes of the DFG to nodes of the RRG and edges of the DFG to paths

in the RRG. If h(e) = e0 , e1 , ... , ek-1 , then we required eo = h('e) and e,;=r = h(f!),

where h is the mapping of nodes and the mapping of nodes in RRG satisfies one to

one and onto properties. There are further constraints to ensure that resources are

not overused and t hat different iterations of the same loop do not interfere when they

execute in parallel. An RRG corresponding to theTA in Figure 2.2 are illustrated by

t he X edges in Figure 2.6, the Y edges are shown in Figure 2.7, and t he Z edges are

shown in Figure 2.8.

58

Time cycle 0 Time cycle 1

Figure 2.7: Y edges in the RRG. Edges from same type of source are shO\.vn in same
style edge.

59

Time cycle 0 Time cycle 1

1- -. - - - - - - - - 1

I
I
I
I
I
I
I

Figure 2.8: Z edges in the RRG

60

2.2 Proposed Modulo Scheduling Algorithm

2.2.0 Modulo Scheduling with MCHPSO

The proposed ICHPSO scheduling algorithm simultaneously searches for a good

schedule, placement, and routing solution for the entire set of operations given in a

DFG and it also avoids the time consuming sequent ial search for each operation as

done in list scheduling [Mei et al. , 2003a] . Earlier work by Mei et a! [Mei et al. , 2003a],

Tuhin and Norvell [Tuhin and Norvell , 2008], and Vassiliadis and Soudris [Vassiliadis

and Soudri , 2007b], needed several trials to find the best schedule for an operation

before proceeding to the next operation. In the proposed algorithm, all the particles

search for a complete scheduling solution simultaneously.

To efficiently map loops onto the CGRA, the idea of modulo scheduling used

in [~.'lei et al., 2003a] has been adopted and combined with 2 heuristic approaches,

PSO and randomization. From [Abdel-Kader, 2008] and [T.Chiang et al., 2006], it

is noted that PSO could be applied to mult idimensional scheduling problems. The

application of PSO to modulo scheduling converges faster , but can be caught in a

local optimum [Uysal and Bulkan, 2008]. To escape local optima, a randomization

method, in combination with PSO was employed .

In ICHPSO, the routing of part icles is done by using Dijkstra's algorithm [9] .

To ensure modulo constraints and a valid schedule, the fitness function is computed

to evaluate the quality of placement. \ iVhile calculating the fitness function , routing

cost of all paths routed between placements was incorporated.

The overall method of fCHPSO to schedule, place and route a loop is explained

in Algorithm 2.0. The inputs to Algorithm 2.0 are a TA graph of the architecture

61

template and a DFG representing the inner loop part of an application. The results

of the algorithm are the scheduled time, resource placement, and routing paths of an

iteration of t he loop.

First, t he minimum initiation interval is computed as discussed in subsection

2.1. 1.2. Second, ASAP (as soon as possible) and ALAP (as late as possible) times

were calculated as in Equations (2.0 and 2.1) [Llosa et al., 2001] for the given DFG to

create a dfglist. Next the edges to be routed were sorted using sort method according

to the critical path delay of the loop and the maximum schedule length is calculated

from t he maximum ALAP with a relaxation factor using findschLength method . The

relaxation factor is the time cycle adjustment to place and route the leaf nodes. The

relaxation factor can vary for different DFGs during the experiment setup. The RRG

is generated from the TA graph. The initial placement , schedule and route may

overuse resources. The MCHPSO algorithm is used to reduce overuse with a minimal

routing cost. Now, starting with the minimal initiation interval the MCHPSO is

used to try to find a good scheduling, placement and routing at successively larger

init iation intervals. The flow of the MCHPSO algorithm is described in Figure 2.12.

2.2.1 Particle Encoding for the Problem

To frame the solution for the scheduling problem by using the particles, van ous

dimensions for each particle, size of DFG and the schedule time should be considered.

To establish a complete modulo scheduling solut ion, the part icles of PSO were created

with multiple dimensions to solve the crit ical issues in specified problem domain. It is

necessary to search for a good-quality candidate solution for the scheduling problem,

62

<1 0> < Q>

Figure 2.9: DFG showing a simple loop structure without recurrence

and t hen to choose the best candidate solution into the next iteration according to

various objectives mentioned in the fit ness function.

Therefore, the part icles are encoded as an array of vectors, where each vector

represents a particle. In the swarm, each part icle P is represented by a mapping from

the N nodes of the DFG to a RRG nodes, i.e., to time/resource pairs, as explained

in Figure 2.13, and an array list to hold the routing path of each of the edges in the

DFG.

2.2.2 MCHPSO

The pseudocode is shown in Algorithm 2.1. In MCHPSO, inputs are the RRG, the

sorted DFG from the main loop of the ModuloSch _ Place_ Route Algorithm 2.0, and

a goal II.

The number of operations in the DFG is initialized to the number of nodes, N, for

each particle. Each particle in the PSO takes, for each node init ial value for the place

and a randomly chosen init ial t ime in the range of [ASAP, ALAP] that satisfies all

63

1- --+-.,..----+-+,.,.---l-
1

I
I
I
I
I
I
I
----------....1

Figure 2.10: TA taken for the mapping of DFG

dependence constraints. When a resource at t ime t is occupied in MRT, it is reserved

for every cycle with the same modulus (with respect to II) in t he RRG. Once all the

particles are initialized, the following is repeated a fixed number (NLOOPS) of times:

First the fitness of each particle is calculated, as illustrated in the next subsection.

Next every particle updates its Local-best (Lbest) position if the new fitness is better

than the current fitness and it is denoted by PLbest · Once all t he particles have been

updated, the global particle of the most fit schedule is chosen and its position is

denoted by Pcbest ·

Every particle updates to its new position according to the following

if fiip1 t hen Pnew = Pcbest

else if fiip2 then Pnew = PLbest (2.4)

else Pnew = currentPi

DFG_ Rop = Random_ op(Pnew) (2.5)

avail_ slots = MRT_ check (DFG_ Rop,Pnew) (2.6)

64

l X .2 T:• ·•;llt ""'hl'o)~t!l
~

l:>f,i:O ~;.++)l

'l=X•Y

F igure 2.11: Overall mapping of loop kernel of DFG onto RRG of CGRA

65

Target Application

n 1e<m o<O:U•31.e sr181 :f"'ll~ a t>d
~~"'"'Siom>.;oJ>t;f>

Create OFG of Inner Loop

, Compute ASAP and ALAP
a.nd ~t o~tations

I I++

Target Coarse Grain ed
Reoc:mfigu rable Arc.hitectore

Genef"ate Routing
Resource Graph

Pet"rorm Modulo
Constrained Particle
Sv..arm Optim'-zatltlrl

V'ES

Mapping E.xeoctatabla Code

Figure 2. 12: Compilation flow of the proposed algorithm

66

Procedure ModuloSch_ P lace_Route (DFG, TA)
begin

end

II := Mil (DFG)
dfgList := ComputeASAPandALAP (DFG)
sortedDFG :=sort (dfglist)
max_ schLength := findschLength(sortedDFG)
schSucess := false

TRIALS : = max_ schLength - II
trials := II
while !schSucess&& trials<NTRIALS do

CreateRRG(TA, II, max_ schLength)
schSucess := MCHPSO(sortedDFG, RRG, II, max_ schLength)
II++
trials+ +

end while

Algorithm 2.0: .!\'lapping DFG onto RRG

newPcoordi = mutation Operator (avail_ slots, DFG _ Rop,Pnew) (2. 7)

where

• ftip1 , ftip2 are random boolean variables to select the particle's new position

(Pnew) either from global best position (Pabest) or from the local best position

PLbest position or the current particle position currentPi .

• Random_ op selects 1 of the data flow graph nodes from Pnew and saves it in

the D FG _ Rop variable.

• MRT _ check finds the FU slots that are direct neighbors of D FG _ Rop posit ion

which are free in theTA of Pnew's MRT. MRT check saves the list of slots in

the avail slots variable.

• mutation Operator mutates the position of the random operation to any 1 of the

av ail lot . ow n ewPcoordi contains the new particle position for the next

67

Time Time Tim e

noaeO nodel '" node :\
.\rrayList

Resource Res ource Reso u.rce <Particles>

.-\.rrayList <Rou ting pa th for eacb DFG ed ge>

Partic.lel ..

Parricle1 ..

" ..

" ..

Particle :\I ..

Figure 2.13: Particle encoding for scheduling

iteration.

Once the muta tion is done on the particle, then the new particle coordinates are

ready for the next generation of MCHPSO. The mutation Operator helps the particles

to explore more solutions instead of getting caught in a local optimum. The inner loop

of MCHPSO to find the best solution continues until a given number of iterations are

complet ed . The best mapping schedule solution goes through a validity checker for

overuse of resources, routability of all edges and maintenance of modulo constraints.

In the standard PSO, a large inertia weight w facilitates a global search while a

small inert ia weight facilitates a local search. In the MCHPSO system, the inertia

weight is t aken care by 1 of the fi tness values called overuse. In the init ial population,

particles explore more with large overuse. As the iteration proceeds, part icles exploit

the solution with less overuse. When the particles st art to perform more of a local

search, muta tion operator helps them not to get them caught at a local opt imal

solut ion. In the MCHPSO, there is no usage of maximum velocity parameter. Instead

68

Procedure MCHPSO (sortDFG, RRG, II, schLength)
begin

for each operation in sortDFG do
Initialize Part icles
Initialize MRT(# FUs,II)

end for
repeat NLOOPS times

for each particle in Part icles do
Find the fit ness value from GetRoutingCost (RRG, part icle)
if the fitness value is better than the best fitness t hen

Set current fitness value as the new particle best fi t ness
end if

end for
Find the global best part icle
for each particle do

Calculate the new particle posit ion according to the Equations 2.4, 2.5,
2.6, and 2.7

end

Update par ticle search posit ion
end for

end repeat
if validSchedule (best particle) then return true
else return false
end if

Algorithm 2.1: The MCHPSO algorithm

the part icles stay within the size of routing resource graph size during placement,

schedule and route. In the IVICHPSO, t here is no usage of c1 and c2 values. In the

preliminary investigation of PSO, usage of c1 and c2 did not help the particles to

modulo schedule, so they are not used in the update.

2.2.2.0 Need for the mutation operator

In modulo constrained part icle swarm without a mutation operator, we found particles

stay in the same solut ion for a long time in some iteration. \.\Then there was no

mutation operator in that execution, the part icles could not come out of that local

69

optimum to find a valid solution. Mutation operator is needed to avoid local minimum

because as the iteration increases the particles tend to get close to each other and

can get caught in a local solut ion. Mutation operator helps the particles to perform

more local search when they are closer to the solut ion.

MCHPSO does not use velocity, or w or c1 or c2 to update particles position .

Instead the particles get updated to search near the current position or a local best

position or a global best position with the help of a mutation operator.

2.2.3 Fitness Calculation

The pseudocode of the fit ness calculation is given in Algorithm 2.2. The fitness cal­

culation algorithm (GetRoutingCost) considers multiple objectives from the routing

paths produced by Dijkstra's shortest-path algorithm (i.e, the getShortestPath method

in the algorithm) [Dijkstra, 1959]. The 3 main objectives considered in this work are

that no resource in the TA is overused, all edges in the DFG are routable, and fewest

resources are used to route. T he rout ing cost is computed by accumulating the cost

of all used RRG nodes incurred by the placement and routing of all t he edges.

In every iteration, each particle's fi tness value (say p) is compared with its local

best fitness value (say q) , from the previous iteration. If p's number of routable edges

value is greater than q, t hen p is chosen else q is chosen. If still both p and q are the

same then check if p's number of overused resources is lesser than q, then p is chosen

else q is chosen. If still both p and q are same then check if p's total routing cost is

less than q, t hen p is chosen else q is chosen. If p's values are chosen then the local

best position of the particle is updated with the current position values. Similarly,

70

the above comparison is done for each particle's local best fi tness values (say p) with

the global best fitness values (say q), from the previous iteration. The global best

position is updated based on t he best particle's local best posit ion.

Each node in t he RRG has a capacity, base cost [Mei et al., 2003a], availability,

and number of t imes used. Majority of RRG nodes, have a capacity of 1 whereas a few

types of nodes such as register files have a capacity larger than 1. The Findroutingcost

method calculates t he usage of each resource in the routing and also calculates if a

resource is overused that its capacity (findPathoverused).

Procedure GetRoutingCost (RRG ,psoP art)
begin

rcost:= O
notRou tableEdges: = 0
overusedN odes: = 0
edgeSet:= {Scheduled and Placed PSOparticle}
for each edge e in edgeSet

u:= e.source
v:= e.target
path: = getShortestPath(u, v)
if(path =/= NULL) then

rcost+= Findroutingcost(path);
overusedN odes+=findPathoverused (path);

else
notRoutableEdges++

endif
endfor
return (rcost, notRoutableEdges, overusedNodes)

end

Algorithm 2.2: Routing cost fitness value for MCPSO

71

2.2.4 Configuration File and Final Schedule

Once the MCHPSO algorithm is completed , it generates the final schedule of one

iteration such that the modulo constraints and dependence constraints are met. The

MRT generated for the final schedule, produces a configuration text for each time cy-

d e. The configuration text contains the operation for each FU of the TA, reservation

of routing resources and the memory unit operations in each cycle. An example final

schedule is shown in Table 2.1 and for the DFG, in Figure 2.9.

Table 2.1: Final schedule result of the DFG onto the TA
Resources/

1

I
Schedu I e Length F1 I F2 I F3 I F4 I RF1 I RF2 I RBI I RB2 I CB1 I CB2

0 2 cl 2·X cl-x

1 4 c2 Opx cl-x r0:2·X rO:cl-x

2 Opy rl:x-z 4·y C2·y

J rl:x-z)'-Z

4 rl:X·Z rl:y-z x-z

5 Opz 't'"l Y·Z r2.: x-z rl:y·z x-z

2.3 Final schedule of the MCHPSO Algorithm

To evaluate MCHPSO algorithm, a slightly modified architecture from ADRES [Mei

et al. , 2005a] was used. Various digit al signal processing (DSP) benchmarks [Texas

Instruments. inc, 2009], [Texas A&M University-Kingsville, 2009], [University of

Patras, 2009] were used to evaluate the performance of the MCHPSO algorithm. The

implementation of MCHPSO algorithm is written in Java. The TA and loop body

description are given in files to the proposed algorithm. The evaluation is done to

check whether MCHPSO was able to solve intra-dependent inner loop body mapping

72

onto the CGRA with a lower II . The routing algorithm gives the fi tness value in 3

different styles:

0. Routable Edges.

1. Overuse of Resources

2. Total cost of Routing.

The particle holding the maximum routable edges with no overuse of resources

and minimum cost is taken to be the best particle. The reliability and performance

of J\ICHPSO algorithm is tested with more experiments on varying interconnection

topologie , memory ports and distributed register files. To find the suitability and ef­

fectiveness of MCHPSO algorithm, it is compared with various other modulo schedul­

ing algorithms and heurist ic methods uch as modulo scheduling, with simulated an­

nealing [Vassiliadis and Soudris, 2007b], and memory conscious modulo scheduling

[Dimi troulakos et al., 2007].

2.4 Conclusion

This chapter discussed the modulo constrained , hybrid particle swarm optimization

algorithm to solve the scheduling problem to map a DFG of loop body onto the

TA graph. T he fCHPSO algorithm, with the combination of PSO and mutation

operator, was discussed to map effectively the given target application loop onto the

CGRA. The extensions, evaluation and applications of the MCHPSO algorithm were

also discussed. A detailed analysis of MCHPSO algorithm will be discussed in the

next chapter.

73

Chapter 3

Performance Analysis of MCHPSO

Algorithm

3.0 Introduction

In this chapter , t he performance data of the modulo-constrained hybrid particle

swarm opt imization (MCHPSO) is discussed. The proposed algorit hm is designed

to solve the problem of mapping a Data F low Graph (DFG) for a loop body in the

application onto the resource and routing graph (RRG). T he MCHPSO algorithm

has been explained in Chapter 2. The MCHPSO algorithm, effectively maps with

the combination of Part icle Swarm Opt imization (PSO) algorithm and a mutation

operator. The results obtained from the analysis of t he work are discussed in the

following sections. These results help us to understand the research problem and

to extend the algorithm to map loops with different characteristics, as discussed in

Chapters 4 and 5.

74

3.1 Analysis of Scheduling

Scheduling a loop onto the coarse-grained reconfigurable architectures (CGRA) con­

sists of 3 main parts:

0. Placement of each operation of the DFG onto the CGRA computing resource,

FU;

1. Scheduling the execution time of each operation of the DFG;

2. Rout ing every edge in the DFG as a path in the RRG.

The most important constraint in a scheduling algorithm is getting a valid result

for the schedule, with no interference among the placed, scheduled, and routed re­

sources. When an architecture is considered, the const raints in the architecture such

as interconnection topologies, and availability of computing and memory resources

play a major role in finding a schedule for the loop kernel. Therefore, different archi­

tecture parameters were tried so t hat the performance of t he algorithm could be tested

on a number of architectures. The number of nodes and edges in the DFG determine

the complexity of the kernel to be mapped onto the CGRA. The usage of resources,

mapping t ime, and schedule density were estimated to analyze the performance of

mapping algorithm.

75

3.2 Modulo Scheduling with MCHPSO

3.2.0 Experime nt al Set Up

The MCHPSO scheduling algorithm was written in J ava and executed on an Intel

Core 2 Duo CPU with 4 GB RAM and a clock speed of 2 GHz. To schedule a loop

onto the CGRAs, 2 main inputs were required for the MCHPSO scheduling algorithm.

The first input is the DFG generated from the benchmark loops. The loop extraction

process is described in Chapter 1. The second input for the MCHPSO is the CGRA

architecture. The target architecture (TA) graph is created from the TA configuration

file as described in Chapter 2. An example of DFG generation is discussed in the next

subsection.

Other than the 2 main inputs, DFG and TA, MCHPSO requires the following

parameters: the number of particles is 10, the relax-factor is the II, t he number of

trials for each initiation interval (II) is the difference of schedule length and II, and

the number of iterations per trial is 20. A relax-factor is used to adjust the as late as

possible (ALAP) values, when the scheduler finds difficulty in a very tight range to

start the next iteration while finding a place for leaf nodes.

