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Abstract 

Calix[4]naphthalenes are "basket shaped" molecules capable of supramolecular 

complexation with neutral species such as C60. They were first synthesized by Li and 

Georghiou in 1993. Over the past decade much progress has been made towards 

developing practical synthetic routes to other regioisomeric calixnaphthalenes. To date, 

the best synthetic route involves a "one-pot" TiC4-mediated cyclocondensation of 3-

(hydroxymethyl)-2-naphthol, but affords low yields. Since the chemical properties of 

calix[4]naphthalenes need to be fully explored, there is a need for more efficient methods 

of synthesizing these types of compounds. 

Ionic liquids, have shown great potential for use in organic synthesis. Several 

reports have been published which describe the efficient synthesis of cyclotriveratrylene, 

another basket shaped compound of interest, in ionic liquids.29
'
30 In principle, the 

methodology employed could be applicable to the synthesis of calix[4]naphthalenes. We 

therefore explored the use of ionic liquids for their synthesis of calix[ 4]naphthalenes. 

Recently, an unusual method for synthesizing the related calix[4]azulene was 

reported. This synthesis involved a FlorisilR-mediated reaction between azulene and 

paraformaldehyde. We investigated the generality of this process for the synthesis of 

calix[4]naphthalenes. The synthesis of calix[4]azulene was reproducible and provided us 

with a unique chance to look at an unfunctionalized "basket-like" molecule and its 

supramolecular complexation with C60. The low solubility of calix[4]azulene also 

allowed us to use a unique method for the 1H NMR and uv-vis spectroscopy studies. We 

report our methods and results in this thesis. These methods were then used to examine 

the stoichiometry of complexes formed between two different calix[n]arene with C6o. 
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Introduction 

1.1. Introduction 

Chapter 1 

There is a wide range of classes of organic molecules which show potential for 

biological activity. The compounds collectively known as calixarenes are one such class.1 

Calixarenes encompass a large group of compounds, their derivatives and analogues. In 

certain conformations, many calixarenes can be considered to be "basket-shaped" 

molecules, and the cavitie~ of these molecules can bind guest-like molecules.2 Calixarenes 

are made up of individual substituted phenyl subunits linked by methylene groups (Figure 

1.1 ). The cavities generated in these compounds are n electron-rich. As the number of 

subunits increases, so does the size and the flexibility of the "basket". The most common 

calixarenes have between 4-12 subunits; however, most studies have been conducted on the 

smaller, 4-8 subunit-containing calixarenes. Their different conformational properties have 

been extensively studied and their electron-rich cavities formed by the phenyl sub-units 

make them good candidates for supramolecular charge-transfer complexation studies. 

There have been many studies reported on the complexation properties of 

calixarenes and their analogues with ions and other guest molecules, in particular C60•
3

'
4 

Calixarenes have also shown potential to act as selective ionophores and it is note worthy 

that some enzymes act as ionophores5 that help in a cell's absorption and removal of ions. 

The "baskets" formed by calixarenes have two rims, an "upper" and a "lower" one, 

onto which functional groups can be added in order to change some of their chemical 

characteristics. Changing the functional groups on calixarenes means they can be designed 

to hold their "basket-like" conformations, as well as decrease or increase the depths and 

1 



widths of their cavities. The large variety of calixarenes which can be synthesized also 

make them challenging targets in their own right for organic synthesis. Various analogues 

of calixarenes have been successfully synthesized. Two such analogues are the naphthol-

based calixnaphthalenes6 and the azulene-based calixazulene.7
•
8 

1.2. Calixarenes: Derivatives and Analogues 

Calixarenes are composed of n repeating phenol subunits with a methylene bridge 

between each subunit, forming a cyclic compound (e.g.1-4, where n = 4-12). They can 

R 

1. n = 4: calix[4]arene; R = H or alkyl groups 
2. n = 5: calix[5]arene; R = H or alkyl groups 
3. n = 6: calix[6]arene; R = H or alkyl groups 
4. n = 8: calix[8]arene; R = H or alkyl groups 

Figure 1.1. General structure of calix[n]arenes. 

also carry various functional groups on their subunits, on either the upper rim or the lower 

rim. 1 The "lower rim" is where the hydroxy groups are located; the "upper rim" 

substituents are therefore in the positions para to the hydroxy groups. 

Changing the functional groups of a calixarene can change its chemical 

characteristics and help stabilize its conformation. For example, converting the hydroxy 

groups to the corresponding ethers increases the solubility of the calixarene (e.g. 5; Figure 

1.2) in organic solvents. Addition of a sulfonato group to the upper rim, on the other hand, 

2 



creates a calixarene e.g. 6 which is hydrophilic.9 The most common calixarenes have tert-

butyl moieties on the upper rim, e.g. 7. 

R' 

R' 

1. R=R' =H 
5. R=CH3;R'=H 
6. R= H; R' = S03H 
7. R = H; R' = tert-butyl 

Figure 1.2. Some calix[n ]arene derivatives. 

Another way to change the chemical character of a calixarene is to change the 

subunits, for example, by replacing the phenol subunits of a calixarene by a different 

aromatic subunit. An example is to replace the phenols with naphthols to form 

calixnaphthalenes such as 8 (Figure 1.3). The second fused aromatic ring of the 

naphthalene unit in compounds such as 8 creates a deeper and wider basket. The depth of a 

typical calix[4]arene in its "cone" conformation is 5.2 A and its width is 8.5 A, whereas for 

a similar "cone" conformation of calix[4]naphthalene, the corresponding depth is 7.7 A and 

its comparable width is 11.6 A (Figure 1.4.). 10 The electrostatic potential maps of 

3 



calix[4]arene and calix[4]naphthalene (Figure 1.5) clearly show that the calixnaphthalene 

has a deeper, more 1t electron-rich concave surface. 

R 

R 

8. R=H 
9. R = tert-butyl 

Figure 1.3. Some calix[4]naphthalenes. 

While calixnaphthalenes have been much less studied than calixarenes, they have 

been extensively studied by the Georghiou Research Group since they were first reported 

by Li and Georghiou in 1993.11 Calixnaphthalenes show similar potential to calixarenes for 

being functionalized on their upper and lower rims. The "lower" rim of calix[ 4]naphthalene 

is the one defining the intra-annular 16-membered ring; the "upper" rim is defined by the 

positions labeled 7, 17, 27, and 37 (Figure1.6). Common upper rim substituents are tert-

butyl groups, and a common lower rim functionalization is the alkylation of the hydroxy 

groups. 

4 



II 

II II 

l s.sX 

0 1 
~5.2A-. 

l 
11.6i 

l ~1.1X--. 

Figure 1.4. Depth and width of a calix[4]arene compared with calix[4]naphthalene. 

5 



(a) 

(b) 

Figure 1.5. The electrostatic potential maps on the concave surfaces (the 
"cavities") of: a) calix[4]naphthalene (8) and b) calix[4]arene (1) as 

determined by molecular modeling using Spartan Pro. V. 4.0.4 

6 



7 

37 

27 

Figure 1.6. Numbering system employed for the carbon positions of 
calix[4]naphthalenes. 

Other less-known analogues of calixarenes are the calixazulenes, e.g. 107 and 11.8 

Calix[4]azulene 10 has an azulene subunit with a methoxy group attached at the lower 

rims, whereas 11 is the parent hydrocarbon, with the intrannular 16-membered ring still 

being referred to as the lower rim. There is scant literature available on these two 

molecules other than their synthesis; however, they both show potential for supramolecular 

studies. Chapter 4 of this thesis reports the supramolecular binding properties of the 

unfunctionalized calix[4]azulene, 11. 

1.3. Conformations of Calix[4]arenes and Calix[4]naphthalenes 

The conformations of calixarenes have been extensively studied. The common 

reference to calixarenes as being basket-shaped molecules derives from both their NMR 

spectra and single crystal structures. 12 The conformation of a calixarene in which all of its 

7 



hydroxy Is point in the same direction, is called a cone (or "crown") conformation. Cone 

conformations are stabilized by the formation of hydrogen bonds between the lower rim 

hydroxy groups. 

10. R=OCH3 
11. R=H 

Figure 1.7. Structure of calix[4]azulenes. 

The conformations of calix[4]arene can be defined by the direction of the aryl 

groups. In calix[ 4]arenes the methylene bridges define the average plane of the molecule. 

The aryl groups are perpendicular to this average plane and can be pointed upward (u) or 

downward (d) relative to the methylene bridges. 

In solution, calixarenes are much more flexible than in the solid state. The cr-bonds 

of the methylene bridge allow for free rotation of the subunits, and allow these molecules 

to form different conformations. Gutsche13 has classified four major conformers of 

calix[4]arene as follows (Figure 1.8): 

8 



a. 

b. 

c. 

d. 

R RR R 

a 

c d 

Figure 1.8. Conformational isomers of calix[4]arene.4 

The "cone" or the "crown" conformation, in which all four hydroxyl groups 

are syn to one another (u,u,u,u); 

The "partial cone " or "partial crown" conformation, where three hydroxy 

groups are syn to each other and the fourth one is anti to the others (u,u,u,d); 

The "1, 2 -alternate", where two adjacent hydroxy groups are syn to each 

other and anti to the other two hydroxy groups (u,d,u,d); and 

The "1,3-alternate", where alternating hydroxy groups are syn to each other 

and are anti to adjacent hydroxy groups (u,u,d,d). 

Calix[4]naphthalenes show the same four major conformations as calixarenes 

(Figurel.9), but they also show additional characteristics which are not associated with 

calixarenes. When calix[ 4 ]naphthalene inverts through its annulus it forms its own 

enantiomer. Therefore calix[ 4 ]naphthalenes are inherently chiral (Figure 1.1 0). When the 
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calix[4]naphthalene inverts through its annulus, the direction in which the naphthalene 

rings point becomes inverted. 

a 

Figure 1.9. Conformational isomers of calix[4]naphthalene.4 

1.3.1. The Conformations of Calix[6]arenes and Calix[8)arenes 

While calix[4]arenes show a true up/down direction, calix[6]arenes and 

calix[8]arenes are larger and more flexible. 14 The aryl groups are no longer perpendicular 

but point at angles of 45° or more either toward the center, interior or to the exterior of the 

intrannular ring. 

In the solid state, calix[6]arene adopts one oftwo conformations, the "pinched 

cone" 15 or the "1,2,3-alternate" 15 conformations. In solution, calix[6]arene can adopt a 
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third conformation, the "winged cone "15 conformation. These conformations are defined as 

shown in Figure 1.11.: 

Figure 1.10. Interconversion between enantiomeric cone-conformers of 8. 

a. The "pinched cone" or "winged" conformation, in which all oxygens lie on the 

same side of the molecule and two opposite methylene groups point toward the 

center of the cavity; 

b. The "1,2,3-alternate" or "double partial cone" conformations, in which three 

adjacent oxygens are found on one side and the other three oxygens are found on 

the opposite side of the molecule; and 

c. The "winged cone" conformation which shows an outward orientation of all 

methylene groups where two opposite phenols are bent outward and the four other 

aryl groups are aligned in an upward orientation. 

11 



A B 

c 

Figure 1.11. Conformational isomers of calix[6]arene. 

Calix[8]arene is a larger calixarene which would indicate that it has greater 

flexibility; however, calix[8]arene shows an affinity for the "pleated loop" conformation 

(Figure 1.12).16
•
17 

1.4. Synthesis of Calixarenes and Calixnaphthalenes 

1.4.1. One-Pot Procedure for the Synthesis of Calixarenes 

1.4.1.a. Base-Catalyzed Synthesis of Calixarenes 

Over fifty years ago Zink and Ziegler reported the first synthesis of a cyclic 

tetrameric structure, 18 now known as a calix[4]arene, from the base-catalyzed reaction of p

alkylphenols with formaldehyde at high temperature. However, this simple synthesis was 

unreliable and difficult to reproduce. 
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Figure 1.12. The "pleated loop" conformation of calix[8]arene.16 

During the 1970's Gutsche and co-workers developed more reliable syntheses of 

calix[4]arene, calix[6]arene and calix[8]arene.19 These base-catalyzed reactions 

employed different amounts of either NaOH or KOH and diphenylether or xylene as 

solvents with p-tert-butylphenol and formalin. Some optimized reactions are shown in 

Scheme 1.1. 
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OH 

4 

OH 

6 

OH 

8 

0.045 equiv. NaOH 

diphenyl ether, reflux 
50% 

0.34 equiv. KOH 

xylene, reflux 
85% 

0.03 equiv. NaOH 

xylene, reflux 
65% 

7 
4 

6 
12 

8 
13 

Scheme 1.1. Optimized conditions for the base-catalyzed synthesis of calix[n]arene 
(n= 4, 6, 8).6 

1.4.1.b. Acid-Catalyzed Synthesis of Calixarenes 

Previously, it was thought that the condensation of p-alkylphenols with 

paraformaldehyde in acidic conditions only gave long-chain polymers; however, more in-

depth studies of such condensations have been shown to yield large calix[ n ]arenes, where n 
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2: 20. The yields of the large calixarenes were found to be almost quantitative. 1
'
20 Though 

largely base-induced, the synthesis of other calixarenes can also be achieved using acid-

catalyzed reactions. A wide range of acid conditions have been used e.g. the reaction of the 

hydroxymethyl compound 14 with a Lewis acid such as TiCl4 in refluxing dioxane for 110 

hours afforded the calix[4]arene 15 (Scheme 1.2)with 5-29% yeild.21
,2

2 

dioxane, reflux 
OH 96-120 hrs 

14 

R1 =alkyl group or halogen 
R2 = alkyl group 

Scheme 1.2. Acid-catalyzed synthesis of calixarenes.6 

1.4.2. Stepwise Synthesis of Calixarenes 

The synthesis of calixarenes having different para-substituents on their individual 

subunits can be achieved using a stepwise procedure. Two examples of stepwise 

procedures are (a) non-convergent syntheses, and (b) fragmentation syntheses. Stepwise 

procedures in general, have a disadvantage of being lengthy and giving low overall yields. 

1.4.2.a. Non-Convergent Syntheses23 

In non-convergent syntheses of calixarenes, the para-alkylated phenols are 

incorporated one at a time (Scheme 1.3 ). A common procedure is to start with o-bromo-p-
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alkylphenol and use alternating hydroxymethylations. The eventual oligomer formed needs 

to have a hydroxymethyl group at one end to perform the final condensation step which 

will form the final methylene bridge. The opposite end would then have a bromine atom 

(as a blocking group) in the ortho-position which would have to be removed. The 

subsequent condensation step would have to be carried out in high dilution so that the 

oligomers do not react with one other to form undesired long-chained polymers. The 

synthesis of calix[ n ]arenes in this manner involves several reactions, which increase in 

number as n becomes larger. Each step required to synthesize the desired calix[n]arene 

results in a decrease in the overall yield. 

1.4.2.b. Fragmentation Condensations 

Bohmer et al. 24 used a typical fragmentation-type synthesis of calixarene. In a non

convergent synthesis of calixarenes the final step involves an intramolecular 

cyclocondensation. By contrast, the fragmentation synthesis joins two or more fragments 

for the intermolecular condensation step. The methods employed to develop a wide range 

of calix[4]arenes with varying substituents at the para-positions are the [3+1],25
' 

26 the 

[2+2]27 (Schemel.4), and the [2x1+2xlf4 cyclization reactions. 
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Br Br 

Br 

Br OH 

16 17 

Scheme 1.3. Non convergent synthesis of p-tetraalkylcalix[4]arenes.6 
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TiCI4, dioxane 
reflux 

17 

Scheme 1.4. A typical [2 + 2] fragmentation condensation.6 

1.4.3. Synthesis of Calix[4]naphthalenes 

Li and Georghiou reported the first synthesis of an exo-calix[4]naphthalene11 by the 

cyclocondensation of 1-naphthol and paraformaldehyde, in DMF with K2C03. Of the four 

potential regioisomers designated "C-11", "C-12", "C-23" and "C-44" on the basis oftheir 

expected 13C NMR spectra (Figure 1.11), only "C-12" was not found. However, the yields 

of all three regioisomers were low and they were difficult to separate. 

Bohmer et al. were the first to synthesize the endo-calix[4]naphthalene 8 in a 5% 

yield,28 by a TiC14-mediated cyclocondensation of 3-(hydroxymethyl)-2-naphthol in 

dioxane. However, they did not fully characterize the molecule. Ashram and Georghiou6 

re-investigated the Bohmer's conditions and found the conditions to be unreliable. 

However, they did improve on the conditions to get a reproducible 13% yield of 8 and a 

31% yield for the tert-butyl derivative, 9. The synthesis (Scheme 1.5) of 8 starts with the 

methylation of 3-hydroxy-2 naphthoic acid (18) to give methyl-3-hydroxy-2-napthoate (19) 

18 



in 97% yield, which is then reduced by LiA1H4 to give 3-(hydroxymethyl)-2-naphthol (20) 

in 94% yield. The final step is the cyclocondensation of20 to yield calix[4]naphthalene (8). 

The synthesis of the tert-butyl derivative (Scheme 1.6) involves alkylation of 18 via 

the ester using Friedel-Cra:fts conditions to give methyl-7 -tert-butyl-3-hydroxy-2-

naphthoate (21) in 73% overall yield. This is then followed by the reduction and 

cyclocondensation steps to give respectively, a 90% yield of 6-tert-butyl-3-hydroxymethyl-

2-naphthol (22) and a 31% yield of tert-butylcalix[ 4 ]naphthalene (9). 

As indicated previously, the synthesis of calix[4]naphthalenes still needs to be 

optimized in order to have large enough quantities to further investigate their properties. 

Two relatively new methods for synthesizing similar macrocyclic compounds have recently 

been published. 29
' 

30 Ionic liquids have shown promise in the synthesis of compounds such 

as cyclotriverattylene (CTV),29
'
30 and another recent publication has described the synthesis 

of a calix[4]azulene 11 using a Florisil-mediated cyclocondensation.8 Chapter 2 will 

discuss attempts to synthesize endo-calix[4]naphthalene 8 in ionic liquids; Chapter 3 will 

discuss attempts to synthesize 8 using Florisil. 

