

St. John's

Visualizing the Impact of Changes in
Software Code

by

© Matthew Follett.

A thesis submitted to the
School of Graduate Studies
in partial fulfilment of the

requirements for the degree of

Master of Science

Department of Computer Science

Memorial University of Newfoundland

August 2011

Newfoundland

Abstract

Although software projects continue to grow larger in size and complexity, the
typical methods for debugging these projects have not. changed much over the past
decade. Software is more modular, with code reuse becoming very common. This can
lead (0 bugs manifesting themselves in one or more sections of code, but originating
in a completely different area. This thesis focuses on the development and study of
ImpactViz, a novel debugging tool that considers the object oriented nature of modern
software languages such as Java, and uses visualization techniques to aid in identifying
the potential origins of software bugs. Results from a laboratory evaluation help show
that participants find the new program ImpactViz to be both useful and casy to use.
The field trials performed have also helped define the benefits and limitations of using

ImpactViz in certain situations.

Acknowledgements

1 would like to thank my supervisor, Dr. Orland Hoeber, who has been a sourc

of support and inspiration over the past two years. Without his aid and suggestions,

T would never have heen able to finish this thesis. His suggestions and comments have

helped shape this thesis into what it is today.
1 also wish to acknowledge the members of the UXLab, for their comments and

ing this thesis, as well as the developers

suggestions while demonstrating and discus

for the tools used for this thesis, including Eclipse, LaTeX, and Prefuse.

inally, 1 wish to thank my parents, who have always pushed me to do my best
reach my goals. Without their support and encouragement, 1 would not be the person

that T am today.

Contents

Abstract
Acknowledgements
List of Tables

List of Figures

1 Introduction
L1 Motivation

1.2 Research Questions .

1.3 Assumptions and Const

1.4 Organization of Thesis .

M

Related Work

2.1 Information Visualization

211 Opponent Process Theory of Colour

212 Gestalt Principles

2.3 Norman’s Stages of Action

22 Software Visualization
221 Line Based Visualization
222 File Based Visualization
223 Folder Based Visualization
224 Class Based Visualization
ImpactViz
3.1 Representation of Classes and Changes

32 Visualization Techniques

321 Graph Layout .

322 Node Colouring

3

23 Change Impact Regions

2.4 Crossing the Gulf of Evaluation
Interaction Techniques

331 Revision Filter

2 Revision Information
333 Node Selection
334 Change Impact Region Selection

35 Node Dragging

6 Panning and Zooming
337 Crossing the Gulf of Execution

Debuggi

Software Prototype Design

351 Pseudo-Compiler

30

10

352 Repository Handler 19

4 Evaluation Methodology 51
1.1 Inspection Methods 52
42 Laboratory Study Gms 1y awss 68

421 Hypotheses . L . 5
422 Measurements . . . - B 56
423 Statistics Test R
424 Software Projects G3AE gk mpy D
425 Participant Recruitment . . . PR
426 Study Procedures . . . B 5
437 By ol o5 ¢ 1 5 £ 9 R & §1Y S e b 62
128 Subjective Questions R 63
43 Field Trials PRy)
431 Study Questions and Measurements . . 6
132 Participant Groups 6
133 Subjective Questions . . . S . 6

5 Results 67

5.1 Laboratory Studyo N 67
511 Project 1- The Game 1% 188 Sne s 8
5011 Time to Task Completion e Eus O
5112 Accuracy RABBoE il
5113 Usefulness and Ease of Use 71

5104 Supporting Debugging Activiti

<

5115 Understanding Software Code
5116 Video Analysis
512 Project 2 - Catering

5121 Time to Task Completion

Accuracy

Usefulness and Ease of Use

5125 Understanding Software Code
5126 Video Analysis .

5.3 Summary of Laboratory Study Results

o

Field Trials

521 Group 1- Undergraduate Students

522 Group 2 - Post-Doctoral Researchers

ussion

6.1 Laboratory Study Results

611 Quantitative Hypotheses .
6.2 Qualitative Hypotheses

6.

Field Trial Results
63 Benefits
6.

Drawbacks .

Future Work
7.1 Plugin With an Integrated Development

Environment .

Supporting Debugging Activities .

7.2 Further Evaluations .
7.3 Representation

74 User Interaction .

)

Conclusion

Bibliography

A User Evaluation Documents

B Field Trial Documents

viii

13

List of Tables

4

Common software activities and software visualization systems

The laboratory study results of participants debugging Project 1, T
Jame, using the Bascline.
The laboratory study results of participants debugging Project 1, The

Game, using ImpactViz.

Frequency of rank preference for debugging activities for ImpactViz for
Project 1, The Game.
The laboratory study results of participants debugging Project 2, Cater-

using the Baseline. .

oject 2, Cater-

The laboratory study results of participants debugging F
ing, using Impact Viz

activities for Impact Vi for

Frequency of rank preference for debuggi

Project 2, Cater

g

69

List of Figures

21

Diagram demonstrating the relation between human vision and the
opponent process theory of colour. .

Diagram of Norman's stages of action.

A complete screenshot of the ImpactViz software visualization tool

The visual representation of the method call stack in Impact

g Tmpact Vi

The first step in the debugging scenario us
The second step in the debugging scenario using Impact Viz

The third step in the debugging scenario using ImpactViz.

The aggregate responses of the TAM questionnaire Project 1, The

Game, in the laboratory study from participants who used lmpactViz.

‘The aggregate responses of the TAM questionnaire Project 2, Catering

the laboratory study from participants who used ImpactViz

TAM questionnaire response from the first group in the field trials from

using mpactViz on their own software project, an online web service.

54

TAM questionnaire response from the second group in the field trials
from using ImpactViz on their own software project, a geo-visualization

project

xi

Chapter 1

Introduction

Modern software development often consists of multiple developers simultancously
working on a single project [26]. Software code is commonly shared through a version
control system such as Concurrent Versioning System (CVS) [34] or Subversion (SVN)

[40]. S

software repositories allow the changes from multiple developers who are

working on the same files to be easily managed. However, within a team environment,

as people add new code and change existing code, the chances of new bugs and

unexpected behavior appearing increases 26, 36).

ided into classes which

In object-oriented programming [38], software code is di
represent conceptual objects. Each class may contain a set of methods which im-
plement the functionality of the class. Classes are able to inherit or encapsulate
other classes, and their associated methods are able to call one another. As a result
the interaction between method calls within even a small project can become rather
all numerous methods from its en-

complex [24]. For example, a single method may

capsulated classes, each of which may make method calls to their own encapsulated

classes. As a result, the method call stack may become very deep.

affects the method

When a bug is accidentally introduced into a class, it not only

in which it originates, but also manifest

self as a problem in other classes that

make use of the bugged method. Since the manifestation of the bug may appea

many levels deep in the method call stack, tracing the bug back to its origin can be
a difficult and time consuming task.
Traditional debugging practices require the software developer to analyze the

project code line-by-line, trying to detect if a bug exists in a given class. When code

within other classes is executed via method calls, the number of classes that need to
be examined as potential places where bugs could be introduced increases. As the

depth of the method call stack increases, it can become very difficult for the software

developer to track down the source of a bug. Further, as projects grow

size

debugging process becomes even more complex, resulting in a very time-consuming

and tedions task.

1.1 Motivation

While developing software projects, it can be easy to not realize the nimber of classes
that depend on a single class, or the total number of classes a single class depends

upon. When bugs are introduced into the source code of one method, all the methods

that depend on that one method, either directly or indirectly, are also influenced by
s single bug. In projects where the method stack can be quite large, it becomes
hard to track down the original source of the bug

The goal of this research is to design, develop, and test a software visualization

system that allows software developers to quickly and effectively sce the full method
call stack and the recently changed methods. Visualization methods allow the user to
easily ignore the classes that have not recently been changed, focusing on those that

nifesting

have changed and which provide services to the class in which the bug is 1
itself. Using this information, software developers can quickly track down the original
source of the bug and fix it, instead of the manual process of identifying cach method

in the stack, analyzing its source code and testing it for validity.

1.2 Research Questions

The key research question that this research addresses is: What is the value of
using a visual approach to representing the method call stack and changes
to software code for the purposes of supporting debugging processes? Here,
the value can be measured in terms of being able to find bugs quicker, more accuratly,
and with higher satisfaction. Within this thesis, a prototype visualization tool called

ImpactViz is presented and studied to address this research question.

1.3 Assumptions and Constraints

For the purposes of this thesis, the main type of bug we will be focusing on are
“logical” bugs - bugs that are correct in the use of syntax but are not caught at
compile time. These logical bugs also only affect the methods in the method stack

ethod

and not class members, where the change in the value is seen in an unrelated n

stack. This thesis is mostly concerned with the concept of how a minor flaw in the

software code can lead to larger problems in other areas of the software system. This

1l be performed by scanning the software code as plain text and modeling the class
relationships.

This thesis will not be examining the problem of bugs being introduced in a

ulti-threaded application. Bugs of this nature cannot be examined via the source
code alone, nor can we accurately predict the total mumber of threads that may be a

problem. Also, while we are entering the domain of software engineering, this software

would not be able to pick up cases of incorrect polymorphism, as this is more related

istead of the implementation of it. Lastly, this

1o the design of a software project,

th

will not keep track of changes made to class or static variables. While bugs

might be introduced by incorrectly changing the value of these variables, there are

100 many of these types of changes that can oceur, but could be addressed in future
work. Visualizing this type of impact, along with the method impact, would be too

much information for a user to keep the visualization clear and easy to understand.

1.4 Organization of Thesis

The remaining thesis is organized into chapters separated into common themes. Chap-

ter 2 discusses the background information required to understand this thesis, includ-

ing topics such as information visualization and various works performed in the field

of software visualization. Chapter 3 will discuss the design of the thesis project, Im-

pactViz, and provides a sample scenario of how ImapetViz would be used to assist in

the debugging of a software project. Chapter 4 outlines the methods for evaluating

ImpactViz using laboratory studies and ficld trials. Chapter 5 reports the findings of

these studies and the statistical analysis of the data. Chapter 6 provides a discussion

on the outcomes of the evaluations and what new knowledge has been generated as a
result of this research. Chapter 7 outlines the future work to be done on Impact Viz,
Chapter 8 concludes the thesis, summarizing the findings and primary contributions

of this research,

Chapter 2

Related Work

This chapter presents background research related to this thesis. The purpose is to

help provide context to the decisions that were made during the thesis work, and

atary on the current state of software visualization. Background informas-

a comm

tion will be provided pertaining to the areas of information visualization, including

individual

how people see and interpret colours and the cognitive activities that a

undertakes when evaluating a visualization. A brief outline of software visualization

research is also included, along with a taxonomy that provides an organizing structure

for the work that others have done in this domain.

2.1 Information Visualization

Information visualization is the field of research that deals with the design, creation,
and study of visual representations of abstract information [43, 39]. The goal is to
enhance the cognitive abilities of the user, allowing them to understand, explore, and

interact with the data to gain a greater understanding [43]. Abstract data has no

spatial propertics, which gives the designer the challenge of finding ways to represent
the data in a useful and meaningful way
Information visualization excels at showing large and /or complex data sets. Data,

. can lack context in relation to the

when shown as plain text or as a table of number

other data also being presented. It can be difficult to see subtle features in the data,

such as outliers, patterns, or relationships that could help a person understand the

By visual is information, certain

can

underlying features or meaning in the dats ing th

aspects of the data can be easier to recognize and data anomalies can become more
apparent [5]

ualization system, there are a large mumber

When designing an information v

posit

g,

of ways to represent data in a visual manner (.., the use of colou

bination

size, shapes, etc.) (39, 25, 6]. Tt can he a challenge to finding the right co

sualization that a user will find

of representation and data to create an intuitive v
helpful within a given context or task.

formation visualization systems is the idea of scalability.

Another concern

a small amount of data, when more data

While a system may work perfectly

1 can become cluttered and confusing. It is up to the

points are added, the syste

designer to find methods to reduce this visual chutter (e.g., supporting filtering oper-

ating the data) or find some comprise

ations, developing alternate methods for repr

in the representation that may not be optimal, but may scale well

The nature of the data that the designer wants to represent influences how they

nally. There are three fundamental types of data: mumeric,

should represent it

23], Numeric data is data with a quantitative value, like

ordinal, and nominal [3

the price of an item, and there exists the possibility of data existing between two

points (g, the middle of $7 and $8 is $7.50). Ordinal data is data t

is not

numeric but there is an implied order, like days of the week. Unlike num

ric data,

data cannot e

st between two points (e.g., there is no day between M

day and

Tuesday). The last type of data is nominal, where there is no ordering or numeric

representation, such as named entities

As an example, we can separate pets into

five categories: reptiles, dogs, fish, cats, and birds. Looking at the list, the

o

no

inherent way to organize it, which makes categories for pet types nominal data.

In addition to the above fundamental data types, data can also contain rela-
tionships between entities. A common way to represent such relationships is via a

node-link diagram [20]. Node-link diagrams are composed of two elements: nodes and

edges. Nodes are normally represt

ted as glyphs that represent a particular e

ity,
like a pe

on or class object. They can contain visual encodings to represent various
attributes associated with the entity. Edges are used to connect nodes to show a
relation exists between the two objects, like a family relation between two people or a

method call between software classes. Edges can be directed (one-way relations, like

other of” or “calls method of”") or can be undirected (the relation goes both ways,

like a relation between siblings). Both these elements can include additional data

that can be visua

ed (e.g., we can use assign the valu

of age to a node, and using

the connecting edges to caleulate the similarity or closest common ancestor betwee

the two data points) (39, 20].

One challenge with node-]

ik diagrams is in organizing them effectively and efi

iently.

Not only do we have to display the node-link diagram, we should also strive
to make the diagram clear and casy to understand [20]. Ideally, the graph should be

laid out such that nodes that are related are directly linked and should be close to one

8

another, while keeping the links as short and clear as possible. One popular method

10 organize these diagrams is 10 use a force-directed graph layout 20, 14]. The force-
directed layout applies a caleulated force on each node to determine whether it should

move or not. The movement of a node

s based on the other nodes in the graph; nodes
that have a direct link between them will pull themselves together, while nodes that

have no direct

ink will move apart. This approach helps create node clusters, by
pulling together nodes that have relations together, while pushing clusters of nodes
with no relation to the other cluster away. While a force-directed algorithm does not

always create the most clear diagra

does by

g related nodes into close prosin
10 each other and does allow for user interaction to move nodes, and have the entire

diagram update dynan

ally to compensate for the

ange

position.

User interaction is a tool that helps make information

isualization systems more

useful [39, 43), giving users the option to interact with and gain a better understanding

of the data. Through interaction, the user can request additional

formation on a

particular subset of data (inspection), or adjust the foc

s of the screen to show more

or less information (zoom and pan). Through the use of filtering, a user can specify

of information they are interested in based o

some criteria (the method of

selecting these criteria is dictated by the design of the system). The s

ystem can then
filter ont and hide any data that does not meet the criteria. Another tool used to aid

users in finding data is known as focusing. Unlike filtering, uninterested data remains

visible in the visualization, but the focused items are given a stronger visual presence.

‘This can be achieved by adjusting transparencies or alpha channels, changing sizes

of

jous objects, or adjusting the use of colours. The advantage of focusing over

filtering is that it helps reduce the amount of noise, but keeps all the data in context

9

with the overall dataset [39]

Creating an effective information visualization system takes more than just visu-

ally encoded data and supporting interactive components: the system needs to be
designed with the user’s end goals in mind [39, 15, 9]. Understanding who will be

stem and what goals they want o achieve will help in deciding how to en-

using the

code the information visually (¢.g., understanding the user’s needs allows us to decide
the best method to put visual prominence to attract the user’s attention) and what
interactive tools will help achieve these goals. Understanding the experience that the
the training of the system by

9

ystem can aid

user already has before nsing this s

and symbols with which the user would already be familiar [1

using vocabulary

The systems that take into account, user expectations and previous knowledge ar

wore likely to be perceived as useful and intuitive [43]

Since information visualization systems are composed of visual clements a

man interactions, it is important to understand the core theories that guide vis

ization research. These include theories that guide colour usage (opponent process

stalt principles), and

theory of colour), explain how visual stimuli are interpreted (G

¢ and acting upon it

describe the cognitive gaps between evaluating a visual displ

Each of these are described in detail in the sections

(No

man’s stages of actions).

that follow.

