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ABSTRACT 

Axial vibration generators improve oilwell drilling efficiency by reducing drillstring­

wellbore friction. However, tool vibration can cause unwanted vibrations of the 

drillstring, and thus premature failure of components. The only effective way to benefit 

from the positive consequences of these tools is to develop vibration models to predict the 

vibration pattern of the drillstring for any mode of interest, and implement suppression 

tools, such as a shock sub to isolate the imposed vibration from the rest of the drillstring. 

Transverse vibration, which is coupled to axial vibration, is the main cause of premature 

failure of drillstrings. Nonlinear coupled axial-transverse vibration of a drillstring with a 

downhole vibration generator and shock sub is investigated. Analytical elastodynamic 

and finite element models are developed. 

The Newtonian approach and the "Bypassing PDEs" method were implemented in 

developing the analytical models and the ABAQUS Explicit solver package® was used to 

develop finite element method (FEM) models. The bottom-hole assembly was assumed as 

a multi-span bottom-hole assembly (BHA) and realistic boundary conditions were 

assumed. The lateral comparison functions for a multi-span BHA and axial comparison 

functions for a system of hybrid continuous (step-beam drillstring) and discrete elements 

(springs and dampers of the shock sub and the equivalent top boundary condition) were 

developed analytically. The effects of mud damping, spatially varying axial force along 

the drillstring, bit-rock interaction and lateral contacts were included. Nonlinearities due 
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to strain energy, geometry, axial stiffening and Hertzian contact forces were also captured 

in the models. 

The simulation results were used to extract modal characteristics and analyze the 

downhole vibration trends of a drill string with a shock sub and vibrating tool installed on 

the BHA. Multi-mode analysis in the expanded Galerkin's method with accurate 

comparison functions enabled a multi-point contact analysis, multi mode modal dynamic 

analysis, and prediction of more realistic critical rotary speeds. A simulated shock sub 

effectively isolated the vibrating tool from the drillstring, while amplifying the tool force 

at the bit. Analytical and FEM models showed excellent agreement. The models in their 

current form can be used to guide the design of drillstrings and to predict drilling 

parameters such as speed and weight-on-bit (WOB) that will result in acceptable vibration 

levels. 
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Philosophy is written in this grand book - 1 mean the universe - which stands 

continually open to our gaze, but it cannot be understood unless one first learns to 

comprehend the language and interpret the characters in which it is written. it is written 

in the language of mathematics, and its characters are triangles, circles, and other 

geometrical f igures, without which it is humanly impossible to understand a single word 

of it; without these, one is wandering around in a dark labyrinth. 

Galileo Galilei, 1623 
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1 

1 Introduction and Problem Statement 

1.1 Introduction 

As the consumption of energy increases across the globe, the demand for a more efficient 

and safer exploration and exploitation techniques is increasing. Drilling is one of the most 

costly and risky activities in oil and gas reservoirs exploration and field development. 

Drilling techniques have rapidly evolved to increase production rates while decreasing the 

cost. Vibration-assisted rotary drilling (V ARD) is an emerging technology that enhances 

rotary drilling by adding vibrations at the bit or elsewhere in the "Bottornhole Assembly" 

(BHA). V ARD can be defined as the intentional introduction of controlled vibration into 

the drillstring to increase drilling performance. Recently, high frequency downhole 

vibration generator tools, such as agitators are installed in the BHA, which is 

demonstrated to increase the rate of penetration in drilling wells. The drillstring is one of 

the major parts of any drill rig and many important drilling parameters are controlled 

through the drillstring. This long rotary structure has a complex-nonlinear-coupled 

vibration behavior. 

However, with the implementation of sophisticated downhole vibration generators, 

several catastrophic failures of the drillstring, bit and "measurement while drilling" 

(MWD) tools are reported by industry. This is due to the fact that the vibration generator 

tool acts as an excitation source for the drillstring vibration, or their working parameters 

are not compatible with the drillstring configuration. Therefore, the unwanted excited 



vibration waves are propagating along the drillstring and drill rig, which is a potential 

disadvantage of this technique. 
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The only effective way to benefit from the positive consequences of these tools is to 

isolate the imposed vibration above the bit from the rest of the drillstring. Effective low­

priced methods to achieve this goal are to develop and implement vibration decoupling 

tools and operational guidelines, while vibration generator tools are in use. The only 

effective way to develop decoupling tools and operational guidelines is through vibration 

modeling of the drillstring inside the wellbore. In the present research, analytical and 

numerical models of drillstring vibrations, under the effect of downhole vibration 

generator tools, are developed and tuned, and isolation methods and operational 

guidelines are proposed 

1.2 Statement of the Problem 

Drilling is one of the most costly and risky activities for both exploration and 

development of oil fields. The oil and gas industry is actively researching technologies to 

improve drilling technology and efficiency. Enhanced drilling techniques, such as 

"vibration-assisted rotary drilling" have been emerging in the last decade and are now 

considered as conventional technology. This technique is based on introducing high 

frequency axial vibration in the BHA through a downhole vibration generator tool for the 

purpose of reducing drillstring-wellbore friction and thus enhancing the penetration rate 

by improved weight transfer [1 ,2]. Reducing the probability of stick-slip, controlled 

reaction torque, improved steering, more efficient cutting removal and improved load 
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buckling capacity are other potential enhancements of these axial vibratory tools. 

Nevertheless, implementing vibration generator tools in the rotary drilling raises concerns 

about the unfavourable side effects on the drill rig itself and, in particular, on the 

drillstring. 

Contrary to the improving effect on the rate of penetration (ROP) and efficiency, the 

implementation of downhole vibration generators in the BHA adds a vibration excitation 

source on the drillstring. Although this is an axial excitation, other modes are also 

affected by this source due to the vibration coupling nature in the drillstring. This results 

in unwanted vibration waves propagating along the drillstring. The undesired vibration of 

the drillstring increases the risk of hole deviation, wellbore washout, and most 

importantly premature failure of the BHA and its components, including MWD tools. 

Moreover, as a result of exciting unwanted vibration modes of the drillstring, a large 

portion of the provided power at the surface is lost. The problem worsens if the working 

parameters of the vibration generator (load and frequency) are not compatible with the 

configuration of the drillstring and formation. It is of great interest to the oil and gas 

industry to investigate methods to benefit from potential advantages of the downhole 

vibration generator tool and avoid the negative consequences. From a practical point of 

view, the solution of this problem is to decouple the vibrations induced by the tool from 

the rest of the drillstring. This consists of designing vibration suppression tools, such as 

shock subs, developing drilling guidelines and designing a drillstring configuration which 

is compatible with the vibration generator tool. The only way to achieve the above goals 

is to investigate the vibration pattern of the drillstring and its dynamic behavior, either in 
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the frequency domain or the time domain, under the effect of the downhole vibration tool. 

The first essential step to study the dynamic behavior of the drillstring is to investigate the 

mechanics of the drillstring, its vibration behavior and develop models to recognize its 

vibration pattern for any mode of interest. 

The drillstring is one of the major components of any type of drill rig. It is a tool used to 

transfer energy and rotation to the bit. This long rotary, slender structure plays one of the 

most important roles in overall drilling efficiency. It consists of a lower heavier section 

called the collars and a lighter upper section called the pipes. The collar section is 

constrained with multiple stabilizers inside the wellbore, which are used to increase the 

load carrying capacity of the drill string and control well trajectories. The annulus between 

the BHA and the wellbore is filled with drilling mud, which cools the bit and flushes the 

cuttings out of the hole and helps to overcome formation pressure. Moreover, the mud has 

a significant vibration damping role in certain modes. A driving torque is applied to the 

top part of the drillstring. The drillstring on top is attached to the hoisting system and on 

the bottom the attached bit is in contact with the rock. The effects of the hook load, mud 

hydrostatic forces (upward at the bit location and downward at the pipe-collar junction) 

and self weight are presented as a spatially varying axial force along the drillstring. This 

load changes from compression in the collars to tension in the pipes. At the bit, besides an 

upward hydrostatic force, there is another force called the "weight-on-bit (WOB)", which 

is the primary cutting load. 
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This beam-like structure is under three primary states of vibration simultaneously: axial, 

transverse and torsional. Moreover, these modes are coupled due to axial stress 

distribution along the drillstring from compression to tension, the coupling nature of the 

bit-rock interaction, driving torque, axial stiffening due to the gravitational field and the 

curvature of the drillstring. Also, the vibration trend of the drill string is nonlinear due to 

the sources of nonlinearity, such as drillstring-wellbore impact and bit rock interaction 

force. The axial bit displacement, multiple lateral contacts and the frictional torque 

fluctuations at the bit are major excitation sources for axial, lateral and torsional modes, 

respectively. Among the primary modes, the transverse mode is the most destructive 

mode and is responsible for most of the drillstring and BHA failures [3 ,4,5]. In the case of 

implementing downhole axial force generators, axial vibration behavior is also of great 

interest. This is due to the intentional axial excitation of the drill string and therefore, the 

source in the axial direction should be decoupled. Also, the introduced axial force by the 

downhole vibration generator creates lateral excitation, and thus, lateral instabilities [6]. 

Also, axial and transverse vibrations are more violent compared to torsional vibrations of 

the drillstring in vertical wells [7]. As a result, investigation of the coupled axial-lateral 

mode of the drillstring, with the vibration generator tool in use, is the key towards 

understanding the vibration pattern of the drill string and development of vibration 

isolators and operational drilling guidelines. Capturing the torsional mode is beyond the 

scope of this thesis. 

Due to the nonlinearity, coupling nature and complex boundary conditions, vibration 

modeling of the drill string coupled modes is a challenging problem. Therefore, classical 
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beam vibration theories are not accurate enough to model the dynamic behavior of the 

drillstring. Modeling the contact behavior and mud hydrostatic damping are other 

challenges in drillstring vibration modeling. In order to precisely model this complex 

behavior, it is essential to develop specific dynamic models for the modes of interest. 

Analytical elastodynamic modeling (energy variational or Newtonian approaches) and 

finite element modeling schemes are extensively used in the literature for deriving the 

governing dynamic equations. As a result of the above mentioned complex phenomena, a 

closed form solution of the governing equations is not also feasible. Therefore, classical 

approximation techniques must be implemented to analyze the dynamics and the motion 

trend of the drillstring inside the well bore. This also enables a sensitivity study of the 

effect of controllable parameters on the motion trend of the drill string. The frequency 

characteristics of the drillstring, the trajectory of drillstring motion inside the wellbore, 

the drillstring-wellbore contact behavior and developed dynamic reaction forces are 

deliverables of the developed models. 

1.3 Thesis Statement 

Currently there has been no formal investigation of the effect of the vibration induced by 

downhole tools on the nonlinear coupled axial-transverse vibration of oilwell drillstrings. 

Moreover, there is no model showing the effect of vibration isolators on the dynamic 

response of drillstrings with vibrating tools. The effect of vibration generator tools on the 

developed cutting force has not been addressed in the literature. There are no reported 

nonlinear coupled vibration models that allow designing and tuning a shock sub to 

decouple the imposed vibration on the bit from the rest of the drillstring, or the 



development of operational guidelines so that unwanted drillstring vibration is 

suppressed. 
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This thesis studies the coupled axial-transverse (with two orthogonal lateral directions) 

dynamic behavior of the drill string in the presence of the downhole vibration generator 

tool and vibration isolator. A non-linear, multi-mode, mathematical elastodynamic model 

of the vertical drillstring capturing a multi-span BHA is developed and validated with a 

coupled nonlinear axial-transverse finite element model (FEM). Both models capture the 

effects of mud damping, driving torque, multi-span contact, spatially varying axial load, 

bit-formation interaction, gyroscopic rotary effect and axial stiffening. The governing 

equations in the analytical model are obtained by implementing the Newtonian approach 

or the "Bypassing PDEs" method on the Lagrangian of the system in conjunction with the 

expanded Galerkin's method, with the most highly contributing modes identified and 

retained in the analysis. The analytical model is capable of extracting the critical rotary 

speeds as well as dynamic time response of any point on the drillstring. The dynamic 

FEM model is developed through the ABAQUS FEM Explicit solver package with the 

"kinematic friction contact" algorithm. The FEM model is capable of modal characteristic 

extraction as well as dynamic analysis of the entire drillstring. A mesh sensitivity analysis 

is conducted to reduce computational time of the FEM model. The accuracy of the 

retained modes in the analytical equations is verified by extracting the total effective mass 

derived by the FEM model. Simulation results of both models are used to extract and 

compare the critical rotary speeds, conduct a qualitative contact analysis and develop the 

phase portrait of motion trajectories of the drillstring inside the well bore. Moreover, the 
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effect of incorporating the shock sub on the decoupling and isolation of the imposed 

vibration at the bit from the rest of the drillstring in a range of the drillstring rotary speed 

is investigated. At last, the enhancing effect of the vibration generator tool on the 

developed cutting force is studied. Fast running time and symbolic solution are the major 

advantages of the analytical model, which enables sensitivity analysis of the controllable 

drilling parameters. On the other hand, the FEM model enables easy reconfiguration and 

future extensions of model geometry, interactions, and modified BHA configurations. 

1.4 Research Plan and Objectives 

Due to the complexity of vibration modeling of the drillstring as stated in section 1-2, the 

modeling task in this research is performed in multiple modeling steps. It starts with 

preliminary simple models (e.g. non-rotating BHA models) and with the advancement of 

the modeling task, more complexity will be added. This helps towards better visualization 

of each interacting parameter and its role on the vibration trend of the drill string. The 

following research plan is defined in this study: 

1. The effect of weight on bit on the contact behavior of the drillstring and well bore 

In this step, the single plane lateral vibration behavior of the BHA section under a 

constant compressive axial load is studied. The BHA has the dominant role in the 

vibration of the drill string compared to the pipe section. It is desired to study the contact 

behavior of the drillstring and well bore for the WOB values and investigate the effect of 

increasing the WOB to the buckling limit of the BHA section on the contact behavior. 

The BHA is modeled as a simply supported, single span beam under a constant load. The 
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governing analytical equations are derived using the Newtonian approach for a beam 

element under a compressive load. The resulting partial differential equation (PDE) is 

solved analytically using the method of separation of variables and the natural frequency 

and mode shapes equations are derived. Then, a bond graph model of the drill string at the 

contact location is developed, using the modal expansion method. The modal mass and 

the modal stiffness values are computed based on the mode shape and natural frequencies 

for the first five modes. In the modal expansion method, the lateral response is an infinite 

sum of a linear combination of individual mode shapes. At the point of contact between 

the drillstring and the wellbore, the Hertzian contact force is defined to model the impact 

force on the drillstring. Phase planes at the contact points are generated for WOB values 

below and above the buckling limit and the severity of the contact are studied 

qualitatively. Also, the developed contact force are determined. 

This preliminary model is capable of qualitative analysis of the contact behavior. Since 

the lateral modes are in two coupled orthogonal planes, and the axial force is not constant 

along the BHA section, it is required to develop a model which captures these relevant 

real-world phenomena. Therefore, the next modeling step is as follows. 

2. Coupled transverse vibration modeling of drillstrings subjected to torque and 

spatially varying axial load 

In this step, the coupled lateral vibrations of the BHA in the presence of the top driving 

torque and spatially varying axial load is investigated. The lateral modes are coupled via 

the tangential components of the torque in the curved BHA, which create bending 
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moment components on the beam element about two orthogonal axes in the transverse 

direction. The analytical equations for spatially varying force in the collar section due to 

the mud hydrostatic effect, self weight and hydrostatic force at the mismatch area of the 

pipe-collar junction is derived and implemented in the equations. In this step, the 

Newtonian approach is used to derive the equations of motion. The rotation of the 

drillstring and gyroscopic effect are neglected, because the BHA could be assumed as a 

low speed rotor. The expanded Galerkin's method is applied to the resulting equations of 

motion (set of coupled PDEs) and the equations are transformed to the time domain 

ordinary differential equations (time domain ODEs) in terms of mode participation 

factors (generalized coordinates variables). In order to verify the analytical model and 

determine the sufficient number of retained modes in the approximation technique, an 

FEM model is also developed. The ABAQUS FEM solver package with Euler-Bernoulli 

beam element chosen to maintain the same conditions as the mathematical model is used 

to develop the FEM model. Modal mass participation factor, which represents how 

strongly a specific mode contributes to the motion in a certain direction, is extracted from 

the FEM model to determine the appropriate number of modes to retain in the analytical 

equations. The simulation results from both models are used to derive natural frequencies 

of the BHA in presence of the torque and spatially varying axial load. From a practical 

drilling standpoint, the rotational speed should be adjusted so that it does not correspond 

to one of the eigenfrequencies. Moreover, the effect of torque and WOB on the natural 

frequencies in two orthogonal lateral directions is investigated by both models in this 

step. 
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In the developed model of this step, only the BHA section was modeled and the mud 

damping effect in the lateral mode was not considered, which plays a significant role in 

the drillstring lateral instabilities. Moreover, the contact behavior was not studied in this 

model and the BHA section was modeled as having a single-span, as opposed to a BHA 

with multiple spans due to additional stabilizers between the endpoints. Also, the 

downhole vibration generator tool was not considered in this model. In the next step, the 

above interactions and assumptions are considered, along with lateral coupling with the 

axial mode. 

3. Analysis of multi-mode nonlinear coupled axial-transverse drillstring vibration in 

vibration assisted rotary drilling 

In this step, the coupled axial-transverse vibration behavior of the entire drillstring (pipes 

and collars) in presence of the downhole vibration generator tool is studied. The BHA is 

assumed as a three-span beam with multiple stabilizers. The multi-span BHA model 

enables multi-mode contact analysis of the drillstring and wellbore. The governing 

equations are obtained using the "Bypassing PDEs" method with the expanded Galerkin's 

method, which enables finding the symbolic solution of the governing equations. The 

model developed in this study enables the axial and bilateral multi-mode time response 

analysis of any desired point on the entire drillstring, including multiple contact points on 

the BHA. The multi-mode approximation enables to find more accurate results for the 

resonance rotary speeds, compared to the single-mode treatment. The effects of mud 

damping, driving torque, multi-span contact and spatially varying axial load are included; 

along with nonlinearities due to geometry, axial stiffening, strain energy and Hertzian 



12 

contact forces. Simulation results are used to reveal resonant frequencies and to conduct a 

qualitative contact analysis through the phase planes at the contact point, showing the 

severity of the contact in each span of the BHA. 

The above model includes almost all major interactions which contribute to the axial and 

lateral motion of the drillstring inside the wellbore. For the verification of the developed 

analytical model, another model with the same characteristics, dimensions and 

interactions, but with a different modeling method is required. In the next step, an FEM 

model is developed to validate the analytical model. 

4. Vibration analysis of a drillstring in vibration-assisted rotary drilling - finite 

element modeling 

A dynamic finite element model (FEM) of the vertical drillstring assuming a multi-span 

BHA is generated and validated with a coupled nonlinear axial-transverse elastodynamic 

mathematical model, developed in the previous step. The ABAQUS FEM Explicit solver 

package is used to develop the dynamic FEM model. The effects of mud damping, 

driving torque, multi-span contact and spatially varying axial load are included. The 

rotary gyroscopic effect is neglected. Geometry, axial stiffening and lateral contact forces 

are sources of nonlinearity in the model. A mesh sensitivity analysis is conducted to 

reduce computational time. The accuracy of the retained modes in the analytical 

equations, developed in the previous step, is verified by extracting the total effective mass 

in the FEM model. Coupled-transverse and axial velocities, displacements, resonant 



frequencies and contact locations and behavior are extracted in this step and the results 

are compared with the results of the analytical model developed in step 4. 
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The need to develop a vibration isolation tool and decouple the induced vibration above 

the bit from the rest of the drillstring over an extended range of rotary speeds of the 

drillstring needs to be addressed in this research. In the next step, the analytical and FEM 

models are being enhanced to capture the isolation tool (shock sub) and the rotary speed 

of the drillstring. 

5. Analytical and dynamic finite element analysis of a drillstring with a downhole 

vibration generator tool: vibration analysis and decoupling study 

This step is motivated by the need to understand the role of vibration generators on the 

complex coupled axial-lateral dynamics of the drillstring inside the wellbore and the 

developed cutting force at the bit. Designing and tuning a shock sub to decouple the 

imposed vibration on the bit from the rest of the drillstring is the other goal of this study. 

The nonlinear coupled axial-lateral vibration of the drillstring inside the wellbore is 

investigated through a dynamic finite element model (FEM) and an analytical 

elastodynamic model, capturing the vibration generator tool and a shock sub. The 

"Bypassing PDEs" method is implemented on the Lagrangian of the system to develop 

the analytical equations. Multi-mode expanded Galerkin' s approximation, in conjunction 

with the multi-span BHA assumption, results in multiple points Hertzian contact analysis, 

and thus more realistic critical rotary speeds. Capturing more realistic axial and lateral 

boundary conditions, torque, mud damping, spatially varying axial force, geometric 
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nonlinearity, axial stiffening and shock sub for a drillstring with the vibration generator 

are enhanced features of the developed and validated models. The concept of mesh 

sensitivity analysis and sufficient retained modes in the analytical model is also 

investigated by the FEM model. The vibration suppression ability of the shock sub in an 

extended range of the drillstring rotary speed, critical rotary speeds, axial and lateral 

displacements and the contact behavior are investigated through simulation results of both 

developed models in this step. Moreover, the enhancing effect of the downhole vibration 

generator tool on the developed cutting force at the bit in presence of a shock sub is 

investigated. 

In order to develop sophisticated models for drillstring vibrations, it is essential to study 

the mechanics of the drillstring, different modes of drillstring vibration, formulation 

methods, approximation solution techniques and numerical solution methods. The next 

chapter is a detailed review of the state-of-the-art of the above subjects. 
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2 Technical Background 

2.1 Introduction 

This chapter is a detailed review of the state of-the-art methods relevant to drillstring 

vibration analysis. First, drilling engineering and enhancement techniques will be 

introduced. Then, fundamental terminologies of a drill rig and the drillstring will be 

explained. Different modes of drillstring vibrations will be discussed and various methods 

of vibration suppression techniques for different vibration modes will be explained. 

Newtonian approach, energy variational technique and the "Bypassing PDEs" method for 

deriving the equations of motion will be explained and compared. Due to the complexity 

of the problem, closed from solution of the governing equations is not possible and 

approximation techniques are required to solve the resulting equations of motion. 

Approximate solution techniques, their advantages and drawbacks will be also explained. 

The last section in this chapter is the study of a powerful numerical technique (fmite 

element analysis), which is widely implemented in drillstring vibration modeling. 

2.2 Drilling Engineering 

Drilling is one of the major methods of exploration and exploitation of oil and gas 

reservoirs in petroleum engineering and minerals in mining engineering. Drilling 

engineering is a complex task since different aspects, such as geological formation, 

different types of reservoir, environmental concerns besides the high cost of drilling 

equipments are involved. The goal of drilling is to drill wells as safely and economically 

as possible. The main process of the conventional rotary drilling, which is extensively 
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used for decades, is the creation of a borehole through the rotation of long pipes 

( drillstring), and failure of the rock either in tension or shear by the provided cutting force 

at the cutting tool (bit). The provided power at the rig surface is used to move the rotating 

drillstring downward and circulate the drilling fluid (mud). The cuttings are transferred to 

the surface through the drilling mud. Onshore and offshore rotary drill rigs are used for 

almost any type of rotary mechanical drilling. They include all the equipment required for 

drilling, such as rotary table and kelly, derrick and swivel (the hoisting system to hold the 

long drillstring), control units, power generators, blowout preventers and mud pumps. 

Drilling is a multibillion dollar industry and any enhancement towards a faster drilling 

can save millions of dollars. 

Increasing the rotary speed results in increasing the penetration rate of the drilling, 

reducing the tripping time, and reducing the drilling cost. However, fast drilling can 

create other problems, such as bit wear and premature failure of drilling components, 

especially the drillstring, which results in a huge financial loss. 

Development of a more efficient and cost-effective drilling technology will significantly 

increase oil and gas production by allowing economic exploitation of difficult formations, 

such as deep, hard rock reservoirs. In 1961 , Smith et al. [ 1] estimated that potential 

savings of $200 to $600 million are possible if the penetration rate in hard rock can be 

doubled while maintaining the bit life. Therefore, drilling techniques have rapidly 

evolved to increase production rates while decreasing the cost. Simple rotary drilling 



techniques have been replaced with advanced percussion or vibration-assisted rotary 

drilling to achieve higher efficiencies. 
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There is evidence that the combination of rotary drilling techniques with a downhole 

vibration generator tool, which generates percussion or vibration, can potentially provide 

significant improvement in drilling hard rock formations. Percussion drilling was first 

implemented in 1859 and has evolved over the years into "Down-the-Hole" (DTH) 

hammer drilling, which has significantly improved the Rate of Penetration (ROP) in hard 

rock environments. In addition to the faster penetration, other benefits include the ability 

to use lower cutting force, less contact time with rock and therefore less abrasion, longer 

bit life and improved hole deviation control [2]. However, in soft rock formations, where 

most of oil and gas drilling is done, instead of percussion drilling, vibration-assisted 

rotary drilling technique is applied for more efficient drilling. Vibration-assisted rotary 

drilling is a new enhancement to the rotary drilling method and has shown an incredible 

increase in the drilling efficiency and cost reduction. The following section is a literature 

review of percussion drilling, followed by vibration-assisted rotary drilling. 

2.3 Drilling Enhancement Techniques: Percussion Drilling 

In rotary percussive drilling, the rock is broken by repeated impacts and the rotation 

imposes a new point of impact every time. The rock is thereby broken, crushed and 

flushed out from the hole [3]. One advantage of this technique is that the rock fails due to 

dynamic loading rather than crushing the rock through static loading as in conventional 

rotary drilling [ 4]. More than 2000 cyclic loadings per minute can be applied to the bit, 



which generate high stress in a short time interval. This causes the penetration in hard 

formations to be more efficient than rotary drilling with its lower stresses and long time 

of static load application [5]. Therefore, percussion drilling transmits power to the bit 

more efficiently than rotary drilling. 
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Colonel F. L. Drake was the first one who used a cable tool percussion type machine for 

oil well production in 1859 [6]. The first technical report of this technique was submitted 

in 1949 by Harpst and Davis [ 6]. This report resulted in the creation of several different 

terms, all of which are used to describe this type of drilling. Examples include percussion 

hammer, downhole hammer, percussive drill and percussive rotary drilling. 

Between 1950 and 1960, there were substantial research breakthroughs on this subject 

[7]. Most of this research was conducted on laboratory scale rigs. In 1981, Pratt reported 

the results of the application of percussion drilling with an average time for "Total 

Vertical Depth" (TVD) of 80 days [8]. This was a definite improvement over the 

conventional mechanical drilling methods, which took 103 days to drill the same well. 

Also, a cost per foot reduction of 49% was achieved with hammer percussion tools. In 

another survey, it was reported that percussive rotary drilling could be 7.3 times faster 

than the conventional rotary method [9]. 

The hammers can be categorized into top hammers and down the-hole-hammers. Gas and 

air, hydraulic, fluid and jet assisted rotary percussion hammers are common means of 

providing percussion force to the bit [10]. Fluid hammers appeared first in 1990 [2]. After 

the first appearance of the fluid hammer, the research was mainly on improving hammer 



design and performance. Hydraulic hammers have been used to conduct drilling in hard 

rock formations, as air hammers are limited by penetration depth [11]. 
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Higher and more consistent penetration rates than rotary drilling (by a factor of 5 or 

more), relatively small, light, and mobile drill rigs and low drilling costs are the main 

advantages of the percussive drilling, while the high rate of vibration, which is 

transmitted to the drill rig via the drillstring, is a disadvantage [ 12]. Old percussive 

drilling (cable tool) technique is not a commonly accepted method anymore, due to 

frequent mechanical failures, poor understanding of the method, economical uncertainties 

and inability to control the drillstring downhole vibrations parameters [ 4]. The research 

for more efficient enhancement methods led the drilling companies to vibration-assisted 

rotary drilling, which is a more industry applicable and controllable technique. 

2.4 Drilling Enhancement Techniques: Vibration-Assisted Rotary Drilling 

The oil and gas industry is actively searching for technologies to improve drilling 

technology and efficiency. The interest for implementing high-frequency axial oscillation 

generator tools in conventional rotary drilling has been increased since the last decade. 

"Vibration-assisted rotary drilling" can be defined as the intentional introduction of 

controlled vibration into the drillstring to increase drilling performance. Vibration drilling 

transmits power to the bit more efficiently than rotary drilling. The tool converts the 

hydraulic energy of the mud into an axial motion through the pressure acting on the 

pump-open area. The axial excitation is produced by different mechanisms, but the final 

outcome is an alternating high-frequency force which excites the lower side of the 
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drillstring close to the bit. Several classes of recent drilling tools, such as "agitators" are 

currently used by industry to apply axial vibration intentionally to the drillstring, 

especially in horizontal or deviated wells. 

This imposed vibration significantly reduces drillstring-wellbore friction [13, 14], and thus 

leads to less required "weight-on-bit (WOB), and speeds up the cuttings flushing process. 

Improved weight transfer, increased power at the bit and consequently a higher "rate of 

penetration" (ROP) compared to the conventional rotary drilling (14,15] are potential 

advantages of vibration-assisted rotary drilling. Reducing the probability of stick-slip, 

controlled reaction torque, improved steering, more efficient cutting removal and 

improved load buckling capacity compared to conventional rotary drilling are other 

potential enhancements of these tools. 

Several laboratory and field experiments as well as analytical studies have been 

conducted for the verification and application of this method to oil well rotary drilling. 

Manko eta/. [15] introduced a new hydrovibrator tool which superimposes axial 

vibrations to a drillstring by transforming a stationary mud flow to a high frequency 

pulsating flow, resulting in a hydrodynamic cavitation impact on the drillstring, and thus 

axial excitation of the drill string. Newman et a/. [ 16] presented a theoretical torque-drag 

model to verify the experimental results of the friction reduction through the use of a 

commercial vibration generator tool (National Oilwell CT AG-itator™). Consequently, 

they approved that the use of this tool increased the depth of penetration by 

approximately 1000 feet and the developed model and field test results were in 
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agreement. AI Ali eta/. [17], meanwhile, investigated axial oscillation generator (AGT) 

tools which are compatible with most practical "bottom-hole assemblies" (BHAs). The 

tool was implemented in several vertical drilling field tests in conventional rotary and 

rotary steerable system (RSS) drilling. 60% increase in ROP, with 63% less required 

WOB, extended bit life and less stick-slip were reported. However, increase in vibration 

levels of the drillstring was reported in all field trials. The increase in ROP was also 

reported by Li et a/. [ 18] for a laboratory scale test rig under different input vibration 

amplitudes with the coring bit, but with a constant input frequency, and the results 

showed an increase in ROP. Babatunde eta/. [14], alternatively, investigated the effect of 

introducing various levels of vibration in diamond drag bits, and concluded that at 

controlled frequencies the imposed vibration has a significant effect on ROP: a 100% 

increase in ROP was reported in their experimental test rig for a high-input vibration 

power, along with an established optimum value for the input frequency for their 

vibration generator tool. In a recent study, Khorshidian eta/. [19] investigated the effect 

of introducing vibration force in a single cutter "Polycrystalline Diamond Compact" 

(PDC) bit, using the "Distinct Element Modeling" (DEM) methodology. They verified 

that imposing energized impact on the rock-cutter surface improves the value of the 

drilling "Mechanical Specific Energy" (MSE), and this factor was then implemented to 

investigate an optimum level of the cutter vertical vibrations for a faster ROP. 

Contrary to the improving rate of penetration and efficiency, downhole vibration 

generator tools can increase the risk of hole deviation, well bore washout, and premature 

failure of the BHA and its components, including "measurement-while-drilling" (MWD) 



tools. The drillstring can undergo undesirable vibrations excited by the tool. Also, if the 

imposed vibration by the vibration generator is not isolated from propagating up the 

drillstring toward the rig surface, there is a possibility of fatigue failure in the rig and 

surface components as well. In addition to the above negative consequences, a great 

portion of the energy that was supposed to be delivered at the bit can be lost if the 

operating parameters of the vibration generator is not compatible with the overall 

drillstring configuration and formation properties. Enhanced dynamic modeling of the 

drillstring, capturing the excitation sources, is the first step towards adjusting and 

implementing these sophisticated tools to avoid these negative consequences, and 

designing vibration isolation mechanisms such as shock subs and generating drilling 

guidelines. 

2.5 Fundamentals of Oilwell Drilling and Drilling Tools 
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The drill rig for conventional rotary drilling is a large structure housing the entire drilling 

system. A schematic of a typical rotary drilling rig is shown in Figure 2.1. The derrick 

provides vertical height to raise or lower down the pipes in and out of the wellbore and 

control units and power generators are installed on the derrick. It is usually placed above 

the ground using a substructure. The top part is a hoisting system, which consists of the 

crown block, traveling block and swivel. The block assembly (crown block, traveling 

block and cables) provides a mechanical advantage for easier handling of the heavy pipes 

and the BHA. The crown block is a stationary section with a set of sheaves, where the 

cables are reeved about that. The traveling block is the moving part of the hoisting system 

which has a set of pulleys. The draw-works provide the hoisting and braking power and is 
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used to reel in and out the pipes and raising and lowering the traveling block along the 

length of the derrick. The swivel, kelly, rotary drive and rotary table are major parts of the 

rotary system. The swivel supports the weight of the drill string and allows for rotation 

and its top part is attached to the traveling block. The rotary table generates the rotary 

motion of the drillstring assembly through the kelly. The kelly is the first section of the 

pipe below the swivel at the rig floor with an square or hexagonal outside cross section to 

be gripped easily for rotation of the drillstring. Rotary drive provides the required torque 

for driving the rotary table (the top end of the drillstring) and consists of an electric motor 

and a gearbox unit. Drilling fluid (mud) circulating system consists of the mud pit, mud 

pump and stand pipe. The mud pit is a reserve store for the mud and pumps are used to 

circulate mud through the system. The stand pipe is used to conduct the mud from the 

mud pumps to the kelly hose. Drilling mud (water-based or oil-based) circulates up and 

down the wellbore and fills out the annulus between the drillstring and wellbore. It is used 

to cool down the bit, transport cuttings to the surface, prevent blowout caused by 

formation pressure, provide hydraulic power for downhole vibration generators and clean 

the bottom of the hole. Moreover, the mud plays an important role in stabilizing the 

lateral vibrations of the BHA as a nonlinear damping media. A shale shaker is used to 

separate rock cuttings from the mud before it pumps again down the hole. The blowout 

preventer is a valve which seals and controls formation kick and can withstand extreme 

pressures. 

The drillstring is a large slender structure which transfers energy from the electric motor 

on the top to the drill bit at the bottom hole. The drillstring is composed of two major 
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sections: drill pipes and drill collars. Drill pipes are light hollow cylindrical pipes which 

could be up to kilometres in length. The heavier part is the drill collar (normally with an 

outer diameter of 120-240 mm and thickness of 30-80 mm), which provides WOB for the 

drilling process. WOB is the responsible load for penetration at the bit-rock interface. 

Drilling performance is very sensitive to WOB, and it is one of the main parameters 

adjusted during drilling to improve penetration speed. ROP is the conventional index for 

measuring the efficiency of the drilling process. The bit is attached to the bottom of the 

collars. The most popular types of bit are roller cone and polycrystalline diamond 

compact (PDC) bits. The PDC bits are more expensive than the roller cone bits, but more 

efficient in rock cutting. The lower part of the drill string which is composed of drill 

collars, the bit and stabilizers is called the BHA. The rotary speed of the drillstring is 

typically between 50 and 200 rpm. 

The stabilizers are fins placed outside of the drill collars at multiple locations and above 

the bit to centralize the drillstring inside the wellbore, increase the load carrying capacity 

of the BHA and are means to control well trajectories in deviated wells. They also 

provide additional stiffness to the BHA and facilitate the control of the dynamic behavior 

of the drill string and the drilling direction [21] . The distance between stabilizers along the 

collar section varies between 5 to 50 meters and they fit loosely in the borehole. The 

radial clearance between the BHA and the wellbore is up to I 0 em. Different types of 

stabilizer (spiral blade, straight blade and inclined blade) are shown in Figure 2.2. 
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Figure 2.1: Schematic of a typical rotary drill rig [20] 

Figure 2.2: Different types of stabilizer [22] 
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MWD tools are installed on the BHA to record drilling variables such as WOB, torque­

on-bit, depth, rotary speed and downhole pressure. The logged data is transmitted to the 

surface using a mud pulse telemetry system. 
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The effects of the hook load (a resultant axial force under static equilibrium), WOB, mud 

hydrostatic force and self weight are presented as spatially varying axial forces along the 

drillstring. The tendency in drilling engineering is to keep the pipe section under tension, 

while keeping the stiff BHA under compression. The length and material properties of the 

BHA, alongside with WOB and mud density, are controllable parameters to keep the 

BHA under compression [23]. The neutral point in the drillstring is defined as the point 

above which there is no tendency to buckle. At the neutral point, the axial stress is equal 

to the average of radial and tangential stresses. Current design practice is to maintain the 

neutral point below drill pipe during drilling operations. The intersection of the stability 

analysis plot and the axial compression must be used to find the location of a neutral point 

[24]. A detailed derivation of the spatially varying axial force and stress distribution along 

the drillstring is demonstrated in Appendix 1. 

2.6 The Vibration Behavior of the Drillstring 

Drillstring vibrations have been a challenging issue for drillers in oil fields for a long 

time. The effects of vibrations on the drilling performance, well bore stability and joint 

failures have convinced drilling companies to strengthen components, or try to control 

and mitigate these effects to attain higher performance [2,25]. In order to control or 

mitigate the drillstring vibrations, its dynamic behavior and characteristics should be 
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identified and modeled analytically [26-33], numerically [20,29,34,35,36], experimentally 

in laboratory scale [37-40], or through field verification [16,41]. 

The primary modes of drillstring vibrations are axial [ 42], transverse [ 43] and torsional 

[44] as shown in Figure 2.3. 

Figure 2.3: The primary modes of the drill string vibration [ 45] 

The vibration behavior of the drillstring is quite complicated, since these three modes are 

present in a rotating drillstring simultaneously, have nonlinear behavior, and moreover, 

are coupled together. These modes are coupled together via terms (in equations of 

motion) containing variables like torque and strain energy [ 46]. Coupled torsional­

bending [20,47,48,49], coupled axial-bending [50] and coupled axial-torsional [51 ,52] are 

three common combinations of coupled modes. Stick-slip oscillations [22,53] are 

examples of torsional vibration, and whirling and bit bounce [54,55] are examples of 

lateral and axial vibrations, respectively. Drillstring vibration could be fully transient or 

dynamically steady. Furthermore, energy transfers between single harmonics of axial, 

transverse and torsional modes and between any subsets of these modes is possible. 

Therefore, numerous degrees of freedom exist in its motion. 
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The majority of drillstring failures occur at the BHA section. Due to the higher stiffness 

and higher mass of the BHA with compared to the pipe section, the vibration behavior of 

the drillstring is mostly influenced by the BHA vibration behavior [56]. This dominant 

role of the BHA vibrations on the total drillstring vibration was verified by Dareing [57], 

who showed that the collars are easily excited in the lower modes. The pipes act as if they 

are rigid and do not vibrate laterally during such excitation (58]. 

Unwanted vibrations of the drillstring dissipate some part of the provided energy, which 

is supposed to be delivered to the bit. The unwanted vibrations also result in hole 

deviation, lower penetration rate, premature failure and lower efficiency of the drilling 

process. Therefore, a thorough understanding and the ability to isolate the unwanted 

vibrations are essential to the design of the drillstring. It should be mentioned that the 

vibrations could not be damped by 100%. Dynamic modeling of different modes of the 

drillstring is the first step towards designing an isolation plan, or generating remedial 

guidelines for real time field drilling. In the following sections, different modes of 

drillstring vibration as well as coupled modes and the isolation methods for drillstring 

vibrations will be further explained. 

2.6.1 Axial vibration of the drillstring 

The vibration of the drill string along its longitudinal axis is called axial vibration. Axial 

vibration has a deleterious effect on the bit and bottomhole assembly. Bit bouncing is the 

most severe state of the axial vibrations. When the bit loses contact with the hole bottom, 

it bounces up and down as a result of resonance in the axial direction (Figure 2.4). Axial 
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vibration is most common in vertical wells while drilling hard formations. It can be 

detected at the surface measurement tools. Accelerated bearing and tool wear, seal failure, 

broken tooth cutters, failure of the MWD tools and reduction in the ROP are most 

common catastrophic outcomes of axial vibration and bit bounce [59] . 

Figure 2.4: Axial vibration of the drill string and bit bounce [59] 

In most cases, pulling off the bottom, changing the rotational speed or changing WOB 

can reduce the axial vibration [60]. In the drilling situations that the axial vibration is 

happening in most of the drilling time, installing a shock sub can reduce the vibration in 

the bottornhole through changing the resonance frequency of the drillstring. This 

application will be explained in the section detailing isolation methods. Since the 

drillstring makes the hole parallel to its axis, axial vibration plays an important role in the 

trajectory deviation as well [ 61]. 

Mostly, uncoupled axial vibration is modeled using the linear partial differential equation 

governing the un-damped longitudinal oscillation of a bar [ 61]. At the surface, a mass­

spring-damper boundary condition was postulated (the mass of swivel, traveling block 



and kelly are assumed as a concentrated mass). The surface boundary condition might 

also be taken as a fixed end and the bottom as a free end [ 61]. 
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A variety of models have been used to investigate the longitudinal vibration of the 

drillstring. Continuous models were used in early studies to model this mode [61-64], 

while more recently, finite element models (FEM) have been applied to axial vibration 

investigations [ 65]. Some studies, however, have not used a complete model for 

drillstrings to extract axial response, but have focused only on natural frequencies, e.g. 

Dareing [56]. Over the years, a great deal of research has been conducted to investigate 

the effects of different parts of the drillstring on its axial vibrations. For example Kreisle 

eta/. [ 61] showed the importance of a shock sub in reducing the drillstring axial vibration 

and Dareing [56] revealed the dominant effect of drill collar length on axial and torsional 

vibrations of drillstrings. Figure 2.5 shows one of the simple models used in the previous 

studies to analyze the axial vibration of the drillstring. 