1.5. Supramolecular Complexation Properties of Cali:xarenes and Cali:xnaphthalenes 

The "cone" conformers of calix[4]arenes and calix[4]naphthalenes suggest that 

they may be able to sequester other species, such as metal ions, or even organic molecules 

into their cavities using intramolecular forces to form complexes. These multi-species 

complexes are known as supramolecular complexes. 
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C-44 

C-23 C-12 

Figure 1.13. The four regioisomers of e.x:o-calix[4]naphthalene. 
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OCH3 
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H2S04 
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LiAIH 4 .. 
THF 

20 

Scheme 1.5. Synthesis of calix[4]naphthalene 8. 

0 

OCH3 

97% 

OH 
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OCH3 
AICI3 ... 

t-butyl Cl 
OCH3 

73% 

19 21 

0 

OCH3 LiAIH4.,. OH 
THF 90% 

21 22 

22 

Scheme 1.6. Synthesis of tert-butylcalix[4]naphthalene 9. 

It has been shown by several groups that calixarenes can form supramolecular complexes 

with C6o.31
"
35 The structures of several such complexes have been determined by X-ray 

crystallography. Complexations studies in solution in various solvents have been used to 

determine the association equilibrium constants, Kassoc (Equation 1.1) for such complexes, 

where [H] is defined as the concentration of the host molecule, [G] is defined 

22 



as the concentration of the guest molecule and [H:G] is defined as the concentration ofthe 

complex. 

Kassoc = [H:G] (1.1) 
[H)•[G) 

1.5.1. Supramolecular Complexation Properties of Calix[n]arenes 

The study of supramolecular complexes is typically conducted using ultraviolet-

visible (uv-vis) spectroscopy. Uv-vis spectroscopy can be used to measure the changes in 

the absorbance spectrum of a pure compound when a second compound is added to the 

solution. A significant change in the absorbance spectrum can be related to the formation of 

a new product, such as a complex. The absorbance data can be analyzed using several 

different methods to determine the association constant, Kassoc, as long as the changes in 

absorbance are related to the formation of a complex or a new reaction product, and are not 

a result of simple addition. 

Tert-butylcalix[4]arene shows little absorbance change when added to a solution of 

C60_36 This indicates that calix[4]arene does not easily form a complex with C60. This may 

be due to the fact that the diameter of C6o is 10.2 A, whereas the maximum width of the 

tert-butylcalix[4]arene basket is only 8.4 A, and thus C6o would not be expected to fit into 

the "basket". However, it has been proposed that a short lived monomeric 1:1 intermediate 

between tert-butylcalix[4]arene and C60, does form. 31 This intermediate distorts the electron 

cloud of C6o, favoring a micelle-like formation featuring fullerene-fullerene interactions in 

the interior core. In this intermediate the C6o is completely encapsulated by tert-

butyl calix[ 4 ]arene molecules. 
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Tert-butylcalix[6]arene is a larger and more flexible calixarene and with a 

correspondingly larger "basket". The increased size of the concave surface of tert

butylcalix[6]arene allows for a longer-lived complex with C6o than for tert

butylcalix[4]arene. As mentioned previously, tert-butylcalix[6]arene also differs from tert

butylcalix[4]arene in its conformations. In complex formation with C60 the latter is in a 

"cone" conformation whereas the former adopts a "double-cone" conformation (Figure 

1.14). The addition of tert-butylcalix[6]arene has been shown to induce a significant 

change in the uv-vis spectrum of C6o· This has been associated with the inclusion of two 

C6o molecules into the "double cone" cavities of the tert-butylcalix[6]arene.32 Tert

butylcalix[6]arene was shown to form a complex with C60 and C70 in a 2:1 ratio offullerene 

to calix[ 6]arene in both cases. This was seen in both the solid state and in solution. The 

stabilization of the "double cone" conformation was not lost when the two fullerene 

molecules were encapsulated into the calixarene. The resulting Kassoc was found to be 230 ± 

4 M-1 in toluene. 

In 1992 Verhoeven33 reported on the absorbance spectra of C60 in toluene and the 

change in absorbance when tert-butylcalix[8]arene is added. He observed a change in 

absorbance which he interpreted to result from charge-transfer interactions, where the 

electron-rich calixarene donates an electron to the electron-poor C60• Atwood34 and later 

Shinkai/5 both found that C6o and tert-butylcalix[8]arene in toluene formed a precipitate 

which was later identified to be a 1:1 complex. Further investigation revealed that 

calix[8]arene did not maintain its conformation in the same way that calix[6]arene does. 
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Figure 1.14. Double cone-conformation of a calix[6]arene. 

A change in infrared (IR) absorbance due to the Vo-H stretch was observed. This 

change indicated that the calix[8]arene switches from a "pleated-loop" conformation to a 

"two-winged" conformation. The value of Kassoc was determined to be 381 ± 4 M 1 in 

toluene. However, this complex dissociates in chloroform and in dichloromethane. 34 These 

solvents compete with C6o, interacting with the aromatic rings of the calixarene, and when 

this occurs there is no longer room for the C60 to be encapsulated within the cavity of the 

calixarene. As a result, the complex is broken. 

The unique properties of the calix[8]arene: C60 complex reveals a simple application 

of this kind of chemistry. When added to a solution of fullerenes such as is found in 

"fullerite", calix[8]arene will only bind with C60 and not with other fullerenes such as C70• 

As a result, calix[8]arene can be used to purify C60, since it forms an insoluble complex in 

toluene, and precipitates. The collected precipitate is dissolved in chloroform causing the 

complex to dissociate: calix[8]arene is soluble in chloroform and remains in solution 

whereas C6o is insoluble in chloroform and precipitates out of solution (Scheme 1. 7). This 

procedure allowed for an effective separation/purification of C6o and C7o. 
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Scheme 1. 7. Purification of fullerene mixture containing a mixture of C60 

and C7o using octa-tert-butylcalix[8]arene. 

1.5.2 Supramolecular Complexation Properties of Calix[4]naphthalene 

As can be seen from Figures 1.4 and 1.5, calix[4]naphthalenes have larger, more n-

electron-rich cavities than calix[4]arenes. The increased size of the "basket" gives a greater 

potential for the inclusion of neutral, electron-deficient or electron-poor guest molecules 

such as C60• The second aromatic ring on each subunit of a calix[4]naphthalene allows for 

increased 7t-7t interaction between guest and host compared to calix[4]arenes. 

The color of C60 in benzene, toluene and carbon disulfide (CS2) is purple, or 

magenta. Addition of calix[4]naphthalene to a solution of C6o causes a change from 

magenta to brown.4 Such color changes in solutions are often an indication that a complex 
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has been formed. The same color change is observed when tert-butylcalix[4]naphthalene is 

added to a solution of C6o, again indicating the formation of a complex. 

Previous work in our group studied the uv-vis spectra of C6o after the addition of 

both calix[4]naphthalene 8 and its tert-butyl derivative 9. Similar bands to those reported 

by Verhoeven33 with calixarenes, and by Atwood34 with CTV were found. It was 

determined that the spectral changes caused by the addition of calix[ 4]naphthalene to C60 

are a result of a complex (or complexes) being formed. A continuous variation method (see 

Chapter 4, section 4.1.2) was used to determine the stoichiometry of the complex being 

formed in each case, and revealed 1:1 complexes were formed, as follows: 

The Kassoc equation can therefore be defined as: 

K [8:C60] 
assoc = (S]•[CSO] 

[9:C60] 
Kassoc = [S]•[CSO] 

1.6. The Problem 

(1.2.) 

(1.3.) 

(1.4.) 

(1.5.) 

Calix[4]naphthalenes 8 and 9 have proven to be challenging synthetic targets. The 

on-going investigation into their supramolecular properties provided incentive to optimize 

their syntheses. This prompted the exploration of the use of ionic liquids, a new medium 

for organic synthesis, to help increase the yields of 8 or 9. Ionic liquids have shown 

promise for this type of chemistry, as a result of the successful synthesis of 
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cyclotriveratrylene ("CTV" See scheme 2.4) in 2: 85% yield directly from its precursor 

veratryl alcohol, by Moens' group.29 

A different attempt to optimize the synthesis of 8 was investigated by the use of 

FlorisilR (instead of TiC4) to mediate the cyclocondensation of 20 to form 8. FlorisilR had 

previously been shown by Colby and Lash8 to facilitate the synthesis of calix[4]azulene 

(11) in relatively high yields. 

The availability of 11 in relatively high quantities prompted an investigation into its 

supramolecular properties in conjunction with the previously mentioned on-going 

supramolecular studies in our lab, since it represented a novel hydrocarbon analogue of the 

calix[4]naphthalenes. 

1.7. Description of Thesis Content 

In this thesis, attempts to improve the cyclocondensation of 8 using two new 

methods are described. As well, the complexation properties of 11 with C60 were studied, 

using both 1H NMR spectroscopy and uv-vis spectrophotometry. 

Chapter Two of this thesis discusses the results which were obtained from the 

synthesis of CTV using ionic liquids as the solvent system, and catalysis using several 

different Lewis acids. The results obtained from the attempted cyclocondensation of 20 to 

form 8, using similar methods as were used for the synthesis of CTV are discussed. 

Chapter Three discusses the attempted synthesis of 8 using Colby and Lash's 

Florisil-mediated conditions8 for the cyclocondensation of 20. This cyclocondensation was 

also attempted using the Florisil-mediated system in conjunction with several different 

Lewis acids. 
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Chapter Four describes the results of the complexation of 11 with C6o in different 

solvents as determined by uv-vis spectrophotometry and NMR spectroscopy. 

Chapter 5 discusses the results obtain from an analysis of a complexation study of 

hexa-tert-buty lhexamethoxycalix[ 6]arene 44 and octa-tert-butlyoctamethoxy-calix[8]arene 

45 with C6o using CS2 as the solvent. 
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Chapter 2 

Progress Toward the Synthesis of Calix[4]naphthalene in Ionic Liquids 

2.1. Introduction 

Traditionally, synthetic organic chemistry is usually carried out in organic solvents. 

Organic solvents have a variety of properties, such as low viscosity and a wide range of 

melting points (m.p.) and boiling points (b.p.), which make them useful for organic 

synthesis. For instance, a reaction which requires low temperatures would be conducted in 

a solvent which has a freezing point (f.p.) below the temperature required. A reaction 

which requires high temperatures would be conducted in an organic solvent which has a 

high boiling point and high thermal stability. Organic solvents range from nonpolar 

solvents, characterized by a low dielectric constant, such as hexanes or benzene, to polar 

solvents, such as ether or ethyl acetate which have dielectric constants that are somewhat 

higher. The organic solvent which is chosen to conduct the desired chemical reaction is 

related to the polarity of the starting material. 

Organic solvents also have some less desirable properties. Many organic solvents, 

such as chloroform, are volatile and relatively toxic. As well, a large number of organic 

solvents such as diethyl ether, are highly flammable.37 Hazards such as these, including 

environmental effects, mean that chemists have to take appropriate precautions when using 

organic solvents. Though the usefulness of organic solvents is indisputable, efforts have 

been made to discover new, safer media for synthetic reactions. 

A new class of solvents, collectively called "ionic liquids", has recently been 

reported in the literature as useful solvent systems for diverse organic reactions. The first 

ionic liquid discovered, in 1914, was ethylammonium nitrate.38 A diverse range of ionic 

30 



liquids have since been developed and they have been used for many different purposes in 

many fields of chemistry. 

2.1.1. Ionic liquids: Defmition and Properties 

2.1.1.a. Definition 

The simplest definition of an ionic liquid is that it is a type of molten salt.39
• 

40 

Molten salts include a large number of liquid state ionic compounds, such as sodium 

chloride (NaCI), which melts at 801 °C.37 Liquid NaCl is a highly viscous and corrosive 

substance, and as such is not practical for most chemical requirements or study. The 

definition of ionic liquids has been further refined to salts which are liquids at relatively 

low temperatures (below 100 °C).39 These lower temperature ionic liquids are much more 

convenient and easier to employ.41 The salts which are liquids at these lower temperatures 

have lower viscosity and are less corrosive/9 and so they are easier and safer to handle. 

2.1.1.b. Melting Points 

Ionic liquids have ·relatively low melting points which are related to their 

compositions. Alkali metal salts such as NaCl or potassium iodide (KI) have strong 

attractions between their ions in each case, creating a tight lattice and resulting in high 

melting points. NaCl and KI have melting points of 801 oc and 770 °C, respectively. If the 

alkali metal is replaced by an organic cation, such as dialkylimidazolium, alkylpyridinium 

or tetraalkylammonium, the melting point of the resulting salt drops below 150 °C (Figure 

2.1).39, 42 

The decrease in melting point is related to many of the characteristics of the 

cation/anion pair, such as low symmetry,43 widely dispersed charge44 and a decrease in 
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intermolecular interactions.45 The three examples of organic cations shown below, all low 

symmetry, which inhibits and interferes with the formation of single crystals. If the ionic 

liquid possesses a large cationic moiety,39 it would be expected that the distance between 

the opposing charges will increase therefore causing the melting point to decrease. 

K'I-

Cl 

/~~ 

801VC 6s«»C 53VC- 56t: 

Figure 2.1. The effect of the cation on the melting points of salts. 

The melting points of ionic liquids are also dependent on the nature of the anion.39 

In general, the larger the anion, the lower the melting point (Figure 2.2). The PF6- anion has 

an anionic radius which is much lager than that of the chloride ion, and this results in a 

depression of the melting point. 

Cl-

+- ~ NaCI + ~ ~ / / "o::::::;?.......,......., 

801VC 65t: 

Figure 2.2. The effect of the anion on the melting points of salts. 
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2.1.1.c. Viscosity 

The viscosities of ionic liquids are much lower than those of other molten salts. The 

lower viscosity makes ionic liquids easier to handle; they can be easily transferred from 

one flask to the next and they can be weighed accurately, since no loss due to volatility 

occurs. The viscosity of a liquid is related to the degree of intermolecular interactions such 

as, hydrogen bonds, van der Waals interactions, London forces and dipole-dipole 

interactions. As a result, the viscosity of an ionic liquid is strongly related to its 

composition.40 An example of the effect of composition on the viscosity is the apparent 

dipole-dipole interactions which exist between ions of an ionic liquid. The strength of a 

dipole-dipole interaction is proportional to llr7
, where r is the distance between charges. It 

becomes obvious how the short distance which exists between small ions creates a highly 

viscous liquid, such as liquid N aCl, and how a small increase in the distance between ions 

will decrease the viscosity significantly. For example, 1-butyl-3-methylimidazolium 

chloride ([bmim]Cl), has greater distance between its ions, than NaCl and therefore has a 

greatly decreased viscosity. 

An example46 of composition affecting the viscosity can be seen by changing the 

concentration of aluminum chloride (AlCh) in an ionic liquid. When the ratio of AlCl4. to 

[bmim] is 0.35:1 in [bmim]AlC4, this gives rise to an ionic liquid with a higher viscosity 

than when the ratio is increased to 0.5. The origin of this effect can be rationalized by the 

equilibrium between 2A1Ch + Cr and AbCh·. The larger AhCh. increases electron 

distribution and reduces the charge density. 
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2.1.1.d. Solvation Strength and Solubility Characteristics 

Ionic liquids as solvents, have a wide range of solvation and solubility properties 

which are related to the combination of anions and cations chosen. Ionic liquids are capable 

of solvating a wide range of organic and inorganic compounds.39 Small changes in the 

composition can change the polarity of the ionic liquid. For example, the butyl chain on 

[bmim]PF6, can be exchanged for an ethyl group to create a more polar ionic liquid. To 

create a less polar ionic liquid, the butyl chain can be exchanged for a six-carbon or larger 

chain.47 

Exchanging the anion45 will also affect the solubility of an ionic liquid. For 

example, the 1-butyl-3-methylimidizolium cation forms hydrophobic ionic liquids with the 

anions PF6- or (CF3S02)2N-, whereas exchanging the anions for BF4-, B{, CF3Coo- or 

CF3S03- creates hydrophilic ionic liquids. 

2.1.1.e. Thermal Stability and Vapor Pressure 

Many ionic liquids are stable over a wide range of temperatures. For example,45 1-

ethyl-3-methylimidazolium and bis(trifluoromethanesulfonyl)amide ion, which has a m.p. 

of -3°C and remains stable with temperatures exceeding 400 °C. However, the stability of 

an ionic liquid is limited by the strength of its heteroatom-carbon and heteroatom-hydrogen 

bonds.39 

An important property of ionic liquids is the lack of any measurable vapor 

pressure.29' 39 This means they do not evaporate and, unlike organic solvents, they are not 

lost to the atmosphere and the chance of ftre and explosion is decreased. As well, this 

decreases the amount of breathable, harmful fumes. The lack of vapor pressure allows 
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liquid products to be distilled out of an ionic liquid without azeotrope formation. Ionic 

liquids can be used under vacuum without loss of the reaction medium. 

2.1.1.f. Environmental Friendliness 

Non-volatile ionic liquids decrease the toxic fumes being released into the 

environment, making them more environmentally-friendly than volatile organic solvents. 

Once an ionic liquid has been used to perform a chemical reaction, it can be easily cleaned, 

recovered and reused repeatedly. Caution however, must be taken when handling and 

disposing of ionic liquids. Their toxicity to humans and the environment remains largely 

unknown. It is recommended that ionic liquids should be handled according to how their 

components are handled. For instance/9
'
48 an ionic liquid containing AlCh should be 

handled as if it were the water-sensitive reagent, and should be kept in an anhydrous 

environment. 

2.1.2. Ionic Liquids- A New Medium for Organic Synthesis 

To date, many different kinds of organic reactions have been attempted in ionic 

liquids. There have been numerous methods described and used to perform organic 

reactions40 in ionic liquids. The most obvious method is to place all the components of an 

organic reaction in a specifically chosen ionic liquid solvent. A second way to use ionic 

liquids is to add an ionic liquid to an organic solvent. Some experiments have shown that 

the presence of an ionic liquid reduces the number of side reactions in the organic reaction. 

