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Abstract 

Reconfigurable systems have drawn increasing attention from both academic re­

searchers and creators of commercial applications in the past few years because they 

could combine flexibility with efficiency. There are two main types of reconfigurable 

architectures - fine-grained and coarse-grained. The functionality of fine-grained ar­

chitecture hardware is specified at t he bit level while t he functionality of t he coarse­

grained architecture hardware is specified at the word level. Coarse-grained recon­

figurable architectures (CGRAs) have gained currency in recent years due to their 

abundant parallelism, high computational intensity and flexibility. A CGRA nor­

mally is comprised of an array of basic computational and storage resources, which 

are capable of processing a large volume of applications simultaneously. To exploit 

the inherent parallelism in the applications to enhance performance, CGRAs have 

been structured for accelerating computation intensive parts such as loops, that re­

quire large amounts of execut ion t ime. The loop body is essentially drav.rn onto the 

CGRA mesh, subject to modulo resource usage constraints. Much research has been 

done to exploit the potential parallelism of CGRAs to increase the performance of 

time-consuming loops. However, sparse connectivity and distributed register files 

present difficult challenges to the scheduling phase of t he CGRA compilation frame­

work. \ iVhile traditional schedulers do not take routability into consideration, software 

pipelining can improve the scheduling of instructions in loops by overlapping instruc­

tions from different iterations. Modulo scheduling is an approach for constructing 

software pipelines that focuses on minimizing the t ime between the initiations of it­

erations - t he so-called initiation interval (I I ). For example, if a new iteration is 
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started every I I cycles, the time to complete n iterations will approach I I x n, for 

large n loops, thereby maximizing performance. 

The problems of scheduling (deciding when an operation sho'Uld happen), placing 

(deciding where an operation sho'Uld happen), and routing (the problem of how in­

fo rmation travels tho'Ugh space and time between operations ) can be unified if t hey 

are modelled by a graph embedding problem. The data flow graph of the loop is 

embedded in a rout ing resource graph representing the hardware across a number of 

cycles equal to the initiation interval. 

Part icle swarm optimization (PSO) has shown to be successful in many applica­

tions in continuous opt imization problems. In this t hesis, we have proposed algo­

rithms to solve scheduling, placing, and routing of loop operations simultaneously 

by using PSO. We call this approach modulo-constrained hybrid particle swarm op­

timization (MCHPSO). There are many constraints and one opt imization objective, 

which is the II that needs to be considered during the mapping and scheduling pro­

cedure. The scheduling algorithm tries to minimize the initiation interval to start 

the next iteration of t he loop under the resource and modulo constraints for the 

architecture being used. 

When conditional branches such as if-then-else statements are present in the loop, 

t hey create multiple execution paths. Exploit ing condit ional branches through our 

predicated exclusivity, t he MCHPSO algorithm reuses the resources which are in 

t he exclusive execut ion paths and which may allow the loop to be scheduled with a 

lower I I. Finally, a priority scheme algorithm along with recurrence aware modulo 

scheduling is proposed to map inter-iteration dependencies onto CGRAs, which is 

able to save resources for all recurrences cycles and to map remaining operations. 
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Chapter 0 

Introduction 

0.0 Reconfigurable Computing 

Reconfigurable systems [Abielmona, 2009] have drawn increasing attention from both 

academic and commercial researchers in the past few years because they combine 

flexibility with efficiency and upgradability [Todman et al., 2005]. The flexibility in 

reconfigurable devices mainly comes from their routing interconnect . Reconfigurable 

computing fills the gap between application-specific integrated circuits (A SICs) and 

general purpose processors ( GPPs) , as described in Figure 0.0. When compared wit h 

GPPs, reconfigurable computing has the ability to make substantial changes in the 

data path, in addition to the control flow. However , when compared with ASICs, 

it has the possibility to adapt the hardware during the runtime by "loading" a new 

configuration in the memory. To avoid the bandwidth limitation between processor 

and memory, called the Von Neumann bottleneck, a port ion of t he application is 

mapped directly onto the hardware to increase the data parallelism in reconfigurable 
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computing. 

Performance 

I ASIC 
i 

Reconf igurable 
Comput ing 

(FPGAs, CGRAs} 

Micro­
processor 

Flexibility 

Figure 0.0: Advantages of Reconfigurable Computing 

The principal benefits of reconfigurable comput ing compared with ASICs and 

GPPs are the ability to design larger hardware with fewer gates and to realize the 

flexibility of a software-based solution while retaining the execution speed of a more 

t radit ional, hardware-based approach [Barr , 1998]. Due to the dynamic nature of 

reconfigurable computing, it is advantageous to have the software manage the process 

of deciding which hardware objects to execute. 

Reconfigurable architectures are broadly classified into fine-grained and coarse-

grained. The first devices that had been used for fine-grained reconfigurable com-

puting were the field-programmable gate arrays (FPGAs) . An FPGA consists of a 

matrix of programmable logic cells, execut ing bit-level operations, with a grid of in-

terconnect lines running among them. FPGAs allow realizing systems from a low 
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granularity level, t hat is, logic gates and flip-flops. This makes FPGAs very popular 

for the implementation of complex bit level operations. However, FPGAs are ineffi­

cient for coarse-grained dat a path operations due to the high cost of reconfiguration 

performance and power [Hartenstein, 2001]. The coarser granularity greatly reduces 

the delay, power and configuration time relative to an FPGA device at the expense 

of reduced flexibility [Dimitroulakos et al. , 2007]. However , coarse-grained reconfig­

urability has the advantage of much higher computational density compared to the 

FPGAs. 

0.1 Coarse-Grained Reconfigurable Architecture 

Coarse-grained reconfigurable architectures ( CGRAs) have been emerging as a po­

tential candidate for embedded systems in recent years. CGRAs have a data-path of 

word width whereas fine-grained architectures are much less efficient and have huge 

routing area overhead and poor routability. A major benefit of CGRAs over FPGAs 

is a massive reduction of configuration memory, configuration time, and complexity 

reduction of the P lacement and Routing (P8R) problem [Hartenstein, 2001]. These 

architectures combine wit h the high performance of ASICs and the flexibility of mi­

croprocessors, to accelerate computation intensive parts of applications in embedded 

systems [Dimitroulakos et al. , 2007] . However, t here are still many outstanding is­

sues such as a lack of a good design methodology to exploit high performance and 

efficiency on CGRAs [Vassiliadis and Soudris, 2007a]. 

CGRAs consist of programmable, hardwired, coarse-grained processing elements 

(PEs), which support a predefined set of word-level operations while the intercon-
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nection network is based on the needs of a specific architecture domain. A generic 

architecture of a coarse-grain reconfigurable system, shown in Figure 0.1, encompasses 

a set of coarse-grain reconfigurable units ( CGR Us), a programmable interconnection 

network, a configuration memory, and a controller. The coarse-grained reconfigurable 

array executes the computationally-intensive parts of the application while the main 

processor is responsible for the remaining parts of the application. 

E.x,·c. Control 
~ . ! 

r-----~---------------------, 

Figure 0.1: A Generic Coarse-Grain Reconfigurable System taken from [Vassiliadis 

and Soudris, 2007a]. 

The domain-specific, hardwired , CGRU executes a logical or arithmetic operation 

required by the considered application domain. The CGRUs and interconnections are 

programmed by proper configuration (control) bits that are stored in configuration 
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memory. The configuration memory may store one or multiple configuration contexts, 

but at any given time, one context is active. The controller is responsible for con­

t rolling the loading of configuration contexts from the main memory to configuration 

memory, for monitoring the execution process of t he reconfigurable hardware and for 

activating the reconfiguration contexts. The interconnection network can be realized 

by a crossbar or a mesh structure. 

CGRAs can provide massive amounts of parallelism and high computational ca­

pability. T ypically, the application domains of CGRAs are Digital Signal P rocessing 

( DSP) and multimedia . These kinds of applications usually spend most of their exe­

cution t ime in loop structures. These computational intensive parts have high levels 

of operation and data parallelism. The design of such systems requires a good cor­

respondence between the coarse-grained reconfigurable architecture and the loop's 

characteristics. Kernels (loops ) of an application are mapped onto the array in a 

highly parallel way. Generally, in order to schedule a kernel, it needs richer intercon­

nections. However, richer interconnections come with costs such as wider mult iplex­

ors, more wires, and more configuration bits which translate to large silicon area and 

higher power consumption. Moreover, even wit h the same amount of interconnection 

resources, we can expect variation among topologies. Choosing a good topology is 

an essential step in the architecture exploration. Typically, the applications which 

belong to the application domain of t he CGRAs, are characterized by the high data 

transfer rate between the processor and the memory [Dimitroulakos et al. , 2007]. 
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0.2 Compiling Loops onto CGRAs with Modulo 

Scheduling 

There are abundant computational resources available for parallelism in CGRAs. 

The target applications of CGRAs are typically telecommunications and multimedia 

electronics, which often spend most of their t ime in crit ical segments, typically loops 

[IV!ei et al. , 2003b]. The massive amounts of parallelism found in CGRAs can be used 

to speed up t ime critical loops of an application. Moreover, t he loops often exhibit 

high degree of parallelism and require a great deal of computation intensive resources . 

In order to map the critical loops, we have to consider t he data dependency within 

an iteration of a loop and inter-iteration dependency. When compiling a loop onto 

CGRAs, each operation within the loop requires a resource to be executed on the 

CGRA and the time at which the operation will execute. The executed operation has 

to be routed to the dependent operations in the loop. 

Since each loop iteration repeats t he same pattern of executing operat ions, com­

piling loops onto CGRAs can be achieved by modulo scheduling [Hatanaka and 

Bagherzadeh, 2007]. Modulo scheduling is a software pipelining technique [Llosa 

et al. , 2001] that overlaps several iterations of a loop by generating a schedule for 

an iteration of the loop. Modulo scheduling uses t he same schedule for subsequent 

iterations. Iterations are started at a constant interval called the Init iation Interval 

(II ). The time taken to complete a loop of n iterations is roughly proportional to 

II. The main goal of modulo scheduling is to find a schedule with as low an II as 

possible. 

The scheduling, placing and routing loops onto CGRAs faces several architectural 
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constraints and challenges. Modulo scheduling adds a time dimension to the combina­

tion of placement and routing, which becomes very similar to placement and routing 

for FPGAs [Hatanaka and Bagherzadeh, 2007]. 

0.3 Motivations and Objectives 

In order to solve the scheduling, placing and routing problem onto CGRAs with 

modulo scheduling, several issues have to be considered in the mapping. A schedul­

ing algorithm should be capable of efficiently exploiting regular data parallelism in 

CGRAs with lower initiation interval. The follmving issues motivated us to consider 

a modulo scheduling algorithm for CGRAs. 

• An algorithm capable of achieving a lower initiation interval to start the suc­

cessive itera tions. 

• An algorithm capable of routing intermediate data betwe n the executed oper­

ations of loop. 

• An algorithm that is fast and efficient with optimal usage of resources in the 

final schedule. 

• An algorithm capable of mapping different execution paths of a loop caused by 

conditional branches. 

• An algorithm able to do parallel search of solutions with placement, scheduling 

and routing. 
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• An algorithm must be able to consider the hardware constraints and conserve 

resources. 

• An scheduling algorithm should be compatible with the front end application. 

• An algorithm that is capable of mapping crit ical nodes and edges. 

• An scheduling algorithm should be applicable to different CGRAs and different 

topologies. 

• An algorithm tha t is capable of analyzing best topology of the CGRA. 

Unfortunately, the available parallelism in CGRAs has been exploited by only a 

few automated design and compilation tools [Mei et al. , 2003b]. The modulo schedul­

ing algorithm used in [Hatanaka and Bagherzadeh, 2007] and [Vassiliadis and Soudris, 

2007b] was not able to find optimal usage of resources and took a long time to find 

the valid schedule. Several heuristic techniques were tried by researchers in solving 

the modulo scheduling problem, but the techniques were not fast and efficient [Llosa 

et al., 1996]. For example, t he existing scheduling algorithms find the placement and 

routing solut ion wit h a sequential search for each Data Flow Graph (DFG) operation 

and does not solve conditional code. Particle swarm optimization (PSO) applied to 

instruction scheduling [Abdel-Kader, 2008], provides near optimal solut ions, with fast 

convergence and low execution t ime for various combinatory and mult idimensional 

optimization problems. A simple PSO can get stuck in a locally optimal solution and 

can be made efficient in combination with mutation operators [Grundy and Stacey, 

2008]. To the best of our knowledge, PSO has not been used in modulo scheduling 
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for coarse-grained architectures. As a result , a fast and efficient modulo scheduling 

algorithm for CGRAs with parallel search is developed. 

The objectives of this thesis are: 

• To develop a fast and efficient scheduling, placing and rout ing algorithm called 

modulo constrained hybrid part icle swarm optimization (MCHPSO) to exploit 

loop-level parallelism of different target applications. 

• To analyze the performance of MCHPSO in various CGRA topologies and con­

figurations. 

• To apply MCHPSO to various benchmarks in telecommunications and in mul­

timedia applications and to compare the II achieved with other scheduling al­

gorithms. 

• To develop an algorithm to analyze the DFG with conditional code generated 

from a HARdware Para llel Objects Language (HARPO/ L) program and to 

schedule the condit ional code with MCHPSO wit h efficient use of resource. 

• To develop an algorithm to handle loop-carried dependences or recurrences in 

DFG , where an operation depends on itself or another operation from previous 

iterations. 

0.4 Thesis Contributions 

The following are the contributions of this thesis. 

8 



• Designed the solution structure for the particles in PSO to map DFG onto 

a t ime-space graph called routing resource graph ( RRG), where each particle 

represents a scheduling solution to the mapping process. 

• Designed and implemented MCHPSO algorithm to place, schedule and route 

DFG onto CGRA. The algorithm succeeded in scheduling with lower initia­

tion interval, and with minimal usage of resources. However , the MCHPSO 

algorithm did not conflict with any dat a dependency and satisfied the modulo 

constraints for the CGRA resources. 

• Compared the performance of MCHPSO with other scheduling algorithms and 

analyzed MCHPSO on various topologies and various CGRA configurations, the 

MCHPSO algorithm achieved fast execution t ime and bet ter schedule results 

than other algorit hms. Analyzed the speedup of MCHPSO in intel i7 quad core 

processor. The MCHPSO parallelizes well with many logical processors and 

produces faster result. 

• Designed and implemented a predicated exclusivity MCHPSO algorithm to 

map conditional code in DFG. The exclusivity algorithm was able to mini­

mize the number of resources used in the scheduling process . The exclusivity 

algorithm reused the same resource for conditional code in DFG to be mapped 

onto CGRAs. 

• Designed a preprocessing algorit hm t o extract information from DFG generated 

by the HARPO / L program compiler. The algorithm added predicates and 

symbolic information to the DFG cells (nodes and edges). Designed a method 

9 



to create exclusivity matrix of all DFG cells. 

• Designed a method to find empty slots in MRT (modulo reservation table) using 

Maximum Independent Set algorithm. 

• Analyzed the performance of predicated exclusive MCHPSO algorithm with 

various CGRA configurat ions. Compared the performance of predicated exclu­

sive MCHPSO algorithm with non-exclusive predicated MCHPSO algorithm on 

various benchmarks. 

• Implemented and evaluated a method to handle loop carried dependence in 

DFG to be mapped onto CGRAs. 

0.5 Thesis Overview 

This thesis is organized as follows. Chapter 1 provides a detailed review of modulo 

scheduling in CGRAs. First, an overview of CGRA has been outlined and it is followed 

by selecting a suitable CGRA for the selected problem. Secondly, an overview of 

modulo scheduling has been discussed. Thirdly, the chapter discusses evolut ionary 

algorithms and the use of particle swarm optimization in modulo scheduling. 

Chapter 2 discusses the proposed algorithm called Modulo Constrained Hybrid 

Particle Swarm Optimization (MCHPSO) . An overview of the compilation framework 

has been discussed. The chapter also provides a review of the related work. The 

encoding of particle and fitness calculation in MCHPSO are presented in this chapter. 

Chapter 3 presents the simulation results for MCHPSO. The performance analysis 

of MCHPSO is discussed, based on the interconnections, resource availability and 
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particle size. MCHPSO speedup is analyzed on the Intel i7 quad core processor. 

Chapter 4 discusses the exploitation of conditional structure in CGRAs. This 

chapter presents the predicated exclusivity algorithm. The input DFG was taken from 

the HARPO/ L (HARdware Parallel Objects Language) compiler and the simulation 

results of predicated exclusivity algorithm are discussed. 

Chapter 5 presents the recurrence handling in loops. This chapter reviews var­

ious methodologies to map recurrence relations onto CGRAs. It also presents the 

recurrence aware priorit ized MCHPSO algorithm and its simulation results. 

Chapter 6 concludes the thesis and presents the scope for future work. 
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Chapter 1 

Compilation in Coarse-Grained 

Reconfigurable Architectures 

1.0 Introduction 

Coarse-grained reconfigurable architectures ( CGRAs) have t he potential to exploit 

both the efficiency of hardware and flexibility of software to map large applications. 

A good compiler should employ the CGRA's resources to exploit a high amount of 

operation and loop-level parallelism in the application's loops [Tuhin, 2007] . The 

compiler must carefully schedule the application's loop body and facilitate high per­

formance at a reasonable cost. 

An overview of CGRAs and the selection of target architecture is given in Section 

1.1. Compiling loops to CGRAs involves the modulo scheduling process which is a 

combination of 3 tasks: scheduling, placement, and routing which will be discussed 

in Section 1.2. In this thesis, t he modulo scheduling is done with particle swarm op-
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timization. The various kinds of evolutionary algorithms and the reason for selection 

of PSO are discussed in Section 1.3. This chapter concludes with a discussion of the 

different compilation procedures attempted so far in the CGRAs and the need for a 

new modulo scheduling algorithm in Section 1.4. 

1.1 Coarse-Grained Reconfigurable Architecture 

1.1.0 Introduct ion 

Coarse-Grained Reconfigurable Architectures have been used widely for accelerating 

time consuming loops. Processing elements (PEs), available in a large number of 

CGRAs, can be used to exploit the inherent parallelism found in loops to accelerate 

the execution of applications. In a CGRA, the PEs are organized in a 2-dimensional 

(2D) array, connected with a configurable interconnect network [Dimitroulakos et al. , 

2009]. 

1.1.1 Overview of some CGR As 

1.1.1.0 MorphoSys 

The .IVIorphoSys architecture has been designed for multimedia applications to accom­

modate applications with data parallelism and high throughput constraints, such as 

video compression [Singh et al., 2000a] . The components of t he MorphoSys architec­

ture are an array of reconfigurable cells (RCs), processing units (called RC Array), a 

general-purpose (core ) processor ( TinyRISC) and a high-bandwidth memory inter­

face, implemented as a single chip. The computation-intensive operations are handled 
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by the single instruction multiple data (SIMD) array of coarse-grained reconfigurable 

cells ( CGRCs) . The sequential processing and the RC array operation controls are 

performed by the TinyRISC [Singh et al., 2000b]. A context word is loaded into the 

RC's context register for every execution cycle. 

1.1.1.1 KressArray 

KressArray (al o known as rDPA) has a 32-bit-wide data path with an array of recon­

figurable processing elements. The KressArray reconfigurable architecture features 

arithmetic and logic operators on the level of the C programming language, making 

the mapping simpl r than for FPGAs [Hartenstein et al., 2000]. It consists of a mesh 

of PEs, also called rDPUs ( reconfigurable Data Path Units), which are connected to 

each of their 4 nearest neighbors by 2 bidirectional links with a data path width of 

32- bits, wh r "bidirectional 11 means a direction is selected at configuration time. 

1.1.1.2 Montium 

The coar -grained reconfigurable part of the Chameleon system-on-chip is called the 

Montium Tile [Heysters and Smit, 2003]. The Montium Tile is especially designed 

for mobile computing and targets the 16-bit digital signal proce sing (DSP) algo­

rithm domain [Smit et al. , 2007]. Iontium supports both integ r and fixed-point 

arithmetic, with a 16-bit datapath width. The tile is interfaced with the outside 

world with the communication and configuration unit ( CCU). The tile has 5 identi­

cal arithmetic and logic units (ALUl. . . ALU5) that can exploit spatial concurrency 

to enhance performance. Dedicated input output units (DIGs) are used to handle 

fast and parallel transfers of input/ output data that are placed around the array 
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architecture [Alsolaim et aL, 1999]. 

1.1.1.3 DReAM 

Dynamically reconfigurable architecture for mobile systems (DReAM) [Alsolaim, 2002] 

was designed to be a part of a system-on-a-chip (SoC) solution for the third and fu­

ture generations of wireless mobile terminals. It consists of an array of concurrently 

operating coarse-grained reconfigurable processing units ( RP Us) . Each RPU was 

designed to execute all required arithmetic data manipulations and control-flow op­

erations. To perform fast dynamic reconfiguration, the configuration memory unit 

( CMU) holds configuration data for each of the RPUs and is controlled by one re­

sponsible communication switching unit ( CSU) . 

1.1.1.4 CHESS 

The reconfigurable arit hmetic array (RAA), termed CHESS [Marshall et al., 1999], 

was developed by hewlett packard (HPJ Labs to provide high computational density, 

wide internal data bandwidth , distributed registers, and memory resources for im­

portant multimedia algorithm cores. CHESS also offers strong scalability, software 

flexibili ty and advanced features for dynamic reconfiguration. CHESS's functional 

units are 4-bit ALUs and it reduces the number of bits of configuration memory by 

having 4-bit bus connections. It allows a small configuration memory to speedup 

reconfiguration. 
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1.1.1.5 RaPiD 

RaPiD [Ebeling, 2002] is a coarse-grained reconfigurable architecture to achieve the 

low cost and high power efficiency of application-specific integrated circuits (ASICs), 

without losing the flexibility of programmable processors. RaPiD architecture is 

configured to form a linear computational pipeline, with a linear array of functional 

units (FUs). Each RaPiD cell contains 3 ALUs, one multiplier , three 32-word local 

memories, 6 general-purpose "datapath registers" and 3 small local memories. The 

RaPiD array is designed to be clocked at 100MHz and reconfiguration t ime for the 

array is conservatively estimated to be 2000 cycles [Ebeling et al., 1997]. 

1.1.1.6 PipeRench 

PipeRench [Goldstein et al., 2000] is a reconfigurable fabric with a network of in­

terconnected configurable logic and storage elements. PipeRench contains a set of 

physical pipeline stages called stripes. In each stripe, the interconnection network ac­

cepts inputs from each processing element in that stripe and one of the register values 

from each register file in the previous stripe. Each PE contains an arithmetic logic 

unit ( AL U) and a pass register file where the AL U contains lookup t ables ( L UTs) 

and extra circuitry for carry chains, zero detection, and so on. PipeRench was de­

signed to improve reconfiguration time, compilation time, and forward compatibility, 

increased flexibility, reduced chip development and maintenance fabrication costs. 

16 



1.1.1.7 ADRES 

The architecture for dynamically reconfigurable embedded systems (ADRES) [Mei 

et al., 2005a] t ightly couples a very long instruction word ( VLI W) processor and 

a reconfigurable array. The architecture has 2 virtual functional views: the VLIW 

processor view and the reconfigurable array view built into a single architecture [Mei 

et al., 2003b]. The VLI\iV processor, consisting of several functional units and a mul­

t ipart register file (RF) , serves the first row of the reconfigurable array. Some FUs in 

the first row can connect with memory to facilitate data access for load/ store opera­

tions. The reconfigurable array is intended to efficiently execute only computationally 

intensive kernels of applications [f\!Iei et al. , 2003a]. The architecture template, shown 

in Figure 1.0, consists of many basic components, including computational, storage, 

and routing resources . 

The FUs can execute a set of word-level operations selected by a control signal. 

