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ABSTRACT

Ab Initio study of polarizabilities and first order hyperpolarizabilities of

thiophene, fulvene and cyclopentadiene based conducting oligomers and

polymers and their cyano derivatives have been performed using the

Hartree-Fock (HF), configuration interaction singles (CIS) and density

functional (DFI) theories with 3-21G* basis using Gaussian 94, 98 and 03

softwares. The main motivation for this investigation is to determine the

correlation between the excitation energies and polarizabilities and

hyperpolarizabilities for the conjugated systems studied. It has been found

that HF and DFT approaches give similar magnitudes for polarizabilities

whereas CIS theory provides results that are considerably different. All

three methods predict similar trends in polarizabilities as a function of

oligomer length and bond alternation along the backbone of the oligomers.

It has also been observed that the end groups and the number of 'double'

bonds have a significant effect on the magnitude of polarizability per C-C

bond. Comparison with experimental results has been made where

possible.
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Chapter 1

INTRODUCTION

1.1 Conducting polymers

Conducting polymers are conjugated polymers, in particular organic

compounds that have an extended 1t-orbital system, through which

electrons can move from one end of the polymer to the other [1]. The

most important aspects of conjugated polymers are their ability to act as

electronic conductors and to exhibit nonlinear optical (NLO) properties.

The basic structural characteristic of all conjugated polymers is their quasi­

infinite 1t system extending over a large number of recurring monomer

units. This characteristic results in materials with directional conductivity,

strongest along the axis of the chain. The mechanism of conductivity in

these polymers is based on the motion of charged defects within the

conjugated framework. The conjugated polymers are semiconductors or

insulators in their neutral state. They can be made conductive by oxidation

(p-doping) or reduction (n-doping) of the polymer either by chemical or

electrochemical means, generating the mobile charge carriers [1].



Charge carriers, either positive p-type (holes) or negative n-type (electrons),

give rise to conductivity. The conductivity (J of a conducting polymer is

related to the number of charge carriers, n, and their mobility, fl, that is,

(Joe n fl [2].

The physical and chemical properties of organic polymers, especially

heterocyclic conjugated systems, have attracted much interest both

experimentally and theoretically in recent years [3]. At present, scientists are

also interested in the (J-conjugated polysilane polymers which have a

number of physical properties such as transparency in the visible region of

the spectrum, thermal and oxidative stability, high resolution imageability

etc. [4].

Conducting organic polymers have received extensive interest since the

highlight reports of remarkable increase in conductivity upon halogen

doping of polyacetylene by Shirakawa et aI., Heeger and MacDiarmid [5].

Since these discoveries, many experimental and theoretical studies have

been performed both on short chain conjugated oligomers and on the full

polymers. Conducting polymers have the qualities to combine the high

conductivity of pure metals with the processibility, corrosion resistance and

low density of polymers. They are very useful in the applications of

electrochromic displays, electromagnetic shielding, sensor technology, non­

linear optics, molecular electronics, conducting fabrics, antistatic coatings

for use in photographic fllms or electronic device fabrication and low­

voltage electrochromic windows to organic light emitting diodes,

photodiodes, and photovoltaic devices [5,6].



In recent years, many experimental and theoretical works have focused on

the design of new n-conjugated polymers with very small band gap

(Eg<leV). These polymers even in their intrinsic ground states show

conductive or at least semiconductive properties. For designing new kinds

of polymers, it is important to understand the evolution of the band gaps

of conjugated polymers with respect to their chemical structures. A large

number of theoretical studies have been done in the recent years to

understand the relationship between the chemical and electronic structures

of conjugated polymers [7]. This coupling of chemical and electronic

structure is the source of much of the fascinating physics of n-conjugated

oligomers [8].

Polyacetylene has the simplest conjugated structure. Because of its

degenerate ground state of the all-trans-isomer, it allows the existence of

mobile neutral spin defects (solitons), whose behavior is of great interest to

solid-state physicists [9]. Conjugated organic polymers have attracted a lot

of attention ever since the discovery of the very high electrical conductivity

of polyacetylene upon doping. Their conductivities in doped states are of

the order of, or larger than, that of copper at room temperature (as in the

case of recently reported iodine-doped polyacetylene). Examples of other

important conjugated polymers are polwaraphenylene, polwyrrole,

polyaniline, polythiophene, and their derivatives. Similar to polyacetylene,

when they are oxidized or reduced, they exhibit transitions from the

insulating or semiconducting state to the highly conducting regime [10].In

addition to their conductivity properties, organic compounds with

delocalized n-electron systems are leading candidates for NLO materials.



The knowledge of the polarizabilities and hyperpolarizabilities is required

for the designing of optimized materials for photonic devices such as

electro-optic modulators and optical switches [11]. For example, the novel

1t-conjugated polymer, polydiethynylsilane (PDES) has excellent nonlinear

optical properties. This new material is easily processed, soluble in a variety

of solvents and stable in air. The structures of several forms of PDES

have been characterized theoretically by Grigoras et al. [12]. The NLO

properties are being increasingly exploited in a variety of optoelectronic

and photonic applications. For example, the third-order nonlinear optical

phenomenon of an optically-induced change in refractive index is

fundamental to all-optical switching and computing, as well as phase

conjugate adaptive optics [13].

Worldwide, scientists are doing research on materials which exhibit linear

and nonlinear activities [14]. It is true that both linear and nonlinear

responses are very important for both scientific and technological

applications. These days, however, nonlinear electric responses receive

much of the interest due to their contributions in telecommunications. In

summary, in the recent years, the electrical conductivities and nonlinear

optical responses of conjugated polymers have attracted enormous

attention among theorists and experimentalists [15].

The optimization of materials for LO devices first requires an in-depth

understanding of the LO properties at the microscopic, or molecular

level. The properties such as polarizabilities (n), hyperpolarizabilities (~, "f,

...) are required for the rational design of the optimized materials for



photonic devices such as electro-optic modulators, all-optical switches etc.

The NLO properties of the conjugated molecules and polymers are very

responsive to the variations in chemical structure, conjugation length,

donor and acceptor substitutions and the presence of defects or dopants

[16]. The NLO properties of conjugated polymers may have exceptionally

large values due to conjugation and the factors mentioned above [17].

Bond length alternation (BLA) is defined as the difference between 'single'

and 'double' adjacent bonds along the chain backbone (see Chapter 3). The

magnitude of the BLA along the backbone of a conjugated system is

recognized as a crucial parameter for tuning its electronic properties [18]. It

is also a key parameter used in optimizing the linear and NLO properties

of organic conjugated compounds [15, 18]. In order to design low-band­

gap polymers as well as new active species in light-emitting diodes, the

BLA of conjugated polymers and oligomers has been varied by chemical

modifications. BLA also plays a substantial role in the conductivity

phenomenon of doped organic conjugated polymers [18].

Because of their potential role in optical communication devices, the

nonlinear polarizabilities i.e., hyperpolarizabilities, have received significant

attention. The first order hyperpolarizability (see Chapter 2) is related to

the macroscopic NLO phenomena i.e., second harmonic generation,

optical rectification etc. In order to maximize the hyperpolarizability per

unit cell, the electron delocalization, asymmetry and the length or weight of

the compound have to be efficiendy combined [19]. For the organic

systems, the first order hyperpolarizability increases by the presence of the

mobile 1t electrons and it is zero for centro-symmetric molecules as it



corresponds to an odd term in the dipole moment Taylor series expansion

[19].

To observe the nonlinear effects, a lot of the research works have been

carried out, mostly on oligothiophenes (OTH). This is mainly for two

reasons; firstly, this material is stable under normal conditions and very

flexible with respect to modifications of its chemical structure and

secondly, it is a very promising candidate due to its high nonlinear optical

properties. It can be used in a wide rage of applications from

optoelectronics to information-storage devices [3].

It is often constructive to carry out experiments on shorter-length, well­

defined oligomers as the exact length distributions and geometries of long­

length conducting polymers are frequently not well characterized. This

circumvents many experimental difficulties coming up from the poor

solubility and processability of many of the full length polymers, although

some physical measurements have been carried out on thin-ftlm samples

[5].



1.2 Literature review

Organic molecules with conjugated 1t chains have large dipole

polarizabilities and hyperpolarizabilities which increase rapidly with chain

length. A reliable understanding of the dependence of these properties on

the molecular structure requires exact calculations for some short-chain

molecules [20]. In recent years, the focus on the ab initio calculation of

polarizabilities and hyperpolarizabilities has increased tremendously and

hence it is easier to provide a theoretical basis for analyzing molecular

electrical interactions [21]. For the conjugated systems the lowest (singlet)

excited state often corresponds to a transition from the highest occupied 1t

molecular orbital (HOMO) to the lowest unoccupied 1t* molecular orbital

(LUMO) levels. It is found by Chakraborty et aL that with the increase of

the chain length the excitation energies have red shifted [22]. In order to

put our work in the appropriate framework, we have reviewed previous

related works.

The static polarizabilities and the hyperpolarizabilities for the ground states

of the linear polyynes 1,3-butadiyne (CI-h); 1,3,S-hexatriyne (Q,I-h) and

1,3,S,7-octatetrayne (GI-h) have been calculated by finite-field methods by

Maroulis et aL [20]. This was the first dependable ab initio determination of

the increase of those properties with the chain length. CI-h , Q,I-h and

GI-h are polyynes that are similar to studied compounds, however instead

of double and single bonds there are alternating triple and single bonds

along the chain backbone. Maroulis et aL, in their investigation on linear

C2nI-h polyynes, found that with the increase of the chain length, n, the



longitudinal component of the polarizability increases linearly as n1.S and

the mean polarizabilities increase as n1.2 [20]. Edet et al. also studied the

chain length dependence of static longitudinal polarizabilities using ab initio

calculations in linear C2nH2 polyynes [23]. They fOlUld that the growth of

the response properties with n slow down with the increase of the chain

length. For large n, a grows linearly with n. Dalskov et al. carried out a

study on the polyyne series, C2nH2, to calculate the static longitudinal

polarizabilities using both the lUlcorrelated random phase approximation

and the correlated second-order polarization propagator approximation

[24]. The static longitudinal polarizability of the CAH2 through G4H2

polyyne was studied at the HF level of theory by Toto et al. [25].

dlopra et al have computed the static polarizabilities of polyenes byab initio

SCF theory with the basis sets ST0-3G and 3-21G and have shown that

the longitudinal polarizability increases as n1.36 and n1.44 respectively for

short chains [26]. They have noticed that the growth of the longitudinal

component of a is the largest among the diagonal components of

polarizability. It has been observed from the previous calculation that the

electron correlation plays only a minor role in the dipole polarizabilities and

hyperpolarizabilities. With the increase of the chain length, the

intramolecular polarization becomes relatively more important and fewer

basis sets are required for the calculation of longitudinal polarizabilities [26,

27]. It has been fOlUld by Hurst et al. that the basis set requirements

diminish with increasing chain length in the polyenes [27].

The static dipole polarizability for the polyene systems via ab initio coupled­

perturbed Hartree-Fock (HF) theory was studied by Hurst et al. [27]. They



found that the longitudinal component of the polarizability increases with

the increase of the chain length. For the shorter polyenes the longitudinal

component of the polarizability oc n1.6 but for larger n, they obtained a

linear relationship. They also noticed that the longitudinal component is

the largest which is consistent with the fact that a strong response of the

delocalized n electrons to the electric fields is along the chain backbone.

BenOIt et aL have computed the static electronic longitudinal polarizability

of all-trans planar polyacetylene chains with restricted Hartree-Fock (RHF),

second-order M0ller-Plesset (MR2) and the density functional schemes

based on the SVWN and B3LyP exchange correlation functionals by

varying the bond length alternation along the conjugated backbone [18].

The four methods show that a decreases with the increase of BLA from

o.oosA to 0.22SA i.e., the smaller the BLA, the larger the a would be.

They found that the BLA dependence of a in RHF is overestimated by a

factor of 2-3 with respect to the MP2 procedure [18]. Using sum-over­

states (SOS) perturbation theory n electron polarizabilities of finite and

infinite organic polymers i.e., polyacetylene and various polyheterocycle

have been calculated by Ducasse et aL [28].

n-electron calculations of the polarizabilities in conjugated systems

(polyenes) with the finite-field technique have been investigated by

Villesuzanne et aL [29]. They found that in neutral systems, the

polarizability per monomeric unit increases smoothly and then shows an

asymptotic behavior with n. But for the polymers with defects, the

polarizability per monomeric unit first increases with n, reaches a



maximum polarizability per monomeric unit for large value of n and finally

shows an asymptotic behavior [29].

By using the perturbative density matrix treatment de Melo et al. have

investigated the behavior of the polarizabilities [30] and the first

hyperpolarizbilities of the linear conjugated chains CHn+z described by a

Pariser-Parr-Pople Hamiltonian [31]. They observe that the polarizabilities

of polyenic chains depend on the conformation and charge state of the

system The first order hyperpolarizability tensor iJijk vanishes for regular

polyenes and polaron chains. The three components ~xxx, ~yyy and ~zzz of

the molecules belonging to the ezv group can be nonzero. De Melo et al.

found all the components of the first order hyperpolarizability are

negligible for the neutral soliton chains but the first order

hyperpolarizability can be large and should increase with chain length for

the charged solitons [31].

Ab initio coupled and uncoupled Harttree-Fock polarizabilities were

computed for increasingly large oligothiophenes by Champagne et aJ using

3-21G, 6-31G'~ and Sadljej medium size polarized atomic basis sets. They

found that polythiophene is more polarizable than polydiacetylene and

polyyne but less polarizable than polyacetylene [15].

Meyers et al. studied the influence of an external, static electric field on the

linear and nonlinear polarizabilities of a set of n-electron chromophores

[32]. In the 9-(dimethylamino)nona-2,4,6,8-tetraenal molecule (DAG),

they found that the polarizabilities are totally dominated by the longitudinal

10



tensor components and maximum at the cyanine limit (BLA=O). But with

the increase of bond order alternation (BOA), the first order

hyperpolarizability increases first, peaks in a positive sense, then

decreases and passes through zero at the cyanine limit, and then becomes

negative and peaks in a negative sense and then decreases again. It was

noted by them that the shape of the first order hyperpolarizability versus

BOA is the first order derivative-like with respect to the a evolution [32].

Luo et aL investigated the solvent effects on the static polarizabilities and

hyperpolarizabilities of the conjugated polymers using a semiclassical

solvation model using results from ab initio calculations [33]. Ab initio

coupled HF investigation of the static first order hyperpolarizability of

model aU-trans-polymethineimine oligomers (conjugated chains made of

alternating carbon and nitrogen atoms) has been studied by Champagne et

aL [34].

Grozema et aL have studied the excited state polarizabilities of conjugated

molecules using time dependent density functional theory [35]. Ab initio

HF and density functional theory (DF!) studies of the static dipole

polarizabilities and first order hyperpolarizabilities of fulvene monomer

have been carried out by Hinchliffe et aL [36]. ]acquemin et aL studied the

longitudinal electronic first order hyperpolarizability of carbon-silicon

analogues to polyacetylene using ab initio method taking into account

dynamic electron correlation effects [19].

Few experimental studies of polarizabilities and hyperpolarizabilities of

conjugated oligomers or polymers have been performed. 1bienpont et aL

11



have reported the observation of saturation with the chain length of the

band gap, polarizability and the first order hyperpolarizability for

oligothiophenes. In their investigation, the length dependence of a is given

by a power law and the exponent is 2.4. They found a strong length

dependence of a for n'S.7 and that become weaker, more or less linear for

n>7, where the band gap becomes constant, i.e., the saturation occurs at

about seven repeat units [37]. Zhao et at. carried out a systematic study on

the thiophene series from monomer to hexamer to find out the

dependence of the band gap and the polarizability on the number of repeat

unit [38]. The averaged polarizabilities are measured from the refractive

index measurements ofTHF solutions.

With regard to the excitation energies, Chakraborty and Lagowski [22, 39]

carried out an extensive study to determine the nature of the geometric

conformations and electronic transitions in 1t-conjugated OTH and their

cyano derivatives, and also oligocyclopentadiene (OCY) and oligofulvene

(OFV) and their cyano derivatives. They observed trends in excitation

energies of these systems as a function of the chain lengths by using the

singles configuration interaction (CIS) theoretical approach. The study on

thiophene and cyclopentadiene-based polymers by using semi-empirical

molecular orbital theory (MNDO, AMi) followed by ab initio HF method

was done by Subramanian and Lagowski [40].

Using the time-dependent density functional theory with B3LYF

functional, Jing et at. carried out a study on polyacetylene, polycyclo­

pentadiene and polythiophene to find out the chain length dependence on

the excitation energies of these oligomers [41]. The energy band gap of

12



thiophene (monomer and dimer) was investigated using both ab initio

molecular orbital quantum theory and DFT methods by Arnold et al. The

calculations were carried out initially at the HF level of theory [6].

1.3 Current research work

The main goal of this present work is to investigate the polarizabilities and

hyperpolarizabilities of conducting polymers by using ab initio methods.

Monomeric units of the studied systems are shown in figure 1.1. We have

divided our investigation into two parts. In the first part, ab initio

calculations of polarizabilities have been carried out on oligomers (ranging

from 1 to 16 monomers long) OTH, OCY, OFV, oligo-(dicyanomethylene

cyclopentadithiophene) (OC TH), oligo-(dicyano-methylene cyclopentadi­

cyclopentadiene) (OC CY) and oligo-(dicyanomethylene cyclopentadi­

fulvene) (OCNFV) with SOS and CIS methods.

We have investigated the chain length dependence of the polarizabilities

(a) and excitation energies (~). The geometrical parameters of the

oligomers have been fully optimized with the 3-21G* split valence basis set

by using the GAUSSIAN 94 and GAUSSIAN 98 programs [42,43]. We

have used -H or -H2 as the end groups in the various oligomers. It has been

observed that the effect of the end group decreases as the chain length

increases [15 , 44].

