

Visualizing the Impact of Changes in

Software Code

by

@MatthewFollett

School of Graduate Studies

in partial fulfilment of the

requirements for the degree of

Department of Computer Science

Memorial University of Newfoundland

Allgust20ll

Abstract

Although software projects continue to grow larger' in size and complexity, the

typical methodsJordebugging these projects have not changed much over' the past

decade. Software is more modular, with code reuse becoming very common. This can

lead to bugsmaniJesting themselves in one or' more sections of code, but originating

in a completely different area. This thesis Jocuses on the development and study oj

Impact Viz, a novel debugging tool that considers the object orientednatU1'eofmodem

soJtwarelanguagessuchasJava, and uses visualization techniques to aidinidentiJying

the potential origins of software bugs. Resultsfromaiaborat011J evaluation help show

that participants find the new program ImpactViz to be both useJuland easy to use.

The field trialsperJonnedhave also helped define the benefits and limitationsoJusing

Impact Viz in certain situations

Acknowledgements

1 would like to thank my supervisor, Dr. Orland Hoeber, who has been a source

of support and inspiration over the past two years. Without his aiel and sllggestions,

Iwolllelncvcrhavcbccnabictofinishthisthcsis. I-JisslIggcstionsanelrommrntshavc

helped shape this thesis into what it is toelay

I also wish to acknowledge the members of the UXLab, for their comments and

sllggestions while demonstrating and discllssing this thesis, as well as the developers

for the tools lIsed for this thesis, including Eclipse, LaTeX, and Prefuse.

Finally, I wish to thank my parents, who have always pushed me to do my best

reach my goals. Without their support and encouragement, I wOllld not be theperson

thatlamtoday

Contents

Acknowledgements

List of Figures

1.2 ResearchQuestions

1.3 Assumptions and Constraints

1.4 Organization of Thesis

Opponent Process Theory of Colour

Gestalt Principles

Norman's Stages of Action

3 ImpactViz

Representation of Classes and Changes

Visualization Techniques

Graph Layout

Node Colouring

Change Impact Regions

Crossing the Gulfof Evaluation

3.3 InteractionTechniques

Change Impact Region Selection

Node Dragging

Panning and Zooming

Crossing the Gulf of Execution

Debugging Scenario

Software Prototype Design

3.5.1 Pseudo-Compiler

3.5.2 Repository Handler

4 Evaluation Methodology

Inspection Methods

LaboratoryStucly

Hypotheses

Software Projects

Participant Recruitment

Study Procedures

Study Tasks

Subjective Questions

StuclyQuestionsandMeasurements

Participant Groups

Subjective Questions

LaboratoryStucly

Project I-The Game

Time to Task Completion

Accuracy

Usefulnessancl Ease of Use

Supporting Debugging Activities

5.1.1.5 Understanding Software Code

5.1.1.6 Video Analysis

Project2-Catering

Time to Task Completion

Accuracy.

sefulnessand Ease of Use

Supporting Debugging Activities

Understanding Software Code

Video Analysis

Summary of Laboratory Study Results

Group 1- Undergraduate Students

5.2.2 Group 2- Post-Doctoral Researchers

Laboratory Study Results

6.1.1 QuantitativeHypotheses

6.1.2 QualitativeHypotheses

PluginWithanJntegratedDevelopment

Representation.

Bibliography

List of Tables

Common software activities and software visualization systems

The laboratory study results of participants debugging Project I, The

Game, using the Baseline.

The laboratory study results of participants debugging Project I, The

Game,usinglmpactViz.

F'requencyofrank preference for debugging activities for ImpactVizfor

Project I, The Game.

5.4 The laboratory study results of participants debugging Project 2, Cater-

ing, using the Baseline.

5.5 The laboratory study results of participants debugging Project 2, Cater-

ing,usinglmpactViz.

F'requencyofrankpreferencefordebuggingactivitiesforlmpactVizfOl

Project 2, Catering

List of Figures

2.1 Diagram demonstrating the relation between human vision and the

opponent process theory of colour

2.2 Diagram of Norman's stages of action

3.1 A completescreenshot of the ImpactVizsoftware visualization tool

3.2 The visual represcntation of the methoc! call stack in ImpactViz

The first,tcp ill thedebuggillgseellariousillgllllpadViz

3.4 Theseconc! step in thedebuggillgscenariousinglmpactViz

3.5 The third step in thedebuggingscellariousinglmpactViz.

5.1 The aggTegate responses of the TA~I questionnaire Project 1, The

Game, in the laboratory study from participants who usec! ImpactViz. 72

5.2 The aggregate responses of the TA~r questionnaire Project 2, Catering.

in the laboratory study from participants who used ImpactViz..

TA:\1 questionnaire response from the first group in the field trialsfrom

using ImpactViz on their own software project, an online webserviceo 82

TA:VIl.jue,tiollllaire response frolll theseeond group ill the field trials

fromusinglmpactVizontheirownsoftwareprojeet,ageo-visualization

project.

Chapter 1

Introduction

Modern software development often consists of multiple developers simultaneously

working on a single project [26]. Software code is commonly shared through aversion

control system such as Concurrent Versioning System (CVS) [34] or Subversion (SVN)

[40]. Such software repositories allow the changes from multipledevcloperswhoare

working on the same files to be easily managed. However, within a team environment,

aspcopleaddnewcodeandchangeexistingcode,thechancesofnewbugsand

unexpected behavior appearing increases [26, 36].

In object-oriented programming [38], software code is divided into classes which

represent conceptual objects. Each class may contain a set of methods which im-

plement the functionality of the class. Classes are able to inherit or encapsulate

other classes, and their associated methods are able to call one another. As a result,

the interaction between method calls within even a small project can become rather

complex [241. For example, a single method may call numerous methods from its en-

capsulated classes, each of which may make method calls to their own eneapsulated

classes. As a result, the method call stack may become very deep

When abug is accidentally introduced into a class, it not only affects the method

inwhichitoriginates,butalsomanifestsitselfasaprobleminother classes that

make use of the bugged method. Since the manifestation of the bug may appear

many levels deep in the method call stack, tracing the bug back to itsorigin can be

adilIicultalldtilllcCOIISUlllillgtask

Traditional debugging practices require the software developer to analyze the

project code line-by-Iine, trying to detect ifabugexistsinagivenclass. When code

within other classes is executed via method calIs, the number of classesthat need to

be examined as potential places where bugs could be introduced increases. As the

depth of the method call stack increases, it can become very difficuIt for the software

developer to trackdown the source ofa bug. Further,asprojectsgrowinsizethis

debugging process becomes even more complex, resulting in a very time-consuming

1.1 Motivation

While developing software projects, it can be easy to not realizethenumberofclasses

that depend on a single cla~s, or the total number of classes a single class depends

upon. When bugs are introduced intothesourcecodeofonemethod,all the methods

that depend on that onemethod,eitherdirectlyor indirectly, are alsoinlIuencedby

this single bug. In projects where the method stack can be quite large, it becomes

hard to trackdown the original source of the bug.

The goal of this research is to design, develop, and test a software visualization

systcm Uwlallowssoftwmcucvclopcrs loquicklyuuucffcclivclyscclhcfullmclhou

call slack and lherecentlychanged melhods. Visualizationmelhodsallowlheuserlo

easily ignore the classes lhat have nol recenUy been changed. focusing on lhoselhal

have changed and which provide services lOlheclass in which the bug is manifesling

itself. Using this informalion. soflware developers can quickly lrack downtheoriginal

source oflhe bug auu fix il. iustcuuoflhcmauual processofidclllifyiugcachmclhou

inlheslack,analyzingitssourcecodeandlestingitforvalidily.

1.2 Research Questions

The key research question lhal lhisresearch addresses is: What is the value of

using a visual approach to representing the method call stack and changes

to software code for the purposes of supporting debugging processes? I-Jere,

the valllccall bcmcasll[ed ill t-c'l'IllsoflH'ingablp to filld bngsqlli('ker,1II0H'(-l('('1I1'al,('!y,

and with highersatisfaclion. Wilhinlhislhesis,aprololypevisualizalionloolcalled

JmpaclVizispresenledandsludied loaddresslhisresearchqueslion

1.3 Assumptions and Constraints

For lhe purposes of this thesis, the main lype of bug we will be focusing on are

"logical" bugs - bugs lhal are correcl in lhe use of syntax bUl me nol caughl al

compil~ tim~. These logi~al bugs also only aff~t. tlw methods in the m~thod sta~k

and nOlclassmembers, where lhechange in lhe value is seen in an unrelalcdmelhod

stack. This thesis is mostly concerned with the concept of how a minor Aawin the

software code can lead to larger problems in other areas of the software system. This

will be performed by scanning the software code as plain text and modeling the class

relationships

This thesis will not be examining the problem of bugs being introduced in a

multi-threaded application. Bugs of this nature cannot bec.xamined via the source

code alone, nor can we accurately predict the total numberofthreads that may bea

problem. Also, while we are entering the domain of software engineering, this software

would not be able to pick upcasesofincorrectpolymorphism,asthisismore related

to the design of asoftware project, instead of the implementation of it. Lastly, this

thesis will not keep track of changes made to class or static variables. While bugs

might be introduced by incorrectly changing the value of these variables, there are

too many of these types of changes that can occur, but could beaddressedinfuture

work. Visualizing this type of impact, along with the method impact, would be too

much information for a user to keep the visualization clear and easy to understand

1.4 Organization of Thesis

The remaining thesis is organized into chapters separated into common themes. Chap-

ter2discussesthebackground information required to understand thisthesis,includ-

ing topics such as information visualization and ,·ariousworksperformed in the field

of software visualization. Chapter 3 will discuss the design of the thesis project, Jm-

pactViz, and provides a sample scenario of how lmapctViz would be used to assist in

the debugging of a software project. Chapter 4 outlines the methods for evaluating

IlllpactVizusinglaboratorystuuicsanu riclutrials. Chaptcr5rcporltithclinuingsof

these studies and thestatisticaJanalysisofthedata. Chapter 6 provides a discussion

on the outcomes of the evaluations and what new knowledge has beengeneratedasa

result of this research. Chapter 7 outlines the future work to be done on ImpactViz.

Chapter 8 concludes the thesis, summarizing the findings and primarycontributions

Chapter 2

Related Work

This chapter presents background research related to this thesis. The purpose is to

help provide context to the decisions that were made during the thesis work, and

a commentary on the current state of software visualization. Background informa-

tion will be provided pertaining to the areas of information visualization, including

how pcopleseeand interpret colours and the cognitive activitics that an individual

undertakes when evaluating a visualization. A brief outline of software visualization

research is also included, along with a taxonomy that providesanorganizingstntcture

for the work that others have done in this domain

2.1 Information Visualization

Information visualization is th~ fi~ld of r~srar~h that d~als with th~ d~sign, rr~ation,

and study of visual representations of abstract information [43,391· The goal is to

enhance thecogllitive abilities of the user, allowing them to understand, explore, and

interact with the data to gain a greater understanding [431. Abstract data has no

spatial properties, which gives the designer the dmllcngc of finding ways torcpl"L'scnt

the data in a useful and meaningful way

Information visualization excels at showing large andjor complex data sets. Data,

when shown as plain text or as a table of numbers, can lack context in relation to thc

otherdataalsobeingpresented.ltcanbedifficulttoseesubtlefeaturesinthedata,

suchasoutliers,patterns,orreIationshipsthatcouldheIpaperson understand the

underlying features or meaning in the data. By visualizing this information, certain

aspectsofthedatacanbeeasiertorecognizeanddataanomaliescanbecome more

apparent [5].

When designing an information visualization system, there are a large number

of ways to represent data in a visual manner (e.g., the use of colours, positioning,

sim, shapcs,ctc.) [39,25,6]. It can bcachallcngc to finding thc right combination

of representation and data to create an intuitive visualization that a user will find

helpful within a given context or task

Another concern in information visualization systems is the idea of scalability.

While a system may work perfectly with a small amount of data, when more data

points are added, the system can become cluttered and confusing. It is up to the

designer to find methods to reduce this visual clutter (e.g.,supporting filtering oper-

ations, developing alternate methods for representing the data) or find some comprise

in the representation that may not be optimal, but may scale well

Tbe nature of the data Ihat the designer wants to represent influences how they

should represent it visually. There are three fundamental types of data: numeric,

ordinal, and nominal [39, 251. Numeric data is data with a quantitative value, like

the price of an item, and there ",,,ists the possibility of data existing between two

points (e.g., the middle of $7 and $8 is $7.50). Ordinal data is data that is not

numeric but there is an implied order, like days of the week. nlike numeric data,

data cannot exist between two points (e.g., there is no day between ~londay and

Tuesday). The last type of data is nominal, where there is no ordering or numeric

representation, such as named entities. As an example, we can separate pets into

fivecategorics: reptiles, dog,. fi'h, cab, and bird,. Lookiugat theli,t, there is uo

inherent way to organize it, which makes categories for pet types nominaldata

In addition to the above fundamental data types, data can also contain rela-

tionships between entities. A common way to represent such relationships is viaa

node-link diagram [20]. Node-link diagrams are composed of two elements: nodes and

edges. Nodes are normally represented as glyphs that represent aparLicularentity,

like a person or class object. They can contain visual encodings to represcntvarious

attributesassociatedwiththecnLity. Edges are used toconnecl noclcs to show a

relation exists between the two objects, likeafamilyrelatiou between two people or a

method call between software classes. Edges can be directed (one-wayrelaLions, like

"mother of" or "calls method of") or can be undirected (therelaLion goes both ways,

like a relation between siblings). Both these elements can include addiLional data

that can be visualized (e.g., we can use assign the value of age toanoc1e,andusing

the connecting edges to calculate the similarity or closest common ancestorbetwccn

the two data points) [39.20].

Onechallellgewith node-link diagrams is in organizing them effectively and effi-

cienLly. Not only do we have to display the node-link diagram, we should also strive

tomakethediagramclearandeasytounderstand[20].ldeally.thegraphshouldbe

laid out such that nodes that are related aredirecLly linkecl andshouldbeclosetoone

another, while keeping the links as short and clear as po ible.Onepopularmethod

to organize these diagrams is to use a forcc-directed graph layout [20,14]. The force

directed layout applies a calculated force on each node to determi ne whether itsholiid

move or not. The movement ofa node is based on the other nodes in the graph; nodes

that have a direct link between them will pull themselves together, while nodes that

have no direct link will move apart. This approach helps create node clusters, by

pulling together nodes that have relations together, while pushingclustersofnodes

with no relation to the other cluster away. While a force-directecl algorithm does not

always create the most clear diagram. it does bring related nodes into close proximity

toeachotheranddoesallowforuserinteractiontomovenodes,andhave the entire

diagram update dynamically to compensate for the change in position

User interaction is a tool that helps make information visualization systems more

useful [39, 43], giving users the option to interact with andgain abetter understanding

of the data. Through interaction, the user can request additional information on a

particular subset of data (inspection). or adjust the focus ofthe screen to show more

or less information (zoom and pan). Through theuseoffiltering,allsercanspecify

a subset of information they are interested in based on somecrileria(themethodof

sclecling these criteria isdictatecl by the design of the system). The system can then

filter out and hide any data that does not meet the criteria. Another tool used to aid

users in finding data is known asfocllsing. Unlike filtering, uninterested data remains

visible in the visualization, but the focused items are given astronger visual presence.

This can be achieved by adjusting transpareneics or alpha channels, changing sizes

ofvariousobjecls, or adjusting the use of colours. Theadvanlage of focusing over

filtering is that it helps reduce the amount of noise, but keeps all the data in context

with the overall dataset [39]

Creating an effective information visualization system takes more than just visu-

ally encoded data and supporting interactive components: the system needs to be

designed with the user's end goals in mind [39, 15,9]. Understanding who will be

using the system and what goals they want to achieve will help in decidinghowtoen-

code the information visually (e.g., understanding the user's needsallowsustodecide

the best method to put visual prominence to attract the user's attention) and what

interactive tools will help achieve these goals. Understanding the experience that the

user already has before using this system can aid in the training of the system by

using vocabulary and symbols with which the user would already befamiliar[15,9]

The systems that take into account user expectations and previous knowledge are

more likely to be perceived as useful and intuitive [43]

Since information visualization systems are composed of visualelementsandhu-

man interactions, it is important to understand the core theories that guide visua1-

ization research. These include theories that guide colour usage (opponent process

theory of colour), explain how visual stimuli are interpreted (Gestalt principles), and

describe the cognitive gaps between evaluating a visual displayand acting upon it

(Norman's stages of actions) Each of these are described in detail in the sections

2.1.1 Opponent Process Theory of Colour

The opponent process theory of colour describes the method by which colour is inter-

preted by the human brain from stimuli received within the human eye [43, 19]. The

theory states that colours are interpreted along two chromatic channels (red-green;

and yellow-blue) and one luminance channel (black-white). How the lightwaves trans-

late onto these three channels is illustrated in Figure 2.1. Our brains are hard-wired

to be able to detect differences among colours along these channels. nderstand-

ing this visual sensitivity helps provide guidance for using colourtorepresentdata.

