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Design of a DSP-Based Impedance Measuring Instrument 

for Multiphase Flowmeter 

by 

Xiang Fang 

Abstract 

Crude oil is a mixture of gas, oil and water. Knowing the ratio of these three com

ponents can help to optimize the production process. Multiphase fl.owmeters have 

therefore been designed and constructed in recent years. However, the costs of current 

multiphase flowmeters based on radiation techniques are too expensive. In order to 

overcome this drawback, a low-cost electrical impedance-based multiphase flowmeter 

is investigated in the research. 

After numerical simulations and experiments, this thesis develops a DSP-based 

impedance measuring instrument that can obtain the impedance data from crude 

oil in real time. Experimental data show that the performance of this DSP-based 

impedance measuring instrument has good resolution and good linearity. 

The work completed to date acts as a starting point from which improvements 

and extensions can be easily made and incorporated. In this regard, suggestions for 

future work are also presented. 
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Chapter 1 

Introduction 

The impedance is an important parameter in electrical measurements. Normally, 

different materials show different impedance quantities in the measurement [1]. Mea

surement of an electrical impedance is used in many sensing applications ranging 

from process industries to the civil sector. In this thesis, the electrical impedance 

measurement is employed to measure the composition of crude oil that is essential to 

the oil production optimization [2]. 

Many detection techniques can be used in impedance measurement, such as reso

nance, oscillation, charge transfer and AC bridge [3]. For precise measurement, AC 

bridge is chosen as the signal input circuit for this research project. On the other 

hand, in the signal demodulation, a digital signal processing (DSP) technique is used 

to improve the measuring accuracy and stability, which is the most important part 

of this thesis. 
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1.1 Principle of the Impedance Measurement 

1.1.1 Definitions in the impedance measurement 

This section will begin by presenting several fundamental concepts used in this thesis. 

Definition 1 Capacitance [4]: In a capacitor or system of conductors and di

electrics, the property that permits the storage of electrically separated charges when 

potential differences exist between the conductors. Capacitance is related to charge 

and voltage as follows: C = Q/V, where C is the capacitance in farads, Q is the 

charge in coulombs, and V is the voltage in volts. 

Definition 2 Permittivity [4]: The permittivity (previously the term dielectric con

stant was used) of a dielectric medium is a measure of its ability to be electrically 

polarized when exposed to an electric field. The capacitance of an electrical capacitor 

is proportional to the permittivity of the dielectric medium. In practice, when the term 

permittivity is used, it is usually referred to as the relative permittivity. 

Definition 3 Conductance [5]: The conductance is the ratio of a current in the 

conductor to the potential difference between its ends. Reciprocal of resistance. The 

standard unit of conductance is siemens. 

Definition 4 Conductivity [4]: The ability of a material to conduct electrical 

current. In isotropic material the reciprocal of resistivity. Unit is siemensjm. 

Definition 5 Capacitive Sensors [6]: Capacitive sensors electronically measure 

the capacitance between two or more conductors in a dielectric environment, usually 

air or a liquid. 

Capacitive sensors can be constructed as large electrodes or integrated into a 

microchip. They are normally used for non-contact sensing, such as position encoding, 

liquid level sensing, proximity detection and flow measurement [6]. In this project, 

2 
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Figure 1-1: Parallel plate capacitor diagram. 

the capacitance sensor is employed to measure the material properties between two 

sensor electrodes. It should be noted that the impedance measurement discussed in 

this thesis refers to the capacitance measurement and the conductance measurement. 

1.1.2 The capacitance of parallel plates 

In Figure (1-1), the capacitance [6] of a parallel plate capacitor can be calculated by 

where 
C=Capacitance, frads 

C = C:ocrA 
d 

c:0=Free space permittivity, 8.854 x 10-12 , frads/meters 

(1.1) 

C:r=Relative permittivity of the material between plates, 1 for vacuum 

A=Plate area, square meters 

d=Spacing, meters 

When the area and spacing of parallel plates are constant, the capacitance will be 

dependent only on the relative dielectric constant of the material between two parallel 

plates. It is the reason why a capacitive sensor is employed to measure properties of 

crude oil in this thesis. 

3 
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Figure 1-2: The diagram for obtaining the conductance from a capacitive sensor. 

1.1.3 The conductance and conductivity 

In Figure (1-2), the conductance [7] between two plates can be calculated by 

where 
Gm =Conductance of the material between two plates, siemens 

Rm=Resistance of the material between two plates, ohm (D) 

(1.2) 

The resistance of the material between two plates can be obtained by Ohm's Law, 

namely, the resistance is equal to the quotient of the voltage applied on the capacitive 

sensor and the current flowing through the capacitive sensor ( Rm = V /I ) . 

Then, the conductivity [7] of this material can obtained by 

where 
Gm =Conductance of the material between two plates, siemens 

A=Plate area, square meters 

d=Spacing, meters 

4 
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1.2 INCA and PPSC Project 

1.2.1 The INCA center 

INCA stands for the center for INstrumentation, Control and Automation. As a 

part of Memorial University of Newfoundland, INCA provides the resources for both 

research and education. INCA is involved in several major research projects such as 

the PPSC project and the RAVEN project. 

1.2.2 PPSC Project 

This research work is a part of the PPSC (PanAtlantic Petroleum Systems Consor

tium) project. The goal of this component of the project is to design an impedance

based multiphase flowmeter. The objectives of this research project are: 

1. Design a novel impedance sensor which can form stratified flow and only cause 

a small pressure drop across the sensor. 

2. Design an instrument which can measure capacitances and conductances from 

the multiphase flow of crude oil. 

3. Build evaluating models from measuring results to obtain the component frac

tions of gas/oil/water in crude oil. 

4. Determine the flow velocity and the mass flow rate in the pipe. 

5. Design a multiphase flowmeter based on the above research results. 

This thesis is concentrating on objective 2; however, comments to other objectives 

are also provided. 

5 



Figure 1-3: The diagram for offshore conventional component fraction measurements 
[8]. 

1.3 Industry Problems 

Oil & Gas plays an important role in our modern society as an energy source as well as 

a raw material for many products. After exploitations over the last century, many oil 

reserviors on land will soon be exhausted. In order to deal with this severe challenge, 

oil producers start exploiting the subsea oil reserviors to sustain their requirements 

for crude oil. 

The offshore oil production is very different from the oil production on land. 

Due to its nature, many land-based techniques must be redesigned to meet the new 

requirements. Figure (1-3) illustrates a conventional offshore component fraction 

measuring setup on the petroleum platform, where a test separator and several single

phase flowmeters are used in the measurements; however, this is costly solution and 

requires an extra space on the platform. In addition, this method can only obtain 

offline component fraction data, whereas the production optimization needs the real

time component fractions. Multiphase flowmeters in Figure (1-4) are considered to 

meet this requirement. In recent years, many different techniques have been applied in 

the design of a multiphase flowmeter, such as: Gamma-ray attenuation [8], microwave 

6 



Figure 1-4: The diagram for individual well monitoring of multiphase meters [8]. 

attenuation, pulsed neutron activation (PNA), nuclear magnetic resonance (NMR) 

and electrical impedance techniques [9]. 

Although some of these multiphase flowmeters emerged on the market recently, 

few of them can be used in the offshore petroleum industry due to their measuring 

performance [10]. For instance, the flowmeters based on gamma-ray attenuation, mi

crowave attenuation and electrical impedance techniques are flow regime dependent. 

The flowmeters based on PNA and NMR are inherently flow regime independent, but 

the technologies employed are too complicated and are extremely costly. If these five 

techniques are compared, the electrical impedance technique will show some advan

tages over others, such as: low cost, fast dynamic response, and no safety problems 

with nuclear radiation. 

1.4 Research Objectives 

As mentioned in the previous section, the impedance sensor is dependent on the flow 

regime. To overcome this problem, a mixer can be used to form a homogenous flow 

in the front of the impedance sensor, but it may generate a pressure drop thus needs 

more pumping power for the oil transportation. Moreover, the homogenous flow is not 

7 



good for the later separation process. To solve this problem, we assume to rotate the 

multiphase flow and then form a stratified flow due to the different specific gravities 

of the gas/oil/water components. 

This thesis describes a design of an instrument which can measure the capacitance 

and the conductance of crude oil. In addition, the following topics will be addressed: 

1. The method to detect small capacitances between two electrodes regardless of 

the stray capacitance among electrodes, cables and shields. 

2. The method to separate the capacitance signal and the conductance signal from 

a common sensor output. 

3. The performance comparison between an analog signal processing and a digital 

signal processing. 

4. The way to maintain its accuracy over the lifetime of the instrument. 

5. The way to perform a real-time data acquisition and analysis simultaneously. 

6. The way to transmit the measuring results to the supervisory system or receive 

the setup commands from the supervisory system. 

A stray-immune circuit is chosen to remove the stray capacitance for the impedance 

sensor, which is based on the "Visual Ground" principle of the operational amplifier. 