2.1.1 Opponent Process Theory of Colour

“The opponent process theory of colonr describes the method by which colour is inter

preted by the human brain from stimuli received within the human eye [43, 19]. The

10

theory states that colours are interpreted along two chromatic channels (red-green;
and yellow-blue) and one luminance channel (black-white). How the lightwaves trans-

brains are hard-wired

Iate onto these three channels is illustrated in Figure 2.1. Oy
to be able to detect differences among colours along these channels. Understand-
ing this visual sensitivity helps provide guidance for using colour to represent data.

However, due to differences in how numerical, ordinal, and nominal data are to be

nterpreted, we must take care that the colour encoding can properly be decoded.

When using colour to represent a mumerical value, we may choose a colour scale
that varies monotonically on one or more the channels, producing a relatively straight
line through the colour space that s perceptually ordered. In this colour gradient,

me, while the

the maximum value of the data is represented by the colour on one extre
minimum value is represented by the colour at the other extreme. Values in between

n and minimum

may be represented by a proportional colour between the maximu
colours,

If the data can contain both positive and negative values, special care must be

taken to ensure accuracy in decoding. A light hue of a neutral colour (somewhere

colour

1 the middle of the colour space) should be used to represer

should use colours

scales for positive and negative valu

are progressively darker. For example, a zero value could be encoded as light grey,

e values in darker

positive values in darker and darker shades of yellow, and nega
and darker shades of blue.

Much like numerical data, when using colour to represent ordinal data, we may

choose a colour scale that varies monotonically within the colour space. Specific

perceptually ordered colours within this scale can be selected o represent the unique

1

A hite

yellow

long wavelength
sensitive cones

medium wavelength
sensitive cones

short wavelength
sensitive cones
black

2.1: A diagram showing how long, medium, and short wavelength light s
interpreted onto the three channels of the opponent, process theory of colour; red-

green, blue-yellow, and white-black

elements within the ordinal data. While the ability to decode the colours into

ordinal values depends on the number of steps within the ordinal scale, the ordering

of the data will be decodable.

For example, if there are a large mumber of potential

values for the data, viewers may have a hard time decoding the data to a unique
value; however, the approximate location of the data element within the ordinal scale

will be decodable.

or representing nominal data for labeling with colour we want colours that ar
both distinet and have unique hues. According to Ware [43], there are 12 colours

that can be reliably used for labelling purpose cen, yellow, blue, black, whi

colours are the

pink, cyan, grey, orange, brown, and purple. The first six of thes

extreme ends of the colour channels, while the remaining six colours are combinatior

of colours from these channels. The average person has been found to be able to easily
distinguish between these colours and not interpret them as the other selected colours

[17). 1 we placed these 12 colours onto a colour ¢

be created by the opponent process

theory’s three colour channels, these colours are placed far away from each other. This

means that there are as perceptually different from one another as possible. Adding

‘more colours for representing nominal data is possible (e.g., choosing additional

al data

between” colours). As more colours are added to this colour space for nomi

ishes. A practical

labelling, the ability for the user to reliably decode the data dimi

limit here is carefully chosen to allow for each colour to be sufficiently distinct from

one another.

2.1.2 Gestalt Principles

The Gestalt principles are theories that relate to visual perception and how people

group items together and perceive foreground from background (27, 43]. Although
there are a large number of such principles, the ones that are relevant to this research

are proximity, similarity, and connectedness.

The principle of proximity states that items that are closer to one another are
often perceived as being grouped together and thought 1o be related. By placing
items that are related 1o one another, like when we have a cluster of dots on a graph,

the observer will quickly interpret that the items are related in some fashion.

“The principle of similarity states that items that look similar are also thought to e

related. With this principle, we can use similar shapes and colours to represent certain

data and users will instinctively think they are related. We often see this principle

used with symbols on a map, to indicate common points of interests (restrooms

tourist spots, information bootlss, etc.)

The principle of connectedness states that items with a visual connectio

(like

two nod

s connected by an edge) are perceived as related to one another. We can

see this in a family tree, where family members

have a connection going from one

ind

vidual to the other. This is one of the strongest grouping principles and requires

no additional information to help users form an opinion on the objects [43]. Further,

because the principle of connectednes

50 strong, it can be used 1o represent a

different type of relationship than what is encoded with proximity and similarit

without confusing the user. People will readily interpret such a display as different

classes or relationships.

Understanding these principles allows us to design visualizations that can be in-

tuitive and interpreted in a manner we expect. With an understanding of how the

user will interpret certain visual representations, we can design our software to take

adva

age of these principles to deliver a clear and casy to understand the data being

shown.

2.1.3 Norman’s Stages of Action

Norman’s stages of action [30] describe the cognitive steps that an individ

il goes

through when performing an action, starting with the individual evaluating the situa-

tion and planning the action. The events are broken into two separate stages; the gulf

¢ oMs e

H @
.‘9_ | Intention to act [Evulualiondinhrpulmiuﬂ €
5 =
g { T °
9 -
M | Sequence of actions | | Interpreting the perception ?
w
= 7 g
° : €
- | Execution of the action J g
5 sequence ES
] 3
Figure 2.2: A visual representation of Norman's stages of actions that an individual

goes through when performing an action, according to Norman's stages of actions,

including both the gulf of evaluation (right) and gulf of exccution (left)

of evaluation and the gulf of execution. These stages are part of a cyele, where the
user observes the visualization and travels the gulf of evaluation to understand what
they are secing with respect to the goals they wish to achieve. Then, the user travels
through the gulf of execution as they interact with the system to achieve their goals.
When the execution is completed, it impacts the visualization, and the user starts
10 go through the gulf of evaluation Lo interpret those changes. The cycle contines
until the user finally has achieved the goals and no longer needs to interact with the

be seen in Figure 2.2

visualization system. The cognitive cycle ca

Within the gulf of evaluation, there are specific cognitive steps a user takes to un-

derstand the visualization being presented to them. The user's first step is perceiving
the state of the world, 1o see the current state of the visualization. Then, the user
starts interpreting what they have perceived, and begins to understand what is being

presented and how

has changed. The user then starts evaluating the outcome, to
understand if the goal has been accomplished. After evaluating, the user may decide

to continue o use the system or decide they no longer need the visualization system

and leave. If the user decides to continue to use the system, they will start forming

a goal. This goal may be a new goal or, if the evaluation earlier concluded that their

previous goal was not reached, they may decide to continue or modify the previ
goal. In cither case, the user then moves o the gulf of execution

The gulf of execution explains the cognitive steps a user takes to achieve their goal
with the system. A user forms the intention to act based on their goal, in order to
bring themselves closer to accomplishing the goal. With an intention formed, the user
then starts to plan what actions they believe will help in achieving the goal. With
the action sequence planned, the user then performs the planned action. Once these
actions are finished, the person moves back into the gulf of evaluation to evaluate the
impact their actions have had on the visualization and if their goals have been met,

and if they should continue their previous goal or form a new one.

When the user has finished crossing the gulf of execution, the user’s environment
has now changed as a result of the interaction. The user enters the gulf of evaluation to
examine what has changed in the visualization. Upon finishing the gulf of evaluation,
the user will then enter the gulf of execution, to make changes, to formulate a goal,
and to make changes to the environment. The user will move back forth between the

gulf of evaluation and the gulf of execution, until the user can no longer formulate

16

¢ more goals or if the user no longer wishes to use the software to achieve the goals.

At that point, the user will then exit the software.

By applying Norman’s stages of actions to designing a information visualization

system, we can understand the cognitive steps an individual performs while using

the system. With this understanding, we can use representation techniques and

teractive designs that will help them achieve their goals faster and much more easily

From the gulf of execution, we can understand the steps that a user will undertake

10 achieve their goals and help provide the tools and actions to perform these actions
as efficient and easily as possible. By understanding the gulf of evaluation, we can

understand the steps that a user will take to perceive, interpret, and understand

the visualization, and provide representations that help make this clear and easy to

understand.

2.2 Software Visualization

Information visualization systems that focus on software code and related statistics
is referred to as software visualization. Large software projects can become very
It to analyze

complex and diffi d support without the proper tools. Software

visualization systems can be used to help users analyze the software architectu

learn developer information, the frequency that changes occur, execution tracking,

and how the software evolves. Through these tools, software developers can learn

them further.

interesting patterns and anomalies in software systems, and investiga
It has been suggested that the methods for visualizing software code can be di-

vided into three categories: those that visually represent lines of code, files, and

Table 2.1: Common software activities and software systems
Software | Developer | Frequency | Exccution | Software
architecture | information | of changes | tracking | evolution

Line Based Visualization
SecSoft [10] No Yes Yes No No
Augor [13] No Yos Yes No No
CVsSean [12] No No Yes No Yes
File Based Visualization
Release History [16] No No Yes No No
Voinea et al’s Work [41] No Yes Yes No No
Folder Based Visualization
StarGate [31] No Yes No No No
Voronai Treemap 2 No No No Yes No
Class Based Visualization
UML [12) Yes No No No No
Byleas and Telea's Work [3] | Yes No Yes No
Pich's Work [32] Yes No No No No
Hierarchical Edge Bundles [22] | Yes No No No No
IpactVie [11] Yes No No Yes No
folders [1]. Given the prevalence of obj ed s practices, a

fourth representation is also appropriate: those that visually represent the software

project’s classes and class interaction. Important and interesting work in each of these

categories are summarized in Table 2.1, and described in more detail in the sections

that follow.

2.2.1 Line Based Visualization

Line based ization systems are s i that represent attributes

related to the individual lines that make up software files. These attributes could be

the author who last changed a particular line, when the same line was last changed,

the syntax of the line, etc. The tools ty

ly help users understand how a particular

section of code was written o changed, with the goal of helping them to understand

the purpose of each line and how it relates to the file overall.

The seminal work in visually representing lines of software code is SecSoft [10].
By scanning a repository history, the system uses colour to visually represent how
long ago each line of code was changed. Through the use of a colour range, a user

can see what areas have undergone changes recently and what lines of code have

remained stable for a long period of time. Lines of code that have recently underwent
a lot of changes might contain new bugs. Users of SecSoft can also modify the colour

encoding to represent other information such as the author who last modified the line

as well as the syntax of the line. A mumber of other researchers have expanded upon
the fundamental methods in SceSoft, including Augur [13] and CVSscan [42), which
have added the ability to see when new lines have been added to the class and how

a file can grow over time.

The primary difficulty with visually encoding changes on a line-by-line basis

the

that the length of the line of code has an impact on the visual weight it carie
interface. Similarly, multiple consecutive lines of changed code will appear as more

important that the change of a single line of code. While identifying which lines of

code have changed may assist the user in determining where a bug may have been

still up o the user to inspect each line of code manually for the

introduced,

source of the bug.

2.2.2 File Based Visualization

the previous visualization method focuses on individual lines, file based vis

Wi

ization puts emphasis on the files that the lines are contained in. Such visual tools

s related to files, including when the file was last

might be used to show properti

size, etc. File based

modified, the date the file was created, the file type, the file
representation can help a debugger or a software developer to identify the files that
are being changed considerably or frequently, and may need to be inspected for the
purposes of quality control.

An example of a file based visualization is Release History [16]. Release History

shows how much a file has changed between software releases. During testing phas

this system can be very useful to identify which portions of the source code have

od between releases, Release History can

ost. I a new bug is

changed the

be nsed to identify files that are candidates for the source of the bug (i.c., those that

However, this approach may

iderably since the previous release]

have changed c

is 1o stable baseline against which to compare

not be particularly effective if there

i

e system or if a large amount of these changes were in the documentation and
comments portions of the file

Another example of a file-based reprosentation is Voinea et al’s work [41]. Tn the
project-based view of this software, each individual file is visually represented, as well

as a representation of each file’s history in the project. This software visualization

20

to0l shows when a file was first included in the project and, as changes occur to that
file, who was the last to make any changes. From this, users can see when a large
change in architecture oceurs (when a large mumber of new files are introduced) and

when new software developers start making changes to a particular file changes (based

on when the colour of a file changes in the timeline).

2.2.3 Folder Based Visualization

When representing a group of files contained in a common folder, we refer to this as

a folder based visualization. These types of visualizations allow software developers

to sce changes and attributes that are common to files that we know are related

(e

somehow. Some attributes that a user may want to visualize include folder size (cither

of

total number of files or amount of memory used), dates of changes, and frequency
changes. Since the folders in our software projects commonly have sub-folders of a
finite depth, these software visualizations need to show both the folder file size and the
depth of a particular folder. We can also see if other folders have common attributes
(.8 changes made on the same date) in order to identify potential relationships to
other groups.

il

As an example of folder based visualization, StarGate [31] uses an abstract v

representations to show the relationship between developers and the folders they

access and change. A ring is used to represent all the folders of the project with

the lowest level of the ring representing the root. The portion of of the ring that

each folder is assigned to is based on the total number of files in that folder and its

sub-folders. The deeper that the folder tree goes, the more layers the ring will use to

represent the depth of the tree. Inside the ring, dots are placed to represent individual
developers. As a developer makes changes to the files in the folders, the developer
dots are placed closer to the folders they have changed. Software developers can use
this system to identify who has been modifying different areas of a project, and where

specific developers have been focusing their attention

With StarGate, a user can quickly track down a developer in a large software team
who would be the most familiar with a particular aspect of the software code. In the
case of tracking a new bug, we can approach the developer to help provide context
to the code. However, tracking down a particular bug is not aided by this software
visualization system, but instead highlights an individual who can help. There are
some difficulties with the approach, however. In cases where a single developer works
exclusively in two folders that are opposite each other on the ring, the developer will
appear closer to the center of the ring. This developer will appear equally involved

in all arcas of the project, instead of being seen as an expert in two areas.

A popular way to visualize software projects based on folders is by using treemaps

hi

archal data, in

[23). Treemaps are visualization methods often used to visual
which we preserve the hierarchal structure of the data. A space is defined (based on

1 which a

ute, like total hard drive size or total number of lines of code)

some att

root folder is represented. This area is then split into proportional sub-spaces based

on the individual folder and files that belong to that folder. The area of the sub-folder

s, recu

are then further divided based on their content ively, until there are no more

folders. An example of this is an implementation of Voronoi treemap [2], in which

the authors use complex polygons to represent the folders representation, rather then

the traditional rectangle representation. The data s based on package information,

which is often present in Java projects. The area given to each package or class is
based on various software metrics used to identify which classes and methods are

frequently used. so that users of the

tem can see which portions of the software is

frequently depended on.

2.2.4 Class Based Visualization

not outlined in Ball and Eick's taxonor

ation

Although class based visua i of soft-

zation

ware visualization [1], it does represent an important group of software visuali

methods. Software classes exhibit many common properties that are also present in

files (e.g., date of creation, last modified, size, ctc.). However, classes also exhibit a

property that is fundamentally important to object oriented programming: relations

to other class

In large software projects, it is uncommon to have classes work in

complete isolation: classes typically make method calls to other classes, and may in-

. interfaces, templates,

herit properties or methods from classes (parent-child relatio

s from the

tinet entiti

etc.) [26, 38). 1t s these relations that make classes very dis
files in which they are stored. These unique properties give an advantage to help ac-
complish tasks that a software developer would be interested in performing, including
debugging.

By taking advantage of the class information, software visualization tools can be

used to represent the interaction within a software project. For example, the class

diagram within the Unified Modelling Language (UML) [12] produces a visual repre-

sentation of class inheritance, and ion. While UML notation

was not meant to show how changes propagate through a software system, it can show

which classes are related to a class in which a bug is manifesting itself, and provide a

starting point for debugging. As well, Pich et al.’s work [32] evaluates classes based on
the number of direct dependencies that they are responsible for. Taking this number,

it places classes that are more dependent on others higher on the graph. This place-

ment shows the user what classes are highly depended upon. If one of these classes
becomes infected with a bug, the manifestation of the bug would quickly propagate

through the system. As such, this tool allows the software developer to quickly iden-

tify these classes and ensure that they are well debugged at all times. Holten’s work

0w how classes are related

with Hierarchical Edge Bundles [22] uses a radial tree to's
across the entire software project. With Hierarchical Edge Bundles, we can see both
how entire subsystems work with one another at a glance and gain the ability to see

which classes are interacting with other classes. Unfortunately, the usefulness of this

software visualization system is lin

ed, offering no other information than to allow
us see the connections between software subsystems and their individual classes.
Others have extend UML to provide more information, such as the work done by
Byelas and Telea [3]. However, given that UML is already a very graphically-rich
representation, doing so runs the risk of producing a visualization that is cluttered

mbolic meanings, and coloured regions that stretch

ith coloured edges, edges with s

across the screen. The system tries to detect what software classes share common
properties that should be of interest to the user and refer to these items as an area of

interest (AOI). In this system, the software diagram is represented by using a UML

diagram 0 show how classes are related to one another and use a coloured region
{0 represent an AOI and the software components related to it. The end result is to
help show how changing one component. might have consequences in other areas of

21

the software project.
As will be discussed in more detail in Chapter 3, the software developed in this
thesis, ImpactViz, can be classified as a class based software visualization technique.

cctions between classes through method

The program visually represents the con
calls and the method call stack. ImpactViz shows the relations between class in a
project and helps users to see the ways in which the classes in the project interact

with one another, both directly and indirectly.

