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Abstract

Resonance is a biophysical characteristic of a subset of neurons in which the
voltage response of oscillating input peaks at a preferred frequency. Given the
widespread distribution of histaminergic neurons and the known physiology of histamine
receptors in the CNS, it was hypothesized that histamine modulates the resonance of
pyramidal neurons by shifting the activation and kinetics of the hyperpolarization
activated cationic current, Iy.

Employing standard whole cell voltage clamp recording, investigation of the
modulation of I, was confounded by a time dependent hyperpolarizing shift of I. The
addition of cAMP to the recording pipette prevented rundown and resulted in a
depolarizing shift in I, activation consistent with an important role for intracellular cAMP
in the maintenance and modulation of [,

In the presence of cAMP in the pipette, bath application of histamine, 8-bromo-
cAMP, and forskolin, mimicked cAMP-induced changes in I,. Histamine’s action was
mimicked by amthamine (H; agonist), blocked by tiotidine (H, antagonist), and occluded
by forskolin, consistent with an H, receptor-mediated activation of adenylyl cyclase. H7,
a nonspecific protein kinase inhibitor, blocked both the forskolin and histamine-induced
effects on Iy, consistent with involvement of a phosphorylation event.

Using the Impedance Amplitude Profile (ZAP) methodology to profile the
resonant properties of pyramidal neurons, histamine increased both the resonant
frequency (fs) and its magnitude (Q) in a concentration-dependent manner that closely

resembled histamine’s action on I. This was confirmed by application of ZD-7288, an



il

irreversible blocker of In, which blocked both the histamine-induced action and
resonance.

It is concluded that histamine, acting via H, receptor activation of adenylyl
cyclase and possibly a protein kinase, shifts the activation of I to more depolarized
potentials. This action modulates the resonant behaviour of these neurons, which in turn
can influence their oscillatory properties and consequently aid in the synchronization of

larger neuronal networks.
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1. Introduction

1.1 Scope of thesis

Although there exists an extensive literature on the electrophysiology of
neocortical neurotransmitters the extent of their actions on neocortical oscillatory
behaviour remains scant. A goal of this research was to investigate the effects of the
neuromodulator, histamine, on subthreshold resonance in rat neocortical pyramidal
neurons by means of a novel methodology known as the Impedance Amplitude Profile
(ZAP) (Puil, Gimbarzevsky and Miura, 1986; Puil, Gimbarzevsky and Spigelman, 1988)

Many neocortical neurons display subthreshold membrane fluctuations when
depolarized to just below spike threshold. These oscillations reflect a close relationship
with the neurons’ resonant behaviour. Resonance is viewed as a frequency and voltage
dependent peak in a neuron’s impedance. Within this range of impedance, the neuron
exhibits the lowest threshold for excitation (Hutcheon and Yarom, 2000). Central to this
phenomenon are the intrinsic active and passive membrane properties that determine the
input impedance. All neurons have passive properties made up from the leak
conductance and the membrane capacitance. Characterized as a low pass filter, the
passive membrane properties function to attenuate higher frequency inputs thereby
causing the impedance to decrease and roll off. As well, many neurons contain various
active membrane properties, that function as high pass filters that attenuate low frequency
inputs (Hutcheon and Yarom, 2000).

Subthreshold to firing, a hyperpolarization activated cationic current, Iy, together

with the passive properties, may allow certain neocortical neurons to operate as bandpass



filters. This filter property prevents the neurons, and the networks that embed them, from
encoding certain frequencies while promoting others.

The modulation of I, would have profound implications for the excitability and
resonant behaviour of neocortical neurons. It is well established that cyclic nucleotides, in
particular adenosine 3’5-cyclic monophosphate (cAMP), shift I; activation to more
positive potentials (Kaupp and Seifert, 2001; Viscomi, Altomare, Bucchi, Camatini,
Baruscotti, Moroni, DiFrancesco, 2001). Although the mechanisms of resonance have
been established, to date, there is little evidence showing the influence of
neuromodulators on this process. Neocortical networks have long been associated with
organized firing patterns and prominent oscillations during sleep and wakefulness. Given
the role of histamine in modulating such behavioural states, it is a potential candidate for
modulating neocortical resonance. In particular, in the neocortex, the innervation patterns
of histamine containing axons (Kohler, Swanson, Haglund and Wu, 1985; Inagaki,
Yamatodani, Ando-Yamamoto, Tohyama, Wantanabe, Wada, 1988; Panula, Pivola,
Auvinem and Airaksinen, 1989; Manning Wilson, Uhlrich, 1996), the pervasiveness of
histamine receptors (Palacios, Wamsley and Kuhar, 1981; Bouthenet, Ruat, Sales,
Garbarg and Schwartz, 1988; Martinez-Mir, Pollard, Moreau, Arrang, Ruat, Traiffort,
Schawartz and Palacios, 1990; Ruat, Traiffort, Bouthenet, Schwartz, Hirschfeld,
Buschauerand Schunack, 1990; Pollard, Moreau, Arrang, Schwartz, 1993; Traiffort,
Leurs, Arrang, Tardivel-Lacombe, Diaz, Schwartz and Ruat, 1994; Vizuete, Traiffort,
Bouthenet, Ruat, Souil, Trardivel-lacombe and Schwartz, 1997, Honrubia, Vilaro,

Palacios and Mengod, 2000; Pillot, Heron, Cochois, Tardivel-Lacombe, Ligneau,



Schwartz and Arrang, 2002), and the known actions of histamine receptor activation on
cAMP production (Nahorski, Rogers and Smith, 1974; Baudry, Martres, Schwartz, 1975;
Hegstrand, Kanof and Greengard, 1976; Palacios, Garbarg, Barbin and Schwartz, 1978;
Psychoyos, 1978; Olianas, Oliver and Neff, 1984; Al-Gadi and Hill, 1987), make it a
potential modulator of neocortical resonance.

In the present project, based upon preliminary observations, the expected effect of
histamine on I;, was occluded by a current rundown, characterized by a time dependent,
hyperpolarizing shift in the activation of I. This led to investigations of possible factors
responsible for the rundown effect. Elimination of the rundown effect allowed for a full
investigation into the effect of histamine on subthreshold conductances, in particular I,
and novel insights into histamine’s effect on subthreshold resonance.

To set the context of the following investigations the remaining introductory
sections provide a background on histamine anatomy, physiology and major functional
correlates in the CNS followed by an overview of the hyperpolarization activated cationic

current, I, and mechanisms of resonance.