In an AC circuit, the currents flowing through a resistor and a capacitor will have 

a goo phase difference. An in-phase and a quadrature phase-sensitive demodulator 

(PSD) are therefore employed to distinguish the capacitance component and conduc

tance component from a same sensor output signal. However, the performance of 

the PSDs is mainly dependent on the reference signals. For example, a goo phase 

shifted reference signal is needed in the quadrature demodulation for detecting the 

capacitance component, whereas generating a precise and stable goo phase shifted 

analog signal is a challenging task for any designer. 
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In order to reach the required accuracy and stability of the measurement, a digital 

signal processing (DSP) solution is considered in the design. The digital solution is 

able to remove errors from the signal processing; however, attention must be paid 

to the errors in Analog-to-Digital Converter (ADC), which can significantly reduce 

the accuracy of the digital solution. A DSP microprocessor (TMS320F2812) is em

ployed in this thesis, which operates at 150MHz (6.67ns Cycle Time), has 12-Bit 

ADC, supports up to 12.5MSPS sampling, and can perform data acquisition and 

DSP analysis simultaneously [11]. For external communication, this chip supports 

Serial Peripheral Interface (SPI), Serial Communications Interface (SCI) and En

hanced Controller Area Network (eCAN). For the implementation reason, a SCI is 

chosen as the communication interface between the DSP chip and the supervisory 

computer. 

9 



1. 5 Organization of Thesis 

Chapter 2 gives a discussion on the literature in several related areas. Chapter 3 

illustrates the design and implementation of an impedance measuring instrument. 

Chapter 4 describes the implementation of the experiments and the analysis of the 

experimental results. Conclusions and suggestions for future work are presented in 

Chapter 5. 

10 



Chapter 2 

Review of Related Work 

A constantly increasing consumption of the oil over last years drives the industry 

to search for new deposits at sea. However, offshore oil & gas industry presents 

many challenges in comparison to the land-based production, such as: harsh marine 

environment, the separation process on the moving platform, and large pressures in 

the pipeline that links from producing wells to the surface production platform. 

In general, each well is producing a different amount of oil, gas and produced water, 

so managing a production field of few tens of wells is not an easy task. As a result, 

providing a knowledge about the produced composition, the ratio of gas/oil/water, 

can greatly enhance the process optimization. Conventionally, a test separator is 

employed in the measurement; however, this method only offers the off-line ratio of 

each component and needs a large space on the surface of the production platform. 

Therefore, in order to obtain real-time information from each well and save the space 

on the production platform, a subsea well-head mounted multiphase flowmeter is 

needed in the offshore industry. 

11 



2.1 Multiphase Flow 

One of the reasons for halting the success of the development of multi phase flowmeters 

comes from the crude oil flow, known as multiphase flow. It is common in the oil & 

gas industry, and it is difficult to measure, predict and model. Normally, the flow 

structures are affected by the proportions, physical properties and velocity of every 

component inside crude oil [10]. By observing the flow patterns in the transparent 

pipe, the researchers summarized them into several flow regimes. The distribution of 

the different components in crude oil varies with flow regimes and is usually not under 

the production control [4]. Process conditions and the orientation and geometry of 

the pipe can change flow regimes from one to another smoothly and continuously 

[10]. Determining flow regime is therefore becoming a hard task to any designer in 

the multiphase flow metering. 

Figures (2-1) and (2-2) list common flow regimes in the pipe. It should be noted 

that the superficial gas velocity in these figures is the gas velocity when the gas is 

flowing in the pipe without liquids; similarly, the superficial liquid velocity is defined 

[4]. 

Vertical flows 

With increasing the superficial gas velocity, the multiphase flow will change flow 

regimes from bubble to slug, then to churn and finally to annular. Note that the 

multiphase flow in Figure (2-1) will remain in annular flow for all superficial liquid 

velocities when the superficial gas velocity is greater than a certain speed. 

Horizontal flows 

The transitions are also functions of superficial gas and liquid velocities. It is also 

noted that the data listed in Figure (2-2) is only valid for a specific pipe, a certain 

pressure and a specific multiphase flow. 

12 
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2.2 Current Multiphase Flowmeter Technology 

Currently, many types of multiphase flowmeters are available in the market. In gen

eral, they use a combination of two or more of the following measurement techniques 

[4]: 

• Electromagnetic measurement principles 

- Microwave 

- Capacitance 

- Conductance 

• Gamma-ray densitometry or spectroscopy 

• Neutron interrogation 

• Differential pressure using Venturi, V-cone or other restriction 

• Positive displacement 

• Ultrasonic 

• Cross-correlation of electromagnetic, radioactive, ultrasound signals (to calcu

late flow velocities) 

Detailed information about four commercial multiphase flowmeters is presented 

below. 

2.2.1 Agar MPFM-400 SERIES Multiphase Flowmeter 

The Agar MPFM-400 Series Meters are designed to handle a wide range of flow rates. 

The Agar MPFM-400 Series extends the dynamic range of the gas and void fraction 

capacity of the Agar MPFM-300 Series multiphase flowmeters by adding a Fluidic 

Flow Diverter (FFD®) Device and gas bypass loop. The FFD® Device uses the 

14 



(a) Installed on an Offshore Platform. (b) Schematic Diagram. 

Figure 2-3: The diagrams for Agar MPFM-400 [12]. 

difference in flow momentum of the gas and the liquid to separate them into two 

different loops. Most of the free gas in the stream flows into a gas bypass loop around 

the core MPFM-300. The remaining fluids flow through the core MPFM-300 Series 

system [12]. 

The design of this multi phase flowmeter is based on the partial separation method. 

Namely, multiphase flow is first separated into a gas dominant flow and a liquid 

dominant flow, and then two relatively simple measurements are performed on each 

loop. Testing results showed that this multiphase flowmeter was suitable for high gas 

fraction flows with an accuracy of± 10% [9]. 

2.2.2 Framo Multiphase Flowmeter 

Framo multiphase flowmeter is independent of flow regimes by using a mixer to ho

mogenize flows before the measurement. The schematic diagram of this multiphase 

flowmeter is shown in Figure (2-4). In the measurement part, Venturi and dual energy 

15 



MPFM r1ow Comp~rt« 

.LSupOOtiSory 
Systern 
Communication 

'----- ~S~:rvtceComputer 

L----- F'<>werSupply 

Figure 2-4: The schematic diagram for Framo multiphase flowmeter[l3]. 

gamma-ray are employed to obtain the flow rate and the component fractions of each 

phase respectively [8]. Testing results have shown that it has an accuracy of± 5%. 

Also, this multiphase flowmeter supports both topside and subsea installation; it is 

therefore used in many offshore projects. However, the expense of this multiphase 

flowmeter is a substantial barrier for applying it widely to offshore applications [9]. 

2.2.3 Roxar MPFM 1900VI Multiphase Flowmeter 

Compared with two multiphase flowmeters discussed in the previous subsections, 

Roxar MPFM 1900VI® multiphase flowmeter does not need any extra devices, such 

as a mixer or separator installed before measurements; however, more measuring 

techniques are involved for this flow regime independent multiphase flowmeter. Not 

only Venturi and gamma-ray measurements are employed in the design, but also 

impedance measurements are introduced for this purpose [14]. Similar to Framo 

multiphase flowmeter, this kind of flowmeter has both good accuracy and a high cost. 

However, this high cost limits it to be used in most offshore projects. 
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Figure 2-5: Roxar MPFM 1900VI multiphase flowmeter[14]. 

(a) Front View. (b) Cutaway View. 

Figure 2-6: Flowsys multiphase flowmeter[7]. 
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2.2.4 Flowsys Multiphase Flowmeter 

Unlike three multiphase flowmeters discussed above, Flowsys™ multiphase flowmeter 

in Figure (2-6) is a relatively low-cost multiphase flowmeter. It employs an electrical 

impedance technique instead of radiation techniques. However, it is only used in 

land-based applications. 

2.2.5 Research Work in PPSC Project 

As mentioned in Chapter 1, the offshore industry needs a low-cost multiphase flowmeter 

that can be installed on every well head to monitor the crude oil composition in real 

time. Compared with above four multiphase flowmeters, the impedance-based mul

tiphase flowmeter is considered due to its low cost characteristics. 

Since the impedance-based multiphase flowmeter is dependent on flow regimes, 

its accuracy is currently not sufficient for real-time production monitoring. A new 

design will be carried out in the future. For example, a cyclone flow rotator can be 

added to convert an arbitrary flow into a stratified flow before the measurement takes 

place. In this way, the performance of the impedance-based multiphase flowmeter 

can be significantly improved. 

In order to meet the requirement of the subsea well-head installation, we assume 

to only install the measuring electrodes in subsea, whereas the field electronics are 

installed on the topside of the production platform. As shown in Figure (2-7), long 

shield cables can be used between the electrodes and the field electronics. However, 

this new configuration generates large stray capacitances between cables and shields. 

Therefore, the research work in this thesis focuses on the impedance signal detection 

and demodulation under the presence of large stray capacitances. 
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Figure 2-7: The diagram for offshore oil production [15]. 