Howevcr, duc to difrcrcllc~ ill how IlUIllCrical 1 ordinal, and llollliual data arc to be

interpreted, we must take care that the colour encoding can properiy be decoded

\,VhenusingcolourLorepresenLanumericalvalue,wemaychooseacolour scale

that varies monotonically on one or more the channels, producingarelativelystraight

line through the colour space that is perceptually ordered. Jnthis colour gradient,

the maximum value of the data is represented by the colour on one extreme, while the

minimum value is represented by the colour at the other extreme. Values in between

may be represented by a proportional colour between the maximum and minimum

If the data can contain both positive and negative values, special care must be

taken to ensure accuracy in decoding. A light hueofa neutral colour (somewhere

in the middle of the colour space) should be used to represent zero. The colom

scales for positive and negative values should use colours in opposite directions that

are progressively darker. Forexample,azerovaluecould be encoded as light grey,

positive values in darker and darker shades of yellow, and negative values in darker

r-luch like numerical data, when using colour to represent ordinal data, we may

choose a colour scale that varies monotonically within the colour space. Specific

perceptually ordered colours within this scale can be selected to represent the unique

+
~white

Figure 2.1: A diagram showing how long, medium, and short wavelength light is

interpretedontothethreeehanneisoftheopponentproeesstheoryofeolol.lr;red-

green, blue-yellow, and white-black

elements within the ordinal data. While the ability to decode the colours into their

ordinal values depends on the number of steps within the ordinal scalc. the ordering

ofthedatawillbedeeodable. For example, if there are a large numberofpotenlial

values for the data, viewers may have a hard time decoding the data to a unique

value; however, the approximate location of the data element withintheordinalscale

For representing nominal data for labeling with colour we want coloursthatare

both distinct and have unique hues. According to Ware [431, there are 12 colours

thatcanbereliablyusedforlabellingpurposes:red.green,yellow,blue, black, white,

pink, cyan, grey, orange, brown, and purple. The first six ofthcse colours arc the

extreme ends of the colour channels, while the remaining six colours are combinations

ofcoloursfromthesechannels.Theaveragepersonhasbeenfoundtobe able to easily

distinguish between these colours and not interpret themastheother selected colours

[17].lfweplacedthese12coloursontoacolourcubecreatedbytheopponentprocess

theory's three colour channels, these colours are placed farawayfrom each other. This

means that there are as perceptually different from one another as possibJe. Adding

more colours for representing nominal data is possible (e.g., choosing additional '·in-

between" colours). As more colours are added tothiscolourspacefornominaldala

labelling, the ability for the user to reliably decode lhe data diminishes. A practical

limit here is carefully chosen to allow for each colour to be sufficienlly dislinct from

2.1.2 Gestalt Principles

The Gestalt principles are theories that relate to visual perception and how people

group items together and perceive foreground from background [27,431. Although

there area large number of such principles. the ones that are relevant to this research

are proximity, similarily, and connectedness.

The principle of proximity states that items that areeloser toone another arc

oflen perceived as being grouped together and thought to be related. By placing

items lhatare related to one another, like when we have aelusterof dolsonagraph,

the observer will quickly interpret that the items are related in some fashion.

The principle of similarity states that items that look similar arealsothoughltobe

related. With this principle, we can use similar shapes and colours to representcertain

data and users will instinctively think they are related. We often see this principle

used with symbols on a map. to indicate common points of interests (restrooms,

tourist spots, information booths, etc.)

The principle of connectedness states that items with a visual connection (like

two nodes connected by an edge) are perceived as related to one another. We can

see this in a family tree, where family members have a connection going from one

individual to the other. This is one of the strongest grouping principles and requires

no additional information to help users form an opinion on theobjects['13]. F\llther,

because the principle of connectedness is so strong, it can bellsed to represent a

different type of relationship than what is encoded with proximity and similarity,

without confusing the nser. People will reaclily interpret snch aclisplay as cliffercnt

classes or relationships

Understanding these principles allows us to design visualizations that can be in-

tuitiveand interpreted in a manner we expect. With an understanding of how the

user will interpret certain visual representations, we can design our software to take

advantageoftheseprineiples to deliver a clear and easy tounderstand the data being

2.1.3 orman's Stages of Action

Nonnan·s stages of action [301 describe the cognitive steps that an individual goes

through when performing an action, starting with the individllal evaluatingthesitua-

tionandplanningtheaetion. Theeventsarebrokenintotwoseparatestages;thegllif

C
~GOAL5~

Q
.2 I IEvalualianofinlerprelalionsI Ca :::;;

Q)
J, l' 2-

~
Sequence of actions I InlerprelinglhepercePlionl m

<
'0 .J, l' D

C- Execution of the action I I Percieving the state of a
"'5 sequence Iheworld ci"C)

~B~
:::J

Figure 2.2: A visual representation of Norman's stages of actions that an individual

goes through when performing an action, according to Norman's stages of actions,

including both the gulf of evaluation (right) and gulf of execution (left)

of evaluation and the gulf of execution. These stages are part ofacycle, whcrethe

user observes the visualization and travels the gulf of evaluation to understand what

they are seeing with respect to the goals they wish to achieve. Then, the uscr travels

through the gulf of execution as they interact with the system toachievetheirgoals.

When the execution is completed, it impacts the visualization, and the user starts

togo through the gulf of evaluation to interpret those changes. The cycle continues

until the user finally has achieved the goals and no longer needs to interact with the

visualization system. The cognitive cycle can be seen in Figure 2.2.

Within the gulf of evaluation, there are specific cognitive steps auscrtakestoun-

dCl·,tandthevisualizalionueingprc.entcdtothelll. Theu,er',fir,t,tepisperceiving

the state of the world, to see the current state of the visualization. Then, the Usel

starts interpreting what theyhaveperceived,and begins to understand what is being

presented and how it has changed. The user then starts evaluating the outcome, to

understand if the goal has been accomplished. Afterevaluating,theusermaydecide

tocontinuetousethesystemordecidetheynolongerneedthevisuaIizationsystem

and leave. If the user decides to continue to use the system, they will start forming

a goa\. Thisgoalmaybeanewgoalor,iftheevaluationearlierconcludedthattheil

previous goal was not reached, they may dccide to continue or modify the previous

goal. In either case, the user then moves to the gulf of execution

The gulf of execution explains the cognitive steps a user takes to achieve their goal

with the system. A user forms the intention to act based on their goal, in order to

bring themselves closer to accomplishing the goa\. Withanintentionformed,theuser

then starts to plan what actions they believe will help in achievingthegoaJ. With

theactionsequenceplanned,theuserthen performs the planned action. Once these

action,arefini,hed,thepe,"on moves back intothegulfofevaluationtoevaluatethe

impact their actions have had on the visualization and iftheirgoalshavebeenmet.

and if they should continue their previous goal or form a new one.

When the user has finished crossing the gulf of execution, the user'senvironment

has now changed as a result of the interaction. The user enters thegulfofevaluation to

examine what hasehanged in the visualization. Upon finishing the gulf of evaluation,

the user will then enter the gulf of execution, to make changes, toformulateagoal,

and to make changes to the environment. The user will move back forth between the

gulf of evaluation !\Jld the gulf of execution, until the user can no longer formulate

any more goals or if the user no longer wishes to use the software to achieve the goals.

At that point, the user will then exit the software.

By applying Norman's stages of actions to designing a information visualization

system, we can llllderstand the cognitive steps an individual performs while using

the system. With this understanding, we can use representation techniques and

interactive designs that will help them achieve their goals faster and much more easily.

From the gulf of execution, we can understand the steps that a user will undertake

to achieve their goals and help provide the tools and actions to performtheseactions

as efficient and easily as possible. By understanding the gulf of evaluation, we can

understand the steps that a user will take to perceive, interpret, and understand

the visualization, and provide representations that help make this clear alld easy to

2.2 Software Visualization

Information visualization systems that focus on software code and related statistics

is referred to as software visualization. Large software projects can become very

complex and difficult to analyze and support without the proper tools. Software

visualization systems can be used to help users analyze the software architecture,

learn developer information, the frequency that changes occur, execution tracking,

and how the software evolves. Through these tools. software developers can learn

interestingpatternsandanomaliesinsoftwaresystems,andinvestigatethemfurther.

It has been suggested that the methods for visualizing software code can bedi-

vidcdilltothreccatcgorics: tho"cthatvi"uallyrcprc"cntlillc'l;ofcodc,lilc",alld

Table 2.1' Common soflware activities and software visualization systems

architecture information of changes tracking

SeeSofL[IO]

Augur [13j

CVSSca n l42j

Release HisLory [16]

VoilleaeL al.·s Work 141]

SLarGaLe131]

Vorolloi 'li-eemap [2]

UMLjI2]

l3yleas and Telea's Work 13]

Pich'sWork[32]

HierarchicaJEdgel3undlesl22]

hnpacLVizlll)

folders [11. Given the prevaJence ofobjecl-orienled software development practices,a

fourlhrepresentationisalsoappropriale:thoselhatvisuallyrepresentlhesoftware

projecVsclassesandclassinleraction.lmporlanlandinlerestingworkineachoflhese

calegories are summarized in Table 2.1, and described in more detail in lhesections

2.2.1 Line Based Visualization

Linebasedvisualizalionsyslemsaresoflwarevisualizationslhalrepresenlallribules

related to the individual lines that make up software files. These attributes could be

lhe author who lasl changed a particular line, when the same line was lasl changed,

lhesyntaxoftheline,elc. The lools lypically help users undersland howaparlicular

SCClionofcodewaswrillenorchanged, with the goal of helping them toundersland

the purpose of each line and how it relates to the file overall

The seminal work in visually represenling lines of software code is SeeSofl [101·

By scanning a repository hislory, lhe system uses colour lo visually represenl how

long ago each line of code was changed. Through the use of a colour range, a user

can see what areas have undergone changes recently and whallines of code have

remained stable for a long period of lime. Lines of code that have recently underwenl

alol of changes mighl contain new bugs. Users of SeeSoft can also modify lhecoloUl

encoding to represent other information such as the author who lastmodifiedtheline

as well as the syntax oflhe line. A numberofolherresearchershaveexpanded upon

lhe fundamental melhods in SeeSofl, including Augur [131 and CVSscan [421, which

haveaddedlheability loseewhen new lines have been added to the class and how

a file can grO\\'over time.

The primary difficulty with visually encoding changes on a line-by-line basis is

thal the length of the line of code has an impadon the visual weighl itcarricsinlhe

inlerface. Similarly, mullipleconseculive lines of changed code will appear as more

imporlantlhallhechangeofasinglelineofcode. While idenlifying which lines of

code have changed mayassislthe user in delermining where a bug may have been

introduced, it is still up to the user to inspect each line of code manually for the

source of the bug

2.2.2 File Based Visualization

While the previous visualization IIlclhod focuscson individual Ii nes.filebasedvisu-

alization puts emphasis on the files that the lines are contained in. Such visual tools

might be used to show properties related to files. including when the file was last

modified, the date the file was created, the file type, the file size, etc. File based

representation can help a debugger or a software developer to identify the files that

are being changed considerably or frcquently, and may need to be inspected for the

purposes of quality contro!

An example of a file based visualization is Release History [16]. Release History

shows how much a file has changed between software releases. During testing phases,

this system can be very useful to identify which portions of the source code have

changed the most. Ira new bug is identified between releases, Release lIistory C'lll

bpnspdtoidcntifyfilpsthatarpcandidatcsforthpsonrceoftlwl",g(i.p.,thospthat

have changed considerably since the previous release). However. this approach may

not be particularly effective if there is no stable baseline against which to compare

the system or if a large amount of these changes were in the documentation and

comments portions of the file.

AnotlwrpxampleofafilC'-ha.,ed rpprcsentation isVoinead aI's work [<11]. In the

project-based view of this software, each individuaJ file is visuallyrepresentcd,aswell

as a representation of each file's history in the project. This software visualization

tool shows whell a file was fir~t iJlcluul.u ill Ule project and, as changes O<..:t'ur to that

file, who was the last to make any changes. From this, users can see when a large

change in architecture occurs (when a large number of new files areintroduced) and

when new software developers start making changes to a p31ticular file changes (based

on when thecolourofa file changes in thetimeline)

2.2.3 Folder Based Visualization

\~henrepresentingagroupoffilescontainedinacommonfolder,wereferto this as

a folder based visualization. These types of visualizations allow software developers

toseechallgesalld attributcs that arCCOllllllOIl to filcs that wc kllow arcrclatcd

somehow. Some attributes that a user may want to visualize inciude foldersize(eitllel

total number of files or amount of memory used), dates of changes, and frequency of

changes. Since the folders in our software projects commonly havesub-foldersofa

finitedepth,thesesoftwarevisualizatiollsncedtoshowboththe folder file size and the

depth of a particular folder. We can also see if other folders have common attributes

(e.g., changes made on the same date) in order to identify potentialrelationshipsto

other groups.

As an example of folder based visualization, StarGate [31] usesanabstractvisual

representations to show the relationship between developers and thefoldersthey

access and change. A ring is used to represent all the folders of the project with

the lowest level of the ring representing the root. The portion of of the ring that

each folder is assigned to is basecl on the total nnmber of files in thatfolclerandits

snb-folders. The deeper that the folder trecgoes, the more layers the ring will use to

represent the depth of the tree. Inside the ring, dots are placed to represent individual

developers. As a developer makes changes to the files in the folders, the developer

dots are placed closer to the folders they have changed. Software developers can use

this system to identify who has been modifying different areas ofa project, and where

specific developers have been focusing their attention

With StarGate, a user can quickly track down a developer in a large softwareteam

who would be the most familiar with a particular aspect of the software code. In the

case of tracking a new bug, we can approach the developer to help provide context

to the code. However, tracking down a particular bug is not aided by this software

visualization system, but instead highlights an individual who can help. There are

some difficulties with the approach, however. [n cases where a single developer works

exclusively in two folders that are opposite each other on the ring, the developer will

appear closer to the center of the ring. This developer will appear equally involved

in all areas of the project, instead of being seen as an expert in two areas

A popular way to visualize oftwareprojects based on folders is by usingtreemaps

[231. Treemaps are visualization methods often used to visualize hierarchal data, in

which \\"~ preserve th~ hierarchal strnctur~ of th~ data. A spac~ is d~fined (ba.",,1 on

some attribute, like total hard drive size or total number of lines of code) in which a

root folder is represented. This area is then split into proportional sub-spaces based

on the individual folder and files that belong to that folder. The area of the sub-folders

are then further divided based on their contents, recursively, unti I there are no more

folders. An example of this is an implementation of Voronoi treemap [21, in which

the authors use complex polygons to represent the folders representation,ratherthen

the traditional rectangle representation. The data is based on package information,

which is often present in Javaprojccts. The area given Loeach package or class is

based on various software meLrics used Lo identify which classes and meLhods are

frequentlyused,soLhaLusersofLhesystemcansccwhicllporLionsofLhesoftwareis

frequenUydependedon.

2.2.4 Class Based Visualization

AlLhough class based visualizaLion is noL ouUined in Ball and Eick's taxonomy of sofL-

ware visualization [J], it does represenL an importantgroupofsofLwarevisualizaLion

meLhods. SofLwareclassesexhibiLmanycommonpropertiesLhaLarealsopresenLin

files (e.g., date of ereaLi011, I,,",L modified, size, etc.). However, cl,,",scs alsoexhii.Jit a

propertyLhaLisfundamenLallyimporLanLtoobjecLorientedprogramming: relaLions

to other classes. InlargesofLwareprojecLs, iLisuncommon to have classes work in

completeisolaLion: classes typically make method calls to other classes, and may in-

heriL properties or meLhods from classes (parenL-child relations,inLerfaces,LemplaLes,

eLc.) [26,381. It is Lhese relaLions LhaL make classes very disLinctenLiLies frorn Lhe

filpsin which they arp stOlWI. TI10.,pnni'lnpprop0ftipsgivpanaclvantagptohdpac-

complish tasks that asofLwaredeveloper would be interested in performing,including

debugging.

By taking advantage of Lhe class information, software visualization Loolscan be

used Lorepresent the inLeradion wiLhinasofLwareprojecL. For example, Lheclass

diagram within the Unifi('(1 \1oclplling Langnagp (U~[L) [121 proclncps a visnal rq)f('-

sentation of class dependencies, inheritance, and encapsulation. While U~IL nOLation

was not meanL Lo show how changes propagaLe through asoftwaresystem,iLcanshow

which classes are related to a class in which a bug is manifesting itself, and provide a

starting point for debugging. Aswell,Pichetal.'swork[32]evaluatesclassesbasedon

the number of direct dependencies that they are responsible for. Taking this number,

it places classes that are more dependent on others higher on the graph. This place-

mentshows the user what classes are highly depended upon. lfone of these classes

becomes infected with a bug, the manifestation of the bug 1V0uldquickly propagate

through the system. As such, this tool allows the software developer to quickly iden-

tify these classes and ensure that they are well debugged at all times. Holten's work

with Hierarchical Edge Bundles [22] uses a radial tree to show how classes are related

across the entire software project. With Hierarchical Edge Bundles, we can sec both

how entire subsystems work with one another at a glance and gain the ability to see

which classes are interacting with other classes. Unfortunately, the uscfulnessofthis

software visualization system is limited. offering no other information than to allow

us see the connections between software subsystems and their individual classes

Others have extend UlIlL to provide more information, such as the work done by

Byelas and Telea [31. However, given that UIIIL is already a very graphically-rich

representation, doing so runs the risk of producing a visualization that is cluttered

withcolourededges,edgeswithsymboliemeanings,andcolouredregionsthatstretch

across the screen. The system tries to detect what software classes share common

properties that should be of interest to the user and refer to these itemsasan area of

interest (AOl).ln this system, the software diagTam is represented by using a UIIIL

diagram to show how classes are related to one another and use a coloured region

to represent an AOl and the software components related toil. The end result is to

help show how changing one component might have consequences in other areas of

the software project.