1.2 Histamine in the CNS

1.2.1 Organization

Of the four aminergic systems, serotonin, dopamine, noradrenaline and histamine,
research into the actions and role of histamine in the central nervous system (CNS) has
received limited attention. It has been over 90 years since Sir Henry Dale first discovered

the existence of histamine in animal and plant tissues and over 60 years since the



presence of histamine was described in brain and peripheral nerves in mammals
(Schwartz, Arrang, Garbarg, Pollard and Ruat, 1991). Despite this, the acceptance of
histamine as a neurotransmitter/neuromodulator has only occurred over the last three
decades (Schwartz et al., 1991). Knowledge that has been gathered about the anatomy
and effects of the histaminergic system in the CNS suggests that histamine plays a broad
regulatory role in brain activity. For example, histamine has been linked to numerous
functions and behaviours in the nervous system including;: circadian rhythmicity, such as
arousal and sleep-wake cycles (Nowak, 1994; Gottesmann, 1999; Passani, Bacciottini,
Mannaioni and Blandina, 2000), homeostatic processes, such as fluid balance food intake
temperature regulation (Sakata, Yoshimatsu and Kurokawa, 1997; Hass and Panula,
2003), cardiovascular control, cognition and neural plasticity (Bacciottini, Novoa and
Cacabelos, 2001; Philipp and Prast, 2001; Gu, 2002) and a variety of brain disorders,
such as anxiety and stress (Hill, 1990; Onodera, Yamatodani, Watanabe and Wada,
1994).

A characteristic of the histaminergic system that supports its role as broad
modulator of brain activity is the mechanism of its metabolism and release. Histamine is
formed from the amino acid L-histidine, which is transported in neurons by a nonspecific,
energy-dependent L-amino-acid transport mechanism (Schwartz et al., 1991).
Biosynthesis occurs in one step by the enzyme L-histidine decarboxylase. Similar to
other aminergic transmitters, newly synthesized neuronal histamine is thought to be
stored within vesicles through the actions of the vesicular monoamine-transporter

VMAT-2 (Hoffman, Hansson, Mezey, Palkovits, 1998; Travis, Wang, Michael, Caron



and Wightman, 2000). Unlike other aminergic systems, however, histaminergic neurons
do not exhibit a high-affinity uptake system for histamine, consistent with its suggested
role as a long term modulator of brain activity (Brown, Stevens and Haas, 2001; Haas and
Panula, 2003) This role, however, is not static since the rate at which histamine induces
its effects is dependent on the rate at which histamine is formed and degraded, i.e., the
turnover rate, which is positively correlated to the level of innervation and the activity
level of histaminergic neurons (Hough, Khandelwal, Green, 1984; Oishi, Nishibori,
Saeki, 1984). After release, histamine is metabolized by two routes: (1) oxidation by
diamine oxidase (DOA) leading to imidazole acetic acid (IAA) and (2) methylation by
histamine N-methyltransferase (HMT) resulting in the production tele-methylhistamine
(t-MH) (Brown et al., 2001; Haas and Panula, 2003). In the vertebrate CNS histamine
degradation occurs almost exclusively through methylation (Hough et al., 1984; Schwartz
et al., 1991; Prell, Morrishow, Duoyon and Lee, 1997). In addition to histamine,
histaminergic neurons also contain other neuroactive substances such as GABA (Kohler
et al., 1985; Ericson, Kohler and Blomqvist, 1991; Alanen, Szabat, Visser and Panula,
1992), met-enkephalin (Airaksinen et al.,1992), galanin (Kohler, Ericson, Watanabe,
Polak, Palay, Palay and Palay, 1986; Staines, Yamamoto, Daddona and Nagy, 1986) and
substance P (Airaksinen et al.,1992).

Histamine is localized and released in the CNS from at least two cell types: (1)
non-neuronal mast cells and (2) neurons with long widely projecting axons with
varicosities filled with histamine containing synaptic vesicles (Brown et al., 2001; Haas

and Panula, 2003). The latter is more commonly reported. In either case, the action of



histamine does not action occur through a typical arrangement where pre and post-
synaptic sites directly apposed each other. Instead, both cell types release histamine into
the local extracellular milieu resulting in a concert of effects on a variety of cell types and
cell locations (Takgi, Morishima, Hayashi, Watanabe and Wada, 1986; Schwartz et al.,
1991)

Another factor that supports the histaminergic system acting as a regulatory center
lies in its anatomy. In vertebrates, the histaminergic system is well conserved
phylogenetically where histamine synthesis in the CNS occurs exclusively in the
tuberomammillary nucleus (TM) located in the posterior hypothalamus (Brown et al.,
2001; Haas and Panula, 2003). Anatomical studies in a variety of species have shown that
the projection field of histaminergic neurons innervates virtually every area of the brain
and parts of the spinal cord through three main pathways, two ascending (ventral and
dorsal) and one descending (Kohler et al., 1985; Inagaki et al., 1988; Panula et al., 1989;
Inagaki, Toda, Taniuchi, Panula, Yamatodani, Tohyama, Watanabe and Wada, 1990;
Manning et al., 1996). The descending pathway has the lowest density of fibers and
provides innervation to the midbrain, brain stem, cerebellum and spinal cord (Kohler et
al., 1985; Inagaki et al., 1988; Panula et al., 1989). The ventral ascending pathway has
the highest density of fibers and provides innervation to the hypothalamus, diagonal
band, septum and olfactory tubercle (Inagaki, Toda, Taniuchi, Panula, Yamatodani,
Tohyama, Watanabe and Wada, 1990). The dorsal ascending pathway, having a

somewhat lower density of fibers than the ventral pathway, innervates the amygdala,



thalamus, hippocampus, and more moderately, the neocortex (Kohler et al., 1985; Inagaki
et al., 1988; Panula et al., 1989; Manning et al., 1996).