A third method is to use the properties of solubility and miscibility and create a two- or 

three-phase system. In such a system, an ionic liquid is chosen which will dissolve the 

catalyst, then water or an organic solvent which is immiscible with the ionic liquid is 
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chosen to dissolve the starting materials. The layers are then vigorously stirred to allow 

contact between reactants and catalyst. If the ionic liquid and organic solvents are chosen 

properly, the product will remain in the organic solvent and the catalyst will remain in the 

ionic liquids, reducing the amount of subsequent purification required. 

The number of reactions that have been conducted in ionic liquids has been growing 

rapidly in recent years, and these include Diels-Alder,50 hydroformylation,51
"
53 

hydrogenation/4
'
55 Heck reaction,56 olefine dimerization57

'
58 and many others. Two 

recent29
,
30 reports on the cyclocondensation of veratryl alcohol (29) to form CTV in ionic 

liquids have appeared. These two reports were the inspiration for the attempts to synthesize 

calix[4]naphthalenes in ionic liquids, which is described in this thesis. 

2.2. Synthesis of Ionic Liquids59 

2.2.1. The Formation ofButylmethylimidazolium Hexafluorophosphate ([bmim]PF6) 

(24)60 

+ Cl~ 

23 

Scheme 2.1. The synthesis of 1-butyl-3-methylimidazolium chloride (23). 

The formation of the n-butyl-methylimidazolium ion is accomplished by the N-

alkylation of 1-methylimidazole with 1-chlorobutane (Scheme 2.1 ). The two reactants are 

mixed in the absence of any solvent. Two layers are formed over a 24 h period; the bottom 

layer is the ionic liquid, the top layer is the unreacted 1-methyl-imidazole and 1-

chlorobutane. When the two layers form one unified layer, the reaction is complete. The 
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resulting salt is a clear, colorless crystal which is hygroscopic, and is stable under 

anhydrous conditions for several weeks. The chloride ion is then exchanged by the addition 

of hexa:fluorophosphoric acid under aqueous conditions (Scheme 2.2). 

23 24 

Scheme 2.2.The synthesis of 1-butyl-3-methylimidazolium hexafluorophosphate (24). 

2.2.2. Synthesis of tri-n-butylhexylammonium ion with bis(trifluoromethanesulfonyl)
amide (N6444 Imide) (28)61 

N6444 Imide (28) requires a convergent-type of synthesis, in that both the cation and 

anion must be synthesized separately, then put together (Scheme 2.3). We first attempted to 

form the cation by the alkylation of a tributylamine with 1-chlorohexane; however the 

chlorohexane was not active enough to alkylate the amine. The more reactive 1-iodohexane 

was then successfully used to synthesize the cation. The formation of the anion was 

accomplished by the deprotonation of (CF3S02)2NH with n-butyllithium at -78 °C. The two 

ions were then combined under aqueous conditions to form the N6444 Imide. 

2.3. Synthesis of CTV (31) in Ionic Liquids 

2.3.1. Previous Work 

In 2000, two groups reported the synthesis of CTV in ionic liquids. The first group 

was that of Moens et a/.29 who reported the synthesis of CTV in [bmim]PF6 using 

vanadium acetate as the Lewis acid (Scheme 2.4). Their yields were not reported; however, 

in attempts to repeat the work, a 85 % yield of highly pure colorless crystals of CTV (31), 
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was achieved. The second group to report the synthesis of CTV was that of Scott et a/.30 

who reported the use of N6444 Imide with H3P04 as the acid catalyst (Scheme 2.5). They 

reported a yield of 89 % of 31, which did not require purification. This result was easily 

reproduced in our lab, as could be ascertained by the NMR and mass spectra of the CTV 

produced (Section 2.6, Appendix A). 

2.3.2. The Synthesis of CTV with a Range of Lewis Acids 

CTV was easily prepared using Moen's conditions; however, it was unclear 

whether the cyclocondensation of veratyrol was dependent on the Lewis acids used in this 

reaction. We then explored the effect of changing the Lewis acid on the synthesis of CTV 

in ionic liquids. The reaction conditions developed in these experiments were then used to 

attempt to synthesize calix[4]naphthalene 8 and 9. 

Table 2.1. Yields using ionic liquids and a variety of Lewis acids in the synthesis of 
CTV. 

Acid Ionic liquid %Yields 

[bmim]PF6 42 °/o 

SnC4 [bmim]PF6 68% 

Sc(OTf)3 [bmim]PF6 40% 

Table 2.1 lists three Lewis acids which were used in the syntheses of CTV in 

[bmim]PF6. Titanium (IV) chloride (TiCl4) was chosen because it is the Lewis acid which 

has been used previously for the syntheses of calyx[4]naphthalenes 8 and 9. 
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Scheme 2.4. The synthesis of CTV using Moens' conditions.29 

N6444lmide 

OH 

Scheme 2.5. The synthesis of CTV using Scott's conditions.30 
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When TiC4 was added to the reaction, the colorless ionic liquid turned to dark 

purple, and within several minutes formed a thick slurry. The precipitate was CTV, which 

is insoluble in the ionic liquid. This reaction yielded 42% of high purity CTV. 

The second Lewis acid used was tin (IV) chloride (SnCl4) because of its similarities 

to TiC4. When the SnC14 was added to the ionic liquid, a dark purple color evolved. 

However, the development of the slurry was much slower and took between 6 and 7 h. The 

average yield obtained using SnCl4 ( 68 %) was found to be much higher than the average 

yield found with TiC4 ( 42 % ). 

Scandium triflate (Sc(OTf)3) was chosen because it is a relatively strong Lewis 

acid, and is much easier to handle than TiC4 or SnC4. Upon the addition of the scandium 

triflate to the reaction mixture, no purple color was observed; however, after 2 days of 

stirring the reaction became cloudy as a result of the formation of CTV. The yield under 

these conditions was 40% which is comparable to that obtained with TiC4. 

2.4. Attempted Synthesis of Calix[4]naphthalene in Ionic Liquids 

The synthesis of the endo-calix[4]naphthalene 8 is described in Chapter 1. The final 

step is a TiC4-mediated cyclocondensation of 20 in refluxing dioxane for 36 hours. Under 

these conditions the yield of 8 is only 13 %. The low yield of this reaction is unfortunate 

because the starting material is consumed and it becomes a challenge to find a method of 

optimizing the cyclocondensation step. 

The use of ionic liquids to improve the cyclocondensation of calix[4]naphthalenes 

was inspired by the synthesis of CTV from veratryl alcohol in [bmim]PF6 and N6444 Imide. 

CTV is synthesized pure and in general in high yields. These encouraging results suggested 
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that this method might improve the synthesis of 8. The similarity of these two syntheses 

comes from the presumed similarity• of the mechanism of formation and the molecular 

structures of the precursors, veratryl alcohol 29, and 20. In both precursors the activating 

aromatic methoxy and naphthyl hydroxyl groups assist in the Friedel-Crafts type 

alkylation. The aromatic ring of a nearby monomer acts as the nucleophile, displacing the 

hydroxy group of the hydroxymethyl side-chain. The result is the formation of methylene

bridged oligomers which under the correct conditions close to form the cyclic 

calix[4]naphthalenes or CTV (Figure 2.3). 

Section 2.3 contains a discussion of several different conditions used to form CTV. 

Those conditions were evaluated in an attempt to optimize the synthesis of 8 (and 9); the 

results are recorded in Table 2.2. 

All reactions were performed by adding the Lewis acid to a solution of 20 in the 

ionic liquid. When vanadyl (IV) acetate was added, the color of the reaction turned green. 

The reaction mixture was allowed to stir for several days with no reaction. observed by 

TLC. The reaction was then heated first to 50 °C and then to 70 °C, with still no reaction 

observed. No attempts were made to heat the reaction above this temperature because PF6-

is known to decompose at higher temperatures. 

The attempt to reproduce the previously known conditions for the formation of 

calix[4]naphthalene, but now in an in ionic liquid was accomplished by adding TiC4 to the 

reaction mixture. The addition of TiC4 caused the same dark purple color change as was 

seen for the synthesis of CTV. However after inspection it was found that 20 did not react 

and was recovered unchanged. Again this reaction was attempted at higher temperatures 

but without success. 
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Figure 2.3. Proposed mechanism for the cyclocondensation of 20 to form 8. 

SnCl4 and Sc(OTf)3 were also tried at the three different temperatures with no 

improvement of the results. The final attempt to form calix[4]naphthalene was done using 

Scott's conditions, again yielding no product. This work provided little hope for improving 

the efficiency of the one-pot synthesis of 8. It was hypothesized that the lack of reaction 

could be due to possible interference from the naphthyl hydroxyl group. It was therefore 

decided to convert it to the corresponding naphthyl methoxy derivative 32, and to aim for 

the synthesis of the tetramethoxy derivative of33. 
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Table 2.2. Results of using ionic liquids and a variety of Lewis acids for the synthesis 
of calix[4]naphthalene. 

Acid Ionic liquid Temperature Result 
oc 

VO(OAc)2 [bmim]PF6 rt NIR 

VO(OAc)2 [bmim]PF6 50°C NIR 

VO(Oac)2 [bmim]PF6 70 oc NIR 

TiCl4 [bmim]PF6 rt NIR 

TiCl4 [bmim]PF6 50 oc NIR 

TiCl4 [bmim]PF6 70°C NIR 

SnCl4 [bmim]PF6 rt NIR 

SnCl4 [bmim]PF6 50 oc NIR 

SnC4 [bmim]PF6 70 oc NIR 

Sc(OTt)3 [bmim]PF6 rt NIR 

Sc(OTf)3 [bmim]PF6 50°C NIR 

H3P04 N6444Imide 50 oc NIR 

The formation of 32 was achieved by methylation of 18 to produce 31. This 

is done in a single step. The methylation is then followed by LiAll-4 reduction to give 32 in 

82 % yield. This compound was isolated as a pale yellow powder. Compound 32 was then 

subject to similar conditions as 20 was (Scheme 2.6). 
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Scheme 2.6. The synthesis of methoxycalix[4]naphthalene (34). 

Table 2.3 shows the results of the attempted cyclocondensation of 33. Using TiC14 

and SnCl4 at the different temperatures both yielded starting materials in approximately 

78 %. No other products were found in the ionic liquid which could be identified. With 

vanadiwn acetate nothing was extracted from the ionic liquid with ethyl acetate, however 

when the ionic liquid was dissolved in methanol a light brown-yellow solid could be 

isolated. It was evident that some reaction did occur, and a new product was found to 

correspond to one spot on TLC. However, NMR showed no distinguishable peaks. A large 

nwnber of signals were found in the aromatic region, at around i> = 4 ppm, and another 

larger number of signals further downfield at i> = 4.5 ppm. These three regions can be 

related to the protons of the aromatic rings, the methylene bridge and the methoxy 

respectively; however, the structure of the molecule was not solvable. As the attempt to 
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synthesize 34 has previously been shown by others in our group to be unsuccessful in 

organic solvents, it was not a surprise that ionic liquids did not promote this reaction either. 

The usual method to form a calix[4]naphthalene methoxy ether is by methylation of8 using 

2.5 Conclusions 

The use of an ionic liquid proved successful for the cyclocondensation of the highly 

reactive veraterol, using different Lewis acids. The results for the synthesis of a 

calix[4]naphthalene were therefore disappointing. However, they do indicate that there are 

further investigations required to find a method to improve the cyclocondensation step for 

the synthesis of 8. For example, it may be possible to accomplish the synthesis of 8 by a 

step-wise process in an ionic liquid. 

Table 2.3. Results of using ionic liquids and three different of Lewis acids in the 
attempted synthesis of tetramethoxycalix[4]naphthalene 34. 

Acid Ionic Liquid Temperature Result 
oc 

VO(OAc)2 [bmim]PF6 rt N/R 

VO(OAc)2 [bmim]PF6 70 oc Insoluble yellow 
solid product 

TiCl4 [bmim]PF6 rt N/R 

TiCl4 [bmim]PF6 70°C N/R 

SnCl4 [bmim]PF6 rt N/R 

SnCl4 [bmim]PF6 70°C N/R 
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2.6. Experimental 

General Procedures: All reactions were conducted under Ar or Nz. Organic solutions 

were concentrated on a rotary evaporator or by vacuum distillation. All compounds were 

purified by either crystallization, flash chromatography using Merck Silica gel (230-400 

mesh) or preparative thin layer chromatography (PLC) plates, which were made from 

Aldrich Silica gel ((TLC) Standard grade, 2-25~m) with 14% calcium sulphate. Thin layer 

chromatography was performed on precoated silica gel60 Fzs4 plates (SAl, Inc.). 

Materials: All solvents and chemical reagents were purchased from Fluka or Aldrich. 

Anhydrous CHCh and CHzCh were obtained from ACS grade chloroform and 

dichloromethane which had been distilled over calcium hydride. Anhydrous THF was 

obtained under Nz by drying ACS grade THF over Na and distilling it from purple sodium 

benzophenone. Anhydrous ether was obtained by drying ACS grade diethylether over 

LiAlH4 and distilling. 

Instrumentation: Melting points (m.p.) were obtained on a Fisher-Johns apparatus and are 

uncorrected. 1H NMR spectral data were collected on a Bruker Avance instrument at 500 

MHz using a 16 K data table for a 15.0 ppm sweep width having a digital resolution of 

0.321 Hz. Chemical shifts are relative to an internal TMS. Data is presented as follows: 

chemical shift, multiplicity (s =singlet, d =doublet, dd =doublet of doublets, t =triplet, m 

=multiplet, q =quartet), coupling constant (J, Hz) integration and assignment (H#). The 

assignments are based on 1H_IH Cosy and previously assigned data. 13C NMR spectral data 

was obtained on a Bruker A vance instrument at 500 MHz using a 16 K data table for a 220 

ppm sweep width having a digital resolution of 0.321 Hz. Chemical shifts are relative to the 

solvent (8 = 77.0 ppm for CDCb); the assignments are based on CH Hetcor analyses. Low 
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resolution and high resolution mass spectral data were obtained on a V.G. Micromass 

(HRMS) 7070 HS instrument. MS data were presented as follows: m/z, intensity. 

Vanadyl Acetate (30)62 

0 
II 

H3C-C-O-V-O-C-CH3 
II II 
0 0 

To 50.0 ml of acetic anhydride (0.526 mol) vanadium pentaoxide (18.1 g, 0.990 

mmol) was added to form an orange solution. The solution was refluxed for 1 h. The green 

precipitate was collected using suction filtration and washed several times with 

dichloromethane and dried under vacuum for 1.5 h (16.7 g, quantitative); decomposition 

point 270 oc; ms mlz (%): 185 (0.8, M+), 170 (2.6), 143 (1.5), 126 (16), 84 (6), 83 (2.9), 82 

(0.9), 67 (8.4), 60 (2.7), 58 (0.9), 43 (26), 42 (3.3), 41 (1), 28 (6), 26 (0.7). 

1-n-Butyl-3-methylimidazolium chloride ([bmim]CI) (23)60 

4 s c.-
/()~, 
10 2 6 8 

1-Methylimidazole (41.1 g, 0.500 mmol) and 1-chlorobutane (46.3 g, 0.500 mmol) were 

combined in a Schlenk tube set with a reflux condenser, and heated to 1 00 °C for 5 d. The 

reaction formed two layers, which slowly merged into a single layer. 

The resulting liquid product was cooled, forming a white solid. The solid was then 

filtered using suction filtration and washed with diethyl ether. The solid was then dissolved 

in anhydrous acetonitrile (dried over CaH2). Anhydrous diethyl ether (dried over LiAlH4) 

was added, forming two layers. The solution was then refrigerated for several hours until 
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clear colorless crystals formed. The crystals were collected by suction filtration and washed 

with 3 x 100 ml portions of diethyl ether. Crystals were then dried and sealed under 

vacuum until use (72.5 g, 83.0%); 1H NMR (CDCh) o = 0.98 (t, J= 7.2 Hz, 3H, H-9), 1.40 

(m, 2H, H-8), 1.91 (m, 2H, H-7), 4.13 (s, 3H, H-10), 4.33 (t, J= 7.2 Hz, 2H, H-6), 7.29 (s, 

2H, H-4 or H-5), 7.38 (s, 2H, H-4 or H-5) 10.98 (s, 1H, H-2); 13C NMR o= 13.6 (C-9), 19.7 

(C-8), 32.4 (C-7), 36.8 (C-6), 50.1 (C-10), 121.7 (C-4 or C-5), 123.3 (C-4 or C-5), 138.9 

(C-2); ms m/z (%) 139 (~ 2.6), 124 (21), 123 (8), 97 (34), 81 (50), 56 (16), 41 (46), 35 

(6). 

1-Butyl-3-methylimidazolium hexafluorophosphate ([bmim ]PF 6) (24)60 

4 5 PF6 

/0~. 
10 2 6 8 

[Bmim]Cl (10.32 g, 59.07 mmol) was dissolved in water (95 ml) and cooled to 

0 °C. Hexafluorophosphoric acid (60 % weight in water, 9.49 g, 65.0 mmol) was then 

added dropwise and allowed to stir for 16 h. 

