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Abstract 

Resonance is a biophysical characteristic of a subset of neurons in which the 

voltage response of oscillating input peaks at a preferred frequency. Given the 

widespread distribution of histaminergic neurons and the known physiology of histamine 

receptors in the CNS, it was hypothesized that histamine modulates the resonance of 

pyramidal neurons by shifting the activation and kinetics of the hyperpolarization 

activated cationic current, Ih. 

Employing standard whole cell voltage clamp recording, investigation of the 

modulation of Ih was confounded by a time dependent hyperpolarizing shift of Ih. The 

addition of cAMP to the recording pipette prevented rundown and resulted in a 

depolarizing shift in Ih activation consistent with an important role for intracellular cAMP 

in the maintenance and modulation of I h. 

In the presence of cAMP in the pipette, bath application of histamine, 8-bromo

cAMP, and forskolin, mimicked cAMP-induced changes in Ih. Histamine's action was 

mimicked by amthamine (H2 agonist), blocked by tiotidine (H2 antagonist), and occluded 

by forskolin, consistent with an H2 receptor-mediated activation of adenylyl cyclase. H7, 

a nonspecific protein kinase inhibitor, blocked both the forskolin and histamine-induced 

effects on Ih consistent with involvement of a phosphorylation event. 

Using the Impedance Amplitude Profile (ZAP) methodology to profile the 

resonant properties of pyramidal neurons, histamine increased both the resonant 

frequency ifres) and its magnitude (Q) in a concentration-dependent manner that closely 

resembled histamine's action on Ih. This was confirmed by application of ZD-7288, an 
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irreversible blocker of Ih, which blocked both the histamine-induced action and 

resonance. 

It is concluded that histamine, acting v1a H2 receptor activation of adenylyl 

cyclase and possibly a protein kinase, shifts the activation of h to more depolarized 

potentials. This action modulates the resonant behaviour of these neurons, which in tum 

can influence their oscillatory properties and consequently aid in the synchronization of 

larger neuronal networks. 
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1. Introduction 

1.1 Scope of thesis 

Although there exists an extensive literature on the electrophysiology of 

neocortical neurotransmitters the extent of their actions on neocortical oscillatory 

behaviour remains scant. A goal of this research was to investigate the effects of the 

neuromodulator, histamine, on subthreshold resonance in rat neocortical pyramidal 

neurons by means of a novel methodology known as the Impedance Amplitude Profile 

(ZAP) (Puil, Gimbarzevsky and Miura, 1986; Puil, Gimbarzevsky and Spigelman, 1988) 

Many neocortical neurons display subthreshold membrane fluctuations when 

depolarized to just below spike threshold. These oscillations reflect a close relationship 

with the neurons' resonant behaviour. Resonance is viewed as a frequency and voltage 

dependent peak in a neuron's impedance. Within this range of impedance, the neuron 

exhibits the lowest threshold for excitation (Hutcheon and Yarom, 2000). Central to this 

phenomenon are the intrinsic active and passive membrane properties that determine the 

input impedance. All neurons have passive properties made up from the leak 

conductance and the membrane capacitance. Characterized as a low pass filter, the 

passive membrane properties function to attenuate higher frequency inputs thereby 

causing the impedance to decrease and roll off. As well, many neurons contain various 

active membrane properties, that function as high pass filters that attenuate low frequency 

inputs (Hutcheon and Yarom, 2000). 

Subthreshold to firing, a hyperpolarization activated cationic current, Ih, together 

with the passive properties, may allow certain neocortical neurons to operate as bandpass 
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filters. This filter property prevents the neurons, and the networks that embed them, from 

encoding certain frequencies while promoting others. 

The modulation of Ih would have profound implications for the excitability and 

resonant behaviour of neocortical neurons. It is well established that cyclic nucleotides, in 

particular adenosine 3 ',5 '-cyclic monophosphate (cAMP), shift Ih activation to more 

positive potentials (Kaupp and Seifert, 2001; Viscomi, Altomare, Bucchi, Camatini, 

Baruscotti, Moroni, DiFrancesco, 2001). Although the mechanisms of resonance have 

been established, to date, there is little evidence showing the influence of 

neuromodulators on this process. Neocortical networks have long been associated with 

organized firing patterns and prominent oscillations during sleep and wakefulness. Given 

the role of histamine in modulating such behavioural states, it is a potential candidate for 

modulating neocortical resonance. In particular, in the neocortex, the innervation patterns 

of histamine containing axons (Kohler, Swanson, Haglund and Wu, 1985; Inagaki, 

Yamatodani, Ando-Yamamoto, Tohyama, Wantanabe, Wada, 1988; Panula, Pivola, 

Auvinem and Airaksinen, 1989; Manning Wilson, Uhlrich, 1996), the pervasiveness of 

histamine receptors (Palacios, Wamsley and Kuhar, 1981; Bouthenet, Ruat, Sales, 

Garbarg and Schwartz, 1988; Martinez-Mir, Pollard, Moreau, Arrang, Ruat, Traiffort, 

Schawartz and Palacios, 1990; Ruat, Traiffort, Bouthenet, Schwartz, Hirschfeld, 

Buschauerand Schunack, 1990; Pollard, Moreau, Arrang, Schwartz, 1993; Traiffort, 

Leurs, Arrang, Tardivel-Lacombe, Diaz, Schwartz and Ruat, 1994; Vizuete, Traiffort, 

Bouthenet, Ruat, Souil, Trardivel-lacombe and Schwartz, 1997; Honrubia, Vilaro, 

Palacios and Mengod, 2000; Pillot, Heron, Cochois, Tardivel-Lacombe, Ligneau, 
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Schwartz and Arrang, 2002), and the known actions of histamine receptor activation on 

cAMP production (Nahorski, Rogers and Smith, 1974; Baudry, Martres, Schwartz, 1975; 

Hegstrand, Kanof and Greengard, 1976; Palacios, Garbarg, Barbin and Schwartz, 1978; 

Psychoyos, 1978; Olianas, Oliver and Neff, 1984; Al-Gadi and Hill, 1987), make it a 

potential modulator of neocortical resonance. 

In the present project, based upon preliminary observations, the expected effect of 

histamine on Ih was occluded by a current rundown, characterized by a time dependent, 

hyperpolarizing shift in the activation of I h. This led to investigations of possible factors 

responsible for the rundown effect. Elimination of the rundown effect allowed for a full 

investigation into the effect of histamine on subthreshold conductances, in particular Ih, 

and novel insights into histamine's effect on subthreshold resonance. 

To set the context of the following investigations the remaining introductory 

sections provide a background on histamine anatomy, physiology and major functional 

correlates in the CNS followed by an overview of the hyperpolarization activated cationic 

current, Ih, and mechanisms of resonance. 

1.2 Histamine in the CNS 

1.2.1 Organization 

Of the four aminergic systems, serotonin, dopamine, noradrenaline and histamine, 

research into the actions and role of histamine in the central nervous system (CNS) has 

received limited attention. It has been over 90 years since Sir Henry Dale first discovered 

the existence of histamine in animal and plant tissues and over 60 years since the 
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presence of histamine was described in brain and peripheral nerves in mammals 

(Schwartz, Arrang, Garbarg, Pollard and Ruat, 1991). Despite this, the acceptance of 

histamine as a neurotransmitter/neuromodulator has only occurred over the last three 

decades (Schwartz et al., 1991). Knowledge that has been gathered about the anatomy 

and effects of the histaminergic system in the CNS suggests that histamine plays a broad 

regulatory role in brain activity. For example, histamine has been linked to numerous 

functions and behaviours in the nervous system including: circadian rhythmicity, such as 

arousal and sleep-wake cycles (Nowak, 1994; Gottesmann, 1999; Passani, Bacciottini, 

Mannaioni and Blandina, 2000), homeostatic processes, such as fluid balance food intake 

temperature regulation (Sakata, Y oshimatsu and Kurokawa, 1997; Hass and Panula, 

2003), cardiovascular control, cognition and neural plasticity (Bacciottini, Novoa and 

Cacabelos, 2001; Philipp and Prast, 2001; Gu, 2002) and a variety of brain disorders, 

such as anxiety and stress (Hill, 1990; Onodera, Yamatodani, Watanabe and Wada, 

1994). 

A characteristic of the histaminergic system that supports its role as broad 

modulator ofbrain activity is the mechanism of its metabolism and release. Histamine is 

formed from the amino acid L-histidine, which is transported in neurons by a nonspecific, 

energy-dependent L-amino-acid transport mechanism (Schwartz et al., 1991). 

Biosynthesis occurs in one step by the enzyme L-histidine decarboxylase. Similar to 

other aminergic transmitters, newly synthesized neuronal histamine is thought to be 

stored within vesicles through the actions of the vesicular monoamine-transporter 

VMAT-2 (Hoffman, Hansson, Mezey, Palkovits, 1998; Travis, Wang, Michael, Caron 
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and Wightman, 2000). Unlike other aminergic systems, however, histaminergic neurons 

do not exhibit a high-affinity uptake system for histamine, consistent with its suggested 

role as a long term modulator ofbrain activity (Brown, Stevens and Haas, 2001; Haas and 

Panula, 2003) This role, however, is not static since the rate at which histamine induces 

its effects is dependent on the rate at which histamine is formed and degraded, i.e., the 

turnover rate, which is positively correlated to the level of innervation and the activity 

level of histaminergic neurons (Hough, Khandelwal, Green, 1984; Oishi, Nishibori, 

Saeki, 1984). After release, histamine is metabolized by two routes: (1) oxidation by 

diamine oxidase (DOA) leading to imidazole acetic acid (IAA) and (2) methylation by 

histamine N-methyltransferase (HMT) resulting in the production tele-methylhistamine 

(t-MH) (Brown et al., 2001; Haas and Panula, 2003). In the vertebrate CNS histamine 

degradation occurs almost exclusively through methylation (Hough et al., 1984; Schwartz 

et al., 1991; Prell, Morrishow, Duo yon and Lee, 1997). In addition to histamine, 

histaminergic neurons also contain other neuroactive substances such as GABA (Kohler 

et al., 1985; Ericson, Kohler and Blomqvist, 1991; Alanen, Szabat, Visser and Panula, 

1992), met-enkephalin (Airaksinen et al., 1992), galanin (Kohler, Ericson, Watanabe, 

Polak, Palay, Palay and Palay, 1986; Staines, Yamamoto, Daddona and Nagy, 1986) and 

substance P (Airaksinen et al.,1992). 

Histamine is localized and released in the CNS from at least two cell types: (1) 

non-neuronal mast cells and (2) neurons with long widely projecting axons with 

varicosities filled with histamine containing synaptic vesicles (Brown et al., 2001; Haas 

and Panula, 2003). The latter is more commonly reported. In either case, the action of 
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histamine does not action occur through a typical arrangement where pre and post

synaptic sites directly apposed each other. Instead, both cell types release histamine into 

the local extracellular milieu resulting in a concert of effects on a variety of cell types and 

cell locations (Takgi, Morishima, Hayashi, Watanabe and Wada, 1986; Schwartz et al., 

1991) 

Another factor that supports the histaminergic system acting as a regulatory center 

lies in its anatomy. In vertebrates, the histaminergic system is well conserved 

phylogenetically where histamine synthesis in the CNS occurs exclusively in the 

tuberomammillary nucleus (TM) located in the posterior hypothalamus (Brown et al., 

2001; Haas and Panula, 2003). Anatomical studies in a variety of species have shown that 

the projection field of histaminergic neurons innervates virtually every area of the brain 

and parts of the spinal cord through three main pathways, two ascending (ventral and 

dorsal) and one descending (Kohler et al., 1985; Inagaki et al., 1988; Panula et al., 1989; 

Inagaki, Toda, Taniuchi, Panula, Yamatodani, Tohyama, Watanabe and Wada, 1990; 

Manning et al., 1996). The descending pathway has the lowest density of fibers and 

provides innervation to the midbrain, brain stem, cerebellum and spinal cord (Kohler et 

al., 1985; Inagaki et al., 1988; Panula et al., 1989). The ventral ascending pathway has 

the highest density of fibers and provides innervation to the hypothalamus, diagonal 

band, septum and olfactory tubercle (Inagaki, Toda, Taniuchi, Panula, Y amatodani, 

Tohyama, Watanabe and Wada, 1990). The dorsal ascending pathway, having a 

somewhat lower density of fibers than the ventral pathway, innervates the amygdala, 
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thalamus, hippocampus, and more moderately, the neocortex (Kohler et al., 1985; Inagak:i 

et al., 1988; Panula et al., 1989; Manning et al., 1996). 

Less is known about the afferent inputs to the TM. The largest density of afferent 

fibers originates from the lateral septum, infralimbic cortex and the preoptic nucleus 

(Ericson, Blomqvist and Kohler, 1991). The known roles of each of these areas correlates 

well with the behavioural actions of histamine. For example, the lateral septum has been 

shown to be involved in some forms of learning and spatial behaviours as well as being 

linked to the inhibition of anxiety and the acquisition of behaviours reinforced by 

alleviation of anxiety (Thomas and Evans, 1983; Fraser, Poucet, Partlow and Herrmann, 

1991; Yadin, Thomas, Grishkat, Strickland, 1993). Similarly, the infralimbic cortex has 

been linked to inhibition of inappropriate responding that may lead to increased anxiety 

as well as the control of visceral/autonomic activity such as the control of body 

temperature and feeding behaviour (Jinks and McGregor, 1997; Quirk, Russo, Barron and 

Lebron, 2000; Rhodes and Killcross, 2004; Recabarren, Valdes, Farias, Seron-Ferre and 

Torrealba, 2005). The preoptic nucleus is known for its role in the regulation of sleep 

and arousal (McGinty and Szymusiak, 2003). More moderate innervation of the TM 

arising from the brain stem has fibres originating from adrenergic (C1-C3), noradrenergic 

(A1-A3) and serotonergic (B5-B9) cell groups. The lowest density of fibres originates 

from the locus coeruleus, substantia nigra and the ventral tegmental area (Ericson, 

Blomqvist and Kohler, 1989). 

To date, four histaminergic receptor subtypes, H1, H2, H3 and H4, have been 

identified with H4 being detected predominantly in peripheral tissues (Palacios et al., 
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1981; Bouthenet et al., 1988; Martinez-Mir et al., 1990; Ruat et al., 1990; Pollard et al., 

1993; Traiffort et al., 1994; Vizuete et al., 1997; Honrubia et al., 2000; Nguyen, Shapiro, 

George, Setola, Lee, Cheng, Rauser, Lee, Lynch, Roth, ODowd, 2001, Pillot et al., 

2002). The following sections provides a brief overview of the three subtypes 

predominantly found in the CNS. 

1.2.2 H1 receptor 

The H1 receptor has a widespread distribution in the CNS (Palacios et al., 1981; 

Bouthenet et al., 1988; Martinez-Mir et al., 1990; Traiffort et al., 1994). Use of 

autoradiography and in situ hybridization techniques has shown the highest density of H1 

receptors are found in the thalamus, neocortex, basal forebrain, mesopontine tegmentum, 

raphe nuclei of the reticular formation and the locus coeruleus, all of which play 

important roles in arousal behaviour. High to moderate densities of H1 receptors are 

found in the limbic system, in particular the hypothalamus, septal nuclei, amygdala, 

hippocampus, nucleus accumbens, and in other areas such as nuclei of the cranial nerves, 

area postrema and nucleus tractus soltitarius. Lower densities are found in the 

cerebellum, with the exception of the molecular layer, and in the basal ganglia. 

Investigations into the pharmacology and biochemistry of each mammalian 

histamine receptor show they belong to a super-family of seven trans-membrane 

spanning, G-protein associated receptors. H1 receptors are primarily coupled to Gq/11 and 

phospholipase C (PLC) leading to the formation of two second messengers: inostitol 

1 ,4,5-triphosphate (IP3) and diacylglycerol (DAG) (Daum, Downes and Young, 1984; 
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Donaldson and Hill, 1986; Carswell, Galione and Young, 1987; Claro, Garcia and 

Picatose, 1987; Bristrow, Banford, Bajusz, Vedat and Young, 1993; Soria-Jasso, Bahena

Trujillo and Aris-Montano, 1997). A common action of IP3 is to bind to IP3 receptors on 

the endoplasmic reticulum, resulting in the release of intracellular calcium whereas DAG 

is known for augmenting protein kinase C activity (PKC) (Kirischuk, Tuschick, 

Verkhratsky and Kettenmann, 1996,Weiger, Stevens, Wunder and Haas, 1997). 

In addition, PLC activation has also been linked to the formation of guanosine 

3',5'-cyclic monophosphate (cGMP) via a calcium-mediated production of nitric oxide 

and a subsequent stimulation of guanylyl cyclase (Richelson, 1978). H1 receptors in 

neuronal culture and transfected cells have also been shown to couple to phospholipase 

A2 (PLA2) resulting in an enhancement of arachidonic acid formation (Snider, 

McKinney, Forray, Richelson, 1984; Leurs, Traiffort, Arrang, Tardivel Lacombe, Ruat 

and Schwartz, 1994). In either case, little is known about the histamine-induced actions 

of these messengers in the CNS. However, it has been proposed that both arachidonic 

acid and nitric oxide may act as retrograde signals resulting in presynaptic modulation 

(Brown et al., 2001). For example, studies of the hypothalamus showed that nitric oxide 

inhibited and augmented the release of histamine and glutamate, respectively (Prast, 

Lamberti, Fischer, Tran and Philippu, 1996). Studies involving corticostriatal 

preparations showed that inhibition of nitric oxide resulted in an increase in histaminergic 

field potential depression indicating that nitric oxide may act to occlude or inhibit the 

ability of histamine to depress synaptic transmission (Doreulee, Yanovsky, Flagmeyer, 

Stevens, Haas and Brown, 2001). Histamine-induced production of arachidonic acid 
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could result in synaptic modulation leading to changes in adaptive neural plasticity, a 

known effect of PLA2 activity in the CNS (Volterra, Trotti, Cassutti, Tromba, Galimberti, 

Lecchi and Racagni, 1992; Massicotte, 2000). For example, in rat hippocampus, an area 

ofhigh H1 receptor densities and long-term increase of hippocampal excitability induced 

by H1 and H2 receptor activation, arachidonic acid has been shown to exert a long-lasting 

facilitatory action on synaptic transmission and may be a significant factor for the 

expression of long term potentiation (L TP) (Selbach, Brown and Haas, 1997; Nishizaki, 

Nomura, Matsuoka and Tsujishita, 1999). 

H1 activation has also been linked to the augmentation of H2 receptor-mediated 

increases in cAMP production (Baudry et al., 1975; Hegstrand et al., 1976; Palacios et 

al., 1978; Psychoyos, 1978, Daum, Hill, Young, 1982; Al-Gadi and Hill, 1987; 

Donaldson and Hill, 1986; Donaldson, Hill and Brown, 1988; Leurs et al., 1994), 

presumably through activation of PKC (Schwabe, Ohga and Daly, 1978; Hollingsworth, 

Sears and Daly, 1985; Garbarg and Schwartz, 1988; Donaldson, Brown and Hill, 1989, 

Leurs et al., 1994). Conversely, H1 receptors have been indirectly linked to inhibition of 

cAMP production through an H1-induced increase in somatostatin-mediated inhibition of 

adenylyl cyclase activity (Puebla, Ocana Fuentes and Arilla, 1997). 

There is considerable evidence for H1-mediated actions in CNS preparations 

(Figure 1.1). In the human neocortex, H1 receptors have been shown to produce 

excitation through a calcium-independent reduction of a background potassium leak 

current (IKL), presumably through direct G-protein coupling, resulting in membrane 
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Figure 1.1 Summary of H1 receptor signalling pathways and membrane responses 
in the CNS. 

Dotted lines signify unclear signal transduction pathways. Plus and negative signs in 
parenthesis indicate pathway effects, i.e., enhancement or reduction, respectively. 
Question marks(?) represent undetermined action. HI receptors predominantly couple to 
phospholipase C (PLC) via Gq;II G-proteins resulting in the production of two second 
messengers, inositol-1 ,4,5-triphosphate (IP3) and diacylglycerol (DAG) from 
phosphatidyl-4,5 biphosphate (PIP2). IP3 leads to the release of calcium from intracellular 
stores. HI receptor-induced increases in intracellular calcium can result in production of 
nitric oxide, a possible retrograde messenger, and the subsequent activation of guanylyl 
cyclase (GC) leading to the production of cGMP which may increase gap junction 
conduction. HI receptor-induced increases in intracellular calcium have also been shown 
to increase the calcium activated potassium current (IAHP) resulting in hyperpolarization 
of the membrane, as well as an increase in a sodium/calcium exchanger and a 
depolarizing after potential (DAP) via an unknown channel, both resulting in a 
depolarization of the membrane. DAG enhances PKC activity which leads to the 
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phosphorylation of various protein targets such as the glutamate NMDA receptor 
resulting in an enhancement of NMDA-mediated currents. It should also be noted that 
histamine may also act directly at the NMDA channel. As well, PKC has also been 
shown to enhance the formation of cAMP by other substances i.e., histamine via the H2 

receptor, coupled to the Gs G-protein. For other effects little is known about the 
signalling pathways. A commonly observed effect of H1 receptor activation is the 
reduction of a potassium leak current (IKL) leading to a depolarization of the membrane. 
Others include an enhancement of a TTX insensitive sodium current CINa TTXins) also 
resulting in a depolarization of the membrane. Other lesser known effects include H1 
receptor-induced c-fos expression, activation of CREB and coupling to phospholipase A2 

(PLA2) resulting in the production of arachidonic acid (AA), another possible retrograde 
messenger. 
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depolarization and facilitation of signal transmission due to a decrease in membrane 

conductance (Reiner and Kamondi, 1994). Similar H1 mechanisms have been observed in 

other tissue preparations. An H1-mediated block of IKL has been shown in rat 

hypothalamic supraoptic nucleus, and cat and guinea pig lateral geniculate nucleus 

(McCormick and Williamson, 1991; Li and Hatton, 1996). A similar effect was also 

observed in dissociated neostriata! neurons where both H1 and H2 receptors mediated a 

decrease in an unknown K+ conductance (most likely IKL) (Munakata and Akaike, 1994). 

A synergistic excitatory action was also reported in nucleus basalis cholinergic 

neurons. However, whether H1 and H2 receptors converged on the same physiological 

mechanism was not determined (Khateb, Fort, Pegna, Jones and Muhlethaler, 1995). 

Another known action in the neocortex is the facilitation of the N-methyl-D-aspartate 

(NMDA) receptor-mediated depolarization. (Payne and Neuman, 1997). In the same 

investigation, the lack of a block of the histamine effect in magnesium free medium also 

suggests that histamine acts directly via a unique site on the NMDA receptor. Similar 

histamine receptor independent actions on NMDA receptors were observed on neurons 

from hippocampal slices, cultures and acutely dissociated preparations (Bekkers, 1993, 

Vorobjev, Sharonova, Walsh and Hass, 1993; Brown, Fedorov, Haas and Reymann, 

1995; Bekkers, Vidovic and Ymers, 1996), as well as in Xenopus oocytes expressing 

recombinant NMDA receptors (Williams, 1994). 

In rat cholinergic septal neurons, H1 receptors have also been shown to produce a 

calcium independent increase in a TTX-insensitive sodium conductance (Gorelova and 

Reiner, 1996). In vasopressinergic supraoptic neurons, H1 receptor-mediated excitation 
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was shown to occur through the activation of a calcium-dependent Na+-Ca2
+ exchanger 

and through the calcium dependent enhancement of a depolarizing after potential (DAP) 

following single firing or burst activity (Smith and Armstrong, 1993, Smith and 

Armstrong, 1996). Histamine has also been shown to reduce a voltage dependent 

potassium current, IM, in bovine adrenal chromaffin cells, presumably through the 

activation of the H1 (Wallace, Chen and Marley, 2001). Another action of H1 receptor 

activation is an increase in the number of open gap junctions in cultured supraoptic 

neurons, an effect that was mimicked by application of cGMP analogues (Hatton and 

Yang, 1996). 

Of equal interest, the H1 receptor has also been linked to increases in the 

expression of the early-gene c-fos in suprachiasmatic neurons, although the signalling 

pathway was not investigated (Vizuete, Dimitriadou, Traiffort, Griffon, Heron and 

Schwartz, 1995). Histamine has also been shown to up-regulate cAMP response element 

binding (CREB) protein phosphorylation in developing oligodendrocytes, a process 

which was linked to PKC and mitogen-activated protein kinase (MAPK) activity (Sato

Bigbee, Pal and Chu, 1999). This may suggest that H1 receptors also play a role in 

modulating transcriptional control under certain physiological conditions. 

Although the data are somewhat limited, H1 receptors have also been shown to 

mediate an inhibitory response. For example, in cultured C6 glial cells, H1-mediated 

increases in intracellular calcium via PLC have been shown to increase the conductance 

of a calcium-dependent potassium channel CIAHP) (Weiger, et al., 1997). This mechanism 

has been proposed for the H1-induced inhibition of firing and hyperpolarization in 
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hippocampal neurons (Haas, 1981). A similar effect was observed in olfactory bulb 

intemeurons where H1 receptor activation augments an apamine-sensitive outward 

current (Jahn, Haas, and Hatt, 1995). 

1.2.3 H2 receptor 

In contrast to H1 receptors, H2 receptors are present in low densities in the 

hypothalamus, thalamus and the septum and high densities in the basal ganglia and the 

cerebellum. On the other hand, similar to H1 receptor localization, they are found in 

higher to moderate densities in parts of the limbic system such as the hippocampal 

formation and the amygdala. They are also present in moderate levels in neocortex, as 

well as in a number of arninergic cells groups such as the locus coeruleus, substantia 

nigra and raphe nuclei suggesting a synergistic role (Ruat et al., 1990; Martinez-Mir et 

al., 1990, Vizuete et al., 1997; Honrubia et al., 2000). 

H2 receptors predominately couple toGs proteins and adenylyl cyclase resulting in 

an enhancement of cAMP formation (Nahorski et al., 1974; Baudry et al., 1975; 

Hegstrand et al., 1976; Palacios et al., 1978; Psychoyos, 1978; Olianas et al., 1984; Al

Gadi and Hill, 1987). As well, it has been suggested that H2 receptors may also couple to 

the PLC pathway, independent of adenylyl cyclase. However this has yet to be described 

in the brain (Wang, Gantz and Del Valle, 1996; Hill, Granellin, Timmerman, Schwartz, 

Shankley, Young, Schunack, Levi and Haas, 1997; Wang, Hoeltzel, Gantz, Hunter, Del 

Valle, 1998). 
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Figure 1.2 Summary of H2 receptor signalling pathways and membrane responses 
in the CNS. 

Dotted lines signify unclear signal transduction pathways. Plus and negative signs in 
parenthesis indicate pathway effects, i.e., enhancement or reduction, respectively. 
Question marks (?)represent undetermined action. H2 receptors predominantly couple 
to adenylyl cyclase (AC) via Gs G-protein resulting in the conversion of adenosine 
triphosphate (ATP) into cyclic adenosine monophosphate (cAMP). Through a direct 
action, cAMP shifts the voltage dependence of the hyperpolarization activated cationic 
current (Ih) in a depolarizing direction subsequently resulting in a small depolarization of 
the membrane and a change in neuronal firing characteristics. Further down stream, 
cAMP activates protein kinase A (PKA) which acts to reduce the calcium activated 
potassium current (IAHP) resulting in a depolarization of the membrane and an 
accommodation of firing. PKA may also activate CREB. Other effects where less is 
known about the transduction pathways include decreased formation of arachidonic acid 
(AA), inhibition of potassium leak conductance (IKL) resulting in a depolarization of the 
membrane, an increase in a chloride conductance (lei) resulting in a hyperpolarization of 
the membrane, and a possible PKA-mediated enhancement ofNMDA-mediated currents 
(INMDA)· 
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The actions of H2 receptors produce a mixed degree of excitation and inhibition 

within the CNS (Figure 1.2). In the rat neocortex, H2 receptors potentiate excitation by 

reducing IAHP, resulting in a decrease in spike adaptation (McCormick and Williamson, 

1991, McCormick, 1992, McCormick, Wang and Huguenard, 1993). The same action is 

reported from investigations involving rat hippocampus and dentate gyrus (Haas and 

Konnerth, 1983; Haas, 1984; Haas and Greene, 1986; Greene and Haas, 1990). 

Moreover, this mechanism of block occurs in the absence of changes in intracellular 

calcium levels and most likely involves a cAMP-PKA mediated phosphorylation of 

the channel (Hass, 1985; Haas and Greene, 1986; Greene and Haas, 1990; Pedarzani and 

Storm, 1993; Haug and Storm, 2000). 

H1 and H2 receptor activation may result in opposing physiological responses in 

some tissue types such as the hippocampus. For example, the H2 receptor-mediated 

reduction of IAHP is opposite to that described for H1 receptors. A similar opposing action 

may exist in relation to the production and release of arachidonic acid. In Chinese 

hamster ovary cell lines transfected with guinea pig H2 receptors, H2 receptor activation 

leads to a decrease in the release of arachidonic acid through a cAMP and Ca2+ 

independent pathway (Traiffort, Ruat, Arrang, Leurs, Promelli and Schwartz, 1992). 

H2 receptors have also been linked to a reduction in other potassium 

conductances. For example, as mentioned previously, H2 receptor activation leads to a 

decrease in an unspecified K+ conductance in dissociated neostriata! neurons (most likely 

IKL) resulting in transient increases in excitability (Munakata and Akaike, 1994). H2 

receptor activation also lowers the maximum firing frequency in fast spiking inhibitory 
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intemeurons of the hippocampal formation. This reduction occurs through a PKA 

dependent block of the K v3 .2 containing potassium channel, a member of the K v3 

superfamily of delayed rectifier-type K+ channels (Atzori, Lau, Tansey, Chow, Ozaita, 

Rudy, McBain, 2000). 

In the hippocampus and thalamus, H2 receptor-induced increases in cAMP shift Ih 

activation kinetics to more positive potentials. This shift results in excitatory action 

which can switch neuronal activity from burst mode to single spike firing, thus promoting 

accurate transmission at specific frequencies (McCormick and Williamson, 1991; Pape, 

1996; Storm, Winther and Pedarzani, 1996). Conversely, due to the reportedly higher 

density of Ih channels in hippocampal dendrites, an increase in Ih conductance can 

negatively influence dendritic spatial integration of synaptic input, thus leading to further 

modulation oftransmission (Magee, 1998). 

H2 receptor activation in the hippocampus can also result in long term increases in 

excitability via an adenylyl cyclase/PKA-signal transduction cascade. Moreover, this 

effect is significantly attenuated after application of DL-2-amino-5-phosphonopentanoic 

acid (APV) indicating an NMDA receptor-dependent component (Selbach et al., 1997). 

H2 receptors have also been shown to mediate inhibition. For example, in ferret 

GABAergic neurons of the perigeniculate nucleus, H2 receptor activation resulted in a 

slow hyperpolarizing response as a result of an increase in membrane cr conductance, an 

effect only previously seen in invertebrate models (Lee, Broberger, Kim and McCormick, 

2004). 
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Finally, H2 receptors may also be linked to modulation of transcriptional activity. 

In the hippocampus, H2 and H3 receptor activation has been shown to improve memory 

consolidation through the phosphorylation of the extracellular signal-related kinase2 

(ERK2) indicating a role in the modulation of neural plasticity (lmpey, Obrietan and 

Storm, 1999; Giovannini, Efoudebe, Passani, Baldi, Bucherelli, Giachi, Corradetti and 

Blandina, 2003). The mechanism of phosphorylation was not determined, but may have 

involved the cAMP/PKA pathway. Similarly, given the strong evidence that H2 receptors 

predominantly couple to the cAMP/PKA signalling cascade, their activation may result in 

the upregulation of the transcriptional factor CREB via cAMP-PKA phosphorylation 

(Sheng, McFadden, Greenberg, 1990; Brown et al., 2001; Hass and Pannula 2003). 