Less is known about the afferent inputs to the TM. The largest density of afferent
fibers originates from the lateral septum, infralimbic cortex and the preoptic nucleus
(Ericson, Blomqvist and Kohler, 1991). The known roles of each of these areas correlates
well with the behavioural actions of histamine. For example, the lateral septum has been
shown to be involved in some forms of learning and spatial behaviours as well as being
linked to the inhibition of anxiety and the acquisition of behaviours reinforced by
alleviation of anxiety (Thomas and Evans, 1983; Fraser, Poucet, Partlow and Herrmann,
1991; Yadin, Thomas, Grishkat, Strickland, 1993). Similarly, the infralimbic cortex has
been linked to inhibition of inappropriate responding that may lead to increased anxiety
as well as the control of visceral/autonomic activity such as the control of body
temperature and feeding behaviour (Jinks and McGregor, 1997; Quirk, Russo, Barron and
Lebron, 2000; Rhodes and Killcross, 2004; Recabarren, Valdes, Farias, Seron-Ferre and
Torrealba, 2005). The preoptic nucleus is known for its role in the regulation of sleep
and arousal (McGinty and Szymusiak, 2003). More moderate innervation of the T™M
arising from the brain stem has fibres originating from adrenergic (C1-C3), noradrenergic
(A1-A3) and serotonergic (B5-B9) cell groups. The lowest density of fibres originates
from the locus coeruleus, substantia nigra and the ventral tegmental area (Ericson,
Blomgvist and Kohler, 1989).

To date, four histaminergic receptor subtypes, H;, H,, H; and H4 have been

identified with H, being detected predominantly in peripheral tissues (Palacios et al.,



1981; Bouthenet et al., 1988; Martinez-Mir et al., 1990; Ruat et al., 1990; Pollard et al.,
1993; Traiffort et al., 1994; Vizuete et al., 1997; Honrubia et al., 2000; Nguyen, Shapiro,
George, Setola, Lee, Cheng, Rauser, Lee, Lynch, Roth, ODowd, 2001, Pillot et al.,
2002). The following sections provides a brief overview of the three subtypes

predominantly found in the CNS.

1.2.2 Hjreceptor

The H; receptor has a widespread distribution in the CNS (Palacios et al., 1981;
Bouthenet et al.,, 1988; Martinez-Mir et al., 1990; Traiffort et al.,, 1994). Use of
autoradiography and in situ hybridization techniques has shown the highest density of H;
receptors are found in the thalamus, neocortex, basal forebrain, mesopontine tegmentum,
raphe nuclei of the reticular formation and the locus coeruleus, all of which play
important roles in arousal behaviour. High to moderate densities of H; receptors are
found in the limbic system, in particular the hypothalamus, septal nuclei, amygdala,
hippocampus, nucleus accumbens, and in other areas such as nuclei of the cranial nerves,
area postrema and nucleus tractus soltitarius. Lower densities are found in the
cerebellum, with the exception of the molecular layer, and in the basal ganglia.

Investigations into the pharmacology and biochemistry of each mammalian
histamine receptor show they belong to a super-family of seven trans-membrane
spanning, G-protein associated receptors. H; receptors are primarily coupled to Gg/11 and
phospholipase C (PLC) leading to the formation of two second messengers: inostitol

1,4,5-triphosphate (IP3) and diacylglycerol (DAG) (Daum, Downes and Young, 1984;



Donaldson and Hill, 1986; Carswell, Galione and Young, 1987, Claro, Garcia and
Picatose, 1987, Bristrow, Banford, Bajusz, Vedat and Young, 1993; Soria-Jasso, Bahena-
Trujillo and Aris-Montano, 1997). A common action of IP3 is to bind to IP; receptors on
the endoplasmic reticulum, resulting in the release of intracellular calcium whereas DAG
is known for augmenting protein kinase C activity (PKC) (Kirischuk, Tuschick,
Verkhratsky and Kettenmann, 1996, Weiger, Stevens, Wunder and Haas, 1997).

In addition, PLC activation has also been linked to the formation of guanosine
3’,5-cyclic monophosphate (¢cGMP) via a calcium-mediated production of nitric oxide
and a subsequent stimulation of guanylyl cyclase (Richelson, 1978). H; receptors in
neuronal culture and transfected cells have also been shown to couple to phospholipase
A; (PLA;) resulting in an enhancement of arachidonic acid formation (Snider,
McKinney, Forray, Richelson, 1984; Leurs, Traiffort, Arrang, Tardivel Lacombe, Ruat
and Schwartz, 1994). In either case, little is known about the histamine-induced actions
of these messengers in the CNS. However, it has been proposed that both arachidonic
acid and nitric oxide may act as retrograde signals resulting in presynaptic modulation
(Brown et al., 2001). For example, studies of the hypothalamus showed that nitric oxide
inhibited and augmented the release of histamine and glutamate, respectively (Prast,
Lamberti, Fischer, Tran and Philippu, 1996). Studies involving corticostriatal
preparations showed that inhibition of nitric oxide resulted in an increase in histaminergic
field potential depression indicating that nitric oxide may act to occlude or inhibit the
ability of histamine to depress synaptic transmission (Doreulee, Yanovsky, Flagmeyer,

Stevens, Haas and Brown, 2001). Histamine-induced production of arachidonic acid
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could result in synaptic modulation leading to changes in adaptive neural plasticity, a
known effect of PLA; activity in the CNS (Volterra, Trotti, Cassutti, Tromba, Galimberti,
Lecchi and Racagni, 1992; Massicotte, 2000). For example, in rat hippocampus, an area
of high H; receptor densities and long-term increase of hippocampal excitability induced
by H; and H; receptor activation, arachidonic acid has been shown to exert a long-lasting
facilitatory action on synaptic transmission and may be a significant factor for the
expression of long term potentiation (LTP) (Selbach, Brown and Haas, 1997; Nishizaki,
Nomura, Matsuoka and Tsujishita, 1999).

H; activation has also been linked to the augmentation of H» receptor-mediated
increases in cAMP production (Baudry et al., 1975; Hegstrand et al., 1976; Palacios et
al., 1978; Psychoyos, 1978, Daum, Hill, Young, 1982; Al-Gadi and Hill, 1987;
Donaldson and Hill, 1986; Donaldson, Hill and Brown, 1988; Leurs et al., 1994),
presumably through activation of PKC (Schwabe, Ohga and Daly, 1978; Hollingsworth,
Sears and Daly, 1985; Garbarg and Schwartz, 1988; Donaldson, Brown and Hill, 1989,
Leurs et al., 1994). Conversely, H; receptors have been indirectly linked to inhibition of
cAMP production through an H;-induced increase in somatostatin-mediated inhibition of
adenylyl cyclase activity (Puebla, Ocana Fuentes and Arilla, 1997).