3 .2.0.0 D FG Generation

One of the main inputs to the MCHPSO scheduling algorithm is the DFG generated

from the application loop kernel. The generation of the DFG and its parameters

are described in Chapter 2. The benchmarks taken for the algorithm are shown in

Table 3.0. The first 4 benchmarks were derived from the C reference code of Texas

Instruments (TI) Inc. [Texas Instruments. inc, 2009]. The next 2 benchmarks

76

Table 3.0: DFG characteristics of the benchmarks
Initial

Schedule

Benchmarks #Nodes #Edges Mil length

8X8

IDCT hor 78 108 3 9

4X4 FFT 67 107 3 10

8X8

FDCT hor 74 102 4 8

8X8

FDCT ver 73 100 3 8

latasynth 2.0 20 1 8

latanal 20 21 1 5

FIR cplx 25 33 2 6

Volterra 28 35 2 5

IIR 36 51 2 10

IIR biquad 35 36 3 8

were based on lattice filter [Texas A&M University-Kingsville, 2009] . The last 4

benchmarks were taken from [University of Patras, 2009],writ ten by the authors of

[Dimitroulakos et al., 2007] .

We will now consider the lattice synthesis filt er benchmark as an example to create

a DFG. The lattice synthesis filter application code is shown in Figure 3.0. The

benchmark was analyzed to find the inner loop body (Figure 3.0) of the application

code. A description file of the loop kernel is created as shown in Figure 3.1. From

the description file, t he DFG created for the loop kernel of the application is shown

in Figure 3.2. Once the DFG is created , it is ready to be passed to the scheduling

algorithm to be mapped onto the RRG.

77

II Lattice LPC Synt hesis Filt er
q = length(res idu};
N = 250;
bet old = zeros(1,P1);
f or seg = l :q/ ,

s = xc((seg-1)* +l:seg*Nj;
K = t rans({ seg-1)*P+1:seg*P};
for n=l: ,

eps(P1) = s(n);
for i=P1:-1:+2.

end

eps(i-1) = eps(i } + K(i-1}"'bet old(i -1);
bet(i) = bet old(i -1}- K(i-1j "'eps(i-1);

bet(l} = eps(1);
betold = bet ;
x((seg-1)* +n) = eps(l };

end / / End of he synt hesis fi lter
end

Figure 3.0: Lattice synthesis filt er code

3 .2.0.1 TA Graph Generation

The TA graph was generated from the configurat ion shown in Table 3.1, along with the

interconnection between the resources specified in the architecture connection file. To

have a comparable architecture with other works and rich interconnections, an 8 x 8

CGRA array were employed. T he 8 x 8 CGRA array comprises of l\!Ieshplusl FU

topology, row and column buses, private RFs that connects with diagonally adjacent

register fi les (RFs) and shared RF (SRF) for the memory unit (MU) connections.

T he private RFs could only handle data and not predicates. The number of resources

and topology are similar to the work reported in [Vassiliadis and Soudris, 2007a] . The

RRG was generated by replicating the TA for each cycle, along the t ime axis unt il

t he maximum schedule length was reached. The edges of t he RRG are explained in

78

17 //1-lo o_{nodes in DFG
1/Nodename-//#incomingedges, #outgoingedges:
I/Outgoingedgenodename1,0utgoingedgenodename2, ..
i-0,3:im1,epsifbeti
1-0,1:im1
eps-0,2 :eps(,epsim 1
k-0,1:kim1
bet old -0,, 1 :betoldim 1
bet-0, 1:beti
im 1-2,3:epsim 1,kim1, betoldim 1
epsi-2,1:epsim1neu)
mulkbetold-2, l:epsimlnew
epsim1new-2, 1:epsim1
epsim 1-2,1 :mulkeps
kinzl-2, 1 :rnulkbetold,. rnulkeps
betoldim 1-2,1 :mulkbetold, betnewi
mulkeps-2,1:betnewi
betnewi-2,1 :betout
beti-2, l:betout
betout-2,0:

Figure 3.1: DFG description file for the Lattice synthesis filt er in Figure 3.0

Chapter 2.

3.2.1 Scheduling Results

The MCHPSO algorithm takes the loop kernel and a CGRA architecture as input.

When the DFG of the loop kernel is read, the particles in MCHPSO generate a partial

place and schedule result. Each node in the DFG is mapped onto the computing

resources of the RRG such as the FUs. The FU number for each operation in the

79

l
I

Figure 3.2: DFG corresponding to the code in Figure 3.0

DFG shows where the operation will be executed. The time at which the placed

operation will be executed is shown in the schedule time. All the particles, with

schedule and place values, go t hrough the router to discover how many edges are

routable. The best particle is chosen based on the fitness constraints explained in

Section 2.2.3 of Chapter 2. The algorithm stops once all the edges are routable and

there is no overuse of resources.

A schedule and place schedule result for the DFG in Figure 3.2, is shown in Table

80

Table 3.1: 8 X 8 CGRA configuration

Resources Total numbers Capacity Reads Writes

FU 64 1 N/A N/A
RF 56 8 8 8

SRF 1 16 8 8

CB 8 1 N/A N/A
RB 8 1 N/A N/A

3.2. The path of each edge, routable from the routing algorithm of the DFG, is

shown in the routing result displayed in Table 3.3 and Table 3.4, where the first

column shows the edge number and the second and fourth columns show the name

of the source and target DFG operation. The path between the mapped source and

target DFG operations are shown in the third column. The notation for the paths

are explained as follows: F represents the FU, R represents the RF, CB represents

the column bus and RB represents the row bus. The cost of how much resources are

needed for routing of each path is shown in the fifth column.

Each schedule, place, and routing result denotes a particle state. For every iter-

ation, each particle finds a scheduling result for the given graphs. The fitness result

of every iteration of the particles is shown in Figure 3.3. In each iteration, particles

with fitness of maximum edges routable with no overuse is shovm. The particle with

the highest fitness is chosen as the best particle for each iteration. The other particles

move towards the best particle in the next iteration. The role of mutation operator

in each iteration gives randomness to each particle and enables t hem to try for the

best position. At the end of iteration 66, particle 5 finds all the edges (i.e. 108) to

be routable in the DFG and gives the best scheduling result possible. Every particle

saves its best local fitness from all the iterations in a local-best fitness vector which is

81

Table 3.2: Scheduled and placed results of the lat t ice synthesis loop kernel

DFGname SchTi,me PlacedFU

bet 0 1

betold 0 18

k 0 3

eps 0 4

1 0 17

I 0 19

irn1 1 37

kirn1 2 58

betoldirn1 2 50

eps1 1 39

rnulkbetold 3 59

epsirnlnew 4 43

epsirn1 5 33

rnulkeps 6 47

betnewi 7 46

beti 1 12

bet out 9 20

depicted in Figure 3.5. Some particles are penalized if they cannot find a valid route

by a fitness of 0 and that is shown as the missing particles in t he Figure 3.5. From

the local-best fi tness vector of every part icle, a global best part icle is chosen, depend-

ing on the fi t ness value found. The best fitness value found for selected iterations is

shown in Figure 3.4.

82

Table 3.3: Routing results of lattice synthesis loop kernel -partl
Edge SourceDFG Path from Source-Target in TargetDFG Path

no name
0 b et

1 b etoid

2 k.

3 e ps.

4 eps

5 1

6

7

8

9 iml

10 lm l

RRG name
F1time- O->Fltemptime-O-> R2time-1- b e t i

>F11time-1- > F1:ltemptime-1-

~·1=1 2time-1

f."1Btime-0->f.18t emp t ime-O­

::-R15time-1-> C32time-1-:0.. R4 7ti me-2-

>f SOt i ITH!-2

betold iml

F3time-O- >F3temptim e-O->·R2 t ime-1 - kiml

;.-C8 2t ime- l -;.-R 14tim e -2-;.-C2 2time -2-
> RSOti m e -3 - >RSOtime-4- >RSOti me-5-

> RS Oti me- 6 - > RSOtime-7->RSOt ime-8-

> RSOt i me -9 -> RSOtim e -0 ->RSOti !'l) 12 · l ·

> R50ti m e-2- >FS8time-2

F4tim e -0->F4te mptime -0- =· C01time - 0 eps.i

::--R28ti m e -1->f 3 9time-1

!='4tlme-0->f.4tem ptime-0-::- R3 t ime- 1 - eps.im l

>fl0time-1-::-F10temptime-1-

>A9time-2->C11tirne -2- >R2St irne-3 -

>R2Stime-4->R25time-5 ->1=3~ time-5

F1 7t ime-O·;"'f1 7temptime-O­
>C12t i m e -0 ->1=5 3ti m e- l ·
>f 5 3 t e m p t i rne -1->F40 time-1-

>f40temp t ime-1->F37time-1

F19tirne -O-;..•f19te m p time- O­
> Rl6tlme-l.->C0 2 t lm e -l.->R44time -2 -

> C B5time-2-> R26time- 3-> R26time-4-

:~R26time -5->'R26time-6-> R26time-7-

:> R2 6ti m e -8 · :> R2 6 t im e -9 ->R2 6 t ime -0 -
> R2 6ti m e - 1- >.F37 t ime-1

l=l.9t lm e-0->Fl9tempt im e-0 -
> F3 1time-O-> F3 1t ernpti m e -O­

>F51time-O->F51 temptime-0-

> R46t.imc-1 ->:FS 7timc -1 ·

>FS 7tempt ime-1->r 44time-1-

>F44te m p t ime-1->F39time-1

F19tirne-O->F19temptirne-.O­
> Rl.4tl m e -1 - >F2 5tlm e-1 -

> F2St e m p ti me-1-> F1 2 t1m e-1

F37t ime- 1->F3 7 temptim e-1 -

> R2 9 t i m e -2 -> R2 9 t im e -:S -:>R2 9timc-4 -

>R29t ime -S- >F34 ti m e-5 -

>f34temp t ime-5- >F33time-5

f."3 7 t ime- 1 -> F37tem p t lme - 1-

> C B6time -1 - > R45time-2 - >F58tim e-2

83

iml

im1

epsl

be t i

epsim l

kl m 1

cost
4

4

1 5

3

9

6

14

4

7

3

Table 3.4: Routing results of lattice synthesis loop kernel -part2
Edge Sou rceDFG Path from Source-Target i n

no name RRG
11 iml

12 l<iml

F37time-1- >F37temptime-1-

;,.!=4 2 timc - 1 -:>F42t.c rn p l imc - 1 -

>R31 t l me-.2- .>f 3 6 time-.2-

~-F3Gtemptime-2-~-F49t i me-2-­

>fA9temptirne-2-:~I-SOtirne-2

FS8ti m e -2 -;·1=58temptim e -2 ··

> R50time-3- ·=-F59time-3

TargetDFG Path

name cost
beto ldiml 8

13 k iml F58time-2- >F58temptime-2- mulkeps 6

14 b etoldiml

15 b etoldiml

16 epsi

17 mu lkbetold

--··------
18 t1P~irnlnew

19 epsi m 1

20 m .u lkeps

;,.RS 3li rne -3 ->CB8lim e -3 -> R39ti m e -4-
.:-R39ti me-5-> R39t1me-6--.:-f:4 7 time-6

F50time-2- >F50t emp t ime-2-

~·R4 7tlrru:J -3 - >1=59time-3
F50tlme-.2->F50temptime-2-

> R4 7time·-3- ~·f60t'ime-3-

>1'60ternptime-3->CB 7t i rr1e -::S-

;· R3St i m e -4 -.:-·R35ti m e -5 -::-R35tlmi' -6 -
>R3Stime-7->F46time-7

F39time-1- >F39temptime-1-

>'R3llirne -2· >R31ti rne-3-~·R31tirne -4 -

::-f43tlme-4

F59t ime-3->F59temptime- 3 -

>.f-64time-3-> F64temptirne-3-

;•1=61t.ime-3 -::-F6lh: mptime -3 -

>f4.Sti me-3->F48temptime-3 -

m ulkbetold 2

betne wi 9

epsim1new 4

epsim1ne v.• 8

>R40time-4- >F<1 3time~-4.;.._~-~--~- ~-~----
1=4.3ti rne -4 ·-;;-F4 3 terr>pUrn•2-4· €! f):o.i rn l 2
> R30ti me-5->1"33t1mP-5

F33t irne-5 ->F33temptime-5 -

>f4 5t ime- 5 ->F4 5temptime - 5-

>>l3 4tirnc 6 ·>11=4 7time -6
F47tlme -6 ->f47tempt lme -·6 -

mulkeps 4

betne vA .2

-~-t~~---·-~~-if-~~.;;R.:.::._3_:4.;:t.::.• m:.:.::.e:..--::..7_-_~·~F.-:4.:;G-:t::.i n::..,:.:e:.-..:.7~~------~------·· ·-· ~· ·--- --· ---·
2 1 be tnewi f-46ti rne-7- :~fA6temptirne -7- betout 6

;-C? 1 t l m e -7 - ;•R6Hme-8 - ;•F5tlmP-8 -

> F5temptime-8->SR1time-9-

--·--·l--------41.~>F2~0tii~me~-9 ----------------t-----~-·~~---
22 b eti

:>R 11 t i me-2- >CB4t i me-2 -> R.23t l m e -3 -

~·R23time-4->R23time-S->R23time-6 -

>R23t ime- J.->R23t irne-8-> R23time-9-
;· 1= 2Rtime-9 -> F28temptiml'· 9 ·

>F20time-9

84

botout 12

,-----~------···-~·--··-----------·---------····--

c
u

e

n

t

f

t

n

e

!>

s

120

100

80

60

40

20

0

···················PartiCles currentFitness versus Iteration

1 5 10 15 20 25 30 35 40 45 50 55 60 65 66

Parti{: le1 • Partic le2 Ill Part icle3 Ill! Particle4 ParticleS

Figure 3.3: All particles currentFitness versus Iteration

3.2.2 Mapping of Nodes and Routing of Edges

The MCHPSO was experimented on an 8 x 8 CGRA configuration with FU that can

either place or route as well as on an 8 x 8 CGRA configuration with FU reuse. The

schedule, place, and route results from MCHPSO of all t he selected benchmarks on

an 8 x 8 CGRA configuration with FU reuse are shown in Table 3.5. The first column

shows the benchmark name, second column denotes the number of operations in the

loop kernel, and the t hird column shows the initiation interval at which the loop

kernel is mapped. The fourth column shows the instructions per cycle (IPC) which

is calculated by

85

110

105

B 100

e
n 95

s
e

t 90
s

s 85

80

0

Best fitness versus Iteration

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 61 64 66

Iteration

Figure 3.4: Global best fitness for every iteration

IPC = N _ Instruction
II

the Equation (3.1) .

(3.0)

The schedule density, without rout ing, considers the number of FUs used in the

placement. T he schedule density, with rout ing, considers t he count of FUs used in

t he placement as well as in rout ing of edges. T he fift h column shows the schedule

density wit hout rout ing and t he sixth column shows the schedule density of F U, wit h

rout ing, which are calculated as follows

IP C
schDensity NO R = (b f FU) * 100 - - num er o

(3.1)

hD
. f (N Instruction + FU used in routing) OO (

3
.2)

sc ens1ty _ WR = no o stages* - b f . RRG * 1
num er o FUm

where,

• schDensity NO R: Schedule density of t he FUs wit h only placement.

86

Particles Local best fitness versus Iteration
1 20 . --~ ~v .. · ··~·~·

0
100

c
i)

80

b
e
s

60

.:.o

11

" 20
$

0

rter~tion

Figure 3.5: BestFitness of all particles versus Iteration

• schDensity _ WR : Schedule density of the FUs with routing.

• N Instruction : Number of Instructions in the DFG.

The eighth column shows the number of stages overlapped , which is calculated as

number of stages = I Schedul; r Length 1-

The seventh column shows the total CGRA usage percentage, including all the

computation and routing resources in the CGRA such as FU, RF, CB. RB and SRF

used for the scheduling of loop kernel. The total CGRA ut ilization percentage is

calculat ed by

87

. N Instrnction + tot alResUsed) *
100 Total_ Utll =number of stages*(--==--------,-------

RRG size
(3.3)

where,

• N Instruction : Number of Instructions in the DFG

• totalResUsed : Total RRG resources used in the routing path.

used Res
resUsedPercentage = number of stages* (.

1
) * 100 (3.4)

avm Res

where,

• resUsedPercentage : Percentage of resources used with overlap.

• usedRes : Number of resources of the part icular type such as FU, RF, CB, RB,

and SRF used in rout ing.

• availRes : Available resources of the particular type in the RRG.

The last column shows the time t aken in seconds to schedule the loop kernel. The

mapping results show that the proposed scheduling algorithm MCHPSO utilizes from

31.25% to 79.69% of the total FUs available in t he CGRA. The FU usage depends on

the size of the DFG and the number of st ages of the loop. The largest loop kernels,

such as IDCT_ hor (horizontal pass) and FFT, are scheduled within a maximum of

105.89 seconds. The time to schedule a loop kernel depends on the size of DFG,

II and the modulo constraints. The larger the loop, the higher the constraints on

resources and longer t he time the algorithm takes to complete the mapping process.

88

Table 3.5: Overall mapping results of the DSP benchmarks in 8 x 8 CGRA

Schedule Schedule

OPC Density Density Total :Exe
("ithout (with CGRA. # lime in

Benchmarks # ops ~ill IT routing) routing) Lti1 4% Stages Seconds

FIR _complex 25 2 2 12.5 18.75 39.06 12.59 4 8~72

Lattice synth 20 1 1 20 29.69 79.69 22.06 10 12.58

Voltena 28 2 2 14 21.88 34.38 14.06 3 6.87

IIR. 36 2 2 18 28.1 3 61.5 21.14 4 12.55

IIR biquad 35 3 3 11.7 17.19 31.25 9.25 4 16.93

8X8

IDCT hor 78 3 3 26 40.63 73.44 29.47 5 93.11

4X4 FFT 67 3 3 22.3 34.38 75.52 29.66 5 105.89

8X8

FDCT hor 74 4 4 18.5 29.69 63.28 18.34 3 27.01

8X8
FDCT Ver 73 3 3 24.3 3 7.5 78.1 3 21.2 4 55.67

Experiments show that the MCHPSO algorithm could handle a wide range of loops

with different number of operations.

The MCHPSO was experimented on an 4 x 4 CGRA configuration with FU that

can either place or route as well as on an 4 x 4 CGRA configuration with FU reuse.