1.2.4 H3 receptor 

Compared to the H1 and H2 receptors, H3 receptors are more pervasive in the CNS 

(Pollard et al., 1993; Pillot et al., 2002). Characteristic of its role as an autoreceptor, H3 

receptors are found in high densities on TM neurons. Outside the TM, H3 receptors are 

found in the highest densities in the neocortex, olfactory nucleus, nucleus accumbens, 

caudate putamen, striatum and the substantia nigra, as well as in many nuclei of the 

hypothalamus. More moderate densities are found in the hippocampal formation, 

thalamus and the lower brainstem. 

H3 receptors primarily couple with the G/Go G-protein (Figure 1.3) (Brown and 

Hass, 1999; Clark and Hill, 1996; Laitinen and Jokinen, 1998; Drutel, Peitsaro, Karlstedt, 

Wieland, Smit, Timmerman, Panula and Leurs, 2001 ). Recent cloning investigations have 
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Figure 1.3 Summary of H3 receptor signalling pathways and membrane responses 
in the CNS. 

Dotted lines signify unclear signal transduction pathways. Plus and negative signs in 
parenthesis indicate pathway effects, i.e., enhancement or reduction, respectively. 
Question marks (?) represent undetermined action. H3 receptors predominantly couple 
to G/ 0 G-proteins. The most common action of this coupling is the inhibition of high 
voltage activated calcium channels (HVACCS), which in presynaptic terminals, results in 
reduced release of histamine and other neurotransmitters. Other effects, where less is 
known about the signalling pathways, include increased release of arachidonic acid (AA), 
inhibition of the adenylyl cyclase (AC)/protein kinase A (PKA) pathway resulting in 
decreased histamine synthesis and stimulation of the ERK/MAP kinase signalling 
pathway. (Hde (histidine), HDC (histidine decarboxylase), His (histamine)). 
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identified H3-mediated inhibition of forskolin-induced formation of cAMP which 

suggests the involvement of adenylyl cyclase (Lovenberg, Roland, Wilson, Jiang, Pyati, 

Huvar, Jackson and Erlander, 1999). Drutel et al. (2001) showed the existence of at least 

three functional H3 receptor subtypes, H3a, H3b and H3c, which differentially couple to the 

Gi protein dependent inhibition of adenylyl cyclase in a number of COS-7 cell lines. 

Further support of these findings comes from an investigation into the mechanism of H3 

inhibition of histamine synthesis in neocortical neuronal cultures (Gomez-Ramirez, Ortiz 

and Blanco, 2002). The results of this study showed that histamine synthesis was 

dependent upon an adenylyl cyclase-protein kinase A pathway, possibly leading to 

phosphorylation of histidine decarboxylase (Huszti and Magyar, 1984; Joseph, Sullivan, 

Wang, Kozak, Fenstermacher, Behrendsen and Zahnow, 1990), and that this action was 

prevented in the presence of imetit, an H3 receptor agonist. 

H3 receptors have also been linked to ERK/MAP kinase signalling pathway 

(Drutel et al., 2001; Giovannini et al., 2003). Drutel et al. (2001) showed that the three 

identified H3 receptor subtypes differentially couple to the Gi protein dependent 

phosphorylation and subsequent stimulation of the p44/p42 MAPK. Similarly, as 

mentioned previously, Giovannini et al. (2003) showed that H3 receptors' activation 

resulted in an improvement in memory consolidation that was linked to the 

phosphorylation of ERK2. However, unlike the findings of Drutel et al. (2001), the 

mechanism did not appear to be mediated through a direct H3 G/G0 G-protein 

mechanism. 
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Physiologically, H3 receptors are generally classified as autoreceptors resulting in 

the inhibition of histamine synthesis (Arrang, Garbarg and Schwartz, 1987; Garbarg, 

Tuong, Gros and Schwartz, 1989; Oishi, Itoh, Nishibori and Saeki, 1989; Yates, Tedford, 

Gregory, Pawlowski, Handley, Boyd and Hough, 1999) and release (Arrang, Garbarg and 

Schwartz, 1983; Arrang, Garbarg, Quach, Dam, Yeramian and Schwartz, 1985; Arrang, 

Devaux, Chodkiewicz and Schwartz, 1988; Westerink, Cremers, De Vries, Liefers, Tran 

and De Boer, 2002; Lamberty, Margineanu, Dassesse and Klitgaard, 2003), as well as the 

release of other transmitters including serotonin (Schlicker, Betz and Gothert, 1988; Fink, 

Schlicker, N eise and Gothert, 1990; Threlfell, Cragg, Kallo, Turi, Co en and Greenfield, 

2004), noradrenaline (Schlicker, Fink, Hinterthaner, Gothert, 1989; Fink, Schlicker and 

Gothert, 1994; Schlicker, Kathmann, Detzner, Exner and Gothert, 1994), dopamine 

(Schlicker, Fink, Detzner and Gothert, 1993), acetylcholine (Arrang, Drutel, and 

Schwartz, 1995; Blandina, Giorgetti, Bartolini, Cecchi, Timmerman, Leurs, Pepeu and 

Giovannini, 1996; Blandina, Giorgetti, Cecchi, Leurs, Timmerman and Giovannini, 1996; 

Giorgetti, Bacciottini, Bianchi, Giovannini, Cecchi and Blandina, 1997; Prast, Fischer, 

Tran, Grass, Lamberti and Philippu, 1997; Passani and Blandina, 1998), glutamate 

(Brown and Reymann, 1996; Brown and Haas, 1999; Doreulee et al., 2001 ), GABA 

(Garcia, Floran, Arias Montano, Young and Aceves, 1997; Arias-Montano, Floran, 

Garcia, Aceves and Young, 2001) and various peptides (Hill et al., 1997). 

The most common inhibitory mechanisms of transmitter release in the CNS 

include inhibition of calcium influx either by (1) blocking presynaptic calcium channels; 

(2) by enhancing potassium currents or (3) direct G-protein modulation of the cellular 
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apparatus of transmitter release (Thompson, Capogna and Scanziani, 1993; Wu and 

Saggau, 1997). Of these, the second is the most commonly reported action for most 

transmitter systems. Conversely, it is generally accepted that H3-mediated inhibition of 

transmitter release occurs via blockade of presynaptic calcium channels; in particular, a 

direct G/G0 G-protein inhibition of high voltage activated calcium channels (HV ACCS) 

(Takeshita, Watanabe, Sakata, Munakata, Ishibashi and Akaike, 1998; Brown and Hass, 

1999). For example, in rat dentate gyrus, H3 inhibition of glutamate release was linked to 

the reduction of multiple HVACCS including the N and P/Q types (Brown and Haas, 

1999). Similarly, in histaminergic neurons of the TM, histamine release was found to be 

dependent on both P and N type HV ACCS (Takeshita et al., 1998). In the neocortex, 

histamine release was found to depend on the L type HVACC (Washington, Shaw, Li, 

Fisher and Gwathrney, 2000). 

Adding to the complexity of the histaminergic system are the recent findings that 

a proportion of the H3 receptor population spontaneously undergoes an allosteric 

transition, leading to a conformation that can bind G proteins in the absence of an 

agonist, i.e., constitutive activity. This has been shown in both recombinant receptor 

(Wieland, Bongers, Yamamoto, Hashimoto, Y amatodani, Menge, Timmerman, 

Lovenberg and Leurs, 2001; Rouleau, Ligneau, Tardivel-Lacombe, Morisset, Gbahou, 

Schwartz and Arrang, 2002; Wulff, Hastrup and Rimvall, 2002; Takahashi, Tokita and 

Kotani, 2003) and in native receptor preparations (Morisset, Rouleau, Ligneau, Gbahou, 

Tardivel-Lacombe, Stark, Schunack, Ganellin, Schwartz and Arrang, 2000). Similar to 

the agonist-activated receptors, constitutively active H3 receptors induce similar effects, 
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i.e., inhibition of adenylyl cyclase, inhibition of histamine release (Schwartz, Morisset, 

Rouleau, Ligneau, Gbahou, Tardivel-Lacombe, Stark, Schunack, Ganellin and Arrang, 

2003; Takahashi et al., 2003), but have also been shown to elevate arachidonic acid 

release (Morisset et al., 2000; Rouleau et al., 2002). More over, their existence presents 

important therapeutic opportunities since antagonists once thought to be pure or neutral 

have been found to behave as inverse agonists resulting in a reduction of constitutive and 

basal receptor activity. These results have led to the suggestion that H3 inverse agonists 

might be preferred to H3 neutral antagonists in the treatment of histamine-mediated 

disorders (Schwartz et al., 2003). 

Given the recent discovery that several H3 isoforms vary in the length of their 

third intracellular loops, this molecular domain may be responsible for the observed 

differences in H3-mediated signalling and presents the possibility that different isoforms 

have yet to be discovered (Tardivel-Lacombe, Rouleau, Heron, Morisset, Pillot, Cochois, 

Schwartz and Arrang, 2000; Drutel et al. 2001). On the whole, the evidence suggests that 

the H3 receptor is more heterogeneous than first thought and, as a result, is adding a new 

level of complexity into the function of the histaminergic system in the CNS. 

1.2.5 Histamine and arousal 

Histamine's role in the CNS is closely related to its property of increasing 

excitability. In this regard, histamine is commonly associated with the role of mediating 

arousal. Studies involving several vertebrate species show that histaminergic neurons, 

when activated, increase wakefulness and arousal. For example, early studies involving 
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lesions at the level of the posterior hypothalmus induced hypersomnia (Swett and 

Hobson, 1968; McGinty, 1969). Later studies revealed that brain levels of histamine in 

rats are highest during the day whereas turnover is highest at night (Orr and Qauy, 1975) 

which parallels the activity ofhistaminergic firing (Monti, 1993). 

Pharmacological studies provide even more convincing evidence for histamine's 

role in maintaining sleep/wake behaviours. For example, inhibition of the posterior 

hypothalamus by muscimol, a GABAA agonist, also leads to a state of somnolence or 

hypersomnia (Lin, Sakai, Vanni-Mercier and Jouvet, 1989). More direct inhibition, by 

blocking the histamine synthesising enzyme histidine decarboxylase, results in a 

depletion of neuronal histamine and a subsequent reduction in the time cats and rats 

spend awake (Lin, Sakai and Jouvet, 1988; Kiyono, Seo, Shibagaki, Watanab, Maeyama 

and Wada, 1985). This is also supported by early in-vivo studies in rabbits involving 

intracerebroventricular (i.c.v.) injections of histamine which favoured wakefulness 

(Monnier and Hatt, 1969). Similarly, up regulation of neuronal histamine by oral 

administration of the H3 antagonist thioperamide also augmented wakefulness in cats 

while applications of H3 agonists resulted in a promotion of deep slow wave sleep (Lin, 

Sakai, Vanni-Mercier, Arrang, Garbarg, Schwartz and Jouvet, 1990; Monti, Orellana, 

Boussard, Jantos and Olivera, 1991). As well, the waking effects observed in the 

presence of thioperamide were blocked in the presence of the H1 antagonist mepryamine 

consistent with an H1-mediated increase in wakefulness (Lin et al., 1990). Consistent 

with this finding, other studies involving the injection (e.g., .i.c.v.) of H1 agonists and 

antagonists reveal a dose dependent increase and decrease in wakefulness, respectively 
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(Kalivas, 1982; Monti, Pellejero and Jantos, 1986; Lin et al., 1988; Tasaka, Chung, 

Sawada and Mio, 1989; Monti, Jantos, Leschke, Elz and Schunack, 1994; Lin et al., 

1994; Lin, Hou, Sakai and Jouvet, 1996; Tashiro, Mochizuki, Iwabuchi, Sakurada, Itoh, 

Watanabe and Yanai, 2002). 

Evidence suggesting a role for H2 receptors in arousal is limited. ICV injections of 

an H2 receptor antagonist had little effect on histamine-induced electroencephalogram 

(EEG) arousal observed in the neocortex and thalamus (Tasaka et al., 1989). Likewise, 

rats administered with the brain penetrating H2 antagonist zolantidine showed no 

significant changes in any of the sleep parameters examined (Monti, Orellana, Boussard, 

Janto and Olivera, 1990). As well, investigations into the effects of microadministration 

of the H2 agonist impromidine into the mesopontine tegmentum showed little change in 

the cortical EEG and the sleep-wake cycle in freely moving cats (Lin et al, 1996). 

Similar to noradrenergic and serotonergic systems, histaminergic neurons are 

continuously active during wake, reduce discharge during non-rapid eye movement 

(nonREM) sleep, and cease discharge during REM sleep (Vanni-Mercier, Sakai and 

Jouvet, 1984). The route by which histamine acts to maintain arousal is complex. At the 

level of the hypothalamus, the onset of sleep has been traced to neurons in the ventral 

preoptic area which, when activated, are thought to tum off the histaminergic TM 

neurons as well as other aminergic neurons via strong monosynaptic GABAergic and 

galinergic connections (Sherin, Shiromani, McCarley and Saper, 1996; Yang and Hatton, 

1997; Sherin, Elmquist, Torrealba and Saper, 1998; Szymusiak, Alam, Steininger and 

McGinty, 1998). Indirect routes for histamine-induced arousal involve histaminergic 



27 

inputs to cholinergic neurons in both the basal forebrain and the mesopontine tegmentum 

of the brain stem, which subsequently provides direct input to the neocortex and via 

thalamocortical radiations (Khateb, Serafin and Muhlethaler, 1990; Khateb et al., 1995; 

Lin et al, 1996; Cecchi, Passani, Bacciottini, Mannaioni and Blandina, 2001). Histamine 

has also been shown to regulate neocortical arousal by stimulating serotonergic neurons 

in the dorsal raphe nucleus (Brown, Sergeeva, Eriksson and Haas, 2002). Of these, the 

cholinergic and serotonergic pathways appear to be essential for producing activation in 

the neocortex since concurrent blockade of cholinergic and serotonergic inputs to the 

neocortex abolishes neocortical electrocorticographic activity (Dringenberg and 

Vanderwolf, 1998). On the other hand, reductions of neocortical histamine through 

inhibition of histidine decarboxylase had no obvious effect on low voltage fast activity in 

the neocortex during waking (Servos, Barke, Hough, and Vanderwolf, 1994). Similarly, 

destruction of the posterior hypothalamus only revealed a severe reduction in normal 

sleep wake cycles for 3 to 4 days and in evoked cortical low voltage fast activity for 2 to 

3 weeks (Denoyer, Sallanon, Buda, Kitahama and Jouvet, 1991). 

In contrast, during a cataplexic event (a symptom associated with narcolepsy 

where muscle tone is lost during a waking state) histamine neurons are active at greater 

or similar levels to those observed during normal wake states while noradrenergic 

neurons and serotonergic neurons show complete inactivity or greatly reduced activity. 

As a result, the role of other aminergic neurons may be more tightly coupled to the 

maintenance of muscle tone in waking and its loss during REM sleep (John, Wu, 
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Boehmer and Siegel, 2004), however, an indirect route via cholinergic inputs was not 

ruled out. 

In summary, histamine appears to contribute to arousal indirectly by stimulating 

other aminergic activating cortical inputs. On the other hand, the direct actions of 

histamine on the neocortex, i.e., H1 receptor mediated block of a IKL and facilitation of 

NMDA receptor mediated currents resulting in excitation, an H2 mediated block of IAHP 

resulting in accommodation of firing and H3 mediated control of neurotransmitter release, 

most likely play supporting modulatory roles (Wada, Inagaki, Y amatodani and 

Watanabe, 1991; Dringenberg and Vanderwolf, 1998). For example, in urethane

anaesthetized rats, histamine was shown to primarily facilitate electrocorticogram 

activation by potentiating the excitatory influence of cholinergic brainstem fibres at the 

level of the basal forebrain, whereas in the neocortex the action of histamine produced a 

small suppression of slow delta oscillations (Dringenberg and Kuo, 2003). 

1.2.6 Histamine and homeostasis 

1.2.6.1 Fluid balance 

Fluid balance is strongly associated with histamine stimulation of the supraoptic 

nucleus resulting in release of vasopressin, which induces antidiuresis (Bhargava, 

Kulshrestha, Santhakumari and Srivastava, 1973; Tuomisto, Eriksson and Fyhrquist, 

1980; Armstrong and Sladek, 1985; Kjaer, Knigge, Rouleau, Garbarg and Warberg, 

1994). Similar actions are observed with histamine stimulated renin release following 

dehydration, which can lead to the eventual production of aldosterone that acts primarily 
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on the kidney by inducing retention of sodium and water (Matzen, Knigge and Warberg, 

1990; Kjaer, Knigge, Jorgensen and Warberg, 1998). This is also supported by studies 

which show that injection of H1 and H2 antagonists into the ventromedial hypothalamus 

decreased water intake (Magrani, de Castro e Silva, Varjao, Duarte, Ramos, Athanazio, 

Barbetta, Luz and Fregoneze, 2004). 

1.2.6.2 Feeding 

Histamine suppression of feeding most likely occurs by H1 receptor-mediated 

actions on the ventromedial nucleus of the hypothalamus, an area important in satiety 

(Sakata, Fukagawa, Ookuma, Fujimoto, Yoshimatsu, Yamatodani and Wada, 1988; 

Sakata, Ookuma, Fukagawa, Fujimoto, Yoshimatsu, Shiraishi and Wada, 1988). 

Histamine may also act to suppress feeding behaviour by acting on the mesencephalic 

trigeminal nucleus, an area that controls mastication (Fujise, Y oshimatsu, Kurokawa, 

Oohara, Kang, Nakata and Sakata, 1998). Recent studies involving H1 receptor knock-out 

mice suggest that histamine suppression of feeding is dependent on leptin, a 

multifunctional cytokine and hormone, which acts to enhance histamine release and 

metabolism (Morimoto, Yamamoto, Mobarakeh, Y anai, Watanabe and Y amatodani, 

1999; Toftegaard, Knigge, Kjaer and Warberg, 2003). In contrast, histamine has also 

been shown to influence leptin concentration by inhibiting its expression, thus providing 

evidence for a bi-directional regulatory loop and a possible pathomechanism for obesity 

and anorexia (Mercer, Kelley, Haq and Humphries, 1996; Morimoto et al., 1999; 

Takahashi, Suwa, Ishikawa and Kotani, 2002; Itateyama, Chiba, Sakata and Yoshimatsu, 
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2003; Sakata, Yoshimatsu, Masaki and Tsuda, 2003; Hegyi, Fulop, Kovacs, Falus and 

Toth, 2004). 

Studies involving energy deficiency in the brain have shown that neural 

glucoprivation activates histamine neurons in the hypothalamus and results m an 

augmentation of glycogenolysis in the brain (Oohara, Yoshimatsu, Kurokawa, Oishi, 

Saeki and Sakata, 1994; Sakata, Kurokawa, Oohara and Yoshimatsu, 1994). As well, 

histaminergic stimulation of the sympathetic nervous system has been shown to increase 

lipolysis in the adipose tissue (Takahashi and Shimazu, 1981; Bugajski and Janusz, 

1981 ). Both actions are apparently mediated through the negative feedback loop 

between histamine neurons and the leptin signaling system (Sakata et al., 2003). 

1.2. 7 Histamine and locomotion 

Histamine has also been shown to induce ambulatory activity. For example, 

locomotive activity was decreased after inhibition ofhistamine synthesis and H3 receptor 

activation resulting in decreased histamine release (Watanabe and Yanai, 2001, Kubota, 

Ito, Sakurai, Sakurai, Watanabe and Ohtsu, 2002). Conversely, inhibition of histamine 

metabolism and application of H3 receptor antagonists increased locomotive activity 

(Sakai, Onodera, Maeyama, Y anai and Watanabe, 1992; Sakai, Yamazaki, Onodera, 

Y anai, Maeyama and Watanabe, 1993 ). Later studies lend further support, showing that 

H1 receptor knock-out mice exhibited impaired locomotor activity and exploratory 

behaviour, i.e. decreased ambulatory activity in rats (Inoue, Yanai, Kitamura, Taniuchi, 

Kobayashi, Niimura and Watanabe, 1996; Yanai, Son, Endou, Sakurai and Watanabe, 
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1998, Yanai, Son, Endou, Sakurai, Nakagawasai, Tadano, Kisara, Inoue and Watanabe, 

1998). 

1.2.8 Histamine and cognition 

Although the enhanced release of other transmitters, such as acetylcholine, play 

an important role in cognition and learning, histamine may also play an important role 

(Blandina et al. 1996; Chen, Chen and Kamei, 2001; Bacciottini et al., 2001). Its action, 

however, is complex and the findings have been contradictory. For example, 

administration of histidine (Miyazaki, Imaizumi and Onodera, 1995) and H3 antagonists 

(Komater, Buckley, Browman, Pan, Hancock, Decker and Fox, 2004) attenuates a 

scopolamine-induced deficit in task-dependent spatial learning. This effect is likely 

mediated through H1 receptor activation (Miyazaki et al., 1996). On the other hand, 

lesions of the TM region have been shown to facilitate learning, indicating that neuronal 

histamine may exert a negative influence on learning and memory (Klapdor, Hasenohrl 

and Huston, 1994; Frisch, Hasenohrl, Krauth and Huston, 1998). Similarly, 

administration of the H1 antagonist chlorpheniramine facilitated learning when the 

compound was administered immediately after training (Frisch, Hasenohrl and Huston, 

1997; Hasenohrl, Kuhlen, Frisch, Galosi, Brandao and Huston, 2001). Also, in contrast to 

other findings, H3 receptor activation in the basolateral amygdala, an area involved in 

learning in which certain environmental cues predict threatening events, enhances fear 

memory (Cangioli, Baldi, Mannaioni, Bucherelli, Blandin and Passani, 2002). Similarly, 
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increases in cerebral histamine levels through administration of histidine impairs the 

acquisition of avoidance responses (Rubio, Beg ega, Santin, Miranda and Arias, 2001 ). 

The role of histamine in cognitive functions may involve synaptic plasticity. 

Learning is a process by which new information is acquired and memory is the process 

by which that knowledge is retained. One mechanism by which this is achieved is 

through long term potentiation (L TP) which enhances or magnifies patterns of synaptic 

responses elicited by environmental stimuli (Shors and Matzel, 1997). Although there is 

limited evidence (Brown et al., 1995; Selbach et al., 1997) to suggest a role for histamine 

in the formation of LTP, its physiology strongly suggests that the potential exists. For 

example, H1 receptors are linked to increases in intracellular calcium and activation of 

PKC and facilitation ofNMDA receptor-mediated currents, all ofwhich are important in 

the initial stages of LTP (Bliss and Collingridge, 1993, Collingridge and Bliss, 1995, 

Bliss, Collingridge and Morris, 2003). Similarly, H2 receptor activation of the 

cAMP/PKA cascade is a potential candidate for generating the transcription! changes 

required for the development ofLTP in the hippocampus (Frey, Huang and Kandel, 1993, 

Haas, Sergueeva, Vorobjev and Sharonova, 1995). The heterogeneity of H3 receptors and 

their links to regulating transmitter release, i.e., glutamate in the dentate gyrus (Brown 

and Reymann, 1996), most likely play a broad modulatory role in synaptic plasticity. 
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1.3 Hyperpolarization-activated cationic current (Il!) 

Neurons in the brain and peripheral tissues often exhibit an increased cationic 

conductance when hyperpolarized to potential negative to the resting membrane potential 

(Pape, 1996; Robinson and Siegelbaum, 2003). The resulting current, Ih, has a reversal 

potential at approximately -45 mV and results from the flux ofboth Na+ and K+ ions. The 

kinetics of activation and deactivation, following hyperpolarization and depolarization, 

respectively, are a function of voltage and time that can be described by the Hodgkin and 

Huxley formalism. Once the threshold for activation is reached, steady state activation is 

preceded by a significant delay during which the inward current develops slowly. 

Increasing hyperpolarization, up to an approximate maximum of -120 mV, results in an 

increasing rate of activation and a larger current amplitude. Varying widely among cell 

types and preparations, the time course of activation ranges from tens to hundreds of 

milliseconds as described in rod and cone photoreceptors, hippocampal CA 1 neurons and 

entorhinal cortex neurons (Hestrin, 1987; Maricq and Korenbrot, 1990; Magee, 1998, 

Dickson, Magistretti, Shalinsky, Fransen, Hasselmo and Alonso, 2000), or within the 

range of seconds, as described in slowly adapting lobster stretch receptors (Edman, 

Gestrelius and Grampp, 1987). Characteristically, however, the time course ranges from 

1 to 2 s at potentials near Ih activation and from 200 to 400 ms at maximal activation 

potentials (Uchimura, Cherubini and North, 1990; Maruoka, Nakashima, Takano, Ono 

and Noma, 1994; Harris and Constanti, 1995). 

The kinetics of Ih contributes to a number of physiological phenomena including 

changes in integrative behaviour, action potential generation following membrane 



34 

hyperpolarization, resonance and rhythmogenesis, normalization of temporal summation, 

and regulation of synaptic transmission (McCormick and Pape, 1990a; Foehring and 

Waters, 1991; McCormick and Huguenard, 1992; Maccaferri, Mangoni, Lazzari and 

DiFrancesco, 1993; Lamas, 1998; Magee, 1998; Stuart and Spruston, 1998; Doan and 

Kunze, 1999; Southan, Morris, Stephens and Robertson, 2000; Cuttle, Rusznak, Wong, 

Owens and Forsythe, 2001; Seutin, Massotte, Renette and Dresse, 2001; Mellor, Nicoll 

and Schmitz, 2002; Desjardins, Li, Reinker, Muira and Neuman, 2003; Funahashi, Mitoh, 

Kohjitani and Matsuo, 2003). The recent cloning of a family of four mammalian genes 

that encode the Ih channel is providing greater insight into the diversity of these channels 

(Ludwig, Zong, Jeglitsch, Hofmann and Biel, 1998; Santoro, Liu, Yao, Bartsch, Kandel, 

Siegelbaum and Tibbs, 1998). 

Known specifically as the hyperpolarization-activated cyclic nucleotide-gated 

cationic channels (HCN1-4), the family is 80-90% identical in the core trans-membrane 

region, but reveals less conservation in the extreme amino and carboxy termini (Kaupp 

and Seifert, 2001 ). Each isoform differs in the pattern of expression and activation. In the 

mammalian brain, HCN3 and HCN4 exhibit weak expression, whereas HCN2 shows 

strong widespread mRNA expression. HCN1 demonstrates strong, but selective 

expression (Moosmang, Biel, Hofinann and Ludwig, 1999; Monteggia, Eisch, Tang, 

Kaczmarek, and Nestler, 2000; Notomi and Shigemoto, 2004). The functional 

heterogeneity of Ih closely follows the patterns of isoform expression. HCN1, 

characterized by its more rapidly activating kinetics, is strongly expressed in brain 

regions that exhibit a rapidly activating Ih, such as layer V neurons of the neocortex and 
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CAl neurons of the hippocampus (Santoro, Chen, Luthi, Pavlidis, Shumyatsky, Tibbs 

and Siegelbaum, 2000). In contrast, HCN4 and HCN2, characterized by their relatively 

slower activation, are expressed in brain regions that exhibit slowly activating Ih, such as 

in thalamocortical relay neurons. 

A striking feature of the HCN isoforms is the presence of a cyclic nucleotide 

binding domain (CNBD) in the cytoplasmic carboxy terminus, which alters the voltage 

dependence when the cyclic nucleotides, cAMP and cGMP bind (Kaupp and Seifert, 

2001; Viscomi et al., 2001). It is thought that the presence of the CNBD tonically inhibits 

Ih channel activation by shifting the gating to more negative potentials. When a cyclic 

nucleotide binds to the CNBD site, gating of the channel is shifted in the depolarized 

direction. This action is well described by a allosteric voltage-dependent gating model 

(DiFrancesco, 1999; Altomere, Bucchi, Camatini, Baruscotti, Viscomi, Moroni, and 

Difrancesco, 2001 ). According to the model, channel opening and shift in kinetics is the 

combination of two co-existing processes: 1) displacement of voltage sensors on each of 

the channel subunits and 2) allosteric closed to open transitions involving the binding of 

cyclic nucleotides whereby Ih has a six fold higher affinity for cAMP in the open state 

compared to the closed state. The presence of a two step process involving the movement 

of voltage sensors and a closed to open transition can account for the distinct kinetic 

features of Ih, such as the delay in current activation and deactivation, and explains the 

kinetics observed for the 4 HCN isoforms. 

Although this provides a strong case for the direct modulation of Ih by cAMP, 

there is an equally compelling case for an indirect action of cAMP in modulating Ih via a 
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protein kinase phosphorylation dependent mechanism (Tokimasa and Akasu, 1990; 

Chang, Cohen, Difrancesco, Rosen and Tromba, 1991; Yu, Chang, and Cohen, 1993, 

1995; Accili, Redaelli and DiFrancesco, 1997; Vargas and Lucero, 2002). 

Whether modulation of Ih occurs via a direct or indirect mechanism, it is well 

established that cyclic nucleotides, in particular cAMP, shift Ih activation to more positive 

potentials (Pape and Mager, 1992; Pape, 1996; Chen, 1997; Chen, Wang, Siegelbaum, 

2001). This depolarizing shift is observed whether the increase results from the 

application of membrane permeable analogues of cAMP, e.g., 8-bromo-cAMP, or from 

the stimulated production of cAMP by forskolin (Bobker and Williams, 1989; Tokimasas 

and Akasu, 1990; Akasu and Shoji, 1994; Larkrnan and Kelly, 1997; Raes, Wang, Berg, 

Goethals, Vijver and Bogaert, 1997; Funahashi et al., 2003). Moreover, stimulation of G

proteins positively and negatively coupled to adenylyl cyclase results in a depolarizing or 

hyperpolarizing shift, respectively, of the activation curve for Ih (Bobker and Williams, 

1989; McCormick and Williamson, 1991; Li, Wang, Strahlendorfand Strahlendorf, 1993; 

Ingram and Williams, 1994; Storm et al., 1996; Svoboda and Lupica, 1998; Gasparini 

and DiFrancesco, 1999; Vargas and Lucero, 1999; Haas and Selbach; 2000; Bickrneyer, 

Heine, Manzke and Richter, 2002; Liu, Bunney, Appel, Brodie, 2003). 

1.4 Mechanism of resonance 

Neuronal oscillations in the brain are pervasive and are strongly correlated with 

essential functions of the nervous system, such as timing motor performance, sleep, 

awareness, attention, perception, and learning, all of which aid in synchronizing an 
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organism's behaviour with its environment (Buzsaki, 1989; Gray, Konig, Engel and 

Singer, 1989; Steriade, Gloor, Llinas, Lopes da Silva and Mesulam, 1990; Silva, Amitai 

and Connors, 1991; Murthy and Fetz, 1992; Pinault and Deschenes, 1992; Turbes, 1992; 

Lampl and Yarom, 1993; Wang, 1993; Steriade, 1996; Steriade, Amzica and Contreras, 

1996; Connors and Amitai, 1997; Lampl and Yarom, 1997, Izhikevich, 2002). It has 

long been speculated that synchronization and rhythmic behaviour of brain activity is a 

Gestalt phenomenon originating from synaptic interactions in large neuronal pools and/or 

oscillatory subunits, however, the organization and detailed mechanism for this has yet to 

be shown. 