There is considerable evidence for Hj;-mediated actions in CNS preparations
(Figure 1.1). In the human neocortex, H; receptors have been shown to produce
excitation through a calcium-independent reduction of a background potassium leak

current (Ixr), presumably through direct G-protein coupling, resulting in membrane
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Figure 1.1 Summary of H; receptor signalling pathways and membrane responses
in the CNS.

Dotted lines signify unclear signal transduction pathways. Plus and negative signs in
parenthesis indicate pathway effects, i.e., enhancement or reduction, respectively.
Question marks (?) represent undetermined action. H; receptors predominantly couple to
phospholipase C (PLC) via Gg11 G-proteins resulting in the production of two second
messengers, inositol-1,4,5-triphosphate (IP;) and diacylglycerol (DAG) from
phosphatidyl-4,5 biphosphate (PIP,). IP; leads to the release of calcium from intracellular
stores. H; receptor-induced increases in intracellular calcium can result in production of
nitric oxide, a possible retrograde messenger, and the subsequent activation of guanylyl
cyclase (GC) leading to the production of ¢cGMP which may increase gap junction
conduction. H; receptor-induced increases in intracellular calcium have also been shown
to increase the calcium activated potassium current (Iagp) resulting in hyperpolarization
of the membrane, as well as an increase in a sodium/calcium exchanger and a
depolarizing after potential (DAP) via an unknown channel, both resulting in a
depolarization of the membrane. DAG enhances PKC activity which leads to the
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phosphorylation of various protein targets such as the glutamate NMDA receptor
resulting in an enhancement of NMDA-mediated currents. It should also be noted that
histamine may also act directly at the NMDA channel. As well, PKC has also been
shown to enhance the formation of cAMP by other substances i.e., histamine via the H;
receptor, coupled to the G; G-protein. For other effects little is known about the
signalling pathways. A commonly observed effect of H; receptor activation is the
reduction of a potassium leak current (Ixr) leading to a depolarization of the membrane.
Others include an enhancement of a TTX insensitive sodium current (Ina TTxins) also
resulting in a depolarization of the membrane. Other lesser known effects include H;
receptor-induced c-fos expression, activation of CREB and coupling to phospholipase A,
(PLA)) resulting in the production of arachidonic acid (AA), another possible retrograde
messenger.
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depolarization and facilitation of signal transmission due to a decrease in membrane
conductance (Reiner and Kamondi, 1994). Similar H; mechanisms have been observed in
other tissue preparations. An H;-mediated block of Ix; has been shown in rat
hypothalamic supraoptic nucleus, and cat and guinea pig lateral geniculate nucleus
(McCormick and Williamson, 1991; Li and Hatton, 1996). A similar effect was also
observed in dissociated neostriatal neurons where both H; and H, receptors mediated a
decrease in an unknown K conductance (most likely Ix; ) (Munakata and Akaike, 1994).

A synergistic excitatory action was also reported in nucleus basalis cholinergic
neurons. However, whether H; and H, receptors converged on the same physiological
mechanism was not determined (Khateb, Fort, Pegna, Jones and Muhlethaler, 1995).
Another known action in the neocortex is the facilitation of the N-methyl-D-aspartate
(NMDA) receptor-mediated depolarization. (Payne and Neuman, 1997). In the same
investigation, the lack of a block of the histamine effect in magnesium free medium also
suggests that histamine acts directly via a unique site on the NMDA receptor. Similar
histamine receptor independent actions on NMDA receptors were observed on neurons
from hippocampal slices, cultures and acutely dissociated preparations (Bekkers, 1993,
Vorobjev, Sharonova, Walsh and Hass, 1993; Brown, Fedorov, Haas and Reymann,
1995; Bekkers, Vidovic and Ymers, 1996), as well as in Xenopus oocytes expressing
recombinant NMDA receptors (Williams, 1994).

In rat cholinergic septal neurons, H; receptors have also been shown to produce a
calcium independent increase in a TTX-insensitive sodium conductance (Gorelova and

Reiner, 1996). In vasopressinergic supraoptic neurons, H; receptor-mediated excitation
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was shown to occur through the activation of a calcium-dependent Na*-Ca**exchanger
and through the calcium dependent enhancement of a depolarizing after potential (DAP)
following single firing or burst activity (Smith and Armstrong, 1993, Smith and
Armstrong, 1996). Histamine has also been shown to reduce a voltage dependent
potassium current, Iy, in bovine adrenal chromaffin cells, presumably through the
activation of the H; (Wallace, Chen and Marley, 2001). Another action of H; receptor
activation is an increase in the number of open gap junctions in cultured supraoptic
neurons, an effect that was mimicked by application of cGMP analogues (Hatton and
Yang, 1996).

Of equal interest, the H; receptor has also been linked to increases in the
expression of the early-gene c-fos in suprachiasmatic neurons, although the signalling
pathway was not investigated (Vizuete, Dimitriadou, Traiffort, Griffon, Heron and
Schwartz, 1995). Histamine has also been shown to up-regulate cAMP response element
binding (CREB) protein phosphorylation in developing oligodendrocytes, a process
which was linked to PKC and mitogen-activated protein kinase (MAPK) activity (Sato-
Bigbee, Pal and Chu, 1999). This may suggest that H; receptors also play a role in
modulating transcriptional control under certain physiological conditions.

Although the data are somewhat limited, H; receptors have also been shown to
mediate an inhibitory response. For example, in cultured C6 glial cells, H;-mediated
increases in intracellular calcium via PLC have been shown to increase the conductance
of a calcium-dependent potassium channel (Iagp) (Weiger, et al., 1997). This mechanism

has been proposed for the H,-induced inhibition of firing and hyperpolarization in
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hippocampal neurons (Haas, 1981). A similar effect was observed in olfactory bulb

interneurons where H; receptor activation augments an apamine-sensitive outward

current (Jahn, Haas, and Hatt, 1995).

1.2.3 H; receptor

In contrast to H, receptors, H, receptors are present in low densities in the
hypothalamus, thalamus and the septum and high densities in the basal ganglia and the
cerebellum. On the other hand, similar to H; receptor localization, they are found in
higher to moderate densities in parts of the limbic system such as the hippocampal
formation and the amygdala. They are also present in moderate levels in neocortex, as
well as in a number of aminergic cells groups such as the locus coeruleus, substantia
nigra and raphe nuclei suggesting a synergistic role (Ruat et al., 1990; Martinez-Mir et
al., 1990, Vizuete et al., 1997; Honrubia et al., 2000).