As will be discussed in more detail in Chapter 3, the software developed in this

thesis,ImpactViz.canbeclassifiedasaclassbasedsoftwarevisualization technique.

The program visually represents the connections between classes through method

calls and the method call stack. JmpactViz shows the relations between class in a

project and helps users to see the ways in which the classes in the project interact

with one another, both directly and indirectly.

Chapter 3

ImpactViz

ImpactViz is a software debugging tool that visually represents the method depen-

denciesbetween classes in asortwareproject. It allows users to examine how changes

in the software code can propagate throughout the entire system. Using the source

code of the project and the related revision historydata,lmpactViz generates a graph

layout that illustrates the method call stack dependencies of each class and visualizes

where the changes occur. A change is recorded when ImpactVizobserves a change

in a method's code from one revision to the next, marking the revision and method

where the change was observed. The users can filter the revision history data, show-

illgolllychallgcswithillaspccifictilllcpcriod. Thcylllayilltcractwith thcsystclII to

select a class and discover the other classes on which it depends, visually identifying

whether any recent changes have occurred that could have an impact on the selected

class. How many classes that are affected by a change in a single method can be

observed in large coloured regions, referred to as change impact regions. F'igure3.1

ThegoaloflmpactViz is to allow users to visually identifyrecentchangcs in the

software code that may be the source ofa bug in a particular method. By allowing

the user to select the classes that they know are being influenced by a change, they

can quickly trace the bug from where it has manifested itselftoclassesthatmightbe

responsible for the bug. Users can examine these classes that are highlighted more

closely for programming errors

The fundamental assumption with using ImpactViz is that the software developer

is aware of some prior revision within the repository in which the bug was not present.

This knowledge allows the user to set the revision history filter to only show changes

that have occurred since this known bug-free revision. The user may also be aware

of a tighter window in which the bug was introduced. allowing them to also filter out

recent revisions. As such, any changes before or after this known window in which the

bugwasintroducedareignored,allowingtheuserto focus on thoseclasses that have

changed and may therefore be the source of the bug. While previous work with delta

debugging [44] has been performed using automatic testing, not all software systems

can easily use unit testing and some cases require human judgment. ImpactViz allows

a knowlcdg;~ahl~ lISN to d~bllg; in an df~~tiv~ manner, rath~r than applying; a brnt~

force algoritbm to produce a list of alternatives for when and where the bug was

The current implementation of ImpactViz supports the construction of the method

call stack dependencies for a Java project and using an SVN repository to manage

the changes in the software project. However, the tecl1l1iques are general enough to

support any object oriented programming language and any source code repository

that maintains a history of changes.JmpactViz uses Java framework called '·Prefuse"

[181. Prefuse is informaLion visualizaLion rendering engine, which helps provide aid

in rendering graphs and LhebaselineinLeracLionswiLh those visualizaLions,while

providing theabiliLy Loadd addiLional inLeractionsand visualizaLions.Prefusehelps

provide a starting point when developing new informaLion visualizaLionprojects.while

flexible enough to allow developers pursue their own concepts and ideas for a new

3.1 Representation of Classes and Changes

ImpactViz uses a graph based reprcsenLaLion Loshow therelaLionship beLween classes,

using a force-directed algoriLhm [141 Lo organize Lhe graph. ImpacLViz also uses

colour-encoded change impact regions to help show the overall impacLLhaLasingle

change can have on their enLire software system. The nodes of the graph arc also

visually (,llCoucd. dClloting I-lIP diffprl'Il("(' hehv(,(,ll dru;scs that hav(' S('('II a ('!lallg<,

over a desired time period

ChangeimpacL regions which surround Lhe nodes are used LorepresenLLheoverall

impacL LhaL a single change has on LhesysLelll; each class thaL isencapsu laLedinLhe

region has been influenced by the same method change. lfauser knows that a method

conLainsabug.LhereexistsapossibiliLyLhaLLheotherciassesintheregion have been

affected by thesallle bug and Illaybe the root cause ofsollle other bugsobserved

Change impact regions can overlap, showing that some classes can be influenced by

more than one change.

Figure 3.2: A screenshot of the primary visualization window in lmpactViz. Classes

that make method calls toone another are represented in a force-directed graph.

Nodes that have changes within thesclected revision range have a black backgrouud

The impacts that these changes have on other classes arc encoded using colour-

encoded change impact regions. The graph presented here is not the complete software

graph but a zoomed in portion of the graph

3.2 Visualization Techniques

Since JmpactViz is a software visualization project, several visual techniques are being

used to help ensure that the user of the program will be able to have a maximum

understanding of the visualization, including the opponent process theory of colour

[19. 43J and the Gestalt principles [27, 43J. Each visual item was carefully designed

usiUl:; diffcrcllL visual priuciples. The lIlain visual items in ImpaciVizarc the Hodes,

their colouring, the change impact regions, and the graph layouL.

3.2.1 Graph Layout

ImpactVizusesagraphrepresenlationofthemethodcallslack. Eachnoderepresenls

a single software class; edges represent method calls between the connectcd classes.

The direction of an edge shows lhemelhod call direction: an edge pointing from class

A to class B illustrates that class A calls a method from class B (i.e., that a class

of type class B is encapsulated in class A, and lhat a method in class A is calling

a method from class B). This edge representation places the focus on thedircction

in which methodsarebeingcalled,similar to how U lL [121 class diagrams usc the

direction of an association or ownership. The graph representation can besecn in

Figure 3.2

ImpactViz uses a force-directed graph layout to organize the class nodes within

the display. By using a forcc-direct algorithm [141 provided by the Prefusc API [18],

nodcs that are directly related to one anothcr pull lowardseachother and repel nodcs

that have no direct relation. Throughthcusageofthisgraphlayout,c1assesorganize

thcmselves into clusters based on theirrelationships,allowingclasses that are related

be close to one another. In addition, if there are two subsets in which thcrc are no

common connections. these tIVosetswill push thcmselvesawayand help show the

user small pockets of code wilh norclalionship lo other areas in the software. This

can help separate different Illodules or show classes that are no longerin use in the

software system and should be considered forrellloval (classes lhat are not part of

the main systelll and are pushed to lhe extremes of the graph).

Another advanlage of using the force directed algorithm is that it allows thc

user lo drag nodes into open areas and have the entire graph structuredynalllically

re-organize itself to take into account the new positions and re-create the clusters

discussed earlier. This helps the user remove a class from a dense cluster of classes

to examine it more closely for any relationships that they may find interesting

In order to help control the graph, a graph control panel has been inc1udedon

the left side of the screen. This gives the user access to several actions, including

the ability to move to other areas of the graph quickly via the overview of the entire

visualization on the top, the ability to filter changes between a time period that the

user is interested in examining the changes, and the ability to examine notes left by

the people who made the changes on the bottom

With the force directed algorithm pulling directly linked nodes together,itallows

for the Gestalt principle of proximity to come into effect. :'\odes that are placed near

one another supports the interpretation that they are related. Theedgesconnccting

the nodes are unweightcd and each edge is treated the same, despi te the total number

of method calls between the two classes. This was done on purpose to help avoid

situationswheretwoclassesareverystronglylinkedtogether,suchthattheyaretoo

close to be readable. By being able to ensure a relatively healthy distance betwccn the

nodes, we can help increase readability and reduce the total number of false-positives

of classes being contained in athechangeimpact regions. As well,since we push away

unrelated nodes, the opposite is also being implied; the nodes that are not close to

each other are not closely related. As well. since weare using a line to connect linked

nodes (classes) together, we are also using the Gestalt principle ofconnectedncss to

indicate a strong relationship between the nodes

Another alternative to the force-directed algorithm is an implementation of an

Euler diagram algorithm [351 Euler diagrams are excellent for organizing sets of

dalaclearly, but make inlera<:tingall(l moving individual nodesdiflicull. Forlhe

purposesofrepresenlingclassrelalionships, a lraditionalgraph layoUlmakesileasier

foruserstoseetherelationshipsbetweenclassesandlointeraetwithasingleclass

3.2.2 Node Colouring

ImpaetViztakesadvantageoftheprinciplesderivedfromtheopponentproeessthcory

of eolour [19,431 to help ereate several different visual distinctions among the ciass

nodes. Class nodes are represented using two different colours: white to represent

a class that hasn't changed within the specified revision date range, and black to

represent a class that hasbeenehanged. This choice of eolours on the extrellle edges

of the luminance channel ensure that the user can readilypereeive the two different

The visual encoding of nodes allows the software developer to visually trace the

importantclasses;theclassesthathavereeentlyseenaehangemadetothem. During

this process, the developer can ignore white nodes, as these are nodes that have been

unchanged and spend more time analyzing the classes represented by lheblaeknodes

Through theusageofGestaltprineipleofsimilarity. users of the system will as-

soeialethesimilarlyeoloured nodes as having some related atlribute 10 make them

the same colour, which will be truesinee the colour of lhe nodes dielale whelher a

ehangehas been observed in theclasslhat the node represents.

3.2.3 Change Impact Regions

The impact that a particular change in a class can have on the project is determined

at the method level. Eaeh change in a particular method for eaeh revision in the

software repository generates a separate change impact region. Theseehangeimpaet

regions are subsets of the method call stack graph. including the class in which the

method is defined along with all other classes that make use of the changedmethod

The change impact regions are visually encoded as coloured regions layered on

thebackgroundofthemethodeallstackgraph,enclosingalltheclassnodes that can

make use of the changed method. Since the human eye can only reliablydifTerentiate

between 12 unique colours for encoding nominal data [43], the changeimpactregions

are visually encoded using a set often distinct colour hues, with the remaining two

colours used for node colouring, as described above. Obviously, there may be more

than ten change impact regions that need to be represented. To addrcss this issue,

colour hues are reused for multiple change impact regions; wherever possible, this

reuse occurs for disjoint regions. ImpactVizusesthePrefuseAPltorenderthechange

impact regions, using a convex-hull algorithm. Using this algorithm can produce

falscpositves, when classes not related to the change drift into the change impact

region due to the force-directed layout used to help organize the nodes of the graph.

While there are other algorithms that can avoid this issue, they required too much

computational resources to make ImpactViz work as a real-time system. Users can

identify the actual members of the change impact region by clicking the region. If

Bubble Sets [71 can render in real time a large dataset, it ,,"ould be ,,"orth while to

switch over, due to the reduction of false positives of nodes that 100kliketheybclong

to a change impact region.

Two scenarios are possible for the change impact regions. A change impact region

may encapsulate only a single class (i.e., the class in which achangehas been made)

In lhiscase, the change in the class is local and is not impacting any other classes

within the project. Therefore, ifabug is manifesting itself elsewhere in the project,

its source cannot be in this class. In other circumstances, a change impact region

may encapsulate multiple classes (i.e., the class in which the change has been made,

and other classes that make calls to the changed method). In this case, if the bug is

manifesting itself in one of the classes within this change region, thechangedclassis

a candidate for the source of the bug

As seen in Figure 3.2, change impact regions can overlap one another. This

can occur when a particular class is making use of methods from multiple other

classes that have been changed. Or it may occur when multiple methods have been

changed within a particular class, and these methods are being used by different sets

of other classes. The colours llsed to encode the change impact regions are rendered

llsingpartialtransparency,allowillgthedevelopertoseetheoverlapping regions and

interpret the extent of the change impact regions.

The coloured change impact regions take advantage of two Gestalt principles,

closure and proximity, to assist the user in perceivingthatclassesilllhecoloured

regions are related. Through the use of the force-directed layout, classes that are

relatedarepulledclosertogether,keepingthecolollredareaassmalias possible. In

(,..l.;";('S wll('n~ a c)a."ls IIlay 1)(' illlpa<'t('d hy several (lifrf'rc'llt dlallg('sl t)1(' ("oIOlln'(! regiolls

are overlapped. Dlletopartialtransparencyin the coloured regions, the user can see

the overlapping regions and interpret that a class is being inHuenced by more thcn

one change.

This visual encoding can allow lhe soflware developer to visually lrace lhe man-

ifeslalionofa buglO its source class by following lhedirected edges lhalconnecla

class node lo a changed class nodewilhin lhesamechange impacl region. Palhsthal

exil lhechangeimpacl region indicate method calls lOclasses lhat have nolchanged.

3.2.4 Crossing the Gulf of Evaluation

The representalion of ImpactViz was designed wilh the gulf of evaluation from Nor-

man's stages of action [301 in mind. When the user first loads the program with the

soflwarcsystcrn data, lhc uscr isgrcclcd by alargcclustcrofclasscs. Thc uscr lirst

perceives this visualization, examining what is being presented. At this stage, the

user may notice large clusters of classes, colour-encoded change impact regions, as

well as classes that are no longer part of the software system that are being pushed to

extreme edges of the graph. The user lhen starts to interprelwhat is being presented

This includes decoding the change impact regions, examining the graph for classes of

particular interest, and examining the node relationship with 0 therclasses. The user

lhen allempts to makesenseofwhal they aresceing with respect to lheir cnrrent

task goal for using the system (i.e., discovering the source ofa particularbug). They

then determinewhelher their goal requires any inleraction wilh the visualization in

order to be achieved. Such interaction with the system (as described below) will

result in changes to the visual display. which require lheuser to again cross lhegulf

ofevalualion. This loop continues until the user no longer needs to interacl with the

system in order to resolvelhegoai

--~~

3.3 Interaction Techniques

lmpactViz uses a variety of interaction techniques to give the users a great deal of

control and to help them find the information they are interested in. Using the

rcvisiollfiltcrs.rcvisionillforlJlatioll,llodcsclcction,llodcdraggillg,C:lndpHIlllillgallu

zooming, the users are able to manipulate the visual representation to help track

down the origins of bugs and help sec the overall software structure and relationships

3.3.1 Revision Filter

The revision filter is responsible for adjusting the colours of nodes dependillg on if

there was a change in the revision dates and filtering what change impact regions

are visible. The user selects the time period in which they are interested. From this

time period, the user can see the changes that were made and how these changes

inAllrnrrthcoverallprojrrt.Jfthrllsrr'sgoalwiththisvisllalizalion is totrflrkrlown

a bug, they can use information from when the system was last working as intended

to see the changed classes and the impact these classes have had on the system. This

allows them to limit what is being shown to only thechangesthatcould be the cause

of the bug. since the impact change regions only show the changes since the bug's

introduction. This allows lmpactViz to remove all the clutter that can come from

having a very large revision history toanarrow time period thatthe user is actually

interested in investigating.

The change in colour that occurs when adjusting the revision filter, even though

the change impact region has not changed in size, was designed on purpose. Without

LhisfeaLure, Lhere are cases in which a change in Lherevision Limeframewouldyield

no change in LhevisuaJizaLion, as each changeimpacL region could receive more lhan

one changes over the lifespan oflhe projecL, which only alerls the user Lo Lhe idea

lhat Lhere exists one or more changes lo lhat change impacL region usercanlakeas

lheprogram not working. The change in colour now alerts lheuser LOlheupdaLed

change impact regions and lheoverlapin Lheregionscan helpprovidea more accuraLe

number of the number of changes in Lhe change impact region.

3.3.2 Revision Information

AL any point, the user can examine informaLion abouL a particular revision. There

is a drop down menu Lhatdisplays the revision number, the author of that revision

the comments that the author made about the revision as well as all Lhe files that

underwent a changed during Lhat revision

3.3.3 Node Selection

When selecting a class node, Lhe meLhod call sLack LhattheselecledcJassrelies on

ishighlighLed. ThisseleclionofacJass node operates as a focusing Lechnique. The

melhod call stack of classes is brought Lo focus by adjusting all Lheolherclasscslhat

are noL in lhisselecLedcJass's method call slack Lo make lhem parliaJlylransparenL

and smaller. The edges Lhat are also not parL ofLhis class slack are also made parlially

lransparenL. giving the connecling edges lhaL are related Lo theselecled class more

visual emphasis.

sing the selection method, the user can analyze the chain of classes that have

focus and examine these to see what classes have undergone some sort of change

during the selected revision range. This gives the user some insight into which classes

shouldbeanalyzedcloselyifthereisabugmanifestingitselfintheselectednode. J[

the user was more interested in seeing how the classes interact with each other, the

these class calls are to the original design of the software system. asspecifiedbythe

IL or other software artifacts developcd for the project.

While we could also filter out all the change impact regions that are notrelatcdto

the selected node (much like how we put less focus on the nodes and edges), we feel

this might be confusing. We already allow for filtering based on revision intervals,

adding an additional filter from selection might get confllsing. Secondly, we do not

want our users to neglect the other impact regions. We wish to ensure that, once

they start investigating one region, they might come across other interesting impact

regions (potentially. even larger ones). and we wish not to hide this information from

the user. Since the change impacL regions already are transparent, there is little else

we can do to them to put less of a focus on them. Based on the two previous reasons,

we have dccided not to include change impact regions as being influenced by node

3.3.4 Change Impact Region Selection

Due to theusageofa force-directed layout, nodes can be pushed into change impact

regions while not beloning to that particular change. creating the illusion that a class

belongs in the change impact region. whilecontainingnoreferencestothoseclasses

in any fashion. We can overcome this by allowing the users to select a change impact

regions by clicking on it. By clicking on the change impact region, all nodes and

related edges become focused, much like clicking on the source node of the change

impact region, while the false positives are Icft unfocused and easily distinguishable

fromthenodeandedgesthatdobelonginthatchangeimpactregion

3.3.5 Node Dragging

When a user has found a class they are interested in. they can drag the class node to

directly related to and drag them to an empty area. When a single class is dragged,

the other classes are pulled along and re-organized into new positionsbasedonthe

force directed layout algorithm [14].]n this way, thesedireclly related class nodes

remain together, and unrelated classes are pushed away. Prefuse has this functionality

3.3.6 Panning and Zooming

]mpactViz uses panuingand zooming operations to deal with the space constraints

of representing large software projects. Using lhe zooming technique, users can zoom

into a particular area of the visualization that contains a parlicularsubsetofclasses

they are moslly interested in. This helps remove classes of lesscr interest from their

sight and allows the user to focus on the class clusters they are more interested in

With panning. the user can adjust where the centre of the screen islocated,spatially

filtcrillgclasscsthatarcllotofilltcrcstalldkccpillgthcrclcvalltclassllodcsllcarthc

center of the display. ImapctViz takes advantage of the built in capabilities of the

Prefuse API to handle panning and zooming.