Although studies into this area have been limited, there has been extensive 

research into the biophysical characteristics of single neurons and the mechanisms 

underlying resonance that determine the frequency at which neurons will oscillate and 

generate action potentials. Resonance is an intrinsic property of neurons, permitting them, 

and consequently the networks in which they are embedded, to operate as band pass 

filters preventing the network from encoding certain inputs while promoting those that 

occur at the neurons' resonant frequencies (Hutcheon and Yarom, 2000). Resonance has 

been shown in a number of preparations including: trigeminal root ganglion 

(Gimbarzevsky, Miura and Puil, 1984; Puil et al., 1988); hippocampus (Gimbarzevsky et. 

al., 1984; Leung and Yu, 1998; Pike, Goddard, Suckiling, Gnater, Kasthuri and Paulsen, 

2000; Hu, Vervaeke and Storm, 2002); inferior olive nucleus (Lampl and Y arom, 1997); 

entorhinal cortex neurons (Fransen, Alonso, Dickson, Magistretti and Hasselmo, 2004; 

Schreiber, Erchova, Heinemann and Hertz, 2004); trigeminal mesencephalic neurons 



38 

(Wu, Hsiao and Chandler, 2001); cerebellum (D'Angelo, Nieus, Maffei, Armano, Rossi, 

Taglietti, Fontana and Naldi, 2001); thalamus (Hutcheon, Miura, Yarom and Puil, 1994; 

Puil, Meiri and Yarom, 1994; Strohmann, Schwartz and Puil, 1994) and neocortex 

(Gutfreund, Yarom and Segev, 1995; Hutcheon, Miura and Puil, 1996ab; Neuman, Giles, 

Kong and Puil, 1996; Ulrich, 2002). 

Resonance is best investigated through the use of frequency-domain analysis 

involving Fourier techniques. The resultant output of this analysis is a measure of 

membrane impedance, a frequency-domain extension of membrane resistance. In neurons 

with biophysical properties that allow oscillations, a voltage dependent peak in the 

frequency-impedance plot is observed, also known as the resonant frequency ifres). This 

resonant peak discriminates between inputs based on frequency content since inputs near 

!res produce the largest voltage responses and therefore have a higher probability of 

producing action potentials. 

Since the resurgence of frequency domain techniques over the last 20 years, a 

number of intrinsic biophysical mechanisms necessary for the creation of resonance and 

oscillations in neurons have been identified (Hutcheon and Yarom, 2000). In short, 

neuronal resonance results from the interplay between a neuron's passive and active 

properties. The passive properties are represented in a capacitance membrane (CM) 

model, also known as the passive model, which is equivalent to a parallel circuit made up 

of a simple resistor, i.e., leak conductance; and a capacitor, i.e., membrane capacitance 

(Hutcheon, 1996). This basic circuit, a feature of all neurons, acts like a low pass filter 

where current inputs at low frequencies, which match the resonant band of frequencies in 
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a neuron, produce the largest impedance values, and hence larger voltage responses. 

Higher frequency inputs result in attenuated values due to the roll off of the impedance 

by the membrane capacitance. The point above which the passive membrane properties 

begins to attenuate higher inputs is determined by 

(1) 

where ffipass is the corner frequency for the passive properties and 'tm is the membrane 

time constant. 

The active properties represent the introduction of a change in the flow of current 

through the membrane. Also known as the capacitive membrane model with a simple 

current (CM + S) (Hutcheon, 1996), in terms of the frequency impedance relationship, in 

order for resonance to be produced the active component behaves in an opposite manner 

to a capacitor ,i.e., the impedance increases as frequency increases. As a result, the active 

component behaves as a high pass filter. The point below which the active component 

attenuates lower frequency inputs is determined by 

rox = 1/21t'tx (2) 

where rox is the corner frequency for the active component and 'tx is the time constant of 

the active component. 

Although the CM model is a basic component of all neurons the active 

components, which produce low frequency attenuation, belong to a class of resonant 

producing voltage gated currents that are characterized by two specific criteria 

(Hutcheon, 1996; Hutcheon and Yarom, 2000): 



40 

(1) The currents are rectifying in nature in that they actively oppose changes in 

the membrane voltage. All rectifying currents are characterized by a reversal potential 

lying in a voltage range where the current is nearly completely deactivated . 

(2) The current's time constant is slower than the membrane time constant. As a 

result, when a neuron is injected with square waves, these currents produce a time 

dependent voltage signature characterized by sags and rebounds, upon activation and 

deactivation, respectively, with respect to the near instantaneous passive charging of the 

membrane, i.e., capacitance. These currents behave similarly when exposed to oscillating 

inputs made up of multiple frequencies. Due to the slow activation and/or deactivation 

kinetics, the currents effectively resist changes in the membrane voltage in the low 

frequency range of the oscillating input. As a result, these currents attenuate the 

membrane impedance at low frequencies giving the membrane the attribute of a high pass 

filter. 

The combination of these active and passive properties bring together two 

frequency specific mechanisms: one that attenuates voltage responses to high frequency 

inputs and another that attenuates responses at inputs arriving at low frequencies 

(Hutcheon, 1996; Hutcheon and Yarom, 2000). As long as the time constant of the 

resonant current is slower than the membrane time constant the combination can result in 

a notch, or band pass filter configuration, which produces a resonant band of frequencies 

with the largest impedance values occurring atfres (Figure 1.4). 

Other active elements, have an opposite arrangement characterized by their fast 

activation and a reversal potential lying in the voltage range where the current is nearly 
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completely activated (Hutcheon, 1996). Although they do not have the basic requirement 

for producing resonance, they can interact with resonant producing currents to amplify or 

enhance resonance, as well as to sustain membrane oscillations as shown in the thalamus 

(Hutcheon et al., 1994) and the neocortex, (Hutcheon et al., 1996a). Commonly reported 

examples include the persistent sodium current, INaP (Puil et al., 1994; Strohmann et al., 

1994; Gutfreund et al., 1995; Hutcheon et al., 1996ab; Hutcheon and Yarom, 2000; 

D'Angelo et al., 2001; Wu et al., 2001; Hu et al., 2002) and the transient low threshold 

Ca2
+ current, Ir (Gutnick and Yarom, 1989; Hutcheon et al., 1994; Strohmann et al., 

1994; Lampl and Yarom, 1997, Hutcheon and Yarom, 2000). Ir is a special example 

since it can produce both resonance and resonance amplification, due to its relatively 

slow inactivation and fast activation gating properties, respectively (Hutcheon and 

Yarom, 2000). 

Under biological conditions, the CM + S model is more complex. With the 

exclusion of the membrane capacitance, the passive and active components are made up 

of multiple ionic currents existing in parallel. The active components can differ 

dramatically in their voltage dependence resulting in resonant behaviour and 

amplification occurring over different membrane voltages. For example, resonance in the 

suprathreshold range (above -65 m V), has been shown to be produced by a K+ current 

with the characteristics of the M-current, IM, in trigeminal root ganglion neurons, 

trigeminal mesencephalic neurons, hippocampus pyramidal neurons, cerebellar granule 

cells and pyramidal neurons of the neocortex (Puil et al., 1988; Gutfreund et al., 1995; 

D'Angelo et al., 2001; Wu et al., 2001; Hu et al., 2002). 
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Figure 1.4 Impedance frequency response curve (zFRC) showing the contribution 
of active and passive membrane properties to the formation of resonance. 

At low input frequencies the active circuit (dashed line) dominates the impedance and 
opposes voltage changes at frequencies below COx. At frequencies above COx the effect of 
the active circuit is reduced due to its slow response kinetics giving it the characteristic of 
a high pass filter. Conversely, the passive circuit (bold solid line), represented by the 
capacitance and leak component, dominates the impedances beyond frequencies above 
COpass· The complete model (thin solid line), formed by the combination of the active and 
passive circuits, results in a region of unattenuated impedance at intermediate 
frequencies, i.e., between COx and COpass with the largest impedance values occurring at the 
resonant frequency ifres). This region gives the model the characteristic of a notch or band 
pass filter configuration. As a result, input frequencies within this range will produce 
larger voltage responses and are more likely to influence the firing properties of the 
neuron. 
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In the subthreshold voltage range (i.e., below -65 m V) resonance is produced by 

both h and Ih. h, with it dual classification, can produce resonance as well as play a 

regenerative role in the production of oscillations in the thalamus and the inferior olive 

(Steriade, McCormick and Sejnowski, 1993; Strohmann et al., 1994; Puil et al. 1994; 

Hutcheon et al., 1994; Lampl and Yarom, 1997). Ih, is the most commonly reported 

subthreshold resonant current which produces resonance in the entorhinal cortex, 

hippocampus, thalamus and neocortex (Puil et al., 1994; Strohmann et al., 1994; 

Hutcheon et al., 1996ab; Hu et al., 2002; Ulrich, 2002; Fransen et al., 2004). 

Although there has been a great deal of research into the neurological function of 

neurotransmitters, the full extent of their presynaptic and postsynaptic actions within the 

cortex are unknown (McCormick, 1992). The study of neurotransmitter effects on 

frequency response in the neocrtiex can lead to a greater elucidation of transmitter 

actions, while providing greater insight into the mechanisms of neocortical resonant 

behaviour. 

Based upon known actions of histamine in the cortex, i.e., H1 mediated decrease 

in IKL and H2 mediated increases in cAMP, modulation of resonance is likely. It is 

expected that both the frequency of resonance ifres) and the quality of resonance (Q) will 

be altered. Q is the sharpness ofthe resonant hump determined by dividing the magnitude 

of the impedance at !res by the magnitude of the impedance at the lowest frequency 

sample (see section 4.2 for more detail). 

Based on results from Hutcheon et al. (1996a,b) subthreshold resonance in 

cortical neurons is due to the kinetics of Ih. A possible H2 modulation of Ih would have 
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profound implications for the excitabilty and resonant behaviour of cortical neurons. To 

increase the activation of Ih the membrane potential has to be moved into a range where it 

is more active or the kinetics of Ih has to be shifted to a potential where it was previously 

less active, i.e., via H2 receptor mediated increases in cAMP. The activation kinetics of Ih 

are such that as the membrane potential is hyperpolarized its conductance increases while 

its time constant shortens. A similar effect should be observed if the membrane potential 

is held constant and histamine shifts the activation of h in the depolarizing direction. In 

additon to a depolarization of the membrane near rest this would also decrease membrane 

impedance while shifting ffih to higher frequencies, due to an increase rate of activation, 

resulting in an increase in the Ires and the Q value in a voltage and frequency dependent 

manner. 

Similarly, H1 receptor modulation of the potassium leak conductance in the 

neocortex (i.e., reduction) would act to modulate the passive electrical properties of a 

neuronal membrane. In a simple CM model, the predicted H1 effect should produce a 

voltage independent, nonresonant frequency response resulting in a membrane 

depolarization, an increase in membrane impedance and a shift of ffipass to lower 

frequencies due to an increase in the membrane time constant. In resonant neurons, 

where there is interaction of the passive processes and resonant active processes, i.e., Ih, 

the resultant effect of decreasing a leak conductance is an amplification of resonance and 

a narrowering of the the band pass frequencies, i.e. a decrease in the fres and a increase in 

Q (Hutcheon et al.,1996b). 
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The effect of H3 activation will depend on the balance of basal H1 versus H2 

activity and their relative contribution to the membrane potential as well as other H3 

mediated effects on other neurotransmitters. However, due to the predominate 

presynaptic location of H3 receptors in neocortical neurons there may be inherent 

problems in using whole cell techniques to characterize whether or not H3 receptors 

function postsynaptically. 

1.5 Organization of thesis 

Using a novel approach of combining standard whole cell techniques and 

frequency domain analysis it will be the primary focus of this thesis to investigate the 

modulation of the hyperpolarization-activated cationic current, Ih, by histamine and its 

potential role in controlling subthreshold resonance in neocortical neurons. 

To investigate the possibile modulation of Ih and subthreshold resonance m 

neocortical neurons Chapter 2 will first focus on measurement errors associated with 

recording Ih using a whole cell configuration. This includes investigations into whole cell 

electrode dialysis and displacement of basal levels of cAMP in the cytosol resulting in 

current rundown of Ih, influence of the space clamp and assessment of analysis 

techniques. Chapter 3 examines the influence of histamine on ionic conductances in a 

subthreshold range for neocortical neurons with a specific focus on the modulation of Ih. 

Based on the known properties of Ih in the production of subthreshold resonance in 

neocortical neurons, Chapter 4 investigates subthreshold resonance and its modulation by 
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h by employing frequency domain analysis. Chapter 5 provides a summary of the 

findings and a discussion of their potential physiological relevance. 
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2. Modulation of the hyperpolarization-activated current (lh) and 
prevention of rundown by cyclic AMP in neocortical neurons 

2.1 Introduction 

To investigate the role of cyclic nucleotides and second messengers in the 

modulation of Ih, investigators commonly use the whole cell patch clamp method. The 

whole cell configuration, however, requires rupturing the cell membrane in order to gain 

a low resistance access to the cell interior. Unavoidable problems with this technique 

include the disruption of cellular architecture and the displacement of cytosol. For 

example, Zhou and Lipsius (1993) showed in atrial cells that isoprenaline application 

during whole cell recording resulted in inconsistent changes in If activation and 

amplitude. In contrast, during nystatin perforated-patch recordings, a less invasive 

technique resulting in a more physiologically intact cell, isoprenaline application 

consistently produces a depolarizing shift in If activation. Similarly, Difrancesco, 

F erroni, Mazzanti and Tromba ( 1986) observed a loss oflf in rabbit sino atrial nodes and 

a corresponding shift of If activation to more negative potentials in nearly all cells 

recorded during whole cell recording. Similar rundown has been observed for other 

currents as well. For example, Oleson, DeFelice and Donahoe (1993) showed striking 

differences between perforated patch and whole cell patch methods in the activation, 

inactivation, and deactivation kinetics and the conductance-voltage relationship of K+ 

currents in activated human T cells. 

Such rundown might be explained by an in vitro related decrease in basal 

metabolic activity (Duchen, 1990). This, however, is unlikely, due to the less frequent 
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reporting of current loss using the perforated patch technique under similar experimental 

conditions (Oleson et al., 1993; Zhou and Lipsius, 1993). Instead, the whole cell 

technique most likely results in cell dialysis with the intracellular solution leading to a 

loss of cytoplasmic constituents and second messenger activity and consequently, the loss 

of ion channel function. 

To some extent, an appropriate composition of the pipette solution can minimize 

the dialysis, maintaining cell function. For example, investigations by Simons and 

Schneider (1998) of IM in isolated sympathetic ganglion neurons and by Hughes and 

Takahira (1998) of the inward rectifying K+ (IKir) current in bovine retinal pigment 

epithelial cells, concluded that rundown of the respective currents was the result of 

decreased phosphorylation and dephosphorylation regulation that could be prevented or 

reduced by the addition of a hydrolysable form of adenosine tri-phosphate (ATP) and 

Mg2
+ (critical cofactor) to the intracellular solution. Intracellular ATP has also been 

shown to prevent rundown ofNMDA receptor-mediated currents in rat spinal dorsal hom 

neurons (Wang, Pak and Salter, 1993). 

Ih is present in layer V neocortical neurons (Nicoll, Larkman and Blakmore, 1993; 

Hutcheon et al., 1996a; Schwindt and Crill 1997, Stuart and Spurston, 1998; Moosmang 

et al., 1999; Monteggia et al., 2000; Notomi and Shigemoto, 2004). While examining how 

agonists that stimulate cAMP modify the electrophysiological properties of neocortical 

neurons in response to changing the activation of Ih, a time dependent, hyperpolarizing 

shift in the activation of Ih and a decrease in current was observed that confounded 

results. These changes were reminiscent of current rundown observed during whole cell 
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recording of other membrane currents. It was hypothesized that the whole cell electrode 

dialyzed the cell thereby lowering the cellular concentration of a factor or factors 

resulting in the rundown of h. Given the presence of the CNBD on the HCN isoforms, 

the present investigatation set out to examine the possibility that rundown may reflect the 

loss of a cyclic nucleotide. 

2.2 Methods and Materials 

All experiments were approved by the Institutional Animal Care Committee 

(IACC), Memorial University of Newfoundland. Postnatal day 8 to 12 Long Evans rats 

were deeply anesthetized with urethane (1.5 g kg-1
, i.p.), the brain removed and 300- 400 

J.lm thick coronal slices were cut on a Vibratome (Oxford) at 4°C in an artificial cerebral 

spinal fluid (ASCF) modified by replacing NaCl with an iso-osmotic concentration of 

sucrose (252 mM) (Aghajanian & Rasmussen, 1989). Slices were cut thin enough to 

discern cortical layering. After experimenting with various age cohorts, the age cohort of 

8 to 12 days old was chosen due to a greater success in achieving whole cell rupture 

when compared to other cohorts. The slices were transferred to an interface chamber and 

allowed to gradually return to room temperature (20 - 24°C) over a 60 min recovery 

period. During this time, the modified ACSF was gradually replaced with the regular 

ACSF at a rate of 0.5 ml/minute. The composition of the ACSF was (in mM): 126 NaCl, 

4 KCl, 2 CaCb, 1.3 MgCb, 1.2 NaH2P04 , 25 Na HC03 and 11 D-glucose. Equilibrated 

with 95% 0 2/ 5 % C02, the ACSF had a pH of 7.3. Just prior to a recording session, a 

slice was hemisected and one section was placed in a submerged type of recording 
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chamber (0.5 ml volume) and perfused with ACSF at 2 ml min-1 at room temperature (20 

- 24 °C). Making use of a dissecting microscope with a graticule eyepiece, electrodes 

were initially guided to the surface of layer V neocortex, 500 - 700 Jlm from the cortical 

edge of the slice (Kasper, Larkman, Lubke, and Blackmore, 1994a,b). 

Whole cell electrodes were fabricated from thin wall borosilicate glass capillary 

tubing (1 mm O.D.) using a Narashige PP-830 puller and filled with a standard whole cell 

recording solution containing (mM): 145 potassium gluconate, 5 Na HEPES, 5 NaCl, 3 

CsCl, 3 MgATP, 0.3 NaGTP, 11 EGTA, 1 CaCb and titrated with KOH to pH 7.25. 

Varying concentrations of adenosine 3,5-cyclic monophosphate (cAMP, sodium salt, 

Sigma) were added to the pipette-solution as noted in the text. The free internal Ca2
+ 

concentration equaled 11.7 nM based on calculations using the MaxCelator Software 

(version 2.5). Initial electrode resistance was 6-8 MQ. 

Conventional whole cell recordings were made using an Axoclamp 2A amplifier. 

Low fluid levels in the bath were used to reduce capacitance. Upon entry of the electrode 

into the bath solution, the amplifier was adjusted to compensate for the liquid junction 

potential between the electrode solution and the ACSF. Seals to cells were greater than 1 

GQ before break through. To compensate for the amplifier offset, a liquid junction 

potential of -12 mV was calculated using a Junction Potential Calculator (pClamp 8.0) 

and subtracted from all measured membrane potentials (e.g. recordings at -60 mV were 

actually -72 mV) (see Zhang and Krnjevic, 1993). Since neocortical pyramidal neurons 

have extensive dendritic branching, ideal voltage clamp conditions were not possible, i.e., 

the distribution of the imposed voltage was not iso-potential. To improve the space 
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clamp, 3 mM CsCl was added to the whole cell recording solution to reduce the shunting 

effect ofK+ currents (Puil and Werman, 1981). Unless otherwise stated, data for analysis 

were collected in voltage clamp mode following a 5 min equilibration period after 

achieving the whole cell configuration. The equilibration period was recorded in current 

clamp mode, during which the resting membrane potential was monitored and recorded. 

To generate voltage clamp protocols as well as to acquire and analyze the voltage 

and current signals a 40 kHz Labmaster A/D-D/A board was used under control by p

Clamp 6.0. Both pClamp 6.0 and 8.0 were used for I-V analysis (Axon Instruments, 

Foster City, Calif.). Traces were recorded and saved to a computer hard drive. Under 

current clamp, cells were accepted for data analysis only if they had resting membrane 

potentials :S -67 m V, initial spikes overshooting by > 10 m V with depolarizing current 

injection (responses similar to those described for juvenile rat neocortex (McCormick and 

Prince, 1987; Kasper et al., 1994a,b)) and a voltage sag with hyperpolarizing current 

injection consistent with the presence oflh. 

To investigate Ih, experiments were conducted in continuous single-electrode 

mode. Errors due to electrode resistance in this mode were less than 2 mV. Unless 

otherwise stated, a series of 5 s duration voltage steps were applied in -10 m V increments 

between - 57 mV and - 137 mV to neurons held at- 57 mV. A 3-5 s time period was 

allowed between each step to allow for the deactivation of Ih and return to the resting 

membrane potential. Ih has slow activation kinetics allowing it, and its time constant, to 

be isolated by fitting the total current with a sum of two exponential terms (Figure 2.1 ), 

from the instantaneous and capacitive currents (Scroggs, Todorovic, Anderson, and Fox, 
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ss 

~ 200 pA 

Cap 

2000 ms 

Figure 2.1 Hyperpolarizing voltage step from a holding potential of -57 mV. 

The total current is composed of three components, a capacitive current (Cap), an 
instantaneous current (ins) and a slow current (I h) (as indicated by arrows). Isolation of Ih 
and the instantaneous is achieved by fitting the slow current component with a sum of 
exponential terms (dashed line) between the points where the slow component meets the 
instantaneous current and reaches steady state (ss). 
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1994). Where appropriate, a single exponential term was used. Time constants plots were 

fitted with a best-fit exponential curve. 

In order to overcome variations associated with background noise as well as errors 

associated with the fitting and subtracting of Ih from current traces, the activation point 

for h was initially taken at the voltage where Ih was > 5 pA (Hutcheon et al., 1996a). 

Due to large variations in the Ih I-V relationships across neocortical neurons, a fixed point 

of activation resulted in estimation errors, particularly when the recorded Ih was small. To 

compensate, the current at the point of activation was determined as 3.3% of Ih recorded 

at the step potential of -137 mV Omax) for each neuron. This was arrived at by dividing 5 

pA by 50% of the largest Imax recorded (Figure 2.2). 

The conductance for Ih was derived from the Hodgkin-Huxley-like formulation: 

(3) 

where gh is the conductance, Ih is the isolated current measured at each voltage (V) and 

V h is the reversal potential for I h. Due to the activation of a number of currents in the 

voltage range over which the reversal potential for Ih was expected the classical, more 

accurate method for estimating V h was not applied. Instead, because Ih is strongly 

activated at potentials near -100 m V and shows no evidence of inactivation, V h was 

extrapolated from the intersection of the instantaneous (chord) current/voltage 

relationships recorded using 2 s voltage step protocols at holding potentials of -107 m V 

and -57 mV, i.e. in the presence and absence oflh (Mayer and Westbrook, 1983) (Figure 

2.3). 
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A B 
Voltage (mV) Voltage (mV) 

-145 -130 -115 -100 -85 -70 -55 145 -130 -115 -100 -85 -70 -55 

SpA 

-5 -50 

-SpA 0 (") 
-10 s::: -100 s::: .., .., .., .., 

(1) (1) 
-15 :::l -150 :::l .... ..... - --20 j. -200 "'C 

- ~ 
-25 -250 

-- largest lh recorded 

-30 -o- 50% of largest lh recorded -300 

-35 -350 

Figure 2.2 Determining the activation threshold of Ih. 

I-V curves for h in pyramidal cells held at -57 mV and stepped to -137 mV. A: The 
activation point of Ih was initially defined as the first membrane potential where the 
current was > 5 pA. Due to large variations in the maximum current (Imax) recorded at -
137 m V this standard resulted in overestimations of Ih activation in cells where Imax was 
small (arrows). To overcome this error, the current at activation was estimated as a 
proportion (3.3%) oflmax recorded in each cell. In the example shown, the former 5 pA 
standard resulted in an estimation of -92.6 mV. By taking 3.3% oflmax (0.9 pA) the new 
activation potential is -77.2 m V. B: I-V curve for the largest Ih recorded is shown. The 
proportional standard was achieved by dividing the 5 pA standard by half the largest I max 
recorded (151.5 pA). 
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Figure 2.3 Determining the reversal potential of Ih. 

A, B: Pyramidal neurons were held at voltages between -57 m V and -107 m V for 2 
second intervals and the instantaneous current was extracted for each step (lines). C: 
Current-voltage (chord) relationships were constructed and Vh was estimated from the 
intersection of the extrapolated current voltage relation derived at each holding potential 
(H.P.). 
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Conductance/voltage relationships were normalized and fitted with a Boltzmann 

function: 

(4) 

where ghis the conductance of Ih at each potential, ghmax is the conductance of Ih at -13 7 

mV, V is the membrane potential, Vv2 is the membrane potential of half-maximal 

activation of Ih, and km is the slope factor. 

Other compounds used in the study included 8-bromoadenosine-3',5'

cyclophosphate (8br-cAMP sodium salt, Sigma), forskolin (Sigma), H7 dihydrochloride 

(RBI), 4-ethylphenylamino-1 ,2-dimethyl-6-methylamino-pyrimidinium chloride (ZD-

7288, Tocris), cesium chloride (CsCl, RBI), barium chloride (BaClz, RBI), 

tetraethyammonium chloride (TEA, Sigma) and 4-aminopyridine (4-AP, Sigma). 

Cortical slices were perfused with tetrodotoxin (TTX, Sigma; 0.250 ~M), except 

during the initial phase where the action potential amplitude was determined. Unless 

otherwise mentioned, all chemicals and drugs were dissolved in normal ACSF and 

applied in known concentrations via a three-way tap system for 3 minute durations, after 

which recordings were started. 

Samples sizes represent number of neurons recorded. Drug-induced changes in Ih 

were evaluated by examination of a wide range of I-V and Ih-V curves measured in 

control solutions, and in the presence of drug, in the same neuron. For the purpose of 

averaging responses, all data were converted to log normal value. To measure changes in 

the amplitude ofih, Imax was converted to a percentage of control ([Treatment/Control)] x 

100) before conversion to log normal values (Gaddum, 1945). Average data are 



57 

presented as the antilog of the geometric mean ± S.E.M. Statistical significance of data 

was assessed with one-way analysis of variance (ANOV A). For multiple pairwise 

comparisons, the ANOV A was followed by the Bonferroni post hoc test (Instat, Graph 

Pad Software). 

2.3 Results 

2.3.1 Inward rectification by membrane hyperpolarization 

The results represent data obtained from 62 neurons. The neurons were likely 

pyramidal neurons based on the recording location in the slice (proximal to layer V), the 

firing pattern and consistent responses evoked by depolarizing current steps all of which 

were similar to those described for juvenile rat neocortex, i.e., neurons were identified as 

regular spiking and intrinsic bursting (McCormick and Prince, 1987; Kasper et al., 

1994a,b). Using hyperpolarizing current steps, all neurons showed a prominent inward 

rectification at voltages negative to the resting potential. This was characterized by a 

rapid hyperpolarization followed by a depolarizing voltage sag that was both voltage- and 

time-dependent (Figure 2.4). At current offset, there was a depolarizing overshoot due to 

the deactivation of Ih that evoked action potentials and low threshold Ca2
+ spikes. 

In voltage clamp mode, stepping the membrane potential -5 to -10 m V below the 

holding potential (-57 mV) revealed an instantaneous current. Larger voltage steps 

yielded a non-inactivating slow inward current, which when isolated (see methods), 

revealed that its rate of activation and amplitude increased with more negative command 

steps (Figure 2.5). The addition of CsCl (3 mM; n = 8) to the ACSF reversibly reduced 
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Figure 2.4 Characterization of Ih in current clamp mode. 

A: Square hyperpolarizing current pulses evokes voltage responses with a prominent time 
dependent depolarizing sag (arrow). At the current offset, there was a depolarizing 
overshoot as a result of Ih deactivation that evoked action potentials and low threshold 
C +2 "k a sp1 es. 
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A: Hyperpolarizing voltage steps evoke a slow inward current that exhibits a gradual 
increase in amplitude with increasing hyperpolarization (arrow). B: I-V curves showing 
isolated instantaneous (ins) and steady state (ss) current components and the subtracted 
slow inward current (Ih)- C: Plot of the fast activation time constant ('t2) as a function of 
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voltage. The fast activation time constant of the slow inward current decreases with 
increase hyperpolarization (data fitted with a best-fit exponential curve). 
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the current and blocked the instantaneous current at potentials negative to -72 m V 

(Figure 2.6). 

Bath application ofZD-7288 (100 J..LM, 15 min; n = 4), an irreversible inhibitor of 

Ih (BoSmith, Briggs and Sturgess, 1993; Maccaferri and McBain, 1996; Luthi, Bal, and 

McCormick, 1998), eliminated the current with no change in the instantaneous current 

(Figure 2.7). In addition, the mean extrapolated reversal potential, Vh, was -42.5 ± 1.6 

mV (n = 36) (see methods). Taken together, the voltage- and time-dependence, sensitivity 

to blockers of this current and the reversal potential are all in keeping with the 

characteristics oflh (Pape, 1996). Hereafter, this current is rerferred to as Ih. 

2.3.2 Rundown oflh 

h recorded with the standard intracellular recording solution exhibited current 

rundown. Figure 2.8A,B shows current traces from voltage step protocols recorded at 5 

and 25 minutes after membrane rupture. Upon initial visual inspection there is an obvious 

decrease in the steady state of the non-inactivating slow inward current after 25 minutes 

of recording. Isolating Ih revealed a negative shift in the activation potential ( -77.6 m V 

vs. -85.9 mV) and a reduction in Imax (65.2% of control) (Figure 2.8D). The run down 

of Ih could not be explained by a deterioration of the whole cell configuration or shunting 

effect due to a change in membrane conductance as there was no apparent change in the 

resting membrane potential (-77 mV vs. -76 mV) or the instantaneous current (Figure 

2.8C) over the recording period. This also suggests that Ih does not contribute to rest 

under these conditions. 
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Figure 2.7 The slow component is eliminated by ZD-7288. 
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A: The I-V curves for the instantaneous (ins) and steady state (ss) current components 
before and after a 15 minute application of 100 !-lM ZD-7288. After application of ZD-
7288 the steady state current component was eliminated with no change in the 
instantaneous component. B: The slow component (Ih) was eliminated after application of 
ZD-7288 and was irreversible after 15 minutes of wash out. 
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A, B: Current responses to hyperpolarizing voltage steps 5 and 25 minutes after gaining 
whole-cell access using the standard recording solution. C: I-V curves for the 
instantaneous (ins) and steady state (ss) current components 5 and 25 min after gaining 
whole-cell access show a reduction in the steady state after 25 minutes of recording with 
no observed change in the instantaneous component. D: I-V curves for Ih 5 min and 25 
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min after achieving whole cell access. Subtracted Ih shows a reduction in amplitude as 
well as a shift in activation in the hyperpolarizing direction after 25 min of recording (-
77.6 mV vs. -85.9 mV, arrows). 



66 

Pooling data for Ih and the instantaneous current (mean ± S.E.M., n = 5) verified 

these initial observations (Figure 2.9). After 25 minutes of recording there was a 

hyperpolarizing shift in the Ih activation threshold (-76.8 ±0.8 mV vs. -89.0 ± 3.7 mV; P 

< 0.05) and a reduction in Imax (69.6 ± 3.4% of control; P < 0.001) (Figure 2.9A). The 

change in the activation threshold was also accompanied by a decreased rate of 

activation, indicative of a slowing of the voltage-dependent fast activation time constant 

over the entire voltage range examined (Figure 2.9B). Recordings at times longer than 25 

minutes from membrane rupture revealed even further rundown characterized by a 

further hyperpolarizing shift of the Ih activation kinetics (data not shown). Similar to 

initial observations, there was no change in instantaneous current (Figure 2.9C) or the 

resting membrane potential (-78.0 ± 3.6 mV vs. -76.4 ± 2.5 mV, Bonferroni, P > 0.05). 