2.3 Detections and Demodulations of Impedance 

Signals 

Figure (2-Sa) shows an impedance sensor which is built by two parallel plates and a 

shielding screen. Also, a sensor schematic circuit is drawn in Figure (2-Sb). In this 

project, the stray capacitances C81 , C82 (between electrodes and the shielding screen) 

and the parasitic capacitances Cp1 , Cp2 (between cables and the shielding screen) are 

several orders larger than the measured capacitance Cx. As a result, the impedance 

measuring circuit should be designed to remove these stray capacitances. 

In addition, for simplicity in this thesis, Cs 1 will stand for the total capacitances 

of C81 and Cp1 , and C82 will denote the total capacitances of Cs2 and Cp2 . 

8 A 

~=-- c~J: '---c~J:--r--1 J C 51 

(a) Sensor structure. (b) Equivalent circuit. 

Figure 2-8: The diagrams for an impedance sensor [3]. 
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Figure 2-9: The measuring circuit based on the resonance method [3]. 

In general, the measuring circuit can be arranged into four main categories: res

onance, oscillation, charge/discharge and AC bridge methods [3]. 

2.3.1 The resonance method 

In Figure (2-9), 0 81 and 0 82 are shunted by the power source and the current detector 

respectively. Thus, they have no effect to the parallel LCG circuit. The steady-state 

admittance of the LCG circuit is [16]: 

Y = Gx + j(wCx- w
1
L) (2.1) 

This circuit is tuned to resonance when the voltage applied to this circuit and 

the current flowing this circuit are in phase. It is corresponding to a purely real 

admittance [16], namely, wCx- 1/wL = 0. 

Thus, the capacitance Cx can be derived by 

(2.2) 

Moreover, the conductance Gx can be obtained by 

(2.3) 

Measurements based on this method require several operating steps such as ad

justing the resonance frequency, detecting the resonance condition and calculating 
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Figure 2-10: The measuring circuit based on the LC oscillator method [3]. 

the sensing capacitance and conductance [3]. The first two steps are often controlled 

manually; therefore, this method is not suitable for the real-time impedance measure

ment. 

2.3.2 The LC oscillation method 

Figure (2-10) shows a schematic diagram for a typical LC oscillation measurement. 

In general, this method is used to measure the change in the measured capacitance, 

which can be expressed as [3]: 

where 

Cs=the overall stray capacitance 

Cx=The capacitance between two electrodes 

fo=The standing oscillation frequency 

(2.4) 

As shown in Figure (2-10), a Frequency-to-Voltage Converter (FVC) is employed 

to detect the change in the oscillation frequency ( flf), and then the change in the 

measured capacitance (flCx) can be calculated by Equation (2.4). However, the stray 

capacitance ( Cs) is included in the measurement, and this method cannot measure the 

conductance component from the sensor. Therefore, this method is also not suitable 

for the impedance measurements in this thesis. 
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Figure 2-11: The measuring circuit based on the charge/discharge method [3]. 

2.3.3 The charge/discharge method 

Figure (2-11) draws a schematic diagram for the charge/discharge method [3]. The 

charge and discharge operations are controlled by two pairs of switches (S1 , S2 ). When 

S1 switches are on and S2 switches are off, the sensor and the reference capacitor are 

charged. On the contrary, they release the charge to detector circuits when S1 switches 

are off and S2 switches are on. If C and R1C1 in the charge detector are selected to 

large values, the outputs [3] of the detectors will be denoted by 

where 

J=The switching frequency of the S1 and S2 

Vc=The charging voltage 

R1=The resistance of the feedback resistors 

(2.5) 

(2.6) 

As shown in Figure (2-11), the final voltage output (Va) is the difference of two 
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Figure 2-12: The diagrams for AC bridge method [3]. 

detector outputs (Vx and Vr) [3], namely, 

(2.7) 

As the previous LC oscillator circuit, this circuit is not a stray-immune circuit. 

Therefore, it is not suitable for the research in this thesis. 

2.3.4 The AC bridge method 

The AC bridge method has a long history since Sir Charles Wheatstone employed it 

to the comparison of resistance in 1843 [17]. Nowadays, it is considered as the most 

accurate and stable method for impedance measurements. A basic AC bridge circuit 

is shown in Figure (2-12a). If no current is detected by the current detector, this 

bridge will be balanced. The measured impedance can be obtained by 

(2.8) 

In most cases, this bridge is not balanced. According to the equivalent circuit in 

Figure (2-12b ), the unbalanced current flowing through the current detector can be 
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Figure 2-13: The phase diagram for conductance and capacitance components. 

denoted as: 

(2.9) 

In this equation, the bridge output current is composed of two 90° phase difference 

signals, which are shown in Figure (2-13). Then, both an in-phase and a quadrature 

phase-sensitive demodulator are used to separate the conductance component and the 

capacitance component from this current signal respectively. Similar to the resonance 

method, this method is also based on the stray-immune design. Therefore, the AC 

bridge circuit is chosen for signal detection in this thesis. 

2.3.5 The impedance reference 

The main purpose for using impedance references (Or and Gr) in the circuit in Figure 

(2-12b) is to reduce the drifts caused by the power source and temperature. However, 

if the references are not stable in the measurement, the measuring accuracy will be 

worse than the accuracy of a directly measuring circuit. A thermal coupling method is 

therefore proposed to construct the impedance references and improve their stabilities 

in the multiphase flow measurements. In Figure (2-14), a thermal coupling device is 

used to balance the temperature between the measured flow and the reference flow. 
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Figure 2-14: A thermal coupling reference schematic diagram [6]. 
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Figure 2-15: A simplified measuring circuit schematic diagram. 
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2.3.6 Simplified circuit and current detector 

As discussed in the previous subsection, constructing a stable reference system is a 

complex task. Moreover, the research emphasis of this thesis is on the signal detection 

and demodulation, so the measuring circuit described in this thesis will not include 

the impedance reference part. Namely, the current detector will only measure the 

current flowing through the sensor. A simplified schematic diagram of the measuring 

circuit [18] is illustrated in Figure (2-15). In this diagram, the stray capacitance Cs1 

is shunted by the power source, so it has no effect on the sensor output current Is. 

In addition, Cs2 is connected to the virtual ground of the operational amplifier (A1), 

so no current flows into Cs2 • In other words, this stray capacitance is canceled in the 

measuring circuit. Therefore, this simplified measuring circuit is also a stray-immune 

circuit. Consequently, the current flowing through the sensor can be expressed as 

(2.10) 

At the end of this stage, the sensor current Us) is transferred to a voltage signal 

(V0 ) by a current detector (A1). Later, an in-phase and a quadrature phase-sensitive 

demodulator (PSD) will be employed to distinguish conductance component and ca

pacitance component from this voltage signal (V0 ). 

2.3. 7 Signal Demodulation 

As can be seen in Figure (2-16), phase-sensitive demodulators (PSDs) play a pivotal 

role in this stage. In terms of the AC circuit theory, the currents flowing through 

a resistor and a capacitor will have a 90° phase difference. Two PSDs are therefore 

used to demodulate the in-phase component and the quadrature component from the 

current detector output ("Vc,). Finally, the sensor measured conductance can be ob

tained from the in-phase PSD output (Vdc,REs), and the sensor measured capacitance 
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Figure 2-16: Signal detecting and demodulating schematic block diagram. 

can be achieved from the quadrature PSD output (Vdc,CAP ). 

Demodulating Principle 

A PSD schematic diagram is drawn in Figure (2-17). Assume the input signal 

and the reference signal 

then the output of the multiplier 

Vp(t) = Vi(t)vr(t) 

ViVr cos[(wi + wr)t +(<Pi+ <Pr)] 

+ViVr cos[(wi- Wr)t +(<Pi- <Pr)] 

(2.11) 

(2.12) 

(2.13) 

If these two signals are the same in frequency and phase ( wi = Wn <Pi = <Pr), the 

output of the low-pass filter will be a DC component, which is proportional to the 

input signal Vi. 

Vdc = ViVr cos(O) = ViVr = KVi 
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Figure 2-17: Phase-sensitive demodulator schematic diagram [19]. 

where K = v;.= Constant. 

If they are the same in frequency and with quadrature difference in phase 

(wi = Wr, <Pi = <Pr - ~), the output of the low-pass filter will be zero. 

(2.15) 

In terms of Equation (2.14) and Equation (2.15), the corresponding DC voltage of 

the sensor measured conductance or capacitance can be respectively achieved by 

employing an in-phase or a quadrature reference signal into PSD [19]. 

2.4 Concluding Remarks 

This chapter gives a set of background literature in the area of the multiphase flow, 

current multiphase flowmeter technologies, and the detection and demodulation of 

impedance signals. The rest of this thesis will follow the circuit theories discussed in 

this chapter to develop a DSP-based impedance measuring instrument. 
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Chapter 3 

Design and Implementation of an 

impedance-based measuring 

instrument 

This chapter will discuss issues and challenges that occurred in the design and im

plementation of the impedance-based measuring instrument. The discussion will be 

divided into two parts: an analog solution and a digital solution. These two methods 

are based on analog circuits and DSP techniques, respectively. 