Chapter 3

ImpactViz

ImpactViz is a software debugging tool that visually represents the method depen-

dencies between classes in a software project. 1t allows users to examine how changes

1 the software code can propagate throughout the entire system. Using the source

code of the project and the related revision

ory data, ImpactViz generates a graph

layout that illustrates the method call stack dependencies of each class and visualizes

where the changes occur. A change is recorded when ImpactViz observes a change
in a method’s code from one revision to the next, marking the revision and method
where the change was observed. The users can filter the revision history data, show-

ing only changes within a specific time period. They may interact with the system to

select a class and discover the other classes on which it depends, visually identify

whether any recent changes have occurred that could have an impact on the selected

class. How many classes that are affected by a change in a single method can be

observed i

large coloured regions, referred o as change impact regions. Figure 3.1

shows how the entire information visualization tool is laid out

“mo3sAs aTeMJos oy spoeduy o) puv sofwen o) Jo woneyuasadar ydes oy pue ‘foued 13y

OISIAD a1} A0LAIN0 91} SUONOIS 20X} OYuL PIPIALP ST AL “UOWY UE AAIRIUY JO OSUGAS Y T HMF

The goal of ImpactViz is to allow users to visually identify rec

changes
software code that may be the source of a bug in a particular method. By allowing

the user to select the classes that they know are being influenced by a change, the

can quickly trace the bug from where it has manifested itself to classes that might be

responsible for the bug. Users can examine these classes that are highlighted more

closely for programming errors.

‘The fundamental assumption with using ImpactViz is

that the software developer

is aware of some prior revision within the repository in w

i the bug was not present

This knowledge allows the user to set the revision history filter to only show changes
that have occurred since this known bug-free revision. The user may also be aware
of a tighter window in which the bug was introduced, allowing them to also filter out

recent revisions. As such, any changes before or after this known window in which the

bug was introduced are ignored, allowing the user to focus on those classes that hay

changed and may therefore be the source of the bug. While previous work with delta

debugging [44] has been performed using automatic testing, not all software syste

t test allows

can easily use w 1 and some cases require human judgment. TmpactV

a knowledgeable user to debug in an cffective manner, rather than applying a brute
force algorithm to produce a list of alternatives for when and where the bug was

introduced.

The current i

Impact Viz supports the construction of the method

call stack dependencies for a Java project and using an SVN repository to manage

the

changes in the software project. However, the techniques are general enough to
support any object oriented programming language and any source code repository

that

tains a history of change

mpactViz uses Java framework called “Prefuse”

28

[18). Prefuse is information visualization rendering engine, which helps provide aid

in rendering graphs and the base

e interactions with those visualizations, while

providing the ability to add additional interactions and visualizations. Prefuse helps

I ing point wh ping new information ion projects, while
flexible enough to allow developers pursue their own concepts and ideas for a new

visualization tool.

3.1 Representation of Classes and Changes

ImpactViz uses a graph based representation to show the relationship between classes,
using a force-directed algorithm [14] to organize the graph. ImpactViz also uses
colour-encoded change impact regions to help show the overall impact that a single
change can have on their entire software system. The nodes of the graph are also
visually encoded, denoting the difference between classes that have seen a change
over a desired time period

Change impact regions which surround the nodes are used to represent the overall

impact that a single change has on the system; cach class that is encapsulated in the

region has been influenced by

he same method change. 1f a user knows that a method

contains a bug, there exists a possibility that the other classes in the region have been

affected by the same bug and may be the root cause of some other bugs observed

Change impact regions can overlap, showing that some classes can be influenced by

more than one change.

Figure 3.2: A sereenshot of the primary visualization window in ImpactViz. Classes
that make method calls to one another are represented in a force-directed graph.
Nodes that have changes within the selected revision range have a black background.
The impacts that these changes have on other classes are encoded using colour-
encoded change impact regions. The graph presented here is not the complete software

graph but a zoomed in portion of the graph.

3.2 Visualization Techniques

alization project, several visual techniques are being

Since ImpactViz is a software vi
used to help ensure that the user of the program will be able to have a maximum
understanding of the visualization, including the opponent process theory of colour
(19, 43] and the Gestalt principles [27, 43). Each visual item was carefully designed
using different visual principles. The main visual items in InpactViz are the nodes,

their colouring, the change impact regions, and the graph layout.

30

3.2.1 Graph Layout

ImpactViz uses a graph representation of the method call stack. Each node represents

a single software class; edges represent method calls between the connected classes.

The direction of an edge shows the method call direction: an edge pointing from class

A to class B illustrates that class A calls a method from class B (i.c., that a class

class A, and that a method in class A is calling

of type class B is encapsulated

a method from class B). This edge representation places the focus on the direction
in which methods are being called, similar to how UML [12] class diagrams use the

jon of an association or ownership. The graph representation can be seen in

direct
Figure 3.2

ImpactViz uses a force-dirceted graph layout to organize the class nodes within
the display. By using a force-direct algorithm [14] provided by the Prefuse API [18],
nodes that are directly related to one another pull towards each other and repel nodes
that have no direct relation. Through the usage of this graph layout, classes organize

onships, allowing classes that are related

themselves into clusters based on their rela

be close to one another. In addition, if there are two subsets in which there are no

common connections, these two sets will push themselves away and help show the

user small pockets of code with no relationship to other areas in the software. This

can help separate different modules or show classes that are no longer in use in the

em and should be considered for ren

software s oval (classes that are not part of

the main system and are pushed to the extremes of the graph)

Another advantage of using the force directed algorithm is that it allows the

ser 1o drag nodes into open areas and have the entire graph structure dynamically

31

re-organize itself to take into account the new positions and re-create the ¢

discussed earlier. This helps the user remove a class from a dense cluster of classes

to examine it more closely for any relationships that they may find interesting.

1 order to help control the graph, a graph control panel has been included on

the left side of the screen. This gives the user access to several actions, including

the ability to move to other areas of the graph quickly via the overview of the entire

visualization on the top, the ability to filter changes between a time period that the

user is interested in examining the changes, and the ability to examine notes left by

the people who made the changes on the bottom.

With the force directed algorithm pulling direetly linked nodes together, it allows
for the Gestalt principle of proximity to come into effect. Nodes that are placed near
one another supports the interpretation that they are related. The edges connecting
the nodes are unweighted and each edge is treated the same, despite the total mumber
of method calls between the two classes. This was done on purpose o help avoid

situations where two classes are very strongly linked together, such that they are too

close to be readable. By being able to cnsure a relatively healthy distance between the
nodes, we can help increase readability and reduce the total mumber of false-positives
of classes being contained in a the change impact regions. As well, since we push away
unrelated nodes, the opposite is also being implied; the nodes that are not close to

each other are not closely related. As well, since we are using a line to connect linked

nodes (clas

) together, we are also using the Gestalt principle of connectedness to

nship between the nodes.

indicate a strong relat;

Another alternative to the force-directed algorithn

an implementati

Euler diagram algorithm (3]

Euler diagrams are excellent for organizing sets of

32

dividual nodes difficult. For the

iteracting and mov

data clearly, but make

casier

purposes of representing class relationships, a traditional graph layout makes

n classes and to interact with a single class

for users to see the relationships betwe

that is of interest

3.22 Node Colouring

ved from process theory

ImpactViz takes ad the !

al distinctions among the class

of colour [19, 43] to help create several different
nodes. Class nodes are represented using two different colours: white to represent

in the specified revision date range, and black to

a class that hasn’t changed wit
represent a class that has been changed. This choice of colours on the extreme edges

eive the two different

of the luminance channel ensure that the user can readily p
classes of nodes.

[he visual encoding of nodes allows the software developer to visually trace the
important classes; the classes that have recently seen a change made to them. During

as these are nodes that have been

this process, the developer can ignore white nod

unchanged and spend more time analyzing the classes represented by the black nodes

instead.

of the system will as-

Through the usage of Gestalt principle of similarity, use

lated attribute to make th

sociate the similarly coloured nodes as having son

ice the colour of the nodes dictate whether a

the same colour, which will be true si

change has been observed in the class that the node represents,

3.2.3 Change Impact Regions

The impact that a particular change in a class can have on the project is determined
at the method level. Each change in a particular method for each revision in the

software repository generates a separate change impact region. These change impact

regions are subsets of the method call stack graph, including the class in which the
‘method is defined along with all other classes that make use of the changed method.

¢ encoded as coloured regions layered on

The change impact regions are visuall
the background of the method call stack graph, enclosing all the class nodes that can
make use of the changed method. Since the human eye can only reliably differentiate

between 12 unique colours for encoding nominal data [43], the change impact regions

are visually encoded using a set of ten distinct colour hues, with the remaining two

colours used for node colouring, as described above. Obviously, there may be more

than ten change impact regions that need 1o be represented. To address this issue,
colour hues are reused for multiple change impact regions; wherever possible, this

re urs for disjoint regions. ImpactViz uses the Prefuse API to render the change

e 0c

apact regions, using a convex-hull algorithm. Using this algorithm can produce
false positves, when classes not related to the change drift into the change impact
region due to the force-directed layout used to help organize the nodes of the graph.
While there are other algorithms that can avoid this issue, they required too much

work as a real-time system. Users can

computational resources to make Impact

identify the actual members of the change impact region by clicking the region. 1f

Bubble Sets [7] can render in real time a large data set, it would be worth while to

switch over, due to the reduction of false positives of nodes that look like they belong

10 a change impact region.
‘Two scenarios are possible for the change impact regions. A change impact region

(i.e., the class in which a change has been made).

may encapsulate only a single class

In this case, the change in the class s local and s not impacting any other classes

esting itself elsewhere in the project,

within the project. Therefore, if a bug is man

its source cannot be in this class. In other circumstances, a change impact region

which the change has been made,

the class

may encapsulate multiple classes (i.c.

f the bug is

and other classes that make calls to the changed method). In this case,

anged class is

manifesting itself in one of the classes within this change region, the cl
a candidate for the source of the bug,

As

seen in Figure 3.2, change impact regions can overlap one another. This

aking use of methods from multiple other

lar class is

can occur when a partic

ed. Or it may occur when multiple methods have been

classes that have been chan

5 used by different sets

changed within a particular class, and these methods are bei

of other classes. The colours used to encode the change impact regions ar

. allowing the developer to see the overlapping regions and

parency

using partial tran
terpret. the extent of the change impact regions.

The coloured change impact regions take advantage of two Gestalt principles,

closure and proximity, to assist the user in perceiving that classes in the coloured

regions are related. Through the use of the force-directed layout, classes that are
keeping the coloured area as small as possible. In

related are pulled closer together

. the coloured regions

cases where a class may be impacted by several different chia
are overlapped. Due to partial transparency in the coloured regions, the user can sec

«d by more then

the overlapping regions and interpret that a class s being influes

35

one change.

This visual encoding can allow the software developer to visually trace the man-

ifestation of a bug to its source class by following the directed edges that connect a
class node to a changed class node within the same change impact region. Paths that

xit the change impact region indicate method calls to classes that have not changed.

3.2.4 Crossing the Gulf of Evaluation

The representation of ImpactViz was designed with the gulf of evaluation from Nor-

nan's stages of action [30] in mind. When the user first loads the program with the
software system data, the user is grected by a large chuster of classes. The user first
perceives this visualization, examining what is being presented. At this stage, the
user may notice large clusters of elasses, colour-encoded change impact regions, as
well as classes that are no longer part of the software system that are being pushed to

r then starts to interpret what is being presented

extreme edges of the graph. The us

T

includes decoding the change impact regions, examining the graph for classes of
particular interest, and examining the node relationship with other classes. The user
then attempts to make sense of what they are secing with respect o their current

the system (i.c., discovering the source of a particular bug). They

task goal for v

jon with the visualization in

then determine whether their goal requires any interact

action with the system (as described below) will

order to be achieved. Such i

result in changes (o the visual display, which require the user to again cross the gulf

of evaluation. This loop continues until the user no longer needs to interact with the

system in order to resolve the goal

36

3.3 Interaction Techniques

a great deal of

TmpactViz uses a variety of interaction techniques to give the use

ed in. U

ing the

control and to help them find the information they are interes

revision filters, revision information, node selection, node dragging, and panning and

zooming, the users are able to manipulate the visual representation o help track

I software structure and relationships

down the origins of bugs and help see the ove

between classes,

3.3.1 Revision Filter

responsible for adjusting the colours of nodes depending on if

The revision filter

there was a change in the revision dates and fltering what change impact regions

are visible. The user selects the time period in which they are interested. From (h
time period, the user can see the changes that were made and how these changes
sfiuence the overall project. 1f the user’s goal with this visualization is to track down

was last working as intended

n the systos

& bug, they can use information from wh

to sce the changed classes and the impact these classes have had on the system. This

to limit what is being shown to only the changes that could be the cause

allows ther

only show the changes since the bug's

of the bug, since the impact change regi

troduct

jon. This allows ImpactViz to remove all the clutter that can come from

ision history 10 a narrow time period that the user is actually

having a very large re

interested in investigating

g the revision filter, even though

1 colour that oceurs when adjust

The change

the change impact region has not changed in size, was designed on purpose. Without

37

the revision timeframe would yield

this feature, there are cases in which a cha

ge

10 change in the visualization, as each change impact region could receive more than

one changes over the lifespan of the project, which only alerts the user to the idea

that there exists one or more changes to that change impact region user can take as

the program not. working. The change in colour now alerts the user to the updated

change impact regions and the overlap in the regions can help provide a more accurate

number of the mumber of changes in the chany

impact region.

3.3.2 Revision Information

T can examine There

At any point, the formation about a particular revisio

fon number, the anthor of that revision

is a drop down menu that displays the revi

and the date on which the revision was made. The user can select a revision and see

fon as well as all the files that

the comments that the author made about the revi

ision,

underwent a changed during that re

3.3.3 Node Selection
When selecting a class node, the method call stack that the selected class relies on

is highlighted. This selection of a class node operates as a focusing technique. The

method call stack of classes is brought to focus by adjusting all the other classes that

are not in this selected class’s method call stack to make them partially tra

isparent

and smaller. The edges that are also not part of this class stack are also made partially

g the connecting edges that are related to the selected class more

transparent, gi

visual emphasis.

38

Using the selection method, the user can analyze the chain of classes that have

focus and examine these (o see what classes have undergone some sort of change
during the selected revision range. This gives the user some insight into which classes

should be analyzed closely if there is a bug manifesting itself in the selected node. If

the user was more interested in seeing how the classes interact with each other, the

user can see the classes that the selected class makes a direct call to and how close

these class calls are to the original design of the software s

m, as specified by the

UML or other software artifacts developed for the project.
While we conld also filter out all the change impact regions that are not related to
the selected node (much like how we put less focus on the nodes and edges), we fecl

this might be confusing. We already allow for filtering based on revision interval

adding an additional filter from selection might get, confusing. Secondly, we do not

want our users to neglect the other impact regions. We wish to ensure that, once

they start investigating one region, they might come across other interesting impact

regions (potentially, even larger ones), and we wish not to hide this information from

the user. Since the change impact regions already are transparent, there is little clse

we can do to them to put less of a focus on them. Based on the two previous reasons,
we have decided not to include change impact regions as being influenced by node

selection.

3.3.4 Change Impact Region Selection

Due to the usage of a force-directed layout, nodes can be pushed into change impact

not beloni creating the illusion that a class

to that particular char

39

belongs in the change impact region, while containing no references to those classes
in any fashion. We can overcome this by allowing the users to select a change impact

ion, all nodes and

regions by clicking on it. By clicking on the change impact regi

related edges become focused, much like clicking on the source node of the change

impact region, while the false positives are left unfocused and easily distinguishable

from the node and edges that do belong in that change impact region.