13
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Figure 1.1: Monomers of the 1t conjugated systems studied.
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In the second part, partial geometry optimizations on oligomers

oligoacetylene (OA), 01H, OCY, OFV and CXNIH have been

performed by using RHF, as and DFT to see the effect of BLA on a, ~

and ~E. For OA, we have considered two oligomers with 7 bonds and 9

bonds; and for 01H, OCY, OFV and cx::N1H, we considered unit cells

consisting of two rings or dimers. We use -Has end groups for the

aromatic isomer and =H2 or =Q-i2 as end groups for the quinonoid

isomer. As an example of the structural forms, the aromatic and quinonoid

isomers for om are shown in figure 1.2.

From the various investigations, it was determined that the structure of

cydopentadiene and fulvene and their cyano derivatives have greater

stability in the quinonoid forms [22 and the references therein] and

Figure 1.2: Monomers of aromatic and quinonoid forms of om

thiophene and its cyano derivative have greater stability in their aromatic

forms. Hence we have choosen the aromatic forms for om and OCNTI-I

and the quinonoid forms for OCY, CXNCY, OFV and CXNFV in the
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first part of this thesis. The main reason for studying cymo substituted

thiophene, cydopentadiene and fulvene is that previous investigations [22]

showed that there is a significant lowering of band gaps in these cymo

derivatives in comparison to their parent oligomers. In order to gain

further understanding of these compounds an investigation of their

polarizabilities and hypetpolarizabities was performed in this thesis.

In chapter 2 of this thesis, we discuss the theoretical methods used for

computations. In particular we discuss HF, as and DFT theory in the

section 2.3, 2.4 and 2.5 respectively. In chapter 3, we discuss the

computational approach used for the systems studied. In chapter 4, we

describe the dependence of the polarizabilities and excitation energies on

the chain length for am, OCY, OFV, OCNIH, CXNCY and OCNFV

oligomers. In chapter 5, we discuss the BLA effects upon the

polarizabilities, hypetpolarizabilities and the excitation energies for OA,

am, OCY and 0CNTIl In chapter 6 we discuss the results obtained for

the parent oligomers and their cymo derivatives, and compare our results

with the previous works where possible. At the end we have summarize

the conclusions.
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Chapter 2

THEORETICAL APPROACH

2.1 General approach

When a particle is exposed to an electric field, there is a change in the

charge redistribution which is characterized by a set of constants called

polarizabilities [45]. The energy caused by a small uniform electric field

perturbation "£ can be written as [46]

H'=-Jl·£

where Jl is the dipole moment and is defined by

(2.1)

(2.2)

where qj is the charge at the position ~. The Feynman-Hellmann (PH)

theorem states how the energy of a system varies when the system is

characterized by a Hamiltonian that depends on the perturbation

parameter P [47].
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In our case P is £ .We have assumed that I£ I is very smallt. By using the

FH theorem and equation (2.1), we can write

~=(~)=-(-).
d£ a£ Jl

(2.3)

Since I£ I is small, we can Taylor expand the energy E about

£(0) = £(£=0)

From equations (2.3) and (2.4), the dipole moment fl of the system can be

written as [49]

(2.5)

The term flo represents the permanent dipole moment and ii, jj and

rare the static polarizability, the first order hyperpolarizability and the

second order hyperpolarizbility. The polarizability ii is the second-rank

tWe want to avoid the higher multipoles and want to consider only first order
perturbation.
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cartesian tensor that characterizes the lowest-order induced dipole

moment. The hyperpolarizabilities iJ and r represent third and fourth-

rank cartesian tensors. Ii and iJ can be written as

(2.6)

From equation (2.6), it can be seen that the polarizabilities and the

hyperpolarizabilities can be obtained by differentiating the energy E of the

system with respect to the electric field £ . The total energy of a system is

defined by

( 2.7)

where 'II is the wave function of the particle. The energy and wave

function dependence on "£ is determined using time-independent

perturbation theory. This requires that for a given system and within a

quantum mechanical formalism, we must compute the energy and wave

function of the ground and first few excited states. We use HF, CIS and

DFf formalisms to obtain these energies and wave functions. In the next

few sections, we briefly discuss these methods.
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2.2 The electronic Hamiltonian of a

system

Consider a system of N electrons and K nuclei with charge Zn. The

Hamiltonian H of the system can be written as [48]

(2.8)

where i refers to the electrons and n to the nuclei, m is the mass of electron,

and Mn are the masses of the different nuclei. The first term is the kinetic

energy of the electrons, the second is the kinetic energy of the nuclei, the

third is the Coulomb repulsion between the electrons and the fourth is the

Coulomb attraction between electrons and nuclei and the last term is the

Coulomb repulsion between the nuclei.

Equation (2.8) is complicated and if the numbers of electrons and nuclei

are not small, it is impossible to solve the stationary Schrodinger equation

for this Hamiltonian directly on even the largest and fastest computers

available today. Since nuclei are much heavier than the electrons, we can

assume that the nuclei move much more slower than the electrons. This
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approximation is known as Born-Oppenheimer approximation [48]. Using

Born-Oppenheimer approximation, the electronic and nuclear motions

have been treated separately. The electronic Hamiltonian is given by

2.3 Hatree-Fock theory

The HF method is a variational method in which the wave functions of

the many-electron system have the form of an anti-symmetrised product of

one-electron wave functions to satisfy the Pauli-exclusion principle. This

restriction leads to an effective Schrodinger equation for individual one­

electron wave functions or orbitals with a potential determined by the

orbitals occupied by the other electrons. That is, the HF method

introduces an effective potential which depends on all the other electrons

through their average Coulomb and exchange fields [49]. This coupling

between the orbitals via the potentials causes the resulting equations to

become nonlinear in the orbitals. The HF procedure is close in spirit to the

mean-field approach used in statistical mechanics [48]. In this method, the

correlations between the electrons are neglected to some extent and the

Coulomb repulsion between the electrons is represented in an average way.
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2.3.1 HF equations

The total wave function '1/ which is an antisymmetrized product (Slater

determinant) of single-electron wave functions (orbitals), is defined as [49]

'1/,(1) '1/2(1)

'I/(1,2, ......,N)
1 '1/, (2) 'l/2(2)

IN
'I/,CN) 'l/2 CN)

where the single-electron orbitals are given by

C2.11)

¢i C~)andXi Cmj ) are the spatial and the spin orbitals respectively. The spin

orbitals are either a or fJ spin functions depending on whether m j = ± 1/ 2.

The HF energy with respect to the orbitals ¢i J is given by [49, 50]

E=(H) = I fd 3 r¢i' Cr) [-~v 2 +Vcr)] ¢iCr)
i 2m

+~ f.1 fd
3
r dV I r ~2r' ,I ¢iCr) 1

2
1¢/r') 1

2

_!I fd 3rd 3r' _e
2
_, ¢i'Cr) ¢iCr')¢;Cr')¢/r) 0mm.· C2.12)

2 i,j Ir-r I ' J
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Here V(r)is the electrostatic potential due to the nuclei. Differentiating

equation (2.12) with respect to the spin orbitals, we obtain nonlinear

integro-differential HF equations

wherej(r) is the Fock operator and is given by

j(r) = -~V 2 +V(r)+ VHF (r)·
2m

1=1,2,3, .....N (2.13)

(2.14)

VHF is the effective self-consistent single-particle potential which is

produced by the direct and exchange Coulomb terms in equation (2.12).

The eigenvalues ~ are the Lagrange multipliers as introduced by the

variational theorem and may correspond to the single-electron eigenvalues.

These eigenvalues are used to approximate the removal energies of the ith

electron (" Koopmans theorem"[ 51]).

The entire set of single-particle wave functions must be solved

simultaneously until self-consistency is achieved. This approach is called

the self-consistent field (SCF) technique. The most commonly used form

of HF theory involves the closed-shell single-determinant wave functions

[52]. These wave functions are suitable for the description of the ground

states of the molecules with an even number of electrons (n). The wave

function is of singlet type, that is, it is an eigenfunction of the spin-squared

operator, S2 , with zero eigenvalue. Since the same spatial orbitals are used

for spin-up and spin-down electron, the HF method is referred to as

restricted HF or RHF and this wave function is classified as spin restricted.
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2.3.2 Basis set expansions of HF

wave functions

A method that involves converting integro-differential HF equations to

algebraic forms was introduced independently by Hall [53] and Roothaan

[54]. Each molecular orbital (MO) ~H~) is expressed as a linear

combination of atomic orbitals (LCAO) [49], i.e.,

(2.15)

where the atomic orbitals ({J, are chosen from some suitable set and in turn

</>, are often expressed in terms of basis set functions.

The molecular orbital depends on the size and choice of the basis set. In

terms of atomic orbitals, the Coulomb direct and exchange integrals are of

the following form

(2.16)

The computational time in HF calculations go as M4 (where M is the

number of basis set wave functions), as equation (2.16) contains four

molecular orbitals. Hence the computation time can be significantly

decreased by limiting the size of the basis set.
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For atoms and small molecules the basis set often used consists of Slater-

type orbitals (STO) of the form

(2.17)

where Nand r are constants and ~m((),t/» is the mth component of the lth

spherical harmonic. STO's have not been widely used for diatomic and

polyatomic molecules because it is very difficult and time-consuming to

evaluate multi-center electrostatic integrals of the form given in equation

(2.16). Instead, Gaussian-type orbitals (GTO) are used for polyatomic

molecules as was first suggested by Boys [55]. Cartesian GTO's are of the

form

t, U, v = 0, 1, 2, 3·········· (2.18)

where Nand r are constants as above.

The main advantage of GTO's in calculating the polarizabilities is that all

integrals like equation (2.16) can be evaluated analytically but the

disadvantage is that large basis sets are needed since atomic orbitals are not

well approximated by just a few Gaussian functions.

2.4 Configuration interaction singles

The multiple-determinant wave function for the configuration interaction

is constructed by starting with the HF wave function and making new
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determinants by moving the electrons from the occupied to unoccupied

orbitals [56]. With all the possible excitations, the configuration interaction

calculation is called a full CI. If only one electron is moved for each

determinant, then it is called the configuration interaction single-excitation

calculation (CIS). This is the most common way to obtain excited state

energies. This configuration interaction calculation uses the molecular

orbitals that have been optimized in the HF calculation. A CIS calculation

begins with the initial set of HF orbitals and promotes a single electron to

one of the virtual (unoccupied) orbitals. This procedure gives the

description of the excited states of the molecule without changing the

quality of the description of the ground state. A brief discussion of CIS

wavefunction follows in section 2.4.1.

2.4.1 CIS wave functions

Suppose the single-determinant HF wave function 'I/o is defined as [57]

'I/o = (n!r
Il2

I%1 %2 %3 %4·················%. I (2.19)

where %1>%2'%3' ,%. are the occupied spin orbitals. Let 'l/sbe the

determinantal wave functions with s>O. 'l/s may be constructed by

replacing one or more of the occupied spin orbitals %i' %j , in
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equation (2.19) by the virtual spin orbitals Xa' Xh' ...... . The wave functions

I//s can be classified into single-substitution functions, 1//:, in which Xi is

replaced by Xa' double-substitution functions, I//;h in which Xi is replaced

by Xa and Xj is replaced by Xh' and so forth. This series of substituted

determinants goes all the way to n-substituted terms in which all the

occupied spin orbitals are replaced by the virtual spin orbitals.

In the full configuration interaction method, a trial wave function can be

written as [57]

(2.20)

where the summation ~ is over all substituted determinants. The

unknown coefficients, as' can be obtained by the linear variational method,

and are given by

t=o, 1, 2,.......... (2.21)

Here, H s, is the configuration matrix element and is defined by

(2.22)

and Ei is the energy. The lowest root E of equation (2.22) gives to the

energy of the electronic ground state. If no substitutions are

permitted, 1//=1//0' corresponding to the HF solution.
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The CIS wave function is obtained with single substitution functions only

and is given by

(2.23)

In the CIS framework, the calculation of static dipole polarizabilities is

done by the finite field method [49]. The perturbation of a small but finite

external field, equation (2.1), is added to the Hamiltonian. The change in

energy or the induced dipole moment is calculated for a series of electric

field strengths. Then the polarizability is computed from numerical

differentiation by equation (2.6).

2.5 Density functional theory

DFf is built upon two fundamental theorems as proposed by Hohenberg

and Kohn [58]. The first theorem states that all the ground state properties

of an electron are fully determined by the electronic density distribution

n(F) which is given by [49]

(2.24)

where lfIo is the ground state wave function. Then the ground state energy

E is a unique functional of the density and is defined by
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E[n]= T[n] + f[v;(r) +Vexl (r)]n(r)d 3r

+! fn(r)n(r') d 3rd3r'+E [n]
2 Ir-r'l xc

(2.25)

where the first term is the kinetic energy function, the second and the

third is the energy due to the ionic vier) and externally applied vexl(r)

fields, the fourth is the direct electron-electron Coulomb interaction term

and the last term is the exchange-correlation functional.

The exchange- correlation functional Exc can be written as

(2.26)

where Ex is the exchange interaction and Ec is the correlation energy

functional.

The Hohenberg-Kohn ftrst theorem states that the functionals must exist

but they give no information about their specific forms. Many

approximations have been proposed for Ex and Ec functionals. The second

Hohenberg-Kohn theorem states that variational principle can be applied

to the energy functional in order to obtain ground state electron density

and energy [58]. One scheme for applying the variational principle involves

expanding the density nCr) in terms of a set of single particle wave

functions. This formalism is known as Kohn-Sham (KS) theory. In the

next section we briefly outline this approach.
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2.5.1 KS formalism

Kohn and Sham states that the electron density can be written as a

complete set of single particle "wave functions" as follows [49]

(2.27)

where the summation goes over the N lowest states. If the energy

functional equation (2.25) is minimized with respect to the electron density

(equation 2.27), a set of Schrodinger-like equations are produced

where

veff(r)= vj(r) +vex,(r) + bExc~n]
on(r)

(2.28)

(2.29)

where the last term is the functional derivative of the exchange-correlation

functional. Equations (2.28) are called the KS equations.

There is a strong similarity between the KS equations and those that a rise

in HF theory. In the DFf, the calculation of static dipole polarizabilities is

done by the finite field method [49]. Hence the polarizability is computed

from numerical differentiation of equation (2.6).
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Within the time independent perturbation theory the following two

approaches can be used to calculate the polarizability and hyperpolarizbility

of the system

(a) Compute the energy derivatives (equation (2.6)) explicidy

(analytically or numerically).

(b) Use SOS or sum over oscillator strengths formalism.

In the next two sections we briefly discuss these two approaches.

2.6 Energy derivatives formulation

Analytic or numerical differentiation of the molecular energy is needed to

calculate the polarizability and hyperpolarizability as noted in equation

(2.6). As an example, we focus on polarizabilities calculated using CIS wave

functions. Gaussian (03, 98 and 94) [42,43,59] were used to calculate the

analytic polarizabilities which are exact within the CIS framework. We

oudine the calculation of the derivatives and hence the theoretical

framework employed in the Gaussian (03, 98 and 94) [42, 43, 59] to

calculate CIS polarizbilities [60].

For the CIS method, the CIS energy is given by

(If/clsIHe,ecllf/C/s)

(If/C/sllf/C/s)
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The CIS energy is obtained variationally by optimizing the CIS expansion

coefficients [61]. This energy is then differentiated with respect to the

electric field.

The normalized wave function is

occvirt

If/CIS = ~aslf/s = aoIf/o + L~:>; If/~ (2.31)

where If/o is the HF determinant. The second term in equation (2.31)

comes from the sum over the single excitations where If/;Q are singly

substituted Slater type determinants. All the determinants are anti­

symmetrized products of MO's which are eigenfunctions of the Fock

operator. The Fock operator is given as a linear combination of a set of

basis functions, ¢>A. with expansion coefficients cA.
p

• CIS coefficients are

adjusted variationally to minimize the CIS energy (equation 2.30) [61).

The CIS wave function is completely specified by a set of parameters

which include the CIS coefficients and the molecular orbital expansion

coefficients. Both sets of coefficients are in general dependent on the

external perturbation electric field. The CIS wave function is also

dependent upon the other parameters such as geometry and basis set

choice, however, these are taken to be independent of the external

perturbation. Using the perturbed Hamiltonian (equation 2.1), it is

obtained[60]
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Here, CIS coefficients as are chosen to minimize the CIS energy,

therefore, (OECIS
) = o. But the molecular orbital coefficients cA.

p
areoas

chosen to minimize the HF energy not the CIS energy, therefore,

( OECIS J:;; o. Thus the second term on the right hand side of equation
OCA.

p

(2.32) is zero. Hence, equation (2.32) can be written as

(2.33)

Equation (2.33) shows the breakdown of FH theorem for CIS systems.

2.7 Sum over states

To compute the polarizability of the system by using equation (2.6), we

need to know the perturbation expression for the energy. The perturbed

energy is given by [46]

Eo = Eci°)+(lf/o IH'llf/o)+(lf/o IH"'llf/o)+ :L:(lf/o IH'I~n~~nIH'llf/o) +...

(2.34)
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where lfI0 is the ground state wave function of energy Eo and lfIn is the

excited state wave function of energy En and H" is the second-order

Hamiltonian perturbation. In our case, there is no second-order

Hamiltonian perturbation, so the third term has no contribution (see

equation 2.1).