Register fi les and memory blocks can store intermediate data. Rout ing resources, 

including wires, mult iplexers , and buses connect the computational resources and 

storage resources defined by the topology through point-to-point connections or a 

shared bus. The different instances of the architecture can be generated by a script­

based technique and by specifying different values for the communication topology, 

the supported operation set, resource allocation, and latency in t he target architecture 

[Zalamea et al. , 2004]. 

The results can be written to the distributed RFs, which are small and have fewer 

ports than the shared RF, or they can be routed to other FUs. An output register 

buffers each of the FU's outputs, to guarantee timing. Multiplexers are used to route 
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Figure 1.0: ADRES Architecture taken from [Mei et al., 2005c] 

data from different sources. The configuration RAM st ores the configuration for each 

cycle. In ADRES, the integration of predicate support , distributed register files and 

configuration RAM make it applicable and efficient to many applications. 

1.1.2 Comparison and Selection of the Target CGRA 

The various CGRAs discussed above have their advantages and disadvantages. Mor-

phoSys has a 16-bit granularity with mesh based structure, fast memory interface, 

dynamic programming and requires a manual placement and routing tool [University 

of California, 2009]. KressArray has a highly flexible mapper used to map massively 
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communication-intensive applications [Hartenstein et al., 2000] and provides area ef­

ficient and throughput efficient design. KressArray can be used only for limited 

applications with regular data dependencies [Becker et al., 1998]. Montium focuses 

on providing sufficient flexibility, provides abundant parallelism, but has limited con­

figuration spaces [Guo, 2006] . ADRES uses the VLIW processor for non-kernel code 

and reduces the communication cost between the VLIW and reconfigurable matrix 

through the shar d RFs for resource sharing [Vassiliadis and Soudris, 2007a]. DReAM 

was designed for modern wireless communication system and provides an acceptable 

trade off between flexibility and application performance [Becker et al., 2000]. 

CHESS offers strong scalability, dynamic reconfiguration but it has a constraint 

that the ALU and switchbox should be of the same size and the need of long wires 

for the transfer of data [Marshall et al., 1999]. RaPiD features static and dynamic 

control to map a range of applications but it has the disadvantage of a data path with 

an implicit directionality [Ebeling, 2002]. PipeRench trades off configuration size 

for compilation speed by hardware virtualization and improved compilation time, 

reconfiguration time, and forward compatibility. PipeRench has a low bandwidth 

between main memory and processor, which limits the type of applications which 

require speed up [Goldstein et al., 2000]. 

Among the various coarse-grained architectures discussed , the ADRES architec­

ture was considered for the proposed research. T he reason for this choice was that 

the ADRES architecture is a flexible architecture template, with low communication 

costs. The loops present in an application can be mapped onto the ADRES array in 

a highly parallel way with ease of programming. The compiler within the ADRES 

template is automatically retargetable i.e., it has been designed to be relatively easy 
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to modify to generate code for different configurations and have provided a good deal 

of data for comparison. 

1.2 Scheduling 

1.2.0 Introduction 

The objective of scheduling is to minimize the execution time of a parallel computation 

application by properly allocating tasks to the processors by avoiding the processor 

stall cycles. Scheduling inner loop bodies is a NP-hard problem which implies that 

there is no polynomial time algorithm that can give an optimal solution to the problem 

(assuming P =J NP) [Kwok and Ahmad, 1999] . The ultimate goal of scheduling 

is to create an optimal schedule, a schedule with t he shortest length of the given 

application. Schedule length or makespan is measured as t he overall execution-time of 

a parallel program in cycles. Additionally, when a schedule is produced , the scheduling 

algorithms must satisfy both resource and precedence constraints. 

Depending on the constraints, scheduling may be broadly classified into 3 main 

categories [ChingandKeshab, 1995]. 

Time-Constrained Scheduling minimizes the number of the required resources 

when the iteration period is fixed. 

Unconstrained Scheduling does not have any fixed timing or resource usage dur­

ing the scheduling. 

Resource-Constrained Scheduling fixes the number of resources and the objec­

tives to determine the fastest schedule, or the smallest iteration period. 
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List scheduling is the most commonly used scheduling approach. It can be clas­

sified under resource constrained scheduling and time constrained scheduling. A 

scheduling list is statically constructed before node allocation begins, and most im­

portantly, the sequencing in the list is not modified. List scheduling is often used for 

both instruction scheduling and processor scheduling [Beaty, 1994]. In an iteration , 

nodes with a higher priority are scheduled first and lower priority nodes are deferred 

to a later clock cycle based on the priority functions like as soon as possible (ASAP), 

as late as possible (ALAP) , mobility, height-based priority etc. [Tuhin, 2007]. The 

priority sorting is carried out by selecting a node based on the priorities listed above 

and added to the priority sort list. The sorting is then carried out for each child node 

of the selected node until all t he nodes in the list are processed. 

1.2.1 Software Pipelining 

Software pipelining [Lam, 1988] is a scheduling technique which overlaps the oper­

ations in the successive iteration to yield processors's fast execution rate. Software 

pipelining is a global cyclic scheduling problem to exploit the instruction level paral­

lelism (ILP) available in loops. The idea is to look for a pattern of operations from 

various iterations (often termed as the kernel) so that when repeatedly iterating over 

this pattern, it produces the effect that iterations are initiated at a regular interval. 

This interval is termed the initiation interval (II). Thus successive iterations of the 

loop are in execution with different stages of their computation. Once a schedule is 

obtained, the loop is reconstructed into a prologue, a kernel, and an epilogue. Instruc­

tions in the prologue are repeated unt il t he pipeline is filled. The prologue consists of 
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code from the first few iterations of the loop. The loop kernel or steady state [Allan et 

al. , 1995] consists of instructions from multiple iterations of the original loop, and a 

new iteration of the kernel is initiated at every II cycles. Instructions in the epilogue 

are designed to complete the functionality of code and consist of code to complete 

the last few iterations of the loop. 

1.2.2 Modulo Scheduling 

Modulo scheduling [Mei et al. , 2003a] is a software pipeline technique which overlaps 

several iterations of a loop by starting successive iterations at a regular interval. 

The main goal of modulo scheduling is to simplify the process of software pipelining 

by generating a schedule for an iteration of the loop and use the same schedule 

for subsequent iterations at constant intervals. Modulo Scheduling ensures that it 

satisfies data dependence constraints and intra- and inter-iteration dependency, and 

no resource availability conflicts. 

The schedule for an iteration is divided into stages so that different stages of the 

successive iteration execution get overlapped. The number of stages in an iteration is 

called its stage count ( SC), and the number of cycles per stage is termed the initiation 

interval. The Init iation Interval should be minimized to exploit as much parallelism 

from a loop as is possible and modulo scheduling tries to minimize it [Tuhin, 2007]. 

The II is constrained either by loop-carried dependences of the loop (i.e cases where 

data from an earlier iteration is used in a later iteration) or by resource constraints of 

the hardware. The limit on the II set by loop-carried dependence is called recurrence 

minimal initiation interval ( R ecMII ), while the limit set by resource constraints is 
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called resource minimal initiation interval (ResMII). The minimal initiation interval 

(MII ) is a lower bound to start the pipeline scheduling process and it is computed 

as Mil = max(R esMII , RecMII ) [Llosa et al., 2001]. If a valid schedule cannot be 

obtained by an II equal to Mil, then II is incremented by one and the scheduling 

process is repeated until a valid schedule is obtained or the algorithm gives up. 

Modulo scheduling can be illustrated by taking an example of the dependence 

graph shown in Figure 1.1b, along with a 2 x 2 architecture. The data dependence 

graph unrolled for 3 iterations, is shown in Figure 1.1a. The initiation interval is 1 

and so at time cycle 2, all the 3 iterations are executing at different stages. 

A modulo schedule can be generated by the use of heuristics and integer linear 

programming. Since modulo scheduling is based on heuristics, it may not always 

give the optimal solution. T here are many heuristic algorithms developed for modulo 

scheduling such as 

• Iterative modulo scheduling [Rau, 1994] 

• Recurrence cycle aware modulo scheduling [Oh et al., 2009] 

• Clustered modulo scheduling [Sanchez and Gonzalez, 2001] 

• Swing modulo scheduling [Llosa et al., 1996] 

• Hypernode reduction modulo scheduling [Llosa et al. , 1995] 

• Modulo scheduling with integrated register spilling [Zalamea et al., 2001]. 
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Figure 1.1: a)Modulo Scheduling Example b)DFG and Configuration for 2x2 matrix, 

modified from [Mei et al., 2003b] 

1.2.3 Graph Embedding 

Graph embedding is a problem in graph theory [Newsome and Song, 2003] in which 

a directed guest graph G 1 = ( V1 , E 1 ) is embedded in another directed host graph 

G2 = (V2, E2) [Heath, 1997]. The embedding consists of a one to one function Pv from 

V1 to V2 and a funct ion Pe that maps each edge ( u , v) E E 1 to a path in G2 between 

p( u) and p( v) . T here are 3 kinds of primary cost , measured in graph embedding: 

dilation, expansion, and congestion [Heath, 1997]. For a given embedding (pv,PJ , the 

congestion of edge e2 in G2 is the number of edges e1 in G1 such that e2 is on the 
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path Pe(e1 ); the congestion of an embedding is its maximum edge congestion. The 

length of the longest assigned path is called the dilation of the graph embedding. The 

ratio ~ ~~ ~ is called the expansion of the graph [Heath , 1997]. Using graph embedding, 

the performance of one network (guest graph) over another network (host graph) can 

be investigated. Graph embedding provides a systematic approach to various node­

node communication problems [Newsome and Song, 2003]. The concept of graph 

embedding can be extended to solve many problems [Guattery and Guattery, 1997]. 

Graph models are successfully employed in various applications such as computer 

aided circuit layout, network topologies, data-centric applications in sensor networks, 

and so on [Newsome and Song, 2003], [Levi and Luccio, 1971]. Graph embedding 

is effective in scheduling, placing and routing because it can take into account the 

communication structure of the loop body and scales well with respect to the number 

of operations [Park et al., 2006]. 

1.2.4 Modulo Reservation Table 

In software pipelining, the modulo reservation table ( MRT) is used in determining if 

there is a resource conflict while allocating resources. MRT can be used to represent 

the resource usage of the steady state by mapping the resource usage at time t to 

that at timet mod s [Lam, 1988]. 

1.2.5 Routing Resource Graph 

When modulo scheduling is applied to the data flow graph , the intermediate operands 

are routed by allocating resources in the routing resource graph (RRG ) [Ebeling et 
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al., 1995]. The RRG is replicated from the architecture graph for every t ime cycle. 

RRG reserves resources by enforcing modulo constraints. 

1.3 Evolutionary Algorithms 

In order to find a scheduling, placing, and routing for the loops in CGRAs, we have 

to find a valid schedule with the minimum number of resource usage and with the 

smallest possible II and also satisfy all dependence and modulo constraints. Some 

approaches have been tried to schedule loops, such as with simulated annealing [Mei 

et al., 2005c],[Hatanaka and Bagherzadeh, 2007] to minimize the number of resources 

used in routing. In this section, some selected evolutionary algorithms will be dis­

cussed briefly and we will conclude with the selection of an evolut ionary algorithm 

for our modulo scheduling algorithm. 

1.3.0 Overview 

1.3.0.0 Simulated Annealing 

Simulated annealing (SA) [\iVang et al., 2001] is a method to solve global optimizat ion 

problems, with a metaheuristic approach, to the global minimum of a given function 

in a large search space. The term simulated annealing, is derived from the roughly 

analogous process of heating and controlled cooling of a material to increase the size 

of its crystals and reduce the number of defects to obtain a strong crystalline structure 

[Fang, 2000]. SA is often used when the search space of the problem is continuous. 

SA can accept worse neighboring solutions, with a certain probability that depends 

on a variable called the temperature (T) . In the SA method, the temperature T is 
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gradually reduced as the simulation proceeds. Initially, T is set to a high value (or 

infinity) , and it is decreased based on a reduction ratio r, which is close to 1, at each 

t ime step and ends with T = 0 at the end of the allot ted time budget. The simulated 

annealing process is stopped when the system reaches a frozen solution st ate, that is 

when there is no improvement in the solution configurations. 

1.3.0.1 Genetic Algorithm 

Genetic algorithms (GAs) were originally developed by John Holland and his research 

students. GA is the most widely used evolutionary computation technique [Uysal 

and Bulkan, 2008] . GA operates on strings of data in which each string represents 

a solution, in a way that resembles a chromosome in natural selection . Genetic 

algorithm exhibits implicit parallelism because they analyze and modify a set of 

solutions simultaneously [Song et al., 2008]. 

Genetic algorithms generate random solut ions as the initial population. There are 

3 stochastic operators applied to the population. 

Selection Is a portion of the existing population selected to breed a new generation 

of population. 

Crossover Is a genetic operator that generates new offsprings by randomly choosing 

some crossover point and everything before this point is copied from a first 

parent and then everything after a crossover point copy from the second parent ., 

which hopefully retain good features from the parents. 

Mutation Is a genetic operator that randomly modifies the new offspring with a 

probability. It can enhance t he diversity of the population and provide a chance 
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to escape from local optima. 

In a long run of a GA, the better (lower cost ) solutions tend to stay in the popula­

t ion and the worse (higher cost) solutions tend to disappear [Uysal and Bulkan, 2008] 

in accordance with the theory of survival of the fittest. Genetic algorithms are able to 

solve large problems with parallel nature. GA has been applied to various fields such 

as neural networks, data mining, electronic circuit design, scheduling applications and 

so on [Davis, 2010] . 

1.3.0 .2 Ant Colony Optim ization 

Ant colony optimization (A GO) [Dn~o et al. , 2006], which takes inspiration from the 

foraging behavior of some ant species, has been formalized into a metaheuristic for 

combinatorial optimization problems. The original ant colony op timization algorithm 

was known as ant system (AS) [Dorigo et al., 1996] and was proposed in the early 

nineties. Each ant in the AS is a possible solution to the problem . Certain ants 

lay down an initial t rail of pheromones to mark some favorable path as t hey return 

to the nest with food . A pheromone is a chemical signal t hat t riggers a natural 

response to attract other ants and serves as a guide. In the meantime, some ants do 

random exploratory survey for closer food sources. Ant Systems make a probabilistic 

decision by implementing a randomized construction heuristic. ACO has inherent 

parallelism and gives positive feedback for good solut ions. ACO can be applied to 

telecommunication networks, graph coloring, scheduling, constraint handling and so 

on [Shekhawat et al., 2009]. 
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1.3.0.3 Particle Swarm Optimization Algorithm 

Particle swarm optimization (PSO) [Kennedy and Eberhart, 1995] is an optimization 

approach that follows an evolutionary metaphor. It is a population-based search 

procedure in which individuals, called particles, change their positions, or states, with 

t ime. Particles in a PSO system move in a mult idimensional search space [Abdel-

Kader, 2008] to find a good solut ion. All the particles can share their information 

about the search space with other particles. During the process, each particle modifies 

its position in the search space according to its best experience and the experience of 

nearby particles, and makes use of the best position met by it and other neighboring 

particles [Chen and Sheu, 2009]. 

A detailed explanation of PSO is given in this section, as this algorithm will be 

used in the proposed modulo scheduling algorit hm. The reason for choosing PSO is 

explained in the next subsection. Each part icle in a PSO system represents a potent ial 

solution to the problem. At the end of the search, the best particle will hold the best 

solution found . At every iteration, each particle k calculates its velocity and position 

according to the expressions given below. 

(1.0) 

(1.1) 

where 

• Xk i - Particle k coordinates at i th iteration ., 
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• Xk,i+l - Particle k coordinates at i + 1 th iteration 

• Vk ,i - Velocity of particle k at ith iteration 

• Vk ,i+l - Velocity of particle k at i + 1 th iteration 

• c1 , c2 - acceleration constants in range [0, 1] 

• r1, r2- random value in range [0, 1] 

• P k ,i - Particle k's personal best position found at ith iteration 

• P9,i- Global best particle position at ith iteration 

• w - Inertia weight factor. It is calculated by 

W m ax - Wmin 
W = Wmax - Xi 

2m ax 
(1.2) 

where 

• W min and W m ax are both random numbers called minimum weight and maximum 

weight respectively. 

• imax is the maximum number of iterations 

After calculating X i+l , we can get the new particle position to search in the 

next iteration. Each particle velocity on each dimension is limited to the maximum 

velocity. 

In most cases, all t he particles tend to converge to the best solution quickly. PSO 

has a strong search capability in the problem space and can save more computation 
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i := 0, k := 0 
For each particle in the PSO system 

Initialize part icle with random coordinates. 
Initialize current particles Xk,i coordinates as 
the particles best position h ,i 

End 
i := 0 
Do 
For each part icle in the PSO system 

End 

Calculate fi tness value of the given par ticle. 
If the fitness value is better than the best 
fitness value pbest in history set current 
coordinates value as the new P k,i 

Choose the particle with t he best fitness value of all the 
particles as the P9 

For each particle 

End 

Calculate particle velocity using Equation (1.0) 
Update particle posit ion using Equation (1.1) 

i := i + 1 
\ i\Thile maximum iterations is not att ained. 

Algorithm 1.0: The Standard PSO Algorithm 
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time for finding an acceptable solution [Wang et al. , 2007]. The selection of parameters 

c1 and c2 affects the performance [Chen and Sheu, 2009]. 

1.3.1 Selection of PSO Algorithm 

When PSO was used in the Traveling Salesperson Problem (TSP), PSO showed a 

significant performance in the initial iterations when compared with ACO [Nonsiri 

and Supratid, 2008]. PSO has the capability to quickly arrive at an optimal or a 

near-optimal solution. ACO has a difficult theoretical analysis, sequence of random 

decisions, and uncertain convergence time [Shekhawat et al. , 2009] . 

An advantage of PSO over GA is that PSO maintains all the solut ions in the search 

space and changes of inertia weight leads to convergence [Nonsiri and Supratid, 2008]. 

PSO keeps the history of all the particles local best fitness and the global best fitness. 

When a particle gets caught in a bad solution, it can still go to its previous best 

position and start searching. GA is stochastic and contains no information about the 

problem [Thenorio, 2010]. GA can prematurely converge to a local optimum solution 

in its reproduction process rather than the global optimum of the problem [Thenorio, 

2010] . This suggest trying PSO on modulo scheduling. 

The relative ease of implementation and the ability to provide reasonably good 

solutions are the advantages of simulated annealing, but it takes a great deal of 

computation time and a careful tuning of parameters [Elmohamed et al., 1998] to 

obtain good solutions. The PSO method has the advantages of fast speed to get the 

solutions, stable convergence and robustness and it is a parallel direct search method 

to generate good solut ions [Song et al., 2008]. PSO can be applied to various fields , 
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for example, to train artificial neural networks, function optimization, fuzzy control 

system and so on [Hu, 2009]. PSO parameters are so designed that they are highly 

adaptive [Acharjee and Goswami, 2009]. 

Previous research on PSO [Abdel-Kader, 2008],[T.Chiang et al. , 2006] shows that 

instruction scheduling can be done with PSO, in this thesis, PSO with a hybrid combi­

nat ion of mutation operation is t ried. The mutation operator is used in the proposed 

modulo scheduling algorithm to avoid premature convergence in PSO algorithm. 

1.4 Various CGRA Compilation Procedures 

In recent years, the compilation of applications, written in a high-level language to 

coarse-grained reconfigurable platforms, has become the subject of research . Com­

putationally intensive kernels present in the application are represented by data flow 

graphs (DFGs) where nodes represent the operations and edges form the communica­

tion between the nodes. Some selected compilation procedures are discussed in detail 

in the subsequent sections. The compilation procedure differs with different mapping 

algorithms, target architecture representations and handling constraints during com­

pilation. Compiling applications to CGRAs involve 3 tasks: Scheduling, P lacement, 

and Routing. Scheduling assigns the t ime cycle to execute the operation. Place­

ment assigns a functional unit and Routing takes care of moving data from producer 

functional unit to consumer functional unit . 
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Figure 1.2: DRESC Compiler Framework, taken from [Berekovic et al., 2006] 
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sonops n; 
II := Mil (DDG); 

whil• not >'> :;hed:u:cd do 
Irtit 1-!rrg ( II f ; 
lnitTernperac~re {) : 

Tn i tP ! ace:l,ndRo".J:.e f) ; 

while not scheduled do 
tor each op in .sorted opecatlon 1iso;: 

RipUpOp (J; 

for i ; '" 1 to rar.dom_pos_co_try do 
poe ' ~ Ge!"\Random~q·.,; { i ; 
.s•.Jc::ess : = Place.~.ndRouteOp(poE i; 

if success then 
r.ew cos:: : ~ Gomp\lte:::or..t •: opl ; 
a::c;pt.ed .- Evalua:.eNe-..•Po.s (J: 
it ,<cc<:pr. ed t.llcn 

break; 
ele•e 

co::J.t.im.;e ; 
•n<Hf 

end for 

if noc acccpccd tben 
P.e>.toreCp < ~ ; 

else 
Cc:nr.l it:Op () i 

if 3er. a val .id r.c~erlu l e then 
rctur·n s ~~hcdl..'l.l t.!d; 

OM:dfor 

if StopCri r.er iaO tllen 
bt:'C~k; 

UpdatcOve r ascl'ena.: t y r ;, ; 
Updatt~":e n pcraXlU't~ ( j ; 

end;while 
11++: 

endwhile 

Figure 1.3: P seudocode of the modulo scheduling algorithm m DRESC, taken from 

[Mei et al., 2002] 
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1.4.0 DRESC Compiler 

Dynamically reconfigurable embedded system compiler (DRESC) [Mei et al., 2002], is 

a retargetable compiler that is able to parse, analyze, transform, and schedule plain 

C source code to the DRESC [Mei et al. , 2005a] architecture. Figure 1.2 presents 

the overall structure of the DRESC compiler. Source-level transformations are done 

on the target C source code to rewrite the kernel in order to make it pipelinable 

and to maximize the performance of the functional units. The target architecture 

is described in an extensible markup language (XML) . The parser and abstraction 

steps transform the architecture into an internal graph representation called a modulo 

routing resource graph (MRRG) , which is used by the modulo scheduling algorithm. 

Modulo scheduling plays a central role in the DRESC compiler , by creating high 

parallelism for the kernels [Vassiliadis and Soudris, 2007a]. T he task of modulo 

scheduling is to produce a software pipeline schedule with a low initiation inter­

val. A MRRG [Mei et al. , 2003b] is introduced in DRESC to model the architecture 

internally for the modulo scheduling algorithm. The MRRG combines features of 

the modulo reservation table [Lam, 1988] and the routing resource graph [Ebeling 

et al., 1 995]. The MRRG is a directed graph showing the time space representation 

of the architecture which is constructed by composing sub-graphs representing the 

different resources of the AD RES architecture [Mei et al., 2003a] . The pseudocode 

of the modulo scheduling algorithm is given in Figure 1.3. The modulo scheduling 

algorithm generates an initial schedule respecting dependency constraints for each II. 

The inner loop of the algorithm uses simulated annealing to minimize the overuse of 

resources. If simulated annealing succeeds within the time allotted then the loop is 
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exited. If t he algorithm cannot find a valid schedule in the t ime budget, it t ries wit h 

an incremented II. 

1.4.0.0 Advantages and Limitations 

The modulo scheduling algorithm of the DRESC compiler has some limitations. For 

large loop bodies, it has long convergence time due to the use of simulated annealing. 

It does not scale well with the size of the DFGs because while taking scheduling 

decisions, it does not take any information from the DFG. The overall performance is 

adversely affected when there is a spare interconnection among the FUs. Moreover , 

the scheduling algorithm only considers the innermost loop of a nested loop structure 

[Tuhin, 2007] . 