3.3.5 Node Dragging

When a user has found a class they are interested in, they can drag the class node to
another area of the screen. This allows the user to take a class and the classes it is
directly related to and drag them to an empty area. When a single class is dragged,
the other classes are pulled along and re-organized into new positions based on the
force dirceted layout algorithm [14]. In this way, these directly related class nodes

Prefuse has this functionality

remain together, and unrelated classes are pushed aw

built into it.

3.3.6 Panning and Zooming

ImpactViz uses panning and zooming operations to deal with the space constraints
of representing large software projects. Using the zooming technique, users can zoom

ualization that contains a particular subset of classes

it a particular area of the

their

are mostly interested in. This helps remove classes of lesser interest fro

they

ass clusters they are more interested in.

er to focus on the ¢

sight and allows the u

ly

With panning, the user can adjust where the centre of the screen s located, spa

10

filtering classes that are not of interest and keeping the relevant class nodes near the
center of the display. ImapetViz takes advantage of the built in capabilities of the
Prefuse API to handle panning and zooming.

Combining panning and zooming allows a uscr to zoom out 1o get an overall view
of the visualization and then zoom into an interesting portion of the visualization.
The panning feature helps aid in adjusting the focus of the screen to the section
that the user s currently interested in. These two features allow the user to take an

adju

exceptionally large visualization, and allow ther their focus on a particular

subset of nodes.

On the graph control panel, we have also included an overview visualization. The
user can feel free to pan and zoom throughout the graph and the overview visualization
will help the user keep everything in context o the overall visualization. The nser
can click on the overview to move their focus from one area of the graph to another
instantly. We also include the ability to let the user right click on the graph to have

1 the main

zoom out just far enough to show the entire vis

the camera

3.3.7 Crossing the Gulf of Execution

Considering the gulf of execution from Norman's stages of action [30], we can aid the

sser by providing tools to help them quickly traverse this gulf. Doing so allows the

ser 10 easily make the software perform the operations they need to resolve their

task goal, so that they can continue examining the visualization presented, crossing

the gulf of evaluation to learn and understand more about their software system.

Once a user has formed a goal, whether it be to see the classes that a class depends

stem,

on, the classes affected by a single change, move to another section of the
or to bring to focus a set of changes that the user has an interest in, the user has
created an intention (i.c., a short-term goal for what they want the system to do).

s a series of actions to bring the system closer

the user then for

From this intention
10 achieving the goal. Al of the interaction in the system follows the guidelines

pteraction with a mouse and keyboard. As such, the steps

for normal computer
of planning the action sequence and executing the action sequence occur with little

cognitive effort as they become more experienced with ImpactViz.

3.4 Debugging Scenario

7 is quick and easy, and can be broken

Tracking down a software bug with ImpactV

e project, whenever a Level

into four fundamental steps. Suppose that in a video g

g in the form of how items within the level are

class is created an error is appea
being displayed and represented on the map. Upon examining the Level class itself,

must. be

ded. Therefore, the by

all the source code appears to be working as
in a method from another class that is used by Level That is, while the bug has

another class upon which Level is dependent

manifested itself in Level, its source
After loading the source code of the project and the SVN information into Im-

pactViz, a visual representation of the entire software project along with all of the

revision changes is shown. From here, the software developer can see how the classes

in the project are connected to one another, and if any particular changes have had

es to methods that are us

a large impact on the overall system (i.c., cha

2

‘The initial view of ImpactViz after loading in the software project and

Figure 3
repository information. The user can see how classes are connected, and which classes
may be impacted by a change in another class as illustrated by the black nodes (classes

that have changed) and their associated change impact regions.

different classes).

In the example shown in Figure 3.3, we can see that there were changes made to

the following classes: Main, Foe, Chest, Rogue, Dice, and Potion (as illustrated by the
black class nodes and their associated change impact regions). The other classes that

may be affected by the changes can readily be identified within the change impact

regions (g, the change (0 the Chest class may have an impact on the operations of
Level and Main, as illustrated by the purple impact region that encapsulates these
classes and the edge paths that all terminate at Chest).

During the debugging process, software developers often have some knowledge

ed. They have test documentation that

regarding when a bug was introdu

specifically states that everything related to the class in which the bug has manifested

If the

nded under a specific scenario at some point in tin

itself was working as i

13

Figure 3.4: By filtering the revision history data, the software developer is able to
focus on the classes that have been changed and their impacts on other classcs in the

project

software class is no longer working as intended, this can give the debugger a time-
frame in which to search for the bug. Suppose that in this example the software
developer had performed some testing on October 11, 2000 and found everything was
working as intended. The revision flter can be set to start on Revision 5 (October

11, 2009) and end at. Revision 10 (October 16, 2009). the date at which the bug was

first identified.

As shown in Figure 3.4, the outcome is an update to the visual representation of

the project code which shows only the classes that were changed within the selected
revisions, and their corresponding change impact regions. This revision history filter-
ing automatically simplifies the debugging process by eliminating from consideration

changes and the impacts of those changes that cannot be the source of the bug.

In the third step, the software developer can zoom into a set of change impact

regions and select the class in which the bug has manifested itself to identify the

"

Figure 3.5: Zooming in and selecting the class in which the bug has manifested itself
(Level) allows the software developer to quickly identify which classes have been
changed that might contain the source of the bug (Chest and Dice). Note that Foe

do not cover the Level

and Potion can be excluded since their change impact regi
class,

ustrated in

classes that may contain the source of the bug. In this example, as
Figure 3.5, the software developer has zoomed in and selected the Level class. This

selection highlights the classes that Level relies upon at some point in the method

call stack; other classes are shrunk and faded into the background. The classes that
are most interesting from a debugging perspective are those that have been changed

those that

within the specified revision range and have some impact on Level (i
are shown in black nodes and have change impact regions that contain Level)

From the visual representation, the software developer can see that the classes

that Level makes use of, and which of those have been modified n the revision

history range. While Chest, Foe, Potion, and Dice have all been modified, the chay

impact regions of Foe and Potion do not cover Level indicating that those changes

15

were not made to methods which Level uses. As such, the remaining candidates for

the source of the bug are those classes which were changed, and which also have
change impact regions that cover the class in which the bug manifested itself: Chest

and Dice.

In these three steps (load the source code and revision history, adjust the revisi

history range, and select the class in which the bug has manifested itself), software
developers are able to visually identify the classes they should analyze in order to
track down the source of the bug. The final step is to examine those classes in detail

(using their regular software development toolkit) to locate and correct the bug,

3.5 Software Prototype Design

ImpactViz was designed to be used with software projects using SVN as a repository

base and Java as the programming language, as these are the common tools used by

Computer Science undergraduate students at Memorial University (who were used as

the participants in evaluating ImpactViz, as discussed in Chapter 4). However, the
prototype system was designed such that swapping between programming languages
and different repository systems is relatively easy.

The Prefuse [18] framework was intended to be used from the start. Prefuse helps

ImpactViz by providing the graph rendering and animations, while also providing

the interactive tools of clicking, panning and zooming. The reason for using Pref

framework was to help provide a starting point for the prototype. It allowed for gener-
ating the sophisticated graphs that ImpactViz requires, while allowing the developer

the time to focus on the data collection required to run this project and the specific

16

tools that this project requires for the interface, which includes the ability to select
a chain of nodes from an aggregate collection and from a node itself and the revision

to provide solutions to problems already solved in informa-

filter. Prefuse’s role was

tion visualization (graph generation and interactive techniques), which allowed the
developer to focus on trying to find the answer to the research question - if a visual
debugging tool would be an asset in the debugging process.

ImpactViz data collection is broken into two pieces: the pseudo compiler, and

the repository handler. The repository handler is given the location of the software

project and is responsible for reverting the code to earlier versions. The pseudo

to an object representation.

er is responsible for converting the source code

The psuedo compiler achieves this by finding the method definitions and detecting
the method calls that each method makes. The pseudo-compiler is also capable of

stamps and identifying and

taking two versions of the same method with different times

iade. These two modules combine to generate

recording if any changes have beey

the data that is used to create the visual items in ImpactViz's interface.

3.5.1 Pseudo-Compiler

ble for taking the source code and interpret the in-

The pseudo-compiler is respon:

graph layout interface and change

formation in a way that is usable for ImpactVi

impact regions. ImpactViz requires four pieces of information for any given project

a sub-class, all the method definitions, all compilable code, and

whether a class i
all other methods to which the class methods makes calls. The pseudo-compiler is

responsible for extracting this information for all class files. While the discussion in

this sect

n is focused on Java-based projects, the general concepts also apply to a

majority of other obj A ing languages; a similar pseudo-compil

could be written for other such languag

Detecting the sub-class and method definitions is a simple matter. as all sub-clas

are defined in the class definition, using the keyword extends, while method defi

are found in a block nested inside the class definition. Finding all compilable text

is also a simple text processing activity, since all that is needed is to match the
opening and closing blocks of the methods. In this process, comments are excluded
from consideration, since they have no impact on the execution of the code and the

generation of method call stacks.

somewhat cor

Finding the methods each method depends on can be plicated.
Once scans of all classes have been performed, with a record of every method in the
project, we can then start to break down each method’s source code to find other

bedded method calls. Each line is examined for a variable definition. If the line

e
does contain a variable definition, we record the variable and the type into a lst,
10 look it up if the same variable is used at a later point in the code. Next, we

examine the remaining line to see if a method definition is being called. Method

calls are denoted by an opening and closing of the round brackets after alphanumeric

text, without any symbols between the text and brackets. A method call made to

an exterior class outside the current class, also contains a *." to separate the method
call and the variable name or class name (for static methods). Since some methods
return classes or some classes have public variables, we can have multiple *" (e.g.,
variable.method1(). method2() and variablel variable2.method()) to denote different

layers of variables and method stacks. Thus, the method and variable detection

18

ust be recursive. Once a method call has been identified, we must also look at

arguments in methods to also

the method call arguments. The Java language alloy

each arguments be examined for

contain method calls, requiring that the text i

method calls.

When the pseudo-compiler has finished this text processing, the end result gener-

b full details

ated is a complete listing for all the software classes in the project, wi
about their method definitions and the method calls made by each of these methods

and the related classes. This information is used to see the full method stack that

cach class’s

methods can be a part of, which is used in the visualization portion of

ImpactViz. 1t should be noted that this psendo-compiler does not act as a proper

compiler and cannot detect if certain blocks of codes are unreachable.

3.5.2 Repository Handler

The repository handler is responsible for being given the repository location (and any
related usernames and passwords required to access it) and download a history of the
project for detecting when each method in the project has been modified or changed

The repository handler finds the latest version the project and downloads the

information. Once the full code base has been downloaded, the repository handler
passes the information to the pseudo-compiler to perform the method detection on
it (we will denote this version as version r). When the full collection is finished

processing, the repository then starts to roll back cach class file to an carlier version

(class version r-1) and has the psendo-compiler break the older version into method

and related code and compare the two versions of the methods (class version r and

r-1), to see if a compilable change can be noticed. Note that in this step, only the

software code is examined, not the method calls. If a change has been detected, the

. method, and

repository log of the clas

repository handler marks the change in
evision number. It then rolls the code back to an earlier version (class version r-2)

1 all

and compares the two earlier versions (-1 and r-2), continuing in this fashion u

the revision changes for the one class have been processed completely. This process

performed for all classes in the project

ons of the project, it

Once the repository handler has processed all of the rev
produces a complete listing of the method stack (provided by the pseudo-compiler)

jons each method was changed in the

for all classes, and notations for which

visualization in the

information is used in the ImpactVi

compilable code. This
revision filter (to examine only changes that oceur at a specified time period), which
reflects both the colonring of the nodes (to denote a change to a class during the

pact regions.

revision range) and the change

50

Chapter 4

Evaluation Methodology

1 tool for debugging, we cannot state that it

a novel visualizati

Since ImpactViz
s an actual improvement over other methods for debugging software projects unless
it is properly evaluated. While the goal in the design of ImpactViz was to create
a system that would be superior Lo traditional techniques of analyzing the source
code of a project and inspecting repository logs (hence forth referred to as traditional
debugging techniques), there is a need to confirm to what degree this goal has been

we define the

achieved through user evaluations. For the purposes of this study,

or can only inspect the original software

traditional debugging method to be that a

code and can review the the repository logs for the software project. Users will not

be running the software or making their own changes through out the study.
Evaluating information visualization systems is a tricky problem. Since such eval-

uations include human elements, care must be taken to ensure that correct question

order

are asked and that the focus of the evaluation is placed on realistic tasks i

es include introducing personal bias

10 avoid skewing the results [4]. Other chall

with the participants and inco

tencies in the evaluation method [1]. These con-
cern can be addressed by careful preparation of the experiments and creating a set
of guidelines o follow during the experiment. There's also the challenge of selecting

the right evaluation

ethods [33). A short study will quickly give results, while a

study performed over a longer period of ¢

e could show patterns that emerge once
a user becomes an expert user of the system. A longitudinal study is much harder
to arrange and finding participants who would be willing to participate may not be
feasible in some sitnations

The evaluation of ImpactViz follows the stepped model of evaluation and re-
finement, as proposed by Hoeber [21]. Inspections of the prototype system were

conducted first, following Nielsen’s b

istic evaluation [28), a cognitive walkthrough

and a visualization-specific inspection [15]. Based on these inspections, the pro-

totype system was refined and improved. Then, two forms of user evaluations were

performed. The first was a laboratory study, followed by field trials. Results from

both these studies are presented and discussed in Chapter 5.

4.1 Inspection Methods

Using Nielson's hewristie evaluation [20], members of the User Experience Lab at

Memorial University were asked to com

ient on TmpactViz. Issues regarding error
prevention and recovery, nesthetics, and several others areas were discussed and prob-
Jems were identified. After this activity, several changes were recommended, including
adjusting the interface so that the controls were on the left side of the screen, adjust-

ing the revision drop down to only allow users to select information within a sclected

time period, and allowing users to hover over a class node and see the changes made
to it over the selected time period.

A cognitive walkthrough was then conducted, placing the researchers in the posi-

tion of typical users of the software system. The evaluators judge whether the actions

required to accomplish the goal are intuitive and if the user would be provided with

plish their task sults of the cogni

enough information to accor 29]. Based on the

tive walkthrough performed on TmpactViz, changes were made including modifying

some of the terminology in the interface and removing the ability to change the effect

erface.

of clicking on & class node in the
As well to the above inspections, we also analyzed the design and visual repre-

sentations of ImpactViz following visualization-specific guidelines [45]. In particular,

we analyzed colour usage to ensure that the colours were decodable and were used
consistently throughout the interface. In ImpactViz, black and white are only used

10 represent whether a class has undergone a recent change or remained unchanged,

while other colours are used to show the change impact regions. Although there is

the possibility for the repetition of colour when there are many change impact re-

gions, the system ensures that such regions are displayed in disjoint space wher

possible.

4.2 Laboratory Study

The laboratory study followed a 2 x 2 (debugging technique x software projects)

mixed desi

The debugging technique (traditional vs. ImpactViz) was assigned to

participants as a within-subjects variable; the two separate software projects were

53

assigned between-subjects. The participants were divided into two groups, which
allowed the order of exposure to the debugging technique to be varied. Both groups

used traditional debugging technique

to debug their respective first software project,
and then ImpactViz to debug the second software project. Since the two projects are
completely unrelated, and the participants were selected such that they were already
familiar with traditional debugging techniques (i.c., senior undergraduate computer
science students), the learning effects were minimized. The participants used the
traditional debugging technique first since this is a method that they were all already
familiar with,

With the laboratory study, the goal is to determine if the different debugging

interfaces have an influence on the participants’ ability to perform the debugging task.

With this in mind, the dependant variables are the time to find the bg, whether
the answer given is correct, the ease of use and usefulness rating the participant,
and whether the user prefers using ImpactViz for debugging in comparison o the

traditional method.

4.2.1 Hypotheses

There are five main hypothesis that were tested during this laboratory study. Since

the goal is to compare ImpactViz to the traditional debugging method that they

ider this traditional method the baseline in this

are already familiar with, we con

comparison (herein referred to s the Baseline system)

The first hypothesis is that participants who use ImpactViz to debug will be faster

in completing their task than those using the Baseline system. We expect this result

since ImpactViz was designed to help users in traversing the method call stack in a

software system in a visual manner, which should reduce the number of classes that

need to be inspected for the source of the bug.

HI: Participants will be able to identify the source of bugs faster with ImpactViz

than the Baseline.