Implementation of the damping into models is an important aspect of studies of drillstring 

axial vibration. Some investigators did not consider any type of damping [62], while 

some others incorporated the damping ratio into their models [61,63,64,65]. The two most 

common types of damping used include: simple viscous damping [ 61,63] and frequency­

dependent damping [65]. 
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Figure 2.5: A simple model for the axial vibration of the drillstring [65] 

A simple equation for analyzing the axial vibration of a drillstring (Figure 2.6) is as [66]: 

(2.1) 

/~(.r, /,11) 

I 

....... c 

Figure 2.6: Geometric configuration of the axial vibration of the drillstring 
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p is the density per unit volume, c; is the damping factor, E is the Young's Modulus and 

u(x, t) is the longitudinal displacement of the drillstring. E 
02~ is the result of difference ax-

between the normal stress (E au acting on the face of the element mass) and 
ox 

au au . h . "d au fi h . d" . . d E - + a(E - ) actmg on t e opposite s1 e. ~- re ers to t e vtscous tsstpatlOn an pg 
& & & 

refers to the static weight. Fe(x,t,u) represents the external axial excitation force. 

According to the free-fall limit theory, ou (0 means advance motion toward the hole, or 
at 

making the hole, and ou )O means the bit bounce [66]. 
at 

A lot of uncertainties exist regarding the modeling of the boundary conditions (BCs) of 

the drillstring in the axial mode. Fixed at top-free at the bottom BC [21,50], fixed-fixed 

BC [64] and free at top-fixed at the bottom BC [62,63] are commonly used BCs for the 

axial mode of the drillstring vibration. Jogi et a!. [ 41] suggested that the free-fixed axial 

BC does not match well with major axial frequencies observed in the field, and that a free 

end assumption is closer to the field data. Clayer eta!. [67] suggested an equivalent mass-

spring-damper at the top and verified that this model is sufficiently accurate for rig 

surface modeling. Arrestad eta!. [68] also suggested an equivalent mass spring damper 

for the top boundary condition, but recommended a nonlinear coupled axial model to 

study the role of this boundary condition on the axial vibration of the drillstring. Later on, 

bit displacement function was suggested as an accurate lower boundary condition in the 

axial direction, which depends on the rock formation properties and the bit type. Kreisle 
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et al. [61] was the first one who applied a sinusoidal bit displacement as the lower BC in 

the axial motion. The frequency of displacement was assumed to be three times the rotary 

speed of the drillstring for tricone bits and the same as the rotary speed for the PDC bits 

[69]. Macpherson et al. [70] suggested the same boundary condition proposed by Kreisle 

et al. [61], with a phase shift relative to the drillstring rotary speed. Dareing [64] also 

suggested a constant amplitude sinusoidal function as the bit displacement. He also 

indicated that the various types of drill bits (e.g. roller cone and PDC bits) generate 

different loading conditions to the bottom end of the drillstring. Due to the rolling of the 

bit, a multi-lobed surface is formed on the formation; the number of lobes formed 

depends on the number of cones on the bit. This lobed-pattern can be defined by a profile 

with sinusoidal angular variation elevation [65]. 

On the other hand, however, in a number of studies the bit in the axial direction was 

assumed as a free BC, and an excitation force was assumed instead. Elsayed et al. [71] 

proposed a force excitation at the bit which depends on the width of the cut and cutting 

stiffness of the rock. Yigit et al. [49,72,73] and Dunayevsky et al. [74] assumed the 

modulated part of the WOB with the same frequency of the drillstring rotary speed for 

PDC bits. To decide between these two excitation and boundary condition at the bit, Li et 

al. [ 42] used a mathematical model of the drillstring and field data and recommended that 

the bit displacement BC model is supported by the field data and force excitation model is 

not appropriate for the axial vibration modeling of the drillstring. Skaugen et al. [7 5] also 

recommended that the bit displacement BC is the most appropriate BC for the shock sub 



design. In summary, three sets of boundary condition were assumed in the literature for 

axial vibration of the drill string: 

• Fixed at top-fixed at the bottom 

• Fixed at top- free at the bottom 

35 

• Equivalent mass-spring-damper at top and a sinusoidal displacement at the 

bit location 

with the last proposed BC being the most realistic assumption. 

2.6.2 Torsional Vibration of the Drillstring 

The drillstring is a structure with low torsional stiffness, which is easily excited 

torsionally. During rotation, the BHA generates torsional oscillations which are 

transmitted through the drillstring. Torsional vibration often occurs in hard formations 

[59]. The friction force between the drillstring and the wellbore usually excites this mode 

[76]. Torsional vibration (Figure 2. 7) causes irregular downhole rotation, which causes 

fatigue failure to the drill collar connections, damage to the bit and slows down the 

drilling process [71, 77]. 

Stick-Slip 

Slow 

Figure 2.7: Torsional vibration of the drillstring [59] 
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Stick-slip is a severe form of torsional vibration of the drillstring. It involves periodic 

fluctuation in the bit rotational speed varying almost from zero velocity to a stage of high 

rotational speed, often more than twice the surface rotary speed [78]. Stick-slip manifests 

itself as low frequency torque fluctuations during drilling. In this mode, torque builds up 

and is then released, resulting in a rotational motion. The BHA and bit alternately rotate 

faster and slower than the string at the surface (Figure 2.8). In this state, the BHA can 

over rotate and builds up reverse torque, causing the BHA and the bit to rotate backwards. 

Stick-slip can also cause the bit to spin backward and destroy the bit. 
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Figure 2.8: Varying downhole rotary speed vs. the input rotary speed at the surface (stick-

slip state) [79] 

At the start of drilling, an unstressed drillstring will not rotate until some threshold 

torque-up level that overcomes static friction at the face of the formation is surpassed. 

The exact threshold depends on the bit type, the bit-rock friction coefficient and the 

WOB. Once rotating, dynamic rock-bit interaction torque will excite the drillstring with 

torsional waves that propagate to the surface. Once the BHA starts to rotate it does not 

have a steady state motion trend due to lateral contacts and axial excitations at the bit. If 
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the static friction exceeds the dynamic friction acting at the bit, the previously stored 

energy may be transferred into kinetic energy and convert the steady state motion to a non 

steady rotational motion. Low dynamic WOB or axial bit bouncing will lead to a free 

torsional boundary condition at the lower end [80]. 

In general, torsional vibrations can be detected at the surface by fluctuations in the power 

needed to maintain a constant rate of rotation [59]. MWD devices have assisted 

researchers in obtaining a better understanding of this type of drillstring vibration and its 

effects on downhole tools and drilling performance. Stick-slip behavior is usually seen as 

cyclical signatures in the surface measured torque. 

A variety of models have been used to study the torsional vibration of drillstrings. The 

most important model, which has been widely used for many years, implements a 

torsional pendulum (Figure 2.9). In this torsional pendulum model, drill pipes are 

considered as an inertia-less spring connected to a mass which represents the BHA [81] . 

Modifications have been made to adopt this model for further investigations; for example, 

the rotary table has been considered as an added mass [80,82,83], and coupling with other 

modes of vibration has also been considered, e.g., axial vibrations [82,84] or lateral 

vibrations [22,83]. In most of the mentioned studies, viscous damping has been applied as 

a damping effect between the masses and the borehole wall [80,81]. 
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Figure 2.9: A model for the torsional vibration of the drillstring [80] 

If B(x, t) represents the angle of the twist along the drillstring at point x and time t, the 

torque T(x,t) is [66]: 

T = GJae 
ox 

Where G is the shear modulus and J is the polar moment of inertia. From the 

conventional angular momentum theory: 

(2.2) 

(2.3) 

Damping and external torsional excitations due to borehole contact and friction can be 

included in the above equation as: 

(2.4) 

Although the above equation is suggested for transient torsional waves, it is important to 

note that it applies as well to the combined static and dynamic angle of twist, since energy 

transfer between the two in general exists through coupling at the bit [ 46]. 
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Selecting appropriate boundary conditions is another important step in the modeling of 

torsional vibrations of drillstrings. The upper boundary represents the rotary table and a 

constant rotary speed has been considered in most studies at this location, while the free 

end boundary condition assumed at the bit [22,80,84). In some studies, a control 

relationship between the rotary table torque and the rotary speed has been considered to 

maintain a desired rotary speed [77). 

2.6.3 Transverse Vibration of the Drillstring 

Among the primary modes of drillstring vibration, the transverse mode (Figure 2.1 0) is 

said to be responsible for 75% of drillstring failures [79,85,86). Bending waves are not 

propagated up to the surface via the drillstring as are torsional and longitudinal waves 

(this is due to the difference in the wave speed for different type of modes). As a result, 

damaging lateral vibration near the bit can go undetected. The propagation speed in steel 

for axial waves is 17000 ft/sec, for torsional waves is 10000 ft/s, and for the lateral mode 

is about 550 ft/s [66). Furthermore, transverse vibration has a larger damping value with 

respect to the other modes, which is the result of mud damping effect and the drillstring­

wellbore contact [66). Therefore, there could be severe bending vibrations deep in the 

hole which the surface measuring tools do not indicate. The possible outcomes of 

transverse vibration include catastrophic failure of the BHA joints due to fatigue, 

borehole washout, bit failure and wear of stabilizers. Therefore, modeling this mode of 

vibration, extracting the natural frequencies and analyzing the dynamic behavior of the 

BHA will help drilling companies avoid these failures. 
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Figure 2.10: Drillstring in the transverse vibration state [87] 
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The heavier section of the drillstring, the collar section, is easily excited by contact with 

the wellbore in the lower modes. In the lower frequencies, the collars are vibrating 

transversely, while the pipes do not vibrate and remain approximately motionless. This is 

due to the axial load distribution along the drillstring, the collars of which are mainly 

under compression while the pipes are under tension. As a result of the tension, the 

natural frequencies of the pipe section increase, while the natural frequencies of the collar 

section are reduced [88]. Two types of frequency induced whirling are possible to occur 

at the BHA, namely forward whirl and backward whirl. Forward whirl is the rotation of 
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the deflected drill collars around the borehole axis in the same direction as it rotates 

around its axis [22]. The backward whirl is a rolling motion of the drill collars over the 

borehole wall in the opposite direction as it rotates. Whirling modes are excited due to the 

wellbore contact with the drillstring in low strength formations and as a result, an over 

gauge hole can be drilled [22]. 

Due to the dominant characteristics of the transverse mode, several studies have been 

undertaken to analyze the dynamic behavior of the drillstring in this mode. Mathematical 

models have an important role in the investigation of lateral vibrations of drillstrings; 

both analytical and finite element models have been developed to study this catastrophic 

mode of vibration. Jansen [89] studied the lateral motion between the drillstring and the 

wellbore at the contact point, using a lumped segment to model the contact point. Chen et 

al. [90] studied the lateral vibration of a rotating BHA in the presence of a constant WOB 

with the transfer matrix technique. Berloiz et al. [86] performed a laboratory test to study 

the lateral vibration of the drillstring and investigated that the influence of axial force is 

greater than that of the torque on the natural frequencies of the drillstring. Christoforou et 

al. [69] used the Lagrangian method to derive the equations of motion and study the 

drillstring trajectory inside the wellbore in the lateral mode at the contact point. WOB 

was assumed as a sinusoidal force with the same rotary speed as of the drillstring in their 

study. Stability of the drillstring in the lateral mode was studied by Gulyaev et al. [91]. 

The buckling mode of the drillstring as a function of its length was studied and the results 

verified that buckling would occur at the section with compressive axial force (collar 

section). In another study, they also studied the effect of the length and critical speed on 
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the stability of the drillstring in the lateral mode [92]. In another work by Dareing [57), 

the sensitivity of the drill collar lateral vibration to the length was studied. Khulief et a!. 

[20] used the finite element method to derive the frequency and modal response of a 

rotating drillstring while neglecting torque. The results for the full order model and the 

developed reduced order model were in agreement. A mesh sensitivity analysis was 

conducted to find optimum number of elements and reduce the computational time. It was 

proved that further increase of elements does not have a significant effect on the natural 

frequencies. 

The drillstring-borehole interaction is also an interesting subject in the lateral mode 

analysis and several studies have been carried out on this subject [32,87,93,94]. 

Catastrophic collisions of the BHA with the wellbore lead to wear of the drill string and 

MWD tools can also be catastrophically damaged by the successive side contacts [36]. 

The lateral contact force was considered as a Hertzian contact force in most studies 

[32,33,36,50,69,73,95]. An energy variational approach, the "Bypassing PDEs" method, 

and bond graph models were implemented to model the contact behavior with a Hertzian 

contact force by Christoforou eta!. [69] and Ghasemloonia eta!. [32,33,36]. Yigit eta!. 

[ 48] and Jansen [89] applied the momentum balance method for the lumped 

representation of the drillstring element at the contact point to study the drillstring 

trajectory at the contact point. A detailed literature review about different drillstring­

wellbore contact models can be found in chapter 5 for analytical models and in chapter 6 

for FEM models. 
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The drillstring-mud interaction effects on the drillstring lateral dynamic behavior are 

important. Damping has been treated in different ways to model the lateral vibration of 

the drillstring. Paslay et al. [96] used an undamped model in their analyses, while 

Christoforou et al. [69], Jansen [89]and Ghasemloonia et al. [36] modeled the mud 

damping as a hydrodynamic drag force (velocity-squared proportional force). Spanos et 

al. [29] investigated an equation for damping as a function of the working frequency and 

the mud density in a developed FEM model. He divided the damping matrix into two 

dissipative and non-dissipative matrices to account for both Rayleigh damping and 

gyroscopic effects. The internal and external flow of the mud on the drillstring dynamic 

behavior (load carrying capacity and natural frequencies) was studied by Paidoussis et a!. 

[97], Zhang et al. [98] and Ritto et al. [99]. Ritto et al. [99] reported that the role of mud 

damping on the axial and torsional natural frequencies is negligible, but should be 

considered in lateral vibration analysis of the drillstring. They also concluded that the 

effect of mud flow does not have a considerable effect on the lateral time response of the 

drillstring. In the FEM models, the mud viscous damping behavior in the lateral mode 

was mostly considered as Rayleigh damping, which is proportional to the mass and 

stiffness of each mode [51]. In the absence of a major source of dissipation, Rayleigh 

damping provides a convenient abstraction for damping low-frequency range behavior 

(mass dependent) and higher-frequency range behavior (stiffness dependent). A detailed 

literature review of applied damping models in the lateral mode can be found in chapter 6. 

For the boundary value problem of the transverse motion of the drillstring, a beam 

element is often used to derive the mathematical equations. Drillstrings are assumed to be 
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beamlike structures. Due to the high slenderness ratio of the drill string and low rotational 

speed, among the conventional models of the beam theory (Timoshenko, Rayleigh and 

Euler-Bernoulli), the Euler-Bernoulli beam theory is mostly used to model the lateral 

vibration of drill strings [ 1 00]. The use of Euler-Bernoulli beam theory to model flexure­

dominated (long) beams and the Timoshenko theory for shear-dominated (short) beams 

was also recommended by Beck et a/. [ 101]. Simply-supported BCs for lateral vibrations 

at the stabilizer locations were suggested by Khulief eta/. [37], Dareing [57], Heisig eta/. 

[ 43] and Yigit eta/. [ 48,50]. Field investigation by Jogi eta/. [ 41] supported the 

assumption of simply supported BCs at the location of stabilizers. The top BC in the 

lateral direction is suggested to be fixed at the location of the rotary table [26,47,91,92]. 

Using the above conditions, one can find solution to the boundary value problem of the 

transverse vibration of the drillstring, extract lateral resonance frequencies, as well as 

lateral or radial trajectories of the drillstring inside the wellbore, including the contact 

points. 

2.6.4 Coupled Modes of the Drillstring Vibration 

As discussed earlier, the primary modes of the drillstring vibrations are axial, transverse 

and torsional. The change of axial force from tension to compression along the drillstring, 

the coupling nature of bit-rock interaction, high static driving torque and the curvature of 

the drill string are major causes of coupled vibrations of the drill string. While each certain 

mode of drillstring vibration is of great academic interest, coupled vibration study is very 

important in practical drilling engineering for a better understanding of the dynamic 

behavior of the drillstring. Coupled torsional-bending [20,47,49,73], coupled axial-
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bending [36,50] and coupled axial-torsional [51,52] are three common coupled modes 

which are extensively studied by the researchers. It should be clarified that mode coupling 

does not imply nonlinearity, when simple classical boundary conditions are used as 

auxiliary equations in approximate solutions. Sampaio eta!. [51] analyzed the axial­

torsional vibration coupling of the drillstring. They analyzed the geometrical stiffening by 

the nonlinear finite element analysis, considering nonlinear strain displacement. Energy 

variational method was used to generate the equations. Both linear and nonlinear strain 

energy were assumed in their model. The coupled torsional-bending vibration of the 

drillstring was studied by Yigit eta!. [73]. Due to the assumption of the bit-rock 

interaction, a highly nonlinear set of equations was derived. For the governing equations, 

they implemented Newton's method in polar coordinates for the lumped mass of the 

drillstring at the contact point with the wellbore. The stick-slip phenomenon for this 

coupled mode was also investigated in their research. Al-Hiddabi eta!. [ 4 7] applied 

Newton's method in polar coordinates to derive the equations for coupled torsional­

bending vibrations of the drillstring. According to their mathematical model, a nonlinear 

control method to suppress this coupled mode was suggested. 

As a case study to show the coupled vibrations in the drillstring, a simple case of axial­

lateral coupling is demonstrated here. A detailed explanation on deriving the coupled 

equations can be found in Chapters 4, 5, 6 and 7. Yigit eta!. [50] derived the coupled 

axial-transverse vibration of a non rotating drillstring. Using the kinetic and strain energy 

of the beam and Lagrange's equations, the equations were developed. They assumed one 

Cartesian coordinate direction for lateral motion, instead of two orthogonal transverse 
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motions. Then, appropriate admissible functions according to the boundary conditions 

were substituted in the energy equations and after integration over the drillstring length 

domain, the coupled time domain differential equations were developed. A constant 

compressive force along the BHA was assumed and the mud damping, the buoyancy 

effect and gyroscopic terms were neglected. The following set of equations was derived at 

the last step after rearranging: 

( 2.5) 
L N L R N L 

if,+{(J El(rp;;) 2 dx)- ~)J Prp;rp;,dx]}r;N + LLq;r;1(J EA¢'rp~rp~dx) = QN 
0 i= l 0 i=l j =l 0 

The third term in the second equation is the result of coupling for two generalized 

coordinates, i.e. q,. and r;1 . The ¢,. and rp
11 

are two admissible functions which are 

assumed for simply supported boundary conditions at both ends for transverse motion. 

The authors noted that assuming more realistic boundary conditions will result in slightly 

different results. R and N in the above set of equations are number of modes, which 

should be retained in the calculations. In their study only one mode was assumed for the 

sake of simplicity. Retaining higher number of modes will results in more realistic results, 

although it adds complexity to the model and numerical solutions. Although the torsional 

mode was neglected in their study, their model accurately predicted the axial and lateral 

drillstring downhole trend. A detailed discussion on the retained modes in analytical 

studies can be found in chapters 4 and 6. 
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2. 7 Vibration Isolation Methods for the Drill string 

Unwanted vibrations of the drillstring can diminish the life of the collars and pipes. As a 

result of the drillstring vibrations, the rate of penetration and bit longevity will be 

reduced. The vibration isolation methods for drillstring axial and lateral vibrations are 

based primarily on two strategies: proper design of drillstring configuration (BHA length 

and stabilizer locations) to stay far away from the resonance state [21], passive isolators 

such as shock subs [ 103]. One of the best options for drillstring vibration isolation is to 

monitor the controllable parameters during the drilling process through the MWD tools. 

In the state of high vibrations level, the driller may adjust these parameters to reduce the 

vibration based on the provided remedial guidelines [ 1 02]. 

Vibration analysis at the design step of the BHA was proposed by Dareing [57] to avoid 

resonance state in drillstring through the adjustment of the BHA length. From a practical 

drilling standpoint, the rotational speed should be adjusted so that it does not correspond 

to one of the natural frequencies [92]. Certain combination of the WOB and rotary speed 

can be used to avoid or reduce vibrations for any configuration of the BHA. In another 

study, Gulyaev et al. [91 ,92] derived a mathematical model to describe the critical quasi 

static equilibrium of the rotating drillstring. They assumed gyroscopic interaction of 

linear and rotary motion. Then, the boundary value equations of the coupled orthogonal 

transverse mode with the simply supported boundary conditions were derived. The 

critical frequencies of this coupled mode were extracted and it was stated that the rotating 

speed of the drill string should not be located in the resonance range. 
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Passive control through the use of shock subs is an efficient method in dec up ling the 

source of vibration from the rest of the drill string. Shock subs are mainly used to control 

the axial vibration of the drillstring. Shock subs are composed of a spring-damper system 

which is installed between the bit and the drill collars. Kreisle eta/. [ 61] used a simple 

axial vibration model to study the effect of shock sub on the drillstring vibration reduction 

(Figure 2.11 ). A harmonic displacement BC at the bit was assumed and the boundary 

value problem of the drillstring axial vibration was numerically solved, using the Laplace 

method. Based on the numerical results, it was reported that the shock sub reduces the 

vibrations transmitted to the drillstring and the rig floor through a phase shift between the 

force and displacement at the bit. This is on the contrary to the common belief that the 

change in the resonance frequency due to the shock sub is the main cause of reducing the 

drillstring vibrations. 

DRILL PIPE---

DRILL COLLARS-

SHOCK SUB ------6-~ -
IO<'TI(l"ML I ~ 

DRILL BI'T 

Figure 2.11 : Schematic of the drillstring with shock sub [ 61] 
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Elsayed et al. [103] also suggested using a shock sub to isolate the source of vibration 

(bit -rock interaction) from the rest of the drillstring. They modeled the shock sub as a 

damped spring-mass system and used Matlab Simulink® to numerically solve the 

problem. The analysis was in the time domain and the results were presented for different 

damping ratios as well as different natural frequencies of the shock sub. Optimum values 

for shock sub parameters were suggested based on the RMS values of the acquired 

vibration signal for different combinations of the shock absorber parameters. They 

reported that springs which are too weak or two stiff are not effective in vibration 

reduction. Magneto-rheological dampers to achieve desired damping ratios was suggested 

in their study. The effect of axial lateral coupling on the efficacy of the shock sub was 

investigated by Warren et al. [104] and it was recommended to account for axial-lateral 

coupling in the shock sub performance studies. They investigated the role of shock sub on 

the reduction of axial vibrations and a reduction in lateral vibration levels with the use of 

shock subs was also reported. A detailed review of the state-of-the art methods of shock 

sub implementation in drillstring vibration isolation can be found in chapter 7. 

2.8 Formulation of Equations of Motion: Newtonian and Energy Variational 

Approaches 

In order to investigate the dynamic behavior of the drillstring, either in the frequency 

domain or the time domain, it is essential to derive the equations of motion of the 

drillstring for any desired state of motion (axial, transverse, torsional, or coupled modes) 

under prescribed loading condition (torque, load of downhole vibration generator, axial 

load, contact load). In the following section, two generalized methods for deriving the 
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equations of motion, namely the Newtonian approach and energy variational method 

(Lagrange's equation) will be discussed and some case studies of deriving the drillstring 

equations of motion based on these methods will be demonstrated. Also, the integral 

formulation approach can be implemented to derive the equations of motion of 

continuous systems. The reader is referred to [ 1 00] for further explanation of this method. 

The Newtonian approach is based on the Newton's second law and is more suitable for 

concentrated systems (lumped modeling) or systems having one degree of freedom. This 

law states that "the rate of a change of the linear momentum of a system is equal to the 

net force acting on the system". This approach can be expressed mathematically as a 

differential equation [ 1 00]: 

I 
d dr d _ _ 

(t) =-(m - ) = - (mv) = rna 
dt dt dt 

( 2.6) 

where f(t) is the applied force vector, r is the position vector of the mass m, v is the 

linear velocity and ii is the linear acceleration. The force f(t) may be considered to 

include many types of force acting on the mass, such as elastic constraints which oppose 

displacements, viscous forces which resist velocities and independently defined external 

loads. For most problems in structural dynamics, it may be assumed that the mass is not 

varying with time. 

The above equation can be rearranged as [100]: 

d 2r _ 
f (t) - m -

2 
= f(t ) - ma = O 

dt 

( 2.7) 
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which is the d'Alembert's principle. The second term, m d"~, is called the inertia force or 
dr 

d'Alembert's force and resists the acceleration of the mass. This principle is just a 

restatement of the Newton's second law and states that "the sum of all external forces, 

including the inertia force, keeps the body in the state of dynamic equilibrium". 

The Newtonian approach can be extended to the angular motion with the following 

definition: "the rate of change of angular momentum is equal to the net moment acting 

about the centroidal axis of the body": 

d . 
M(t) = - (!w) = fw = fa 

dt 

( 2.8) 

I w is the angular momentum about the center of mass, I is the constant mass moment of 

inertia of the body about the centroidal axis perpendicular to the plane of motion, w is the 

angular velocity and a is the angular acceleration of the body. M(t) is the net moment 

acting about the centroidal axis of the body. 

Ghasemloonia et al. [32,33], Yigit et al. [ 48,49], Gulyaev et al. [91 ], Hakimi et al. [58] 

and Jansen [89] implemented the force-balance equation (Newtonian modeling) and 

derived the equations of motion of the drillstring. In all these studies a beam element was 

assumed and Newton's second law was expanded for all of the forces acting on the 

assumed beam element for a lumped parameter model. Vectorial notation was applied, 

while writing down the equations. Two case studies for deriving the equations of motion 

of the drillstring with the Newtonian approach will be discussed in details in chapters 3 

and 4. This formulation is appropriate for formulation of certain points of the drillstring, 



such as the drillstring-wellbore contact location and sensitivity studies of the dynamic 

behavior in that specific point. 
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The energy variational approach is preferred to the Newtonian approach for complicated 

systems having multiple degrees of freedom, systems having complex coordinate systems 

and systems having coupled motion in certain directions. This fact is due to the scalar 

measuring of energy variables compared to the vector form of the forces in the Newtonian 

approach. For problems with a rotary coordinate system or for nonlinear systems the 

energy method is also preferred. This approach is based on the concepts of Hamilton's 

principle and the principle of virtual work and will result in a set of equations called 

Lagrange's equations. A detailed discussion on the fundamental concepts of Hamilton's 

principle, the principle of virtual work and the mathematical derivation of the Lagrange's 

equation can be found in Appendix 2. 

The Lagrange's equations based on the variational approach and energy conservation 

concept is a more fundamental method to derive the equations of motion of continuous 

structures, although more mathematical computations are involved in this method 

compared to the Newton's second law. Finally, it should be noted that two approaches are 

compatible. Recently, a new method for setting up the equations of motion through the 

conservation of energy is extensively applied to nonlinear coupled problems. This method 

is called the "Bypassing PDEs" and is implemented in chapters 5, 6 and 7 to derive the 

equations of motion in the coupled states of the drill string vibration and will be discussed 

in the last part of this section. 
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The energy variational approach with Hamilton's principle was applied to the problem of 

drill string vibration modeling by Mahyari eta/. (21], Melakhessou et a/. [30], Sahebkar et 

a/. [ 1 05], Sampaio et al. [51], Heisig et al. [ 43], Christopherrou et al. [69] and Khulief et 

a/. [37]. It starts with deriving the potential (strain) and kinetic energy equations of the 

drillstring as an integral over the drillstring length. Then, the equations for virtual work 

done by all the external forces (e.g. contact force, bit-rock interaction force, axial loads 

along the drillstring) are derived. In the next step, approximation methods such as 

assumed modes method are applied and integration is conducted over the length domain. 

The last step is deriving the time domain ODEs, using Lagrange's equations for 

generalized coordinates. Having the above set of ODE equations, one can proceed to the 

analysis of motion in the time or the frequency domain. A discussion of the solution 

methods of the resulting equations will follow in section 2-8. 

2.9 The "Bypassing PDEs" Method 

This enhanced method is developed to bypass the partial differential equations and set up 

the ordinary time differential equations from the Lagrangian equation of continuous 

systems. This method, which has been proven accurate for nonlinear problems [88], is 

based on combining the expanded Galerkin's technique with the Lagrange's equation for 

continuous structures, instead of the conventional Hamiltonian approach. In the expanded 

Galerkin technique, test functions, admissible functions and eigenfunctions (mode 

shapes) could be implemented, depending on the geometric configuration of the problem 

and the expected accuracy of results. A great advantage of the "Bypassing PDEs" is the 

use of conventional energy terms, rather than the variational form of the energy 
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equations, which further simplifies numerical solution of the developed equations at the 

final step. Therefore, conventional energy terms are derived instead of the variational 

form. The resulting time domain ODEs by this method are identical to the ones which are 

derived using the Hamilton's principle and assumed modes method. For further 

demonstration of this method, the lateral vibration of a continuous beam with a point 

mass and a concentrated load is analyzed in Appendix 3, using both conventional 

Hamiltonian method and the "Bypassing PDEs" method, which result in identical time 

domain ODEs in both methods. Ghasemloonia eta/. [36] implemented this method to 

derive multi-mode analytical equations of the coupled axial-lateral vibrations of the 

drillstring in the presence of the downhole vibration generator tool and verified this 

method with a FEM model. 

2.10 Solution Methods ofDrillstring Analytical Models 

Using either Newtonian or energy approaches, one will arrive at an "analytical" 

formulation of the boundary value problem. Applying a proper solution method is the 

next step to extract the dynamic time response of the drillstring vibration. Due to the 

coupling effect and nonlinearity of the drill string vibration problem, closed form solution 

of the resulting PDEs is not feasible. Approximate methods must be applied to the set of 

resulting PDE' s to convert them into a set of ODEs. One possible method is to implement 

approximate space domain functions in the resulting PDEs and integrate over the 

drillstring length to come up with low order set of time domain ODEs. The Rayleigh-Ritz 

method, assumed modes method and Galerkin's method are three common approximation 

methods which are extensively used to solve the resulting drillstring vibration PDE 
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equations [ 1 00]. These three methods are based on the assumption of a space domain 

function (trial function) according to the boundary conditions of the problem. Assume 

u(x,t) is a displacement function in a certain direction for the drillstring [88]: 

n 
u(x,t) = 2: ¢.(x).q.(t) 

j =} I I 

( 2.9) 

Where rP; (x ) is a trial functions depending on the boundary conditions and the eigenvalue 

problem offree vibration and fJ;(t) is an unknown function of time (also called 

generalized coordinates). 

Two categories of boundary conditions could be assumed for the vibration of continuous 

systems: essential and suppressible [88]. The geometric boundary conditions of the 

drillstring are categorized in the first class, while the static boundary conditions are in the 

second class. For example, for a clamped-clamped beam, all boundary conditions are 

essential, while for the clamped-free beam, the boundary conditions at the clamped end 

are essential, while the zero moment and zero shear force at the free end are suppressible 

boundary conditions. Based on these two classes of boundary condition, three types of 

trial functions can be defined and implemented with the above mentioned approximation 

methods: eigenfunction, test function (also called comparison function) and admissible 

function. Eigenfunction is the exact solution of the eigenvalue problem, which satisfies 

the differential equation and both types of boundary conditions. The test function is an 

approximate function which satisfies all the boundary conditions of the eigenvalue 

problem, but not necessarily the eigenvalue problem itself. The admissible function is the 

function which just satisfies the geometric or essential boundary condition of the 
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eigenvalue problem. Now, depending on the selection of the trial functions, one can 

decide about the type of approximate methods. If an admissible function is used for ¢; (x), 

it is called the Rayleigh-Ritz or assumed modes method and if a comparison function is 

used, it is called the Galerkin's approximation. The difference between the Rayleigh-Ritz 

and the assumed modes method is that the first one is used to solve the free vibration or 

the eigenvalue problem of a continuous system, while the later one is implemented to 

approximate forced vibration of a continuous system [ 1 00]. 

The above mentioned approximation methods are widely used for the nonlinear coupled 

vibration analysis of the drillstring. Assumed modes method is implemented by Yigit et 

a/. [50], Christoforou eta/. [69] and Mahyari eta/. [21]. The Galerkin method is applied 

by Ghasemlooni eta!. [33,36] and Vaz eta/. [106]. Other techniques, such as Laplace 

transform [61], differential quadrature method [58] and transfer matrix method [90] were 

also applied as approximate solution techniques in the vibration analysis of the drillstring. 

The number of modes (i value in equation 3-17) which should be retained in the 

approximation methods depends on the upper bound for the frequency of interest and the 

expected accuracy of the results. Most of the studies in the drill string vibration assumed a 

single mode approximation [50], while some others conducted a multi-mode analysis of 

the problem by considering higher number of retained modes in the approximation 

methods [33 ,36]. The mass participation factor, the effective mass and the total modal 

effective mass are three factors, which can be extracted from finite element models, and 

are indicators of modes which are contributing more to the motion in a specific direction. 
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The participation factor indicates the predominant degree of freedom in which each mode 

acts in the model. In other words, this parameter indicates the strength of the motion in 

the eigenvector of that mode. The effective mass indicates the value of active mass in 

each degree of freedom at a specific mode. The total modal mass of the model is the sum 

of effective masses of all modes in any particular direction. The modes that are 

contributing a high mass compared to the mass of the model are kept in the analysis. This 

subject is discussed in detail in chapter 6 for the coupled-axial transverse vibration of the 

drillstring and the role of each parameter in retaining sufficient number of modes is 

discussed. 

Once one of the above approximation methods is implemented to the coupled nonlinear 

PDE's of the drillstring vibration, and after integration over the drillstring length, using 

the mode orthogonality characteristic, the result is a set of coupled ordinary time 

differential equations. The initial conditions are then required to excite the system of 

ODEs. Any compatible set of initial conditions will suffice, as natural frequencies and 

steady state responses are not initial condition dependent. Several solution methods, such 

as Fehlberg fourth-fifth order adaptive Runge-Kutta method [33], Runge-Kutta method 

[36] and finite difference method [66] are applied to solve these algebraic equations. The 

great advantage of the adaptive solver is the dynamic time step reduction strategy 

compared to the fixed-step solvers. For the stiff ODEs, it is suggested to implement fixed 

step solvers with very small time increments to avoid jump discontinuities. 
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The result of the above solution procedure is a numerical matrix for the generalized 

coordinates. The results are then substituted back in the approximate methods to derive 

the time response of any point of interest along the drillstring. The equations can also be 

used to extract the drillstring or BHA natural frequencies [56,58,89,107,108]. 

Determining natural frequencies is important, because from an operational standpoint, 

vibration severity can be reduced if rotary speeds are kept far away from these 

frequencies. 

In addition to natural frequencies, the axial, lateral and torsional time responses of the 

desired locations on the drillstring or BHA could be extracted from these analytical 

models. Yigit eta/. [50], Spanos eta/. [29], Li eta/. [42] and Ghasemloonia eta/. [32,33] 

used the analytical modeling to derive time response of the desired points on the BHA 

and the pipe section. A complete review of the outcomes and deliverables of analytical 

models can be found in chapter 5. 

Solving the drillstring vibration problems with analytical methods is not always feasible. 

Difficulties in setting up the equations (specially in the coupled modes), difficulties in 

finding the approximate functions for realistic boundary conditions and complicated 

drillstring geometries, complexities in numerical solutions of the resulting system of 

ODEs due to the coupling and nonlinearity nature of the problem, as well as multi-mode 

analysis (retaining sufficient modes) are challenges involved in the analytical modeling of 

the drillstring vibration problems. It is also very difficult to reconfigure analytical models 

for new interactions and boundary conditions. These facts led researchers in the field to 
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the use of powerful numerical methods such as finite element analysis (FEA) and finite 

difference method (FDM). The FEA has been extensively implemented in the drillstring 

vibration modeling and the next section is a brief review of this technique and associated 

challenges. 

2.11 Dynamic Finite Element Analysis (FEA) of the Drillstring 

The difficulties and limitations of analytical modeling, coupled with the development of 

fast processing computers, have attracted investigators to the use of recognized powerful 

numerical methods, such as fmite element analysis (FEA). FEA is as an alternative 

method to derive and solve the equations of motion of the drillstring, investigate its 

vibration behavior, extract stress values and study the developed forces at different 

locations (nodes). It can also be a verification and tuning tool for the analytical models. 

This technique is based on discretization of the continuous drillstring, setting up 

equilibrium compatibility equations, and their numerical solutions. This procedure is 

coded in off-the-shelf software such as ABAQUS. An extensive library of beam elements, 

dashpot elements, time varying forces, different contact algorithms, sophisticated 

hydrostatic damping models, efficient solvers, the ability to record nodal time histories 

and accounting for higher modes in modal analysis are the advantages of this software. 

The first application of FEA to the problem of drill string vibration was by Millheim et a!. 

[34]. They modeled the non-rotating BHA using beam elements, and gap elements were 

used between drill collars and the wellbore. Stress and deflection modes at different parts 

of the BHA were investigated. Forced frequency response of the BHA was studied by 
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Apostal eta!. [35], using the FEA method. They modeled the BHA as a non-rotating 

lumped mass. Flexural and torsional modes of the drill string were studied by Axisa et a!. 

[ 1 09] as two uncoupled modes. Gyroscopic and gravitational effects were not considered 

in their model. Dunayevsky eta!. [74] used the FEA method to study the parametric 

instability of the drillstring, which was simply modeled as a uniform pinned-pinned beam. 

Berlioz et a!. [86] used rotor dynamics FEA to derive a dynamic model of the drillstring. 

A shaft element with 6 degrees of freedom was assumed for modeling. They did not 

account for the change of the axial force in the drill string from tension to compression at 

the neutral point. Melakhessou eta!. [30] used FEA to study the contact behavior of the 

drillstring and the wellbore, just at the contact point. The drillstring was assumed as an 

unbalanced rotor supported by two bearings. They derived nonlinear equations of motion 

using Lagrange's equation. In a recent study, Khulief eta!. [20] used the FEA method to 

study the rotating drillstring. Both drill collars and drill pipes sections were modeled and 

Lagrange's equations were applied to generate the equations of motion in the torsional­

transverse mode. The drillstring with circular cross section was discretized into a number 

of finite shaft elements with 12 degrees of freedom. The gyroscopic effect, torsional­

bending coupling and the gravity were considered in their model. The modal 

transformation technique was applied to develop a reduced order model form of the 

dynamic equations. Their model deliverables were the explicit expression of the lateral 

mode motion, modal characteristics (resonance frequency for the lateral mode in the first 

few modes) and time response of the drillstring (response of a specific node along the 

drillstring). 
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Approaches to model drillstring-wellbore contact in FEA are based on two major 

algorithms [ 11 0]. The first algorithm is based on the smooth impulsive force distribution 

during the impact interval, where the contact location could be modeled by an interface 

spring. In this approach the impact force is presented by the force-displacement law. 

Khulief eta/. [87] implemented the continuous force-displacement law to model 

impulsive contact force in their FEM model. The material stiffness and damping 

coefficients were determined at the contact zone according to the energy balance relation. 

The second algorithm which is numerically more efficient [ 111] is based on an impulse­

momentum balance equation or the conservation of momentum rule, since the impulsive 

forces cause an abrupt change in system velocities or momentum [36]. Yigit eta/. [ 48] 

modeled the contact behavior in coupled torsional-bending motion, using the momentum 

balance method. Their impulse friction model included a compression phase and 

restitution phase, with assumed friction and restitution coefficients. A detailed literature 

review on the studies of drillstring-wellbore contact in both analytical and finite element 

modeling schemes can be found in chapter 6. 

Two types of mud damping have been applied in FEA studies of the drillstring: Rayleigh 

damping and viscous damping (fluidelastic effects). Rayleigh damping relates the 

damping in the drillstring to the stiffness matrix and mass matrix developed in FEA 

models [51]. <Xr (mass proportional damping) and f3r (stiffness proportional damping) are 

defined as: 

(2.10) 
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Rayleigh damping can be related to the other type of damping (critical damping) through 

the following equation [35]: 

(2.11) 

where wi is the natural frequency of mode i. Spanos eta/. [28] developed another 

equation for finding the damping ratios based on the frequency of each mode and the 

density of the mud and verified the equation with field test results. The mass proportional 

damping causes damping at each node in the FEA models which is related to the absolute 

velocity of that node. This is in agreement with the hydrodynamic drag damping model 

which is used in analytical studies of the drillstring vibrations, since both of them are 

velocity proportional damping models. Another advantage of the mass proportional 

damping is that the stability limit in the final numerical solution step is not sensitive to 

this factor, while the stiffness proportional damping reduces the stability limit of the 

numerical solution. 

Khulief et a/. [3 7] modeled the fluidelastic effects of the mud on the drillstring, using the 

semi-analytical approach introduced by Fritz [112] and Antunes eta/. [113]. The early 

model was modified, since it was valid for annulus gap ratios less than 0.1 (the annulus 

gap ratio is greater than 0.1 in drilling applications). They developed the fluidelastic force 

equations in two directions (normal and tangential) for each element of the drillstring. 

The force equations were based on the density of mud, radial clearance, deflection of the 

string element and the rotary speed. The developed equations were then implemented in 

an FEA model and the model was tuned based on a laboratory test rig results. 
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One of the major problems of numerical modeling methods, such as the finite element 

analysis, is the heavy burden of computations. Determining a sufficient number of 

retained modes and element length is a critical task for numerical modeling to simplify 

the problem, while maintaining the accuracy of the results [33,36]. Mesh sensitivity 

analysis and effective mode determination techniques can be implemented to achieve low 

order, but accurate models. A detailed definition of the mesh sensitivity analysis and 

modal order determination can be found in chapter 6. 

The FEA method in the present research is used as a verification tool for the analytical 

modeling. The natural frequencies as well as time responses of two implemented methods 

are compared. Also, the FEA technique is implemented to determine the predominant 

modes required for multi-mode analysis in the developed analytical models. As a case 

study of applying the FEA technique to drillstring vibration, a finite element model for 

lateral vibrations of the drillstring is explained in Appendix 4. 

The following five chapters are the manuscripts based on the research plan defined in 

chapter one, section 1.4. Each chapter is a manuscript which is published or currently 

under review. At the start of each of the following chapters a brief review of the paper, 

where it has been published and its current status will be discussed. The last chapter 

(chapter 8) is a general concluding remark and recommendations for the future work. 
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This chapter is based on the modeling step 1 defined in section 1.4 of this thesis and was 

presented as a research paper to the 91
h International Conference on Bond Graph 

Modeling (ICBGM2010) in Orlando, Florida. 