Substituting H' from equation (2.1), into equation 2.34, we get

By taking the first and the second derivative of equation (2.35) with respect

to the electric field "& and setting "& =0, we have found respectively

and

(dd~O l = - (lflo I{L IlfIo) = {Lo (2.36)

Equation (2.36) states that the permanent electric dipole of the molecule is

the expectation value of the dipole moment operator in the unperturbed

state of the system Equation (2.37) is the polarizability of the molecule in

terms of integrals over its wave function.
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Hence the polarizabilityof the system can be written as

(2.38)

The prime indicates that the summation excludes the ground state. If we

use the perturbation theory to second order, we can get the expression for

the first order h)perpolarizability p. As given by [34]

(2.39)

At this point, we will focus our discussion on the expression for the

polarizability (equation 2.38). Often, we are interested in the mean

polarizability of our molecule (since in many experimental situations

molecules are randomly oriented in bulk states). We have assumed that the

diagonal elements of the polarizability matrix; a xx' a yy and a zz have the

largest contribution to the polarizability tensor.
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with equation (2.38), the components axx ' ayy and azz can be written as

a = 2'" /lx,on /lx,no
xx LJn ~EnO

a =2'" /ly.On /ly,nO
yy LJn ~EnO

a = 2'" /lz,on /lz,no
zz LJn ~EnO

Hence, the average polarizability of the system can be written as

= ~ I' /lx,on /lx,nO + /ly,On /ly,nO + /lz,On /lz,no

3 n ~EnO

(2.40)

(2.41)

Since J1 is a hermitian operator, we can write J10n = J1·nO. Hence, equation

(2.41) can be written as

(2.42)

It can be noticed from equation (2.42) that the polarizability depends on

the square of the transition dipole moments.
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A quantity called the oscillator strength, fno , can be defined as follows

[
4ffm e J 21"0= ~ V"oIJL"ol

where V nO is the transition frequency. Thus using equation (2.41) the

average polarizability of the system can be given by

(2.43)

Once the oscillator strengths are computed for a given molecule, we can

estimate the average polarizability. Within the SOS formalism of the

electronic polarizability, the largest contributions correspond to the largest

oscillator strengths which in turn correspond to the 'strongest' transitions

in a molecule.

From the above discussion, we could see that the energy derivative

formalism is a better approximation to the polarizabilitythan the SOS since

an exact expression for the polarizability includes two terms (see equation

(2.33)). The second term is missing in the SOS formalism On the other

hand SOS approximation satisfies FH theorem Whereas, due to the

presence of the second term (see equation (2.33)), there is a breakdown of

the FH theorem for as method.
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Chapter 3

COMPUTATIONAL

APPROACH

3.1 Computational details

In the first part of this thesis (see Chapter 4), the oligomers ranging from

monomer to the octarner (or in some cases longer oligomers up to 16

rings) of 011-1, OCY, OFV, CXN1H, OPCNCY and OPCNFV were

fully geometry optimized to investigate the chain length dependence of a

and excitation energies. The investigations have been carried out for the

SOS and as methods. In the second part of the thesis (see Chapter 5),

partial geometry optimizations of oligomers OA, 011-1, OCY, OFV and

cx::NIH have been performed by using RHF, as and DFT methods to

see the effect of BLA on a, ~ and excitation energies. For OA we have

considered two oligomers with 7-bonds and 9-bonds and for 011-1, OCY,

OFV and cx::NIH we considered unit cells consisting of two rings or

dimers. We use -H as end groups for the aromatic isomers and =H2 and

=Q-i2 as end groups for the quinonoid isomers. We have used =Q-i2 end

groups in quinonoid isomers in order to have the same number of double
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bonds in both aromatic and quinonoid isomers. The =CH2 end groups in

quinonoid isomers distort the symmetry of the dimers. The dimers are no

longer centro-symmetric.

The optimization is performed in the internal coordinates (Z-matrix). In

the full optimizations, all specified variables are optimized in order to find

the lowest energy structure, while in the partial optimizations, only a

specified subset of variables are optimized. The subset of variables whose

values should be constant is specified in a separate input section [42, 43,

59]. In this process, we have kept the bond lengths along the chain

backbone fixed and allowed all other variables to be optimized.

In the computations, we have used three versions of Gaussian software

(94, 98 and 03) [42, 43, 59]. Gaussian is a large ab initio program that can

execute batch jobs. It incorporates the widest range of functionality of any

ab initio code [62] and uses one of the simplest ASCII input file formats.

We have used the graphic interface Gauss View [63] for building

molecules, creating Gaussian input files and viewing the results.

The basis set is very important and should be considered very carefully for

ab initio calculations of the polarizabilities and hyperpolarizabilities [64]. We

have chosen the split-valence 3-21G* basis set for our investigations. That

is, ex and ~ calculations have been performed using the split-valence 3­

21G* basis set. This basis set was chosen because smaller basis sets require

less computing time and allowed us to perform computation on larger

molecules. Thus, in order to be consistent, we have used the same (smaller)
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basis set for both the larger and smaller compounds. Previous studies

showed that this basis set is adequate for computing excitation energies of

extended rc-conjugated oligomers [22, 39]. In addition, most of the

contributions to the polarizabities come from the longitudinal component

[26, 27] and it was found by Archibong and Thakkar that small basis sets

are very suitable for the longitudinal properties [23].

We have determined the BLA values by calculating or. or is defined as the

average of the difference between the neighboring single and double

carbon-carbon bonds. or is positive for the quinonoid structures and

negative for the aromatic structures. The value of or is closely related to the

band gap [22]. For OA, OTH, OCY and OFV unit cells (see figure 1.1), or

is defined as [22]

(3.1)

and for the cyano-substituted derivative OCNTH unit cell (see figure 1.1),

or is given by

& =.!-[(Ca'-tr )-(Ctr-p ) + (Cp_a ) -(Intracel/) + (Cal-.o.)]
4 -(C.o.-p:) + (Cp;-a; )-(Intercel/) (3.2)

The difference in rc-bond orders between adjacent bonds defines BOA,

which is directly related to BLA in conjugated rc-electron compounds.

Meyers et al. found a very small difference between BLA and BOA [32].
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We have used the same keywords in Gaussian Software for all oligomers

when computing polarizabilities and hyperpolarizabilities. The keywords

(see table 7.2 in the Appendix) for as method are mas, Opt, Freq and

Polar (full and partial optimization); for HF method are Opt = Z-rnatrix,

Freq and Polar (partial optimization); and for DFT method are RB3PW91,

Opt = Z-rnatrix, Freq = Raman and Polar (partial optimization). It is

important to note that we have computed the static electronic contribution

to the polarizability. We have calculated the average polarizability a by

taking the average of the three components, axx, a yy andazz as we have

seen that those components are the most dominant components in the

polarizability calculations. Hence the average polarizabilty is given as

follows (also see equation 2.41)

(3.3)

in both SOS and as methods. Two SOS calculations have been

performed using as values for excitation energies and oscillator strengths.

No tensor components have been calculated when approximate average a

has been tabulated. In this case, equation (2.43) is used direcdyto estimate

the average a. In the second case, the tensor components have been

determined and both equations (2.43) and (3.3) have been used to estimate

the average a. It should be mentioned that in our computations, ~ has

been computed autornaticallyfor HF and DFT methods using the keyword

Polar [42,43 and 59] but for as, although we have used the keyword (see

table 7.2 in Appendix) Polar = EnOnly, to produce ~ which is suggested

by the Gaussian 03 User's Reference [59], we have not obtained the results.
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Hence, for ~ only HF and DFT results have been obtained. Data obtained

for a and ~ (see Appendix) have been determined in the standard

orientation (the origin of this coordinate system corresponds to the center

of mass of the molecule) and the input (Z-matrix) orientation coordinate

system respectively. For HF, we have obtained the data for ~ in both

orientations [65] but not for DFT. To maintain consistency between the

two methods, data for ~ have been tabulated (see in the Appendix) onlyfor

the Z-matrix orientation. a and ~ have been measured in atomic units. For

the electric polarizability, la.u. = 1.648777X1Q-41 Om2J1 and for the first

order hypetpolarizability, la.u. = 3.206X1Q-Sl Om3 J2 [66].

We have used two ways to compute the excitation energies of the

polymers. We have estimated the excitation energies from the difference

between ionization potentials (IP) and electron affinities (EA). IPs and

EAs have been obtained respectively from the negative of the HOMO and

the LUMO energies in the HF and DFT calculations. In as calculations,

excitation energies have been calculated from the total energy difference

between the ground state and first excited state.

For the DFT calculations, the hybrid functionals mix some SCF (HF)

exchange with the DFT exchange. There have been many hybrid

functionals proposed for ab initio calculations such as B3LYP, B3P86 etc.

We have chosen the B3PW91 functional as it was found in other

investigations that all the hybrids give approximately similar results and

B3PW91 results agree well with the experimental values when this

comparison can be made [67].
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Chapter 4

POLARIZABILITY VS
CHAIN LENGTH

In this chapter, we discuss trends in polarizabilities of the studied systems

for both SOS and CIS methods as discussed in Chapters 2 and 3. First, in

section 4.1, we describe the dependence of the polarizabilities on the

inverse of the oligomer length, then in section 4.2 the dependence of the

polarizabilities per monomer on the oligomer length and lastly in section

4.3, we describe the evolution of the excitation energy as function of the

polarizabilities.

4.1 Polarizability vs the monomer

length - infinite chain length limit

The calculated polarizabilities for OTH, OCY, OFV, OCNTH, OCNCY

and OCNFV in SOS and CIS methods are tabulated in tables 6.1 and 6.2

(see Appendix). The main objective of this study is to investigate the

variation of polarizabilities as function of oligomer lengths. We have found .
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Figure 4.1: (a) Approximate average and (b) average polarizability as

a function of the inverse of the oligomer length in SOS method.
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that it is more informative to plot polarizabilities as function of the inverse

of the oligomer length rather than as function of the oligomer length. This

procedure allows us to see clearly what happens when the chain length, n,

becomes very large because in this limit 1/n goes to zero. Figures 4.1 and

4.2a show the polarizabilities as function of the inverse of the oligomer

lengths in SOS and CIS methods. From the tables and figures, it can be

noted that the magnitudes of the CIS polarizabilities are greater than those

of the SOS polarizabilities. In all cases, for a specific oligomer, the

magnitude of polarizability increases with the increase of the oligomer

length.

Figure 4.1 shows that in the SOS method both the average ex and the

approximate average ex give very similar trends of ex as function of 1/n.

The average polarizability is calculated from the average of the diagonal

elements of the polarizability tensor and the approximate average

polarizability is calculated from oscillator strengths. In both cases the cyano

substituted oligomers are clustered above their parent oligomers with one

exception for the approximate average a., OCNTH is placed amongst the

parent oligomers. However, in both cases OCNTH displays leveling off of

ex on going from tetramer to seximer. The results for the CIS

polarizabilities (see figure 4.2a), except for the fact that their magnitudes

are 2 to 4 times larger than the SOS values, exhibit very similar trends. The

three cyano compounds are clustered above their parent oligomer curves

and OCNTH again displays a decrease in ex on going from 4 to 6­

monomer chains.
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The shape of most of the curves is approximately same (see figure 4.2a).

The one exception being is OCNTH, where the compound initially

exhibits same dependence of a on 1/n and then a drops off. As two

methods have shown the same trends (figures 4.1 and 4.2a), to see the

dependence of the average polarizability on the oligomer length, we have

only plotted figure 4.2b for CIS method. It has observed that the average

polarizability varies as n1.4 to n1.5 for all except for OCNTH for which a

varies n1.1. Further computations of a were prohibitive for larger

compounds. However, our guess would be that after the initial drop, a

would increase at a rate that is similar to the one observed for OTH. There

is some support for this idea when one looks closely at the table 6.2. In

particular it can be noted from table 6.2 that most of the contributions to

the average polarizabity in most cases come from the longitudinal

component of the polarizability (which is along the x direction). In the case

of OCNTH, there is a significant decrease in <lxx on going from 4 to 6

monomers. It is, as if, the cyano group contribution becomes less

important when the chain becomes longer and only the thiophene rings

contribute to the polarizability.
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4.2 Polarizability per monomer vs

oligomer length

Figures 4.3 and 4.4 show that initially the polarizability per monomer (0./n)

increases with the increase of the oligomer length for all the systems and

then after certain oligomer length it either levels off or decreases. It has

been found that for both SOS and CIS methods, for OTH and OCY, the

(X/n increases with the increasing oligomer length up to octamer and after

that it remains approximately constant (see figures 4.3 and 4.4 and tables

6.1 and 6.2 in Appendix). For OFV, we have found that (X/n increases with

the increase of the oligomer length but as we have stopped our calculations

at an octamer, we could only speculate, based on similarities in the

behavior of OTH and OCY, that (X/n would become constant as oligomer

becomes even longer.

We have investigated (X/n for OCNTH for oligomers made of monomer

to seximer and have found different behaviors for the two methods. For

the SOS method, with the increase of the oligomer length, the approximate

average (X/n decreases up to seximer and the average (X/n first increases up

to tetramer then it decreases for seximer. For CIS, we can see that with the

increase of the oligomer length, (X/n increases up to tetramer and then

decreases. We have investigated (X/n for OCNCY and OCNFV from

monomer to seximer and from monomer to tetramer for SOS and CIS

methods respectively. In both methods, with the increase of the oligomer
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Figure 4.3: (a) Approximate average and (b) average polarizability

per monomer as a function of the oligomer length in SOS method.
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Figure 4.4: Average polarizability per monomer as function

of the oligomer length in CIS method.

length, the ex/n increases up to tetramer. For SOS, we have continued our

investigation up to seximer, we have seen that with the increase of the

oligomer length, there is a decrease in approximate average ex/n. In all cases

we can see that there is a large differenence in magnitude of the calculated

SOS and CIS polarizability per monomer.
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4.3 Polarizability and excitation

energy

First, we investigated the dependence of the excitation energies on the

chain length of the polymers from monomer to higher length (see figure

4.5). For OTH, with the increase of the oligomer length, the excitation

energies decrease up to octamer but after that seemed to be constant.

OCY and OFV show similar behavior as OTIl For CXNCY and

CXNFV, with the increase of the oligomer length, the excitation energies

decreased. 0CN1H has shown a different behavior than others. With the

increase of the oligomer length, the excitation energy first decreases then

slightly increases. Due to the calculation limitations, we could not continue

our calculations for the longer oligomers for these molecules. Our

investigations suggest that to clearly see the saturation effect, it is required

to continue calculations for higher oligomer lengths.

We have found that there is an inverse relationship between the excitation

energies and the polarizabilities of the polymers (see table 6.3 in

Appendix). That is for all molecules with the increase of the oligomer

length, the excitation energy decreases [37, 38] but the polarizability per

monomer increases except where there is a variation at seximer for

0CN1H (see table 6.3). In this case, with the increase of the oligomer

length the excitation energy increases but the polarizability decreases. Our

results for the excitation energies (see table 6.3) indicate that the effective
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Figure 4.5: Excitation energy as a function of the

oligomer length in CIS method.

length or mean conjugation length for OTH and OCNTH is

approximately 8 to 10 monomers, and 4 to 6 monomers respectively,which

corresponds to the saturation values of 2.837 eV and 1.987 eV,

respectively. Chakraborty et aL have found the same results in their

investigations [39]. The mean conjugation length for OCY and OFV, and

OCNCY and OCNFV is around 8 monomers and 4 monomers

respectively. They found the saturation values of 2.806 eV, 2.650 eV, 2.568

eV and 2.319 eV for these systems respectively. Our results are the same as

those reported by Chakraborty et aL [22]. To see the relation between the

excitation energy and the polarizability, we have plotted the excitation
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Figure 4.6: Excitation energy as a function of the

polarizability per monomer in CIS method

energies as a function of the polarizability per monomer in figure 4.6. This

figure shows that as the excitation energies decrease the polarizabilities per

monomer increase with the increase of the oligomer length. Parent

oligomers have higher excitation energies and lower polarizabilities than

their cyano derivatives.
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Chapter 5

POLARIZABILITY

VS

BOND LENGTH ALTERNATION

Partial geometry optimizationst on oligomers OA, OTH, OCY, OFV and

OCNTH have been performed by using HF, CIS and DFT methods. We

were interested to see the evolution of the a, ~ and~ with respect to

BLA.

In order to see the effect of BLA upon a and ~, we have systematically

changed or modified the structures by simultaneously shortening all the

single bond lengths and lengthening all the double bond lengths by steps of

o.02A until they are equal and then reversed the process. 1bis procedure

produced two isomeric forms: aromatic (or<O) and quinonoid (or>O).

In this chapter we investigate the BLA effects upon a , ~ and ~E for OA,

OTH, OCY, OFV and OC TH in sections 5.1, 5.2, 5.3 and 5.4

respectively.

tSee Chapter 3.
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5.1 OLIGOACETYLENE (OA)

OA (J bonds)

OA (9 bonds)

Figure 5.1: OA with 7 and 9 C-C bonds respectively.

We began the investigation of OA by generating acetylene oligomers of

equal number of bonds but different end groups for the two oligomers. It

was found that the end groups and number of double bonds have

significant effects on the polarizabilities. To circumvent these problems,

we studied OA consisting 7-bonds and 9-bonds. In each case, the

oligomers have four double bonds and the same groups (=CHz for 7­

bonds and -CH3 for 9-bonds oligomers) at the end (see figure 5.1). It has

also been observed that the single bonds do not have large effects on the
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polarizabilities. We have considered two sets of OA with or ranging

between - 0.17 A to 0 A and 0.03 A to 0.19 A. Our results are summarized

in sections 5.1.1, 5.1.2 and 5.1.3.

5.1.1 Average polarizability per C-C

bond vs bond length alternation

From figure 5.2, for the three computational methods, we observe that a

per C-C bond (from now onward it will be referred as a/bond) increases

as or increases from - 0.17 A to 0 A and then decreases as or increases

from 0.03 A to 0.19 A. The actual values plotted in figure 5.1 are given in

table 1.1 in the Appendix. In all cases, a/bond has a maximum value at or

= 0 A (cyanine limit).

All methods show the same trend but they differ in the magnitude of

a/bond. For RHF and DFf, a/bond has approximately the same

magnitude. The magnitude of a/bond found by CIS is found to be greater

by a factor ~ 1.5 (see table 1.1 in the Appendix). In the coordinate system,

in which the calculations of a are carried out, x is the direction along the

oligomer backbone, and y is perpendicular to the xz plane. The

components <Xyy, Uzz and Uxy are smaller than <Xxx. <lyz and Uxz are nearly

zero in magnitude (see table 1.1 in Appendix).
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Figure 5.2: Evolution of average polarizability per C-C bond as

a function of the bond length alternation for 7 (BLA~O) and 9

(BLA>O) C-C bonds of GA.