Combining panning and zooming allows a user Lozoomout to get an overaII view

of the visualization and then zoom inLoan inLeresting portion ofthe visualization

The panning feature helps aid in adjusting Lhe focus of the screen to the section

that the user is currently interested in. Thcse two features allow the user to take an

exceptionally large visualization, and allow them adjust their focus on a particular

On the graph control panel,wehavealsoincluded an overview visualization. The

user can feel free to pan and zoom Lhroughout Lhegraphand Lheoverview visualization

will help the user keep everyLhing in conLeXL to the overall visualization. The usel

can click on the overview to move their focus from one area of the graph toanoLher

instantly. We also include the ability to leL the user right click on t he graph to have

the camera zoom out just far enough to show the entire visualization in the main

visualization panel.

3.3.7 Crossing the Gulf of Execution

Considering the gulf of execution from Norman's sLages of action [30], we can aid Lhe

user by providing Lools LO help Lhem quickly Lraverse this gulf. Doing so allows Lhe

user to easily make the sofLware perform the operations Lhey need to resolve theil

task goal,so thaL they can continue examining the visualization presented,crossing

lhegulfofevaluation to learn and understand more about their software system

OnceauserhasformedagoaJ,whetheritbetoseetheclassesthataclassdepends

on, the classes affected by a single change, move to another section of the system,

or to bring to focus a set of changes that the user has an interest in, the user has

created an intention (i.e., a short-term goal for what they want the system to do)

From this intention, the user then forms a series of actions to bring the system closer

to achieving the goal. All of the interaction in the system follows the guidelines

for normal computer interaction with a mouse and keyboard. As such, the steps

of planning the action sequence and executing the action sequence occur with little

cognitive effort as they become more experienced with ImpactViz

3.4 Debugging Scenario

Tracking down a software bug with ImpactViz is quick and easy, and can be broken

into four fundamental steps. Suppose that in a video game project, whenever a Level

class is created an error is appearing in the form of how items within the level arc

being displayed and represented on the map. Upon examining the Level class itself.

all the source code appears to be working as intended. Therefore, the bug must be

in a method from another class that is used by Level. That is, while the bug has

manifested itself in Level, ilssource is another class upon which Level is dependent.

After loading the source code of the project and the SVN information into Jm-

pactViz, a visual representation of the entire software project along with all of the

revision changes is shown. Fromhere,thesoftwaredevelopercanseehowtheclasses

in lheproject areconnecledlooneanother,and ifanyparticularchangeshavehad

a large impact on lheoverallsystem (i.e.,changestomethodslhat are used by many

Pigure3.3: The initial view of ImpactViz after loading in the software project and

repository information. The user can sec how classes are connected, and which classes

may be impacted by a change in another class as illustrated by the black nodes (classes

that have changed) and their associated change impact regions

different classes)

In theexampJeshown in Figure 3.3, we can see that there were changes made to

the following classes: Main, Foe, Chest. Rogue, Dice, and Potion (as illustrated by the

black class nodes and their associated change impact regions). The other classes that

may be affected by the changes can readily be identified within the change impact

regions (e.g., the change to the Chest class may have an impact on the operations of

Level and Main, as illustrated by the purple impact region thatencapsulatesthese

classes and the edge paths that all terminate at Chest)

During the debugging process, software developers often have some knowledge

regarding when a bug was introduced. They may have test documentation that

specificallystatesthateverythingrelatedtotheclassinwhichthebughasmanifested

itself was working as intended under a specific scenario at some poinlintime. If the

Figure 3.4: By filtering the revision history data. the software developer is able to

focus on the classes that have been changed and their impacts on otherclasscs in the

project.

software class is no longer working as intended, this can give the debugger a time-

frame in which to search for the bug. Suppose that in this example the software

devcloperhad performed some testing on October 11, 2009 and foundeverythingwas

working as intended. The revision filter can be set to start on Revision 5 (Octobel'

11, 2009) and end at Revision 10 (October 16, 2009), the date at which the bug was

As shown in Figure 3.4, the outcome is an update to the visual representation of

the project code which shows only the classes that were changed within the selected

revisions,andtheircorrespondingchangeimpactregions. This revision history filter-

ing automatically simplifies the debugging process by eliminating fromconsideration

changes and the impacts of those changes that cannot be the source 0 fthebug.

In the third step, the software developer can zoom into a set of change impact

regions and select the class in which the bug has manifested itself to identify the

Figure 3.5: Zooming in and selecting the class in whieh the bug has manifested itself

(Level) allows the software developer to quickly identify which classes have been

changed that might contain the source of the bug (Chest and Dice). Note that Foe

and Potion can be excluded since their change impact regions do not cover the Level

classes that may contain the source of the bug. In this example, as illustrated in

Figure 3.5, the software developer has zoomed in and selected the Level class. This

selection highlights the classes that Level relies upon at some point in the method

call stack; other classes are shrunk and faded into the background. The classes that

aremostinterestingfromadebuggingperspectivearethosethathave been changed

within the specified revi ion range and have some impact on Level (i.e., those that

are shown in black nodes and have change impact regions that containLevel)

From the visual representation, the software developer can see that the classes

that Level makes use of, and which of those have been modified within the revision

hisLory range. While Chest, Foe, Potion, and Dice have all been modified, the change

impact regions of Foe and Potion do not cover Level indicating that those changes

were not made to methods which Level uses. As such, the remaining candidates for

the source of the bug are those classes which were changed, and which also have

change impact regions that cover the class in which the bug manifesteditself: Chest

In these three steps (load the source code and revision history, adjust the revision

history range, and select the class in which the bug has manifested itsclf), software

dcvelopers are able to visually identify the classes they should analyzein order to

track down the source of the bug. The final step is to examine those classes in detail

(using their regular software development toolkit) to locate and correct the bug

3.5 Software Prototype Design

lmpactVizwasdesigned to be used with software projects usingSVN as a repository

base and Java as the programming language, as these are the common tools used by

Computer Science undergraduate students at ~Iemorial University (who wcrc used as

the participants in evaluatinglmpactViz, as discussed in Chapter 4). Howcver, the

prototypesystemwasdesignedsuchthatswappingbetweenprogramminglanguages

and different repository systems is rclativelyeasy.

ThePrefuse[18] framework was intended to be used from the start. Prcfusehelps

ImpactViz by providing the graph rendering and animations, while also providing

the interactive tools of clicking, panning and zooming. The reason for using Prefusc

framework was to help provide a starting point for the prototype. Itallowedforgener-

atingthesophisticated graphs that ImpactViz requires, whileallowingthedevcloper

thc tilllc to focus on thc data collcction rcquirc'<.1 to run this project andthespecific

tools that this project requires for the interface, which includes the ability to select

a chain of nodes from an aggTegatecollcction and from anode itself and therevision

filter. Prefuse's role was to provide solutions to problems alreadysoh'ed in informa

tion visualization (graph generation and interactive techniques), which allowed the

developer to focus on trying to find the answer to the research question-ifavisual

debugging tool would bean asset in the debugging process

ImpactViz data collection is broken into two pieces: the pseudo compilcr, and

the repository handler. The repository handler is given the location of the software

project and is responsible for reverting the code to earlier versions. The pseudo

compiler is responsible for converling the source code into an objectrepresentation

The psuedocompiler achieves this by finding the method definitions and detecting

the method calls that each method makes. The pseudo-compiler is also capable of

taking two versions of the same method with different timestamps andidentifyingand

recording if any changes have been made. These two modules combine to generate

the data that is used to create the visual items in lmpactViz's interface.

3.5.1 Pseudo-Compiler

The pseudo-compiler is responsible for taking the source code and interpretthein-

formation in away that is usable for lmpactViz'sgraph layout interface and change

impact regions. lmpactVizrequiresfourpiecesofinformation for any given project:

whpthpr a Plass is a slln-Plass, all thp nlPthod dpfinitions, all pompilahlp pork, and

all other methods to which the class methods makes calls. The pseudo-compiler is

responsibJe for extracting this information for all class files. While the discussion in

thissectionisfocusedonJava-basedprojecls,thegeneralconceplsalsoapplytoa

majority of other object-oriented programming languages; a similar pseudo-compiler

could be written for other snch languages.

Detecting the sub-class and method definitions is a simple matter. asallsub-classes

are defined in the class definition, using the key\\"ord extends,while method definitions

arc found in a block ncsled inside lhe class definition. Finding all coIIlpilablclcxl

is also a simple lext processing activity, since all that is needed is to malch the

opening and closing blocks of the melhods. Jnthisprocess,eommenlsareexcluded

from consideration, since they have no impaclon the execution of the code and lhe

generation of method call stacks.

Finding the melhods cach melhod depends on can be somewhal complicalcd

Once scans of all classes have been performed, with a record of every melhod in lhe

project. we can then start to break down each method's source code to find othcr

embedded method calls. Each line is examined for a variable definition. If the line

docs contain a variable definition, we record the variable and the type into a list,

to look it up if the same variable is used at a later point in the code. Next, we

pxaminp the remaining linp to sPP if a mpthorl rlpfinition is bping pallprl. ~kthod

calls are denoted by an opening and closing of the round brackelsafler alphanumeric

lext, without any symbols belween the text and brackets. A method call made to

an exlerior class outside the currenl class, alsocontainsa" toseparalethemelhod

call and the variable name or class name (for static melhods). Since some melhods

relurn classes or some classes have public variables, we can havemulliple·.' (e.g.,

variable.methodlO.method20 and variablel.variable2.method()) to denote different

layers of variables and method stacks. Thus, the method and variable delection

lIIust be recursive. Ollce a lIIethod call has bC'CIl idelltified, we lIIust also look at

the method call arguments. The Java language allows arguments in methods to also

contain method calls, requiring that the te-xt in each arguments be examined for

Whenthepseudo-compilerhasfinishedthistextprocessing,theendresultgener-

ated is a complete listing for all the software classes in the project. with full details

about their method definition and the method calls made by each of these methods

and the related classes. This information is used to see the full method stack that

eachclass'smetbodscan be apart of, wbichisused in tbevisualization portion of

ImpactViz. Itsbould be noted tbat this pseudo-compiler does not act as apropcr

compiler and cannot detect if certain bloeksofcodesareunreachable

3.5.2 Repository Handler

Therepositoryhandlerisresponsibleforbeinggiventherepositorylocation (and allY

relatedusernamesand passwords required to access it) and download abistoryoftbe

projPptfordetectingwhpnmchmpthodintbpprojPPlbasbppnmoclifiC'florphmlgpcl

The repository handler finds the latest version the project and downloads the

information. Once the full code base bas been downloaded, tberepository handler

passes the information to tbe pseudo-compiler to perform tbemethod detectionon

it (we will denote this version as version 1'). When tbe full collection is finisbed

proppssing. tlw repository tbpn starts to roll bapkpacbdassfilptoanparliNvprsion

(classversionr-l)lUld has tbe pseudo-compiler break tbeolder version into methods

and related code and compare the two versionsoftbe metbods (class versionrand

r-1), to see if a compilable change can be noticed. Note that in this step, only the

software code is examined, not lhemethod calls. Ifachangehas beendelecled, the

repository handler marks the change in its repository log of the class,melhod,and

revision number. It then rolls the code back to an earlier version (class version r-2)

and compares the two earlier versions (r-1 and r-2),continuingin this fashion until all

the revision changes for the one class have been processed completely. This process

is performed for all classes in the project.

Once the repository handler has processed all of the revisions of the project, it

produces a complete listing of the method stack (provided by the pseudo-compiler)

for all classes, and notations for which revisions each method was changed in the

compilable code. This information is used in the 1mpactViz visualization in the

rrvisionfiltcr(tocxaminconlyrhangrsth"torcnrataspccifirdtimcpcriocl),which

reflects both the colouring of the nodes (to denote a change to a class during the

revision range) and the change impact regions.

Chapter 4

Evaluation Methodology

SincelmpactVizisanovel visualization tool for debugging, we cannot slate that il

is an aclual improvement over olher melhodsfordebuggingsoftware projecls unless

it is properly evaluated. While lhegoal in the design of 1mpactViz was tocreale

a system that would be superior to lradilionallechniques of analyzing lhesource

code ofa project and inspecting repository logs (hence forth referredtoaslradilional

debuggingtechniques),thereisaneedtoconfirmtowhatdegreethis goal has been

achieved through user evaluations. For the purposes of this study, we define the

tradilionaldebuggingmelhodtobelhatausercanonlyinspectlheoriginalsoftware

code and can review the the repository logs for lhesoftwareproject. serswillnot

be running the software or making their own changes lhrough out the study.

Evaluatinginformationvisualizationsystemsisatrickyproblem. Sincesucheval-

ualionsincludehumanelemenls.caremustbetakenloensurelhatcorreclqucstion

areaskedandthatthefocusoftheevalualionisplacedonrealisliclasksinorder

loavoid skewing theresulls [4). Olher challenges include inlroducing personal bias

with the participants and inconsistencies in the evaluation method [4]. These con

cern can be addressed by careful preparation of the experiments and creating a set

of guidelines to follow during the experiment. There's also the chaJlenge of selecting

the right evaluation methods [33]. A short study will quickly give results, while a

study performed over a longer period of time could show patterns that emerge once

a user becomes an expert user of the system. A longitudinal study is much harder

to arrange and finding participants who would be willing to participate may not be

The evaluation of ImpactViz follows the stepped model of evaluation and re-

finement, as proposed by Hoeber [21]. Inspections of the prototype system were

conducted first, following Nielsen's heuristic evaluation [28], a cognitive walkthrough

[29], and avisnali7.ation-spccifie inspection [45]. Baselion these inspections, the pro-

totypesystem was refined and improved. Then, two forms of user evaluations were

performed. The first was a laboratory study, followed by field trials. Results from

both these studies are presented and discussed in Chapter 5

4.1 Inspection Methods

Using Nielson's heuristic evaluation [29], members of the User Experience Lab at

Memorial University were asked to comment on ImpaetViz. Issues regarding error

prevention and recovery, aesthetics, and several others areas were discussed and prob-

lems were identified. Afterthisaetivity,severalchangeswererecommended,including

adjusting the interface so that the controls were on the left sideofthesereen,adjust-

ing the revision drop down to only allow users to select information within a selected

time period, and allowing users to hover over a class node and see thechange made

to it over the selected time period

A cognitive walkthrough was then conducted, placing the researchers in theposi

tionoftypicalusersofthesoftwaresystem. The evaluators judge whether the actions

required to accomplish the goal are intuitive and if the user would be provided with

enough information to accomplish their task [291. Based on the results of the cogni-

tive walkthrough performed on ImpactViz, changes were made including modifying

some of the terminology in the interface and removing the ability to change the effect

of clicking on a class node in the interface.

As well to the above inspections, we also analyzed the design and visual repre-

scntationsoflmpactViz following visualization-specific guidelines [451· In particular,

we analyzed colour usage to ensure that the colours were decodable and wcre used

consistently throughout the interface. In JmpactViz, black and white are only used

to represent whether a class has undergone a recent change or remainedunchallged,

while other colours are used to show the change impact regions. Although there is

the possibility for the repetition of colour when there are many change impact rc-

gions, the system ensures that such regions are displayed in disjoint space whenevCI

possible.

4.2 Laboratory Study

The laboratory study followed a 2 x 2 (debugging technique x software projects)

mixed design. The debugging technique (traditional vs. ImpactViz) was assigned to

participants as a within-subjects variable; the two separate software projects were

assigned between-subjects. The participants were divided into two groups, which

allowed the order of exposure to the debugging technique to be varied. Both groups

used traditional debugging techniques to debug their respecti\'e first software project,

and then ImpactViz to debug the second software project. Since the two projects are

completely unrelated. and the participants were selected such that they\\"erealready

familiar with traditional debugging techniques (i.e., seniorundergradllatecomputer

science students), the learning effects were minimized. The participants used the

traditional debugging technique first since this is a method that they were all already

With the laboratory study, the goal is to determine ifthedifferentdebugging

interfaceohaveaninfluenceontheparticipanto'abilitytoperformthedebuggingtaok

With this in mind, thedcpcndant; variablcs arc the timc to fino thcbng, whcthCl

the answer given is correct, the ease of use and usefulness rating the participant,

and whether the user prefers using ImpaetViz for debugging in comparison to the

4.2.1 Hypotheses

There are five main hypothesis that \\"cre tested during this laboratory study. Since

the goal is to compare ImpactViz to the traditional debugging method that they

are already familiar with, we consider this traditional method the baseline in this

comparison (herein referred to as the Baseline system)

The first hypothesis is that participants who use ImpactViz to debug will bc faster

in completing their task than those lIsingthe Baseline system. Weexpectthisrcsult

since ImpactVizwasdesigned to help users in traversing the method call stack ina

software system in a visual manner, which should reduce thenumbe I' of classes that

need to be inspected for the source of the bug.