The second hypothesis is that more participants using ImpactViz will find the
source of a bug than the participants using the Baseline system. ImpactViz helps
users o narrow down a particular subset of classes to inspect. With a smaller set

of classes to examine, this should lead to less confusion and information overload,

allowing the participants to inspect the correct class.

H2: Participants will be more accurate when finding the source of bugs with Tm-

pactViz than with the Baseline.

The third hypotheses is that participants will find ImpactViz more useful and easy

a visual debugging tool, which should make it

to use that the Baseline. ImpactViz

easy to see how classes interact with one another, and help narrow down

inspect in three short steps. One of the goals in the design of the system was to make

it both useful and easy o use.

H3: Participants will respond positively to questions regarding the usefulness and

case of use of ImpactVis.

The fourth hypothesis is that participants will prefer to use ImpactViz for most

of their debugging tasks rather than the Baseline technique. Although the efficiency

nce, this

and cffectiveness of a system are not always tied directly to user prefe
hypothesis predicts that the participants’ subjective opinions will be in favour of

using ImpactViz.

H4: For the task of supporting debugging activities, participants will rank lmpactViz

rable to the Baseline.

as a prel

‘The fifth hypothesis is that users will prefer the Baseline system for understanding

the source code of the project over ImpactViz. While ImpactViz provides information
on how the classes in the project interact with one another, the current implemen-
tation is not linked directly with a software development environment and docs not

t offe

10 aid in understanding the

show the source code of the classes. Further,

lines of code that make up the class methods.

H5: For the task of understanding software code in general, participants will rank

the Baseline as preferable to ImpactViz

4.2.2 Measurements

In order to evaluate our hypotheses, we need to measure the participants performance
under the various experimental conditions. The first two hypotheses are simple to

measure, as they are time and accuracy. The last three hypotheses, however, are

trickier, as they are subjective questions and require more care o receive an accurate

‘measurement on them.

For the first empirical measurement, time, we measure the amount of time it

takes a user to give us their final answer and will be used for the validation of H1

56

‘The second empirical measurement, accuracy, is measured by grading the answer the
participant gives. In debugging you either find the bug or you do not find the bug,

With this in mind, we grade the participants on a binary scale.

The last three hypotheses are subjective. In order to receive an accurate mea-

surement, we must carefully ask the participant questions about what they think of

ImpactViz. Using the Technology Acceptance Model (TAM) [8], we carefully word

our questions specifically to see how useful and casy to use participants think Im-
pactViz s for H3. For H4 and H5, we ask the participants to rank ImpactViz and
the Baseline on their ability to perform standard software tasks and which of the two

debugging methods they preferred.

4.2.3 Statistics Test

Tnorder to validate that there exists a significant difference betaween the two debugging

systems, we need to use statistical tests to compare the two sets of data. H1, H2, H3

and H4 all require statistical tests, detailed in the following paragraphs. H3 does not

tatical analysis, since we are not comparing the results gathered from

require any

the TAM questionnaire to the Baseline method.

NOVA is used

For H1, we will be using the analysis of variance (ANOVA) [37). 2
to determine the probability that the mean value of groups of data are equal. We use

the ANOVA test to see if the samples from both test are equal. If we can successfully

find that the probability of the two sets being the same is insignificant (p j 0.05). we

can say with confidence that the two sets are not equal. From this information, we

can then compare the different mean values of the sets and see whether the the test

involving the time spent using Impact Viz has a lower value, proving that Impact Vi
does indeed speed up the debugging process.

The data collected for H2 requires us to determine the frequencies in which bugs
are found between the two debugging methods, the chi-squared test [37] will be used.
Since each test only has one independent variable (ImapetViz or Baseline method

for debugging), with only two possible results (bug found or not found), the chi-

ntly

of data are signific

square contingency table will be used to determine if the set
different. frequencies, the Chi-square test would be a good fit. By creating a 2 x 2 box
(debugging methods x number of possible results), we can place all of the possible
results from the accuracy test. (bug found or not found). We can now apply the
chi-square test 10 see if there’s a significant difference between the two frequencies
Ha and H5 require to ask participants to choose preference between ImpactViz and

e method. For this comparison, we will be performing the Wilcoxon-signed

the Bas
vank test [37]. The Wilcoxon signed rank test is used to compare paired data that does
not rely on assumptions that the data has distribution model (non-parametric). Th

Wilcoxon signed test can be used since we cannot confirm if the data is parametric

ned rank test

(following a distribution model like normal distribution). Wilcoxon
is used to pair data from two separate groups and examine the magnitude of the
differences, to detect if the difference between the two sets is significant, By finding
if the difference between the two sets is significant (p ; .95), we can then find which
debugging method provides the more successful rate of finding bugs, to help provide

1 their bug

validate our hypothesis that ImpactViz helps users be more accurate

4.24 Software Projects

Two software projects will be used in the laboratory

udy for the participants to

debug, The first project, titled “Game” was developed by a single developer over the

course of several months. The second project, “Catering” is a modified group project

developed by four

iduals over the course of four months. The second project
was trimmed down in size to match the same size and complexity as the first project
Both projects have around 35 software classes each, with no more then six method

calls to different software classes.

4.2.5 Participant Recruitment

The participants in this study were third and fourth year undergraduate and first

year Master's students from the Department of Computer Science at Memorial Un

versity. These participants were targeted because of their experience in working on
group projects; they would have all used a repository system at this point in their
academic and professional careers for various group projects. With these experiences,

the participants would understand the situation of debugging other people’s code and

likely would have encountered debugging situations similar to the ones outlined in the
tasks. They would understand the frustrations and difficulty that occur when a bug

is accidentally introduced into the repository that is difficult to track down.

4.2.6 Study Procedures

When participants arrived for the evaluation, they were thanked for volunteer

their

time to this

tudy. They were given a short introduction about the laboratory study

50

and what problems this research is trying to address. Then they were given a brief

outline of how the study will progress. They were given two consent forms to si

ign;
one copy was kept by the researchers for proof of consent and the other copy was

given to the participant, in case they had any further questions or concerns about the

study.
After the consent form had been collected and secured, the participants were given

& pre-task questionnaire, to gauge the

prior experiences and background. Questions

on this form include the number of software projects they had worked on using a

repository system, how well they gauged themselves in knowing repository syste

self-evaluated debug

ng skills, and preferences for programming language and oper-
ating systems (see Appendix A). The last two questions are important, as the study
was performed on an Apple iMac ranning OS X and the software code they examined

was written in Java. If a user was very unfamiliar with the OS X operating system or

didn’t understand Java very well, it could lead to a negative bias in the measurements

that is unrelated to the debugging tasks.

Alfter the questio

naire had been completed, the res

archer briefly went over the

jonal debugging techn

e and how to follow the method call stack in the

ipse

Java development environment (which is a popular Jave IDE

used by

the undergrad-
uate students). The researcher also provided an explanation on how a single bug in
any part of the method call stack can affect the result given to the initial call and

how qu

ckly the method call stack can grow.
When the participant acknowledged a sufficient understanding, they were given
their first task information sheet (see Appendix A), and informed the researcher when

they would like to start the debugging task. This first task was performed using the

60

traditional debugging techniques; half the participants were assigned Project 1, The

ame, first; the other half used Project 2, Catering, first. more information about

the tasks themselves can be found in section that follows. When they started the

debugging work, the researcher started the timer and video recording de When

the participant completed the task, the timer was stopped and their final answer and

me to task completion was recorded on a task evaluation sheet

As the user finished the first task, the researcher readied the system for a second

demonstration, this time involving ImpactViz. A tutorial was provided explaining

what the visualizations represent, the interaction techniques, and how the system

reacts to certain inputs. This tutorial was performed on the same sample code as
used in the demonstration for the traditional debugging technique, to help show how

TmpactViz is different from the traditional debugging technique.

When the tutorial was finished. the participants were given time to read the second

task information sheet. After the participant acknowledged their understanding of

the task, they were permitted to begin the activity. At this time, the timer was
started and the video recording device was turned on. When the user finished the

answer and

task, the timer and video recording devices were stopped, and their fi

time was recorded. The participants used Ecliplse to explore code sections in the

same fashion as they did in debugging the traditional task.

Once both tasks were been completed, the participant was given a post-task ques-

tionnaire (see Appendix A). This questionnaire was provided to evaluate how useful

and easy to use the participant found ImpactViz in comparison traditional debugging
techniques (details related to how the questions were formed for this questionnaire

can be found below)

With the consent forms signed, pre-task questionnaire filled in, both tasks com-
pleted, and the post-task questionnaire answered, the study was completed. The

participant was thanked for their time, and given compensation in the form of $10.

4.27 Study Tasks

Each task had the participant debug a software project. Participants were allowed
to examine the source code and use repository information about when changes were

made, who made them, and what files were changed. Participants were not allowed

to modify or run the code to identify the bug, but were provided with sufficient
information about the bug to be able to track it down. Participants were given a

sheet of paper outlining the details of the bug, including the class that the bug was

manifesting itself in, and the date when the class was last tested and identified as
working as intended (also known as the bug free state).

With the information provided above, the participants were expected to traverse

the method call stack starting with the class in which the bug was manifest

In each method, the participant was to analyze the software code for any erroncous

code that could cause the bug described. Since participants were not familiar with

the software project, they were allowed to ask the rescarcher questions about what

a particular section of code did and its influence on the method. The bugs were

designed to be noticeable to someone who had no prior experience with the specific

wer

When the participant came to an an

requirements of the evaluation projec

researcher and conclude the task. Tn

they were confident in. they could inform th

sary participant frustration, after 20 minutes had passed partic

order to avoid unne

62

ants were given the opportunity to abandon the particular task. If the participant

abandoned the task, the time would be recorded as undetermined and the grade for

their final answer as 0. as they were unable to find the source bug method and class.

4.2.8 Subjective Questions

The post-study questionnaire (see Appendix A) included questions from the Tech-
nology Acceptance Model (TAM) [8] in order to gauge perceived usefulness and ease
of use. In addition, participants were asked to indicate their impressions of specific

features of ImpactViz. For both sets of questions, a five-point Likert scale was used

Participants were asked which debugging method they would prefer to use in future

debugging tasks. These tasks included understanding software code, the method call

stack, revision history, the overall effect of some software changes, and their preferred

system in future debugging tasks

4.3 Field Trials

While the laboratory study was conducted under a controlled environment, the field

trials attempt to study how the software would be used in a real world environment.
In the laboratory study. we provided artificial tasks and an environment for the par-
ticipants to work in. During the field trial, participants provided their own software
project and questions that they had about their software. While performing thi

study, there were only a few participants, but their actions were closely monitored
and examined. The documents relating to the the field trial can be scen in Appendix

B.

Benefits of using a field trial as an evaluation method includes allowing the ob-
servers see how users of the software will actually use the tool. While we may think
that we have a good understanding of how our software is being nsed, field trials allow

3.

us to observe and make notes about how the software is actually being used |

4.3.1 Study Questions and Measurements

For this study, our main research question was to determine whether participants
would find ImpactViz beneficial to solving their own debugging problems and under-
standing how the pieces of their own projects are related to one another. There are
10 quantitative measurements for the ficld trial evaluations, as it is not reasonable to

make time and accuracy comparisons between different projects. Of more value are

the qualitative impressions of the system and its value.

From the field trials, we wish to measure how well accepted our software will be

nt. We use the s

in a real-world environm e TAM questions as in the laboratory

study to measure usefulness and ease of use. As well, we record comments and

nccessful

actions performed by our participants and study them afterwards to see how

ImpactViz was in aiding the participants with their own software systems. Post-study

analysis can also answer the question of when ImpactViz will be useful and under what
cireumstance would a software developer benefit from using ImpactViz to help them

debug code.

4.3.2 Participant Groups

Two of participants within the field trials were sclected from among students at

ity who were enrolled in COMP 4770 (Team Project) in the Winter

Memorial Unive

semester of 2010. These students were finishing their Computer Science degrees, with
COMP 4770 being the last mandatory course required for the B.Sc. degree. During
the previous years, the participants would have used various team management skills

and code management software to help them complete their group projects. These

are individuals who have a lot of experience in software repositories and have spent
‘much of their time crafting their projects to match associated UML diagrams,

A second group of participants for the field trails were two very experienced soft-
ware developers. They were both post-doctoral researchers working within the De-

g software

partment of Computer Science. They both had significant experience in us
repositories, and were working together on a large software project during the course
of the study. Each field trial participant was compensated for their time in the form

of $20

4.3.3 Subjective Questions

Similar to the subjective questions asked at the end of the laboratory study in the

asked questions related to T

post-task questionnaire, the field trial members we

exploration tool, and ques-

pactViz, its debugging capabilities, its use as a softw:
tions from TAM model. The participants were also asked to grade different features
of TmpactViz, so that the researchers could observe what parts of lmpactViz the

participants found to be the most uscful.

Unlike the questionnaire presented at the end of the laboratory study, the par-

and another

ticipants were not asked to perform any comparison between Impact

system. Since the participants are not using another system under the same con-
straints, there is no information to be gained in asking this question to such a small

sample of participants.

Chapter 5

Results

In this Chapter, the results for the evaluations described in the previous Chapter will

be be presented and discussed, with statistical analysis to determine how successful
the prototype was in satisfying the hypotheses, where appropriate. The results of the

Iaboratory study will be presented first, followed by the field trials

5.1 Laboratory Study

For the field laboratory study, a total of 16 students were recruited. 12 of the par-
ticipants were undergradunte students, while the remaining four students were first
vear Master's students. The 16 participants were broken into two groups consisting

of six undergraduate and two Master’s students in each group. The raw quantitative

results can be seen in the four tables below in their respective sections (Table 5.1

Table 5.2, Table 5.4, and Table 5.5).

The hypotheses referenced here can be found in Section 4.2.1. Asa der, users

iven the opportunity to abandon the task after 20 minutes (1200 seconds), after

67

showing visible signs of frustra

0. Participants who did choose to abandon their
task have been noted in the tables.

This laboratory study was performed as a comparative study. We asked partic-

ipants to use two systems, the Baseline system, which is the traditional debugging

system that s in current use by most programmers at the s dergraduate stu-

nior

dent level, and ImpactViz. The results are compared on this basis for empirical

metrics measured in both projects and the participants’ opinions after using both

systems for the debugging tasks.

While analyzing the results from the laboratory study, we will be analyzing each

project separately. Since both project are unrelated to one anothe

. a direct compar-

ison between the two in terms of time and accuracy would not be a fair comparisor

However, comparing between interfaces allows

is to see how the participants’ perfor-

‘mances changes when performing the same task, but using different interfaces

5.1.1 Project 1- The Game

The results presented here are related to the programming project titled “The Game

“The Game” is an computer game, with randomly generated maps and multiple level
dungeons. The player can choose a character and move the character through the
dungeons, defeating monsters and collecting treasure. While testing the game, a bug

was discovered in which health potions, an item that help recover the player’s health,

tead of the intended random amount

were healing for a static amount

68

Table 5.1: The laboratory study results of participants debugging Project 1, The

Game, using the Baseline.

Participant ID | Time (seconds) | Aceuracy | Comment

1 421 0%

2 401 100%

5 164 100%

4 307 100%

5 100%

3 1245 0% Abandoned

7 20 100% | Master's Student
8 100 100% | Master's Student

Table 5.2: The laboratory study results of participants debugging Project 1, The

Game, v

TmpactViz.

Participant 1D | Time (seconds) | Accuracy

o) w00
1) 100

u 10 w0

1 154 100%

1 132 100

u 177 o0

15 133 100% | Master's
16 37 W00 | Master's

69

5.1.1.1 Time to Task Completion

In H1, we predicted that participants would be able to identify the source of the

bug faster using ImpactViz than the Baseline. In order to verify this, we measured

i both debugging methods. Table 5.1 shows the

the time to task completion

e 10 task completion data collected for participants debugging the project using

shows the data for using ImpactViz. We can

the Baseline methods, while Table

see that one participant abandoned the task using the Baseline. Meanwhile, under

ImpactViz, no participants abandoned the tasks.

Two outliers were removed from the participants who used the baseline method.