In all methods, Uxx is the largest. This clearly indicates that the largest

contributions to a comes from its longitudinal component <Xxx .This is due

to the fact that because of 1t conjugation, electron redistribution in the

presence of an electric field occurs most easily along the backbone of the

oligomer. Similar trend, as seen in figure 5.2 (a/bond increases when or

tends to zero), has been found by Meyers et al [32].
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5.1.2 First order hyperpolarizability

vs bond length alternation

From figure 5.3 and table 1.2 (see Appendix) we can see that for both the

methods, with the increase of or from - 0.17 Ato 0 Aand 0.03 Ato 0.19 A

the first order hyperpolarizability increases, but there is a drop near or =0

A. That is, ~XX:"j!~~s around or =0 A but not exacdy at or =0 A. It has

~ been observed that the HF ane)'~:J~::~ods show the same trend but

give different magnitudes for ~. The ~ data (table 1.2 in the Appendix) for

the two computational methods are given in the Z-matrix orientation

coordinate systems. In this coordinate system x and z axes are in the plane

of the oligomer and the oligomer is at an angle relative to x and z axes, and

y axis is perpendicular to the xz plane. With the increase of or, different

components have shown different behaviors. ~xxy, ~xyy, ~yyy, ~yyz and ~yzz

components are very small and change very litde with or. On the other

hand, the magnitudes of ~xxz, ~xyz and ~xzz components are significandy

larger as the molecule is in the xz plane and the contribution to ~ comes

from both the x and z directions. ~xxx and ~zzz have the largest magnitudes

of all the tensor components of [J (hence they are plotted in figure 5.3).

Of those two, ~zzz is the most dominant component (see in table 1.2 in

Appendix).
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Figure 5.3: Evolution of fIrst order hyperpolarizability (a) ~xxx and

(b) ~zzz as a function of the bond length alternation for 7 (BLA:SO)

and 9 (BLA>O) C-C bonds of OA.
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5.1.3 Excitation energy vs bond

length alternation

From figure 5.4 and table 1.3 (see Appendix), we observe that the three

computational methods give excitation energies (8E) that decrease as or

increases from - 0.17 A to 0 A and then increase as or increases from 0.03

A to 0.19 A. In other words, for both oligomers, 8E decreases as or tends

to zero. CIS and DFf give comparable values for the excitation energies.

HF values for excitation energy are larger by factors ~3 and ~2 than those

obtained with DFT and CIS methods respectively (see table 1.3 in

Appendix). It is well known that HF theory always overestimates the

HOMO-LUMO gap [68]. There is a discontinuity in excitation energies at

or = 0 A for HF and DFf approaches. This is due to the fact that the

number of C-C bonds is different for the two oligomers and this affects

the excitation energies. Longer chains have lower excitation energies, hence

the excitation energies for the 7-bonds OA are larger than those for 9­

bonds OA. For CIS calculations, the excitation energies are only slightly

smaller (approximately 0.3 eV) for the 9-bonds OA in comparison to the

7-bonds OA.
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Figure 5.4: Excitation energy as a function of the bond length

alternation for 7 (BLA:SO) and 9 (BLA>O) C-C bonds of GA

5.2 OLIGOTHIOPHENE (OTH)

5.2.1 Average polarizability per C-C

bond vs bond length alternation

From figure 5.5 and table 2.1 (see Appendix), we observe that for the three

computational methods a/bond increases as or increases from - 0.17 A to
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Figure 5.5: Evolution of average polarizability per C-C bond as

function of the bond length alternation for the aromatic (BLA~O)

and quinonoid (BLA>O) structures of OTH .

oA and then decreases as or increases from 0.03 A to 0.19 A. All methods

show the same trend in a/bond as a function of or but they differ in

magnitude. HF and DFf values for a/bond have shown exactly the same

trends and similar magnitudes. CIS results show similar trend in

comparison to DFf and HF but the magnitude of the a/bond is greater

by a factor -1.3. For the aromatic structure, the a/bond increases slowly

and almost linearly with or and then decreases rather slowly for the
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quinonoid structure but with a steeper slope. In all the methods, a/bond is

larger for the quinonoid structure than for the aromatic structure.

For any or, in all the methods, similar to OA results, we have found the

longitudinal component <Xxx to be the largest, indicating that the charge

redistribution in the presence of an electric field is along the chain

backbone. The component fJrt is the second largest. Uzz and <Xxy are smaller

than both <Xxx and fJrt. The other components Uyz and a xz are negligible

(see table 2.1 in Appendix).

5.2.2 First order hyperpolarizability vs bond

length alternation

From figure 5.6 and table 2.2 (see Appendix), it is observed that for the

two computational methods, the variation of ~xxx and ~zzz, as function of or

is very different for the aromatic structure and the quinonoid structure.

The coordinate system used for the calculations of ~ for OTH is similarly

defined as for OA (see section 5.1.2). For the aromatic structure, ~xxx is the

dominant component of iJ and for the quinoniod structure ~xxx and ~zzz

have similar magnitudes and are the dominant components of iJ. Figure

5.6 shows that ~xxx and ~zzz are independent of or for the aromatic

structure. For the quinonoid structure, there are some variations of ~xxx and

~zzz with or. In addition for the quinonoid structure, ~xyy, ~xxz and ~xzz

components also make significant contributions to ~.
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Figure 5.6: Evolution of ftrst order hyperpolarizability (a) ~xxx and

(b) ~zzz as a function of the bond length alternation for the aromatic

(BLA~O) and quinonoid (BLA>O) structures of OTH.
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The other components have very small contributions on ~ and compared

to ~l<XX and ~zzz, those are negligible.

The reason, for which ~ is significandy larger for the quinonoid isomers, is

because the molecules are no longer centro-symmetric when =CHz end

group was added at one end of the OTH dimer. This was done (as

discussed in Chapter 3) in order to have the same number of double bonds

in both aromatic and quinonoid isomers.

5.2.3 Excitation Energy vs bond length

alternation

From figure 5.7 and table 2.3 (see Appendix), we observe that the three

computational methods give excitation energies (~E) that decrease as or

increases from - 0.17 A to 0 A and then increase as or increases from

0.03 A to 0.19 A. For both the aromatic and quinonoid structures, ~

decreases as or tends to zero. Similar to OA results, CIS and DFT give

comparable values for the excitation energies whereas HF calculations, for

the excitation energies, are larger by a factor of ~2.3 (see table 2.3 in

Appendix). There is a small discontinuity in excitation energies at or =0 A

for all three methods. The excitation energies for the quinonoid structures

are slighdy lower than for the aromatic structures.
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Figure 5.7: Excitation energy as function of the bond length

alternation for the aromatic (BLA~O) and quinonoid (BLA>O)

structures of OTH.

5.3 OLIGOCYCLOPENTADIENE
(OCY)

5.3.1 Average polarizability per C-C bond vs

bond length alternation

From figure 5.8 and table 3.1 (see Appendix), for the three computational

66



."HF.-.. as

..... DFf

,/~------.------"------"-----'

.-----.------.------.------..
-0_1

Bond length alternation (A)

Figure 5.8: Evolution of average polarizability per C-C bond as

a function of the bond length alternation for the aromatic (BLA:SO)

and quinonoid (BLA>O) structures of OCY.

methods, we observe that a. increases as or increases from - 0.17 A to 0 A

and then decreases as or increases from 0.03 A to 0.19 A. The comments

that we have made for OTH in section 5.2.1, regarding a./bond, are also

applicable to OCY and will not be repeated here. The only difference is the

fact that CIS values are greater than HF and DFT values by a factor of

~1.3 instead of ~2.3.
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Figure 5.9: Evolution of first order hyperpolarizability ~zzz as

function of the bond length alternation for the aromatic (BLA~O)

and quinonoid (BLA>O) structures of OCY.

5.3.2 First order hyperpolarizability vs

bond length alternation

From table 3.2 (see Appendix), we can see that for both HF and DFf

methods, ~zzz is the dominant component of jj. ~zzz, as function of or, is
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plotted in figure 5.9. Again, Z-Matrix orientation coordinate system is

defined as in section 5.1.2. ~zzz is larger for the quinonoid structure than for

the aromatic structure, for the same reason discussed in section 5.2.2. The

other smaller but still significant components of ~ are ~xxx, ~xxz and ~=. As

for OA, for OCY, components of ~ peak around or = 0 Abut not at or =

oA.

5.3.3 Excitation energy vs bond length

alternation

From figure 5.10 and table 3.3 (see Appendix), we observe that the three

computational methods show that excitation energies (~E) decrease as or

increases from - 0.17 Ato 0 Aand then increase as or increases from

0.03 Ato 0.19 A. Similar comments, regarding the trends of the excitation

energies as function of or, made for 01H also apply for OCY. The only

difference is that HF values are greater by a factor of -1.9 and -3.3 for

DFT and as methods respectively (see figure 5.10 and table 3.3 in

Appendix).
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Figure 5.10: Excitation energy as a function

of the bond length alternation for the aromatic (BLA:SO) and

quinonoid (BLA>O) structures of OCY.

5.4 OLIGOFULVENE (OFV)

5.4.1 Average polarizability per C-C bond

vs bond length alternation

From figure 5.11 and table 4.1 (see Appendix), we observe that for the

three computational methods, a/bond increases as or increases from
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Figure 5.11: Evolution of average polarizability per C-C bond

as a function of the bond length alternation for the aromatic

(BLA::;O) and quinonoid (BLA>O) structures of OFV.

- 0.17 A to 0 A and then decreases as or increases from 0.03 A to 0.19 A.

OFV shows a similar trend as observed for OTH and OCY (see sections

5.2.1 and 5.3.1) for the aromatic structure. In fact, HF and DFT values for

a/bond show similar behavior and magnitude for both the structures

(except at or=0.15 Awhere DFT result is anomalous). But for CIS there is

a drop in the magnitude of a/bond for the quinonoid structure. CIS

results for the aromatic structure, in comparison to DFT and HF, is greater

by a factor of ~1.5. We suspect that the side groups, located at the tip of

71



the ring, containing the double bonds in OFV are the main reason for this

behavior. As pointed out earlier, the double bonds have significant effects

on the polarizability. Hence for OFV, depending on the methods, the

aromatic sturcture is almost or more polarizable than the quinonoid

structure.

In the coordinate system in which the calculations of a are carried out, y is

the direction along the oligomer backbone and x is petpendicular to the xy

plane. For any or, in all the methods, we have found that the longitudinal

component a yy is the largest, indicating that the charge redistribution in

presence of an electric field is along the chain backbone. The component

a xx is also large but azz and axy are smaller than a xx and a yy. The other

components, ayzand a xz, are negligible (see table 4.1 in Appendix).

5.4.2 First order hyperpolarizability vs bond

length alternation

From figure 5.12 and table 4.2 (see Appendix), it can be seen that for the

two computational methods, the variation of ~xxx and ~zzz as function of or,

is very different for the aromatic and the quinoniod structures. The

coordinate system used for the calculations of ~ for OFV is similarly

defined as for OA (see section 5.1.2). For both the structures, ~xxx is the

dominant component of ~. ~xzz, ~xzz and ~zzz are also comparable to ~xxx

(see table 4.2 in Appendix). Figure 5.12 shows that ~xxx and ~= are

independent on or for the aromatic structure.
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Figure 5.12: Evolution of first order hyperpolarizability (a) ~xxx and

(b) ~ZZ7. as a function of the bond length alternation for the aromatic

(BLA:SO) and quinonoid (BLA>O) structures of OFV.
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For the quinonoid structure there are some variations of ~xxx and ~zzz with

or. In addition, for the quinonoid structure, ~xyy and ~yyz components make

significant contributions to ~. The other components, compared to ~xxx and

~zzz, are negligible. Again larger variations of ~ for quinonoid structures are

due to the fact that oligomers are not centro-symmetric.

5.4.3 Excitation energy vs bond length

Alternation

From figure 5.13 and table 4.3 (see Appendix), we observe that the three

computational methods give excitation energies (~) that decrease as or

increases from - 0.17 A to 0 A and then increase as or increases from

0.03 A to 0.19 A. For both the aromatic and quinonoid structures, ~E

decreases as or tends to zero, except at or = 0.03 A, where there is a

discontinuity for HF and DFT. In all the methods, excitation energies are

larger for quinonoid isomers. This is an opposite behavior, in comparison

to OA, OTH and OCY (see figures 5.4, 5.7 and 5.10). CIS and DFT

methods give comparable values for the excitation energies, whereas HF

values for the excitation energies are larger by a factor of ~2.3 (see table 4.3

in Appendix). Similar to OTH and OCY, for all the methods we can see

the discontinuity in excitation energies at or =0 A.
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Figure 5.13: Excitation energy as a function

of the bond length alternation for the aromatic (BLA::SO) and

quinonoid (BLA>O) structures of OFV.

5.5 OLIGO-DICYANOMETHYLENE

CYCLOPENTADITHIOPHENE

(OCNTH)

5.5.1 Average polarizability per C-C bond vs

bond length alternation

From figure 5.14 and table 5.1 (see in Appendix), for the three

computational methods, we observe that a increases as or increases from
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Bond length alternation (A)

Figure 5.14: Evolution of average polarizability per C-C bond as a

function of the bond length alternation for the aromatic (BLA:SO)

and quinonoid (BLA>O) structures of OCNTH.

- 0.17 A to 0 A and then decreases as or increases from 0.03 A to 0.19 A.

The similar comments that we have made for OTH in section 5.2.1

regarding the trends of a/bond as a function of or also apply to OCNTH

and will not be repeated here. Here we only note that CIS results are

greater than HF and DFT values by a factor of ~ 1.3 to ~1.5 instead of

~1.3. For any or, in all the methods, similar to other oligomers studied, we

have found that the longitudinal component C1rf is the largest, indicating
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that the charge redistribution, in the presence of an electric field, is along

the chain backbone. The component <:XXx is comparable to Uyy, particularly

for the aromatic structure. Uzz and <:XXy are smaller than <:xxx and Uyy. The

other components, <X.yzand <:xxz, are negligible (see table 5.1 in Appendix).

5.5.2 First order hyperpolarizability vs

bond length alternation

From figure 5.15 and table 5.2 (see Appendix), we observe that for the two

computational methods, the variation of ~xxx and ~zzz as function of or are

very different for the aromatic structures and the quinoniod structures. The

coordinate system used for the calculations of ~ for OC TH is similarly

defined as for OA (see section 5.1.2). For the aromatic structures, ~zzz is

the dominant component of jJ. And for the quinonoid structures, all the

components of ~ are non-negligible, and among them, ~xxx and ~zzz are the

dominant components of ~. Figure 5.15 shows that ~xxx and ~zzz are

roughly independent of or for the aromatic structures. For the quinoniod

structures, because the compound is not centro-symmetric, there are some

variations of ~xxx and ~zzzwith or. In addition, for the quinonoid structures,

~xxy, ~xyy, ~yyy, ~xxz, ~xyz, ~yyz, ~xzz and ~yzz components make significant

contributions to ~.

77



..--- --...

v
..-

-------. .._--./

Bond length alternation (A)

---..~ \ .
\ \ .~~~.

\~ •... /

~/ -~-.

-.---- ...---- -..-

Bond length alternation (A)

(a)

(b)

Figure 5.15: Evolution of fIrst order hyperpolarizability (a) ~xxx and

~7.ZZ as a function of the bond length alternation for the aromatic

(BLA:SO) and quinonoid (BLA>O) structures of OCNTH.
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Figure 5.16: Excitation energy as a function

of the bond length alternation for the aromatic (BLA:SO) and

quinonoid (BLA>O) structures of OCNTH.

5.5.3 Excitation Energy vs bond length

alternation

From figure 5.16 and table 5.3 (see Appendix), we observe that the three

computational methods show that excitation energies (~E) decrease as or

increases from - 0.17 A to 0 A and then increase as or increases 0.03 A to

0.19 A. Similar comments, regarding the trends of the excitation energies as

a function of or, that were made for OFV, apply also for OC TH. The
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only difference is that HF values are greater by a factor of ~2.6 and ~3.2

for CIS and DFT methods respectively (see figure 5.16 and table 5.3 in

Appendix).
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Chapter 6

DISCUSSIONS AND
CONCLUSIONS

We have studied the dependence of the polarizabilities and the excitation

energies on the chain length for the oligomers OTH, OCY, OFV,

OCNTH, OCNCY and OCNFV (see Chapter 4). The BLA effects upon

a, ~ and ~E for the oligomers OTH, OCY, OFV and OCNTH were

also investigated (see Chapter 5).

In this chapter we compare the behavior of the different oligomers and

summarize the results obtained. Where possible, we compare our results

with the previous works. However, comparison with the experiment is

limited by the lack of experimental data. In the absence of experimental

data, it is difficult to assess the accuracy of the present method. We

compare the behavior of the parent oligomers in section 6.1, their cyano

derivatives in section 6.2, and the thiophene and its cyano derivative in

section 6.3. In section 6.4, we compare our results with the previous works

and in section 6.5, we summarize our conclusions.

81



6.1 Comparison of OTH, OCY and

OFV

With the increase of the oligomer length, the polarizabilities and the

excitation energies of OTH, OCY and OFV oligomers have increased and

decreased respectively. All three have shown the same trend in SOS and

CIS methods but the results differ in magnitude (see figures 4.1 and 4.2 in

Chapter 4). In both methods, for all oligomers, we can see strong chain

length dependence of a for the shorter oligomers and then leveling off for

the longer oligomers around 7 to 8 monomers.~ also becomes constant

(see figures 4.3, 4.4 and 4.5) as the chain length increases in the CIS

approach. With the oligomer length a increases in the order of

OFV>OCY>OTH and excitation energies decrease OTH>OCY>OFV

respectively.