Two layers formed overnight. The top aqueous layer was decanted, and the lower 

ionic liquid was washed with 10 x 40 ml of water. The resulting clear liquid was placed 

under vacuum at 45 °C for 48 h. The ionic liquid (8. 7 g, 52 %) was sealed under vacuum 

until use; 1H NMR (acetone-d6) o = 0.95 (t, J= 7.2 Hz, 3H, H-9), 1.39 (m, 2H, H-8), 1.94 

(m, 2H, H-7), 4.06 (s, 3H, H-10), 4.37 (t, J = 7.2 Hz, 2H, H-6) 7.71 (s, 2H, H-4 or H-5), 

7.76 (s, 2H, H-4 or H-5), 8.99 (s, 1H, H-2); 13C NMR (acetone-d6) 5 = 13.2 (C-9), 19.5 (C-

8), 32.2 (C-7), 35.9 (C -6), 49.8 (C-10), 122.9 (C-4 or C-5), 124.2 (C-4 or C-5), 136.8 (C-

2). 
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Tri-n-butylhexylammonium iodide salt (26)61 

6 

A mixture of 1-iodohexane (16.7 g, 78.8 mmol) and tributylamine (7.70 g, 41.5 

mmol) was prepared and heated to 85.9 oc for 5 d. The orange-colored solution was cooled 

to yield a deep red gummy solid. The product was then was washed with 2-butanone (2 x 

50 ml). The deep red-orange malleable solid was dried under vacuum to give 26 as a 

crusty, orange solid (7.90 g, 48.0 %): m.p. 53-56 °C; 1H NMR (CDCh) 8 = 0.91 (t, J= 7.0 

Hz), 3H, H-6), 1.01 (m, 9H, H-10, H-14, H-18), 1.39 (m, 12H, H-3, H-4, H-5, H-9, H-13, 

H-17), 1.70 (m, 8H, H-2, H-8, H-12, H-16), 3.75 (m, 8H, H-1, H-7, H-11, H-15); 13C NMR 

(CDCb) 8 = 13.88 (C-6), 14.00 (C-10, C-14, C-18), 19.92 (C-9, C-13, C-17), 22.54 (C-5), 

24.40 (C-4), 24.48 (C-3), 26.20 (C-2), 31.33 (C-8), C-12, C-16), 59,39 (C-7, C-11, C-15), 

59.55 (C-1); ms mlz (%) 142 (M+ 100), 184 (3.1), 170 (28), 128 (22), 127 (14), 100 (32), 84 

(5), 71 (1), 57(38), 43 (25). 

Bis(trifluoromethanesulfonyl)amide lithium salt (27)61 

+ 
0 Li 0 
II - II 

F3C-S-N-S-CF3 
II II 
0 0 
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Under Ar, bistrifluoromethanesulfonamide (1.10 g, 3.91 mmol) was dissolved in 

anhydrous THF (5 ml). The reaction was cooled to -78 °C and n-butyllithium (0.229 g, 3.91 

mmol) (1.6 M in hexane) was added dropwise over several min. Once addition was 

complete the resulting solution was stirred for 5 min and was allowed to warm to rt. The 

solvent THF and hexanes were removed under vacuum and the product residue (salt) was 

sealed until use. As a result of the instability of this product no spectral or physical data 

were collected. 

Tributylhexylammonium ion with bis(trifluoromethanesulfonyl)amide (N6444 Imide) 

6 

4 

2 

17 15 

~ 
18 1

111 12 
13 

14 

5 

3 

~0 
7 

0 0 
II - II 

F3C-S-N-S-CF3 

8 8 

A solution of 27 (1.41 g, 3.55 mmol) was dissolved in water (5 ml). A second 

solution of26 (1.12 g, 3.91 mmol) was dissolved in 0.8 ml ofwater and added to the first 

solution. The resulting orange solution was stirred at rt for 3 h, at which time two layers 

could be seen to form. The top aqueous layer was decanted and the bottom pale orange 

ionic liquid was washed with water (2 x 5 ml), then dried under vacuum for 48 h; 1H NMR 

(CDCh) 8 = 0.90 (t, J= 6.6 Hz, 3H, H-6), 1.00, (m, 9H, H-10, H-14, H-18), 1.39 (m, 12H, 
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H-3, H-4, H-5, H-9, H-13, H-17), 1.57 (m, 8H, H-2, H-8, H-12, H-16), 3.15 (m, 8H, H-1, 

H-7, H-11, H-15). 

Cyclotriveratrylene (31 )29
' 
30 

A) Under anhydrous conditions TiC14 (0.610 g, 3.23 mmol) was added by syringe 

solution of 3,4-dimethoxybenzyl alcohol (29) (0.500 g, 3.00 mmol) in [bmim]PF6 (1.01 g, 

3.56 mmol) and stirred vigorously. After several min the mixture turned dark purple and 

became a thick slurry. After 2 h the ionic liquid was dissolved in 10 ml of methanol and the 

white crystals precipitated out of the methanol and were collected via suction filtration and 

dried under vacuum for 3 h (0.45 g, 42 %); m.p. 215-217 oc; 1H NMR (CDCb) o = 3.55 

(d, 3H, Ha-2 Ha-9 Ha-16), 3.83 (s, 18H, H-22, H-23, H-24, H-25, H-26, H-27), 4.77 (d, 3H, 

Hb-2, Hb-9, Hb-16), 6.83 (s, 6H, H-4, H-7, H-11, H-14, H-18, H-21); 13C NMR o = 36.7 (C-

2, C-9, C-16), 56.3 (C-22, C-23, C-24, C-25, C-26, C-27), 113.4 (C-3, C-8, C-10, C-15, C-

7), 132.0 (C-4, C-7, C-14, C-18, C-21), 148.0 (C-6, C-6, C-12, C-13, C-19, C-20); ms m/z 

(%): 450 (87, M+), 419 (22.7), 405 (16.9), 404 (7.2), 372 (231), 299 (100), 268 (32.6), 253 

(6.14), 212 (6.1), 187 92.4), 151 (72.1), 137, (10.2). 
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B) Under anhydrous conditions vanadyl acetate (0.600, 3.24 mmol) was added to a 

solution of 29 (0.500 g, 3.00 mmol) in [bmim]PF6 (1.00 g, 3.52 mmol) and was stirred 

vigorously for 7 hat SO °C (Moens' conditions). The reaction mixture was then dissolved 

in dichloromethane and vanadyl acetate was recovered and reused. The dichloromethane 

was then evaporated and the residue was the washed in MeOH to remove the ionic liquid. 

The white crystals were collected by suction filtration and dried under vacuum for 3 h to 

afford 0.38 g (85 %) of31 whose spectral properties were identical to those obtained using 

method A. 

C) Under anhydrous conditions SnC4 (0.410 g, 3.23 mmol) was added by syringe 

to a solution of 29 (0.500 g, 3.00 mmol) and [bmim]PF6 (1.09 g, 3.84 mmol) and stirred 

vigorously for 6-7 h at rt. The ionic liquid was then dissolved in MeOH and the white 

crystals of 31 precipitated out of the MeOH were collected by suction filtration and dried 

under vacuum for 3 h to afford 0.31 g, (68 %) of 31 whose spectral properties were 

identical to those obtained using method A. 

D) Under anhydrous conditions Sc(OTf)3 (0.1 00 g, 0.200 mmol) was added to a 

solution of 29 (0.500 g, 3.00 mmol) in [bmim]PF6 (1.00 g, 3.52 mmol). The reaction was 

stirred vigorously at room temperature for 48 h. The ionic liquid was then dissolved in 

MeOH and the white precipitate which formed was collected using suction filtration. The 

crystals were dried under vacuum for 3 h which afford 0.18 g, (40 %) of31 whose spectral 

properties were identical to those obtained using method A. 
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Methyl -3-hydroxy-2-naphthoate (19) 

0 

Concentrated sulfuric acid was added to a solution of 3-hydroxy-2-naphthoic acid 

(50.0 g, 266 mmol) (18) in MeOH (270 ml) at rt. The reaction mixture was then refluxed 

for 8 h. The reaction mixture was cooled to rt to form a yellow solid which was filtered, 

washed with aqueous 10 % NaHC03 to give 52.12 g (97 %) of 19, whose spectral 

properties were identical to those reported by Ashram. 6 

3-(Hydroxymethyl)-2-naphthol (20) 

8 11 

A solution of methyl 3-hydroxy-2-naphthoate (19) (2.04 g, 10.1 mmol) in 

anhydrous THF (50 ml) was added at rt to a suspension ofLiAlH (0.705 g, 18.6 mmol) in 

dry THF (30 ml) over 30 min, and the mixture was stirred at rt for 3 h. The reaction was 

quenched by the slow addition of cold water, followed by cold brine, and then the mixture 

was treated with aqueous 10 % HCl at 0 °C. The THF was partially evaporated under 

vacuum; the product was then extracted from the aqueous layer, three times using 15-ml 

portions of diethyl ether. The ether was dried using MgS04, filtered and the solvent was 

evaporated to give a pale yellow solid 1.37 g (78 %) of 20 which could be crystallized for 
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analysis from ethanol-water, m.p. 186-188 °C; (lit. m.p. 185°Ci8. The spectral properties of 

20 are identical to those reported by Ashram.6 

Methyl -3-methoxy-2-naphthoate (32) 

0 

To a suspension of 3-hydroxy-2-naphthoic acid (14.0 g, 72.0 mmol) in 

dichloromethane (350 ml) were added water (200 ml), phase-transfer catalyst (AdogenR, 5 

ml) and dimethyl sulphate (52 ml). The mixture was stirred vigorously, and aqueous 10 % 

NaOH (180 ml) was added dropwise, over 30 min. The reaction was then allowed to stir 

for an additional 3 h. The water was decanted off the dichloromethane, and the aqueous 

layer was extracted with dichloromethane. After drying the combined organic layers with 

MgS04, and filtering, the solvent was then removed under vacuum. The residue dimethyl 

sulphate was removed by vacuum distillation. The yellow product was then purified by 

flash chromatography using ethyl acetate-hexane (1 0:40) to yield 32 as an oily yellow 

product (11.3 g, 73 %). Whose spectral data are identical to those reported by Ashram.6 

3-Hydroxymethyl-2-methoxynaphthalene (33) 

11 

A solution of methyl-3-methoxy-2-naphthoate (18) (5.47 g, 25.3 mmol) in 

anhydrous THF (50.0 ml) was added at 0 °C to a suspension ofLiAIH (1.40 g, 37.3 mmol) 
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in dry THF (30.0 ml) over 20 min, and the mixture was stirred as rt for 3 h. The reaction 

was quenched by the slow addition of cold water, followed by cold brine, and then the 

mixture was treated with aqueous 10 % HCl at 0 °C. The THF was partially evaporated 

under vacuum; the product was then extracted from the aqueous layer three times using 3 x 

20 ml of diethyl ether. The ether was dried using MgS04, filter and the solvent was 

evaporated to give a pale yellow solid which was purified using flash chromatography 

using ethyl acetate-hexane (30:70) to give 33 as a white solid (3.90 g, 82 %) whose spectral 

properties were reported by Ashram.6 

Calix[4]naphthalene (8) 

7 

17 

27 

Typical reaction conditions: under anhydrous conditions a Lewis acid such as TiCl4 

(1.15 g, 2.59 mmol) was added to a solution of 20 (0.420 g, 2.43 mmol) in [bmim]PF6 

(4.00 g, 14.1 mmol) and was stirred vigorously for 7 hat rt (or temperature indicated in 

Table 2.2). The reaction mixture was then extracted with ethyl acetate. The ethyl acetate 

was then evaporated and the residue was washed in MeOH to remove the ionic liquid. The 

white crystals were collected by suction filtration and dried under vacuum for 3 h to afford 
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0.340 g (81 %) of 20 whose spectral properties were identical to those of the starting 

material. 

Tetramethoxycalix[4]naphthalene (34) 

7 

17 

37 

27 

Typical reaction conditions: under anhydrous conditions a Lewis acid such as TiCl4 

(1.15 g, 2.59 mmol) was added to a solution of 33 (0.169 g, 2.43 mmol) in [bmim]PF6 

(1.00 g, 3.55 mmol) and was stirred vigorously for 8 h at rt (or temperature indicate in 

Table 2.3). The reaction mixture was then extracted with ethyl acetate. The ethyl acetate 

was then evaporated and the residue was the washed in MeOH to remove the ionic liquid. 

The white crystals were collected by suction filtration and dried under vacuum for 3 h to 

afford 0.132 g (78 %) of33 whose spectral properties were identical to those ofthe starting 

material. 
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Chapter 3 

An Attempted Synthesis of Calix[4]naphthalene using a 
Florisi1R-Mediated Cyclocondensation 

3.1. Introduction 

The first calix[4]azulene reported was by Asao et al. 7 [1.1.1.1] (1,3)-

methoxyazulenophane (10), which consists of four molecules of 2-methoxyazulene linked 

at the 1- and 3-positions by methylene bridges (Figure 1.7). The synthesis of 10 (Scheme 

3.1) was achieved by a stepwise process.7 Paraformaldehyde was reacted with 2-

methoxyazulene 35 in the presence of acetic acid to give the dimeric product 36 in 92 % 

yield. Product 36 was then subjected to a Vilsmeyer formylation reaction to yield 59% of 

the dialdehyde 37, which in turn, was reduced using DIBAH to give the bishydroxymethyl 

compound 38 in 87 % yield. Subunits 36 and 38 were then reacted together to give a 

complex mixture. The cyclic calix[4]azulene 10 was isolated from the mixture in 20 % 

yield and was found to be in the 1 ,3-altemate conformation. 

KIO montmorillonite (which is a sedimentary clay, high in aluminum silicates, 

which has been treated with an acid) has been used in the synthesis of macrocyclic 

molecules such as porphyrins.64 The clay is highly acidic. Colby and Lash8 used KlO 

montmorillonite as a catalyst for the cyclocondensation of azulene with paraformaldehyde, 

but found however, only trace amounts ofthe calix[n]azulene. 

They did however report a successful synthesis of the nonfunctionalized 

calix[4]azulene (11)8 which involved a one-pot cyclocondensation of azulene and 

paraformaldehyde in the presence of FlorisilR (Scheme 3.2) to give a 74 % yield of the 

blue-green solid, 11. 
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AcOH 

92% 
35 36 

I 
OH CHO 

DIBAH 

38 87% 37 59% 

36 + 38 

10. R=OCH3 

Scheme 3.1. The synthesis of [1.1.1.1] (1, 3)-methoxyazulenophane (10). 
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FlorisilR is a mildly acidic synthetic magnesium silicate (Mg0·3.75Si02·H20),65 

which is commonly used as a filtration aid. However, Colby and Lash's cyclocondensation 

of azulene and paraformaldehyde used FlorisilR as a catalyst. These conditions were milder 

than the traditional one-pot syntheses of calix-type compounds, however, they did not 

allow for the formation of any other calixazulene product in the presence of other carbonyl 

compounds such as acetone or hexachloroacetone. The mechanism for this synthesis of 

calix[4]azulene is not completely understood. Nonetheless, it was of interest to see if 

FlorisilR could be used in the cyclocondensation of other molecules to form calix-type 

compounds, such as the calix[4]naphthalenes of interest to us. 

3.2. Attempted Synthesis of CTV and Calix[4]naphthalene Using a Florisi1R-Mediated 
Cyclocondensation 

Colby and Lash's conditions were repeated to form 11. Their results were easily 

reproduced in our lab affording a 78 % yield of the blue-green solid, 11. The 1H NMR 

spectra of calix[4]azulene (Appendix C) showed no impurities. The LCMS-APCI showed a 

major peak at mlz = 561 corresponding to a [M + trion of 11. The MS was conducted in 

the positive ionization mode, so the major peak is consistent, with the predicted structure. 

The cyclocondensation of azulene and paraformaldehyde, in the presence of 

FlorisilR, provided a potential new method to try to optimize the synthesis of 

calix[4]naphthalene 8 and a new method for the synthesis ofCTV. 

As noted previously, CTV was easily formed using ionic liquids and several 

different Lewis acids (Chapter 2). Therefore, veratryl alcohol (29) was subjected to the 
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CHCI3 
FlorisiiR 

11 

Scheme 3.2. The synthesis of calix[4]azulene (11). 

conditions Colby and Lash used in the formation of 11. The reaction was allowed to stir for 

several hours at room temperature with no change observed by TLC. The reaction was then 

allowed to continue stirring for up to three days at room temperature; TLC continued to 

indicate only the presence of starting material. The reaction was then heated to reflux for an 

additional three days, with still no observed change by TLC. Approximately 95 % of the 

starting material was recovered. 

Veratryl alcohol, with two ortho-para directing methoxy groups on the aromatic 

ring, is a highly reactive molecule. However, FlorisilR was not a strong enough catalyst to 

allow for the cyclocondensation of 29 to form 31. The attempted cyclocondensation of 29 

failed and provided little insight on Colby and Lash's conditions, and whether or not it 

61 



would be useful in the synthesis of other macrocyclic compounds such as 

calixnaphthalenes and calixarenes. 

The first attempt to synthesize 8 using the FlorisilR -mediated method was 

performed by reacting 2-naphthol and paraformaldehyde, in dioxane. The reaction was 

allowed to stir for 20 minutes before a sample was taken for TLC, at which point all of the 

starting material had been consumed. The isolated and purified product was the dimer 41 in 

98% yield (Scheme 3.3). The dimer was not an unexpected product, as it is a well-known 

condensation product when 2-naphthol is reacted with paraformaldehyde. 

40 

FlorisilR 
Dioxane 

41 

Scheme 3.3. The synthesis of naphthol dimer 41. 

The dimer, however, in our case was not the desired compound; we decided to 

investigate the cyclocondensation of hydroxymethylnaphthoate 20 in the presence of 

FlorisilR to form 8. Unfortunately, the reaction of 20 did not result in formation of the 

desired product. Instead, the hydroxymethyl group was oxidized to the corresponding 

aldehyde in an approximately 30% yield. The remaining unreacted starting material was 

recovered (64 %). The reaction was repeated and allowed to continue for several hours, 

however no improvement in the yield was found. With the same reaction components the 
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reaction was heated to reflux in dioxane for a period of 6 days with only mild improvement 

observed in the yield of the oxidation product. No cyclocondensation products were 

observed. 

0 

20 42 

Scheme 3.4. The synthesis of the 2-hydroxy-3-naphthaldehyde (42). 

The exact role of the paraformaldehyde in the cyclocondensation of azulene to form 

11 is not well understood; however, the presence of paraformaldehyde may be a factor in 

the formation of a cyclic product. This led to an investigation of the cyclocondensation of 

20 in the presence of paraformaldehyde. 

Parformaldehyde and 20 were then combined under conditions similar to conditions 

which were used in the attempt to cyclocondense paraformaldehyde with 2-naphthol. The 

reaction was allowed to stir at room temperature for approximately 30 minutes, during 

which time the starting material was consumed. The purified product turned out to be 

another dimer (43) (Scheme 3.5). The structure of the product was determined by 1H NMR 

data and mass spectroscopy. 

It was then considered that the FlorisilR alone might not be sufficient to affect the 

cyclocondensation of 20 to form 8. This hypothesis was evaluated by the addition of a 

Lewis acid to the Florisi1R-containing reaction conditions. The Lewis acids employed were 

similar to those used in Sections 2.3 and 2.4 of this thesis. The results are recorded in Table 

3.1. 
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product 42 only was observed with no cyclic product being observed. This experiment was 

then repeated using different Lewis acids. 