The schedule, place, and route results from MCHPSO of all the selected benchmarks

on an 4 x 4 CGRA configuration with FU reuse is shown in Table 3.6. The first column

shows the benchmark name, the second column denotes the number of operations in

the loop kernel, and the third column shows the initiation interval at which the loop

body is mapped. The fourth column shows the schedule density without routing, as

calculated by the Equation (3.1). The schedule density, without routing, considers

the count of FUs used in the placement. The fifth column shows the schedule density

of FU, with routing, as calculated by the Equation (3.2). The last column shows the

89

Table 3.6: Overall mapping results of the DSP benchmarks in 4 x 4 CGRA

Bench- # Schedule Density Schedule Density Time in
:\larks Ops :\ill II (without routing) (with routing) Seconds

FIR cplx "" ~) 3 3 50 68.75 0.84

latasynth 20 2 2 56.25 78.13 0.66

latanal 20 2 " .L 56.25 68.75 0. 53

Volterra 28 4 4 43.75 57.81 1.36

IIR. 36 4 4 56.25 78.1 3 2.1 7

IIR. biquad 35 5 5 43.75 61.25 1. 77

8X8

IDCT hor 78 6 7 68. 75 89.29 7.2

4X4FFT 67 5 7 56.25 81.25 9.86
8X8

FDCT hor 74 7
.,
I 68.75 90.18 6.45

execution time taken in seconds on an Intel Pent ium M wit h 1 GB RAM and a clock

speed of 1. 73 GHz.

From the mapping results , it is clear that the higher the number of loop operat ions,

the larger the routing resources required. Our MCHPSO scheduling algorithm was

able to map t he benchmarks, for both the 4 x 4 and the 8 x 8 CGRA configurations.

The II achieved to map the benchmarks were t he minimal II in most cases, and close

to t he minimal in others.

3.2.3 Analysis of Functional Units Usage for Different Topolo-

. g1es

The various topologies of FU are explained in Section 2.1. 1.1 of Chapter 2. In t his

sect ion, the flexibility of each topology and its usage are discussed. The interconnec-

tion topologies are (1) a mesh based architecture of 4 neighboring FU connections;

90

(2) a meshplus1 architecture of 8 neighboring FU connections; and (3) a meshplus2

architecture of 4 neighboring FU connections along with every FU connected with

all other FUs in the same row and the same column (please refer to Figure 2.2 of

Chapter 2). Table 3. 7 shows t he comparison of Functional Unit usage using various

topologies. This experiment is done on a 4 x 4 CGRA. The first column shows the

2 benchmarks taken for comparison. IDCT _ hor and FFT benchmarks were chosen

because they did not schedule with the minimal II. The FU usage of the mapped

I I schedule is compared with the previous initiation intervals (like I I - 1, II - 2) .

The second column shows the minimal I I. The third column shows the I I achieved

to find a schedule without any overuse of resources. The fourth column shows the

percentage of FU usage, considering only the placement. The fifth , sixth seventh,

eighth columns show the FU usage after scheduling, placement, and routing in mesh,

meshplus1 , meshplus2 and star topologies. The topologies which overuse in schedul­

ing, placement, and routing have more than 100% usage. From row1, row3 and row4,

it shows that the overuse of FUs is reduced when the interconnections were increased.

Maximum FU utilization is achieved in the case of mesh topology. When the intercon­

nect ions are increased in the other topologies, the utilization of same FUs is reduced

and other FUs are explored and used. When a benchmark has a lot of edges to route,

the flexible interconnection helps the MCHPSO scheduling algorithm to achieve a

valid schedule, with no overuse of resources.

91

Table 3.7: Usage of Functional Units with various topologies

:\leshPlus1
Mesh MeshPlusl MeshPlus1 and Star

Bench-

:\1uks Min n n p P&R P&R P&R P&R

8X8 6 sus 112.5 107.29 W9JS !() 1.04

IDCT hor 6 68. '75 91.9{) 90.18 90 .18 89.29

~ 81.25 128 .75 128.75 122.50 12(}.00 -
6 68.75 105.21 105.21 102.08 104 p

4X4m 5 7 5625 85.7t4 78.571 S3.92S S5.7i4

3.2.4 Analysis of Register F iles Usage with D ifferent Inter-

connections

The usage of registers in the RFs was studied , with different numbers of RFs and

their interconnections. The various interconnections are (1) each FU having its own

private RF; (2) each RF is shared by the FUs in the top and bottom row of the same

column; (3) each FU has a RF and t he RF is shared among FUs adjacent in all the

diagonal directions, as shown in Figure 2.3 of Chapter 2. F igure 3.6 shows the usage

of registers for the various register file topologies.

This experiment was done on a 4 x 4 CGRA with each register fi le having 4

regist ers, 4 read ports and 4 write ports . The percentage of register usage wit h

corresponding benchmarks are shown in the graph. When the register usage is above

100%, it is considered as an overuse of registers, and which v.rill not produce a valid

schedule. The highest of overuse of registers is found in dedicat ed RF topology. The

shared 4 RFs topology uses the limited number of registers efficiently, but for large

benchmarks such as the last two, 8 x 8 FDCT_ hor and 4 x 4 FFT, it overuses the

registers by nearly 20% to 100%. The shared 12 RFs topology utilizes the registers

92

efficiently when compared with dedicated RF topology. Therefore, the shared 12 RFs

topology works the best for all the benchmarks with no overuse of registers.

261) -,---------------

240 ~---··
220 +-- --- ---- --- ---[1

I 200 +----------------11

QJ QJ 180
~ ~ 160 +--------------....
::>a; 140 +---------------1
~ ~ 120 +-----------IJf---jf
-~ ~ 100 +------··------11- ---l

..: 1! 80
'~ ~ 60
O' - -

4 0
20

0 ~~~UL~UL~R-~~3UL-.W-~

-..' De di e ate d i12RFs with
4 regs) (1)

• share d (1 2RFs ''•iith 4
regs) (2)

;',: Share d (4RF s o.vith 4
regs) (3)

Figure 3.6: Percentage of register utilization in different topology

3.2.5 Effect of Varying Particle Size in MCHPSO algorithm

To determine how many particles should be used in the MCHPSO scheduling algo-

rithm, it was experimented by varying the number of part icles used by the algorithm.

T his experiment was done on an Intel® Coren~ i7-860 P rocessor, wit h a clock speed

of 2.8GHz, using all the 4 cores for an 8x8 simulated CGRA configuration .

The algorithm was not able to come out of the local optimum of the best par-

tide's fit ness value when only 5 particles were used. However, a valid schedule was

achieved with 10 particles. Table 3.8 shows the comparison of execution time with

93

Table 3.8: Variation of particle size on an 8 x 8 CGRA
ExecutiOn ttme (in seconds) of

::\ICHPSO

Benchmarks 10 25 30 35 40
8X8 !! ..., _ _ _ j

24.0 26.9 31.3 ...,""""
j ___

IDCT hor

4X4 FFT 22.0 49.0 48.1 58.6 66.7

8X8 12.1 18.7 21.0 24.4 27.8

.FD CT Yer

different particle numbers. The first column shows the 3 large benchmarks taken for

comparison. The second to sixth columns show the execut ion t ime for particle counts

10, 25, 30, 35 and 40. In all t he par ticle count variations, the MCHPSO algorithm

was able to get the valid schedule, with the same usage of resources. The quality

of t he solution was the same in all the particle size variation. Since there was the

same usage in all the different particle counts, it is concluded that 10 particles are

sufficient.

3.2.6 A nalyzing the Speedup of MCHPSO A lgorithm

The Intel Core i7-860 processor (Intel i7-860 processor , 2009) features 4 cores, with

a clock speed of 2.8 GHz. It features symmetric multithreading (hyper-threading) so

that each core supports 2 threads, for a total of 8 hardware threads. It can run at

a maximum clock frequency of 3.46 GHz with Intel Turbo Boost technology. When

one core is active, i7 processor operates at a frequency of 3.46GHz. When 2 cores

are active, i7 processor operates at a frequency of 3.33GHz. When 3 or 4 cores are

active, i7 processor operates at a frequency of 2.93GHz.

To analyze the speedup of our MCHPSO scheduling algorithm, the execution

94

t imes of the algorithm were compared , for 1 to 8 processing threads on the quad core

processor done in the same environments. Table 3.9 shows the speedup of MCHPSO

algorithm on various benchmarks. The first column shows the benchmarks taken

for comparison by using logical processors (P) in Intel i7 machine. The second to

the ninth columns show the execut ion time of MCHPSO algorithm. The MCHPSO

execution on Intel i7 machine scheduled at the same II as given in Table 3.6. While

using 2 processing t hreads and 2 cores, the speedup was more than 1.5 times than

with a single processing thread. While using 4 processing threads, 1 on 4 cores, the

speedup is more t han 2.5 times than with a single processing thread. While using

8 processing threads on 4 cores, the speedup was more than 3.5 times than with a

single processing thread execution. The mult ithreading, available in the cores, helps

the algorithm to process the particle arrays faster. The proposed MCHPSO works

faster, with more processing threads. The MCHPSO algorithm did not achieve a

lower II than the II given in Table 3.6 in spite of the speedup available by the logical

threads. The sublinear speedup was due to the pipelines that don't contend for ALUs,

and the memory pipe is to the level 2 cache (the largest cache). Memory contention

is probably the most important of those.

3.2.7 Functional Units Capable of Routing and Performing

Computations

The computational resources in a CGRA are the functional units, which are capable

of executing a set of coarse-grained operations such as add, subtract, multiply, and

shift. First, we designed the FUs only to perform computation and to forward in-

95

Table 3.9: MCHPSO algorithm speed up comparison on an Intel i7 processor

Benchmarks ::\ICHPSO in Intell.C Coren1 i7 Processor

Execution Time{Seconds)

OneP 2 P's 3 P's 4 P's 5 P's 6 P's 7 P's 8 P's

FIR cplx 7.29 4.23 3.1 2.98 2.79 2.68 2.2 2.08

latasynth 6.96 4.17 3.31 3.26 3.2 3.07 2.49 2.43

latanal 2.89 1.76 1.39 1.36 1.3 1.25 1.15 1.06

Volterra 6.26 3.45 2.59 2.36 2.34 2.17 1.86 1.76

IIR. 9.13 "i ..,.., _ _ j .. 3.92 3.65 3.54 3.32 2.81 2.68

IIR biquad 13.6 7.61 5.4 5.12 5.16 4.56 3.98 3.68

8X8
IDCT bor 79.3 1 42.44 32.24 28.82 28.33 27.51 22.69 22.29

4X4 FFT 84.46 44.23 33.16 31.54 29.65 2i.58 22.73 22

8X8
FDCT hor 23.28 13 .14 9.97 9.39 8.77 8.41 7.15 6.94

8X8

FDCT Yer 44.28 23.97 18.23 17.12 15.87 15.02 12.3 12.07

96

Table 3.10: Comparison of FU utilization with placement and routing

::\ICHPSO '"ith
IT that cannot ::\fCHPSO with Fr
route if used for that can both

Benchmarks execution route and execute

Fffi._cpl:x 42.19 39.06

Volterra 42.97 34.38

8X8
IDCT hor

92.19 73.44

4X4 FFT 88.02 7552
8X8

FDCT hor
83.98 63.28

8X8
FDCT Yer

88.02 78.13

formation during routing, if they are not performing any operation. Then, the FU

was redesigned to have additional ports and switches to perform computation and

routing at the same t ime. The usage of FUs was studied by comparing the 2 different

FU configurations, as shown in Table 3.10. The first column shows the benchmarks

taken for comparison. The second column shows the percentage of FU usage, with

FU configuration that cannot route when it has been used for execut ion. The third

column shows the percentage of FU usage, with FU configuration that can route and

execute at the same time. The comparison shows that FU usage decreases when they

are capable of both routing and executing and this makes more resources available

for mapping larger benchmarks.

97

3.3 Comparison of MCHPSO with Other Modulo

Scheduling Algorithms

Table 3.11 indicates the comparative results of MCHPSO, measured against the mod­

ulo scheduling algorithm [Vassiliadis and Soudris, 2007b] used in ADRES, as devel­

oped by the IMEC [IMEC, 2009] group. The second column shows the benchmarks

used, which are derived from T I Inc. [Texas Instruments . inc, 2009]. The third

column shows the number of operations derived from the benchmarks on both the

algorithms. The fourth and fift h columns show t he Mil and II calculated for bot h

t he algorithms. The sixth column shows the schedule density of FU (with routing) .

The seventh column shows the scheduling time in seconds for the mapping of the

benchmark. The work in [Vassiliadis and Soudris , 2007b] uses the 8 x 8 CGRA array

with 8 memory operat ions and Meshplus homogeneous architecture topology, row

and column buses, predicate RF and data RF. MCHPSO was executed on an Intel

Core 2 Duo CPU with 4GB RAM and a clock speed of 2 GHz. Their algorithm was

executed on a Pentium M 1.4 GHz P C. The comparison shows that MCHPSO was

able to route the FFT benchmark with the minimal II, with a substantially smaller

measure of execut ion t ime.

Table 3.12 shows the comparison of MCHPSO with the modulo scheduling al­

gorithm used in [Dimitroulakos et al. , 2007]. Dimitroulakos et al. , work uses a 2D

CGRA with 16 PE with PEITl (al l PEs are connected with its row PEs and column

PEs) and PEIT2 (nearest neighbor) topology. The execution time is smaller in the

PEIT1 t han in P EIT2 because t here is a smaller average routing delay experienced

by PEIT2 which PEITl overcomes by the richer interconnection topology. The archi-

98

Table 3.11: Comparison of MCHPSO results with Mei et al work

Comparing Results reported in (Yassiliadis

algorithms 8 X 8 ~ICHPSO & Soudris, 2007)

Schedule Exe Schedule Exe

Density Time Densi1y Time

(with in # (with in

Benchmarks _}III ops II routing) OPC Sees op s ll routing) OPC Sees

sxs
IDCT hor 3 78 3 73.44 16 93.11 128 3 90.1 0% 42.7 340

4X4 FFT 3 .67 3 75.52 24 105.9 79 4 75.00% 19.8 314

tecture has 2 scratch pad memories LO and Ll and there are 2 memory buses per row

in the 2D CGRA to fetch data from scratch pad memory Ll which quickly loads the

data into the PE. The LO scratch pad memory exploits this capability for reducing the

memory accesses to Ll by reducing the data transfer bottleneck. That is achieved

by storing the data reused values in the LO and not fetching them again from the

Ll memory. The topology used with our MCHPSO algorithm closely resembles the

topology in PEIT l , described in Table 4 of [Dimitroulakos et al., 2007]. Therefore,

the work done in [Dimitroulakos et al., 2007] based on PEITl , was compared wit h

the MCHPSO algorithm. The first column in Table 3.12 shows the benchmarks taken

for comparison. The second and fifth columns show the number of operations in the

benchmark. The third and sixth column show the II at which the algorithms were

able to map the benchmarks. The fifth and ninth columns show the schedule density

of FU (with routing) as calculated in Equation 3.2.

This comparative study has established that MCHPSO algorithm has a lower II

for all benchmarks in spite of not using scratch pad memory, which has been used in

[Dimitroulakos et al., 2007]. The fifth benchmark 8x8 IDCT-hor depicts a typical case

99

of showing that the proposed algorithm maps at a lower II with the same number of

operations and schedule density compared with results in [Dimitroulakos et al., 2007].

The number of operations are different for the comparing algorithms because of

the different analysis and transformation phase carried out in [Vassiliadis and Soudris,

2007a] and [Dimitroulakos et al., 2007]. Not withstanding this discrepancy, the su-

perior performance of the MCHPSO algorithm is evident. The MCHPSO algorithm

finds schedules, with a minimal II, for all the benchmarks taken for comparison to

the work done in [Vassiliadis and Soudris, 2007a] with a lower use of resources.

Table 3.12: Comparing MCHPSO with Dimitroulakos's et al work

4X4 :\ICHPSO Results reported in
(Dimitroulakos,

Comparing Galanis, & Goutis,

algorithms 2007)

Benchmllrks Jill #ofOps II Schedule #ofOps II Schedule
Density Density

latasj1lth 2 20 2 78.13 18 6 75

Voherra 4 28 4 57.81 27
.,
I 70.3

IIR 4 36 4 78.13 39 8 59.5

4X4 FFT 5 67 7 81.25 95 17 69.6

8X8 IDCT hor 6 78 .,
.i'
I 89.29 79 14 85.1

latanal 2 20 2 68.75 18 8 62.5

100

3.4 Conclusion

In this chapter , we discussed the analysis of the Modulo Constrained Hybrid Parti­

cle Swarm Optimization (MCHPSO) algorithm for the loop scheduling problem in

CGRAs. The results from MCHPSO algorithm indicate that the algorithm can find

a valid schedule, placement and routing for the given benchmark loops, often with a

minimal init iation interval, and with a low use of resources. To study the paralleliz­

ability of the MCHPSO algorithm, we have executed it on a quad-core machine with

8 logical processors and found good speedup. We also analyzed the MCHPSO algo­

rithm with 2 different FU configurations. The experiment helped us to understand

the enhancement in FU configuration increases the usage of FUs. Various intercon­

nections in all FUs showed that increase in each additional edge produces a flexible

routing process, thereby increasing the usage of resources. The size of RFs and the

effect of topology have been studied to know the usage of registers and which topol­

ogy worked the best for our scheduling problem. Shared RFs with each FU gave the

lowest usage of registers. In the MCHPSO algorithm, the number of particles to be

considered was studied and reported.

101

Chapter 4

Exploiting conditional structures

onto CGRAs

4.0 Introduction

Coarse-grained reconfigurable architectures (CGRAs) have been structured for accel­

erating computation intensive parts like loops that require large amount of execution

time. Loops, with conditional branches, have multiple execut ion paths which are dif­

ficult to perform software pipeline. In this chapter we review work done in handling

condit ional branches of loop, with if-then-else structures. We present an algorithm for

scheduling predicated execution, with exclusivity feature, to exploit the conditional

branches of loops. The performance of the proposed algorithm is compared with the

predicated execution scheduling algorithm, with no exclusivity feature. The proposed

algorithm finds a lower initiation interval for all the loops considered.

102

4.1 Background on HARPO /L

In this chapter we have taken DFGs generated from a HARPO / 1 program (stand­

ing for HARdware Parallel Objects Language). A HARPO / 1 program consists of a

set of classes, interfaces, objects, and constants. The class declarations and inter­

face declarations add new types to the type system, and the object declarations and

constant declarations add objects to the object graph . The details of object decla­

rations and constant declarations are similar to other object-oriented programming

languages [Wu, 2011]. The grainless semantics of HARP0/ 1 allows the object in­

stantiation and connection to be done at compile-time, and at the run-time, there is

no reference/pointer assignment.