3.1 Abstract 

The contact behavior of drillstring and wellbore is of great concern to drilling companies 

in the oil and mineral exploration industries. Due to the nonlinear, random motion of the 

drillstring in contact with the wellbore, it is difficult to predict the response of the 

drillstring. Successive contacts of well bore and drill string will result in fatigue failure and 

inhibit vibration-assisted rotary drilling mechanisms. Transverse vibration of a drillstring 

under a range of axial loads is studied in this paper. The impact of drill collars with the 

wellbore is modeled using Hertzian contact theory. The drillstring is treated as a simply 
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supported Euler-Bernoulli beam under axial load, or "weight-on-bit" (WOB). Natural 

frequencies were generated analytically using the assumed modes method and a bond 

graph model was generated. Extracting the motion of the contact point on the drill collar, 

which is at a known axial location, is easily done with modal bond graphs. The effect of 

WOB on the behavior of drill collar motion near the wellbore is studied, and the expected 

random, nonlinear behavior of the drillstring at the contact point is demonstrated and 

discussed. This work illustrates the advantages of the bond graph method to the drilling 

community, in which bond graphs are currently an underutilized technique. 

Keywords: Drillstring, Vibration, Wellbore Contact, Weight-on-Bit 

3.2 Introduction 

The effect of different weight on bit (WOB) on the vibration behavior of a drillstring is 

studied in this paper. Weight on bit is an essential factor in the drilling process, which can 

affect the rate of penetration as well as natural frequencies of the drill string in the bending 

mode ofvibration. The WOB can also be related to the load carrying capacity of the 

drillstring (buckling load). In most cases of bending vibration, in the interest of simplicity 

or due to small values of loads, the effect of axial load on the vibration behavior is 

neglected. It is obvious that in the presence of large amount of axial force, natural 

frequencies decrease in compression and increase in tension [ 1]. In the extreme, as the 

WOB nears the buckling load, the first natural frequency approaches zero. 

Yigit eta/. [2] numerically solved the coupled transverse and axial vibration equations of 

motions of the drillstring using Lagrange's equation. They found a nonlinear time-
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dependent coupling term which affects the stability criteria of vibration behavior. In some 

papers, the Euler-Bernoulli beam model was assumed for drillstrings [2]. In another paper 

Christoforou [3] modeled the axial and transverse vibration of a rotating drillstring and 

found that it shows a nonlinear chaotic behavior in its contact with wellbore. Yigit et al. 

[ 4,5] also studied the torsional and bending motion of a rotating drillstring. It was found 

that these two modes of motion are also coupled to each other and have the potential for 

self-excited behavior. 

In most previous works, only two kinds of motion, such as axial and transverse, axial and 

torsional, etc. have been studied [2,3,4,5]. In the case of a rotating drillstring, rotary 

inertia effects were neglected in [ 6] and the drill string was modeled as a Rayleigh beam. 

In this inherently complex problem there are yet other forces such as bit-formation 

interaction force and borehole contact force at stabilizer locations, which could be 

inserted into equations of motion. 

Bond graph modeling of drillstrings is advantageous given that when new forces or 

interactions are added to the model, it is not essential to reconstruct the system model 

from a primary level again. Simulation models can be regenerated automatically to 

incorporate new forces [7]. This characteristic helps in creating basic drillstring models 

which can be augmented with phenomena such as mud damping effects and bit-rock 

interaction forces. 

In this paper, the vibration behavior of a drillstring at the stabilizer point of contact is 

studied. This model is, to the authors' knowledge, the first application of the bond graph 



82 

modeling method to simulate drillstring behavior with wellbore contact. This problem is 

important due to the fact that vibration behavior of the drillstring affects bottomhole 

assembly (BHA) vibration, which has a significant effect on the drilling efficiency. In 

emerging drilling technologies such as vibration-assisted rotary drilling (V ARD), it is 

essential to study and control the vibration of the drillstring, since any kind of vibration 

could impact penetration rate and bit wear. 

3.3 Analytical Overview of the Problem 

A drillstring can be considered to be a slender beam that consists of two main parts. The 

thin lightweight upper part is called the drill pipe and the thicker heavier section at the 

bottom is comprised of drill collars. The weight of the latter provides enough axial loads 

to maintain a certain amount of WOB. The bottomhole assembly components are attached 

to the end of the drill collars. A drillstring is under tension in the upper part and under 

compression in the collar section. It is desired that the drill pipe never undergoes 

compression and mostly drill collars are under compression [8]. This phenomenon is 

controlled through mud hydrostatic effects in the drilling process. In this paper, the 

vibration behavior of drill collars at the point of contact with wellbore is modeled. 

Therefore, the assumed model for this part is a beam, which is under compression as 

stated above. The gap between drill collars and the borehole wall is reduced with 

stabilizers, which help to keep drill collars centralized. A schematic view of drill string 

sections along with drill collars is shown in Figure 3.1. 
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An Euler-Bernoulli beam under axial compression load is assumed in this paper. The 

boundary condition in the lower point of the drillstring, i .e. bit, is assumed as simply 

supported for transverse motion, since it has the ability to move downward and is ideally 

restricted from moving laterally. The upper part of the beam (top of collars) is also 

considered as a simply supported constraint, due to the fact that the drill pipe restricts 

lateral motion. A schematic view of the Euler-Bernoulli beam under compression load is 

shown in Figure 3 .2. 

,.....- Drillc.,llar 

,..- Stabilizers t, ,,r 
L-·~·+.....--nrillhi r 

Figure 3.1: Schematic view of drillstring and stabilizer [ 5] 

In order to derive the characteristic equation of the beam, Newton's law is applied on an 

element of the beam as follows: 

- (V +dV) + V - (P +dP)sin(B + dB) +PsinB = pAdx 
02~ or 

(M + dM) - (V + d V )dx - M = 0 

(3 .1) 

(3 .2) 

Having oM = V, EI 
02~ = M(x) and assuming the following equation for smallB: ox ox-
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w(x, f) 

(}~·--4-.t·-l 

Figure 3.2: Schematic of drillstring under weight on bit and corresponding element [9] 

. ae aw a2W 
sm(B+dB)=:B+dB~B+-dx=-+--2 dx 

ax ax ax 

(3 .3) 

Substituting the above assumptions in Equation 3.1: 

(3.4) 

Using the method of separation of variables and assuming that W(x,t) = Y(x).f(t), the 

following equation will be generated: 

(3 .5) 

The general solution for the above equation is in the following form: 

p p2 Aw2 P p2 Ad 
Y(x) = C1 {cosh(- +(-

2
-

2 
+£._____ )112 x} + C2 {sinh(-+ (-

2
-

2 
+-P- Y12 x} 

2EI 4E I EI 2EI 4E I EI 

P P2 pAoi 112 . P P2 pAoi 112 +C {cos(--(--+--) x} +C {sm(--(- - +-- ) x} 3 
2EI 4E2I 2 EI 

4 
2EI 4E2I 2 EI 

(3.6) 

Since the boundary conditions are assumed as simply supported, the coefficients of C, up 

to C4 are determined by substituting the following equations in Equation 3.6: 



85 

Y(O) = 0 Y(l) =0 (3.7) 

2 
d y (0) = 0 
dx2 

2 
d y (l) = 0 
dx2 

Substituting the above boundary conditions in Equation 3 .6, the equation of motion and 

frequency characteristic equation for the drill string as a function of weight on bit, 

geometry and material properties of drillstring are: 

Y(x) = C
4 

sin(nJT x) 
l 

2 2 /? 
OJ = !!_ { EI (n4 _ n P - )}1 /2 

II /2 pA JT2EI 

(3 .8) 

Since for the Euler-Bernoulli beam, the critical buckling load is~r = JT;fl, Equation 3.8 

can be restated in the following form: 

_ 7r
2 

{EI ( 4 2 P )}1 '2 OJ--- n -n -
II /2 pA ~r 

(3.9) 

It is obvious that the natural frequency of the first mode will tend to zero as the weight on 

bit reaches to the buckling load limit [9, 1]. 

3.4 Bond Graph Modeling of the Drillstring 

Due to the accuracy limitation of lumped segment models, the modal expansion method 

of bond graph modeling is used in this paper [7]. The exact response is an infinite sum of 

a linear combination of individual mode shapes. In this paper, the first five modes have 

been retained. 



86 

Applying the modal expansion equations, the modal mass of the model is, using Equation 

3.8: 

1 
2 

1 
. , mr pAl 

m" = f pAY,, dx =f pAsm-(-x)dx =-
o o I 2 

n = 1, 2,3, ... 
(3.10) 

The modal stiffness would be in the following form: 

for n=1,2,3, . .. (3 .11) 

Substituting the natural frequency for each mode from Equation 3.8 and modal mass from 

Equation 3.1 0, which is a constant value in this case, the modal stiffness value for each 

mode is calculated. 

The designed bond graph model for this paper is shown in Figure 3.3. The modal mass 

constant box provides the mass signal for each mode. There is a corresponding C element 

for each mode, which accounts for related modal stiffness. Since it is of interest to study 

the behavior of the drillstring at the point of contact with wellbore via a stabilizer, the 

transformers are the values of the mode shapes at the stabilizer axial location. 

At the point of contact between the stabilizer and the wellbore, Hertzian contact theory is 

used to model the impact force on the drillstring. In the simplest form, the Hertzian 

contact force is estimated by the following nonlinear equation: 

F = k 6 312 
s 

(3.12) 

where ks is related to the material properties (Young modulus) of the colliding objects 

and their geometry as well as their shapes [ 1 0]. In the case of a drill string at the point of 

contact with wellbore, there is a small gap, which should be taken into account in 
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determining Hertzian contact force. Since there is a back and forth displacement of the 

center of the drill collars with respect to the central axis of well bore, the direction of the 

applied force should be tuned to the direction of movement via a sign function in the 

output of the contact force block. The contact force equation thus takes the following 

form: 

(3 .1 3) 

where bc1 is the small gap between borehole and drill collars andY is the transverse 

displacement of the drill collars. 

The transverse displacement "Y", obtained through an integration block, is an input signal 

to the contact force block. The output of the contact force block modulates the source of 

effort (Mse) which is applied to the contact point as shown in Figure 3.3. In order to 

excite the system, initial values are assigned to the parameters. To generate a consistent 

set of initial displacement conditions, a step force input is applied to the stabilizer and the 

steady state variable values are used as initial conditions for subsequent simulation. 
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Figure 3.3 : Bond graph model of drillstring with wellbore contact point at stabilizer 

3.5 Modeling Results 

The object of this paper is to study the effect of weight on bit on the vibration behavior of 

a drillstring as it contacts the wellbore. According to the drillstring length, geometry and 

material characteristics, the buckling load is about 400 kN. A complete table of 

parameters and their numerical values is given in Appendix 3 .1. Two values of weight on 

bit are used: 150 kN and 350 kN. The latter value is close to the buckling load. 20Sim 

software was used for bond graph modeling. The Vode Adams integration method was 

selected with absolute and relative integration tolerances of le-6. The maximum step size 

was 0.0001. The simulation results for the 150 kN force are shown in Figure 3.4. 

As shown in Figure 3.4, for a low value of weight on bit, the drillstring bounces to the 

other side of the wellbore with each contact. As expected, when the contact load is 
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applied to the drillstring, the velocity decreases to zero and changes direction. Figure 3.5 

is a zoomed view of Figure 3.4 at one contact point, showing appropriate behavior of the 

elastic contact model. Figure 3.6 shows the phase plane of the drillstring response for the 

150 kN weight on bit. As shown in this Figure, the drillstring shows a chaotic behavior, 

moving all around the gap between wellbore and drillstring. 

Transverse displacement, velocity and contact force 

~ ~: ~ 1\ ('>, /\ L"l ,..-"\ r--.. 6 (\~7\~'"j\'7~· 
-0 01 vv V"J v~v v~v v v 
-0.02 

~========================================~ 
0.2 

0.1 

·0.1 

·0.2 ~==============================; 

50000: f~-----..-~-1 1-y-----t-1 .-, L---f-1 .._I -4-1 1 ____L._--+------,-----+--------.--+--r-----1 

-500000 1 
- 1e+006 - - - - - ----· --- - - --

0 5 10 15 20 25 30 35 40 
time {s} 

Figure 3.4: Transverse displacement (w), velocity and contact force at the point of contact 

between drillstring and wellbore for 150 kN weight on bit 
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Figure 3.5 : Behavior of Hertz ian contact e lement 
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Phase plane [velocity (m/s) vs. transverse displacement (m)) 

• Phase plane 

0.2 

0.1 

0 

.0.1 

.0 2 

·- - j 
·0.005 0 0.005 0.01 

Transverse displacement 

Figure 3.6: Phase plane for WOB = 150 kN 

The contact force versus position of the drillstring is shown in Figure 3.7. The contact 

force is only applied to the drillstring when the position of the drillstring exceeds the gap 

between the wellbore and drillstring. 

1e+006 
Conta c t fo rce vs . transverse displace m en t 

- -

- Cont act force (N) 

500000 

-500000 

- 1e+006 
-0 .01 -0 .005 0 0 .00 5 0 .01 

Disp lacem e nt (m) 

Figure 3.7: Contact force versus position of drillstring 
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The results of modeling the drillstring with 350 kN of WOB are shown in Figures 3.8, 3.9 

and 3 .I 0. In contrast to the 150 kN case, the drillstring contacts one side of the well bore 

repeatedly before moving to the other side. The transition from one side to the other is 

non-periodic. 

Comparing the contact force diagram (part 3 of each Figure) of Figures 3.4 and 3.1 0, it is 

clear that in the case of higher weight on bit, the majority of drillstring motion should be 

around the well bore walls. This fact is verified again in the phase diagram of Figure 3.8. 

Phase plane {velocity (m's) vs. transverse displacement (m)} 
0.1 

• Phase plane 

0.05 

0 

.Q.05 

.()1 ~----------------~----------------~ 
.()01 .()005 0 0.005 0.01 

Transverse displacement 

Figure 3.8: Phase plane for WOB = 350 kN 

The diagram is much denser near the walls of the well bore than at the center of the well. 

For 150 kN WOB there is no concentration in a specific location. The contact force 

diagram with respect to the location of the drillstring for the higher loading is shown in 

Figure 3.9. 
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Figure 3.9: Contact force versus position of drillstring 
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Figure 3.10: Transverse displacement (w), velocity and contact force at the point of 

contact between dri llstring and wellbore for 350 kN weight on bit 

3.6 Conclusions 

Transverse v ibration behavior of a dri llstring under different weight on bit (WOB) at the 

contact point with a wellbore was studied. Both low weight on bit and high weight on bit 

(close to buckling load limit) loadings show nonlinear chaotic behav ior. Motion of the 

dri llstring under low WOB showed that after each contact with the well bore, the 
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drillstring moves to the other side of the wellbore. In the case of higher WOB, which is 

close to the buckling limit of the Euler-Bernoulli beam, multiple impacts with the same 

side of the wellbore occur. Mostly, drilling companies work under low WOB, which is 

not close to buckling limit. It is recommended as future work to consider the frequency of 

a rotating beam under axial load, take into account the mud damping effect at the point of 

contact, and study the vibration behavior in two states - drill bit in contact with 

formations and drill bit not in contact with formations. Research is ongoing to study the 

effect of introducing vibration to the drillstring to improve penetration rate and drilling 

efficiency. Therefore, studying the vibration behavior in contact with wellbore under all 

engaging loads, using the approach of this paper, will be useful for the design of control 

methods to improve efficiency and penetration rate. 
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3.9 Appendix 3.1 

Table 3.1: Drillstring Properties 

Characteristic Value 
Modulus of Elasticity 200 GPa 

Density 7860 kg/mj 
L1 20m 
L2 200m 

Collar Diameter 0.2m 
Hertzian Coefficient 6.78 x 10 11 N.m3u 

Borehole Gap 0.1 m 

Table 3.2: Bond Graph Model Properties 

Characteristic Value 
Modal mass (kg) 24680.4 

First mode transformer modulus 0.3 
Second mode transformer modulus 0.58 
Third mode transformer modulus 0.8 
Fourth mode transformer modulus 0.95 

Fifth mode transformer modulus 1.0 
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This chapter is based on the modeling step 2 defmed in section 1.4 of this thesis and is 

published as a full research paper in the International Journal of Mechanical Engineering 

Science (!MechE, Part C), vol. 227(5), pp. 946-960. 

4.1 Abstract 

Predicting and mitigating unwanted vibration of drillstrings is an important subject for oil 

drilling companies. Uncontrolled vibrations cause premature failure of the drillstring and 

associated components. The drillstring is a long slender structure that vibrates in three 

primary coupled modes: torsional, axial and transverse. Among these coupled modes, the 

transverse mode is the major cause of drillstring failures and well bore washout. Modal 

analysis of drillstrings reveals critical frequencies and helps drillers to avoid running the 

bit near critical modes. In this paper, the coupled orthogonal modes of transverse 
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vibration of a drillstring in the presence of torque and spatially varying axial force (due to 

mud hydrostatic effect, self weight and hook load) are derived and the mode shapes and 

natural frequencies are determined through the expanded Galerkin method. The results 

are verified by the nonlinear finite element method. Modal mass participation factor, 

which represents how strongly a specific mode contributes to the motion in a certain 

direction, is used to determine the appropriate number of modes to retain so that 

computational efficiency can be maximized. 

Keywords: Drillstring, transverse vibration, coupled modes, Galerkin's method, mode 

participation factor, finite element method, modal mass participation factor 

4.2 Introduction 

The subject of drillstring vibration is an ongoing challenging for drillers in oil fields. The 

effects of vibration on drilling performance, wellbore stability, joint failures, fatigue, etc. 

have led drilling companies to strengthen components or try to control and mitigate these 

effects to attain higher performance. In order to control or mitigate the vibration, its 

behavior and characteristics should be revealed and modeled analytically [ 1, 2], 

experimentally in laboratory scale [3], or through field verification [4]. 

A drillstring is a slender structure which consists of drill pipes at the upper sections and 

drill collars and stabilizers at the bottom sections. The drill pipes are hollow pipes 

(assumed 120 mm outer diameter, 10 mm thickness in this paper) that are lighter than the 

collars (normally with an outer diameter of 120-240 mm and thickness of 30-80 mm). 

The bit is attached to the bottom of the collars. The lower section is called the "bottom 
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hole assembly" or BHA. The lower, heavier BHA is more easily excited to vibrate than 

the pipe section. This is due to the presence of an axial load, which is varying spatially 

along the drillstring length. This linearly varying axial load is a result of three interacting 

axial forces: hook load, self weight of the drill string and mud hydrostatic force. Drilling 

performance is very sensitive to the axial force at the bit, i.e., weight on bit (WOB), and 

WOB is one of the main parameters adjusted during drilling to improve penetration rate. 

Rate of penetration, or ROP, is the conventional index for measuring the efficiency of the 

drilling process. 

The dominant role of BHA vibrations on the total drill string vibration was verified by 

Dareing [5], who showed that the collars are easily excited in the lower modes. The pipes, 

in tension, vibrate at higher excitation frequencies [6], as will be shown in the later 

section on finite element modeling. In most cases, the rotational speed at the normal 

operational conditions is not high enough to excite the higher modes. The other reason for 

analyzing the BHA is that measurement-while-drilling (MDW) tools are mostly located 

near the bit in the BHA and any type ofBHA vibrations interfere with the interpretation 

of down-the-hole (DTH) status at the surface. Finally, the BHA is composed of collars 

which are heavy and stiff and any type of unwanted vibration dissipates a portion of 

energy which is supposed to be delivered to the bit. Therefore, an increased 

understanding of the BHA vibrations will give valuable insight into potential vibration, 

and ways to avoid it, under normal operating conditions. 
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The primary modes of drillstring vibrations are axial, transverse and torsional [7, 8, 9]. 

These modes are coupled together via terms containing variables like torque [10]. 

Coupled torsional-bending [11], coupled axial-bending [12] and coupled axial-torsional 

[13] are three common combinations of coupled modes. Stick-slip oscillations [14] are 

torsional, while whirling and bit bounce [ 15] are examples of lateral and axial vibrations 

respectively. These vibrations can be transient or steady, depending on the drilling 

parameters such as WOB, torque, rotational speed and many other drilling conditions. 

Among these primary modes, the transverse mode is said to be responsible for 75% of 

failures [ 16] . Bending waves are not propagated to the surface via the drillstring as are 

torsional and longitudinal waves, due to the difference in the wave speed for different 

types of modes. The propagation speed for axial and torsional motions is quite high 

compared to the lateral motion. Therefore, for any given length of the drillstring, axial 

and torsional waves travel a few wavelengths to reach to the surface, while in contrast, 

the lateral wave travels many wavelengths to be felt at the surface. Furthermore, 

transverse vibration is more highly damped than the other modes due to mud effects and 

wellbore contact [ 16]. Therefore, there could be severe bending vibrations deep in the 

hole, which the surface measuring tools do not indicate. As later finite element method 

(FEM) modeling will show, in the lower frequencies the collars are vibrating transversely, 

while the pipes do not vibrate and remain approximately undeflected. This is due to the 

axial load distribution along the drillstring, the collars of which are mainly under 

compression while the pipes are under tension. As a result of the tension, the natural 



101 

frequencies of the pipe section increase, while the natural frequencies of the collar section 

are reduced. 

4.3 Literature Review 

Due to the importance of the transverse mode, several studies have been done to 

understand the behavior of the drillstring in this mode. Jansen [ 17] studied the contact 

behavior between the stabilizer and the wellbore at the point of contact, using a lumped 

segment approach. He noticed that gravity and lateral coupling should be taken into 

account for more quantitative analysis. Chen eta!. [ 18] studied the lateral vibration of a 

BHA in the presence of constant weight on bit, but neglecting the torque. Berlioz et a!. 

[ 19] performed a laboratory test to study lateral vibration of the drillstring and showed 

that the influence of axial force is greater than that of the torque on the natural 

frequencies of the drillstring. However, they did not consider spatially varying axial load 

and coupled orthogonal lateral modes. Christoforou eta!. [20] used the Lagrangian 

method to derive the equations of motion and study the drillstring trajectory in the lateral 

mode at the contact point. They used a sine wave as the dynamic WOB, without 

considering the torque as the coupling term for the lateral modes. Stability of the 

drillstring in the lateral mode was studied by Gulyaev et a!. [21]. They investigated the 

buckling mode of the drill string as a function of its length for special cases which have 

analytical solution. They showed that the buckling mode will occur at the section with the 

compressive axial force (collar section). In another work by Dareing [22], the sensitivity 

of drill collar vibration to the length was studied using simple beam equations without 

torque and axial load. Khulief eta!. [23] used the finite element method to derive the 
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frequency and modal response of a rotating drillstring without torque. They compared the 

results for the full order model and developed a reduced order model for the total 

drillstring. The string borehole interaction was also an interesting subject in the lateral 

mode analysis and several studies have been carried out on this subject [24, 25]. 

Laboratory test rigs, field data and FEM models have been used extensively for 

verification of derived natural frequencies or time response of the BHA [4, 19, 23]. 

Coupled orthogonal transverse vibration of the drillstring in presence of torque and 

linearly varying axial force has not been previously addressed. The goals of this paper are 

analytical and numerical modeling of bending vibration of drill collars and accurate 

prediction of natural frequencies. Knowledge of such frequencies and understanding of 

the underlying physics will help drilling companies avoid resonance and reduce drillstring 

failures. In contrast to previous studies, this work includes the effects of steady torque and 

spatially-varying axial load, thereby revealing coupling between the orthogonal 

components of lateral vibration. The finite element method is used to validate analytical 

model predictions. This paper also uses the concept of modal mass participation factor to 

determine the required number of modes to retain. Retaining unnecessary modes can 

increase computation burden without significantly increasing model fidelity. The natural 

frequencies and mode shapes calculated using the methods of this paper can be exported 

for use in low-order modal expansion models [26]. While not matching the fidelity of 

high-order FEM models, low-order models can be more computationally efficient, more 

easily interfaced to other subsystem models, and still useful for top-level design studies. 
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In the following section, analytical equations of the drillstring lateral vibration, which are 

coupled via torque under linearly varying axial load, will be derived. The next section 

derives the governing equations and applied the expanded Galerkin method to solve them. 

Section 3 describes the FEM application and results. Section 4 discusses proper model 

order, and Section 5 states conclusions and future work. 

4.4 Derivation of Governing Equations 

Drillstrings are assumed to be bearnlike structures. Due to the high slenderness ratio of 

the drill string and low rotational speed, among the conventional models of beam theory 

(Euler-Bernoulli, Timoshenko and Rayleigh), the Euler-Bernoulli beam theory is used to 

model the lateral vibration of drillstrings. Since the aspect ratio is greater than 10 for the 

drillstring, the use of classical thin beam element (Euler-Bernoulli) is valid. Several 

studies have been carried out to model different types of vertical beams, e.g. Hijrnissen et 

al. [27] which modeled the vertical beam under the effect of gravity. 

In this paper, the direct Newtonian approach is used to derive the mathematical model. 

The rotation of the drillstring (Figure 4.1) and gyroscopic effect are neglected, since the 

string could be assumed as a low speed rotor [ 6, 9, 12, 18]. 

An element of the beam, which is under torque and linearly varying axial load, is 

considered. This element is located on a portion of the drillstring (beam), which is 

between two stabilizers (Figure 4.2). Two lateral directions, namely u and v, are 

considered for extracting the equations of motion. The elements in the uz plane and for vz 
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plane are shown in Figure 4.2. The following derivation refers to Equations 4.15-4.2 1 

which can be found in Appendix 4.2. 

------~-r~==~:~r ______ _ 
Drill pipe 

__ Drilling rnud 

Stabilzer 

BHA 

Drill bi t 

Figure 4.1: Schematic diagram of the drillstring in the wellbore 

The torque i is resolved along the selected element as two separate bending moments in 

the u and v directions as a result of bending curvature of the drillstring (Figure 4.3): 

(4.1) 

The f vector in the normal direction will be: 
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Figure 4.2: Drillstring elements between two stabilizers 

a) The uz plane b) the vz plane 

(4.2) 
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Figure 4.3: Torque in the z direction decomposed to tangential and normal components 

Hence, the tangential component of the torque will be: 

(4.3) 
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f, acts as a bending moment in the u and v directions. The corresponding coupled term in 

the equation of motion will be third order. The corresponding component of I; as a 

-Tdv 

bending moment in the u direction is 2 dz 2 According to Equation 4.16 and 
(~~) + (~:) +1 

substituting for Mv (neglecting the second order differential terms): 

~(-Tdv)=S 
oz dz " 

(4.4) 

As it is clear from Equations 4.18 and 4.19, the terms related to s,. will appear in the fmal 

equation of motion as _as" . Therefore, Equation 4.20 is modified by substituting _as" 
& & 

and assuming the torque is constant: 

_ oS" = -~(~(-T dv)) = T o
3
v(z, t) 

oz oz oz dz oz3 

(4.5) 

Therefore, the T term will be added to the equation of motion in the u direction as a third 

order derivative of v. The above procedure can be repeated in the v direction with the 

similar results, except a negative sign due to the opposite direction. 

Adding these two coupling effects to Equations 4.20 and 4.21 , and assuming the spatially 

varying axial force as F axial = F 0 - pAgz (Figure 4.4), the final form of the equations of 

motion for the two lateral directions is: 

(4.6) 
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where Po is the amount of compressive axial force at the top point of the collar section. 

The concentrated load at this point is due to mismatch of projected areas and the resulting 

resolved hydrostatic axial forces [28]. The derivation of the spatially varying axial force 

along the collar section can be found in Appendix 4.3. 

Q) 

"-·c. 

.!!1 
0 
u 

Compresswn Tensron 

Figure 4.4: The profile of axial load along drillstring 

The above set of equations is coupled by order of 3 through the torque. Although it is a 

set of linear equations, the varying axial load means there is not a closed form solution. In 

the following section, the above equations will be solved to find the natural frequencies of 

the drillstring as well as mode participation factors (Equation 4. 7) for the first five modes 

of lateral vibration 

4.5 Analytical Solution of the Equations 

In this section the expanded Galerkin method is used to derive the characteristics of the 

lateral vibration of the drillstring. Transforming the set of coupled PDEs to a set of linear 

differential ODEs is the major benefit of this method. Due to the discretized mode shape 

functions in this method, the results can be analyzed separately in each mode and the 
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predominance of the modes for different sets of initial conditions can be verified. To 

apply this method to the above problem, u(z, t) and v(z, t) should be assumed as: 

II 

u(z,t) = L ¢,(z) · p.(t) 
(4.7) 

i= l 

Ill 

v(z,t)= L V'j(z)·q/t) 
j = l 

where tp.(x) and If/ .(x) are comparison functions, and q.(t) and p .(t) are mode 
l J l J 

participation factors [29]. The i and j subscripts depend on the desired mode shapes 

according to the frequency range of interest. For this problem five modes will be retained. 

Further discussion on the number of mode shapes that should be retained can be found in 

Section 4. The comparison functions based on assumption of simply supported B.C.s [3 , 

5, 9, 11, 12] are: 

i;rr.z 
¢,(z) =Sin(- ) 

l 
jJr.Z 

lflj (z) = Sin(-
1
-) 

(4.8) 

If the above assumptions are substituted in Equation 4. 7 and finally in Equation 4.6, the 

result is: 
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l61r 4 Stn(2Jr.z) 8l1r 4 sin(3Jr.z) 256Jr 4 s1n(
4

7r.z) 625Jr 4 sin(Jr.z) ~ cos(Jr.z) 

+- ----:f___;_l_pit)+ f l p3(t)+ f l p4(t)+ f I Ps(t)}+T{ /3 I ql(t) 

~ oos(2Jr.z) 27~ oos(37r.Z) 64~ cos(47r.Z) 125~ cos(57r.Z) Jrcos(Jr.Z) 

/3 I q2(t) /3 I q3(t) /3 I q4(t) /3 I q5(t)}-pAg{--/-/_pl(t) 
(4.9) 

2Jrcos(Jr.Z) 3Jroos(Jr.Z) 4Jroos(Jr.Z) 5Jrcos(Jr.Z) ~ sin(Jr.Z) 

+------''- pit)+ 1 I p3(t)+ l p4(t)+ 1 I Ps(t)}+(FO-pAgz} ·{ 
1
2 I pl(t) 

For the v direction the result is as follows: 

16Jr4 sin(2Jr.z) 81Jr4 sin(3Jr.z) 256Jr4 sin(4Jr.z) 625Jr4sin(Jr2 ) ~cos(Jr2) 
+ f I qit)+ f l q3(t)+ f I qit)+ f I q5(t)}- T{ 13 l pl(t) 

~ cos(2Jr.z) 27~ cos(37r.Z) 64n-' cos(47r.Z) 1 25~ cos(SJr.z) Jrcos(Jr.Z) 

p I p2(t) /3 l PP) /3 l Pi/) p I p5(t)}-pAg{- ,-'-ql(t) (4.10) 

2Jrcos(Jr.z) 3Jrcos(Jr2 ) 4Jrcos(Jr2 ) 5~rcos(Jr.z) ~sin(Jr.z) 
+---:--"'- qit)+ I I q3(t)+ l qit)+ I l q5(t)}+(FO-pAgz)·{ /2 I ql(t) 

The above equations are simplified according to the fact that the expanded Galerkin 

method is based on the orthogonality of modes; i.e. 

(4.11) 

Since the comparison functions are assumed to be ({Ji (z) = sin c:z) and ({J j (z) = 

sin c~z), applying integration by parts to Equation 4.11 results in: 
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(4.12) 

Using the above comparison functions, Equation 4.9 is multiplied by <pi(z) =sin c:z) 
for i = 1, 2, .. , 5 and then is integrated term by term over z E [0, l ] , resulting in five coupled 

time dependent equations (in the case of uncoupled equations, this method will result in 

five ordinary uncoupled time-varying differential equations). Equation set 4. 10 is 

multiplied by <pj(z) =sin C7z) for j = 1,2, .. ,5 and the results are integrated term by 

term over the same domain. The result is another set of five ordinary coupled time-

varying differential equations. The resulting set of ten equations after simplification of 

integrations is shown in Appendix 4.2. 

The ten equations make a system of coupled second order time-varying differential 

equations. This system was numerically solved using a Fehlberg fourth-fifth order Runge-

Kutta method with degree four interpolant, which is an adaptive numeric procedure for 

solving the initial value problems combining fourth-order and fifth-order Runge-Kutta 

techniques. The great advantage of this method is the dynamic step reduction strategy 

compared to the fixed-step fourth-order Runge-Kutta method. The initial conditions were 

derived from the FEM solver as discussed later in the next section, to ensure geometric 

compatibility. Any compatible set of initial conditions will suffice, as natural frequencies 

are not initial condition dependent. Parameter values are shown in Table 4. 1. 
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Table 4.1: Dimensions and characteristics of the drillstring and collar section 

Drillstring length 1000 m Collar density 
p = 7860 k~ 

m 
Drill collar length 200m Collar modules of E = 210GPa 

elasticity 
Length between 2 30m Gravity acceleration m 

adjacent stabilizers g=9.8 12 
s 

Outside diameter of d
0 

= 0.22m Rotational torque T= 5kN .m 
the collar section 

Inside diameter of the d; = 0.08m Axial load at the top pint F0 = -30 kN 
collar section of the collar section 

Area moment of 1,= 1.129*10-4 m4 Area moment of inertia l v = 1. 129 * 10-4 m4 

inertia of the collars in of the collars in the v 
the u direction direction 

The results for p
1 
(t) up to p

5 
(t) are shown in Figure 4.5 and for q

1 
(t) up to q 

5 
(t) m 

Figure 4 .6. 
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Figure 4 .5: The function p(t) for the first five modes (the u direction) 
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Mode participation factor, q(t), in the v direction 
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Figure 4.6: The function q(t) for the first five modes (the v direction) 

Figure 4. 7 is an expanded view of Figure 4.6 without q1 (t) Using the imposed set of 

initial conditions, the third mode as shown in Figure 4.5 and the first mode as shown in 

Figure 4.6 are the dominant modes. 

If a specific location is selected along the beam, in the vicinity of an anti-node, then the 

product of q>.(z)· p.(t) and If/ .(z) ·q .(t) determines the transverse motion of that location 
l l J J 

over the time period. The final transverse motion is the summation of these transverse 

motions in each mode. 
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Mode participation factor, q(t), in the "v" direction 
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Figure 4.7: The function q(t) for the second mode to the fifth mode 

In order to derive the eigenfrequencies of each mode in both directions the values of p(t) 

and q(t) are stored for the first five modes. If the FFT of each p(t) and q(t) is 

determined separately, the natural frequency will be revealed. The sampling rate was 

l 000, and 512 points were selected for FFT computations. The natural frequenc ies are 

compared for both directions in Figure 4.8. There is a small variation between resonance 

frequencies in the u and v directions as a result of the numerical solution. The maximum 

difference is 0.03 Hz. 
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Figure 4.8: The natural frequency in the u and v directions for the first five modes by the 

analytical model 

From a practical drilling standpoint, the rotational speed should be adjusted so that it does 

not correspond to one of the eigenfrequencies. Effect of torque and WOB on the natural 

frequencies in the u and v directions has been studied as well. The torque was varied from 

1-10 kN.m and the WOB from 30-150 kN. The sensitivity of natural frequency to changes 

in WOB (Figure 4.9) is higher than the sensitivity to changes in torque (Figure 4.10). 
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Figure 4.9: The effect of WOB on the natural frequency in the u direction 

For the change in WOB the maximum change in the natural frequency is around 17 rpm, 

whi le for the torque the maximum change is around 4 rpm. Due to the simi larity of the u 

and v frequencies, the sensitivity analysis in Figures 4.9 and 4.10 are just for the u 

direction. 
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Figure 4 .10: The effect of torque on the natural frequency in the u direction 

The fo llowing section applies the FEM method to the current problem and verifies the 

results derived by the expanded Galerkin method. Linear and nonlinear FEM has also 

been used to verify linear analytical results by Heisig et al. [9]. 

4.6 Application of the FEM Method to the Transverse Vibration of the Drillstring 

The ABAQUS FEM solver package (SIMULIA Inc., version 6.7. 1) was used, with Euler-

Bernoulli beam elements chosen to maintain the same conditions as the mathematical 

mode l. The material specifications, given in Table 4. 1, are the same as for the analytical 

mode l. The beam is modeled by a planar w ire shape with a pipe profi le to build the 

hollow drill collar pipe. Solution fo llows a three-step process with initial, general static 

and perturbation steps. The boundary conditions are applied at the initial step to constrain 

the model. The general static step is defined by the fixed time increments with the direct 
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full-Newtonian equation solver method to apply the static loads (body and hydrostatic 

forces). The resulting deformations of this step are propagated to the next step. In the last 

step (perturbation step) the "Lanczos" eigensolver was used to extract the 

eigenfrequencies. This method is in contrast to the "subspace iteration method" and falls 

into the class of transformation methods (transformation of the normalized eigenvectors 

through the displacement). It is widely used when the higher modes are of interest [30]. 

Simply supported boundary conditions are used in the lowest node and all the DOFs 

except two (rotation along the beam axis and the downward motion) are constrained. The 

"cubic element" is used, in which the shear flexibility is not considered, and this is in 

agreement with the Euler-Bernoulli beam theory assumption in the analytical model. 

Eighty elements were assumed, giving a total collar length of200 m, and using the 

convergence analysis [24), the results did not change significantly when more elements 

were added. 

As discussed in the introduction section, this fact that the collar section is more easily 

excited than the pipe section and vibrates in lower modes, while the pipes do not vibrate 

significantly, is verified by the FEM model as shown in Figures 4.11(a-f). Figures 4.11-a 

and 4.11-b are the second and the fifth modes of the drillstring, respectively, with the pipe 

section remaining steady. Figures 4.11-c, 4.11-d and 4.11-e are the modes 10, 25 and 50 

respectively, with the vibration propagating up to the pipe section and the amplitude 

becoming larger in the pipe section. Figure 4.11-fis the axial mode of the drillstring, 

which is a higher frequency mode, than the transverse vibration and the effective mass for 

the axial direction is a large value as associated with higher modes. The mode shapes 
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magnitudes derived by the FEM are not absolute values, and are intended only to 

represent the correct shape distribution. They are shown exaggerated for clarity. 

l 
Figure 4.11: The deformed shape of the drillstring in different modes 

The values of frequencies for the u and v directions extracted by the FEM are shown in 

Figure 4.12 and compared with the results derived by the expanded Galerkin method. 

These values are in agreement with the results of the last section with slightly lower 

values. This is due to selection of a comparison function in the last section that is not 

exactly the same as the real displacement function (eigenfunction). 
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and the expanded Galerkin method 

4.7 Determination of Appropriate Model Order 

Another interesting result of the last section is the effective mass of each mode in any 

di rection. The genera lized mass, ma, associated with the mode a is defined as: 

N NM M 
m" = Xa M Xa (4.13) 

where MNM is the structural matrix and X N is the eigen vector fo r mode a . " M ' and 
a 

"N'' are degrees of freedom of the FEM model. In the case of eigen vector normalization, 

m is defined as unity . After finding them , the modal mass participation facto r, r ., is a a ru 

defined as: 
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(4.14) 

The modal mass participation factor indicates the participation factor of a certain motion 

(global translation or rotation) in the eigenvector of the mode a in the i direction. I;M 

defines the magnitude of the rigid body response of the degree of freedom Min the model 

[31]. Effective masses are plotted in Figures 4.13 and 4.14. 
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Figure 4.13: Effective mass in the " u" direction 
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Figure 4.14: Effective mass in the "v" direction 

As can be seen, for the u direction, modes up to the fifth mode account almost entirely for 

the motion in this direction. This fact validates the truncation of modes after the fifth 

mode in the expanded Galerkin method. Another result is that the third mode is the 

dominant mode in the u direction with higher effective mass and the first mode is the 

dominant mode in the v direction, which is in agreement with the results of the analytical 

solutions. The same initial conditions were used in both methods. The effective mass in 

the axial direction happens at higher modes, compared to lateral modes, which is in 

agreement with beam theory, since the first natural frequency of the beam in the 

longitudinal direction is much higher than in the transverse direction. The modal mass 

participation factor in the v direction is very similar to the u direction. The difference is 

due to the different coupling terms in Equation 4.6. However the mass participation 
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factors after the fifth mode decreases drastically in both directions. The numerical value 

of the modal participation factor is much higher in the axial direction with respect to the 

lateral motion. The approach of this section, and the ability to truncate unnecessary 

modes, helps to avoid excessive numerical computational costs. 