In order to access the magnitude dependence of a on the theoretical

method used, we computed, for dimers, the polarizabilities and excitation

energies using HF and DFT as well as CIS methods (see figure 6.1 and

table 7.1 in Appendix). Calculated CIS polarizabilities and HF excitation

energies are the largest for all molecules. HF overestimation of excitation

energies is well known and is not unexpected. However, the size of CIS

polarizabilities relative to HF and DFT is not so well known.
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In all methods, for OTH, OCY and OFV oligomers, with the increase of

BLA, a/bond increases for the aromatic structure and decreases for the

quinonoid structure (see figures 5.5, 5.8 and 5.11 in Chapter 5). In HF, CIS

and DFT methods, OTH and OCY show a similar trend but differ in

magnitude. a/bond is the largest for OFV. In a case of OTH and OCY,

the magnitude of a/bond is larger for the quinonoid than for aromatic

structure. For OFV, the magnitude of a/bond is larger for the aromatic

structure than for quinonoid structure (CIS method). But for HF and DFT

methods, the magnitude of a/bond for quinonoid structure is slighdy

larger than for aromatic structure.

With the increase of BLA, HF and DFT approaches show that ~ is

approximately independent of Or for the aromatic structure but some

variation can be seen for the quinonoid structure (see figures 5.6, 5.9 and

5.12). In all cases, ~xxx and ~zzz are the dominant components of ~ as the

molecules are at an angle in the xz plane (see Chapter 5). As discussed in

Chapter 3, the reason for which ~ exhibits variation for the quinonoid

structure is due to the fact that in this case the unit cell is not centro­

symmetric. This means that only non centro-symmetric oligomers will give

rise to finite first order hyperpolarizability that peaks at finite intermediate

Or (not Or =0 A).

From figures 5.7, 5.10 and 5.13, we can see that for all molecules, for both

aromatic and quinonoid structures, ~ decreases as Or tends to zero (for

OFV, there is a discontinuity at Or = 0.03 A). For OTH and OCY, the
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excitation energies of the quinonoid structures are slightly lower than for

the aromatic structures but OFV shows the opposite behavior.

6.2 Comparison of OCNTH, OCNCY

andOCNFV

In both SOS and CIS methods, with the increase of the oligomer length,

the polarizabilities of OCNTH, OCNCY and OCNFV oligomers increase

up to tettamers. There is a decrease for seximer in SOS and CIS for

OC TH (see figures 4.1, 4.2, 4.3 and 4.4). Also for OC TH, with the

increase of the oligomer length, in SOS method, we can see that the

approximate average polarizability per monomer decreases relative to other

oligomers (see figure 4.3). This is not the case for the average SOS and CIS

polarizabilities. With the increase of the oligomer length, the increasing

order of a is OCNFV> OC CY>OCNTH. For OC CY and OCNFV,

the excitation energies decrease with the increase of the oligomer length

but for OCNTH there is an increase at tettamer (see figures 4.5 and 4.6).

Similar comments, regarding the polarizabilities and the excitation energies,

that were made for the climer molecule for OTH, OCY and OFV in

section 6.1 also apply to OC TH, OCNCY and OCNFV (see table 7.1 in

Appendix).
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6.3 Comparison of OTH and OCNTH

We find that in all methods, OCNTH has the larger polarizability but the

lower excitation energy than OTH (see figures 4.1, 4.2, 4.5 and 4.6). With

the increase of the chain length, they show the same trend but with a

decrease in polarizability in OCNTH at seximer. We suspect that for larger

oligomers ex would increase at a similar rate as in OTH (see figures 4.3 and

4.4).

The BLA effects upon ex for the three methods are shown in figure 6.2.

They show the same trend in ex for both structures of OTH and OCNTH

but differ in magnitude (by a factor of -1.6 to -2). The longitudinal

component of ex is the dominant component of ex for OTH and OCNTH.

For both OTH and OC TH, in the two methods, ~lOCX and ~zzz are the

dominant components in ~ (see in tables 2.2 and 5.2 in Appendix). We plot

~xxx to show the evolution of ~ as function of Or (see figure 6.3). Again due

to asymmetric structure, the quinonoid structure displays variation of ~ as

function of Or especially for the DFT method (see figure 6.3). LlE is larger

for OTH than OCNTH in all methods (see figure 6.4).
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6.4 Comparison of our results with

the previous works

Table 6.1: Comparison of our calculated data and the experimental

data of a/n for OTH. Units are atomic units (a.u.),

where 1 a.u. = 1.64877x10-41 C2 m2]-1.

No. Our calculated result Calculated Experimental
of
rings
(n)

a/n a/n a/n a/n a/na a/nb a/ne a/nd

by by by by
SOS CIS HF DFT

1 48.82 48.41 44.5 66.9 66.0
2 53.24 63.87 48.90 53.62 49.6 84.4
4 57.82 97.47 59.3 168.7 50.7 23.6
6 58.82 121.27 65.5 506.1
8 58.53 130.07

aReferences 15 and 45.

bExperimental measurements at A= 589 nm in THF solution, reference[38].

eExperimental measurements at A= 632.8 nm in a thin film [38].

dExperimental measurements at A= 632.8 nm in a thin film matrix of

PMMA [37].
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In table 6.1, we compare our results with the previous works for OTH. It

can be seen from the table that our results in SOS method in gas phase is

approximately same as Champagne et al. who computed a. using coupled

and uncoupled Hartree-Fock levels with 3-21G basis set [15]. Our

calculated result for a dimer in HF method has good agreement with

Champagne et al. The calculated a./n in SOS method is fairly good

agreement with the result by Zhao et al. from the experimental

measurements at A. = 632.8 nm in a thin film [38]. But the experimental

measurements at A. = 589 nm in THF solution by Zhao et al. [38] is larger

than our calculated results and Champagne et al. [15]. This is due to the fact

that the THF solvent having larger effect on the polarizabilities [33]. It can

be seen from table 6.1 that CIS results overestimate and SOS method gives

good agreement with experimental polarizabilities for the longer oligomers.

The results in the table indicate that the polarizablity is extremely sensitive

to the nature and physical state of the chains.

In table 6.2 and 6.3, we compare our calculated CIS excitation energies for

OTH, OCY, OFV, OCNTH, OCNCY and OCNFV oligomers with the

Chakraborty et al. [22, 39]. We have found that there are only few

differences between our and Chakraborty et al.'s results (these differences

are due to the fact that we used the keyword Freq (see in [42,43, 59]) in

our Gaussian calculations).
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Table 6.2: Comparison of our calculated CIS excitation energies (m eV)

with Chakraborty et aL for different oligomer

with the method/basis set RCIS/3-21 G*.

Oligomer OTH OCY OFV

Calculated aRef Calculated bRef Calculated bRef

Monomer 5.57 5.57(5.17) 5.36 6.35 6.45 6.46

Dimer 4.10 4.11(3.87) 4.78 4.79 4.00 4.00

Tetramer 3.19 3.19(3.16) 3.36 3.36 3.05 3.05

Seximer 2.91 2.92(2.85) 2.93 2.74

Octamer 2.83 2.83 2.80 2.81 2.65 2.65

Decamer 2.82 2.82 2.77 2.77

12-mer 2.82 2.77 2.77

aRef: see reference [39] and references within.

bRef: see reference [22].

Note: experimental values are given in parentheses from aRe£.
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Table 6.3: Comparison of our calculated CIS excitation energies (in eV)

with Chakraborty et al. the for different oligomers in their most

stable configuration with the method/basis set RCIS/3-21G*.

Oligomer OCNTH OCNCY OCNFV

Calculated aRef Calculated bRef Calculated bRef

Monomer 1.93 1.93 3.58 3.58 3.47 3.47

Dimer 1.78 1.78 2.59 2.59 2.34 2.35

Tetramer 1.98 1.63 2.56 2.57 2.31 2.34

Seximer 2.01 1.99 2.54 2.32

aRef: see reference [39] and references within.

bRef: see reference [22].
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6.5 Conclusions

From the investigations we find that for a specific molecule, a is larger for

larger oligomer length. a has the largest value along the longitudinal

direction due to the electron delocalization along the backbone of the

molecules. For all, in as, HF and DFT methods, we found that the

longitudinal component is the largest component in a and increases with

the chain length. Paras N. Parsad et a/. have shown theoretically that the

longitudinal polarizability increases rapidly to the number of the repeat

units for n-conjugated chain molecules [69]. Hurst et a/., in their

investigation on the polyene systems via ab initio coupled-perturbed

Hartree-Fock theory, found that the longitudinal component is the largest

in a [27]. Jacquemin et aI., in their theoretical study of the longitudinal

polarizability and first order hWerpolarizability of polysilaacetylene, have

mentioned that the longitudinal components very often dominate the total

response [19].

For the parent oligomers, the polarizability per monomer increases

smootWy with the oligomer length and then shows an asymptotic behavior

with n. Villesuzanne et a/., in their study with the n-electron calculations of

the polarizabilities in conjugated systems using the finite- field technique,

have found the same result [29]. Kinman et a/., in their observation of ab

initio sa calculations of the static longitudinal polarizability for

polydiacetylene and polybutatriene, have found that the longitudinal
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polarizability per number of repeat units n becomes constant when n is

sufficiently large [44]. For the parent oligomers we found no saturation of

the conjugation up to n = 7. Zhao et aL [38] also found no saturation of the

conjugation up to n = 6. Thienpont et aL [37] found that the saturation of

the polarizability occurs at n = 7. For OTH, OCY and OFV we found a

strong oligomer length dependence of rx/n for n :s 7, that changes into a

much weaker, more or less constant for n >7, where the excitation energy

becomes constant also. For the cyano derivatives OCNTH, OCNCY and

OCNFV, we can not see the leveling off as the saturation regime does not

occur if the chains are not long enough. Kirtman et aL have mentioned this

in their observation [44].

For all oligomers, LlE decreases with the increase of the oligomer length.

Zhao et aL, in their observation of thiophene oligomers in THF solutions,

found the same result [38]. Thienpont el aL observed the same result in

their investigation on the saturation of the polarizability of oligothiophenes

[37]. The parent oligomers have higher excitation energies and lower a,

and cyano derivatives have lower excitation energies and higher a. This

result is consistent with Chakraborty et aL [22, 39] and Subramanian et aL

[40].

After investigating the effects of BLA on a, we have found that the end

groups and number of double bonds have significant effects on the

polarizabilities but single bonds do not have mentionable effects. In HF,

CIS and DFT methods; for OA, OTH, OCY, OFV and OCNTH, a/bond
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increases with the increase of Or from - 0.17 Ato 0 Aand then decreases as

Or increases from 0.03 A to 0.19 A. For, OA, a/bond is approximately

equal for both the isomers but for OTH, OCY and OCNTH, it is found

that the quinonoid structure is more polarizable than the aromatic

structure. For OFV, we have found that for CIS method, the aromatic

structure is more polarizabile than the quinonoid structure but for HF and

DFf, it shows the same trend as for OTH, OCY and OCNTH. This trend

agrees with Bredas et al, who, in their study for the third-order nonlinear

optical response in organic materials, mentioned that the quinonoid

geometric structure should be more highly polarizabilable than the

aromatic geometric structure [13].

For all molecules it was found that a/bond increases when Or tends to

zero and the largest contribution to a comes from its longitudinal

component. Meyers et al, in their investigation on the electric field

modulated nonlinear properties of donor-acceptor polyene for 9­

(dimethylamino) nona-2,4,6,8-tetraenal molecule (DAO) using sum over

states (SOS ) formulation, have shown the variation of a with BLA which

is same as what we find for OA [32]. Champagne et al have found the

same result in their investigation on the bond length alternation effects on

the static electronic polarizability of the polyacetylene chains [18].

Gorman et al have done an investigation of the interrelationships between

linear and nonlinear polarizabilities and BLA in conjugated organic

molecules (several prototypical mecrocyanines) by using the AM1
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parameterization in the MOPAC software package [70]. They have shown

the variation of ex with BLA which is similar to what we have observed.

For OA, in HF and DFf methods, ~ increases as Or increases from

- 0.17 A to 0 A and decreases as Or increases from 0.03 A to 0.19 A. ~

drops around Or = 0 Abut not exacdy at Or = 0 A. The variation of ~ with

Or (see figure 5.3) shows the same trend as Meyers et aL, found in their

investigation with the 9-(dimethylamino) nona-2,4,6,8-tetraenal molecule

(DAO) using sum over states (SOS ) formulation [32]. Marder et aL in their

discussion about the design and synthesis of chromophores and polymers

for electro-optic and photorefractive applications, have shown the

variation of ~ as function of BOA for a simple donor-acceptor polyene,

(CH3 )2 N-(CH=CH)4 -CHO. It was examined at the semi-empirical

'intermediate neglect of differential overlap-configuration interaction'

(INDO-CI) level [71].

Gorman et aL, also, in their investigation of the interrelationships between

linear and nonlinear polarizabilities and BLA in conjugated organic

molecules, have shown the variation of ~ as function of BLA [70]. They all

observed a trend of ~ with BLA (or BOA) same to what we observe in

OA. For OA, from figure 5.3 we can see the shape of the ~ evolutions as

function of Or is first derivative-like with respect to the ex evolution (see

figure 5.2). For OTH, OCY, OFV and OCNTH, the variation of ~ as

function Or is very different for the aromatic structure and the quinonoid

structure. In both HF and DFf methods, for all, ~ shows some variation

with Or for the quinonoid structure in comparison to the aromatic structure
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(which, as mentioned before, is due to the fact that the oligomers are no

longer centro-symmetric in the quinonoid structures). As first order

hyperpolarizability is calculated in the Z-matrix orientation coordinate

systems, we found, for OA, OTH, OCY, OFV and OCNTH, the

components ~JO(J( and ~zzz have the dominant contributions to~. The other

components have also a significant effect especially for OCNTH (in

quinonoid structure).

In HF, CIS and DFT methods, for OA, OTH, OCY, OFV and OCNTH,

we observe that L1E decreases as Or increases from - 0.17 A to 0.0 A and

increases as Or increases from 0.03 A to 0.19 A. For OA, we found that

L1E is larger for the 7-bond OA than for the 9-bond OA as longer chains

have lower excitation energies. For OTH, OCY and OCNTH, in all

methods, for both the aromatic and quinonoid structure, L1E decreases as

Or tends to zero. For OTH and OCY, L1E for aromatic structure is slighdy

larger than for the quinonoid structure but for OFV and OC TH, we can

see the opposite behavior.

From our observations, we find that calculated CIS polarizabilities are

larger than the other methods studied. DFT results are often found to be

improved over the Hartree-Fock results. It is also mentioned by Guan et

aL, in their paper, for comparison of local-density and Hartree-Fock

calculations of molecular polarizabilities and hyperpolarizabilities [66]. HF

excitation energies are overestimated than CIS and DFT results.

Chakraborty et aL also found the same result in their observation [22].
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From the present study we can therefore obtain the following important

conclusions:

(1) For both SOS and CIS methods, with the increase of the oligomer

length, the polarizabilities and the excitation energies of OTH, OCY

and OFV oligomers have increased and decreased respectively.

(2) For OTH, OCY and OFV, the polarizability per monomer

becomes constant at the higher oligomer length in both SOS and

CIS methods.

r~

(3) h;J. both SOS and CIS methods, with the increase of the oligomer

length, the polarizabilities of OCNTH, OCNCY and OCNFV

oligomers increase up to tetramers but there is a decrease for

seximer in SOS and CIS for OCNTH.

(4) For OCNCY and OCNFV, the excitation energies decrease with

the increase of the oligomer length but for OCNTH there is an

increase at tetramer in both methods.

~tti~~
(5) The cyano grm:qrs have ~ larger polarizabilities but the lower

thtt r

excitation energies than its parent oligomers.
f"" Cc-WlP'l/I'"ut'-.J-o

(6) The longitudinal component of the polarizability has the largest

value. That indicates that the charge redistribution in the presence

of an electric field is along the chain backbone.

(1) For all oligomers, we found an inverse relationship between the

excitation energies and the polarizabilities.
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(8) The magnitude of the as polarizability is larger than the SOS

polarizability.

(9) In HF, as and DFT methods, for OA, we observe that a/bond

increases for BLA :S 0 and decreases for BLA)().

(10) For OA, a/bond has a maximum value at BLA = 0 A(cyanine

limit).

(11) For both HF and DFT methods, for OA, the first order

hypetpolarizbility increases for BLA:SO and BLA)(), but there is

a drop near BLA = 0 A

(12) For OA, HF and DFT methods show the same trend for the first

order hypetpolarizability but give different magnitudes for ~.

(13) For 01H, OCY, OFVand 0CN1H, in all methods, the

quinonoid structure (BLA)()) is more polarizable than the

aromatic structure (BLA:SO) (except for OFV in as method).

(14) For all systems, in HF and DFT methods, ~ is approximately

independent of BLA for the aromatic structure.

(15) For all, ~ is significantly larger for the quinonoid structure

(BLA)()).The molecules are no longer centro-symmetric when

=ffi end group was added at one end of the 01H, OCY, OFV

and 0CN1H oligomers and hence ~ is finite.
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(16) In the three computational methods, excitation energies decrease

for BLA:SO and increase for BLA:>O (except for OFV).

(17) For both the aromatic and quinonoid structures, ~E decreases as

BLA tends to zero.

(18) In all methods, with the increase of BLA, the cyano substituted

0CN1H has larger polarizabilities and lower excitation energies

than the parent oligomer am

6.6 Future work

From our observation we have found that the end groups have a

significant effect on the polarizabilities. To eliminate the need for end

groups, it would be useful to use the periodic boundary condition (pBC

option in Gaussian 03). It is therefore suggested that in future this study

should be done with the PBC option.
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Table 1.1 : Average polarizability per C-C bond with the change of
the bond length of OA for paritial optimization in three different

methods

Polarizability Average
Bond (a.u.) Average Polarizability

Molecule Method length polarizability perC-Cbond
(A) a.x <Xyy a..z a..r a.,.z a.c. (a.u.) a/bond

(a.u.)