The synthesized data flow graph (DFG) generated by the compiler [Wu, 2011] is

very close to the representation of a schedulable datapath unit. All the benchmarks

considered in this chapter are written as HARP0/ 1 programs. In this chapter, we

present limited details on HARP0/ 1 and for more details please refer to [Wu, 2011].

4 .2 DFG characteristics

This section describes the charact eristics of the dataflow graph generated from the

HARPO / 1 program. A DFG is a directed graph represented by a 5-tuple

(N, E, type , I , 0) where N is a set of nodes, E is a set of directed edges, type is

a function: N ---> N odeTypes, I is a node representing the start of the graph, and 0

is a node representing the end of the graph [Wu, 2011]. Each node has an ordered

set of input edges and an ordered set of output edges, and each edge has exactly 1

103

source node and exactly 1 target node. There are 2 kinds of directed edges between

data flow graph nodes : E = C U D where C is a set of control flow edges and D is

a set of data flow edges. A data flow edge represents the synchronized transmission

of a primitive value between dat a flow graph nodes. When a node is ready to receive

data from an edge, it waits for the edge to be active, and once the edge is active,

the node may receive the data and set the edge's activeness expires. \ iVhen a node is

ready to transmit data, it will transmit the data, set the edge active and wait unt il

t he edge is no longer active. The control flow edges are the edges transmitting only

the activeness and no data. T he symbols used for outgoing and incoming edges are

Z ! means "activate control flow edge Z and wait until it expires and a control flow

receive operation A? means "wait until edge A is active, and set the activeness as

expired" [Teifel and Manohar, 2004]. There are 13 types of data flow graph nodes.

The graphic representations are shown in Figure 4.0. The description of the nodes

used in the data flow graph are given below.

FETCH, VALUE and STORE: Each FETCH and STORE node are associated with

a location. The operation fetch() means "fetch the value in the location". The

operation store(a) means "store the value of a in the location" . VALUE loads

the data from the memory.

FUNC: It performs the assigned arithmetic or logic operation when all the incoming

data edges are active.

COPY: Copies the incoming data to the various outgoing nodes.

START: The control flow of the whole graph starts from this node.

104

A A

START ~ ~> ~~

z z
c

z
A

Ao:···An-1

z

A

~(

Z();···Zn-1

Cor•·•(•l··l

'
' Zo Zn.J

z
A (A

F E~(H){ STOF;E . :
.
z z

A

'
[) z

A

)

z
A

z

Figure 4.0: DFG node types, taken from [Wu, 2011]

JOIN: It joins all the control flow.

SPLIT and MERGE: SPLIT nodes are used to copy data to 2 different nodes based

on the condition edge C. MERGE nodes take the result of the 2 execution paths

based on the condit ion edge C.

MULTI-LOCK: each MULTI-LOCK node is associated with a number of locks, and

indicates whether t he locks are free. LOCK and UNLOCK node are associated

with a lock, and indicates whether t he lock is free.

4.3 Handling conditional statements

Loops, with conditional branches, have multiple execut ion paths and irregular flow of

execution [Milicev and Jovanovic, 1998]. T his seriously limits loops, with conditional

branches, to exploit parallelism in CGRAs. T he limitation in handling conditional

105

branches in CGRAs is that the configuration text cannot control the execution ac­

cording to the computation results [Lee et al., 2010]. The conditional branches part

makes it hard to map the application onto CGRA, even though CGRAs can handle

the most t ime consuming computation intensive part.

To tackle this problem , various solutions have been proposed in the literature. One

of them is to perform predicated execution on the CGRA [Warter et al., 1993]. In

predicated execut ion, each processing element (P E) selectively executes an instruction

according to its condition flag. T his approach has the advantage of turning off unused

PEs to reduce the power consumption. Predicated Execut ion restricts the parallel

execution in CGRAs, because the condition should be checked before execut ing the

statements inside the conditional statement [Smelyanskiy et al., 2004], [eun Lee et

al., 2004] .

The second approach is to run the application with speculation [Lee et al., 2010].

Speculative Execution chooses one of the solutions depending on the condition, after

executing all possible solutions first . This approach improves the performance, but

consumes more power compared to the predicated execution.

T he third approach is the Hierarchical Reduction, which collapses conditional con­

structs (e.g. if-then-else) into pseudo-operations. Next, list scheduling is employed on

both the paths of the conditional construct and merging them into one path by taking

the union of the resource usages along each path [Warter et al. , 1993]. Hierarchical

Reduction does not assume special hardware support. Thus, after modulo scheduling,

the code is regenerated by expanding the pseudo-operations. The fourth approach is

called the Enhanced Modulo Scheduling [Warter et al. , 1992], which takes advantage

of Predicated Execution and Hierarchical Reduction.

106

To support conditional branch in the reconfigurable architecture, the target ar­

chitecture (TA) has to be modified slightly with an extended set of operations and

additional ports [Chang and Choi, 2008], [Lee et al., 2010]. Figure 4.1, shows the

extension of arithmetic and logic unit (ALU) for predicated execution . The predi­

cated instructions contain a condit ion flag to be executed first, which is supported as

an additional port to the functional unit (FU). The difficulty that arises in mapping

condit ional branch on the CGRAs is to direct control flow to either stay in the current

iteration path or to begin execut ing operat ions on a different iteration path.

In our target architecture, an addit ional port for each functional unit is added

to support predicated operations. Predicated execution, with hardware support for

conditional branching CGRAs, will be used in our modulo scheduling algorithm. To

enhance the performance of predicated execution , we have developed an exclusivity

feature algorithm, which will be discussed in the next section. We have implemented

both the approaches of predicated execution without exclusivity and with exclusivity

to study the performance of the exclusivity feature.

4 .4 Predicated execution with exclusivity

4.4.0 M ot ivational example for exclusiv ity

Consider the DFG given in Figure 4.2, generated from the HARPO/ L program having

1 if-then-else structure. Each node descript ion is explained in Section 4.2 of this

chapter. The node with number 250 in Figure 4.2, is a boolean node. There are 2

execution paths in the DFG, based on the boolean value of node 250.

107

~. ALU)

""~-- _/
Condition

Register file

(a)

8~.·~.
---~

' t bit f'i)
ALU 1 ~------~~·'1

___ /

(b)

Figure 4.1: ALU modification for conditional branch a)original ALU b) modified
ALU, taken from [Lee et al., 2010]

Figure 4.3 compares the Modulo Reservation Table (MRT) of the 2 algorithms:

predicated MCHPSO with exclusivity and predicated MCHPSO without exclusivity.

Figure 4.3 displays only a few TA resources for comparison purpose. The predicates of

the exclusive nodes in Figure 4.3 are given in Figure 4.4. In the MRT, functional unit

F5 of cycle 0 has only node 500 with predicated MCHPSO no-exclusivity algorit hm.

In the predicated MCHPSO exclusivity algorithm, the nodes 500, 700, with predicates

of 250 and ---.250, are allocated . Since these nodes 500 and 700 are exclusive, i.e., both

of these nodes will not be executed in the same iteration, 1 TA resource is enough .

Using exclusivity only 4 register slots are used in resource R6 of cycle 1, with 5 DFG

cells. Similarly 1 slot is used by 2 DFG cells in F5 and COl of cycle 0. We can reduce

the usage of TA resources by reusing the TA resources with exclusivity feature.

The exclusivity algorithm reuses the same resources that are exclusive with the

current DFG cell , to be mapped in placement as well as in routing. Hence we propose

108

Figure 4.2: Example of HARPO / L DFG with if-then-else

109

Cyc l e 0

Ex F5= [7 00 , 500) (1) C01= [5'90 - 24 0 , 450 - 840 } (1)

NO-Ex F5= [5 00 } (0) COl= [} (0)

Cycl e 1

R6= 700- e1o , 250 - 240 ,

250 - 310, 3 0 - 400,

Ex 5 00- 310] (1)

NO- Ex R6= !"'1 o-«~o
--- - ..J '

250 - ElO!_ (0)

R3= [92 0 - 3 90 , 32 0-250 ,

Cycl e 2 Ex 250 - 370 , 250 - 45 0] (0)

R3= [2 90 - 260 , 250 - 400 ,

NO-Ex 250 - 370 , 250 - 450 } (0)

Figure 4.3: MRT Comparison of Exclusivity and No_ Exclusivity Algorithm

DFG Cells Predi cat es

500 ~2 50

700 250

590-840 ~250

450-840 250

700-810 250

5{10-810 ""250

Figure 4.4: Predicates of the exclusive nodes in Figure 4.3

110

[Generate RRG

' RRG

Final Placed, Scheduled
and Routed code

MCHPSO scheduling
algorithm

Figure 4.5: Predicated MCHPSO no exclusivity algorithm

the exclusivity feature, in addition to the predicated MCHPSO, to map if-then-else

structure.

4.4.1 Mapping with MCHPSO predicated no exclusivity a l-

gorithm

4.4.1.0 Method description

The MCHPSO scheduling algorithm, discussed in the previous chapter, can place

schedule and route DFG cells that have no predicates attached to them. There are

3 main updates needed to be done to the existing scheduling algorithm. We had to

111

update our TA graph, DFG and scheduler to handle execution paths and predicates

to map if-then-else structure with our existing MCHPSO scheduling algorithm. The

overall description of the predicated MCHPSO with no exclusivity algorithm is given

in Figure 4.5. Each update is explained in the following subsections.

Adding predicates and symbolic values The main input to the scheduling al­

gorithm is the data flow graph. In this chapter, we have generated DFG from the

HARPO / L program, as described in early sections of this chapter. Each node in the

DFG has a type. The condition nodes of an if-structure is assigned the node type

FUNC and the outgoing edges of that node have an edge type BOOL. A condition

node is shown in Figure 4.2, with the node number 250. From the condition node,

the follmving nodes and edges in the DFG are controlled by the result of the BOOL

value, having 2 execution paths of TRUE/ FALSE. The outgoing edges of the con­

dition node are assigned a symbolic value, based on the executed result of condit ion.

Any node that has an incoming edge, with a symbolic value, assigns predicate to itself

and to its successors with a combination of symbolic value and its predicate. The

following subsection explains t he assignment of symbolic values and predicates.

Assigning symbolic values When the DFG is created, all the DFG cells are

assigned a TRUE value for their predicate and a null for their symbolic values. After

all the nodes and edges are created, the symbolic values and predicates are added.

Adding symbolic values is explained in Algorithm 4.0. First, the procedure starts to

find all the condition nodes in the given DFG and adds them to the queue. Second,

the procedure finds all the edges of the condition nodes and assigns the symbolic

112

Symbolicval_ add(condit ion _ list, DFG _ cells)
Begin

End

For each condition node (c1) in condit ion _ list
Add condition node to Queue
cl _ name:= cl.getN arne()
Create a propositional variable (symval)

with c1 name
Assign c1 's symbolic value as symval
While Queue not empty

Remove a node (n1) from Queue
succ _ symval:= symval
For each successor (s 1) of n 1 from D FG _ cells

succ _ type:=sl.getNode _ type()
n1s1:= Edge(n1, s1)
Assign n1s1 's symbolic value as succ _ symval
Assign s 1 's symbolic value as succ _ symval
if succ _type is COPY

Add s 1 to Queue
End For

End While
End For

Algorithm 4.0: Adding Symbolic values to DFG cells

value, based on the name of the condit ion node.

Assigning predicates Once the symbolic values are assigned to all the DFG

cells, it is easy to assign the predicates. The adding of predicate values is explained in

Algorithm 4.1. Each DFG cell is assigned a predicate value based on its parent cell.

Mostly, all the DFG cells are assigned the same predicate of its parent cell. There

are 3 special cases based on the node type. Figure 4.6 explains the 3 cases of node.

The first case is a Condition Node (node 30), in which assigning a predicate to this

node is always done with a AND operation with its existing predicate. The second

case is a SPLIT Node (node 400) . A SPLIT Node is assigned the same predicate of

113

-tOO SPLIT

810 1\:IERGE

Figure 4.6: SPLIT and MERGE edges

its parent cell, but it predicts the predicate of its successor edge. A SPLIT Node has

2 edges, the first edge is for the TRUE value of condition and the second edge is for

the FALSE value. The same predicate of SPLIT Node is assigned to t he first edge.

The negation of the SPLIT node's predicate is assigned to the second edge. The third

case is a MERGE Node (node 810) . The MERGE Node has 3 incoming edges, an

edge with a symbolic value, an edge with TRUE predicat e, and an edge with FALSE

predicate. The MERGE Node is always assigned t he same predicate value of the edge

with symbolic value.

114

Predicates_ add(condit ion _ list, DFG _cells)
Begin

End

For each condition node (cl) in condit ion _ list
Add condition node to Queue
While Queue not empty

Remove a node (nl) from Queue
nl _ predicate:= nl.getPredicate()
nl _ type:= nl.getNode _ type()
For each successor(sl) of nl in DFG_ cells

FIRST succ:=true
succ _ type:=sl .getNode _ type()
nlsl:= Edge(nl ,s l)
edge_ type:= nlsl.edgeType(s l)
//pass the same predicat e if succ is not a SPLIT
succ _ pred:= nl _ predicat e

if nl _ type is SPLIT
if FIRST succ

//FALSE execution path
Create a NOT node (not _nl) of nl _ symval
Create an AND node (succ_pred) of nl _ predicate

else

and not nl
FIRST succ:= false

//TRUE execution path
Create an AND node (succ _ pred) of nl_ predicate

and nl _ symval
Assign nlsl 's predicate as succ _ pred

if succ _ type is not MERGE or SINK
Assign sl 's predicate as succ_pred
Add sl to Queue

if edge_ type is BOOL and succ _ type is MERGE
/ / pass the predicate MERGE node's successor
Assign nl 's successor predicate as succ _ pred

End For
End While

End For

Algorithm 4.1: Adding Predicates to DFG cells

115

TA predicate and control flow update The first update is done in the TA

graph. We have to update the TA to accept conditions in the DFG and to handle

the cont rol flow in the DFG. Each functional unit in the TA was updated with an

extra input port to handle predicated DFG cells. A DUMMY node was added in the

TA to handle control flow in DFG cells. After the TA was updated , the functional

units were ready to process predicates and cont rol flow. Now the scheduler has to be

updated to use the updated TA.

Handling control flow update in scheduling algorithm The inputs to the

scheduler are the predicated DFG and the rout ing resource graph of t he updated TA

graph. The scheduler as presented in Chapter 3 can handle only the data flow in the

DFG. To handle cont rol nodes and control edges in the predicated DFG, the scheduler

had to be updated. In the placement module of MCHPSO, the control nodes of the

DFG are allocated to the DUMMY node of the TA graph. In t he routing module

wi th Dijkstra's algorithm, the control edges are not passed to check the resource

availability to route. Instead cont rol edges affect the schedule time of its successor

nodes.

4.4.2 Mapping with MCHPSO predicated exclusivity algo­

rithm

4.4.2.0 M ethod description

The MCHPSO predicated exclusivity algorithm has all the updates done in the previ­

ous section of MCHPSO predicated no exclusivity scheduling algorit hm. There are 2

116

Pre~:~~~~~

I TA~aph
[Generate RRG J

' RRG

DFG creation

Add Predicates and
Symbolic values

MCHPSO scheduling
algorithm

Handling control J
now u date

Handling exclusivity in
placement, scheduling

and rouling

MCHPSO _predicated_
exclusivity algorithm

Figure 4.7: Predicated MCHPSO with exclusivity algorithm

extra updates done to the MCHPSO predicated no exclusivity scheduling algorithm to

add the exclusivity feature. The first update is to find all the exclusive pairs of DFG

cells. Second is to update our scheduler to handle exclusive DFG cells. The overall

description of predicated MCHPSO with exclusivity algorithm is given in Figure 4. 7.

Each update is explained in the following subsections.

F ind exclusiv ity r elationship When there is a condition in a predicated DFG,

we can find exclusive pair of cells which are on different execution paths. A cell can

117

Create_ Exset(Alldfgcells)
For each cell _ l in Alldfgcells

For each cell _ 2 in Alldfgcells such that cell_l =I= cell _ 2
Create a boolean expression e with an AND node

combining the predicates of cell_l and cell _ 2
if e is satisfiable

Add the pair { cell _ l , cell _ 2} to the exclusivity set

Algorithm 4.2: Creating exclusivity set

be either a node or an edge in the DFG. Two cells are exclusive, when both of these

cells are on different execution paths i.e., both of these cells will not be executed

in t he same iteration. Algorithm 4.2 shows the steps to find exclusive pair of cells.

Based on the predicates of each cell , all of its exclusive cells are found which are on

different execut ion paths.

Handling exclusivity in placem ent , schedule and routing The scheduler up-

date done in the predicated, no-exclusivity algorithm does not have methods to check

for exclusivity in placement and routing. We have added an exclusivity check method

both in the placement and the routing modules to place and route exclusive DFG cells.

Each TA resource in the modulo reservation t able has a set of DFG cells assigned to it

during the execution of scheduling algorithm. In the MCHPSO predicated exclusivity

algorithm, we propose to reduce the usage of TA resource and reuse existing resources

based on exclusivity. Algorithm 4.3 shows the exclusivity calculation. Each DFG cell

executes Algorithm 4.3 while searching for TA resource availability in placement and

routing. T he number of slots occupied in the existing DFG cells in the TA resource

are found by the Maximum Independent Set (MIS) Algorithm 4.4. When a DFG cell

wants to use a TA resource, t he number of used slots in the TA resource must be less

t han the capacity of the resource. Adding t he exclusivity algorithm to t he predicated

118

exclusiveinSet(TAresource, dfgcells _existing, newOP)
1. If dfgcells _existing is empty add newOP and return true.
2. Else find MIS _ SIZE= MIS(dfgcells _existing, newOP)

a . Return MIS _ SIZE~Capacity(TAresource)
b. Else return false.

Algorithm 4.3: Exclusivity check of TA resource

NilS(dfgcells _existing, newOP)
1. Create 2 empty sets MIS_ search and MIS.
2. Add the dfgcells _ existing and the newOP to the set MIS _ search.
3. Find the degree of each cell in the set MIS _ search based on exclusive pair.
4. Sort MIS _ search set in ascending order of degree.
5. For each cell el in MIS search

If degree(el)= 0 then add el to the MIS set and remove el from
MIS search.

else
a. Check whether el is exclusive with the elements in the MIS

set.
b. If not exclusive add el to the MIS set.
c. Remove el from MIS search

6. Repeat step 5 until all MIS _ search is empty.
7. Return the size of MIS set.

Algorithm 4.4: Maximum Independent Set of DFG cells

MCHPSO makes room for more DFG cells to be scheduled.