H, receptors predominately couple to G proteins and adenylyl cyclase resulting in
an enhancement of cAMP formation (Nahorski et al., 1974; Baudry et al., 1975;
Hegstrand et al., 1976; Palacios et al., 1978; Psychoyos, 1978; Olianas et al., 1984; Al-
Gadi and Hill, 1987). As well, it has been suggested that H, receptors may also couple to
the PLC pathway, independent of adenylyl cyclase. However this has yet to be described
in the brain (Wang, Gantz and Del Valle, 1996; Hill, Granellin, Timmerman, Schwartz,
Shankley, Young, Schunack, Levi and Haas, 1997; Wang, Hoeltzel, Gantz, Hunter, Del

Valle, 1998).
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Figure 1.2 Summary of H; receptor signalling pathways and membrane responses
in the CNS.

Dotted lines signify unclear signal transduction pathways. Plus and negative signs in
parenthesis indicate pathway effects, i.e., enhancement or reduction, respectively.
Question marks (?) represent undetermined action. Hj receptors predominantly couple
to adenylyl cyclase (AC) via G G-protein resulting in the conversion of adenosine
triphosphate (ATP) into cyclic adenosine monophosphate (cAMP). Through a direct
action, CAMP shifts the voltage dependence of the hyperpolarization activated cationic
current (I) in a depolarizing direction subsequently resulting in a small depolarization of
the membrane and a change in neuronal firing characteristics. Further down stream,
cAMP activates protein kinase A (PKA) which acts to reduce the calcium activated
potassium current (Iapp) resulting in a depolarization of the membrane and an
accommodation of firing. PKA may also activate CREB. Other effects where less is
known about the transduction pathways include decreased formation of arachidonic acid
(AA), inhibition of potassium leak conductance (Ixy) resulting in a depolarization of the
membrane, an increase in a chloride conductance (I¢;) resulting in a hyperpolarization of
the membrane, and a possible PKA-mediated enhancement of NMDA-mediated currents

(InvpA)-
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The actions of H, receptors produce a mixed degree of excitation and inhibition
within the CNS (Figure 1.2). In the rat neocortex, H; receptors potentiate excitation by
reducing Iapp, resulting in a decrease in spike adaptation (McCormick and Williamson,
1991, McCormick, 1992, McCormick, Wang and Huguenard, 1993). The same action is
reported from investigations involving rat hippocampus and dentate gyrus (Haas and
Konnerth, 1983; Haas, 1984; Haas and Greene, 1986; Greene and Haas, 1990).
Moreover, this mechanism of block occursin the absence of changes in intracellular
calcium levels and most likely involves a cAMP-PKA mediated phosphorylation of
the channel (Hass, 1985; Haas and Greene, 1986; Greene and Haas, 1990; Pedarzani and
Storm, 1993; Haug and Storm, 2000).

H, and H, receptor activation may result in opposing physiological responses in
some tissue types such as the hippocampus. For example, the H, receptor-mediated
reduction of Iayp is opposite to that described for H; receptors. A similar opposing action
may exist in relation to the production and release of arachidonic acid. In Chinese
hamster ovary cell lines transfected with guinea pig H» receptors, H, receptor activation
leads to a decrease in the release of arachidonic acid through a cAMP and Ca®*
independent pathway (Traiffort, Ruat, Arrang, Leurs, Promelli and Schwartz, 1992).

H, receptors have also been linked to a reduction in other potassium
conductances. For example, as mentioned previously, H, receptor activation leads to a
decrease in an unspecified K™ conductance in dissociated neostriatal neurons (most likely
Ixr) resulting in transient increases in excitability (Munakata and Akaike, 1994). H,

receptor activation also lowers the maximum firing frequency in fast spiking inhibitory
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interneurons of the hippocampal formation. This reduction occurs through a PKA
dependent block of the Kv3.2 containing potassium channel, a member of the Kv3
superfamily of delayed rectifier-type K channels (Atzori, Lau, Tansey, Chow, Ozaita,
Rudy, McBain, 2000).

In the hippocampus and thalamus, H; receptor-induced increases in cAMP shift I,
activation kinetics to more positive potentials. This shift results in excitatory action
which can switch neuronal activity from burst mode to single spike firing, thus promoting
accurate transmission at specific frequencies (McCormick and Williamson, 1991; Pape,
1996; Storm, Winther and Pedarzani, 1996). Conversely, due to the reportedly higher
density of I channels in hippocampal dendrites, an increase in I, conductance can
negatively influence dendritic spatial integration of synaptic input, thus leading to further
modulation of transmission (Magee, 1998).

H, receptor activation in the hippocampus can also result in long term increases in
excitability via an adenylyl cyclase/PKA-signal transduction cascade. Moreover, this
effect is significantly attenuated after application of DL-2-amino-5-phosphonopentanoic
acid (APV) indicating an NMDA receptor-dependent component (Selbach et al., 1997).

H, receptors have also been shown to mediate inhibition. For example, in ferret
GABAergic neurons of the perigeniculate nucleus, H, receptor activation resulted in a
slow hyperpolarizing response as a result of an increase in membrane Cl” conductance, an

effect only previously seen in invertebrate models (Lee, Broberger, Kim and McCormick,

2004).
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Finally, H, receptors may also be linked to modulation of transcriptional activity.
In the hippocampus, H, and Hj receptor activation has been shown to improve memory
consolidation through the phosphorylation of the extracellular signal-related kinase2
(ERK3) indicating a role in the modulation of neural plasticity (Impey, Obrietan and
Storm, 1999; Giovannini, Efoudebe, Passani, Baldi, Bucherelli, Giachi, Corradetti and
Blandina, 2003). The mechanism of phosphorylation was not determined, but may have
involved the cAMP/PKA pathway. Similarly, given the strong evidence that H, receptors
predominantly couple to the cAMP/PKA signalling cascade, their activation may result in
the upregulation of the transcriptional factor CREB via cAMP-PKA phosphorylation

(Sheng, McFadden, Greenberg, 1990; Brown et al., 2001; Hass and Pannula 2003).