It becomes obvious that the condition which allows for the formation of 11 is not a 

general procedure that can be applied to similar molecules. In the case of the precursor 

used for the attempted synthesis of calix[4]naphthalenes, the FlorisilR acts as a mild 

oxidation reagent. As such, this reaction could be useful in systems as a mild selective 

oxidant of an alcohol to form the corresponding aldehyde. 

3.3. Conclusions 

Colby and Lash's conditions did not result in the desired cyclocondensation for the 

formation of calix[4]naphthalene. When these conditions were repeated using CHCh as the 

solvent for the cyclocondensation of calix[4]naphthalene no reaction occurred because the 

starting material 20 was not soluble in this solvent system. The Colby and Lash's 

conditions were then modified using dioxane so that the 20 would dissolve and react, 

however this still did not produce the desired result, the only product observed being 

aldehyde 42. Colby and Lash's original conditions are an effective way to synthesize 

calix[ 4]azulene but the reaction seems to be unique for the formation of 11, and has shown 

little potential for the cyclocondensation of other calix-type molecules. It however, 

provided us with a mild method to produce 43, which could be a useful intermediate for the 

synthesis of other calixnaphthalenes. 

In the next chapter a detailed investigation into some of the properties of 

calix[4]azulene is discussed. The complexation of calix[4]azulene with C60 is examined 

using both NMR techniques and uv-visible spectroscopy. 
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3.4. Experimental 

Calix[4]azulene (11)8 

27 

37 

7 

17 

Azulene (0.496 g, 3.87 mmol) was added to a mixture of FlorisilR (20.1 g) in 

chloroform (1 00 ml). Paraformaldehyde (0.48 g) was then added to the purple mixture and 

the reaction was allowed to stir at rt for 90 min. The reaction turned to a blue-green color. 

The mixture was diluted with dichloromethane (750 ml). The FlorisilR was removed by 

suction filtrati,on and the solvent was removed under vacuum to afford 0.42 g (78%) of a 

blue-green solid, whose m.p. and spectral properties where identical to those reported by 

Colby and Lash. 8 
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Bis[2-hydroxy-1-naphthyl]methane (41) 

3 

18 

16 15 

To a solution of paraformaldehyde (0.48 g) and FlorisilR (20 g) in chloroform (1 00 

ml) 2-naphthol (0.505 g, 3.75 mmol) was added and was allowed to stir at rt for 30 min. 

The solution was then diluted with of dichloromethane (300 ml). The FlorisilR was 

removed by suction filtration and the solvent removed under vacuum to give a pale brown 

solid. The solid was purified using flash chromatography (35% ethyl acetate in hexanes) to 

afford 41, (0.68g, 98 %);(lit. m.p.l97-199 ocl m.p.l98-200°C, 1H NMR (acetone-d6) () = 

4.98 (s, 2H, H-11), 7.18 ( t, J= 7Hz, 2H, H-7, H-18), 7.27 (t, J= 7Hz, 2H, H-6, H-17), 

7.31 (d, J= 9Hz, 2H, H-,4 H-15), 7.65 (d, J= 9Hz, 2H, H-3, H-14), 7.70 (d, J= 8Hz, 2H, 

H-8, H-19), 8.40 (d, J = 8.5 Hz, 2H, H-5, H-16), 9.09 (s, OH); 13C NMR (acetone-d6) () = 

21.74 (C-11), 118.86 (C-4, C-15), 120.37 (C-2, C-13), 123.39 (C-7, C-18), 124.99 (C-5, C-

16), 126. 64 (C-6, C-17), 128.86, (C-3, C-14), 129.2 (C-8, C-19), 130.32 (C-9, C-20), 

135.15 (C-10, C-21), 152.75 (C-1, C-12); ms m/z (%) 300 (M\ 6), 281 (15), 239 (2.1), 

156 (21), 144 (100), 128 (27), 115 (16), 89 (3). 
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Bis[3-hydroxymethyl-2-hydroxy-1-naphthyl]methane ( 43) 

18 

Compound 20 (0.380 g, 2.13 mmol) was added to a solution of paraformaldehyde 

(0.130 g) and FlorisilR (10.0 g) in dioxane (55.0 ml) and was allowed to stir at rt for 5 h; an 

additional 0.21 g of paraformaldehyde was then added. The reaction was then allowed to 

stir for an additional 18 h. The solution was diluted with dioxane (300 ml), and the FlorisilR 

was removed by suction filtration and the solvent was removed under vacuum to give a red 

brown solid. The solid was purified using flash chromatography (50 % ethyl acetate in 

hexanes) to afford 43 (0.214 g 56%); m.p. 210-214°C; 1H NMR 8 = 4.49 (s, 2H, H-12), 

5.03, (s, 4H, H-11, H-23), 5.27 (s, 2H, CH20H), 7.19 (m, 2H, H-7, H-19), 7.26 (m, 2H, H-

7, H-18) 7.59 ( s, 2H, H-4, H-14), 7.68 (d, J= 8.5 Hz, 2H, H-8, H-20), 8.30 (d, J= 8.5 Hz, 

2H H-5, H-17), 9.14 (s, 2H, OH); ms mlz (%) 360 (M+, 10) 322 (21), 296 (6.7), 239 (3), 

186 (45), 174 (38), 128 (100), 115 (24), 89 (5.). 
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2-Hydroxy-3-naphthaldehyde ( 42) 

0 

6 

A) Compound 20 (0.670 g, 3.76 rnrnol) was added to a solution of 20.0 g of 

FlorisilR in 100 ml of dioxane and was allowed to stir at rt for 4 h. The FlorisilR was 

removed by filtration, the filtrate was collected and the solvent was removed under 

vacuum. The resulting yellow residue was purified using flash chromatography (30% ethyl 

acetate in hexanes). The product 42 was a bright yellow solid (0.18 g, 28 %); (lit. m.p. 93-

940C)37 m.p. 92-94 oc; 1H NMR D = 7.29 (s, 1H, H-4), 7.38 ( t, J = 7.5 Hz, 1H, H-6), 7.57 

(t, J= 7.5 Hz, 1H, H-5), 7.72 (d, J= 8.5 Hz,1H, H-5), 7.87 (d, J= 8.5 Hz, 1H, H-8), 8.16 

(s, 1H, H-1), 10.10 (s, 1H, OH), 10.32 (s, 1H, CHO); MS mlz (%) 172 (M+, 100), 171 

(43), 142 (3), 126 (12), 115 (44), 89 (6). 

B) Compound 20 (0.550 g, 3.08 rnrnol) was added to a solution of FlorisilR (18.4 g) 

in dioxane (1 00 ml) and was heated to reflux and allowed to stir for 5 d. The FlorisilR was 

removed by filtration, the filtrate was collected, and the solvent was removed under 

vacuum. The resulting yellow residue was purified using flash chromatography (30% ethyl 

acetate in hexanes). The product 42 was a bright yellow solid (0.16 g, 31 %), which was 

identical to the product obtained from procedure A. 

C) Compound 20 (0.650 g, 3.73 rnrnol) was added to a solution ofVO(OAc)2 (1.31 

g, 7.08 rnrnol) and of FlorisilR (21.5 g) in dioxane (1 00 ml) and was allowed to stir at rt for 
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12 h. The FlorisilR was removed by filtration, the filtrate was collected and the solvent was 

removed under vacuum. The resulting yellow residue was purified using flash 

chromatography (30% ethyl acetate in hexanes) to afford 42 (0.19 g, 29 %). 

D) Compound 20 (0.540 g, 3.03 mmol) was added to a solution of TiC4 (0.20 rnl, 

1.82 mmol) and FlorisilR (19.4 g) in dioxane (80.1 ml), and was heated to reflux and 

allowed to stir for 36 h. The FlorisilR was removed by filtration, the filtrate was collected 

and the solvent was removed under vacuum. The resulting brown residue was purified 

using flash chromatography (30% ethyl acetate in hexanes), to afford 42 as a bright yellow 

solid (0.18 g, 34 %). 

E) Compound 20 (0.510 g, 3.86 mmol) was added to a solution of Sc(OTf)3 (100 

mg, 0.20 mmol) and FlorisilR (19.4 g) in dioxane (80.4 ml) and was heated to reflux and 

allowed to stir for 12 h. The FlorisilR was removed by filtration, the filtrate was collected 

and the solvent was removed under vacuum. The resulting yellow residue was purified 

using flash chromatography (30% ethyl acetate in hexanes) to afford 42 as a bright yellow 

solid (0.09 g, 18 %). 

F) Compound 20 (0.350 g, 1.96 mmol) was added to a solution of p-toluenesulfonic 

acid (0.37g, 0.19 mmol) and FlorisilR (15.8 g) in dioxane (55.2 ml), and was heated to 

reflux and allowed to stir for 12 h. The FlorisilR was removed by filtration, the filtrate was 

collected and the solvent was removed under vacuum. The resulting yellow residue was 

purified using flash chromatography (30% ethyl acetate in hexanes) to afford 42 as a bright 

yellow solid (0.06 g, 17.8 %). 
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Chapter4 
A Study of Supramolecular Complexation between 

Calix[4]azulene and C6o 

4.1. Introduction 

Supramolecular chemistry65 involves non-covalent bonding interactions which 

construct units, or adducts, which may further associate to form larger species. The 

formation of these adducts may occur with a high degree of control.66 The operation of 

enzymes which perform many different and complicated functions, require that a 

substrate first attach itself into an active pocket of the enzyme forming an enzyme-

substrate complex. The enzyme acts as a host molecule, which contains a concave surface 

into which a convex substrate or guest molecule can fit. When the guest is encapsulated 

by the host this forms an inclusion complex which is a classic type of supramolecular 

complex. 

A large number of complexes between macrocyclic compounds and guest species 

such as metallic ions or neutral organic molecules have been reported in the literature. 67
-
69 

One such example is the complex which forms between a calixarene and C60,
68 as 

described in the first chapter of this thesis. Such supramolecular complexes are held 

together by one, or a combination, of the following types of noncovalent bonding 

interactions:66 

a. Hydrogen Bonding. Hydrogen bonding is an attraction between a hydrogen 

atom and a heteroatom, such as oxygen or nitrogen, having a free lone pair of electrons. 

Hydrogen bonding is a very important form ofnoncovalent bonding in biology. Watson 

and Crick proposed that hydrogen bonding was responsible for the formation of DNA 

base pairs.66 It is then the steric effects created by the base pairing that creates the 
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familiar double helix (Figure 4.1 ). 

Thy amine Adenine Cytosine Guanine 

R = Deoxyribose 

Figure 4.1. The hydrogen bonding in DNA base-paring. 

b. Electrostatic Interactions. Electrostatic interactions are the attractions between 

permanent charges within a species e.g. charged ions, or the dipoles formed in 

heteroatomic bonds. These interactions include 1on-1on interactions, ion-dipole 

interactions and dipole-dipole interactions (Figure 4.2). 
' 

~ -------------- ~ 
"8+ 8-

--------------· C= 0 
/ ~ 

Ion-Ion Interaction Ion-Dipole Interaction 

" 8+ 8- " 8 + 8-
C= 0 ----------------- C= 0 

/ / 
Dipole - Dipole Interaction 

Figure 4.2. Electrostatic interactions. 
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c. Vander Waals Forces. Vander Waals forces include London dispersion forces 

and forces of attraction with permanent dipoles. London forces are result of all the 

electrons with in a molecule being displaced forming a dipole. These interactions occur 

when two molecules (or more) develop instantaneous dipoles and the two (or more) 

dipoles become aligned in such a way that the electron clouds react in an attractive 

manner. Forces which are associated with permanent dipoles are the result of an electron 

pair within a molecular bond being displaced as a result of electronegativity differences 

between the two atoms of the bond. 71 

d. ;r-;r* Interactions. ;r-n* interactions only occur in systems which contain double 

bond . n-orbitals. There are two ways in which 7t-7t* interactions are commonly described 

in aromatic systems. The first occurs when two aromatic rings are parallel to each other 

such that the n-systems are facing each other; this is known as a "face to face" interaction 

(Figure 4.3). The second occurs when two rings are orthogonal to each other; this is 

known as a ''face to edge" interaction (Figure 4.3). In 1990, Hunter and Sanders72 

described the ''face to face" interaction as being slightly misaligned and that the two n

systems are not directly on top of each other. In this argument n-n* interactions occur 

when the attractive interaction between the n-electrons and the cr-framework is more 

favourable than the repulsive contribution of the n-electrons. This suggests that this form 

of interaction is not an-n* interaction but is in fact a n-cr interaction (Figure 4.4). 
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Figure 4.3. A 1t - 1t* interaction. 

© 
I 
I 
I 
I 

Face - Face Interaction Face - Edge Interactions 

Figure 4.4. a - 1t interactions. 

e. Charge Transfer. The conceptual basis for charge transfer complexes was 

pioneered by Mulliken in 1952. Mulliken proposed that charge transfer·complexation was 

the result of electron delocalization between the filled molecular orbitals of a "donor" 

moiety into an empty acceptor molecular-orbital of appropriate symmetry in the acceptor 

moiety. The donor acceptor interaction is weak relative to covalent bonds and is 

characterized by a parameter HnA· HnA is a measure of the electronic coupling in the 

donor-acceptor complex in energy units. The presence of charge transfer complexation is 

often signalled by the presence of a new absorption band in the uv-vis and near IR spectra 
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of donor-acceptor charge transfer complexes assignable to a photo induced electron 

transfer between the donor-acceptor pair. 73 

f Hydrophobic or Solvophobic Effects. 75 These effects are based on the 

observation that solvent molecules pack more tightly around a solute than around other 

solvent molecules. The solvophobic effect occurs as a result of mixing two solutions 

containing two different solutes: one of the solutions contains a host molecule which 

contains a cavity occupied by solvent molecules, and the other solution contains a guest 

molecule which is surrounded by solvent molecules. When the two solutions are mixed 

together the solven~ within the cavity of the host is displaced and the solvent around the 

guest rearranges as an inclusion complex is formed (Figure 4.5). The solvent then 

arranges around the complex or is displaced into the bulk solvent as a result of which 

entropy of the system is increased. 

\S-~---+ 
Guest molecule 

+ 

Host molecule The complex 
• Solvent molecule 

Figure 4.5. The solvophobic effect. 

4.1.1. C6o 

C60 Is an exceptionally well-studied molecule.36 It can undergo chemical 

modification such as the addition of N,N-dimethylethylenediamene across the 6,6'-
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position ring junction of two six-membered rings.76 It is spherical and is an electron

deficient system which can bind to electron-rich molecules. The shape of C6o makes it an 

ideal guest molecule for macrocyclic hosts with the appropriately-sized and shaped 

cavity.75 Many supramolecular complexes have been reported between C60 and 

macrocyclic hosts, such as CTV,77 calixarenes,67 homooxacalixarenes,67 resorcairenes,67 

calix[ 4]naphthalenes, 68 

corannulenes. 78 

hexahomotrioxacalix[3]naphthalene69 and substituted 

The uv-vis spectrum of C6o in several solvents has been documented.79· 80 It has a 

large absorbance between 440 nm and 690 nm, with several shoulders which have been 

assigned as singlet transition bands. It has a Amax of approximately 540 nm. Changes in 

the absorbance spectrum of C6o can indicate the formation of a complex. 

4.1.2. Determining the Stoichiometry and Kassoc of a Supramolecular Complex 

The stoichiometry of a complex is the ratio of guest-to-host molecules and must 

be determined before the association constant (Kassoc) (Equation 1.1) can be determined. 

Kassoc is a direct measure of the Gibbs free energy for formation of a supramolecular 

complex (Equation 1.2 and 1.3) using Equation 4.1, where ~G0 is defined as the change 

in Gibbs free energy, and R is defined as the ideal gas constant. 

~G0 = -RTlnKassoc (4.1) 

One common method to determine the stoichiometry of a complex is the 

continuous variation method (Job's method).82· 83 A series of solutions containing both 
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guest and host in varying ratios are prepared. These solutions must cover the entire range 

of mole fractions (X) of host or guest. The concentrations of the guest and host are varied 

such that the total concentration ([H] + [G]) remains constant. 

These solutions are then analyzed by uv-vis and/or by NMR spectroscopic 

methods. The product of the change in absorbance and the mole fraction at a given 

wavelength is plotted against the mole fraction of the guest. For NMR the change in the 

chemical shifts (~3) multiplied by the moles concentration of the host [H] or the guest 

[G] is plotted against the mole fraction of the host [H] or of the guest [G]. When a 

reaction occurs between the guest and the host the resulting curve cannot be modelled as 

a linear combination of the individual spectra of the host and guest. A simple 1:1 

complex will generate a Job plot in the form of a symmetrical hyperbolic function with 

the maximum centered at the mole fraction 0.5. A complex with greater than a 1:1 ratio 

of host to guest (or guest to host), shows a more complex curve.83 The data used to 

determine the stoichiometry can theoretically be used to extract Kassoc, however, there are 

too many unknown parameters, such as in uv-vis determination, the extinction coefficient 

(s) of the possible species may not be known. Therefore Job data are not the most reliable 

for the determination of the Kassoc and if possible a second independent experiment should 

also be conducted. 

A titration experiment80 is often used to experimentally determine the equilibrium 

constant for a reaction, from the changes observed in absorption spectra, or the changes 

observed in chemical shifts. These types of experiments involve the sequential addition 

of one compound to the solution of the second. The concentration of the first compound 

remains constant while the concentration of the compound being added increases. From 
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this data several methods have been used to calculate the Kassoc· 

One such treatment is the Benesi-Hildebrand83
-
85 protocol which is applicable to 

both NMR and uv-vis spectroscopic methods (Equations 4.2a and 4.2b). For the NMR 

method, Equation 4.2a applies: 

(4.2a) 

Equation 4.2a is a form of the Benesi-Hildebrand formula where .M> = (.Sobserved - .Srree). In 

a titration experiment conducted with 11 and C60, the changes in chemical shift, ~.S, is 

measured with respect to a representative signal in the 1H NMR spectra of 11 as C60 is 

added; dOo = (.Scomplex - .Srree) cannot be determined directly when the exchange or 

equilibrium between host and guest and host:guest complex is rapid; [G] =equilibrium 

concentration of the "free" or uncomplexed guest (C60) i.e. [G] = [0°] - [HG] (where 

[G0
] = initial concentration of guest, and [HG] = concentration of the host: guest complex 

at equilibrium). A plot of 1/d.S vs 1/[G] will give a straight line whose slope= 1/(d.So • 

Kassoc) and intercept= ll(d.S0), therefore, dividing the intercept by the slope will give a 

value for Kassoc· (Note: d00 is also referred to as dOmax or Oro by other authors.) 