HI: Participants will be able to identify the source of bugs faster with lmpactViz

The second hypothesis is that more participallts using ImpactViz will lind the

source of a bug than the participants using the Baseline system. ImpactViz helps

users to narrOw down a particular subset of classes to inspect. With a smaller set

of classes to examine, this should lead to less confusion and information overload,

allowing the participants to inspect the correct class

H2: Participants will be more accurate when finding the source of bugs with Im-

pactVizthan with the Baseline.

The third hypotheses is that participants will find ImpactViz more useful and easy

to use that the Baseline. ImpactViz is a visual debugging tool, which should make it

easy to see how classes interact with one another, and help narrOW down classes to

inspect in three short steps. One of the goals in the design of the system was to make

it both useful and easy to use.

H3: Participants will respond positively to questions regarding the usefu Iness and

case of use of ImpaetVis.

The fourth hypothesis is that participants will prefer to use JmpactViz for most

of their debugging tasks rather than the Baseline technique. Although the efficiency

and effectivcncss of a systcm arc not always ticd dircctly to USCI' prefcrcncc, lhis

hypothesis predicts that the participants' subjective opinions will be in favour of

usinglmpactViz

H4: Forthetaskofsupportingdebuggingactivities.participanlswillranklmpactViz

asa preferable to the Baseline.

The fifth hypothesis is that users will preferlhe Baseline system fo I' understanding

the source code of the project over ImpactViz. While lmpactViz provides information

on how the classes in the project interact with one another, the current implemen-

tation is not linked directly with a software development environment and does not

show the source code of the classes. Further, it offers no aid in undcrstanding the

lincsofcodethat makeup theclassmcthods

H5: For the task of understanding software code in general, participants will rank

the Baseline as preferable to ImpactViz.

4.2.2 Measurements

In order to evaluate our hypotheses, we need to measure the participants performance

under the various experimental conditions. The first two hypotheses are imple to

measure, as they are time and accuracy. The last three hypotheses, however, are

trickier. as they aresubjeclive questions and require more care to receiveanaccurate

For the first empirical measurement1 time, we measure the amount of tirne it

takes a user to give us their final answer and will be used for the validation of HI

The second empirical measurement, accuracy, is measured by grading the answer the

participant gives. In debugging you either find the bug or you do not find the bug

Withthisinmind,wegradetheparticipantsonabinaryscale.

The last three hypotheses are subjective. In order to receive an accurate mea-

surement, we must carefully ask thc participant questions about what they think of

ImpactViz. Using the Technology Acceptance l\lodel (TAl\I) [8], we carefully word

our questions specifically to see how useful and easy to use participants think Im-

pactViz is for H3. For H4 and H5, we ask the participants to rank ImpactViz and

the Baseline on their ability to perform standard software tasks and which of the two

debugging methods they preferred.

4.2.3 Statistics Test

In order to validate that there exists a significant diffcrence betwcen the twodcbugging

systems, we need to use statistical tcsts to compare the two sets of data. HI, H2, H3

and H4allrequirestatistical tests, detailed in the following paragraphs.H3doesnot

requircany statical analysis, since weare not comparing the results gathered from

theTA 1 questionnaire to the Baselinc method

For HI, we will be using the analysis of variance (AI OVA) [371. ANOVA is used

to determine the probability that the mean value of groups of data are equal. We use

the ANOVA test to see if the samples from both test are equal. If we can successfully

find that thcprobabilityofthctwosctshcingthcsamcisinsignificant (PiO.05).\Vc

can say with confidence that the two sets are not equal. From this information, we

can then compare the different mean valucs of the sets and see whether the the test

involving the time spent using ImpactViz has a lower value, proving that ImpactViz

does indeed speed up the debugging process

The data collected forH2 requircs us to determine the frequencies in which bugs

are found between the two debugging methods, the chi-squared test [37Jwillbeused.

Since each test only has one independent variable (ImapctViz or Baseline method

for debugging), with only two possible results (bug found or not found),thechi-

square contingency table will be used todetermineifthesetsofdataaresignificantly

different. frequencies, the Chi-squaretcst would be a good fit. Bycreatinga2x2box

(debugging methods x number of possible results), we can place all of the po iblc

rcsults from the accuracy test (bug found or not found). We can now apply the

chi-,quaretestto,eeifthere',a,ignificanlelifferencebetweenthetwofrequcncie,

H4and H5 require to ask participants to choose preference between ImpactVizand

the Baseline method. For this comparison, we will be performing the Wilcoxon-signed

rank test [37]. The Wilcoxon signed rank test is used to compare paired data that does

not rely on assumptions that the data has distribution model (non-parametric). The

Wilcoxon,igneel test can be u,ed,ince we cannot confirm if the e1atai,paramcl.ric

(following a distribution model like normal distribution). Wilcoxon signed rank test

is used to pair data from two separate groups anel examine the magnitude of the

differences, toeletect iftheeliffcrence between the two sets is significant. By fineling

if the e1ifference between the two sets is significant (PO .95). we can then find which

debuggingmethoel provieles the more successful rate offineling bugs. to help provide

validate our hypothesis that ImpactViz helps users be more accurate in their bug

tracking.

4.2.4 Software Projects

Two software projects will be used in the laboratory study for the participants to

debug. Thefirstproject,titled "Game" was developed by a single developer over the

course of several months. The second project, "Catering" is a modified group project

developed by four individuals over the course of four months, The second project

was trimmed down in size to match the same size and complexity as the first project.

Both projects have around 35 software classes each, with no more then six method

calls to different software classes

4.2.5 Participant Recruitment

The participants in this study were third and fourth year undergraduate and first

year Master's students from the Department of Computer Science at Memorial Uni-

versity. These participants were targeted because of their experience in working on

group projects; they would have all used a repository system at this point in their

academic and professional careers for various group projects. With these experiences,

theparticipantswouldunderstandthesituationofdebuggingother people's code and

likely would have encountered debugging situations similar to the ones outlined in the

tasks. They would understand the frustrations and difficulty that occur when a bug

is accidcntallyintroduccd into thc repository that is difficult to track down

4.2.6 Study Procedures

When participants arrived for the evaluation, they were thanked for volunteering their

time to this study. They were given a short introduction about the laboratory study

and what problems this research is trying to address. Then they were given a brief

outline of how the study will progress. They were given two consent forms to sign;

one copy was kept by the researchers for proof of consent and the other copy was

given to the participant, in case they had any further questions or concernsaboutthe

study.

After the consent form had becncollectedandsecured,theparticipantsweregiven

a pre-task questionnaire, to gauge their prior experiences and background. Questions

on this form include the number of software projects they had worked on using a

repository system, how well they gauged themselves in knowing repository systems,

elf-evaluated debugging skills, and prefcrences for programming languagc and oper

ating systems (see Appendix A). The last two questions are important, as the study

was performed on an Apple iMac running OS X and the software code they examined

was written in Java. Hauscr was very unfamiliar with the OS X operatingsystcm 01

didn'tunderstandJavaverywell,itcouldlcadtoanegativebiasinthemcasurcmcnts

that is unrelated to the debugging tasks

After the questionnaire had been completed, therC5earcher briefly went over the

traditional debugging technique and how to follow the method call stack in the Eclipse

Java development environment (which is a popular Jave IDE used by the undergrad-

uatestudents). The researcher also provided an explanation on how asinglc bug in

any part of the method call stack can affect the result given to the initial call and

how quickly the method call stack can grow

"Vhrll the parlicipant <-lckllow!c'(lg('d f\. ~mffiei(,llt IHldf'rstalldill~l lh('y w('r(' h'; V('l I

theirfirsttaskinformationsheet(seeAppendixA),andinformedtheresearcherwhen

theywonldliketostartthedebuggingtask. This first task was performcd using the

traditional debugging techniques; half the participants were assigned Project 1, The

Game, first; the other half used Project 2, Catering, first. more information about

the tasks themselves can be found in section that follows. When they started the

debugging work, the researcher started the timer and video recording devices. When

theparticipantcompletedthetask,thetimerwasstoppedandtheirfinal answer and

time to task completion was recorded on a task evaluation sheet.

As the user finished the first task, the researcher readied the system for a second

demonstration, this time involving lmpactViz. A tutorial was provided explaining

what the visualizations represent, the interaction techniques, and how the ystem

reacts to certain inputs. This tutorial was performed on the same sample code as

used in the demonstration for the traditional debugging technique, to help show how

ImpactVi7. is rlifferent from thrtrarlitionalrlrhnggingtcchni'1nr

When the tutorial was finished. the participants were given timeto read the second

task information sheet. After the participant acknowledged their understanding of

the task, they were permitted to begin the activity. At this time, the timer was

starledand the video recording device was turned on. When the user finished lhe

task. tl1C'timcra.ndvid('orrcorrlingdr:vic('swcrcstoppcd 1 and thrirfinalans\Vf'rand

time was recorded. The participants used Ecliplse to explore code sections in the

same fashion as they did in debugging the traditional task.

Once both tasks were been completed, the participant was given a post-taskques-

tionnaire (see Appendix A). This questionnaire was provided to evaluate how useful

and easy to use the participant found lmpactVizin comparison trad itionaldebugging

techniques (details related to how the questions were formed for this questionnaire

can be found below)

With thecollscllt[onllssig;llL'tI, prL~taskquL'Stiollllairefilledill, both tasksvolll-

pleted, and the post-task questionnaire answered, the study was completed. The

participant was thanked for their time, and given compensation in the formof$10

4.2.7 Study Tasks

Each task had the participant debug a software project. Participants were allowed

to examine the source code and use repository information aboutwhen changes were

made, who made them, and what files were changed. Participants were not allowed

to modify or run the code to identify the bug. but were provided with sufficient

information about the bug to be able to track it down. Participants were given a

sheetofpaperoutliningthedetailso[thebug,includingtheclassthat the bug was

manifesting itself in, and the date when the class was last tested and identified as

working as intended (also known as the bug [reestate)

With the information provided above, the participants wereexpectedtotraverse

the method call stack starting with the class in which the bug was manifestillg itself

In each method, theparticipallt was to analyze the software code for any erroneous

code that could cause the bug described. Since participants were not familiar with

the software project, they were allowed to ask the researcher questions about what

a particular section of code did and its influence on tbe method. The bugs were

designed to be noticeable to someone who had no prior experience with the specific

requirements of the evaluation projects. When the participant came to an answer

they were confident in. they could inform the researcher and conclude the task. In

order to avoid unnecessary participant frustration, after 20 minutes had passed partic-

ipantsweregiven the opportunity to abandon the particular task. If the participant

abandoned the task. the time would be recorded as undetermined and the grade for

their final answer as O. as they were unable to find the source bug method and class

4.2.8 Subjective Questions

The post-study questionnaire (see Appendix A) included questions from the Tech-

nology Acceptance lodel (TA~I) [81 in order to gauge perceived usefulness and ease

of use. In addition, participants were asked to indicate their impressions of specific

features of ImpactViz. For both sets of questions. afivc-point Likert scale was used

Participants were asked which debugging method they would prefer to use in future

debugging tasks. These tasks included understanding software code, the method call

stack. revision history, theoverallefrectofsomesoftwarechanges,andtheirpreferred

system in future debugging tasks

4.3 Field Trials

While the laboratory study wasconducled under a controlled environment,thefield

trials attempt to study how the software would be used in areaJ world environment.

In the laboratory study. we provided artificial tasks and anenvironmentforthepar-

ticipants to work in. During the field trial, participants provided their own software

project and questions that they had about their software. While performing this

study, there were only a few participants, but their actions were closely monitored

anucxalllincd. Thcdoculllcnts rclatingto the the ficld trial can bcsccn in Appcnuix

I3cllcfits ofusillg aficld trial as an cvaluatiolllllcthod includes allowillg thc ob-

servers see how users of the software will actually use the tool. While we may think

that we have a good understanding of how our software is being used, field trials allow

us to observe and make notes about how the software is actually being used [331

4.3.1 Study Questions and Measurements

For this study, our main research question was to determine whether participants

would find ImpactViz beneficial tosolvingtheirowndebuggingproblems and under-

standing how the pieces of their own projects are related to one another. There are

tloquantitativc measurements for tile field trial evaluations, a~ it is Hot rc<:\tionablc to

make time and accuracy comparisons between different projects. Of more value are

the qualitative impressions of the syslem and its value

From the field trials, we wish to measure how well accepted our software will be

in a real-world environment. We use the same TAM questions as in the laboratory

study to measure usefulness and ease of lise. As well, we record cornments and

actions performed by our participants and study them afterwards to see how sllccessful

ImpactViz was in aiding the participants with their own software systems. Post-study

analysis can also answer the question of when ImpactVizwill be useful and underwhat

circumstance would a software developer benefit from using ImpactViz to help them

debug code.

4.3.2 Participant Groups

Two of participants within the field trials were selected from among students at

Memorial University who were enrolled in COMP 4770 (Team Project) in the Winter

semester of 2010. These students were finishing their Computer Science degrees, with

COMP 4770 being the last mandatory course required for the B.Sc. degree. During

the previous years, the participants would have used variousteam management skills

and code management software to help them complete their group projects. These

are individuals who have a lot of experience in software repositories and have spent

much of their time crafting their projects to match associated UML diagrams

A sccolld group ofparticipallts fortlicficld trailswcrctwovcrycxpcriellcedsoft-

ware developers. They were both post-doctoral researchers working within the De-

partment of Computer Science. They both had significant experience in using software

repositories, and were working together on a large software project during the course

of the study. Each field trial participant was compensated for their time in the form

of $20

4.3.3 Subjective Questions

Similar to the subjective questions asked at the end of the laboratory study in the

post-task qucstiollllaire, tlic field trial members were askcdquestiolls related to lm-

pactViz, its debugging capabilities, its use as a software exploration tool, and ques-

tions from TAM model. The participants were also asked to grade different features

of ImpactViz, so that the researchers could observe what parts of ImpactViz the

participanls found to be the most useful

Unlike the questionnaire presented at the end of the laboratory study, the par-

ticipanls were not asked to perform any comparison between ImpactViz and another

system. Since the parlicipanls are not using another system under lhesamecon-

strainls,thereisnoinformationtobegainedinaskingthisqueslionlosuchasmall

sample of participants.

Chapter 5

Results

In this Chapter, thcresults for the evaluations described in the previous Chapter will

be bc presented and discussed, with statistical analysis to determine how successful

the prototype was in satisfying the hypotheses, where appropriate. The results of the

lahoratory study will hepl'cs(,llt('dfirst, follow('d hy the fi('ld trials.

5.1 Laboratory Study

For the field laboratory study. a total of 16 students were recruited. 12 of the par-

ticipants were undergraduate students, whilc the remaining four students were first

year Master's students. The 16 participants were broken into two groups consisting

of six undergraduate and two Master's students in each gl'oup. Thel'awquantitativc

results can be seen in the four tables below in their respective sections (Table 5.1,

Table 5.2, Table 5.4, and Table 5.5)

The hypotheses referenced here can be found in Section 4.2.1. Asareminder,users

were given the opportunity to abandon the task after 20 minutes (12OOseconds),aftcl'

showing visible signs of frustration. Participants who did choose to abandon their

task have been noted in the tables.

This laboratory study was performed as a comparative study. We asked parlic-

ipants to use two systems, the Baseline system. which is the traditional debugging

system that is in current use by most programmers at the senior undergraduatestu-

dent level, and ImpactViz. The results are compared on this basis for empirical

metrics measured in both projects and the participants' opinions after using both

systems for the debugging tasks.

While analyzing the results from the laboratory study, we will be analyzing each

project separately. Since both project are unrclated to one another, adirectcompar-

ison between the two in terms of time and accuracy would not beafaircomparison

However, comparing between interfaces allows us to see how the participants' perfor-

mances changes when performing the same task, but usingdifIerent interfaces.

5.1.1 Project 1 - The Game

The results presented here are related to the programming project titled "The Garne·'.

"The Game" is an computer game, with randomly generated maps and multiple level

dungeons. The player can choose a character and move the character through the

dungeons, defeating monsters and collecting treasure. While testing the game, a bug

was discovered iu which health potions, an item that help recover the player's health,

were healing for astatic amount instead of the intended random amount.

Table 5.1: The laboratory study results of participants debugging Project 1, The

Game, usingr=the=--=B=as=eli=ne'---r---__-,--_----.-__~

Participant TO Time (seconds)

Table 5.2: The laboratory study results of participants debugging Project 1, The

Game, using ;:..:Im~pa~ctV~iz::-"-.---__----.-_----.-__-----,

Time (seconds)

5.1.1.1 Time to Task Completion

In HI, we predicted that participants would be able to identify the source of thc

bug faster usinglmpactViz than the Baseline. In order to verify this, we measured

the time to task completion using both debugging methods. Table 5.1 shows the

time to task completion data collected for participants debugging the project using

the Baseline methods, while Table 5.2 shows the data for using ImpactViz. Wc can

see that one participant abandoned the task using the Baseline. ~leanwhile, under

ImpactViz, no participants abandoned the tasks.