2.3.3 K conductance effects on Ih recordings 

Theoretically, a decrease or increase in the membrane length constant could, in 

effect, result in an increase or decrease in the attenuation of the voltage clamp. If the 

greater proportion of Ih channels are at a higher density in the most distal pyramidal 

apical dendrites (Stuart and Spurston, 1998; Williams and Stuart, 2000; Berger, Larkum 

and Luscher, 2001; Lorincz, Notomi, Tamas, Shigemoto and Nusser, 2002), a change in 

membrane conductance could change the population of Ih channels that contribute to the 

current recorded. Changes in Ih, due to this error, may be interpreted as a physiological 

modulation of Ih as a result of experimental protocols when, in actuality, it may be an 

indirect effect due to changes in neuronal electrotonic properties. Although the observed 
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Figure 2.9 Pooled data showing rundown of Ih. 
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Pooled data (mean± S.E.M., n = 5). A: I-V curves for Ih shows the significant shift in the 
activation of Ih (arrows) 25 minutes after gaining whole-cell access. B: Plot of fast 
activation time constant as a function of voltage. Consistent with a negative shift in 
activation there is a slowing of the fast activation time constant ( -r2

) at more depolarized 
potentials. The mean difference at -75 mV (25 min- 5 min) was ~309 ms. C: I-V curves 
for the instantaneous current (ins) show no change between the 5 minute and 25 minute 
responses. 
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run down of Ih does not appear to be related to a shunting effect due to changes in other 

membrane conductances, as there was no apparent change in the instantaneous current 

across the voltage range tested, the possibility that changes in the membrane conductance 

can result in changes in recorded Ih, i.e., space clamp errors, was investigated. For 

example, the K+ inward rectifier (IKir) is active in the same voltage range of Ih and shares 

a similar pattern of channel density in neocortical dendrites (Takigawa and Alzheimer, 

1999). 

To decrease membrane conductance, thereby increasing the length constant of the 

neuron and increasing the distance of voltage clamp control from the site of puncture, 

experiments were conducted using two test solutions containing potassium current 

blockers: (1) a solution containing 10 mM TEA and 1 mM 4-aminopyridine ( 4-AP), and 

(2) a solution containing 1 mM BaCh, a blocker of the K+ inward rectifier (IKir). To 

examine the effects of a decrease in membrane conductance on the rundown of Ih, 

neurons were recorded at 5 minutes and 25 minutes after rupture, i.e., to ascertain that 

rundown had occurred, followed by a bath application of the potassium current blockers. 

Similar to previous control observations, Ih exhibited a rundown over the 25 

minute recording period characterized by a shift in activation in the hyperpolarizing 

direction (-76.5 ± 0.5 mV vs. -85.9 ± 1.4 mV, Bonferroni, P < 0.01), and a decrease in 

Imax (70.0 ± 7.6% of 5 min, Bonferroni, P < 0.05) (Figure 2.10A) with no change in the 

resting membrane potential (75.7 ± 1.2 mV vs. 75.3 ± 0.8 mV, Bonferroni, P > 0.05) or 

observed change in the instantaneous current (Figure 2.1 OB). 
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Figure 2.10 Co-application of TEA and 4-AP block K+ conductances and increases 
the amplitude of Ih. 

Pooled I-V curves (mean± S.KM., n = 5) 5 minutes and 25 minutes after gaining whole 
cell access followed by bath co-application of 10 mM TEA and 1 mM 4-AP. A: I-V 
curves for Ih. Similar to previous observations rundown of Ih occurs over 25 minutes of 
recording as indicated by a hyperpolarizing shift in activation (arrows) and a decrease in 
current amplitude. Co-application of TEA and 4-AP appeared to prevent further 
rundown in the activation of Ih and increased Imax to levels comparable to the 5 min 
response. B: Pooled I-V curves for the instantaneous current (ins) show no change 
between the 5 minute and 25 minute response whereas co-application of TEA and 4-AP 
reduced the instantaneous current along the entire voltage range tested. C: Subtraction of 
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the 25 min and TEA/4-AP instantaneous I-V curves shows the change in current. The 
point ofO current flux was~ -92 mV. Given the known pharmacological effects ofTEA 
and 4-AP, this was interpreted as the reversal potential forK+. 
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Co-application of TEA and 4-AP, however, resulted in a decrease in 

instantaneous component along the entire voltage range tested and a depolarization in the 

resting membrane potential (-75.3 ± 0.8 mV at 25 minutes vs. 69.0 ± 1.6 mV, 

Bonferroni, P < 0.05). Subtraction of pooled I-V for the instantaneous current (25 min

cocktail) revealed an extrapolated reversal potential of -92.3 mV, indicative of a 

reduction in K+ conductance (Figure 2.1 OC). This was confirmed by estimating the 

reversal potential forK+ using the Nemst equation: 

(5) 

Where EK is the value of the membrane potential at which K+ is in equilibrium, R is the 

gas constant (8.3 J I K mol), Z is the valence of K+ (1 +), T is the temperature in Kelvin 

(298.2), F is the Faraday constant (96,487 C/mol), and [K+]o and [K+]i is the 

concentration of K+ outside and inside the cell (4 mM and 145 mM, respectively, based 

on known K+ concentrations in the ACSF and the intracellular solution). The estimated 

EK was -93.3 mV. 

Given that externally applied TEA or 4-AP have no known effects on Ih (Budde, 

White and Kay, 1994; Roth and Hausser, 2001), the decrease in the K+ conductance 

appeared to alter the I-V relationship oflh. There appeared to be a reduction in the rate of 

rundown as there was no change in the activation of Ih compared to records taken at 25 

min (-85.9 ± 1.4 vs. -84.6 ± 0.8 mV, Bonferroni, P > 0.05). As well, Imax, was increased 

above the 25 min response (70.1 ± 7.6 % vs. 120.3 ± 3.9%, Bonferroni, P < 0.01) and 
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appeared to be reversed to levels comparable to the 5 min recordings (Bonferroni, P > 

0.05). Running the experiments using BaCh(n = 4) produced similar results (Figure 

2.11). 

Results from both experiments are consistent with an increase in K+ conductance, 

independent of Ih, which appears to shunt the effectiveness of the voltage clamp. As a 

result, depending on recording site and the level of membrane conductance, h responses 

may be masked, reduced and/or irregular compared to neuronal preparations where the 

distribution of voltage under voltage clamp approaches iso-potential conditions. 

2.3.4 Ih is located on apical dendrites 

To investigate the possibility that Ih channels are more densely populated on the 

most distal dendrites rather than the soma or proximal dendrites, approximately 500 

microns of the outer cortical tissue was manually removed using a scapel with the 

assistance of a dissecting microscope equipped with a graticule eyepiece. The intention 

was to remove most of the apical dendritic branching of the layer V pyramidal neurons 

leaving only the soma and a part of the proximal portion of the apical dendritic trunk 

intact. After completion of the dissection procedure, the tissue was placed back in the 

interface storage chamber for 1- 2 hours to allow for recovery and sealing of the dissected 

dendritic trunks. To record from neurons with the shortest segments of dendritic trunks, 

the recording electrode was placed near the site of dissection before insertion into the 

cortical slice. 

To avoid rundown effect recordings were taken 5 mins after puncture. Neurons 
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Figure 2.11 Barium chloride (BaCh) decreases K+ conductances and increases the 
amplitude of I h. 

Pooled data (mean ± S.E.M., n = 4) 5 minutes and 25 minutes after gaining whole cell 
access followed by a bath application of 1 mM BaClz. A: 1-V curves for lh. Similar to 
previous observations, Ih exhibited rundown over the 25 minute recording period 
characterized by a negative shift in the activation threshold (-77.3 ± 2.1 mV vs. -89.0 ± 
1.3 mV, Bonferroni, P < 0.05), and an observed decrease in Imax (85.0 ± 2.5 % of 5 
minute response, Bonferroni, P > 0.05) Application of BaCh appeared to prevent further 
rundown as the activation threshold of Ih was not significantly different compared to the 
25 min recording (-89.0 ± 1.3 mV vs. -85.7 ± 3.3 mV, Bonferroni, P > 0.05). Imax, 
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however, was significantly increased above the 25 min and 5 min responses (154.3 ± 15.7 
% of 25 minute response, Bonferroni, P < 0.01). B: I-V curves for the instantaneous 
current (ins). There was no observed difference between the 5 minutes and 25 minutes 
responses and no significant change in the resting membrane potential (76.3 ± 1.3 mV vs. 
75.8 ± 0.6 mV, Bonferroni, P > 0.05). Application of BaCh resulted in decrease in 
instantaneous current along the entire voltage range tested and a significant 
depolarization in the resting membrane potential (-75.8 ± 0.6 mV at 25 minutes vs. 70.8 
± 0.7 mV, Bonferroni, P < 0.01). C: Mean difference between the instantaneous current 
at 25 min and after application of BaCh. The extracted reversal potential, taken at the 
intersection where the current flux equals 0 pA, was -92.4 mV. 
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with dendritic removal showed a stable resting membrane potential that was not 

significantly different from neurons with intact dendrites (76.1 ± 0.9 (n = 4) vs. mV -74.8 

± 3.4 mV (n = 8), Bonferroni, P > 0.05). Consistent with this observation there was only 

a slight decrease in the instantaneous current (Figure 2.12B,C). On ther other hand, 

although the isolation ofh revealed no difference in the activation threshold (-77.8 ± 2.1 

mV vs. -76.2 ± 1.3 mV, Bonferroni, P > 0.05) when compared to neurons with intact 

dendrites (Figure 2.12A),there was an approximate 60% reduction in Imax (36.9 ± 14.1 

pA vs. 97.1 ± 13.1 pA, Bonferroni, P < 0.01). The results are consistent with the notion 

that the dissection of the dentrites reduces the number of channels responsible for Ih and 

the instantaneous current. As well, in 3 of the 4 neurons which had their dendrites 

removed, Ih reached an expected maximum current asymptote at voltages near -137 mV, 

compared to only 1 of the 8 neurons with intact dendrites, consistent with increased 

potential uniformity. 

2.3.5 Ih measurement errors 

Approximately 90% of Ih recordings did not appear to reach an asymptote at the 

most hyperpolarized test potentials, i.e., -137 mV. Since the accurate recording oflh I-V 

relationships appeared to be influenced by the space clamp the possibility that clamping 

irregularities in measuring the voltage dependence of Ih was examined. To test this 

assumption, two methods of estimating the half maximal activation of Ih (V v2) were 

utilized: (1) the commonly used method of fitting normalized conductance values 
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Figure 2.12 Ih exists on distal apical dendrites. 
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Pooled data (mean± S.E.M.) from cells with removal of apical dendrites (n = 4) and 
neurons with intact apical dendrites (n = 8) taken 5 minutes after achieving whole cell 
access. A: I-V curves for Ih from neurons with and without apical dendrites intact. There 
was no difference in the activation of Ih between neurons with and without dendrites 
intact (arrows); however, Imax was significantly decreased in neurons without dendrites 
consistent with a decrease in the number of Ih channels. Also, in contrast to neurons with 
intact dendrites, neurons without dendrites showed Ih reaching an asymptote at the 
maximum negative test potentials, indicative of more iso-potential voltage clamp 
conditions (1/8 vs. 4/5, respectively). B: I-V curves for the instantaneous current from 
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neurons with and without apical dendrites. Neurons without dendrites show a small 
decrease in the amount of current at the most positive and most negative test potentials, 
indicative of a reduction in the number of channels responsible for the instantaneous 
current. C: Mean difference between the instantaneous current in neurons with and 
without dendrites intact. Due to comparisons made from different cells the reversal 
potential could not be estimated from a single subtraction of pooled results. The average 
reversal potential based on individual subtractions equalled -93.7 mV. 
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reflecting the shape of the I-V relationship for Ih and (2) a theoretical calculation based 

on a Hodgkin Huxley formalism as a function of the activation potential for Ih which is 

less dependent on the I-V relationship (equation 6) (Figure 2.13). 

Six neurons with varying Ih amplitude and activation potentials were divided into 

2 groups of 3 cells. In the first group, (cells 1 to 3) the I-V curves for Ih reflected a more 

linear I-V relation at more hyperpolarized voltage steps, indicative oflh responses under 

the influence of space clamp errors (Figure 2.13A). In the second group (cells 4 to 6) the 

I-V curves for Ih appeared to reach a maximum current asymptote, an apparent ideal 

voltage response for Ih (Figure 2.13B). 

In method (1 ), the conductance - voltage (gh N) curves were calculated for both 

groups (see methods, equation 3) and the conductance was normalized (gh/gmax), where 

gmax was taken to be the value of ghat -137 mV. Normalized conductance plots were 

fitted with a Boltzman equation (equation 4) allowing for the estimation of V112 and the 

slope factor (km) for each cell. 

In method (2), experimentally observed activation potentials were substituted into 

the Hodgkin-Huxley model solved for V 112: 

(6) 

Where V is the activation threshold potential observed for each cell, km is the slope 

factor derived from the Boltzman equation fits in method 1, gh is ghmax derived from 

equation 2, V his the estimated reversal potential for Ih ( -42.6 m V), and Ih is the activation 
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A, B: I-V curves of Ih with varying Imax for neurons not reaching (cells 1- 3) and 
reaching (cells 4 - 6) a maximum current asymptote. C: A comparison of derived Vv2 
values using theoretical Hodgkin Huxley computations (equation 6) and gh/ ghmax 
Boltzman fits (equation 4). In neurons where Ih does not reach a maximum asymptote the 
theoretical and gh/ghmax derived Vv2 values did not match. In contrast, for cells where Ih 
appeared to reach a maximum current asymptote, both the theoretical and extracted 
values were near identical. This indicates that the traditional gh/gmax method to estimate 
V v2 values may result in inaccurate estimations of Ih voltage kinetic variations when 
space clamp conditions are not ideal. On the other hand all neurons show similar 
activation potentials ( ~ -73 to -78 m V) indicating that Ih activation is a more accurate 
estimate of shifts in Ih kinetics in these preparations. 
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current, i.e. 3.3% of Imax· Estimation parameters used m the Hodgkin Huxley 

computations for each cell are shown in Table 2.1. 

Table 2.1 V112 estimation parameters. 

Cell Maximum Activation Activation ghmax 

Asymptote Current Potential (nS) km 

(pA) (mV) 

1 No 3.2 -76.7 1.0 7.7 

2 No 4.9 -77.8 1.6 8.2 

3 No 4.3 -77.8 1.4 9.1 

4 Yes 1 -78.4 0.3 9.0 

5 Yes 4.0 -73.0 1.4 9.5 

6 Yes 3.1 -75.7 1.1 8.9 

Theoretically, if the Ih response from each cell accurately represented Ih 

activation, both methods of estimating V 112 should approximately match. Comparisons of 

both methods for deriving V v2 show that a greater disparity exists in the first group where 

Ih did not reach a maximum current asymptote (Figure 2.13C). Subtraction ofV112 values 

derived from both methods reveal differences ranging from -4 mV to 7 mV, 40% to 70% 

of the commonly observed maximal shifts in Ih voltage dependence (± 10 m V). In 

contrast, the second group, where Ih appeared to reach a maximum current asymptote, 

revealed differences ranging from -0.5 mV to 0.6 mV. Even with CsCl present in the 

pipette recording solution, the results show that in preparations with less than ideal 

voltage clamp conditions, standard methods of estimating Ih parameters, i.e., V112, may 

yield poor fits. In such cases, the better method for estimating Ih parameters should rely 
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less on the shape of I -V relationship. Comparison of the activation potential from both 

groups (Table 2.1) shows little diiference, 73- 78 mV, in values. As a result of the high 

variability in Ih maxiumum responses observed through this study, the activation potential 

was employed as an estimate of shifts in Ih kinetics. 

2.3.6 cAMP prevents rundown oflh 

Given that no change in the instantaneous current occurs during rundown of Ih, 

the observed rundown appears to occur independent of other changes in the membrane 

conductance, i.e., is not the result of masking or changes in space clamp conditions. In 

light of the TEA and 4-AP results, however, the possibility that changes in conductances 

outside the range of the space clamp may be influencing the Ih I -V relationships could 

not be ruled out since changes in membrane conductance could be occurring outside the 

recording range of the space clamp. In any case, whether the rundown is due to a direct 

action via Ih channels or a masking affect, or some combination of both, the possibility 

that whole cell recording conditions may lead to the loss of intracellular elements 

required for normal voltage dependent activation of Ih was examined. 

Since cyclic nucleotides modulate Ih, cell dialysis by the whole cell electrode 

might reduce the concentration of free cyclic nucleotides resulting in current rundown. 

This possibility was assessed by including 25 !lM cAMP in the pipette solution to 

stabilize the nucleotide concentration of the cytoplasm. Figure 2.14 shows an example 

where application of cAMP prevents the rundown phenomena, and enhances parameters 
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Figure 2.14 Inclusion of 25 J.lM cAMP in the internal recording solution precludes 
rundown of lb. 

A, B: Current responses to hyperpolarizing voltage steps 5 and 25 minutes after gaining 
whole-cell access using the internal recording solution containing 25 J.lM cAMP. After 
25 minutes of recording there was an increase in recorded current C: I-V curves for the 
instantaneous (ins) and steady state (ss) current components. After 25 minutes of 
recording there is an increase in the steady state current with no change in the 
instantaneous current D: I-V curve for Ih shows a positive shift in activation (~6 mV, 
arrows) after 25 minutes of recording and an increase in amplitude. E: Plot of mean fast 
activation time constant as a function of voltage (mean± S.E.M., n = 4). Inclusion of 25 
J.lM cAMP increases the rate of activation for hat potentials near activation. The mean 
difference at -75 mV (25 min- 5 min) was ~146 ms. 



84 

associated with Ih activation. Recordings taken after 25 minutes of whole cell access 

revealed a depolarizing shift in the activation threshold for Ih ( -78.7 m V vs. -72.7 m V), 

an increase in Imax (127% of control), as well as an increased rate of activation, i.e., a 

decrease in the activation time constant. In addition, the resting membrane potential was 

depolarized by approximately 3 m V with no observed change in the instantaneous current 

consistent with a contribution of Ih to rest. 

Figure 2.15 illustrates the concentration-response relationship for different pipette 

concentrations of cAMP (5, 10, 25, 50, 100 11M) and the activation threshold, resting 

membrane potential, and % change in Imax· To pool data a sample of recordings from 4 to 

7 neurons were collected for each concentration. Each recording was based on a single 

pipette concentration of cAMP. Recordings were taken 25 minutes after achieving whole 

cell access to acertain that rundown did not occur and to allow for the tranfer of cAMP to 

the cell interior. Control recordings, i.e., 0 added cAMP, were taken 5 minutes after 

whole cell puncture and assumed to represent normal basal conditions. 

Over the concentration range examined there was a significant depolarizing shift 

in the activation threshold of Ih (P = 0.0048), increase in Imax (P = 0.0001) and 

depolarization of the resting membrane potential (P = 0.0006). The concentration

dependent shift in Ih activation was fitted by a Hill equation with a half maximal shift at 

6.7 ± 0.6 11M and a Hill coefficient of 1.6 ± 0.3. Similarly, the half maximal shift and 

Hill coefficient for the resting membrane potential was 8.9 ± 1.6 11M and 1.5 ± 0.4, 

respectively. Comparisons of control conditions (n = 7) and 100 J.LM cAMP (n = 4) 
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Figure 2.15 cAMP increases the amplitude of h and shifts the voltage dependence 
of h. 

Pooled data (mean ± S.E.M.). A, B, C: Added cAMP in the pipette was effective in 
inducing changes in Ih over a concentration range of 5 to 100 f!M (1 00 f!M, n = 4; 50 f!M, 
n = 7; 25 f!M, n = 4; 10 f!M, n = 7; 5 f!M, n = 7; control, n = 7). A: The Ih threshold is 
shifted in a depolarizing direction in a concentration dependent manner with a maximum 
shift of ~10 mV. B: The resting membrane potential (R.M.P.) is depolarized with 
increasing cAMP pipette concentrations with a maximum depolarization of ~6 m V 
indicating a contribution of Ih to the R.M.P. C: Change in Ih amplitude is plotted as the 
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mean change in Ih at -137 mV Omax) as determined by ((Imax treatment/ Imax control) x 
1 00) The amplitude of Ih (% of 5 minute recording) increased in a concentration
dependent manner by intracellular loading of cAMP. Maximum effect equalled~ 153% 
of control. *P < 0.05, ** P < 0.01, *** P < 0.001 vs. control. 
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revealed an approximate 10 m V rightward shift in the activation threshold of Ih (77. 7 ± 

0.6 mV vs. 68.0 ± 1.2 mV, Bonferroni, P < 0.01). Over the same concentration range, the 

resting membrane potential was shifted from -76.2 ± 1.2 mV to -69.9 ± 1.5 mV, i.e.~ 6 

mV (Bonferroni, P < 0.001). As well, Imax was significantly increased to 152.9 ± 11.5 % 

of control, (Bonferroni, P < 0.001). Unlike the cAMP-induced changes in activation and 

the resting membrane potential, however, both the half maximal shift (17 .2 ± 1.5 !!M) 

and the Hill coefficient (2.4 ± 0.4) were almost twice as large. The latter may reflect not 

only cAMP-induced changes in gh, but also changes in another current affecting the space 

clamp in a voltage-dependent manner. 

2.3. 7 Modulation of Ih occurs during intracellular cAMP application 

To examine the possibility that a fixed basal level of intracellular cAMP 1s 

important to reveal the physiological modulation of Ih, the effects of compounds known 

to mimic parts of the cAMP cascade, with, and without, 1 !!M cAMP in the recording 

pipette were determined. This low concentration of cAMP was used to maintain a 

constant basal concentration of cAMP while at the same time not saturating cAMP levels 

before application of each compound, i.e., 1 J..LM is near the base of the cAMP 

contentration curve for modulating Ih. These studies included raising the intracellular 

cAMP concentration by 3 min application of the membrane permeant cAMP analogue 8-

bromo cAMP or forskolin, to stimulate intrinsic adenylyl cyclase. To ensure sufficient 

time for rundown to occur, and to ascertain the stability of Ih activation during internal 
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Figure 2.16 8-bromo cAMP shifts the voltage dependence of h in the presence of 
cAMP. 

Pooled data (mean± S.E.M.). A: Histogram showing the effects of bath application of 8-
bromo cAMP (1 mM) in the absence and presence of 1 J.!M cAMP in the pipette solution 
on the activation threshold of Ih. With no cAMP present, bath application of 8-bromo 
cAMP did not significantly alter Ih activation when compared to control. With cAMP 
present in the pipette solution, bath application of 8-bromo cAMP results in a significant 
depolarizing shift oflh activation. B: Histogram showing resting membrane potential with 
and without 1 J.!M cAMP included in the pipette recording solution_ Bath application of 
8-bromo cAMP results in no apparent change in the resting membrane potential with and 
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without cAMP present in the pipette solution. C: Histogram showing the effects of 8-
bromo cAMP on the amplitude of Ih Cimax as % of control) with and without 1 ~M cAMP 
present in the pipette recording solution. With no cAMP present in the pipette solution, 
bath application of 8-bromo cAMP did not significantly alter the amplitude of Ih. With 
cAMP present in the pipette solution, bath application of 8-bromo cAMP results in a 
significant increase in the amplitude oflh. * P < 0. 05 vs. control, n = 3. 
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application of 1 11M cAMP, two controls were recorded at 5 min and 15 - 20 min, 

respectively. 

2.3.7.1 cAMPanalog 

In the absence of added 1 11M cAMP in the recording pipette solution, bath 

application of 8-bromo-cAMP (1 mM, 3 min, n = 3) did not alter the activation threshold 

of Ih (-81.1 ± 3.5 mV vs. -79.6 ± 4.8, Bonferroni, P > 0.05), Imax (82.8 ± 15.5 % of 

control, Bonferroni, P > 0.05) or the resting membrane potential (-75.4 ± 1.5 mV vs. -74. 

7 ± 1.9 mV, Bonferroni, P > 0.05) when compared to control (Figure 2.16). Although Ih 

exhibited rundown, application of 8-bromo cAMP prevented further rundown of Ih over 

the time period that test recordings were performed. Consistent with the prevention of 

rundown, control recordings made using recording pipettes containing 1 11M cAMP 

resulted in the stable activation of Ih ( ~-77 m V), compared to control recordings made 

in the absence of cAMP. Moreover, the presence of a fixed pipette concentration of 

cAMP unmasked the effects of bath application of 8-bromo-cAMP (1 mM, n = 3) 

resulting in a significant shift ( ~ 4 m V) in the activation threshold of Ih in the 

depolarizing direction (-76. 6 ± 0.9 mV vs. -72.8 ± 1.1 mV, Bonferroni, P < 0.05) and an 

increase in Imax (134.1 ± 15.6% of control, Bonferroni, P < 0.05). Consistent with the 

small shift in the activation of Ih, there was no change in the resting membrane potential 

(-76.8 ± 2.7 mV vs. -74.4 ± 2.5 mV, Bonferroni, P > 0.05). 
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Figure 2.17 Forskolin shifts the voltage dependence oflh in the presence of cAMP. 

Pooled data (mean ± S.E.M.). A: Histogram showing the effects of bath application of 
forskolin (fors, 50 f..LM) on Ih activation in the absence and presence of 1 f..LM cAMP in the 
recording pipette with no cAMP present, bath application of forskolin did not 
significantly alter Ih activation when compared to control ( cont). With cAMP present in 
the pipette solution, bath application of forskolin results in a significant depolarizing shift 
in Ih activation. B: Histogram showing the effects of forskolin on the resting membrane 
potential with and without 1 f..LM cAMP present in the pipette recording solution. With no 
cAMP present in the pipette solution, bath application of forskolin did not significantly 
alter the resting membrane potential when compared to control. With cAMP present in 
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the pipette solution, bath application of forskolin results in a significant depolarization of 
the resting membrane potential. C: Histogram showing the effects of forskolin on the 
amplitude of Ih (Imax as % of control) with and without 1 ~M cAMP present in the pipette 
recording solution. With no cAMP present in the pipette solution, bath application of 
forskolin did not significantly alter the amplitude of h. With cAMP present in the pipette 
solution, bath application of forskolin results in a significant increase in the amplitude of 
I h. * P < 0.05, ** P < 0.01 vs. control, n = 4. 
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2.3. 7.2 Adenylyl cyclase activator 

Application of forskolin (50 J.!M, n = 4) in the absence of cAMP failed to 

significantly alter Ih (Figure 2.17). There was, however, an observed mixing of 

stimulation and rundown during recording. Records taken just after completing the 3 

minute forskolin application showed evidence of stimulation as evidenced by a 

depolarizing shift of the activation threshold of h in the depolarizing direction when 

compared to control (-80.6 ± 2.8 mV vs. -71.7 ± 4.9 mV, Bonferroni, P > 0.05) (Figure 

2.17A). Subsequent voltage steps, however, revealed a reduction in the Imax (91.9 ± 22.0 

% of control, Bonferroni, P > 0.05) (Figure 2.17B) and an apparent hyperpolarizing 

voltage shift in the I-V relationship (data not shown), indicating a rapid washout of the 

forskolin effect and rundown of Ih before completion of the voltage clamp protocol. In 

addition, there was no change in the resting membrane potential (-75.5 ± 0.6 mV vs. -

72.0 ± 2.5 mV, Bonferroni, P > 0.05) (Figure 2.17C). 

Similar to the results with the cAMP analog, the effects of forskolin were clearly 

revealed in the presence of added cAMP. With 1 J.!M cAMP present in the recording 

pipette, bath application of forskolin (50 J.!M, n = 4), resulted in a significant shift (~8 

mV) in the activation threshold oflh in a depolarizing direction (-76.2 ± 1.0 mV vs. -68.4 

± 0.7 mV, Bonferroni, P < 0.01) and a significant increase in Imax (137.2 ± 17.8 % of 

control, Bonferroni, P < 0.05). In keeping with previous observations, changes in h was 

accompanied by significant depolarization of the resting membrane potential ( ~4 m V) (-

75.3 ± 0.9 mV vs. -71.7 ± 0.7 mV, Bonferroni, P < 0.05). 
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Figure 2.18 H7 blocks the forskolin-induced shifts in Ih voltage dependence. 

Pooled data (mean± S.KM., n = 4). A: Histogram showing the effects ofbath application 
of H7 (100 mM) followed by co-application of H7 and forskolin (fors, 50 JlM) on h 
activation (1 JlM cAMP present in the pipette recording solution). H7 had no significant 
effect on the activation of Ih when compared to control (cont) and blocks the forskolin
induced depolarizing shift in Ih activation. B: Histogram showing the effects of bath 
application of H7 followed by co-application of H7 and forskolin on the resting 
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membrane potential. H7 had no significant effect on the resting membrane potential when 
compared to control and blocked the forskolin-induced depolarization. C: Histogram 
showing the effects of bath application of H7 followed by co-application of H7 and 
forskolin on the amplitude of Ih Omax as % of control). H7 had no significant effect on the 
amplitude oflh when compared to control and blocked the forskolin-induced increase. 
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2.3.8 Protein Kinase Inhibition 

To investigate the possible involvement of phosphorylation through protein 

kinase stimulation in the modulation of the voltage- and time-dependent characteristics of 

Ih, forskolin (50 J.!M) was co-applied with H7 (100 J.!M), a nonspecific protein kinase 

inhibitor. H7 was continuously bath applied for the remainder of testing once control 

current samples were collected. To ascertain the stability of Ih activation during internal 

application of 1 J.!M cAMP, two controls were recorded at 5 and 15-20 minutes before H7 

application. Voltage clamp protocol was taken 10 minutes after applying H7 to allow 

sufficient time for inhibition to occur. 

Figure 2.18 shows pooled results for Ih measured in 4 neurons. H7 had no effect 

on the activation threshold Ih (-75.0 ± 2.0 mV vs.-78.9 ± 3.0 mV, Bonferroni, P > 0.05) 

or Imax (98.1 ± 2.2 % of control, Bonferroni, P > 0.05), nor did it alter the resting 

membrane potential ( -72.3 ± 0.9 m V vs. -74.8 ± 0.9 m V, Bonferroni, P > 0.05). As well, 

H7 had no effect on the instantaneous component. In the presence of H7, forskolin was 

ineffective in altering Ih activation (74.8 ± 0.9 mV vs. -74.3 ± 2.5 mV, Bonferroni, P > 

0.05), Imax (102.01 ± 14.4% of control, Bonferroni, P > 0.05) or the resting membrane 

potential (-74.8 ± 0.9 mV vs. -73.8 ± 1.1 mV, Bonferroni, P > 0.05). The effects ofH7 

application implicate an involvement of a phosphorylation step that modulates the 

voltage- and time-dependent characteristics of I h. 
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2.4 Discussion 

2.4.1 cAMP prevents rundown oflh 

The slowly activated current activated by hyperpolarization in rat neocortical 

neurons displayed a biophysical and pharmacological profile characteristic of the profile 

for Ih found in other neuronal preparations. This includes a voltage-dependent current 

activation, voltage-dependent kinetics, sensitivity to external Cs + and irreversible 

blockade by ZD-7288 and a reversal potential of approximately --40 to -45 m V (Mayer 

and Westbrook, 1983; Uchimura et al., 1990; Harris and Constanti 1995; Khakh and 

Henderson, 1998; Funahashi et al., 2003). 

Given the evidence that supports the direct regulation of Ih by cAMP (Tsien, 

Giles, and Greengard, 1972; Tokimasa and Akasu, 1990; Pedarzani and Storm, 1995) 

GTP and Mg A TP were added to the recording pipette solution, thus eliminating them as 

possible factors that underwent dialysis. This did not, however, rule out the possibility of 

a washout of intracellular cAMP or a factor or factors leading to a disruption of the Gs

adenylyl cyclase cascade governing the production of cAMP. Alreja and Aghajanian 

(1995) reported the loss of spontaneous firing in locus coeruleus neurons during whole 

cell recording was due to decreased production or wash out of endogenous cAMP, 

preventable by the addition of cAMP to the pipette solution. Similarly, Ferrier, Zhu, 

Redondo and Howlett (1998) showed the addition of 8-bromo-cAMP to the whole 

recording solution compensated for a disruption of the cAMP-PKA cascade preventing 

the loss of a voltage sensitive release mechanism for cardiac contractions in guinea pig 

ventricular myocytes. Similarly, rundown of calcium dependent potassium and chloride 
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currents measured in isolated cells from rat lacrimal glands was prevented by the internal 

application of inositoltrisphosphate (IP3) suggesting that the washout substance was an 

unknown co-factor of phospholipase C or the GTP binding protein governing the 

production ofiP3 (Marty and Zimmerberg, 1989). 