Alternatively, in order to avoid an extrapolation to obtain the value for the intercept, 

Equation 4.2a can be multiplied by (~.S • Kassoc• d00 ) to give Equation 4.2b: 

dOo • Kassoc =do I [G) + do • Kassoc (4.2b) 

Rearranging Equation 4.2b gives 4.2c, which is the Scatchard 86 or Forster-Fyfe87 

equation: 

dO I [G) = - dO • Kassoc + dOo • Kassoc (4.2c) 
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A plot of .tlo I [G] vs .tlo gives- Kassoc directly from the slope, thus not requiring a value 

for the intercept which is potentially subject to large errors. However, in many cases with 

limited amounts of host or guest compounds available to a researcher thereby precluding 

an intensive study, the two methods do not differ significantly 

Since [G] is difficult to measure, Equations 4.2a-c can be simplified by the 

assumption that [G] = [G0
]. This assumption is valid when Kassoc• [G] << 1 i.e. when 

complexation is weak, and so, plotting 4.2a-4.2c using [G0
] instead of [G] can be used to 

obtain Kassoc· 
86 There are other treatments which could be employed to more accurately 

determine Kassoc. such as the iterative Rose-Drago approach.86 Another is to employ an 

equimolar dilution method88 where the concentrations of host and guest are always equal 

i.e. [H] = [G], of course with the understanding that there is only 1:1 complexation 

occurring. Recently, Goswani and coworkers88 used such an approach to study molecular 

recognition of some xanthine alkaloids in which Kassoc was determined using Horman 

and Dreux's equation 4.2d,88 where a= .tlo I Ll00 

Kassoc = a!{(l-a)2 [c)} (4.2d) 

and [c)= concentration ofhost or guest (which are equal under the equimolar conditions). 

Due to time constraints however, these latter procedures were not employed and are not 

discussed any further in this thesis. 

For the uv-vis titration experiment, the form of the Benesi-Hildebrand equation is 

4.2e. This expression holds for the case in which the absorbance of a solution of a host 

molecule (AH) is measured as a function of added guest, against a reference solution of 

the host alone (AH0
). The initial (uncomplexed) concentrations of host and guest are [H0

] 

and [G0
] and the equilibrium concentrations of host, guest and host:guest complex are 
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[H], [G] or [HG] (assuming only 1:1 complex formation) respectively. Furthermore, this 

equation assumes that [H] = [H0
] i.e. when the condition [Hj >> [G0

] is employed, since 

[H] is not easy to measure directly (alternatively, if [G0
} >> [Ef} is employed instead, 

the appropriate equations can use [G) = [G7,). The path length is b, and dEua = (EHG • 

[HG]- Eu • [HG]- Eo • [HG]) where Euis the molar extinction coefficient ofthe host, Eo 

is that of the guest and Eua is that of the host:guest complex: 

hiM= li([H0
] • Kassoc• dEuG • [G0

]) + 1/([G0
] • 6EuG) (4.2e) 

Multiplying Equation 4.2e by [G0
] gives 4.2f. A straight-line "double reciprocal" 

([G0
] • b)!M = 1/([Kassoc • dEuG • [H0

]) + lldEuG (4.2f) 

plot of ([G0
] • b)IM (or simply b/M) on they-axis versus 11([~]) on the x-axis gives a 

slope and intercept which, according to Equation 4.2f will afford Kassoc by dividing the 

intercept on they-axis of the resulting linear regression analysis by the slope. 

Use of the Scott equation (4.2g) avoids the extrapolation needed to determine the 

intercepts on they-axes in both cases. It is obtained directly by multiplying Equation 4.2f 

by [H0
]: 

(4.2g) 

There are other limitations to the use of such plots, and these have been 

extensively reviewed elsewhere. 86 

In Chapter One of this thesis, the complexes formed between 

calix[4]naphthalenes4 and C60 and the complexes formed between selected calixarenes31
" 

33
,
36 and C60 were introduced. Calix[4]azulene (11) resembles calix[4]naphthalene (8) in 

its topology; it is composed of azulene rings linked by methylene bridges connected to 

the 1 ,3-positions of the azulene rings. 8 The azulene subunits of 11 (like the naphthol 
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subunits of 8) are composed of two fused rings to create a Ruckel 2n + 2 aromatic 

compound. The two compounds do have some significant differences: 8 has C4 symmetry 

whereas 11 shows C4v symmetry; also 11 has no functional groups while 8 contains a 

hydroxy group on each naphthalene unit. Our group has been studying supramolecular 

complexation between calix[4]naphthalenes and C60
4

'
68

'
71

'
78 and was interested in 

evaluating the novel calix[ 4 ]azulene for this kind of study. In this chapter we examine the 

complexation products of C6o and 11 using two different spectroscopic methods. 

4.2. Synthesis and Characterization of 11 

--'l._..._, __ ,._j~ ''"'----------t--~A--
,__. ............ ~-~........,.·~·~"f'~"?'-....,.._.....-....----r-T•-.,-•..,.--r-..,,-... "~--,--,-~,..~ . .,.-,..-..-~~-....-. ..,.~-·~T"'~--.,.....-.,.~~'f~"'t-•'!'--··-.-....---

,: !· f (· ; £ 7 • f:. ~· ~ ·> ~· ~ -'Ji J ~ r:;-"t"' 

Figure 4.6. NMR spectrum of calix[4]azulene (1.03 mM) in CS2• This NMR was run 
on a Bruker 500 MHz spectrometer using a Teflon® insert with a capillary 
tube filled with chloroform-d1• The proton lettering scheme and assignment 
are also illustrated. Assignments can be seen in Section 3.4. 
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The synthesis of calix[4]azulene was conducted as reported by Colby and Lash.8 

Figure 4.6 shows the 1H NMR spectrum of calix[ 4]azulene in CS2 using a specially

designed insert which allows for the use of a sealed capillary tube containing CDCb as an 

internal NMR lock. The peak assignments are given in Section 3.4 and illustrated in 

Figure 4.6. 

4.2.1 Determining the Absorption Structure of 11 

Calix[4]azulene dissolved in CS2 is bright blue. Uv-vis spectral data shown in 

Figure 4.7 shows the very different absorption spectra of calix[4]azulene and C6o· The 

absorbance spectrum of calix[ 4]azulene shows a broad band envelope that extends from 

approximately 490 run to 790 run, with a "-max at 632 run. The absorbance spectrum of C60 

shows a absorbance band envelope from approximately 440 run to 690 run, with a "-max of 

540 run. There are three main features within the calix[4]azulene absorbance spectra 

above 490 run, the first being at 634 run, the second at 696 run, and the third at 774 run. 

Comparison of the uv-vis spectrum of calix[ 4]azulene with that of azulene (Figure 

4.8), shows a notable difference in that calix[4]azulene absorbs at lower energy 

wavelengths in the visible region. The band envelope of the azulene spectrum stretches 

from approximately 482 to 726 run, whereas the calix[4]azulene spectrum shows aband 

envelope from approximately 500 to 800 run (vide supra). The absorbance bands of 

calix[4]azulene and azulene are, however, similar in structure (Figure 4.8). There are 

regions of the visible spectrum where the absorbances of azulene are similar to those of 

calix[4]azulene. For calix[4]azulene these peaks are at 632, 700, and 768 run, whereas for 

azulene, these peaks show up at 586, 652 and 706 run. The peaks observed in the 

spectrum of azulene have already been assigned previously to the disallowed So-.St 
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transition.89 The corresponding observed absorbances in the spectrum of calix[4]azulene 

can therefore also be assigned to the So-+S 1 absorption, by analogy. 

~ 
~ 

= ~ 
~ ... 
c 
~ 

~ 

< 

I 

I 

-··---·----··----·-· ·-- -----·------- ·--·- . - -- ---- . - -. ----------- ----··-·-···----- --- -· ··-·--- --·--· ·--- ----------- -· -·- ------·' 

3.5 

3 

2.5 li 

r 
2 

1.5 

1 

I 0.5 
! 
i 

0 -!-----

390 490 

netC6o li 
net calix[4]azulene ii 

'----- -------·------·----··~---J 

590 690 790 

Wavelength (nm) 
~-----·---·-------------------------·------·--·- ·----·-----·--------·· ______________________ _! 

Figure 4.7. The UV-visible spectrum of calix[4]azulene (1.03 mM) and C6o (0.938 
mM) in CS2, at 298K. "Net" refers to the calculation in which the 
absorbance value for the blank (air) is subtracted from the absorbance value 
of the individual solution being measured. Air was used as the blank as a 
way to help detect any problems with the solvent, such as absorbing 
impurities in CS2. 
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4.3. Supramolecular Binding by UV-Visible Spectroscopy and 1H NMR 
Spectroscopy 

4.3.1. UV-Visible Studies-General Observations 

Upon mixing solutions of C6o and calix[ 4]azulene, the color of the solution 

changed from the initial magenta for pure C6o and blue for pure calix[ 4 ]azulene, 

respectively, to a final grey-blue solution. The uv-vis spectra plotted as a function of the 

ratio of 11 to C6o are shown in Figures 4.9 and 4.10. The observed spectral changes 

cannot be accounted for by merely a linear combination of the reagents. At low ratios of 

11 to C6o the observed spectra are consistent with C6o as the dominant species. An 

increase in the ratio of 11 results in a diminishing of the C60 absorbance and a growth of a 

new absorption band at longer wavelengths. 
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Figure 4.8. Absorbance spectra of calix[4]azulene (1.03 mM) and azulene (1.49 
mM). Both compounds were measured CS2 solvent. 
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As the concentration of C6o is increased, a new band formation is observed 

between 490 run and 590 run. All the spectra cross at two points in the absorbance 

curves: at 440 run and 574 run. These two isosbestic points can be interpreted as an 

indication of a complex (or complexes) being formed. The presence of a second 

isosbestic point may indicate that a more complicated complex than a simple 1:1 complex 

is being formed. 
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Figure 4.9. Absorbance spectra from a continuous variation experiment in CS2 

where the mole ratios of calix[4]azulene to C60 range from 1:1 to 9:1. 
The original solutions were 1.03 mM for calix[4]azulene and 0.938 mM for 
C60 • The correct concentrations for each sample can be found in Appendix 
C. "Net" refers to the calculation in which the absorbance value for the 
blank (air) is subtracted from the absorbance value of the individual 
solution being measured. 
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Figure 4.10. Absorbance spectra from a continuous variation experiment in CS2 
where the mole ratios of calix[4]azulene to C6o range from 1:9 to 4:6. 
The original solutions were 1.03 mM for calix[4]azulene and 0.938 mM for 
C60 . The correct concentrations for each sample can be found in Appendix 
C. "Net" refers to the calculation in which the absorbance value for the 
blank (air) is subtracted from the absorbance value ofthe individual 
solution being measured. 
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4.3.2. NMR Studies-General Observations 

Upon mixing solutions of 11 and C60 there are only very small chemical shift 

changes in the proton resonances of 11 as the ratio of C6o to 11 increases. These shift 

changes are a result of the change in environment due to complexation with the C60. The 

chemical shifts are an average of the chemical environment of the protons. When 11 

complexes with C6o, the n-electron clouds of the C6o are introduced into the environment 

of 11, thereby changing its electric and magnetic fields. This can then induce a shift in the 

position of the proton signals. As well, there is the possibility of several species being 

present which may also create a change in the chemical shifts. The trends are summarized 

in Tables 4.1, 4.2 and 4.3. Table 4.1 shows the dependency of the chemical shifts of 11 

itself, using three commonly-used NMR solvents. 

Table 4.1. 1H NMR chemical shifts of Ha-He of calix[4]azulene in different solvents.1 

solvent 
cs2 

Toluene-dg 
Benzene-d6 

Ha ppm 
7.248 
6.433 
6.923 

Hbpprn 
4.958 
4.172 
4.204 

He ppm 
8.466 
7.708 
7.743 

Hctppm 
7.208 
6.324 
6.336 

He ppm 
7.703 
6.787 
Nd2 

As can be seen in Tables 4.2 and 4.3, the observed changes in chemical shifts could 

indicate the presence of two-step equilibria for example, the one shown in Equation 4.3b 

where 11 is in excess: 

11 + c6o 

11 + 11:C60 

ll:C6o 

(11)z:C6o 

Or when C6o is in excess (Equations 4.3c): 

1 See Figure 4.6 for the assignment of the protons. 
2 Nd: Not determined. 

(4.3a) 

(4.3b) 
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11 + --- ll:C6o 

ll:(C6o)z 

(4.3a) 

(4.3c) 

The changes in the NMR data in CS2 solution appear larger than in benzene 

solution. Both C60 and calix[4]azulene are more soluble in CS2 than in benzene, ie. 62 mg 

calix[4]azulene will dissolve in 1 ml of cs2 whereas only 37 mg of calix[4]azulene will 

dissolve in 1 ml of benzene. However in both case the chemical shifts are very small and 

have errors of± 0.0005, which make interpretation of this data difficult. 

Table 4.2. Changes in chemical shifts in CSz as the mole ratio of calix[4]azulene to 
C6o changes. 

Ratio of11 ~ppmHa ~ppmHb ~ppm He ~ppmHd ~ppm He 
to C6o 

9:1 0.000 0.001 0.002 0.001 0.002 
8:2 0.002 0.002 0.002 0.001 0.002 
7:3 0.003 0.003 0.004 0.003 0.003 
6:4 0.005 0.002 -0.003 0.002 0.002 
5:5 0.002 0.001 0.001 0.001 0.001 
4:6 0.003 0.002 0.002 0.001 0.002 
3:7 0.003 0.002 0.002 0.001 0.002 
2:8 0.003 0.002 0.002 0.001 0.001 
1:9 0.002 0 0.002 -0.002 0.001 

Table 4.3. Changes in chemical shifts in benzene-d6 as the mole ratio of 
calix[4]azulene and C6o changes. 

Ratio of11 ~ppmHa ~ppmHb ~ppm He ~ppmHd ~ppm He 
to C6o 

9:1 0.000 0.000 0.000 0.000 
8:2 0.000 0.000 0.001 0.001 
7:3 0.000 0.000 0.001 0.001 
6:4 0.000 0.000 0.000 0.000 
5:5 -0.003 -0.002 -0.002 -0.002 
4:6 -0.003 -0.002 -0.002 -0.002 
3:7 -0.002 -0.001 -0.001 -0.001 
2:8 -0.001 -0.001 -0.001 0.000 
1:9 -0.003 0.000 -0.001 -0.001 
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The chemical shift changes noted in Tables 4.2 and 4.3 are not straightforward to 

interpret, partly because the values are very small and contain relatively large errors. The 

formation of a 1: 1 complex would be expected to show upfield shift increases until a 1: 1 

ratio of the guest to the host is reached. On either side of this ratio there would be a 

mixture of multiple species, including the complexed and uncomplexed guest, or host, 

which would cause a decrease in the magnitude of the upfield shift. The data in Table 4.2 

and 4.3 differ from the results expected for a 1: 1 complex and therefore make it difficult 

to form a simple conclusion about the structure of the adduct. 

The observed changes in chemical shifts could indicate the presence of a two-step 

equilibrium (Equation 4.4). A Job plot of the data from Table 4.2 is shown as Figure 

4.1 0. This plot is not a simple hyperbola, but rather suggests a bimodal distribution. It 

appears that there are two maxima at 0.25 and 0.75 mole fraction ofC6o· However, due to 

the large error limit values, the data are not reliable enough to unequivocally discriminate 

between such 1:1 and 2:1 complexes. Also, since the solubility of 11 in CS2 or benzene

d6 is low, potential larger chemical shifts could not be determined using more 

concentrated solutions than the ones used in these experiments. No further NMR studies 

were conducted with this system. 

[G) + [H) ~ [G. H) + [H)~ [G.2H] (4.4) 

Molecular modeling calculations using Spartan Pro10 of 11 in the absence of guest 

molecules, based upon the AM1 semi empirical methods, showed the lowest energy 
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conformation to be pinched cone (Figure 4.12). However, a docking calculation with C6o 

clearly revealed the optimized lowest energy conformation of the calix[ 4 ]azulene in the 

1:1 complex to be a C4v-symmetrical cone (figure 4.13). Similar molecular modelling of 

the (ll)2:C60 complex reveals the structure shown in Figure 4.14. 
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Figure 4.11. Job plot of the chemical shift change for the methylene signal of 
calix[4)azulene in CS2 as the mole fraction of C6o increases. 
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Figure 4.12. Pinched cone conformer of calix[4]azulene. This is the minimum 
energy conformer as determined by molecular modeling with PC 
Spartan Pro molecular modeling program. Note: Hydrogen atoms 
have been omitted for clarity. 

Figure 4.13. The 1:1 C60: calix[4]azulene complex as generated using the PC 
Spartan Pro molecular modeling program. Note: Hydrogen atoms 
have been omitted for clarity on the structure on the left but not on 
the space-filling structure on the right. 
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Figure 4.14. The 2:1 calix[4]azulene:C6o complex as generated using the PC 
Spartan Pro V.5.0 molecular modeling program. (Note: Hydrogen 
atoms have been omitted for clarity.) 

4.4. Evidence for Supramolecular Complexation between C6o and 11 

4.4.1. Equilibrium Constants by UV-Visible Spectroscopy 

4.4.1.b. Determining the Stoichiometry of the Calix[4]azulene:C6o Complex 
by UV-Visible Spectroscopy 

The absorbance spectra of pure calix[4]azulene and C6o in CS2 were previously 

shown in Figure 4.7. This figure also shows isoabsorptive points1 at 444 nm and 580 nm. 