4.8 Conclusions 

Coupled lateral vibration of a drillstring was studied in two orthogonal transverse 

directions, under the action of a steady torque and varying axial load. The axial force 

arises from the interaction of the mud hydrostatic force, the drill string self weight and 

hook weight. As a result, a linear force profile was assumed along the drillstring. The 

torque along the drillstring was resolved into tangential and normal components, with the 

tangential component acting as the bending moment for the lateral modes. The coupled 

equations were derived using the direct Newtonian approach. The expanded Galerkin 

method was used to solve the coupled equations and reveal the natural frequencies as well 

as the mode participation factors. Then, the nonlinear finite element method was applied 

to the problem with the same conditions to verify the results. The modal mass 

participation factor was derived for each direction and the effective number of modes for 

each direction was selected according to this criterion. Transverse coupled natural 

frequencies are more sensitive to changes in the WOB than torque. The rotary speed of 

the drillstring should be kept far enough from the natural frequencies to avoid excessive 

deflections and contact with the well bore, both of which can cause premature failure of 

bottom-hole assembly components. 
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4.11 Appendix 4.1: Nomenclature 

A Cross sectional area of the collar - - Torque components in the T,, Tn 
section tangent and normal planes of 

the beam element 
EI,, EIV Flexural rigidity of the beam in u(z,t) Displacement in 1st lateral 

the u and the v directions direction 

Fo Axial compressive force at the v(z, t) Displacement in 2nd lateral 
top point of the collar section direction 

g Gravity acceleration WOB Weight on bit 

rna Generalized mass associated N Eigen vector of the mode a 
with the mode a 

X a 

M,N Degrees of freedom of the FEM yM Magnitude of rigid body 
model 

I 

response of the degree of 
freedom Min the i direction 

pi(t) Mode participation factor for the rai Modal mass participation 
u direction factor 

qj (t) Mode participation factor for v 
direction 

p BHA density 

S, ,Sv Shear force in the u and the v ¢i(z) Comparison function in the u 
directions direction 

T Torque vector in the z direction 1p)z ) Comparison function in the v 
direction 

4.12 Appendix 4.2: Analytical Equations 

The element in the uz plane is shown in Figure 4.1 and in the vz plane in Figure 4.2. The 

equilibrium equations in the "uz" plane are: 

(4.15) 

Neglecting the 2nd and higher order terms of dz will result in: 

oM v = S 
oz u 

(4.16) 
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The force equilibrium in the "uz" plane is: 

S as" d S (F aF,uial d) . ((} aed) F . ((}) .A a
2
u(z, t) -O (4.17) 

II + - Z- II + axial + -- Z • Slfi + - Z - axial • Slfi + pft 2 -
az az az at 

Assuming small angle B, and discarding 2nd or higher order terms of dz , the above 

equation reduces to: 

as// d F a Bd aFtL<ial LJ-1) .A a
2
u(z, t) - 0 

- Z + axial - Z + -- uuz + pn 2 -
az az az at 

(4.18) 

2 
Using the result of Equation 4.2 in Equation 4.4, considering that M = E.I a u(;,t): 

v v az 

-~ (aM" )= ~ (F . . 3u(z, t)) 
az az az a.rtal az 

(4.19) 

~(~(E.I ifu(z, t)) +~(F .· . 3u(z,t )) =- >A3
2
u(z, t) 

az az " 8z2 az a.ual az p at 2 

Assuming constant E.I for the drill string in the collar section and a linearly varying 
v 

axial load F : 
axial 

E. / 3
4
u(z, t) + ~ (F . . 3u(z , t)) + A 3

1
u(z, t) = O 

" d 4 a tmal " p " 2 z z oz ot 

(4.20) 

The equation of motion in the v direction is obtained in the similar way to the u direction 

(Figure 4.2). Therefore: 

E.! 3
4
v(z, t) + ~(F . . av(z, t)) + A o2

v(z, t) = O 
II dz4 QZ aual 0Z p 3/1 

Ten coupled ordinary coupled time differential equations in the u and v directions: 

Jr
4 20 136 .. 16;r 2 128;r2 ;r2 

3 Efp1(t ) - - pAgp2(t) - - pAgp4(t )+ 0.5pAip 1(t)+ -
2 

Tq2(t )+--
1 

Tq4(t) - - F0 p1(t) 
21 9 225 3/ 15/ 2/ 

Jr 2 

+- pAgp1(t) = 0 
4 

(4.21) 
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.. 156 600 4 8JT2 384JT 2 9JT2 8 1JT 4 

0.5pLAq1 (t) - - pgAq2 (t) - - pgAq4(t) + - 2- Tp2(t)- - 2- Tp4 (t )+-pgAq3(t ) + -
3
- Efq1 (t ) 

. 25 49 51 71 4 21 . 

(4.22) 

.. 136 2 I 000JT2 2 16JT 2 1640 128JT 4 
, 

0.5pLAp4 (t) - - pgAp1(t) + 4JT pgAp4(t)+ --
2

- Tq5 (l)---
2
- Tq1(t ) - - pgAp5 (t ) + -

3
- Elp4 (t, 

225 91 71 · 8 1 I 

8JT 2 600 8JT 2 

- -
2 

Tq1(t) - - pgAp1(t) - - F0 p4(t) = 0 
151 49 · I 

580 1640 25;r2 80;r 2 
•. 625;r 4 640JT 2 

-
44 1 

pgAp, (t )-T! pgAp, (t ) - 2f F0 p, (t ) -
2 11

, Tq2 (1) + 0 .5pLAp, (t)+~Eip, (r)- ----c)/' Tq,(t) 

25;r 2 

+ -
4

- pgAp, (t) = O 

580 1640 80;r 2 25;r2 640;r 2 
•• 625;r4 

-
44 1 

pgAq, (t ) - T!pgAq, (t) + 
2 11

, Tp, (t)+-4-pgAq5 (t ) +----c)/' Tp, (t) + 0.5pLAq5(t)+~Efq5 (1 ) 

25;r' 
- --Fq-(1) = 0 

2/ 0 ' 
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4.13 Appendix 4.3: Axial Force in the Collar Section 

The effects of the hook load, WOB, mud hydrostatic force and self weight are presented 

as a spatially varying axial force along the drillstring. The buoyant force in the drillstring 

should not be treated with the Archimedes' rule and the effective tension point of view 

should be implemented for more precise results [27]. Therefore, at the last point of the 

collar section, there are two axial upward forces, namely the WOB and the hydrostatic 

force at the lower cross section. The varying axial force in the collar section is: 

F = p A g z - WOB- F collar collar collar hydrostatic (4.23) 

Substituting for the hydrostatic force at the bottom of the collar section, the collar force 

will be: 

F = p A gz -WOB-(p gl)A collar collar collar mud collar (4.24) 

According to dimensions and material properties given in Table 4.1, the varying axial 

force along the collar section is: 

F = - 30· 103
- 2543.49·z collar 

(4.25) 

The value of the axial force at the top point of the collar section (neutral point) is -30 kN, 

as shown in Table 4.1 and Figure 4.15. 
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5.1 Abstract 

Applying a source of axial vibration near the bit has the potential to enhance the 

effic iency of drilling. Drilling tools are under development to apply axial v ibrations to 

oilwell drill strings for the purpose of overcoming drillstring-wellbore fr iction, fac il itating 

cutting removal and improving the rate of penetration (ROP) ofthe bit. However, 

introducing controlled vibrations into the drillstring excites many unwanted vibration 

modes of the drillstring that can result in inefficient drilling, damage to drillstring, bit, 

BHA components, MWD tools and mud motors. This study is motivated by the need to 
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understand the complex dynamic behavior of drillstrings, in order to implement control 

strategies and reduce the potentially destructive effects of unwanted drillstring vibration 

when using axial vibration generator tools. The coupled axial-transverse mode is assumed 

as the most detrimental state of drill string vibration. In this paper, the coupled nonlinear 

axial-transverse dynamics of the entire drillstring are modeled and lateral instabilities are 

qualitatively studied. The drillstring includes the pipes and a multi-span bottom-hole 

assembly (BHA) subjected to a controlled force generator tool down-the- hole. The multi­

span BHA model enables multi-mode contact analysis of the drillstring and wellbore. The 

governing equations are obtained using the " Bypassing PDEs" method with the expanded 

Galerkin's method, which enables finding the symbolic solution of the governing 

equations. A multi-mode approx imation is used to achieve more precise results than are 

possible from a single-mode treatment, for determining the resonance rotary speeds. The 

effects of mud damping, driving torque, multi-span contact and spatially varying axial 

load are included, along with nonlinearities due to geometry, axial stiffening, strain 

energy and Hertz ian contact forces. Simulations are used to reveal resonant frequencies 

and to conduct a qualitative contact analysis showing the severity of the contact in each 

span of the BHA. Fast running time and symbolic solution are the major advantages of 

the developed analytical model. 

Keywords: Drillstring model; Vibration-assisted drilling; Coupled nonlinear axial­

transverse vibration; Multi-span BHA; Bypassing PDEs; Expanded Galerkin's method; 

Wellbore contact; Multi-mode analysis 
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5.2 Introduction 

Drilling is one of the most costly and risky activities in oil and gas exploration and field 

development. The oil and gas industry is actively researching technologies to improve 

drilling technology and efficiency. Several recent classes of drilling tools apply axial 

vibration to the drillstring for the purpose of reducing drillstring-wellbore friction [I], 

enhancing penetration mechanism [2,3] and facilitating cutting removal. Vibration 

drilling may transmit power to the bit more efficiently than rotary drilling. Vibration tools 

improve drilling performance by various means, and collectively for the purpose of this 

investigation their use is called " vibration assisted rotary drilling" (V ARD). 

Implementation of vibration in rotary drilling raises questions about the effects of the 

imposed vibration on drill rigs and in particular on the drillstring. T he drillstring is one of 

the major components of any drill rig and many important drilling parameters are 

controlled through the drillstring. 

Contrary to the improving effect on the rate of penetration (ROP) and efficiency, the 

implementation of a vibration force (V ARD force) above the bit excites the drillstring 

axially, and as a result of the coupling effect, the lateral mode will also be excited. The 

excited v ibration wave propagates along the drillstring. The propagation of unwanted 

vibration to the drill string and drill rig is a potential disadvantage of V ARD. Therefore, 

the vibration behavior ofthe drillstring under the effect of axial force generators such as 

jars, agitators, and higher-frequency tools for ROP enhancement in rotary drilling is of 

s ignificant interest. Several parameters such as weight on bit (WOB), rotary speed, 

natural frequencies, and quality of the hole are related to the behavior of the drillstring. 
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The drillstring is a long rotary slender structure which transmits rotary torque from the 

rotary table at the surface to the bit. It is mainly composed of a thin light upper section 

(the pipe section) and a heavy larger lower section (collar section) which is attached to 

the bit. The drillstring is confined in the wellbore, which is filled with the drilling mud, 

used for bit cooling and flushing out the cuttings. The mud is also assumed to be a 

damping medium for the drillstring lateral vibrations. Stabilizers are located along the 

collar section to prevent bending and buckling of the collars and to control directional 

drilling trajectories and drillstring vibration. The radial clearance between the stabilizers 

and the wellbore could be up to 100 mm. The assembly ofthe collar section, bit and 

stabilizers is called the bottom-hole assembly (BHA). The drillstring is under interaction 

of the hydrostatic load, the hoisting load ofthe top cables and the self weight, which 

result in an internal spatially-varying axial load. As a result, the pipes are under tension 

and the collars are under compression. A part of the force at the bit is called the weight on 

bit (WOB), which provides the cutting force and is an important controllable parameter to 

improve rate of penetration and drilling efficiency. The rotary speed is typically around 

50-200 rpm. 

Drillstring vibration is assumed as the primary cause of drillstring components' premature 

failure, deterioration of the well trajectory, successive bit and stabilizer wear, lower 

penetration rate, deteriorating accuracy of the measurement while drilling (MWD) 

systems and decreased efficiency. Also, unwanted vibrations of the drillstring dissipate a 

part of the provided energy, which is supposed to be delivered to the bit. Working 

guidelines and control strategies are required for V ARD drilling to increase the efficiency 
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and avoid energy dissipation by unwanted drillstring vibration. T he only way to design 

and implement isolation methods (passive or active) to suppress the vibration of the 

drillstring is to investigate the vibration patterns, either in the frequency domain or the 

time domain. This study is motivated by the need to develop an enhanced dynamic model 

which could be implemented to reveal the modal characteristics (frequency domain) and 

modal dynamic time response of the entire drillstring. To conduct sensitivity studies, the 

model is required to be solved symbolically to achieve a symbolic set of resulting PDEs. 

Several methodologies including static modeling, elastodynamic modeling, dynamic 

numerical modeling (e.g. finite element, finite difference models and dynamic stiffness 

method) and laboratory scale test rigs have been implemented by others to investigate this 

phenomenon. 

The following section reviews re levant literature about importance of various vibration 

modes and phys ica l phenomena associated with the drillstring; modeling ofwellbore 

contact, and methods for equation derivation and solution. Section 3 derives governing 

equations, including e igenfrequencies and e igenfunctions of a multi-span beam which are 

implemented using a Lagrangian approach. Section 4 provides numerical simulation 

results, and Section 5 gives conclusions and future research directions. 

5.3 Literature Review 

Drillstring vibration is not simply independent axial, torsional and lateral vibration. A 

typical drillstring vibrates in 3 major coupled modes: lateral-axial, lateral-torsional and 

axia l-torsional. Bit bouncing, stick-slip and whirling are extreme examples of coupled 
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vibration dominated by axial, torsional and lateral motions respectively. Among these 

coupled modes, the coupled transverse mode is the major cause of drillstring failures 

[4,5,6,7] and wellbore washout which happens at low frequencies. The deteriorating 

effect of the orthogonal lateral modes could be explained through the wave speed 

phenomenon. Bending waves are not propagated to the surface via the drillstring as are 

torsional and longitudinal waves, due to the difference in the wave speed for different 

types of modes. The propagation speed for axial and torsional motions is quite high 

compared to the lateral motion [ 4]. Therefore, there could be severe bending vibrations 

deep in the ho le, which the surface measuring tools do not detect. BHA-wellbore contact 

is the main excitation source for lateral vibration. fn the case of V ARD drilling, axial 

vibration plays an important role since the high frequency V ARD force directly excites 

the axial modes and lateral instabilities may exist due to axial excitation [8]. Therefore, in 

order to precisely model the V ARD drillstring, two orthogona l coupled transverse modes 

along with the axial mode will be considered in this study. A symbolic mathematical 

model will capture the coupled axial-transverse vibrations of the drillstring, including a 

multi-span BHA and the pipe section, subjected to imposed V ARD force and wellbore 

contact. A multi-span contact analysis of the BHA is done to provide more realistic 

results for the natural frequencies. Mud damping, driving torque, and spatia lly varying 

axial load have been included. The driving torque is an important parameter for the 

drillstring v ibration, related to the top rotary speed. Therefore, natural frequencies in 

these directions are related to the driving torque [5,9, I 0, II , 12]. Also, since in th is study, 

two orthogona l lateral modes are included in the model, the torque couples these two 
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modes and must be kept in the equations, although it adds complexity to the equations. 

Since the rotation speed of the drillstring is small enough (50-150 rpm in practice), the 

gyroscopic effect may be negligible [ 13, 14,5, 15, II]. Current literature reports no studies 

of the effect of the imposed vibration of the YARD force generator on the nonlinear 

coupled axial-transverse vibration of the drillstring, either in the frequency or the time 

domain. The model described herein has the important benefits of providing accurate 

natural frequencies, generating time domain response, and capturing wellbore contact 

with greater fidelity than simpler single-span BHA models. 

Determining natural frequencies is important because, from an operational standpoint, 

vibration severity can be reduced if working guidelines keep rotation speed away from 

these frequencies [ 16, 17]. In the last decades, several studies have been conducted to 

investigate the lateral natural frequencies of the drillstring or BHA. For example, based 

on a simple beam vibration model, Dareing [ 16, 18] suggested basic equations in terms of 

the drillstring length to control unwanted vibrations of a non-rotating drillstring, using a 

standard neutral point calculation. Hakimi eta/. [14] applied the differential quadrature 

method to investigate the single plane lateral-axial natural frequencies ofthe single span 

BHA. The method was preferred to FEM for its simplicity and ease of application. 

Gulyayev eta/. [19] studied the effect of length of the BHA on its stability, assuming two 

orthogonal lateral modes and mud internal flow, while neglecting the contact, axial mode 

and damping effect. Reported lateral natural frequencies based on buckling analysis for 

different BHA lengths [9], were much lower than values measured in the field [20]. A 

working guide line which is far away from the resonance state was suggested. Chen eta/. 
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[ 13] used the transfer matrix method to derive the lateral natural frequencies of a single 

span BHA, proposing an effective drillstring density due to the added fluid mass effect 

and neglecting contact. A sensitivity analysis of lateral natural frequencies with respect to 

mud, rotary speed and WOB was accomplished. Increasing the mud damping and WOB 

decreased the lateral natural frequencies and the length of the BHA had a great effect on 

the load carrying capacity of the BHA. Neither axial coupling, nor the axial force was 

assumed in their model. The gyroscopic effect of rotation was also neglected. Khulief et 

al. [21] developed an FEM model ofthe drillstring to investigate the coupled axial­

transverse vibration of a rotating drillstring. They found lateral natural frequencies and 

their corresponding sens itivity to the rotary speed. It was concluded that the resonance 

frequencies were not highly sensitive to rotary speeds. The effect of damping and wall 

contact were not considered in their single span BHA model. The effect of fluid damping, 

added fluid mass, stabilizer clearance and the friction coefficient on the critical rotary 

frequencies was investigated by Jansen [22]. It was verified that unstable lateral motion 

will not converge to a circular trajectory. The effect of torque, gravity and axial-lateral 

coupling were neglected in his model and the implementation of these terms was 

suggested for future studies. 

In the present paper, the axial and orthogonal lateral resonance frequencies of a 

drillstring, assuming a multi-span BHA, will be calculated. The first four modes will be 

retained for the two orthogonal lateral directions and one axial direction (12 generalized 

coordinate systems in Lagrangian equation). After implementing the solution method, the 

FFT analysis will be applied on each generalized coordinate system to extract the first 
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four natural frequencies in each direction. Considering a multi-span BHA will give results 

that are more accurate than those from a single span BHA model. 

In addition to natural frequencies, the axial or lateral time responses of the drillstring or 

BHA are desirable. FEM and modal analysis are two major methods used to study the 

time response of the drillstring. Yigit eta!. [II] investigated the axial-transverse behavior 

of the non-rotating BHA and verified nonlinear axial-lateral coupling due to nonlinear 

strain. Mud damping, rotation and the other orthogonal lateral modes were not considered 

in their model. They implemented a force mode in their one-mode approximation 

assumed mode method to accelerate the convergence rate. Since the axial load in the 

BHA was assumed constant in their study, one static axial deformation mode was added 

to the assumed mode approximation. Spanos eta!. [23] addressed the effect of contact 

and added fluid mass generating the deformed shape of the BHA in the lateral modes, 

based on natural mode analysis. Based on the transfer function of the BHA lateral 

vibration in the single orthogonal plane, frequency and mud density-dependent damping 

was proposed. Torque, axial force and axial displacement were not included. Li eta!. [24] 

established a mathematical model, based on a simple beam, for axial vibration of the 

drillstring in air and gas drilling for both bit force and bit displacement excitations and 

verified that these two excitations do not agree with each other. Comparing the results 

with the field data verified that the bit-displacement excitation is the appropriate 

excitation method. Khulief eta!. [2 1] implemented the Lagrangian approach with the 

finite element method to study late ral instabilities. Modal transformations were applied to 

obtain the reduced order form. The developed model was integrated into a computational 



scheme to extract time response analysis of the drillstring. The gyroscopic effect, 

torsional-bending coupling and gravitational field were considered in the deve loped 

mode l. Drillstring-wellbore contact was not considered in the model. 
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The model developed in this study, enables the axial and orthogonal lateral-lateral mult i­

mode time response analysis of any desired point on the entire drill string, including 

multiple contact po ints on the multi-span BHA in presence of the V ARD tool. 

Due to the higher stiffness, higher mass, and lower natural frequencies of the BHA 

compared to the pipe section, the vibration behavior of the drill string is strong ly 

influenced by BHA vibration, especially vibration resulting from contact with the 

wellbore. Modeling the impact is a crucial task to precisely evaluate the lateral dynamic 

response. Modeling the contact behavior of the drillstring has been approached in 

different ways by various researchers. Hakimi eta/. [1 4] modelled drillstring-wellbore 

contact as a series of springs between the drillstring and the wellbore with a constant 

stiffness. Khulief et al. [20] implemented a continuous force-displacement law at the 

contact point in their multi-body FEM model for axial-bending and torsional-bending. 

Jansen [22] modeled the contact point of a rotating drillstring as a two DOF lumped 

e lement model in two orthogonal transverse planes. Coulomb friction and nonl inear mud 

drag force was assumed at the contact po int. Liao et al. [I 0] developed a reduced order 

FEM mode l at the contact point ofthe drillstring and wellbore. Based on a qualitative 

analys is, an optimum friction coefficient value for the stable drillstring behavior at the 

contact point was suggested. The effect of mud damping on the latera l motion at the 
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contact point was neglected and the model was only capable of predicting lateral motion 

at the contact point. Christoforou et al. [25] modeled the lateral behavior of the drillstring 

at the contact point for parametric resonance studies. Hamilton's principle was 

implemented to derive the equations assuming mud damping and constant axial force 

along the drillstring for the axial-transverse coupling. A single-mode assumed mode 

approximation was used just for the BHA with a Hertz ian contact force at the contact 

point. Impact was assumed at mid-span of a single-span BHA, and a multi-span BHA 

analysis was recommended to achieve more accurate results. 

In the present study, the Hertzian contact theory is implemented at the contact points of 

multiple spans. The Dirac delta function of the radial deflection is applied to ensure that 

at the contact time (when the radial deflection exceeds the borehole clearance), the impact 

force will be applied to the multiple contact points. Successive contact or single impacts 

can be accurately predicted. The effect of friction at the contact point is not considered in 

this study [8,20, 7,11]. When the radial deflection does not exceed the borehole clearance, 

the Dirac delta function will be calculated automatically in the analytical code and no 

impulsive force will be applied in no-contact instants. 

The choice of equation implementation and solution method determines the extent to 

which symbolic variables can be used, and the ease with which nonlinearity can be 

included. Contact with the wellbore, mud damping, coupled transverse modes via torque, 

nonlinear strain energy and axial stiffening are the major nonlinear contributions to 

drillstring vibrations assumed in this study. Lagrange's equation for the continuous 
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drillstring is developed and solved using the "Bypassing PDEs" method. This method, 

which has been proven accurate for nonlinear problems [26], is based on combining the 

expanded Galerkin's technique with the Lagrange's equation for continuous structures, 

instead of the conventional Hamiltonian approach. The fast convergence rate without the 

use of a number of force modes to accelerate the convergence, as compared to other 

numerical models [I I], enables sensitivity analysis for each controllable parameter in the 

model with the selected solution scheme. Another advantage of the " Bypassing PDEs" is 

the use of conventional energy terms, rather than the variational form of the energy 

equations, which further simplifies numerical solution of the developed model at the final 

step. Outcomes ofthe model and analysis method ofthis paper include: multi-mode 

analysis of the equations (up to the fourth mode), coupled lateral equations in two 

orthogonal planes along with the axial motion, symbolic model solution, and inclusion of 

all interacting forces on the drillstring. The developed model can be numerically solved to 

predict modal characteristics and evaluate dynamic response analysis of the entire 

drillstring, including multiple contact points on the BHA. 

5.4 Derivation of Governing Equations 

The drillstring is a beamlike structure with a high slenderness ratio. In this study, the 

structure is under the effect of gravity, mud hydrostatic force, contact with the well bore, 

mud damping and the V ARD force. The Euler-Bernoulli beam theory is used to mode l 

coupled lateral-axial vibration of the drillstring, which is considered as a beam with a 

high aspect ratio [27]. The drillstring in this study includes a three span BHA (with a 

different length for each span) with a long pipe section. The driving torque is applied on 
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the rotary table and the YARD force generator is appl ied on the BHA. The drillstring is 

inside a wellbore filled with mud. Two orthogonal lateral directions, u and v with the 

axial motion ware assumed. A schematic diagram of the drillstring is shown in Figure 

5.1. 

Drill prpe 

Multi span I 
BHA l 

Drilling mud 

Stabilizer 

VARD tool 
force generator 

Figure 5. 1: Schematic of the multi span drill string under the effect of the YARD tool 

The effects of the hook load, WOB, mud hydrostatic force and self weight are presented 

as a spatially varying ax ial force along the drillstring. The buoyant force in the drillstring 

should not be treated with the Archimedes's ru le and the effective tension point of view 

should be implemented for more precise results [28,29]. Therefore, at the last point of the 

co llar section, there are two ax ial upward forces, namely the WOB and the hydrostatic 

force at the lower cross section. At the neutral po int (intersection of the pipes and col lars) 

the ax ial compression in the collars change to tension in the pipe section. The varying 

ax ial force in the co llar section is: 
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Fcol/ar = P co//ar Acol/argz - WOB- P mudg /Acol/ar (5.1) 

The total length of the drillstring is lin the above equation and the reference point is 

assumed at the bottom of the collar section. The force in the pipe section could be 

expressed as: 

(5.2) 

This force is depicted in Figure 5.2 for a drillstring with 800 m pipe section and a 60 m 

collar section. 

rm 

.nJ 

Axial force along the drillstring 

Figure 5.2: Spatia lly varying axial force a long an 860 m drillstring 

The Bypassing PDEs method is implemented in this study to derive equations. This 

method is based on using the Lagrange's equation with the expanded Galerkin's method, 

instead of the conventional Hamilton's approach for continuous systems. This method has 

shown accurate results for nonlinear problems [26]. The expanded Galerkin's method will 

be used in the fi rst step of the energy equations. Therefore, the variational form of the 
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energy equations is not required in this method. In the next section, the energy terms for 

the drillstring are derived, to be used in combination with this method. 

5.4.1 Energy Equations for the BHA and the Pipe Sections 

Since the method of Bypassing PDEs is implemented, the conventional energy terms are 

derived rather than the variational form. The kinetic energy for the first span is: 

(5 .3) 

where u and v are two orthogonal lateral motions and w is the axial motion. The strain 

energy due to axial and lateral deformations is: 

I, 

?.1/ei~V =;I dz (5.4) 
0 

The first term represents the elastic stiffening, while the second term captures axial 

stiffening due to the grav itational field ( EA( aw) represents the gravitational force) and az 

shows the coupling between the axial and flexural deformations. The nonlinear axial 

stiffening term accounts for the stiffening effect of the tension field over the pipe section 

and softening effect of the compression fie lds on the collar section. The quadratic 

nonlinear term retained in the equation is due to geometric nonlinearity. The work done 

by the driving torque can be expressed as [30]: 

(5.5) 
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The torque appears as the third order derivative of u in the v direction and vise versa. 

Therefore, this term causes coupling between two orthogonal transverse directions via 

torque. The work done by the V ARD force is: 

1 
1

' • [( a )
2 

( a )
2

) WVARD- force = -z [ FvARD Sin (cut ) az u ( z,t) + az v( z,t) dz 

(5.6) 

w is the excitation frequency of the YARD force generator, which is an important 

controllable parameter to achieve higher ROPs. The V ARD force is assumed sinusoidal. 

Any span on the collar section is under a spatially varying axial force as stated in 

Equation 5.1. The energy term due to the compressive axial force can be expressed as: 

1 
1

' [( a )
2 

( a )
2

) Waxial- force =-z-[Fcollar az u(z,t) + az v(z,t ) dz 

(5.7) 

The mud damping force as a result of the hydrostatic drag force is in the opposite 

direction of motion and is a quadratic velocity related force [22]. The dissipated energy of 

this force is: 

(5.8) 

The contact energy in the first span is approximated based on the Hertzian contact theory 

using a piecewise function [II]. In the following equation, b el is the borehole clearance 

and K , is the contact stiffness which is related to the material and geometry at the contact 

point. r is the radial displacement which is related to two orthogonal lateral deflections: 

[

K ( b ) 312 
contactenergy = - " r~ el bel :o; lrl J r 

otherwise 

(5.9) 
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The other two spans of the BHA are under the same effects. Thus the energy terms are the 

same, except a change in the integration limits, namely /1 -/2 for the mid span and /2 -/3 

for the top span. The contact locations are different in each span. The equations for the 

other two spans are not shown here due to space limitations. 

The first few lateral vibration modes in the lower frequencies will not be excited in the 

pipe section [14]. Therefore, the pipe is assumed to undergo axial vibrations. The kinetic 

and potential energy terms of the pipe section are: 

(5.10) 

The energy of the YARD force and the tensional axial load in the pipe section are: 

(5.1 1) 

The Lagrangian of the three-span BHA and the pipe section are as below: 

Lagrangia"spanl = ~[PAcol/ar((~ ~~( z , t)r +(~ v (z,t)r + (~ w(z, t)n ctz 

-~ t[ ,,, ..... [ l !: "1' ,) r ·( !: ·I ,,)ll "'""··l ~ ·(<.·)· H ~ .. (,,)r. H ~ .(, ·ln l" 
(5. 12) 

-~ '[ [(( !', "1 '··>]( ~+.·l H !: ·(< ·>]( ~ .. ~, ·l l]" ]· ~ ['"'"··+ .. {( ~ .. (,.·) l' ·r ;;.(, ·>l} 
+~ [ (PAco11a,.gz- woa- PmudgiAcallar { ( fz u(z,t)r +( £ v(z,t)n ctz 
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1 

1

J' (( a J
2 

( a J2 ( a J2 J Lagrangianspan2 =2 pAcollar l a;- n(z,t} + a;-v( z,t } + a;-w(z,t} dz 
I, 

-~![ "rn"•·[( ;,: •I••IJ' ·( ~: •l••lll <>,.,,.,[ ~·I·•I·H~·V•IJ' ·M~ ·I••IJ'] ]" (5.13) 

- ~ T[f( ( ~22 n(z, t}J(! v(z,t}J+( ~22 v(z ,t}J( ~u(z, t}J J dzl +~f FVARosin({V/{ (! u(z,t}r +( ~v( z, t} n dz 

11 11 

1 J
1

' ((a )
2 

(a )
2 

(a )
2
] Lagrangianspan3 =2 pAcollarl a;- u(z,t) + a;- v(z, t} + a;- w( z, t) dz 

I, 

-~ [[ ""'""'[ ( :, •I••IJ' •( ~: •I• •1]} "••"••[ ~ •1•.•1•~( ~" 1•<1 r ·~( ~·I••IJ'l ]w (5.14) 

-~ •[[[[ ~: "1'·'1 ]( ~ •I• +[ !: •I' •I]( ~"(' •I) ]w }~['"''" ,;•(M{( ~·I• •) )' •( ~·I· •I l} 

(5.15) 

At this step of the Bypassing PDEs method, the expanded Galerkin's method is applied to 

the equations. So, u, v and ware assumed as comparison functions multiplied by mode 

participation factors. Since the comparison functions for each span are different, the 

Lagrangian should be assumed for each span separately and after substituting the 

comparison functions, they will be added together as the total Lagrangian ofthe system. 

Thus, u, v and w could be expressed separately for each span. Therefore, for the first span: 
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4 

w(z,t) = ij,. (z)· Pr (t) 
r = l 

(5 .16) 4 

u(z, t) = LV?,. (z)·ll,(t) 
r=l 

4 

v(z,t)= L<p,. (z) ·Ar (t) 
r = l 

The subscript r depends on the desired mode shapes according to the frequency range of 

interest. For this problem the first four modes will be retained to conduct the multi-mode 

analysis. The expanded Galerkin's method for the second span is: 

4 

w(z, t) = ij,. (z)· p ,. (t) 
r=l 

(5 .17) 4 

u(z,t) = L lflr (z)·ll, (t) 
r = l 

4 

v(z,t)= L lfl,.(z)·Ar(t) 
r = l 

For the last span of the BHA it is: 

4 

w(z, t) = lj,. (z)· Pr (t) 
r = l 

(5 .18) 4 

u(z, t) = L t9,. (z)·TJ, (t) 
r = l 

4 

v(z, t) = 2),. (z)· Ar (t) 
r=l 

In the above expressions x , rp, 'lf and B are comparison functions for axia l and 

orthogonal lateral motions of the first, second and last span of the BHA, respectively. 

p ,. (t), ry,. (t) and .A,.(t) are mode participation factors for axial motion (w), and lateral 

motions (u) and (v), respectively. T he boundary condition for the axia l motion of the 

drillstring is assumed as fi xed at the top and free at the bottom, and the spans are assumed 
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as pinned-pinned boundary conditions (location ofthe stabilizers) in the lateral direction. 

Jogi eta!. [31] verified the natural frequency analysis of several modeling packages with 

field results. They proved that the simplification of boundary conditions in mathematical 

models agrees well with the field results for almost all modes, especially for pinned-

pinned boundary conditions in the lateral mode. The comparison function for the axial 

motion, considering the above mentioned boundary condition, is expressed as: 

( ) . ((2r-l)7Tz ) 
X z = Sin 

r 21 
(5.19) 

where I is the length of the drillstring. Since, the BHA is assumed as a three span beam, 

the comparison function of each span is required. The exact mode shapes of a three span 

beam will be derived in the following section and they will be implemented in the 

Lagrangian equation as the corresponding comparison functions. 

5.4.2 Eigenfunctions and Eigenfrequencies of a Three Span Beam with Different 

Lengths 

As it was discussed in the previous section, the mode shapes of a simply supported three 

span beam are required to proceed with the Bypassing PDEs method. A schematic of a 3 

span beam is shown in Figure 5.3. 

A (p (X) 9(z) l 

X y z 
... ... 

.AI ' ...... t 
Figure 5.3: Schematic of a 3 span BHA 
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Separate coordinate systems are assumed for each span and the normal mode for each 

span could be written as: 

¢(x) =a cos(f3x) + bsin(f3x) + ccosh(fJx) + d sinh(f3x) 

!f/(y) = ecos(f3y) + f sin(f3y) + g cosh(fJy) + h sinh(f3y) 

B(z) = i cos(f3z) + j sin(fJz) + k cosh(f3z) +I sinh(fJz) 

(5.20) 

There are 12 unknowns in the equations. Six boundary conditions are zero deflections at 

the supports, while 2 boundary conditions are zero bending moments at both ends. The 

remaining four boundary conditions are slope and bending compatibility equations at the 

two middle supports. For the nontrivial solution of the system of equations, the 

determinant of the coefficient matrix is set to zero. The result is the frequency equation: 

1 [ sinh(IOp ) J 2 . . {-2sin(I Op )cos(IOp )sinh(IOp) . ( ) - 3cos (1 0p ) sinh(I OP ) 
Sill( I Op)SIIlh (l Op) Sill I Op 

2 [ sinh(IOp )] +sin(IO.O) cosh(IO.O) . ( ) + 2sin(I O.O) cosh(I O.O ) sinh(I O.O ) 
Si ll lOP 

[
sinh (I Op )] 

+sin(I OP )sinh(I OP ) . ( cosh(IOP) +sin(IOp )cos (IOp) sinh(I Op) 
s111 1 op ) 

(5.21) 

2[cos(IOP) - cosh(I OP ) J 2 [ cos(IOP) - cosh(I OP) J 
+sin(IOP) sinh(I OP) . ( -sin(I OP ) sinh(I Op) . ( ) }=0 

Sill l OP ) S111 l OP 

The equation was solved numerically using the Newton-Raphson algorithm. The first 

four values for f3 are 7.171 , 12.57, 13.77 and 16.64. The values of f3 will be substituted 

in 12 equations (these 12 equations are the results of applying 12 boundary conditions to 

Equation 5.20) to find the first four mode shapes of each span, and the origin ofthe 

second and the last span will be transferred to the very left point of the first span. The 

first four mode shapes of the first span are: 



<j>
1 

= sin(O. II9516z)- 0.3340965884sinh(O.II9516z) 

<1>
2 

= sin(0.2095 z) + 0.00007849517412 sinh(0.2095 z) 

4>
3 

= sin(0.226 16z) + 0.01671568731 sinh(0.22616z) 

<1>
4 

= sin(0.274z) + 0.02704677997sinh(0.274z) 

The first four mode shapes of the second span can be expressed as: 

'l', = -2.461446386sin(0.119516z- 0.11951611) 

+ 1.927004330sinh(0.119516z - 0.119516/i) 

+ 0.9754692378 cos(0.11 95 16z- 0.11 95 16/J) 

- 0.9754692378 cosh(0.11 95 16z - 0. 11 9516/J) 

'l'
2 

= -1.093320970 sin( 0.2095 z - 0.2095 11) 

- 0.001075050855 sinh(0.2095 z- 0.2095/1) 

- 0.0009073462857 cos(0.2095 z - 0.2095!1) 

+ 0.0009073462857 cosh(0.2095 z- 0.2095/1) 

\jf
3 

= -0.778694370 1 sin(0.226 16z - 0.226 16 /1) 

- 0.2780537428 sinh(0.22616z- 0.22616/I) 

-0.2482829965 cos(0.22616i - 0.22616 /1) 

+ 0.2482829965 cosh(0.22616 z - 0.22616/1) 

'Jf
4 

= 0.2184545015 sin( 0.274z - 0.274/i) 

- 0.8338446736 sinh(0.274.:- 0.274 /I) 

- 0.8239843412 cos(0.274 z - 0.274/1) 

+ 0.8239843412 cosh(0.274z - 0.274/1) 

The eigenfunctions of the last span are: 

8
1 

= - 6.090745568sin( - 0. 11 95 16z+ 0.1195 16 l} 

- 0.14514621 87sinh( - 0. 11 9516 z + 0.1195 16 /) 

e2 = - 1.04666071 0 sin( - 0.2095 z + 0.20951) 

+ 0.00000708 1079825 sinh( - 0.2095 z + 0.20951) 
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(5.22) 

(5.23) 

(5.24) 
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e3 = -0.9019326856sin( -0.22616z + 0.22616/) 

+ 0.0009810187433sinh( -0.22616z + 0.22616/) 

e4 = -0.3072276254 sin( -0.274 z + 0.274/) 

+ 0.0001544631224sinh( -0.274z + 0.274/) 

The above mode shapes are shown in Figure 5.4 for a three span BHA with 15, 15 and 30 

m lengths for the first to the third spans, respectively. 

~0~--------~--------~---------J~O--------~--------~--------~M 

BHA length 

Figure 5.4: The first four mode shapes of a three span beam 

5.5 Lagrangian and Equations of Motion 

Substituting the corresponding mode shapes in the Lagrangian of each span and adding 

the corresponding terms, the total Lagrangian of the system is derived. The Lagrange's 

equation is implemented for each mode participation factor. Substituting the comparison 

functions and integrating the resulting equations over the drillstring length domain, using 

the mode orthogonality relations, will give twelve second order coupled nonlinear time 



differential equations. One of the major advantages of the current model is that the 

equations are kept symbolical, up to this step. This symbolic approach allows a high 

speed sensitivity analysis for each controllable parameter, especially the V ARD force 

amplitude and frequency, which are of great interest for V ARD drilling studies. The 

mathematical model and the above procedure have been implemented in Maple®. 

5.6 Numerical Results 
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This system was numerically solved using a Fehlberg fourth-fifth order Runge-Kutta 

method with degree four interpolant, which is an adaptive numeric procedure for solving 

the initial value problems combining fourth-order and fifth-order Runge-Kutta 

techniques. The main advantage ofthis method is the dynamic step reduction strategy 

compared to the fixed-step fourth-order Runge-Kutta method. In order to avoid 

discontinuities in the time response, the initial time step was set to I o-9 s which is well 

below the smallest natural period in the system. The characteristics and numerical values 

used this study are shown in Table 5.1. 

The FFT of each specific generalized coordinate system was derived, which reveals the 

first four natural frequencies for the two orthogonal lateral planes and the axial direction. 

The results are shown in Table 5.2. 

Since lateral constraints (stabilizers) are assumed for the BHA, the flexural frequencies 

are higher than in other studies that don't assume multi-mode contact at the BHA [20]. 

There is a small variation between resonance frequencies in the u and v directions as a 

result of the numerical solution. The maximum difference is 0 .05 Hz, which is a 
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negligible difference in rotary drilling (around 3 rpm). From a practical drilling 

standpoint, the rotational speed should be adjusted so that it does not correspond to one of 

the eigenfrequencies. The time history of any desired point is achieved using the 

numerical solutions of the generalized coordinate systems (l2 mode participation factors 

in this study) and the expanded Galerkin's equations. The lateral behavior at the contact 

points is of significant interest to the experts in the field . Phase plane qualitative analysis 

is performed to determine the severity of contact at the contact points, and to avoid 

well bore washouts and joint failures . 

Table 5.1 : Parameters used in the simulations 

T = 4000 Driv ing torque (N.m) 14=800 Length ofthe pipe 
section (m) 

Pmud= 1500, Mud density (Kg/mJ) FvARo=20000 YARD force 
amplitude (N) 

c[) = 1 Hydrodynamic drag C0VARo=600 YARD tool 
coefficient frequency (rad/s) 

K11 = 6.78· 1011 Hertzian stiffness (N.m·1
) ) A collar = 0.02639 Collar cross 

sectional area (m2) 
WOE= 100000 Weight on bit (N) E = 210·109 Young's modulus 

(Pa) 
A . = 0.0047 1 Pipe cross sectional area bel= 0.1 Borehole c learance p 1pe 

(m2) (m) 
//= 15 Length ofthe BHA first FH = 320000 Hook load (N) 

span (m) 
/2=15 Length ofthe BHA second p = 7860 Pipe and collar 

span (m) 
st 

density (kg/ m3
) 

13=30 Length ofthe BHA last span 
(m) 

Axial deflection of the drillstring is an especia lly important response due to 

implementation of the YARD force generator in the axia l direction. Axial deflection at a 

point on the pipe, very c lose to the hook point (where the draw-works cable is attached to 

the pipe), is shown in Figure 5.5. The initial fluctuations are due to the imposed initial 



conditions to the BHA. The deformation settles to a stable region with a peak-to-peak 

value of 5mm. 

Table 5.2: The first four natural frequenc ies for coupled axial-transverse modes 

Direction First mode Second mode 
(Hz) (Hz) 

Lateral 1.34 1.95 
"u" 

Lateral 1.37 1.92 
"v" 

Axial 7.65 22.25 
"w" 

Third mode 
(Hz) 
2.35 

2.30 

38.59 

1 - - I 

I I 

Fourth mode 
(Hz) 
3.15 

3.1 0 

60.30 

I 

I 
I 
I 
1-

~ .. I 1
11 lliiM: • .• . : : . : • . . 

1 = I ~ rl ·l . l~j\ti111~~NNM!~W/IlW~~w~lfl{iWt1M'MWhV.~~.w/,~~V#~Wtl~ 
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Figure 5.5: Axial deflection near the hook point 

The axia l deflections of the midpoint of the first and second spans are shown in Figures 

5.6 and 5.7. 
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Figure 5.6: Axial deflection, midpoint on span 1 ofthe BHA 
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Figure 5.7: Axial deflection, midpoint on span 2 ofthe BHA 
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The axial deflection of a point on the last span, close to the bit, is shown in Figure 5 .8. 