Two outliers were removed from the participants who used the baseline method

Purticipant 6 ahanuoncu thctask,llIcaningafinul taskcolllpiction tilllccouiu not be

found, while participant 3 got lost whilc navigatingthesoftwarecoderesultingina

timc to task completion that was nearly 2.5 times higher than averagetimeachieved

hy the other participants to complete thcsame task with the same interfacc. The

standard deviation of this time in relation to the other times was approximatcly 2,

placing thi~ JJarticipaIlt'~ lime as all outlier. No outliers were identified frolIl alllong

the participants that used ImpactViz.

An ANOVA test was performed on the time to task completion measuremcnts,

resulting in a validation of the statistical significance of the differences (F(I,14) =

5.81l,p< 0.05). Sincep < 0.05, the difference between both sets of data isstatisti-

cally significant. Theaveragetillletakentofinu the bug using the Baselinc was 392

seconds, while the average time using ImpactViz was 231 seconds. sing ImpactViz,

participants were able to identify the source of the bug 60% quickerthanthcbaseline.

As a result, we conclude that the data validates HI.

5.1.1.2 Accuracy

H2predicted that participants would be more accurate in findingthcsourceofthebug

using ImpactViz. Accuracy was measured based on whether participanls correctly

identified the class and method in whieh the bug existed. 100% oflheparlicipanls

correctly identified the bng nsing ImpaetViz, while 75% of the participants fOllnet the

bug using the Baselille. A chi-squared lest shows that these resu]ls are not slatistically

significant (X2 = 0.46). Therefore, we can conclude that H2 is not validaled by the

data, although there is evidence implying that there is apositiveco-relation in the

usage of ImpactViz and an increase in debugging accuracy.

5.1.1.3 Usefulness and Ease of Use

As stated in H3, we expected that participants would respond positively to state-

ments regarding the usefulness and ease of lise of ImpactViz. The TAM guided the

development of the questions for measurillg the participants subjectivereactionsto

the system. Six statements were prepared that delved into the issues of usefulness,

and another six addressed issuesrelatcd to the ease of use. leasurementsweremade

on aon five-point Likert scale.

The TA I statements related the participants· use of the system under invesliga-

lion (i.e., ImpactViz) to existing practice. As such, the comparison to the Baseline is

inherent within the responses

The frequency of responses were aggregated for each set ofsixquestions. As such,

there are 48 measuremenls for each of usefulness and ease of use. These resulls are

presented in Figure 5.1.1.3. Clearly, there are consistently posilive responses for both

Stronilv
Oisaeree

Stronilv
Acree

Figure 5.1: Aggregate responses ror the TAM statements related to the usefulness

and ease or use or ImpactViz by participants who used ImpactViz on Project 1, The

measurements,whichsupportsH3

5.1.1.4 Supporting Debugging Activities

H4 predicted that participants would rank ImpactViz as preferable to the Baseline

for supporting debugging activities. Four questions were asked in the post-study

questionnaire that addressed specilic anci general debugging tasks. TheseareoutJined

in Table 5.3, along with the raw results for all participants in the study, and the

outcome of Wilcoxon signed rank tests

For three of the four questions users greatly preferred ImpactVizover the Baseline

nl('thod, with the rC'slIlts hC'ing statjstirall~' significant. Bmw'vcr, for the' task of

Table 5.3: Frequency of rank preference for debugging activities for lmpactViz for

Project 1, The Game.

I Debugging task IBaseline I lmpactViz I Wilcoxon signed rank tcst I
2=-1.00,1'>0.05

Understand the revision history 1

Understand the effect of changes 1

Preferred system for debugging

2=-3.00,1'<0.01

2=-3.00,1'<0.01

2= -3.00,1' < 0.Ql

understandingthemethodcallstack,theopinionsoftheparticipanlsdidnotshowa

statisticallysignificantdiffcrcnccbctwccnllllpactVizandlheBaseline. Thiscollldbe

explained by how quickly participants found the answer (inunder2.5Illinutes),that

they never really had the chance to learn the method call stack. Since three of the four

questions that are related to supporting debugging activities showed a statistically

significanlpreference for using ImpactViz,wcconcludethatH4is stronglysllpported,

but not uniformly validated.

5.1.1.5 Understanding Software Code

In H5, we predicted that participants would rank the Baseline as preferable to Im-

pactViz for the task of understanding the software code. Our expectation was that

participants would find the ability to directly access and browse thc software code

a valuable tool for undcrstanding. By contrast, since ImpactViz provides only an

overview of the method call stack, the resulting relationships betwccn classes, and

a visual representation of the impact of changes, understanding the software code

In the post-study questionnaire. participants were asked to rank their preference

of methods for understanding the software code. The participants were split in their

preference, with four participants preferring JmpactViz and four preferring Baseline.

A Wilcoxon signed rank test showed that this difference is not statisticallysignificant

(Z = -O.OO,p = 0.500). As such, we conclude that H5 is not supported by the data.

5.1.1.6 Video Analysis

The usage of the video recorded during the laboratory tests were used to confirm

that there was no reason to exclude any participant fromtheaccuracystatisticsfor

improper debugging usage for either interface.

5.1.2 Project 2 - Catering

The results presented here are related to the programming project titled "Catering".

"Catering" iSaJl online web service which allowed customers to access a caterer and

make requests for catering services. Customers were able to browse menus, make

orders, as well review order histories. A bug was detected when users were reviewing

old orders; the items in the menu lead toeitherthewrongitemortoapage.informing

5.1.2.1 Time to Task Completion

In HI, we predicted that participants would be able to identify the source of the bug

faster using ImpactViz than the Baseline. In order to verify this, we measured the

time to task completion using both debugging methods. Table 5.4 shows the data

collected for participants who used the Baseline for debugging, whileTable 5.5 shows

Table 5.4: ThelaboraLorysLudyresllltsofparLicipanLsdebllggingProject2,CaLering,

usingtheBas~eJi~ne,---._--.--__--.--_~----,

ParticipantlD Time (seconds) Accuracy Comment

Table 5.5: ThelaboraLorysLudyresultsofparLicipanLsdebuggingProjecL2,CaLering,

using ImpacL.~Vi~z.--r----,.---r------,

Participant Tn Time (seconds) Accuracy Comment

the data for participants who used JmpactViz on the same project. Similar to the

first project, two participants abandoned the task while using theBaseline,whilezero

participants abandoned the task while using ImpactViz.

One outlier was identified during this project. Participant 7 using ImpactViz

refused to use ImpactViz for the study, instead quickly bypassing the visualization to

analyze the source code of the project, performing the task inastyIe very similar to

the baseline debugging technique. Participants land 5 from the Baseline group were

removed, due to their abandonment of the task after 20 minutes of debugging

The ANOVA test was performed on the time to task completion measurements

The result shows no significance between the values (F(I,13) = 0.044,1' > 0.05)

for this sample size. The average time taken to find the bug using the Baseline

method was 834 seconds, while the average time using ImpactViz was 798 seconds

Participants using lmpactViz found the bug in 95.7% of the time then the participants

using Baseline. While overall we can see a minor trend in favour of ImpactViz, the

results are not significant, and do not verify HI

5.1.2.2 Accuracy

H2predictedthatparticipantswouldbemoreaccurateinfindingthesource of the bug

using ImpactViz. Accuracy was measured based on whether participants correctly

identified the c1a..r..;s and method ill which the hllg cxist('u. Participlwt 7 of the 1111-

pactViz group was removed from this analysis, due to refusing to use the ImpactViz

tool during theevalualion. 37.5% oflhe participants correctly identified the bug

using ImpactViz, while no participant identified the proper bug using the Baseline

method. A chi-squared test shows that these results are not statistically significant

Stronc1y
Oisaj:ree

Sironc1y
Aa:ree

Figure 5.2: Aggregate responses of the TAM statements related to the usefulness and

ease of use of ImpactViz by participants who used ImpactViz on Project 2, Catering

(X2 =O.0769). Assuch,weconcludethat H2 is not verified by the data, but there is

a positive trend being shown in favour of ImpactViz.

5.1.2.3 Usefulness and Ease of Use

As stated in H3. we expected that participants would respond positively to stale-

ments regarding the usefulness and ease of use of ImpactViz compared tothe Baseline

method. Results from the TA~1 questions were aggregated, resulting in a tolal of 48

measures for each ofuscfulnessand ease of use. These resullsare presented in Figure

5.2. Clearly, there are consistent positive responses for both measurements, which

supporlsH3.

Table 5.6: Frequency of rank preference for debugging activities for ImpactViz for

Project 2, Catering

I Debugging task IBaselinellmpactVizl Wilcoxon signed rank test I
Z=-3.00,p<0.01

Understand the revision history 0

Understand the effect of changes 0

Preferred system for debugging

5.1.2.4 Supporting Debugging Activities

Z=-3.00,p<0.01

Z= -3.00,p < 0.01

Z=-3.00,p<0.01

H4 predicted that participants would rank ImpactViz as preferable to the Baseline

for supporting debugging activities. Four questions were asked in the post-study

questionnaire that addressed spccific and general dehugging tasks. Thescqucstions

are outlined in Table 5.6, along with the results given from the individuals who used

ImpactVizfordebuggingon the second project.

Every participant who used ImpactViz on the second project prefcrrcd to con-

til1lleusinglmpactViz for future software debugging tasks. The results are statically

significant, as presented in Table 5.6, and support H4

5.1.2.5 Understanding Software Code

In regards to H5, we hypothesized there would be little preference for participants to

use ImpactViz for understl\llding the software code ofa project. Of the participants

who debugged Project 2 using ImpactViz, five preferred ImpactVizforunderstanding

thesoftwarecodeversusthrecwhopreferrcdBaseline. A Wilcoxonsigncd rank test

showed that this difference is not statistically significant (Z = -l.OO,p = 0.159). As

such, we conclude that H5 is not supported.

5.1.2.6 Video Analysis

Through studying the video recordings forlheparticipantsduringlhedebuggingof

lhesecondprojecL. participant 7 was removed from the analysis in both lhe time to

laskcomplelionandaccuracyevalualions. Participant was removed due to improper

use of the ImpaetViz debugging task, by refusing to user the graphical tool. and,

inslead, prefer toeomplele the full task by only inspecting the software's source code.

5.1.3 Summary of Laboratory Study Results

Comparing the data between the two projects, it quickly became apparent that par-

ticipants had a much harder time finding the bug in Project 2, Catering, compared

to Project 1, The Game. There were more abandoned tasks, less correct answers

for the bugs location, and higher overall times. Although both test projccts were

designed to be of similar difficulty (i.e., similar number of classes, similar level of

classinter-dependency,similardistancebetweenthemanifestalion of the bug and ils

source), participants had a much more difficult time conceptualizing the design and

class interaction within Project 2. Further, the source of the bug in this project was

in a class constructor; although most participants correctly identified the class as a

pOlential source of the bug. few inspecled the class constructor melhod. Based on

this information and the fact that users had a much harder time in underslaJldingthe

code, even with assistance, we feel this projcctdoes not properly represent a normal

debugging situation

From the five hypothesis that guided thc design of the laboratory study, Iwo

hypothesis wcrc confirmcd (IIJ allllll'I). One hypothesis achieved mixed wsults

(HI) depending on if the participant used JmpactVizunderaprojectofnormaltask

difficulty (Project I) or an abnormal task difficulty (Project 2). Two hypothesis was

not confirmed (H2 and H5), although we saw a large change in probability results

in H2 from Project 1 to Project 2. From these results, we can see that participants

lind ImpactVizas much moreprcfelTedmethod for debugging, andean hclpdecrease

debugging speed and increase debugging accuracy under normal situations.

5.2 Field Trials

The field trial participants were divided into two groups. The first group consisted of

two students from the CaMP 4770 (Team Project) undergraduate course who worked

on a Java server application, while the second group contained two post-doctoral

researchers \Vorkingon ageo-visualizalion project.

5.2.1 Group 1 - Undergraduate Students

The first group's project had a total of 13 students developing the softwareoverfour

months. The entirety of the project was developed from scratch. Intheend,37class

files were created and modified. with m'er three hundred revisions made. The two

participants in this group used Impact\'iz after their project was finished. As such,

these two individuals used the prototype software as a retrospective look at theil

team project.

Both participants came into the study with opposite opinions on the project.

The first member felt very pleased with the overall project. Meanwhile. the second

participant wa, far Illorcui"ati,ficu wilh lhcprojccl, cvcn ~ far ~,ayingin hi,

recruitment e-mail that 'the course material is complete (sort of) .. .", showing that,

while the course was finished, he still felt there was a lot of work left unfinished

Both individuals, while in the development phase of the project, focused their

efforts in separate areas of the project. Both participants reported that they felt

they were better informed via ImpactViz of how other classes outside their experlise

areas worked and was designed. The first participant was happy with what he saw,

stating that it matched their initial UI\lLdesigns for the project, developed early in

the course. While the second participant was less pleased about the relations, slating

that "it doesn't make much sense." He observed inconsistent names for classes that

had common functions, and that these common classes were in completely separate

areas in the visualization with no connections. The second participant then started

to discuss how he would re-work the design of the system, to help make the syslem

Both participants said they found the the visual representation of the method call

'lack in ImpactViz very helpful in under,tanding the flow of method call,. Bolh al,o

said they could use the visualization to illustrate lhequality (0r lack of quality) in

how the system was designed. The first participant felt very strongly that the project

was well designed anu lheirexecution of the design was very accurate. The second

participant was able to use the visualization to help show flaws in the design and

use the visual tools to help illustrate where new classes should be and where class

relations don't quite make sense. Both individuals also found older classes that still

remained in their repository that no longer had any place in the system, as these

classes had no relations to any oftheolher classes. Both had thought this group of

10

9

7

6

S~

Strongly

Disagree

Strongly

Agree

Figure 5.3: Responses to the TAM statements related to the usefulness and ease of

use of ImpactViz by participants in the first group of the field trial

class had already been removed, but they were clearly visible in thevisualization

The participants from this group responded very positively when they answered

the TAM questions. As seen in Figure 5.3, all the answers to both sets of questions

regarding ease of use and usefulness as either "Agree' or "Strongly Agree." The

results of the TAI\I questions for this group shows that this group found ImpactViz

to be both useful and easy to use for their software development needs.

ThisgToup foulld ImpactViz to be very helpful in code exploration. It helped both

individualsseetheoverallproject.outsideofthesmallscopetheyhadbcenfocusing

on. While the participants attempted to debug their project using ImpactViz by

trying to track down older bugs. they had difficulties in e"aluating whether their

efforts were worthwhile due to the fact that the project was complete and there

were no significant bugs to be found. After the ficld trial was complete, one of the

participants asked when a Python version would be released, which he could use for

his job. This suggests that developers may be interested in using ImpactViz to help

them debug software projects in areal world setting

5.2.2 Group 2 - Post-Doctoral Researchers

The second group of participants were working jointly on a largegeo-visualization

project. The total size of the team was two members, with both members consenting

to participate in the field trial. The project contained 37elass files, with 70+ revisions

made over the course of the project. At the time of the study, the project development

was still ongoing and had been in development for four months. The developing

environment was an oflieein which both team membersworkedside-by-sideandwere

The first team member in this group was much more versed in the usage of rcpos-

itories, often only changing one or two files before conllnitting his changes. The

second member was less familiar with using software repositories system and made

less frequent commitments that affected many more files

While the two-person team found ImapctVizinnovative. they found little use for

the prototype software. Both members were very aware of the software system and

kept in constant contact during the development of the software. As such. they

gained very little new insight about their software system. When inquired about any

debugging tasks they wish to perform. neither member had any specific debugging

tasks for which they could evaluate the system

10

9

8

7

6

S

4

3

2

1

o
Strongly Disagree
Disagree

Strongly
Agree

Figure 5.4: Responses to the TAM statements related to the usefulness and ease of

useoflmpactVizbypartieipantsintheseeondgroupofthefieldtrial

Participants in this group were less accepting of the prototype, as can be seen in

the TAM results in Figure 5.4. While both members of this team found the technology

easy to use, one member had applied "n/a" to all 6 of the "Usefulness" questions,

henrethelownllmheroftotaillsefllln,",smmits in the figure. This shows that in a

small team environment, ImpactViz may not be as useful as in a larger team setting

This may be due to the fact that small teams are able to communicate with one

another while developing and debugging software more effectively than large teams.

Chapter 6

Discussion

After performing evaluations on the prototype system and presenting the results in

the previous Chapter, it is now important to interpret theresul tsfromthelaboratory

studies and field trials. In this Chapter, we discuss how the result" relate to real

world debugging activities

6.1 Laboratory Study Results

While designing the laboratory study in Chapter 4. there were five hypotheses that

we wanted to test in relation to the traditional debugging techniques. The first two

hypothesis required quantitative measurements to gauge the partieipants'debugging

speed and accuracy in tracking down the source of the bug. The next three hypotheses

were qualitative and subjective to each participant's experiences. The following two

subsections will discuss these hypothesis

6.1.1 Quantitative Hypotheses

From the two projects that were used in the laboratory study, we have contrasting

qualities. In Project 1, we have a scenario where the participants were able to quickly

understand the source code and start debugging, while in Project 2, we had a scenario

where the source code was more complicated and unfamiliar to the participants

Project 1 represents an ideal scenario, where participants understand the project's

structure and can quickly start interpretingthelmpactViz visualization and associ-

ated source code to track down the bug. Under these circumstances, we can sec that

difference in both time and accuracy is significant, with participants using ImpactViz

to complete the task 60% faster than the participants who used the baselinemethod,

and with 100% of the participants finding the bug versus 80% of the participants

finding the bug using the baseline method

Project 2 was more complex and harder for the participants to undcrstand. This

scenario represents a case where participants are new to the projectandaretryingto

figurcout how thc SYStClIl wasdcsigllCd. Aswcll, lIlallyuscrsfailcdtopropcrlyillspcct

the method in which the bug was contained, as it was a constructor method. This

scenarioisanul1commonscenario, 8Speopieareonlyunfamiliarwilh an entire project

only at the start of their involvement and become more knowledgeable overtime.