3.1 Analog Solution 

3.1.1 An overview of the system 

Figure (3-1) shows an analog detection and demodulation schematic diagram for 

the impedance-based measuring instrument. The system illustrated in the diagram 

consists of four main parts: stray-immune current detector, AC amplifier, phase

sensitive demodulators, and data acquisition card in the computer. 
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Figure 3-1: The schematic diagram for the analog detection and demodulation. 
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Figure 3-2: Stray-immune current detector and AC amplifier schematic diagram [20]. 

3.1.2 Stray-immune current detector and AC amplifier 

A stray-immune current detector and an AC amplifier is illustrated in Figure (3-2), 

where a wide bandwidth quad JFET input operational amplifier (LF347) is employed 

for the current detection and amplification. Moreover, for minimizing the DC offset 

of the operational amplifiers, bias resistors (Rb) are used in the design, and their 

resistances should be slightly less than the feedback resistances (R1 ). In addition, 

the small compensation capacitors (Ch and C12 ) are used in the feedback loop to 

improve the dynamic responses of operational amplifiers [20]. 

3.1.3 Phase-sensitive demodulators (PSDs) 

As shown in Figure (3-3), the PSDs used in the analog solution are composed of a 

phase shifter, two multipliers, two low-pass filters, and three hardware buffers. In the 
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Figure 3-3: The schematic diagram for PSDs used in the analog solution. 

design, multipliers and hardware buffers are easily constructed by two wide bandwidth 

precision analog multipliers (MPY634KP) and a wide bandwidth quad JFET input 

operational amplifier (LF347). However, the remaining two parts, the phase shifter 

and low-pass filters, are hard to implement in the circuit. Several new methods are 

therefore proposed in the design. 

Phase shifter 

As mentioned in the previous paragraph, a goo phase shifter is required in the quadra

ture demodulation. The conventional analog oscillation circuit could not generate an 

exact goo phase shifted signal, so the EPROM and DAC chips are used to solve 

this problem. However, this method is only suitable for the generation of the low 

frequency quadrature signals. Therefore, a new method, Direct Digital Synthesis 

(DDS), is proposed to generate the high frequency quadrature signals. 

The principle of DDS method Figure (3-4) illustrates a schematic diagram of 

a DDS quadrature signal generator, which can output a sine-wave signal and a goo 

phase shifted sinusoidal signal (cosine-wave). In Figure (3-5), CMOS switches, resis

tor networks and summers (operational amplifiers) are used to generate the 16-step 

sinusoidal signals in the outputs [21]. In addition, the capacitors are employed in the 
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Figure 3-4: The schematic diagram of a DDS quadrature phase shifter [21], [22]. 

design to smooth 16-step output signals into continuous sinusoidal signals. 

Figure (3-6) shows the principle of this DDS signal generator. The cosine-wave 

is formed by a combination of the control pulses (Q1, Q2, Q3, Q4, Q5, Q6, Q7 and 

Q8). The sine-wave is formed by another combination of control pulses (Q5, Q6, Q7, 

Q8, Ql, Q2, Q3 and Q4). The relative values of the resistors (R1,R2,R3 and R4) can 

be obtained by the following equations [21]: 

~1 = sin i = 0.3827 (3.1) 

~1 + ~2 =sin~= 0.7071 (3.2) 

1 1 1 . 311' 
- + - + - = S1n- = 0.9293 
R1 R2 R3 8 

(3.3) 

1 1 1 1 7r 
-+-+-+-=sin-= 1 
R1 R2 R3 R4 2 

(3.4) 

For easy comparison, the relative values, desirable values and actual values of 

these resistors are also listed in Table (3.1). 
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(a) Cosine-wave synthesizer circuit. 

Series input 
Reference voltage 

R4 

Rf 

07 

08 
Series-in 

Parallel-out Reference voltage 

Register 

R1 

01 

R2 

03 R3 

04 R4 

(b) Sine-wave synthesizer circuit. 

Figure 3-5: The schematic diagrams for CMOS switch and resistor networks [21], [22]. 
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Figure 3-6: The schematic diagrams of the synthesized sine-wave and cosine-wave 
[21], [22]. 

Resistor R1 R2 R3 R4 RJ 
Relative value 2.613 3.083 4.613 13.14 
Desirable value (0) l.OK 1.18K 1.77K 5.03K 382.7 
Actual value (0) l.OK 1.18K 1.78K 4.99K 392 
Error (%) 0 0 0.56 -0.80 

Table 3.1: Resistor values for synthesis network [21] 
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Figure 3-7: The filter setup dialog interface in Anadigm Designer2 . 

Low-pass filter 

The low-pass filters in the analog design are constructed by Field Programmable 

Analog Arrays (FPAAs) from Anadigm® [23], which can be configured to low-pass, 

band-pass, and high-pass filters via a setup software, Anadigm Designer2. In Fig

ure (3-7), a Butterworth type low-pass filter is configured in which the pass-band 

frequency is 9.855Hz and the stop-band frequency is 16. 707Hz. 

35 



Figure 3-8: The PCB for the analog solution. 

Figure 3-9: AN221K04 - Anadigmvortex development board. 

3.1.4 Implementation 

A printed circuit board (PCB) in Figure (3-8) has been designed to implement the 

signal detection and demodulation in the analog solution. It includes a current 

detector, an AC amplifier, a signal generator, a 90° phase shifter, and two phase

sensitive demodulators. As shown in Figure (3-9), an Anadigmvortex development 

board (AN221K04) from Anadigm is employed to build low-pass filters. A computer 

with a data acquisition card digitizes the outputs of the low-pass filters, and then 

analyzes and displays the results to the computer screen. 
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Figure 3-10: The output of the low-pass filter. 

3.1.5 Results and problems 

The tests show that the DC voltage outputs of the low-pass filter increase when the 

measured capacitances or conductances are increased, but the measuring results are 

not stable and no linear relationship has been obtained in the experiments. As men

tioned in Chapter 2, the performance of analog PSDs is determined by the reference 

signals and the low-pass filters. However, the quadrature reference signal generated 

in this analog design was not a precise and stable goo phase shifted signal believed 

to be caused by instability of analog components. Furthermore, in Figure (3-10), 

many high-frequency harmonics still exist in the final DC output of the low-pass fil

ter. These unwanted ripples greatly reduced the ADC performance of the computer. 

In this analog implementation, the goo phase shifter and the low-pass filters did not 

perform well; therefore, a digital solution was investigated as an alternative solution. 
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Figure 3-11: The schematic diagram for a digital solution. 

3.2 Design of Digital Solution 

As discussed in the previous section, the performance of analog PSDs does not meet 

the requirements of this research project. Therefore, a digital solution is proposed to 

improve the performance of signal demodulation. 

3.2.1 An overview of the digital solution 

Figure (3-11) illustrates a schematic diagram for the digital solution. Compared with 

the analog solution, the stray-immune current detector and the AC amplifier are still 

employed in the digital solution, whereas the PSDs are changed to digital PSDs for 

removing the errors from analog components. Once the ADC converts the sensor 

output signal (Va) and the in-phase reference signal (Vs) into the digital sequences, 

the measured conductance and capacitance can be achieved by a series of numerical 

operations in digital PSDs. 
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Figure 3-12: Digital PSD schematic diagram. 

3.2.2 The principle of digital PSDs 

The principle of digital PSDs is discussed in the following two areas. 

In-phase demodulation 

Figure (3-12) shows a schematic diagram of a digital PSD. s[n] stands for a digital 

input signal sampled from the output of the AC amplifier (V0 ). r[n] stands for a 

digital reference signal sampled from the in-phase reference signal (Vs). 

Thus, the output of the digital multiplier is 

x[n] = s[n] · r[n] (3.5) 

After a Fast Fourier Transform (FFT) illustrated in Figure (3-12), the time domain 

digital signal x[n] is transfered into the frequency domain digital signal X(w). Figure 

(3-13) shows that the frequency characteristic of X(w) is in accordance with the 

theoretical analysis in Equation (2.13). Namely, when two signals with the same 

frequency are multiplied together, a DC component and a component with twice the 

frequency will be generated in the output signal. 

Next, a digital finite impulse response (FIR) low-pass filter is designed to remove 

the high-frequency component from X(w), so a DC frequency domain signal Y(w) 

can be obtained by 

Y(w) = X(w) · H(w) (3.6) 

where H(w) is the frequency response function of the FIR low-pass filter. The perfor-
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Figure 3-13: The magnitude of the input and output of the digital multiplier. 
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Figure 3-14: The output y[n] of the in-phase digital PSD. 
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mance of this FIR filter is also shown in Figure (3-13), where only the DC component 

is left in the Y ( w), which is much better than the performance of the analog low-pass 

filter. 

Finally, the time domain DC signal y[n] (namely, the output of the digital PSD) is 

achieved by employing an inverse FFT to Y(w). In Figure (3-14), a very straight line 

is obtained except for initial transitions, which means that a stable DC component is 

obtained in the output of the digital PSD. Therefore, the digital PSD can be employed 

in the in-phase demodulation. 