~ (1.38,
274.038 71.624 20215 -36.722 0.002 0.003 121.959 17.422

CIS 462.999 70.243 20.710 -16.525 0.001 0.002 184.650 26.378
~

1.43)
282.975 70.843 21.707 -20.483 0.000 0.000 125.175 17.882

~ (1.36,
246.979 71.318 20.245 -33.966 0.000 0.004 112.847 16.121

CIS 453.251 69.754 20.726 -14.928 0.000 0.000 181.243 25.891
~

1.45)
260.449 70.807 21.713 -20.176 0.000 -0.001 117.656 16.808

----.!:!L (1.34,
224.677 71.032 20.281 31.473 0.001 -0.026 105.330 15.047

CIS 442.872 69.350 20.747 13.833 0.001 -0.064 177.656 25.379
~

1.47)
239.854 70.777 21.726 19.754 0.001 -0.003 110.785 15.826

HF
(1.32,

206.453 70.756 20.322 -29.212 0.002 -0.010 99.177 14.168

~ 431.628 69.006 20.773 -13.060 0.001 -0.007 173.802 24.828
DFf

1.49)
221.452 70.748 21.744 -19.245 0.000 -0.002 104.648 14.949

HF
(1.40,

313.742 71.81 20.173 -40.112 0.003 0.006 135.241 19.320
~ 471.860 70.788 20.678 -19.269 0.003 0.004 187.775 26.825
~

1.40)
310.924 70.771 21.687 -20.506 0.000 0.000 134.460 19.208

~ (1.40,
306.947 71.942 20.192 -39.753 0.002 0.006 133.027 19.000

OA 473.249 70.827 20.690 -18.845 0.002 0.004 188.258 26.894
~

1.41)
306.966 70.881 21.708 -20.647 0.000 0.000 133.185 19.026

~ (1.42,
357.266 89.182 39.564 -44.440 -0.001 0.008 162.004 18.004

CIS 593.747 87.323 40.344 -23.598 0.000 0.013 240.471 26.716
DFf

1.39)
386.337 88.217 41.202 22.993 0.000 -0.012 171.918 19.102

HF
(1.44,

318.366 88.847 39.653 -40.615 0.001 -0.006 148.942 16.549
OS 576.281 86.814 40.397 -21.957 0.000 -0.012 234.497 26.055

DFf
1.37)

352.164 88.219 41.255 22.824 0.000 -0.011 160.546 17.838

HF
(1.46,

287.159 88.542 39.751 37.201 -0.001 -0.006 138.484 15.387

I ~~
559.336 86.422 40.462 20.857 0.000 -0.Q11 228.740 25.415

1.35)
321.256 88.230 41.323 22.408 0.000 -0.010 150.269 16.696

HF
(1.48,

262.218 88.261 39.855 34.144 -0.001 -0.005 130.111 14.456r-----as 542.114 86.120 40.535 20.042 0.000 -0.011 222.923 24.769
~

1.33)
294.027 88.247 41.401 21.800 0.000 -0.009 141.225 15.691

HF
(1.50,

242.269 88.006 39.963 31.401 -0.001 -0.005 123.412 13.712r-----as 524.308 85.885 40.616 19.366 0.000 -o.Q11 216.933 24.103
~

1.31)
270.563 88.267 41.487 21.067 0.000 -0.010 133.439 14.826
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Table 1.2 : First order hyperpolarizability with the change of
the bond length of QA for paridal optimization in two different methods.

Bond
First order hyperpolarizability x 10-3

Molecule Method length
(a.u.)

(A) ~ ~ Jiw Pm ~ ~ ~ Ikz ~ pm

HF (1.38, -0.0619 5.4671 0.0055 -0.8163 -0.0416 24.1066 0.D19 0.5596 28.9517 1.6331
~ 1.43)

HF (1.36, 2.3682 17.6056 -0.0252 -11.1609 4.3544 30.4985 0.1387 5.3285 120.9197 1.537
~ 1.45) 78.034 3.5511 1.5249 -1.6375 181.112 11.2348 -2.655 444.88 26.351 880.43

HF (1.34, -1.6621 3.9373 0.479 8.8906 -2.8889 -56.733 0.4802 -2.532 -128.497 1.903
~ 1.47) 51.804 -2.635 1.6101 1.021 135.509 -7.749 -2.622 365.72 -13.526 731.29

OA
HF (1.32, -2.0351 2.5268 0.3722 -106.438 -5.9552 346.0802 -0.629 0.8158 1146.5 16.043
~ 1.49) 24.226 36.727 1.648 -14.257 85.759 65.552 -2.531 276.01 90.604 561.15

HF (1.40, -0.809 30.5767 0.0024 -4.4427 -2.1912 71.6274 0.0557 -3.4662 66.5561 -3.175
~ 1.40) 120.446 3.2125 1.679 -0.6528 257.106 8.6334 -2.673 584.09 17.173 1148.1

HF (1.40, -0.9238 26.0514 0.0022 -4.4966 -2.383 64.1766 0.0577 -3.809 66.942 -3.659
~ 1.41) 123.435 2.8125 1.632 -0.668 262.978 8.1064 -2.739 597.56 16.503 1172.9

HF (1.42,
~ 1.39) -231.10 0.55707 4.058 5.2739 -461.48 1.3121 56.449 -1047.13 -3.176 -2589.39

CONTINUED (SEE THE NEXT PAGE)
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Table 1.2 (continued): First order hyperpolarizability with the change of
the bond length of OA for paritial optimization in two different methods.

Bond
First order hyperpolarizability x 10-3

Molecule Method length
(a.u.)

(A) Iixxx ~ Iiw flm fi= ~ ~ Ikz ~ ~

~ (1.44, -111.39 -8.8682 -11.2768 5.8468 -108.84 -2.4958 -7.280 -113.47 -0.889 -203.1643
DFf 1.37) -166.54 0.8236 -33.89 -5.058 -305.28 1.2109 -14.223 -677.67 -4.0501 -1909.89

HF (1.46, -93.600 -8.8368 -15.3315 6.7157 -72.1182 -1.8158 -10.07 -42.153 -0.7654 -88.393
~ 1.35) -136.84 1.1131 -36.273 5.171 -243.67 1.1446 -16.817 -550.728 -5.180 -1687.02

OA
-13.239 19.918 -0.614~ (1.48, -73.540 -8.525 -19.404 7.3191 -37.166 -1.2379 3.962

DFf 1.33) -119.036 1.603 -45.260 5.577 -200.04 1.2784 -22.93 -462.55 -6.487 -1618.54

HF (1.50, -56.037 -8.431 -23.629 8.219 -8.940 -0.7454 -16.79 68.274 -0.558 70.62
~ 1.31) -93.430 2.164 -56.904 6.753 -138.33 1.639 -31.212 -329.6 -8.4018 -1460.6
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Table 1.3 : Excitation energy and average polarizability per
C-C bond of OA for partial optimization in three different

methods

Average
Bond Excitation Average Polarizability

Molecule Method length energy Polarizability per C-C bond
(A) (eV) (a.u.) a./bond

(a.u.)

HF 14.690 121.959 17.422
~ (1.38,1.43) 4.725 184.650 26.378
~ 7.772 125.175 17.882

HF 14.951 112.847 16.121
~ (1.36,1.45) 5.039 181.243 25.891
~ 7.812 117.656 16.808

HF 15.218 105.330 15.047
~ (1.34,1.47) 5.364 177.656 25.379
~ 7.831 110.785 15.826

~
15.369 99.177 14.168

(1.32,1.49) 5.698 173.802 24.828
~ 7.841 104.648 14.949

HF 14.438 135.241 19.320
------os-- (1.40,1.40) 4.374 187.775 26.825
~ 7.625 134.460 19.208

HF 14.433 133.027 19.000
OA ~ (1.40,1.41) 4.424 188.258 26.894

DFf 7.611 133.185 19.026

HF 10.873 162.004 18.004
-----as- (1.42,1.39) 4.351 240.471 26.716
~ 5.038 171.918 19.102

~
11.215 148.942 16.549

(1.44,1.37) 4.672 234.497 26.055
~ 5.239 160.546 17.838

~
11.567 138.484 15.387

(1.46,1.35) 5.005 228.740 25.415
~ 5.455 150.269 16.696

HF 11.927 130.111 14.456
~ (1.48,1.33) 5.346 222.923 24.769
~ 5.687 141.225 15.691

HF 12.294 123.412 13.712

~ (1.50,1.31) 5.695 216.933 24.103
DFf 5.933 133.439 14.826
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Table 2.1 : Average polarizability per C-C bond with the change of
the bond length of OTH for paritial optimization in three

different methods

Polarizability Average
Bond (a.u.) Average Polarizability

Molecule Method length polarizability perC-Cbond
(A) a.a <Xyy a... Oocy ~ a.a (a.u.) a/bond

(a.u.)

~ (1.38,
155.006 112.791 34.576 7174 0.000 0.001 100.809 14.401
247.452 108.731 35.103 4128 0.000 0.001 130.428 18.6325

~
1.43)

173.176 114.142 35.761 6.879 0.000 0.002 107.693 15.3847

I ~~ (1.36,
148.025 112.902 34.592 -7171 0.000 0.001 98.506 14.072
247.259 109.003 35.015 -5.463 0.000 0.000 130.425 18.6321

I DFf 1.45)
166.153 114.232 35.774 -6.873 0.000 0.001 105.386 15.0551

~ (1.34,
141.820 112.78 34.613 -7.113 0.000 0.000 96.4043 13.772

CIS 245.708 109.160 35.022 -6.596 0.000 0.000 129.9633 18.5661
I>Ff 1.47)

159.383 114.195 35.788 -6.745 0.001 0.001 103.122 14.7317

HF
(1.32,

136.749 112.509 34.637 -6.885 0.000 0.000 94.631 13.518

~
242.829 109179 35.036 -7.535 0.000 0.000 129.048 18.4354

1.49)
153.379 114.071 35.806 -6.569 0.000 0.000 101.085 14.4407

HF
(1.40,

166.471 112.213 34.559 7.113 0.000 0.002 104.414 14.916
------os- 244.939 108.122 35.013 2.511 0.000 0.000 129.358 18.4797
I>Ff 1.40)

183.472 113.739 35.746 6.743 0.000 0.002 110.985 15.855

HF
(1.40,

164.48 112.616 34.569 7.221 0.000 0.000 103.888 14.841
OTH ------os- 246.400 108.523 35.023 2.797 0.000 -0.001 129.982 18.5688

I>Ff 1.41)
181.842 114.051 35.761 6.851 0.000 0.000 110.551 15.793

~ (1.42,
344.411 101.732 42.774 -4.856 0.002 -0.008 162.972 20.3715
391.308 125.366 43.033 -20.518 0.003 -0.009 186.569 23.3211

DFf
1.39)

330.175 111.915 44.279 -6.198 -0.012 -0.114 162.123 20.2653

~ (1.44,
CIS
DFf

1.37)
312.40 110.784 44.296 -4.846 .{l.013 .{l.110 155.8266 19.4783

HF
(1.46,

292.471 100.290 42.859 1.9370 .{l.004 0.020 145.2066 18.150

I ;~
371.051 127.736 43.046 19.145 -0.002 0.029 180.611 22.576

1.35)
295.790 109.746 44.32 -3.628 -0.014 -0.105 149.952 18.744

HF
(1.48,

273.04 99.823 42.909 0.967 0.008 .{l.005 138.5906 17.323
~ 365.114 128.991 43.062 18.15 0.009 .{l.007 179.055 22.3818
~

1.33)
280.341 108.814 44.351 2.531 .{l.003 0.081 144.502 18.0627

HF
(1.50,

256.804 99.511 42.964 0.229 0.013 0.015 133.093 16.6366
~ 360.766 130.335 43.084 16.948 0.019 0.054 178.06166 22.2577
~

1.31)
266.244 108.06 44.389 1.577 0.001 0.077 139.5649 17.4455
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Table 2.2 : First order hyperpolarizability with the change of
the bond length of OTH for paritial optimization in two different methods.

Bond First order hyperpolarizability
Molecule Method length (a.u.)

(A) Bxxx 6xxv 8xvv 6vvv Bxxx 6xvz ~ 6xzz 6vzz 6uz
HF (1.38, -0.415838 -0.004131 -0.009571 0.0002454 -0.85331 -0.000973 -0.010739 -0.2734561 -0.001385 -0.14242

~ 1.43) -0.33729 0.004611 -0.013381 0.0001452 -0.804861 -0.869 -0.014430 -0.402258 -0.007804 -0.23220

~
(1.36, 0.103598 -0.003420 -0.000709 -0.000168 0.067649 0.0000941 -0.000918 -0.005121 0.001145 -0.062442
1.45) -0.050403 -0.001479 -0.002732 -0.002730 -0.051113 0.003362 -0.001115 -0.037537 0.008469 -0.022468

HF (1.34, 0.103812 -0.000794 -0.001078 -0.000282 0.077733 -0.000216 -0.000991 -0.0032714 0.001039 -0.070099

~ 1.47) -0.51666 -0.025424 -0.005766 -0.012958 -0.34339 0.01656 -0.001946 -0.117996 0.05716 0.007392

HF (1.32, 0.078297 -0.000978 -0.001022 -0.000309 0.069007 0.004318 -0.000788 -0.001326 0.001762 -0.06292

~ 1.49) -0.016720 -0.000204 -0.003836 -0.002049 -0.027237 0.002429 -0.001561 -0.027663 0.006791 -0.023667
OTH

HF (1.40, 0.13268 0.012676 -0.000407 0.002541 0.065312 0.008319 -0.000924 -0.020362 -0.002927 -0.087857

~ 1.40) -0.098205 0.038873 -0.001812 0.021221 -0.083062 0.031854 -0.001096 -0.044914 -0.040792 -0.020666

HF (1.40, 0.072635 -0.002012 -0.000179 0.001690 0.03532 0.004926 -0.000532 -0.011729 0.002390 -0.052901

~ 1.41) 0.00478 0.005109 -0.001233 0.003521 -0.024687 0.007017 -0.000909 -0.032518 -0.002453 -0.037847

HF (1.42, 269.ot268 0.403254 45.24042 -0.14190 95.590 0.554900 17.42654 -74.21126 0.687876 -143.4822

~ 1.39) -51.78966 0.207425 50.989.07 -0.04527 106.29302 0.136012 19.04757 8.3496460 0.151413 -55.03214

HF (1.44,
~ 1.37) -90.27124 0.163813 48.395187 -0.03820 57.549334 0.117220 18.27993 -26.18041 0.126377 -79.16066

CONTINUED (SEE THE NEXT PAGE)
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Table 2.2 : First order hyperpolarizability with the change of
the bond length of OTH for paritial optimization in two different methods

Bond First order hyperpolarizability
Molecule I Method length (a.u.)

(A) B.xx Bxxv Bxv. 6v.v L Bxvz 6vvz Br.. ~ pzzz

~
(1.46,
1.35) -123.908 -0.000631 46.23630 -0.03342 13.27959 0.044548 17.69011 -56.94398 0.054344 -99.50449

OTH ~
(1.48, 31.94617 -0.606232 39.65689 0.15000 -19.6915 -0.554100 15.5715 -94.64082 -0.657472 -115.2517
1.33)

~
(1.50, 7.71839 -0.776237 38.461708 -0.104937 -27.6758 -0.946386 15.25289 -89.17677 -0.899348 -103.7968
1.31) -163.8167 -0.596160 42.860066 -0.133653 -50.54585 -0.409307 16.88400 -99.40929 -.3152450 -124.2581
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Table 2.3: Excitation energy and average polarizability per
C-C bond of OTH for paritial o.ptimization in three different

methods.

Average
Bond Excitation Average Polarizability

Molecule Method length energy Polarizability perC-Cbond
(A) (eV) (a.u.) a/bond

(a.u.)

HF 11.720 100.809 14.401
-----os- (1.38,1.43) 4.800 130.428 18.632

~ 5.802 107.693 15.384

HF 11.844 98.506 14.072
-----os- (1.36,1.45) 5.064 130.425 18.632
~ 5.861 105.386 15.055

HF 11.992 96.404 13.772

~ (1.34,1.47) 5.357 129.963 18.566
~ 5.935 103.122 14.731

~
12.152 94.631 13.518

(1.32,1.49) 5.660 129.048 18.435
~ 6.020 101.085 14.440

HF 11.579 104.414 14.916

~ (1.40,1.40) 4.461 129.358 18.479
~ 5.7424 110.985 15.855

HF 11.587 103.888 14.841
OTH ~ (1.40,1.41) 4.517 129.982 18.568

DFT 5.7421 110.551 15.793

HF 11.0312 162.972 20.371

~ (1.42,1.39) 3.959 186.569 23.321

~ 4.913 162.123 20.265

HF
-----os- (1.44,1.37)
~ 5.086 155.826 19.478

HF 11.568 145.206 18.150
-----os- (1.46,1.35) 4.497 180.611 22.576
~ 5.231 149.952 18.744

~
11.824 138.590 17.323

(1.48,1.33) 4.774 179.055 22.381

~ 5.381 144.502 18.062

HF 12.080 133.093 16.636

~ (1.50,1.31) 5.055 178.061 22.257

~ 5.536 139.564 17.445
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Table 3.1 : Average polarizability per C-C bond with the change of
the bond length of OCY for paritial optimization in three different

methods.

Polarizability Average
Bond (a.u.) Average Polarizability

Molecule Method length polarizability per C-C bond
(A) <Xxx <Xyy o..z <X.y a,.z <Xxx (a.u.) a/bond

(a.u.)