Nevertheless, participants showed a positive trend usinglmpactVizoverthebaseline

debugging techniques, performing 20% faster in identifying where thcy thought the

bug was, and three times as many users found the correct bug (30% of ImpactViz

participants found the bug, versus 10% of the participants using Baseline method)

While not significant results, this suggests that ImpactViz allows users to bc fastel

and more accurate in less than ideal debugging conditions.

While the difference between both interfaces were significant for Project 1, this

wasn't the case for Project 2, although there was a positive trend in favour of Im-

pactViz. Looking at the raw data, \Vecan say that participants had an easier time

with debugging Project lover Project 2, based on the much lower average time to

trackdown the bug and the much high success rate with both interfaces. We cannot

conclusively say that HI was validated by the evaluation, asonlyhaIf the tests yielded

statistically significant results

From the two projects. we can see thatlmpactVizdoes help users in finding the

right bug faster, when provided with enough information. In areal world situation,

the information provided in these tests is not uncommon to most developers. We can

also see that even if the developer is not familiar with the project, as shown by the

second project, participants were still shown to debug faster and more accurately over

the traditional methods, although this difference was notstatistically significant.

6.1.2 Qualitative Hypotheses

The last three hypotheses predicted that participants would respond positively to

questions about the usefulness and ease of use. that participants would rank Im-

pactViz higher than the traditional debugging method forsupportingdebuggingtasks,

and that when it comes to understanding the software code, thetraditionalmethod

would be preferred tolmpactViz.

For H3, both groups of participants found ImpactViz to be both useful and easy

to use. What is most interesting, however, is that the group who used ImpactViz on

Projcd2(whichwascollsidcrcdthclllorcdifficultprojcct)foulldittobClllUChlllorc

useful and easy to use (Group 2 had 15 more "Strongly Agree" responses for usefulness

and 9 more "Strongly Agree" responses for ease of use). While ImpactViz did not

allow the participants to be much faster or accurate (from a statistical perspective),

they did prefer to uselmpactViz to help explore and understand thesoftwareproject.

The results, however, could of been from the novelty ofa newsystem;alongitudinal

study should be performed to see how users respond to ImpactViz after repetitive

It is very interesting to see that despite being given a "harder" task, thepartici-

pants who debugged usinglmpactVizfor Project 2 greatly preferredtouselmpactViz

in their future debugging tasks (H4) over the other participant group, despite using

the Baseline method on the "easy" project. Since the average completion tillle for par-

ticipants using ImpactViz on Project I, The Game. was significantly less than Project

2,Catering. With this extra time during the catering project, thepartieipan tswere

able to spend more time learning and understanding the tools of ImpactViz,andthe

many ways the tools can be used. The participants using ImpactVizon the cater-

ing project received additional time with ImpactViz, which might be enough extra

time to receive a better impression of the capabilities of ImpactViz in areal world

For H5. there was no significant difference between both groups opinions of using

ImpaetViz to help understand the source code for the projects. While ImpactViz

wa..,,; tlot sppcifically d~ib'll('d to hrlp ullderstand lhe software' {'odp ill g(')H'ral 1 it is

interestingtoseethatparticipantsfouncithevisualrepresentation of the method call

stackassisteci them with this task. While not an expected result, it is good to see

thatsomeparticipantscoulduscJmapactViztounderstandtheactualsoftwarecodc

with ImpactViz.

The results given in Sections 5.3 through 5.5 show that participants found lm-

pactViz useful and easy to use when it comes to debugging tasks. This provides

evidence that users are ready and willing to use a visual tool for futuredebugging

6.2 Field Trial Results

In the field trials, the participants were divided into two groups . Thc first group con-

sistcd of two students from a large tcam-based project, devcloped over four rnonths.

Whilethisprojectwasfinished,itwasstillinterestingtoseethebenefitsoflmpactViz

as a debugging tool. The sccond group consisted of two post-doctoral rcsearchcrs

working on a project in which they wcre the only developers. Theprojcct had been

underway for two months, and wason-going

The first group of field trial participants found ImpactViz to be very helpful

for code exploration. While developing the software, each participant focuscd thcir

energies on a particular areaoftheprojcct, and had lostasenscoftheovcrallprojccl.

Using JmpactViz they started to see pallerns they hadn't noticed bcforeand errors

and problems in the overall design of the system. One participant started to make

suggestions on how to improve the implementation. Since this was a large group

project that had 13 developers. this field trial reinforces that participantsoflarge

team-based projects have much to gain in using ImpactViz, helping to improve theil

overall understanding of how the project has been implemented. In this projcct,

IlCithcr participant was able to thillk of a specific debugging sccnario, as Ihcpl"ojcct

had been compleled for about six weeks by the time the field trial was eondueted

For lhe secod group, the learn size was much smaller. The two developers worked

together in the sallle office. with their workstations located near enoughtooneanother

to allow nearly constant communication when necessary. In this scenario, the two

developers found ImpactViz less useful for code exploration, as bothindividualswere

already very familiar with how the syslem was designed and implemented. However,

both participants agreed that ImpactViz would be very beneficial to the team if

anotherdeveloperjoinedthemandtohelpbringthisindividualuptospced. We

were unable to evaluate a debugging scenario, since theparticipanls were unable to

think ofabug to track down in their own system

From the field trials , we Cfl,1l sre that TmpactVi7. is a mnch mo1'C' IlsC'f1l1 '·001 in a

large tcam environment than for a small team. \Vhen people are givcn a specific area

to work in, they can quickly lose touch with other areas of the project and forget

how other sections of code interact with one another. ImpactViz helps visualize the

dependencyandmethodcallsandhelpsthedevelopertoquicklyrecall how lhesystem

is designed and further understand how the code in other areasoflhe projectareput

together. In a small leam environment, where all developers are already familiar

wilh the project and classes, there is less information to gain from using JmpactViz.

But the lool can still act as an orienlation aid for new developers, helping them gain

familiarily with the system

6.3 Benefits

The main research question that this thesis was focused on waswhetherornot a visual

debugging tool was necessary and whether users would find it beneficial. From the

resulls of both studies. wemn concluue that software uevclopers call benefit from a

vi ualdebuggingtool to aid them in debugging tasks. We have seen that under normal

circumstances, that the usage of ImpactViz helps increase the speed and accuracy of

finding a bug. In more difficult debugging cases, there is also evidence to suggcst it

can help improve their speed and accuracy. The majority of the participanls reported

that they found ImpactViz both useful and easy to use in tackling their debugging

tasks. Lastly, users reported a preference to uselmpactViz in future debuggingtasks

over traditional methods.

All the evidence collected leans very heavily in favour of users being ready and

willingtousevisualtechniquestohelpaidthelllintheirdebuggingtasks, and that

ltnpactViz is a useful step in the this direction

6.4 Drawbacks

Whileperforlllingtheevaluations, we noticed areas where the use 0 fllllpactVizhad

little to no benefit to a software de\"eloper. For example, as we saw in the Project

20fthelaboratorystudies, ifuscrshaveahard time understand ing the code or lhe

context of the code, the benefit in using visual debugging tools to help them find the

bug is limiteu. This may bcuue lo the fact that in sueh ea,;es. it isdi£lieultfor lhe

user to generate an accurate mental model of the software, even whenshownlheclass

dependencies through the method call stack

Another area in which ImapctViz offers little mlue is for developers who are

working in small teams and are very familiar with the code, as seen from oursccond

field tria\. Since both members of the team worked in a variety of areas in theproject,

both members were very familiar with the code they each had written. ImpactViz

offcrcd littlc in thc way of allowing thcdcvclopcrs to furthcr Icaru aboutthcirsoftwarc

As such, theseparticipanlsgraded it as not being very useful

Lastly, usinglmpactViz in a project with a very shallow method call stackwould

not be usefu\. A software project where there is little in the way of code reuse,

produces a shallow method call stack. A method call stack that is four or five levels

deep may bequicklytransversed manually through mostsoftwarelools.lnthiscase,

thcovcrhcadofrnnningandllsinglrnpartVizma,ybclllorcofahnrdcnt.hanahC'nrfit..

Chapter 7

Future Work

Through out this thesis, a software visualization system known as JmpactViz has

beenexplained,evaluated,andthercsultsdiscussed.Inthischa]Jter,wcwiliouLiine

further plans involving ImpactViz. Thcre are four main areas in which wc want to

focus our future work in: integrating ImpactViz within an integrated dcvclopment

cnvironment (IDE), conducing furthcr evaluations, enhancing the information that

is visually represented in ImpactViz, and adding further interaction tools that can

help address potential information overload issues with exceptionally largesoftwarc

7.1 Plugin With an Integrated Development

Environment

JdeaJly, theulLimategoal for ImpactViz would be to develop aplugin to work with

an JDE, such as Eclipse or Netbeans By bundling ImpactViz into an IDE. users

can use the software project within the JDE to aid in the debugging project, without

resorting to switching between programs to review the code and to analyze the visual

tool. Users could debug their source code and switch between thedeveJopment view

and IlllpactViz, with instant interaction between the visualization and the text based

view of the latest version of their software code.

7.2 Further Evaluations

While the results of the previous evaluations were in favour of ImpactViz, Lhere is

still a need forfurtherevaluaLion. While Llle current evaluations in Lllelaboratory

study reveals that ImpactViz is very useful and aids in debugging under the right

circumstances, further study will allow us to see how well lmpactViz can perform

in abnormal scenarios. These scenarios may include missing information, like an

ullknown starting point or missing temporal data, and could comparethe resliitsto

traditionaldebllggingmethods.

Since the evaluation results were not significant for the one abnormal case we

did test (where users had trollble understanding the source code), rccruitingmore

participants to perform that abnormal circumstance is requiredtoproveifJlllpactViz

call hchcllcficial tocolllplcxsollwarcprojccts that participallts arcullfamiliar with

Evaluating this scenario further can help show whether ImpactViz can he an aid to

new developers. A longitudinal study would be well worth performing to see if the

qualitative responses from the evaluation was a result frolll the novelty of ImpactViz

skewing the results.

F\lIthcrstudicscoulualsohcuscutofilluthchoulluaricsullucrwhich iJllpactViz

ean be useful. On how small of a software project will the overhead of using ImpactViz

result in moreofaburdenincomparison totraditionaldebuggingtechniques? While

designed to be scalable, are there extremely large projects for whichthevisualization

method employed by ImpactViz is more difficult to use than traditional debugging

methods? If such large projects do exist. what other methods and tools can we design

and implement to help make ImpactViz scale better? Designing tests around the size

ofa project should help uncover when the overhead of using 1mpactViz is too high to

be of usc, as well as how large a project has to be before the current representation

becomes too difficult to understand

There is also the question of what types of software projects for which 1mpactViz

iti rnotit useful. Wouldutierti find more benefitial utiing 1mpactViz in a tioftware project

where software code is strongly connected, or in software where there is very little code

reuse? WouldImpactVizperformbetterinaprojectthatisbrokenintoindependent

modules or linked together via a framework or database system? Could nsers per-

form debugging tasks successfully on concurrent or grid computingsoftware? F\lture

evaluations will expand on the types software projects to outline where lrnpactViz's

strengths and weaknesses lie.

7.3 Representation

In the current version of ImpactViz, weare visualizing everything at the class level,

despite the fact that the method relation information is used to show how classes

interact with one another. In future versions of ImpactViz, the actual method be-

longing to the classes will also be represented. Clicking on a class will result in all Lhe

methods related to that class appearing, ballooned around the selected classes, with

edges pointing to the methods of the classes upon which they depend. Clicking one

of the method nodes could then select only the method call stack that the selected

method depends upon. This visualization would require further user evaluations to

ensure that participants will be able to properiydecode the difference between class

nodes and method nodes, and trace the method call stack amid the added visual

complexity.

This new visualization would also require further thought to how the edges in the

graph layout are represented. Sincemethodscanoverrideormakeabstractrnethods

concrete, showing these relations can be helpful for providing a deeper understanding

of the structure of the project. The visual representation could also be extend into

class relations, showing parent-child relations in classes usinglmpactViz, as well as

template usage.

The last item left to discuss on the future of ImpactViz's representationistheuse

of variables. Bugs can be introduced that cause class members to provide what should

bean invalid value, through the use of public level access to the members or by local

method calls. As an example, a sum-square method, a method that squares the value

in a list and adds the squares together, could set the class membersumto-l,when

the array is empty. When this value is stored ina variable and another method uses

it as the input to a square root function, an exception will occur. The current version

of ImpactViz can not help to trace bugs of this nature. as the summing method is

not part of the method call stack used with the square root function (the value is

passed through aJl intermediate variable). An alternate visualization. showing how

the values calculated by one set of class members are used byanothersetofmethods

might be useful for showing this inter-method reliance that is linked through value

calculations. Evaluations will be required on this type of visualization, to see if

the information presented to the developer can be understood and usedeffecti"e1y

This type of visualization could also extend into scenarios where multiple threads

are modifying the same class members, helping in the debugging of multi-threaded

projects.

7.4 User Interaction

WhiletheoriginallmpactVizwasdesignedtobescalablewithlargerprojects,obser-

vationsfrom participants showed some difficulty in locating a particularclass. While

this may not beaproblem for software projects with a relatively small nmnberof

classesthatcanbevisuallysearchedandinspected,formuchlargerprojectsAnding

a s)cc'ifie class cOIIld be very <liflic'liit. hi or<I(~r 10 aid iIlllSl'rS ill filHlillg ('lm;S('sl Ilu'IT

are two tools weare considering to help aid in this process, a search function and a

trccnavigator

The search function will allow users to enter in a class name in atextbox,rcsulting

in the focusing of the matched class in a manner similar to if the user had clicked on the

node. A dynamicdrol>-down menu may help speed up the process, reduce errors, and

show the classes that partially match the text entered beneath thetextbox. Another

idea is to allow for all partial matches to be shown as focused nodes and havealltheir

method stacks highlighted. Any further text entry will narrow the matchcs, reducing

The second idea is to use a tree navigation tool. Since organized projects have

classes separated into packages (or similar structures in other languages, like folders),

using a tree navigator could allow users to select the classes they wanttobevisible

in the visualization. This would help reduce the visual clutter of very large projects,

and could allow users to tell the visualization system what area of the project they

are interested in. The complicating factor here is how to represent method calls that

go from visible classes. to one or more that are not being show, and back to visible

classes. One possibility is to use a special glyph placed between the two visibleclasses

to illustrate that there are intermediate classes within the subset of the method call

stack. Clicking on this glyph could then show these intermediate classes.

Chapter 8

Conclusion

JmpactViz is a software visualization tool that allows developers to analyze the

method call stack and associated class dependencies. ImpactViz also allows users

tovisualizetheimpactthatchangcsinthesoftwarecodemayhavcon the operation

of other classes within the project. The goal is to enable the user to easily trace a

bl.lgfrom the class in which it has manifested itself to its source location. Byconsid-

eringwhichclasseshavebeenchangedbetweenapreviousknownbl.lg-freestateand

when the bug was first identified, the software developer can readily identify whether

these changed classes have an impact on the class in which the bug has manifested

itself. The system was designed to take into account modern modularprogramming

practices and to use visual representations to indicate classes in whichthebugmay

have been introduced

The novel contribution that ImpactViz makes to the literature is the way in which

it supports users in identifying the impact of classes that have been changed have on

other classes in the project. This information is automatically extracted from the

source code of the project and an analysis of the revision history within a software

repository. The interdependency of the classes are visually encoded as a graph; the

change impact regions are visually encoded usingcolouL Together, these allow the

user to readily perceive, interpret, and evaluate the potential impact that a change

in one class might have on another class. Interactive features further support the

debugging process. allowing thc user to filter thercvisiou historyinforlllution, ZOOIll

into an area within the graph layout that is of interest, and select classes to focus on

their specific method call stack dependencies

The user evaluations provide empirical evidence of the value of the visual and

interactive approaches used in ImpactVizover traditionaldebuggingmethods. Using

ImpactViz, participants were able to sec which classes may contain the source of the

bug, limiting their evaluation to only these classes. As a result, participants were

able to find the bugs faster and with more accuracy in one of the two cases. They

greatly preferred using ImpactVizover more traditional debugging techniques, even

in thesituaLions where it didn't allow them to perform better from a quantitative

perspective. These results illustrate the value of using visualizatiou torepresent the

complex information that is present during debugging activities.

During the field trials, we examined how two different groups could use ImpactViz

for their own sofhmre development needs. The main difference between the groups

was that the first one consisted of novice developers who worked in a large team

setting; whereas the second team consisted of experienced developers who worked

ill aSlllall team. Each group had adifr('rC'llt viC'w 011 t"llf' llse[lIlIH'SS of lIllpadViz.

The members of the first group found ImpactViz to be ,"ery useful and helped them

identify patterns and inconsistencies in the design of the project, as well as how

classes interacted with one another. J\leanwhile, the second group found Jilllited value

in using ImpactViz, as both members of the team were involved in developing each

portion of the system. This has lead to the conclusion that lmpactViz is most useful

to larger teams. where individuals are less likely to have a strong understanding of

the entire software project. From both sets of evaluations, the participants all agree

that ImpactViz was very easy to use.