Quadrature demodulation 

A highly precise and stable goo phase-shifted reference signal is difficult to obtain 

in the analog circuit. However, it can be implemented in the digital PSD with less 

complex techniques. A sinusoidal time domain signal and its corresponding frequency 

domain signal are shown in Equation (3.7). 

(3.7) 

where w E ( -1r, 1r). 

Assume an in-phase reference signal r[n] = cos(w0n + 0) and a goo phase-shifted 

reference signal r'[n] = cos(w0n + ~). Then, the frequency responses of r[n] and r'[n] 

are 

where wE ( -1r, 1r). 

R(w) = m5(w - w0 ) + 1r6(w + wo) 

R'(w) = j1r6(w- wo) - j1r6(w + wo) 

(3.8) 

(3.g) 

In comparison with Equation (3.8) and Equation (3.g), one "-" sign and two "j" 

are the only differences between them. Thus, R' ( w) can be easily achieved from R( w) 

after several simple math calculations. Furthermore, the quadrature reference r'[n] 

can be obtained by employing an inverse FFT to R'(w). 
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Figure 3-15: The output y[n] of two quadrature signals. 

In Figure (3-15), two quadrature digital sequences r[n] and r'[n] are fed into the 

digital PSD. The output y[n] is close to zero except for initial transitions. This is in 

accordance with the quadrature demodulating formula in Equation (2.15). Therefore, 

this r'[n] is a precise and stable goo phase-shifted reference signal and the generating 

method presented above is correct. 

Once a goo phase-shifted reference signal r'[n] is obtained, the rest procedures 

for the quadrature digital PSD are the same as those of the in-phase digital PSD 

(namely, x'[n] = s[n] · r'[n]), which has been illustrated in Figure (3-12). Finally, 

a similar straight line in Figure (3-14) is achieved by the quadrature digital PSD. 

Therefore, this digital PSD can be employed in the quadrature demodulation. 
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Figure 3-16: The schematic diagram for simulations in Matlab. 

3.2.3 Simulations in Matlab 

Matlab 

Simulation 

In this thesis, several simulations in Matlab are performed to verify the DSP concepts 

mentioned in the previous subsection. A schematic diagram of the simulation system 

is shown in Figure (3-16), where a Tektronix 2212 storage oscilloscope is used for data 

acquisition. At first, the sensor output signal Vo and the in-phase input signal Vs are 

sampled into data file by CH1 and CH2 of the oscilloscope. Then, this data will be 

analyzed by the simulation program in Matlab. 

According to the Nyquist sampling theorem, the sampling rate is at least twice as 

fast as the maximum signal frequency Us ~ 2fmax). In order to avoid the aliasing in 

the samples and improve the sampling performance, the sampling frequency in this 

research project is chosen to be ten times faster than the maximum signal frequency 

Us ~ 10fmax). 

As shown in Figure (3-16), the digital PSDs are realized by the simulation program 

in Matlab. This simulation program can read sampling data file from the oscilloscope, 

and then follow the digital processes illustrated in Figure (3-12). At the final stage 

of the digital processes, a digital sequence y[n] can be achieved. For easy comparison 

with the other measuring data, the mean of y[n] is adopted for the final output of the 

digital PSD in this thesis. 
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Figure 3-17: The impedance measuring results in different frequencies. 
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The theoretical analysis in Equation (2.10) shows that the current flowing through 

a resistor is proportional to the conductance, regardless of the signal frequency ap

plied on the resistor (i ex ~). However, the current flowing through a capacitor 

is proportional to the product of the capacitance and the frequency applied on the 

capacitor (i ex wC). 

This analysis has been confirmed by the simulations in Matlab. Figure (3-17) 

shows the results of these simulations, where the simulations are performed in five 

different frequencies, 8KHz, 20KHz, 35KHz, 50KHz and 100KHz. As shown in Figure 

(3-17b), increasing the signal frequency can increase the accuracy of the capacitance 

measuring. However, too high frequency also decreases the linearity of the measuring 

results due to the frequency bandwidth of the analog components. With the tradeoff 

between the accuracy and the linearity, a 50KHz signal frequency is selected in the 

experiments. Consequently, the sampling rate is set to 500K samples per second. 
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Figure 3-18: The linearity of the measuring circuit output. 

The experiments were conducted at 50KHz to find the regression models for the 

conductance and capacitance measurements. Figure (3-18a and 3-18b) show the 

linear relationships between simulated impedances and measured impedances in the 

conductance and capacitance measurements. 

The linear regression models are given as: 

y~J = 0.23168 x Resistance+ 0.012527 (3.10) 

y[n] = 0.12306 x Capacitance+ 0.042922 (3.11) 

where 

Y[n] is the mean of the output y[n] of the digital PSD. 

In Figure (3-18), the correlation coefficients between the measured impedances 

and the simulated impedance are greater than 0.999. In other words, this digital 

method has good linearity in the conductance and capacitance measurements. 
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Stray immune testing for capacitance measurement 
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Figure 3-19: The results for the stray-immune tests of the measuring circuit. 

Stray-immune tests 

Stray-immune is a necessary characteristic for the research in this thesis because 

long cables assumed to be used between the subsea electrodes and the topside field 

electronics can generate large stray capacitances in the measurement. In order to 

verify this characteristic, stray-immune tests were performed when the different length 

of cables were connected between the output of the sensor and the input of the current 

detector. In Figure (3-19), the testing results show that the measured capacitances 

(the means of y[n]) have a low dispersion and the norm of residuals is small to 0.0033, 

which is in accordance with the theoretical analysis in Chapter 2. As a result, the 

measuring circuit used in this research have a stray-immune characteristic. 
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Analog part Digital part 

Figure 3-20: The schematic diagram of a DSP-based impedance measuring system. 

3.3 Implementation of Digital Solution 

After successful simulations in Matlab, a digital signal processor (TMS320F2812) is 

introduced to perform data acquisition and digital data analysis in the design. In 

contrast to the offline impedance data obtained in Matlab simulations, this DSP chip 

can provide real-time impedance data in the measurement. 

3.3.1 A overview of DSP system 

Figure (3-20) illustrates a schematic diagram of this DSP-based measuring system. 

In TMS320F2812, two ADC input channels (ADCINA1 and ADCINBI) sample the 

sensor output signal Vo and the in-phase input signal Vs simultaneously. After digi

tal signal processes in TMS320F2812, the measuring results can be transmitted to a 

supervisory computer via serial communication interface (SCI). In addition, a Visual 

Basic (VB) management program has been developed to implement the serial com

munication, data display and data analysis for the supervisory computer. 

3.3.2 TMS320F2812 and eZdsp™ F2812 

The digital signal processor TMS320F2812 is made by Texas Instruments. It offers 

150 MIPS, 32-bit DSP performance, and provides 16-channel, 12-bit ADC with up to 

12.5 MSPS conversion speed [11]. 
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Figure 3-21: The eZdsp™ F2812 development board. 
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For easy implementation, a DSP development board, eZdsp™ F2812 from Spec

trum Digital, is chosen in the thesis. The top view and the block diagram of this 

development board are shown in Figure (3-21). This board integrates a digital signal 

processer (TMS320F2812) and the digital/analog I/0 interfaces. In addition, the 

communication between the TMS320F2812 and the programming computer is imple

mented by an embedded IEEE 1149.1 JTAG controller on the development board via 

a parallel interface. 

3.3.3 Hardware implementation 

Like the digital simulations mentioned in the previous section, the stray-immune 

current detector is still in the analog circuit. However, in this DSP circuit, the 

AC amplifier is changed to a digitally-controlled programmable-gain instrumentation 

amplifier (PGA203), which provides gains of 1, 2, 4, and 8 and can be controlled by 

the DSP microprocessor. 

Voltage level shifter 

The sensor output signal Vo and the in-phase input signal Vs are bipolar signals, with 

a range between -1.5V and +1.5V. However, the ADC input channels (ADCINA1 and 
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Figure 3-22: The +1.5V voltage level shifter [25]. 

ADCINB1) of TMS320F2812 require unipolar signals between OV and 3V. Therefore, 

two voltage level shifters are needed in the F2812 ADC processes. Figure (3-22) 

illustrates a + 1.5V voltage level shifter. Since the opamp input currents are zero 

(i+ = i_ = 0), and opamp input voltages are the same (V+=V_), two nodal equations 

can be obtained 

0- V_ Va- V_ O ---+ = 
R1 z1 

(3.12) 

\1;-V+ V, -V+ 
t + r = O 

R3 Zz 
(3.13) 

where Z = R2 z = R4 
1 l+jwC1R2' 2 l+jwC2R4 

In terms of the values of resistors and capacitors in Figure (3-22) 

(3.14) 

Thus, Equation (3.12) and Equation (3.13) can be solved as 

(3.15) 

Therefore, the bipolar input signal Vi (-1.5V rv +1.5V) is shifted to the unipolar 

output signal Va (OV rv +3V). 
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(b) + 1.5 Reference voltage 

Figure 3-23: The schematic diagram for the power supply. 