1.4.1 Compilation using Modulo Graph Embedding 

A graph theoretic technique called modulo graph embedding (MGE) is used in [P ark 

et al., 2006] for compiling applications to CGRAs. Using MGE, loop bodies are 

mapped onto CGRAs, subject to modulo resource usage constraints. The commu­

nication structure of the loop body was considered during mapping to make it an 

effective technique. Initially, preprocessing was done to analyze the DFG and to con­

struct a skewed scheduling space. A skewed scheduling space does not allow all t he FU 

slots to be available at the given schedule t ime. The start t imes of FUs are restricted 

such t hat they stagger down the right side of the CGRA. The skewed scheduling space 

dynamically changes as operations gets placed in an FU. The scheduling space of all 

t he FUs to t he right of the placed FU are lowered to guarantee the routability. 

The next step in the mapping process is followed by the main scheduling loop 
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to find a placement for all the operations at a part icular height of the DFG using 

modulo graph embedding. The scheduling process first constructs the affinity graph 

for the given input DFG. Next the primary slots are identified to place, schedule and 

route. The scheduler enters an inner loop to determine the cost of the current layout 

and iteratively reduces the cost using simulated annealing. 

1.4.1.0 Advantages and Limitations 

Modulo Graph Embedding [Park et al. , 2006] uses a skewed scheduling space and a 

systematic placement decision with a search space limited to the same height. The 

method achieves good convergence and fast compilation t imes. This technique is not 

suitable for DFG with loop-carried dependencies, as these dependencies are given the 

same priority as intra-iterat ion dependencies [Oh et al. , 2009]. 

1.4.2 Compilation using Clustering 

Montium architecture [Guo, 2006] presents a framework for scheduling clusters writ­

ten in a high-level language (C++). In this work, the scheduling problem is called 

the color-constrained scheduling problem where the limitations of using processors 

resources with one-ALU and 5-ALU configurations are termed as color and pattern. 

The color-constrained scheduling problem was tackled in this work by 3 algorithms: 

the mult i-pattern scheduling algorithm, the column arrangement algorithm and the 

pattern selection algorithm. The multi-pat tern scheduling algorithm, used in this 

work, is similar to the list scheduling algorithm, with extra constraints. T he algo­

rit hm schedules the node in the colored graph G. The successors of a node should 

be scheduled after the node has been scheduled . The column arrangement algorithm 

38 



orders t he non-ordered pattern elements. In the pattern selection algorithm, a non­

ordered pattern color bag, is selected. 

1.4.2.0 Advantages and Limitations 

Scheduling clusters with Montium architecture exploits the high speed parallelism of 

the source code and consumes low energy with few clock cycles. The performance 

of the algorithm has to be improved to refine the priority functions and to decrease 

t he computation complexity due to a large number of candidates [Guo, 2006] . The 

number of iterations of a loop in the DFG was not clearly specified and they did not 

consider loop carried dependences of a loop. 

1.4.3 Compilation Using Modulo Scheduling with Backtrack­

ing Capability 

The compilation approach described in [Dimitroulakos et al., 2009] presents an ex­

ploration framework that automates the evaluation of CGRA architectures. The 

framework, used in this approach identifies the CGRA architectures tuned for a spe­

cific application domain with modulo scheduling. In this work, an effective priority 

scheme is proposed while the modulo scheduler has been equipped with backtracking 

capability. The loop schedule is constructed by mapping incrementally one operation 

at a t ime in the loop. There are 4 steps which comprise the scheduling loop: priority 

scheme, enforce dependence constraints, enforce resource constraints, and mapping 

decision selection. 
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1.4.3.0 Advantages and Limitations 

The mapping algorithm suggested in this work, proposes to reduce congestion and 

map all the operations to PEs and effectively route the dat a values between PEs. 

The experiments carried out through this algorithm, indicate that the algorithm 

has a significant impact on the performance. The architecture's performance affects 

the clock frequency and instructions per cycle ( IPC). A higher IPC value not only 

has a negative impact on the clock frequency but it also requires more hardware 

[Dimitroulakos et al., 2009]. 

1.5 Conclusion 

This chapter discussed the background literature of the proposed research. The var­

ious CGRAs, designed during the past years, have been discussed . The existing 

architecture ADRES is considered for the proposed work because of its flexible topol­

ogy and simple implementation. The basic scheduling techniques were discussed . The 

basic modulo scheduling technique will be used in the proposed work. Among the 

various evolutionary algorithms discussed , PSO will be used in the proposed work 

for the following reasons: it is easy to implement, it has fast convergence, and it is 

efficient. 

Finally, some of the compilation approaches published, were discussed. The com­

pilation frameworks for the CGRAs have some commonality such as constructing an 

acceptable application graph, abstracting information from the target architecture 

and mapping to make the best use of the resources available in a CGRA. A compila­

tion framework similar to the work done in [Mei et al. , 2003a] is taken for the proposed 

40 



research . The modulo scheduling is carried out by the Particle Swarm Optimization , 

with a mutation operator. 
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Chapter 2 

Modulo Constrained Hybrid 

Particle Swarm Optimization 

Scheduling Algorithm 

2.0 Introduction 

This chapter gives an overview of t he MCHPSO scheduling algorithm. The research 

focuses on modulo scheduling algorithms for CGRAs. The study of various compila­

t ion frameworks in CGRAs, as d iscussed in Chapter 1, indicates that not much work 

has been done to improve the basic modulo scheduling algorithm to map onto CGRAs 

more effectively. We need to efficiently use the reconfigurable resources available in 

CGRAs and to keep t he time low to schedule complex target applications. To solve 

the modulo scheduling problem in CGRAs, an algorithm is proposed in Section 2.2. 

The MCHPSO algorithm schedules, places, and routes an inner loop body represented 
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by a data flow graph (DFG) . The DFG is embedded into the rout ing resource graph 

(RRG) of the target CGRAs by using particle swarm optimization (PSO) , combined 

with a mutation operator. The background concepts related to the MCHPSO algo­

rithm are discussed in Section 2.1. The different steps of the MCHPSO algorithm 

are discussed in Section 2.2. The evaluation, applications and comparisons of the 

MCHPSO algorithm are discussed in Section 2.3. 

2.1 Modulo Scheduling in CGRAs 

2.1.0 Problem Identification 

The objective of modulo scheduling is to find a valid schedule of one iteration of 

t he loop body so that it may be repeated at regular intervals. The schedule must 

respect all intra-iteration and inter-iterat ion dependency and resource constraints and 

economically use the resources and execut ion t ime [Mei et al. , 2003a]. The number 

of clock cycles between the start of successive iterations is termed the schedules's 

initiation interval (II) , essentially reflecting the performance of the scheduled loop. 

The problem of determining the lowest possible init iation interval, and a schedule that 

meets it, for a given loop on a given hardware is an NP-hard problem and therefore 

there is no known way to efficiently solve it in all cases. 

Several heuristic techniques have been tried to solve the modulo scheduling prob­

lem. A heuristic technique solves problems based on experience and randomization , 

and uses repeated random sampling to compute the results. Nature-inspired , a bird­

flocking experience-based technique is used in the heuristic approach of the PSO alga-
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rithm for problem solving and discovery, which may be applied to problems which are 

t ime-consuming to find a solution. When PSO is compared with ant colony optimiza­

t ion (ACO) [Dorigo et al., 2006], PSO shows the ability to quickly arrive at an optimal 

or near-opt imal solution. An advantage of P SO over genetic algorithms (GA) [Uysal 

and Bulkan, 2008] is that PSO maintains all the solutions in the search space and re­

quires less computational effort to arrive at high quality solutions. Previous research 

[Abdel-Kader , 2008], [Xiaoyu Song and Cao, 2008] on PSO shows that scheduling 

can be done with PSO. We enhanced PSO with a hybrid combinat ion of mutation 

operator for our modulo scheduling problem to avoid premature convergence in PSO 

algorithm. Our early results showed t hat using PSO to solve the scheduling problem 

gives a near-optimal solution. When PSO is combined with a randomization method, 

discovering the near optimal solution becomes faster and the local optimal solution 

can be avoided. This combination of heuristic approach and randomization is what 

we term modulo constrained hybrid PSO (MCHPSO). This is a practical approach 

to solve the scheduling problem. The proposed algorithm is discussed in detail in the 

following subsections. 

2.1.1 Solution Structure Formalization 

Most applications in mobile computing and multimedia spend a lot of time repeatedly 

executing critical code segments called loops. Since iterations of these loops can often 

be executed in parallel, we can make effective use of the abundant resources available 

in CGRAs. After mapping a loop onto the CGRA, we can use the free resources in 

the CGRA for another application or loop kernels. To increase the free resources of 
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the CGRAs, we need a mapping algorithm that produces a valid schedule with a low 

routing cost . 

To address the problem of mapping a loop body of a target application onto 

CGRAs, we propose a modulo scheduling algorithm by using a PSO algorithm com­

bined with a random mutation operator. The schedule length of the loop is its total 

execution t ime in cycles. If a resource T of total resources (R) in the rout ing resource 

graph (RRG) (described in Section 2.1.1.4) at t imet (in clock cycle) is being used, it 

is reserved for all times t' such that t = t' (mod I I) (. The unavailability of the same 

resources for successive iterations is called a modulo constraint. While scheduling 

loops, the algorithm has to satisfy the dependence constraints on each operator in­

volved in the loop and not violate modulo constraints to start the successive iterations 

in parallel. To illustrate the overall problem, an example is shown in Figure 2.0. 

The following conditions should be satisfied while scheduling a loop: 

0. In a loop body, if an operation y depends on the result of operation x, t hen the 

operation x is not scheduled to end later than operation y starts. 

1. Operations which are independent of each other may be executed in parallel. 

2. When a resource is occupied by an operation, it is reserved for all equivalent 

t imes (mod I I) of the schedule length. 

3. If a computational resource is free, it can also be used as a routing resource. 

In F igure 2.0, the inner most loop of the target application is converted into a 

DFG by using static single assignment (SSA) and dependence analysis (explained in 

next subsection). T he target architecture ( TA) is created as a graph by using the 
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Create TA graph 

Target Application 

Identi fy the inner loop body 
of the application 

Create a DFG 

Loop scheduling algorithm 

Mapping executab le code 

Figure 2.0: Outline of overall mapping of loop kernel of DFG onto RRG of CGRA 

topology and resource constraints specified in a description file. The TA is replicated 

to the maximum possible schedule length to form the RRG. The RRG contains edges 

between replications to represent data carried forward in t ime. Now the mapping 

algorithm tries to map each node of the DFG to a node of the RRG and each edge of 

DFG to a path in the RRG. An iteration of the target application is placed , routed 

and scheduled by satisfying modulo constraints to repeat the same schedule at every 

initiation interval (II) for the consecutive iterations. 
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2.1.1.0 Data Flow Graph 

The target application program is analyzed to find the crit ical loops to be mapped 

onto the CGRA. In t his chapter, the inner loop body of the application is considered 

with no inter-iteration dependence and no nested loop dependence to explain with a 

simple DFG. In the later chapters, we consider mapping in the presence of conditions 

and recurrences in the DFG. The inner loop body of the application is called its 

loop kernel. From the loop kernel, we created a data ftow graph representation of 

DFG = (N, E, <---, ---*) [Tuhin and Norvell, 2008] where 

• N : Set of operations in the inner loop body. 

• E : Set of interconnection edges. 

• <--- is a function mapping each edge e to its source node 'e. 

• ---* is a function mapping each edge e to its target node f! . 

The loop kernel is analyzed by converting it into static single assignment (SSA) 

form and then using dependence analysis to convert it into a DFG. In the SSA form, 

every variable is assigned exactly once. The dependence analysis explains the de­

pendence between operations, showing which operation should be executed first i.e, 

Predecessor (Pred) and which operation is the successor (Succ). Each edge of the 

DFG has 2 parameters (delay, distance) which are shown in Figure 2. 1. The delay 

(A) is the processing time of the source node and the distance is the difference in 

the iteration number between source and target nodes. If both the source and t arget 

nodes are in the same iteration, the distance is denoted by 0. The DFG in Figure 
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2.1 shows the recurrence in the loop forming a circuit (C) from node Z to Z through 

node c1 and Op X 

The II calculation is discussed in th next subsection. As the complexity of the 

DFG increases, the total number of nodes and total number of edg s to be mapped , 

also increases. For each operation of the loop, we created a predece sor list and 

successor list . \iVhen the nodes and edges are created in the DFG, a longest path 

delay priority sort is applied on the DFG to create an edge list. During the routing 

process in the mapping algorithm, the edges are routed according to the list order. 

To schedule the operations of DFG, the ASAP (as soon as po sible) t ime, ALAP (as 

late as possible) time and mobility are calculated for each operation u in t he DFG 

according to the following equations. 

ASAP _ { ASAP,=O; if Pred (u) =o } 
u - ASAP,= max(ASAPv+.>..v) ;Vv E Pred(u) (2.0) 

ALAP _ { ALAP,=max(ASAPv ) ; v E V } 
u - ALAP,=min(ALAPv- .>..v) ;Vv E Succ(u) (2.1) 

M ability _ 11, = ALAP u - ASAP u (2.2) 

2.1.1.1 Target Architecture 

In this thesis, a 'vide range of CGRAs are targeted, as discussed in Chapter 1. The 

target description file contains enough information about the various resources, con-

straints on each resource and their interconnections of the TA graph. To start with, 

an architecture similar to the ADRES [Vassiliadis and Soudris, 2007b] architecture 
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Figure 2.1: A loop body converted into a DFG 
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Figure 2.2: 4 x 4 Target Architecture Instance of ADRES. 

template is targeted. The reason for this choice was that the ADRES is a flexible 

architecture template with low communication costs. The loops present in an appli-

cation can be mapped onto the ADRES array in a highly parallel way. The compiler 

within the ADRES template is automatically retargetable, i.e., it has been designed 

to be relatively easy to modify to generate code for different architectures. The target 

architecture forms a 2D array and it is a very flexible template specified in the de-

scription file. T he TA consists of a network of basic components, including functional 

units (FUs), register files (RFs), column buses (CBs), and row buses (REs). 
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The TA graph (V, S) is formed from the target description file where: 

V 1s a set of vertices. Each vertex can represent any of the resources mentioned 

above. Each vertex is described by its name, capacity, and its functionality. 

S is a set of directed edges, connecting pairs of resources in the graph. 

Each FU can receive input from vanous resources of the graph and similarly 

the output of each FU can be routed to various destination resources [Vassiliadis and 

Soudris, 2007b]. The various topologies for the FUs are displayed in Figure 2.3: There 

are (a) a mesh based architecture of 4 neighboring FU connections; (b) a meshplusl 

architecture of 8 neighboring FU connections; and (c) a meshplus2 architecture of 

4 neighboring FU connections along with row connection for every FU and column 

connection for every FU. 

Various topologies of TA, including register files, are presented in Figure 2.4, which 

(a) shows each FU having its own private RF; (b) shows each RF is shared by the 

FUs in the top and bot tom row of the same column; (c) shows each FU has a RF and 

the RF is shared among FUs adjacent in all the diagonal directions. 

Various uses of buses are exhibited in Figure 2.5: (a) shows usage of row buses 

where each FU is connected to its corresponding row bus; (b) shows usage of both 

row and column buses where each FU is connected to its corresponding row bus and 

each FU and RF is connected to its corresponding column bus. 

The computational resources are FUs, which are capable of executing a set of 

coarse-grained operations such as add, subt ract, multiply, and shift and can also 

forward information , when not performing any operation. The top row of FUs can 

only perform load and store operations, termed as memory unit (MU ). The storage 
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Figure 2.3: FU Topology (a) Mesh Topology (b) Meshplusl Topology (c) Meshplus2 

Topology 

resources mainly refer to the RFs which can store intermediate data and multi-ported 

shared RFs ( SRF) used by t he MUs to hold the load and store values from the 

memory [Mei et al., 2003b]. The routing resources include wires, CBs and REs to 

connect various computational and storage resources. 

The results of each FU can be routed to other FUs through direct connections 

or routing resources or may be written to an RF for routing at a later t ime. If the 

FUs are free without executing any operations, then they may be used for routing 

purposes. The number of registers in the RF can be specified in the description file . 

In our RF, each register has 2 read ports and 1 write port. 

The target architecture taken for the MCHPSO algorithm is shown in Figure 2.2 

and includes meshplus2 FU connections shown in Figure 2.3c, shared RF shown in 
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Figure 2.4: FU and RF Topology (a) Private RF (b) Private RF and Column Adjacent 

Topology (c) Private RF and Diagonal Adjacent Topology. 
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(b) 

Figure 2.5: Various Usage of Buses (a) Row Bus Connections (b) Row and Column 

Bus Connections 

Figure 2.4c, and usage of both row and column buses shown in Figure 2.5b. 

2.1.1.2 Minimal Initiation Interval 

As discussed in Chapter 1, the minimal initiation interval (Mil) is the larger value 

from ResMII and RecMII, as computed in 

Jvfi I = max( ResM II , RecM I I) (2.3) 

where, 

• Resource minimal init iation interval (ResMII) is calculated from the resource 
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usage requirements of the loop and it is derived from 

Res !VI I I = Max,.ER I #~,. a~:~t:b~e l, where r is a category of resource in the TA 

resources R. 

• Recurrence minimal initiation interval (RecMII) is calculated from the recur­

rence cycles in t he DFG. Each recurrence have a distance property, which is 

equal to the number of iterations separating the 2 instructions involved in the 

recurrence. If a dependence edge, e( v , u), in a cycle has latency A and connects 

the operations at bv,u , then the RecMII is calculated by RecMII = MaxcEC f ~ l 

where, 

c is a recurrence cycle in the set of all cycles C of the DFG 

l is t he sum of all delay (A) in the circuit 

dis the sum of all distance bv,u in the circuit, variable Ov,u ,denotes the dis­

tance between operation v and u , which means the operation u of iteration 

i depends on the operation v of iteration i - Ov,u· 

In our algorithm, t he availability of MU resources is checked for each load or 

store memory operation in the DFG. An example of the Mil calculation is shown 

in Figure 2.1. 

2.1.1.3 Modulo Reservation Table 

To enforce the modulo constraints, we have to generate a schedule for one it erat ion 

of t he loop in such a way that the same schedule is repeated at regular intervals wit h 

respect to data dependence and resource constraints [Vassiliadis and Soudris, 2007b]. 
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This interval is called the init iation interval, as defined in the previous subsection. 

The II reflects the performance of the scheduled loop. The modulo reservation table 

(NIRT) is constructed as a table, with one column per each resource in the TA and 

I I rows shown in Table 2.0 for the DFG and TA shown in Figure 2. 1. For every new 

placement (schedule and place) and update in RRG, the MRT is checked to determine 

whether the time/ place is available. If the mapped node in the RRG uses (v, ti), then 

( v, ti mod II ) in the MRT is filled , which marks the resource v busy for all t imes with 

the same modulus by {(v,t1) I t1 mod II = ti mod II} where j E {O ,SchLength} 

[Vassiliadis and Soudris, 2007b]. 

R esources/II t ime 

0 

1 x-z y-z 

2.1.1.4 R esource Routing Graph 

For scheduling the loops in the DFG in a 2D architecture array across t ime, we 

employed a time-space graph called routing resource graph (RRG). Based on [Vas­

siliadis and Soudris, 2007b] and [Tuhin and Norvell, 2008], we produced a graph to 

route resources between the scheduled and placed operations across t ime. The RRG 

is obtained from the TA graph described above by replicating it once for every time 

cycle E N, specifying the interconnections with X, Y, and Z edges. The RRG is 

described below 
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RRG = (V x N, XU Y U Z) 

where 

V x N : An infinite set of N copies of theTA's vertex set V . 

X edges: Every incoming edge e of a FU or RB or CB in the TA graph from t he FU 

or RF is replicated across time as X= { x (t, e) I e E E, 'e E FUU RBUCB ,? E 
f--- ---+ 

FUU RF,t EN} where x(r,e) = ('e, t) and x(r,e) = (?, t). Here x is simply 

some one-one function to a set of edges, i.e. a function that generates a unique 

edge for each t ime and TA edge. 

Y edges: Every incoming edge e of a RF in the TA graph from the FU or CB 

or RB is represented in the RRG as an outgoing edge from its source in the 

current t ime cycle to the RF, CB and RB in the next time cycle. Use of 

such an edge represents the writing to a register or the delay in latch to the 

buses [Vassiliadis and Soudris, 2007b]. These RRG edges are given by edge 

Y = {y(t , e) IeE E , 'e E RF,? E FUUCBURB , t EN} where~ = ('e, t ) 
-+ 

and y( r, e) = (?, t + 1). Here y is some one-one funct ion to a set of edges, which 

is range-disjoint from x. 

Z edges: For every RF r in the TA graph, we needed to hold the data across time. 

+--- +--
Hence we need RRG edges Z = {z (t, r) I r E RF, t E N} where z(r, t ) = ( r, t) 
~ 

and z(r, t) = cr- , t + 1) , and Z is a One-one function, range disjoint from X and 

y . 

In the actual implementation, we can get away with representing only a finite 

prefix of the RRG, as the number of nodes in the DFG are finite and known. In order 
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Figure 2.6: X edges in the RRG 

to schedule, place, and route, we must embed the DFG into the RRG. A homeomor-

phism h maps nodes of the DFG to nodes of the RRG and edges of the DFG to paths 

in the RRG. If h(e) = e0 , e1 , ... , ek-1 , then we required eo = h('e) and e,;=r = h(f! ), 

where h is the mapping of nodes and the mapping of nodes in RRG satisfies one to 

one and onto properties. There are further constraints to ensure that resources are 

not overused and t hat different iterations of the same loop do not interfere when they 

execute in parallel. An RRG corresponding to theTA in Figure 2.2 are illustrated by 

t he X edges in Figure 2.6, the Y edges are shown in Figure 2.7, and t he Z edges are 

shown in Figure 2.8. 
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Time cycle 0 Time cycle 1 

Figure 2.7: Y edges in the RRG. Edges from same type of source are shO\.vn in same 
style edge. 
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Figure 2.8: Z edges in the RRG 
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2.2 Proposed Modulo Scheduling Algorithm 

2.2.0 Modulo Scheduling with MCHPSO 

The proposed ICHPSO scheduling algorithm simultaneously searches for a good 

schedule, placement, and routing solution for the entire set of operations given in a 

DFG and it also avoids the time consuming sequent ial search for each operation as 

done in list scheduling [Mei et al. , 2003a] . Earlier work by Mei et a! [Mei et al. , 2003a], 

Tuhin and Norvell [Tuhin and Norvell , 2008], and Vassiliadis and Soudris [Vassiliadis 

and Soudri , 2007b], needed several trials to find the best schedule for an operation 

before proceeding to the next operation. In the proposed algorithm, all the particles 

search for a complete scheduling solution simultaneously. 

To efficiently map loops onto the CGRA, the idea of modulo scheduling used 

in [ ~.'lei et al., 2003a] has been adopted and combined with 2 heuristic approaches, 

PSO and randomization. From [Abdel-Kader, 2008] and [T.Chiang et al., 2006], it 

is noted that PSO could be applied to mult idimensional scheduling problems. The 

application of PSO to modulo scheduling converges faster , but can be caught in a 

local optimum [Uysal and Bulkan, 2008]. To escape local optima, a randomization 

method, in combination with PSO was employed . 

In ICHPSO, the routing of part icles is done by using Dijkstra's algorithm [9] . 

To ensure modulo constraints and a valid schedule, the fitness function is computed 

to evaluate the quality of placement. \ iVhile calculating the fitness function , routing 

cost of all paths routed between placements was incorporated. 

The overall method of fCHPSO to schedule, place and route a loop is explained 

in Algorithm 2.0. The inputs to Algorithm 2.0 are a TA graph of the architecture 
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template and a DFG representing the inner loop part of an application. The results 

of the algorithm are the scheduled time, resource placement, and routing paths of an 

iteration of t he loop. 