The mean deflection magnitude is below zero, as a result of the interaction of all axial 

forces and the assumed reference coordinate system, and converges to a 0.0 I m peak-to-

peak region after entering the stability region. 
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Figure 5.8: Axial deflection, a point c lose to the bit on span 3 of the BHA 

The corresponding axial velocity of that point is depicted in Figure 5.9. The phase portrait 

of this point is shown in Figure 5.1 0, which demonstrates stable behavior in the axial 

mode. The amplitude and frequency of the YARD tool, as well as spatially varying axial 

force affect this behav ior. 
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Figure 5. 10: Phase plane, a point close to the bit on span 3 of the BHA 
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The lateral vibration behavior of any point on the BHA is well explained by the radial 

deflection plots. The borehole-drillstring clearance is defined in the Hertzian contact 

equation and radial displacement cannot exceed the borehole clearance. At the time of 

hitting, the Hertzian force impacts the contact point on the drillstring. The procedure to 

derive the radial deflection is explained for a point without contact on the top span in the 

fol lowing discussion. Figure 5.11 a and 5.11 c present the lateral deflections of the point in 

two orthogonal planes. Figures 5 .I I b and 5 .II d show the corresponding lateral velocities . 
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Figure 5.11 : Lateral deflection and velocities, a no-contact point on the top span of the 

BHA 

Figures 5.12a and 5.12c demonstrate the phase planes of this point in the u and v 

directions. These figures verify a stable behavior at the center of the wellbore. Figure 

5.12c shows the trajectory of that point. As it is c lear from this figure, the point spends a 
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considerable amount of time near the well bore center. Figure 5 .12d shows the 

corresponding rad ial deflection ofthat point. The maximum radial deflection is around 

0.05 m, which is in between the wellbore wall and the center of the wellbore. 
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Figure 5.12: Lateral phase planes, trajectory and radial deflection, a no-contact point on 

the top span of the BHA 

Figure 5.13 shows the rad ial deflection at the contact point on the top span. At this point, 

the drillstring hits the wellbore irregularly with a bouncing contact behavior. 
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A phase portrait ofthe contact point is shown in Figure 5.14, which verifies highly 

irregular behavior at this location. 
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Radial deflection 

Figure 5.14: Phase portrait of the contact point on the first span of the BHA 

The radial deflection of the contact point at the middle of the second span is shown in 

Figure 5.15. The contact is not as severe as for the top span. After hitting the wellbore for 

a period of time, the drillstring spends a period near the center, and then hits the wellbore 

again. 
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Figure 5.15: Radial deflection of the contact point, second span ofthe BHA 

The phase plane in Figure 5.16 demonstrates that at this location, the drillstring is not 

traveling strictly near the wellbore. 
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The contact behavior at the span closest to the bit is depicted in Figures 5.17 and 5.18. 

The radial deflection shows less contact compared to previous spans. It seems that the 
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damping behavior of the mud is affecting the contact at this point; however, the length of 

the span is half that of the top span. The radial phase plane also shows a less irregular 

behavior compared to the other two spans. 
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Figure 5.17: Radial deflection of the contact point, last span of the BHA 
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This model is capable of predicting dynamic behavior at any point on the dri llstring, 

either on the pipe section or BHA. Additionally, the symbolical code enables sensitivity 

analysis of the controllable parameters. The YARD tool is always tuned for different 

geotechnical formations, which is a requirement to investigate the behavior of the 

drillstring in the wellbore before drilling new formations. The symbolical Maple code 

allows running the equations with the new set of YARD tool parameters, as well as: span 

length, pipe length, mud properties, pipe and collar section and material properties. 

5. 7 Conclusions 

The vibration behavior of the drillstring under the effect of the axial force generators such 

as V ARD tools, j ars, and agitators in rotary drilling is of significant interest in the fie ld of 

drilling. Predicting the dynamic behavior is an essential step in designing suppression 

tools and guidelines. The coupled nonlinear axial-transverse behavior and lateral 

instabilities of the drillstring under an applied axial force were studied in this paper. The 

Bypassing PDEs method, along with the Lagrange's equation, was implemented to derive 

the nonlinear equations. As well, the expanded Galerkin's method, with the first four 

reta ined modes for each span, enables a multi-po int contact analysis. Mud damping, 

spatia lly varying axial force, multi-span contact and torque are assumed in the non linear 

model and the nonl inear coupling terms due to the contact, axial stiffening and torque 

were retained. The equations were solved symbolically. The multi-span analysis ofthe 

BHA provided more realistic results for the resonant rotary speeds. The rotary speed of 

the drillstring should be kept far enough from the natural frequencies to avoid excessive 

deflections and contact with the wellbore, both of which can cause premature failure of 
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bottom-hole assembly components. Phase plane analysis of the contact points 

demonstrated a highly irregular contact at the top span of the BHA, whi le the contact at 

the span closest to the bit was not as severe. The symbolical model of this paper can be 

used to conduct a sensitivity analysis of control lable parameters for tuning the V ARD 

force generator, determining working guidelines and designing suppression methods, 

either for the axial or transverse directions. 
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6.1 Abstract 

Introducing sources of axial vibration into an oilwell drillstring has the potential to 

improve the drilling efficiency. Vibration generator tools, such as drillstring agitators, are 

under development or in current use to excite the bottom-hole assembly (BHA) axially in 

order to increase power and weight at the bit, improve the rate of penetration (ROP), 

reduce drillstring-wellbore friction, and accelerate the cutting removal process. Enhanced 

drilling under the effect of intentional imposed vibration is called "vibration-assisted 

rotary drilling" or YARD. While potentia lly enhancing the drilling process, YARD tools 
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can also excite many unwanted vibration modes of the drillstring. These unwanted 

vibrations can cause fatigue damage and failure of BHA components such as 

" measurement while drilling" (MWD) tools, bit and mud motors, and consequently, 

inefficient drilling. This motivates a study of the complex dynamic behavior of an axially 

excited drill string. Transverse vibration is the most destructive type of drill string 

vibration, and the coupling between transverse and axial vibration of a drillstring 

subjected to an applied V ARD force is of great interest to the experts in the field. In this 

study, the coupled axial-transverse vibration behavior of the entire drillstring under the 

effect of a V ARD tool is investigated. A dynamic finite element method (FEM) model of 

the vertical drillstring assuming a multi-span BHA is generated and validated with a 

coupled nonlinear axial-transverse elastodynamic mathematical model. The effects of 

mud damping, driving torque, multi-span contact and spatially varying axial load are 

included. Geometry, axial stiffening and Hertzian contact forces are sources of 

nonlinearity in the model. A mesh sensitivity analysis is conducted to reduce 

computational time. The accuracy of the retained modes in the analytical equations is 

verified by extracting the total effective mass derived by the FEM model. There is 

agreement between the FEM and analytical models for coupled-transverse and axial 

vibration velocities, displacements, resonance frequencies and contact locations and 

behavior. While the analytical model has fast running time and symbolic solution, the 

FEM mode l enables easy reconfiguration of the drillstring for different boundary 

conditions, inclusion of additional e lements such as shock subs, and changing the number 

and locations of stabilizers. 



Key words: Drillstring; Vibration-ass isted rotary drilling; Coupled axial-transverse 

vibration; Finite e lement method, Model order reduction; Mesh analysis; Wellbore 

contact 

6.2 Introduction 
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Drilling is one of the most costly and risky activities for both exploration and 

development of oil fields. Enhanced drilling techniques are rapidly grow ing for faster and 

more efficient drilling. Several classes of recent drilling tools apply axial vibration 

intentionally to the drillstring. "Vibration-assisted rotary drilling", or V ARD, can be 

defined as the intentional introduction of controlled vibration into the drillstring to 

increase drilling performance. Tools such as "ag itators" are currently used to overcome 

fri ction and ass ist with advancing the drillstring [I], especially in horizontal or deviated 

we lls. This imposed vibration significantly reduces drillstring-wellbore fri ction [I] and 

speeds up the cuttings flushing process. Improved weight transfer, increased power at the 

bit and consequently higher rate of penetration (ROP) compared to conventional rotary 

drilling [2] are other potential advantages of vibration-assisted rotary drilling. However, 

V ARD forces can increase the risk of hole deviation, well bore washout, and premature 

failure of the bottom-hole assembly (BHA) and its components, inc luding measurement­

while-drilling (MWD) tools, since the drillstring can undergo undesirable v ibrations 

excited by the YARD tool. In addit ion to the above negative consequences, a great 

portion ofthe energy that was supposed to be delivered at the bit can be lost if YARD 

parameters are not compatible w ith the overall drillstring and formation properties. 

Therefore, mode ling of the vibration behavior of the total drillstring in the presence of 
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imposed dynamic forces is an essential step in generating drilling guidelines and 

designing control strategies to optimize vibration-assisted rota ry drilling. Several 

parameters such as weight on bit (WOB), rotary speed, natural frequencies, and qual ity of 

the ho le are related to the behavior of the drillstring. 

The drill string includes a long, thin-walled interval called the pipe section, and a heavier, 

thick-walled bottom section called the collar section. The bit is attached to the end point 

of the collar section. The collar section is centralized inside the wellbore, with stabilizers 

located at many points over the BHA. The stabilizers increase the buckling load-carrying 

capacity of the collar section and are used to control well trajectories for directional 

drilling. BHA vibrations play a dominant role in the transverse vibration behavior of the 

drillstring and can give rise to multiple locations for contacts with the borehole wall. The 

annulus between the BHA and the wellbore is filled with drilling mud, which cools the bit 

and flushes the cuttings out of the hole. Moreover, the mud helps to overcome formation 

pressure and transmit hydraulic power to the bit. The role of mud on the stability of 

drillstring dynamics, especially in the latera l direction, is a lso important. The drillstring is 

under the effect of several axial forces: WOB, mud hydrostatic load, drillstring self 

weight and the YARD force. Under normal drilling cond ition, it is desirable to have the 

pipe section under tension, and the collar section under axia l compression. 

The beam-like drill string structure can be subjected to three major modes of vibration: 

axia l, lateral and torsional. Moreover, the drillstring can undergo coupled states of 

vibration, i.e., axial- lateral, axial-torsional and torsional-lateral vibrations. Stick-sl ip, 
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whirling and bit bounce are extreme states of the aforementioned vibration modes. Wh ile 

transverse vibration is typically the most severe form of vibration in conventional drill ing, 

axial vibration becomes very important in YARD drilling. The axial frequencies and 

behavior of the drillstring are major concerns when configuring a YARD tool. Transverse 

vibrations ofthe drillstring cause wellbore washout, premature failure of the components 

and loss of energy [3,4]. BHA-wellbore contact is the main excitation source for the 

lateral vibration, while the YARD force excites the ax ia l mode. These two coupled modes 

are present simultaneously and are both potentially harmful if not contro lled. 

The first step in configuring a YARD tool to be compatible w ith a drillstring is to model 

the dynamic behavior of the drillstring and analyze the sens itivity of its behavior to 

commonly-adjusted drilling parameters. The fo llowing section is a review of dynamic 

FEM vibration models of drillstrings. The dynamic FEM model is then developed and 

subjected to mesh analysis and model reduction. The results show excellent agreement 

with the analytical mode l, which is summarized in Appendices 6.1-6.4 and a lso described 

in a recent publication [5]. Finally, conclusions a re made and future research directions 

are suggested . 

6.3 Literature Review 

Drillstring mode ling to predict and understand v ibrations can be approached in a number 

of ways. Severa l methodo logies inc luding static modeling, elastodynamic mode ling, 

dynamic numerical modeling (e.g. fin ite e lement, finite d ifference mode ls and dynamic 

sti ffness method) and laboratory scale test rigs have been used to investigate this 
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phenomenon. Dykstra et al., [6] investigated the effect of dynamic modeling on 

improving the drilling performance through comparing some deve loped dynamic models 

and case studies. They discussed fixed and rolling cutter polycrystalline diamond compact 

(PDC) bit dynamic models and their capabilities in dynamic load and satiability 

predictions, and these models were validated through comparing them with several case 

studies in the UK, North Sea and onshore US . Drillstring dynamic simulations were 

verified by comparing their results with downhole measurements and using these 

dynamic models provided insight into drilling system performance. 

Static models were developed in the 1950's to investigate the BHA forces under static 

conditions. These models were mainly implemented to investigate the buckling limit of 

the BHA (using Euler column theory), to determine interacting static contact forces, to 

design mud type, bit and BHA; and to develop top rotary drive systems. Stability studies 

of the drillstring and prediction of the deformed shape of the drillstring were also 

conducted through these models [7]. These models were not capable of extracting natural 

frequencies, transient and steady state behavior of the drillstring and the dynamic contact 

behavior. Static models gave way to dynamic modeling, especially elastodynamic models 

and numerical models, such as dynamic finite element models. 

Basic dynamic models (non-rotating beam-like models) were first developed in the 

1960' s by Bai ley et al. [8]. In the beginning, simplified beam elastodynam ic models were 

used to predict natural frequencies, after which models were enhanced to study the 

transient response [9] or steady state response [I 0]. These models cou ld be categorized in 
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three major categories: axial models [II], transverse models [ 12] and torsional models 

[ 13]. Later on, coupling effects were investigated: axial-transverse [9, 14 ], axial-torsional 

[ 15] and torsional-transverse modes [ 16]. Recently, enhanced models have included 

contact behavior between the drillstring and well bore [ 17], the parametric resonance 

phenomenon [16], buckling analysis ofthe BHA [14] and bit-rock interaction effects on 

the drillstring vibration behavior [ 18, 19]. The motivation for these studies was to 

investigate vibration suppression methods and working guidelines, i.e., the combination 

of proper weight on bit (WOB), torque on bit (TOB), rotary speed, mud characteristics 

and pump working parameters. 

The difficulties and limitations of analytical models to model complex boundary 

conditions and forces, and the need to reconfigure such models for new interactions, 

coupled with the development of fast processing computers, have attracted investigators 

to the use of recognized powerful numerical methods, such as finite element method 

(FEM) and the finite difference method (FDM). One of the early attempts at FEM 

analysis of the drillstring was conducted by Millheim eta/. [20], where the drillstring was 

modeled as a straight beam with beam and gap elements using an FEM package called 

MARC-CDC. The nodal displacement was derived using the variational principle to study 

drillstring deflection and bit forces. Straight and curved beam elements were compared in 

their model and the results were verified by field data. Transient response of the rotating 

BHA, assuming bit-rock interaction force, was modeled by Baird eta/. using the FEM 

technique [21]. A postal [22] studied the forced frequency response of the non-rotating 

BHA with a 30 finite element model. Three types of damping were assumed in their 
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model. Burgess eta!. [23] modeled the lateral vibration of the drillstring by FEM. They 

only modeled the length of the drillstring which was not lying along the wellbore. A static 

nonlinear analysis was performed previously to find out this length. Uncoupled 

transverse-torsional behavior of the drillstring was modeled by Axisa eta!. with FEM 

[24]. The drillstring was mode led as a straight rod and a sensitivity analysis for the fl uid 

elastic effect was conducted. The nonlinear gravitational axial stiffening effect was not 

considered in their model. Parametric instability of the rotating drillstring was studied by 

Berlioz eta!. [ 12), where the FEM equations were derived for a 6 DOF shaft element 

using rotor dynamics equations. The axial stiffening was neglected in their model. The 

results were verified by test rig data. Spanos eta!. [25] modeled the BHA assuming the 

added fluid mass with a frequency dependent mass matrix. The excitation forces were 

mode led as monochromatic functions of time and nonlinear contact force at the stabilizers 

location were assumed. The frequency response model was suggested as a powerful too l 

to understand the complex behavior of the BHA. In another work by Spanos eta!. [3] a 

transfer function representation for the BHA based on modal superposition was derived. 

Lateral v ibrations ofthe drill string were studied, while the lateral displacement of the drill 

bit was defined as an equivalent linear system and predicted subsequently by Monte Carlo 

simulation. Model uncertainties of the bit-rock nonlinear interaction were studied by Ritto 

eta!. [26], using a non-parametric probabilistic approach. They found that the 

uncertainties in the bit-rock interaction model play an important role in the coupling 

between the axia l and torsional responses. Khulief eta!. [27] used Lagrange' s equation to 

derive an FEM model of a rotating drill string. Shaft e lements w ith 12 DOF were used in 
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their model, capturing torsional-bending inertia coupling and gyroscopic effects, while 

the contact with the wellbore was not considered. The reduced order model, derived with 

the modal transformation, was compared with the full order model. Time response 

analysis of the BHA and transverse natural frequencies were produced. Other numerical 

techniques, such as differential quadrature method (DQM), finite difference method 

(FDM), dynamic stiffness method and transfer matrix technique were also used to study 

the vibration behavior of the drillstring. 

Treatment of the contact behavior of the drillstring and wellbore is an ongoing challenge 

for the drillstring modeling community. lfthe working conditions stay c lose to the 

resonance state, lateral vibrations are amplified and impact with the wellbore results. 

Catastrophic collisions of the BHA with the wellbore lead to wear of the drillstring, 

reduction in ROP and reduction of"mean time between failures" (MTBF). MWD tools 

can also be catastrophically damaged by the successive side contacts. Hsu [28] was the 

first to model contact behavior using Hertzian contact theory in study ing the lateral 

behavior of the drillstring. Jansen [1 0] used a lumped representation at the contact point 

of the drillstring and wellbore, assuming a mud damping force exerted in two orthogona l 

directions. The effects of fluid damping and stabilizer clearance on the resonance lateral 

frequencies were studied. Stability at the contact point was also studied using the concept 

of phase planes. Christoforou et al. [ 17] used the classical Hertz ian contact law with the 

Dirac delta function to model the contact behavior of the drillstring and wellbore with a 

constant axial force along the drillstring. The assumed mode method with a sing le mode 

was used and the contact was modeled at the middle of a sing le-span BHA. Further 
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investigation using multi-span multi-mode assumptions was suggested. Yigit eta/. [ 16] 

modeled the contact behavior in coupled torsional-bending motion, using the momentum 

balance method. Their impulse friction model included a compression phase and 

restitution phase, with assumed friction and restitution coefficients. The model was 

capable of analyzing both rolling and slip-rolling behavior. The nonlinear coupling 

significantly affected response and at some resonance rotary speeds, where there was 

significant energy transfer between two modes. Mitchell eta/. [29] presented case studies 

of BHA vibration failure and suggested a sophisticated 3D model capturing successive 

contact behavior. 

Contact behavior presents challenges specific to finite element modeling. Melakhessou et 

a!. [30] modeled only the contact point of the drillstring. Four independent degrees of 

freedom were assumed in their drillstring model (unbalanced rotor within two bearings). 

Contact was modeled by the Coulomb friction law and a qualitative sensitivity analysis 

for the friction coefficient was conducted. Their model was capable of considering both 

rolling and sliding motions. The location of the contact was also found in their model. 

The initial position of the string in the well was reported to be an important parameter in 

its future behavior. Khulief eta/. [31] implemented the continuous force-displacement 

law to model impulsive contact force in their FEM model. The material stiffness and 

damping coefficients were determined at the contact zone according to the energy balance 

relation. This type of contact modeling was suggested to prevent jump discontinuities in 

numerical solution of discontinuous models. Impact was provoked by increasing the 

WOB, and time histories at the contact point were qualitatively studied. The FEM model 
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derived by Khulief eta/. was verified and tuned by a laboratory scale test rig [32]. The rig 

was able to excite the drillstring both for the stick-slip and lateral contact. The WOB was 

implemented by a shaker and the axial, lateral and torsional natural frequencies for 

different damping media inside the wellbore were compared. The transient response was 

not compared between the FEM and the rig data. 

Approaches to deal with the impulsive motion of elastodynamic systems with contact, in 

a finite element environment such as ABAQUS, fall into two categories. The first 

approach is based on the smooth impulsive force distribution during the impact interval. 

In this approach the impact force is presented by the force-displacement law, where the 

material stiffness is estimated or assumed using approximate energy relationships (e.g. 

[31 ]). In other words, in this method the contact location could be modeled by an 

interface spring (the same as the penalty algorithm in ABAQUS). The other approach 

which is numerically more efficient [33] is based on an impulse-momentum balance 

equation, since the impulsive forces cause an abrupt change in system velocities or 

momentum. The kinematic contact algorithm in ABAQUS strictly enforces contact 

constraints to conserve momentum of all bodies in the system and follows the second 

algorithm [34,35]. 

In this study, since the ABAQUS Explicit FEM package is used, there are two options for 

setting up the contact condition between the drillstring and the wellbore, as stated above. 

The kinematic friction algorithm is preferred to the penalty algorithm, since the residual 

overclosure in the latter one deteriorates the results as this is a Hertzian type contact 



problem with small deformations. The other reason for selecting the kinematic friction 

algorithm is its lower sensitivity to reduced time steps and mesh size compared to the 

penalty algorithm. The reader is referred to section 4 for a complete discussion and 

comparison of these two algorithms. 
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To summarize, this paper addresses the need for a numerical model to investigate the 

effect of the imposed vibration of a V ARD force generator on the nonlinear coupled 

axial-transverse dynamics of a vertical drillstring, in the frequency or the time domains. 

The model includes nonlinear coupling terms due to strain energy, driving torque, multi 

span contact, and two orthogonal planes in which lateral motion occurs. A finite element 

model is developed and compared to a symbolical mathematical model [5] capturing the 

first four modes (the sufficiency of retaining the first four modes is verified by the FEM 

model). Multiple BHA spans provide more realistic results for the natural frequencies. 

Gyroscopic effect due to the rotation is not assumed in this study, since the rotary speed 

of drillstring is not very high (50-150 rpm). While the analytical mode l offers fast 

convergence rate for sensitivity analysis, the finite element model is easier to reconfigure 

for new boundary conditions, force or displacement excitations and BHA geometry, and 

allows extraction of nodal force, displacement, stress and reactions at any desired points 

as outputs without extra computations. Having two distinct verified models enables 

implementation for any set of drillstring parameters, along with sensitivity and design 

studies once a configuration has been selected. 
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6.4 Review of the Analytical Drillstring Model- Deriving the Governing Equations 

This section provides a summary of analytical model results; however, more details can 

be found in Appendix 6.1-6.4 and also in [5]. The Euler-Bernoulli beam theory is used to 

analytically model coupled lateral-axial vibration of the drillstring, which is considered as 

a beam with a high aspect ratio [36]. A schematic diagram of the drillstring is shown in 

Figure 6.1. The developed analytical model includes a three span BHA (with a different 

length for each span) (Figure 6.2) with a long pipe section. The driving torque is applied 

on the rotary table and the V ARD force generator is applied on the BHA. The drillstring 

is inside a wellbore filled with mud. Two orthogonal lateral directions, u and v with the 

axial motion ware assumed. 

Drill pipe 

Multi span 
BHA 

Drilling mud 

VARD tool 

Figure 6.1: Schematic of the multi span drillstring under the effect of the YARD tool 
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The effects of the hook load (a resultant axial force under static equilibrium), WOB, mud 

hydrostatic force and self weight are presented as spatially varying axial forces along the 

drillstring. The buoyant force in the drillstring should not be treated with Archimedes's 

rule and the effective tension point of view should be implemented for more precise 

results [37]. Therefore, at the last point of the collar, there are WOB and the hydrostatic 

force. The varying axial force in the collar and pipe sections are (l is the total length of 

the drillstring): 

Fcollar = Pcollar· A collar· g. Z- WOB- Pmud· g.l. A collar 

Fpipe = - W 0 B - Pmud · g · l. A collar + Pmud · g · lp (A collar - A pipe) + 

+Pcollar· A collarg.lc + Ppipe· Apipe· g. (z- lc) 

(6.1) 

It should be noted that the effect of mud hydrostatic pressure acting over the projected 

area of the pipe-collar junction has been assumed in the second equation, since the static 

equilibrium has been assumed for the entire drillstring. Figure 6.3 shows the spatially 

varying axial force along the drillstring. The change in the axial force at the pipe-collar 

junction is due to the hydrostatic pressure acting at that location. 

<P lx) v C;? S{z) 

X y z 

Figure 6.2: schematic of a 3 span BHA 



189 

100 

I '-
-> ' 

Axial force distribution along the drillstring (N) 

Figure 6.3: Spatially varying axial force along the drillstring 

The " Bypassing PDEs" method was implemented to derive elastodynamic equations. This 

method is based on Lagrange's equation with the expanded Galerkin's method, instead of 

the conventional Hamilton's approach for continuous systems. The expanded Galerkin's 

method was applied in the first step of the energy equations. Since the method of 

Bypassing PDEs was implemented, the conventional energy terms were derived instead 

of the variational form. The reader is referred to [38] for more details on the Bypassing 

PDEs method. Although the pipe lateral vibration modes are excited, the lateral response 

is not significant, since it will not contact the well bore [ 16]. Therefore, the pipe is 

assumed to undergo axial vibrations only. The assumed energy terms for the collar 

section are due to the beam kinetic (Equation 6.7) and strain energy for axial and two 

orthogonal lateral directions (Equation 6.8) (nonlinear elastic stiffening and axial 

stiffening are both assumed to capture axial-lateral coupling), the work done by the 

driving torque (Equation 6.9) which causes lateral coupling in two orthogonal directions, 
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the implemented V ARD force (Equation 6.1 0), and spatially varying compressive force 

(Equation 6.11 ). Dissipation energy of the mud damping in both orthogonal lateral 

directions (Equation 6.12) and the contact energy terms at multiple contact points 

(Equation 6.13) in each span of the BHA are also assumed. The energy terms of the pipe 

section are: kinetic and potential energy of the pipe (Equation 6.1 4), the energy of the 

imposed V ARD force and the work done by the spatially varying tensile force on the pipe 

section (Equation 6.15). The energy terms will be added together to generate the 

Lagrangian of the system. The Lagrangian is an integral equation with different limits for 

each span and the pipe section (Equations 6.16-6.19). 

At the next step of the Bypassing PDEs method, the expanded Galerkin's method is 

applied to the equations (Equation 6.20). The responses u, v and ware assumed as 

comparison functions multiplied by mode participation factors. The first four modes were 

retained to conduct the multi-mode analysis. A modal sensitivity analysis will be 

conducted by the FEM model to verify this assumption, as described in sections 4-1 and 

5-1 of this paper. The boundary condition for the axial motion of the drillstring was 

assumed as fixed at the top and free at the bottom, and the spans were assumed as pinned­

pinned boundary conditions (location ofthe stabilizers) in the lateral direction. The 

comparison function in the axial direction was assumed as a sine function, which depends 

on the length of the drillstring (Equation 6.21 ). 

Since the BHA was assumed as a three span beam, the comparison function of each span 

was required to apply the expanded Galerkin method of the BHA. The exact mode shapes 
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of a three span beam were derived symbolically, are plotted in Appendix 6.4 (Figure 

6.19) and were implemented in the Lagrangian equation as the corresponding comparison 

functions. 

Substituting the comparison functions and integrating the resulting equations over the 

drillstring length domain, and considering the mode orthogonality relations, the total 

Lagrangian ofthe system in terms of mode participation factors was derived. Then, 

Lagrange's equation was implemented for each mode participation factor. The result is a 

set of twelve second-order coupled nonlinear time differential equations in terms of 

second-order derivatives of mode participation factors. The mathematical model and the 

above procedure were coded and solved in Maple®. This system was numerically solved 

using a Fehlberg fourth-fifth order Runge-Kutta method with degree four interpolant. The 

numerical results for each generalized coordinate were stored and substituted back in the 

assumed expanded Galerkin function for each direction to generate deflection and 

velocity time history of any desired point, including the contact locations. The FFT of 

each specific generalized coordinate system was also derived, which revealed the first 

four natural frequencies for the two orthogonal lateral planes and the axial direction. 

6.5 Dynamic Finite Element Model of the Drillstring 

The ABAQUS FEM Explicit solver package was used to develop the dynamic FEM 

model. The FEM model is capable of modal characteristic extraction as we ll as dynamic 

analysis. The modal characteristics are derived using e igenvalue extraction with the linear 
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perturbation procedure. The dynamic analysis module is capable of extracting the 

transient response of the drillstring for any set of initial conditions or forcing functions. 

The drillstring is assumed as a beam with two cross sections (collars and pipes). A planar 

wire shape sketch with hollow pipe profiles is used to model the entire drillstring. The 

"Hermite cubic" beam element is used, which does not account for the shear flexibility, 

although axial strain is considered. This is the proper element for modeling slender Euler­

Bernoulli beams, in order to be consistent with the derived analytical model. The beam 

assumption of the drillstring is valid, since the cross section dimensions are less than 115 

of the drillstring length [35]. In the beam element equations, it is considered that plane 

sections perpendicular to the axis of the beam remain planar during the deformations. 

Therefore, the orientation of the beam cross section must be determined in the global 

Cartesian system prior to the analysis. A three dimensional extruded shell is assumed for 

the wellbore. The drillstring and the well bore are modeled as a single assembly in the 

global coordinate system. 

There are two possible contact algorithms in the Explicit solver package: the kinematic 

friction and the penalty contact algorithms. The kinematic algorithm uses a predictor­

corrector algorithm in each time increment. The contact condition in the kinematic state 

of the model is ignored in the predictor phase of the algorithm, which results in an 

overclosure. In the corrector phase, a corrective acceleration is applied to both slave and 

master nodes to resolve this overclosure, while the momentum conservation is satisfied. 

Therefore, the contact overclosure is eliminated at the end of each increment. In the 
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penalty algorithm, the corrective phase is not carried out and an interface spring is 

assumed between slave and master nodes to account for overclosure. Thus, a small 

penetration always exists, since the spring force is valid for a residual penetration and the 

contact constraints are not fulfilled exactly at the end of each step. 

One of the advantages of the kinematic algorithm is that a constant time increment has no 

effect on the ongoing solution, while the penalty algorithm requires reducing time steps 

during contact. In the penalty method, the default penalty stiffness is calculated to 

minimize the residual penetration and this fact reduces the stable time increment by 4% 

[35]. The penalty method depends significantly on the mesh size as well, and reducing the 

mesh size results in deteriorating quality of results. Slow convergence is another 

drawback of the penalty method. 

In large deformation problems, the penalty contact algorithm provides the same results as 

the other method, while in small deformation-displacement problems driven by Hertzian 

contact theory, this residual overclosure has a significant effect on the results. In such 

cases the kinematic algorithm is preferred. Therefore, the kinematic contact algorithm is 

implemented in this study, since Hertzian contact theory was used in the analytical model. 

Sliding friction is not included, as it has not significantly impacted the results in other 

studies [14,31,32] and if included will seriously degrade computation time. 

The contact surfaces in the Explicit solver package can be defined with two methods: the 

general kinematic contact and the contact pair algorithms. In the general contact 

algorithm, the contact is defined between all regions of the model. Therefore, the overall 
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drillstring and the inner surface of the wellbore are capable of having contact and the 

contact location can be anywhere on the BHA. This capability ofthe FEM model will be 

used to verify the assumption of the contact point locations assumed in the analytical 

model. The surfaces in the kinematic contact comprise the contact domain that can span 

any disconnected region in the model. In the contact pair algorithm, the contact surfaces 

are required to be defined prior to the analysis, which does not account for contact 

between all surfaces of the model. The general kinematic contact algorithm is used in this 

study to model the contact between the drillstring and wellbore to account for all possible 

contact points. 

The drillstring-mud interaction effects on the drillstring dynamic analysis are important. 

The effect of inside-outside drill string mud flow was investigated by Paidoussis et at. 

[39]. They found that the effect of internal and external mud flow is sensitive to the 

annular space between the drillstring and well bore. Zhang eta/., [40] studied the effects 

of mud flow on the load carrying capacity of the drillstring. A two dimensional model for 

a pinned-pinned vertical pipe without wellbore contact was developed. They found the 

critical flow rate for pipe buckling and investigated a relationship for the length of the 

pipe section and flow rate in the drillpipe buckling analysis. Effect of fluid density on the 

pipe buckling was a lso studied. However, the role of damping on the stability analysis 

and multiple lateral contacts was not investigated in their study. Ritto et at., [ 41] analyzed 

the influence of mud flow on the natural frequencies and dynamic behavior of the 

drillstring. They investigated that the axial and torsional behaviors are not sensitive to the 

mud flow. They found lateral natural frequencies changed by a maximum of0.53 rpm 
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when the fluid flow is considered. When the fluid flow was considered in the dynamic 

equations, the lateral dynamic response was a bit larger initially. However, steady-state 

response was unchanged. The effect of fluid flow has not been considered in this study; 

however, the damping effect of mud in the lateral direction was included. 

The viscous damping behavior is considered as Rayle igh damping (a quadratic expression 

for the energy dissipation rate), which is proportional to the mass and stiffness of each 

mode. In the absence of a major source of dissipation, such as inelastic material or 

dashpots, Ray leigh damping is appropriate with the Explicit dynamic package (e.g., pipes 

with contact) [ 15]. It provides a convenient abstraction for damping low-frequency range 

behavior (mass dependent) and higher-frequency range behavior (stiffness dependent). 

The Rayleigh damping depends on two damping factors, namely cxr as the mass 

proportiona l damping and f3r as the stiffness proportional damping [35]: 

(6.2) 

During the analysis this value is averaged over the substructure to determine specific 

values of o<r and f3r· The average is normalized with mass and volume for the first and 

second factor, respectively. This assumption has been shown to deliver accurate results, 

especially near natura l frequencies [22]. For mode i, the crit ical damping ratio is defined 

in terms of the Rayleigh damping factors as [22]: 

(6.3) 

where wi is the natural frequency of mode i . T he mass proportional damping factor 

introduces damping forces that a re caused by absolute velocities at each node. This 
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phenomenon could model a structure moving through a viscous fluid (such as drillstring 

inside mud), in a way such that any point in the model triggers damping forces [15]. 

Appropriate mass-proportional damping does not have a great effect on the stability limit, 

while the other factor significantly reduces the stability limit. The Rayleigh damping 

factors are determined and tuned in the developed FEM model. 

Two solver packages are available in ABAQUS: the Implicit and Explicit solver 

packages. For both solvers, equilibrium is based on external load, internal element forces 

and the nodal accelerations. rn the Implicit procedure, a set of linear equations is solved 

by the direct integration method. The Explicit solver package implements the central 

difference operator for integration of the set of nonlinear equations through small time 

increments. The time increments must be capable of resolving the highest frequency of 

interest. The computation cost is proportional to the number of elements and roughly 

inversely proportional to the smallest element dimension. The computational cost for the 

Implicit package, in the case of large structures with non I inearities, ri ses rapidly. The 

Explicit method is especially efficient in high-speed dynamic events that require many 

small increments to obtain a high-resolution solution. rn the case of contact, the Explicit 

solver package has shown a more efficient integration time compared to the Implicit 

package, even though stress wave propagation is considered in the Explicit package. 

Therefore, the Explicit solver package was implemented in this study to achieve more 

efficient computation. 
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Time increments should be defined properly to achieve efficient computation and capture 

dynamics in the highest frequency range of interest. The stability limit dictates the 

maximum time increment used by ABAQUS Explicit. The stability limit is defined in 

terms of the highest frequency of the system. The stable time increment in the model is 

twice the inverse ofthe highest frequency of the system. It is not feasible to calculate this 

exact value. Therefore, the estimate is carried out based on the highest frequency of each 

individual element in the model, which is always associated with the dilatational mode. 

The highest frequency determined on an element-by-element basis is always higher than 

the highest frequency in the assembled finite element model. In terms of the element-by-

element estimate, the stability limit will be defined based on the element length and the 

wave speed inside the material (~tstabte = Le ). T he numerator is the element length and 
cd 

the denominator is the current effective, dilatational wave speed of the material, which is 

related to the effective hypo-elastic material modulus from the material's constitutive 

response (33]. The drawback of this calculation is that the effect of contacts and 

constraints on computing the eigenvalue spectrum is not considered in the element-by-

element estimation. To resolve this problem, the Explicit package implements an adaptive 

a lgorithm to determine conservative bounds for the highest frequency component, using 

the maximum element dilatational mode of the mesh. This stability limit is conservative 

compared to the stability limit extracted based on the maximum frequency of the entire 

model. The advantage of this a lgorithm is the continuous update for estimation of the 

highest natura l frequency. At the start of each step, the element by element algorithm is 

used. As the step proceeds, the stability limit will be determined from the g lobal 



estimator, once the algorithm determines that the accuracy of the global estimation is 

acceptable. 
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The natural frequencies are extracted through the linear perturbation step. "Lanczos" and 

"subspace iteration" have been widely used for obtaining a certain number of eigen-pair 

solutions for practical engineering problems. The Lanczos algorithm falls into the class of 

transformation methods (transformation of the normalized eigenvectors through the 

displacement). This method is faster than the subspace algorithm for structures with many 

degrees of freedom [ 42]. Both methods have been compared in this study and the results 

were in agreement. The solution follows with the dynamic Explicit step. Nodal dynamic 

time responses are derived in this step and the results are compared with the analytical 

model in the next section. Geometric nonlinearity effects were assumed in the Explicit 

step to account for the same nonlinear terms as are in the analytical model. 

6.5.1 Appropriate Model Order and Mesh Sensitivity Analysis (h-method) 

The size of elements influences the convergence of the solution and accuracy of the 

results. A smaller-sized element means more computational time. A mesh sensitivity 

ana lysis verifies that having 150 elements over the BHA and 350 elements on the pipe 

section ensures convergence of the analysis. The distribution of the elements on the collar 

section is denser compared to the pipe section, where the contact analysis requires smaller 

e lements. 

In order to ensure that enough modes have been used in the analysis, the participation 

factor, the effective mass and the total modal effective mass are extracted for the 
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drillstring. The participation factor (fa;) indicates the predominant degree of freedom in 

which each mode acts in the model. In other words, this parameter indicates the strength 

of the motion (global translations in this model) in the three assumed directions (two 

lateral and one axial) in the eigenvector of that mode: 

r .=- 1- x NMNMy.M 
at m a 1 

(6.4) 

a 

where MNM is the structural matrix and x N is the eigenvector for mode a . "M ' and "N'' 
a 

are degrees of freedom ofthe FEM model and yM defines the magnitude ofthe rigid 
l 

body response ofthe degree offreedom Min the model. m is the generalized mass, 
a 

associated with the mode a and is defined as: 

N NM M 
rna =xa M Xa (6.5) 

In the case of eigenvector normalization, m is defined as unity. The effective mass 
a 

indicates the value of active mass in each degree offreedom at a specific mode [4]: 

(6.6) 

The total modal mass of the model is the sum of effective masses of all modes in any 

particular direction. The masses that are constrained by some nodes due to model 

constraints are approximately a quarter of the total mass of the element attached to the 

constrained node. The modes that are contributing a high mass compared to the mass of 

the model are kept in the analysis [4). The results for mesh sensitivity analysis and total 

effective modal mass will be discussed in the last section of the paper. 
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6.6 Numerical Results and Discussion 

The analytical and FEM models are solved to derive the natural frequencies and response 

of the drillstring at certain points of interest. The characteristics and numerical values 

used this study are shown in Table 6.1. 

Table 6.1: Parameters used in the simulations 

T = 4000 Driving torque (N.m) 14=700 Length ofthe pipe 
section (m) 

Pmud = 1500 Mud density (Kg/mj) 1=760 Length of the 
drillstring (m) 

CD= 1 Hydrodynamic drag FvARo=20000 YARD force 
coefficient amplitude (N) 

Kh stiffness (N.m-u) C0VARo=600 YARD tool 
= 6.78 * 1011 frequency (rad/s) 
WOB = 50000 Weight on bit (N) Apipe = 0.02639 Collar cross 

sectional area (m2) 

A pipe Pipe cross sectional area E = 210 * 109 Young's modulus 

= 0.00471 (m2) (Pa) 

11=15 Length of the BHA first bel = 0.1 Borehole clearance 
span (m) (m) 

b=IS Length ofthe BHA FH = 2.545 * 105 Hook load (N) 
second span (m) 

13=30 Length ofthe BHA last Pst = 7860 Pipe and collar 

span (m) density (kg/ m3) 

Predicting the resonance frequencies at the early stage of designing a drillstring and 

before each run is a crucial task to avoid the unwanted resonance states. If the working 

conditions stay close to the resonance state, the BHA absorbs energy, which amplifies 

lateral motions. These amplified motions, as a result of the transferred resonance energy, 

result in potentially catastrophic collisions of the BHA with the wellbore. Therefore, the 

very first step to reduce lateral motions and avoid successive contacts is to find resonance 
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natural frequencies of the drillstring. In order to extract natural frequencies by the FEM 

model and compare the results with the ones extracted from the analytical model, the 

linear perturbation step in the FEM model is set to find natural frequencies of the system 

with a Lanczos eigensolver. The natural frequencies extracted from both methods are 

compared in Table 6.2. 

The natural frequencies derived in this study are slightly higher than the ones extracted by 

other studies assuming the BHA as a single-span beam. These higher frequencies are due 

to assuming a multi-span BHA that has several constraints (stabilizers) on the BHA. 

Although this assumption adds complexity to the model, it allows for more realistic 

results. There is a small variation between resonance frequencies in the u and v directions 

as a result of the numerical solution. The maximum difference is 0.05 Hz, which is a 

negligible difference in rotary drilling operations (around 3 rpm). The resonance 

frequency values are in agreement between both implemented methods. 

As mentioned in the literature review, the axial and lateral deflections are important 

indicators of drillstring behavior in the presence of a V ARD force generator. Axial 

deflection at a point very close to the hook (where the draw-works cable is attached to the 

pipe) is compared in Figure 6.4 for both FEM and analytical methods. The overall 

deflection is below zero as a result of all applied axial forces and it converges to a reg ion 

between 1-2 em of compression. The FEM and analytical steady-state results are in 

agreement with a difference of0.03 em, which is an acceptable difference in terms of 
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practical drilling. The small discrepancies could be due to the assumed axial comparison 

function in the analytical model and numerical computational scheme. 

Table 6.2: Extracted resonance rotary speeds 

Direction First mode Second mode Third mode Fourth mode 
Hz) Hz) Hz) (Hz) 

Method FEM Analytical FEM Analytical FEM Analytical FEM Analytical 

Lateral "u" 1.34 1.30 1.95 1.93 2.35 2.30 3.15 3.13 

Lateral "v" 1.37 1.32 I. 92 1.89 2.30 2.27 3. 12 3.10 

Axial "w" 7.65 7.60 22.25 22.17 38.59 38.54 60.3 60.28 

0.02~-----,------r----,----,---,-----,----,---____,-----;:c=F:::::EM====i] 

- Analytical 

Figure 6.4: Axial deflection near the hook point 

The axial deflections of the top, middle and last span of the BHA are shown in Figures 

6.5, 6.6 and 6.7, respectively. The corresponding axial velocity of the point on the last 

span is depicted in Figure 6.8 for both the FEM and the analytical model which are in 

agreement. The analytical code is also capable of deriving the velocity of any desired 
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point, since the first derivative of the mode participation factors are computed after the 

numerical solution. The FEM and analytical results are in good agreement for all three 

spans and the axial deflection shows stable behavior. This fact is verified using a phase 

portrait as shown in Figure 6.9. 