1 time could not be

Participant 6 abandoned the task, meaning a final task complet

found, while participant 3 got lost while navigating the software code resulting in a
time to task completion that was nearly 2.5 times higher than average time achicved

by the other participants to complete the same task with the same interface. The

standard deviation of this time in relation to the other times was approximately 2

placing this participant’s time as an outlier. No outliers w ificd from among

the participants that used ImpactViz

An ANOVA test was performed on the time to task completion measurements,

ance of the differences (F(1,14) =

resulting in a validation of the statistical sigy
5.811,p < 0.05). Since p < 0.05, the difference between both sets of data is statisti-

cally significant. The average time taken to find the bug using the Baseline was 392

seconds, while the average time using ImpactViz was 231 seconds. Using lmpactVi

participants were able to identify the source of the bug 60% quicker than the bascline.

As a result, we conclude that the data validates H1

70

5.1

2 Accuracy

H2 predicted that participants would be more accurate in finding the source of the bug
using ImpactViz. Accuracy was measured based on whether participants correctly
identified the class and method in which the bug existed. 100% of the participants

correctly identified the bug using ImpactViz, while 75% of the participants found the

bug using the Baseline. A chi-squared test shows that these results a
significant (y? = 0.46). Therefore, we can conclude that H2 is not validated by the
data, although there is evidence implying that there is a positive co-relation in the

usage of ImpactViz and an increase in debugging accuracy.

5.1.1.3 Usefulness and Ease of Use

As stated in H3, we expected that, participants would respond positively to state-

ments regarding the usefulness and ease of use of ImpactViz. The TAM guided the

ve reactions to

development of the questions for measuring the participants subjec
the system. Six statements were prepared that delved into the issues of usefulness,
and another six addressed issues related to the ease of use. Measurements were made
on a on five-point Likert scale

The TAM statements related the participants’ use of the system under investiga-

tion (i.e., ImpactViz) to existing practice. As such, the comparison to the Baseline is
inherent within the responses.

The frequency of responses were aggregated for cach set of six questions. As such,
there are 48 measurements for each of usefulness and ease of use. These results are

presented in Figure 5.1.1.3. Clearly, there are consistently positive responses for both

m Usefuiness W Ease of Use

Strongly Disagree Neutral Agree strongly
Disagree. Agree

Figure 5.1: Aggregate responses for the TAM statements related to the usefulness
and ease of use of ImpactViz by participants who used TmpactViz on Project 1, The

Game.

measure

ents, which supports H3.

5.1.1.4 Supporting Debugging Activiti

Hi predicted that participants would rank ImpactViz as preferable to the Baseline
for supporting debugging activities. Four questions were asked in the post-study

question

aire that addressed specific and general debugging tasks. These are outlined
in Table 5.3, along with the raw results for all participants in the study, and the
outcome of Wilcoxon signed rank tests.

For three of the four questions users greatly preferred ImpactViz over the Baseline

method, with the results being stati

ically significant. However, for the task of

Frequency of rank preference for debugging activities for ImpactViz for

Table 5

Project 1, The Game.

Debugging task Baseline | ImpactViz | Wilcoxon signed rank test
Understand the method call stack | 2 i Z=-1.00.p > 0.05
Understand the revision history 1 7 Z=-3.00,p <001
Understand the effect of changes | 1 7 Z=-300,p<001
Preferred system for debugging | 1 Z=-3.00,p < 001

understanding the method call stack, the opinions of the participants did not show a

ine. This could be

statistically significant difference between ImpactViz and the Basc!

minutes), that

explained by how quickly participants found the answer (in under 2.
they never really had the chance to learn the method call stack. Since three of the four
questions that are related to supporting debugging activities showed a statistically
significant preference for using ImpactViz, we conclude that Hi is strongly supported,

but not uniformly validated,

5.1.1.5 Understanding Software Code

k the Baseline as preferable to Im-

In H5, we predicted that participants would
pactViz for the task of understanding the software code. Our expectation was that

participants would find the ability to directly access and browse the software code

a valuable tool for understanding. By contrast, since ImpactViz provides only an
overview of the method call stack, the resulting relationships between classes, and

a visual representation of the impact of changes, understanding the software code

would be more difficult

In the post-study questionnaire, participants were asked to rank their preference
of methods for understanding the software code. The participants were split in their

preference, with four participants preferring ImpactViz and four preferring Bascline.

A Wilcoxon signed rank test showed that this difference is not statistically significant

wch, we conclude that H5 is not supported by the data.

(Z =~0.00,p=0.500). As

5.1.1.6 Video Analysis

The usage of the video recorded during the laboratory tests were used to confirm

tatistics for

that there was no reason to exclude any participant from the accurac

improper debugging usage for either interface.

5.1.2 Project 2 - Catering

The results presented here are related to the programming project titled *“Catering”
“Catering” is an online web service which allowed customers to access a caterer and

make

make requests for catering services. Customers were able to browse menus

orders, as well review order histories. A bug was detected when users were reviewing

old orders; the items in the menu lead to either the wrong item or to a page, inform

them the item does not exist

5.1.2.1 Time to Task Completion

In HI, we predicted that participants would be able to identify the source of the bug

faster using ImpactViz than the Baseline. In order to verify this, we measured the
time to task completion using both debugging methods. Table 5.4 shows the data

collected for participants who used the Baseline for debugging, while Table 5.5 shows

i

Table 5.4: The laboratory study results of participants debugging Project 2, Catering,

using the Baseline.

Participant 1D (seconds) | Accuracy | Comment
9 1390 0% Abandoned

10 58 0%

1 un 100%

12 m 0%

13 1464 o Abandoned

1 184 0%

15 306 0% Master's Student
16 1025 0% Master's Student

Table 5.5: The laboratory study results of participants debu;

using Impact Viz.

g Project 2, Catering,

Participant ID | Time (seconds) | Accuracy | Comment
1 999 0%
3 1200 0%
3 768 100%
4 12 100%
5 315 100%
6 666 o%
d 526 0% Master's Student
5 606 0% Master's Student

the data for participants who used ImpactViz on the same project. Similar to the
first project, two participants abandoned the task while using the Baseline, while zero

participants abandoned the task while using ImpactViz

One ontlier was identified during this project. Participant 7 using ImpactViz

refused o use ImpactViz for the study, instead quickly bypassing the visalization to

analyze the source code of the project, performing the task in a style very similar to
the baseline debugging technique. Participants 1 and 5 from the Baseline group were
removed, due to their abandonment of the task after 20 minutes of debugging.

The ANOVA test was performed on the time to task completion measurements.
The result shows no significance between the values (F(1,13) = 0.044,p > 0.05)
for this sample size. The average time taken to find the bug using the Bascline

method was 834 scconds, while the average time using ImpactViz was 798 seconds.

Participants using ImpactViz found the bug in 95.7% of the time then the participants

using Baseline. While overall we can see a minor trend in favour of ImpactViz, the
results are not significant, and do not verify H1
5.1.2.2 Accuracy

H2 predicted that participants would be more accurate in finding the source of the bug

using ImpactViz, Accuracy was measured based on whether participants correctly

identified the class and method in which the bug existed. Participant 7 of the Tim-

pactViz group was removed from this analysis, due to refusing (o use the lmpactViz
tool during the cvaluation. 37.5% of the participants correctly identified the bug

ssing the Baseline

using TmpactViz, while no participant identified the proper bug

method. A chi=squared test shows that these results are not statistically significant

7

B Usefulness 1 Ease of Use:

| |
Swongly Dissgee Neutral Agree strongly
Oissgree Agee

Figure 5.2: Aggregate responses of the TAM statements related to the usefulness and

ease of use of lmpactViz by participants who used ImpactViz on Project 2, Catering.

0.0769). As such, we conclude that H2 is not verified by the data, but there is

6%

a positive trend being shown in favour of ImpactViz,

5.1.2.3 Usefulness and Ease of Use

As stated in H3, we expected that participants would respond positively to state-
ments regarding the usefulness and ease of use of Impact Viz compared to the Baseline

s from the TAM questions were aggregated, resulting in a total of 48

method. Resul

measures for each of usefulness and ease of use. These results are presented in Figure

5.2. Clearly, there are consistent positive responses for both measurements, which

wpports H3

Table 5.

Frequency of rank preference for debugging activities for ImpactViz for

Project 2, Catering.

Debugging task Baseline | ImpactViz | Wilcoxon signed rank test
Understand the method call stack | 0 s Z=-300,p <001
Understand the revision history | 0 8 Z=-3.00,p<0.01
Understand the effect of changes | 0 8 Z=-3.00,p <001
Preferred system for debugging | 0 8 Z=-3.00,p < 0.01

5.1.2.4 Supporting Debugging Activities
Hi predicted that participants would rank ImpactViz as preferable to the Bascline
for supporting debugging activitics. Four questions were asked in the post-study

q

jonnaire that addressed specific

i general debugging tasks. These questions
arc outlined in Table 5.6, along with the results given from the individuals who used
ImpactViz for debugging on the second project

Every participant who used ImpactViz on the second project preferred to con-

tinue using ImpactViz for future software debugging tasks. The results are statically

significant, as presented in Table 5.6, and support H4

5.1.2.5 Understanding Software Code

regards to H5, we hypothesized there would be little preference for participants to

use ImpactViz for understanding the software code of a project. Of the participants

who debugged Project 2 using ImpactViz, five preferred ImpactViz for understanding

the software code versus three who preferred Baseline. A Wilcoxon signed rank test
showed that this difference is not statistically significant (Z = ~1.00,p = 0.159). As

7

such, we conclude that H3 is not supported.

5.1.2.6 Video Analysis

Through studying the video recordings for the participants during the debugging of

the second project, participant 7 was removed from the analysis in both the time to
task completion and accuracy evaluations. Participant was removed due to improper
use of the ImpactViz debugging task, by refusing to user the graphical tool, and,

instead, prefer to complete the full task by only inspecting the software’s source code.

5.1.3 Summary of Laboratory Study Results

Comparing the data between the two projects, it quickly became apparent that par-

ticipants had a much harder time finding the bug in Project 2, Catering, compared

to Project 1, The Game. There were more abandoned tasks, less correct answers
for the bugs location, and higher overall times. Although both test projects were

designed to be of similar difficulty (i.e., similar number of classes, similar level of

class inter-dependency, similar distance between the manifestation of the bug and its

source), participants had a much more difficult time conceptualizing the design and

class interaction within Project 2. Further, the source of the bug in this project was

identified the class as a

in a class constructor; although most participants correctly

potential source of the bug, few inspected the class constructor method. Based on

this information and the fact that users had a much harder time in understanding the

code, even with assistance, we feel this project does not properly represent a normal

debugging situation.

vom the five hypothesis that guided the design of the laboratory study, two

7

cd mixed results

ed (H3 and H1). One hypothesis achi

hypothesis were confin

(H1) depending on if the participant used ImpactViz under a project of normal task

difficulty (Project 1) or an abnormal task difficulty (Project 2). Two hypothesis was

not confirmed (H2 and H5), although we saw a large change in probability results

in H2 from Project 1 to Project 2. From these results, we can see that participants
find ImpactViz as much more preferred method for debugging, and can help decrease

debugging speed and increase debugging accuracy under normal situati

5.2 Field Trials

The field trial participants were divided into two groups. The first group consisted of

two students from the COMP 4770 (Team Project) undergraduate course who worked

on a Java server application, while the second group contained two post-doctoral

researchers working on a geo-visualization project

5.2.1 Group 1- Undergraduate Students

The first group’s project had a total of 13 students developing the software over four

months. The entirety of the project was developed from scratch. In the end, 37 class
files were created and modified, with over three hundred revisions made. The two
participants in this group used ImpactViz after their project was finished. As such,
these two individuals used the prototype software as a retrospective look at. their
team project.

Both participants came into the study with opposite opinions on the project

The first member felt very pleased with the overall project. Meanwhile, the second

50

as far as saying in his

participant was far more dissatisfied with the project, eve

recruitment e-mail that “the course material is complete (sort of)...”, showing that,

while the course was finished, he still felt there was a lot of work left unfinished

ile in the development phase of the project, focused their

Both individuals, wl

efforts in separate areas of the project. Both participants reported that they felt

they were better informed via ImpactViz of how other classes outside their expertise

areas worked and was designed. The first participant was happy with what he saw,

ial UML desigus for the project, developed early in

stating that it matched their

the course. While the second participant was less pleased about the relations, stating

that “it doesn't make much sense.” He observed inconsistent names for classes that

had common functions, and that these common classes were in completely separate

areas in the visualization with no connections. The second participant then started
to discuss how he would re-work the design of the system, to help make the system
make more sense.

Both participants said they found the the visual representation of the method call

stack in ImpactViz very helpful in understanding the flow of method calls. Both also

said they could use the visualization to illustrate the quality (or lack of quality) in

how the system was designed. The first participant felt very strongly that the project

)

rate. The sec

was well designed and their execution of the design was very a

participant was able to use the visualization to help show flaws in the design and
use the visual tools to help illustrate where new classes should be and where class

clations don’t quite make sense. Both individuals also found older classes that still

remained in their repository that no longer had any place in the system, as these

classes had no relations to any of the other classes. Both had thought this group of

81

m Usefulness Ease of Use

" |
:
;
:
‘
| s
5
3 |
: \
| 1 \
ro
e P

Figure 5.3: Responses to the TAM statements related to the usefulness and ease of

use of ImpactViz by participants in the first group of the field trial

ble in the visualiz

class had already been removed, but they were clearly
The participants from this group responded very positively when they answered

the TAM questions. As seen in Figure 5.3, all the answers to both sets of questions

regarding case of use and usefulness as either “Agree” or “Strongly Agree.” The

results of the TAM questions for this group shows that this group found ImpactViz
to be both useful and easy to use for their software development needs.

“This group found ImpactViz to be very helpful in code exploration. It helped both

individuals see the overall project, outside of the small scope they had been focusing

on. While the participants attempted to debug their project using lmpactViz by
trying to track down older bugs. they had difficulties in evaluating whether their

efforts were worthwhile due to the fact that the project was complete and there

were no significant bugs to be found. After the field trial was complete, one of the

h he could use for

participants asked when a Python version would be released,

his job. This suggests that developers may be interested in using ImpactViz to help

them debug software projects in a real world setting.

5.2.2 Group 2 - Post-Doctoral Rescarchers

lization

The second group of participants were working jointly on a large geo-vi

project. The total size of the team was two members, with both members consenti
to participate in the field trial. The project contained 37 class files, with 70+ revisions
‘made over the course of the project. At the time of the study, the project development
was still ongoing and had been in development for four months. The developing
environment was an office in which both team members worked side-by-side and were
in constant communication.

The first team member in this group was much more versed in the usage of repos-

itories, often only changing one or two files before committing his changes. The
second member was less familiar with using software repositories system and made

less frequent commitments that affected many more files.

they found littl

While the two-person team found ImapetViz innovative

the prototype software. Both members were very aware of the software s

kept in constant. contact during the development of the software. As such, they

quired about any

y little new insight about their software system. Whe

gained v
debugging tasks they wish to perform, neither member had any specific debugging

tasks for which they could evaluate the system.

® Usefulness m Ease of Use:

10

9

8

7

6

s

o

3

: J |

1

n |
swongy Osagee Newal Agee Swongly
Disagree ’

Figure 5.4: Responses to the TAM statements related to the usefulness and ease of

use of ImpactViz by participants in the second group of the field trial

be seen in

Participants in this group were less accepting of the prototype, a
the TAM results in Figure 5.4. While both members of this team found the technology

casy to use, one member had applied “n/a” to all 6 of the “Usefulness™ questions,

hence the low number of total usefulness results in the figure. This shows that in a

small team environment, ImpactViz may not be as useful as in a larger tam sctting.

This may be due to the fact that small teams are able to communicate with one

another while developing and debugging software more effectively than large teams.

Chapter 6

Discussion

After performing evaluations on the prototype system and presenting the results i

the previous Chapter, it is now important to interpret the results from the laboratory

studies and field trials. In this Chapter, we discuss how the results relate to real

ties.

world debugging ac

6.1 Laboratory Study Results

While designing the laboratory study in Chapter 4, there were five hypotheses that

we wanted to test in relation to the traditional debugging techniques. The first two

debugging

hypothesis required quanti to gauge the participant
speed and accuracy in tracking down the source of the bug, The next three hypotheses
were qualitative and subjective to each participant’s experiences. The following two

subsections will discuss these hypothesis.

6.1.1 Quantitative Hypotheses

From the two projects that were used in the laboratory study, we have contrasi

ng
qualities. In Project 1, we have a scenario where the participants were able to quickly
understand the source code and start debugging, while in Project 2, we had a scenario

where the source code was more complicated and unfamiliar to the participants.