Figure 4.9 shows the uv-vis absorbance spectra when the mole ratio of calix[4]azulene to 

C60 is varied from 5:5 to 9:1. The isosbestic points observed in the continuous variation 

analysis are found at 440 nm and the second at around 574 nm. There is an observed shift 
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from the isoabsorptive points of the individual compounds and the isosbestic points of 

analysis which are greater than the expected experimental error. If no complexation 

occurred between the two solutes in this experiment the isosbestic points would be found 

at the same wavelengths as the isoabsorptive points. 

Figure 4.10 shows the absorbance spectra recorded when the calix[4]azulene:C60 

mole ratio is varied from 1:9 to 4:6, the range in which [11] << [C60]. Only one isosbestic 

point can be observed. The second isobestic point which had been observed for the higher 

mole fractions (9: 1 to 1:1) of calix[ 4]azulene was not observed. This does not necessarily 

indicate that no complex was formed; it instead indicates that at low calix[ 4]azulene 

concentrations, there may be different species present than those which may be present at 

the higher calix[4]azulene concentrations. In turn, this suggests that the complex formed 

is more complicated than a simple 1:1 complex. 

With each increase of the mole fraction of C60, the band envelopes change in both 

shape and intensity. The absorptions between 440 and 574 nm increase in intensity, 

whereas those at greater than 574 nm decrease in intensity. However, the changes in 

absorbance between each change in mole ratio are not linearly related. The non-linear 

increase in absorbance is an indication of a change in the nature of the species in solution, 

such as the formation of a complex. 

A specific wavelength at a significant distance from the isobestic point was 

chosen to be plotted using the Job method to help determine the stoichiometry. Figure 

4.14 shows the Job plot of using the uv-vis data at 520 nm. The shape ofthe Job plot does 

not contain a maximum at 0.5, but shows an apparent maximum when the mole fraction 

1 The isoabsorbtive point is a wavelength where the absorption spectra of two species cross. At this 
wavelength the two species have the same extinction coefficients 
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of 11 is 0.7, which gives the hyperbola an apparent skewed shape. This suggests higher 

order binding between calix[4]azulene and C60• This is a similar conclusion derived from 

to the Job plots which were obtained from the NMR experiments (vide supra, Figure 

4.11). 
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Figure 4.15. Job plot of calix[4]azulene vs C60 at 520 nm in CSz. The line of best fit 
has no meaning and is shown for clarity only. 

4.5. Determining Kassoc of C6o with Calix[4]azulene (11) 

In order to determine the Kassoc values for each of the two complexes, an 

experiment was devised to examine each individual complex with the least amount of 

interference from the other complex. 

Two individuals titrations were performed. The first was the addition of aliquots 

of a stock calix[ 4]azulene solution in CS2 into a stock solution in CS2 of C6o. A second 
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stock solution of C6o in CS2 was used as the blank, with equivalent amounts of CS2 being 

added to correct for dilution. This allowed us to study the formation of the first complex, 

by observing the absorbance of the 1: 1 complex. The second titration was performed by 

the addition of aliquots of a stock solution of C6o into a stock solution of calix[4]azulene, 

again both host and guest being in cs2 solution. This allowed us to potentially observe 

the absorbance of any higher-order binding complex, such as a 2:1 complex, since the 

calix[4]azulene host is always in excess. 

The data from each of the titrations were plotted using the Benesi-Hildebrand 

treatment, from which the Kassoc were calculated. Figure 4.16 shows the absorbance 

.. changes from the first titration while Figure 4.17 shows the corresponding Benesi

Hildebrand plot. Figure 4.18 shows the absorbance spectra obtained from the second 

titration while Figure 4.19 shows the respective Benesi-Hildebrand plot. The calculated 

Kassoc was found to be approximately 3,000 M-
1 for the formation of the suggested 2:1 

complex. 

The Benesi-Hildebrand plot depicted in Figure 4.17 gave a slope of 1.02 X 10-6 (± 

5.35 x 10-8) and an intercept value of -0.0018 (± 4.01 x 10-4) with a correlation coefficient 

ofR = 0.989. The slope and intercept yield Kassoc = 1770 (3.11 X w-5
) M-1 and ~E = -600 

M-1cm (± 130). If these values are meaningful they can be tested by introducing the 

values into Equation 4.4 which is derived from Equation 4.2b. 

(4.5) 

As can be seen in Figure 4.20, this is not the case. The bottom curve in Figure 

4.20 is the result of using the calculated Ka and ~E from the Benesi-Hildebrand analysis, 
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the straight line was created directly from the experimental data. By observation, one can 

tell that the fit resulting from the Benesi-Hildebrand is inadequate for this system. The 

magnitude of the errors associated with the analysis of these plots has been previously 

discussed by Traylor et a/.90 Accordingly, for the Benesi-Hildebrand analysis to be 

applicable, K> 1000 and ~E > 150 are necessary.91 Saturation behavior in M. vs [C60] 

keeping [11] constant and M. vs [11] keeping [C60] constant, is an experimental 

requirement ofthe system which severely restricts the ranges of[C6o] and [11] which 

could be explored. 

The calculations reported in this section, in particular those shown in Figure 4.17 

were undertaken by A. Bishop and Professor D. Thompson, MUN. 

4.6 Conclusions 

The experimental data and calculation show that the newest cavity-containing 

hydrocarbon macrocycle, calix[ 4]azulene, is an effective host for C6o· In CS2 solution it 

apparently forms a complex with C60, with higher host ratios. The uv-vis data showed an 

increased absorptivity of the adduct over the absorbance ofll itself. Furthermore, the Job 

plot suggests sequential 1:1 and 2:1 complexation. The chemical shifts differences 

although small, appear to support this contention. Numerical analysis of spectroscopic 

data using the Benesi-Hildebrand protocol is unreliable in this system as the required 

limiting criteria are not met and as a result, the extraction of Kassoc from the uv-vis data 

was not meaningful. Further experiment, such as a Hill analysis and other titrations, will 

be required to exhaustedly evaluate the nature of the complexation properties of 

calix[4]azulene with c60· 
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Figure 4.16. The absorbance spectra from the titration of calix[4]azulene into a 
solution of C6o The original concentrations were 1.00 mM for 
calixazulene and 1.01 mM for C60 . The concentration of individual 
samples can be found in Appendix C, Table C.7. The aliquots added were 
0.10ml and the legend notes the total amount ofthe calix[4]azulene 
solution added to the C6o solution to give a total volume of 3.8 ml. 
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Figure 4.17. The Benesi-Hildebrand plot at 650 nm of the titration of 
calix[4]azulene into a solution of C6o and CSz, obtained from the 
absorbance spectra shown in Figure 4.16. 
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Figure 4.18. The absorbance spectra from the titration of C6o into a solution of 
calix[4]azulene. The original concentrations of solutions 
were 0.9977 mM for C6o and 1.065 mM for 11. The concentration 
of individual samples can be found in Appendix C, Table C.8. The 
aliquots added were O.lOml and the legend notes the total amount of the 
calix[ 4]azulene solution added to the C60 solution. 
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4.7. Experimental 
Azulene, formaldehyde, buckminsterfullerene (C60) and FlorisilR were all 

purchased from Aldrich and were used as received. All calculations of data and graphs 

plotted were performed using Microsoft Excel spreadsheets. The spreadsheet accepted as 

input a table of mole ratios of calix[ 4]azulene to C60 and the observed variable (change in 

chemical shift or change in absorbance at a given wavelength), and then multiplied the 

two variables together for a Job plot. Job plots and Benesi-Hildebrand plots were plotted 

from the calculated data. From these plots the stoichiometry, Kassoc and ~g were 

calculated for complexation in both solvents. Solvents used for NMR and uv-vis 

experiment were HPLC grade. 

Synthesis of Calix[4]azulene 

Experimental 

Calix[4]azulene was synthesized using a similar method as that described by 

Colby and Lash. 8 The methodology for this synthesis is described in Section 3.4 of this 

thesis. 

NMR Experiments 

All 1H NMR data were collected on a Bruker Avance Instrument at 500 MHz 

using a 16 K data table for a 10~0 ppm sweep width having a digital resolution of 0.321 

Hz. The solvents used were CS2 (99.9%) and benzene-d6 (99.6%). NMR in CS2 were 

performed using an concentric-coaxial Teflon® insert with a Microbore™ capillary tube 

filled with chloroform-d1 with 5 % TMS to allow for chemical lock and give a reference 

peak. A 10.0 ml solution of 1.03 mM calix[ 4 ]azulene and a 10.0 ml solution of 0.938 mM 

C6o in CS2 were prepared. These two solutions were then used to prepare a series of nine 
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separate 1.00 ml solutions of varying mole ratios (9:1, 8:2,7:3,6:4, 5:5,4:6,3:7,2:8, 1:9 

calix[4]azulene:C60), which were placed in NMR tubes. A sample of the pure 

calix[4]azulene solution was also placed in a NMR tube. A 1H NMR spectrum for each 

solution was taken, and then carefully worked up on WinNuts NMR data processing 

program. This experiment was then repeated in benzene-d6 without the insert (see 

Appendix C). 

UV -vis experiment 

Ultraviolet-visible spectral data were collected on an Hewlett Packard Diode array 

Spectrophotometer 8452A using HP 89532A General Scanning Software. The same 

series of solutions as were used in the NMR experiments wer~ used for the uv-vis 

experiment. Samples of the C6o solution and CS2 blank were placed in NMR tubes. A 

specially-designed holder was employed which enabled the NMR tubes to be placed in 

the path of the light source of the diode-array spectrometer. The holder consisted of a 

1cm x lcm x 4 em TeflonR block into which a 3-mm wide x 3.2 em "widow" was cut into 

the block and thus constituted the window through which the light from the diode array 

spectrometer passed. The block also had an approx 5-mm hole drilled into the top so that 

the NMR tube could fit snugly into it. The path length of the solution contained in the 

NMR tube "cuvette" was therefore approximately 3 mm (interior diameter of the NMR 

tube). This set-up allowed for both the 1H NMR and uv-vis determinations to be 

conducted without the need for removing the solutions in each case, and thus minimizing 

the volumes of deuterated solvents and quantities of materials required. 

This experiment was repeated in benzene-d6 (see Appendix C). All experiments 

used air as the reference, so that any absorbing impurities in the solvent could be 
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detected. The UV -vis experiments were repeated before and after the NMR experiments. 

The solution used to collect the uv-vis spectra of azulene was a 1.16 mM azulene solution 

in CS2 (Figure 4.8). The uv-vis spectrum of azulene was collected using the same 

procedure as described above. 

The titration experiments were done on a Cary instrument. The first titration was 

done by placing 2. 70 ml of a 1.00 mM solution of C6o in CS2 in two more conventional, 1 

em x 1 em cuvettes, a second solution of 1.00 mM calix[4]azulene was added to one of 

the cuvettes in 1 00 J.tl aliquots, with an absorbance reading taken between each of the 

eleven additions. The second cuvette was used as the reference and received 100 J.tl 

aliquots of solvent to correct for the dilution. The second titration was done by placing 

2. 70 ml of a 1.00 mM solution of calix[ 4]azulene in CS2 in two 1 em x 1 em cuvettes. A 

second solution of 1.00 mM C6o was added into one of the cuvettes in 100 ~-tl aliquots, 

with an absorbance reading taken between each of the eleven additions. The second 

cuvette was used as the reference and received 100 ~-tl aliquots of solvent to correct for 

the dilution. 
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Chapter 5 

An Examination of the Supramolecular Complexation Stoichiometry of 
tert-Butylmethoxycalix[n]arenes and C60 

5.1. Introduction 

Tert-butylcalix[6]arene32 (12) forms a 2:1 complex with C60, whereas tert-

butylcalix[8]arene33 (13) forms a 1: 1 complex, as described in Chapter 1 of this thesis. In 

the investigation of the complexation properties of calix[4]azulene with C60 a novel 

method of conducting the 1H NMR determinations was used which allowed the use of the 

nonpolar solvent, CS2. The methyl ether derivatives 44 and 45 of calixarenes, 12 and 13, 

respectively were synthesized (Figure 5.1).91 The ether derivatives were then investigated 

to characterize their colligative and spectroscopic properties, and finally to characterize 

their host-guest complexation properties with c60· 

44 45 

Figure 5.1. Tert-butylmethoxycalix(6]arene and tert-butylmethoxycalix[8)arene. 
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5.2. Characterization of tert-butylmetboxycalix[6]arene (44) and tert
butylmetoxycalix[8]arene ( 45) 

The NMR data for 44 and 45 can be found in Section 5.3 of this thesis. Figures 

5.2 and 5.3 are the absorbance spectra of 44 with C60 and 45 with C6o· The absorbance 

spectrum of C6o has been described in Chapter 4 of this thesis; neither 44 nor 45 show 

significant absorptions in the visible region (A. > 350 run) at room temperature in cs2 

solution. CS2 itself has a uv-vis cut-off at A. < 340 run which precludes a determination of 

the uv spectrum for 44 and 45 at these wavelengths. 

5.3. Supramolecular Binding by UV- Visible and 1H NMR Spectroscopy 

5.3.1. UV-Visible Spectroscopic Studies - General Observations 

Upon mixing a solution of C6o (deep purple) with the solution of 44 (colorless) a 

pale purple solution resulted. A similar colored solution was observed when a solution of 

C60 was mixed with the solution of 45 (clear, colorless). The uv-vis spectra plotted as a 

function of the ratio of 44 and 45 respectively to C60 are shown in Figures 5.2 and 5.3. 

The observed spectral changes beyond A, = 340 run cannot be modeled as a linear 

combination of the two reagents in either case. At low ratios of 44 the observed spectra 

are consistent with C60 being the dominant species. When the experiment was repeated 

with 45, the low ratios of the host also produced spectra which are consistent with C60 

being the dominant species. In both cases, the increase in the host mole fraction results in 

a decrease in the C60 absorbance. The spectra do not show equal decreases in absorption 

with each change in mole fraction, therefore the data cannot be discussed as simple 

dilution effect. 
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Figure 5.2. Absorbance spectra from the continuous variation experiment for 44 
and C6o. The original solutions were 1.40 mM for 44 and 0.911 mM for 
C60 . The concentration of individual samples can be found in Appendix D, 
Table D. I. The net is defined the same as in Figure 4.9. 
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These spectra were then mathematically transformed by multiplying each 

spectrum by the difference in absorption between the individual absorption and the 

absorption of C6o at 450 nm, to show the differences between the C6o absorbance 

spectrum and the individual absorbance spectra at each molar fraction. Figures 5.3 and 

5.4 show the changes in shape of the band envelope as the mole fractions of 44 or 45 

increases, respectively. 
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Figure 5.4 Mathematically transformed absorbance of 44 in CS2• 
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Figure 5.5 Mathematically transformed absorbance of 45 in CS2• 

5.3.2. NMR Studies - General Observations 

The 1H NMR data collected for calix[4]azulene in CS2 showed the greatest 

change in chemical shifts (~8), and therefore data for both 44 and 45 in cs2 were also 

collected. Upon mixing of 44 and C6o there are chemical shift changes in the proton 

resonance as the ratio of C6o to 44 increases. These shifts are the result of change in the 

chemical and magnetic environment of the protons of 44. These data are summarized in 

Table 5 .1. The observations which were made for 45 are similar to those for 44, and are 

summarized in Table 5.2. The changes in the chemical shifts are small and contain 

relatively large errors and therefore not straightforward to interpret. Similar to 

calix[4]azulene a mixture of multiple species may be present which may decrease the 

magnitude of any chemical shift changes from the complexation of calix[ n ]arene with 
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C60. The data in both experiments were not consistent with the strict formation of a 

dominant 1:1 complex. Quantitative studies to characterize the complexation of C60 with 

44 and 45 are outlined below. 

Table 5.1. Changes in chemical shifts in CSz as the ratio of 44 to C6o changes. 

Ratio of 44 
to C6o 

1:0 
9:1 
8:2 
7:3 
6:4 
5:5 
4:6 
3:7 
2:8 
1:9 

L.\ ppm 
t-butyl 
1.423 
-0.001 
0.000 
0.001 
0.001 
0.002 
-0.001 
0.000 
0.001 
0.002 

L.\ ppm 
aromatics 

3.219 
0.000 
0.001 
0.001 
0.001 
0.001 
-0.001 
0.001 
0.001 
0.002 

L.\ ppm 
methylene 

4.082 
-0.002 
0.000 
0.001 
0.001 
0.001 
0.000 
0.003 
0.000 
0.002 

L.\ ppm 
methoxy 

7.169 
-0.001 
0.001 
0.002 
0.002 
0.002 
0.001 
0.002 
0.001 
0.003 

Table 5.2. Changes in chemical shifts in CSz as the ratio of 45 to C6o changes. 

Ratio of 45 L.\ ppm L.\ ppm L.\ ppm L.\ ppm 
to C6o t-butyl aromatics methylene methoxy 

1:0 1.069 6.923 4.036 3.413 
9:1 -0.005 -0.005 -0.004 -0.006 
8:2 -0.001 -0.001 -0.001 -0.001 
7:3 0.001 0.001 0.000 0.000 
6:4 0.003 0.002 0.001 0.001 
5:5 0.001 0.000 0.000 0.000 
4:6 0.000 -0.001 -0.001 -0.001 
3:7 0.000 0.000 0.000 0.000 
2:8 0.000 0.000 0.001 0.001 
1:9 0.003 0.001 0.001 0.001 
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5.3.3. Determining the Stoichiometry of the 44:C6o complex and the 45:C6o Complex 
by UV -visible Spectroscopy 

Figure 5.2. shows absorbance spectra from the continuous variation experiment in 

which the ratio of C6o to 44 was varied from 9: 1 to 1 :9. As the mole fraction changes for 

calix[n]arene - from 0.0 to 1.0, the absorbance changes show the decreasing c60 

characteristics. 