First, t he minimum initiation interval is computed as discussed in subsection 

2.1. 1.2. Second, ASAP (as soon as possible) and ALAP (as late as possible) times 

were calculated as in Equations (2.0 and 2.1) [Llosa et al., 2001] for the given DFG to 

create a dfglist. Next the edges to be routed were sorted using sort method according 

to the critical path delay of the loop and the maximum schedule length is calculated 

from t he maximum ALAP with a relaxation factor using findschLength method . The 

relaxation factor is the time cycle adjustment to place and route the leaf nodes. The 

relaxation factor can vary for different DFGs during the experiment setup. The RRG 

is generated from the TA graph. The initial placement , schedule and route may 

overuse resources. The MCHPSO algorithm is used to reduce overuse with a minimal 

routing cost. Now, starting with the minimal initiation interval the MCHPSO is 

used to try to find a good scheduling, placement and routing at successively larger 

init iation intervals. The flow of the MCHPSO algorithm is described in Figure 2.12. 

2.2.1 Particle Encoding for the Problem 

To frame the solution for the scheduling problem by using the particles, van ous 

dimensions for each particle, size of DFG and the schedule time should be considered. 

To establish a complete modulo scheduling solut ion, the part icles of PSO were created 

with multiple dimensions to solve the crit ical issues in specified problem domain. It is 

necessary to search for a good-quality candidate solution for the scheduling problem, 
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<1 0> < Q> 

Figure 2.9: DFG showing a simple loop structure without recurrence 

and t hen to choose the best candidate solution into the next iteration according to 

various objectives mentioned in the fit ness function. 

Therefore, the part icles are encoded as an array of vectors, where each vector 

represents a particle. In the swarm, each part icle P is represented by a mapping from 

the N nodes of the DFG to a RRG nodes, i.e., to time/resource pairs, as explained 

in Figure 2.13, and an array list to hold the routing path of each of the edges in the 

DFG. 

2.2.2 MCHPSO 

The pseudocode is shown in Algorithm 2.1. In MCHPSO, inputs are the RRG, the 

sorted DFG from the main loop of the ModuloSch _ Place_ Route Algorithm 2.0, and 

a goal II. 

The number of operations in the DFG is initialized to the number of nodes, N, for 

each particle. Each particle in the PSO takes, for each node init ial value for the place 

and a randomly chosen init ial t ime in the range of [ASAP, ALAP ] that satisfies all 
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Figure 2.10: TA taken for the mapping of DFG 

dependence constraints. When a resource at t ime t is occupied in MRT, it is reserved 

for every cycle with the same modulus (with respect to II) in t he RRG. Once all the 

particles are initialized, the following is repeated a fixed number (NLOOPS) of times: 

First the fitness of each particle is calculated, as illustrated in the next subsection. 

Next every particle updates its Local-best (Lbest) position if the new fitness is better 

than the current fitness and it is denoted by PLbest · Once all t he particles have been 

updated, the global particle of the most fit schedule is chosen and its position is 

denoted by Pcbest · 

Every particle updates to its new position according to the following 

if fiip1 t hen Pnew = Pcbest 

else if fiip2 then Pnew = PLbest (2.4) 

else Pnew = currentPi 

DFG_ Rop = Random_ op(Pnew) (2.5) 

avail_ slots = MRT_ check (DFG_ Rop,Pnew ) (2.6) 
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F igure 2.11: Overall mapping of loop kernel of DFG onto RRG of CGRA 
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Figure 2. 12: Compilation flow of the proposed algorithm 
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Procedure ModuloSch_ P lace_Route (DFG, TA) 
begin 

end 

II := Mil (DFG) 
dfgList := ComputeASAPandALAP (DFG) 
sortedDFG :=sort (dfglist) 
max_ schLength := findschLength(sortedDFG) 
schSucess := false 

TRIALS : = max_ schLength - II 
trials := II 
while !schSucess&& trials<NTRIALS do 

CreateRRG(TA, II, max_ schLength) 
schSucess := MCHPSO(sortedDFG, RRG, II, max_ schLength) 
II++ 
trials+ + 

end while 

Algorithm 2.0: .!\'lapping DFG onto RRG 

newPcoordi = mutation Operator ( avail_ slots, DFG _ Rop,Pnew ) (2. 7) 

where 

• ftip1 , ftip2 are random boolean variables to select the particle's new position 

(Pnew ) either from global best position (Pabest ) or from the local best position 

PLbest position or the current particle position currentPi . 

• Random_ op selects 1 of the data flow graph nodes from Pnew and saves it in 

the D FG _ Rop variable. 

• MRT _ check finds the FU slots that are direct neighbors of D FG _ Rop posit ion 

which are free in theTA of Pnew's MRT. MRT check saves the list of slots in 

the avail slots variable. 

• mutation Operator mutates the position of the random operation to any 1 of the 

av ail lot . ow n ewPcoordi contains the new particle position for the next 
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Figure 2.13: Particle encoding for scheduling 

iteration. 

Once the muta tion is done on the particle, then the new particle coordinates are 

ready for the next generation of MCHPSO. The mutation Operator helps the particles 

to explore more solutions instead of getting caught in a local optimum. The inner loop 

of MCHPSO to find the best solution continues until a given number of iterations are 

complet ed . The best mapping schedule solution goes through a validity checker for 

overuse of resources, routability of all edges and maintenance of modulo constraints. 

In the standard PSO, a large inertia weight w facilitates a global search while a 

small inert ia weight facilitates a local search. In the MCHPSO system, the inertia 

weight is t aken care by 1 of the fi tness values called overuse. In the init ial population, 

particles explore more with large overuse. As the iteration proceeds, part icles exploit 

the solution with less overuse. When the particles st art to perform more of a local 

search, muta tion operator helps them not to get them caught at a local opt imal 

solut ion. In the MCHPSO, there is no usage of maximum velocity parameter. Instead 
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Procedure MCHPSO (sortDFG, RRG, II, schLength) 
begin 

for each operation in sortDFG do 
Initialize Part icles 
Initialize MRT( # FUs,II) 

end for 
repeat NLOOPS times 

for each particle in Part icles do 
Find the fit ness value from GetRoutingCost (RRG, part icle) 
if the fitness value is better than the best fitness t hen 

Set current fitness value as the new particle best fi t ness 
end if 

end for 
Find the global best part icle 
for each particle do 

Calculate the new particle posit ion according to the Equations 2.4, 2.5, 
2.6, and 2.7 

end 

Update par ticle search posit ion 
end for 

end repeat 
if validSchedule (best particle) then return true 
else return false 
end if 

Algorithm 2.1: The MCHPSO algorithm 

the part icles stay within the size of routing resource graph size during placement, 

schedule and route. In the IVICHPSO, t here is no usage of c1 and c2 values. In the 

preliminary investigation of PSO, usage of c1 and c2 did not help the particles to 

modulo schedule, so they are not used in the update. 

2.2.2.0 Need for the mutation operator 

In modulo constrained part icle swarm without a mutation operator, we found particles 

stay in the same solut ion for a long time in some iteration. \.\Then there was no 

mutation operator in that execution, the part icles could not come out of that local 
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optimum to find a valid solution. Mutation operator is needed to avoid local minimum 

because as the iteration increases the particles tend to get close to each other and 

can get caught in a local solut ion. Mutation operator helps the particles to perform 

more local search when they are closer to the solut ion. 

MCHPSO does not use velocity, or w or c1 or c2 to update particles position . 

Instead the particles get updated to search near the current position or a local best 

position or a global best position with the help of a mutation operator. 

2.2.3 Fitness Calculation 

The pseudocode of the fit ness calculation is given in Algorithm 2.2. The fitness cal­

culation algorithm ( GetRoutingCost) considers multiple objectives from the routing 

paths produced by Dijkstra's shortest-path algorithm (i.e, the getShortestPath method 

in the algorithm) [Dijkstra, 1959]. The 3 main objectives considered in this work are 

that no resource in the TA is overused, all edges in the DFG are routable, and fewest 

resources are used to route. T he rout ing cost is computed by accumulating the cost 

of all used RRG nodes incurred by the placement and routing of all t he edges. 

In every iteration, each particle's fi tness value (say p) is compared with its local 

best fitness value (say q) , from the previous iteration. If p's number of routable edges 

value is greater than q, t hen p is chosen else q is chosen. If still both p and q are the 

same then check if p's number of overused resources is lesser than q, then p is chosen 

else q is chosen. If still both p and q are same then check if p's total routing cost is 

less than q, t hen p is chosen else q is chosen. If p's values are chosen then the local 

best position of the particle is updated with the current position values. Similarly, 
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the above comparison is done for each particle's local best fi tness values (say p) with 

the global best fitness values (say q), from the previous iteration. The global best 

position is updated based on t he best particle's local best posit ion. 

Each node in t he RRG has a capacity, base cost [Mei et al., 2003a], availability, 

and number of t imes used. Majority of RRG nodes, have a capacity of 1 whereas a few 

types of nodes such as register files have a capacity larger than 1. The Findroutingcost 

method calculates t he usage of each resource in the routing and also calculates if a 

resource is overused that its capacity (findPathoverused ). 

Procedure GetRoutingCost (RRG ,psoP art) 
begin 

rcost:= O 
notRou tableEdges: = 0 
overusedN odes: = 0 
edgeSet:= {Scheduled and Placed PSOparticle} 
for each edge e in edgeSet 

u:= e.source 
v:= e.target 
path: = getShortestPath( u, v) 
if(path =/= NULL) then 

rcost+= Findroutingcost(path); 
overusedN odes+=findPathoverused (path); 

else 
notRoutableEdges++ 

endif 
endfor 
return (rcost, notRoutableEdges, overusedNodes) 

end 

Algorithm 2.2: Routing cost fitness value for MCPSO 
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2.2.4 Configuration File and Final Schedule 

Once the MCHPSO algorithm is completed , it generates the final schedule of one 

iteration such that the modulo constraints and dependence constraints are met. The 

MRT generated for the final schedule, produces a configuration text for each time cy-

d e. The configuration text contains the operation for each FU of the TA, reservation 

of routing resources and the memory unit operations in each cycle. An example final 

schedule is shown in Table 2.1 and for the DFG, in Figure 2.9. 

Table 2.1: Final schedule result of the DFG onto the TA 
Resources/ 

1 

I 
Schedu I e Length F1 I F2 I F3 I F4 I RF1 I RF2 I RBI I RB2 I CB1 I CB2 

0 2 cl 2·X cl-x 

1 4 c2 Opx cl-x r0:2·X rO:cl-x 

2 Opy rl:x-z 4·y C2·y 

J rl:x-z )'-Z 

4 rl:X·Z rl:y-z x-z 

5 Opz 't'"l Y·Z r2.: x-z rl:y·z x-z 

2.3 Final schedule of the MCHPSO Algorithm 

To evaluate MCHPSO algorithm, a slightly modified architecture from ADRES [Mei 

et al. , 2005a] was used. Various digit al signal processing (DSP) benchmarks [Texas 

Instruments. inc, 2009], [Texas A&M University-Kingsville, 2009], [University of 

Patras, 2009] were used to evaluate the performance of the MCHPSO algorithm. The 

implementation of MCHPSO algorithm is written in Java. The TA and loop body 

description are given in files to the proposed algorithm. The evaluation is done to 

check whether MCHPSO was able to solve intra-dependent inner loop body mapping 

72 



onto the CGRA with a lower II . The routing algorithm gives the fi tness value in 3 

different styles: 

0. Routable Edges. 

1. Overuse of Resources 

2. Total cost of Routing. 

The particle holding the maximum routable edges with no overuse of resources 

and minimum cost is taken to be the best particle. The reliability and performance 

of J\ICHPSO algorithm is tested with more experiments on varying interconnection 

topologie , memory ports and distributed register files. To find the suitability and ef­

fectiveness of MCHPSO algorithm, it is compared with various other modulo schedul­

ing algorithms and heurist ic methods uch as modulo scheduling, with simulated an­

nealing [Vassiliadis and Soudris, 2007b], and memory conscious modulo scheduling 

[Dimi troulakos et al., 2007]. 

2.4 Conclusion 

This chapter discussed the modulo constrained , hybrid particle swarm optimization 

algorithm to solve the scheduling problem to map a DFG of loop body onto the 

TA graph. T he fCHPSO algorithm, with the combination of PSO and mutation 

operator, was discussed to map effectively the given target application loop onto the 

CGRA. The extensions, evaluation and applications of the MCHPSO algorithm were 

also discussed. A detailed analysis of MCHPSO algorithm will be discussed in the 

next chapter. 
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Chapter 3 

Performance Analysis of MCHPSO 

Algorithm 

3.0 Introduction 

In this chapter , t he performance data of the modulo-constrained hybrid particle 

swarm opt imization (MCHPSO) is discussed. The proposed algorit hm is designed 

to solve the problem of mapping a Data F low Graph (DFG ) for a loop body in the 

application onto the resource and routing graph (RRG). T he MCHPSO algorithm 

has been explained in Chapter 2. The MCHPSO algorithm, effectively maps with 

the combination of Part icle Swarm Opt imization (PSO) algorithm and a mutation 

operator. The results obtained from the analysis of t he work are discussed in the 

following sections. These results help us to understand the research problem and 

to extend the algorithm to map loops with different characteristics, as discussed in 

Chapters 4 and 5. 
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3.1 Analysis of Scheduling 

Scheduling a loop onto the coarse-grained reconfigurable architectures ( CGRA) con­

sists of 3 main parts: 

0. Placement of each operation of the DFG onto the CGRA computing resource, 

FU; 

1. Scheduling the execution time of each operation of the DFG; 

2. Rout ing every edge in the DFG as a path in the RRG. 

The most important constraint in a scheduling algorithm is getting a valid result 

for the schedule, with no interference among the placed, scheduled, and routed re­

sources. When an architecture is considered, the const raints in the architecture such 

as interconnection topologies, and availability of computing and memory resources 

play a major role in finding a schedule for the loop kernel. Therefore, different archi­

tecture parameters were tried so t hat the performance of t he algorithm could be tested 

on a number of architectures. The number of nodes and edges in the DFG determine 

the complexity of the kernel to be mapped onto the CGRA. The usage of resources, 

mapping t ime, and schedule density were estimated to analyze the performance of 

mapping algorithm. 
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3.2 Modulo Scheduling with MCHPSO 

3.2.0 Experime nt al Set Up 

The MCHPSO scheduling algorithm was written in J ava and executed on an Intel 

Core 2 Duo CPU with 4 GB RAM and a clock speed of 2 GHz. To schedule a loop 

onto the CGRAs, 2 main inputs were required for the MCHPSO scheduling algorithm. 

The first input is the DFG generated from the benchmark loops. The loop extraction 

process is described in Chapter 1. The second input for the MCHPSO is the CGRA 

architecture. The target architecture ( TA) graph is created from the TA configuration 

file as described in Chapter 2. An example of DFG generation is discussed in the next 

subsection. 

Other than the 2 main inputs, DFG and TA, MCHPSO requires the following 

parameters: the number of particles is 10, the relax-factor is the II, t he number of 

trials for each initiation interval (II) is the difference of schedule length and II, and 

the number of iterations per trial is 20. A relax-factor is used to adjust the as late as 

possible (ALAP) values, when the scheduler finds difficulty in a very tight range to 

start the next iteration while finding a place for leaf nodes. 

3 .2.0.0 D FG Generation 

One of the main inputs to the MCHPSO scheduling algorithm is the DFG generated 

from the application loop kernel. The generation of the DFG and its parameters 

are described in Chapter 2. The benchmarks taken for the algorithm are shown in 

Table 3.0. The first 4 benchmarks were derived from the C reference code of Texas 

Instruments ( TI) Inc. [Texas Instruments. inc, 2009]. The next 2 benchmarks 
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Table 3.0: DFG characteristics of the benchmarks 
Initial 

Schedule 

Benchmarks #Nodes #Edges Mil length 

8X8 

IDCT hor 78 108 3 9 

4X4 FFT 67 107 3 10 

8X8 

FDCT hor 74 102 4 8 

8X8 

FDCT ver 73 100 3 8 

latasynth 2.0 20 1 8 

latanal 20 21 1 5 

FIR cplx 25 33 2 6 

Volterra 28 35 2 5 

IIR 36 51 2 10 

IIR biquad 35 36 3 8 

were based on lattice filter [Texas A&M University-Kingsville, 2009] . The last 4 

benchmarks were taken from [University of Patras, 2009],writ ten by the authors of 

[Dimitroulakos et al., 2007] . 

We will now consider the lattice synthesis filt er benchmark as an example to create 

a DFG. The lattice synthesis filter application code is shown in Figure 3.0. The 

benchmark was analyzed to find the inner loop body (Figure 3.0) of the application 

code. A description file of the loop kernel is created as shown in Figure 3.1. From 

the description file, t he DFG created for the loop kernel of the application is shown 

in Figure 3.2. Once the DFG is created , it is ready to be passed to the scheduling 

algorithm to be mapped onto the RRG. 
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II Lattice LPC Synt hesis Filt er 
q = length(res idu}; 
N = 250; 
bet old = zeros(1,P1); 
f or seg = l :q/ , 

s = xc(( seg-1)* +l:seg*Nj; 
K = t rans( { seg-1)*P+1:seg*P}; 
for n=l: , 

eps( P1) = s( n); 
for i=P1:-1:+2. 

end 

eps(i-1) = eps(i } + K(i-1}"'bet old( i -1); 
bet(i ) = bet old(i -1}- K( i-1j "'eps(i-1); 

bet(l} = eps(1); 
betold = bet ; 
x(( seg-1)* +n) = eps( l }; 

end / / End of he synt hesis fi lter 
end 

Figure 3.0: Lattice synthesis filt er code 

3 .2.0.1 TA Graph Generation 

The TA graph was generated from the configurat ion shown in Table 3.1, along with the 

interconnection between the resources specified in the architecture connection file. To 

have a comparable architecture with other works and rich interconnections, an 8 x 8 

CGRA array were employed. T he 8 x 8 CGRA array comprises of l\!Ieshplusl FU 

topology, row and column buses, private RFs that connects with diagonally adjacent 

register fi les ( RFs) and shared RF ( SRF ) for the memory unit ( MU) connections. 

T he private RFs could only handle data and not predicates. The number of resources 

and topology are similar to the work reported in [Vassiliadis and Soudris, 2007a] . The 

RRG was generated by replicating the TA for each cycle, along the t ime axis unt il 

t he maximum schedule length was reached. The edges of t he RRG are explained in 
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17 //1-lo o_{nodes in DFG 
1/Nodename-//#incomingedges, #outgoingedges: 
I/Outgoingedgenodename1,0utgoingedgenodename2, .. 
i-0,3:im1,epsifbeti 
1-0,1:im1 
eps-0,2 :eps(,epsim 1 
k-0,1:kim1 
bet old -0,, 1 :betoldim 1 
bet-0, 1:beti 
im 1-2,3:epsim 1,kim1, betoldim 1 
epsi-2,1:epsim1neu) 
mulkbetold-2, l:epsimlnew 
epsim1new-2, 1:epsim1 
epsim 1-2,1 :mulkeps 
kinzl-2, 1 :rnulkbetold,. rnulkeps 
betoldim 1-2,1 :mulkbetold, betnewi 
mulkeps-2,1:betnewi 
betnewi-2,1 :betout 
beti-2, l:betout 
betout-2,0: 

Figure 3.1: DFG description file for the Lattice synthesis filt er in Figure 3.0 

Chapter 2. 

3.2.1 Scheduling Results 

The MCHPSO algorithm takes the loop kernel and a CGRA architecture as input. 

When the DFG of the loop kernel is read, the particles in MCHPSO generate a partial 

place and schedule result. Each node in the DFG is mapped onto the computing 

resources of the RRG such as the FUs. The FU number for each operation in the 
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l 
I 

Figure 3.2: DFG corresponding to the code in Figure 3.0 

DFG shows where the operation will be executed. The time at which the placed 

operation will be executed is shown in the schedule time. All the particles, with 

schedule and place values, go t hrough the router to discover how many edges are 

routable. The best particle is chosen based on the fitness constraints explained in 

Section 2.2.3 of Chapter 2. The algorithm stops once all the edges are routable and 

there is no overuse of resources. 

A schedule and place schedule result for the DFG in Figure 3.2, is shown in Table 
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Table 3.1: 8 X 8 CGRA configuration 

Resources Total numbers Capacity Reads Writes 

FU 64 1 N/A N/A 
RF 56 8 8 8 

SRF 1 16 8 8 

CB 8 1 N/A N/A 
RB 8 1 N/A N/A 

3.2. The path of each edge, routable from the routing algorithm of the DFG, is 

shown in the routing result displayed in Table 3.3 and Table 3.4, where the first 

column shows the edge number and the second and fourth columns show the name 

of the source and target DFG operation. The path between the mapped source and 

target DFG operations are shown in the third column. The notation for the paths 

are explained as follows: F represents the FU, R represents the RF, CB represents 

the column bus and RB represents the row bus. The cost of how much resources are 

needed for routing of each path is shown in the fifth column. 

Each schedule, place, and routing result denotes a particle state. For every iter-

ation, each particle finds a scheduling result for the given graphs. The fitness result 

of every iteration of the particles is shown in Figure 3.3. In each iteration, particles 

with fitness of maximum edges routable with no overuse is shovm. The particle with 

the highest fitness is chosen as the best particle for each iteration. The other particles 

move towards the best particle in the next iteration. The role of mutation operator 

in each iteration gives randomness to each particle and enables t hem to try for the 

best position. At the end of iteration 66, particle 5 finds all the edges (i.e. 108) to 

be routable in the DFG and gives the best scheduling result possible. Every particle 

saves its best local fitness from all the iterations in a local-best fitness vector which is 
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Table 3.2: Scheduled and placed results of the lat t ice synthesis loop kernel 

DFGname SchTi,me PlacedFU 

bet 0 1 

betold 0 18 

k 0 3 

eps 0 4 

1 0 17 

I 0 19 

irn1 1 37 

kirn1 2 58 

betoldirn1 2 50 

eps1 1 39 

rnulkbetold 3 59 

epsirnlnew 4 43 

epsirn1 5 33 

rnulkeps 6 47 

betnewi 7 46 

beti 1 12 

bet out 9 20 

depicted in Figure 3.5. Some particles are penalized if they cannot find a valid route 

by a fitness of 0 and that is shown as the missing particles in t he Figure 3.5. From 

the local-best fi tness vector of every part icle, a global best part icle is chosen, depend-

ing on the fi t ness value found. The best fitness value found for selected iterations is 

shown in Figure 3.4. 
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Table 3.3: Routing results of lattice synthesis loop kernel -partl 
Edge SourceDFG Path from Source-Target in TargetDFG Path 

no name 
0 b et 

1 b etoid 

2 k. 

3 e ps. 