From the two sets of evaluations, we have begun to see the areas in which Im-

pactViz is useful and users have responded very positively to it. Further evaluations

will be required to help find the settings in which ImpactViz is most useful. However,

the results from the evaluations suggests that lmpaclViz is a useful tool for developers

to use when tracking down bugs in a large method call stack, as well as identifying

how a system's architecture has been implemented

Bibliography

III T. Ball and S. G. Eick. Software visualization in the large. IEEE Computer,

29(4):33-43,1996

[21 ~J. Balzer, O. Deussen, and C. Lewerentz. Voronoi treemaps for the visualiza-

tion of software metrics. In Pmceedings of the ACM Symposium on Softw(l1'e

Visualization, pages 165172,2005

[31 H. ByelasandA. Telea. Visualization of areas of interest insoftwarearchitccture

diagrams. In Pmceedings of Ihe A CM Symposium on Softwal"C Visualization,

pages 105-114, 2006

141 S.Carpendale. Evaluating information visualizations. InA. J<en·en. J.T. Stasko,

J.-D. Fekete, and C. North, editors, Infonnation Visualization: Human-Center'ed

Issues and Perspectives, LNCS4950. pages 19-45. Springer, 200

[5] W. S. Cleveland. Visualizing Data. Hobart Press, 1993

[6] W. S. Cleveland and R. IcGi11. Graphical perception: Theory, experimenta

tion, 1lI1dapplication to the development of graphical melhods. Joumaloflhe

American Statistical Association, 79(387):531-554, 1984.

[7] C. Collins, G. Penn, and S. Carpendalc. Bubble sets: Revealing sct rclation with

isocontoursover existing visualizations. IEEE Transactions on Visualization and

Computer Grnphics, 15(6):1009 1016.2009

[8] F. Davis. Perceived usefulness, pcrceived ease of use, and user acceptancc of

information technology. Management Information Systems Quate7"ly, 13(3):319

340,1989

[9] A. Dix, J. Finlay, G. Abowd, and R. Beale. Human-Computer Internction

Prentice-Hall,lnc., 1997

[10) S. G. Eick, J. Steffen, and E. Sumner, Jr. SeeSoft - a tool for visualizing

line oriented software statistics. IEEE Tmnsactions on Software Engineering,

18(11):957-968,1992.

[11] M. Follett and O. Hoebcr. 1mpactViz: Visualizing class depcndencies and the

impact of changes in software revisions. In Proceedings of the ACM Symposium

on Software Visualization, pages 209210,2010

[12] ~1. Fowler and K. Scott. UML Distilled. Addison-Wesley, 2000.

[13] J. Froehlich and P. Dourish. nifying artifacts and activities in a visual tool

for distributed software development tcams. In Proceedings of the International

Confe1Ymce onSoftwm-e Engineer'ing, pages 387-396. 2004

[14] T. ~1. J. Fruchterman and E. ~1. Reingold. Graph drawing by force-directed

placement. Softwar-e: Prnctice and Experience, 21(11):1129 1164. 1991.

[151 W. O. Galitz. The Essential Cuide to Use" Inte'face Design: An Int1'Oduction

to CUI Design Principles and Techniques. John Wiley & Sons, Inc" New York,

NY, USA, 2007

[16] H. Gall, 1. Jazayeri. and C. Riva. Visualizing software release histories: The

use of color and third dimension. In Pmceedings oj the IEEE lntemational

Conjerence onSojtwar-e AJaintenance, pages 99-10 ,1999

[17] C. Healey. Choosing effective colour, for data visualization. In P1'Oceedings oj

Visualization, pages 263-270, 271996-nov.11996

[18] J. Heel', S. I<. Card, and J. A. Landay. Prefuse; A toolkit for interactive informa

tion visualization. In P1'Oceedings oj the SICCHI Conje,-ence on Human Facto,'s

in Computing Systems, pages421A30,2005

[19] E. Hering. Outlines oja Theory oj the Light Sense, Haravrcl University Press,

[2011. Herman, G.l\lelancon, and I.l\larshalJ. Graph visualization and navigation

in information visualization: A survey. IEEE 1\unsactions on Visualizeltion and

ComputerCraphics,6(1):24-43,2000.

[2110. Hoeber. serevaluation methods for visual web search interfaces. In Proceed

ingsojthelntemationalConjerenceInj01'11lation Visualisation, pages 139 145,

[22] D. Holten. Hierarchical edge bundles: Visualization of adjacency relations in

hierarchical data. IEEE Transactions on Visualization and Computer Gmphics,

12(5):741-748,2006

[23] B. Johnson and B. Shneidennan. Tree-maps: A space-filling approach to the

visualization of hierarchical information structures. In Proceedings of the Con-

ference on Visualization, pages 2 4291,1991

[24] J. Li, Z. Guo, Y. Zhao, Z. Zhang, and R. Pang. Towards quantitative evalua-

tion of UML based software architecture. In Proceedings of the ACIS Intema-

tional Conference on Software Engineering, Al·tificial Intelligence. Networking,

and PamlleljDistributed Computing, pages 663-669, 2007

[25] J. D. Mackinlay. Automating the design of graphical presentations of rclationa I

information. ACM Transactions on Gmphics, 5(2):110-141,1986

[26] S. ~[cConnell. Code Complete. ~licrosoft Press, 2nd edition, 2004

[27] W. ~Ietzger. Laws of Seeing. WT Press, 2006

[28] J. Nielsen. Usability Engineeling. Academic Press, 1993

[29] J. Nielsen and R. L. ~Iack. Usability Inspection Methods. John Wiley &:. Sons,

[30] D. A. Norman. The Design of Evelyday Things. Basic Books, 2002

[31] \1. Ogawa and K. \la. StarGate: A unified, interactive visualization of software

projects. In Proceedings of the IEEE Pacific Visualization Symposium, pages

191-198,2008.

[32] C. Pich, L. Nachmanson, and G. G. Robertson. Visual analysis of imporlance and

grouping in software dependency graphs. In Proceedings of the ACM Symposium

on Software Visualization, pages 29-32, 2008.

[33] C.Plaisant.ThechallengeofinformationvisuaJizationevalualion. In Proceedings

of the Worhng Confe71~nce on Advanced Visual Interfaces, pages 109 116, 2004

[34] D. Price. CVS - open source control. http://www.nongnu.orgfcvsf, December

[35] N. Riche and T. Dwyer. ntangling Euler diagrams. IEEE Ihmsactions on

Visualization and Computer Gmphics, 16(6):1090-1099, 2010

[36] J. Rossenberg. Some misconceptions about lines of code. In Pmceedings of

Software Met1~cs Symposimn, pages 137-142, 1997

[37] M. Samuels and J. Witmer. Statisticss for the Life Sciences. Pearson Education,

[38] S. R. Schadl. Object-Oriented and Classical Software Enginee1~ng. I\IcGraw-Hill

Publishing Co., 2001

[39] R. Spence. Infomlation Visualization: Design for Intemction. Prenlice Hall,

2nd edition, 2007

[40] Tigris. Open source software enginccring tools. http://subversion.tigris.org/,

[41] L. Voinea, J. Lukkien, and A. Telea. Visual assessment of software evolution

Science of Computer Pmgmmming, 65(3):222-248, 2007

[421 L. Voinea, A. Telea, and J. J. van Wijk. CVSscan: Visualization of code evo-

lution. ln Pmceedings of the ACM Symposium on Software Visualization, pages

47-56,2005

[431 C. Ware. Information Visualization: Perception for Design. Morgan Kaufmann,

2ndedition,2004

[44] A. Zeller. Yesterday, my program worked. Today, it does not. Why? In Pmceed

ings of the Software Engineering Conference, pages 253-267, 1999

[45] T. Zuk, L. Schlesier, P. Neumann, M. S. Hancock, and S. Carpendale. Heuristics

for information visualization evaluation. In Pmceedings of the A VI W01-kshop on

Beyond Time and En'ors: Novel Evaluation Methods for' Inf01wation Visualiza-

tion, pages 1-6,2006

Appendix A

User Evaluation Documents

On the proceeding pages are the documents given to the participants of the IIsel

evaluation (Jaboratorystudies). The first document is the consent form which every

participant signed to confirmed they understood what the study entailed and where

they can register complaints about this study if they feel it to be necessary. The

second document was a post-task questionnaire asking information on the participants

programming history. The third document was the post-task questionnaire, which

was given after both tasks were completed to evaluate how the participant felt about

ImpactViz as a debugging tool

Vo'uulidnglhf!/",pucto/Chungf!!>';nSo/""'U'f!Codf!

(U~,E1vluution)

I mayoblaincopicsoflhcrcsultsin lhis study, upon completion. byeontactinl;J)r.I-locbcr.incareoflhcC'omputcr

Sciencel)cpanmcnt.fI..lemonalUnivcrsily

Pre-Task Questionnaire

Please answer the followingqucstions in regards 10 your background. Ci rclclhcanswcrthcbcst

describes you

2. Have you ever workcdon a group project that requircdthe uscofasoftwarcrcpository

(CVS,SV,Git,ClC.)?

3. If yes, how manyprojccishavcyouworkcdon thai have used a software rcpository'l

4. What is your level ofundcrSlandillg of software rcposiloryand the valuc they provide 10

softwarcdcvclopmcllttcarn?

5. How would you rate your debugging skills in loc3tingbugsinsoftwarc'!

6. WhmProgralllmingLanguagcarcyoumostcomfonablcwith?

Post-Task Questionnaire

INSTRlJCTIONS:Plcascralchowstronglyyouagrccordisagrecwilhlhcfollowingslalcmcnls
bycirclingthcapproprialcnumbcr

o I 2) 4 5 ~:~~~::c:(,IViZ imprO\cd 01) debugging

o I 2 3 4 5 ~r:~c:~~;rl\'iZ for debugging IIlcrcascd my

o J 2 3 4 5 ~~~~~~C:~~;:~~:;~~\~1nr:Cd my eITectiveness

o I 2 3 4 5 ~Sl:~C I:;~~:~~:: made it cllsicr 10 find lhe

o I 2 3 4 5 ::~~:'~r:mJlarIViZUSCfUI for debugging

•
1':';;:;~:;d;..,m"",,,,,,,~,,:;;;:Y I
o I 2 3 4 5 I---tcarninglooper-litelmp3rIViZW-",,,yfo,",,.

o I 2 3 4 5 ~\':On~~:: ~::,~o gel ImpactViz 10 do whall ,

o I 2 3 4 5 ~~~:~a:~~:~wilh ImparlViz was clear and

o J 2 J 4 5 I found Impart\,izlobellcxlbletolnICraCl\\llh

o I 2 3 4 5 ~~~a:(':~i)Z ~or me to become skilful at uSing

o I 2 3 4 5 I found ImpartVizcas) 10 usc

I" ' I "...." I ,".";::,~,w··1Undcrslandinglhesoflwarccodc

~:::~:~~dmglhcmclhodcall

~if~;::::::::: :::::o~~
O\'crall,lhes)'SlCm Jprefer 10 use
fordebul!.!!.in!!.

Appendix B

Field Trial Documents

On the proceeding pages are the documents givcn to the participantsofthcneldtriaJs

The nrst document is theconscnt form which every participantsigncd toconnrmcd

they understood what the study entailed and where they CaJl registcr complaints

about this study if they feel it to be necessary. The second document was thc post-

task questionnaire asking information on thc participants programminghistory. Thc

third document was the post-task questionnaire, which was given after bolh tasks

wcrccompleted toevaJualehow the participant felt about ImpactViz as a debugging

InforrnedConsenlb)'
SubjeclsloPartieipalein

Vislluli;;,rgtllelmpano/CllangesinSo/tH'areCode
(Field TrialsJ

ImayobraincopiesoflhcTCSllltsinlhissludy.llponcomplclion.bycontactingDr.Hoebcr.incarcoflhe
DcpartmcnlofComplllcrScicncc.McmorialUni\'crsily

Background Survey

Pleascanswerlhefollowingqucslionsinrcgardstoyourbackground.Circlc the answer the bcst

describes you

2. ~~~~;~~~C~;;:O:t:~ on a group project that required the use of a software repository

3. If yes, how manyprojccishave you workcdonthathave uscda softwarcrcposilory?

4. What is your level ofundcrstandingofsoftware repository and the val ucthcyprovidclO

softwarcdevclopmcllllcam?

5. How would you rate your debugging skills in locating bugs in softwarc?

Field Trial Questionnaire

The follo\\1ngQueshons relate loyoure~pencnce uSing ImpactVlz for m\'lsuahl.mgyoursoftwarc prOJc<:l Your
answerslolhcfollo\\1ngquesuonsaJlowfoTanM>Tcaccuratclll13lyslsofthcdatacolleclcdfoTlhissloo)

INSTRll(.TIONS:Pleaser:lIehow5Irongly)ouagrecordlsagrCC\\1Ihthefollo\\lngsuIClI'I(ntsb)clr1:hngthc

appropnatenumber

Using ImpaCIViz for debuggmg enabled mc 10
accompJish 13sks more qUickly

UsinglmpaclVizimpro\'cdmydebuggmg

performance

Using ImpactVizfordcbuggmg increased my

productivity

UsinghnpllctVizcnhanccdmyclTccllvcncss
when debugging soflwarc

Using ImparlVizmadc il casicT 10 ftndthc
source of the bugs

Using ImpactVizforexploring my systcrn

enabled me 10 accomplish lasks morcqlllckly

Using ImpactVizlmprO\'cd my cxplormg Ill}'

s}'slcmperrormancc

UsinglmpaclVizforcxplonngmyS}'SICI1l

iocrcascdmy produclivil)'

UsmglmpliclVizcnhancedmycITccll\CneSS

\\hcncxploringmysyslcmsoftwarc

UsinglmpacIVizl1l3dcltCa5ICrIOC,;plorcm}'

softwareS)-'slcm

I round ImpactVizuseful forc'l:plonng my

syslemsoftwarc

•

'. ::::;~: dt",,,, """, ."" "::;,~' -----'---------1
: : : : : : ~~;~;::;~:"::t':':'~;:::~~:::'d:"::h:~'lon,

o I 2 3 4 5 ~~~~~a~:~~I: with ImpartViz was clear ;and

o J 2 3 4 5 J found ImpartViz 10 be nC~lble 10 inlernel wlIh

o I 2 3 .. 5 ~~::~('~:~i: ~or me to become skilful al using 1

o I 2 3 4 5 I found ImpaclVizeasylousc

	0001_Cover
	0002_Inside Cover
	0003_Blank page
	0004_Blank page
	0005_Title Page
	0006_Abstract
	0007_Acknowledgements
	0008_Table of Contents
	0009_Page v
	0010_Page vi
	0011_Page vii
	0012_Page viii
	0013_List of Tables
	0014_List of Figures
	0015_Page xi
	0016_Introduction
	0017_Page 2
	0018_Page 3
	0019_Page 4
	0020_Page 5
	0021_Page 6
	0022_Page 7
	0023_Page 8
	0024_Page 9
	0025_Page 10
	0026_Page 11
	0027_Page 12
	0028_Page 13
	0029_Page 14
	0030_Page 15
	0031_Page 16
	0032_Page 17
	0033_Page 18
	0034_Page 19
	0035_Page 20
	0036_Page 21
	0037_Page 22
	0038_Page 23
	0039_Page 24
	0040_Page 25
	0041_Page 26
	0042_Page 27
	0043_Page 28
	0044_Page 29
	0045_Page 30
	0046_Page 31
	0047_Page 32
	0048_Page 33
	0049_Page 34
	0050_Page 35
	0051_Page 36
	0052_Page 37
	0053_Page 38
	0054_Page 39
	0055_Page 40
	0056_Page 41
	0057_Page 42
	0058_Page 43
	0059_Page 44
	0060_Page 45
	0061_Page 46
	0062_Page 47
	0063_Page 48
	0064_Page 49
	0065_Page 50
	0066_Page 51
	0067_Page 52
	0068_Page 53
	0069_Page 54
	0070_Page 55
	0071_Page 56
	0072_Page 57
	0073_Page 58
	0074_Page 59
	0075_Page 60
	0076_Page 61
	0077_Page 62
	0078_Page 63
	0079_Page 64
	0080_Page 65
	0081_Page 66
	0082_Page 67
	0083_Page 68
	0084_Page 69
	0085_Page 70
	0086_Page 71
	0087_Page 72
	0088_Page 73
	0089_Page 74
	0090_Page 75
	0091_Page 76
	0092_Page 77
	0093_Page 78
	0094_Page 79
	0095_Page 80
	0096_Page 81
	0097_Page 82
	0098_Page 83
	0099_Page 84
	0100_Page 85
	0101_Page 86
	0102_Page 87
	0103_Page 88
	0104_Page 89
	0105_Page 90
	0106_Page 91
	0107_Page 92
	0108_Page 93
	0109_Page 94
	0110_Page 95
	0111_Page 96
	0112_Page 97
	0113_Page 98
	0114_Page 99
	0115_Page 100
	0116_Page 101
	0117_Page 102
	0118_Page 103
	0119_Page 104
	0120_Page 105
	0121_Page 106
	0122_Page 107
	0123_Page 108
	0124_Page 109
	0125_Page 110
	0126_Page 111
	0127_Page 112
	0128_Page 113
	0129_Page 114
	0130_Page 115
	0131_Page 116
	0132_Page 117
	0133_Blank page
	0134_Blank page
	0135_Inside Back Cover
	0136_Back Cover