Algorithm 4.4 shows the steps to find maximum independent set of given cells.

4.5 Results

Modulo scheduling algorithms reported in the literature either jointly address inner

loop mapping and predicat ed execution but do not consider CGRAs [\ iVarter et al. ,

1993], or consider modulo scheduling on CGRAs but cannot handle exclusivity i.e.,

can only address predicates and control flow, with no particle swarm optimizat ion [Mei

et al., 2003b] . T hus, the novelty of our approach makes it difficult to experimentally

119

validate our results in comparison to previous work.

VIe have however devised an experiment that allowed us to assess the exclusivity

feature for the complete modulo scheduling problem. Specifically, we compared the

code generated by our exclusivity algorithm to code generated by a baseline algorithm

that binds state of the art predicated code to a CGRA and then modulo schedules the

code. In order to ensure fairness, the baseline algorithm (predicated no exclusivity

algorithm discussed in Section 4.4.1) uses the same MCHPSO and target architecture

implemented in our framework.

4.5.0 Experimental Set Up

The predicated MCHPSO with exclusivity check and without exclusivity check schedul­

ing algorithm was written in Java and executed on an Intel Core 2 Duo CPU with

4 GB RAM and a clock speed of 2 GHz. To schedule an inner loop body with if­

then-else structure requires 2 main inputs. The first input is the DFG generated

from the HARPO/ L programs with predication. The second input is the 4 x 4 and

4 x 3 TA graph. The 4 x 3 TA graph architecture is taken in this chapter to compare

the performance of exclusivity with reduced TA resources. The predicated MCHPSO

with exclusivity check and without exclusivity check algorithm places, schedules and

routes the given DFG onto the TA. The modulo reservation table corresponding to

the final schedule results is discussed in the next section.

120

Table 4.0: DFG characteristics of the benchmarks

Benchmark No of 4x4 and 4 x 3 CGRA

name No of nodes Edges Mil Sch length

ifthen-1

condit ion 26 41 3 15

ifthen-2

condit ions 52 87 5 18

ifthen-3

condit ions 56 111 7 21

4.5.1 DFG characteristics

The characteristics of the DFG input to the scheduling algorithm are given in Table

4.0. The 3 benchmarks were written by me. The loop structure of the benchmarks are

given in Figure 4.8, where s represents t he statement and c represents the condition

in the loop. The first column in Table 4.0 describes the benchmark name. The second

and third columns list the total number of nodes and edges in the DFG to be mapped

onto the TA. The fourth and fifth columns show the minimal init iation interval and

schedule length.

4 .5.2 TA characteristics

The TA graph has nodes and edges describing the details of t he CGRA configuration.

A detailed explanation of the TA is given in Chapter 3. Table 4.1 shows the resources

available in a 4 x 4 and 4 x 3 CGRA. The first column shows the number of functional

unit resources available. The second column shows the number of local registers

121

for()

if C1
{

51
}
e lse

52

a) One if-then-else loop

f or()
{

if C1
{

e !se

51
if C2
{

S3

else
S4

S2

f or()
{

if C1
{

51
if C2

{

e!.se

53
if C3

{
55

e lse
S6

else
54

52

c) Nested three: if-then-else loop

b) Nested two if-then-else loop

Figure 4.8: The first three benchmarks loop structure

122

available. The third column shows the number of shared regist ers available wit h

memory loads and store. The fourth and fifth columns show the number of row

and column buses available. The last column shows the number of total resources

available. We have taken 4 x 3 CGRA to compare the advantage of predicated

exclusivity in MCHPSO. T he reduced number of resources in 4 x 3 CGRA makes

it challenging for the predicated scheduling without exclusivity to place and route

the DFG.

Table 4.1: Resources available in the Target Architecture

#IT #LRF #SRF #RB #CB # Total

4><4 - Target

Architecture 16 48 4 4 4 76

4><3 - Target

Architecture 12 32 4 3 4 55

4 .5.3 Predicated Execution

4.5.3.0 With Exclusivity

The MCHPSO algorithm with predication execution and exclusivity feature was

tested on 2 CGRA configurations. The exclusivity feature enables the TA resources

to share the available NIRT slots in routing as well as in placement. The sharing of

resources reduces the total usage of MRT resources, making the remaining resources

123

available for other DFG operations. The following subsections describe the results

obtained in the 2 CGRA configuration.

4 x 4 CGRA Table 4.2 displays the result obtained in a 4 x 4 CGRA, with predicated

exclusivity algorithm. The first column shows the benchmark description. The second

column shows the initiation interval (II) at which the algorithm was able to schedule

the DFG. The third column shows the percentage of total functional unit usage in

the MRT. The fourth column shows the percentage of total local register usage in the

MRT. The fifth column shows the percentage of total shared registers usage in the

MRT. The sixth and seventh columns show the percentage of total usage of column

and row buses in the MRT. The eighth column shows the total resources available

in the MRT. The ninth column shows the total resources used in the MRT. All the

benchmarks were scheduled at the minimal init iation interval (MII) and minimal

usage of resources. The total usage of t he modulo reservation table of the final

schedule was calculated by

All TesouTce types in T A

Res avail = L (#r x Cap) x II (4.0)
R esource r

All resouTce in T A

Res used= (#slots_ used) (4.1)
R esource ,.

Usage% = (Res _ used) / (Res _ avail) x 100 (4.2)

where,

Res avail: Total TA resources in MRT

Res used: Used TA resources in MRT

124

Table 4.2: Exclusivity results in 4 x 4 CGRA

Total

Availallle resources
Benchmark FU LRF SRF CB RB resources used in

name II usage% usage% usage% usage% usage% inMRT MRT

ifthen-1

condition 3 52.08 29.86 83.33 33.33 16.66 228 84

ifthen-2

condi-tions 6 56.2.5 50.69 91 .66 16.66 20.83 456 231

ifthen-3

conditions 7 64.28 59.52 92.85 17.85 21.42 532 309

Cap: Capacity of resource r.

r: Total number of resources of type r.

#slots used: Number of slots used in r

II: Initiation Interval

Ex_ Usage%: Total Usage with Exclusivity algorithm

The same equations can also be used to calculate individual resource types.

4 x 3 CGRA Table 4.3 displays the result obtained in a 4 x 3 CGRA, with

predicated exclusivity algorithm. The table fields description are same as explained

for Table 4.2. Most of the benchmarks were scheduled at the Mil with lower usage

of total resources compared with predicated execution with no exclusivity algorithm.

The resource usage is higher than the 4 x 4 CGRA utilizing most of the resources in

4 X 3 CGRA.

125

Table 4.3: Exclusivity results in 4 x 3 CGRA

Total

RB Available resources

Benchmark FU LRF SRF CB usage resources used in

name II usage% usage % usage % usage% % inMRT MRT

ifthen-1

condit ion 3 59.44 44 .79 83.33 41.55 33 .33 155 85

i fthen-2

condit ions 5 83.33 55.14 91.55 33.33 44.44 330 225

i fthen-3

condit ions 8 88.54 80.07 81.25 34 .38 50 .00 440 339

4.5.3.1 No Exclusiv ity

The MCHPSO algorithm with no exclusivity feature in the predication execution was

also tested on the 2 CGRA configurations. The MRT slots were not able to share

the resources even when there was a critical need of resources in routing as well as

in placement . Predicated execut ion with no exclusivity feat ure pushed the algorithm

to its limit in some cases and couldn't find the schedule at lower II. The following

subsections describe the results obtained in the 2 CGRA configuration.

4 x 4 CGRA Table 4.4 displays the result obtained in a 4 x 4 CGRA, with no

exclusivity in predicated execut ion algorithm. T he table fields description are the

same as explained for Table 4.2. All the benchmarks were scheduled at t he minimal

init iation interval. The usage of total resources was higher when compared with

predicated exclusivity algorithm.

126

Table 4.4: 4 x 4 CGRA results without exclusivity

Total

Available resource!;

Benchmark FU LRF SRF CB RB resources used in

name II usage% usage % usage% usage% usage% inMRT MRT

ifthen-1

condit ion 3 70.83 35.41 83.33 8.33 33.33 228 100

ifthen-2

conditions 6 76c04 56.94 91.66 37.50 20.83 456 273

ifthen-3

condit ions 7 87.50 76.19 92.85 57.14 42 .85 532 408

4 x 3 CGRA Table 4.5 displays the result obtained in a 4 x 3 CGRA, with no

exclusivity in predicated execution algorit hm. The table fields descript ion are the

same as explained in Section 4.5.3.0 . Most of the benchmarks were scheduled at a

higher II than the T\III. The resource usage was higher than the 4 x 4 CGRA, with no

exclusivity in predicated execut ion algorithm. When scheduling for the next higher

II, the overuse of resources was reduced . The II and the resource usage was higher ,

when compared with predicat ed exclusivity algorithm.

4.6 Comparison

4.6.0 II achieved

Table 4.6 shows the initiation interval at which the final schedule was obtained . The

final schedule result did not record overuse of resources and all DFG cells were sched-

uled, placed and routed. The II achieved in 4 x 4 CGRA configuration was the same

127

Table 4.5: 4 x 3 CGRA results without exclusivity

Total

RB Available resources

Benchmark FU LRF SRF CB usage resources used in

name II usage% usage% usage% usage% % inMRT MRT

i fthen-1

condition 3 91 .66 53.12: 83.33 25.00 33.33 1 65 100

i fthen-2

condit ions 7 89.28 74.10 85.71 42 .85 47 .61 385 287

ift hen-3

condit ions 10 86.66 85.63 82.50 4 2.50 40 .00 550 44·0

Table 4.6: II achieved in 4 x 3 CGRA and 4 x 4 CGRA

II achieved

4 X 4CGRA 4 x 3 CGRA

Benchmark without without
name Mil exclusivity Exclus ivity exclusivity Exclusivity

i fthen-1

condit ion 3 3 3 3 3

i fthen-2

condit ions 6 6 6 7 6

ifthen-3

condit ions 7 7 7 10 8

128

Table 4. 7: Total usage of 4 x 4 CGRA

Usage % of total resources in MRT

4 X 4 CGRA

Benchmark without

name II exclusivity with exclusivi~

ifthen·-1

condition 3 43.86 36.8 4

ifth en-2

conditions 6 59.87 50.66

ifthen-3

conditions 7 76.69 58.08

for both the scheduling algorithms with and without exclusivity feature. In 4 x 4

CGRA configuration, the II achieved was the same as the Mil and thus both the

algorithms achieved the best II. In 4 x 3 CGRA configuration, predicated exclusiv-

ity algorithm was able to achieve better result at lower II than the no exclusivity

predicated algorithm.

4.6.1 Usage of resources in Exclusivity vs No exclusivity 1n

4 x 4 CGRA

Table 4. 7 shows the usage of total resources in a 4 x 4 CGRA. Both the scheduling

algorithms, with and without exclusivity feature, have found the schedule at the same

II in 4 x 4 CGRA configuration. The final schedule of exclusivity predicated algorithm

129

Table 4.8: Total usage and overuse of 4 x 3 CGRA

Usage % of total Overuse % of total

resources in 4 x 3 resources in 4 x 3

CGRA CGRA

NO- with NO- with

Benchmark name II exclusivity exclusivity exclusivity exclusivity

i fthen-1 condition 3 60.61 5 2.12 0.00 0.00

6 82.73 68.18 1.82 0.00

i fthen-2 conditions 7 74.55 6 1.56 {).00 0 .00

8 84.77 77.0 5 9 .77 0.00

9 82.42 71.5 2 5 .2 5 0 .00

i fthen-3 conditions 10 80.00 60.73 0 .00 0 .00

recorded lower usage of resources than the predicated execution with no exclusivity.

Achieving lower usage of resources makes room in the CGRA to route more data and

to use the available resources for executing more operations.

4.6.2 Overuse of resources in Exclusivity vs No exclusivity

in 4 x 3 CGRA

Table 4.8 shows the usage and overuse of total resources in 4 x 3 CGRA. The overuse

is the percentage of resource usage above 100 percent. In most of the benchmarks,

exclusivity predicated algorithm found the schedule with lower II to be closer to the

Mil. The final schedule of exclusivity predicated algorithm recorded lower usage of

130

resources and lower II than t he predicated execution with no exclusivity. The overuse

of resources in predicated no exclusivity algorithm was caused by the unavailability of

resources for placement and routing at the required t ime cycles. In case of exclusivity

predicated algorithm, t he overuse was avoided by sharing of exclusive resources. The

exclusivity predicated algorithm made room for other DFG cells to be scheduled. The

overuse of resources in t he no exclusivity predicated algorithm decreased as II was

incremented . Definitely exclusivity was able to save resources for future routing and

placement even in smaller size CGRAs.

4. 7 Conclusion

The objective of t his chapter is to conduct a performance evaluation of exclusivity

feature in the proposed MCHPSO algorithm with predicated execution. Under 2

different CGRA configurations, predicated MCHPSO with exclusivity was compared

with predicated MCHPSO with no exclusivity feature. The proposed predicated ex­

clusivity algorithm performance was very good even under lower resource availability.

A general conclusion from the result analysis, under 4 x 3 CGRA, predicated

exclusivity algorithm was able to achieve scheduling with a lower init iation interval.

\ iVhile comparing the predicated exclusivity feature with predicated no exclusivity

algorithm in 4 x 4 CGRA, the exclusivity enabled t he scheduler to use fewer resources

and provided more sharing of resources. The total usage of predicated exclusivity

algorithm was lower than the predicated execut ion with no exclusivity.

The proposed exclusivity feature in predicated execution was experimented for

if-then-else structures in t he loops. It can also be extended to switch-case statements

131

and any condition-driven statements. The next chapter discusses the scheduling of

nested loops onto the CGRAs.

132

Chapter 5

Recurrence exploitation in CGRAs

5.0 Introduction

A loop contains an inter-iteration dependence or recurrence if an operation in an

iteration of the loop has a direct or indirect dependence upon t he same operation

from a previous iteration. To software pipeline a loop, a scheduler must handle inter­

iteration dependencies, which arise from the loop's non-trivial recurrence circuits.

In this chapter, the different approaches to solve the inter-iteration dependence in

modulo scheduling are analyzed. By using a dynamic priority scheme, slack scheduling

provides a novel integration of recurrence constraints and crit ical-path considerations.

A priority scheme along with recurrence aware modulo scheduling is proposed to

map inter-iteration dependencies onto Coarse Grained Reconfigurable Architectures

(CGRAs). Our algorithm is aware of data dependencies caused by inter-iteration

recurrence cycles.

133

5.1 Recurrence Handling

Recurrences form a cycle in the data-flow graph of the inner loop body. The schedul­

ing slot of an operation depends on the schedule of the operands' producers, thus

some operations in a recurrence cycle need to be scheduled before t heir producers

have been placed. In a recurrent cycle, some operations are scheduled with only

partial information of their producers' schedule [Oh et al., 2009] affecting the overall

performance of the loop schedule.

The II is constrained by the recurrences of the loop and by the resource constraints

in the dependence graph. Inter-iteration dependences can induce recurrences that

cause a maximum delay for t he operations on the recurrence path or dependence

cycle. Memory operations (load/ store) are mostly the cause of a recurrence. T hese

loop-carried dependences have a distance property, which is equal to the number of

iterations separating the 2 instructions involved in the recurrence. If a dependence

edge, e(v, u), in a cycle has latency A and connects the operations at Dv,u, then the

recurrence constraint (RecMII) , is calculated by

RecMII = MaxcEC J ~ l (5.0)

where,

• c is a recurrence cycle in the set of all cycles C of t he DFG

l is the sum of all delay (.A) in the circuit

d is the sum of all distance Dv,u in the circuit, variable Dv,u ,denotes the dis­

tance between operation v and u, which means the operation u of iteration

i depends on the operation v of iteration i - Dv,u·

134

The resource constraint (R esMII) is calculated from the resource usage require-

ments of t he loop and it is derived from

I # T n eeded l
R esM I I = MaxrER # ·z bl T ava2 a e

(5.1)

where,

T is a resource in the TA resources R.

Minimal Init iat ion Interval (Mil) is a lower bound to start t he pipeline scheduling

process and it is computed as M I I = m ax(R ec.!vf II , R esM I I) .

5.1.0 Motivational Example

The compilat ion flow with a motivat ional example is described in Figure 5.0. Consider

the architecture configuration t aken in Figure 5.0a, and a data flow graph (DFG)

represented in F igure 5.0c. T he architecture components in Figure 5.0a are functional

units (FU) with a local Register F ile (RF). Figure 5.0b shows an rout ing resource

graph (RRG) created by replicating the target architecture (TA) across 2 t ime cycles.

The II is 3 for t he DFG as it takes the maximum cycle delay from recurrences. The

final embedding of DFG on RRG is shown in Figure 5.0 d.

As we are interested in mapping the recurrences (i. e. inteT itemtion dependence),

we can see there is a loop carried edge from node op Z to node cl. The scheduling

algorithm maps each operat ion to a FU and a t ime and maps each edge in the DFG

to a path in the RRG. During the scheduling process, the algorit hm keeps t rack

of the resources being used in a modulo reservation table (MRT) . The operation 2

is to be executed in FU1 at t ime 0 and therefore the FU1 is reserved for all cycles

135

a)

!
fu l fu3 f'.l4 fu2

~bl

ltera tion1
l lfH(~ -':.:~

II = 3

Ite ration 2

d)

Figure 5.0: Motivating example a) 2 x 2 target architecture template inst ance, b)

RRG, c) DFG and d) Final schedule, place and route

136

divisible by modulo II. Once a resource is reserved, it will not be available for the other

operations in time cycles that have the same remainder modulo II. The routing path

from operation 2 to operation X uses the RF of F Ul , and a neighborhood connection

from F U l to FU2. The schedule given in Figure 5.0 d does not satisfy the recurrence

constraints . The operation op Z has to be scheduled before operation c1 starts and

t his results in an invalid schedule. The scheduler did not take the priority to schedule

t he recurrence cycle before the other operations. To avoid maximum delay in the

scheduling process and to efficiently schedule a recurrence cycle, an efficient modulo

scheduler is needed. Hence a modulo scheduler is proposed , which gives priority to the

recurrence cycles and finds a valid schedule in a short time. The proposed algorithm,

with PSO and prioritized recurrence aware schedules, places and routes all t he nodes

and edges of a DFG onto the CGRA.