4 eps 

5 1 

6 

7 

8 

9 iml 

10 lm l 

RRG name 
F1time- O->Fltemptime-O-> R2time-1- b e t i 

>F11time-1- > F1:ltemptime-1-

~·1=1 2time-1 

f."1Btime-0->f.18t emp t ime-O­

::-R15time-1-> C32time-1-:0.. R4 7ti me-2-

>f SOt i ITH!-2 

betold iml 

F3time-O- >F3temptim e-O->·R2 t ime-1 - kiml 

;.-C8 2t ime- l -;.-R 14tim e -2-;.-C2 2time -2-
> RSOti m e -3 - >RSOtime-4- >RSOti me-5-

> RS Oti me- 6 - > RSOtime-7->RSOt ime-8-

> RSOt i me -9 -> RSOtim e -0 ->RSOti !'l) 12 · l · 

> R50ti m e-2- >FS8time-2 

F4tim e -0->F4te mptime -0- =· C01time - 0 eps.i 

::--R28ti m e -1->f 3 9time-1 

!='4tlme-0->f.4tem ptime-0-::- R3 t ime- 1 - eps.im l 

>fl0time-1-::-F10temptime-1-

>A9time-2->C11tirne -2- >R2St irne-3 -

>R2Stime-4->R25time-5 ->1=3~ time-5 

F1 7t ime-O·;"'f1 7temptime-O­
>C12t i m e -0 ->1=5 3ti m e- l · 
>f 5 3 t e m p t i rne -1->F40 time-1-

>f40temp t ime-1->F37time-1 

F19tirne -O-;..•f19te m p time- O­
> Rl6tlme-l.->C0 2 t lm e -l.->R44time -2 -

> C B5time-2-> R26time- 3-> R26time-4-

:~R26time -5->'R26time-6-> R26time-7-

:> R2 6ti m e -8 · :> R2 6 t im e -9 ->R2 6 t ime -0 -
> R2 6ti m e - 1- >.F37 t ime-1 

l=l.9t lm e-0->Fl9tempt im e-0 -
> F3 1time-O-> F3 1t ernpti m e -O­

>F51time-O->F51 temptime-0-

> R46t.imc-1 ->:FS 7timc -1 · 

>FS 7tempt ime-1->r 44time-1-

>F44te m p t ime-1->F39time-1 

F19tirne-O->F19temptirne-.O­
> Rl.4tl m e -1 - >F2 5tlm e-1 -

> F2St e m p ti me-1-> F1 2 t1m e-1 

F37t ime- 1->F3 7 temptim e-1 -

> R2 9 t i m e -2 -> R2 9 t im e -:S -:>R2 9timc-4 -

>R29t ime -S- >F34 ti m e-5 -

>f34temp t ime-5- >F33time-5 

f."3 7 t ime- 1 -> F37tem p t lme - 1-

> C B6time -1 - > R45time-2 - >F58tim e-2 
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Table 3.4: Routing results of lattice synthesis loop kernel -part2 
Edge Sou rceDFG Path from Source-Target i n 

no name RRG 
11 iml 

12 l<iml 

F37time-1- >F37temptime-1-

;,.!=4 2 timc - 1 -:>F42t.c rn p l imc - 1 -

>R31 t l me-.2- .>f 3 6 time-.2-

~-F3Gtemptime-2-~-F49t i me-2-­

>fA9temptirne-2-:~I-SOtirne-2 

FS8ti m e -2 -;·1=58temptim e -2 ·· 

> R50time-3- ·=-F59time-3 

TargetDFG Path 

name cost 
beto ldiml 8 

13 k iml F58time-2- >F58temptime-2- mulkeps 6 

14 b etoldiml 

15 b etoldiml 

16 epsi 

17 mu lkbetold 

--··------
18 t1P~irnlnew 

19 epsi m 1 

20 m .u lkeps 

;,.RS 3li rne -3 ->CB8lim e -3 -> R39ti m e -4-
.:-R39ti me-5-> R39t1me-6--.:-f:4 7 time-6 

F50time-2- >F50t emp t ime-2-

~·R4 7tlrru:J -3 - >1=59time-3 
F50tlme-.2->F50temptime-2-

> R4 7time·-3- ~·f60t'ime-3-

>1'60ternptime-3->CB 7t i rr1e -::S-

;· R3St i m e -4 -.:-·R35ti m e -5 -::-R35tlmi' -6 -
>R3Stime-7->F46time-7 

F39time-1- >F39temptime-1-

>'R3llirne -2· >R31ti rne-3-~·R31tirne -4 -

::-f43tlme-4 

F59t ime-3->F59temptime- 3 -

>.f-64time-3-> F64temptirne-3-

;•1=61t.ime-3 -::-F6lh: mptime -3 -

>f4.Sti me-3->F48temptime-3 -

m ulkbetold 2 

betne wi 9 

epsim1new 4 

epsim1ne v.• 8 

>R40time-4- >F<1 3time~-4.;.._~-~--~- ~-~----
1=4.3ti rne -4 ·-;;-F4 3 terr>pUrn•2-4· €! f):o.i rn l 2 
> R30ti me-5->1"33t1mP-5 

F33t irne-5 ->F33temptime-5 -

>f4 5t ime- 5 ->F4 5temptime - 5-

>>l3 4tirnc 6 ·>11=4 7time -6 
F47tlme -6 ->f47tempt lme -·6 -

mulkeps 4 

betne vA .2 

-~-t~~---·-~~-if-~~.;;R.:.::._3_:4.;:t.::.• m:.:.::.e:..--::..7_-_~·~F.-:4.:;G-:t::.i n::..,:.:e:.-..:.7~~------~------·· ·-· ~· ·--- --· ---· 
2 1 be tnewi f-46ti rne-7- :~fA6temptirne -7- betout 6 

;-C? 1 t l m e -7 - ;•R6Hme-8 - ;•F5tlmP-8 -

> F5temptime-8->SR1time-9-

--·--·l--------41.~>F2~0tii~me~-9 ----------------t-----~-·~~---
22 b eti 

:>R 11 t i me-2- >CB4t i me-2 -> R.23t l m e -3 -

~·R23time-4->R23time-S->R23time-6 -

>R23t ime- J.->R23t irne-8-> R23time-9-
;· 1= 2Rtime-9 -> F28temptiml'· 9 · 

>F20time-9 

84 

botout 12 



,-----~------···-~·--··-----------·---------····--

c 
u 

e 

n 

t 

f 

t 

n 

e 

!> 

s 

120 

100 

80 

60 

40 

20 

0 

···················PartiCles currentFitness versus Iteration 

1 5 10 15 20 25 30 35 40 45 50 55 60 65 66 

Parti{: le1 • Partic le2 Ill Part icle3 Ill! Particle4 ParticleS 

Figure 3.3: All particles currentFitness versus Iteration 

3.2.2 Mapping of Nodes and Routing of Edges 

The MCHPSO was experimented on an 8 x 8 CGRA configuration with FU that can 

either place or route as well as on an 8 x 8 CGRA configuration with FU reuse. The 

schedule, place, and route results from MCHPSO of all t he selected benchmarks on 

an 8 x 8 CGRA configuration with FU reuse are shown in Table 3.5. The first column 

shows the benchmark name, second column denotes the number of operations in the 

loop kernel, and the t hird column shows the initiation interval at which the loop 

kernel is mapped. The fourth column shows the instructions per cycle ( IPC) which 

is calculated by 
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Figure 3.4: Global best fitness for every iteration 

IPC = N _ Instruction 
II 

the Equation (3.1) . 

(3.0) 

The schedule density, without rout ing, considers the number of FUs used in the 

placement. T he schedule density, with rout ing, considers t he count of FUs used in 

t he placement as well as in rout ing of edges. T he fift h column shows the schedule 

density wit hout rout ing and t he sixth column shows the schedule density of F U, wit h 

rout ing, which are calculated as follows 

IP C 
schDensity NO R = ( b f FU) * 100 - - num er o 

(3.1) 

hD 
. f ( N Instruction + FU used in routing) OO (

3
.2) 

sc ens1ty _ WR = no o stages* - b f . RRG * 1 
num er o FUm 

where, 

• schDensity NO R: Schedule density of t he FUs wit h only placement. 
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Figure 3.5: BestFitness of all particles versus Iteration 

• schDensity _ WR : Schedule density of the FUs with routing. 

• N Instruction : Number of Instructions in the DFG. 

The eighth column shows the number of stages overlapped , which is calculated as 

number of stages = I Schedul; r Length 1-

The seventh column shows the total CGRA usage percentage, including all the 

computation and routing resources in the CGRA such as FU, RF, CB. RB and SRF 

used for the scheduling of loop kernel. The total CGRA ut ilization percentage is 

calculat ed by 
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. N Instrnction + tot alResUsed ) * 
100 Total_ Utll =number of stages*(--==--------,-------

RRG size 
(3.3) 

where, 

• N Instruction : Number of Instructions in the DFG 

• totalResUsed : Total RRG resources used in the routing path. 

used Res 
resUsedPercentage = number of stages* ( .

1 
) * 100 (3.4) 

avm Res 

where, 

• resUsedPercentage : Percentage of resources used with overlap. 

• usedRes : Number of resources of the part icular type such as FU, RF, CB, RB, 

and SRF used in rout ing. 

• availRes : Available resources of the particular type in the RRG. 

The last column shows the time t aken in seconds to schedule the loop kernel. The 

mapping results show that the proposed scheduling algorithm MCHPSO utilizes from 

31.25% to 79.69% of the total FUs available in t he CGRA. The FU usage depends on 

the size of the DFG and the number of st ages of the loop. The largest loop kernels, 

such as IDCT_ hor (horizontal pass) and FFT, are scheduled within a maximum of 

105.89 seconds. The time to schedule a loop kernel depends on the size of DFG, 

II and the modulo constraints. The larger the loop, the higher the constraints on 

resources and longer t he time the algorithm takes to complete the mapping process. 
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Table 3.5: Overall mapping results of the DSP benchmarks in 8 x 8 CGRA 

Schedule Schedule 

OPC Density Density Total :Exe 
("ithout (with CGRA. # lime in 

Benchmarks # ops ~ill IT routing) routing) Lti1 4% Stages Seconds 

FIR _complex 25 2 2 12.5 18.75 39.06 12.59 4 8~72 

Lattice synth 20 1 1 20 29.69 79.69 22.06 10 12.58 

Voltena 28 2 2 14 21.88 34.38 14.06 3 6.87 

IIR. 36 2 2 18 28.1 3 61.5 21.14 4 12.55 

IIR biquad 35 3 3 11.7 17.19 31.25 9.25 4 16.93 

8X8 

IDCT hor 78 3 3 26 40.63 73.44 29.47 5 93.11 

4X4 FFT 67 3 3 22.3 34.38 75.52 29.66 5 105.89 

8X8 

FDCT hor 74 4 4 18.5 29.69 63.28 18.34 3 27.01 

8X8 
FDCT Ver 73 3 3 24.3 3 7.5 78.1 3 21.2 4 55.67 

Experiments show that the MCHPSO algorithm could handle a wide range of loops 

with different number of operations. 

The MCHPSO was experimented on an 4 x 4 CGRA configuration with FU that 

can either place or route as well as on an 4 x 4 CGRA configuration with FU reuse. 

The schedule, place, and route results from MCHPSO of all the selected benchmarks 

on an 4 x 4 CGRA configuration with FU reuse is shown in Table 3.6. The first column 

shows the benchmark name, the second column denotes the number of operations in 

the loop kernel, and the third column shows the initiation interval at which the loop 

body is mapped. The fourth column shows the schedule density without routing, as 

calculated by the Equation (3.1). The schedule density, without routing, considers 

the count of FUs used in the placement. The fifth column shows the schedule density 

of FU, with routing, as calculated by the Equation (3.2). The last column shows the 
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Table 3.6: Overall mapping results of the DSP benchmarks in 4 x 4 CGRA 

Bench- # Schedule Density Schedule Density Time in 
:\larks Ops :\ill II (without routing) (with routing) Seconds 

FIR cplx "" ~) 3 3 50 68.75 0.84 

latasynth 20 2 2 56.25 78.13 0.66 

latanal 20 2 " .L 56.25 68.75 0. 53 

Volterra 28 4 4 43.75 57.81 1.36 

IIR. 36 4 4 56.25 78.1 3 2.1 7 

IIR. biquad 35 5 5 43.75 61.25 1. 77 

8X8 

IDCT hor 78 6 7 68. 75 89.29 7.2 

4X4FFT 67 5 7 56.25 81.25 9.86 
8X8 

FDCT hor 74 7 
., 
I 68.75 90.18 6.45 

execution time taken in seconds on an Intel Pent ium M wit h 1 GB RAM and a clock 

speed of 1. 73 GHz. 

From the mapping results , it is clear that the higher the number of loop operat ions, 

the larger the routing resources required. Our MCHPSO scheduling algorithm was 

able to map t he benchmarks, for both the 4 x 4 and the 8 x 8 CGRA configurations. 

The II achieved to map the benchmarks were t he minimal II in most cases, and close 

to t he minimal in others. 

3.2.3 Analysis of Functional Units Usage for Different Topolo-

. g1es 

The various topologies of FU are explained in Section 2.1. 1.1 of Chapter 2. In t his 

sect ion, the flexibility of each topology and its usage are discussed. The interconnec-

tion topologies are (1) a mesh based architecture of 4 neighboring FU connections; 
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(2) a meshplus1 architecture of 8 neighboring FU connections; and (3) a meshplus2 

architecture of 4 neighboring FU connections along with every FU connected with 

all other FUs in the same row and the same column (please refer to Figure 2.2 of 

Chapter 2). Table 3. 7 shows t he comparison of Functional Unit usage using various 

topologies. This experiment is done on a 4 x 4 CGRA. The first column shows the 

2 benchmarks taken for comparison. IDCT _ hor and FFT benchmarks were chosen 

because they did not schedule with the minimal II. The FU usage of the mapped 

I I schedule is compared with the previous initiation intervals (like I I - 1, II - 2) . 

The second column shows the minimal I I. The third column shows the I I achieved 

to find a schedule without any overuse of resources. The fourth column shows the 

percentage of FU usage, considering only the placement. The fifth , sixth seventh, 

eighth columns show the FU usage after scheduling, placement, and routing in mesh, 

meshplus1 , meshplus2 and star topologies. The topologies which overuse in schedul­

ing, placement, and routing have more than 100% usage. From row1, row3 and row4, 

it shows that the overuse of FUs is reduced when the interconnections were increased. 

Maximum FU utilization is achieved in the case of mesh topology. When the intercon­

nect ions are increased in the other topologies, the utilization of same FUs is reduced 

and other FUs are explored and used. When a benchmark has a lot of edges to route, 

the flexible interconnection helps the MCHPSO scheduling algorithm to achieve a 

valid schedule, with no overuse of resources. 
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Table 3.7: Usage of Functional Units with various topologies 

:\leshPlus1 
Mesh MeshPlusl MeshPlus1 and Star 

Bench-

:\1uks Min n n p P&R P&R P&R P&R 

8X8 6 sus 112.5 107.29 W9JS !() 1.04 

IDCT hor 6 68. '75 91.9{) 90.18 90 .18 89.29 

~ 81.25 128 .75 128.75 122.50 12(}.00 -
6 68.75 105.21 105.21 102.08 104 p 

4X4m 5 7 5625 85.7t4 78.571 S3.92S S5.7i4 

3.2.4 Analysis of Register F iles Usage with D ifferent Inter-

connections 

The usage of registers in the RFs was studied , with different numbers of RFs and 

their interconnections. The various interconnections are (1) each FU having its own 

private RF; (2) each RF is shared by the FUs in the top and bottom row of the same 

column; (3) each FU has a RF and t he RF is shared among FUs adjacent in all the 

diagonal directions, as shown in Figure 2.3 of Chapter 2. F igure 3.6 shows the usage 

of registers for the various register file topologies. 

This experiment was done on a 4 x 4 CGRA with each register fi le having 4 

regist ers, 4 read ports and 4 write ports . The percentage of register usage wit h 

corresponding benchmarks are shown in the graph. When the register usage is above 

100%, it is considered as an overuse of registers, and which v.rill not produce a valid 

schedule. The highest of overuse of registers is found in dedicat ed RF topology. The 

shared 4 RFs topology uses the limited number of registers efficiently, but for large 

benchmarks such as the last two, 8 x 8 FDCT_ hor and 4 x 4 FFT, it overuses the 

registers by nearly 20% to 100%. The shared 12 RFs topology utilizes the registers 
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efficiently when compared with dedicated RF topology. Therefore, the shared 12 RFs 

topology works the best for all the benchmarks with no overuse of registers. 
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Figure 3.6: Percentage of register utilization in different topology 

3.2.5 Effect of Varying Particle Size in MCHPSO algorithm 

To determine how many particles should be used in the MCHPSO scheduling algo-

rithm, it was experimented by varying the number of part icles used by the algorithm. 

T his experiment was done on an Intel® Coren~ i7-860 P rocessor, wit h a clock speed 

of 2.8GHz, using all the 4 cores for an 8x8 simulated CGRA configuration . 

The algorithm was not able to come out of the local optimum of the best par-

tide's fit ness value when only 5 particles were used. However, a valid schedule was 

achieved with 10 particles. Table 3.8 shows the comparison of execution time with 
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Table 3.8: Variation of particle size on an 8 x 8 CGRA 
ExecutiOn ttme (in seconds) of 

::\ICHPSO 

Benchmarks 10 25 30 35 40 
8X8 !! ..., _ _ _ j 

24.0 26.9 31.3 ...,"""" 
j ___ 

IDCT hor 

4X4 FFT 22.0 49.0 48.1 58.6 66.7 

8X8 12.1 18.7 21.0 24.4 27.8 

.FD CT Yer 

different particle numbers. The first column shows the 3 large benchmarks taken for 

comparison. The second to sixth columns show the execut ion t ime for particle counts 

10, 25, 30, 35 and 40. In all t he par ticle count variations, the MCHPSO algorithm 

was able to get the valid schedule, with the same usage of resources. The quality 

of t he solution was the same in all the particle size variation. Since there was the 

same usage in all the different particle counts, it is concluded that 10 particles are 

sufficient. 

3.2.6 A nalyzing the Speedup of MCHPSO A lgorithm 

The Intel Core i7-860 processor (Intel i7-860 processor , 2009) features 4 cores, with 

a clock speed of 2.8 GHz. It features symmetric multithreading (hyper-threading) so 

that each core supports 2 threads, for a total of 8 hardware threads. It can run at 

a maximum clock frequency of 3.46 GHz with Intel Turbo Boost technology. When 

one core is active, i7 processor operates at a frequency of 3.46GHz. When 2 cores 

are active, i7 processor operates at a frequency of 3.33GHz. When 3 or 4 cores are 

active, i7 processor operates at a frequency of 2.93GHz. 

To analyze the speedup of our MCHPSO scheduling algorithm, the execution 
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t imes of the algorithm were compared , for 1 to 8 processing threads on the quad core 

processor done in the same environments. Table 3.9 shows the speedup of MCHPSO 

algorithm on various benchmarks. The first column shows the benchmarks taken 

for comparison by using logical processors (P) in Intel i7 machine. The second to 

the ninth columns show the execut ion time of MCHPSO algorithm. The MCHPSO 

execution on Intel i7 machine scheduled at the same II as given in Table 3.6. While 

using 2 processing t hreads and 2 cores, the speedup was more than 1.5 times than 

with a single processing thread. While using 4 processing threads, 1 on 4 cores, the 

speedup is more t han 2.5 times than with a single processing thread. While using 

8 processing threads on 4 cores, the speedup was more than 3.5 times than with a 

single processing thread execution. The mult ithreading, available in the cores, helps 

the algorithm to process the particle arrays faster. The proposed MCHPSO works 

faster, with more processing threads. The MCHPSO algorithm did not achieve a 

lower II than the II given in Table 3.6 in spite of the speedup available by the logical 

threads. The sublinear speedup was due to the pipelines that don't contend for ALUs, 

and the memory pipe is to the level 2 cache (the largest cache). Memory contention 

is probably the most important of those. 

3.2.7 Functional Units Capable of Routing and Performing 

Computations 

The computational resources in a CGRA are the functional units, which are capable 

of executing a set of coarse-grained operations such as add, subtract, multiply, and 

shift. First, we designed the FUs only to perform computation and to forward in-
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Table 3.9: MCHPSO algorithm speed up comparison on an Intel i7 processor 

Benchmarks ::\ICHPSO in Intell.C Coren1 i7 Processor 

Execution Time{Seconds) 

OneP 2 P's 3 P's 4 P's 5 P's 6 P's 7 P's 8 P's 

FIR cplx 7.29 4.23 3.1 2.98 2.79 2.68 2.2 2.08 

latasynth 6.96 4.17 3.31 3.26 3.2 3.07 2.49 2.43 

latanal 2.89 1.76 1.39 1.36 1.3 1.25 1.15 1.06 

Volterra 6.26 3.45 2.59 2.36 2.34 2.17 1.86 1.76 

IIR. 9.13 "i ..,.., _ _ j .. 3.92 3.65 3.54 3.32 2.81 2.68 

IIR biquad 13.6 7.61 5.4 5.12 5.16 4.56 3.98 3.68 

8X8 
IDCT bor 79.3 1 42.44 32.24 28.82 28.33 27.51 22.69 22.29 

4X4 FFT 84.46 44.23 33.16 31.54 29.65 2i.58 22.73 22 

8X8 
FDCT hor 23.28 13 .14 9.97 9.39 8.77 8.41 7.15 6.94 

8X8 

FDCT Yer 44.28 23.97 18.23 17.12 15.87 15.02 12.3 12.07 
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Table 3.10: Comparison of FU utilization with placement and routing 

::\ICHPSO '"ith 
IT that cannot ::\fCHPSO with Fr 
route if used for that can both 

Benchmarks execution route and execute 

Fffi._cpl:x 42.19 39.06 

Volterra 42.97 34.38 

8X8 
IDCT hor 

92.19 73.44 

4X4 FFT 88.02 7552 
8X8 

FDCT hor 
83.98 63.28 

8X8 
FDCT Yer 

88.02 78.13 

formation during routing, if they are not performing any operation. Then, the FU 

was redesigned to have additional ports and switches to perform computation and 

routing at the same t ime. The usage of FUs was studied by comparing the 2 different 

FU configurations, as shown in Table 3.10. The first column shows the benchmarks 

taken for comparison. The second column shows the percentage of FU usage, with 

FU configuration that cannot route when it has been used for execut ion. The third 

column shows the percentage of FU usage, with FU configuration that can route and 

execute at the same time. The comparison shows that FU usage decreases when they 

are capable of both routing and executing and this makes more resources available 

for mapping larger benchmarks. 
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3.3 Comparison of MCHPSO with Other Modulo 

Scheduling Algorithms 

Table 3.11 indicates the comparative results of MCHPSO, measured against the mod­

ulo scheduling algorithm [Vassiliadis and Soudris, 2007b] used in ADRES, as devel­

oped by the IMEC [IMEC, 2009] group. The second column shows the benchmarks 

used, which are derived from T I Inc. [Texas Instruments . inc, 2009]. The third 

column shows the number of operations derived from the benchmarks on both the 

algorithms. The fourth and fift h columns show t he Mil and II calculated for bot h 

t he algorithms. The sixth column shows the schedule density of FU (with routing) . 

The seventh column shows the scheduling time in seconds for the mapping of the 

benchmark. The work in [Vassiliadis and Soudris , 2007b] uses the 8 x 8 CGRA array 

with 8 memory operat ions and Meshplus homogeneous architecture topology, row 

and column buses, predicate RF and data RF. MCHPSO was executed on an Intel 

Core 2 Duo CPU with 4GB RAM and a clock speed of 2 GHz. Their algorithm was 

executed on a Pentium M 1.4 GHz P C. The comparison shows that MCHPSO was 

able to route the FFT benchmark with the minimal II, with a substantially smaller 

measure of execut ion t ime. 

Table 3.12 shows the comparison of MCHPSO with the modulo scheduling al­

gorithm used in [Dimitroulakos et al. , 2007]. Dimitroulakos et al. , work uses a 2D 

CGRA with 16 PE with PEITl (al l PEs are connected with its row PEs and column 

PEs) and PEIT2 (nearest neighbor ) topology. The execution time is smaller in the 

PEIT1 t han in P EIT2 because t here is a smaller average routing delay experienced 

by PEIT2 which PEITl overcomes by the richer interconnection topology. The archi-
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Table 3.11: Comparison of MCHPSO results with Mei et al work 

Comparing Results reported in (Yassiliadis 

algorithms 8 X 8 ~ICHPSO & Soudris, 2007) 

Schedule Exe Schedule Exe 

Density Time Densi1y Time 

# (with in # (with in 

Benchmarks _}III ops II routing) OPC Sees op s ll routing) OPC Sees 

sxs 
IDCT hor 3 78 3 73.44 16 93.11 128 3 90.1 0% 42.7 340 

4X4 FFT 3 .67 3 75.52 24 105.9 79 4 75.00% 19.8 314 

tecture has 2 scratch pad memories LO and Ll and there are 2 memory buses per row 

in the 2D CGRA to fetch data from scratch pad memory Ll which quickly loads the 

data into the PE. The LO scratch pad memory exploits this capability for reducing the 

memory accesses to Ll by reducing the data transfer bottleneck. That is achieved 

by storing the data reused values in the LO and not fetching them again from the 

Ll memory. The topology used with our MCHPSO algorithm closely resembles the 

topology in PEIT l , described in Table 4 of [Dimitroulakos et al., 2007]. Therefore, 

the work done in [Dimitroulakos et al., 2007] based on PEITl , was compared wit h 

the MCHPSO algorithm. The first column in Table 3.12 shows the benchmarks taken 

for comparison. The second and fifth columns show the number of operations in the 

benchmark. The third and sixth column show the II at which the algorithms were 

able to map the benchmarks. The fifth and ninth columns show the schedule density 

of FU (with routing) as calculated in Equation 3.2. 