50 60 70 \00 

Time 

Figure 6.5: Axial deflection of a point on the top span 

Time 

Figure 6.6: Axial deflection of a point on the middle span 
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Figure 6. 7: Axia l deflection of a point on the last span, close to the bit 
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The axial deflection in the last span close to the bit is an important parameter for studying 

the rock fai lure mechanism. It is clear from these figures that the axial deflection has its 

maximum value on the last span. 

0.6 

Time 

Figure 6.8: Axial velocity of a point on the last span, close to the bit 
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The phase portrait of the last span, shown in Figure 6.9, verifies stable axial behavior, 

which ends in circular trajectories [1 0]. Since the FEM and analytical results are in 

agreement, the FEM values are used to draw the phase plane . 

.. 
Axial defleclion (m) 

Figure 6.9: Phase plane, a point on the last span, close to the bit 

The lateral behavior of any po int on the drillstring can be studied using the concept of 

rad ial deflection. The borehole-drillstring c learance is considered in the ana lytical 

equations for the Hertzian contact force. If the lateral deflection of the drillstring exceeds 

this clearance, the drillstring hits the borehole and the result is the Hertzian contact force 

at the contact point. The pipes are assumed to latera lly deflect less than the BHA and 

since the borehole diameter is the same, the pipes are assumed not to hit the wellbore. 

Since general contact is defined in the FEM model, the entire model is capable of being in 

contact, if the drillstring radial deflection exceeds the clearance. A point on the middle of 

the pipe section is considered and the lateral deflection for both u and v directions are 

derived and plotted. The analytical and FEM results are in agreement and the FEM results 

verity the contact point location assumption made in the analytical equations. A ll 
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elements on the drillstring were checked for contact and the no-contact assumption of the 

pipe section in the analytical model is verified. Figures 6.1 Oa and 6.1 Ob show the lateral 

deflection of this point in the u and v orthogonal directions. Figures 6.1 Oc and 6.1 Od show 

the corresponding lateral velocities. The velocities and deflections are in agreement in 

both methods. 

Figures 6.11 a and 6.11 b depict the phase planes of the corresponding point in both lateral 

directions, which verifies the stable behavior of the point on the pipe section. Figure 

6.11 c shows the phase trajectory of the same point, which shows that this point remains 

nearly close to the borehole center and far away from the wellbore. Figure 6.lld shows 

the radial deflection of this point. The maximum radial deflection is 6 em for both the 

FEM and the analytical model, which verifies that this point never hits the wellbore wall. 

-()_, o!:----:,:-o -----=2o=---:':,o:---::,o:---:':so:---:':60:---:':,o- -=ao- -=go-----,J, oo 
Time 
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Figure 6.1 0: Lateral deflection and velocities for a point on the pipe section 
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Figure 6.12 shows the radial deflection of the contact point on the top span. This figure 

depicts a highly irregular behavior at this point with bouncing contact. It is clear in this 

figure that in most cases both FEM and analytical models hit the well bore at the same 

time and remain close to the midpoint of the clearance. 

The radial deflection at the contact point of the second span is shown in Figure 6.13. The 

contact behavior is not as severe as in the top span, as the effect of initial conditions dies 

out. The second BHA span does not hit the wellbore successively as in the top span. This 

result shows the importance of using multiple spans in a BHA model. 

The contact behavior at the span close to the bit is shown in Figure 6.14. There is less 

contact between the drillstring and wellbore at this location and a bouncing back behavior 

is seen at this point. The mud damping seems to have an effect at this point. The FEM and 

analytical models verify each other, except for a few mismatches. The length of this span 

is half of the top span. A less irregular behavior is also obvious at this span. 
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Figure 6.12: Radial deflection of the contact point, first span 



01 

0.09 

0.08 

...-. 0.07 

g 
c 0.06 
0 u 
Q) 

0.05 ;:;:::: 
Q) 
-o 
]! 0.04 

-o 
(1) 

0::: 0.03 

0.02 

0.01 

0.1 

0.09 

0.08 

I 
0.07 

c 0.06 
.Q 
0 
Q) 

0.05 ;:;:::: 
Q) 
-o 
ro 
'0 
(1) 

0::: 

Figure 6.13: Radial deflection of the contact point, second span 

I 
I I 

' 

' ' I 

i ' ' 
' I ' 

' I I 

I ' 
I ' ' I 

20 

' 
' 

' ' ' ' 

30 40 

' ' 
I I 

' 1 I 

50 

Time 
60 70 80 

Figure 6.14: Radial deflection of the contact point, third span 

" ' 

209 

FEM 

--Analytical 

I 
I 
I I 

FEM 

--Analytical 

90 

I 

'I 

100 



210 

The lateral velocities at the top span are shown in Figure 6.15 in both u and v directions. 

There is a good agreement between both models. The results of lateral velocities of other 

spans show similar agreement but are omitted for brevity. 
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Figure 6.15: Lateral velocities of a point on the top span 

6.6.1 Modal Order Detection and Mesh Sensitivity Analysis Results 

90 

90 
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In an analytical model, determining the significant modes that account for the majority of 

the system's kinetic energy is important to ensure that model complexity, and thus 

computation time, is not needlessly high. The FEM model is a valuable tool for 

computing the required analytical model complexity. In order to verify that the retained 

number of modes is enough in the analytical model, the total effective mass in each 

direction was computed using the FEM model. The required number of modes was 

assumed to be that for which 90% of the total modal mass was captured. The mass of the 
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constrained elements by boundary conditions is assumed as one quarter of the mass of the 

corresponding element. The total effective mass quantities (normalized) in the axial and 

two lateral directions are shown in Figure 6.16. It is clear that retaining up to the fourth 

mode captures dynamics of interest. The total effective mass in the u direction is 82% for 

the first mode, which verifies that in this direction the first mode contributes a high value 

compared to the rest of the modes, while in the v direction the third mode is the 

predominant mode. The predominance of the modes in each direction also can be verified 

by the mass participation factor. 
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Figure 6.16: Normalized total effective mass in each direction 

A mesh sensitivity analysis was carried out for both the collar and pipe sections using the 

h-method. Since the contact location will be compared with the analytical model, the 

elements on the collar section are finer compared to the ones on the pipe section. The 
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mesh sensitivity analysis was based on the h-method and conducted for axial motion of a 

point on the pipe section to find the appropriate number of meshes on the pipe (Figure 

6.17). There is insignificant change between 350 and 400 elements on the pipe section. 

Therefore, the 800m pipe is divided into 350 elements. To find out the appropriate 

number of elements on the collar section, the h-method analysis was carried out in the 

lateral direction for a point on the collar section (Figure 6.18). Convergence is achieved 

while meshing the collar section with 150 elements. The density of the e lements per unit 

length is higher on the collar section, compared to the pipe section. The computational 

cost of the Explicit package in contact analysis highly depends on the number of elements 

and this analysis results in less computational cost. 
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Figure 6.17: Mesh sensitivity analysis, pipe section 
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The vibration behavior of a drillstring under the effect of an axial force generator in 

vibration assisted rotary drilling was studied with a dynamic finite element model and 

100 

validated with a developed analytical model. The mud damping, driving torque, vibration 

generator force, hydrostatic effects, self weight, WOB and hook load were included. 

Additional nonlinear phenomena in the model were Hertzian contact forces at multiple 

locations, axial stiffening and geometric nonlinearity. A bottom-hole assembly with 

multiple spans due to multiple stabi lizers was modeled. The model was used to extract 

natural frequencies. The rotary speed of the drillstring should be kept far enough from the 

natural frequencies to avoid excessive deflections and contact with the wellbore, both of 

which can cause premature failure of bottom-hole assembly components. Time histories 
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and phase plane plots of the axial and two orthogonal lateral displacements and velocities 

were generated for several points. The time response allows the modeller to assess 

severity and stability ofwellbore contact. The most severe lateral vibration occurred in 

the uppermost of the three bottom-hole assembly spans, with axial motion being most 

severe near the bit. Total effective mass was used to determine a sufficient number of 

modes to be retained in the analytical model, and mesh analysis was conducted to 

improve computational efficiency. 

The finite element model was validated against a four-mode analytical model using the 

"Bypassing PDEs method". The resonant frequencies and time responses from both 

models showed excellent agreement. The contact locations assumed in the analytical 

equations were verified by the FEM model. Both models demonstrated the same contact 

severities at the contact locations. 

While the analytical model runs quickly, and in a software environment that requires less 

specialized knowledge, the FEM model is more easily reconfigurable for different 

drillstring geometries, and can accommodate more complex, nonlinear phenomena. 

Expansion of the models to capture torsional vibration is ongoing. The models in their 

current form will be an important tool in specifying force generators, and designing 

vibration suppression systems, in pursuit of vibration-assisted drilling systems that 

increase rate of penetration and efficiency without negative consequences for component 

life. 
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6.10 Appendix 6.1: Energy terms for the first span ofthe BHA 

The energy terms for the first span of the BHA are derived and shown below. The other 

two spans of the BHA are under the same effects. Thus, the energy terms are the same, 

except a change in the integration limits, namely 1
1 

- 1
2 

for the mid span and 1
2 

- 1
3 

for 

the top span. Kinetic energy for the first span: 

(6.7) 

where u and v are two orthogonal lateral motions and w is the axial motion. 
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Strain energy due to axial and lateral deformations: 

E/collar[(~u(z, t))
2 

+(~ v (z, t)J
2

] 
1 1' Bz az 

P.nergy = Z J 2 dz 
0 +EAcollar(~ w(z, t)+_!_(~u(z, t))
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+_!_(~v (z, t))
2

J 
az 2 az 2 az 

(6.8) 

Work done by the deriving torque [43] is: 

6.9) 

Work done by the YARD force ( cu is the excitation frequency of the YARD generator): 

(6.1 0) 

Energy term due to spatially-varying compressive axial force: 

1 
'' (( a )

2 

( a )
2

] Waxiat- Jorce = -2 [ Fcollar az u(z,t) + az v(z, t) dz 
(6.11) 

Dissipated energy of mud damping force [I 0]: 

(6.12) 

The contact energy in the first span is approximated based on the Hertzian contact theory 

using a piecewise function [14]: 

[

K ( b ) 3/ 2 
contact energy = - h r ~ cl bel ~ lrl ] r 

otherwise 

(6.1 3) 

where b cl is the borehole clearance, K h is contact stiffness and r is rad ial displacement. 
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6.11 Appendix 6.2: Energy terms for the pipe section 

Kinetic and potential energy terms of the pipe section: 

1 '• ( a )
2 

1 '· ( a )
2 

energypipe = - JpApipe - w(z,t) dz+ - JEApipe - w(z, t) dz 
2 at 2 az 
~ ~ 

(6.14) 

Energy ofthe YARD force and the tensional axial load in the pipe section: 

(6.15) 

1
4 a 

Wpipeaxial- force = l f( FH- pApipeg(l - z ))( az w( z,t )) dz ,, 

6.12 Appendix 6.3: Lagrangian of the BHA and the pipe section 

The Lagrangian of the three-span BHA and the pipe section are as below: 

Lagrangian span I = ~ [PAcollm{( -,i u( z,t )r +( i v( z, t) r +( i w(z,t )n dz 

-~ [[ "~'·'[ [ ~: ·(· '1]' ·[ ~', ·(· '1]}'·•'··[ ~ ·(· 'H(~·(··' 1l' ·H ~ ·( · '1J'l} 
-~ r[ [[[ ~: •(• ;) H•(•,l}[ ~: •(•,,) ]( ~·(• '1) ]w ] ·~ [r,m ''"(~{ ( ;i;•(c,;) )' •( ~ •(•cl)} (6.16) 
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Lagrangianspan2 = ~ JPAcoum( c~- u(z,t) r +( ~v(z,t)r +( ~ w(z,t)r}lz 
,, 

-±[[ "·•'·-[( ;: "I' '1]' "(;:·I, ,1]}""""'( f,wi•,H( t, .. l, ,I)',±( 1; ·I, '1)']} (6.17) 

-~ r[J( ( !2

2 n(z,l )](! v(z,t))+( !: v(z,t)J( fz u(z,t)) J dzl+~ 1 FVARD sin(CVI{ (! u(z,t) r +(! v(z,t)n dz 
,, ,, 

Lagrangim'span3 = ~ I PAcollm [ ( ~u(z , t)r +( *'v(z,t) r +( *' w(z, t)r}lz 
t, 

-± [[ "'"""'[ ( ;', "1' '1 r ·( ;: •(' '1]} '"'"""'[f. w(•+±(! "(<') r "+( f.·iu) J'l} (6.18) 

-~ r[I( ( :z22 u( z,t )j( ~ v(z, t)) +( :z2

2 v(z,t) J( ~u(z, t)) J dzl + ~ I FVARo sin (wt{ ( ~u(z,t)r +( ~v(z,t)n ctz 

~ ~ 

+~I (PAcol/argz- WOB- Pnwdg!Acol/ar { ( ~u(z, l)r +( ~v(z, t) n dz 
t, 

(6.19) 

To apply the expanded Galerkin's method u, v and w were assumed as comparison 

functions multiplied by mode participation factors. For the first span: 
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First span Second span Third span 

4 4 4 

w(z,t)= ij,. (z)·p,.(t) w(z, t)= ij,.(z)·p,.(t ) w(z, t)= ~),. (z) · p,. (t) 
r = l r =i r = l 

4 4 4 (6.20) 
u(z,t) =L IP,. (z)· rlr(t) u(z, t) = Llfl,. (z)·'l, (t) u(z, t)= z:e,. (z)·'l, (t) 

r =l r=i r = l 
4 4 4 

v(z,t) = L IJ>,. (z)·-\(t) v(z,t) = LIJ!r (z)· -1, (t) v(z,t)= _Le,. (z)· -i, (t) 
r = i r ::: ] r = l 

The subscript r depends on the desired mode shapes according to the frequency range of 

interest. For this problem the first four modes were retained to conduct the multi-mode 

analys is. In the above expressions x,rp,IJ/ and() are comparison functions for axial and 

orthogonal lateral motions of the first, second and last span of the BHA, respectively. 

p (t),IJ (t) and A, (t) are mode participation factors for axial motion (w), and lateral 
r r r 

motions (u) and (v), respectively. For the fixed at top-free at the bottom boundary 

conditions, the axia l comparison function is: 

X ( z) = sin ( _,___( 2_r---'--1 )7r_z J 
r 2/ 

(6.21) 

6.13 Appendix 6.4: Eigenfunctions and eigenfrequencies of a three span beam with 

different lengths 

Separate coordinate systems are assumed for each span (Figure 6 .2) and the normal mode 

for each span can be written as: 

¢(x ) = a cos(f3x) + bsin(fJx) + c cosh(fJx) + d sinh(fJx) 

1//(Y) = ecos(f3y) + f sin(fJy) + g cosh(fJy ) + h sinh(fJy ) 

B(z) = i cos(f3z ) + j sin(fJz ) + k cosh(f3z) + l sinh(fJz) 

(6.22) 
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There are 12 unknowns in the equations. Six boundary conditions are zero deflections at 

the supports, while two boundary conditions are zero bending moments at both ends. The 

remaining four boundary conditions are slope and bending compatibility equations at the 

two middle supports. For the nontrivial solution of the system of equations, the 

determinant of the coefficient matrix is set to zero. The result is the frequency equation: 

1 
{-2 sin (l Op ) cos ( I op) sinh (I op)[ sinh ( 

1 
op)] - 3cos ( 1 op ) sinh ( I op ) ' 

s in(IO,O)sinh(10.8) sin( IOP ) 

+s in (I Op) ' cosh (I Op )[ Sinh (I Op )] + 2 sin (1 Op) cosh ( 1 Op ) sinh (l Op ) 
sin( Iop) 

+sin (I op) sinh (1 op)[ sinh ( IOP)] cosh (1 op) +sin (lOP ) cos (1 op) sinh ( lOP) 
sin (1 op) 

. ( ) . ( ) ' [cos (I 0 p)- cosh (I 0 p)] . ( )' . ( ) [cos ( 10 p)- cosh (I 0 p) ] +Sin lOP smh lOP - sin lO{J smh lOp } = 0 
sin(I op) sin(I op ) 

(6.23) 

The equation was solved numerically using the Newton- Raphson algorithm. The first 

four values for f3 are 7.171, 12.57, 13.77 and 16.64. The values of f3 were substituted in 

12 equations to find the first four modes of each span, namely 12 mode shapes. The mode 

shapes are derived symbolically [5] and shown in Figure 6.19 for a three span BHA with 

15, 15 and 30m span Lengths for the first to the third spans, respectively. 
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Figure 6.19: The first four mode shapes of a three span BHA 

6.14 Nomenclature 

Fcollar Compressive force a long the Fpipe Tensile force along the pipes 
collars 

Pcollar Density ofthe collars Ppipe Density ofthe pipes 

A collar Cross sectional area of the Apipe Cross sectional area of the pipes 
collars 

l Total length of the T Driving torque 
dril lstring 

WOB Weight-on-bit Fhook Hook load 

Pmud Mud density Co Hydrodynamic drag coefficient 

E Young's modulus g Acceleration due to gravity 

II ' h ,b Length of the first, second f3 Natural frequencies of the three-
and the last span of the span BHA 

BAH, respectively 

/ collar Area moment of inertia of Rcollar Outer radius of the collars 
the collars 

F vARD Amplitude ofthe YARD (0 Frequency ofthe YARD force 
force 
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K, Hertzian contact stiffness bel Borehole clearance 

u(z,t) Deflection in the first (/J,. (z) The comparison function in the 
orthogonal transverse first orthogonal transverse 

direction direction (u) 

v(z,t) Deflection in the second <jl,. ( z) The comparison function in the 
orthogonal transverse second orthogonal transverse 

direction direction (v) 

w( z,t) Axial deflection X,. (z) The axial comparison function 

P r (t) Axial mode participation 'lr (t) Lateral (u) mode participation 
factor factor 

A,. (t) Lateral (v) mode B(z) Mode shape of the third span of 
participation factor BHA 

¢(x) Mode shape ofthe first span !f/(Y) Mode shape of the second span of 
ofBHA BHA 

contact Contact energy due to the energy of kinetic and potential energies of 
energy Hertzian contact forces pipe the pipes 

K energy Kinetic energy of the collars W VARD- force Work due to YARD force 

~nergv Strain energy ofthe collars w axial- force Work due to the drillstring axial 
force 

~orque Work due to the driving w mud -damping Mud damping dissipated energy 
torque 
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May 201 3 and currently is under rev iew. 

7.1 Abstract 

Applying high frequency axial oscillation into an oilwell drillstring above the bit has the 

potential to enhance drilling efficiency in extended reach wells. Downhole vibration 
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generator tools such as jars and agitators reduce the drill string-wellbore friction and 

enhance the rate of penetration (ROP), ultimately improving weight transfer from the 

drillstring to the rock and facilitating the cutting removal process. However, introducing 

controlled vibrations into the drillstring can result in undesired vibration waves 

propagating a long the drill string, lead ing to inefficient drilling and catastrophic fatigue 

fa ilure ofthe "bottom-hole assembly" (BHA) components, "measurement-while-drilling" 

(MWD) tools, and mud motors. A dynamic model of the entire drillstring, including 

vibration generators and shock subs, is required to study the effect of vibration generators 

on the complex nonlinear coupled axia l-lateral dynamics of a drillstring inside a well bore, 

to study the effect Df vibration tools on the developed cutting force at the bit, and to 

fac ilitate simulation-based design of shock subs. A dynamic finite element mode l (FEM) 

and an analytica l e lastodynamic model, both including the vibration generator tool and a 

shock sub, have been developed. The " Bypassing PDEs" method was implemented on the 

Lagrangian of the system to develop the analytical equations. A multi-mode expanded 

Galerkin 's approximation, in conjunction w ith a multi-span BHA and Hertzian contact 

assumption, a llowed analysis of multiple BHA contact points and thus more rea listic 

estimates of drilling rotary speeds that can cause excessive vibration. The models also 

include torque, mud damping, spatially varying axial force, geometric nonlinearity, and 

axial stiffening. While the analytica l model has fast running time and symbolic solution, 

the FEM model enables easy reconfiguration and future extensions of model geometry, 

interactions, and modified BHA configurations. There is agreement between the 

ana lytical and FEM simulation results for the vibration suppression abi lity of the shock 
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sub, dynamic amplification of the vibrating tool force, critical rotary speeds, axial force 

along the drillstring, axial and lateral displacements, and the contact locations and 

severity. 

Keywords: Drillstring; Downhole vibration generator; Shock sub; Coupled axial­

transverse; Finite element analysis; Multi-span BHA; "Bypassing PDEs"; Wellbore 

contact; Multi-mode analysis 

7.2 Introduction 

As worldwide drilling for exploration and exploitation of energy reservoirs increases, so 

too does the need for enhanced techniques for faster and more efficient drilling. 

Downhole axial vibration generators, such as agitators and jars, are a recent class of high­

frequency tools, which have been demonstrated to increase the rate of penetration in 

extended reach wells. Based on the idea of reducing static friction between the drill string 

and wellbore, these tools generate high-frequency axial oscillation above the bit, resulting 

in an improved weight transfer, and thus less required "weight-on-Bit" (WOB). Reduced 

stick-slip, improved steering, more efficient cutting removal, and improved load buckling 

capacity are other potential benefits of these tools. Nevertheless, implementing vibration 

generator tools in conventional rotary drilling raises questions about the side effects of the 

imposed vibration on the drilling rig itself and, in particular, on the drillstring. 

Vibration generator tools act as a source of axial excitation ofthe drillstring, and due to 

the coupling effect, lateral modes are also excited by installing these tools above the bit. 

Unwanted lateral vibration can offset some ofthe benefit of vibrating tools. A large 
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portion of the provided power at the surface can be lost if the undesired vibrations of the 

drillstring are not suppressed. As well, if the working parameters of the vibration 

generator (load and frequency) are not compatible with the configuration of the drillstring 

and formation properties, this will not only result in reducing the ROP, but also in hole 

deviation, well bore washout, and premature failure of drillstring components, including 

the MWD tools. Premature failures ofMWD tools on BHA's with vibrating tools have 

been reported by industry, and the only effective way to benefit from the positive 

consequences of these tools is to isolate the imposed vibration from the rest of the 

dri llstring. 

A shock sub consisting of a spring and damper in parallel, if properly located and tuned, 

can enhance the effect of the vibration generator tool at the bit, while preventing the 

generated axial vibration from propagating up the drillstring and exciting lateral vibration 

that can lead to excessive wellbore contact. The most efficient way to configure the shock 

sub parameters and investigate its decoupling efficacy is through simulation-based 

design, using a dynamic model of the entire drillstring incorporating the vibrating tool, 

shock sub and all relevant interactions and forces. In this paper, both an elastodynamic 

analytical model and a dynamic numerical (finite element) model are constructed to 

extract modal characteristics and dynamic time response of the entire drillstring. These 

models can predict drillstring motion inside the wellbore, and study contact behavior and 

bit reaction force in various drilling conditions. 
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The vibration models are useful not only for shock sub design, but also for determining 

BHA geometry, stabilizer location, working parameters of the vibration generator tools, 

and guidelines for adjusting the main drilling parameters at the surface, such as rotary 

speed, torque, and WOB. Such dynamic mode ls are the first essential step towards 

developing control strategies for faster and more efficient drilling without premature 

failures of the drill rig components. Complexity of the models depends on the 

assumptions about interacting forces, linear and non-linear excitation sources, damping 

effects, contact behavior with the wellbore, and boundary conditions such as multiple 

stabi lizers located a long the BHA and the hoisting system (derrick cables). 

The drillstring is composed of a long, thin-walled interval (drill pipes)- which can be up 

to 5 kilometres long- and a heavier, thick-walled bottom section (drill collars and BHA) 

with a typical length of up to severa l hundred metres, constrained by stabilizers inside the 

well bore. T he BHA plays the do minant role in the vibration behavior of the drillstring [I]. 

The top point of the drillstring passes through the kelly and rotary table and is attached to 

the derrick cables, while the b it is attached to the bottom point. The stabi lizers are fins 

placed outside of the drill collars at multiple locations to centralize the drillstring ins ide 

the wellbore, to increase the load carry ing capacity of the BHA, and to control well 

trajectories in deviated wells. Here, the annulus between the BHA and the wellbore is up 

to I 0 centimetres and filled with the drilling mud, which is used to cool down the bit, 

flush out the cutt ings, and transmit the hydraulic power to the bit. Moreover, the mud 

plays an important role in well kick-out control through a balance with the formation 

pressure and in stabiliz ing the lateral vibrations of the BHA as a nonlinear damping 
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medium. The drillstring is under interaction of several axial forces, such as WOB (to 

provide the cutting force), hook load, self weight, mud hydrostatic effects (both upward 

and downward), and excitation forces (e.g. bit-formation interaction, multiple contact 

loads, and the vibration generator tool) [2]. The tendency in drilling engineering is to 

keep the pipe section under tension, while keeping the stiff BHA under compression. The 

length and material properties of the BHA, alongside with WOB and mud density, are 

controllable parameters to keep the BHA under compression [2]. The rotary speed of the 

drillstring is typically between 20 and 200 rpm, and this excitation frequency can cause 

an unwanted vibration to propagate through the drillstring and cause premature failure of 

BHA components and MWD tools, bit and stabilizer wear, deterioration of well 

trajectory, dissipation of the provided energy, and lower penetration rate [3]. 

A typical drillstring vibrates in three major coupled modes: axial [4], transverse [5], and 

torsional [6]. Extreme manifestations of these modes are bit-bounce, whirling, and stick­

slip, respectively. Bit-formation interaction, multiple point drillstring-wellbore contacts, 

mass imbalance, and vibration generation tools are the main sources of excitation. The 

axial vibration causes lateral vibration in the BHA, while severe downhole lateral 

vibration causes axial and torsional vibrations that can be monitored at the surface. Rotary 

speed, driving torque, and curvature of the drillstring are causes of the coupling 

phenomenon, as will be observed in the developed analytical equations. Axial vibration 

excited by the bit-formation interaction can lead to bit bounce, which results in the bit 

cutting tooth wear and bearing failure. Lateral vibration, as the most destructive type of 

vibration excited by unbalance or successive drillstring-wellbore contacts, causes large 
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high-frequency bending moment fluctuations in the BHA, which ends in premature 

fatigue failure ofthe BHA components, wellbore washout, and wear of stabilizers. 

Torsional vibration, especially stick-slip, can cause fatigue failure of pipe joints and 

damage to the bit. While lateral vibrations are very severe in vertical wells and result in 

catastrophic BHA failures [7,8], axial vibrations become very important when downhole 

vibrating tools are used. Simultaneous axial-lateral vibration is potentially harmful if not 

controlled. The developed models must capture these two modes. 

Basic vibration models can reveal the resonant frequency of the drillstring and BHA. 

Based on that, the surface rotary speed and the vibration-generator tool frequency can be 

adjusted to not coincide with these critical speeds. However, complex dynamic models 

are required to predict the time response of the drillstring and stresses on downhole tools 

with greater fidelity. 

Section 7.3 reviews prior drillstring modeling work, and Sections 7.4 and 7.5 describe the 

new analytical and FEM models. The deve loped models are used in Section 7.6 to extract 

natural frequencies, to study the effect of vibrating tools on the developed cutting force at 

the bit and to des ign a shock sub, and to analyze the lateral instabilities at multiple contact 

points in the presence of vibrating tools and shock subs. 

7.3 Literature Review 

7.3.1 Downhole Vibration Generator Tools 

Interest in implementing high-frequency axial vibration tools in conventional rotary 

drilling has increased over the past decade. Manko eta/. [9] introduced a hydrovibrator 
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tool which superimposes axial vibrations to a drillstring by transforming a stationary mud 

flow to a high frequency pulsating flow, resulting in a hydrodynamic cavitation impact on 

the drill string. AI Ali eta!. [3] investigated axial oscillation generator (AGT) tools for 

which a 60% increase in ROP with 63% less required WOB, extended bit life and less 

stick-slip were reported in vertical wells. However, drillstring vibration levels increased. 

Newman eta!. [I 0] presented a theoretical torque-drag model to verify the experimental 

results of friction reduction through the use of vibration generator tools, while 

implementing the National Oilwell CT AG-itator™ tool. The use of this tool increased 

the depth of penetration by approximately I 000 feet and the developed model and fie ld 

test results were in agreement in predicting the amount of friction forces e liminated by the 

tool. Babatunde eta!. [II] and Li eta!. [ 12] investigated the effect of introducing various 

levels of vibration in diamond drag and coring bits, and concluded that at controlled 

frequencies the imposed vibration has a significant positive effect on ROP. Khorsh idian 

et al. [ 13] investigated the effect of introducing vibration force in a single cutter 

"Po lycrystalline Diamond Compact" (PDC) bit, using the "Distinct Element 

Methodo logy" (OEM). They verified that imposing energized impact on the rock-cutter 

surface improves the value of the drilling mechanical specific energy (MSE), and this 

factor was then used to find an optimum level of the cutter vertical vibrations for a faster 

ROP. However, alongside the considerable potential improvement in drilling effic iency, 

the implementation of downhole vibration generator tools introduces some adverse 

effects: complexity in adjustment of operating parameters of the vibration tools and 

possibly high levels of vibration induced to the drillstring. 
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7.3.2 Shock Subs and Drillstring Axial Vibration Decoupling 

Axial vibration generated due to the bit-rock interaction and the downhole vibration 

generator should be decoupled from the drillstring as much as possible. A shock sub is a 

passive spring in parallel with a damper that is installed above the bit to reduce the 

displacement or force amplitude transmitted to the BHA and drill pipes, through 

frequency detuning and phase shift. Elsayed eta/. [14] investigated the effect of shock 

sub-parameters on vibration isolation in hard rock drilling through an experimental setup, 

and an optimum range for the stiffness and damping values of the shock sub to reduce the 

bit bouncing phenomenon was investigated. Warren eta/. [ 15] investigated the role of 

shock sub on the reduction of axial vibrations, and suggested to install the shock subs 

with softer springs below the collars for a more efficient isolation; a reduction in lateral 

vibration levels with the use of shock subs was also reported. Skaugen eta/. [ 16] 

proposed a linear simple axial model for designing shock sub parameters and 

recommended a nonlinear model for a precise design of shock subs. Moreover, it is 

concluded that decreasing the stiffness value of a shock sub to an optimum point 

increases its efficiency in reducing axial vibration amplitudes above the shock sub. 

Kreisle eta/. [ 17] investigated the effect of a shock sub on the axial vibration of the 

drillstring through an uncoupled axial model and the Laplace solution scheme. A 

sinusoidal displacement boundary condition at the bit location was implemented for the 

excitation of the axial mode, and it was proven that the efficacy of the shock sub is due to 

the change in the phase angle rather than a change in natural frequency ofthe system, and 

a softer spring was recommended to increase the efficiency of the shock sub. Prior work 
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on shock subs indicates that optimum shock sub tuning depends on many factors such as 

drillstring configuration, bit-rock boundary condition, and the presence of coupled axial­

lateral modes. Comprehensive drillstring dynamic models containing shock subs and 

vibrating tools, that allow multiple simulation runs to be done inexpensively and 

efficiently, are thus a potentially valuable design tool. 

7.3.3 Analytical Modeling 

Static modeling, analytical elastodynamic modeling, and numerical modeling (e.g., finite 

element or finite difference) are common approaches towards analyzing the dynamic 

behavior of the drillstring. Static models were first developed in the 1950' s to investigate 

the stability and load carrying capacity of the drillstring, reaction loads at the bit, BHA­

wellbore side forces, and mud hydrostatic forces. These models were mostly implemented 

to design the length and geometry of the entire drillstring, and to predict the deformed 

shape ofthe drillstring inside the wellbore [18]; however, they were not able to reveal any 

information about the modal content ofthe drillstring, dynamic response of the BHA, and 

contact behavior. 

Basic elastodynamic models were first developed in the 1960's to investigate the natural 

frequencies and mode shapes of the drillstring. Classical uncoupled, non-rotating lateral, 

axial, and torsional-beam vibration equations were used with simplified boundary 

conditions and without major excitations (e.g., bit-rock excitation, contact forces). One of 

the early works which determined the critical rotary speed of the drillstring with a 

simplified model was conducted by Dareing (1], in which he suggested basic equations in 
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terms of the drillstring length and natural frequencies to control unwanted vibrations of a 

non-rotating drillstring. However, the basic models were not capable of predicting the 

precise motion trend of the drillstring ins ide the wellbore, contact behavior, or sensitivity 

ana lys is of the input parameters. 

Then, enhanced uncoupled dynamic models were developed to investigate precise critical 

rotary speeds, the transient and steady state response of the drillstring, contact behavior 

and the developed forces, cutting forces at the bit, and reaction forces at the surface. The 

motivation for the enhanced dynamic models was to adjust the primary working 

parameters during drilling (combination of WOB, driving torque, rotary speed, pump 

pressure and mud characteristics), to develop remedial guidelines for severe vibration 

levels of the drillstring, and to design controllers for in-time suppression actions based on 

investigation of the trans ient and steady-state response of the drillstring. 

Vibration coupling effects have been considered recently: axial-transverse [ 19,20], axial­

torsional [2 1 ], and torsional-transverse modes [22]. Based on an enhanced model, Hakimi 

eta!. [23] investigated the single plane lateral-axial natural frequencies of a sing le span 

BHA. Gulyayev eta!. [24] studied the effect of length of the BHA on its stability through 

a coupled lateral model, while Yigit eta!. [ 19] investigated the axia l-transverse behavior 

ofthe non-rotating BHA. T he parametric resonance phenomenon [22] and buckling 

ana lysis of the BHA [ 19] were also research goals of the coupled enhanced models. 

In order to investigate the dynamic behavior of the drillstring, either in the frequency 

domain or the time domain, it is essential to derive the equations of motion of the 
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drillstring. The Newtonian approach and the energy variational approach (Hamilton's 

principle with the variational approach) are extensively used by researchers in the fi eld. 

Ghasemloonia eta/. [25,26], Yig it et a/. [22], and Hakimi et al. [23] implemented the 

force-balance equation concept (Newtonian modeling) and derived the equations of 

motion of the drillstring. An energy variationa l approach with Hamilton's principle was 

applied by Jafari et al. [27], Melakhessou eta/. [28], Sampaio et al. [2 1 ], Heisig et al. 

[29], Christopherrou et al. [30] and Khul ief et al. [31]. Energy methods are preferred to 

the Newtonian approach for analyzing complicated systems, due to the energy being a 

scalar quantity (in contrast to force vectors) and the availability of energy equations for 

a ll interacting sources of excitations on the drillstring. In the current paper, the 

Lagrangian of the drillstring motion in the coupled axial- lateral (two orthogonal lateral) 

directions is developed and equations of motions are derived using the " Bypass ing PDEs" 

method. This method, which has been proven to be accurate for nonlinear problems [32], 

is based on combining the expanded Galerkin's technique with Lagrange's equation, 

instead of using the conventional Hamiltonian approach. The expanded Galerkin's 

method, then, is applied at the first step of the Lagrange's equation, while setting up the 

energy equations. 

Closed-form solution of the coupled nonlinear equations of motion is not possible. 

Approximate methods such as Galerkin's method [33], expanded Galerkin's method [26], 

and assumed modes method [30] have been implemented to convert time-space domain 

"eigenvalue problems" (EVPs) to a set of nonlinear coupled ordinary differential 

equations (ODEs). This idea is based on integrating the developed equations over the 
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space domain in EVPs, and assumption of the approximate space domain functions (mode 

shapes) to eliminate the space variable, while considering the orthogonality of the mode 

shapes. Due to the complexity of the geometric configuration and boundary conditions, 

deriving the exact mode shapes of the drillstring problem is not feasible and approximate 

shape functions, e.g. comparison functions [26] and admissible functions [19], are instead 

implemented. In this study, the expanded Galerkin's method with realistic comparison 

functions for both axial and lateral directions is implemented to convert the EVPs to 

ODEs, and then a fixed-step Runge-Kutta method is used to solve the resulting set of 

ODEs. The axial mode shapes in this paper include the discrete elements associated with 

the shock sub and hoisting system, and not just the continuous pipe and collar sections. 

The lateral vibration behavior of the drillstring is strongly influenced by the BHA 

vibrations, especially vibrations resulting from contact with the wellbore [7,8]. Modeling 

the impact is a crucial task to precisely evaluate the lateral dynamic response, and the 

contact behavior has been approached in different ways: Hakimi eta!. [23] modelled the 

drillstring-wellbore contact as a series of constant stiffness springs; Jansen [34] modeled 

the contact point of a rotating drill string as a two DOF lumped element model in two 

orthogonal transverse planes; and Christoforou et al. [30] and Hsu eta!., [35] modeled the 

lateral behavior of the drillstring at the contact point through a Hertzian contact force. In 

this study, the Hertzian contact model is implemented at multiple contact points along the 

multi-span BHA. The location of the contact points is verified by the developed FEM 

model, through the general kinematic contact algorithm, which is capable of detecting any 

contact point for the entire drillstring. 
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The proper assumption and simplification of boundary conditions (BC) for different 

modes is an important step towards getting a precise approximate function -and thus a 

precise solution. Fixed at top-free at the bottom BC [ 19,27], fixed-fixed BC [36], and free 

at top-fixed at the bottom BC [37] are commonly used BCs for the axial mode of the 

drillstring vibration. Jogi et al. [38] suggested that the free-fixed axial BC does not match 

well with major axial frequencies observed at the field and that the free end assumption is 

closer to the field data. C layer eta!. [39] suggested an equivalent mass-spring-damper at 

the top and verified that this model is sufficiently accurate for the rig surface modeling. 

Arrestad eta!. [40] also suggested an equivalent mass-spring-damper for the top 

boundary condition, but recommended a nonlinear coupled axial model to study the role 

of this boundary condition on the axial vibration of the drillstring. Bit displacement 

functions have been suggested as an accurate lower boundary condition in the axial 

direction, which depends on the rock formation properties and the bit type. Kreisle eta!. 

[17] was the first one who applied a sinusoidal bit displacement as the lower BC for axial 

motion. The frequency of displacement was assumed to be three times the rotary speed 

for tricone bits and the same as the rotary speed for PDC bits [30]. Macpherson eta!. [ 41] 

suggested the same boundary condition proposed by Kreisle eta!. [ 17], with a phase shift 

related to the drillstring rotary speed. Dareing [36] also suggested a constant amplitude 

s inusoidal function as the bit displacement. On the other hand, however, in a number of 

studies the bit in the axial direction was assumed as a free BC, and an excitation force 

(not a BC) was assumed instead. Elsayed eta!. [42] proposed a force excitation at the bit 

which depends on the width of the cut and cutting stiffness of the rock. Yigit et al. [22] 
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and Dunyaevsky eta/. [43] assumed that WOB has a constant component and a varying 

component with the same frequency as the drillstring rotary speed for PDC bits. To 

decide between these two excitation and boundary conditions at the bit, Li eta/. [ 44] used 

a mathematical model ofthe drillstring and field data and recommended the bit 

displacement BC for axial vibration modeling. Skaugen eta/. [ 16] also recommended a 

bit displacement BC for shock sub design. Meanwhile, simply-supported BCs for lateral 

vibrations at the stabilizer locations were suggested by Khulief eta/. [3 1], Dareing [1], 

He isig eta/. [29], and Yigit eta/. [19,22]. Field investigation by Jogi eta/. [38] supported 

the assumption of simply supported BCs at the locations of stabilizers. The top BC in the 

lateral direction is suggested to be fixed at the location of the rotary table [37]. In the 

present study, a bit-displacement BC with an equivalent mass-spring-damper at the rig 

surface is assumed as the proper BC's for the axial motion. Lateral BC's are pinned­

pinned at the stabilizers, and fixed at the rig surface. 

To summarize the ana lytical model, a nonlinear coupled axial-lateral (two orthogonal 

lateral directions) elastodynamic model of the entire drillstring, including a multi-span 

BHA and a shock sub is developed. The kinetic energy, nonlinear strain energy (axial 

stiffening), multiple contacts, mud damping, torque, vibration generator tool, axia lly 

distributed force along the drillstring, rotary gyroscopic effect and discrete mass spring 

dampers for realistic boundary conditions and shock sub are considered. Then, axial and 

latera l comparison function based on realistic boundary conditions are developed and 

substituted in the expanded Galerkin's method. The lateral comparison functions were 

derived ana lytically for the entire drillstring, assuming a multi-span BHA with di fferent 
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span length. The axial comparison functions were determined analytically for a system of 

hybrid continuous and discrete elements, including the shock sub and equivalent mass­

spring-damper as the top hoisting system. The retained first four modes in the expanded 

Galerkin's method, based on the results of an effective modal mass study in the FEM 

model, enable a multi-mode analysis of the critical rotary speeds and steady state 

response of any point on the drillstring, including the contact points. The effect of a shock 

sub on the vibration suppression is also investigated by the analytical mode l and the 

results are compared with the developed dynamic FEM model. 

7.3.4 Dynamic Finite Element Modeling (FEM) 

The difficulties and limitations of ana lytical models to model complex boundary 

conditions and forces, and the need to reconfigure such models for new extensions, 

coupled with the development of fast processing computers, have attracted investigators 

to numerical methods, such as finite e lement method (FEM), finite difference method 

(FDM), and differential quadrature method (DQM). These techniques are based on 

discretization of the drillstring continuous media, setting up equilibrium compatibil ity 

equations, and their numerical solutions. This procedure is coded in software such as 

ABAQUS® and Ansys®, and an extensive library of beam elements, dashpot elements, 

time varying forces, different contact algorithms, and the ability to record nodal time 

histories and account for higher modes are the great advantages of such software 

packages [45]. As with analytical modeling, FEM modeling ofthe drillstring started with 

simple models [46] to extract natural frequencies, mode shapes, and developed force 



along the drillstring. Later on, enhanced models captured contact phenomena, bit-rock 

interaction force, and complicated geometric configurations of the BHA. 
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Transient and steady state responses of the drillstring with the FEM technique were 

investigated by Apostal et al. [47], Burgess et al. [7], Spanos et al. [48,49] and Khulief et 

al. [50]. Berlioz et al. [5] studied the critical rotary speed of the drillstring using 

parametric instability ofthe rotating drillstring. 