Without testing for another missing constituent, the addition of cAMP to the 

pipette solution was a quick test of this hypothesis. The absence of cAMP in the pipette 

solution resulted in an approximate 1 0 m V shift in the activation threshold of Ih in the 

hyperpolarizing direction after 15-20 minutes of recording. Conversely, the addition of 25 

J.!M cAMP to the pipette solution occluded any rundown of Ih, produced a positive shift 

of Ih activation, increased the amplitude of h, and depolarized the resting membrane 

potential. These results support the notion that whole cell recording conditions leading to 

"rundown" of Ih in neurons proximal to layer V rat neocortex are dependent upon basal 

levels of intracellular cAMP. 

The concentration-response relationship for cAMP was examined by varying the 

concentration of cAMP in the pipette over a range from 5 to 100 J.!M. Raising the cAMP 

concentration resulted in a 1 0 m V shift in Ih activation, consistent with the 7 to 10 m V 

depolarizing shifts observed with other neuronal preparations (Alreja and Aghajanian, 

1995; Ingram and Williams, 1996; Raes et al., 1997; Frere and Luthi, 2004). As well, 

intracellular loading of cAMP revealed a concentration-dependent 6 m V depolarization 

of the resting membrane potential. Since there was no apparent change in the 

instantaneous current, the change in the resting potential is consistent with a contribution 

of Ih to resting equilibrium. This finding is also in keeping with previous findings that the 



99 

membrane potential hyperpolarizes following application of known blockers of Ih 

(Maccaferri et al., 1993; Pape, 1994, Raes et al., 1997; Doan and Kunze, 1999). The EC5o 

for cAMP ranged from 6.7 J..LM for the activation ofh to 8.8 J..LM for the depolarization of 

the resting membrane potential. The EC50 for cAMP-induced changes in Ih amplitude 

was considerably higher (17.2 J..LM) suggesting more than one mechanism may be at play, 

e.g., reducing a masking conductance. However, one cannot rule out the possibility that 

this finding may be due to distortions in I-V relationship for Ih as a result of a poor space 

clamp. Each of the findings for cAMP concentration were substantially higher than the 

0.2 J..LM to 0.55 J..LM range reported for dorsal root ganglion neurons, sino atrial nodes and 

the broadly distributed HCN2 isoform (DiFrancesco, 1994; Raes et al., 1997; Ludwg et 

al., 1998). Whether this reflects a real difference or degradation of cAMP in the patch 

pipette by intracellular phosphodiesterases (Alreja and Aghajanian, 1995) remains to be 

established. 

2.4.2 Activation thresholds can be used to verify Ih 1/V results 

Initially, it was speculated that longer recording times might result in changes in 

the electrotonic conductive properties of the neuron due to a deterioration of the whole 

cell electrode seal or an increase in the neuron's active and/or passive instantaneous 

current components. In either case, one would expect a decrease in the membrane length 

constant due to a decrease in membrane resistance. This, in effect, would decrease the 

distance from the site of whole cell puncture that could be effectively voltage clamped in 

each neuron. For example, Schwindt and Crill (1997) showed that a block of calcium 
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activated potassium currents by tetraethylammonium chloride (TEA) in neocortical 

pyramidal neurons resulted in an increase in dendritically transmitted current as a result 

of a reduced shunting effect. This is also supported by observations made by Stuart and 

Spruston (1998) when recording from neocortical pyramidal apical dendrites. Utilizing 

simultaneous whole cell patch recordings from the soma and apical dendrites, they 

showed that a non-uniform distribution of Cs-sensitive and Cs-insensitive resting 

conductances generated "leaky" apical dendrites, which differentially influenced the 

integration of spatially segregated synaptic inputs. When these conductances were 

blocked, there was a significant decrease in the steady-state voltage attenuation and an 

increase in EPSP integration in a manner that depended on the location of the recording 

electrodes. 

Similarly, studies have shown that activation of other currents that directly alter 

the membrane conductance, such as the potassium inward rectifier, IKin can mask the 

appearance of Ih (Watts, Williams and Henderson, 1996; Cathala and Paupardin-Tritsch, 

1999). Indeed, our findings from experiments involving the block of K+ conductances 

suggest that an apparent modulation of Ih can be attributed to changes in the membrane 

conductance. While the addition of CsCl to the pipette solution partially overcomes this 

masking by blocking many K+ channels, it does not provide a full block of all channels as 

evident from the additional block of K+ channels resulting from the bath application of 

BaCh, TEA, and 4-AP. As well, the addition of CsCl to the pipette solution will not 

overcome the problem associated with the extensive dendritic branching characteristic of 

layer V neocortex pyramidal neuron morphology and the distribution of Ih channels. Due 
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to the size of the cells and the length and arborization of dendritic processes, the farther 

from the site of whole cell access, the less likely that the voltage across the membrane 

will be under the control of the voltage clamp. As a result, the membrane potential will 

deviate from the command potential as a function of the distance from the whole cell 

pipette. 

These types of errors in the space clamp are well documented in large neurons, 

such as layer V pyramidal neurons and Purkinje neurons, and result in distortion of 

recorded 1-V relationships, making it difficult to characterize neuronal currents (Spruston, 

Jaffe, Williams and Johnson, 1993; Roth and Hausser, 2001; Schaefer, Helmstaedter, 

Sakman and Korngreen, 2003; Castelfranco and Hartline, 2004). As well, due to the 

apparent non-uniform distribution of h, where the density of Ih channels increases along 

the somato-dendritic axis, Ih-induced attenuation increases with distance from the soma. 

This, in combination with the non-uniformity of imposed voltage, makes measurement of 

Ih less accurate at larger potentials. Utilizing Ih activation threshold can reduce space

clamp errors, since the current shunt is smaller near activation resulting in less 

attenuation of Ih. In addition, activation threshold data can be used to input theoretical 1/V 

values and verify observed data in those cells where recordings appear to reach more iso

potential conditions (Magee, 1998; Stuart and Spruston, 1998; Desjardins et al., 2003). 

2.4.3 Modulation oflh occurs during intracellular cAMP application 

The present study provides two other lines of evidence which support a role for 

intracellular cAMP in regulating and maintaining Ih in neocortical pyramidal neurons. 



102 

First, the application of the membrane permeable cAMP analogue, 8-bromo-cAMP, 

mimicked the effect of intracellular loading with cAMP from the pipette. This effect was 

only observed during the co-presence of cAMP in the recording pipette. The effect is not 

surprising since, in the absence of a background concentration, it is difficult to 

demonstrate an imposed change in sub-membrane levels of intracellular cAMP. 

Secondly, the adenylyl cyclase activator, forskolin, produced a similar action to the 

cAMP analogue. Interestingly, in the absence of intracellular loading of of cAMP, 3 min 

application of both forskolin and 8 bromo cAMP, although forskolin moreso, delayed 

rundown of Ih, consistent with the stimulation of adenylyl cyclase and a resultant 

transient increase in sub-membrane levels of cAMP. The effect, however, rapidly washed 

out, presumably due to washout of the compounds from the bath and dialysis of the cell 

interior by the recording pipette. 

In the presence of intracellular loading of cAMP, the application of 8-bromo

cAMP and forskolin produced an increase in the amplitude of Ih and reduced the time 

course of activation, consistent with effects reported for other preparations, including 

prepositus hypoglossi, sympathetic, nodose ganglion, primary afferent, primary auditory, 

CAl hippocampus and area postrema neurons (Bobker and Williams, 1989; Tokimasa 

and Akasu, 1990; Ingram and Williams, 1994, Ingram and Williams, 1996; Chen, 1997; 

Eickmeyer et al., 2002; Funahashi et al., 2003). 

Unlike forskolin, 8-bromo-cAMP did not produce as large a positive shift in h 

activation. While this inconsistency is difficult to explain, such variability is not 

uncommon. Opposite to the results produced by 8-bromo-cAMP, application of forskolin 
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in sino-atrial nodes produced a depolarizing shift in the activation curve of h, but did not 

increase the current amplitude (DiFrancesco et al., 1986). This may be the result of better 

voltage clamping in these cells where the neuron was iso-potential and, correspondingly, 

there was a uniform activation oflh channels. In the present study, the increase in current 

amplitude observed after application of both forskolin and 8-bromo-cAMP may have 

resulted from activation of previously inactive channels, thus leading to an increased 

contribution of Ih. In addition, the lack of consistency may be the result of the 

heteromultimeric assembly of the HCN isoforms and other protein sub-units. While the 

molecular basis and the basic channel activation mechanism for Ih is likely the same in all 

tissue types, the efficacy and action of cAMP, its analogues, as well as activators of 

adenylyl cyclase may differ, accounting for the observed variations in channel kinetics. In 

the present study, this may explain the lack of a comparable activation shift of Ih by 8-

bromo-cAMP. As a result, a full concentration dependency for each compound should be 

examined in future experiments. For example, studies employing cardiac tissue show the 

HCNl isoform, the predominate channel expressed in the neocortex, to be far less 

responsive to the action of cAMP than HCN2 and HCN4 isoforms. In addition, 

variations in the gating mechanism of the S4 trans-membrane domain for each isoform 

may also help explain differences in the kinetics of Ih (Accili, Proenza, Baruscotti and 

Difrancesco, 2002). 

2.4.4 Protein kinase and Ih activation 

Protein phosphorylation has long been identified as a major mechanism involved 
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with the regulation of ion channel function, as has been described for Ca+, K+ and Na+ 

channels (Reuter, Stevens, Tsien and Yellen, 1982; Trautwein and Hescheler, 1990; 

Cantrell, Smith, Goldin, Scheuer and Catterall, 1997; Hoffinan and Johnson, 1998; 

Winklhofer, Matthias, Seifert, Stocker, Sewing, Herget, Steinhauser and Saaler

Reinhardt, 2003) 

h is also regulated by protein phosphorylation. For example, the application of 

the protein kinase inhibitors, H7 and H8, shift the activation of h to more negative 

potentials in canine Purkinje fibres (Chang et al., 1991). Other experiments involving 

canine Purkinje fibers, isolated canine ventricular myocytes and rabbit sino-atrial node 

myocytes have shown the application of the phosphatase inhibitor calyculin A results in a 

positive shift in the activation oflh, suggesting the involvement of phosphorylation (Yu et 

al., 1993, 1995; Accili, Redaelli and DiFrancesco, 1997). While these particular studies 

did not identify the specific kinase responsible, parallel experiments have suggested PKA 

involvement. Thus, in dissociated bullfrog sympathetic neurons, application of H8 

decreases the peak amplitude of Ih, whereas the protein kinase C activator, phorbol 12-

myristate 13-acetate, is without effect (Tokimasa and Akasu, 1990). In rat olfactory 

neurons, application of the specific PKA inhibitor, H89, induced a hyperpolarizing shift 

in V v2 and a decrease in current amplitude of Ih. Moreover, the activation of PKA with 

cBIMPS and the internal perfusion of the catalytic subunit of PKA right-shifted the 

activation of Ih, whereas the specific PKA peptide inhibitor blocked both effects (Vargas 

and Lucero, 2002). 
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In the present examination, the effects of H7 application implicate 

phosphorylation in the functional regulation of Ih in neocortical neurons. In the absence of 

forskolin, however, H7 did not significantly influence h suggesting there is little basal 

PKA activity and the requirement for increased levels of cAMP through the activation of 

the adenylyl cyclase. 

Although the specific kinase involved was not examined, given the role of cAMP 

as a second messenger modulator of Ih, PKA is a likely candidate. In light of this, 

however, a possible role of other kinases, such as protein kinase C (PKC) or the tyrosine 

kinases, cannot be ruled out (Cathala and Paupardin-Tritsch, 1997; Wu and Cohen, 

1997). This is further supported by the work of Vargas and Lucero (2002), who noted 

that application of the specific PKA inhibitor, H89, produced only a partial effect 

compared to K252a, a nonspecific protein kinase inhibitor, indicating that other 

unidentified kinases are involved, at least in their preparation. 

2.4.5 Possible mechanisms of Ih rundown 

Current rundown through numerous ion channels takes place when the membrane 

is excised or the cell is internally dialyzed. In either case, such treatment reveals the 

regulation of channel function by intracellular factors and that rundown can result from 

the loss of intracellular constituents or dephosphorylation (Forscher and Oxford, 1985; 

DiFrancesco et al, 1986; Hom and Kom, 1992; Oleson et al., 1993; Wang et al., 1993; 

Zhou and Lipsius, 1993; Hoshi, 1995; Hughes and Takahira, 1998; Simons and 

Schneider, 1998; Tang and Hoshi, 1999). In the present study, rundown of Ih was 
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accompanied by a decrease in current amplitude and a decreased rate of activation, 

suggesting a loss of Ih channels in the open state as well as a change in gating kinetics. 

Rundown was prevented by intracellular loading of cAMP but was not mimicked by 

application of protein kinase inhibitors. This suggests the observed changes in Ih may be 

the product of more than one process. 

Whereas the presence of the CNBD in the HCN channel confirms a direct rather 

than a phosphorylation-dependent activation of Ih, it does not discount the possibility of 

secondary regulation of Ih function via phosphorylation of Ih directly or phosphorylation 

of a protein modifying the kinetics of Ih. For example, the descprition of Ih cyclic 

nucleotide and voltage dependenet kineitcs by the allosteric voltage-dependent gating 

model (Section 1.3) provides a plausible mechanism for phosphorylation that may act to 

increase the probability of the open state, thus allowing for the preferential binding of 

cAMP, or changes in the sensitivity of Ih to voltage (DiFrancesco, 1999; Altomere, 

Bucchi, Camatini, Baruscotti, Viscomi, Moroni, and Difrancesco, 2001). 

Another possible mechanism may involve an indirect masking of Ih due to an 

increase in a secondary conductance. Based on the results from section 2.3.3, an increase 

in potassium currents over time could result in an increasing decay of the effectiveness of 

the voltage clamp and a shunt of recorded h. As well, given the low affinity of the HCNl 

isoform for cAMP in the neocortex, the observed increase in Ih activation with added 

cAMP and block by protein kinase inhibition might be in part the result of their actions 

on a masking conductance. For example, the reduction of IKir in neuronal and myocyte 

culture preparation, a current which shares a similar activation range as Ih, has be shown 
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to depend on increased levels of cAMP and PKA activation (Koumi, Wasserstrom and 

Ten Eick, 1995a,b; Wischmeyer and Karschin, 1996; Takigawa and Alzheimer, 1999). 

Similarly, in studies involving principal neurons of the rat substantia nigra pars compacta, 

Cathala and Paupardin-Tritsch (1999) suggested that an observed inhibition of Ih by 

noradrenaline and dopamine was secondary to a shunting effect induced by the activation 

of the IKir. 
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3. Histamine H2 receptors modulate the hyperpolarization-activated 
current (Ih) in rat neocortical neurons 

3.1 Introduction 

In Chapter 2 it was shown that ( 1) a fixed level of intracellular cAMP is required 

for the maintenance of the hyperpolarization activated current, Ih, in rat neocortical 

neurons and (2) cAMP can shift the voltage kinetics of Ih in a concentration dependent 

manner. Given these findings, it reasonable to presuppose that h in neocortical neurons 

is subject to modulation by a number of endogenous compounds known to activate and 

inhibit the adenylyl cyclase cascade. However, this has yet to be shown. A potential 

candidate for modulating h in the neocortex is histamine. 

Unlike other brain areas where histaminergic axons are randomly oriented and 

irregularly spaced, innervation of the neocortex forms a distinct plexus of evenly 

distributed fibers innervating layers II-VI. The exception is layer I where there is a slight 

increase in fiber density and parallel orientation to the pial surface. Despite the lower 

density of innervation, autoradiography and in situ hybridization studies show high 

densities of each receptor subtype in the neocortex with only minor pattern differences 

across species (Hass and Panula, 2003). 

H1 receptor binding in the neocortex of the rat and guinea pig is observed in all 

neocortical layers with a higher density observed in layer VI (Palacios et al., 1981; 

Bouthenet et al., 1988). In the guinea pig, these results were confirmed by means of H1 

mRNA localization (Traiffort et al., 1994). Similarly, H1 receptor binding is observed in 
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all neocortex areas and layers of humans and monkeys. In addition to layer VI, however, 

higher densities ofH1 receptors are also observed in layer V (Martinez-Mir et al., 1990). 

In the rat neocortex, H3 receptor binding is observed in all neocortical areas and 

layers with a higher density rostrally and in layers IV-VI (Pollard et al., 1993). Similar 

patterns were observed for H3 mRNA expression (Pillot et al., 2002). 

In guinea pig, monkey and human neocortex, H2 receptor binding sites are dense 

in layers I-III, moderate in layers V-VI and low in layer IV. (Ruat et al., 1990; Martinez

Mir et al., 1990; Vizuete et al., 1997; Honrubia et al., 2000). In monkey and human, in 

situ hybridization studies confirm the receptor binding results (Honrubia et al., 2000). 

There are, however, some conflicting results from in situ hybridization studies of guinea 

pig. Here, H2 receptor mRNA was more dense in layers III and V with low to moderate 

densities in layers I, II, IV and layer VI, respectively (Vizuete et al., 1997). This may 

however, be explained by differences in the somatic location of protein synthesis and the 

location of receptor expression, which is most likely occurring in the dendrites that 

overlay multiple neocortical layers. 

Although histamine plays diverse roles in the CNS, there is limited evidence for 

histamine action in the neocortex. Neocortical H1 receptors are predominantly linked to 

excitatory responses through two mechanisms: first, a calcium-independent reduction of a 

background potassium leak (IKJ) shown in human neocortex, resulting in membrane 

depolarization and facilitation of signal transmission due to a decrease in membrane 

conductance (Reiner and Kamondi, 1994), and secondly, a facilitation of theN-methyl-
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D-aspartate (NMDA) receptor-mediated depolarization shown m rats (Payne and 

Neuman, 1997). 

Neocortical H3 receptors have been studied more extensively and have been 

shown to be involved in a number of physiological effects. This includes inhibition of 

histamine synthesis and metabolism (Arrang et al, 1987; Garbarg, Tuong, Gros and 

Schwartz, 1989; Oishi, Itoh, Nishibori and Saeki, 1989: Yates, Tedford, Gregory, 

Pawlowski, Handley, Boyd and Hough, 1999) and histamine release (Arrang et al., 1985; 

Westerink et al., 2002; Lamberty, Margineanu, Dassesse and Klitgaard, 2003). The H3-

induced decrease in neocortical histamine activity has also been shown to be inversely 

correlated with the incidence of spindles and with spectral power of low frequency (1-5 

Hz) EEG activity in freely behaving rats. However, the exact mechanism of this 

relationship was not investigated (Valjakka, Vartiainen, Kosunen, Hippelainen, Pesola, 

Olkkonen, Airaksinen, Tuomisto, 1996). In addition to regulation ofhistamine synthesis 

and release, neocortical H3 receptors have been shown to regulate the release of a number 

of other neocortical transmitters including acetylcholine (Blandina et al., 1996; Blandina 

et al., 1996; Passani and Blandina, 1998), noradrenaline (Fink et al., 1994; Schlicker et 

al., 1994; Schlicker et al., 1989) and serotonin (Schlicker et al., 1988; Fin et al., 1990). 

A well-documented action of neocortical histamine is the H2 receptor activation 

of adenylyl cyclase and resultant increase in intracellular cAMP (Baudry et al., 1975; 

Hegstrand et al., 1976; Psychoyos, 1978; Al-Gadi and Hill, 1987). To date, however, 

neocortical H2 receptors have only been shown to potentiate excitation through a 

reduction of IAHP resulting in a decrease in action potential spike adaptation (McCormick 
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and Williamson, 1991, McCormick, 1992; McCormick, Pape and Williamson, 1991; 

McCormick, Wang and Huguenard, 1993) 

Although the neocortex has a higher density of the hyperpolarization-activated 

cyclic nucleotide-gated cationic 1 (HCN1) channels (Moosmang et al., 1999; Monteggia 

et al., 2000, Notomi and Shigemoto, 2004), which have a lower affinity for cAMP (Kaupp 

and Seifert, 2001; Viscomi et al., 2001 ), histamine modulation of neocortical Ih is 

plausible. First, HCN2 channel isoforms, which have a higher affinity for cAMP (Kaupp 

and Seifert, 2001; Viscomi et al., 2001), have been found to be colocalized with HCN1 

on the most distal dendrites of pyramidal neurons (Notomi and Shigemoto, 2004). 

Second, the apparent coexistence of Ih and H2 receptors on neocortical dendrites suggests 

H2 activation, via activation of adenylyl cyclase, could modulate Ih. A similar 

mechanism is observed in thalamic relay neurons, that have a high density of HCN2, and 

hippocampal pyramidal neurons that have a high density of both HCN1 and HCN2, 

where H2 receptor activation of adenylyl cyclase results in an enhancement of Ih by 

shifting its activation kinetics to more positive potentials (McCormick and Williamson 

1991; Storm et al., 1996; Moosmang et al., 1999; Monteggia et al., 2000, Notomi and 

Shigemoto, 2004). This excitatory action may act to switch neuronal activity from burst 

to single spike firing which is associated with shifts from slow-wave sleep to waking and 

attentiveness (Pape and McCormick, 1989; McCormick and Williamson, 1991, 

McCormick, Pape and Williamson, 1991). Hutcheon et al (1996a,b) has also suggested a 

similar role for the modulation of Ih and resonance leading to the promotion of accurate 

neural transmissions of specific frequencies. Similarly, due to the higher density of Ih in 
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neocortical dendrites (Stuart and Spurston, 1998; Williams and Stuart, 2000; Berger et 

al., 2001; Lorincz et al., 2002), an increase in Ih conductance can negatively influence 

dendritic spatial integration of synaptic input (van Brederode and Spain, 1995; Schwindt 

and Crill, 1997; Stuart and Spurston, 1998; Williams and Stuart, 2000; Berger et al., 

2001; Berger, Senn and Luscher, 2003). 

Based upon the results in chapter 2, which show that stable levels of cAMP can 

modulate Ih in the neocortex, it was hypothesized that histamine should shift the voltage 

kinetics of Ih in a concentration-dependent manner via H2 receptor activation of adenylyl 

cyclase. 

3 .2 Methods and Materials 

(For detailed methods see Section 2.2.) To prevent current rundown of Ih and to 

maintain a constant basal concentration of cAMP, while at the same time not saturating 

cAMP levels, 1 j..lM cAMP was added to the pipette-solution in all the present 

experiments. To acertain that rundown had not occurred controls were taken at 5 and 25 

mins after whole cell rupture. Compounds in this study included forskolin (Sigma), H7 

dihydrochloride (RBI), histamine (Sigma), amthamine dihydrobromide (Tocris), 

diphenhydramine hydrochloride (RBI), pyrilamine maleate (RBI), thioperamide maleate 

(RBI) and tiotidine (Tocris). 
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3.3 Results 

3.3.1 Histamine modulates Ih 

Using the procedure outlined in Chapter 2 for isolating the instantaneous and Ih 

current components, the effect of histamine on 23 neurons proximal to layer V neocortex 

was characterized using whole cell voltage clamp recordings. Figure 3.1 illustrates 

control currents recorded in response to a series of -10 mV voltage steps (5s) from a 

holding potential of -57 mV to -137 mV and the current voltage (1-V) relationships for 

the isolated components plotted as a function of voltage. Using the same voltage 

protocol, bath application of 50 J..LM histamine increased the overall current compared to 

control (Figure 3.1B). Figure 3.1C shows the 1-V relationships of the instantaneous and 

steady state currents for control conditions and in the presence of histamine. The 

instantaneous and steady state current components were isolated as described in Chapter 

2 methods. Note that histamine produced an increase in the steady state current with little 

or no change in the instantaneous current when compared to control. Figure 3.1D shows 

the isolated Ih (subtracting the instantaneous from the steady state currents) for control 

conditions and after the application of histamine. Histamine results in a more depolarized 

activation oflh (-78.3 mV vs. -68.6 mV) as well as a substantive increase in Imax (153.7% 

of control). 

The effectiveness of histamine was examined by determining the concentration

response relationship for Ih activation and amplitude using five concentrations of 

histamine (1, 5, 10, 20, 50 J..LM). Histamine significantly shifted the activation oflh in a 
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Figure 3.1 Histamine increases Ih. 

A: The hyperpolarizing voltage steps (top) elicited the activation of a time-dependent 
current response that reflects Ih. (see Chapter 2) B: (same neuron as in A) Application of 
50 ~M histamine (hist) increased the amplitude of the steady state current (ss) in a 



115 

voltage dependent manner. Application of histamine also resulted in a depolarization of 
the resting membrane potential by approximately 3 m V as evidenced by decrease in the 
current (~ 7pA) required to maintain the neuron at a holding potential of -57 mV 
(arrows). C: I-V curves showing the isolated instantaneous (ins) and steady state currents 
as a function of the step voltage, in control conditions (cont) and in the presence of 
histamine. Both instantaneous and steady state currents are derived from exponential fits 
to the slowly activating inward current allowing for the isolation of Ih from the instant 
and capacitive component curves (see Chapter 2). Histamine increased the steady state 
current at all voltage steps negative to -67 m V, but had little effect on the instantaneous 
current. D: I-V curves for Ih derived from the subtraction of the instantaneous and steady 
state components for control and histamine. Application of histamine resulted in an 
mcrease in current amplitude and an earlier activation (arrows) when compared to 
control. 
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depolarizing direction (P = 0.0009) and increased Imax in a concentration-dependent 

manner (P = 0.0001) (Figure 3.2A,C). Comparisons of control (n = 7) and 50 !-lM 

histamine (n = 6) shows an approximate 9 m V shift in Ih activation ( -77.6 ± 1.3 m V vs. -

69.1 ± 1.2 mV, Bonferroni, P < 0.01) and 165.4 ± 7.5% (Bonferroni, P < 0.001) increase 

in Imax· The concentration-dependent shift in h activation was fitted by a Hill equation 

with a half-maximal shift at 4.1 ± 0.3 !lM and a Hill coefficient of 1.9 ± 0.1. Fitting the 

concentration-dependent increase in the amplitude of Ih revealed a higher half-maximal 

increase at 7.5 ± 0.3 !lM and a Hill coefficient of 2.6 ± 0.3 indicating a different efficacy 

ofhistamine on the conductance oflh. 

Consistent with the contribution of Ih to rest, histamine also significantly 

depolarized the resting membrane potential in a concentration-dependent manner (P < 

0.018) with a maximum depolarization of 4 mV (Bonferroni, P < 0.05) (Figure 3.2B). 

Similar to the concentration-dependent shift in Ih activation, the concentration dependent 

effect of histamine on the resting membrane potential reached a half-maximal 

depolarization at 5.6 ± 0.7 !lM and a Hill coefficient of 1.7 ± 0.3. 

Figure 3.3 shows fast activation time constants plotted as a function of voltage in 

control conditions and after application of 50 !-lM histamine. Time constants were 

determined from the exponential fits of Ih and fitted with a best-fit exponential curve. 

Consistent with a shift in the activation kinetics of Ih, the activation time of Ih is 

decreased in the presence of histamine when compared to control (a difference of~ 456 

ms at -77 mV). 
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Figure 3.2 Concentration-response relationships for histamine. 

* * 

Pooled data (mean ± S.E.M). A, B, C: Histamine was effective in inducing changes in Ih 
over a concentration range of 1 to 50 f!M (control, n = 7; 1 f!M, n = 6; 5 f!M, n = 3; 10 
f!M, n = 3, 20 f!M, n =5; 50 f!M, n = 6). A: The Ih threshold is shifted in a depolarizing 
direction in a concentration-dependent manner with a maximal shift of ~8 mV. B: The 
resting membrane potential (R.M.P.) is depolarized with increasing histamine 
concentrations with a maximal depolarization of ~4 m V indicating a contribution of Ih to 

100 
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the R.M.P .. C: Change in Ih amplitude is plotted as the mean change in Ih at -125 mV 
Omax) as determined by ((Imax treatment/ Imax control) x 1 00). Increasing histamine 
concentration results in a concentration-dependent increase in Imax. Maximum effect for 
50 ~M histamine equalled ~165% of control. *P < 0.05, ** P < 0.01, *** P < 0.001 vs. 
control. 
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) constant for Ih. 

Pooled fast activation time constants ('t2 ± S.E.M., n = 6). Plot of time constant as a 
function of voltage. Bath application of 50 J..LM histamine (hist) results in a faster 
activation of Ih at more depolarized potentials. The mean difference at -77 m V (cant -
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From these data it was concluded that histamine shifts the voltage- and time

dependent kinetics of Ih to more depolarized potentials, as well as increasing Ih. Since 

histamine did not alter the instantaneous current over the voltage range examined it 

seems plausible that the effects on Ih are not the result of unmasking following the 

reduction of another current. 

3.3.2 Effects of histamine are blocked by the H2 antagonist, tiotidine 

To determine the receptor subtype mediating the histamine response, experiments 

were repeated in the presence of a number of histamine antagonists. These included the 

H 1 antagonists, pyrilamine and diphenhydramine, the H2 antagonist, tiotidine, and the 

H3/H4 antagonist, thioperamide. Histamine effects did not readily wash out so 

antagonists were bath applied continuously after control recordings and tested after 1 0 

minutes followed by application of 50 ~M histamine. 

Figure 3.4 shows that the H1 antagonist, pyrilamine, fails to block the histamine

induced effects on Ih. I-V curves of steady state and instantaneous components shows that 

histamine in the presence of pyrilamine results in an increase in the steady state current 

with little change in the instantaneous current when compared to pyrilamine alone 

(Figure 3.4A). Subtraction of Ih revealed the previously observed patterns of histamine 

effects including a shift in Ih activation (-80.0 mV vs. -69.1 mV) and an increase in Imax (-

100.1 pA vs. 168. pA) (Figure 3.4B). Pooled data (n = 4) show that histamine in the 

presence of pyrilamine, compared to pyrilamine alone, produces a significant shift in the 

activation threshold oflh from -76.1 ± 1.8 mV to -69.9 ± 0.9 mV (~6 mV) (Bonferroni, P 
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Figure 3.4 The H1 antagonist, pyrilamine fails to block the histamine-induced 
effects on Ih. 

A: I-V curve of the isolated instantaneous (ins) and steady state (ss) currents as a function 
of voltage, in 1 J.lM pyrilamine (pyril), and 50 ).lM histamine in the presence of 
pyrilamine (pyril + hist). Application of histamine in the presence of pyrilamine 
increased the steady state current with no effect on the instantaneous current. B: I-V 
curves for Ih (same neuron as in A). Histamine increased the current amplitude and 
produced earlier activation (arrows) despite the presence of pyrilamine. C, D, E: Pooled 
data (mean± S.E.M.). C, D: Histamine resulted in a significant depolarized shift in the 
activation threshold of Ih and a significant increase in the amplitude of h Cimax as % of 
control) despite the presence of pyrilamine. D: Histamine induced a significant 
depolarization of the resting membrane potential (R.M.P.) despite the presence of 
pyrilamine.* P < 0.05, ** P < 0.01, *** P < 0.001 vs. pyril, n = 4. 
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< 0.01) and a significant increase in Imax from 101.9 ± 3.4% to 166.7 ± 14.9% of control 

(Bonferroni, P < 0.001) (Figure 3.4C,E). Similarly, histamine significantly depolarized 

the resting membrane potential from -75.9 ± 1.3 to -72.5 ± 0.9 mV (~3 mV) (Bonferroni, 

P < 0.05). There was no difference between control conditions and pyrilamine in Ih 

activation, Ih amplitude, or the resting membrane potential (Bonferroni, P > 0.05). There 

was also no difference between the effects of histamine when applied alone and when 

applied in the presence of pyrilamine (Bonferroni, P > 0.05) (Figure 3.15A,B,C). Similar 

experiments involving diphenhydramine produced comparable results (Figure 3.5). 