This comparative study has established that MCHPSO algorithm has a lower II 

for all benchmarks in spite of not using scratch pad memory, which has been used in 

[Dimitroulakos et al., 2007]. The fifth benchmark 8x8 IDCT-hor depicts a typical case 
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of showing that the proposed algorithm maps at a lower II with the same number of 

operations and schedule density compared with results in [Dimitroulakos et al., 2007]. 

The number of operations are different for the comparing algorithms because of 

the different analysis and transformation phase carried out in [Vassiliadis and Soudris, 

2007a] and [Dimitroulakos et al., 2007]. Not withstanding this discrepancy, the su-

perior performance of the MCHPSO algorithm is evident. The MCHPSO algorithm 

finds schedules, with a minimal II, for all the benchmarks taken for comparison to 

the work done in [Vassiliadis and Soudris, 2007a] with a lower use of resources. 

Table 3.12: Comparing MCHPSO with Dimitroulakos's et al work 

4X4 :\ICHPSO Results reported in 
(Dimitroulakos, 

Comparing Galanis, & Goutis, 

algorithms 2007) 

Benchmllrks Jill #ofOps II Schedule #ofOps II Schedule 
Density Density 

latasj1lth 2 20 2 78.13 18 6 75 

Voherra 4 28 4 57.81 27 
., 
I 70.3 

IIR 4 36 4 78.13 39 8 59.5 

4X4 FFT 5 67 7 81.25 95 17 69.6 

8X8 IDCT hor 6 78 ., 
.i' 
I 89.29 79 14 85.1 

latanal 2 20 2 68.75 18 8 62.5 
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3.4 Conclusion 

In this chapter , we discussed the analysis of the Modulo Constrained Hybrid Parti­

cle Swarm Optimization (MCHPSO) algorithm for the loop scheduling problem in 

CGRAs. The results from MCHPSO algorithm indicate that the algorithm can find 

a valid schedule, placement and routing for the given benchmark loops, often with a 

minimal init iation interval, and with a low use of resources. To study the paralleliz­

ability of the MCHPSO algorithm, we have executed it on a quad-core machine with 

8 logical processors and found good speedup. We also analyzed the MCHPSO algo­

rithm with 2 different FU configurations. The experiment helped us to understand 

the enhancement in FU configuration increases the usage of FUs. Various intercon­

nections in all FUs showed that increase in each additional edge produces a flexible 

routing process, thereby increasing the usage of resources. The size of RFs and the 

effect of topology have been studied to know the usage of registers and which topol­

ogy worked the best for our scheduling problem. Shared RFs with each FU gave the 

lowest usage of registers. In the MCHPSO algorithm, the number of particles to be 

considered was studied and reported. 
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Chapter 4 

Exploiting conditional structures 

onto CGRAs 

4.0 Introduction 

Coarse-grained reconfigurable architectures (CGRAs) have been structured for accel­

erating computation intensive parts like loops that require large amount of execution 

time. Loops, with conditional branches, have multiple execut ion paths which are dif­

ficult to perform software pipeline. In this chapter we review work done in handling 

condit ional branches of loop, with if-then-else structures. We present an algorithm for 

scheduling predicated execution, with exclusivity feature, to exploit the conditional 

branches of loops. The performance of the proposed algorithm is compared with the 

predicated execution scheduling algorithm, with no exclusivity feature. The proposed 

algorithm finds a lower initiation interval for all the loops considered. 
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4.1 Background on HARPO /L 

In this chapter we have taken DFGs generated from a HARPO / 1 program (stand­

ing for HARdware Parallel Objects Language). A HARPO / 1 program consists of a 

set of classes, interfaces, objects, and constants. The class declarations and inter­

face declarations add new types to the type system, and the object declarations and 

constant declarations add objects to the object graph . The details of object decla­

rations and constant declarations are similar to other object-oriented programming 

languages [Wu, 2011]. The grainless semantics of HARP0/ 1 allows the object in­

stantiation and connection to be done at compile-time, and at the run-time, there is 

no reference/pointer assignment. 

The synthesized data flow graph (DFG) generated by the compiler [Wu, 2011] is 

very close to the representation of a schedulable datapath unit. All the benchmarks 

considered in this chapter are written as HARP0/ 1 programs. In this chapter, we 

present limited details on HARP0/ 1 and for more details please refer to [Wu, 2011]. 

4 .2 DFG characteristics 

This section describes the charact eristics of the dataflow graph generated from the 

HARPO / 1 program. A DFG is a directed graph represented by a 5-tuple 

(N, E, type , I , 0) where N is a set of nodes, E is a set of directed edges, type is 

a function: N ---> N odeTypes, I is a node representing the start of the graph, and 0 

is a node representing the end of the graph [Wu, 2011]. Each node has an ordered 

set of input edges and an ordered set of output edges, and each edge has exactly 1 
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source node and exactly 1 target node. There are 2 kinds of directed edges between 

data flow graph nodes : E = C U D where C is a set of control flow edges and D is 

a set of data flow edges. A data flow edge represents the synchronized transmission 

of a primitive value between dat a flow graph nodes. When a node is ready to receive 

data from an edge, it waits for the edge to be active, and once the edge is active, 

the node may receive the data and set the edge's activeness expires. \ iVhen a node is 

ready to transmit data, it will transmit the data, set the edge active and wait unt il 

t he edge is no longer active. The control flow edges are the edges transmitting only 

the activeness and no data. T he symbols used for outgoing and incoming edges are 

Z ! means "activate control flow edge Z and wait until it expires and a control flow 

receive operation A? means "wait until edge A is active, and set the activeness as 

expired" [Teifel and Manohar, 2004]. There are 13 types of data flow graph nodes. 

The graphic representations are shown in Figure 4.0. The description of the nodes 

used in the data flow graph are given below. 

FETCH, VALUE and STORE: Each FETCH and STORE node are associated with 

a location. The operation fetch() means "fetch the value in the location". The 

operation store( a ) means "store the value of a in the location" . VALUE loads 

the data from the memory. 

FUNC: It performs the assigned arithmetic or logic operation when all the incoming 

data edges are active. 

COPY: Copies the incoming data to the various outgoing nodes. 

START: The control flow of the whole graph starts from this node. 
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Figure 4.0: DFG node types, taken from [Wu, 2011] 

JOIN: It joins all the control flow. 

SPLIT and MERGE: SPLIT nodes are used to copy data to 2 different nodes based 

on the condition edge C. MERGE nodes take the result of the 2 execution paths 

based on the condit ion edge C. 

MULTI-LOCK: each MULTI-LOCK node is associated with a number of locks, and 

indicates whether t he locks are free. LOCK and UNLOCK node are associated 

with a lock, and indicates whether t he lock is free. 

4.3 Handling conditional statements 

Loops, with conditional branches, have multiple execut ion paths and irregular flow of 

execution [Milicev and Jovanovic, 1998]. T his seriously limits loops, with conditional 

branches, to exploit parallelism in CGRAs. T he limitation in handling conditional 
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branches in CGRAs is that the configuration text cannot control the execution ac­

cording to the computation results [Lee et al., 2010]. The conditional branches part 

makes it hard to map the application onto CGRA, even though CGRAs can handle 

the most t ime consuming computation intensive part. 

To tackle this problem , various solutions have been proposed in the literature. One 

of them is to perform predicated execution on the CGRA [Warter et al., 1993]. In 

predicated execut ion, each processing element ( P E ) selectively executes an instruction 

according to its condition flag. T his approach has the advantage of turning off unused 

PEs to reduce the power consumption. Predicated Execut ion restricts the parallel 

execution in CGRAs, because the condition should be checked before execut ing the 

statements inside the conditional statement [Smelyanskiy et al., 2004], [eun Lee et 

al., 2004] . 

The second approach is to run the application with speculation [Lee et al., 2010]. 

Speculative Execution chooses one of the solutions depending on the condition, after 

executing all possible solutions first . This approach improves the performance, but 

consumes more power compared to the predicated execution. 

T he third approach is the Hierarchical Reduction, which collapses conditional con­

structs (e.g. if-then-else) into pseudo-operations. Next, list scheduling is employed on 

both the paths of the conditional construct and merging them into one path by taking 

the union of the resource usages along each path [Warter et al. , 1993]. Hierarchical 

Reduction does not assume special hardware support. Thus, after modulo scheduling, 

the code is regenerated by expanding the pseudo-operations. The fourth approach is 

called the Enhanced Modulo Scheduling [Warter et al. , 1992], which takes advantage 

of Predicated Execution and Hierarchical Reduction. 
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To support conditional branch in the reconfigurable architecture, the target ar­

chitecture ( TA) has to be modified slightly with an extended set of operations and 

additional ports [Chang and Choi, 2008], [Lee et al., 2010]. Figure 4.1, shows the 

extension of arithmetic and logic unit (ALU) for predicated execution . The predi­

cated instructions contain a condit ion flag to be executed first, which is supported as 

an additional port to the functional unit (FU). The difficulty that arises in mapping 

condit ional branch on the CGRAs is to direct control flow to either stay in the current 

iteration path or to begin execut ing operat ions on a different iteration path. 

In our target architecture, an addit ional port for each functional unit is added 

to support predicated operations. Predicated execution, with hardware support for 

conditional branching CGRAs, will be used in our modulo scheduling algorithm. To 

enhance the performance of predicated execution , we have developed an exclusivity 

feature algorithm, which will be discussed in the next section. We have implemented 

both the approaches of predicated execution without exclusivity and with exclusivity 

to study the performance of the exclusivity feature. 

4 .4 Predicated execution with exclusivity 

4.4.0 M ot ivational example for exclusiv ity 

Consider the DFG given in Figure 4.2, generated from the HARPO/ L program having 

1 if-then-else structure. Each node descript ion is explained in Section 4.2 of this 

chapter. The node with number 250 in Figure 4.2, is a boolean node. There are 2 

execution paths in the DFG, based on the boolean value of node 250. 
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Figure 4.1: ALU modification for conditional branch a)original ALU b) modified 
ALU, taken from [Lee et al., 2010] 

Figure 4.3 compares the Modulo Reservation Table (MRT) of the 2 algorithms: 

predicated MCHPSO with exclusivity and predicated MCHPSO without exclusivity. 

Figure 4.3 displays only a few TA resources for comparison purpose. The predicates of 

the exclusive nodes in Figure 4.3 are given in Figure 4.4. In the MRT, functional unit 

F5 of cycle 0 has only node 500 with predicated MCHPSO no-exclusivity algorit hm. 

In the predicated MCHPSO exclusivity algorithm, the nodes 500, 700, with predicates 

of 250 and ---.250, are allocated . Since these nodes 500 and 700 are exclusive, i.e., both 

of these nodes will not be executed in the same iteration, 1 TA resource is enough . 

Using exclusivity only 4 register slots are used in resource R6 of cycle 1, with 5 DFG 

cells. Similarly 1 slot is used by 2 DFG cells in F5 and COl of cycle 0. We can reduce 

the usage of TA resources by reusing the TA resources with exclusivity feature. 

The exclusivity algorithm reuses the same resources that are exclusive with the 

current DFG cell , to be mapped in placement as well as in routing. Hence we propose 
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Figure 4.2: Example of HARPO / L DFG with if-then-else 
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Cyc l e 0 

Ex F5= [7 00 , 500 ) ( 1 ) C01= [ 5'90 - 24 0 , 450 - 840 } (1) 

NO-Ex F5= [ 5 00 } (0 ) COl= [} (0) 

Cycl e 1 

R6= 700- e1o , 250 - 240 , 

250 - 310, 3 0 - 400, 

Ex 5 00- 310] (1) 

NO- Ex R6= !"'1 o-«~o 
--- - ..J ' 

250 - ElO!_ (0) 

R3= [ 92 0 - 3 90 , 32 0-250 , 

Cycl e 2 Ex 250 - 370 , 250 - 45 0 ] (0) 

R3= [ 2 90 - 260 , 250 - 400 , 

NO-Ex 250 - 370 , 250 - 450 } (0) 

Figure 4.3: MRT Comparison of Exclusivity and No_ Exclusivity Algorithm 

DFG Cells Predi cat es 

500 ~2 50 

700 250 

590-840 ~250 

450-840 250 

700-810 250 

5{10-810 ""250 

Figure 4.4: Predicates of the exclusive nodes in Figure 4.3 
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Figure 4.5: Predicated MCHPSO no exclusivity algorithm 

the exclusivity feature, in addition to the predicated MCHPSO, to map if-then-else 

structure. 

4.4.1 Mapping with MCHPSO predicated no exclusivity a l-

gorithm 

4.4.1.0 Method description 

The MCHPSO scheduling algorithm, discussed in the previous chapter, can place 

schedule and route DFG cells that have no predicates attached to them. There are 

3 main updates needed to be done to the existing scheduling algorithm. We had to 
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update our TA graph, DFG and scheduler to handle execution paths and predicates 

to map if-then-else structure with our existing MCHPSO scheduling algorithm. The 

overall description of the predicated MCHPSO with no exclusivity algorithm is given 

in Figure 4.5. Each update is explained in the following subsections. 

Adding predicates and symbolic values The main input to the scheduling al­

gorithm is the data flow graph. In this chapter, we have generated DFG from the 

HARPO / L program, as described in early sections of this chapter. Each node in the 

DFG has a type. The condition nodes of an if-structure is assigned the node type 

FUNC and the outgoing edges of that node have an edge type BOOL. A condition 

node is shown in Figure 4.2, with the node number 250. From the condition node, 

the follmving nodes and edges in the DFG are controlled by the result of the BOOL 

value, having 2 execution paths of TRUE/ FALSE. The outgoing edges of the con­

dition node are assigned a symbolic value, based on the executed result of condit ion. 

Any node that has an incoming edge, with a symbolic value, assigns predicate to itself 

and to its successors with a combination of symbolic value and its predicate. The 

following subsection explains t he assignment of symbolic values and predicates. 

Assigning symbolic values When the DFG is created, all the DFG cells are 

assigned a TRUE value for their predicate and a null for their symbolic values. After 

all the nodes and edges are created, the symbolic values and predicates are added. 

Adding symbolic values is explained in Algorithm 4.0. First, the procedure starts to 

find all the condition nodes in the given DFG and adds them to the queue. Second, 

the procedure finds all the edges of the condition nodes and assigns the symbolic 

112 



Symbolicval_ add( condit ion _ list, DFG _ cells) 
Begin 

End 

For each condition node ( c1) in condit ion _ list 
Add condition node to Queue 
cl _ name:= cl.getN arne() 
Create a propositional variable (symval) 

with c1 name 
Assign c1 's symbolic value as symval 
While Queue not empty 

Remove a node (n1) from Queue 
succ _ symval:= symval 
For each successor ( s 1) of n 1 from D FG _ cells 

succ _ type:=sl.getNode _ type() 
n1s1:= Edge(n1, s1) 
Assign n1s1 's symbolic value as succ _ symval 
Assign s 1 's symbolic value as succ _ symval 
if succ _type is COPY 

Add s 1 to Queue 
End For 

End While 
End For 

Algorithm 4.0: Adding Symbolic values to DFG cells 

value, based on the name of the condit ion node. 

Assigning predicates Once the symbolic values are assigned to all the DFG 

cells, it is easy to assign the predicates. The adding of predicate values is explained in 

Algorithm 4.1. Each DFG cell is assigned a predicate value based on its parent cell. 

Mostly, all the DFG cells are assigned the same predicate of its parent cell. There 

are 3 special cases based on the node type. Figure 4.6 explains the 3 cases of node. 

The first case is a Condition Node (node 30), in which assigning a predicate to this 

node is always done with a AND operation with its existing predicate. The second 

case is a SPLIT Node (node 400) . A SPLIT Node is assigned the same predicate of 
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Figure 4.6: SPLIT and MERGE edges 

its parent cell, but it predicts the predicate of its successor edge. A SPLIT Node has 

2 edges, the first edge is for the TRUE value of condition and the second edge is for 

the FALSE value. The same predicate of SPLIT Node is assigned to t he first edge. 

The negation of the SPLIT node's predicate is assigned to the second edge. The third 

case is a MERGE Node (node 810) . The MERGE Node has 3 incoming edges, an 

edge with a symbolic value, an edge with TRUE predicat e, and an edge with FALSE 

predicate. The MERGE Node is always assigned t he same predicate value of the edge 

with symbolic value. 
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Predicates_ add( condit ion _ list, DFG _cells) 
Begin 

End 

For each condition node ( cl) in condit ion _ list 
Add condition node to Queue 
While Queue not empty 

Remove a node (nl) from Queue 
nl _ predicate:= nl.getPredicate() 
nl _ type:= nl.getNode _ type() 
For each successor(sl) of nl in DFG_ cells 

FIRST succ:=true 
succ _ type:=sl .getNode _ type() 
nlsl:= Edge(nl ,s l ) 
edge_ type:= nlsl.edgeType(s l ) 
//pass the same predicat e if succ is not a SPLIT 
succ _ pred:= nl _ predicat e 

if nl _ type is SPLIT 
if FIRST succ 

//FALSE execution path 
Create a NOT node (not _nl) of nl _ symval 
Create an AND node (succ_pred) of nl _ predicate 

else 

and not nl 
FIRST succ:= false 

//TRUE execution path 
Create an AND node ( succ _ pred) of nl_ predicate 

and nl _ symval 
Assign nlsl 's predicate as succ _ pred 

if succ _ type is not MERGE or SINK 
Assign sl 's predicate as succ_pred 
Add sl to Queue 

if edge_ type is BOOL and succ _ type is MERGE 
/ / pass the predicate MERGE node's successor 
Assign nl 's successor predicate as succ _ pred 

End For 
End While 

End For 

Algorithm 4.1: Adding Predicates to DFG cells 
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TA predicate and control flow update The first update is done in the TA 

graph. We have to update the TA to accept conditions in the DFG and to handle 

the cont rol flow in the DFG. Each functional unit in the TA was updated with an 

extra input port to handle predicated DFG cells. A DUMMY node was added in the 

TA to handle control flow in DFG cells. After the TA was updated , the functional 

units were ready to process predicates and cont rol flow. Now the scheduler has to be 

updated to use the updated TA. 

Handling control flow update in scheduling algorithm The inputs to the 

scheduler are the predicated DFG and the rout ing resource graph of t he updated TA 

graph. The scheduler as presented in Chapter 3 can handle only the data flow in the 

DFG. To handle cont rol nodes and control edges in the predicated DFG, the scheduler 

had to be updated. In the placement module of MCHPSO, the control nodes of the 

DFG are allocated to the DUMMY node of the TA graph. In t he routing module 

wi th Dijkstra's algorithm, the control edges are not passed to check the resource 

availability to route. Instead cont rol edges affect the schedule time of its successor 

nodes. 

4.4.2 Mapping with MCHPSO predicated exclusivity algo­

rithm 

4.4.2.0 M ethod description 

The MCHPSO predicated exclusivity algorithm has all the updates done in the previ­

ous section of MCHPSO predicated no exclusivity scheduling algorit hm. There are 2 
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Figure 4.7: Predicated MCHPSO with exclusivity algorithm 

extra updates done to the MCHPSO predicated no exclusivity scheduling algorithm to 

add the exclusivity feature. The first update is to find all the exclusive pairs of DFG 

cells. Second is to update our scheduler to handle exclusive DFG cells. The overall 

description of predicated MCHPSO with exclusivity algorithm is given in Figure 4. 7. 

Each update is explained in the following subsections. 

F ind exclusiv ity r elationship When there is a condition in a predicated DFG, 

we can find exclusive pair of cells which are on different execution paths. A cell can 
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Create_ Exset( Alldfgcells) 
For each cell _ l in Alldfgcells 

For each cell _ 2 in Alldfgcells such that cell_l =I= cell _ 2 
Create a boolean expression e with an AND node 

combining the predicates of cell_l and cell _ 2 
if e is satisfiable 

Add the pair { cell _ l , cell _ 2} to the exclusivity set 

Algorithm 4.2: Creating exclusivity set 

be either a node or an edge in the DFG. Two cells are exclusive, when both of these 

cells are on different execution paths i.e., both of these cells will not be executed 

in t he same iteration. Algorithm 4.2 shows the steps to find exclusive pair of cells. 

Based on the predicates of each cell , all of its exclusive cells are found which are on 

different execut ion paths. 

Handling exclusivity in placem ent , schedule and routing The scheduler up-

date done in the predicated, no-exclusivity algorithm does not have methods to check 

for exclusivity in placement and routing. We have added an exclusivity check method 

both in the placement and the routing modules to place and route exclusive DFG cells. 

Each TA resource in the modulo reservation t able has a set of DFG cells assigned to it 

during the execution of scheduling algorithm. In the MCHPSO predicated exclusivity 

algorithm, we propose to reduce the usage of TA resource and reuse existing resources 

based on exclusivity. Algorithm 4.3 shows the exclusivity calculation. Each DFG cell 

executes Algorithm 4.3 while searching for TA resource availability in placement and 

routing. T he number of slots occupied in the existing DFG cells in the TA resource 

are found by the Maximum Independent Set (MIS) Algorithm 4.4. When a DFG cell 

wants to use a TA resource, t he number of used slots in the TA resource must be less 

t han the capacity of the resource. Adding t he exclusivity algorithm to t he predicated 
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exclusiveinSet(TAresource, dfgcells _existing, newOP) 
1. If dfgcells _existing is empty add newOP and return true. 
2. Else find MIS _ SIZE= MIS( dfgcells _existing, newOP) 

a . Return MIS _ SIZE~Capacity(TAresource) 
b. Else return false. 

Algorithm 4.3: Exclusivity check of TA resource 

NilS( dfgcells _existing, newOP) 
1. Create 2 empty sets MIS_ search and MIS. 
2. Add the dfgcells _ existing and the newOP to the set MIS _ search. 
3. Find the degree of each cell in the set MIS _ search based on exclusive pair. 
4. Sort MIS _ search set in ascending order of degree. 
5. For each cell el in MIS search 

If degree( el )= 0 then add el to the MIS set and remove el from 
MIS search. 

else 
a. Check whether el is exclusive with the elements in the MIS 

set. 
b. If not exclusive add el to the MIS set. 
c. Remove el from MIS search 

6. Repeat step 5 until all MIS _ search is empty. 
7. Return the size of MIS set. 

Algorithm 4.4: Maximum Independent Set of DFG cells 

MCHPSO makes room for more DFG cells to be scheduled. 

Algorithm 4.4 shows the steps to find maximum independent set of given cells. 

4.5 Results 

Modulo scheduling algorithms reported in the literature either jointly address inner 

loop mapping and predicat ed execution but do not consider CGRAs [\ iVarter et al. , 

1993], or consider modulo scheduling on CGRAs but cannot handle exclusivity i.e., 

can only address predicates and control flow, with no particle swarm optimizat ion [Mei 

et al., 2003b] . T hus, the novelty of our approach makes it difficult to experimentally 
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validate our results in comparison to previous work. 

VIe have however devised an experiment that allowed us to assess the exclusivity 

feature for the complete modulo scheduling problem. Specifically, we compared the 

code generated by our exclusivity algorithm to code generated by a baseline algorithm 

that binds state of the art predicated code to a CGRA and then modulo schedules the 

code. In order to ensure fairness, the baseline algorithm (predicated no exclusivity 

algorithm discussed in Section 4.4.1) uses the same MCHPSO and target architecture 

implemented in our framework. 