Power supply 

In this thesis, the power supply is designed to provide +15V, -15V, and the reference 

voltage + 1.5V. Figure (3-23a) shows the schematic diagram of a dual-output power 

supply, where the regulators 7815 and 7915 are used to generate +15V and 

-15V. In order to generate a stable+ 1.5V reference voltage for the voltage level shifter, 

a precise voltage regulator (LM317) is employed in the design, and its schematic 

diagram is illustrated in Figure (3-23b ). Note that the output voltage of LM317 can 

also be adjusted from 1.2V to 37V by tuning a variable resistor R2 . 

50 



(a) Signal conditioning board (b) Power supply 

Figure 3-24: The pictures of the signal conditioning board and the power supply. 

Figure 3-25: The side view of the eZdsp™ F2812 and the signal conditioning board. 

DSP signal conditioning board 

As shown in Figure (3-24), a DSP signal conditioning board has been designed 

and constructed to integrate the stray-immune current detector, the instrumenta

tion amplifier, the voltage level shifters, the serial communication voltage convertor 

(MAX3232), and the eZdsp™ F2812 development board together. In Figure (3-25), 

the eZdsp™ F2812 development board is overlapped on the top of the signal condi

tioning board, which is known as the daughter card design. The detail schematic and 

PCB layout diagrams will be listed in Appendix A. 
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Figure 3-26: The software interface of Code Composer Studio TM IDE. 

3.3.4 Software implementation 

In this thesis, a C-language control program and a VB management program have 

been developed for the digital signal processor (TMS320F2812) and the supervisory 

computer, respectively. The C program is in charge of data acquisition and DSP anal

ysis, and the VB program conducts the data display and the further data statistics. 

Code Composer Studio™ IDE 

It should be noted that only an assembly language program can be run in the 

TMS320F2812. Therefore, a C-compiler software, Code Composer Studio TM IDE 

from Texas Instruments, is used to compile a C-language program to an assembly 

language program. As shown in Figure (3-26), the code editor, debugger, compiler, 

and linker are all included in this software integrated development environment. 

52 



ADCINAO 

ADCINA7 

ADCINBO 

ADCINB7 

S/W 

EVA 

GPIO 
XINT2_AOCSOC 

Analog 

12-Bit 
ADC 

Module 

ADC Control Registers 

SYSCLKOUT 

Result 

Registers 

r-----.-------------.--------------,------~--stw 

Sequencer2 soc EVB 

Figure 3-27: The block diagram of ADC module [26]. 

The C program for TMS320F2812 

A multi-thread technique is applied to this control program to perform data ac

quisition and DSP analysis simultaneously. Therefore the whole control program is 

divided into two parts: the main routine and the interrupt routines. Namely, the 

DSP analysis is run in the main routine; and data acquisition is performed in the 

ADC interrupt subroutine. In addition, the serial communication program is written 

in the SCI interrupt subroutine. 

ADC setup Figure (3-27) shows a block diagram of the ADC module in TMS320F2812. 

16 ADC channels are divided into two groups: Group A and Group B. Each group 

has an analog MUX to switch different inputs to the sampling holder (S/H). These 

two groups can be operated in the sequential sampling mode or the simultaneous 

sampling mode. For this thesis, the simultaneous sampling mode is chosen to obtain 

the sensor output signal Vo and the in-phase input signal Vs at the same time. 

The parts of the program codes of the ADC process are written in the following 

paragraph. As discussed in Matlab simulations, the sampling rate is set to 520KHz, 

which is 10 times faster than the maximum signal frequency 50KHz. The sampling 
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results stored in the registers have 12 significant bits and they are MSB aligned. 

Therefore, a 4-bit right shift is needed when they are read in the program. 

AdcRegs.ADCTRL3.bit.ADCCLKPS=3; 

II ADCCLK=HISPCLKI(2*ADCCLKPS)=25I6=4.16667MHz 

AdcRegs.ADCTRL1.bit.ACQ_PS=Ox7; 

II The width of SOC pulse is (ACQ_PS +1) ADC_CLK 

II HERE, Ox7 should be 8 ADC_CLK width. II 520KHz 

AdcRegs.ADCTRL3.bit.SMODE_SEL = 1; 

AdcRegs.ADCMAXCONV.all = 0; 

AdcRegs.ADCCHSELSEQ1.bit.CONVOO = OxO; 

II Enable SEQ1 interrupt (every EOS) 

AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 1; 

II Setup continuous run 

AdcRegs.ADCTRL1.bit.CONT_RUN = 1; 

II Start ADC Sampling SEQ1 

AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1; 

II Simultaneous mode 

Voltage1[ConversionCount] = AdcRegs.ADCRESULTO >>4; 

Voltage2[ConversionCount] = AdcRegs.ADCRESULT1 >>4; 

SCI setup The communication between the microprocessor and the supervisory 

computer is based on a serial communication interface (RS232). The parts of the 

program codes of the SCI process will be shown in the following paragraph, where 

the communication control mode is set to 19200 baud, one stop bit, no parity, 8-bit 

char, and asynchronous mode. In TMS320F2812, the transmit FIFO and receive 

FIFO buffers both have 16 words in length. The second "2" in the SCI FIFO receive 

register (SCIFFRX) means a receive FIFO interrupt will be generated once two words 
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are received by the receive FIFO buffer. However, the "4" in the SCI FIFO transmit 

register (SCIFFTX) does not mean a transmit FIFO interrupt will be generated when 

four words are written into the transmit FIFO buffer, but a transmitting interrupt 

occurs once 12 words are written into FIFO buffers (16- 4 = 12). 

SciaRegs.SCICCR.all =Ox0007; 

II 1 stop bit, No loopback, No parity, 8-bit char. 

SciaRegs.SCICTL1.all =Ox0003; 

II enable TX, RX, internal SCICLK. 

SciaRegs.SCIHBAUD = OxOOOO; 

SciaRegs.SCILBAUD =243;11(19200) 

SciaRegs.SCIFFRX.all=Ox0022; 

II --receive 2 words, generate an interrupt 

SciaRegs.SCIFFTX.all=OxC024; 

II (4 = 16-12)-- send 12 words, generate an interrupt 

SciaRegs.SCIFFCT.all=OxOO; 

Main routine The system clock, the interrupt vectors, the entrance addresses of 

the interrupt service subroutine, and the interrupt enable registers must be set up at 

the beginning of the main routine. Then, a signal processing subroutine is run all the 

time, where the digital I/0 operations, FFT, and IFFT are performed respectively. 

GPIO The digital I/0 and the peripheral I/0 share the same group of pins, 

so they are called General Purpose Input/Output (GPIO). The block diagram of a 

GPIO pin is shown in Figure (3-28). When a pin is chosen as a digital I/0, its 

corresponding bit in the GPIO MUX register is set to "0" . Furthermore, the control 

bit in the GPIO DIR register should be assigned to "0" for the input or "1" for the 

output. The example codes are listed in the following paragraph, where 16 pins in the 

GPIO A group are all set to digital I/Os, and GPIOAO and GPIOA1 are employed 

as the outputs to control the gain of the instrumentation amplifier. 
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Figure 3-28: The block diagram for GPIO/Peripheral Pin MUXing [27]. 

GpioMuxRegs.GPAMUX.all=OxOOOO; 

GpioMuxRegs.GPADIR.all=Ox0003; 

I I DilDO mode 

II GPIOAO and GPIDA1 as outputs 

FFT The Fast Fourier Transform function in the Code Composer Studio TM 

IDE is not as simple as the FFT function in Matlab because the TMS320F2812 does 

not support the complex operations. N-point complex sequences have to be stored as 

2N-point real sequences in the memory, which are shown in Figure (3-29). 

Complex Array 
in Matlab 

Real+ Imaginary (1) 

Real+lmaginary (2) 

Real+lmaginary (N-1) 

Real+lmaginary (N) 

Real Array 
in TMS320F2812 

Real (1) 

Imaginary (1) 

Real (2) 

Imaginary (2) 

Real (2N) 

Imaginary (2N) 

Figure 3-29: The complex FFT in TMS320F2812. 
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Figure 3-30: FFT flow graph for N=8 point. 
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Moreover, in order to store the FFT output sequence X(k) in contiguous mem

ory spaces, the input sequence x(n) should be reordered by a bit-reversing operation 

before the FFT. For example, a FFT flow graph for 8-point sequence is illustrated 

in Figure (3-30). On the right side, the output sequence X(k) is followed by se

quential order {X(O), X(l), X(2), X(3), X(4), X(5), X(6), X(7)}, whereas on the left 

side, the input sequence x(n) is arranged to bit-reversing order {x(O), x(4), x(2), x(6), 

x(l),x(5),x(3),x(7)}. 