Wellbore contact must be predicted to fully understand the severity of coupled axial­

lateral vibrations. Modeling schemes for impulsive motion of elastodynamic systems in 

FEM analysis fall into two categories. The first approach is based on a smooth impulsive 

force distribution during the impact interval, where the impact force is presented by the 

force-displacement law and contact location is modeled by an interface spring [51 ]. The 

other approach, which is numerically more efficient [52], is based on an impulse­

momentum balance equation, since the impulsive force causes an abrupt change in system 

velocities or momentum [20]. Melakhessou et al. [28] modeled only the contact point of 

the drillstring using the Coulomb friction law. Khulief et al. [51] implemented a 

continuous force-displacement law and the energy balance relation at the contact point in 

their multi-body FEM model for axial-bending and torsional-bending drillstring 

v ibrations. He suggested this method as an efficient way to prevent jump discontinuities 

in numerical solution of the continuous models. As well, Liao et al. [53] developed a 

reduced order FEM model at the contact point of the drillstring and wellbore. Based on a 



qualitative analysis, an optimum friction coefficient value for the stable drillstring 

behavior at the contact point was suggested. 
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The damping effect of the mud on the drillstring dynamic analysis is an important 

parameter in the transverse vibration of the drillstring. The effect of drillstring mud flow 

on the lateral response, load carrying capacity, and critical rotary speeds were 

investigated by Zhang et a/. [54] and Ritto eta/. [55], respectively. Zhang et a/. [54] 

found the critical flow rate for pipe buckling and investigated a relationship for the length 

of the pipe section and flow rate in the drillpipe buckling analysis. Effect of fluid density 

on the pipe buckling was a lso studied. Ritto eta/. [55] analyzed the influence of mud flow 

on the natural frequencies and dynamic behavior of the drill string. They investigated that 

the axial and torsional behav iours are not sensitive to the mud flow. When the fluid flow 

was considered in the dynamic equations, the lateral dynamic response was a bit larger 

initially. However, steady-state response was unchanged. Khulief eta/. [31] modeled the 

fluide lastic effects of the mud on the drillstring, using a previously developed semi­

analytical approach. T he early model was modified, since it was valid for annulus gap 

ratios less than 0.1 (the annulus gap ratio is greater than O.l in drilling applications). They 

developed the fluidelastic force equations in two directions (normal and tangentia l) for 

the element ofthe drillstring. The force equations were based on the density of mud, 

radial clearance, deflection of the string element and the rotary speed. The developed 

equations were then implemented in an FEM model and the model was tuned based on a 

laboratory test rig results. T he viscous lateral damping behavior is mainly considered as 

Rayle igh damping in FEM models, which implements damping in both low and high 
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frequency ranges. The damping factor in this method is related to the mass and stiffness 

matrix developed in the FEM model of a structure [21 ]. A postal eta/. [ 4 7] developed an 

equation which converts the Ray leigh damping to the critical damping in each mode, by 

re lating the mass and stiffness proportional damping values to the natural frequency of 

each mode. Spanos et al. [56] developed another equation for finding the critical damping 

ratio based on the frequency of each mode and the density of the mud and verified the 

equation with test results. The mass proportional damping causes damping at each node in 

the FEM models which is related to the absolute velocity of that node. Th is is in 

agreement with the hydrodynamic drag damping model which is used in analytical studies 

ofthe drill string vibrations, s ince both ofthem are velocity proportional damping models. 

In the FEM model developed in this study, mud damping, torque, spatia lly varying axial 

load, and gyroscopic rotary effects are considered, and the boundary conditions are the 

same as in the analytical model. Having two d istinct models (analytical and numerical) 

allows them to be validated against each other. While the analytical model offers a fast 

convergence rate for sensitivity analysis, the finite element model is easier to reconfigure 

for new boundary conditions, force or displacement excitations, and BHA geometry, and 

a lso a llows extraction of nodal force, displacement, stress, and reactions at any desired 

points as outputs w ithout extra computations. 

7.4 Analytical Modeling: Derivation of Governing Equations 

The beamlike drillstring structure w ith a high slenderness ratio is modeled using Euler­

Bernoulli beam theory. The drillstring in this study includes a span close to the bit (three 



metres) with the vibration-generator tool, a three-span BHA (with different length for 

each span), a shock sub between the bit span and the BHA, a long pipe section and an 

equivalent mass-spring- damper on top, representing derrick, cables, and the traveling 

block. A wellbore is assumed around the drillstring and the annulus between the 

drillstring and wellbore is filled with mud. Two orthogonal lateral directions ("v" and 

"w'1, in addition to the axial motion "u" are also assumed. A schematic diagram of the 

drillstring is shown in Figure 7. 1. 
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The effects ofthe hook load, WOB, mud hydrostatic force and self weight are presented 

as a spatially-varying axial force along the drillstring [20,26]. The varying axial force in 

the collar and pipe sections are (variables are defined in Table 7.2): 

Fcollar = Pcollar· Acollar· g. Z - WOB- Pmud· g.l. A collar 

Fpipe = -WOB- Pmud· g.l. A collar + Pmud· g.lp(Acollar - Apipe) + 

Pcollar · Acollarg.lc + Ppipe· Apipe· g. (z - lc) 

(7.1 ) 

Since the method ofthe "Bypassing PDEs" will be implemented, the conventional form 

of the energy equations is required. In the following equations, the energy terms for the 

first span of the BHA will be shown and for the remaining BHA spans and the pipe 

section, they will be the same, except for a change in the integration domain (the 

reference point for all equations and comparison functions is at the bit). The nomenclature 

for motion of each span and the corresponding comparison function is shown in Table 

7.1 , where "i" represents the mode number: 
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Figure 7.1: Schematic of the drillstring inside the wellbore 

Table 7.1: Nomenclature of motion and comparison functions for each section of the 

drillstring 

Direction of Axial Lateral Lateral 
motion 

Functions motion Comparison motion Comparison motion Comparison 
function function function 

3m span u 1 (z, t) (J .(z) v1 (z, t) qJ ·(Z) w1 (z, t) cp ,(z) 
I st span of U 2 (z, t) t/Ji (z) v 2 (z, t) cri(z) W 2 (z, t) cri (z) 

BHA 
2nd span of u 3 (z, t) t/Ji(z) v3 (z, t) Xi(z ) w3 (z, t) Xi(z) 

BHA 
3rd span of u 4 (z, t) t/Ji (z) v4 (z,t) Ji(z) w4 (z, t) Ji(z) 

BHA 
Pipe section u 5 (z, t) Lli(z) v 5 (z, t) Ei(z) w5 (z, t) E:(z) 
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The kinetic and strain energy for the first span of the BHA is: 

dz 

(7.2) 

where v2 and w2 are two orthogonal lateral motions and u2 is the axial motion of the first 

span of the BHA. The first three terms in the first integral are the kinetic energy terms due 

to the translational motion and the next three terms are rotational kinetic energy 

associated with the gyroscopic effect. The first term in the second integral (strain energy) 

represents the elastic stiffening, while the second term captures axial stiffening due to the 

gravitational field, which accounts for the stiffening effect of tension in the pipe section 

and compression on the collar section and shows the coupling between the axial and 

flexural deformations. The quadratic nonlinear term retained in the equation is due to 

geometric nonlinearity. 

The work done by the driving torque can be expressed as [20]: 

(7.3) 
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which shows the coupling role of the driving torque in two orthogonal lateral directions. 

The energy term due to the spatially varying axial force in the first span of the collar 

section is: 

1 
1
2 (( a )2 ( a )2) W =-- F - v zt + - w zt dz 

axial- force 2 ! collar az 2 ( ' ) oz 2 ( ' ) 

I 

(7.4) 

The F::ollar term will be changed to Fpipe while finding the corresponding energy term due 

to the axial force in the pipe section (using the formulation of Equation 7.1 ). The mud 

damping force as a result of the hydrostatic drag force is in the opposite direction of 

motion and is a quadratic function of velocity [34]. The dissipation energy of the mud is: 

W =p C R 
mud - damping mud D collar 

(7.5) 

The contact energy in the first span is approximated based on Hertzian contact theory 

using a piecewise function [ 19]. In the following equation, bel is the borehole clearance 

and K
11 

is the contact sti ffness wh ich is related to the material and geometry of the contact 

point. "r" is the radial displacement at the contact point: 

( 

( )
3/ 2 

W _ _ Kh r-bc/ 
comact- energy Q 

bel :::; lrl J 
otherwise r 

(7.6) 

The energy term due to the vibration generator on the three-metre span c lose to the bit is: 
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1 
1
1 ( a ( a )2 ( a )2] W .b . =- f2F .b . sin(n.t) -u

1 
(z,t)+ -w

1 
(z, t) + -v

1 
(z,t) dz 

vz ratwn 2 
0 

vz ratwn az az az 

(7.7) 

where F vihration is the amplitude and Q is the working frequency of the force generated by 

the downhole vibration tool. The energy equations for the discrete mass and springs of the 

system are: 

(7.8) 

K 1 and K2 are spring stiffness values of the hoisting cable and the shock sub, 

respectively, and M is the mass of the traveling block. The damping energy of the system 

due to discrete dashpot elements is: 

1 ( a )
2 

1 
( a ( a ))

2 

E n ergydamping = - C1 - u5 (l5 ,t) +- C2 - u2 (l1,t)- - u1(l1,t) 
2 at 2 at at 

(7.9) 

The Lagrangian (L=T-V) ofthe system is: 
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(7.10) 

The damping energy of the system is: 

5 

Damping energy= I {PmudCDRcollar 
i = l 

( 0 )
2 

( 0 )
2 r - v;( z, t) + - w;(z, t) ,_, ot ot } 

( ; , v;(z, t) - ; , w;(z, t))dz 

(7.11) 

where !0 represents z=O in the lower integration limit when i= 1. For i=5 (Lagrangian and 

damping of the pipe section) the F ll term will be changed to F . and 
co ar ptpe 

p ll A ll , I ll , R ll should be changed to these values for the pipe section. 
co ar co ar co ar co ar 
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At this step of the "Bypassing PDEs" method, the expanded Galerkin's method is applied 

to the equations. Therefore, "u", "v" and "w " are assumed as comparison functions 

multiplied by mode participation factors for each specific span. 

4 4 

u,(z, t)= IB, (z) ·A, (t) u2 ( z, t) =If//, ( z) ·A, ( t) 
r = l r = l 

4 4 

V 1 ( Z, f) = I (j> 
1 

( Z) · '7 r (f) v2 ( z, t) = IO", ( z) · T] , ( t) 
r = l r = l 

4 4 

w, ( z, t) = I q>, ( z) A ( t) W2 ( z, t) = IO", ( z) · o, ( t) 
r = i r = l 

4 4 (7.1 2) 

u3 ( z, t) = I f//, ( z) · A, ( t) U4 (z,t) =If//, (z)·A, (t) 
r = i r = l 

4 4 

v3 (z, t) = I x, (z)·TJ,(t) v4 (z,t)= Ii, (z) · f! ,(t) 
r = l r =l 

4 4 

w3 (z, t) = ij, (z) ·o, (t) W4 ( Z, t) = I l , ( Z) · o, ( t) 
r= l r = l 

4 

u5 (z,t ) = I~, (z)· A, (t) 
r = l 

4 

v5 (z,t)= I &, (z) ·TJ, (t) 
r =i 

4 

w5 (z,t ) =I E, (z)·o, (t) 
r = l 

In the above equations, the comparison functions defined in Table 7.1 (A-, (t), 11, (t) and 

o, (t)) are 12 mode participation factors for axial motion "u", and lateral motions "v" and 

"w", respectively. The subscript "r" depends on the retained modes according to the 

frequency range of interest. For this problem the first four modes will be retained to 

conduct the multi-mode analysis. 
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The expanded Galerkin's functions are substituted into the expressions for the Lagrangian 

and damping energy of the system. Precise comparison functions are required to 

accurately integrate over the space domain. The axial comparison functions are required 

to study the effect of the shock sub on the reduction of force and displacement amplitude 

ofthe drillstring. In the following section, the derivation ofthe axial comparison 

functions based on the assumed realistic BCs is discussed. Moreover, the lateral 

comparison functions are required in order to precisely study the contact behavior of the 

BHA. The BHA is assumed as a three-span beam with pinned-pinned boundary 

conditions at the location of the stabilizer, and the three-metre span close to the bit is 

assumed as a pinned-pinned single span, since it is constrained by the stabilizers at the top 

and bottom of the span. Then, classical solution of the transverse vibration are assumed 

for each span and the resulting 12 unknowns in the assumed functions are found based on 

the twelve auxiliary boundary equations. Six boundary conditions are zero deflections at 

the supports, while two boundary conditions are zero bending moments at both ends. The 

remaining four boundary conditions are slope and bending compatibility equations at the 

two middle supports. For the nontrivial solution of the system of equations, the 

determinant of the coefficient matrix is set to zero. The result is the frequency equation, 

which is solved numerically, using the Newton-Raphson algorithm. The first four roots of 

the frequency equation are substituted in 12 auxiliary equations to find the first four 

modes of each span, namely 12 mode shapes. The reader is referred to a recent 

publication by the authors [20] for a detailed derivation of the exact lateral mode shapes 

of a three-span beam, which will be implemented as the comparison function for the 
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three-span BHA. The first four normalized mode shapes of the entire drillstring in the 

lateral direction are shown in Figure 7.2. The transition from the thick-walled col lars to 

the thin drill pipe occurs at 85 m. 
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Figure 7.2: Norma lized lateral mode shapes for the entire drillstring 

7.4.1 Eigenfunctions and Eigenfrequencies of the Axial Motion of the Drillstring 

The e igenfunctions of a drillstring are required in order to apply them as comparison 

functions in the expanded Galerkin's method. These eigenfunctions are computed 

analytically for a system of hybrid continuous (the entire step-beam drillstring) and 

discrete elements (shock sub elements and equivalent mass-spring-damper of the top 

hoisting system). Based on the schematic of Figure 7.2, the axia l mode shape of the span 

close to the bit is assumed as u1, while the axial displacement for the BHA is considered 

as u2• The axial displacement for the pipe section is assumed as u3, and the origin (z=O) is 

at the bit. 
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The boundary condition at the bit location is a sinusoidal displacement, with the same 

frequency as the rotary speed of the drillstring. An equivalent mass-spring damper is used 

at the rig surface. 

The equation governing the longitudinal motion of the bar is: 

(7.13) 

A general form of the solution to the above equation for u1, u2 and u3 in the complex 

plane are assumed as: 

u, = (A sinh (____!_3__) + B cosh (____!_3__))e' 
speed, speed , 

u2 = (c sinh (____!_3__J + D cosh (____!_3__JJ e5
' 

speed, speed, 
(7.14) 

u3 =(£sinh(_!__:!_ )+ F cosh (__!__:!__))e' 
speed2 speed2 
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Figure 7.3: Schematic of the drillstring in the axia l motion 

where speed1 and speed2 are wave speeds in the BHA section and the pipe section, 

respectively. A, B, C, D, E and Fare six complex unknowns which could be determined 

using the boundary conditions. The real terms are of interest. 

At the bit location (z=O), the bar is subjected to base motion (bit-rock displacement 

function). In order to simplify the boundary conditions of u1, A new variable (v(z,t)) is 
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defined, that denotes the displacement of any point on the three-meter span relative to the 

base: 

v(z,) = u 1 (z, t)- base motion= u1 (z, t)- u0 sin (wt) (7.15) 

If the above equation is implemented in the general form of the bar axial vibration 

equation (Equation 7.13), then: 

(7.16) 

The last term on the right-hand side is the equivalent distributed loading, induced by the 

base motion. Therefore, v(z,t) is assumed instead ofuJ(z,t) to solve the set of equations 

and the equivalent distributed loading is assumed as an energy term in the analytical 

equations for the three-meter span. The boundary conditions are as follows: 

v(O, t) = 0 Z=O 

A E av (Lvt) = K ( (L t) _ (L t)) + C ( au 2 (Lv t ) _ av(Lvt)) Z=L 1 
2 · 2 az 2 · U 2 V V V 2 at at 

A E auz(L1,t ) = K ( (L t) _ (L t)) + C (au2 (L 1 ,t ) _ av(L1 ,t) ) 
2· 2 az 2 · u 2 v v 1• 2 a t a t (7.1 7) 

Z=L 

L,, L2 and L are three meters, 82 meters and 1085 meters, respectively. The first BC is the 

result of change of the variable from u(z, t) to v(z,t) , where at the bit location the 



259 

displacement is zero. The second and the third BCs are the continuity of the force at the 

location of the shock sub and the fourth and fifth BCs are continuity of displacement and 

force at the pipe-collar junction. The last BC is the continuity of the force at the location 

of discrete mass-spring-damper. Consequently, implementing the above boundary 

conditions in the general solution equations (Equation 7. 14) results in a system of six 

equations and six unknowns. For the nontrivial solution of the system of equations, the 

determinant of the coefficient matrix is set to zero. The result is the frequency equation: 

((-4.2 1 1022 s 2(s 2 +0.44 I o-3)sinh(0.2 1s) - 7.70 1020 s 3(s2 + 2.34)cosh(0.2 1s)) 

cosh(O. I2 10-1s )2 +(-3.54 1021)s\s2 +0.66)sinh(0.21s) + (-1.94 1023 s4 + 1.511019 s2
) 

cosh(0.2 1s)))sinh(O. I2 10-1s)cosh(O. I2 W 1)s+2.361023 / (/+0.14 10--l)sinh(0.21s) 

+4.31 1021 s3 (s2 + 0.96)cosh(0.21s )) sinh(O. I2 10- 1 s )2
) cosh(0.39 10-3 s) 

+(( 4.31 I 02 1 s\s 2 + 0.9 1)sinh(0.21s)+ 2.36 1023 s4 cosh(0.2 1s)sinh(0.39 10-3 s)cosh(O.I2 W 1 s)2 

+(-1.94 1023 s4 sinh(0.2 1s )- 3.54 1021 i (s2 +0.91)cosh(0.2 1s))sinh(0.39 10-3 s) 

sinh(O.I 2 I0-1s)cosh(O.I2 I0-1s)sinh(0.3910-3s)sinh(O.I2 I0-1s)cosh(0.12 10-1s) 

+(-7.70 1020 s\s2 +0.91)sinh(0.21s )-4.2 1 1022s4 cosh(0.2 1s))sinh(0.39 10-3 s)sinh(O. I2 10-1 s)2 

cosh(0.39 I o-3s) + (2.0 I I 019 s 2(s 2 + 0.91)sinh(0.21s) + 1.1 102 1 s 3 cosh(0.21s ))sinh(0.39 10-3 s )2 

cosh(O. I2 10-1 s/ - 9.04 I 020 s3 sinh(0.2 ls) - 1.65 I 019 s 2(s2 + 0.91)cosh(0.2 1s))sinh(0.39 10-3 s/ 
sinh(O. I2 10-1 s)cosh(O.I2 10-1 s)+(-3 .59 I 01 ~ / (s2 + 0.91)sinh(0.21s) 

- 1.96 I 020 s 3 cosh(0.2 1s ))sinh(0.39 I o-3 s )2 sinh(O.I2 I o - l s )2 = 0 

(7.18) 

In order to solve the above equation, since the roots have complex values, s is defined 

ass= p + iq . The first four values of s are determined using the Bisection method and 

the results are confirmed with the Newton-Raphson algorithm as well. The first four 

values of s are: 0.24i, 3.48i, 11. 76i and 24.94i and are substituted back in the six 

boundary condition equations to find the first four mode shapes of each segment. The first 

four axial mode shapes of the entire drillstring are shown in Figure 7.4a. Since the shock 
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sub is less stiff compared to its equivalent collar length, there is a discontinuity at the 

location of shock sub (z=3). This discontinuity is shown in Figure 7.4b. 
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Figure 7.4: Normalized axial mode shapes of the entire drillstring 

7.4.2 The Lagrange's Equation and Equations of Motion 

The axial and lateral comparison functions are substituted back in the Lagrangian of the 

system and damping energy equation. Integrating the Lagrangian over the drillstring 

length, using the mode orthogonality relations, results in a time domain Lagrangian of 

each span. The Lagrange's equation is then implemented for each mode participation 

factor. 

d (aL) aL (aD.£.) 
dt aq[ - aqi + ~ = 0 

(7.19) 
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where Lis the Lagrangian of the system, D.E. is the dissipated energy of the system and 

qi is the generalized coordinate variable. The result is a set of twelve second-order 

coupled nonlinear time differential equations. The resulting stiff system is solved using a 

fixed-step fourth-order Runge-Kutta method and the dynamic time step reduction strategy 

is not implemented because it became unstable due to discontinuities in the response. The 

time step was set to I o-11 s which is well below the smal lest natural period in the system. 

The numerical results for each generalized coordinate were stored and substituted back 

into the expanded Galerkin's functions for each direction to generate deflection and 

velocity time history of any desired point, including the contact locations. The 

mathematical model and the above procedure have been implemented in Maple®. The 

characteristics and numerical values used in this study are shown in Table 7.2. 

Table 7.2: Numerical values used in the simu lations 

T = 4000 Driving torque Apipe Pipe cross sectional 
(N.m) = 0.00471 area (m2

) 

Pmud = 1500 Mud density A collar Collar cross sectional 
(Kg/m3

) = 0.02639 area (m2
) 

C0 = 1 Hydrodynamic F Vibration=20000 Vibration generator 
drag coefficient force (N) 

Kh = 6.78 * 1011 Hertzian stiffness 
(N.m-15) 

E = 210 * 109 Young's modulus (Pa) 

WOB = 50000 Weight on bit (N) bel = 0.1 Borehole clearance 
(m) 

I pipe Area moment of I collar Area moment of 

= 13.31 * 10- 6 inertia (pipe = 76.52 * 10- 6 inertia (collar section) 
. 1) 4 m4 sect1on m 

!,=3 Span length of the Ppipe = Pcollar Pipe and Collar 
downhole tool (m) = 7860 density (kg/ m3

) 

/2=44 Z coordinate of the g =9.81 Gravity acceleration 
top point of the (m/ s2

) 

BHA first span (m) 
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/3=64.5 Z coordinate of the Rcollar = 0.1 Collar outside 
top point of the diameter (m) 

BHA second span 
(m) 

fc=/4=85 Z coord inate of the lp=lOOO Length ofthe pipe 
top point of the section (m) 
BHA third span 

/=/5= 1085 Z coordinate of the u 0 = 0.003 Bit displacement 
top point of the amplitude (m) 
pipe section (m) 

w = 10.47 Drillstring rotary M = 3500 Mass of the traveling 
speed (rad/s) block (kg) 

n = 95.50 Frequency ofthe speed1 Wave speed in the 
downhole = speed2 

pipe and collar 
vibration generator = 5168.90 . (-J.N.m) section -

tool (Hz) Kg 

K1 = 9.2 * 106 Stiffness of the top K2 = 7.6 * 106 Stiffness of the shock 
cable (N/m) sub (N/m) 

C1 = 3 * 104 Damping of the C2 = 4 * 103 Damping ofthe shock 
top cable (N.s/m) sub (N.s/m) 

7.5 Dynamic Finite Element Model of the Drillstring 

The ABAQUS FEM Explicit solver package® is used to develop the dynamic FEM 

model. The FEM model is capable of modal characteristic extraction, as well as the 

dynamic analysis ofthe entire drillstring. The modal characteristics are derived using 

eigenvalue extraction with the linear perturbation procedure. The dynamic analysis 

extracts the displacement and force response of the drillstring for any set of initial 

conditions or forcing functions. 

The drillstring is assumed as a beam with two cross sections (collars and pipes). A three-

segment planar wire shape sketch with hollow pipe profiles is used to model the entire 

drillstring. The "Hermite cubic" beam element is used, which does not account for the 

shear flexibility, although axial strain is considered. This is the proper element for 
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modeling slender Euler-Bernoulli beams, in order to be consistent with the derived 

analytical model. Furthermore, the orientation ofthe beam cross-section must be 

determined in the global Cartesian system prior to the analysis. A three-dimensional 

extruded shell is assumed for the wellbore. The discrete dashpot and spring elements are 

modeled using the ABAQUS Explicit solver package elements "DASHPOTA" and 

"SPRINGA". These two elements introduce stiffness and damping between two degrees 

of freedom without any associated mass. The nodes which are attached to the spring 

element must have some mass contribution from adjacent elements. If a stiff element is 

selected, then the Explicit time step is appropriate for maintaining the stability condition. 

Since the dashpot is used in parallel with a spring element, the stable time increment is 

not affected. As well, the drillstring and the wellbore are modeled as a single assembly in 

the global coordinate system. 

The explicit solver package (integration by the central difference operator) is preferred to 

the implicit solver package (direct time integration) in the developed model. The explicit 

solver package is computationally more efficient in the case of large structures with 

nonlinearities, which capture high speed dynamic events such as successive contacts with 

the wellbore with many small time increments to achieve a high-resolution response. 

The kinematic friction is preferred to the penalty contact algorithm in the Explicit solver 

package to model the drillstring-wellbore contact. The kinematic friction algorithm has a 

corrector algorithm which results in no overclosure at the end of each time increment, 

while in the penalty a lgorithm the overclosure always exists at the end of each increment. 
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This overclosure does not cause any problem in large deformation problems, while in the 

small deformation problems driven by Hertzian contact theory, the results of the two 

algorithms are not the same due to the overclosure. In such problems the kinematic 

contact algorithm is preferred to the other one. Since Hertzian contact was also assumed 

in the derivation of the analytical model, the kinematic friction algorithm is implemented 

in the FEM model. Another advantage of the kinematic friction algorithm is that time 

steps are not reduced during contact, while in the penalty algorithm the stable time 

increment is reduced. Slow convergence and dependency on the mesh size are other 

drawbacks of the penalty algorithm. Nonetheless, s liding friction is not inc luded, as it has 

not significantly impacted the results in other studies [ 19,31 ,51] and if included w ill 

seriously degrade computation time. 

The general kinematic contact and the contact pair algorithms are the commonly used 

methods to define the surfaces in contact. While in the other a lgorithms the contact 

surfaces are required to be determined prior to the analysis, the surfaces in the kinematic 

contact can span any disconnected region in the model. Hence, the general kinematic 

contact a lgorithm is selected in the developed model to account for multiple contact 

points in the BHA, and any point on the drill string is capable of having contact with the 

inner surface of the wellbore. This capabi lity of the FEM model will be used to verifY the 

assumption of the contact point locations assumed in the analytical model. 

The mud damping effect plays an important role in the study of lateral vibrations of the 

BHA and irregularity and severi ty of motion at the contact points. The mud damping 
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behavior in this study is considered as Rayleigh damping (a quadratic expression for the 

energy dissipation rate), which is proportional to the mass and stiffness of each mode. In 

the absence of a major source of dissipation, such as inelastic material, Rayleigh damping 

is appropriate with the Explicit dynamic package (e.g ., pipes with contact). In particular, 

it provides a convenient abstraction for damping low-frequency range behavior (mass 

dependent) and higher-frequency range behavior (stiffness dependent). The mass 

proportional damping factor introduces damping forces that are caused by absolute 

velocities at each node: this phenomenon could model a structure moving through a 

viscous fluid (such as drillstring inside mud), in a way such that any point in the model 

triggers damping forces [21]. This is in agreement with the hydrodynamic drag damping 

model which is used in analytical studies of the drillstring vibrations, since both of them 

are velocity proportional damping models The Rayleigh damping factors are determined 

and tuned in the developed FEM model. Another advantage of the mass proportional 

damping is that the stability limit in the final numerical solution step is not sensitive to 

this factor, while the stiffness proportional damping reduces the stability limit of the 

numerical solution [45). 

The computation cost is proportional to the selected time increments and number of 

elements, and is roughly inversely proportional to the smallest element dimension. Time 

increments should be defined properly to achieve efficient computation and capture 

dynamics in the highest frequency range of interest. The stability limit dictates the 

maximum time increment used by ABAQUS Explicit. The stability limit is defined in 

terms of the highest frequency of the system. Furthermore, the stable time increment in 
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the model is twice the inverse of the highest frequency of the system, as determined on an 

element-by-element basis. The effects of instantaneous contact and constraints are 

difficult to account for in the element-by-element based time increment. The Explicit 

package implements an adaptive algorithm to determine conservative bounds for the 

highest frequency component to resolve this issue. This stability limit is conservative and 

continuously updated compared to the fixed stability limit extracted based on the 

maximum frequency of the entire model. 

As aforementioned, the size of elements influences the convergence of the solution, 

accuracy of the results and the computational cost. A mesh sensitivity analysis is carried 

out for both the collar and pipe sections using the "h-method". The "h-method" analysis 

was conducted for the axial motion of a point on the pipe section and lateral motion of a 

no-contact point on the collar section to investigate the appropriate mesh size on the pipe 

and collar sections, respectively. The results verify that having 250 elements over the 

BHA and the three-metre span and 1000 elements on the pipe section ensures 

convergence of the analysis. The denser distribution of the elements on the multi-span 

BHA (finer mesh) enables a determination of the contact points with higher accuracy. 

These points are used in the analytical model as potential contact points. 

In an analytical model, determining the significant modes that account for the majority of 

the system's kinetic energy (the modes that are contributing a high mass) is important to 

ensure that model complexity, and thus computation time, is not needlessly high. The 

FEM model is a valuable tool for computing the required analytical model complexity. 
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The total effective mass is a tool to achieve this goal. Moreover, the effective mass 

indicates the value of active mass in each degree of freedom at a specific mode, which is 

related to the mode participation factor. The mode participation factor indicates the 

strength of the motion (global translations in this model) in the three assumed directions 

in the eigenvector of that mode and determines the predominance of the modes in each 

direction. The total modal mass of the model is the sum of effective masses of all modes 

in any particular direction [20,26]. In this study the modes that capture 90% of the total 

modal mass are retained in the analytical model. Here, retaining up to the fourth mode 

captures dynamics of interest. The total effective mass in the u direction is 80% for the 

first mode, which verifies that in this direction the first mode contributes a high value 

compared to the rest of the modes, while in the v direction the second mode is the 

predominant mode with a total effective mass of90%. 

7.6 Numerical Results and Discussion 

The simulation results of both models are used to predict critical rotary speeds, efficacy 

of the shock sub in vibration decoupling and the enhancing effect of the downhole 

vibration generator tool on the developed cutting force. Moreover, the axial and lateral 

time responses for desired locations on the drillstring, contact location and behavior are 

also determined. Predicting the critical rotary speeds at the early stages of designing a 

drillstring and before each run is a crucial task to avoid unwanted resonance states. If the 

working conditions stay close to the resonance state, the BHA absorbs energy, which 

amplifies lateral, axial and torsional motions. In the analytical model, the frequency 

equations are solved to determine the first four natural frequencies in the axial and lateral 
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directions. In order to extract natural frequencies by the FEM model and compare the 

results with the ones extracted from the analytical model, the linear perturbation step in 

the FEM model is selected to find natural frequencies ofthe system with a Lanczos 

eigensolver [26]. The natural frequencies extracted from both methods are shown in 

Table 7.3, show good agreement. The maximum differences between analytical and FEM 

models are 0.0435 Hz in the lateral direction and 0.035 Hz in the axial direction, which is 

a neg lig ible difference in rotary drilling operations (around 2.6 rpm). The natural 

frequencies derived in this study are higher than the ones extracted by other studies which 

assumed the BHA as a single-span beam. These higher frequencies are due to assuming 

several constraints (stabilizers) on the BHA. Although this assumption adds complexity to 

the models, it allows for more realistic results. 

Table 7.3: Extracted resonance rotary speeds 

Direction First mode Second mode Third mode Fourth mode 
(Hz) (Hz) (Hz) (Hz) 

Methods FEM Analytical FEM Analytical FEM Analytical FEM Analytical 

Lateral 0.36 0.33 1.08 1.041 1.28 1.24 1.85 1.82 

Axial 0.06 0.03 0.58 0.55 1.90 1.87 4.00 3.96 

Axial displacement and developed axial forces above the shock sub are main indicators of 

the efficacy of the implemented shock sub [17]. Axial response of the drillstring is a lso an 

especially important consideration when tuning the vibration generator tool. The time 

history of any desired point a long the drillstring is achieved using the numerical solutions 

ofthe general ized coordinate systems ( 12 mode participation factors in th is study) and 

substituting back the results in the expanded Galerkin's equations (Equation 6.1 2) in the 
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analytical model. In the FEM model, the force and displacement time histories of the 

points of interests are recorded every 20 intervals for each time increment. Axial 

displacement above the shock sub for the case when there is no shock sub and the case 

with a shock sub for analytical and FEM models are depicted in Figure 7.5. 
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Figure 7.5: Axial displacement above the shock sub (with and without shock sub) 

Use of a shock sub significantly reduces the axial displacement above the sub, which 

means less vibration is transmitted to the drillstring. The FEM and analytical steady-state 

results are in agreement with a difference of less than 1 em, which is an acceptable 

difference in terms of practical drilling. The small discrepancies could be due to the 

assumed axial comparison function in the analytical model and numerical computational 

scheme. The sensitivity study of the axial displacement above the shock sub for different 

shock sub stiffness values (K2 = 7.6£6, 6£6 and 4.5£6) is shown in Figure 7.6, which 
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verifies the reduction of the displacement by softening the stiffness value of the shock 

sub. It should be noted that the curves are de-meaned and horizontally shifted over the 

time domain to match the peak locations for the sake of better comparison. 
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Figure 7.6: Sensitivity analysis of the shock sub to the stiffness value (transmitted axial 

displacement) 

Figure 7.7 depicts the axial force above the shock sub location, with and without a shock 

sub for both FEM and analytical models. It is clear that the shock sub significantly 

reduces the transmitted axial force to the BHA and the drillstring as well as the axial 

vibration displacement. 
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Figure 7.7: Transmitted axial force above the shock sub 

Figure 7.8 shows the transmitted force to the BHA versus different stiffness values of the 

shock sub. With the softening of the shock sub spring, lower values ofthe force are 

transmitted to the drillstring for both analytical and FEM models, which are in agreement. 
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Figure 7.8: Sensitivity analysis of the shock sub to the stiffness value (transmitted axial 

force) 

Axial displacement of the drillstring near the rig surface is also important, since the axial 

displacement at this location causes fatigue stress for the connections in the rig surface 

[57]. Figure 7.9 shows a 40% reduction in the transmitted vibration displacement to the 

surface when using a shock sub. 



273 

0.01,---------;--,---,-----,-----,---,---,---,----,=========il 
- No shock sub- Analytic al 

- No shock sub- FEM 

0.008 - Wth shock sub (K2=7.6.106}- Analytical 

0.006 

E' 
-; 0.004 
:0 
.l'l 
Q) 

£ 0.002 

0; 
Q) 
c 
c 
Q) 

E 

~ -0.002 \ 
Ci. 
"' '0 
~ -0.004 
:;_ 

-0.006 

-0.008 

- Wth shock sub {K2=7.6.106)- FEM 

r ! ( r r ( ! ( ! r r ! r r ! r ! r ( ( ( { r 

\ \ \ \ \ ~ \ \ \ \ \ \ \ ~ ~ \ \ \ \ \ \ \ \ \ 

-

-o.o1o '--------o-----L- ---L-------'--------'-,o-------'-,2,-----___J,.,------__j,6'------,L-a -----"20 

Time (s) 

Figure 7.9: Axial displacement near the rig floor (with and without shock sub) 

The sensitivity analysis of the displacement at the surface for three different values of the 

shock sub stiffness is shown in Figure 7.1 0. Softening the shock sub' s spring decreases 

the transmitted displacement to the rig floor as well. 



274 

., 
£ 0 
n; ., 
c 
c 
Q) 

E ., 
0 
.!!! .0. 
a_ 

"' u 

5 

2 

5 

1 

5 

0 

5 

~ -
~ 

1 

-1 5 

2 

-2. 5 

I ~ 

' v 

~ 
I 

A 

J 

10 

Time(s) 

~ '\ ~\ 

I v 

12 

- with shock sub ('S=7.6.106)- Analytical 

- with shock s ub (""=7.6.106)- FEM 

-with shock sub (~=6. 1if)- Analytical 

- v.ith shock sub (~=6. 1ifi)- FEM 

- with shock sub tfS=4.5.1cf)- Analytical 

with shock sub (~=4. 5. 106)- FEM 

I~ 1 lA ~ ~ 
I 

v ' 

14 16 18 

Figure 7.10: Sensitivity analysis ofthe shock sub to the stiffness value (axial 

displacement near the rig floor) 

i 

20 

The efficiency of the shock sub in decoupling the generated vibration at the bit due to the 

vibration generator tool also depends on the rotary speed of the drillstring, since the 

rotary speed is also the frequency of the bit displacement excitation. The rotary speed 

varies in true drilling applications (normally 20-200 rpm). Figure 7.11 shows the peak-to-

peak axial force above the final span with and without a shock sub, as a function of 

drilling speed. Good agreement is noted between numerical and analytical models. 
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Figure 7.1 1: Sensitivity analysis of the shock sub to the drillstring rotary speed (axial 

force above the shock sub) 

Hence, the result verifies that the shock sub is effective over an extended range of the 

rotary speed of the drillstring, with a higher efficiency above 60 rpm. The effect of the 

shock sub on the peak-to-peak displacement above the shock sub location is shown in 

Figure 7.12, which also shows benefit over the entire rotary speed range of the drillstring. 

A higher isolation of the displacement is also noticeable after the rotary speed of I 00 rpm 

in Figure 7.12. 
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Figure 7.12: Sensitivity analysis of the shock sub to the dri llstring rotary speed (axial 

displacement above the shock sub) 

The shock sub, while isolating a vibrating tool from the upper portion of the drillstring, 

should not attenuate the force transmitted to the rock. Figures 7.13 and 7.14 show that the 

downhole vibration generator tool increases the developed cutting force at the bit, with 

and without a shock sub. 
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Figure 7. 13: Developed cutting force at the bit due to the downhole vibration generator 
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Figure 7.14: Developed cutting force at the bit due to the downhole vibration generator 

(with shock sub) 
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Figure 7.15 compares the last two figures and verifies that if the vibration generator tool 

is implemented with a shock sub, the bit-rock force amplification is increased by 35%. 
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Figure 7.1 5: Developed cutting force at the bit due to the downhole vibration generator 

tool (with and w ithout shock sub) 

In Figures 7 . 13-7. 15, while the downhole vibration generator tool is in use, a high 

frequency (vibration generator frequency) component of the fo rce is riding over a low 

frequency (drillstring rotary speed) force component deve loped due to the bit 

displacement. 

The contact behavior in the presence of a vibration generator tool and the shock sub is 

also investigated in this study. Figure 7.16 shows the radial deflection of the contact point 

on the 4 1 m BHA span. This figure depicts a highly irregular contact trend at this point 

with multiple contacts. Both FEM and ana lytical models typically hit the wellbore at the 

same time. The borehole clearance is set to 10 em. 



---~-------------------------------------------

I 
c 006 ., 
E ., 
0 
.!!! 
a. 
.!!! 

"' ~ 
"' "' cr 

10 

Time (s) 
12 14 16 16 

Figure 7. 16: Radial deflection at the contact point, first span of the BHA 

The radial deflection at the contact point of the mid span is shown in Figure 7.17. The 
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20 

contact behavior is not as severe as the 41 m span, as the effect of initial conditions dies 

out. The system is excited by an initial velocity at the pipe-collar junction and at the 

midpoint of the middle span of the BHA. The BHA at this span does not hit the wellbore 

successively as in the previous span. Consequently, this different result shows the 

importance of using a multiple spans BHA, while modeling the contact behavior between 

the drillstring and wellbore. 
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Figure 7.17: Radial deflection at the contact point, second span of the BHA 

The contact behavior at the top span of the BHA is shown in Figure 7.18. There is less 

20 

contact between the drillstring and wellbore at this location and a bouncing back behavior 

is seen at this point. A less irregular behavior is also obvious at this span. 
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Figure 7.18: Radial deflection at the contact point, last span of the BHA 
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The effect of setting the rotary speed near the resonance rotary speed is also investigated. 

The contact behavior of the last span is shown in Figure 7.19, when the rotary speed of 

the drillstring is set to the first lateral resonant frequency of the drillstring (30 rpm) and 

the remaining parameters remain the same. The low intensity contact (Figure 7.18) 

becomes severe and highly irregular. 
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Figure 7.19: Radial deflection at the contact point in the resonance, top span of the BHA 

7.7 Conclusions 

While downhole vibration generator tools enhance the drilling efficiency, they have also 

been associated with premature failure of BHA components and MWD tools. 

Catastrophic failures can be avoided with increased understanding of the dynamic 

behavior of the drillstring in the presence of these tools. High-fidel ity dynamic models 

can assist in specifying BHA properties, shock sub parameters, vibrating tool force and 

frequency, drilling speed, and weight on bit. The nonlinear, coupled axial-lateral vibration 

behavior of a drillstring, under the effect of an axial force generator, was simulated with 

an analytical model and validated against a dynamic finite e lement model. A shock sub 

was also implemented to decouple the imposed vibration at the bit from the rest of the 

drillstring. The "Bypassing PDEs" method, along with the expanded Galerkin's method 
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and the Lagrange's equation, was implemented to derive the analytical model of a 

drillstring with a multi-span BHA. As well, the multi-mode analysis in the expanded 

Galerkin 's method and more realistic assumed boundary conditions enabled a multi-point 

contact analysis, multi mode modal dynamic analysis, and prediction of more realistic 

critical rotary speeds. The lateral comparison functions for a multi-span BHA and the 

pipe section were determined analytically. Also, the axial comparison functions for a 

system of hybrid continuous (the entire step-beam drillstring) and discrete elements 

(shock sub elements and equivalent mass-spring-damper of the top hoisting system) were 

developed analytically. These precise comparison functions facilitate sensitivity studies of 

different design parameters, such as drillstring geometrical configurations, equivalent 

stiffness and damping values of the drillstring hoisting system, and shock sub parameters. 

The FEM model was specifically developed using the Explicit solver package of 

ABAQUS®, with "kinematic friction algorithm" and general contact surface detection 

method. The mud damping, spatially varying axial force, driving torque, downhole axial 

vibratory tool and a shock sub are captured in both models and the nonlinear coupling 

terms due to contact, axial stiffening and torque were retained in the analytical model. 