4.5.0 Experimental Set Up 

The predicated MCHPSO with exclusivity check and without exclusivity check schedul­

ing algorithm was written in Java and executed on an Intel Core 2 Duo CPU with 

4 GB RAM and a clock speed of 2 GHz. To schedule an inner loop body with if­

then-else structure requires 2 main inputs. The first input is the DFG generated 

from the HARPO/ L programs with predication. The second input is the 4 x 4 and 

4 x 3 TA graph. The 4 x 3 TA graph architecture is taken in this chapter to compare 

the performance of exclusivity with reduced TA resources. The predicated MCHPSO 

with exclusivity check and without exclusivity check algorithm places, schedules and 

routes the given DFG onto the TA. The modulo reservation table corresponding to 

the final schedule results is discussed in the next section. 
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Table 4.0: DFG characteristics of the benchmarks 

Benchmark No of 4x4 and 4 x 3 CGRA 

name No of nodes Edges Mil Sch length 

ifthen-1 

condit ion 26 41 3 15 

ifthen-2 

condit ions 52 87 5 18 

ifthen-3 

condit ions 56 111 7 21 

4.5.1 DFG characteristics 

The characteristics of the DFG input to the scheduling algorithm are given in Table 

4.0. The 3 benchmarks were written by me. The loop structure of the benchmarks are 

given in Figure 4.8, where s represents t he statement and c represents the condition 

in the loop. The first column in Table 4.0 describes the benchmark name. The second 

and third columns list the total number of nodes and edges in the DFG to be mapped 

onto the TA. The fourth and fifth columns show the minimal init iation interval and 

schedule length. 

4 .5.2 TA characteristics 

The TA graph has nodes and edges describing the details of t he CGRA configuration. 

A detailed explanation of the TA is given in Chapter 3. Table 4.1 shows the resources 

available in a 4 x 4 and 4 x 3 CGRA. The first column shows the number of functional 

unit resources available. The second column shows the number of local registers 
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Figure 4.8: The first three benchmarks loop structure 
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available. The third column shows the number of shared regist ers available wit h 

memory loads and store. The fourth and fifth columns show the number of row 

and column buses available. The last column shows the number of total resources 

available. We have taken 4 x 3 CGRA to compare the advantage of predicated 

exclusivity in MCHPSO. T he reduced number of resources in 4 x 3 CGRA makes 

it challenging for the predicated scheduling without exclusivity to place and route 

the DFG. 

Table 4.1: Resources available in the Target Architecture 

#IT #LRF #SRF #RB #CB # Total 

4><4 - Target 

Architecture 16 48 4 4 4 76 

4><3 - Target 

Architecture 12 32 4 3 4 55 

4 .5.3 Predicated Execution 

4.5.3.0 With Exclusivity 

The MCHPSO algorithm with predication execution and exclusivity feature was 

tested on 2 CGRA configurations. The exclusivity feature enables the TA resources 

to share the available NIRT slots in routing as well as in placement. The sharing of 

resources reduces the total usage of MRT resources, making the remaining resources 

123 



available for other DFG operations. The following subsections describe the results 

obtained in the 2 CGRA configuration. 

4 x 4 CGRA Table 4.2 displays the result obtained in a 4 x 4 CGRA, with predicated 

exclusivity algorithm. The first column shows the benchmark description. The second 

column shows the initiation interval (II) at which the algorithm was able to schedule 

the DFG. The third column shows the percentage of total functional unit usage in 

the MRT. The fourth column shows the percentage of total local register usage in the 

MRT. The fifth column shows the percentage of total shared registers usage in the 

MRT. The sixth and seventh columns show the percentage of total usage of column 

and row buses in the MRT. The eighth column shows the total resources available 

in the MRT. The ninth column shows the total resources used in the MRT. All the 

benchmarks were scheduled at the minimal init iation interval (MII) and minimal 

usage of resources. The total usage of t he modulo reservation table of the final 

schedule was calculated by 

All TesouTce types in T A 

Res avail = L (#r x Cap) x II (4.0) 
R esource r 

All resouTce in T A 

Res used= (#slots_ used) (4.1) 
R esource ,. 

Usage% = (Res _ used) / (Res _ avail) x 100 (4.2) 

where, 

Res avail: Total TA resources in MRT 

Res used: Used TA resources in MRT 
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Table 4.2: Exclusivity results in 4 x 4 CGRA 

Total 

Availallle resources 
Benchmark FU LRF SRF CB RB resources used in 

name II usage% usage% usage% usage% usage% inMRT MRT 

ifthen-1 

condition 3 52.08 29.86 83.33 33.33 16.66 228 84 

ifthen-2 

condi-tions 6 56.2.5 50.69 91 .66 16.66 20.83 456 231 

ifthen-3 

conditions 7 64.28 59.52 92.85 17.85 21.42 532 309 

Cap: Capacity of resource r. 

# r: Total number of resources of type r. 

#slots used: Number of slots used in r 

II: Initiation Interval 

Ex_ Usage%: Total Usage with Exclusivity algorithm 

The same equations can also be used to calculate individual resource types. 

4 x 3 CGRA Table 4.3 displays the result obtained in a 4 x 3 CGRA, with 

predicated exclusivity algorithm. The table fields description are same as explained 

for Table 4.2. Most of the benchmarks were scheduled at the Mil with lower usage 

of total resources compared with predicated execution with no exclusivity algorithm. 

The resource usage is higher than the 4 x 4 CGRA utilizing most of the resources in 

4 X 3 CGRA. 

125 



Table 4.3: Exclusivity results in 4 x 3 CGRA 

Total 

RB Available resources 

Benchmark FU LRF SRF CB usage resources used in 

name II usage% usage % usage % usage% % inMRT MRT 

ifthen-1 

condit ion 3 59.44 44 .79 83.33 41.55 33 .33 155 85 

i fthen-2 

condit ions 5 83.33 55.14 91.55 33.33 44.44 330 225 

i fthen-3 

condit ions 8 88.54 80.07 81.25 34 .38 50 .00 440 339 

4.5.3.1 No Exclusiv ity 

The MCHPSO algorithm with no exclusivity feature in the predication execution was 

also tested on the 2 CGRA configurations. The MRT slots were not able to share 

the resources even when there was a critical need of resources in routing as well as 

in placement . Predicated execut ion with no exclusivity feat ure pushed the algorithm 

to its limit in some cases and couldn't find the schedule at lower II. The following 

subsections describe the results obtained in the 2 CGRA configuration. 

4 x 4 CGRA Table 4.4 displays the result obtained in a 4 x 4 CGRA, with no 

exclusivity in predicated execut ion algorithm. T he table fields description are the 

same as explained for Table 4.2. All the benchmarks were scheduled at t he minimal 

init iation interval. The usage of total resources was higher when compared with 

predicated exclusivity algorithm. 
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Table 4.4: 4 x 4 CGRA results without exclusivity 

Total 

Available resource!; 

Benchmark FU LRF SRF CB RB resources used in 

name II usage% usage % usage% usage% usage% inMRT MRT 

ifthen-1 

condit ion 3 70.83 35.41 83.33 8.33 33.33 228 100 

ifthen-2 

conditions 6 76c04 56.94 91.66 37.50 20.83 456 273 

ifthen-3 

condit ions 7 87.50 76.19 92.85 57.14 42 .85 532 408 

4 x 3 CGRA Table 4.5 displays the result obtained in a 4 x 3 CGRA, with no 

exclusivity in predicated execution algorit hm. The table fields descript ion are the 

same as explained in Section 4.5.3.0 . Most of the benchmarks were scheduled at a 

higher II than the T\III. The resource usage was higher than the 4 x 4 CGRA, with no 

exclusivity in predicated execut ion algorithm. When scheduling for the next higher 

II, the overuse of resources was reduced . The II and the resource usage was higher , 

when compared with predicat ed exclusivity algorithm. 

4.6 Comparison 

4.6.0 II achieved 

Table 4.6 shows the initiation interval at which the final schedule was obtained . The 

final schedule result did not record overuse of resources and all DFG cells were sched-

uled, placed and routed. The II achieved in 4 x 4 CGRA configuration was the same 
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Table 4.5: 4 x 3 CGRA results without exclusivity 

Total 

RB Available resources 

Benchmark FU LRF SRF CB usage resources used in 

name II usage% usage% usage% usage% % inMRT MRT 

i fthen-1 

condition 3 91 .66 53.12: 83.33 25.00 33.33 1 65 100 

i fthen-2 

condit ions 7 89.28 74.10 85.71 42 .85 47 .61 385 287 

ift hen-3 

condit ions 10 86.66 85.63 82.50 4 2.50 40 .00 550 44·0 

Table 4.6: II achieved in 4 x 3 CGRA and 4 x 4 CGRA 

II achieved 

4 X 4CGRA 4 x 3 CGRA 

Benchmark without without 
name Mil exclusivity Exclus ivity exclusivity Exclusivity 

i fthen-1 

condit ion 3 3 3 3 3 

i fthen-2 

condit ions 6 6 6 7 6 

ifthen-3 

condit ions 7 7 7 10 8 
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Table 4. 7: Total usage of 4 x 4 CGRA 

Usage % of total resources in MRT 

4 X 4 CGRA 

Benchmark without 

name II exclusivity with exclusivi~ 

ifthen·-1 

condition 3 43.86 36.8 4 

ifth en-2 

conditions 6 59.87 50.66 

ifthen-3 

conditions 7 76.69 58.08 

for both the scheduling algorithms with and without exclusivity feature. In 4 x 4 

CGRA configuration, the II achieved was the same as the Mil and thus both the 

algorithms achieved the best II. In 4 x 3 CGRA configuration, predicated exclusiv-

ity algorithm was able to achieve better result at lower II than the no exclusivity 

predicated algorithm. 

4.6.1 Usage of resources in Exclusivity vs No exclusivity 1n 

4 x 4 CGRA 

Table 4. 7 shows the usage of total resources in a 4 x 4 CGRA. Both the scheduling 

algorithms, with and without exclusivity feature, have found the schedule at the same 

II in 4 x 4 CGRA configuration. The final schedule of exclusivity predicated algorithm 
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Table 4.8: Total usage and overuse of 4 x 3 CGRA 

Usage % of total Overuse % of total 

resources in 4 x 3 resources in 4 x 3 

CGRA CGRA 

NO- with NO- with 

Benchmark name II exclusivity exclusivity exclusivity exclusivity 

i fthen-1 condition 3 60.61 5 2.12 0.00 0.00 

6 82.73 68.18 1.82 0.00 

i fthen-2 conditions 7 74.55 6 1.56 {).00 0 .00 

8 84.77 77.0 5 9 .77 0.00 

9 82.42 71.5 2 5 .2 5 0 .00 

i fthen-3 conditions 10 80.00 60.73 0 .00 0 .00 

recorded lower usage of resources than the predicated execution with no exclusivity. 

Achieving lower usage of resources makes room in the CGRA to route more data and 

to use the available resources for executing more operations. 

4.6.2 Overuse of resources in Exclusivity vs No exclusivity 

in 4 x 3 CGRA 

Table 4.8 shows the usage and overuse of total resources in 4 x 3 CGRA. The overuse 

is the percentage of resource usage above 100 percent. In most of the benchmarks, 

exclusivity predicated algorithm found the schedule with lower II to be closer to the 

Mil. The final schedule of exclusivity predicated algorithm recorded lower usage of 
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resources and lower II than t he predicated execution with no exclusivity. The overuse 

of resources in predicated no exclusivity algorithm was caused by the unavailability of 

resources for placement and routing at the required t ime cycles. In case of exclusivity 

predicated algorithm, t he overuse was avoided by sharing of exclusive resources. The 

exclusivity predicated algorithm made room for other DFG cells to be scheduled. The 

overuse of resources in t he no exclusivity predicated algorithm decreased as II was 

incremented . Definitely exclusivity was able to save resources for future routing and 

placement even in smaller size CGRAs. 

4. 7 Conclusion 

The objective of t his chapter is to conduct a performance evaluation of exclusivity 

feature in the proposed MCHPSO algorithm with predicated execution. Under 2 

different CGRA configurations, predicated MCHPSO with exclusivity was compared 

with predicated MCHPSO with no exclusivity feature. The proposed predicated ex­

clusivity algorithm performance was very good even under lower resource availability. 

A general conclusion from the result analysis, under 4 x 3 CGRA, predicated 

exclusivity algorithm was able to achieve scheduling with a lower init iation interval. 

\ iVhile comparing the predicated exclusivity feature with predicated no exclusivity 

algorithm in 4 x 4 CGRA, the exclusivity enabled t he scheduler to use fewer resources 

and provided more sharing of resources. The total usage of predicated exclusivity 

algorithm was lower than the predicated execut ion with no exclusivity. 

The proposed exclusivity feature in predicated execution was experimented for 

if-then-else structures in t he loops. It can also be extended to switch-case statements 
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and any condition-driven statements. The next chapter discusses the scheduling of 

nested loops onto the CGRAs. 
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Chapter 5 

Recurrence exploitation in CGRAs 

5.0 Introduction 

A loop contains an inter-iteration dependence or recurrence if an operation in an 

iteration of the loop has a direct or indirect dependence upon t he same operation 

from a previous iteration. To software pipeline a loop, a scheduler must handle inter­

iteration dependencies, which arise from the loop's non-trivial recurrence circuits. 

In this chapter, the different approaches to solve the inter-iteration dependence in 

modulo scheduling are analyzed. By using a dynamic priority scheme, slack scheduling 

provides a novel integration of recurrence constraints and crit ical-path considerations. 

A priority scheme along with recurrence aware modulo scheduling is proposed to 

map inter-iteration dependencies onto Coarse Grained Reconfigurable Architectures 

( CGRAs ). Our algorithm is aware of data dependencies caused by inter-iteration 

recurrence cycles. 
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5.1 Recurrence Handling 

Recurrences form a cycle in the data-flow graph of the inner loop body. The schedul­

ing slot of an operation depends on the schedule of the operands' producers, thus 

some operations in a recurrence cycle need to be scheduled before t heir producers 

have been placed. In a recurrent cycle, some operations are scheduled with only 

partial information of their producers' schedule [Oh et al., 2009] affecting the overall 

performance of the loop schedule. 

The II is constrained by the recurrences of the loop and by the resource constraints 

in the dependence graph. Inter-iteration dependences can induce recurrences that 

cause a maximum delay for t he operations on the recurrence path or dependence 

cycle. Memory operations (load/ store) are mostly the cause of a recurrence. T hese 

loop-carried dependences have a distance property, which is equal to the number of 

iterations separating the 2 instructions involved in the recurrence. If a dependence 

edge, e(v, u), in a cycle has latency A and connects the operations at Dv,u, then the 

recurrence constraint (RecMII) , is calculated by 

RecMII = MaxcEC J ~ l (5.0) 

where, 

• c is a recurrence cycle in the set of all cycles C of t he DFG 

l is the sum of all delay (.A) in the circuit 

d is the sum of all distance Dv,u in the circuit, variable Dv,u ,denotes the dis­

tance between operation v and u, which means the operation u of iteration 

i depends on the operation v of iteration i - Dv,u· 
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The resource constraint ( R esMII ) is calculated from the resource usage require-

ments of t he loop and it is derived from 

I # T n eeded l 
R esM I I = MaxrER # ·z bl T ava2 a e 

(5.1) 

where, 

T is a resource in the TA resources R. 

Minimal Init iat ion Interval (Mil) is a lower bound to start t he pipeline scheduling 

process and it is computed as M I I = m ax(R ec.!vf II , R esM I I) . 

5.1.0 Motivational Example 

The compilat ion flow with a motivat ional example is described in Figure 5.0. Consider 

the architecture configuration t aken in Figure 5.0a, and a data flow graph (DFG) 

represented in F igure 5.0c. T he architecture components in Figure 5.0a are functional 

units (FU) with a local Register F ile (RF ). Figure 5.0b shows an rout ing resource 

graph (RRG ) created by replicating the target architecture ( TA) across 2 t ime cycles. 

The II is 3 for t he DFG as it takes the maximum cycle delay from recurrences. The 

final embedding of DFG on RRG is shown in Figure 5.0 d. 

As we are interested in mapping the recurrences (i. e. inteT itemtion dependence), 

we can see there is a loop carried edge from node op Z to node cl. The scheduling 

algorithm maps each operat ion to a FU and a t ime and maps each edge in the DFG 

to a path in the RRG. During the scheduling process, the algorit hm keeps t rack 

of the resources being used in a modulo reservation table (MRT) . The operation 2 

is to be executed in FU1 at t ime 0 and therefore the FU1 is reserved for all cycles 
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divisible by modulo II. Once a resource is reserved, it will not be available for the other 

operations in time cycles that have the same remainder modulo II. The routing path 

from operation 2 to operation X uses the RF of F Ul , and a neighborhood connection 

from F U l to FU2. The schedule given in Figure 5.0 d does not satisfy the recurrence 

constraints . The operation op Z has to be scheduled before operation c1 starts and 

t his results in an invalid schedule. The scheduler did not take the priority to schedule 

t he recurrence cycle before the other operations. To avoid maximum delay in the 

scheduling process and to efficiently schedule a recurrence cycle, an efficient modulo 

scheduler is needed. Hence a modulo scheduler is proposed , which gives priority to the 

recurrence cycles and finds a valid schedule in a short time. The proposed algorithm, 

with PSO and prioritized recurrence aware schedules, places and routes all t he nodes 

and edges of a DFG onto the CGRA. 

5.1.1 Existing Recurrence Handling Approaches 

In this section, 4 different approaches have been used to modulo schedule the loops 

with inter-iteration dependencies are discussed. The four approaches that will be dis­

cussed for modulo scheduling are the rotation scheduling, bidirectional slack schedul­

ing, edge-centric modulo scheduling (EMS), and recurrence-cycle-aware modulo schedul­

ing (RAMS) . The difficulty in handling loop carried dependence in CGRAs is that the 

quality of schedule depends on the partially scheduled operations and recurrences take 

long compilation t ime to find a valid schedule. T he major reason for t he degradation 

of the quality of a schedule in EMS is caused by speculative scheduling of operations 

that belong to a recurrence cycle [Park et al., 2008]. In scheduling with simulated 
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annealing (it is the DRESC method) [Vassiliadis and Soudris, 2007b], a larger II is 

required to schedule the recurrence operations, which results in a very high execution 

t ime. 

5.1.1.0 Rotation Scheduling 

Rotation scheduling [Huff, 1993] takes various loop carried dependencies into consid­

eration with its loop scheduling algorithm. In this approach, delays between loop 

carried dependencies are taken as constant or a function of the loop index. Rotation 

scheduling exposes parallelism across iterations with retiming. A retiming technique 

is used in rotation scheduling to rearrange registers to reduce the iterat ion period, 

that is to reduce the length of the critical path of the circuits. 

Each rotation operation moves the schedule table of length L to length L + 1 and 

finds a better intermediate schedule at the end of each rotation 's iteration. A node 

remapping (reschedule) procedure is done at the end to reduce the static schedule. 

The final schedule is split into 3 parts:- rotation prologue ( RP) , a repetitive loop 

body (RB) and a rotation epilogue (RE). Rotat ion scheduling concentrates mainly 

on delays as a funct ion and obtains an optimized schedule with an improvement in 

execution t ime. 

5.1.1.1 Bidirectional Slack Scheduling 

Bidirectional slack-scheduling method [Cho et al., 2007] has been implemented in a 

FORTRAN compiler. This scheduler handles cyclic data dependencies, which arise 

from the loop's non-trivial recurrence circuits. Slack scheduling solves the recurrence 

problem by integrating recurrence constraints and critical-path considerations into an 
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operation-driven framework with limited backtracking. 

T he scheduler places operations one by one until either a feasible schedule is found 

or the heuristics give up. Slack scheduling can accommodate a novel bidirectional 

approach that attempts to schedule an operation either as early as possible or as late 

as possible, depending on a sophisticated heuristic. The heuristic's primary goal is 

to minimize each value's lifet ime, in the hope that this will minimize the overall peak 

register pressure. 

5.1.1.2 E dge-cen t ric Modulo Sched uling 

Edge-centric modulo scheduling (EMS) [Park et al., 2008] schedules loops in an edge­

centric way with a simple height-based scheduling priority scheme. In the EMS frame­

work, the scheduling slot of an operation depends on the schedule of the operands ' 

producers. The data-flow graph of a recurrence forms a cycle, thus some operations 

need to be scheduled before their producers have been scheduled. Consequently, some 

operations are scheduled with only partial information of their producers' schedule. 

First, the DFG of the target loop is converted into a reduced form by collapsing some 

nodes. The scheduling priorities of operations in the reduced DFG are calculated in 

such a way that simple edges get higher priority than high fan-out edges. \i\Then the 

scheduler places recurrence cycles, edges are placed even if their target operations are 

not yet placed. By calling the router function recursively for all operations in the cy­

cle, the scheduler can put more effort into finding a legal mapping for the recurrence 

cycles. 
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5.1.1.3 Recurrence Aware Modulo Scheduling 

The recurrence aware modulo scheduling (RA MS) [Oh et al., 2009] scheme treats 

recurrence cycles in the DFG as a single unit . Instead of scheduling each operation 

individually, the algorithm first groups all operations in a recurrence cycle into a 

clustered node. The operations of a clustered node are then scheduled together. 

Clustering forms the recurrence cycles as a single node and transforms the DFG into 

an acyclic graph. Single nodes have priority during scheduling. The scheduler selects 

the clustered nodes according to their priority and schedules them one by one. All 

producers of the clustered recurrence cycle are now scheduled first even though some 

of them have a lower height than some operations in the recurrence cycle. After all 

clustered nodes have been scheduled, the remaining nodes are handled. A clustered 

node scheduling can be divided into 3 major steps: (1) scheduling of the incoming 

tree, (2) calculating the earliest scheduling time, and (3) scheduling the nodes of the 

clustered node. After all clustered nodes have been scheduled , the scheduler handles 

the remaining operations. The scheduler finds it more difficult to find a route for the 

remaining operations because most rout ing resources are already occupied. 

RAMS prevents scheduling failures that arise due to redundant time constraints 

of operations that were scheduled before the recurrence cycles themselves. The whole 

process of scheduling is restarted if one of the recurrence cycles fails to be scheduled . 

5.1.1.4 Comparison of Existing Approaches 

The sparse interconnect and distributed register files in the CGRAs presents difficult 

challenges to a compiler to route the edges. Edge-centric modulo scheduling [Park et 
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al., 2008] concentrates on routing operands rather than node placement alone. Edges 

are categorized based on their characteristics, and the categories are used to route 

them during the scheduling process. Modulo scheduling v.ri.th simulated annealing 

[Mei et al. , 2003a], takes longer compilation time but finds a bett er quality schedule. 

The EMS framework requires far less time than modulo scheduling with simulated 

annealing to find a schedule by sacrificing the quality of the schedule. 

Recurrence aware modulo scheduling [Oh et al., 2009] was able to achieve better 

quality schedules than the technique based on simulated annealing at a 170-fold speed 

increase. T he scheduler in [Oh et al., 2009] can only make decisions at the operation 

level of each edge. If the scheduler is not able to find a placement for the recurrence 

edge within II, the whole scheduling process repeats again with a larger II. In a dy­

namic priority scheme [Cho et al. , 2007], slack scheduling provides a novel integration 

of recurrence constraints and critical-path considerations. When the scheduler can­

not find a slot for an operation, backtracking takes place by ejecting some operations . 

The bidirectional slack scheduler provides a lot of slack for the recurrence circuit to 

place them at the first place. 