In addition, the TMS320F2812 does not provide a floating-point operation but 

a 32-bit fixed-point operation; therefore, for improving the accuracy of the FFT 

calculation, the values of the input sequences x(n) should be assigned in the range of 

(212 "'216). 
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IFFT The inverse FFT is not included in the Code Composer Studio TM IDE. 

However, the inverse FFT can be performed by a FFT [28]. Assume x(n) is a real 

input sequence {x(O), x(1), x(2), x(3), · · ·, x(N)}. (Note that the input sequences are 

all real data in this thesis.) 

Let 

Y(k) = FFT(x(n)) (3.16) 

where k E [0, N), n E [0, N), Y(k) is Complex. 

Then 

x'(k) = FFT(Y(k)/N) (3.17) 

where x'(k) = {x(O), x(N- 1), x(N- 2), x(N- 3), · · ·, x(1)}. 

As shown in Equation (3.17), the sequence x'(k) is the time-inverse sequence of 

x( n) except for the first element in the sequence. Therefore, the inverse FFT can 

obtained by Equation (3.17) and a series of reordering operations. 

Memory mapping The programs run in the microprocessor are always limited 

by the memory spaces in the microprocessor. TMS320F2812 can reach 4M words 

programme and data memory spaces, but most memory spaces are reserved by the 

system itself. As illustrated in Figure (3-31), only 18K words memory spaces are left 

for users' programmes and data. Therefore, the programmer must take care of the 

memory usage in the program; otherwise, the unwanted overflows will occur in the 

program running. 

In the Code Composer Studio TM IDE, a linker command file (*.CMD) is used to 

manage these 18K words memory spaces and the other reserved memory spaces. For 

example, the FFT operation needs at least three continuous memory spaces to store 

the in-place computation results, the magnitude of FFT, and the window of FFT. 

If they are not assigned in the linker command file, the system may automatically 

assign them in the available memory spaces. However, these assigned memory spaces 
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OxOO 0000 1------------_.__------------1 
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Figure 3-31: The map of the on-chip memory in TMS320F2812 [11]. 
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are not continuous. Therefore, memory mapping process must be carried on the main 

program and the linker command file. The sample codes are listed in the following 

paragraph. 

I* FFT memory assignment in the main program file *I 

#pragma DATA_SECTION(ipcb, "FFTipcb 11
); 

#pragma DATA_SECTION(mag, "FFTmag"); 

#pragma DATA_SECTION(win, "FFTwin"); 

I* FFT Locations in the linker command file *I 

FFTipcb ALIGN(1024): {}> RAMLOL1, PAGE= 1 

FFTmag > RAMLOL1, PAGE = 1 

FFTwin > RAMLOL1, PAGE = 1 

The Visual Basic program for supervisory computer 

A VB program has been developed for data communication and management, and 

its interface picture is shown in Figure (3-32). As mentioned in the previous sub

sections, the supervisory computer acquires the measured data from the eZdspF2812 

via a RS232 communication. The communication used in this thesis is based on a 

master/slave protocol. Namely, the master node sends a request ("Address+ Com

mand") to the network, then all the slave nodes on the network receive this request, 

but only one node named as that address sends back a reply with the requested data 

("Command + Data"). The sample codes for the master node and the slave nodes 

are shown below. 

//Sending a request in the master node 

If bSending = 0 Then 

varOut = "1C" ' address 01 , capacitance data 
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Figure 3-32: The interface picture of the management program. 

bSending = 1 

Else 

varOut = "1R" ' address 01 , resistance data 

bSending = 0 

End If 

II Sending a reply in the slave nodes 

sprintf (cdataA, "%10 .1f", tempd1IMEASURING_NUM); 

for(i=O; i< SCI_DATA_LENGTH-1; i++) 

{ 

scidataA_C[i+1] = cdataA[i]; 

} 

I* If "C"-Capacitance data *I 

scidataA_C[0]=67; 

I* If "R"-Resistance data *I 

scidataA_C[0]=82; 
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3.3.5 Results 

As the simulations are conducted in Matlab, a 50KHz signal is employed in the 

experiments of the DSP-based impedance measuring system. Similar results are also 

obtained by this physical system. Figures (3-33a and 3-33b) show the linearity of the 

conductance and capacitance measurements in which the linear regression models are 

also given as 

y~] = 0.0015578 x Resistance+ 4.20033 x 10-6 (3.18) 

y[n] = 21.786 x Capacitance- 9.4273 (3.19) 

where 

y[n] is the mean of the output y[n] of the digital PSD. 

In Figure (3-33), the correlation coefficients between the measured data and the 

simulated data are greater than 0.999. In addition, the capacitance measurement can 

meet the resolution of 0.03pF. In other words, the DSP-based measuring system has 

good linearity and good resolution in the measurements. Therefore, it can be used to 

measure the conductance and capacitance in future research. 

3.4 Concluding Remarks 

This chapter outlines the design and implementation of a DSP-based impedance mea

suring instrument revised from a previous analog design. This system gives the plat

form to measure the component fractions of oil/gas/water. Next, the corresponding 

experiments will be discussed in Chapter 4. 
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Figure 3-33: The linearity of the DSP measuring system. 
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Chapter 4 

Experimental Results 

The DSP-based impedance measuring instrument has been designed and implemented 

to measure the conductance and capacitance across the impedance sensor in crude 

oil. This chapter will give a discussion on the experiments of using this impedance 

measuring instrument and the experimental results under different conditions. It 

will first discuss the design of experiments. Next, the result and analysis of each 

experiment are presented. 

4.1 Design of Experiments 

The final objective of this PPSC research project is to measure the component frac

tions in crude oil using an impedance-based multiphase flowmeter. A cyclone flow 

rotator is assumed to uniform an arbitrary flow into a stratified flow in terms of the 

different gravities of the gas/oil/water in crude oil. Therefore, the experiments in this 

research only focus on the stratified multiphase flows. 

Figure ( 4-1) shows the devices used in the experiments, which include a manual 

valve and two glass-measuring cylinders. The manual valve is used to control the 

levels of two glass cylinders. The impedance sensor is installed in a measuring cylin

der without a gradient, and the measuring cylinder with a gradient is employed to 
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Figure 4-1: The picture of the glass measuring cylinders. 

d 

(a) Horizontal electrodes. (b) Vertical electrodes 

Figure 4-2: The diagrams for horizontal electrodes and vertical electrodes. 
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control the mixture fractions in the impedance sensor. Parallel plates are chosen as 

the electrodes of the impedance sensor in the experiments, and two electrode config

urations have been considered in Figures (4-2a and 4-2b): horizontal electrodes and 

vertical electrodes. 

Horizontal electrodes 

As portrayed in Figure (4-2a), two stratified dielectric materials, oil and water, are 

filled between two horizontal electrodes. The equivalent circuit of this horizontal 

measuring sensor is similar to two capacitors in series. 

So 
1 1 1 -:---- = -- + -

Chorizontal Cwater Coil 

Substituting the formula (1.1), Equation (4.1) can be rewritten as 

C 
£ocwaterCoilL1L2/d 

horizontal = ( )d jd 
Cwater - Cwater -Coil 1 

Vertical electrodes 

( 4.1) 

(4.2) 

Figure ( 4-2b) shows a vertical measuring sensor. In contrast to the horizontal sensor, 

its equivalent circuit is two capacitors in parallel. 

So 

Cvertical = Cwater + Coil (4.3) 

Again, substituting the formula (1.1), Equation (4.3) can be rewritten as 

(4.4) 

Based on Equation ( 4.2) and Equation ( 4.4), the capacitance changing curves can 

be drawn in Figure ( 4-3). In Figure ( 4-3a), the output capacitance is nearly the 

same when the water ratio is changing from 0% to 60% in stratified mixtures. This 

shows that the horizontal electrodes are not suitable for the measurements when the 
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Figure 4-3: The capacitance changing curves for horizontal electrodes and vertical 
electrodes. 

water ratio is less 60% in the mixtures. On the other hand, the output capacitance 

of vertical electrodes in Figure ( 4-3b) has good linearity with the water ratio in the 

mixtures. Therefore, the vertical electrodes are chosen in the experiments of this 

thesis. 

Sensor shielding 

Effect of a electrostatic shield in the experiments has been also tested. If no shield 

is placed outside the parallel plate electrodes, the electrodes will be not only an 

impedance sensor, but also an interference receiver. In Figure (4-4a), the sensing 

signal and the interference signals from the outside electromagnetic field both appear 

in the sensor output current. A grounded tin foil shield in Figure ( 4-5) is therefore 

used in the experiments to remove these interference signals from electrodes. A very 

smooth sine wave is obtained in Figure ( 4-4b), which shows that this tin foil shield 

does prevent electrodes from interference signals. 
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Figure 4-4: The performance with/without a shield outside the sensor. 