HF
(1.38,

145.32 102.60 36.895 -10.306 0.000 0.000 94.94 13.5628r-----as- 236.21 101.74 37.671 6.636 0.000 0.000 125.209 17.887
OFf 1.43)

164.68 101.79 38.302 -6.475 0.001 -0.001 101.59 14.512

HF
(1.36,

136.76 102.08 36.915 -10.003 0.000 0.000 91.916 13.130r-----as- 235.36 101.06 37.673 5.994 0.000 0.000 124.6976 17.813
OFf 1.45)

155.83 101.42 38.322 -6.690 0.001 0.000 98.527 14.075

~ (1.34,
129.72 101.53 36.937 9.640 0.000 0.000 89.399 12.771

CIS 233.99 100.42 37.682 -5.311 0.000 0.000 124.031 17.718
~

1.47)
147.85 101.07 38.344 -6.773 0.002 0.001 95.756 13.679

HF
(1.32,

124.01 100.98 36.96 -9.245 0.000 0.000 87.32 12.474

~ 1.49)
231.99 99.83 37.698 4.631 0.000 0.000 123.174 17.596

DFf 140.80 100.72 38.369 -6.759 0.003 0.002 93.2996 13.328

HF
(1.40,

157.53 102.89 36.857 10.417 0.000 0.000 99.092 14.156

~
235.99 102.37 37.665 7.451 0.000 0.000 125.343 17.906

1.40)
175.67 101.98 38.261 -5.924 0.001 -0.002 105.303 15.043

HF
(1.40,

155.75 103.08 36.881 10.504 0.000 0.000 98.5723 14.081
OCY ~ 236.88 102.45 37.676 -7.202 0.000 0.000 125.668 17.952
~

1.41)
174.30 102.14 38.289 -6.094 0.001 -0.002 104.910 14.987

-6s (1.42,
270.16 94.29 44.750 -8.260 0.012 0.016 136.402 17.050
377.85 111.60 45.259 11.510 0.034 0.034 178.237 22.279

~
1.39)

263.55 102.10 46.407 2.423 -0.026 -0.099 137.356 17.169

-6s (1.44,
250.54 93.77 44.769 -8.567 0.003 -0.010 129.694 16.2117
365.97 112.74 45.283 10.949 0.002 -0.021 174.6683 21.833

DFf
1.37)

248.98 101.39 46.401 3.106 -0.022 -0.100 132.2576 16.532

HF
(1.46,

234.10 93.35 44.792 -8.741 0.004 -0.012 124.081 15.510
~ 352.57 113.78 45.323 9.754 0.007 -0.008 170.557 21.319

DFf
1.35)

235.52 100.73 46.402 3.714 -0.024 -0.095 127.553 15.944

HF
(1.48,

220.30 93.03 44.818 -8.799 0.005 -0.010 119.3866 14.923
~ 337.37 114.64 45.383 8.021 0.009 0.002 165.798 20.724
~

1.33)
223.36 100.13 46.407 4.229 -0.019 -0.086 123.30 15.412

HF
(1.50,

208.72 92.83 44.847 8.756 0.002 0.009 115.468 14.433r-----as- 320.49 115.29 45.464 -5.950 0.003 0.012 160.416 20.052
OFf 1.31)

212.54 99.61 46.417 4.641 -0.021 -0.126 119.5246 14.940
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Table 3.2 : First order hyperpolarizability with the change of
the bond length of OCY for paritial optimization in two different methods.

Bond First order hyperpolarizability
Molecule Method length (a.u.)

(A) Bxxx B.xv Bxvv Bvvv 6xxz 6xvz 6vvz 6xu 6vzz lb

;:r (1.38,
1.43) -13.72940 0.0023588 -0.624063 -0.003974 1.688955 0.0010303 -0.479112 -20.537221 -0.000953 -116.7531

HF (1.36, -11.01938 0.0008562 -0.405520 -0.002071 1.464408 0.0007191 -0.786081 -17.174721 0.000400 -85.83452
~ 1.45) -13.88003 0.002559 -0.720425 -0.003703 0.846185 0.0013384 0.066535 -21.688152 -0.000660 -112.9904

~ (1.34, -11.27958 -0.001292 -0.464865 0.002627 0.803020 -0.000849 -0.449244 -14.058337 0.000205 -67.81401
DFf 1.47) -13.89799 0.0036248 -0.870091 -0.004683 0.438753 0.0019554 0.649788 -21.888213 -0.000728 -105.1119

HF (1.32, -11.25293 0.005072 -0.557177 -0.007004 0.631652 0.0032561 -0.100047 -11.166644 -0.000809 -52.73433
~ 1.49) -13.77835 0.0072847 -1.063052 -0.010841 0.424189 0.0019684 1.240788 -21.277700 0.001655 -94.63153

I-IF (1.40,

Oey ~ 1.40) -13.86890 0.0019758 -0.648555 -0.004339 4.061786 0.000291 -1.049541 -17.442253 -0.001861 -123.0272

I-IF (1.40, -8.874517 -0.0001941 -0.3821103 -0.000121 5.5497023 -0.000423 -1.336021 -22.886830 0.000725 -128.4561
~ 1.41) -13.42711 0.0021102 0.5885831 -0.004263 2.9884481 0.0005188 -0.953481 -18.484151 -0.001511 -115.3733

HF (1.42, -19.59298 0.4099187 9.158205 -0.321386 46.147803 0.5488989 -46.02452 112.37730 -0.320105 -173.3955
~ 1.39) -22.41096 -0.0841532 8.5469709 0.079973 37.831157 -0.114451 -48.66171 62.725831 -0.110804 3.532881

~
(1.44, -21.96393 -0.0145086 8.9312241 0.056264 39.442261 -0.040031 -45.42648 97.401915 -0.133835 -114.5208
1.37) -22.80365 -0.0954132 8.2624754 0.110804 38.7649 -0.269640 -48.11448 73.6705087 -0.236159 17.70467

I-IF (1.46, -23.7575 -0.0208435 8.64121 0.052730 33.707 0.07535 -45.03603 83.129787 -0.094208 -77.19522
~ 1.35) -23.47351 -0.0941307 7.9178375 0.082194 38.456839 -0.173294 -47.75830 80.118423 -0.096391 29.55753

CONTINUED (SEE THE NEXT PAGE)
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Table 3.2 : First order hyperpolarizability with the change of
the bond length of OCY for paritial optimization in two different methods.

Bond First order hyperpolarizability
Molecule Method length (a.u.)

(A) 6=1 axxv 1 6xvv1 6wv1 6=1 6xvz1 6wz1 6= I 6vzz I auz

HF (1.48, -25.08030 I 0.0237906 I 8.302652 I -0.02554 I 28.904483 I 0.1719136 I -44.81725 I 70.102802 I 0.001257 I -52.80701
~ 1.33) -24.37288 I -0.103691 I 7.5243936 I 0.039870 I 37.010820 I -0.182269 I -47.59370 I 82.353351 I 0.110232 I 38.40507

~(1.50, -26.01085 I 0.0322651 I 7.9263128 I -0.080440 I 24.956674 I 0.045377 I -44.74479 I 58.572077 I 0.136499 I -36.5664
DFf 1.31) -25.43760 1-0.323731 17.1041778 1 0.462790 134.602931 1-0.522106 I -47.61327 1 81.026266 I -0.835959 1 44.28176
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Table 3.3: Excitation energy and average polarizability per
C-C bond of OCY for paritial optimization in three different

methods

Average
Bond Excitation Average Polarizability

Molecule Method length energy Polarizability per C-C bond
(A) (eV) (a.u.) a/bond

(a.u.)

HF 15.364 94.940 13.562
~ (1.38,1.43) 4.249 125.209 17.887
~ 8.073 101.590 14.512

HF 15.616 91.916 13.130
~ (1.36,1.45) 4.518 124.697 17.813
~ 8.266 98.527 14.075

HF 15.802 89.399 12.771
~ (1.34,1.47) 4.792 124.031 17.718
~ 8.412 95.756 13.679

HF 15.901 87.320 12.474
~ (1.32,1.49) 5.069 123.174 17.596
~ 8.486 93.299 13.328

~
15.004 99.092 14.156

(1.40,1.40) 3.943 125.343 17.906
~ 7.814 105.303 15.043

~ 15.067 98.572 14.081
OCY CIS (1.40,1.41) 3.987 125.668 17.952
~ 7.859 104.910 14.987

HF 13.964 136.402 17.050
----os- (1.42,1.39) 4.1827 178.237 22.279
~ 7.057 137.356 17.169

HF 14.174 129.694 16.211
----os- (1.44,1.37) 4.333 174.668 21.833
~ 7.196 132.257 16.532

HF 14.385 124.081 15.510

;~
(1.46,1.35) 4.475 170.557 21.319

7.342 127.553 15.944

HF 14.598 119.386 14.923
~ (1.48,1.33) 4.607 165.798 20.724
~ 7.496 123.30 15.412

I~
14.816 115.468 14.433

(1.50,1.31) 4.724 160.416 20.052
~ 7.657 119.524 14.940
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Table 4.1 : Average polarizability per C-C bond with the change of
the bond length of OFV for pantial optimization in three different

~

Polarizability Average
Bond (a.u.) Average Polarizability

Molecule Method length polarizability per C-C bond
(A) a.c. a,." o.zz <Xxy lXyz a... (a.u.) a. /bond

(a.u.)

HF
(1.38,

164.63 167.84 27.95 2.153 0.000 0.000 120.139 17.162
-----os 219.07 268.78 28.20 -60.945 0.000 0.000 172.017 24.573
----oFf 1.43)

160.09 195.74 29.86 7.477 0.000 0.000 128.562 18.366

HF
(1.36,

162.96 155.35 28.01 4.925 0.000 0.000 115.435 16.490

~
218.51 264.09 28.24 -58.051 0.000 0.000 170.279 24.326

1.45)
158.44 181.26 29.89 3.615 0.000 0.000 123.194 17.599

HF
(1.34,

161.35 145.92 28.07 6.789 0.000 0.000 111.78 15.968
-----os 218.57 258.81 28.28 -55.153 0.000 0.000 168.552 24.079
----oFf 1.47)

156.97 169.12 29.92 0.682 0.000 0.000 118.67 16.952

~ (1.32,
159.77 138.79 28.13 8.019 0.000 0.000 108.895 15.556
219.24 252.90 28.32 -52.209 0.000 0.000 166.820 23.831

----oFf 1.49)
155.59 159.07 29.96 1.546 0.000 0.000 114.871 16.410

HF
(1.40,

166.39 188.73 27.88 -3.444 0.000 0.000 127.668 18.238
-----os 219.56 272.96 28.16 -64.338 0.000 0.000 173.559 24.794
~

1.40)
161.93 214.90 29.81 13.473 0.000 0.000 135.544 19.363

HF
(1.40,

166.45 184.51 27.90 -1.937 0.000 0.000 126.289 18.041
OFV ~ 219.89 272.92 28.17 -63.57 0.000 0.000 173.66 24.808

DFf
1.41)

161.87 211.60 29.83 12.032 0.000 0.000 134.433 19.204

HF
(1.42,

129.59 307.03 49.16 -4.957 -4.119 -1.305 161.928 20.241

;~
181.08 232.17 40.36 62.134 0.000 0.000 151.204 18.900

1.39)
136.32 289.32 50.36 -1.631 -3.191 -1.431 158.664 19.83

HF
(1.44,

173.36 242.06 45.60 58.020 0.000 0.000 153.675 19.209

: ;~ 178.46 224.04 39.59 58.332 0.000 0.000 147.364 18.420
1.37)

HF
(1.46,

169.99 229.29 45.59 52.705 0.000 0.000 148.286 18.535r-----as- 174.12 212.87 37.06 52.774 0.000 0.000 141.35 17.668
~

1.35)

~ (1.48,
166.98 218.09 45.61 47.908 0.000 0.000 143.561 17.945

CIS 170.17 203.21 32.30 47.75 0.000 0.000 135.226 16.903
----oFf 1.33)

199.33 250.47 45.77 73.856 0.542 -0.078 165.19 20.64

HF
(1.50,

164.39 208.46 45.71 43.667 0.000 0.000 139.519 17.439
-----os 166.69 195.02 22.43 43.342 0.000 0.000 128.047 16.005
----oFf 1.31)

192.60 237.90 45.73 66.129 0.561 -0.104 158.742 19.842
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Table 4.2 : First order hyperpolarizability with the change of
the bond length of OFV for paritial optimization in two different methods.

Bond First order hyperpolarizability
Molecule Method length (a.u.)

(A) ~ P- ~ Jlm, P= P- ~ Pm ~z pz;:z
HF (1.38,
~ 1.43) 1.6810941 -0.0000007 0.015027 0.0 1.19787 -0.0000007 -0.0115861 0.5596539 0.o00ooo9 0.043043

HF (1.36, -0.0148585 0.00 -0.0003413 0.00 -0.019708 0.00 -0.0001912 0.0108415 0.0 0.0147281
~ 1.45) 0.0830006 -0.0000002 -0.0005822 0.0 0.0478299 0.0000003 -0.0004356 0.0081078 0.o00ooo5 0.Q19533

~ (1.34, -0.008713 0.00 -0.0003026 0.00 -0.0124315 0.00 -0.000125 0.0051499 0.00 0.004413
DFf 1.47) -0.0056805 -0.0000009 -0.0000188 0.0 -0.0306443 0.0000001 -0.0003474 -0.0317623 0.0000005 -0.019181

HF (1.32, -0.0505359 0.0 0.0000487 0.0 -0.0281297 0.0 -0.000029 0.0152499 0.0 0.011959
~ 1.49) -0.0405879 0.0000009 -0.0000792 0.0 -0.0328646 OO04סס0.0 -0.0003672 -0.0307678 OO12סס0.0 0.000139

HF (1.40, -0.129516 0.0 0.0002162 0.0 -0.0575469 0.0 -0.0000694 -0.0438272 0.0 0.002524
OFV ~ 1.40) 0.0315403 0.0000003 -0.0000286 0.0 0.0036363 -0.0000001 -0.0006421 0.0224894 0.0000013 0.016154

HF (1.40,
~ 1.41) 0.0825094 0.0000003 -0.000071 0.0 0.0309799 0.0 -0.0007386 -0.0140174 0.0000012 0.023781

IIF (1.42, 7.07894 -61.272978 35.676801 -24.480031 355.48671 -43.24028 23.95028 189.99125 -20.01589 64.98539
~ 1.39) -125.9446 -79.81033 47.5654 -24.94661 254.1611 -32.4348 25.26960 144.739 -2.80799 56.9246

HF (1.44, -202.3243 -0.0000088 47.323569 -0.0000033 514.74804 -0.0000008 50.608152 -48.8094669 -0.0000011 -311.6520
~ 1.37)

HF (1.46, -326.5486 -0.0000144 74.95313 -0.0000066 388.96619 -0.0000086 68.699723 -50.156464 0.0000003 -293.3326
~ 1.35)

CONTINUED (SEE THE NEXT PAGE)
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Table 4.2 : First order hyperpolarizability with the change of
the bond length of OFV for paritial optimization in two different methods.

First order hyperpolarizability
Molecule I Method I (a.u.)

I (hzz

-269.4529

-4202.179

-242.5823

-197.253
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Table 4.3 : Excitation energy and average polarizability per
C-C bond of OFV for paritia! optimization in three different

methods

Average
Bond Excitation Average Polarizability

Molecule Method length energy Polarizability perC-Cbond
(A) (eV) (a.u.) ex/bond

(a.u.)

HF 7.913 120.139 17.162

~
(1.38,1.43) 3.112 172.017 24.573

2.575 128.562 18.366

HF 8.352 115.435 16.490

~
(1.36,1.45) 3.431 170.279 24.325

2.859 123.194 17.599

HF 8.787 111.780 15.968
~ (1.34,1.47) 3.752 168.552 24.078
~ 3.146 118.670 16.952

~
9.218 108.895 15.556

(1.32,1.49) 4.081 166.820 23.831------rwr- 3.439 114.871 16.410

HF 7.379 127.668 18.238
~ (1.40,1.40) 2.757 173.559 24.794
------rwr- 2.255 135.544 19.363

HF 7.469 126.289 18.041
OFV

~~
(1.40,1.41) 2.813 173.660 24.808

2.307 134.433 19.204

HF 13.376 161.928 20.241
~ (1.42,1.39) 3.860 151.204 18.900
~ 6.722 158.664 19.830

HF 11.867 153.675 19.209
~ (1.44,1.37) 3.986 147.364 18.420
~

HF 12.042 148.286 18.535
~ (1.46,1.35) 4.191 141.350 17.668
~

I~
12.203 143.561 17.945

(1.48,1.33) 4.404 135.226 16.903
~ 5.880 165.190 20.640

HF 12.348 139.519 17.439
~ (1.50,1.31) 4.621 128.047 16.005
~ 5.925 158.742 19.842
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Table 5.1 : Average polarizability per C-C bond with the change of
the bond length of OCNTH for paritial optimization in three

different methods

Polarizability Average
Bond (a.u.) Average Polarizability

Molecule Method length polarizability perC-Cbond
(A) a.cx a,.y a.z <Xxy <Xyz ax. (a.u.) a/bond

(a.u.)