5.1.1 Existing Recurrence Handling Approaches

In this section, 4 different approaches have been used to modulo schedule the loops

with inter-iteration dependencies are discussed. The four approaches that will be dis­

cussed for modulo scheduling are the rotation scheduling, bidirectional slack schedul­

ing, edge-centric modulo scheduling (EMS), and recurrence-cycle-aware modulo schedul­

ing (RAMS) . The difficulty in handling loop carried dependence in CGRAs is that the

quality of schedule depends on the partially scheduled operations and recurrences take

long compilation t ime to find a valid schedule. T he major reason for t he degradation

of the quality of a schedule in EMS is caused by speculative scheduling of operations

that belong to a recurrence cycle [Park et al., 2008]. In scheduling with simulated

137

annealing (it is the DRESC method) [Vassiliadis and Soudris, 2007b], a larger II is

required to schedule the recurrence operations, which results in a very high execution

t ime.

5.1.1.0 Rotation Scheduling

Rotation scheduling [Huff, 1993] takes various loop carried dependencies into consid­

eration with its loop scheduling algorithm. In this approach, delays between loop

carried dependencies are taken as constant or a function of the loop index. Rotation

scheduling exposes parallelism across iterations with retiming. A retiming technique

is used in rotation scheduling to rearrange registers to reduce the iterat ion period,

that is to reduce the length of the critical path of the circuits.

Each rotation operation moves the schedule table of length L to length L + 1 and

finds a better intermediate schedule at the end of each rotation 's iteration. A node

remapping (reschedule) procedure is done at the end to reduce the static schedule.

The final schedule is split into 3 parts:- rotation prologue (RP) , a repetitive loop

body (RB) and a rotation epilogue (RE). Rotat ion scheduling concentrates mainly

on delays as a funct ion and obtains an optimized schedule with an improvement in

execution t ime.

5.1.1.1 Bidirectional Slack Scheduling

Bidirectional slack-scheduling method [Cho et al., 2007] has been implemented in a

FORTRAN compiler. This scheduler handles cyclic data dependencies, which arise

from the loop's non-trivial recurrence circuits. Slack scheduling solves the recurrence

problem by integrating recurrence constraints and critical-path considerations into an

138

operation-driven framework with limited backtracking.

T he scheduler places operations one by one until either a feasible schedule is found

or the heuristics give up. Slack scheduling can accommodate a novel bidirectional

approach that attempts to schedule an operation either as early as possible or as late

as possible, depending on a sophisticated heuristic. The heuristic's primary goal is

to minimize each value's lifet ime, in the hope that this will minimize the overall peak

register pressure.

5.1.1.2 E dge-cen t ric Modulo Sched uling

Edge-centric modulo scheduling (EMS) [Park et al., 2008] schedules loops in an edge­

centric way with a simple height-based scheduling priority scheme. In the EMS frame­

work, the scheduling slot of an operation depends on the schedule of the operands '

producers. The data-flow graph of a recurrence forms a cycle, thus some operations

need to be scheduled before their producers have been scheduled. Consequently, some

operations are scheduled with only partial information of their producers' schedule.

First, the DFG of the target loop is converted into a reduced form by collapsing some

nodes. The scheduling priorities of operations in the reduced DFG are calculated in

such a way that simple edges get higher priority than high fan-out edges. \i\Then the

scheduler places recurrence cycles, edges are placed even if their target operations are

not yet placed. By calling the router function recursively for all operations in the cy­

cle, the scheduler can put more effort into finding a legal mapping for the recurrence

cycles.

139

5.1.1.3 Recurrence Aware Modulo Scheduling

The recurrence aware modulo scheduling (RA MS) [Oh et al., 2009] scheme treats

recurrence cycles in the DFG as a single unit . Instead of scheduling each operation

individually, the algorithm first groups all operations in a recurrence cycle into a

clustered node. The operations of a clustered node are then scheduled together.

Clustering forms the recurrence cycles as a single node and transforms the DFG into

an acyclic graph. Single nodes have priority during scheduling. The scheduler selects

the clustered nodes according to their priority and schedules them one by one. All

producers of the clustered recurrence cycle are now scheduled first even though some

of them have a lower height than some operations in the recurrence cycle. After all

clustered nodes have been scheduled, the remaining nodes are handled. A clustered

node scheduling can be divided into 3 major steps: (1) scheduling of the incoming

tree, (2) calculating the earliest scheduling time, and (3) scheduling the nodes of the

clustered node. After all clustered nodes have been scheduled , the scheduler handles

the remaining operations. The scheduler finds it more difficult to find a route for the

remaining operations because most rout ing resources are already occupied.

RAMS prevents scheduling failures that arise due to redundant time constraints

of operations that were scheduled before the recurrence cycles themselves. The whole

process of scheduling is restarted if one of the recurrence cycles fails to be scheduled .

5.1.1.4 Comparison of Existing Approaches

The sparse interconnect and distributed register files in the CGRAs presents difficult

challenges to a compiler to route the edges. Edge-centric modulo scheduling [Park et

140

G~ll2 nile c I u>terc d DFG

Chonse clustered nrdc
to ;;c!J.:Julc

Calculate earl iest schi!dule Lime
~ --· ti. n-.: for th~ c ho~·n n•:'<dQ

rnerea:'<! toy !

~~----s~_-~_··_d_u_h~--~-' -iill-t-~d-·--~~

1~·-_· _______ -~)_, S(hi.'\.lullng SUCCl'-Cikd -

F igure 5. 1: F lowchart of RAMS algorithm, taken from [Oh et al. , 2009]

141

al., 2008] concentrates on routing operands rather than node placement alone. Edges

are categorized based on their characteristics, and the categories are used to route

them during the scheduling process. Modulo scheduling v.ri.th simulated annealing

[Mei et al. , 2003a], takes longer compilation time but finds a bett er quality schedule.

The EMS framework requires far less time than modulo scheduling with simulated

annealing to find a schedule by sacrificing the quality of the schedule.

Recurrence aware modulo scheduling [Oh et al., 2009] was able to achieve better

quality schedules than the technique based on simulated annealing at a 170-fold speed

increase. T he scheduler in [Oh et al., 2009] can only make decisions at the operation

level of each edge. If the scheduler is not able to find a placement for the recurrence

edge within II, the whole scheduling process repeats again with a larger II. In a dy­

namic priority scheme [Cho et al. , 2007], slack scheduling provides a novel integration

of recurrence constraints and critical-path considerations. When the scheduler can­

not find a slot for an operation, backtracking takes place by ejecting some operations .

The bidirectional slack scheduler provides a lot of slack for the recurrence circuit to

place them at the first place.

Considering all the difficulties of the above approach, a scheduler is needed that is

fast enough to find a good quality schedule as well as give priority to the recurrence

circuit .

142

RAP _ PSO (DFG, TA)
begin

end

II: = Mil (DFG)
Recurr _cycles:= Kosaraju(DFG)

dfgList: = ComputeASAPandALAP (DFG)
dfgList: = RecurrASLAP(recur _edges)
sortedDFG: = Recurr _ prioritySort (dfglist)
max_ schLength : = findschLength (sortedD FG)
schSucess := false
trials := 0
while !schSucess&& trials< NTRIALS do

CreateRRG(TA, II, max_schLength)
schSucess:= MCHPSO(sortedDFG, RRG, II, max_ schLength)
II++
trials++

end while

Algorithm 5.0: Mapping DFG with recurrences onto CGRAs

5.2 Proposed Method

5.2.0 Recurrence Aware Modulo Scheduling with Priority

Scheme

In this thesis, a recurrence aware priority scheduler is proposed with a fast evolution-

ary, particle swarm optimization (PSO) called RAP _PSO. RAP _ PSO is an exten-

sion of predicated exclusivity MCHPSO algorithm with added procedures supporting

recurrence cycles in placement, routing and scheduling.

The recurrence cycles are modulo scheduled as early as possible when still rela-

tively many resources are unoccupied. The priority scheme is applied to the DFG to

give more priority to t he nodes and edges of recurrence cycles. The overall procedure

of the scheduling algorithm is shown in Algorithm 5.0.

Modulo scheduling starts with a minimal initiation interval (MII) , as discussed in

143

Kosaraju(DFG)
var S : Stack[V]
topologicalSortcv,E) (S)
{ all nodes are on S }
var (V' , E') := transpose(V, E)
{ inv I (see below)}

while S is not empty do
val u := S .top()
{ u is in a terminal component of (V' , E') }
val U :=all nodes reachable from u in (V' , E')
{ U is a terminal component of (V' , E')}
output U

remove each node in U from S and also from (V' , E')
The invariant I is

• The nodes in V' are the same as the nodes in S .

• For any 2 nodes u and v in different components of (V' , E'),

• if u is in a component that follows (in (V' , E')) v's component , then in the
original graph u ------> v but v' ------> u , and so u is closer to the top of st ack S
than v .

Algorithm 5.1: Finding recurrence cycles with Kosaraju's strongly connected compo­
nents algorithm

144

the background section. To schedule the operations of DFG, the ASAP (A s Soon A s

Possible) t ime and ALAP(As Late as Possible) t ime are calculated for each operation

in the DFG.

All the recurrence cycles in the DFG are found by the Kosaraju strongly connected

component algorithm [Carmen et al. , 2009] described in Algorithm 5.1. If t here is a

path in the DFG from node u to node v and from v to u then u and v are said to be

in the same strongly connected component. We write u -+ v to mean there is a path

from u to v , i.e. it is reachable in 0 or more steps. In Algorithm 5.1 °, all the nodes

are first sorted topologically. Every time the top node u is popped off the sorted

stack to find all nodes reachable from u in the transposed DFG, to form a strongly

connected component. The list of nodes explored are a strongly connected component

and are removed from the sorted stack. The above procedure repeats unt il all nodes

in the sorted stack are explored. For detailed explanation with examples, please refer

to [Carmen et al. , 2009] .

Once the recurrence cycles are found , ASAP and ALAP times are calculated. For

all the nodes, ASAP and ALAP are calculated by ignoring the back edges or loop­

carried edge (opZ-+ cl) , as shown in Figure 5.0 as dotted line. The node opZ is called

the loop head or source (LH) and the node c1 is called the loop tail or target (LT).

The source node of the loop carried edge's ALAP is updated to limit its mobility with

the target node as shown in

source_ ALAP = target _ ALAP +(distance x I I) - delay (source) (5.2)

0 The given simplified version of t he a lgorithm was written by Dr. T heodore Norvell.

145

where,

• dist ance is the iteration difference between source and t arget node

• delay is the processing time of the node

As these loop carried edges are modulo constrained, they are affected by the II

value in the scheduling time. Once all the nodes in the DFG are assigned the correct

earliest and latest t imes, the RAP_ PSO scheduler starts with the recurrence aware

prioritized DFG and the RRG generated from the TA graph. In the recurrence aware

prioritized DFG, all the recurrence cycles are given higher priority than the remaining

operations. The routing procedure of Dijikstra's algorithm checks every recurrence

edge satisfying the equation

source_scht ime + delay (source) -:=:; target _scht ime + distance x II (5.3)

for the placed and scheduled particles in RAP_ PSO scheduling algorithm. If the

particles do not satisfy the Equation 5.3, next generation of particles continue to

explore a valid quality schedule.

The RAP PSO scheduler takes each particle to find a valid schedule, placement

and routing for all the operations and edges in t he DFG. The particles are init ialized

with random schedule time and placement. Next the scheduler finds the routing

resources for the edges and gives priority to loop carried edges. The rout ing results

with the number of edges routable and routing cost, are taken as the fi tness value for

the particles. Once a final schedule is obtained , the scheduler checks whether all the

nodes and edges being mapped satisfy the resource constraints, recurrence constraints,

schedule t ime validity (Figure 5.2) and modulo constraint . If the schedule is not valid,

146

ru 1 fu ?. fu 4
'f,n)e'::· ~

torniF l

l!erahon 1
'Totnt! · J

II :: 3

T1rt111 4 CJ CJ l!er<'llion 2

Figure 5.2: Successful final schedule for the DFG shown in Figure 5.0

the II is incremented by 1 and the scheduling process is repeated. The final correct

schedule for the DFG shown in Figure 5.0, is given in Figure 5.2. The schedule

satisfies modulo constraint, resource constraints, recurrence constraints and schedule

t ime validity.

5.2.1 Architecture Extensions to Speedup Recurrence Han­

dling

In the existing target architecture, the memory load and stores of operands (called

live-in/ live-out) were initially available in t he shared register file. The top row of

functional units (FUs) were mainly used for Memory Unit (MU) operations. T hese

FUs were rarely used by other operations and it decreased the bandwidth to move

the live-in operands to later cycles. To increase the bandwidth , an extension has been

adapted as suggested in [Oh et al., 2009] to add a dedicated register file (R F) to each

read port of the RF that contains the live values.

Dedicated RFs do not suffer from critical path delay because it takes 1 additional

147

RF for live values

Figure 5.3: CGRA architecture with dedicated RFs for live values, taken from [Oh et

al. , 2009]

cycle to access a live value through a dedicated RF [Oh et al. , 2009]. The same live-in

values can be retained for several cycles in dedicated RFs and it increases the output

bandwidth. Since all FUs now have indirect access to the live-in values, the dedicated

RF reduces the number of resources used for routing live-in values. The results of

using this extended architecture and its performance are discussed in the next section.

5.3 Discussion of Results

5.3.0 Experiment Set Up

The RAP _ PSO with recurrence aware scheduling algorithm was \vritten in J ava and

executed on an Intel Core 2 Duo CPU with 4 GB RAM and a clock speed of 2 GHz.

To schedule an inner loop body with loop carried edges requires two main inputs. The

148

first input is the prioritized DFG with recurrence cycles identified from the HARP0/ 1

programs. The second input is the 4 x 4 or 4 x 3 improved target architecture graph

with extensions. The RAP_ PSO algorithm places, schedules and routes t he given

DFG onto the TA by correctly mapping the recurrence edges. The usage of target

architecture is found from the Modulo Reservation Table and is discussed in t he next

section.

5.3.1 DFG with Recurrences

The characteristics of the DFG input to the RAP_ PSO scheduling algorithm are given

in Table 5.0. The livermore loops benchmarks were taken from [P eters and Square,

2011] which are written in language C. The first column describes the benchmark

name. The benchmarks were selected such that they have recurrence cycles in t hem

for scheduling. The benchmarks were rewritten in HARPO / 1 language for t he inhouse

compiler to generate data flow graphs. The data flow graph generated from the

compiler goes t hrough a preprocessing and analysis stage for scheduling. In the

preprocessing and analysis stage, the DFG is optimized with variable usage and the

inner loop body is retrieved with recurrence edges in them. The second and third

column list t he total number of nodes and edges in the DFG to be mapped onto

t he TA. The fourth and fifth columns show the minimal initiation interval and the

schedule length.

149

Table 5 0· Recurrence Benchmark Characteristics . .

Benchmark No of No of

name nodes Edges Res Mil RecMII Mil Sch_length

Livermore -
recurreqn1 11 18 2 3 3 9

Livermore -
condrecurr 28 50 4 4 4 16

Livermore -
matrixmul 34 49 4 4 4 16

livermore -
t ridiagonal 8 13 2 2 2 8
Livermore_

recurreqn2 10 15 2 2 2 8

5.3.2 TA Characteristics

The TA graph has nodes and edges describing the details of the CGRA configuration.

Figure 5.4 shows the resources available in a 4 x 4 and 4 x 3 CGRA. The reduced

number of resources in 4 x 3 CGRA makes it challenging for the routing of recurrence

cycles and other data dependencies in the DFG.

5.3.3 4 x 4 CGRA recurrence sch edule results

Table 5.1 displays the result obtained in a 4 x 4 CGRA, with RAP _ PSO scheduling

algorithm. T he first column shows the benchmark descript ion. The second column

shows the initiation interval at which the algorithm was able to successfully schedule

the DFG. The third column shows the percentage of total functional unit usage in

the MRT. The fourth column shows the percentage of total local register usage in the

150

I .,.....,.,,...,_""' -~,.. ... ,,,_.,., _,,....._,..,...,,_,.,. ______ "" ____ ,.,
a)4x4CGRA with 16fU, 16RF,

1 SRF, 4 RS and CB

l
-------------------------1

b) 4 x 3 CGRA with 12 FU, 12 RF,

1 SRf, 3 RB and 4 CB

Figure 5.4: Comparison of 4 x 4 and 4 x 3 architecture configurations

151

Table 5 1· Recurrence schedule results in 4 x 4 CGRA
4 X 4 CGRA- MCHPSO_RAP

Total

Available resource.s

Benchmark FU LRF SRF CB RB resources used in

name II usage% usage % usage% usage% usage % in MRT MRT

livermore -
recurreqn1 3 22.92 11.80 41.66 8.33 8.33 228 35

livermore -
condrecurr 4 64.06 28.13 81.25 31.25 18.75 304 116

Livermore -
mat rixmul 4 75.00 43.22 81.25 25.00 12.50 304 150
livermore -
t ridiagona l 2 21.88 7.29 50.00 0.00 37.50 152 21

Livermore -
recurreqn2 2 28 .13 9.38 62.50 50.00 0 .00 152 27

MRT. The fifth column shows the percentage of total shared registers usage in the

MRT. T he sixth and sevent h columns show the percentage of total usage of column

and row buses in the MRT. The eighth column shows the total resources available

in the MRT. The ninth column shows the total resources used in the MRT. All the

benchmarks were scheduled at the Mil and with minimal usage of resources. The

total usage of the modulo reservat ion table and individual resource usage of the final

schedule are calculated as in Chapter 4.

152

Table 52· Recurrence schedule results in 4 x 3 CGRA
4 X 3 CGRA- MCHPSO RAP -

Tota l

Available resources

Benchmark FU LRF SRF CB RB usage resources used in

name II usage% usage % usage% usage% % inMRT MRT

Livermore -
recurreqn1 3 2.7.77 17.70 41.66 8.33 11.11 165 34

Livermore -
condrecurr 4 83.33 40.63 81.2.5 58.33 40.00 2.2.0 118

Livermore -
matr ixmul 4 87.50 68.75 81.2.5 37.50 41.66 2.2.0 154

Livermore -
t ridiagonal 2. 29.16 10.93 50.00 12.50 33.33 110 21

Livermore -
recurreqn2 2 54.16 17.18 62..50 12..50 0.00 110 30

5.3.4 4 x 3 CGRA recurrence schedule results

Table 5.2 displays the result obtained in a 4 x 3 CGRA, with RAP _ PSO scheduling

algorithm. The first column shows the benchmark description. The second column

shows t he initiation interval at which the algorithm was able to schedule the DFG

with resource and recurrence constraints. The third column shows the percentage

of total functional unit usage in the MRT. The fourth column shows the percentage

of total local register usage in the MRT. The fifth column shows the percentage of

total shared registers usage in the MRT. The sixth and seventh columns show the

percentage of total usage of column and row buses in the MRT. The eighth column

shows t he total resources available in the MRT. The ninth column shows the total

resources used in the MRT. All t he benchmarks were scheduled at the JVIII with lower

usage of resources. The total usage of the modulo reservation table and individual

resource usage of the final schedule are calculated as in Chapter 4.