The geometry, configuration and boundary conditions were the same in both developed 

models. Time histories of the axial displacement, two orthogonal lateral displacements 

and the developed forces were extracted for several points along the drillstring. The 

implementation of the shock sub showed significant decoupling and isolation of the tool 

vibration. Softer springs gave better vibration suppression, and the shock sub was 

effective over an extensive range of rotary speeds. The vibration isolation effect was 
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greater at higher speeds. Simultaneous use of a shock sub with a generator tool results in 

a more enhanced cutting force at the bit. Study of the lateral instabilities verified that 

multiple contact point analysis driven by the Hertzian contact theory in the analytical 

model coincides with the "kinematic friction algorithm" in the FEM model in terms of 

contact locations and severities. Dynamic time responses and extracted critical rotary 

speeds in both models were also in agreement. While the analytical model runs quickly, 

the FEM model is more easily reconfigurable for different drillstring geometries, and can 

accommodate more complex, nonlinear phenomena. The models in their current form will 

be an important tool in tuning downhole vibration generators, and configuring vibration 

suppression systems, in the pursuit of vibration generator tools that increase rate of 

penetration and efficiency without negative consequences for the drillstring and MWD 

components. 
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7.10 Nomenclature 

Fcallar Axial force along the collar Xi(z) Lateral comparison function 
section for the second span of the 

BHA 

P collar Collar density fi(z) Lateral comparison function 
for the third span ofthe BHA 

A collar Collar cross sectional area Ei(z) Lateral comparison function 

= A2 for the pipe section 
g Gravity acceleration Ll Length of the span close to the 

bit 
z Coordinate along the L2 Length ofthe BHA 

drillstring axis 
WOB Weight-on-Bit L3 Length ofthe pipe section 
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Pmud Mud density L Length ofthe drillstring 

l Dri llstring length CD Hydrodynamic drag 
coefficient 

Fpipe Axial force along the pipe R Collar outside diameter 
section collar 

lp Length ofthe pipe section K" Hertzian stiffness 

Apipe = A1 Pipe cross sectional area r Radial deflection ofthe 
drillstring 

lc Length of the collar section bel Borehole clearance 

ui(z, t) Axial motion in different F Vibration generator force 
sections vibration 

v 1 (z,t) First lateral motion in Q Frequency of the downhole 
different sections vibration generator tool 

w1 (z,t) Second lateral motion in Kl Stiffness of the top cable 
different sections 

Bi(z) Axial comparison function K2 Stiffness of the shock sub 
for 3m span 

1/Ji(z) Axial comparison function M Mass of the traveling block 
for the spans of the BHA 

Lli(z) Axial comparison function c, Damping of the top cable 
for the pipe section 

cpi(z) Lateral comparison function c2 Damping of the shock sub 
for the 3 m span 

CJi (z) Lateral comparison function £1 Young's modulus of the pipe 
for the first span of the BHA section 

-1, (t) Generalized coordinates Ez Young's modulus ofthe collar 
system in the axial direction and collar section 

s,. (t) Generalized coordinates lJ, ( t) Generalized coordinates 
system in the second lateral system in the first lateral 

direction direction 
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8 Concluding Remarks 

"These oscillations arise freely, and I have determined various conditions, and have 

performed a great many beautifitl experiments on the position of the knot points and the 

pitch of the tone, which agree beaut~fully with the theory. " 

Daniel Bernoulli (from a letter to Leonhard Euler) 

8.1 Summary 

With the increasing demand for petroleum products, drilling of oil and gas reservoirs has 

evolved, becoming faster and more efficient. One of the newest techniques in the drilling 

industry is the use of downhole axial vibration generators above the bit, which have been 

shown to enhance rate of penetration, and thus drilling cost. However, with the 

implementation of these tools, the rate of failure of the "Bottomhole Assembly" (BHA) 

and downhole tools, such as "Measurement-While-Drilling" (MWD) tools has increased. 

The only effective way to benefit from the positive consequences of these tools is to 

isolate the imposed vibration from the rest of the drill rig, and in particular the drillstring. 

Vibration modeling of the drillstring provides an effective tool towards maximizing the 

positive effect of vibrating tools on bit-rock force, and minimizing unwanted vibration 

that is transmitted to the rest of the drillstring. 

In this thesis, the nonlinear coupled axial-lateral vibration of the drillstring in presence of 

a downhole vibration generator tool was simulated through analytical and numerical 

modeling schemes. Also, a shock sub was simulated as a means of isolating the induced 

vibration by the downhole vibration generator tool. The developed and validated models 
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were used to extract modal contents and time response of points of interest along the 

drillstring. The contact behavior of the drillstring was also investigated. As 

aforementioned in the introduction section, due to the complexity of the drillstring 

vibration modeling, the research was divided into five steps and the models were 

enhanced at each step by considering more interactions, adding more degrees of freedom 

and considering more drilling components. In this chapter a summary of all of the 

modeling work conducted in chapters 3, 4, 5, 6 and 7 is presented. 

8.2 Concluding Remarks 

The first model which was developed in this study was a bond graph model of a non­

rotating BHA under a constant compressive load, developed using the modal expansion 

method. A Newtonian approach was implemented to derive the mode shapes and natural 

frequencies of the BHA, required for the modal expansion method in bond graph 

modeling. Nonlinear Hertzian contact was defined at midspan. The effect of the "Weight­

on-Bit" (WOB) on the lateral instabilities were qualitatively analyzed through phase 

planes of the contact points and it was verified that lower WOB values results in a less 

chaotic contact behavior, while increasing WOB to the buckling limit of the BHA results 

in a highly successive irregular contact trend. The effect of torque, mud damping, varying 

axial force along the drillstring and coupling between lateral and axial modes were not 

included in the first model. 

The second developed model was an analytical model of the coupled lateral modes of a 

non-rotating BHA in the presence of driving torque and spatially varying axial load. The 
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Newtonian approach was used to derive the partial differential equations (PDEs) of 

motion and then, the expanded Galerkin's method with the first four retained modes was 

applied to convert the PDEs to coupled ordinary differential equations (ODEs) in terms of 

general coordinates. The resulting set of ODEs was solved to extract the lateral resonant 

frequencies, with which the rotary speed should not coincide. For validation of the 

analytical model, a Finite Element Model (FEM) with the same loads, interactions and 

boundary conditions was developed. The concept of mass participation factor was used to 

verify that retaining the first four modes in the analytical model captures most of the 

system kinetic energy. The critical rotary speeds were also verified by the FEM model. It 

was also concluded that transverse coupled natural frequencies are more sensitive to 

changes in the WOB than to the driving torque. The mud damping effect and lateral 

contact, which are major parameters affecting lateral motion of the drillstring, were not 

captured in this step. In order to investigate the effect of the axially-vibrating downhole 

tools, it is required to capture the axial mode in the drillstring. Also, the entire drillstring 

needs to be modeled to study the pipe axial and lateral motions as well. 

In the next modeling step, the entire non-rotating drillstring, including a downhole 

vibration generator tool, mud damping, driving torque, spatially varying axial load and 

Hertzian contact forces was simulated using a nonlinear coupled axial-lateral 

elastodynamic model. The BHA section was assumed as a three-span BHA, which results 

in more accurate lateral contact and lateral resonant frequency prediction. Lateral mode 

shapes of a three-span beam were derived analytically and implemented in the expanded 

Galerkin's method with the first four modes retained. The "Bypassing PDEs" method was 
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applied to derive the equations of motion and the equations were solved symbolically, 

which simplifies sensitivity analysis. The resonant frequencies and the time response of 

points of interest along the entire drillstring were studied. The severity of the contact at 

each BHA span was studied through the radial displacements and phase planes at multiple 

contact points. In order to validate the developed model in this step, another model with 

the same characteristics, dimensions, boundary conditions and interacting loads, but with 

a different modeling scheme was required. This directed the research towards the next 

modeling step. 

A dynamic fmite element model of the drillstring with the same characteristics of the 

model developed in the previous step was created. The ABAQUS FEM Explicit solver 

package® with the "kinematic friction contact" algorithm and Rayleigh damping model 

for the mud was used. The h-method mesh sensitivity analysis was conducted to 

determine the proper element length and minimize the computational time. The effective 

modal mass was applied in the axial and two orthogonal lateral directions to validate the 

number of modes retained in the analytical model of the previous step. The resonant 

frequencies and time responses from both models showed excellent agreement. Also, the 

contact locations assumed in the analytical model were verified by the FEM model and 

both models demonstrated the same contact severities at the contact locations. The FEM 

model is easily reconfigurable for different drillstring geometries, and can accommodate 

more complex, nonlinear phenomena and more interactions. In order to decouple the 

imposed vibration induced by the downhole axially vibrating tools, a shock sub must be 
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implemented. Also, the bit rock-interaction needs to be addressed in the model for proper 

selection of shock sub parameters. 

In the last modeling step, analytical and numerical modeling schemes were used to 

develop an elastodynamic and an FEM model of the coupled axial-lateral vibrations of a 

rotating drillstring with a multi-span BHA in presence of the downhole vibration 

generator tool and a shock sub. The "Bypassing PDEs" method, along with the expanded 

Galerkin's method and the Lagrange's equation, was implemented to derive the analytical 

model. The lateral comparison functions for the mode shapes approximation technique 

were derived analytically. Also, the axial comparison functions for a system of hybrid 

continuous (the entire step-beam drillstring) and discrete elements (shock sub elements 

and equivalent mass-spring-damper of the top hoisting system) were developed 

analytically. The FEM model was specifically developed using the Explicit solver 

package of ABAQUS®, with "kinematic friction algorithm" and "general contact surface 

detection" method. The mud damping, spatially varying axial force, driving torque, 

downhole axial vibratory tool, bit-rock interaction and a shock sub were captured in both 

models and the nonlinear coupling terms due to contact, axial stiffening and torque were 

retained in the analytical model. Time histories of the axial displacement, two orthogonal 

lateral displacements, contact locations and severities, critical rotary speeds and the 

developed forces were extracted for several points along the drillstring and they were in 

agreement in both models. The shock sub showed significant decoupling and isolation of 

the tool vibration over an extensive range of the drillstring rotary speeds and with the 

softening of the shock sub's spring, the vibration suppression was more efficient. It was 



also conducted that the simultaneous use of a shock sub with a downhole vibration 

generator tool results in a more enhanced cutting force at the bit. 

8.3 Dissertation Highlights and Contributions 

• Development of a nonlinear elastodynamic model of the coupled axial­

lateral vibrations of the entire rotating drillstring with the following 

features 

o Downhole axial vibration generator tool and shock sub 
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o Mud damping, driving torque, spatially varying axial force along 

the drillstring 

o Bit-rock interaction as a displacement boundary condition at the bit 

location 

o Nonlinearities due to strain energy, geometry and axial stiffening 

o Hertzian contact at the contact points 

o Multi-span BHA 

o Application of the "Bypassing PDEs" method to derive the 

equations of motion 

o Multi-mode approximation with the expanded Galerkin's 

approximation 

o Symbolic solution of all analytical equations to facilitate sensitivity 

analysis 

• Deliverables of the analytical model 

o Modal contents (mode shapes and natural frequencies) 



o Time history of any point on the drillstring, including multiple 

contact points 
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o Prediction of contact at multiple possible points on the multi-span 

BHA 

o Demonstrating the vibration suppression ability of the implemented 

shock sub 

• Development of a nonlinear dynamic finite element model of the of the 

entire rotating drillstring with the following features 

o Downhole axial vibration generator tool and shock sub 

o Driving torque, spatially varying axial force along the drillstring 

o Bit-rock interaction as a displacement boundary condition at the bit 

location 

o Drillstring-wellbore contact model with the "kinematic friction 

algorithm" 

o "General kinematic contact algorithm" was used to determine all 

contact points 

o Mud damping model as Rayleigh damping model 

o Mesh sensitivity analysis to minimize the computational cost 

o Explicit solver package for conducting the simulations 

• Deliverables of the FEM model 

o Determining modal contents of the drill string 
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o Mass participation factor, modal mass and effective modal mass 

values 

o Dynamic response of any point on the drillstring, including the 

contact point 

o Capturing the developed axial bit-rock force in the presence of all 

interacting loads 

o Prediction of contact at multiple possible points on the multi-span 

BHA 

o Demonstrating the vibration suppression ability of the implemented 

shock sub 

8.4 Future Research Recommendations 

The following extensions and enhancement are suggested to extend the current models for 

further applications: 

• Capturing the torsional mode of the drill string and considering the 

frictional torque developed between the drillstring and the borehole to 

study the forward and backward whirl phenomena: 

The mass unbalance in a rotating drillstring causes centrifugal forces, and 

bowing of the drillstring, which causes whirling. If the torsional mode is 

captured in the drillstring vibration study and frictional torque (rolling 

contact) between the drillstring and borehole included in the equations, it 

allows for whirling study of the drillstring. In order to capture this 



phenomenon, the torsional mode needs to be captured and the impact 

model needs to be modified to include rolling contact. 

• Tuning the bit-rock interaction model based on field test or laboratory 

experiments: 
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The amplitude and frequency of the bit-displacement boundary condition 

assumed in this study is based on values reported in the literature. In order 

to implement this model for further laboratory tests or field trials in a 

certain formation, it is recommended to tune the assumed amplitude and 

frequency using data provided by experimental facilities. 

• Assumption of fluid flow inside and outside of the drillstring: 

The internal and external mud flow does not have a considerable effect on 

the axial and torsional natural frequencies and steady state response of the 

drillstring in these modes in vertical wells. However, capturing the mud 

flow can result in a more realistic model. 

• Modifying the models for directional drilling applications and 

investigation of appropriate friction models for inclined well bores: 

In deviated wellbores, modeling the contact between the lower side of the 

drillstring and the wellbore (friction modeling), and implementing torque 

and drag forces are the most challenging concepts. Many studies by others 

have undertaken to develop torque-drag models in vibration modeling of 

the drillstring in inclined wellbores. The developed torque-drag models are 

static models, useful for pulling pipe out, lowering it down, or drilling 
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without vibration. These models would need to be modified for capturing 

dynamic nonlinear friction effects in vibrating drillstrings, and the 

modified models would need to be incorporated into the FEM and 

analytical models of this thesis. 

• Tuning the models for further field application based on MWD data from 

field tests: 

MWD tools provide useful information about the vibration trend of the 

drillstring down the hole. The assumptions and simplifications made in the 

developed models in this thesis could potentially be verified and tuned 

using data provided by MWD tools. 
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Appendix 1: Buoyant Force Treatment in the Drillstring 

Al.l: Introduction 

There are two different points of views to treat the static loads resulting from the buoyant 

force of the mud on the drillstring: The Archimedes's law and the concept of effective 

tension. 

If the buoyant force due to the mud is treated with the Archimedes's law, there will be a 

distributed buoyant force acting on the entire body equal to the weight of the drilling mud 

displaced by the drillstring. 

On the other hand, the effective tension is based on the submerged weight of the body. In 

the effective tension point of view "the drillstring does experience a vertical force at the 

bottom end which is equal to Pmud gAL. This concentrated vertical upward force 

combines with the distributed weight of the drillstring" [ 1]. 

If the buoyant force is treated with the Archimedes's law, there will be no axial force in 

the drillstring at a specific elevation above the bottom which is not correct in the applied 

drilling. For further explanation of this fact, consider the following example: 

"Consider a solid body which has the same density as water; an athletic swimmer is a 

reasonable approximation of this. Considering buoyancy as a distributed force (in the 

Archimedean sense) would now yield an effective tension in this swimmer' s body that 

would be zero, independent of the depth to which he or she might happen to dive. As 

anyone who has suddenly plunged into a pool has probably discovered, this is not the 
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case. Indeed, as one dives rapidly deeper into the water the external pressure trying to 

crush one's body only gets larger. This observation supports the external pressure form of 

buoyancy argument rather than Archimedes' approach. Apparently, the external pressure 

form is better for revealing the actual true stress in the submerged body, just as with the 

rapidly diving swimmer." [ 1] 

This fact is also verified by Bourgoyne eta/. [2] in the SPE drilling handbook. After 

comparing two points of views for treating the hydrostatic force, they have concluded 

that: "When axial force must be determined, the effective point of application of the 

hydrostatic pressure must be considered and Archimedes's relation cannot be used." [2] 

The presence of the concentrated force is also verified by Mitchell eta/. [3] in the SPE's 

newly published textbook. They have drawn the free body diagram of the drillstring 

(Figure Al-l). Two concentrated forces, namely F1 and F2 are considered at the top and 

bottom of the drill collars cross sectional area, respectively. These two forces are stated as 

"hydrostatic pressures acting on surfaces perpendicular to drillstring axis". 

Al-2: Derivation of the Spatially Varying Axial Force along the Drillstring 

Using the effective tension point of view as discussed above, the equilibrium equation is 

written for the entire drillstring for the FBD diagrams shown in Figure A 1-2. The 

abbreviations are explained in Table A 1-1. 

If the entire drillstring is assumed under equilibrium (FBD #1), the following equilibrium 

equation is written along the z axis: 
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Figure A 1. 1: Free body diagram of the drillstring [3] 

Table Al-l: Abbreviations used in Figure A1.2 

F Hydrostatic I Hydrostatic force at the bottom Lp Length of the pipe section 
of collar section 

F Hydrostatic2 Hydrostatic force at the pipe- Lc Length of the collar section 
collar junction 

WOB Weight on bit L Entire length of drillstring 
We Weight of the collar section Fpipe Axial force in the pipe section 

Wp Weight of the pipe section Fcollar Axial force in the collar section 

Fhook Hook load z Longitudinal axis along the 
drill string 
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F pipe 
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F Hydrostatic I F Hydrostatic I F Hydrostatic I 

Figure Al-2: Free body diagram of the drillstring 

L Fz = WOB + FHydrostaticl + Fhook- Wp- We- FHydrostaticZ = 0 
(Al.l) 

In order to fmd the axial force along the collar section, FBD #2 is assumed and the 

equilibrium equation in the z direction for this section is: 

Fcollar = - W 0 B - F Hydrostatic! + We (A1.2) 

Considering this fact that the F Hydrostatic! is the resultant force due to the mud column 

pressure at the bottom of the collar section and assuming the weight of the collar section 

up to the section cut, these two forces are expanded and Equation A1.2 is written as: 

Fcollar = -WOB - PmudgLAcollar + P collarAcollar9Z (A1.3) 
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In order to find the axial force distribution in the pipe section, FBD #3 is considered and 

the equilibrium equation is written in the z direction as: 

Fppe = - w 0 B - F Hydrostatic! + F Hydrostatic2 + Wc + wp (A 1.4) 

Knowing this fact that FHydrostaticz is applied at the drill pipe-collar junction and is 

computed from the cross sectional area difference between the drill pipe and drill collar, 

multiplied by the hydrostatic pressure in the mud column at that depth, Equation A 1.4 is 

expanded as: 

Fpipe = -WOB- PmudgLAcollar + Pmud9Lp(Acollar - Apipe) + 

PcollarAcollarBLc + PpipeApipe9(Z- Lc) 

(A1.5) 

This is one notation for the axial force distribution in the pipe section derived from 

considering the lower section (FBD #3) at the pipe section. Another section which could 

be assumed to fmd the axial force in the pipe section is the remaining top section (FBD 

#4). Considering the subject of internal force in the sections, the internal forces in both 

top and bottom sections have the same magnitude and are in the opposite directions. 

Writing the equilibrium equation for the top section in the z direction: 

A1.6) 

If Fhook is substituted in this equation from static equilibrium for the entire drillstring 

(Equation A1.1), then Equation AJ.6 will be the same as Equation A1.5: 

Fpipe = (-WOB- FHydrostaticl +We + Wp + FHydrostaticz)­

PpipeApipeg(L - z) 

(A1.7) 
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Expanding the terms in the above equation: 

Fpipe = (-WOB- PmudgLAcollar + PcollarAcollarBLc + PpipeApipe9Lp + (Al.8) 

Pmud9Lp(Acollar - Apipe ))- PpipeApipeg(L- z) 

Rearranging the above equation and knowing that L = Lp + Lc , Equation A I. 7 is 

simplified as: 

Fpipe = -WOB- PmudgLAcollar + Pmud9Lp(Acollar - Apipe) + 

PcollarAcollarBLc + PpipeApipeg(z- Lc) 

(A1.9) 

which is exactly the same as Equation A 1.5. Since the static equilibrium has been 

assumed for the entire drillstring, there is no difference between Equation A 1.5 and 

Equation A 1.6. 
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Appendix 2: Hamilton's Principle and Lagrange's Equation 

A2.1: The Principle of Virtual Work 

The principle of virtual work is essentially a statement of static equilibrium of a 

mechanical system. Before any further discussion, it is necessary to introduce the concept 

of virtual displacements. Assuming that the position of a point in aN dimensional space is 

given by r . (i = I, 2, ... , N), the virtual displacement is defined as imagined infinitesimal 
l 

changes 6r.(i = 1,2, ... , N) in the position, which are consistent with the constraints ofthe 
I 

system. The virtual displacements are not true displacements, but small variations in the 

system coordinates resulting from imagining the system in a slightly displaced position. 

In contrast to true displacement, this process does not involve any changes in time. 

Therefore, the forces and constraints do not change during this process. 

A2.2: Lagrange's Equation 

For most discrete mechanical systems, the potential energy can be expressed in terms of 

the generalized coordinates, q = (q
1
, q

2
, ... , q N) , while the kinetic energy can be 

expressed in terms of the genera lized coordinate vector, q, and its first t ime derivative. In 

addition, the virtua l work which is performed by non conservative forces as they act 

through the virtual displacements, caused by arbitrary set of variations in the general ized 

coordinates, can be expressed as a linear function of those variations. Once these scalar 

functions are expressed in terms of generalized coordinates, the well-known Lagrange ' s 

equation is [I]: 
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i = 1,2, ... ,n 
(A2.1) 

where Tis the kinetic energy, Vis the potential energy of the system including both strain 

and potential of any conservative external force. Q
1
, Q

2 
and Qn are the generalized 

forces corresponding to the coordinates q
1
, q

2 
and q n. 

However, the situation is more complicated in the case of distributed systems, because 

there are at least two independent variables instead of one. In addition, the potential 

energy of the distributed systems is usually a function of not only the generalized 

coordinates alone, but also the spatial derivatives. 

For distributed systems kinetic and potential energies, in terms of generalized 

coordinates, can be written as [I]: 

/ , 

T = Jf(q)dx 
0 

/, 

v = f v cq,q', q") 
0 

(A2.2) 

where f and V are kinetic and potential energy intensities, respectively. Moreover, the 

virtual work is simply: 

/, 

5W,c = f f( x, t)r5qdx 
(A2.3) 

0 

where f (x, t) is a vector of generalized forces corresponding to generalized coordinate, q. 

Notice that concentrated forces can be expressed as distributed by means of spatial Dirac 
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delta functions. The extended Hamilton ' s principle, requires variation of the Lagrangian L 

= T- V. Therefore [I]: 

/, /, " " " " 

oL = f oidx = f caL &J + aLl &JI + aL, &J" + a~ &J)dx 
o o aq aq aq aq 

(A2.4) 

It is essential to carry out integration by parts with respect to x and t. First, integration 

with respect tot will be: 

1} "' " 12 "' 12 " f a~ &Jdt = a~ &Ji ,, - f ~(a~ )&Jdt = -f ~(a~ )&Jdt 
,, aq aq ,, ,, at aq ,, at aq 

(A2.5) 

Note that the assumption that 6q is zero at t=tl-t2 is used here. The next step is to carry 

out integration by parts with respect to x. It is assumed that differentiation and variation 

are interchangeable; Hence [I]: 

I~ I ~ ~ I ~ 

f. !!!:__ 5, I dx = J~ !!!:__ ~ dx = aL 5, I/. - s· _!_ (!!!:__)5, dx 
a lq a ~ a q a 'q 0 a a ' q o q o qx q o x q (A2.6) 
I~ ~ ~ l ? ~ 

f. aL o, "dx = aL o, 'I '· _ _!_( aL )5, I'·+ J-~( aL )5, dx 
a ,q a "q 0 a a "q 0 a 2 a "q o q q x q ox q 

Introducing the above equations into Hamilton ' s principle (this subject will be discussed 

right after this section): 

's' { [ at 5, I'· at 5, 'I'· a c at )5, I'· 1 -a, q o+-a, q o - -a -a " q o + 
t , q q X q (A2.7) 

L ai a ai a 2 ai a ai . 
J[- - - (- )+ - (- )- - (- )+ j (x t)]6qdx}dt = 0 
0 aq ax aq' ax 2 aq" aT aq ' 
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At this point, the arbitrariness of the virtual displacement is invoked. Let 

5q(O,t) = 5q(L,t) = 0 and 5q'(O,t) = 5q'(L, t ) = 0, and conclude that the above equation 

is satisfied for all values of 5q with x E (O, L) if and only if[ I]: 

ai a ai o2 ai a ai 
- - - (- )+ - (- )- - (- )+ f(x t)=O 
oq ox oq' ox2 oq" ot oq ' 

Boundary conditions may be derived from: 

~ ~ ~ 

aL ;v..l'· + aL Sr.'l'-_~caL )Sr.l '· = 0 
oq' V<J o oq" V<J o ax oq" V<J o 

(A2.8) 

(A2.9) 

Boundary conditions are obtained by considering that either 5q(O,t) or its coefficients are 

zero and either 5q'(O,t) or its coefficient is zero. Similar statements can be made about 

conditions at x= L The above equation represents the Lagrange's equation of motion for 

distributed parameter systems with Lagrangian g iven by L = T - V, where T and Vare 

defined above, 

It is worth noting that the Lagrange's equation was derived for systems with Lagrangian 

given by T and V. Possible sources of potential energy at the boundaries, such as springs, 

were not cons idered in this equation. ln cases where such devices are attached to the 

boundaries, the potential energy due to these devices can be included to the expression for 

potential energy. Inclusion of these terms w ill not affect the Lagrange's equation, but 

changes the boundary conditions for that particular system. 
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A2.3: Hamilton's Principle 

Hamilton's principle holds for any mechanical system subjected to monogenic forces and 

holonomic constraints. By contrast to the Lagrange's equation, it applies for systems 

characterized by infinitely many degrees of freedom, such as continuous or distributed 

systems. By Hamilton's principle [2]: 

t, ,, 

t5H = 0 where H = f Ldt = f t5(T - V + Wnc )dt = 0 
(A2.10) 

This approach has the advantage of being independent of the coordinates used, when 

contrasted with other approaches, such as the Lagrangian. In addition, Hamilton' s 

principle permits the derivation of equations of motion from scalar energy quantities in a 

variational form. In the above equation, W denotes work done by non conservative 
nc 

forces acting on system, including damping and any arbitrary external loads. The symbol 

o indicates variation taken during indicated time interval. 

This principle states that the variation of the potential and kinetic energy plus the 

variation of work done by the non conservative force during any time interval [tl , t2] 

must be equal to zero. Application ofthis principle leads to the equation of motion for 

any given system. This approach enjoys the advantage of dealing solely with scalar 

quantities such as kinetic and potential energies. 

In other words, this principle states that the motion of a mechanical system, from an 

initial configuration at time t1 to a final configuration at time h, occurs in such a manner 

that the integral action attains a stationary value with respect to arbitrary admissible 
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variations of system configurations. At static equilibrium, the kinetic energy vanishes and 

the potentia l energy becomes independent of time. Hamilton's principle then reduces the 

principle of minimum potential energy. Also, one can deduce Lagrange's equation from 

Hamilton's principle. Some definitions which are required are: 

Monogenic forces are derivable from a scalar quantity. This scalar is typically some work 

or energy function. For example the spring force kx in a linear spring is monogenic, since 

2 
it could be derived from energy function kx by differentiation. Forces that cannot be 

2 

derived from a scalar quantity (such as frictional force) are po lygenic. 

Holonomic constraints express relations between the system coordinates in a finite form. 

holonomic constraint since non-finite differentials dq . are involved [3]. 
J 

A variational of a function is a virtual infinitesimal change of all function values. Th is 

change, by contrast to the infinitesimal d-process of ordinary calculus, is not caused by an 

actual change of an independent variable, but is imposed on a set of independent variables 

as kind of mathematical experiment. For a deformation paten u(x) , if a ll values of u are 

changed by a slight amount ou(x), the result is the variation of u(x). An admissible 

variation satisfies the boundary condition of the problem. Thus t5u = 0 at boundaries, 

when t5u(x ) is an admissible variation of u(x) . 
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Certain rules apply for the calculus of variation of functionals. For example, the first 

variation t5f of a functional F(x,y(x),y'(x),y"(x), .. . ,/n)(x) is given by a simple chain 

rule [2]: 

t5F= 8F &+ 8F &'+ 8F &"+ ... + 8F & <"l 
ay 8y' 8y" ay<n) 

(A2.11) 

Expressions for strain energy are required, when using Hamilton's principle for elastic 

structures. For one dimensional bending of beams, the strain energy per unit beam length 

. M2 
IS _ 

2£/ 

In the next Appendix, an illustrative example will be solved using Hamilton's principle 

and Lagrange's equation. 
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Appendix 3: Hamilton's Principle versus the "Bypassing PDEs" 

Method for Continuous Systems- A Case Study 

In the following section, two different energy methods, namely the conventional 

Hamilton's principle and the "Bypassing PDEs" method will be discussed through a 

comprehensive example and the results of both methods will be compared. 

A3.1: Hamilton's Principle 

The equations of motion governing the single-plane transverse vibration of a beam with a 

point load time-varying force and a concentrated mass will be derived, using the 

conventional Hamilton's principle. The beam is shown in Figure A3.1 : 

II 

Figure A3 .1: Simply supported beam in transverse motion [ 1] 

The beam is pin supported at both ends and a time varying point load (P(t) ) is applied at 

point xo along the beam. A concentrated mass is also located at the same point. The lateral 

motion is in the u direction and the coordinate along the beam length is x. The stiffness of 

the beam is El , the density of the beam is p and the length of the beam is denoted by /. In 

order to derive the Lagrangian of the system, the kinetic and potential energy equations of 

the system needs to be derived first. The kinetic energy of the system is: 
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11! 11! T = 2 0 pAil2 + mo(x- Xo). (il(xo, t)) 2 dx = 2 0 pA + mo(x- Xo) il2 dx 
(A3.1) 

And the potential energy of the system is defined as: 

1
!1 

V = 
0 

2 El(u") 2 + P(t)o(x- x0 )u dx 
(A3.2) 

In the above equations, o(x) is the Dirac's delta function. The Lagrangian is defined as 

L=T-Vand in the variational form as: 

l 

L = l h(x, t, u, il, u")dx 
(A3.3) 

The Hamiltonian for the time span of t1 to t 2 is defined asH = (z L dt . Therefore, h for 

d 
the above system can be defined as h = - (T - V): 

dt 

1 1 
h = 2 (pA + mo(x- Xo)il 2

)-2 El(u") 2
- P(t)o(x- Xo)U 

(A3.4) 

In order to implement the Hamilton's principle, the variational form of Hamiltonian (H) is 

required: 

f t2 ftz 11 
oH = oL dt = c5 h dx dt 

tl t1 0 (A3.5) 

f tz 1 ~ Jtz 11 ah ah ah 
= t l 0 oh dx dt = t1 0 (au ou +au oil + au" ou") dx dt 

Integration of part is used to express all the terms in Equation A3 .5 in terms of virtual 

displacement o(u). For the terms inside the above integral containing c5u: 
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,, 

1 

ah 
1 

['' ah J 
1 

[[ ah ]'' '' a ( ah) J Jf-. Sudx dt = J f-. Sti dt dx = f -. Su - J- -. Sudt dx 
,, 0 au 0 ,, au 0 au ,, ,, at au (A3 .6) 

= J [[pA+mS(x- x0 )uSu l- f(p A+mS(x- x0 )ii Su dt)l dx 
0 ,, 

And the integration for ou" is similarly conducted using the integration by part: 

ftz JL ah Jtz ( ah 
1 JL a ah ) 

(au" ou") dx dt = [au" ou'] - ax (au") ou' dx dt 
tl 0 tl 0 0 

ftz ( ah 
1 

[a ah ]
1 J1 a2 

ah ) = [-ou'] - -(-)ou + -(-)oudx dt 
au" ax au" ax 2 au" tl 0 0 0 

(A3.7) 

ft z fl = ([ - Elu"ou']b - [ -Elu"' ou]b + -Eiu"" oudx)dt 
t l 0 

The above two integrals can be simplified, using the boundary conditions of the beam. 

Since ou is zero for any time interval , the first term of Equation A3 .6 is zero. The fi rst 

term inside the integral of Equation A3.7 is a lso zero, since Elu" (bending moment) is 

zero for both integral interval limits. Moreover, the second term in Equation A3.7 is zero, 

because the virtual deformation (ou) is zero for any time interval. Simplified Equations 

A3 .6 and A3.7 are substituted back in Equation A3.5 and the result is: 

ft
2 ll oH = ( - P(t)o(x- Xo) - (pA + mo(x - Xo) )ii - Elu"") ou dx dt 

tl 0 

(A3 .8) 

Since 6(H) is zero for any virtual displacement (6(u)) , Equation A3.8 can be simplified to 

the following form: 

(pA + mo(x- x0))ii + Elu""+ P(t)o(x - Xo) = 0 (A3 .9) 
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The above equation is the equation of motion of the system in the transverse direction u. 

For solution of the above PDE equation, an approximate method is required to convert the 

PDE to ODE. In the approximation technique, the dependent variable of the PDE (u(x,t)) 

in the above equation, is approximated by the following equation: 

N 

u(x, t) =I q1(t) * qJ1(x) 
J=l 

(A3.10) 

where qJ 1 ( x) is a trial function, which could be an eigenfunction, a test function (also the 

called the comparison function) or an admissible function, determined based on the 

solution of the free vibration equation. q1 ( t) is called the mode participation factor or 

normal coordinates. A detailed review of the approximate solution techniques also can be 

found in section 2.9 of the thesis. Let's set the concentrated mass m to zero for simplicity 

in the trial function assumption and add a viscous damping term to equation A3.9: 

pAii + cpAu + Elu""+ P(t)o(x- x0 ) = 0 (A3.11) 

IfEquation A3.10 is substituted in Equation A3.11 and all the terms are multiplied by 

(/Ji (x, t) , using the mode orthogonality characteristic and conducting the integration, then 

the result is the following equation: 

P(t)OisP!Ox-.-tOd.x=O (A3.12) 

For the system of Figure A3.1 (simply supported beam), qJ1(x) can be set to sin(J~x). 

Therefore, this approximate function is substituted in Equation A3 .12 and the result is: 
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(A3.13) 

= pA" ·! lcS .. q" · +cpA" .! lo .. q· · + El" · ~ (1rr) 4 
cS .. q · + P(t)m-(x0 ) = 0 .L..1 2 L1 1 L..1 2 L1 1 L..1 2 1 L1 1 't'L 

i = 1,2,3, ... , N 

The above equation is a set of N coupled ODEs, which can be solved using a numerical 

solver algorithm, such as Runge-Kutta method. 

A3.2: The Bypassing PDEs Method 

In order to bypass the PDEs for continuous systems and acquire the time domain ordinary 

differential equations, the mode shape approximation technique along with the Lagrange's 

equation is implemented. This method is called the "Bypassing PDEs" method. In this 

method, trial functions in the mode shape approximation technique are substituted in the 

energy equations at the first step. For the system ofFigure A3.1, the conventional energy 

terms are determined as: 

111 111 2 
T = 2 pAi£2 dx = 2 pA (L q1<p1) dx 

0 0 j 

111 V = 2 
0 

EI(u") 2dx- ( -P(t). u(x0, t)) 
(A3.14) 

111 D =- cpAiL2 dx 
2 0 

Where Tis the kinematic energy, Vis the potential energy and Dis the dissipated energy. 

The Lagrange's equation for the above energy terms is applied, knowing that the 
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Lagrangian is defined as L=T-Vand the Lagrange's equation is :t (:~)- (:;) + (!~) = 

0 for i = 1 to N. The result is: 

(A3.15) 

If the mode shape approximation technique is applied at this step (q;i(x, t) = sin(i~x)) 

and the orthogonality of modes is considered, the following equation is derived: 

i = 1,2,3, ... IN 
(A3 .16) 

which is the same as Equation A3 .13, which was derived using the conventional 

Hamilton's principle in the last section. This method is accurate and workable for 

complicated nonlinear problems [I]. 
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Appendix 4: FEM Modeling of the Drillstring-A Case Study 

As an alternative method to derive the equations of motion of the drillstring in the 

complicated coupled vibration states, and investigate its vibration behavior, the FEM 

method can be used. In the following, a general formulation method for the FEM model 

of the drillstring in the transverse vibration state (without contact) will be discussed. In 

the following equations, the drillstring is assumed elastic, homogenous and isotropic. 

The XYZ is a Cartesian coordinate system with its origin on the un-deformed element. 

The xyz is the Cartesian coordinate system after deformation (Figure A4.1). 

y 

p 

X 

z 

Figure A4.1: Generalized coordinates [ 1] 

The rotation of the latter coordinate system is through rotation angles as in Figure A4.2. 

The instantaneous angular velocity of the xyz frame can be stated as: 
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( A4.1) 

The I , }
1 

and k
2 

are unit vectors along the X, y
1 

and z
2 

axis. If the angular velocity is 

transformed to the XYZ coordinate system, the following equation will be achieved [1]: 

(A4.2) 

y 

z 

Figure A4.2: Rotation angles [1] 
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If the point p is on the undeformed shaft element, the global position of the point p can be 

stated as: 

(A4.3) 

u is the deformation vector of p. the first derivative of the above equation with respect to 

time is: 

dr 
_ P =r +m.r =r +[m]{r }=[N]{e}+[m]{r} dt p p p p v p 

(A4.4) 

N is the shape matrix and e is the matrix for nodal coordinate of the finite element. The 

kinetic energy of the element is [I]: 

T = ~ f ,u{e}r[NvnNJ{e} + {e}r[Nvnm]{rp} 
v 

(A4.5) 

The second and the third terms are zero, because of stating the moment of inertia with 

respect to the center of the mass of the element. The first term in the above equation is 

due to the translation and the last term is the result of rotation. Equation of the Kinetic 

energy can be simplified as [ 1]: 

T = ~ {e}r[M,]{e} + ~C¢>2 + ~ {e}r[M~ ]{e} 

- ¢{e}r[G] {e}- {e}r[M.] {e} + _!_ {e}r[M,] {e} 
2 

(A4.6) 

M is the translational mass matrix, M is the rotary inertia mass matrix, M "-is the 
t r r 

torsional-transverse inertia coupling mass matrix and G is the gyroscopic matrix [I]: 



I 

[M,] = f[NX ,uA[N., ]dx 
0 

I 

[M,] = J[N0 tf0 [N0 ]dx 
0 

I 

[M ~" ] = f I P[Nf[ N ]dx 
0 

I 

[Me]= f (/1JN ~"f[NI}z ]{e}[Nev]- [N~"f[Nev ]{e}[N0,])dx 
0 

I 

[G] = [G' ]-[G' f , [G' ]= f f"[N11.,f[NI}z ]dx 
0 
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(A4.7) 

The strain energy of the element can be written as follows for one axial, two lateral and 

three rotations [ 1]: 

U,= U 1 +U2 + U3 (A4.8) 

= ..!_ f[EA(du )2 + Elz( o2v)2 + EI ( o2w)2 + GJ( o <p)2]dx 
2 0 dx ox2 

y ox2 ox 

The strain energy due to the gravity effect is [ 1]: 

(A4.9) 

Adding equations of the strain energy and knowing that for the circular cross section of 

the drillstring, I z = I y [ 1]: 

Or in the matrix form as U =.!. {e}T [K] {e}. 
2 

(A4.10) 

K is the stiffness matrix, which is the sum of axial stiffness matrix ( K ), torsional 
a 

stiffness matrix K , bending stiffness matrix Kb and K as the axial stiffening matrix 
q ~ 



327 

due to the gravity. K can be divided to two separate parts according to the axial force 
gs 

distribution along the drillstring from tension at the upper part to the compression at the 

lower part [ 1]: 

(A4.11) 

The axial force along the element can be stated as [ 1]: 

(A4.12) 

L is the length of the pipe section. Therefore, the axial force in the pipe section is [ 1]: 
p 

F;(x) = - pgA[L; + (( - x)] (A4. 13) 

And for the collar section under compression, the axial force is [ l] : 

L; L1u-

F;,(x) = J pgAdx+ J pgAdx 
(A4.14) 

0 L, 

Utilizing the energy expressions to the variational form of the Lagrange' s equation and 

using the conventional assembly procedure, the equation of motion of the drillstring for 

the finite e lement method can be written as [M ] {e} + [G] {e} + [K] {e} = {Q}. M is the 

global mass matrix, G is the gyroscopic matrix, K is the assembled global stiffness matrix 

and e is the deformation vector. 
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Appendix 5: List of Assumptions in the Developed Models 

The following assumptions have been made in the modeling steps 1 to 5, defined in 

section 1.4 of this thesis. The justification of these assumptions can be found in the body 

of the thesis. 

• The drillstring is assumed vertical in this study and inclined drilling has not been 

assumed 

• Euler-Bernoulli beam theory is assumed as the drillstring beam element 

• Stabilizers are assumed as pinned-pinned boundary conditions in the lateral direction 

• Hertzian contact theory is assumed as the impact force between the drillstring and 

well bore 

• Spatially varying axial load is assumed as the axial force along the drillstring 

• Driving torque, hook load and WOB are assumed constant during the analysis 

• The frequency and amplitude of the downhole vibration generator tool are constant 

values 

• Mud damping in the lateral direction is modeled through the hydrodynamic drag 

concept 

• In chapters 5 and 6, the boundary condition is assumed as fixed at top-free at the 

bottom in the axial direction 

• In chapter 6, kinematic friction algorithm is assumed as the lateral interaction force 

between the drillstring and wellbore and sliding friction is neglected 
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• The rotation of the drillstring is neglected in chapters 3, 4, 5 and 6, but is considered 

in chapter 7 

• The torsional mode of the drillstring and the sliding friction are neglected in this 

research 

• Rayleigh damping model is assumed in chapter 6 and 7 for mud damping modeling in 

the developed FEM model 

• The top point of the drillstring is assumed as an equivalent mass-spring damper 

boundary condition in the axial direction in chapter 7 

• The bottom point of the drillstring in the axial direction is assumed as a displacement 

boundary condition through a sinusoidal function with constant amplitude and a 

constant frequency (the same as the drillstring rotary speed) 