Project 1 represents an ideal scenario, where participants understand the project’s

structure and can quickly start interpreting the ImpactViz visualization and associ-

ated source code to track down the bug. Under these circumstances, we can see that

difference in both time and accuracy is significant, with participants using ImpactViz

to complete the task 60% faster than the participants who used the baseline method,

80% of the participants

and with 100% of the participants finding the bug versus

finding the bug using the baseline method.
Project 2 was more complex and harder for the participants to understand. This

scenario represents a case where participants are new to the project and are trying to

figure out how the system was designed. As well, many users failed to properly inspect

the method in which the bug was contained, as it was a constructor method. This

an uncommon scenario, as people are only unfamiliar with an entire project

scena

only at the start of their involvement and become more knowledgeable overtime.

 trend using ImpactViz over the basc

Nevertheless, participants showed a posit

debugging techniques, performing 20% faster in identifying where they thought the
bug was, and three times as many users found the correct bug (30% of Impact Vi,

participants found the bug, versus 10% of the participants using Baseline method).

While not significant results, this suggests that ImpactViz allows users to be faster

and more accurate in less than ideal debugging conditions.

While the difference between both interfaces were significant for Project 1, this
wasn't the case for Project 2, although there was a positive trend in favour of Im-
pactViz. Looking at the raw data, we can say that participants had an easier time
with debugging Project 1 over Project 2, based on the much lower average time to
track down the bug and the much high success rate with both interfaces. We cannot

conclusively say that H1 was validated by the evaluation, as only half the tests yielded

statistically significant results.

From the two projects, we can sec that TmpactViz does help users in finding the
right bug faster, when provided with enough information. In a real world situation,
the information provided in these tests is not uncommon to most developers. We can

that even if the developer is not familiar with the project, as shown by the

also se
second project, participants were still shown to debug faster and more accurately over

e was not statistically significant

the traditional methods, although this diffe

6.1.2 Qualitative Hypotheses

The last three hypotheses predicted that participants would respond positively to
questions about the usefulness and ease of use, that participants would rank Im-

pactViz higher than 1 debugging pporting debugging tasks,

and that when it comes to understanding the software code, the traditional method
would be preferred to ImpactViz
For H3, both groups of participants found ImpactViz to be both useful and casy

to use. What is most interesting, however, is that the group who used ImpactViz on

Project 2 (which was considered the more difficult project) found it to be much more
useful and easy to use (Group 2 had 15 more “Strongly Agree” responses for usefulness

did not

and 9 more “Strongly Agree” responses for ease of use). While ImpactViz
allow the participants to be much faster or accurate (from a statistical perspective),

they did prefer to use ImpactViz to help explore and understand the software project.

The results, however, could of been from the novelty of a new system a longitudinal

study should be performed to see how users respond to ImpactViz after repetitive

use.

1t is very interesting to see that despite being given a “harder” task, the part
pants who debugged using ImpactViz for Project 2 greatly preferred to use Impact Vi,

i their future debugging tasks (H4) over the other participant group, despite using

n time for par-

ice the average comple

the Bascline method on the “easy” project.
ticipants using ImpactViz on Project 1, The Game, was significantly less than Project
2, Catering. With this extra time during the catering project, the participants were

i the

able to spend more time learning and understanding the tools of ImpactViz, a

many ways the tools can be used. The participants using ImpactViz on the cater-

ing project received additional time with ImpactViz, which might be enough extra

pactViz in a real world

es of

ve a better impression of the capabi

time 1o re
situation.
For H5, there was no significant difference between both groups’ opinions of using

derstand the source code for the projects. While ImpactViz

ImpactViz to help v

lerstand the software code in general, it is

was not specifically designed to help w

interesting to see that participants found the visual representation of the method call

stack assisted them with this task. While not an expected result, it is good to see

88

that some participants could use ImapactViz to understand the actual software code
with ImpactViz.

The results given in Sections 5.3 through 5.5 show that participants found Im-

pactViz useful and easy to use when it comes to debugging tasks. This provides
evidence that users are ready and willing to use a visual tool for future debugging

tasks.

6.2 Field Trial Results

In the field trials, the participants were divided into two groups. The first group con-

sisted of two students from a large team-based project, developed over four months.
While this project was finished, it was still interesting to see the benefits of Impact Viz
as a debugging tool. The second group consisted of two post-doctoral researchers
working on a project in which they were the only developers. The project had been
underway for two months, and was on-going.

The first group of field trial participants found ImpactViz to be very helpful
for code exploration. While developing the software, each participant focused the
energies on a particular area of the project, and had lost a sense of the overall projeet.

they started to sce patterns they hadn't noticed before and errors

ImpactVi

the overall design of the system. One participant started to make

and problems

suggestions on how to improve the implementation. Since this was a large group

project that had 13 developers. this field trial reinforces that participants of large

in using ImpactViz, helping to improve their

team-based projeets have much to g

overall understanding of how the project has been implemented. In this project,

89

ther participant was able to think of a specific debugging scenario, as the project

had been completed for about six weeks by the time the field trial was conducted.
For the secod group, the team size was much smaller. The two developers worked
together in the same office, with their workstations located near enough to one another

to allow nearly constant communication when necessary. In this scenario, the two

developers found ImpactViz less useful for code exploration, as both individuals were

already very familiar with how the system was designed and implemented. However,
both participants agreed that ImpactViz would be very beneficial to the team if
another developer joined them and to help bring this individual up to speed. We

nario, since the participants were unable to

were unable to evaluate a debugging sct

think of a bug to track down in their own syst

useful tool in a

From the field trials, we can see that TmpactViz is a much mor
large team environment than for a small team. When people are given a specific area
1o work in, they can quickly lose touch with other areas of the project and forget

isualize the

interact with one another. ImpactViz helps

how other sections of cod

dependency and method calls and helps the developer to quickly recall how the system

is designed and further understand how the code in other areas of the project are put

together. In a small team environment, where all developers are already fami

18 Impact

with the project and classes, there is less information to gain from w

ientation aid for new developers, helping them gain

But the tool can still act as an o

familiarity with the system.

90

6.3 Benefits

The main research question that this thesis was focused on was whether or not a visual

debugging tool was necessary and whether users would find it beneficial. From the

results of both studics, we can conclude that software developers can benefit from a

visual debugging tool to aid them in debugging tasks. We have seen that under normal

ciren

ustances, that the usage of ImpactViz helps increase the speed and accuracy of
finding a bug, In more difficult debugging cases, there is also evidence to suggest it
can help improve their speed and accuracy. The majority of the participants reported
that they found ImpactViz both useful and easy to use in tackling their debugging
tasks. Lastly, users reported a preference to use ImpactViz in future debugging tasks
over traditional methods.

Al the evidence collected leans very heavily in favour of users being ready and

willing to use visual techniques to help aid them in their debugging tasks, and that

direction.

2 is a useful step in the ¢

6.4 Drawbacks

While performing the evaluations, we noticed areas where the use of ImpactViz had
little to o benefit to a software developer. For example, as we saw in the Project
2 of the laboratory studies, if users have a hard time understanding the code or the
context of the code, the benefit in using visual debugging tools to help them find the
bug is limited. This may be due to the fact that in such cases, it is difficult for the
fiware, even when shown the class

user to generate an accurate mental model of th

dependencies through the method call stack.

Another area in which ImapctViz offers little value is for developers who are
working in small teams and are very familiar with the code, as seen from our second

field trial. Since both members of the team worked in a variety of areas in the project,

both members were very familiar with the code they each had written. ImpactVi
offered little in the way of allowing the developers to further learn about their softwarc.

As such, these participants graded it as not being very useful.

Lastly, using ImpactViz in a project with a very shallow method call stack would

of code reuse,

not be useful. A software project where there is little in the way
produces a shallow method call stack. A method call stack that is four or five levels

deep may be quickly transversed manually through most software tools. In this case,

the overhead of ranning and using ImpactViz may be more of a burden than a benefit

Chapter 7

Future Work

ImpactViz has

Through out this thesis, a software visualization system known a
been explained, evaluated, and the results discussed. In this chapter, we will outline
further plans involving ImpactViz. There are four main areas in which we want to

focus our future work in: integrating ImpactViz within an integrated development

environment (IDE), conducing further evaluations, enhancing the information that

is visually represented in ImpactViz, and adding further interaction tools that can

on overload issues with exceptionally large software

help address potential informa

projects.

7.1 Plugin With an Integrated Development
Environment

Ideally, the ultimate goal for ImpactViz would be to develop a plugin to work with

an IDE, such as Eclipse or Netbeans. By bundling ImpactViz into an IDE, users

can use the software project within the IDE to aid in the debugging project, without
resorting o switching between programs to review the code and to analyze the visual
tool. Users could debug their source code and switch between the development view
and ImpactViz, with instant interaction between the visualization and the text based

view of the latest version of their software code.

7.2 Further Evaluations

While the results of the previous evaluations were in favour of ImpactViz, the

e is
still a need for further evaluation. While the current evaluations in the laboratory

study reveals that ImpactViz is very useful and aids in debugging under the right

cirenmstances, further study will allow us to see how well ImpactViz can perform

in abnormal scenarios. These scenarios may include missing information, like an

ing temporal data, and could compare the results to

unknown starting point or mis
traditional debugging methods.
Since the evaluation results were not significant for the one abnormal case we

did test (where users had trouble understanding the source code), recruiting more

participants to perform that abnormal circumstance is required to prove if Impact Vi,

can be beneficial to complex software projects that participants are unfamiliar with

can be an aid to

Evaluating this scenario further can help show whether ImpactVi

new developers. A longitudinal study would be well worth performing to see if the

ind the boundaries under which Impact Viz

9

can be useful. On how small of a software project will the overhead of using Impact Viz
result in more of a burden in comparison to traditional debugging techniques? While
designed to be scalable, are there extremely large projects for which the visualization

method employed by ImpactViz is more difficult to use than traditional debugging

methods? If such large projects do exist, what other methods and tools can we design

and implement to help make ImpactViz scale better? Designing tests around the size

of a project should help uncover when the overhead of using ImpactViz is too high to
be of use, as well as how large a project has to be before the current representation
becomes too difficult to understand.

There s also the question of what types of software projects for which ImpactViz

is most useful. Would users find more benefitial using ImpactViz in a software project

where software code is strongly connected, or in software where there is very little code

reuse? Would ImpactViz perform better in a project that is broken into independent
modules or linked together via a framework or database system? Could users per-

form debugging tasks successfully on concurrent or grid computing software? Future

evaluations will expand on the types software projects to outline where lmpactVi

strengths and weaknesses lie.

7.3 Representation

In the current version of ImpactViz, we are visualizing everything at the class level,
despite the fact that the method relation information is used to show how classes

interact with one another. In future versions of ImpactViz, the actual method be-

longing to the classes will also be represented. Clicking on a class will result in all the

9

lasses, with

methods related to that class appearing, ballooned around the selected ¢
edges pointing to the methods of the classes upon which they depend. Clicking one
of the method nodes could then select only the method call stack that the selected

method depends upon. This visualization would require further user evaluations to

ensure that participants will be able to properly decode the difference between class

nodes and method nodes, and trace the method call stack amid the added visual
complexity.

This new visualization would also require further thought to how the edges in the
graph layout are represented. Since methods can override or make abstract methods
concrete, showing these relations can be helpful for providing a deeper understanding

of the structure of the project. The visual representation could also be extend into

class relations, showing parent-child relations in classes using ImpactViz, as well as

template usage

The last item left to discuss on the future of ImpactViz's representation is the use

class members to provide what should

of variables. Bugs can be introduced that cause
be an invalid value, through the use of public level access to the members or by local
method calls. As an example, a sum-square method, a method that squares the value
in a list and adds the squares together, could set the class member sum to -1, when

i another method uses

When t

is value is stored in a variable a

the array is empt

fon, an exception will occur. The current version

it as the input to a square root fun

thod is

of ImpactViz can not help to trace bugs of this nature, as the summing

ed

i the square root function (the value is

not. part of the method call stack v

passed through an intermediate variable). An alternate visualization, showing how

t of class members are used by another set of methods

Jues caleulated by one

96

ight be useful for showing this inter-method reliance that is linked through value

calculations. Evaluations will be required on this type of visualization, to see if

the information presented to the developer can be understood and used effectively.

This type of visualization could also extend into scenarios where multiple threads
are modifying the same class members, helping in the debugging of multi-threaded

projects.

7.4 User Interaction

While the original ImpactViz was designed to be scalable with larger projects, obser-

vations from participants showed some difficulty in locating a particular class. While

this may not be a problem for software projects with a relatively small number of

classes that can be visually searched and inspected, for much larger projects finding

a specific class could be very difficult. In order to aid in users in finding classes, there
are two tools we are considering to help aid in this process, a search function and a
tree navigator.

The search function will allow users to enter in a class name in a textbox, resulting

in the focusing of the matched class in a manner similar to if the user had clicked on the

node. A dynamic drop-down menu may help speed up the process, reduce errors, and
show the classes that partially match the text entered beneath the textbox. Another
idea is to allow for all partial matches to be shown as focused nodes and have all their
method stacks highlighted. Any further text entry will narrow the matches, reducing
the number of focused classes

The second idea is to use a tree navigation tool. Since organized projects have

97

ar structures in other languages, like folders),

classes separated into packages (or si

ible

using a tree navigator could allow users to select the classes they want to be vi

in the visualization. This would help reduce the visual clutter of very large projects,
and could allow users to tell the visualization system what area of the project they

factor here is how to represent method calls that

are interested in. The complicating

ible

go from visible classes, 1o one or more that are not being show, and back to vi
classes. One possibility is to use a special glyph placed between the two visible classes
to illustrate that there are intermediate classes within the subset of the method call

glyph could then show these intermediate classes.

Chapter 8

Conclusion

ImpactViz is a software visualization tool that allows developers to analyze the

method call stack and associated class dependencies. ImpactViz also allows users

ode may have on the operation

0 visualize the impact that changes in the software

of other classes within the project. The goal is to enable the user to easily trace a

bug from the class in which it has manifested itself to its source location. By co

which elasses have been changed between a previous known bug-free state

the bug was first identified, the software developer can readily identify whether

whe

these changed classes have an impact on the class in which the bug has manifested

into account modern modular programming

itself. The system was designed to tal

tations to ate classes in which the bug may

practices and to use visual repre
have been introduced.

ature is the way in which

The novel contribution that ImpactViz makes to the lite

it supports users in identifying the impact of classes that have been changed have on

mation is automatically extracted from the

other classes in the project. This inf

99

is of the revision history within a software

source code of the project and an analy

repository. The interdependency of the classes are visually encoded as a graph; the
change impact regions are visually encoded using colour. Together, these allow the
wser to readily perceive, interpret, and evaluate the potential impact that a change

in one class might have on another class. Interactive features further support the

debugging process, allowing the user to filter the revision information, zoom

1to an area within the graph layout that is of interest, and select classes to focus on

their specific method call stack dependencies.

lence of the value of the visual and

“The user evaluations provide empir

interactive approaches used in ImpactViz over traditional debugging methods
ImpactViz, participants were able to see which classes may contain the source of the
bug, limiting their evaluation to only these classes. As a result, participants were
able to find the bugs faster and with more accuracy in one of the two cases. They

g techniques, even

greatly preferred using ImpactViz over more traditional debug

situations where it didn’t allow them to perform better from a quantitative

in th
perspective. These results illustrate the value of using visualization to represent the
complex information that is present during debugging activities.

1d trials, we examined how two different groups could use Tmpact Viz

During the
for their own software development needs. The main difference between the groups
was that the first one consisted of novice developers who worked in a large team

enced developers who worked

; whereas the second team consisted of expe

1 suall team. Each group had a different view on the wsefuliess of Impact Viz.

hers of the first group found ImpactViz to be very useful and helped them

The mer

es in the design of the project, as well as how

identify patterns and inconsistenc

100

s

ted value

classes interacted with one another. Meanwhile, the second group found I

wolved in developing each

in using ImpactViz, as both members of the team were

most useful

portion of the system. This has lead to the conclusion that Impact
10 larger teams, where individuals are less likely to have a strong understanding of
the entire software project. From both sets of evaluations, the participants all agree

that

pactViz was very easy to use.

I Im-

From the two sets of evaluations, we have begun to see the areas in whi
pactViz is useful and users have responded very positively o it. Further evaluations
will be required to help find the settings in which ImpactViz is most useful. However,
the results from the evaluations suggests that ImpactViz is a wseful tool for developers
to use when tracking down bugs in a large method call stack, as well as identifying

how a system’s architecture has been implemented

101

Bibliography

[1] T. Ball and S. G. Eick. Software visualization in the large. IEEE Compuler,

29(4):33-43, 1996.