Considering all the difficulties of the above approach, a scheduler is needed that is 

fast enough to find a good quality schedule as well as give priority to the recurrence 

circuit . 
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RAP _ PSO (DFG, TA) 
begin 

end 

II: = Mil (DFG) 
Recurr _cycles:= Kosaraju(DFG) 

dfgList: = ComputeASAPandALAP (DFG) 
dfgList: = RecurrASLAP(recur _edges) 
sortedDFG: = Recurr _ prioritySort ( dfglist) 
max_ schLength : = findschLength ( sortedD FG) 
schSucess := false 
trials := 0 
while !schSucess&& trials< NTRIALS do 

CreateRRG(TA, II, max_schLength) 
schSucess:= MCHPSO(sortedDFG, RRG, II, max_ schLength) 
II++ 
trials++ 

end while 

Algorithm 5.0: Mapping DFG with recurrences onto CGRAs 

5.2 Proposed Method 

5.2.0 Recurrence Aware Modulo Scheduling with Priority 

Scheme 

In this thesis, a recurrence aware priority scheduler is proposed with a fast evolution-

ary, particle swarm optimization (PSO) called RAP _PSO. RAP _ PSO is an exten-

sion of predicated exclusivity MCHPSO algorithm with added procedures supporting 

recurrence cycles in placement, routing and scheduling. 

The recurrence cycles are modulo scheduled as early as possible when still rela-

tively many resources are unoccupied. The priority scheme is applied to the DFG to 

give more priority to t he nodes and edges of recurrence cycles. The overall procedure 

of the scheduling algorithm is shown in Algorithm 5.0. 

Modulo scheduling starts with a minimal initiation interval (MII) , as discussed in 
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Kosaraju(DFG) 
var S : Stack[V] 
topologicalSortcv,E) ( S) 
{ all nodes are on S } 
var (V' , E') := transpose(V, E) 
{ inv I (see below)} 

while S is not empty do 
val u := S .top() 
{ u is in a terminal component of (V' , E') } 
val U :=all nodes reachable from u in (V' , E' ) 
{ U is a terminal component of (V' , E')} 
output U 

remove each node in U from S and also from (V' , E') 
The invariant I is 

• The nodes in V' are the same as the nodes in S . 

• For any 2 nodes u and v in different components of (V' , E'), 

• if u is in a component that follows (in (V' , E' )) v's component , then in the 
original graph u ------> v but v' ------> u , and so u is closer to the top of st ack S 
than v . 

Algorithm 5.1: Finding recurrence cycles with Kosaraju's strongly connected compo­
nents algorithm 
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the background section. To schedule the operations of DFG, the ASAP (A s Soon A s 

Possible ) t ime and ALAP( As Late as Possible) t ime are calculated for each operation 

in the DFG. 

All the recurrence cycles in the DFG are found by the Kosaraju strongly connected 

component algorithm [Carmen et al. , 2009] described in Algorithm 5.1. If t here is a 

path in the DFG from node u to node v and from v to u then u and v are said to be 

in the same strongly connected component. We write u -+ v to mean there is a path 

from u to v , i.e. it is reachable in 0 or more steps. In Algorithm 5.1 °, all the nodes 

are first sorted topologically. Every time the top node u is popped off the sorted 

stack to find all nodes reachable from u in the transposed DFG, to form a strongly 

connected component. The list of nodes explored are a strongly connected component 

and are removed from the sorted stack. The above procedure repeats unt il all nodes 

in the sorted stack are explored. For detailed explanation with examples, please refer 

to [Carmen et al. , 2009] . 

Once the recurrence cycles are found , ASAP and ALAP times are calculated. For 

all the nodes, ASAP and ALAP are calculated by ignoring the back edges or loop­

carried edge (opZ-+ cl) , as shown in Figure 5.0 as dotted line. The node opZ is called 

the loop head or source (LH) and the node c1 is called the loop tail or target (LT). 

The source node of the loop carried edge's ALAP is updated to limit its mobility with 

the target node as shown in 

source_ ALAP = target _ ALAP +(distance x I I) - delay (source) (5.2) 

0 The given simplified version of t he a lgorithm was written by Dr. T heodore Norvell. 
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where, 

• dist ance is the iteration difference between source and t arget node 

• delay is the processing time of the node 

As these loop carried edges are modulo constrained, they are affected by the II 

value in the scheduling time. Once all the nodes in the DFG are assigned the correct 

earliest and latest t imes, the RAP_ PSO scheduler starts with the recurrence aware 

prioritized DFG and the RRG generated from the TA graph. In the recurrence aware 

prioritized DFG, all the recurrence cycles are given higher priority than the remaining 

operations. The routing procedure of Dijikstra's algorithm checks every recurrence 

edge satisfying the equation 

source_scht ime + delay ( source) -:=:; target _scht ime + distance x II (5.3) 

for the placed and scheduled particles in RAP_ PSO scheduling algorithm. If the 

particles do not satisfy the Equation 5.3, next generation of particles continue to 

explore a valid quality schedule. 

The RAP PSO scheduler takes each particle to find a valid schedule, placement 

and routing for all the operations and edges in t he DFG. The particles are init ialized 

with random schedule time and placement. Next the scheduler finds the routing 

resources for the edges and gives priority to loop carried edges. The rout ing results 

with the number of edges routable and routing cost, are taken as the fi tness value for 

the particles. Once a final schedule is obtained , the scheduler checks whether all the 

nodes and edges being mapped satisfy the resource constraints, recurrence constraints, 

schedule t ime validity (Figure 5.2) and modulo constraint . If the schedule is not valid, 
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Figure 5.2: Successful final schedule for the DFG shown in Figure 5.0 

the II is incremented by 1 and the scheduling process is repeated. The final correct 

schedule for the DFG shown in Figure 5.0, is given in Figure 5.2. The schedule 

satisfies modulo constraint, resource constraints, recurrence constraints and schedule 

t ime validity. 

5.2.1 Architecture Extensions to Speedup Recurrence Han­

dling 

In the existing target architecture, the memory load and stores of operands (called 

live-in/ live-out ) were initially available in t he shared register file. The top row of 

functional units (FUs) were mainly used for Memory Unit (MU) operations. T hese 

FUs were rarely used by other operations and it decreased the bandwidth to move 

the live-in operands to later cycles. To increase the bandwidth , an extension has been 

adapted as suggested in [Oh et al., 2009] to add a dedicated register file (R F) to each 

read port of the RF that contains the live values. 

Dedicated RFs do not suffer from critical path delay because it takes 1 additional 
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RF for live values 

Figure 5.3: CGRA architecture with dedicated RFs for live values, taken from [Oh et 

al. , 2009] 

cycle to access a live value through a dedicated RF [Oh et al. , 2009]. The same live-in 

values can be retained for several cycles in dedicated RFs and it increases the output 

bandwidth. Since all FUs now have indirect access to the live-in values, the dedicated 

RF reduces the number of resources used for routing live-in values. The results of 

using this extended architecture and its performance are discussed in the next section. 

5.3 Discussion of Results 

5.3.0 Experiment Set Up 

The RAP _ PSO with recurrence aware scheduling algorithm was \vritten in J ava and 

executed on an Intel Core 2 Duo CPU with 4 GB RAM and a clock speed of 2 GHz. 

To schedule an inner loop body with loop carried edges requires two main inputs. The 
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first input is the prioritized DFG with recurrence cycles identified from the HARP0/ 1 

programs. The second input is the 4 x 4 or 4 x 3 improved target architecture graph 

with extensions. The RAP_ PSO algorithm places, schedules and routes t he given 

DFG onto the TA by correctly mapping the recurrence edges. The usage of target 

architecture is found from the Modulo Reservation Table and is discussed in t he next 

section. 

5.3.1 DFG with Recurrences 

The characteristics of the DFG input to the RAP_ PSO scheduling algorithm are given 

in Table 5.0. The livermore loops benchmarks were taken from [P eters and Square, 

2011] which are written in language C. The first column describes the benchmark 

name. The benchmarks were selected such that they have recurrence cycles in t hem 

for scheduling. The benchmarks were rewritten in HARPO / 1 language for t he inhouse 

compiler to generate data flow graphs. The data flow graph generated from the 

compiler goes t hrough a preprocessing and analysis stage for scheduling. In the 

preprocessing and analysis stage, the DFG is optimized with variable usage and the 

inner loop body is retrieved with recurrence edges in them. The second and third 

column list t he total number of nodes and edges in the DFG to be mapped onto 

t he TA. The fourth and fifth columns show the minimal initiation interval and the 

schedule length. 
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Table 5 0· Recurrence Benchmark Characteristics . . 

Benchmark No of No of 

name nodes Edges Res Mil RecMII Mil Sch_length 

Livermore -
recurreqn1 11 18 2 3 3 9 

Livermore -
condrecurr 28 50 4 4 4 16 

Livermore -
matrixmul 34 49 4 4 4 16 

livermore -
t ridiagonal 8 13 2 2 2 8 
Livermore_ 

recurreqn2 10 15 2 2 2 8 

5.3.2 TA Characteristics 

The TA graph has nodes and edges describing the details of the CGRA configuration. 

Figure 5.4 shows the resources available in a 4 x 4 and 4 x 3 CGRA. The reduced 

number of resources in 4 x 3 CGRA makes it challenging for the routing of recurrence 

cycles and other data dependencies in the DFG. 

5.3.3 4 x 4 CGRA recurrence sch edule results 

Table 5.1 displays the result obtained in a 4 x 4 CGRA, with RAP _ PSO scheduling 

algorithm. T he first column shows the benchmark descript ion. The second column 

shows the initiation interval at which the algorithm was able to successfully schedule 

the DFG. The third column shows the percentage of total functional unit usage in 

the MRT. The fourth column shows the percentage of total local register usage in the 
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Figure 5.4: Comparison of 4 x 4 and 4 x 3 architecture configurations 
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Table 5 1· Recurrence schedule results in 4 x 4 CGRA 
4 X 4 CGRA- MCHPSO_RAP 

Total 

Available resource.s 

Benchmark FU LRF SRF CB RB resources used in 

name II usage% usage % usage% usage% usage % in MRT MRT 

livermore -
recurreqn1 3 22.92 11.80 41.66 8.33 8.33 228 35 

livermore -
condrecurr 4 64.06 28.13 81.25 31.25 18.75 304 116 

Livermore -
mat rixmul 4 75.00 43.22 81.25 25.00 12.50 304 150 
livermore -
t ridiagona l 2 21.88 7.29 50.00 0.00 37.50 152 21 

Livermore -
recurreqn2 2 28 .13 9.38 62.50 50.00 0 .00 152 27 

MRT. The fifth column shows the percentage of total shared registers usage in the 

MRT. T he sixth and sevent h columns show the percentage of total usage of column 

and row buses in the MRT. The eighth column shows the total resources available 

in the MRT. The ninth column shows the total resources used in the MRT. All the 

benchmarks were scheduled at the Mil and with minimal usage of resources. The 

total usage of the modulo reservat ion table and individual resource usage of the final 

schedule are calculated as in Chapter 4. 
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Table 52· Recurrence schedule results in 4 x 3 CGRA 
4 X 3 CGRA- MCHPSO RAP -

Tota l 

Available resources 

Benchmark FU LRF SRF CB RB usage resources used in 

name II usage% usage % usage% usage% % inMRT MRT 

Livermore -
recurreqn1 3 2.7.77 17.70 41.66 8.33 11.11 165 34 

Livermore -
condrecurr 4 83.33 40.63 81.2.5 58.33 40.00 2.2.0 118 

Livermore -
matr ixmul 4 87.50 68.75 81.2.5 37.50 41.66 2.2.0 154 

Livermore -
t ridiagonal 2. 29.16 10.93 50.00 12.50 33.33 110 21 

Livermore -
recurreqn2 2 54.16 17.18 62..50 12..50 0.00 110 30 

5.3.4 4 x 3 CGRA recurrence schedule results 

Table 5.2 displays the result obtained in a 4 x 3 CGRA, with RAP _ PSO scheduling 

algorithm. The first column shows the benchmark description. The second column 

shows t he initiation interval at which the algorithm was able to schedule the DFG 

with resource and recurrence constraints. The third column shows the percentage 

of total functional unit usage in the MRT. The fourth column shows the percentage 

of total local register usage in the MRT. The fifth column shows the percentage of 

total shared registers usage in the MRT. The sixth and seventh columns show the 

percentage of total usage of column and row buses in the MRT. The eighth column 

shows t he total resources available in the MRT. The ninth column shows the total 

resources used in the MRT. All t he benchmarks were scheduled at the JVIII with lower 

usage of resources. The total usage of the modulo reservation table and individual 

resource usage of the final schedule are calculated as in Chapter 4. 
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Comparing the results of 4 x 4 CGRA and 4 x 3 CGRA we find that both were 

able to schedule at MIL The resource usage in 4 x 3 CGRA was higher t han 4 x 4 

CGRA. Most of t he critical resources are used in 4 x 3 CGRA and was able to route 

within MIL The functional units usage was higher by 4.85% to 26.04%. The local 

register fi les usage was higher by 3.64% to 25.53%. The row bus usage was higher by 

2.78% to 29.16%. 

5.4 Conclusion 

In this chapter , four approaches to solve the loop scheduling problem with recurrence 

were discussed. The schedule results of both edge-centric schedulers, EMS and RAMS, 

outperform DRESC [Mei et al. , 2002] by two orders of magnitude. While t he RAMS 

is about 2 t imes slower than EMS, the superior scheduling quality of RAMS over 

EMS compensates for t his slowdown. An algorithm is proposed based on RAMS and 

dynamic priority to solve the loop scheduling problem with loop carried dependencies. 

The proposed algorithm t akes the advantage of P SO to speed up the scheduling 

process combined with recurrence aware priority to obtain a good quality schedule. 

The proposed RAP _ P SO algorithm was tried on the livermore loops benchmarks. 

The recurrence cycles found in the benchmarks was modulo scheduled at minimal II. 
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Chapter 6 

Conclusions and Future Work 

6.0 Contributions 

Today's embedded systems such as 4G mobile phones, t ablet computers or personal 

digital assist ants (PDA) requires very high computing speed in mult itasking appli­

cations, downloading of video streams and to handle the high-speed wireless data 

communication. Coarse-grained reconfigurable architectures ( CGRAs) are emerging 

as potential solutions for t he above challenges. CGRAs bring advantages such as high 

performance, low communication overhead , high flexibility and ease of programming. 

In this thesis, a CGRA is t aken to address the problem of mapping application with 

loops which consume lot of computation resources. 

Applications such as multimedia and telecommunication systems 'vith audio, video 

encoders and digital signal processing consume a long time in compilation with the 

presence of repeating loop statements. In this thesis, we have considered the problem 

of scheduling, placing, and routing loops for CGRAs. The mapping problem for 
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coarse-grained reconfigurable architectures is NP-hard in general. Software pipelining 

the loops, requires an efficient modulo scheduling algorithm. A modulo const rained 

hybrid particle swarm optimization algorithm (MCHPSO ) [Gnanaolivu et al. , 2010a] 

is proposed for scheduling crit ical loops. 

MCHPSO combines t he features of the evolut ionary approach of PSO and a mu­

tation operator to find potential solut ions for the modulo scheduling problem. A 

particle in the PSO system finds a placement for the operations in the loop body, a 

scheduling t ime at which an operation can be executed and a routing path for the 

operands. The solut ion search was challenged by the critical resources available in 

the CGRAs, modulo constraints to reserve the resources for repeated iteration, and 

the complexity of the loop. MCHPSO managed to schedule most of the loops in the 

minimal init iation interval while taking very little execution time. The proposed algo­

rithm was successfully tested on 8 standard benchmarks from digital signal processing 

(DSP) applications. 

In the experimental demonstration of MCHPSO [Gnanaolivu et al., 2011a], it was 

found that a parallel search with 10 part icles was enough to find a valid solution . 

MCHPSO was able to avoid local optima by exploring and exploiting more solutions 

than the DRESC [Mei et al., 2002] in the t ime-space graph of the target architec­

ture. It was also discovered that MCHPSO was able to increase its scheduling speed 

when the interconnections between the functional units (FUs) are more flexible. The 

~;ICHPSO was able to efficiently use shared registers in a shared register file ( RF) 

interconnection architecture template. MCHPSO speedup was analyzed by execut­

ing the algorithm in an Intel core i7 machine. The proposed algorithm was able to 

parallelize the search for a scheduling solution in the 8 logical threads present in the 

156 



i7 machine, and achieve good speedup. The proposed algorithm achieves better re­

source usage with lower initiation interval and efficiently maps with a minimal time 

compared to DRESC [Mei et al. , 2002] . 

Various configurations of the ADRES template were tried with the MCHPSO al­

gorithm. Out of these, results corresponding to 8 x 8, 4 x 4 and 4 x 3 CGRAs are 

reported in the thesis. The most int eresting challenge was to schedule conditional 

loops [Gnanaolivu et al. , 2010b] with if-else statements on the 4 x 3 CGRA con­

figuration. MCHPSO with predicated exclusivity feature handled the challenge to 

place as well as route with lowest possible initiation interval (II ). The 4 x 3 CGRA 

configuration performed as well with resource utilization as the 4 x 4 configuration. 

The minimal init iat ion interval to repeat the modulo schedule of an iteration de­

pends on resource constraints as well as recurrence constraints. Loop carried depen­

dencies were mapped on the CGRA with a recurrence aware priority scheme applied 

to MCHPSO called RAP _ PSO. The proposed RAP _ PSO algorithm [Gnanaolivu 

et al. , 2011b] was tried on 5 recurrence benchmarks from the livermore loops. The 

proposed algorithm scheduled efficiently on the 4 x 3 CGRA configuration. 

The proposed l\!ICHPSO with exclusivity feature and recurrence aware scheme 

was able to place, schedule and route the inner loop body of a crit ical application . 

6.1 Suggested Future Work 

The proposed modulo constrained hybrid particle swarm opt imization algorithm with 

exclusivity feature and recurrence awareness worked well on the benchmarks consid­

ered. l\!ICHPSO algorithm was able to map application loops written in the C Ian-
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guage and HARPO / L. Many opportunit ies exist to perform further research around 

this work. r-.1Iore experiments can be done to evaluate the proposed algorithm on com­

plex benchmarks which include nested loops, switch-case statements, pointers and so 

on. To find the suitability and effectiveness of the proposed algorithm, it could be 

compared with various other modulo scheduling algorithms and heuristic methods 

such as iterative modulo scheduling [Rau, 1994], DRESC [Vassiliadis and Soudris , 

2007b], recurrence cycle aware modulo scheduling [Oh et al., 2009], clustered modulo 

scheduling [Sanchez and Gonzalez, 2001], swing modulo scheduling [Llosa et al., 1996], 

hypernode reduction modulo scheduling [Llosa et al., 1995], modulo scheduling wit h 

integrated register spilling [Zalamea et al. , 2001]. RAP_ PSO algorithm can be t ried 

on several coarse-grained architectures to compare with existing approaches RAMS 

and DRESC. 

The current work can be extended to place, schedule and route an entire applica­

tion with many loops and non loop statements. The target architecture configuration 

can be extended to handle non loop statements and loop statements. The work could 

also be extended to exploit task-level parallelism ( TLP) as well as instruction-level 

parallelism (ILP ) and loop-level parallelism (LLP ). Modulo scheduling a complex 

application presents a big challenge even to existing architectures such as ADRES 

[Mei et al., 2005b] due to its computational complexity. Modulo scheduling experi­

ments conducted on a H.264/ AVC decoder by Mei et al. [Mei et al. , 2005b] shows 

that ADRES architecture and its compiler provide many features that are crit ical for 

mapping a complex application. Hence wit h MCHPSO it is possible to map complex 

applications imposing a performance and power usage challenge. 

In order to improve the existing MCHPSO algorithm, the following enhancements 
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are suggested. l\IICHPSO can be improved to find even lower init iation intervals by 

improving the bandwidth. The resource initiation interval is normally affected by the 

memory units available for the live-in values. 

In mapping loops onto CGRAs, few algorithms have been tried with the evolu­

t ionary approach. Many efficient algorithmic approaches like genetic algorithms, ant 

colony algorithms or hybrid combination of evolutionary operators can be tested for 

the modulo scheduling problem and compared against the proposed MCHPSO algo­

rithm. The preprocessing stages for the data flow graph can be extended to handle 

complex control structures and to select which portions of an application will be 

executed on the CGRA and which will be executed on a microprocessor. 

There are number of open issues in the CGRAs that can be solved such as self­

reconfiguration, power efficient design of memory ports and data streaming, checking 

graph isomorphism for complex graphs, studying the strength of functional units, and 

system flexibility. 

6.2 Concluding Remarks 

Reconfigurable computers compute a function by configuring functional units and 

they are able to achieve high speed, low energy consumption and low power re­

quirements. Reconfigurable computing systems are upgradeable and can serve as an 

affordable, fast, and accurate tool for verifying electronic designs. Coarse-grained 

reconfigurable architectures are efficient for long running computations, DSP, video 

and image processing. 

Compiling applications for CGRAs usually involves the following tasks: dataflow 
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analysis and optimization of t he application, creation of a target architecture graph, 

and the scheduling algorithm. The scheduler in the compilation process involves 

3 tasks: scheduling, placement, and rout ing. Scheduling assigns the t ime cycle to 

execute the operation, placement assigns a functional unit and routing takes care of 

moving data from producer functional unit to consumer functional unit. An effective 

compilation mainly depends on the scheduler handling all the constraints on both 

the application and the architecture. In this thesis, a new scheduling algorithm is 

proposed with an evolutionary approach. 

Evolutionary algorithms are best employed when there is no feasible op timization 

approach. In the modulo scheduling problem, the evolut ionary approach is used 

to determine an optimized solution in resource usage and efficient mapping. Particle 

swarm optimization is primarily suited for numerical optimization problems. To avoid 

local optimal solut ions, PSO with a heuristic operator is employed to solve the modulo 

scheduling problem. The implementation of MCHPSO was very successful in solving 

the modulo scheduling problem with optimal or near optimal initiation interval and 

low usage of resource with no overuse. 

:l\!Iapping loops onto reconfigurable architectures still leaves many challenges open. 

For example, in our current work we assumed that loop iterations execute in the 

pipeline to develop a mapping flow that works reasonably for many applications. 

However, some loops might be better mapped when iterations execute in parallel. 

Therefore , the mapping style could be another dimension for optimizing the map­

ping of different applications. Furthermore, the current mapping flow has several 

constraints on architectures and application loops that must be relaxed. Our future 

research will investigate mapping techniques for more different classes of reconfig-
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urable architectures as well as other types of loops. 
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Appendix A 

HARPOL code for inhouse 

ifthen-else benchmarks 

A.O ifthen-else benchmark -one condition 

(class ifthenex 

constructor() 

private obj a := 3 

private obj b := 0 

private obj c := 1 

private obj d := 1 

private obj e := 1 

(thread 
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(if a%2= 0 then 

b:= a-c 

e:= b+ d 

else 

b:= a+ c 

d:= c+e 

if) 

a :=b 

thread) 

class) 

obj objl := new ifthenex() 

A.l ifthen-else benchmark -two conditions 

(class ifthenex 

constructor() 

private obj a := 3 

private obj b := 0 
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private obj c := 1 

private obj d := 1 

private obj e := 1 

(thread 

d:= e 

thread) 

(if a%2= 0 then 

(if b< O then 

b:=a-c 

e:= b+ d 

else 

b:= a+c 

d :=c+e 

if) 

else 

c:= c+1 

if) 

a := b 
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class) 

obj obj1 := new ifthenex() 

A.2 HARPOL code ifthen-else benchmark -three 

conditions 

(class ifthenex 

constructor() 

private obj a := 3 

private obj b := 0 

private obj c := 2 

private obj d := 1 

private obj e := 1 

(thread 

e:= e*3 

(if a%2= 0 then 

c:= c+ 1 

(if b< O then 

b:= a-c 
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else 

if) 

a:= d 

b:= e 

thread) 

class) 

(if e>d then 

d:= d+b 

e:=c+d 

else 

b:= a+c 

if) 

if) 

c:= c-1 

d:= c+ e 

e:= e/2 

obj objl := new ifthenex() 
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