The absorbances at 520 nm for both compounds were plotted using the Job 

method, and are illustrated in Figures 5.6 and 5.7. The resulting plots could not be 

modeled as a linear combination of reagents. The resulting curves show a maximum at 

around 0.7 for 44 and 0.6 for 45 which gives the hyperbola a skewed shape. These data 

suggest a possible multi-step equilibrium process. A multi-step equilibrium suggests 

higher order binding between calix[n]arene and C60, as described for calix[4]azulene in 

equations 4.3a -4.3c. 

5.4. Conclusions 

As a result of the data limitations such as small absorption changes and small 

chemical shift it is difficult to interpret the data and come to a solid conclusion of the 

structure of the adduct formed between 44 or 45 and C6o· Further investigation into to the 

stoichiometry of these complexes was not attainable. Further investigation into the 

complexation properties of 44 and 45 are necessary. The experiments necessary to 

complete this study include, repeating the Job analysis using other solvents such as 

benzene or toluene. As well a detailed examination of the overall Kassoc of these 

compounds would help to identify the nature of the complexes being formed. This 

examination can be carried out with the use of a Benesi-Hildebrand study along with a 

Hill analysis. 
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5.4. Experimental 

5,11, 17,23,29,35-Hexa-t-butyl-37,38,39.40,41 ,42-hexahydroxycalix[6]arene, 

5,11, 17,23,29,35,41 ,46-octa-t-butyl-49,50,51 ,52,53,54,55,56-octahydroxycalix[8]arene, 

iodomethane (CH3I), sodium hydride (NaH) in 60% mineral oil and C6o were all 

purchased from Aldrich and used as received. Tetrahydrofuran (THF) purchased form 

Aldrich was distilled over sodium before use. All calculations were done as previously 

described for the calix[4]azulene experiments, in Section 4.7. 

5,11,17 ,23,29,35-Hexa-tert-butyl-37 ,38,39,40,41,42-hexamethoxycalix[6]arene (44) 

Compound 44 was synthesized using a method similar to that described by 

Gutsche and Lin.91 A solution of 1.10 g, (1.13 mmol) ofp-tert-butylcalix[6]arene, 1.21 g 

( 46.7 mmol) ofNaH and 9.33 g (65.9 mmol) of CH3I was refluxed in DMF (5 ml) and 

anhydrous THF (50 ml) for 20 h. The THF was evaporated under vacuum, and the grey 

solid residue was washed with water to remove DMF before being collected by suction 

filtration. The residue was then crystallized in methanol and dichloromethane to afford 
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l.llg (94 %) of 44 as colorless crystals; lit. m.p. 380-381 °C;87 1H NMR (CDCh): o = 

1.42 (s, 54H, H-tert-butyl), 3.22 (s, 18H, OCH3), 4.08 (s, 12H, H-2, H-8, H-14, H-20, H-

36, H-32), 7.17 (s,12H, H-4, H-6, H-10, H-12, H-16, H-18, H-22, H-24, H-28, H-30, H-

34, H-36). 

5,11,17,23,29,35,41,47-octa-tert-butlyl-49,50,51,52,53,54,55,56-octamethoxy
calix[8]arene (45) 

Compound 45 was synthesized using a method similar to that described by 

Gutsche and Lin.91 A solution of 1.31 g (1.01 mmol) of p-tert-butylcalix[8]arene, 1.21 g 

(46.7 mmol) of NaH, and 9.33 g (65.9 mmol) of CH3I was refluxed in DMF (5 ml) and 

anhydrous THF (50 ml) for 20 h. The THF was evaporated under vacuum and the yellow 

solid residue was washed with water to remove DMF and was then collected by suction 

filtration. The residue was crystallized in methanol and dichloromethane to afford 1.34 g 

(94%) of 45 as colorless crystals; lit m.p. 411-412 °C;87 The 1H NMR ( CDCh): 0 = 1.07 

(s, 72H, H-tert-butyl), 3.41 (s, 24H, OCH3), 4.04 (s, 16H, H-2, H-8, H-14, H-20, H-26, 
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H-32, H-38, H-44), 6.92 (s, 16H, H-4, H-6, H-10, H-12, H-16, H-18, H-22, H-24, H-28, 

H-30, H-34, H-36, H-40, H-42, H-46, H-48). 

1HNMR Titration Experiments 

The 1H NMR experiments were conducted using the same equipment and 

software as described in the calix[4Jazulene experiment, Section 4.7. 

A 10.0 ml solution of 1.40 mM of 44 and a 10.0 ml solution of0.911 mM of C60 

in CS2 were prepared. These two solutions were then used to prepare a series of nine 

solutions of varied mole ratio (9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1 :9) of 44 to C60, 

which were then each placed in separate NMR tubes. A sample of the solution of the pure 

44 was also placed in a NMR tube. 1H NMR spectra were determined for each solution. 

A 10.0 ml solution of 0.950 mM of 45 and a 10.0 ml solution of 1.00 mM of C60 

in CS2 were prepared. These two solutions were then used to prepare a series of nine 

solutions of varied mole ratio (9:1, 8:2,7:3,6:4, 5:5,4:6, 3:7,2:8, 1:9) of 45 to C6o which 

were then each placed in separate NMR tubes. 1HNMR spectra were determined for each 

solution. 

UV-Visible Titration Experiments 

The UV-visible experiments were conducted as described for the calix[4]azulene 

experiment (Section 4.7), using the same equipment and software. The same series of 

solutions used in the NMR experiment were used in the uv-vis experiment. A sample of 

the pure C6o solution and a sample of blank CS2 were also placed in NMR tubes. Each 

sample was measured to give Figures 5.2 and 5.3. The uv-vis experiments were repeated 

before and after the NMR experiments. 
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Appendix A 

1H NMR of Selected Compounds from Chapter 2 
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Appendix B 

1H NMR of Selected Compounds from Chapter 3 
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Appendix C 

Benzene-d6 Experiment 

and 

Experimental and Calculated Data for Chapter 4 
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The data for the experiments in benzene-d6 were in treated the same manner as 

those for the experiment in CS2. The absorbance spectra which were determined in 

benzene-d6 were separated into two parts, as shown below. In these spectra, only one 

isosbestic point is observed, at approximately 602 nm. The presence of this isosbestic 

point is a possible indication of the formation of a complex. 

I c j 

:-net 60 !: ,, 

-net 9-111 

0.3 - i- net 8-2 
I 

I 

'-net7-3 i: 

" 

QJ 

~ 0.2 
~ 

- net6-4 

-net 5-5 
1: -e 

~ 
·net 4-6 li 

,.Q < 0.1 

I 

! 
I 0 -+-------,---- ,---~,-----·, 

400 450 500 550 600 650 

Wavelength (nm) 

Figure C.l. Absorbance spectra from the continuous variation experiment in 
benzene-d6 for the mole ratios of 4:6 to 9:1 of calix[4]azulene to c60· The 
original solutions were 0.68 mM for calix[4]azulene and 0.69 mM for C6o. 
The correct concentrations for each sample can be found within this 
appendix. "Net" refers to the calculation in which the absorbance value for 
the blank (air) is subtracted from the absorbance value of the individual 
solution being measured. 

The low solubility in benzene-d6 of 11 makes the data in this solvent more 

difficult to interpret than the data from the experiments in CSz. The data was however 
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tested in the same manner as the data which were collected from the CS2 experiments. 

This data gave evidence that 11 fmms a complex with higher order binding, however due 

to the solubility restriction, no experiments where performed to obtain a binding constant 

in benzene-d6. 

0.5 -

0.4 

·net calix[4]azulene 
-net 3-7 

net 2-8 
-net 1-9 ,, 

~ 
l---------------~----·------~---'i 

CJ I 

= 0.3 e": 
,Q 
I. 
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~ 0.2 ,Q 

< 
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i 
0 +---

400 500 600 700 

Wavelength (nm) 

Figure C.2. The absorbance spectra from the continuous variation experiment in 
benzene-d6 for the mole ratios of 1:9 to 3:7 of calix[4]azulene to C6o· The 
original solutions were 0.68 mM for calix[4]azulene and 0.69 mM for C6o· 
The correct concentrations for each sample can be found within this 
appendix. "Net" refers to the calculation in which the absorbance value for 
the blank (air) is subtracted from the absorbance value of the individual 
solution being measured. 

Below are shown the Job plots for the uv-vis and 1H NMR titration data. The Job 

plots show complex structures which make it hard to identify the nature of any adducts 

formed in these experiment. The Job plots, however, support the suggestion that 11 and 

C60 form complexes with higher order binding, as discussed in Chapter 4 of this thesis. 
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Figure C.3. Job plot of the chemical shift change for the methylene signal of 
calix[4]azulene in benzene-d6, as the mole fraction of C60 increases. 
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Figure C.4. Job plot of calix[4]azulene vs C60 at wavelength 530 nm in benzene-d6• 
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Table C.l: The concentrations in CS2 of C6o and 11 used for the in the Job plot. 

Mole Ratio ofC6o:11 

9:1 
8:2 
7:3 
6:4 
5:5 
4:6 
3:7 
2:8 
1:9 

Concentration of C6o 
(mM) 
0.103 
0.206 
0.300 
0.403 
0.488 
0.563 
0.657 
0.760 
0.854 

Concentration of 11 (mM) 

0.916 
0.803 
0.700 
0.587 
0.494 
0.412 
0.309 
0.196 
0.093 

Table C.2: The concentrations in benzene-d6 of C6o and 11 used for the Job plot. 

Mole Ratio ofC6o:11 

9:1 
8:2 
7:3 
6:4 
5:5 
4:6 
3:7 
2:8 
1:9 

Concentration of C6o 
(mM) 
0.069 
0.138 
0.207 
0.276 
0.345 
0.414 
0.483 
0.552 
0.621 

Concentration of 11 (mM) 

0.612 
0.544 
0.476 
0.408 
0.340 
0.272 
0.204 
0.136 
0.068 
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Table C.3: The calculated values used for the 1H NMR Job plot in CS2. 

Mole Fraction of C6o 

1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 

Chemical Shift Changes 
(ppm) 

0 
0.001 ± 0.0005 
0.002 ± 0.0005 
0.003 ± 0.0005 
0.002 ± 0.0005 
0.001 ± 0.0005 
0.001 ± 0.0005 
0.002 ± 0.0005 
0.002 ± 0.0005 
0.000 ± 0.0005 

0 

Mole Fraction of C6o x 
Chemical Shift Changes 

0 
0.0009 ± 0.0005 
0.0016 ± 0.0005 
0.0021 ± 0.0005 
0.0012 ± 0.0005 
0.0005 ± 0.0005 
0.0004 ± 0.0005 
0.0006 ± 0.0005 
0.0004 ± 0.0005 
0.0000 ± 0.0005 

0 

Table C.4: The calculated values used for the 1H NMR Job plot in benzene-d6• 

Mole Fraction of C6o 

1-
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 

Chemical Shift Changes 
(ppm) 

0 
0.000 ± 0.0005 
0.000 ± 0.0005 
0.000 ± 0.0005 
0.000 ± 0.0005 
-0.002 ± 0.0005 
-0.002 ± 0.0005 
-0.001 ± 0.0005 
-0.001 ± 0.0005 
-0.002 ± 0.0005 

0 

Mole Fraction of C6o x 
Chemical Shift Changes 

0 
0.000 ± 0.0005 
0.000 ± 0.0005 
0.000 ± 0.0005 
0.000 ± 0.0005 
-0.001 ± 0.0005 
-0.0008 ± 0.0005 
-0.0003 ± 0.0005 
-0.0002 ± 0.0005 
-0.0002 ± 0.0005 

0 
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Table C.5: Calculated values used for the uv-vis Job plot in CS2• 

Mole Fraction of 11 

1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 

Change in Absorbance 

0 
0.048706 
0.081451 
0.114883 
0.136688 
0.158432 
0.191879 
0.205429 
0.263382 
0.253586 
0.295242 

Mole Fraction x Change in 
Absorbance 

0 
0.43835 

0.065161 
0.080418 
0.082013 
0.079216 
0.076752 
0.061629 
0.052676 
0.025359 

0 

Table C.6: Calculated values used for the uv-vis Job plot in benzene-d6. 

Mole Fraction of 11 

1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 

Change in Absorbance 

0 
0.039093 
0.036682 
0.046631 
0.063751 
0.066192 
0.080185 
0.079315 
0.136017 
0.106494 
0.135406 

Mole Fraction x Change in 
Absorbance 

0 
0.035184 
0.029346 
0.032642 
0.038251 
0.033096 
0.032074 
0.023795 
0.027203 
0.010699 

0 
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Table C. 7: Concentration of samples used for the titration of 11 into a solution of 
C6o in CS2 (Figure 4.13b ). 

Addition of 11 
aliquot in ml 

0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 

Concentration of 
C6o in Sample 

(mM) 
0.944 
0.914 
0.886 
0.859 
0.833 
0.809 
0.787 
0.766 
0.746 
0.727 

Concentration of 11 
in sample (mM) 

0.067 
0.097 
0.126 
0.152 
0.177 
0.201 
0.223 
0.244 
0.264 
0.282 

Concentration of 
C6o in reference 

(mM) 
0.944 
0.914 
0.886 
0.859 
0.833 
0.809 
0.787 
0.766 
0.746 
0.727 

Table C.8: Concentration of samples used for the titration of C6o into a solution of 
11. 

Addition of C6o 
aliquot in ml 

0 
0.1 
0.2 
0.3 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

Concentration of 11 
in Sample (mM) 

1.065 
1.027 
0.992 
0.959 
0.899 
0.871 
0.846 
0.822 
0.799 
0.777 

Concentration of 
C6o in sample 

(mM) 
0 

0.0365 
0.069 
0.090 
0.156 
0.181 
0.205 
0.228 
0.249 
0.270 

Concentration of 11 
in Reference (mM) 

1.065 
1.027 
0.992 
0.959 
0.899 
0.871 
0.846 
0.822 
0.799 
0.777 
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Table C.9: Calculated values used for the Benesi-Hildebrand plot for the titration 
of C6o into a solution of 11. 

Concentration Concentration Absorbance 1/[11] [C6o]/Abs 
ofC6o of 11 (mM) (M-1) 

(mM) 
0 1.065 0.01782 0 0.059764 

0.0365 1.027 0.02292 28066.24 0.044808 
0.069 0.992 0.0391 14532.77 0.025361 
0.090 0.959 0.04587 10023.05 0.020896 
0.156 0.899 0.063 6414.368 0.014263 
0.181 0.871 0.06442 5512.679 0.013527 
0.205 0.846 0.07651 4868.549 0.011053 
0.228 0.822 0.07803 4385.965 0.010529 
0.249 0.799 0.07385 4009.623 0.010814 
0.270 0.777 0.2717 3709.199 0.00286 

Table C.10: Calculated values used for the Benesi-Hildebrand plot for the 
titration of 11 into a solution of C6o in CSz. 

Concentration Concentration Absorbance li[C6o] [11]/Abs 
of 11 ofC6o (M-1) (M/nm) 
(mM) (mM) 
0.067 0.944 0.0877 1059 0.000647 
0.097 0.914 0.121 1094 0.000709 
0.126 0.886 0.194 1128 0.000599 
0.152 0.859 0.259 1164 0.000553 
0.177 0.833 0.271 1200 0.000617 
0.201 0.809 0.328 1236 0.000584 
0.223 0.787 0.381 1270 0.000561 
0.244 0.766 0.420 1305 0.000560 
0.264 0.746 0.452 1340 0.000564 
0.282 0.727 0.475 1375 0.000674 
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fable C.ll: Calculated and experimental absorbances for the titration of 11 into a 
solution of C6o in CS2. 

Concentration of 11 (mM) 

0.067 
0.097 
0.126 
0.152 
0.177 
0.201 
0.223 
0.244 
0.264 
0.282 

Change in Absorbance 
Experimental at 480 nm 

0.0877 
0.121 
0.194 
0.259 
0.271 
0.328 
0.381 
0.420 
0.452 
0.475 

Change in Absorbance 
Calculated from Eq. 4.4 

0.0610 
0.0815 
0.0983 
0.111 
0.121 
0.179 
0.135 
0.140 
0.144 
0.147 
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Appendix D 

1H NMR of Compounds 44 and 45 

and 

Experimental and Calculated data from Chapter 5 
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Table D.1: Concentrations in CS2 of C6o and 44 used for the Job plot. 

Mole Ratio of C60:44 

9:1 
8:2 
7:3 
6:4 
5:5 
4:6 
3:7 
2:8 
1:9 

Concentration of C6o 
(mM) 
0.128 
0.255 
0.355 
0.465 
0.583 
0.638 
0.712 
0.783 
0.847 

Concentration of 44 (mM) 

1.20 
1.01 

0.854 
0.686 
0.504 
0.420 
0.308 
0.196 
0.096 

Table D.2: Concentrations in CS2 of C60 and 45 used for the Job plot. 

Mole Ratio of C6o:45 

9:1 
8:2 
7:3 
6:4 
5:5 
4:6 
3:7 
2:8 
1:9 

Concentration of C6o 
(mM) 
0.100 
0.200 
0.300 
0.400 
0.500 
0.600 
0.700 
0.800 
0.900 

Concentration of 45 (mM) 

0.858 
0.763 
0.667 
0.572 
0.477 
0.381 
0.290 
0.191 
0.095 
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Table D.3: Calculated values used for the uv-vis Job plot for 44 in CS2. 

Mole Fraction of 44 

1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 

Change in Absorbance 

0 
0.081665 
0.141327 
0.182282 
0.209229 
0.255463 
0.322098 
0.375259 
0.391922 
0.440414 
0.553925 

Mole Fraction x Change in 
Absorbance 

0 
0.03499 

0.113062 
0.127597 
0.125537 
0.127732 
0.128839 
0.112578 
0.078384 
0.044040 

0 

Table D.4: Calculated values used for the uv-vis Job plot for 45 inCS2. 

Mole Fraction of 45 

1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 

Change in Absorbance 

0 
0.140838 
0.191787 
0.254333 
0.318191 

0.0320358 
0.378158 
0.411484 
0.492080 
0.501312 
0.616272 

Mole Fraction x Change in 
Absorbance 

0 
0.126754 
0.153430 
0.178033 
0.190915 
0.160178 
0.151263 
0.123445 
0.098416 
0.050131 

0 
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