Figure 3.6 shows that the H3;H4 antagonist, thioperamide, also failed to block the 

histamine-induced changes in Ih and the resting membrane potential. In the presence of 

thioperamide, histamine produced an increase in the steady state current with no change 

in the instantaneous current (Figure 3.6A). Isolation of Ih revealed a positive shift in the 

activation threshold of Ih (-81.4 mV vs. 76.1 mV) and an increase in Imax (148.7% of 

control) (Figure 3.6B). Pooled data (n = 4) show that histamine in the presence of 

thioperamide, compared to thioperamide alone, produces a significant shift in the 

activation threshold oflh from -76.7 ± 1.6 mV to -70.5 ± 0.9 mV (~6 mV) (Bonferroni, P 

< 0.01) and a significant increase in Imax from 100.6 ± 4.6% to 169.9 ± 7.2% of control 

(Bonferroni, P < 0.001) (Figure 3.6C,E). Consistent with previous observations, 

histamine also significantly depolarized the resting membrane potential from -75.5 ± 0.6 

to -72.1 ± 1.1 mV (~3 mV) (Bonferroni, P < 0.05). There was no difference between 

control conditions and thioperamide for h activation and amplitude or the resting 

membrane potential (P > 0.05). In keeping with the absence of a thioperamide block, 
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Figure 3.5 The H1 antagonist, diphenhydramine fails to block the histamine effects 
on Ih. 

A: I-V curve of the isolated instantaneous (ins) and steady state (ss) currents as a 
function of voltage, in 1 J.lM diphenhydramine ( diphen) and 50 J.lM histamine in the 
presence of diphenhydramine (diphen + hist). Application of histamine in the presence of 
diphenhydramine increased the steady state current with no effect on the instantaneous 
current. B: I-V curves for h (same neuron as in A). Histamine increased the current 
amplitude (96.7 pA vs.175.0 pA) and produced earlier activation (-80.4 mV vs. -71.0 
mV, arrows) despite the presence of diphenhydramine. C, D, E: Pooled data (mean ± 
S.E.M.). C, D: Histamine resulted in a significant depolarized shift in the activation 
threshold ofh (-77.2 ± 1.2 mV vs. -68.5 ± 1.1 mV, P < 0.01) and a significant increase in 
the amplitude of Ih (99.7 ± 6.8 % vs. 176.8 ± 9.9, %of control, P < 0.001) despite the 
presence of diphenhydramine. D: Histamine induced a significant depolarization of the 
resting membrane potential (R.M.P.) despite the presence of diphenhydramine (-76.6 ± 
1.1 mV vs. -72.0 ±0.4 mV, P < 0.05). *P < 0.05, ** P < 0.01, *** P < 0.001 vs. diphen, 
n=4. 
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Figure 3.6 The H3/H4 antagonist, thioperamide (thio), does not block histamine
induced increase in Ih. 

A: I-V curve showing the isolated instantaneous (ins) and steady state (ss) currents as a 
function of voltage, in 1 )lM thioperamide (thio) and 50 )lM histamine in the presence of 
thioperamide (thio + hist). Application of histamine in the presence of thioperamide 
increased the steady state current at all voltage steps negative to -67 m V with no effect 
on the instantaneous current. B: Isolated I-V curve for Ih (same neuron as in A). 
Histamine increased the current amplitude and produced earlier activation (arrows) 
despite the presence of thioperamide. C,D,E: Pooled data (mean ± S.E.M.) C, D: 
Histamine resulted in a significant depolarized shift in the activation threshold of Ih and a 
significant increase in the amplitude of Ih Cimax as % of control) despite the presence of 
thioperamide. D: Histamine induced a significant depolarization of the resting membrane 
potential (R.M.P.) despite the presence ofthioperamide. * P < 0.05, ** P < 0.01, *** P < 
0.001 vs. thio, n = 5. 
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there was no difference between the effects of histamine applied alone and applied in the 

presence ofthioperamide (Bonferroni, P > 0.05) (Figure 3.15A,B.C). 

Unlike the H1 and H3/H4 antagonists, the Hz antagonist, tiotidine, blocked the 

histamine-induced effects. Figure 3.7 shows that tiotidine (500 nM) blocked the 

histamine-induced increase in the steady state current and prevented the depolarizing 

shifts in the activation threshold of Ih ( -77.8 m V vs. -77.2 m V) as well as the increase in 

Imax (102.0% of control). Figure 3.8 shows the concentration-response relationships for 4 

different concentrations of tiotidine (5, 10, 100, 500 nM) on the histamine-induced 

effects on Ih activation, Ih amplitude and the resting membrane potential. Tiotidine 

significantly blocked the histamine-induced shift in Ih activation (P = 0.0063), increase in 

amplitude (P = 0.0001) and depolarization of the membrane potential (P = 0.0173) in a 

concentration-dependent manner (see Table 3.1 for IC50 and Hill coefficient values). 

Comparisons of histamine control conditions (n = 6) and histamine in the presence of 500 

nM tiotidine (n = 4) show a near complete block of the histamine-induced shift in the 

activation threshold of Ih (-69.1 ± 1.2 vs. -75.7 ± 1.2 mV, Bonferroni, P < 0.05) and 

increase in Imax (165.4 ± 7.5% vs. 105.2 ± 9.3%, Bonferroni, P < 0.001) (Figure 3.8A,C). 

As well, consistent with a tiotidine block of histamine shift in the activation threshold of 

Ih, there was also no apparent change in Ih activation time (Figure 3.9). A similar 

blocking effect was observed for the histamine-induced depolarization of the resting 

membrane potential (-72.4 ± 0.9 mV vs. -75.7 ± 0.8 mV, Bonferroni, P < 0.05) (Figure 

3.8C). 
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Figure 3.7 The H2 antagonist, tiotidine blocks the histamine-induced increase in Ih. 

A: I-V curves showing the isolated instantaneous (ins) and steady state (ss) currents as a 
function of voltage, in 500 nM tiotidine (tiot) and 50 !-lM histamine in the presence of 
tiotidine (tiot + hist). Tiotidine blocked the histamine-induced increase in the steady state 
current at all voltage steps with no effect on the instantaneous current. B: Isolated I-V 
curves for Ih. Tiotidine prevents the histamine-induced increase in current amplitude and 
early activation (arrow). 
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Figure 3.8 Tiotidine antagonizes the action of histamine on Ih in a concentration 
dependent manner. 

Pooled data (mean± S.E.M.). Tiotidine antagonized histamine-induced changes in Ih over 
a concentration range of 5 to 500 nM (control, n = 4; 5 nM, n = 3; 10 nM, n = 3; 100 nM, 
n = 2, 500 nM, n = 4;). Each neuron was exposed to one concentration of tiotidine 
followed by a single application of 50 )lM histamine. A: Plot of mean threshold for Ih 
shows a concentration-dependent block of the histamine-induced depolarized shift in 
early Ih activation. B: Block of histamine-induced depolarization ofthe resting membrane 
potential (R.M.P.). D: Tiotidine blocks the histamine-induced increase in Ih amplitude 
Clmax as a %of control). P >0.05), *P < 0.05, *** P < 0.001 vs. control. 
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Figure 3.9 Tiotidine reduces the histamine induced decrease in the fast activation 
time ('t2

) constant for h. 

Pooled data (mean ± S.E.M., n = 4). Plot of the fast activation time constant for Ih as a 
function of voltage in 500 nM tiotidine (tiot) and 50 )..LM histamine in the presence of 
tiotidine (tiot + hist). Tiotidine reduces the histamine induced decrease in activation time 
for Ih. The mean difference at -77 mV (tiot- (tiot + hist)) was ~134 ms (compare to 
Figure 3.3). 
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The results from the antagonist experiments indicate that the histamine effects on 

Ih and the resting membrane potential are mediated through the H2 receptor subtype. 

Table 3.1 Tiotidine concentration-response values for Ih and the resting membrane 
potential. 

Effect ICso (nM) Hill coefficient 

Ih activation threshold 10.1 ± 1.2 1.3 ±0.2 

Ih amplitude 10.1 ± 0.6 1.7±0.1 

resting membrane potential 10.6±3.2 1.1 ± 0.5 

3.3.3 Effects of histamine are mimicked by the H2 agonist amthamine 

To further confirm that histamine was acting via H2 receptors, experiments were 

conducted using the H2 specific agonist amthamine. Figure 3.10 shows the effects of 

amthamine (25 j.lM) for a sample neuron. Bath application of amthamine resulted in an 

increase in the steady state current with no effect on the instantaneous current as well as a 

depolarizing shift in the activation threshold of Ih (-79.6 mV vs. -71.5 mV) and an 

increase in Imax (157.2% of control). These effects were similar to the observed histamine 

effects shown in Figure 3.1. 

Concentration response relationships were constructed using 4 concentrations of 

amthamine (0.5, 1, 10, 25 j.lM) (Figure 3.11). Amthamine significantly shifted the 

activation threshold of Ih (P = 0.0011), increased Ih amplitude (P = 0.0002) and 
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Figure 3.10 The H2 agonist, amthamine, increases Ih. 

A: I-V showing the isolated instantaneous (ins) and steady state (ss) currents as a function 
of voltage, in control conditions ( cont, solid circles and triangles) and in the presence of 
25 J-LM amthamine (amth). Application of amthamine increased the steady state current at 
all voltages negative to -67 mV with no effect on the instantaneous current. B: Isolated I
V curves for Ih (same neurons as in A). Application of amthamine resulted in an increase 
in current amplitude and earlier activation (arrows) similar to the effect of histamine 
shown in Figure 3.1 D. 
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Figure 3.11 Concentration-response relationships for amthamine. 

Pooled data (mean± S.E.M.). A, B, C: Amthamine was effective in inducing changes in 
Ih over a concentration range of0.5 to 25 ~M (control, n = 3; 0.5 ~M, n = 3; 1 J..LM, n = 4; 
10 J..LM, n = 4, 25 J..LM, n = 3). A: The activation threshold oflh was significantly shifted in 
a depolarizing direction with a maximum shift of ~ 8 mV. B: In keeping with h 
contribution to rest, the R.M.P. was depolarized with increasing amthamine 
concentrations with a maximum depolarization of ~4 mV. C: Increasing amthamine 
concentrations also results in a concentration dependent increase in the amplitude of Ih 
Omax as% of control). The maximum effect equalled 161% of control. *P < 0.05, ** P < 
0.01, *** P < 0.001 vs. control. 
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depolarized the resting membrane potential (P = 0.0192) in a concentration-dependent 

manner (see Table 3.2 for EC50 and Hill coefficient values). Comparison of control 

conditions (n = 3) and 25 ).lM amthamine (n = 3) revealed a significant depolarizing shift 

( ~8 m V) in the activation threshold of h ( -77.1 ± 2.1 vs. -69.3 ± 1.5, Bonferonni, P 

<0.001). The maximum concentration-dependent increase in Imax was 161.1 ± 9.9% of 

control (Bonferonni, P <0.001). The maximum depolarization in the resting membrane 

potential was 4 m V ( -76.6 ± 0. 7 vs. -72.6 ± 0.4, Bonferonni, P <0.05). Similar to 

histamine, amthamine also decreased the activation threshold time oflh (a difference of~ 

472 ms at -77 mV)(Figure 3.12). 

Table 3.2 Amthamine concentration response values for Ih and the resting 
membrane potential. 

Effect ECso (nM) Hill coefficient 

Ih activation threshold 0.7±0.1 1.6 ± 0.4 

Ih amplitude 1.2 ± 0.3 1.4 ± 0.2 

resting membrane potential 0.9 ± 0.0 2.0 ± 0.1 

3.3.4 Adenylyl cyclase activator forskolin mimics histamine-induced actions on Ih 

Given the evidence that H2 receptors couple to adenylyl cyclase resulting in an 

increased formation of intracellular cAMP, the combined effects of histamine and 

forskolin, an activator of adenylyl cyclase was investigated. Figure 3.13 shows the 
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Figure 3.12 The H2 agonist, amthamine, decreases the fast activation time constant 
(-r2

) for Ih. 

Pooled data (mean± S.E.M., n = 3). Plot of the fast activation time constant for Ih as a 
function of voltage. Similar to the effects of histamine found in Figure 3.3, the 
application of amthamine ( amth) results in a faster activation of Ih at more depolarized 
potentials. The mean difference at -77 m V ( cont - amth) was ~ 4 72 ms. 
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Figure 3.13 Forskolin mimics the histamine-induced changes in Ih. 

fors + hist 

Figures show the effects of 100 J.!M forskolin (fors) and 50 J.!M histamine (hist) in the 
presence of forskolin. A, B, C: Compared to control ( cont), forskolin induces a 
significant depolarizing shift in the activation threshold oflh, depolarization of the resting 
membrane potential (R.M.P.) and increase in the amplitude of Ih Omax as a percent of 
control). In each of the above, the addition of histamine showed no significant additive 
effect to the forskolin-induced changes in Ih (P > 0.05). *P < 0.05, ** P < 0.01, *** P < 
0.001 vs. control, n = 3. 
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effects offorskolin (100 J..lM) alone and in the presence ofhistamine (50 J..lM). Compared 

to control, both forskolin and the co-application of forskolin and histamine significantly 

shifted the activation threshold of Ih in a depolarizing direction (Bonferonni, P < 0.01), 

increased the current amplitude of Ih (P < 0.001), and depolarized the resting membrane 

potential (Bonferonni, P < 0.05) (see Table 3.3 for values). In each of the parameters 

examined, forskolin and the co-application of forskolin and histamine were not different 

(P > 0.05). Moreover, comparison of histamine with co-application of forskolin and 

histamine shows they were not additive (Bonferonni, P > 0.05). From this it was 

concluded that a similar mechanism of adenylyl cyclase activation is responsible for the 

observed histamine effects (Figure 3 .15A,B,C). 

Table 3.3 Forskolin effects on Ih and the resting membrane potential. 

forskolin 
Effect Control forskolin + 

histamine 

Ih activation threshold (m V) -77.2 ± 1.5 -71.1 ± 1.4 -70.1 ± 1.6 

Ih amplitude Omax % of control) 100 159.3 ± 14.4 156.6 ±21.9 

resting membrane potential (m V) -77.0 ± 1.0 -73.0 ± 1.1 -72.5 ± 1.4 

3.3.5 Protein kinase inhibitor H7Blocks histamine effects on Ih 

Among the recent developments in the study of Ih has been the cloning of a family 

of hyperpolarization-activated cyclic nucleotide-gated cationic channels (HCN1-4) and 
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the discovery of a cyclic nucleotide binding domain in the cytoplasmic carboxy terminus, 

which mediates a direct response to cyclic nucleotides, most notably cAMP (Kaupp and 

Seifert, 2001; Viscomi et al., 2001). Although it is generally accepted that cAMP 

mediates an action on Ih through direct binding to the channel there is conflicting 

evidence on the involvement of secondary effectors such as phosphorylation by a protein 

kinase (Tokimasa and Akasu, 1990; Chang et al, 1991; Yu et al, 1993, 1995; Accili et al, 

1997; Vargas and Lucero, 2002; Zong, Eckert, Yuan, Wahl-Schott, Abicht, Fang, Li, 

Mistrik, Gerstner, Much, Baumann, Michalakis, Zeng, Chen and, Biel, 2005). To 

investigate the possibility that histamine modulation of Ih involves protein kinase 

activation, a set of experiments were conducted with H7, a non-selective protein kinase 

inhibitor. Similar to the antagonist experiment protocol, H7 (1 00 )lM) was continuously 

bath applied after control recordings followed by application of 50 )lM histamine. 

Figure 3.14 shows the effects of H7 alone and the effects of histamine with H7 

present (n = 4). Comparisons of H7 and histamine with H7 present show a near complete 

block ofthe histamine-induced shift in the activation threshold oflh (-78.1 ± 0.5 vs. -77.0 

± 1.1mV, Bonferroni, P > 0.05) and increase in Imax (90.4 ± 7.7 %, vs. 97.0 ± 8.4%, 

Bonferroni, P > 0.05)(Figure 3.14A,C). A similar blocking effect was observed for the 

histamine-induced depolarization of the resting membrane potential (-76.7 ± 1.4 mV vs.-

76.2 ± 1.0 mV, Bonferroni, P > 0.05) (Figure 3.14B). For each parameter, the control 

condition and H7 were not significantly different (P > 0.05). 

These results were verified by comparison of histamine alone to histamine in the 

presence ofH7 (Figure 3.15 A,B,C). The activation threshold oflh after co-application of 
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Figure 3.14 H7, a non-specific protein kinase inhibitor, blocked the histamine
induced changes in Ih. 

Figures show the effects of 10 f..tM H7 and 50 f..tM histamine with H7 present. A: H7 
prevents the histamine-induced depolarized shift in the activation threshold of Ih. B: H7 
blocks the histamine-induced depolarization of the resting membrane potential (R.M.P.). 
C: H7 blocks the histamine-induced increase in the amplitude of Ih (Imax as a percent of 
control). In each of the above, there was no significant difference between H7 and control 
(cont) with H7 present. P > 0.05, n=4. 
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Figure 3.15 Histamine actions on Ih involve adenylyl cyclase and protein kinase 
activation via H2 receptors. 

Figures show the effects of 50 JlM histamine alone (hist, n = 6) and in the presence of 1 
JlM pyrilamine (+ pyril, n = 4), 1 JlM diphenhydramine (+ diphen, n = 4), 1 JlM 
thioperamide (+ thio, n = 4), 500 nM tiotidine (+ tiot, n = 4), 10 JlM H7 (+ H7, n = 4) and 
50 JlM forskolin (+ fors, n = 3). A,B,C: The histamine-induced depolarizing shift in the 
activation threshold of Ih, depolarization of the resting membrane potential (R.M.P. ), and 
increase in the amplitude of Ih was significantly blocked by the H2 antagonist, tiotidine, 
but not by H1 antagonists, pyrilamine and diphenhydramine, or by the H3/H4 antagonist, 
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thioperamide, consistent with an action via the H2 receptor subtype. In addition, the 
histamine-induced actions were mimicked by forskolin and blocked by H7, consistent 
with activation of adenylyl cyclase and some unknown protein kinase. * P < 0.05, ** P < 
0.01, *** P < 0.001 vs. histamine. 
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histamine and H7 was significantly lower compared to application of histamine alone 

(Bonferonni, P < 0.01). A similar effect was observed for the amplitude Ih (Bonferonni, 

P < 0.001) and the resting membrane potential (Bonferonni, P < 0.05). 

3.4 Discussion 

The results shown demonstrate that histamine produces two effects on Ih located on layer 

V neocortical neurons: (1) a shift in the activation kinetics to more positive potentials; 

and (2) an increase in current amplitude. Both effects were concentration dependent (1-

50 f..LM). The same effects were replicated in a concentration-dependent manner by the H2 

agonist amthamine (0.5 - 25 f..LM). In addition, the histamine effects were blocked in a 

concentration-dependent manner by the H2 antagonist tiotidine (5 - 500 nM) with no 

observed block by the H1 antagonists diphenhydramine and pyrilamine, or by the H3;H4 

antagonist thioperamide. These data are consistent with histamine acting via the H2 

receptor subtype. The actions of histamine were also mimicked by the adenylyl cyclase 

activator, forskolin. Moreover, the co-application of histamine and forskolin produced no 

additive effect when compared to histamine alone. This suggests that the observed effects 

were mediated by activating adenylyl cyclase, resulting in an increase in production of 

the second messenger cAMP. As well, similar to the results in Chapter 2, the histamine

induced shift in Ih voltage kinetics and increase in current amplitude were blocked by the 

non-specific protein kinase inhibitor H7 suggesting the involvement of an unknown 

secondary effector. 
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3.4.1 Histamine does not alter the instantaneous current 

Similar to the cAMP results shown in the previous chapter, histamine did not have 

an effect on the instantaneous current. This rules out the possibility that the observed 

effects, namely the increase in Ih current amplitude, were secondary to a change in the 

effectiveness of the space clamp. Although the localization of the recording pipette on 

layer V neocortical neurons was unknown, recording most likely took place on the soma 

or close to the soma on the dendrite. If histamine were to block the instantaneous current, 

(e.g., K+) this effect would lead to a reduction in leakage of the axial current through the 

somatic and dendritic membranes. Consequently, histamine application would improve 

space clamp conditions permitting the recording of Ih located more distally from the 

recording site of the pipette as a result of improved flow of axial current. The 

contribution of more Ih channels would increase I max· When the membrane conductance is 

increased, the opposite effect is observed. For example, in rat substantia nigra par 

compacta neurons, dopamine and noradrenaline increase the inward rectifying potassium 

current (IKir) and decrease Ih. In the presence of barium and internal cesium, both of 

which reduce IKir, the dopamine and noradrenaline effect on Ih is occluded. In this system, 

the dopamine and noradrenaline actions on Ih are due to the shunting effect of increasing 

IKir conductance (Cathala and Paudpardin-Tritsch, 1999). Similar results were shown in 

rat substantia nigra zona compacta neurons with the GABA8 agonist baclofen, i.e., the Ih 

current is reduced in the presence of a baclofen-induced increase in IKir (Watts, Williams 

and Henderson, 1996). The modulation of IKir by histamine would be a potential 

candidate action smce, like Ih, IKir channels are disproportionately expressed in the 
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dendrites of neocortical pyramidal neurons compared to the soma (Takigawa and 

Alzheimer, 1999). 

Rather surprisingly, there was no change in the instantaneous current observed 

with histamine in the present results. However, the reason may lie in the voltage range 

tested (-57 to -13 7 m V) and experimental protocol used. Based on the voltage range 

tested, potential potassium currents included the voltage independent IKL, the 

hyperpolarization activated IK.ir, IM and possibly, the calcium-activated IAHP. Of these, 

only IKL and IAHP in the neocortex are modulated by histamine via the H1 and Hz 

receptors, respectively (Reiner and Kamondi, 1994; McCormick, 1992). It is unknown 

why histamine does not show modulation of either in the present study as both Ht and Hz 

receptors show a consistent pattern of distribution in all layers of the neocortex across a 

variety of mammalian models (see section 3.1). A possible factor may involve the age of 

the animals used and the degree of adjacency of each channel to histamine receptors. 

There is little evidence, however, suggesting age-related changes in histamine-induced 

modulation of the above currents. 

In the case of IAHP, its activation is generally associated with transient intracellular 

calcium increases resulting from action potential activity (Strafstorm, Schwindt, Flatman 

and Crill, 1984; Lorenzon and Foehring, 1992; Yang, Seamans and Gorlova, 1996). Since 

the experiments were conducted in TTX and step potentials did not extend beyond a 

holding potential of -57 mV, the activation ofiAHP may not have occurred. H1 receptor 

activation could potentially activate IAHP without depolarizing the neurons as a result of 

PLC-IP3 mediated increases in intracellular calcium as shown in glial cells (Weiger et al., 
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1997). However, this effect has yet to be reported in brain slice preparations. Finally, the 

inclusion of cesium chloride in the intracellular recording solutions may occlude the 

expected histamine-induced effect as internal cesium blocks IAHP (Puil and Werman, 

1981 ). 

Other currents, such as the persistent sodium current (I NaP) in the neocortex, 

activated at potentials as low as -68 m V, would be blocked by application of TTX 

(Hutcheon et al., 1996a). The low threshold calcium current (h) with its complex 

activation/inactivation kinetics would only activate upon repolarization from negative 

voltage steps and therefore would not contribute to the initial instantaneous component. 

Moreover, neither h nor INaP have been shown to be modulated by histamine in any 

preparation. 

The known H1 enhancement of glutamate NMDA receptor-mediated currents may 

allow it to contribute to potentials closer to rest (Payne and Neuman, 1997). Under the 

present experimental conditions, however, it is unlikely that the NMDA current would 

contribute substantially to the instantaneous component in the voltage range tested as the 

voltage-dependent magnesium block is typically not removed at potentials less than -20 

mV. As well, the presence ofTTX in the present experiments would greatly reduce the 

background release of glutamate and subsequently, NMDA channel activation. 

3.4.2 Histamine modulates Ih in neocortical neurons 

The present study demonstrates that histamine concentrations of 1 - 50 )..LM 

consistently shift the voltage dependent activation of Ih in the depolarizing direction with 
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a maximal mean shift of approximately 9 mV from a mean control activation of -77 mV. 

The same dose range also produces an apparent increase in Ih conductance as illustrated 

by a maximal mean increase in current amplitude of approximately 160 % above control. 

The shift in Ih activation was also characterized by a dose-dependent depolarization of the 

resting membrane potential with a maximum mean depolarization of 4 m V. The observed 

EC50 values for each curve, ranging from 4 - 8 )lM, were somewhat higher than the 1 - 3 

)lM reported for H1-mediated IP hydrolysis found in other tissue types (Leurs et al., 1994; 

Khateb et al., 1995). In keeping with an H2-mediated effect, the EC5o values for each 

curve more closely match the 7 - 9 )lM values observed for histamine-stimulated 

activation of adenylyl cyclase and formation of cAMP in guinea pig neocortex and 

hippocampus (Buadry et al, 1975; Hegstrand et al, 1976; Olianas et al., 1984). 

Moreover, the EC50 of 5 )lM reported for the histamine-induced activation of adenylyl 

cyclase in hippocampal tissue closely matches that observed in the present study (Olianas 

et al., 1984). It should be noted that the histamine-induced increase in firing observed in 

the hippocampus as a result of activation of adenylyl cyclase may not solely reflect an 

enhancement of h since the effect of increasing cAMP has also been shown to block IAHP 

in the same tissue type (Hass and Konnerth, 1983; Haas, 1984; Haas and Greene, 1986). 

Overall, given that histamine was bath applied in an iso-concentration manner and that a 

high affinity uptake system for histamine has yet to be reported, the concentrations used 

most likely reflect relevant physiological levels (Brown et al., 2001). 

With the exception of the increase in current amplitude, the response of Ih to 

histamine presents similarities to those observed for histamine (McCormick and 
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Williamson, 1991 ), as well as, noradrenaline and serotonin in thalamic relay neurons 

(Pape and McCormick, 1989, McCormick and Pape, 1990b; Lee and McCormick, 1996). 

The similarities include an increase in the Ih steady state current, a positive shift in the Ih 

activation curve, and an enhancement of the Ih activation rate. The ionophoretic 

application of 300- 500 1-1M concentration of histamine used in the thalamic relay studies 

(Pape and McCormick, 1989), which was suggested to be comparable to 30 - 50 1-1M bath 

application, also closely matches the concentration response observed in the present 

study. The shift in the activation threshold in the present results (8.5 mV) was slightly 

more positive compared to the histamine-induced shift observed in the thalamic relay 

neurons (7.5 mV). Notwithstanding differences in tissues preparations, one explanation 

for this difference in shift may be the use of internal CsCl in the present study. This 

would permit the recording of Ih located more distally from the recording site of the 

pipette and, as a result, would translate into a greater shift in Ih activation, i.e., improved 

current recording. 

Another likely explanation is the ionotophoretic technique used in the thalamic 

study which generally provides for small volume, highly localized, high concentration 

applications of drugs. The bath application technique used in the present study would 

result in a more iso-concentration bath condition, which may lead to a greater observed 

effect. As well, histamine dose-response relationships were not examined in the thalamic 

relay studies. Given the greater expression of the HCN2 channel subtype found in 

thalamic neurons (Moosmang et al., 1999; Monteggia et al., 2000; Notomi and 

Shigemoto, 2004) which has a greater sensitivity to intracellular cAMP producing 
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maximal shifts in activation of+ 20 m V (Kaupp and Seifert, 2001; Viscomi et al., 2001 ), a 

complete dose dependency profile under the same conditions as the present study may 

result in greater histamine-induced shifts in h activation in that tissue. In neocortical 

tissue, in particular layer V pyramidal neurons, the greater expression of the HCN1 

subtype with its lower sensitivity to cAMP and smaller resultant shifts of +4 m V suggests 

that the histamine-induced changes in Ih activation in the present study reflect greater 

than maximal shifts. Alternatively, since both HCN1 and HCN2 channel subtypes are 

colocalized on the distal dendrites of neocortical pyramidal neurons, the observed 

histamine-induced shift in Ih may represent intermediate kinetics properties, i.e., between 

+4 and +20 mV shift, respectively (Chen, Wang and Siegelbaum, 2001; Notomi and 

Shigemoto, 2004). 

A major difference in the present results and those reported by McCormick and 

Williamson (1991) was our observed histamine-induced increase in the peak current oflh 

Omax) with increasing hyperpolarization. Again, this may result from a difference in 

methods. In thalamic relay neurons, current responses elicited using negative voltage step 

protocols, similar to those used in the present study, show a similar histamine-induced 

increase in the h steady state current at potentials negative to -60 to -65 mV. To 

circumvent the observed increase in Ih, however, which was interpreted as a possible 

limitation of the single electrode voltage clamp technique, the Ih I-V curves were 

constructed using tail current analysis. This technique, which allows for the 

measurement of Ih inactivation near the resting membrane potential, and consequently 

near the reversal potential for Ih, results in a reduction in current amplitude (McCormick 
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and Williamson, 1991). Other studies oflh using the same tail current technique revealed 

similar results for noradrenaline and serotonin (Pape and McCormick, 1989, McCormick 

and Pape, 1990b, Lee and McCormick, 1996). As well, the use of micro-electrodes in the 

thalamic studies could translate into larger current errors due to the high resistance of the 

electrodes, which may confound the results. 

In other neuromodulation studies employing the same technique to construct Ih I

V relationships used in the present experiments (i.e., subtracting the instantaneous current 

from the steady state current elicited during the voltage step) both increases and 

decreases in Ih amplitude have been reported. For example, in rat hippocampal pyramidal 

neurons, a serotonin-induced increase in cAMP resulted in both an increase in the 

amplitude of h as well as a positive shift in activation (Gasparini and DiFrancesco, 

1999). Similarly, both 8-bromo-cAMP and forskolin have the same effect in area 

postrema neurons (Funahashi, Mitoh, Kohjitani and Matsuo, 2003) Conversely, in rat 

hippocampal intemeurons and pig nodose ganglion neurons, opioids linked to 

inactivation of adenylyl cyclase, induced a decrease in the amplitude and rate activation 

of Ih (indicative of a negative shift in Ih voltage kinetics) (Svoboda and Lucpica, 1998). 

Similar decreases in Ih were reported for dopamine and baclofen in ventral tegmental 

neurons of the rat mid brain using the same current extraction method. 

Notwithstanding the differences in methods, the present study suggests that 

histamine augments the amplitude of h in addition to shifting Ih activation to more 

depolarized potentials with a resultant depolarization of the resting membrane potential. 

These effects imply that histamine is activating H channels that are not activated by 
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hyperpolarization alone or that histamine increases H channel conductance. The latter is 

somewhat supported by the differences in the histamine EC50 and slope factor for h 

activation and amplitude, implicating a concentration-dependent divergence of histamine 

action. It should be noted, however, that the concentration dependency for Ih amplitude 

and shift might reflect the apparent limitations of the space clamp (see Chapter 2). For 

example, the histamine-induced effect on Ih may be secondary to a blocking effect on 

other channels (e.g., K+) located on the distal dendrites that contribute little to the 

recorded instantaneous current. Whether this possible effect is due to direct actions of 

histamine postsynaptically or whether it is due to effects elicted through histamine 

induced/inhibited presynaptic release of histamine or other neurotransmitters is unknown. 