1.2.4 Hj receptor

Compared to the H; and H; receptors, Hj receptors are more pervasive in the CNS
(Pollard et al., 1993; Pillot et al., 2002). Characteristic of its role as an autoreceptor, H;
receptors are found in high densities on TM neurons. Outside the TM, Hj receptors are
found in the highest densities in the neocortex, olfactory nucleus, nucleus accumbens,
caudate putamen, striatum and the substantia nigra, as well as in many nuclei of the
hypothalamus. More moderate densities are found in the hippocampal formation,
thalamus and the lower brainstem.

Hj receptors primarily couple with the Gi/G, G-protein (Figure 1.3) (Brown and
Hass, 1999; Clark and Hill, 1996; Laitinen and Jokinen, 1998; Drutel, Peitsaro, Karlstedt,

Wieland, Smit, Timmerman, Panula and Leurs, 2001). Recent cloning investigations have
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Figure 1.3 Summary of Hj receptor signalling pathways and membrane responses
in the CNS.

Dotted lines signify unclear signal transduction pathways. Plus and negative signs in
parenthesis indicate pathway effects, i.e., enhancement or reduction, respectively.
Question marks (?) represent undetermined action.  Hj receptors predominantly couple
to Gi/, G-proteins. The most common action of this coupling is the inhibition of high
voltage activated calcium channels (HVACCS), which in presynaptic terminals, results in
reduced release of histamine and other neurotransmitters. Other effects, where less is
known about the signalling pathways, include increased release of arachidonic acid (AA),
inhibition of the adenylyl cyclase (AC)/protein kinase A (PKA) pathway resulting in
decreased histamine synthesis and stimulation of the ERK/MAP kinase signalling
pathway. (Hde (histidine), HDC (histidine decarboxylase), His (histamine)).
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identified Hs-mediated inhibition of forskolin-induced formation of cAMP which
suggests the involvement of adenylyl cyclase (Lovenberg, Roland, Wilson, Jiang, Pyati,
Huvar, Jackson and Erlander, 1999). Drutel et al. (2001) showed the existence of at least
three functional Hj receptor subtypes, Hs,, H3p and Hs,, which differentially couple to the
G; protein dependent inhibition of adenylyl cyclase in a number of COS-7 cell lines.
Further support of these findings comes from an investigation into the mechanism of Hj
inhibition of histamine synthesis in neocortical neuronal cultures (Gomez-Ramirez, Ortiz
and Blanco, 2002). The results of this study showed that histamine synthesis was
dependent upon an adenylyl cyclase-protein kinase A pathway, possibly leading to
phosphorylation of histidine decarboxylase (Huszti and Magyar, 1984; Joseph, Sullivan,
Wang, Kozak, Fenstermacher, Behrendsen and Zahnow, 1990), and that this action was
prevented in the presence of imetit, an H3 receptor agonist.

H; receptors have also been linked to ERK/MAP kinase signalling pathway
(Drutel et al., 2001; Giovannini et al., 2003). Drutel et al. (2001) showed that the three
identified Hs; receptor subtypes differentially couple to the G; protein dependent
phosphorylation and subsequent stimulation of the p44/p42 MAPK. Similarly, as
mentioned previously, Giovannini et al. (2003) showed that H; receptors’ activation
resulted in an improvement in memory consolidation that was linked to the
phosphorylation of ERK,. However, unlike the findings of Drutel et al. (2001), the
mechanism did not appear to be mediated through a direct H; Gi/G, G-protein

mechanism.



22

Physiologically, Hj receptors are generally classified as autoreceptors resulting in
the inhibition of histamine synthesis (Arrang, Garbarg and Schwartz, 1987; Garbarg,
Tuong, Gros and Schwartz, 1989; Oishi, Itoh, Nishibori and Saeki, 1989; Yates, Tedford,
Gregory, Pawlowski, Handley, Boyd and Hough, 1999) and release (Arrang, Garbarg and
Schwartz, 1983; Arrang, Garbarg, Quach, Dam, Yeramian and Schwartz, 1985; Arrang,
Devaux, Chodkiewicz and Schwartz, 1988; Westerink, Cremers, De Vries, Liefers, Tran
and De Boer, 2002; Lamberty, Margineanu, Dassesse and Klitgaard, 2003), as well as the
release of other transmitters including serotonin (Schlicker, Betz and Gothert, 1988; Fink,
Schlicker, Neise and Gothert, 1990; Threlfell, Cragg, Kallo, Turi, Coen and Greenfield,
2004), noradrenaline (Schlicker, Fink, Hinterthaner, Gothert, 1989; Fink, Schlicker and
Gothert, 1994; Schlicker, Kathmann, Detzner, Exner and Gothert, 1994), dopamine
(Schlicker, Fink, Detzner and Gothert, 1993), acetylcholine (Arrang, Drutel, and
Schwartz, 1995; Blandina, Giorgetti, Bartolini, Cecchi, Timmerman, Leurs, Pepeu and
Giovannini, 1996; Blandina, Giorgetti, Cecchi, Leurs, Timmerman and Giovannini, 1996;
Giorgetti, Bacciottini, Bianchi, Giovannini, Cecchi and Blandina, 1997; Prast, Fischer,
Tran, Grass, Lamberti and Philippu, 1997; Passani and Blandina, 1998), glutamate
(Brown and Reymann, 1996; Brown and Haas, 1999; Doreulee et al., 2001), GABA
(Garcia, Floran, Arias Montano, Young and Aceves, 1997; Arias-Montano, Floran,
Garcia, Aceves and Young, 2001) and various peptides (Hill et al., 1997).

The most common inhibitory mechanisms of transmitter release in the CNS
include inhibition of calcium influx either by (1) blocking presynaptic calcium channels;

(2) by enhancing potassium currents or (3) direct G-protein modulation of the cellular
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apparatus of transmitter release (Thompson, Capogna and Scanziani, 1993; Wu and
Saggau, 1997). Of these, the second is the most commonly reported action for most
transmitter systems. Conversely, it is generally accepted that Hs;-mediated inhibition of
transmitter release occurs via blockade of presynaptic calcium channels; in particular, a
direct Gi/G, G-protein inhibition of high voltage activated calcium channels (HVACCS)
(Takeshita, Watanabe, Sakata, Munakata, Ishibashi and Akaike, 1998; Brown and Hass,
1999). For example, in rat dentate gyrus, H; inhibition of glutamate release was linked to
the reduction of multiple HVACCS including the N and P/Q types (Brown and Haas,
1999). Similarly, in histaminergic neurons of the TM, histamine release was found to be
dependent on both P and N type HVACCS (Takeshita et al., 1998). In the neocortex,
histamine release was found to depend on the L type HVACC (Washington, Shaw, Li,
Fisher and Gwathmey, 2000).