153

Comparing the results of 4 x 4 CGRA and 4 x 3 CGRA we find that both were

able to schedule at MIL The resource usage in 4 x 3 CGRA was higher t han 4 x 4

CGRA. Most of t he critical resources are used in 4 x 3 CGRA and was able to route

within MIL The functional units usage was higher by 4.85% to 26.04%. The local

register fi les usage was higher by 3.64% to 25.53%. The row bus usage was higher by

2.78% to 29.16%.

5.4 Conclusion

In this chapter , four approaches to solve the loop scheduling problem with recurrence

were discussed. The schedule results of both edge-centric schedulers, EMS and RAMS,

outperform DRESC [Mei et al. , 2002] by two orders of magnitude. While t he RAMS

is about 2 t imes slower than EMS, the superior scheduling quality of RAMS over

EMS compensates for t his slowdown. An algorithm is proposed based on RAMS and

dynamic priority to solve the loop scheduling problem with loop carried dependencies.

The proposed algorithm t akes the advantage of P SO to speed up the scheduling

process combined with recurrence aware priority to obtain a good quality schedule.

The proposed RAP _ P SO algorithm was tried on the livermore loops benchmarks.

The recurrence cycles found in the benchmarks was modulo scheduled at minimal II.

154

Chapter 6

Conclusions and Future Work

6.0 Contributions

Today's embedded systems such as 4G mobile phones, t ablet computers or personal

digital assist ants (PDA) requires very high computing speed in mult itasking appli­

cations, downloading of video streams and to handle the high-speed wireless data

communication. Coarse-grained reconfigurable architectures (CGRAs) are emerging

as potential solutions for t he above challenges. CGRAs bring advantages such as high

performance, low communication overhead , high flexibility and ease of programming.

In this thesis, a CGRA is t aken to address the problem of mapping application with

loops which consume lot of computation resources.

Applications such as multimedia and telecommunication systems 'vith audio, video

encoders and digital signal processing consume a long time in compilation with the

presence of repeating loop statements. In this thesis, we have considered the problem

of scheduling, placing, and routing loops for CGRAs. The mapping problem for

155

coarse-grained reconfigurable architectures is NP-hard in general. Software pipelining

the loops, requires an efficient modulo scheduling algorithm. A modulo const rained

hybrid particle swarm optimization algorithm (MCHPSO) [Gnanaolivu et al. , 2010a]

is proposed for scheduling crit ical loops.

MCHPSO combines t he features of the evolut ionary approach of PSO and a mu­

tation operator to find potential solut ions for the modulo scheduling problem. A

particle in the PSO system finds a placement for the operations in the loop body, a

scheduling t ime at which an operation can be executed and a routing path for the

operands. The solut ion search was challenged by the critical resources available in

the CGRAs, modulo constraints to reserve the resources for repeated iteration, and

the complexity of the loop. MCHPSO managed to schedule most of the loops in the

minimal init iation interval while taking very little execution time. The proposed algo­

rithm was successfully tested on 8 standard benchmarks from digital signal processing

(DSP) applications.

In the experimental demonstration of MCHPSO [Gnanaolivu et al., 2011a], it was

found that a parallel search with 10 part icles was enough to find a valid solution .

MCHPSO was able to avoid local optima by exploring and exploiting more solutions

than the DRESC [Mei et al., 2002] in the t ime-space graph of the target architec­

ture. It was also discovered that MCHPSO was able to increase its scheduling speed

when the interconnections between the functional units (FUs) are more flexible. The

~;ICHPSO was able to efficiently use shared registers in a shared register file (RF)

interconnection architecture template. MCHPSO speedup was analyzed by execut­

ing the algorithm in an Intel core i7 machine. The proposed algorithm was able to

parallelize the search for a scheduling solution in the 8 logical threads present in the

156

i7 machine, and achieve good speedup. The proposed algorithm achieves better re­

source usage with lower initiation interval and efficiently maps with a minimal time

compared to DRESC [Mei et al. , 2002] .

Various configurations of the ADRES template were tried with the MCHPSO al­

gorithm. Out of these, results corresponding to 8 x 8, 4 x 4 and 4 x 3 CGRAs are

reported in the thesis. The most int eresting challenge was to schedule conditional

loops [Gnanaolivu et al. , 2010b] with if-else statements on the 4 x 3 CGRA con­

figuration. MCHPSO with predicated exclusivity feature handled the challenge to

place as well as route with lowest possible initiation interval (II). The 4 x 3 CGRA

configuration performed as well with resource utilization as the 4 x 4 configuration.

The minimal init iat ion interval to repeat the modulo schedule of an iteration de­

pends on resource constraints as well as recurrence constraints. Loop carried depen­

dencies were mapped on the CGRA with a recurrence aware priority scheme applied

to MCHPSO called RAP _ PSO. The proposed RAP _ PSO algorithm [Gnanaolivu

et al. , 2011b] was tried on 5 recurrence benchmarks from the livermore loops. The

proposed algorithm scheduled efficiently on the 4 x 3 CGRA configuration.

The proposed l\!ICHPSO with exclusivity feature and recurrence aware scheme

was able to place, schedule and route the inner loop body of a crit ical application .

6.1 Suggested Future Work

The proposed modulo constrained hybrid particle swarm opt imization algorithm with

exclusivity feature and recurrence awareness worked well on the benchmarks consid­

ered. l\!ICHPSO algorithm was able to map application loops written in the C Ian-

157

guage and HARPO / L. Many opportunit ies exist to perform further research around

this work. r-.1Iore experiments can be done to evaluate the proposed algorithm on com­

plex benchmarks which include nested loops, switch-case statements, pointers and so

on. To find the suitability and effectiveness of the proposed algorithm, it could be

compared with various other modulo scheduling algorithms and heuristic methods

such as iterative modulo scheduling [Rau, 1994], DRESC [Vassiliadis and Soudris ,

2007b], recurrence cycle aware modulo scheduling [Oh et al., 2009], clustered modulo

scheduling [Sanchez and Gonzalez, 2001], swing modulo scheduling [Llosa et al., 1996],

hypernode reduction modulo scheduling [Llosa et al., 1995], modulo scheduling wit h

integrated register spilling [Zalamea et al. , 2001]. RAP_ PSO algorithm can be t ried

on several coarse-grained architectures to compare with existing approaches RAMS

and DRESC.

The current work can be extended to place, schedule and route an entire applica­

tion with many loops and non loop statements. The target architecture configuration

can be extended to handle non loop statements and loop statements. The work could

also be extended to exploit task-level parallelism (TLP) as well as instruction-level

parallelism (ILP) and loop-level parallelism (LLP). Modulo scheduling a complex

application presents a big challenge even to existing architectures such as ADRES

[Mei et al., 2005b] due to its computational complexity. Modulo scheduling experi­

ments conducted on a H.264/ AVC decoder by Mei et al. [Mei et al. , 2005b] shows

that ADRES architecture and its compiler provide many features that are crit ical for

mapping a complex application. Hence wit h MCHPSO it is possible to map complex

applications imposing a performance and power usage challenge.

In order to improve the existing MCHPSO algorithm, the following enhancements

158

are suggested. l\IICHPSO can be improved to find even lower init iation intervals by

improving the bandwidth. The resource initiation interval is normally affected by the

memory units available for the live-in values.

In mapping loops onto CGRAs, few algorithms have been tried with the evolu­

t ionary approach. Many efficient algorithmic approaches like genetic algorithms, ant

colony algorithms or hybrid combination of evolutionary operators can be tested for

the modulo scheduling problem and compared against the proposed MCHPSO algo­

rithm. The preprocessing stages for the data flow graph can be extended to handle

complex control structures and to select which portions of an application will be

executed on the CGRA and which will be executed on a microprocessor.

There are number of open issues in the CGRAs that can be solved such as self­

reconfiguration, power efficient design of memory ports and data streaming, checking

graph isomorphism for complex graphs, studying the strength of functional units, and

system flexibility.

6.2 Concluding Remarks

Reconfigurable computers compute a function by configuring functional units and

they are able to achieve high speed, low energy consumption and low power re­

quirements. Reconfigurable computing systems are upgradeable and can serve as an

affordable, fast, and accurate tool for verifying electronic designs. Coarse-grained

reconfigurable architectures are efficient for long running computations, DSP, video

and image processing.

Compiling applications for CGRAs usually involves the following tasks: dataflow

159

analysis and optimization of t he application, creation of a target architecture graph,

and the scheduling algorithm. The scheduler in the compilation process involves

3 tasks: scheduling, placement, and rout ing. Scheduling assigns the t ime cycle to

execute the operation, placement assigns a functional unit and routing takes care of

moving data from producer functional unit to consumer functional unit. An effective

compilation mainly depends on the scheduler handling all the constraints on both

the application and the architecture. In this thesis, a new scheduling algorithm is

proposed with an evolutionary approach.

Evolutionary algorithms are best employed when there is no feasible op timization

approach. In the modulo scheduling problem, the evolut ionary approach is used

to determine an optimized solution in resource usage and efficient mapping. Particle

swarm optimization is primarily suited for numerical optimization problems. To avoid

local optimal solut ions, PSO with a heuristic operator is employed to solve the modulo

scheduling problem. The implementation of MCHPSO was very successful in solving

the modulo scheduling problem with optimal or near optimal initiation interval and

low usage of resource with no overuse.

:l\!Iapping loops onto reconfigurable architectures still leaves many challenges open.

For example, in our current work we assumed that loop iterations execute in the

pipeline to develop a mapping flow that works reasonably for many applications.

However, some loops might be better mapped when iterations execute in parallel.

Therefore , the mapping style could be another dimension for optimizing the map­

ping of different applications. Furthermore, the current mapping flow has several

constraints on architectures and application loops that must be relaxed. Our future

research will investigate mapping techniques for more different classes of reconfig-

160

urable architectures as well as other types of loops.

161

References

[Abdel-Kader, 2008] Rehab F. Abdel-Kader. Particle Swarm Optimization for Con­

strained Instruction Scheduling. VLSI Design, 2008:7, 2008.

[Abielmona, 2009] Rami Abielmona. Reconfigurable Computing Architectures.

http: / / www.site.uottawa.ca/ rabielmo/ personal/ rc.html, December 2009.

[Acharjee and Goswami, 2009] P. Acharjee and S.K. Goswami. Expert algorithm

based on adaptive particle swarm optimization for power flow analysis. Expert

Systems with Applications, 36(3, Part 1):5151 - 5156, 2009.

[Allan et al., 1995] Vicki H. Allan, Reese B. Jones, Randall M. Lee, and Stephen J.

Allan. Software Pipelining. ACM Comput. Surv., 27(3):367- 432, 1995.

[Alsolaim et al., 1999] A. Alsolaim, J. Becker , M.Glesner, and J. Starzyk. A Dy­

namically Reconfigurable System-on-a-Chip Architecture for Future Mobile Digital

Signal Processing. In European Signal Processing Conf. EUSIPC02000, November

1999.

[Alsolaim, 2002] Ahmad M. Alsolaim. Dynamically R econfigurable A rchitecture For

Third Generation Mobile Systems. PhD thesis, Ohio University, August 2002.

162

[Barr, 1998] l\!Iichael Barr. A Reconfigurable Computing Primer . In Multimedia Sys­

tems Design, pages 44- 47, September 1998.

[Beaty, 1994] S.J . Beaty. List scheduling: alone, with foresight, and with lookahead.

In Massively Parallel Computing Systems, 1994., Proceedings of the First Interna­

tional Conference on, pages 343- 347, May 1994.

[Becker et al., 1998] J. Becker, R. Hartenstein, M. Herz, and U. Nageldinger. Paral­

lelization in co-compilation for configurable accelerators-a host/ accelerator parti­

tioning compilation method. In Design Automation Conference 1998. Proceedings

of the ASP-DAC '98. Asia and South Pacific, pages 23- 33, Feb 1998.

[Becker et al., 2000] Jurgen Becker , Thilo Pionteck, and Manfred Glesner . Field­

Programmable Logic and Applications: The Roadmap to R econfigurable Computing,

volume 1896/ 2000, chapter DReAM : A Dynamically Reconfigurable Architecture

for Future Mobile Communication Applications, pages 312- 321. Springer Berlin /

Heidelberg, 2000.

[Berekovic et al., 2006] M. Berekovic, A. Kanstein, and B. Mei. Mapping MPEG

Video Decoders on the ADRES Reconfigurable Array Processor for next genera­

tion multi-mode mobile terminals. In Proeedings of GSPX 2006: TV to Mobile,

Amsterdam, Netherlands, March 2006.

[Chang and Choi, 2008] Kyungwook Chang and Kiyoung Choi. Mapping control in­

tensive kernels onto coarse-grained reconfigurable array architecture. SoC Design

Conference, 2008. ISOCC '08. International, Ol:I- 362 - I- 365, nov. 2008.

163

[Chen and Sheu , 2009] Chang-Huang Chen and Jia-Shing Sheu. Simple paricle

swarm optimization. In Machine Learning and Cybernetics, 2009 International

Conference on, volume 1, pages 460- 466, July 2009.

[Ching and Keshab, 1995] Wang Ching, Yi and Parhi Keshab, K. Resource­

constrained loop list scheduler for DSP algorithms. The Journal of VLSI Signal

Processing, 11(1-2):75- 96, October 1995.

[Cho et al., 2007] Doosan Cho, Ravi Ayyagari, Gang-Ryung Uh, and Yunheung Paek.

Preprocessing strategy for efFective modulo scheduling on multi-issue digital signal

processors, 2007.

[Cormen et al. , 2009] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,

and Clifford Stein. Introduction to Algorithms. The MIT Press, 3 edit ion, 2009.

ISBN 0-262-03384-8.

[Davis, 2010] Lawrence "David" Davis. Genetic Algorithms and their applications.

http: / /www.informatics.indiana.edu/ fil / CAS/ PPT / Davis/ , J anuary 2010.

[Dijkstra, 1959] Edsger W. Dijkstra. A note on two problems in connexion with

graphs. Numerische Mathematik, 1:269- 271 , 1959.

[Dimitroulakos et al., 2007] Grigoris Dimitroulakos, Michalis D. Galanis, and

Costas E . Goutis. Design space exploration of an optimized compiler approach for

a generic reconfigurable array architecture. Journal of Supercomputing, 40(2):127-

157, 2007.

164

[Dimitroulakos et al., 2009] Grigorios Dimitroulakos, Nikos Kostaras, Michalis D.

Galanis, and Costas E. Goutis. Compiler assisted architectural exploration

framework for coarse grained reconfigurable arrays. Journal of Supercomputing,

48(2) :115- 151, 2009.

[Dorigo et al. , 1996] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: optimiza­

tion by a colony of cooperating agents. Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions on, 26(1):29- 41, Feb 1996.

[Dorigo et al., 2006] M. Dorigo, M. Birattari, and T . Stutzle. Ant colony optimiza­

tion. Computational Intelligence Magazine, IEEE, 1(4) :28- 39, Nov. 2006.

[Dreo et al. , 2006] J Dreo, A Petrowski, P Siarry, and E Taillard. Metaheuristics for

Hard Optimization, chapter Ant Colony Algorithms,Simulated Annealing, Tabu

Search, pages 123- 150. Springer Berlin Heidelberg, January 2006.

[Ebeling et al. , 1995] C. Ebeling, L. McMurchie, S.A. Hauck, and S. Burns. Place­

ment and routing tools for the Triptych FPGA. Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, 3(4) :473- 482, Dec 1995.

[Ebeling et al. , 1997] C. Ebeling, D.C. Cronquist, P . Franklin, J. Secosky, and S.G.

Berg. Mapping applications to the RaPiD configurable architecture. In FPGAs for

Custom Computing Machines, 1997. Proceedings., The 5th A nnual IEEE Sympo­

sium on, pages 106- 115, Apr 1997.

[Ebeling, 2002] Carl Ebeling. The General Rapid Architecture Description. Technical

report, Department of Computer Science and Engineering University of Washing­

ton, 2002. UW CSE Technical Report UW-CSE-02-06-02.

165

[Elmohamed et al., 1998] Saleh Elmohamed, Geoffrey Fox, and Paul Coddington. A

Comparison of Annealing Techniques for Academic Course Scheduling. In Proceed­

ings of the 2nd International Conference on the Practice and Theory of Automated

Timetabling, pages 146- 166, Syracuse, NY, USA, April 1998.

[eun Lee et al., 2004] Jong eun Lee, Yunjin Kim, Jinyong Jung, Shinwon Kang, and

Kiyoung Choi. Reconfigurable alu array architecture with conditional execut ion.

In International SoC Design Conference, 2004.

[Fang, 2000] Min Fang. Layout Optimization for Point-to-Multi-point Wireless Op­

t ical Networks via Simulated Annealing & Genetic Algorithm. Technical report,

University of Bridgeport,Bridgeport , CT, 2000.

[Gnanaolivu et al., 2010a] R. Gnanaolivu, T .S Norvell , and R. Venkatesan . Map­

ping loops onto coarse-grained reconfigurable architectures using particle swarm

optimization. In Soft Computing and Pattern Recognition , 2010. SoCPaR 2010.

International Conference on, pages 145- 151, Paris, France, December 2010. IEEE.

[Gnanaolivu et al., 2010b] R. Gnanaolivu , T .S Norvell, and R. Venkatesan. Mod­

ulo scheduling for loops with conditional branches on a coarse-grained reconfig­

urable architectures . In Proceedings of Newfoundland Electrical and Computer En­

gineering Conference {NECEC 2010), St. JohnSs, Newfoundland, November 2010.

Awarded GOLD best paper.

[Gnanaolivu et al. , 2011a] R. Gnanaolivu, T.S. Norvell , and R. Venkatesan. Analysis

of inner-loop mapping onto coarse-grained reconfigurable architectures using hy-

166

brid particle swarm optimization. International Journal of Collective Intelligence

(IJOCI), 2:17- 35, 2011 .