[2] M. Balzer, O. Deussen, and C. Lewerentz. Voronoi treemaps for the visualiza-
tion of software metrics. In Proceedings of the ACM Symposium on Software

Visualization, pages 165-172, 2005.

3] H. Byelas and A. Telea. Visualization of areas of interest in software architecture
diagrams. In Proceedings of the ACM Symposium on Software Visualization,

pages 105 - 114, 2006.

. Carpendale. Evaluating information visualizations. In A. Kerren, J. T. Stasko,
J.-D. Fekete, and C. North, editors, Information Visualization: Human-Centered

Issues and Perspectives, LNCS 4950, pages 19-45. Springer, 2008,
[5] W.S. Cleveland. Visualizing Data. Hobart Press, 1093.

[6] W. S. Cleveland and R. McGill. Graphical perception: Theory, expe

ta-
tion, and application to the development of graphical methods. Journal of the

American Statistical Association, T9(387):531-554, 1984

102

[7] C. Collins, G. Penn, and S. Carpendale. Bubble sets: Revealing set relations with

t isualizations. [EEE on Visualization and

Computer Graphics, 15(6):1009 -1016, 2009.

8] F. Davis. Perceived usefulncss, perceived ease of use, and user acceptance of

information technology. Management Information Systems Quaterly, 13(3):319

340, 1989.

[9] A. Dix, J. Finlay, G. Abowd, and R. Beale. Human-Computer Interaction.

Prentice-Hall, Inc., 1997.

[10] S. G. Eick, J. Steffen, and E. Summer, Jr. SeeSoft - a tool for visualizing

line oriented software statistics. [EEE Transactions on Software Engineering,

18(11):957 968, 1992.

(1) M. Follett and O. Hocber. ImpactViz: Visualizing class dependencies and the

impact of changes in software revisions. In Proceedings of the ACM Symposium

on Software Visualization, pages 209-210, 2010,

[12] M. Fowler and K. Scott. UML Distilled. Addison-Wesley, 2000.

(13] J. Froehlich and P. Dourish. Unifying artifacts and activities in a visual tool

for distributed software development teams. In Proceedings of the International

Conference on Software Engineering, pages 387-396, 2004.

[14] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed

placement. Software: Practice and Erperience, 21(11):1120-1164, 1991

103

[15] W. O. Galitz. The Essential Guide to User Interface Design: An Introduction
to GUI Design Principles and Techniques. John Wiley & Sons, Inc., New York,
NY, USA, 2007.

[16] H. Gall, M. Jazayeri, and C. Riva. Visualizing software release histories: The
use of color and third dimension. In Proceedings of the IEEE International

Conference on Software Maintenance, pages 99-108, 1999,

[17] C. Healey. Choosing effective colours for data visualization. In Proceedings of

Visualization, pages 263-270, 271996-nov.1 1996.

[18] J. Heer, S. K. Card, and J. A. Landay. Prefuse: A toolkit for interactive informa-
tion visualization. In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, pages 421430, 2005

[19] E. Hering. Outlines of a Theory of the Light Sense. Haravrd University Press,
1964

20] 1. Herman, G. Melancon, and M. Marshall. Graph v

lization and navigation

 information vi A survey. [EEE s on ization and

Computer Graphics, 6(1):24-43, 2000.

[21] O. Hoeber. User evaluation methods for visual web search interfaces. In Proceed-
ings of the International Conference Information Visualisation, pages 13915,

2009.

104

[22] D. Holten. Hierarchical edge bundles: Visualization of adjacency relations in
hierarchical data. IEEE Transactions on Visualization and Computer Graphics,

12(5):741-748, 2006

23] B. Johuson and B. Shueiderman. Tree-maps: A space-filling approach to the
visualization of hierarchical information structures. In Proceedings of the Con-
Jerence on Visualization, pages 284-291, 1991

[24] J. Li, Z. Guo, Y. Zhao, Z Zhang, and R. Pang. Towards quantitative evalua-
tion of UML based software architecture. In Proceedings of the ACIS Interna-
tional Conference on Software Engineering, Artificial Intelligence, Networking,

and Parallel/Distributed Computing, pages 663-669, 2007.

23] J. D. Mackinlay. Automating the design of graphical presentations of relational

information. ACM Transactions on Graphics, 5(2):110-141, 1986.
26] S. McConnell. Code Complete. Microsoft. Press, 2nd edition, 2001

[27] W. Metzger. Laws of Secing. MIT Press, 2006.

28] J. Nielsen. Usability Engineering. Academic Press, 1993.

[29] J. Nielsen and R. L. Mack. Usability Inspection Methods. John Wiley & Sons,

1994
[30] D. A. Norman. The Design of Everyday Things. Basic Books, 2002.

[31) M. Ogawa and K. Ma. StarGate: A unified, interactive visualization of software

projects. In Proceedings of the IEEE Pacific Visualization Symposium, pages
191-198, 2008

105

32 C. Pich, L. Nachmanson, and G. G. Robertson. Visual analysis of importance and
grouping in software dependency graphs. In Proceedings of the ACM Symposium

on Software Visualization, pages 20-32, 2008.

3] C. Plaisant. The challenge of information visualization evaluation. In Proceedings

of the Working Conference on Advanced Visual Interfaces, pages 109-116, 2004.

[31] D. Price. CV:

- open source control. http://www.nongmu.org/cvs/, December

2009.

35) N. Riche and T. Dwyer. Untangling Euler diagrams. [EEE Transactions on

Visualization and Computer Graphics, 16(6):1090-1099, 2010.

[36] J. Rossenberg. Some misconceptions about lines of code. In Proceedings of

Software Metrics Symposium, pages 137-142, 1997.

37) M. Samuels and J. Witmer. Statisticss for the Life Sciences. Pearson Education,

2008.

38] S. R. Schach. Object-Oriented and Classical Software Engineering. McGraw-Hill

Publishing Co., 2001.

[39] R. Spence. Information Visualization: Design for Interaction. Prentice Hall,

2nd edition, 2007.

tools. http://subversion.igris.org/,

[40] Tigris. Open source software enginee

December 2009

[41] L. Voinea, J. Lukkien, and A. Telea. Visual assessment of software evolution.

Science of Computer Programming, 65(3):222-248, 2007.

106

[42] L. Voinea, A. Telea, and J. J. van Wijk. CVSscan: Visualization of code evo-
lution. In Proceedings of the ACM Symposium on Software Visualization, pages

47-56, 2005

[43] C. Ware. Information Visualization: Perception for Design. Morgan Kaufin

2nd edition, 2004.
[4] A. Zeller. Yesterday, my program worked. Today, it does not. Why? In Proceed-
ings of the Software Engincering Conference, pages 253-267, 1999,

[45] 'T. Zuk, L. Schlesier, P. Neumann, M. S. Hancock, and S. Carpendale. Heuristics
for information visualization evaluation. In Proceedings of the AVI Workshop on
Beyond Time and Errors: Novel Evaluation Methods for Information Visualiza-

tion, pages 1-6, 2006,

-

Appendix A

User Evaluation Documents

On the proceeding pages are the documents given to the participants of the us
evaluation (laboratory studies). The first document is the consent form which every
participant signed to confirmed they understood what the study entailed and where
they can register complaints about this study if they feel it to be necessary. The
second document was a post-task questionnaire asking information on the participants

programming history. The third document was the post-task questionnaire, which

was given after both tasks were completed to evaluate how the participant felt about

ImpactViz as a debugging tool.

108

Informed Consent by Subjects to Participate in
Viuaiing the Impec of hanges n Softare Code
Wer Evaluation)

ey

it il v

ity o o therdelings | ave i M Folt o Dr.Hocber.

My weatihe

ol by D

memberof s sty wil b pblshed.

compeation for my prtcpation nd e i e fom o 10

ICEHR ot e . or b elebone 1 7376365,

Sckene Depurment, Memer Univesy.
NAME (please print lgibl
SIGNATURE:

INVESTIGTOR: o
DATE:

rm—

e e

NerorilUniversy Incbris minca
ity

109

Pre-Task Questionnaire

a
domai o
1. What e Computer Since e ouin?
. boSnd o T 4 Fouhorbighe)
(CVS.SVN. G cte?
Yo e
3 i :
e a4 s o
Wha
s devcopment cn?
Low igh
5
Torble BowAvaps Avemge b Aversge Excepions

6. What Programming Language are you most comfortable with?

™ e Visual Basic Other (Pleaselstbelow)

7. What OS are you most comfortable with?

Windows Platform~ Apple Platfor Linwx Other (Please st below)

110

Post-Task Questionnaire

cod.
collected for this sudy.

by crcing the appropriate number.

ot | dvagree | et | s | s
e

Using ImpactV i for debugeing enabed me 10

L accomplish asks more quickly

ol 2| . Using ImpactV iz improved my debugging
perormance

ol 1215« Using ImpactVi fordebagging nccased my
producivy

o 121 g Iyt oty e
Using ImpactV i made i casir 1 i the

ot 2 sowre ofhe s,
ound TopactVirusfulfor ebogeing

L3 T T I T ey

CoaETRETT

o | 1 [z | 3 | ¢ earming o operte ImpactV iz was sy for e
Tiond i cay 0 et TmpactVie o do what |

L I I wanied 1o do
Ny imcrcton wih ImpactVia was st and

o | v [2| s | s o

o [v [2 [3 | ¢ ound IpactViz o b fleibe o merac with
was cay for me o besome silol st using

o | 3| Pty

O 0 | 2 [3 | 4 | 5 [t impavizenome

11

S —
= =
e
° ! 2 ¥ A s only a subset of the changes 10 be useful
e
ey
° ' 2 3 ‘ s ‘have changed within a revision range to be useful
e e
o ' 2 3 . s pyla iy aan
o ! 2 LR 5 other clases that mpact 0 be el
- 2 3 . s Tocation within the visual representation 1o be useful
S
A —
b
ey
=
=
=

changes
Ovenl,
for debugging.

11 o have any futher comments o suggestions, you may write them below:

12

Appendix B

Field Trial Documents

On the proceeding pages are the documents given to the participants of the field trials.
The first document is the consent form which every participant signed to confirmed
they understood what the study entailed and where they can register complaints
about this study if they feel it to be necessary. The second document was the post-

aire asking information on the participants programming history. The

task questio

third document was the post-task questionnaire, which was given after both tasks
were completed to evaluate how the participant felt about ImpactViz as a debugging

tool.

13

Informed Consent by
Subjects (0 tein

Visualcing the Impactof Changes in Sofiware Code
(Field Trials

My et the

Condcat by D

Fmcmberof s sy wil b poblshed

S
it hre s compensation ot prtipation and e n e Frm of S20.

e
JCEIIR o e ot b clehone 7374365

Dt of Compser Since, Merweil Uty
NAME (please print legibly):
SIGNATURE

INVESTIGTOR:

DATE:

s

N Maben Folt Dr. Oland o

Mastrsof Sciece Dt of Comuter S

Dt of Comuter Since Nemoral Uty

NemoralUniverity Incberics munca
st

14

Background Survey

describes you.

1. What yearof Computer Science are you in?

a Fint b, Second 4. Fourh (or higher)

2
(CVS, SVN, Git etc?

3o
software development tean”

Low Medium High

Tomible Below Average Average Above Average - Exceptional
6. What Programming Language ar you most comfortable with?

™ o Visual Basic Other (Please ls below)

7. What 0S are you most comfortable with?

Windows Platform Apple Platform~ Linux Other (Plase st be

Field Trial Questionnaire

mpactViz fo debugging crabled me o
accomplish tasks more quickly.

Usin ImpactViz improved my debugging
performance

rongy | dnngee | weal | e | sy
g e
s
s
o | Ve etV o debugzng mcreascd my

e i o i

SO I when debugai
o | Ui pactViz made i caser 0 ind e
NN soure o the bugs
(Vi el o debugging

e

UsogTnpctVis o iy e
SO I I e me 0 accomplish tasks more qickly
Using ImpactViz mproved my exploring my
[T I T T
sysem erformance
Using ImpactViz forcxploring my sysiem.
RN
increased my .-m..v.
T s | e s [ue ir cahanced my cfectiveness
Vi g
Using TmpactV i mode i casir 0 explore my
L I R B ey
e | s |4 | s | e mpactisueit o cxporig

system software

116

rngy | dngee | et | s | sy
e e
V[[[s eaming o operat Tmpaceviewas casy or me
Vlound it casy fo g ImpactViz o do what |
L R B B T
My ieraction wih mpactViz was cear and
T T T P (R et
U2 [3 | 4 | 5| Tiound ImpaetVisto b flewie o mract with
| i e casy for me o besome skl at wing
Impactvie
T2 5 [4|5 [Tomimpavieesy owe
Srongy | v | Newt v | ey
ey e
found e sbiy o fier e revisionbsor 1 show
ol f 2]t] T ontyasubsetorihe changes o be et
1 found he raphical representation o he connection
U hetween dases o beusell
oundthe graphicl represcnatonofthe classes that
Pl p 3 8|S e changod withina revison ange o b uset
found the graphical represctation ofthe mpact of 3
Pl S o e et
Tl ot A B
Pl |t S otherclases thatimpact
found the abilty o move classs 0 diffrent
Pl] 3 |45 ocaron withi the vissl representation o b ueful.

Please add any additonal feedback o

u7

e back o his page.

	0001_Cover
	0002_Inside Cover
	0003_Blank page
	0004_Blank page
	0005_Title Page
	0006_Abstract
	0007_Acknowledgements
	0008_Table of Contents
	0009_Page v
	0010_Page vi
	0011_Page vii
	0012_Page viii
	0013_List of Tables
	0014_List of Figures
	0015_Page xi
	0016_Introduction
	0017_Page 2
	0018_Page 3
	0019_Page 4
	0020_Page 5
	0021_Page 6
	0022_Page 7
	0023_Page 8
	0024_Page 9
	0025_Page 10
	0026_Page 11
	0027_Page 12
	0028_Page 13
	0029_Page 14
	0030_Page 15
	0031_Page 16
	0032_Page 17
	0033_Page 18
	0034_Page 19
	0035_Page 20
	0036_Page 21
	0037_Page 22
	0038_Page 23
	0039_Page 24
	0040_Page 25
	0041_Page 26
	0042_Page 27
	0043_Page 28
	0044_Page 29
	0045_Page 30
	0046_Page 31
	0047_Page 32
	0048_Page 33
	0049_Page 34
	0050_Page 35
	0051_Page 36
	0052_Page 37
	0053_Page 38
	0054_Page 39
	0055_Page 40
	0056_Page 41
	0057_Page 42
	0058_Page 43
	0059_Page 44
	0060_Page 45
	0061_Page 46
	0062_Page 47
	0063_Page 48
	0064_Page 49
	0065_Page 50
	0066_Page 51
	0067_Page 52
	0068_Page 53
	0069_Page 54
	0070_Page 55
	0071_Page 56
	0072_Page 57
	0073_Page 58
	0074_Page 59
	0075_Page 60
	0076_Page 61
	0077_Page 62
	0078_Page 63
	0079_Page 64
	0080_Page 65
	0081_Page 66
	0082_Page 67
	0083_Page 68
	0084_Page 69
	0085_Page 70
	0086_Page 71
	0087_Page 72
	0088_Page 73
	0089_Page 74
	0090_Page 75
	0091_Page 76
	0092_Page 77
	0093_Page 78
	0094_Page 79
	0095_Page 80
	0096_Page 81
	0097_Page 82
	0098_Page 83
	0099_Page 84
	0100_Page 85
	0101_Page 86
	0102_Page 87
	0103_Page 88
	0104_Page 89
	0105_Page 90
	0106_Page 91
	0107_Page 92
	0108_Page 93
	0109_Page 94
	0110_Page 95
	0111_Page 96
	0112_Page 97
	0113_Page 98
	0114_Page 99
	0115_Page 100
	0116_Page 101
	0117_Page 102
	0118_Page 103
	0119_Page 104
	0120_Page 105
	0121_Page 106
	0122_Page 107
	0123_Page 108
	0124_Page 109
	0125_Page 110
	0126_Page 111
	0127_Page 112
	0128_Page 113
	0129_Page 114
	0130_Page 115
	0131_Page 116
	0132_Page 117
	0133_Blank page
	0134_Blank page
	0135_Inside Back Cover
	0136_Back Cover