Adding to the complexity of the histaminergic system are the recent findings that
a proportion of the Hj receptor population spontaneously undergoes an allosteric
transition, leading to a conformation that can bind G proteins in the absence of an
agonist, i.e., constitutive activity. This has been shown in both recombinant receptor
(Wieland, Bongers, Yamamoto, Hashimoto, Yamatodani, Menge, Timmerman,
Lovenberg and Leurs, 2001; Rouleau, Ligneau, Tardivel-Lacombe, Morisset, Gbahou,
Schwartz and Arrang, 2002; Wulff, Hastrup and Rimvall, 2002; Takahashi, Tokita and
Kotani, 2003) and in native receptor preparations (Morisset, Rouleau, Ligneau, Gbahou,
Tardivel-Lacombe, Stark, Schunack, Ganellin, Schwartz and Arrang, 2000). Similar to

the agonist-activated receptors, constitutively active Hj receptors induce similar effects,
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i.e., inhibition of adenylyl cyclase, inhibition of histamine release (Schwartz, Morisset,
Rouleau, Ligneau, Gbahou, Tardivel-Lacombe, Stark, Schunack, Ganellin and Arrang,
2003; Takahashi et al., 2003), but have also been shown to elevate arachidonic acid
release (Morisset et al., 2000; Rouleau et al., 2002). More over, their existence presents
important therapeutic opportunities since antagonists once thought to be pure or neutral
have been found to behave as inverse agonists resulting in a reduction of constitutive and
basal receptor activity. These results have led to the suggestion that H; inverse agonists
might be preferred to Hs neutral antagonists in the treatment of histamine-mediated
disorders (Schwartz et al., 2003).

Given the recent discovery that several H3 isoforms vary in the length of their
third intracellular loops, this molecular domain may be responsible for the observed
differences in Hs-mediated signalling and presents the possibility that different isoforms
have yet to be discovered (Tardivel-Lacombe, Rouleau, Heron, Morisset, Pillot, Cochois,
Schwartz and Arrang, 2000; Drutel et al. 2001). On the whole, the evidence suggests that
the Hs receptor is more heterogeneous than first thought and, as a result, is adding a new

level of complexity into the function of the histaminergic system in the CNS.

1.2.5 Histamine and arousal

Histamine’s role in the CNS is closely related to its property of increasing
excitability. In this regard, histamine is commonly associated with the role of mediating
arousal. Studies involving several vertebrate species show that histaminergic neurons,

when activated, increase wakefulness and arousal. For example, early studies involving
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lesions at the level of the posterior hypothalmus induced hypersomnia (Swett and
Hobson, 1968; McGinty, 1969). Later studies revealed that brain levels of histamine in
rats are highest during the day whereas turnover is highest at night (Orr and Qauy, 1975)
which parallels the activity of histaminergic firing (Monti, 1993).

Pharmacological studies provide even more convincing evidence for histamine’s
role in maintaining sleep/wake behaviours. For example, inhibition of the posterior
hypothalamus by muscimol, a GABA, agonist, also leads to a state of somnolence or
hypersomnia (Lin, Sakai, Vanni-Mercier and Jouvet, 1989). More direct inhibition, by
blocking the histamine synthesising enzyme histidine decarboxylase, results in a
depletion of neuronal histamine and a subsequent reduction in the time cats and rats
spend awake (Lin, Sakai and Jouvet, 1988; Kiyono, Seo, Shibagaki, Watanab, Maeyama
and Wada, 1985). This is also supported by early in-vivo studies in rabbits involving
intracerebroventricular (i.c.v.) injections of histamine which favoured wakefulness
(Monnier and Hatt, 1969). Similarly, up regulation of neuronal histamine by oral
administration of the H; antagonist thioperamide also augmented wakefulness in cats
while applications of Hj; agonists resulted in a promotion of deep slow wave sleep (Lin,
Sakai, Vanni-Mercier, Arrang, Garbarg, Schwartz and Jouvet, 1990; Monti, Orellana,
Boussard, Jantos and Olivera, 1991). As well, the waking effects observed in the
presence of thioperamide were blocked in the presence of the H; antagonist mepryamine
consistent with an H;-mediated increase in wakefulness (Lin et al., 1990). Consistent
with this finding, other studies involving the injection (e.g., .i.c.v.) of H; agonists and

antagonists reveal a dose dependent increase and decrease in wakefulness, respectively
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(Kalivas, 1982; Monti, Pellejero and Jantos, 1986; Lin et al.,, 1988; Tasaka, Chung,
Sawada and Mio, 1989; Monti, Jantos, Leschke, Elz and Schunack, 1994; Lin et al.,
1994; Lin, Hou, Sakai and Jouvet, 1996; Tashiro, Mochizuki, Iwabuchi, Sakurada, Itoh,
Watanabe and Yanai, 2002).

Evidence suggesting a role for H; receptors in arousal is limited. ICV injections of
an H; receptor antagonist had little effect on histamine-induced electroencephalogram
(EEG) arousal observed in the neocortex and thalamus (Tasaka et al., 1989). Likewise,
rats administered with the brain penetrating H, antagonist zolantidine showed no
significant changes in any of the sleep parameters examined (Monti, Orellana, Boussard,
Janto and Olivera, 1990). As well, investigations into the effects of microadministration
of the H, agonist impromidine into the mesopontine tegmentum showed little change in
the cortical EEG and the sleep-wake cycle in freely moving cats (Lin et al, 1996).