[Gnanaolivu et al., 2011b] R. Gnanaolivu, T .S Norvell, and R. Venkatesan. Pipelin­

ing inter-iteration dependence in loops onto cgras using recurrence-aware priority

schemes. In Proceedings of Newfoundland Electrical and Computer Engineering

Conference (NECEC 2011), St . JohnSs, Newfoundland, November 2011 .

[Goldstein et al., 2000] S.C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe,

and R.R. Taylor. PipeRench: a reconfigurable architecture and compiler. Com­

puter, 33(4):70- 77, Apr 2000.

[Grundy and Stacey, 2008] Ian Grundy and Andrew Stacey. Particle swarm opti­

mization with combined mutation and hill climbing. Complexity International, 12,

October 2008.

[Guattery and Guattery, 1997] Stephen Guattery and Stephen Guattery. Graph Em­

bedding Techniques For Bounding Condition Numbers Of Incomplete Factor Pre­

conditioners. Technical report , ICASE, NASA Langley Research, 1997.

[Guo, 2006] Yuanqing Guo. Mapping Applications to a Coarse- Grained R econfig­

urable Architecture. PhD thesis, University of Twente, Netherlands, September

2006.

[Hartenstein et al., 2000] R. Hartenstein, M. Herz, T. Hoffmann, and U. Nageldinger.

Kressarray Xplorer: a new CAD environment to optimize reconfigurable datapath

array architectures. In Design Automation Conference, 2000. Proceedings of the

ASP-DAC 2000. A sia and South Pacific, pages 163- 168, 2000.

167

[Hartenstein, 200 1] Reiner Hartenstein. Coarse grain reconfigurable architecture (em­

bedded tutorial) . In ASP-DAC '01: Proceedings of the 2001 conference on A sia

South Pacific design automation, pages 564- 570, New York, Y, USA, 2001. AC I

Press.

[Hatanaka and Bagherzadeh, 2007] A. Hatanaka and N. Bagherzadeh. A l\!Iodulo

Scheduling Algorithm for a Coarse-Grain Reconfigurable Array Template. In Paml­

lel and Di tributed Processing Symposium, 2001. IPDPS 2001. IEEE International,

pages 1- 8, March 2007.

[Heath, 1997] Lenwood S. Heath . Graph embeddings and simplicial maps. Theory of

Computing Sy tems, 30(1):51- 65, 1997.

[Heysters and Smit, 2003] P.M. Heysters and G.J.M. Smit. Mapping of DSP algo­

rithms on the fO TIUM architecture. In Pamllel and Distributed Processing

Symposium, 2003. Proceedings. International, page 6, April 2003.

[Hu, 2009] Xiaohui Hu. Particle Swarm Optimization.

http:/ /www.swarmintelligence.org/ index.php, December 2009.

[Huff, 1993] Richard A. Huff. Lifetime-sensitive modulo scheduling. In In Proc. of the

ACM SIGPLAN '93 Conf. on Progmmming Language Design and Implementation,

pages 258- 267, 1993.

[IMEC, 2009] IMEC. ADRES Architecture. http:/ / www2.imec.be, December 2009.

168

[Kennedy and Eberhart, 1995] J . Kennedy and R. Eberhart. Par ticle swarm opti­

mization. In Neural Networks, 1995. Proceedings., IEEE International Conference

on, volume 4, pages 1942- 1948 vol.4, Nov/ Dec 1995.

[Kwok and Ahmad, 1999] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling

algorithms for allocating directed task graphs to multiprocessors. ACM Comput.

Surv., 31(4):406- 471 , 1999.

[Lam, 1988] Monica Lam. Software Pipelining: An Effective Scheduling Technique

for VLIW Machines. In Proceedings of the SIGPLAN '88 Conference on Program­

ming Language Design and Implementation, pages 318- 328, Atlanta,Georgia, June

1988.

[Lee et al., 2010] Ganghee Lee, Kyungwook Chang, and Kiyoung Choi. Automatic

mapping of control-intensive kernels onto coarse-grained reconfigurable array ar­

chitecture with speculative execution. Parallel Distributed Processing, Workshops

and Phd Forum (IPDPSW), 2010 IEEE International Symposium on, pages 1 - 4,

apr. 2010.

[Levi and Luccio, 1971] G. Levi and F . Luccio. A weighted graph embedding tech­

nique and its application to automatic circuit layout. Calcolo, 8(1-2) :49- 60, March

1971.

[Llosa et al. , 1995] J. Llosa, M. Valero, E. Ayguade, and A. Gonzalez. Hypernode

reduction modulo scheduling. In Microarchitecture, 1995. Proceedings of the 28th

Annual International Symposium on, pages 350- 360, Nov-1 Dec 1995.

169

[Llosa et al., 1996] Josep Llosa, Antonio Gonzalez, Eduard Ayguade, and Mateo

Valero. Swing modulo scheduling: A lifetime-sensitive approach. In In Conference

on Parallel Architectures and Compilation Techniques (PACT'96), pages 80- 86,

Boston, MA, October 1996. IEEE Computer Society Press.

[Llosa et al. , 2001] J . Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt.

Lifetime-sensitive modulo scheduling in a production environment. Computers,

IEEE Transactions on, 50(3):234- 249, Mar 2001.

[Marshall et al., 1999] Alan Marshall, Tony Stansfield, Igor Kostarnov, J ean

Vuillemin, and Brad Hutchings. A reconfigurable arithmetic array for multime­

dia applications. In FPGA '99: Proceedings of the 1999 ACM/ SI GDA seventh

international symposium on Field programmable gate arrays, pages 135- 143, New

York, NY, USA, 1999. ACM.

[Mei et al., 2002] Bingfeng Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauw­

ereins. DRESC: a retargetable compiler for coarse-grained reconfigurable architec­

tures. In Field-Programmable Technology, 2002. (FPT) . Proceedings. 2002 IEEE

International Conference on, pages 166- 173, Dec. 2002.

[Niei et al., 2003a] B. Mei, S. Vernalde, D. Verkest , H. De Man, and R. Lauwere­

ins. Exploiting loop-level parallelism on coarse-grained reconfigurable architectures

using modulo scheduling. Computers and Digital Techniques, l EE Proceedings,

150(5):255- 261, Sept. 2003.

[Mei et al., 2003b] Bingfeng Mei, S. Vernalde, D. Verkest , H. De Man, and R. Lauw­

ereins. Exploit ing loop-level parallelism on coarse-grained reconfigurable archi-

170

tectures usmg modulo scheduling. In Design, Automation and Test in Europe

Conference and Exhibition, 2003, pages 296- 301 , 2003.

[Mei et al., 2005a] Bingfeng Mei, Andy Lambrechts, Diederik Verkest , Jean-Yves

Mignolet, and Rudy Lauwereins. Architecture Exploration for a Reconfigurable

Architecture Template. IEEE Design andTest of Computers, 22(2) :90- 101, 2005.

[Mei et al., 2005b] Bingfeng Mei, F.-J . Veredas, and B. Masschelein. Mapping an

h .264/avc decoder onto the adres reconfigurable architecture. In Field Program­

mable Logic and Applications, 2005. International Conference on, pages 622 - 625,

aug. 2005.

[Mei et al., 2005c] Bingfeng Mei, F.J. Veredas, and B. Masschelein. Mapping an

H.264/ AVC decoder onto the AD RES reconfigurable architecture. In Field Pro­

grammable Logic and Applications, 2005. International Conference on, pages 622-

625, August 2005.

[Milicev and Jovanovic, 1998] Dragan Milicev and Zoran Jovanovic. Predicated soft­

ware pipelining technique for loops with conditions. Parallel Processing Sympo­

sium, 1998. IPPS/ SPDP 1998. Proceedings of the First Merged International ...

and Symposium on Parallel and Distributed Processing 1998, pages 176 - 180, mar.

1998.

[Newsome and Song, 2003] James Newsome and Dawn Song. GEM: Graph EMbed­

ding for Routing and Dat a-Centric Storage in Sensor Networks without Geographic

Information. In Proceedings of the First ACM Conference on Embedded Network

Sensor Systems, pages 76- 88. ACM Press, November 2003.

171

[Nonsiri and Supratid, 2008] S. Nonsiri and S. Supratid . Modifying ant colony op­

t imization. Soft Computing in Industrial Applications, 2008. SMCia '08. IEEE

Conference on, pages 95 - 100, jun. 2008.

[Oh et al., 2009] Taewook Oh, Bernhard Egger, Hyunchul Park, and Scott Mahlke.

Recurrence cycle aware modulo scheduling for coarse-grained reconfigurable archi­

tectures. SIGPLAN Not., 44(7):21- 30, 2009.

[Park et al., 2006] Hyunchul P ark, Kevin Fan, Manjunath Kudlur, and Scott Mahlke.

Modulo Graph Embedding: Mapping Applications onto Coarse-Grained Reconfig­

urable Architectures. In in CASES S06: Proceedings of the 2006 international

conference on Compilers, architecture, pages 136- 146. ACM Press, 2006.

[Park et al. , 2008] Hyunchul Park, Kevin Fan, Scott A. Mahlke, Taewook Oh,

Heeseok Kim, and Hong-seok Kim. Edge-centric modulo scheduling for coarse­

grained reconfigurable architectures. In Proceedings of the 17th international con­

ference on Parallel architectures and compilation techniques, PACT '08, pages 166-

176, New York, NY, USA, 2008. ACM.

[Peters and Square, 2011] Tim Peters and Kendall Square. Livermore loops coded in

c. http:/ / W\vw.netlib.org/benchmark/ livermorec, November 2011.

[Rau, 1994] B. Ramakrishna Rau. Iterative modulo scheduling: an algorithm for soft­

ware pipelining loops. In MICRO 21: Proceedings of the 27th annual international

symposium on Microarchitecture, pages 63- 74, New York, NY, USA, 1994. ACM.

172

[Shekhawat et al., 2009] Anirudh Shekhawat, Pratik Poddar, and Dinesh

Boswal. Ant Colony Optimization Algorithms : Introduction and Beyond.

http:/ jwww.cse.iitb.ac.in/ pratik/ projectreportsjaco.pdf, 2009.

[Singh et al. , 2000a] H. Singh, Ming-Hau Lee, Guangming Lu, F.J. Kurdahi,

N. Bagherzadeh , and E .M. Chaves Filho. MorphoSys: an integrated reconfigurable

system for data-parallel and computation-intensive applications. Computers, IEEE

Transactions on, 49(5):465- 481, May 2000.

[Singh et al., 2000b] H. Singh , Guangming Lu, Ming-Hau Lee, E . Filho, R. Maestre,

F. Kurdahi, and N. Bagherzadeh. MorphoSys: case study of a reconfigurable

computing system targeting multimedia applications. In Design Automation Con­

f erence, 2000. Proceedings 2000. 37th, pages 573- 578, 2000.

[Smelyanskiy et al., 2004] Mikhail Smelyanskiy, Scott IVIahlke, and EdwardS. David­

son. Probabilistic predicate-aware modulo scheduling. Code Generation and Op­

timization, 2004. CGO 2004. International Symposium on, pages 151 - 162, mar.

2004.

[Smit et al., 2007] Gerard J. M. Smit, Andre B. J . Kokkeler , Pascal T. \ 1\Tolkotte,

Philip K. F. Holzenspies, Marcel D. van de Burgwal, and Paul M. Heysters. The

Chameleon architecture for streaming dsp applications. EURASIP Journal of Em­

bedded System, 2007(1):1 , 2007.

[Song et al., 2008] Xiaoyu Song, Chunguang Chang, and Yang Cao. New particle

swarm algorithm for job shop scheduling problems. In Intelligent Control and

173

Automation, 2008. WCICA 2008. 7th World Congress on, pages 3996- 4001, June

2008.

[Sanchez and Gonzalez, 2001] J . Sanchez and A. Gonzalez. Clustered Modulo

Scheduling in a VLHV Architecture with Distributed Cache. Joumal on Instruction

Level Parallelism (JILP), 3, October 2001.

[T.Chiang et al., 2006] T .Chiang, P. Chang, and Y.Huang. Multi-Processor Tasks

with Resource and Timing Constraints Using Particle Swarm Optimization. IJC­

SNS Intemational Joumal of Computer Science and Network Security, 6(4), April

2006.

[Teifel and Manohar, 2004] John Teifel and Rajit Manohar. Static tokens: Using

dataflow to automate concurrent pipeline synthesis. In In Proceedings of Intema­

tional Symposium on Asynchronous Circuits and Systems, pages 17- 27, 2004.

[Texas A&M University-Kingsville, 2009] Texas A&M University-Kingsville. Lat-

tice LPC analysis filter. http:/ / www.engineer.tamuk.edu/ SPark/ Analysis-

Synthesis.htm, December 2009.

[Texas Instruments. inc, 2009] Texas Instruments. me.

http: / / dspvillage.ti.com, May 2009.

[Thenorio, 2010] Alexandre Weffort Thenorio.

http:/ /www.cs.chalmers.se, January 2010.

DSP Benchmarks.

Genetic Algorithms.

[Todman et al. , 2005] T .J . Todman, G.A. Constantinides, S.J.E. Wilton, 0. Mencer,

W. Luk, and P.Y.K. Cheung. Reconfigurable computing: architectures and design

174

methods. Comp'Uters and Digital Techniq'Ues, lEE Proceedings -, 152(2):193- 207,

Mar 2005.

[Tuhin and orvell , 2008] M. Tuhin and T.S. orvell. Compiling parallel applica­

tions to coarse-grained reconfigurable architectures. In Electrical and Comp'Uter

Engineering, 2008. CCECE 2008. Canadian Conference on, page 001723-G01728,

May 2008.

[Tuhin, 2007] Iohammed Ashraful Alam Tuhin. Compiling P arallel Applications to

Coarse-Grain d Reconfigurable Architectures. !laster's thesis, l\Iemorial University

of ewfoundland, St . John's Newfoundland and Labrador, Canada, July 2007.

[University of California, 2009] University of California . Morphosys Architecture.

http:j j www. ng.uci.edu/ morphosys, December 2009.

[University of Patras, 2009] University of Patras. VLSI design.

http:/ / v..rwvv.vl i.ee.upatras .gr, December 2009.

[Uysal and Bulkan, 2008] Ozgur Uysal and Serol Bulkan. Comparison of Genetic

Algorithm and Particle Swarm Optimization for Bicriteria Permutation Flowshop

Scheduling Problem. International Jo'Urnal of Comp'Utational Intelligence Research,

4(2):159lJ175, 2008.

[Vassiliadis and Soudris, 2007a] Stamatis Vassiliadis and Dimitrios Soudris. Fine­

and Coarse- Grain R econjig'Urable Corn,p'Uting. Springer Netherlands, 2007.

175

[Vassiliadis and Soudris, 2007b] Stamatis Vassiliadis and Dimitrios Soudris. Fine­

and Coarse-Grain Reconfigurable Computing, chapter 6, pages 255- 297. Springer

Netherlands, 2007.

[Wang et al., 2001] T . Y. Wang, K. B. Wu, andY. W . Liu. A simulated annealing

algorithm for facility layout problems under variable demand in cellular manufac­

turing systems. Computers in Industry, 46(2):181 - 188, 2001.

[VVang et al. , 2007] Xiangyang \ ,Yang, J ie Yang, Xiaolong Teng, Weijun Xia, and

Richard J ensen. Feature selection based on rough sets and particle swarm op­

timization. Pattern Recognition Letters, 28(4):459 - 471, 2007.

[\¥arter et al., 1992] Nancy J . Warter , Grant E. Haab, Grant E . Haab , and Kr­

ishna Subramanian. Enhanced Modulo Scheduling For Loops \,Yith Condit ional

Branches. In Microarchitecture, 1992. MICRO 25., Proceedings of the 25th Annual

International Symposium on, pages 170- 179, Dec 1992.

[Warter et al. , 1993] Nancy J . Warter, Daniel M. Lavery, and \,Yen mei W . Hwu.

The benefit of predicated execution for software pipelining. System Sciences, 1993,

Proceeding of the Twenty-Sixth Hawaii International Conference on, i:497 - 506

vol.l , jan. 1993.

[Wu, 2011] Shuang Wu. Dataflow synthesis and verification for parallel object­

oriented programming languages. Master's t hesis, Memorial University of New­

foundland, March 2011.

176

,--

[Xiaoyu Song and Cao, 2008] Chunguang Chang Xiaoyu Song and Yang Cao. New

Particle Swarm Algorit hm for Job Shop Scheduling. In Proceedings of the 7th World

Congress on Int elligent Control and Automation Chongqing, China, J une 2008.

[Zalamea et al. , 2001] J . Zalamea, J . Llosa, E . Ayguade, and NI. Valero. Modulo

scheduling with integrated register spilling for clustered VLIW architectures. In

Microarchitecture, 2001 . MICR0-34. Proceedings. 34th ACM/ IEEE International

Symposium on, pages 160- 169, Dec. 2001.

[Zalamea et al., 2004] J . Zalamea, J . Llosa, E. Ayguade, and M. Valero. Register con­

strained modulo scheduling. Parallel and Distributed S ystems, IEEE Transactions

on, 15(5):417- 430, May 2004.

177

Appendix A

HARPOL code for inhouse

ifthen-else benchmarks

A.O ifthen-else benchmark -one condition

(class ifthenex

constructor()

private obj a := 3

private obj b := 0

private obj c := 1

private obj d := 1

private obj e := 1

(thread

178

(if a%2= 0 then

b:= a-c

e:= b+ d

else

b:= a+ c

d:= c+e

if)

a :=b

thread)

class)

obj objl := new ifthenex()

A.l ifthen-else benchmark -two conditions

(class ifthenex

constructor()

private obj a := 3

private obj b := 0

179

private obj c := 1

private obj d := 1

private obj e := 1

(thread

d:= e

thread)

(if a%2= 0 then

(if b< O then

b:=a-c

e:= b+ d

else

b:= a+c

d :=c+e

if)

else

c:= c+1

if)

a := b

180

class)

obj obj1 := new ifthenex()

A.2 HARPOL code ifthen-else benchmark -three

conditions

(class ifthenex

constructor()

private obj a := 3

private obj b := 0

private obj c := 2

private obj d := 1

private obj e := 1

(thread

e:= e*3

(if a%2= 0 then

c:= c+ 1

(if b< O then

b:= a-c

181

else

if)

a:= d

b:= e

thread)

class)

(if e>d then

d:= d+b

e:=c+d

else

b:= a+c

if)

if)

c:= c-1

d:= c+ e

e:= e/2

obj objl := new ifthenex()

182