In any case an unrecorded reduction in membrane conductance would act to reduce the 

leak of Ih in the distal direction resulting in an overall increase in Ih flow in the proximal 

direction. As well, an improvement in the space clamp would further accentuate this 

effect due to the higher density of Ih channels located on neocortical distal dendrites 

(Stuart and Spruston, 1998; Berger et al., 2001, Notomi and Shigemoto, 2004). 

3.4.3 Histamine modulation of Ih is mediated by H2 receptors 

In the absence of a histamine-induced change of other currents, the apparent 

increase in conductance and depolarization of the resting membrane potential results 

from an enhancement of Ih. Moreover, based on the experiments involving known 

histamine agonists and antagonists, histamine actions appear to be mediated by H2 

receptors. 
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Bath application of H1 antagonists, diphenhydramine and pyrilamine, and the 

H31H4 antagonist, thioperamide, failed to block the histamine-induced effects on Ih. Also 

worthy of mention is the lack of a significant effect on Ih or the instantaneous current 

when comparing antagonist actions to control in the absence of histamine. In particular, 

the lack of response for thioperamide suggests that there is little or no endogenous 

transmitter release, i.e., histamine. This presumably reflects the block of synaptic 

transmission in the presence of TTX. Consistent with an H2-mediated effect, the 

enhancement of Ih by histamine was blocked by the H2 antagonist tiotidine m a 

concentration-dependent manner and mimicked by the H2 agonist amthamine m a 

concentration-dependent manner with no change in the instantaneous current. In thalamic 

relay neurons the block of the histamine-induced effect on Ih by tiotidine and the lack of a 

block in the presence of diphenhydramine were also attributed to an H2-mediated effect 

in that tissue, consistent with the present findings. 

Also in support of these findings, in situ hybridization and receptor binding 

studies of the H2 receptor subtype in guinea pig neocortical tissue show a high density of 

H2 receptor gene transcripts in layer V neocortex with a high expression of H2 receptors 

on the pyramidal dendrites (Vizuete et al., 1997). The localization of the H2 receptor and 

H2 effects also fits with the disproportionately higher density of Ih on the apical dendrites 

of layer V pyramidal neurons (Stuart and Spruston, 1998; Berger et al., 2001; Notomi and 

Shigemoto, 2004). The present results with histamine, in combination with the 

localization of Ih and H2 receptors in layer V pyramidal neurons, suggests that the 
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location of H2 receptors on neocortical neurons allows the control of Ih on the apical 

dendrite. 

3.4.3 Histamine modulation Ih involves adenylyl cyclase and protein kinase activity 

Similar to the cAMP results in Chapter 2, the adenylyl cyclase activator forskolin 

mimicked the effect of histamine thus providing further support for the role of 

intracellular cAMP in regulating and maintaining Ih in neocortical pyramidal neurons. 

Furthermore, co-application of forskolin and histamine was not additive compared to 

applications of histamine alone, consistent with the actions of histamine being mediated 

by the activation of adenylyl cyclase. These observations are consistent with present 

findings that histamine is acting via H2 receptors, which have long been associated with 

adenylyl cyclase activation and with increases in intracellular cAMP in the neocortex and 

other tissue preparations (Nahorski et al., 1974, Baudry et al., 1975; Hegstrand et al., 

1976, Psychoyos, 1978; Olianas et al., 1984, Ezeamuzie and Philips, 2000; Zawilska, 

Woldan-Tambor, Nowak, 2002). 

Also in keeping with the cAMP results in Chapter 2, application of H7, a 

nonspecific protein kinase inhibitor, blocked the histamine-induced effects again 

suggesting the involvement of a protein kinase in the modulation of Ih in neocortical 

neurons. Moreover, the fact that applications of H7 in the absence of histamine did not 

significantly alter Ih suggests that the protein kinase activity is dependent upon 

intracellular levels of cAMP and is occurring downstream of the histamine-induced 

activation of adenylyl cyclase. To date, most evidence supporting modulation of Ih 
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through phosphorylation and dephosphorylation mechanisms, an outcome of kinase 

activity, has been shown in cardiac tissue (Yu, Chang and Cohen, 1993, 1995; Accili 

Redaelli, Difrancesco, 1997). For example, in Purkinje fibers and isolated ventricular 

myocytes, treatment with calyculin A, a protein phosphatase inhibitor, resulted in a 

positive shift in the activation curve oflh (Yu et al., 1993, 1995). Conversely, treatment 

of Purkinje fibers with protein kinase inhibitors H7 and H8 resulted in a negative shift in 

the activation curve of Ih (Chang, Cohen, Difrancesco, Rosen and Tromba, 1991). 

Moreover, the effects of H8 were not observed in the absence of activation of the cAMP 

cascade, similar to the present findings. Protein kinase inhibitors decrease the peak 

amplitude of Ih in dissociated bullfrog sympathetic neurons (Tokimasa and Akasu, 1990). 

Vargas and Lucero (2002) reported similar negative shifts, as well as a significant 

decrease in Ih conductance, in rat olfactory receptor neurons after treatment with K252a, 

another non-specific protein kinase inhibitor. In further support of the present findings, 

they observed Ih activation time constants resembling those of HCN1 channels, the HCN 

channel subtype most expressed in layer V neocortex (Moosmang et al., 1999; Monteggia 

et al., 2000, Notomi and Shigemoto, 2004). 

Although there is substantial evidence to suggest protein kinase involvement in 

the modulation of h, identification of the exact kinase involved has been ambiguous at 

best. For example, in rat olfactory receptor neurons, the observed negative shift was 

shown to be due only in part to the inhibition of protein kinase A (PKA), since the 

specific PKA inhibitor H-89 replicated only in part the K252a effect (Vargas and Lucero, 

2002). This suggests that, in addition to PKA, other protein kinases may be been involved 
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in the modulation of I h. This is likely, as other kinases, such as PKC and tyrosine kinase, 

have also been implicated in the modulation of Ih in rat substantia nigra pars compact and 

sinoatrial node myocytes, respectively (Cathala and Paupardin-Tritsch, 1997, Wu and 

Cohen, 1997, Zong et al., 2005). Similarly, given that studies of the structural 

components of single H2 receptors have been shown to activate both adenylyl cyclase and 

PLC pathways, the involvement of more than one kinase in the modulation of Ih in the 

present study is plausible (Wang et al., 1998). 
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4. Histamine modulates subthreshold resonance in rat neocortical 
neurons 

4.1 Introduction 

Although the generation of synchronized oscillations in the neocortex is 

dependent on a network of both excitatory and inhibitory inputs (Silva, et al., 199; Flint 

and Connors, 1996; Lukatch and Maciver, 1997; Castro-Almancos, 2000; Castro

Almancos and Rigas, 2002; Timofeev, Bazhenov, Sejnowski and Steriade, 2002), groups 

of neurons can be driven rhythmically by intrinsic pacemaker properties. Layer V 

neocortical pyramidal neurons in the neocortex have long been known to show intrinsic 5 

to 12 Hz rhythmic patterns of burst firing and appear to play a pacemaker role in 

promoting certain synchronized oscillations (Silva, Ami tal and Connors, 1991; Amitai, 

1994; Flint and Connors, 1996; Lukatch and Maciver, 1997). Given this inherent 

property, it likely that layer V neurons are an important site for modulation which can 

result in the switching of neocortical activity between different rhythmic states. 

An intrinsic mechanism, which can influence these rhythmic patterns, IS 

resonance (see section 1.4). Resonance may enable neurons to selectively assimilate 

bombardments of synaptic input and communicate action potentials over a preferred band 

of frequencies to postsynaptic targets (Hutcheon and Y arom, 2001; Izhikevich, Desai, 

Walcott, Hoppensteadt, 2003; Richardson, Brunei and Hakim, 2003). Since certain 

frequencies are resonant for some neurons whereas others do not exhibit resonant 

responses, resonance may have a selectivity role in communications between neurons. 

This selectivity can be modulated by changing the frequency content of synaptic input 
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and by modulating the intrinsic factors that determine resonance. Together, this presents 

the CNS with a dynamic rewiring mechanism that occurs on short time scales without 

any long-term plastic changes in the synaptic circuitry. For example, changes in the 

frequency content of input may reduce the activity of previously active neurons if the 

input no longer contains their preferred band of frequencies. Conversely, a change in 

input may increase the activity of other neurons because the frequency content matches 

their resonant bands (Hutcheon et al., 1996a,b; Izhikevich et al., 2003; Richardson et al., 

2003). A change in input strength can have a similar effect (Richardson et al., 2003). As 

well, theoretically, direct modulation of resonant mechanisms can change the preferred 

band of frequencies (Hutcheon and Yarom, 2001). 

In layer V pyramidal neurons of the neocortex, Ih in combination with the passive 

properties produces subthreshold resonance (Hutcheon et al., 1996a,b; Ulrich, 2002). 

Since a specific active process such as Ih can regulate the frequency response of neurons, 

it follows that modulation of the process will influence resonant behaviour. For example, 

Hutcheon et al. (1996b) showed in modeling studies of neocortical resonance that 

changes in the parameters of Ih, which could represent changes induced by intrinsic 

modulatory factors, altered neocortical resonance. Modulation of Ih would therefore have 

important implications for the control of cortical activity such as in the maintenance and 

generation ofburst firing (Foehring and Waters, 1991). 

The study of neurotransmitter effects on the frequency response of neurons is a 

new field of neuromodulator investigation, which can lead to a greater elucidation of 

transmitter actions and insight into the control of resonant behaviour. In Chapter 3, 
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histamine was shown to shift the activation kinetics of Ih to more depolarized potentials, 

and increased Imax· Given the evidence that Ih is responsible for the formation of 

subthreshold resonance in neocortical neurons it was hypothesized that the histamine

induced effects on Ih in the neocortex would also result in the modulation of subthreshold 

resonance. 

4.2 Methods and Materials 

(For detailed methods see Section 2.2) 

The impedance (Z) amplitude profile (ZAP) method was used to investigate the 

subthreshold frequency domain of neocortical neurons (Puil et al., 1986; Puil et al., 

1988). In current clamp mode, neurons were held at potentials between -57 to -97 mV, 

in 10 m V increments. At each potential, a computer generated ZAP waveform was 

injected into the neuron and the resulting voltage output was digitally recorded and stored 

on a computer hard drive. Data collection and analysis were completed using ZAP 

Acquisition (version 3.5) and ZAP Analysis (version 4.01) software developed by Dr. 

Ernie Puil's laboratory (Figure 4.1A). 

The ZAP waveform is a swept-sine-wave alternating current with a constant 

amplitude and finite duration that changes frequency linearly from 0.2 to 60.0 Hz. The 

ZAP input was derived by the formula 

I (t) = asin(bP) + de, (7) 

where I is the input current, t is time, a is the amplitude, b is the band-width of input and 

de is the holding current. 
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To ensure the relationship between the current input and voltage response was 

approximately linear, which is required for accurate frequency domain analysis, the 

current amplitude was adjusted at each holding potential such that the maximum voltage 

response was less than 20 m V peak to peak. 

The impedance, a complex number made up of real and imaginary parts, was 

calculated based upon the ratio of the fast Fourier-transforms (FFT) of the voltage 

response and current input using the formula 

Z = Zreat + Zimaginary = FFT(V)/FFT(I). (8) 

Final impedance calculations were based on the average of three ZAP sweeps and were 

presented in two frequency response forms: impedance frequency response curves 

(zFRC) and phase shift frequency response curves (pFRC) (Fig 4.1B,C). The strength of 

resonance (Q) and the resonant frequency ifres) were calculated from the zFRC (Fig 

4.1D). 

Q = Zmax1Zmin (9) 

where Zmax is the impedance recorded at the peak of the zFRC and Zmin is the impedance 

recorded at the lowest frequency sampled (Koch, 1984). The !res was determined as the 

frequency at Zmax as shown in equation 10. 

Zifres) = Zmax (10) 

To prevent current rundown of Ih and to ensure a stable basal level of cAMP without 

saturating intracellular cAMP levels, 1 J..LM cAMP was added to the pipette-solution in all 

the present experiments. To acertain that rundown had not occurred controls were taken 

at 5 and 15-20 mins after whole cell rupture. Compounds in this study included histamine 
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(Sigma), tiotidine (Tocris) and 4-ethylphenylamino-1 ,2-dimethyl-6-methylamino

pyrimidinium chloride (ZD-7288, Tocris). 

Drug and voltage induced changes m impedance profiles were evaluated by 

comparison of the impedance in control solutions, and in the presence of drug, in the 

same neuron. For the purpose of averaging responses, all data were converted to log 

normal value. Average data are presented as the antilog of the geometric mean± S.E.M. 

Statistical significance of data was assessed with two-way analysis of variance (2 way 

ANOV A) (Excel, Microsft Office 2000). 

4.3 Results 

4.3.1 Frequency response curves are voltage dependent 

The results represent data obtained from 16 neurons. Figure 4.1A shows layer V 

neocortical neuron subthreshold (-57 m V to -97 m V) voltage responses to constant ZAP 

waveform inputs. Typically, the amplitude of voltage oscillations was largest during the 

earlier part of the ZAP sweep (0 to 6s, which represents lower frequency inputs), 

followed by a steady decline for the remainder of the input (7 - 16s, which represented a 

current input at higher frequencies). With increased hyperpolarization, however, there are 

distinct differences in the amplitude and timing of the voltage response. In the example 

shown, the voltage trace at -57 mV represents a feature ofnonresonance where the zFRC 

is wedge shaped due to the largest voltage response occurring at the lowest frequency 
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Figure 4.1 Subthreshold frequency and voltage response of a resonant neuron. 

A: Examples (at -57, -77 and -97 m V) of ZAP current inputs (left) and voltage 
responses (right) in a resonant neuron under current clamp mode. Voltage trace reflects 
an average response from three ZAP sweeps. Current input was adjusted to achieve a 
voltage response of less than ± 1 0 m V at each holding potential. Increasing 
hyperpolarization from -57 mV shows a change in the voltage amplitude with increasing 
frequency (arrows). B, C, D: To investigate the frequency preference of neurons, their 
phase frequency response curve (pFRC) and impedance frequency response curve 
(zFRC) were determined. B: pFRC shows a voltage and frequency dependent rightward 
shift in the phase with increasing hyperpolarization. At -97 m V the voltage leads the 
current up to ~ 1.8 Hz followed by the current leading the voltage for higher frequencies. 
Smooth line reflects a 5 point average of the data. C: In keeping with B, the zFRC shows 
a voltage and frequency dependent rightward shift in the maximum impedance as well as 
an overall decrease in the impedance with increasing hyperpolarization. Smooth lines 
were fitted by eye to the data. D: Three dimensional plot of impedance as a function of 
frequency and voltage using fitted lines. At potentials negative to -67 m V the neuron 
reveals resonance. Maximum impedances were observed just negative to the resting 
membrane potential (-64 mV) between -67 and -77 mV. IFRC for -97 shows that the 
maximum impedance (Zmax) corresponds to the resonant frequency ifres). The minimum 
impedance (Zmin) is taken as the impedance at the lowest frequency recorded (0.2 Hz). 
Note the decrease in Zmin and Zmax and the rightward shift in.fres at potentials negative to-
77 mV. E: Plot for.fres as a function ofvoltage. The value of.fres increases with increasing 
hyperpolarization from a minimum of0.2 Hz at -57 mV to 2.1 Hz at -97 mV. F: Plot of 
the quality of resonance (Q) as a function of voltage. Q represents the ratio of Zmax and 
Zmin ( Zmax1Zmin). Similar to Ires, Q increases with increasing hyperpolarization ranging 
from a value of 1 at -57, representing a non-resonant condition, to 1.2 at -97 mV. 
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input. Although the voltage response at -57 mV shown in Figure 4.1A represents a 

feature of nonresonance, most cells in this study showed a slight spindle shape response 

(12 of 16) where there was an attenuation of the voltage amplitude at the lowest 

frequencies followed by larger voltage amplitudes at intermediate frequencies. In 

contrast, the voltage traces negative to -67 m V reveal characteristics of strong resonance 

characterized by a more prominent spindle shape. Moreover, the peak of these spindles, 

which closely represents Ires, occurred later with increased hyperpolarization, consistent 

with a shift of/res to higher frequencies. 

The pFRCs for the same neuron shows the voltage dependence of the phase shift 

(Figure 4.1B). The phase shift is the argument of impedance (arg(z)) between the input 

and output at each frequency. In short, the arg(z) can be determined from the complex 

plane of impedance by taking the angle between the horizontal or real impedance and the 

complex impedance vector. Arg(z) values in the positive quadrant represent the voltage 

leading the current whereas values in the negative quadrant represent the current leading 

the voltage. A phase shift occurs when there is a change from the positive to the negative 

plane or vice-versa. The frequency at which arg(z) = 0 is the point at which both the 

voltage and current are in phase, representing the approximate mid value of the 

surrounding resonant band of frequencies, i.e.,fres· 

In the example shown, a phase shift is not evident at -57 mV since arg(z) occurs 

in the negative quadrant for all frequencies. At potentials negative to -67 m V, there is a 

change in the pFRC where the phase angle crosses the horizontal axis (0°) at intermediate 

frequencies, indicating that the voltage is leading the current up to that point. Similar to 



165 

the time shift in the voltage amplitude in 4.1A, the phase shift increases with increasing 

hyperpolarization (0.2 Hz at -77 m V and 1.8 Hz at -97 m V). 

The zFRCs shown in Figures 4.1 C and D reveal the typical voltage dependent 

nature of impedance seen throughout this study. In the low frequency range, up to a 

maximum of 10 Hz, the impedance magnitudes were highly voltage dependent. This 

includes an increase followed by a decrease in the impedance at potentials negative to -

57 m V with peak values typically occurring at -67 m V and -77 m V. A specific feature in 

this range is the formation of subthreshold resonance. This is characterized by an 

attenuation of the impedance at lower frequencies relative to intermediate frequencies 

with increased hyperpolarization. This gives the zFRC a humped shape. At frequencies 

greater than 10 Hz, the impedance values show little voltage dependence consistent with 

the high frequency attenuation of the passive membrane properties, i.e., Wpass· 

Figures 4.1 D shows a 3-dimensonal frequency response surface (FRS) made up 

of zFRCs determined at 10 m V interval holding potentials. The membrane is clearly 

resonant at potentials negative to -67 mY. The features of resonance, as described by Ires 

and the Q value, were also voltage dependent (Fig 4.1E, F). The Ires value increases 

almost linearly from 0.2 Hz at -57 mV to 2.1 Hz t at -97 mV, consistent with the 

enhanced attenuation of the impedance at lower frequencies with increased 

hyperpolarization. Moreover, while Ires mcreases steadily with increased 

hyperpolarization, the Q value remains stable near 1 up to -67 m V after which it 

increases to an approximate asymptotic value of 1.2. 
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4.3.2 Histamine modulates the frequency response of neocortical neurons 

To investigate modulation of the frequency response of neocortical neurons, 50 

J...LM histamine was applied after control ZAP recordings. The control in Figure 4.2A 

shows the typical voltage dependent formation of the spindle shape voltage response with 

increased hyperpolarization. Application of histamine had little effect on the voltage 

response at the holding potential of -57 mV. In contrast, the voltage response at more 

negative potentials showed a shift in the peak amplitude to higher frequency inputs 

(Figure 4.2A). Consistent with the observed change in the voltage response, histamine 

had no effect on the phase shift at -57 mV (0.2 vs. 0.3 Hz). However, the phase shift 

occurred at higher frequencies when the neuron was hyperpolarized (1.4 Hz vs. 2.2 Hz at 

-77 mV and 2.4 Hz vs. 6.3 Hz at -97 mV, Figure 4.2B). 

Similarly, although the zFRCs show a slight resonance hump at -57 m V, 

histamine had no effect. On the other hand, the more prominent feature of resonance, 

consistently observed at potentials negative to -67 m V, showed strong histamine 

modulation which included a rightward shift in the frequency of Zmax and an overall 

decrease in the impedance up to a 10Hz input frequency (Figure 4.2 C and D). 

Consistent with this finding, histamine increased Ires at -67 m V through to -97 

mV with little effect at -57 mV (Figure 4.2E). In addition, pooled data (Figure 4.3A) 

revealed that the increase in Ires was voltage dependent between -57 m V to -97 m V as 

well as significantly larger after application of 50 J...LM histamine (2 way ANOV A, P < 

0.01, n = 7). 
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Figure 4.2 Histamine modulates subthreshold resonance. 

Sample neuron represents the largest Ires recorded. A: Sample subthreshold voltage 
responses (at -57, -77 and -97 mV) to ZAP current inputs for control (cont, left) and 50 
11M histamine (hist, right). Histamine shifts the peak voltage amplitude to the right with 
hyperpolarization at -77 mV (3.2 s vs. 4.7s) and -97 mV (4.5 s vs. 5.6 s), but not -57 mV 
(1.5 s vs. 1.5 s) (arrows). Note that histamine has little or no effect at -57 mV. B: pFRC 
shows a voltage and frequency dependent rightward shift in phase in the presence of 
histamine. In control, at -97 mV, the voltage leads the current up to ~2.4 Hz compared to 
6.3 Hz in the presence of histamine. C: Similarly, the zFRC shows a histamine induced 
voltage and frequency dependent rightward shift in the maximum impedance (Zmax) as 
well as an increase in the low frequency attenuation of impedance at more negative 
potentials. D: Three dimensional plot of impedance as a function of frequency and 
voltage using fitted lines in control (dark grey) and in the presence of histamine (light 
gray). Histamine decreases Zmin and Zmax and shifts Ires to the right at potentials negative 
to -67 m V compared to control E: Plot for Ires as a function of voltage. The Ires is 
increased in the presence of 50 11M histamine at -67 m V and lower. In control, Ires was 
1.0 Hz at -57 mV and 4.7 Hz at -97 mV compared to 1.1 Hz and 8.6 Hz, respectively, in 
the presence of histamine. F: Plot of Q as a function of voltage. Similar to Ires, histamine 
increased Q for all voltages tested. Q peaked at -77 m V followed by a decline at more 
hyperpolarized potentials. 
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Histamine had no effect on the Q value at -57 mV (1.1 vs. 1.0) whereas at -67 

m V and lower, the histamine-induced decrease in the impedance was characterized by a 

larger decrease in Zmin compared to Zmax, resulting in an increase in the Q value (Figure 

4.2F). Moreover, when compared to the control condition, Q peaked at -77 mV (1.1 vs. 

1.7) and declined with further hyperpolarization. Pooled data (Figure 4.3B) revealed a 

similar trend where the increase in the Q value was voltage dependent between -57 m V to 

-97 m V and was significantly larger after application of 50 M-M histamine (2 way 

ANOV A, P < 0.05, n = 7) with the largest increase occurring near -77 m V (1.1 ± 0.1 vs. 

1.4 ± 0.1). 

4.3.3 ZD-7288 prevents histamine modulation of subthreshold resonance 

In keeping with Ih production of subthreshold resonance it was speculated that 

blocking Ih would eliminate resonance and its modulation by histamine. To investigate 

this hypothesis, 100 M-M ZD-7288 was bath applied for 5 minutes and neurons were 

stepped to -127 mV under current clamp mode to verify the elimination of the 

depolarizing voltage sag characteristic of Ih activation. Following block of Ih, the ZAP 

method was used before and after application of 50 M-M histamine. 

In all cells tested, ZD-7288 had no effect on the slight resonant properties at -57 

mV, consistent with the lack of Ih activation in this range. With increased 

hyperpolarization ( -67 to -97 m V), however, the characteristic spindle shaped voltage 

response observed in the control was absent in all neurons during ZD-7288 application. 

The voltage response, instead, was characterized by a wedge shape with the peak 
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Figure 4.3 Histamine increases thefres and Q. 

Pooled data (mean± S.E.M., n = 7). A: Plot of/res as a function of voltage. Compared to 
the control condition (cont), the voltage dependent increase in Ires is significantly 
increased in the presence of 50 J..LM histamine (hist) (2 way ANOVA, P < 0.01). B: Plot 
of Q value as a function of voltage. Histamine significantly increased the voltage 
dependent increase in Q value when compared to the control condition (2 way ANOV A, 
P<0.05). Again there is no change at -57 mV with the greatest effect observed in the 
range of -77 mV to -87 mV. Similar to Figure 4.2 E, histamine produced less effect on Q 
at more hyperpolarized potentials. 
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amplitude occumng at the lowest frequencies, a characteristic of nonresonant neurons 

(Figure 4.4A). Moreover, no phase shift was evident within the same voltage range 

(Figure 4.4B). In a similar vein, there was no voltage dependent low frequency 

attenuation of the impedance in the zFRCs and FRS (Figures 4.4C and D). For example, 

in the trace shown, the.fres ranged from 0.2 Hz at -67 mV to 0.3 Hz at -97 mV and the Q 

values approximated 1.0 (Figure 4.4E,F). Moreover, application of histamine had no 

effect. This was further verified by pooling the data (Figure 4.5A,B) revealing that the 

voltage dependence of Ires and the Q value, as well as the effect of histamine, were not 

statistically significant (2 way ANOV A, P > 0.05, n = 5). 

Notwithstanding the absence of resonance in the hyperpolarized range, the 

general shape of the FRS was maintained. This included an overall increase in impedance 

peaking at approximately -67 mV to -77 mV, followed by a decline at more negative 

holding potentials. 

4.3.4 Tiotidine blocks histamine modulation of subthreshold resonance 

The above results show that histamine acts to modulate subthreshold resonance 

through actions on Ih. Given that histamine modulates Ih via the H2 receptor subtype (see 

chapter 3), blocking this receptor should prevent histamine action on subthreshold 

resonance. To investigate this hypothesis, 500 nM tiotidine was continuously bath 

applied after achieving whole cell rupture. The ZAP recordings were then made before 

and after application of 50 J..LM histamine. 

Figure 4.6A shows that tiotidine had little effect on the formation of the spindle 
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Figure 4.4 Histamine effect on subthreshold resonance is blocked by ZD-7288. 

A: Sample subthreshold voltage responses (at -57, -77 and -97 mV) to ZAP current 
inputs for 100 ~M ZD-7288 (ZD, left) and ZD plus 50 ~M histamine (ZD + hist, right). 
ZD blocks the shift in peak voltage amplitude previously observed with increasing 
hyperpolarization (left, arrows). In the presence of ZD, histamine has no effect on the 
voltage amplitude (arrows). Note the small resonant effect observed at -57 mV is 
unaffected by ZD and histamine. B: pFRC shows that ZD eliminates the phase shift 
previously observed with increasing hyperpolarization. There is no effect on the shape of 
the pFRC by histamine with ZD present. C: The zFRC also shows that ZD eliminates 
resonance by blocking the low frequency attenuation at more negative potentials. 
Histamine has no effect on the zFRC with ZD present D: Three dimensional plot of 
impedance as a function frequency and voltage using fitted lines in ZD (dark grey) and in 
the presence of histamine (light gray). ZD eliminates resonance at potentials negative to-
67 m V resulting in Zmin equaling Zmax· The elimination of resonance blocks the 
histamine-induced effects on the zFRC. E: Plot of fres as a function of voltage. The Ires 
closely equals the lowest sampled frequency (0.2 Hz) at -67 m V and lower. Histamine 
has no effect onfres in the presence of ZD. F: Plot ofQ as a function of voltage. Similar to 
Ires, the histamine-induced effect is blocked in the presence of ZD. Note that ZD results in 
a Q value close to 1 for potentials of -67 and lower, consistent with the elimination of 
resonance. 
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Figure 4.5 ZD-7288 blocks resonance and the histamine induced increases in /res 

and Q value. 

Pooled data (mean± S.E.M., n = 5). A: Plot of/res as a function of voltage showing the 
mean. At potentials of -67 m V and lower, Ires equals the lowest frequency sampled. 100 
J.!M ZD-7288 (ZD) eliminated the hyperpolarized voltage dependent increase of Ires and 
the increase induced by 50 J.!M histamine (ZD +hist) (2 way ANOV A, P>0.05). F: Plot of 
Q (mean± S.E.M.) as a function of voltage. ZD eliminated the hyperpolarized voltage 
dependent increase in Q and the histamine induced increase in Q at potentials of -67 m V 
and lower (2-way ANOV A, P >0.05). Note that ZD has no effect on the Ires or Q at the 
holding potential of -57 mV. 
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shape voltage response with increased hyperpolarization. However, tiotidine blocked the 

histamine-induced shift in the peak amplitude to higher frequency inputs. Similarly, the 

histamine-induced increase in the phase shift to higher frequencies also was absent with 

increased hyperpolarization (Figure 4.2B). 

In keeping with these findings, the control zFRCs show the prominent resonant 

features consistently observed at potentials negative to -67 mV. However, histamine had 

little or no effect on impedance (Figure 4.4 C and D). For example, there was little 

difference between the.fres (0.5 Hz vs. 0.5 Hz at -67 mV, 1.8 Hz vs. 1.7 Hz at -97 mV) 

and the Q value (1.1 vs. 1.1 at -67 mV, 1.5 Hz vs. 1.5 Hz at -97 mV) under control 

conditions when compared to histamine (Figure 4.52E,F). In addition, pooled data 

(Figure 4.7) revealed that, although the increase in Ires and the Q value was voltage 

dependent between -57 mV to -97 mV, there was no difference in the increase between 

control conditions and post-application of histamine (2 way ANOVA, P < 0.05, n = 3). 

4.4 Discussion 

4. 4.1 Subthreshold resonance in neocortical neurons 

Past studies in the neocortex have shown Ih to play a major role in attenuating 

excitatory postsynaptic potentials, as well as in temporal and spatial summation (Nicoll et 

al., 1993; Schwindt and Crill, 1997; Stuart and Spruston, 1998; Berger et al, 2001; Berger 

et al. 2003). In addition to this role, Ih has also been shown to create a band pass filter 

configuration or resonance in neocortical neurons, which may act to filter somatic and 

dendritic input (Hutcheon et al., 1996a,b; Ulrich, 2002). 
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Figure 4.6 Histamine induced effect on subthreshold resonance is blocked by 
tiotidine. 

A: Sample voltage responses (at -57, -77 and -97 mV) to ZAP current inputs resonant 
neuron for 500 nM tiotidne (tiot, left) and tiotidine plus 50 ~M histamine (tiot +hist, 
right). Tiotidine has no effect on the resonant properties observed at -67 m V and lower, 
but blocks the histamine-induced shift in voltage amplitude (arrows). B: pFRC shows that 
tiotidine blocks the histamine induced rightward shift in phase. C, D: The zFRC also 
shows that tiotidine blocks the histamine induced voltage dependent rightward shift in 
frequency (Zmax) as well as the increase in the low frequency attenuation of impedance 
with hyperpolarization. E: Plot for Ires as a function of voltage. Histamine has no effect on 
Ires in the presence of tiotidine F: Plot of Q value as a function of voltage. Similar to Ires, 
histamine has no effect on Q in the presence of tiotidine. 
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Consistent with these findings, the present study shows that layer V neocortical 

pyramidal neurons possess Ih dependent subthreshold resonance in the delta (0.2 - 4 Hz) 

and theta range (4 - 12 Hz). The features of subthreshold resonance in these neurons 

were shown to be modulated by histamine, an action most likely occurring through the 

modulation of Ih, which results in a voltage dependent increase in the sharpness and 

frequency of resonance. This may be the first time that the neuronal frequency response 

behaviour of neocortical neurons has been shown to undergo modulation by an intrinsic 

compound. 