Similar to noradrenergic and serotonergic systems, histaminergic neurons are
continuously active during wake, reduce discharge during non-rapid eye movement
(nonREM) sleep, and cease discharge during REM sleep (Vanni-Mercier, Sakai and
Jouvet, 1984). The route by which histamine acts to maintain arousal is complex. At the
level of the hypothalamus, the onset of sleep has been traced to neurons in the ventral
preoptic area which, when activated, are thought to turn off the histaminergic T™
neurons as well as other aminergic neurons via strong monosynaptic GABAergic and
galinergic connections (Sherin, Shiromani, McCarley and Saper, 1996; Yang and Hatton,
1997; Sherin, Elmquist, Torrealba and Saper, 1998; Szymusiak, Alam, Steininger and

McGinty, 1998). Indirect routes for histamine-induced arousal involve histaminergic
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inputs to cholinergic neurons in both the basal forebrain and the mesopontine tegmentum
of the brain stem, which subsequently provides direct input to the neocortex and via
thalamocortical radiations (Khateb, Serafin and Mubhlethaler, 1990; Khateb et al., 1995;
Lin et al, 1996; Cecchi, Passani, Bacciottini, Mannaioni and Blandina, 2001). Histamine
has also been shown to regulate neocortical arousal by stimulating serotonergic neurons
in the dorsal raphe nucleus (Brown, Sergeeva, Eriksson and Haas, 2002). Of these, the
cholinergic and serotonergic pathways appear to be essential for producing activation in
the neocortex since concurrent blockade of cholinergic and serotonergic inputs to the
neocortex abolishes neocortical electrocorticographic activity (Dringenberg and
Vanderwolf, 1998). On the other hand, reductions of neocortical histamine through
inhibition of histidine decarboxylase had no obvious effect on low voltage fast activity in
the neocortex during waking (Servos, Barke, Hough, and Vanderwolf, 1994). Similarly,
destruction of the posterior hypothalamus only revealed a severe reduction in normal
sleep wake cycles for 3 to 4 days and in evoked cortical low voltage fast activity for 2 to
3 weeks (Denoyer, Sallanon, Buda, Kitahama and Jouvet, 1991).

In contrast, during a cataplexic event (a symptom associated with narcolepsy
where muscle tone is lost during a waking state) histamine neurons are active at greater
or similar levels to those observed during normal wake states while noradrenergic
neurons and serotonergic neurons show complete inactivity or greatly reduced activity.
As a result, the role of other aminergic neurons may be more tightly coupled to the

maintenance of muscle tone in waking and its loss during REM sleep (John, Wu,
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Boehmer and Siegel, 2004), however, an indirect route via cholinergic inputs was not
ruled out.

In summary, histamine appears to contribute to arousal indirectly by stimulating
other aminergic activating cortical inputs. On the other hand, the direct actions of
histamine on the neocortex, i.e., H; receptor mediated block of a Ixy and facilitation of
NMDA receptor mediated currents resulting in excitation, an H, mediated block of Inpp
resulting in accommodation of firing and H; mediated control of neurotransmitter release,
most likely play supporting modulatory roles (Wada, Inagaki, Yamatodani and
Watanabe, 1991; Dringenberg and Vanderwolf, 1998). For example, in urethane-
anaesthetized rats, histamine was shown to primarily facilitate electrocorticogram
activation by potentiating the excitatory influence of cholinergic brainstem fibres at the
level of the basal forebrain, whereas in the neocortex the action of histamine produced a

small suppression of slow delta oscillations (Dringenberg and Kuo, 2003).

1.2.6 Histamine and homeostasis
1.2.6.1 Fluid balance

Fluid balance is strongly associated with histamine stimulation of the supraoptic
nucleus resulting in release of vasopressin, which induces antidiuresis (Bhargava,
Kulshrestha, Santhakumari and Srivastava, 1973; Tuomisto, Eriksson and Fyhrquist,
1980; Armstrong and Sladek, 1985; Kjaer, Knigge, Rouleau, Garbarg and Warberg,
1994). Similar actions are observed with histamine stimulated renin release following

dehydration, which can lead to the eventual production of aldosterone that acts primarily
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on the kidney by inducing retention of sodium and water (Matzen, Knigge and Warberg,
1990; Kjaer, Knigge, Jorgensen and Warberg, 1998). This is also supported by studies
which show that injection of H; and H, antagonists into the ventromedial hypothalamus
decreased water intake (Magrani, de Castro e Silva, Varjao, Duarte, Ramos, Athanazio,

Barbetta, Luz and Fregoneze, 2004).

1.2.6.2 Feeding

Histamine suppression of feeding most likely occurs by H; receptor-mediated
actions on the ventromedial nucleus of the hypothalamus, an area important in satiety
(Sakata, Fukagawa, Ookuma, Fujimoto, Yoshimatsu, Yamatodani and Wada, 1988;
Sakata, Ookuma, Fukagawa, Fujimoto, Yoshimatsu, Shiraishi and Wada, 1988).
Histamine may also act to suppress feeding behaviour by acting on the mesencephalic
trigeminal nucleus, an area that controls mastication (Fujise, Yoshimatsu, Kurokawa,
Oohara, Kang, Nakata and Sakata, 1998). Recent studies involving H; receptor knock-out
mice suggest that histamine suppression of feeding is dependent on leptin, a
multifunctional cytokine and hormone, which acts to enhance histamine release and
metabolism (Morimoto, Yamamoto, Mobarakeh, Yanai, Watanabe and Yamatodani,
1999; Toftegaard, Knigge, Kjaer and Warberg, 2003). In contrast, histamine has also
been shown to influence leptin concentration by inhibiting its expression, thus providing
evidence for a bi-directional regulatory loop and a possible pathomechanism for obesity
and anorexia (Mercer, Kelley, Haq and Humphries, 1996; Morimoto et al., 1999;

Takahashi, Suwa, Ishikawa and Kotani, 2002; Itateyama, Chiba, Sakata and Yoshimatsu,
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2003; Sakata, Yoshimatsu, Masaki and Tsuda, 2003; Hegyi, Fulop, Kovacs, Falus and
Toth, 2004).

Studies involving energy deficiency in the brain have shown that neural
glucoprivation activates histamine neurons in the hypothalamus and results in an
augmentation of glycogenolysis in the brain (Oohara, Yoshimatsu, Kurokawa, Oishi,
Sacki and Sakata, 1994; Sakata, Kurokawa, Oohara and Yoshimatsu, 1994). As well,
histaminergic stimulation of the sympathetic nervous system has been shown to increase
lipolysis in the adipose tissue (Takahashi and Shimazu, 1981; Bugajski and Janusz,
1981).  Both actions are apparently mediated through the negative feedback loop

between histamine neurons and the leptin signaling system (Sakata et al., 2003).

1.2.7 Histamine and locomotion

Histamine has also been shown to induce ambulatory activity. For example,
locomotive activity was decreased after inhibition of histamine synthesis and H3 receptor
activation resulting in decreased histamine release (Watanabe and Yanai, 2001, Kubota,
Ito, Sakurai, Sakurai, Watanabe and Ohtsu, 2002). Conversely, inhibition of histamine
metabolism and application of Hs; receptor antagonists increas