HF
(1.38,

410.32 562.32 91.09 -18.20 0.000 0.000 354.573 23.638r---as 715.70 1357.11 90.00 -418.57 0.000 0.000 721.127 48.075
~

1.43)
438.49 736.81 94.08 -11.46 0.000 -0.001 423.125 28.208

I ~I~ (1.36,
403.25 516.30 91.23 -18.73 0.000 0.000 336.925 22.461
724.43 1196.65 91.12 -381.77 0.000 0.000 670.732 44.715

~
1.45)

432.61 668.98 94.21 10.84 0.000 0.001 398.597 26.573

~ (1.34,
397.38 482.84 91.36 19.18 0.000 0.000 323.860 21.590

CIS 635.74 947.11 91.24 244.63 0.000 0.000 558.047 37.203
~

1.47)
427.68 616.99 94.32 10.80 -0.001 0.001 379.663 25.310

HF
(1.32,

391.57 457.57 91.50 19.14 0.000 0.000 313.549 20.903

~
541.17 768.21 91.36 131.76 0.000 0.000 466.914 31.128

1.49)
422.67 575.61 94.44 10.86 -0.001 0.001 364.24 24.282

~ (1.40,
415.31 639.38 90.94 15.54 0.000 0.000 381.876 25.458

~ 816.27 1890.83 90.89 651.94 0.000 0.000 932.659 62.177
DFf

1.40)
442.38 840.25 93.96 13.95 0.000 -0.001 458.86 30.590

HF
(1.40,

415.28 622.31 91.00 17.67 0.000 0.000 376.197 25.079

~
814.83 1785.93 90.94 623.00 0.000 0.000 897.229 59.815

1.41)
442.11 817.80 94.02 -11.99 0.000 -0.001 451.308 30.087

HF
(1.42,

397.12 1581.56 98.90 156.35 -0.002 0.005 692.525 43.282
'"(jS 546.39 1782.54 98.80 -46.26 -0.004 0.007 809.244 50.577
~

1.39)
450.60 1545.57 102.20 106.66 -0.035 -0.135 699.454 43.716

HF
(1.44,

386.71 1311.51 98.99 -126.92 -0.002 0.004 599.0693 37.441r---as 564.70 1689.30 98.85 6.61 -0.002 0.002 784.286 49.017
~

1.37)
441.62 1439.12 102.25 96.20 -0.028 -0.104 660.996 41.312

~ 378.33 1120.91 99.10 106.23 0.001 0.000 532.776 33.299
CIS (1.46, 588.63 1649.01 98.92 -55.19 0.002 -0.003 778.854 48.678
~ 1.35) 432.96 1330.88 102.33 86.99 -0.031 -0.115 622.054 38.878

~ (1.48,
371.44 982.70 99.22 91.14 0.001 -0.003 484.451 30.278

~ 616.55 1629.65 98.10 -99.35 0.005 -0.010 781.702 48.856
DFf

1.33)
424.81 1225.07 102.42 79.05 -0.031 -0.110 584.432 36.527

HF
(1.50,

365.72 879.82 99.34 79.71 0.000 -0.006 448.292 28.018r----as 641.39 1594.00 99.13 -127.24 0.008 -0.015 778.176 48.636
~

1.31)
417.25 1125.17 102.52 72.21 -0.031 -0.104 548.314 34.269
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Table 5.2: First order hyperpolarizability with the change of the
bond length of OCNTH for paritial optimization in two different methods.

Bond First order hyperpolarizability
Molecule Method length (a.u.)

(A) Bx.x Bxxv 8xvv 6vvv Bxxz Bxvz 6vv:. Bn. 6vu lk
HF (1.38, -149.65489 0.0 -0.8945015 0.0 15.6323879 0.0 0.1676686 63.4837669 0.0 112.6577
~ 1.43) 41.0684 0.0000163 -0.4001222 0.0 249.123994 0.0000124 0.1054605 535.179046 OO56סס0.0 1001.9854

;:r (1.36, -121.9438 0.0 -0.664377 0.0 -6.3611722 0.0 0.2863883 70.9124488 0.0 90.108660
1.45) -1.7394302 0.000114 -0.179637 0.0 202.4355 0.0000892 0.2495569 521.01305 0.0000387 948.243621

~ (1.34, -115.58663 0.0 -0.545698 0.0 -34.550713 0.0 0.4280968 51.4257032 0.0 52.649527

DFf 1.47) -79.020335 0.0000026 -0.1116479 0.0 98.0058663 0.0000257 0.4190879 401.570320 0.0000135 783.706167

HF (1.32, -106.96697 0.0 -0.4094936 0.0 -57.896607 0.0 0.5852877 34.27468 0.0 16.992937
~ 1.49) -148.11316 0.0000017 0.0131457 0.0 -8.3413 0.0000042 0.6039665 253.4865 0.0000154 553.3542

OCNTH
HF (1.40, -134.26106 0.0 -0.7237307 0.0 -1.9659413 0.0 0.1002313 -2.7177084 0.0 55.223656
~ 1.40) 8.9047547 -0.0003244 -0.337018 0.0 97.328116 -0.0005117 -0.0115833 224.9568 -0.0006842 577.62137

HF (1.40, -150.35535 0.0 -0.8180438 0.0 17.9698703 0.0 0.1227833 54.4594618 0.0 113.190392

~ 1.41) 57.6277 0.0000275 -0.361349 0.0 230.9520 0.0000438 0.0439088 482.0342 0.0000831 939.4926

~
(1.42, -3596.3202 -2253.7615 -876.63929 245.8670 -2647.212 -1304.9705 -105.91445 -1762.0542 -539.4675 -1023.5080
1.39) -4250.6252 -1862.4720 -321.2335 921.550 -2627.544 -810.647 529.8407 -1441.909 39.2907 -549.7665

HF (1.44, -1730.2278 -1184.6752 -507.20520 -105.1627 -1327.0832 -702.43896 -68.08313 -920.5925 -303.9486 -575.8667
~ 1.37) -4720.3363 -2274.0367 -688.7602 -600.747 -3054.6017 -1189.2566 196.09285 -1830.245 -303.92219 -899.5987

~
(1.46, -710.8551 -565.344 -285.979 27.0808 -583.9177 -348.9874 -41.8235 -437.3958 -162.9361 -314.1950
1.35) -4606.834 -2424.1889 -984.18497 239.51657 -3101.3464 -1426.0412 -138.05395 -1989.3577 -596.5400 -1134.2816

CONTINUED (SEE THE NEXT PAGE)
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Table 5.2 : First order hyperpolarizability with the change of the
bond length of OCNTH for paritial optimization in two different methods
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Table 5.3 : Excitation energy and average polarizability per
C-C bond of OCNTH for paritial optimization in three different

methods

Bond Excitation
Average

Molecule Method length energy
Polarizability Polarizability

(A) (eV)
(a.u.) perC-Cbond

a/bond (a.u.)

HF 6.912 354.573 23.638
------os- (1.38,1.43) 2.678 721.126 48.075
~ 2.034 423.125 28.208

~ 7.329 336.925 22.461
CIS (1.36,1.45) 2.961 670.732 44.715
~ 2.287 398.597 26.573

HF 7.720 323.860 21.590r----as- (1.34,1.47) 3.223 558.047 37.203
~ 2.523 379.663 25.310

HF 8.105 313.549 20.903r----as- (1.32,1.49) 3.479 466.914 31.127
~ 2.764 364.240 24.282

~ 6.441 381.876 25.458
CIS (1.40,1.40) 2.372 932.659 62.177
~ 1.770 458.860 30.590

HF 6.531 376.197 25.079
OCNTH~ (1.40,1.41) 2.432 897.229 59.815

DFf 1.820 451.308 30.087

HF 9.252 692.525 43.282
------os- (1.42,1.39) 2.171 809.244 50.577
~ 4.012 699.454 43.715

~~
9.451 599.069 37.441

(1.44,1.37) 2.418 784.286 49.017
~ 4.022 660.996 41.312

HF 9.621 532.776 33.298r----as- (1.46,1.35) 2.667 778.854 48.678
~ 4.025 622.054 38.878

HF 9.770 484.451 30.278

------os- (1.48,1.33) 2.913 781.702 48.856
~ 4.031 584.432 36.527

~ 9.912 448.292 28.018
CIS (1.50,1.31) 3.181 778.176 48.636
~ 4.052 548.314 34.269
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Table 6.1 : Average polarizability per monomer of the molecules with
the change of the oligomers for fully optimized geometty in SOS

method.

Average
Approximate

Average
Approximate Polarizability Polarizability

Average (a.u.) Average per monomer
Molecule Oligomer

Polarizability
Polarizability (a.u.)

(a.u.)
per monomer

(a.u.)

Monomer 5.72 48.829 5.72 48.829
Dimer 31.18 106.49 15.59 53.245

Tetramer 111.899 231.302 27.97 57.825
Seximer 209.795 352.956 34.97 58.826

OTH Octamer 292.281 468.307 36.53 58.538
Decamer 363.813 580.209 36.38 58.020
12-mer 429.558 35.796
14-mer 494.647 35.33
16-mer 554.873 34.67

Monomer 6.921 43.930 6.921 43.930
Dimer 48.017 94.647 24.00 47.323

Tetramer 180.502 217.194 45.12 54.298
OCY Seximer 334.474 335.816 55.74 55.969

Octamer 461.292 443.809 57.66 55.476
Decamer 614.678 546.613 61.46 54.661
12-mer 730.067 647.531 60.83 53.960

Monomer 13.122 48.288 13.12 48.288
Dimer 57.929 112.746 28.96 56.373

OFV Tetramer 212.087 260.03 53.02 65.007
Seximer 385.013 397.04 64.16 66.173
Octamer 542.375 524.161 67.79 65.520
Monomer 52.79 159.21 52.79 159.210

OCNTH
Dimer 90.63 324.204 45.31 162.102

Tetramer 179.788 657.298 44.94 164.324
Seximer 152.487 656.598 25.41 109.433

Monomer 40.343 130.455 40.34 130.455

OCNCY
Dimer 182.739 316.346 91.36 158.173

Tetramer 440.04 616.917 110.01 154.229
Seximer 584.977 97.49

Monomer 48.75 152.727 48.75 152.727

OCNFV
Dimer 184.94 367.79 92.47 183.895

Tetramer 507.98 716.537 126.99 179.134
Seximer 617.553 102.92
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Table 6.2 : Average polarizability per monomer of the molecules with
the change of the oligomers for fully optimized geometty in CIS

method.

Polarizability
Average

Average
(a.u.) Polarizability

Molecule Oligomert polarizability
(a.u.)

per monomer
<X.xx a,.y <Xe.. <X.y a,.. <Xxz (a.u.)

Monomer 58.92 67.44 18.89 -0.001 0.000 0.000 48.419 48.419
Dimer 238.20 110.17 34.90 3.527 0.000 0.000 127.755 63.87

OTH
Tetramer 894.88 207.67 67.14 -16.11 -0.001 0.001 389.89 97.47
Seximer 1778.05 305.39 99.38 10.95 0.001 0.000 727.60 121.27
Octamer 2586.54 403.59 131.63 -11.99 -0.002 0.002 1040.584 130.07
Decamer 3235.71 502.12 163.88 10.857 0.000 0.000 1300.57 130.06

Monomer 60.46 52.42 36.04 0.000 -3.359 0.000 49.637 49.637
Dimer 262.17 98.20 50.12 -30.54 0.000 -0.003 136.826 68.413

Tetramer 1122.79 188.80 83.54 -16.71 0.001 -0.014 465.045 116.26
OCY Seximer 2414.34 266.22 11727 7.227 0.000 0.000 932.608 155.43

Octamer 3648.39 344.56 151.06 -1.020 0.002 0.012 1381.133 172.64
Decamer 4662.08 422.50 184.87 3.026 0.000 0.002 1756.484 175.64
12-mer 5493.70 500.16 218.70 -6.584 -0.001 -0.013 2070.853 172.57

Monomer 82.084 71.34 32.77 0.000 0.005 0.002 62.061 62.061
Dimer 231.75 173.15 41.95 18.68 0.000 0.000 148.948 74.47

OFV Tetramer 1337.03 314.15 67.34 220.38 0.000 0.000 572.839 143.209
Seximer 2607.25 547.17 92.98 -608.65 0.000 0.000 1082.46 180.41
Octarner 3834.08 711.12 118.69 855.58 0.000 0.000 1554.62 194.327

Monomer 228.75 225.86 46.76 -0.001 0.000 0.000 167.123 167.123

OC TH
Dimer 726.98 418.50 90.88 -19.83 0.000 0.000 412.118 206.059

Tetramer 2515.64 1284.95 178.85 -62.28 0.000 0.000 1326.479 331.619
Seximer 1737.19 1032.21 96.94 335.37 0.000 0.000 955.444 159.240

Monomer 271.11 209.09 60.53 0.000 0.000 0.000 180.242 180.242
OCNCY Dimer 1403.50 398.59 105.32 -34.60 -0.001 0.001 635.802 317.90

Tetramer 2519.24 1277.41 194.94 844.38 0.000 0.000 1330.52 332.63

Monomer 317.39 298.70 53.17 0.000 0.000 0.000 223.082 223.082
OC FV Dimer 1447.55 553.32 90.26 -77.82 0.000 0.000 697.042 348.52

Tetramer 3861.17 1078.94 164.93 -467.36 0.000 0.000 1701.678 425.419

t here monomer, dimer, tetramer, seximer, octamer, decamer and 12­
mer represent 1,2,4,6,8,10 and 12 rings respectively.

135



Table 6.3 : Excitation energy and average polarizability per
monomer of the molecules for fully optimized geometry in CIS

method.

Average

Molecule Oligomer
Oscillator strength Excitation energy Polarizability Polarizability

(arbitrary unit) (eV) (a.u.) per monomer
(a.u.)

Monomer 0.1418,0.0000,0.1442 5.5731,6.5359,6.7456 48.419 48.419
Dimer 0.6262, 0.0000, 0.0000 4.1068,6.1240,6.2491 127.755 63.87

01H
Tetramer 1.5381,0.0000,0.0000 3.1903,4.7260,5.7430 389.89 97.47
Seximer 2.317,0.0000,0.2692 2.9184,4.0590,4.8806 727.60 121.27
Octamer 2.9660,0.0000,0.5040 2.8374,3.7435,4.3764 1040.584 130.07
Decamer 3.5146,0.0000,0.8227 2.8204,3.5812,4.0784 1300.57 130.06

Monomer 0.2498,0.0248,0.0155 5.3693,7.1494,8.8741 49.637 49.637
Dimer 1.4856, 0.0000, 0.0000 4.7866,7.2640,7.8401 136.826 68.413

Tetramer 2.7516,0.0000,0.0000 3.3600,5.1277,5.3440 465.045 116.26
OCY Seximer 3.8956, 0.0000, 0.0000 2.9367,4.3360,4.7724 932.608 155.43

Octamer 4.9054, 0.0000, 0.0000 2.8063,3.9328,4.6692 1381.133 172.64
Decamer 5.8463,0.0000,1.3158 2.7739,3.7133,4.3258 1756.484 175.64
12-mer 6.7059,0.0000,1.9093 2.7729,3.5867,4.0916 2070.853 172.57

Monomer 0.4642,0.4504,0.0012 6.4575,8.2780,8.5135 62.061 62.061
Dimer 1.0054, 0.0000, 0.6724 4.0019,6.5542,6.5913 148.948 74.47

OFV Tetramer 2.5909,0.0000,0.1574 3.0503,4.1467,4.4497 572.839 143.209
Seximer 3.7664,0.0000,0.3307 2.7404,3.8030,4.2392 1082.46 180.41
Octamer 4.8292,0.0000,0.7290 2.6503,3.5692,4.0270 1554.62 194.327

Monomer 0.0420,1.0458,0.1505 1.9336,4.3953,5.0426 167.123 167.123

OCN1H
Dimer 0.1431,0.1921,1.0543 1.7811,2.8926,4.4048 412.118 206.059

Tetramer 0.8079,0.0000,0.3425 1.9879,2.2798,2.988 1326.479 331.619
Seximer 0.3578,1.4450,0.0389 2.0123,3.5510,3.6141 955.444 159.240

Monomer 0.1551,0.7844,0.5090 3.5813,5.4690,5.6114 180.242 180.242
OCNCY Dimer 1.6571,0.0000,0.0000 2.5913,3.8028,4.3999 635.802 317.90

Tetramer 2.0464, 1.5230, 1.4297 2.5688,3.1560,3.3030 1330.52 332.63

Monomer 0.0844,0.6501,0.6763 3.4738,4.3194,5.3092 223.082 223.082
OCNFV Dimer 1.3749,0.0000,0.0000 2.3461,3.6457,4.0257 697.042 348.52

Tetramer 1.8309,0.0000,2.9899 2.3199,2.9309,2.9403 1701.678 425.419
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Table 7.1: Average polarizability per monomer and excitation
energy for dimer molecules for fully optimized

geomet{y in three methods.

Polarizability
Average

Average
Excitation

Molecule (a.u.) polarizability
(dimer)

Method polarizability energy
(a.u.)

per monomer
(eV)a..x CXyy <X.zz a..r <Xyz <Xxz (a.u.)

HF 110.72 148.13 34.58 1.161 0.000 0.000 97.81 48.90 11.912
OTH CIS 238.20 110.17 34.90 3.527 0.000 0.000 127.755 63.87 4.1068

DFf 113.33 172.62 35.79 -2.903 0.000 0.000 107.25 53.62 5.826

HF 175.30 82.54 49.31 -2.782 0.000 0.004 102.38 51.19 10.533
OCY CIS 262.17 98.20 50.12 -30.54 0.000 -0.003 136.826 68.413 4.7866

DFf 184.13 88.42 50.76 2.403 0.000 0.001 107.77 53.88 4.304

HF 135.68196.58 41.47 22.794 0.000 0.000 124.57 62.28 12.139
OFV CIS 173.15231.75 41.95 18.68 0.000 0.000 148.948 74.47 4.0019

DFf 143.67209.24 43.23 22.026 0.000 0.000 132.04 66.02 5.576

HF 401.05 518.04 91.15 20.334 0.000 0.000 336.74 168.37 7.3416
OCNTH CIS 418.50 726.98 90.88 -19.83 0.000 0.000 412.118 206.059 1.7811

DFf 437.33 747.48 94.10 15.979 0.000 0.000 426.31 213.15 2.030

HF 696.85 330.30 105.46 44.454 -0.001 0.001 377.53 188.76 7.059
OCNCY CIS 1403.50 398.59 105.32 -34.60 -0.001 0.001 635.802 317.90 2.5913

DFf 1005.18 370.44 109.04 -1.861 0.000 0.000 494.88 247.44 1.773

HF 420.34789.66 90.44 9.414 0.000 0.000 433.48 216.74 9.425
OCNFV CIS 553.321447.55 90.26 -77.82 0.000 0.000 697.042 348.52 2.3461

DFf 733.27855.36 94.63 -300.350.000 0.000 561.09 280.54 3.472
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Table 7.2: Description of the Gaussian keywords.

Keywords Description
mas 1his keyword requests a calculation on excited

states using single-excitation a (a-Singles).
OPT 1his keyword requests that a geometry optimization

be performed. The geometry will be adjusted until a
stationary point on the potential surface is found.

FREQ 1his keyword computes force constants and the
resulting vibrational frequencies.When frequencies
are done analytically, the polarizabilties are also
computed automatically.

POLAR 1his keyword requests that the dipole electric field
polarizabilities (and hyperpolarizabilities, if possible)
be computed.

POLAR=EnOnly 1his keyword will produce both polarizabilities and
hyperpolarizabilities.
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