Similar to the findings of Hutcheon et al. (1996a,b ), the subthreshold resonance 

observed in this study has many points of similarity with the activation threshold and 

kinetics of Ih shown in Chapter 2 and 3: (1) the voltage dependence of Ih activation 

closely resembles that ofresonance (i.e., -67 mV and below); (2) the voltage dependent 

slow time course and rectifYing nature of h are consistent with the range of observed 

phase shifts and resonant frequencies; (3) resonance was absent in the presence of ZD-

7288, similar to the block of Ih and resonance by Cs + and ZD-7288 shown by Hutcheon et 

al. (1996a) and Ulrich (2002), respectively; (4) the histamine-induced shift in fres and the 

Q value is consistent with the histamine-induced shift in Ih activation and in increased 

conductance; (5) the block of the histamine-induced effect on resonance by the H2 

receptor antagonist tiotidine is consistent with the tiotidine block of the histamine 

induced effect on Ih shown in Chapter 3. 

Under control and experimental conditions both.fres and the Q value were highly 

voltage dependent. Similar to the resonance effects reported by Hutcheon et al. (1996a) 
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and Ulrich (2002) Ires increased almost linearly from -67 m V with increased 

hyperpolarization. The average/res at -97 mV (~1.5 Hz) was close to the 1.0- 3.0 Hz 

delta range reported by Hutcheon et al. (1996a,b), but lower than the 6.0 Hz and higher 

theta range reported by Ulrich (2002) at similar holding potentials. The difference from 

the latter is likely due to the strong temperature dependence of resonance in these neurons 

compare to resonance shown in the present study (35 - 36°C vs. room temperature). 

Similar temperature dependent results were observed for subthreshold resonance in the 

hippocampus where changes in the recording temperature from 33 °C to 38°C shifted/res 

from 4.0 to 9Hz, respectively (Hu et al., 2002). Again this can be explained by changes 

in the parameters of h, since the time constants can be 6 to 11 times faster at body 

temperature compared to those at room temperature (Spain, Schwindt and Crill, 1987). 

Indeed, Hutcheon et al. (1996b) showed in a model of neocortical Ih dependent resonance 

that substituting Ih kinetics to reflect those at physiological temperatures increased the 

subthreshold frequencies an order of magnitude higher than those observed at room 

temperature. The resultant resonant frequencies, occurring in the theta and alpha range (5 

- 15Hz), indicate that Ih is capable of making contributions to rhythmic activity in awake 

animals (see section 5.2.3). 

The Q value showed a similar increasing trend with hyperpolarization reaching a 

near asymptote value at potentials less than -70 to -80 m V. Again the average maximum 

value (~1.3) was similar to the maximum range of 1.4- 1.5 observed by Hutcheon et al. 

(1996a). It should be noted that the above values reflect observations made in the 

presence of TTX, a known blocker of the class II low frequency amplifier, INaP· As a 
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result, the Q value could be substantially higher in the range where Ih and INaP overlap 

(i.e. ~ -65 m V), based on results from Hutcheon et al. (996a). This would also have the 

effect of decreasing the resonant bandwidth at more depolarized potentials and thus may 

act to finely tune neuronal input near the firing threshold. 

Another interesting observation was the slight resonant feature observed in the 

depolarized range. Although resonance in this range was not the focus of the present 

study, it does reinforce the variety of resonant mechanisms found in other neocortical 

studies such as those involving current IM (Gutfreund et al., 1995). 

4.4.2 Voltage dependent mechanism of subthreshold resonance 

Assuming physiologically relevant temperatures, the voltage dependence of 

resonance provides evidence that Ih is only functionally significant in processing inputs of 

less than 20 Hz. This can be explained in terms of the CM + S or reduced membrane 

model (RM) which contains only a passive component made up of !Leak and the 

membrane capacitance, and Ih, a class I current (Hutcheon et al., 1996a; Hutcheon and 

Y arom, 2000). As discussed in section 1.4, the passive component acts as a low pass 

filter which attenuates inputs at frequencies above 1127t'tm and is unaffected by changes in 

the membrane potential. In the absence of Ih the zFRC is characterized by a Q value of 1, 

with Ires occurring at the lowest input frequency and no change in magnitude of Zmax or 

Zmin for all holding potentials. 

The introduction of Ih into the model results in a contribution of rectifying inward 

current which, in effect, counteracts changes in the membrane potential with 
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hyperpolarization. During a repolarizing event, a characteristic of oscillating inputs, h 

has an opposite effect by slowly deactivating. This allows for a time dependent decreased 

contribution to depolarization at potentials above the point where h initially activates 

thus explaining why h dependent resonance is observed beyond its activation. If the 

frequency and magnitude of the input is such that enough time is available for the 

activation and deactivation of h, the zFRC will be characterized by an attenuation of the 

impedance at that frequency. On the other hand, as the input frequency increases, less 

time is available for activation and deactivation, thus Ih acts to pass higher frequencies. 

Similar to the passive component, the frequency at which h stops responding to 

oscillating input is determined by its kinetics (i.e. 112rc'th). Unlike the passive component, 

however, the kinetics of Ih change with increased hyperpolarization resulting in both an 

increase in the activation rate and conductance, as shown in Chapter 2 and 3. Assuming 

the range of the low and high frequency attenuation do not overlap (i.e. 112TC'th < 112TC'tm) 

a band of non-attenuated frequencies will exist between both filters, the peak of which 

represents Ires· As Ih activates with increased hyperpolarization 1/2rc'th increases, thus 

shifting and narrowing the band of non-attenuated frequencies (i.e., increasing Ires), as 

well as decreasing the impedances at the low frequencies, thereby increasing Q. Since 

the magnitude of impedance at Ires is greatest and therefore more likely to initiate firing, 

the position of the Ih activation curve and its level of conductance can determine to what 

extent Ih contributes to changes in the subthreshold range and spike initiation. In the 

present study, the observed change in the phase shift, the frequency at which the voltage 

leads the current,fres and the Q value are consistent with the above explanation. 
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4.4.3 Histamine modulates subthreshold resonance 

The histamine-induced rightward shift in the pFRC and zFRC is consistent with 

the histamine-induced shift in h activation. Indeed, similar to the ~ 10 m V maximum shift 

in activation induced by 50 J.!M histamine, the !res observed at -77 m V under control 

conditions closely matchesfres at -67 mV after application ofhistamine. A simple shift in 

the activation kinetics does not, however, explain !res becoming increasingly larger with 

hyperpolarization after application of histamine. This may be due to an additive effect of 

the histamine-induced increase in Ih conductance as evidenced by the observed increase 

in Imax shown in Chapter 3. Based on investigations by Hutcheon et al. (1996a), and 

assuming that all other factors are kept constant, a two fold increase in the conductance of 

Ih at -70 m V acts to decrease the overall impedance of the membrane circuit while 

increasing bothfres and the Q value by a factor of 1.3. 

The same model can explain the decrease in Q at potentials negative to -77 m V. 

The zFRC for Ih is opposite to that of the passive circuit being characterized by low 

impedance values at lower frequencies, followed by increasing impedances at 

intermediate frequencies and asymptotic impedances at higher frequencies. With 

increased hyperpolarization, the rate of activation for Ih increases, which acts to move the 

range of low frequency attenuation towards the range of high frequency attenuation. The 

point of intersection between the two ranges determines the magnitude of Q. When the 

point of intersection is within the range of asymptotic impedances, Q is at its maximum. 

As the range shifts further, such that it begins to intersect the range of low frequency 
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attenuation, Q will become increasingly smaller. Theoretically, if 1127tth becomes larger 

than 1/27ttm, Q will equal 1 and resonance disappears. 

Overall, histamine induces a shift of !res to higher frequencies and decreases the 

impedance magnitude in a voltage dependent manner. A more distinct action of 

histamine is the formation of a voltage dependent bell shaped increase in Q with an 

approximate peak near -87 m V and the greatest increase near -77 m V. Therefore, 

unlike control conditions, where both the Q and !res increase with hyperpolarization, 

histamine acts to finely tune a neuron's frequency responses close to Ih activation and the 

resting membrane potential. Depending on the position of Ih activation relative to the 

threshold for action potential generation this may have important functional implications 

in synchronizing neuronal activity in the networks that include histamine sensitive 

components. 
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5. Summary and Conclusions 

5.1 Rundown of h 

The results from the investigations presented in the preceding chapters provide 

new insights into histamine modulation of the hyperpolarization activated cationic 

current, Ih, and subthreshold resonance in cortical neurons. 

Under whole cell recording conditions, preliminary investigations into Ih revealed 

a time dependent hyperpolarizing shift in h activation and decreased current that 

confounded interpretation. Failure to observe a change in the resting membrane potential 

or the instantaneous current over the course of the recording period suggested that the 

rundown of Ih did not result from deterioration in the whole cell configuration or shunting 

due to an increased membrane conductance. It was therefore concluded that the rundown 

resulted from cell dialysis by the recording pipette leading to the loss of one or more 

intracellular factors required for the normal function of Ih channel activity. Further 

experiments revealed that a basal level of intracellular cAMP was required for the 

maintenance of I h. Addition of cAMP to the pipette solution prevented rundown of Ih and 

produced a concentration-dependent (5 - 100 J.LM) depolarizing shift in Ih activation, 

increased amplitude of Ih, and depolarization of the resting membrane potential. The 

requirement for cAMP was further supported by the failure to observe the expected 

modulation of Ih by the cAMP analogue 8-bromo-cAMP and the adenylyl cyclase 

activator forskolin in the absence of added cAMP to the pipette filling solution. 
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5.2 Role of protein kinase 

Interestingly, the effects of the non-specific protein kinase inhibitor H7 blocked 

both the forskolin and histamine-induced action on Ih suggesting the possible 

involvement of phosphorylation in the regulation of I h. This contrasts with findings that Ih 

is directly modulated by cAMP. This direct modulation likely occurs in cortical neurons, 

but does not exclude other possibilities such as a secondary regulation of Ih via direct 

phosphorylation of h, phosphorylation of a protein that modifies the cAMP cascade, or a 

protein kinase-induced reduction of a shunt conductance that resulted in an improved 

space clamp. Support for this can be found in Chapter 2 where it was observed that 

reducing K+ conductances partially mimics the effects of cAMP in preventing rundown 

as well as increasing the amplitude of Ih. Simply reducing a shunt however, cannot fully 

explain the observed results since reducing K+ conductances had no effect on the 

activation of Ih. As well, the lack of a cAMP-induced change in the instantaneous current 

undermines this possibility. Similarly, the lack of an H7 effect on Ih, in the absence of 

forskolin and histamine, suggests there is little in the way of basal protein kinase activity. 

As a result, protein kinase activity is not likely involved in the rundown of Ih, consistent 

with a direct action by cAMP. Overall, it would appear there is a combination of 

processes at play, although further experiments are required to evaluate the implications 

of these observations. 
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5.3 Histamine and Ih 

Histamine-induced a concentration-dependent (1 - 50 f..LM) depolarizing shift in 

the activation of Ih, increased the amplitude of Ih, and depolarized the membrane 

potential. These effects closely mimic those observed with the addition of cAMP to the 

recording pipette. Furthermore, the effects of histamine were occluded during co

application of forskolin, consistent with histamine actions being induced through the 

mechanism of adenylyl cyclase activation. Neither H1 nor H3 antagonists altered basal 

activity or histamine-induced actions. On the other hand, histamine's effects were 

blocked in a concentration-dependent manner by tiotidine (5 - 500 nM), an H2 receptor 

antagonist, and mimicked by amtharnine (0.5 - 25 f..LM), an H2 receptor agonist. These 

results are consistent with an H2 receptor-mediated action. 

5.4 Cortical resonance and Ih 

Based on data from the ZAP experiments in Chapter 4, neurons proximal to layer 

V possess Ih dependent subthreshold resonance in the delta to theta range (1 - 8 Hz) at 

potentials negative to -67 mV. This is supported by the following points of similarity 

with the activation kinetics of Ih shown in Chapters 2 and 3: (1) the voltage dependence 

of h activation closely resembles that of resonance (i.e., -67 m V and below); (2) the 

voltage dependent time course of Ih is consistent with the range of observed phase shifts 

and resonant frequencies; (3) resonance was eliminated in the presence of ZD-7288. 

The frequency ifres) and magnitude of resonance (Q) were voltage dependent. 

Resonant frequencies, at room temperature, under control conditions averaged close to 1 
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Hz near rest (-70 to -75 mV) and above 2Hz at -97 mV. Q showed a similar voltage 

dependent trend with average values ranging between 1.1 and 1.4, respectively. 

Consistent with the histamine-induced shift in Ih activation and increased conductance, 

histamine was also shown to modulate the resonant behaviour of neocortical neurons. 

This was characterized by a shift in Ires ( ~ 1.5 Hz near rest, ~ 4 Hz at -97 m V) and an 

overall decrease in the impedance up to an input frequency of 1 0 Hz. Also, in keeping 

with the histamine-induced shift in h activation, the increased current resulted in an 

increase in Q over the range of -67 to -97 m V with the greatest change observed just 

below the resting membrane potential (-77 m V). 

5.5 Physiological relevance 

The histaminergic system plays a role in cortical activation in part by direct 

widespread hypothalamo-cortical projections, and indirectly, by stimulating the 

cholinergic system originating from the nucleus basalis magnocellularis and the 

substantia innominata (Khateb et al., 1990; Khateb et al., 1995; Lin et al., 1996; Cecchi et 

al., 2001 ). More is known about the modulation of the indirect routes and rather less 

about the complementary role of the hypothalamo-cortical histaminergic projections. The 

work in this thesis provides new insights into direct histaminergic influence on the 

cellular mechanisms of cortical activity. Although it is beyond the scope of this body of 

work to ascertain the global effects of modulation on these neurons, the following 

subsections provide a brief overview of the physiological implications of these findings. 
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5.5.1 Layer V anatomy 

This thesis focused on recordings from neurons proximal to cortical layer V. 

Layer V neurons have intrinsic oscillatory properties which probably gives them an 

important role in promoting synchronized activity and, hence, they represent a potentially 

important site for modulation of cortical activity during wakefulness and sleep (Silva, et 

al., 1991; Amitai, 1994; Flint and Connors, 1996; Lukatch and Maciver, 1997). To better 

understand how changes in layer V activity may affect brain physiology, a good starting 

point is to provide an overview of the neural circuitry outlined by their dendritic and 

axonal morphology. 

Layer V is integrated into a system of neocortical and sub-cortical neural circuits 

that are characterized by a high degree of feed forward and feedback connections 

(Thomson and Bannister, 2003). The anatomy of this region is primarily characterized by 

large burst firing pyramidal neurons contained in upper layer V a. These neurons are 

thought to have an important role in processing excitatory and inhibitory cortical activity 

since their dendrites form extensive aborizations in upper cortical layers (I-IV), thereby 

allowing them to directly access the afferent inputs from these superficial regions 

(Thomson and Bannister, 2003). In addition, since layer V receives little or no input from 

the thalamus, this dendritic organization allows for direct and indirect contact from 

thalamocortical inputs originating from specific thalamic nuclei, i.e., the lateral 

geniculate nucleus (LGN), the inhibitory nucleus recticularis thalami, and non specific 

thalamic nuclei, i.e., the pulvinar (Thomson and Bannister, 2003). Communication 

between the neocortex and the thalamus represents one of the most important circuits in 
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the corticolimbic system. The thalamus is the centre for a massive convergence of both 

afferent information from the periphery and efferent cortical feedback. In keeping with its 

morphology, the thalamus plays an important role in the integration and/or selective 

channelling of information received from the sensory periphery and the neocortex (Choe, 

2004). Also contained in upper layer Va, as well as the lower layer Vb, are smaller 

regular spiking pyramidal neurons, which are characterized by shorter dendritic 

aborizations that, for the most part, do not extend beyond layer III (Thomson and 

Bannister, 2003) .. 

Depending on the cortical area, efferent projections from layer V pyramidal 

neurons target a number of cortical and sub-cortical areas. Cortical projections include a 

dense axonal arborization within layer V, as well as horizontal projections within layers 

V and VI giving rise to ascending branches that project into the superficial layers which 

provides a means for negative feedback through contact with inhibitory neurons 

(Burkhalter and Bernardo, 1989; Fujita and Fujita, 1996). As well, layer V axons form 

long horizontal projections that extend beyond local cortical regions to innervate other 

high order cortical areas, e.g., trans-callosally (Gilbert and Wiesel, 1979). 

Layer V is only one of two neocortical layers, the other is layer VI, which 

provides excitatory innervation to the thalamus (White and Hersh, 1982; Jones 2001). 

Layer V neurons target only the pulvinar and are a major driving force of excitatory input 

to the thalamus (Jones 2001; Shipp, 2003). The pulvinar, the largest nucleus in the 

thalamus, plays a crucial role in attention and motor processing and acts to coordinate 
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neocortical information processing by facilitating and sustaining the formation of 

synchronized activity (Guillery and Sherman, 2002; Shipp, 2003). 

Other subcortical targets include the superior colliculus and the pons, mainly via 

the large pyramidal neurons, as well as the striatum, via the smaller regular spiking 

neurons. The superior colliculus plays an important function in combining and 

processing multiple sensory inputs to guide adaptive motor response such as ocular motor 

control and organism orientation within environmental maps (King, 2004). The pons is 

important in the control of arousal and sleep (Baghdoyan, Spotts and Snyder, 1993; 

Douglas, Demarco, Baghdoyan and Lydic, 2004) and is an important input relay for 

corticocerebellar connections involved in motor cognitive processing (Schmahmann and 

Pandya, 1997). The striatum, made up of the caudate nucleus and the putamen, largely 

serves as the input nucleus for the basal ganglia and plays a role in the control and 

selection of motor programs such as locomotion, posture, eye movements, breathing, 

chewing, swallowing and expression of emotions (Grillner, Hellgren, Menard, Saitoh and 

Wikstrom, 2005). 

5.5.2 Modulation of cortical Ih 

Findings of this thesis provides evidence that the Ih current found in layer V 

neurons is modulated by increasing the intracellular level of cAMP or by a histamine

induced activation of the H2 receptor subtype. Shifting the activation threshold of Ih in the 

depolarizing direction, as well as increasing its amplitude, has important implications for 

the excitatory behaviour of these neurons, including changes in integration near the 
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resting membrane potential, contribution to voltage overshoots and action potential 

generation, dendritic integration, and membrane resonance. It is worth noting that none 

of these actions are mutually exclusive but, rather, they act together to modify the 

behaviour of these neurons and consequently the circuits to which they contribute. This 

may allow neurons, which are hard wired, to change functionality with changes in 

behavioural state. 

5.5.2.1 lh contribution to membrane potential 

Shifting the activation threshold of Ih, as shown in this thesis, alters the resting 

membrane potential. This action will result in two major outcomes. First, there will be an 

increase in the amount of Ih current active at rest and a depolarization of the membrane 

towards the Ih reversal potential(~ -40 to -45 mV) resulting in an increase in membrane 

excitability. Although a higher density of Ih channels exists on the dendrites of cortical 

pyramidal neurons, a shift in Ih activation may depolarize the axon hillock because the 

inward current in the dendrites in part flows out through the soma thereby bringing the 

membrane potential closer to threshold for spike generation. Second, this effect is 

complemented by a decrease in the membrane input resistance, allowing the membrane to 

counteract hyperpolarizing fluctuations, and thus stabilizing the membrane near rest. 

Note, however, that since both the amount of Ih and its rate of activation increases at 

potentials negative to Ih activation, the extent to which Ih can induce these effects will 

depend on the timing and amplitude of inputs. In any event, a positive shift in the Ih 

activation curve suggests that that Ih will stabilize the membrane and reduce 
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hyperpolarizing influences, smce the membrane impedance is lower and the faster 

kinetics of Ih will better limit higher frequency hyperpolarizing drive. In addition, a shift 

towards threshold will enable Ih to be more readily incorporated into the ongoing 

synchronized /tonic activity of the neuron. 

5.5.2.2 Ih contribution to voltage overshoots and action potential generation 

Whether Ih contributes directly to the generation of action potentials was not 

examined in this study. Depending on the shift in Ih activation, and the level and timing 

of tonic depolarization during firing, Ih can contribute to depolarization, repolarization, 

and repetitive spiking. This can be explained by its activation kinetics and the mixed 

Na+/K+ nature of its current. If Ih is active at rest or the membrane has been sufficiently 

hyperpolarized to activate Ih, the deactivation kinetics allow for an outward current at 

potentials positive to its reversal potential, contributing to repolarization and reducing 

spike amplitude, and an inward current at potentials negative to the reversal potential 

contributing to depolarization. As well, depending on the extent of Ih activation and its 

enhancement by histamine, the rebound overshoots resulting from the slow deactivation 

of Ih may move the membrane potential to spike threshold, particularly after repetitive 

spiking where there may be a deep hyperpolarizing response. Moreover, a positive shift 

in Ih activation increases the likelihood of an overlap with the activation range of other 

depolarizing conductances. For example, Hutcheon et al. (1996a) showed that the 

rebound following hyperpolarization and activation of Ih was reduced after application of 

TTX, which they argued provided evidence that Ih activated rebound overlaps the 
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activation range for the persistent sodium current, INaP· This overlap also has important 

consequences for the production of subthreshold resonance (discussed below). 

Similarly, Ih may also interact with the low threshold transient Ca2+ current, Ir, in 

the generation of Ca2+-mediated bursts which may lead to spike generation closely 

resembling the Ih-Ir burst firing mechanism observed in studies of thalamic relay and 

cortical neurons (McCormick and Pape, 1990a; Foehring and Waters, 1991; Bazhenov, 

Timofeev, Steriade and Sejnowski, 2002). The existence of this mechanism, however, 

may be limited since Ir tends to be expressed in only a small population of pyramidal 

neurons (Pare and Lang, 1998). As well, an Ih-h mechanism would depend on situations 

where hyperpolarization of the membrane allowed for the removal of ly inactivation, 

whereas a positive shift in Ih activation would decrease the likelihood of this occurring. 

Thus, McCormick and Williamson (1991) showed that a histamine H2-mediated positive 

shift in h resulted in a reduction of ly-mediated burst firing and an increase in single 

spike activity in thalamic relay neurons. The same effect may result in the reduction of 

cortical h-mediated burst firing. Although it has yet to be shown, h could also produce 

resonance in cortical neurons as has been shown for the thalamus and the inferior olivary 

nucleus (Steriade et al., 1993; Strohmann et al., 1994; Puil et al. 1994; Hutcheon et al., 

1994; Lampl and Yarom, 1997). If so, the effect of histamine could reduce or eliminate 

this resonance. 
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5.5.2.3 hand dendritic integration 

As stated previously, a positive shift in Ih activation would decrease membrane 

impedance at more depolarized potentials, resulting in an increased ability of the 

membrane to rectify hyperpolarization. This effect would also play an important role in 

shaping both excitatory and inhibitory postsynaptic potentials, i.e., EPSPs and IPSPs 

respectively, by changing the membrane's electrotonic properties. Studies of Ih in layer 

V cortex reveal a gradient of dendritic Ih characterized by an increase in current density 

with increasing distance from the soma (Stuart and Spurston, 1998; Williams and Stuart, 

2000; Berger et al., 2001; Lorincz et al., 2002). The increased presence of Ih in the distal 

dendrites has been shown to decrease both the time and length constants of the membrane 

upon activation, resulting in a decreased probability of temporal and spatial integration of 

synaptic input (van Brederode and Spain, 1995; Schwindt and Crill, 1997; Stuart and 

Spurston, 1998; Williams and Stuart, 2000; Berger et al., 2001; Berger, et al., 2003). 

Although a histamine-induced increase in Ih would increase this shunt, it would also act 

to selectively facilitate synaptic input near.fres due to its resonant producing properties. 

5.5.2.4 Ih and subthreshold resonance 

As a low frequency resonant current, Ih is but one mechanism of many by which 

the brain can promote, integrate and stabilize coherent activity. For example, depending 

on state of activity such as the duration and amplitude of neural oscillations, the brain 

appears to have multiple mechanisms at the cellular and network level to handle a broad 

range of synchronized frequencies. In the neocortex, the characteristics of Ih makes it an 
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ideal candidate for the modulation of low frequency input in the subthreshold range near 

rest. As the membrane is depolarized beyond the range of Ih activation the potassium 

current IM, may contribute to resonance (Gutfreund et al., 1995; Hu, et al., 2002.). 

Typical high frequency gamma oscillations, i.e. 30 - 40 Hz, which far outstretch the 

response capabilities of both Ih and IM, have been shown to involve a number of currents 

responsible for spike frequency adaptation, e.g., slowly inactivating K+ currents and INaP 

(Wang, 1993; Fuhrmann, Markram and Tsodyks, 2002). In addition, higher level network 

interactions involving inhibitory intemeurons can elicit both slow (Budd, 2005) and fast 

(Steriade, Timofeev, Durmuller and Grenier, 1998; Brunei, 2000; Sanchez-Vives and 

McCormick, 2000; Steriade, 2001) cortical rhythms. 

As shown in Chapter 4, the membrane impedance determined by Ih is highly 

dependent on frequency. As a result, h acts to attenuate excitatory synaptic input at 

frequencies below roh (see section 1.4, equation 2), and in relative terms facilitate 

excitatory input in the region where resonance is observed, i.e., the region where 

impedance is elevated. The very nature of this range of high impedance provides for a 

filtering mechanism that converts synaptic input at the resonant frequency into larger 

voltage responses than inputs of equal amplitude at frequencies above and below this 

range. The modulation of Ih acts to shift this peak and the characteristic change in the 

overall impedance to higher frequencies, thereby influencing the frequency response 

behaviour of cortical neurons. Moreover, based on modeling studies by Hutcheon et al. 

(1996b ), a depolarizing shift in Ih activation would lead to a greater probability of Ih-I NaP 

overlap resulting in even greater amplification of the high impedance region. This is 
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further accentuated by the fact that Ih 1s movmg further away from the resonant 

attenuating effects of the K+ current, IKir· 

This thesis did not directly examine resonance-action potential coupling, 

however, other studies on pyramidal neurons have shown that resonance leads to an 

enhanced likelihood of generating spikes in response to oscillatory input at or near !res 

(Hutcheon et al., 1996ab, Ulrich 2001). Further support for this action comes from 

studies that have confirmed that the subthreshold frequency preference of neurons is 

clearly communicated in preparations in which the level of synaptic noise is comparable 

to that prevailing in vivo (Richardson, Brunei and Hakim, 2003 ). If this is the case, 

histamine's effect of modulating Ih activation has important functional implications in 

synchronizing neuronal activity, the overall effect being the tuning of cortical activity to 

specific "preferred" frequencies. 

5.5.3 Low frequency activity and behaviour 

Assuming normal physiological conditions, Ih may contribute to the oscillatory 

activity in the brain at frequencies spanning the alpha, theta and delta ranges, i.e. 1 - 15 

Hz (Hutcheon et al., 1996ab ). Within this range, modulation of Ih by histamine may act 

to shift the frequency response of neocortical neurons and consequently the networks to 

which they contribute in a manner similar to the concentration-dependent results shown 

in the preceding chapters. For example, increased firing of histaminergic neurons should 

result in increased levels of histamine in the cortex similar to that observed during 

waking states. A decrease in the firing ofhistaminergic neurons should have the opposite 
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effect as expected during the transition to sleep (Orr and Qauy, 1975; Monti, 1993). In 

fact, this is the case in vivo where histamine levels in the frontal neocortex were found to 

be 3.8 times higher during waking compared to sleep like states, indicating that histamine 

released in the neocortex is strongly related to the sleep-wake cycles and arousal (Chu, 

Huang, Qu, Eguchi, Yao and Urade, 2004). Noting that an additional excitatory effect of 

histamine in the neocortex is the H1-mediated block of a K+ leak conductance, IKL, the 

actions of histamine on neocortical Ih via the H2 receptor may offer a modulating 

contribution to the transition of neocortical activity between slow wave sleep and more 

tonic desynchronized states observed during waking (Reiner and Kamondi, 1994: 

Steriade, 1996; Bazhenov et al., 2002; Dringenberg and Kuo, 2003). 

Histamine modulation of Ih may also lead to changes in other waking related 

behavioural states that are commonly associated with rhythmic cerebral activities over 

the 1- 20Hz range. For example, the 7 - 12 Hz EEG activity in the brain is associated 

with cognitive behaviours including attention (Yamagishi, Callan, Goda, Anderson, 

Yoshida and Kawato, 2003), memory tasks (Caplan, Madsen, Raghavachari and Kahana, 

2001; Raghavachari, Kahana, Rizzuto, Caplan, Kirschen, Bourgeois, Madsen and 

Lisman, 2001; Rizzuto, Madsen, Bromfield, Schulze-Bonhage, Seelig, Aschenbrenner

Scheibe and Kahana, 2003) and synchronization of primary sensory input, associated 

with changes in behavioural context and expectancy (Von Stein, Chianga and Konjg, 

2000). A similar range of rhythmic activity has also been linked to a number of motor 

behaviours including fluid self-administration tasks (Fontanini and Katz, 2005) and 
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patterned motor activity during and after exploratory behaviour (Nicolelis, Baccala, Lin 

and Chapin, 1995; O'Connor, Berg and Kleinnfeld, 2002). 

Cortical rhythmic activity in the low frequency range has also been linked to 

pathological conditions as well. Studies involving examintation of physiological tremor, 

commonly associated with epilepsy and Parkinson's disease, show that a 6 - 14 Hz 

coherence between cortical and electomyogram (EMG) recordings result from a direct 

corticomuscular transmission and that the rhythms are determined within cortical 

networks (Hellwig, Haussler, Schelter, Lauk, Guschlbauer, Timmer and Lucking, 2001; 

Raethjen, Lindemann, Dumpelmann, Wenzelburger, Stolze, Pfister, Elger, Timmer and 

Deuaschl, 2002). Furthermore, it is likely that modulation of Ih may play a role in the 

control of rhythmic activity associated with these pathologies. For instance, the 

generation of slow wave paroxysmal activities (2 - 3 Hz) in the neocortex were shown to 

depend on the interaction of Ih, a calcium activated potassium current, IKca (most likely 

IAHP ), and I NaP and that Ih may plays a significant role in determining the threshold for 

slow wave intracortical seizures (Timofeev, Bazhenov, Sejnowski and Steriade, 2002; 

Timofeev, Grenier and Steriade, 2004). Similarly, in mutant stargazer mice, a model for 

generalized non-convulsive spike wave epileptic seizures, the current amplitude of Ih in 

layer V was found to be three times larger than in control neurons and it was suggested 

that this increase contributes to a hyperexcitable network and a subsequent a lower 

threshold for the onset of seizure activity (DiPasquale, Keegan and Noebels, 1997). 
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5.6 Future research 

Future research in this area should focus on histamine modulation of cortical 

rhythms. First, a histamine-induced change in subthreshold resonance and action 

potential coupling must be confirmed. Second, the effects of histamine should be 

examined under a variety of oscillatory activities. Early preliminary observations for this 

thesis showed that application of NMDA could repeatedly induce large amplitude 

oscillatory activity in these neurons and therefore could be used as an in vitro model. In 

contrast, other experiments should examine the effects of histamine on in vivo rhythmic 

activity. This could be achieved by recording from identifiable sites within known 

corticocortico or corticothalamic circuits. Other necessary experiments include 

investigations into histamine induced actions in the supra threshold voltage range and the 

possible interactions with subthreshold responses, e.g., a closer examination of Ih and 

INaP, Ir, and IM and how histamine may act to change the interactions of these 

conductances and the frequency response of cortical neurons. 

Future experiments should include the use of infrared differential interference 

contrast video microscopy in combination with independent manipulators for recording 

electrodes. In addition to quick identification of neurons, this visual technique allows for 

the detailed placement of a recording pipette, e.g., dendritic recordings. Multiple pipette 

placements along the soma and the dendrites may provide for a better control and 

understanding of space clamp errors, i.e., histamine modulation of secondary 

conductances that may have confounded the present results. Such studies also may permit 
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examination of the roles of histamine and resonance on coherence between neocortical 

neurons. 
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