Experimental scenarios 

The experiments in this thesis are carried out on three different scenarios to verify 

whether this DSP-based impedance measuring instrument can be used to measure 

the component fractions in stratified mixtures. These experimental scenarios are 

• air/water 

• air/oil 

• oil/water 

For easy implementation, the air is employed in the experiments instead of the gas 

because their permittimities are nearly the same ( E:r ~ 1.0). In the experiments, the 

parameters in Figure ( 4-2b) are selected as below: 

L1 =0.01, meters 

L2=0.04, meters 

d=O.l, meters 
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Figure 4-5: The shielded experimental measuring system. 

s0=8.854 x 10-12 , Free space permittivity, frads/meters 

E'air=l.O, Air relative permittivity 

E'oit=2.2, Oil relative permittivity 

C:water=80, Pure water relative permittivity, 

=78, Dyed water in Scenario Three 

4.2 Scenario One: Air /Water 

The experiments in scenario one are employed to measure capacitances and conduc

tances between two vertical electrodes when water ratios are increased from 0 to 1 

(0% rv 100%). By the limitation of the smallest gradient sign on the glass-measuring 

cylinder, the measurements are carried out on fifteen different water levels. With each 

water level, the data processing software can automatically store twenty measuring 

results and display their average values on the bottom of the screen. 

Results analysis 

According to the final measuring results listed in Table ( 4.1), the capacitance and 

conductance data are drawn in Figure ( 4-6a and 4-6b), in which fifteen water levels 

are normalized into water ratios from 0 to 1. 
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11easured average 11easured average Theoretical 
No. capacitance (y[n]) conductance (y[n]) capacitance (pF) 

0 29.45687 8.26108 0.22135 
1 294.97110 106.052000 1.47040 
2 337.99300 78.013630 2.71944 
3 368.48320 52.445780 3.96849 
4 400.25400 20.220120 5.21754 
5 409.10810 7.340903 6.46658 
6 418.97480 8.316511 7.71563 
7 426.84350 19.500100 8.96468 
8 436.56900 28.996200 10.21372 
9 454.61680 40.521390 11.46277 
10 484.01200 49.197820 12.71181 
11 514.79360 59.434700 13.96086 
12 531.17880 67.917920 15.20991 
13 543.61360 73.766300 16.45895 
14 560.27770 78.749890 17.70800 

Table 4.1: The final measuring results in Scenario One. 

Capacitance In terms of the sensor capacitance data shown in Figure ( 4-6a), the 

basic fitting tools in 11atlab give a linear regression model when the water ratio is 

greater than 0.07 ( Water Ratio > 0.07 ): 

Capacitance= 260.55 x (Water Ratio)+ 301.97 (4.5) 

Further analysis shows that the correlation coefficients between the predicted 

data and the last fourteen measured data are greater than 0.9866. The measur

ing capacitances have good linearity when the water ratio is greater than 0.07 ( 

Water Ratio > 0.07 ). This linear result is in accordance with the theoretical analysis 

in Equation ( 4.4). However, the measured capacitances are not proportional to the 

water ratios when the water ratio is less than 0.07 ( Water Ratio < 0.07 ). 

Conductance In order to prevent erosion from crude oil, the electrodes are normally 

coated with the insulated layers, so no DC current can be conducted from one elec-
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Figure 4-6: The diagrams for the final measuring results in Scenario One. 

Conductance Conductance 
90 

80 

70 

60 

50 

40 

30 
y= 126.3'x 42.837 

20 

10 

0.4 
0 
0.4 0.7 

Water ratio Water ratio 

(a) Conductance in the low water ratios (b) Conductance in the high water ratios 

Figure 4-7: The diagrams for the measuring conductances in Scenario One. 
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trade to another electrode, and the DC conductances between two electrodes are zero. 

However, if an AC signal is fed into the electrodes, the AC conductances, known as 

dielectric-loss conductances, can be detected in the experiments, which are shown in 

Figure ( 4-6b). 

In theory, the AC conductances are basically the DC conductances modified by the 

shift effect. Usually, the AC conductances are less than the DC conductances. Due 

to the complex nature of the skin effect, no theoretical model is currently available to 

analyze the AC conductances; however, they can be obtained by experiments. Similar 

to the DC conductance components shown in Figure (2-13), they also have 90° phase 

difference with the capacitive reactance. 

As discussed in capacitance measurements, the non-linear zone is located near the 

origin of the coordinates (Water Ratio< 0.07 ). The remaining part is divided into 

two linear zones. When the water ratio is greater than 0.07 and less than 0.4 (0.07 < 

Water Ratio < 0.4), increasing water ratios will decrease the loss conductances. On 

the other hand, if the water ratio is greater than 0.4 ( Water Ratio > 0.4 ), the loss 

conductances will be increased with water ratios. In terms of Figure (4-7a and 4-7b), 

the Matlab tools give the following linear regression models: 

Conductance = -357.3 x (Water Ratio) + 129.38 (4.6) 

where Water Ratio E (0.07, 0.4); 

Conductance = 126.3 x (Water Ratio) + 42.837 (4.7) 

where Water Ratio E (0.4, 1). 

In the linear zones, the correlation coefficients between the measured data and 

the predicted data are greater than 0.9934. However, when the water ratio is less 

than 0.07 ( Water Ratio < 0.07 ), the changing conductances do not follow these two 
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11easured average 11easured average Theoretical 
No. capacitance (y[n]) conductance (y[n]) capacitance (pF) 
0 29.45687 8.26108 0.22135 
1 29.65724 8.50200 0.24032 
2 30.27036 8.75283 0.25930 
3 31.82451 9.34911 0.27827 
4 33.19509 9.98498 0.29724 
5 34.44445 10.03300 0.31621 
6 35.44643 10.53858 0.33519 
7 36.66202 10.99655 0.35416 
8 37.80292 11.50275 0.37313 
9 38.93204 11.99748 0.39211 
10 40.10469 12.44168 0.41108 
11 40.81390 12.82504 0.43005 
12 41.35981 13.05025 0.44902 
13 41.98884 13.36034 0.46800 
14 42.47823 13.69012 0.48697 

Table 4.2: The final measuring results in Scenario Two. 

linear regression models. 

4.3 Scenario Two: Air /Oil 

The experiments in scenario two are done to measure capacitances and conductances 

between two vertical electrodes when oil ratios are increased from 0 to 1 (0% rv 100%). 

As discussed in scenario one, the measurements are also carried out on fifteen different 

oil levels. In each oil level, the data processing software automatically stores twenty 

measuring results and displays their average values on the bottom of the screen. 

Results analysis 

In terms of the final measuring results listed in Table (4.2), the capacitance and 

conductance data are drawn in Figure ( 4-8a and 4-8b), in which fifteen oil levels are 

normalized into oil ratios from 0 to 1. 
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Figure 4-8: The diagrams for the final measuring results in Scenario Two. 

Capacitance Based on the sensor capacitance data shown in Figure (4-8a), the 

basic fitting tools in Matlab give a linear regression model: 

Capacitance= 14.43 x (Oil Ratio)+ 29.081 (4.8) 

Further analysis shows that the correlation coefficients between the measured data 

and the predicted data are greater than 0.9933. In other words, the measuring ca

pacitances have good linearity, which is in accordance with the theoretical analysis 

in Equation (4.4). 

Conductance Other than the loss conductances measured in scenario one, the 

measured loss conductances in scenario two have good linearity with the oil ratios; 

namely, the loss conductances are proportional to the oil ratios. According to the 

conductance data in Figure ( 4-8b), the Matlab tools give a linear regression model: 

Conductance= 5.7404 x (Oil Ratio)+ 8.1489 (4.9) 

In Figure ( 4-8b), the correlation coefficients between the measured data and the 
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Figure 4-9: The stratified water and oil in Scenario Three. 

predicted data are greater than 0.99699. 

4.4 Scenario Three: Oil/Water 

The experiments in scenario three are used to measure capacitances and conductances 

between two vertical electrodes when water ratios are increased from 0 to 1 and oil 

ratios are decreased from 1 to 0 (namely, Water Ratio+ Oil Ratio = 1). In Figure 

(4-9), the tap water is dyed white in order to observe the changes in the water/oil 

levels. As the previous two experiments, the measurements are also carried out on 

fifteen different water/ oil levels. In each water/ oil level, the data processing software 

stores twenty measuring results and displays their average values on the bottom of 

the screen. 

Results analysis 

In terms of the final measuring results listed in Table (4.3), the capacitance and 

conductance data are drawn in Figure (4-10a and 4-10b), in which fifteen water/oil 

levels are normalized into water ratios from 0 to 1. 
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11easured average 11easured average Theoretical 
No. capacitance (y[n]) conductance (y[n]) capacitance (pF) 
0 63.73018 9.55038 0.48697 
1 173.96690 39.98667 1.68542 
2 206.86970 32.02092 2.88387 
3 227.66670 17.39402 4.08233 
4 242.67260 4.19264 5.28078 
5 255.91260 9.04884 6.47923 
6 275.69390 23.92959 7.67768 
7 304.25890 36.80481 8.87614 
8 333.30850 43.95237 10.07459 
9 349.02410 45.76104 11.27304 
10 360.28310 48.54134 12.47149 
11 383.33400 50.95983 13.66994 
12 403.15080 55.95395 14.86840 
13 423.45530 60.57764 16.06685 
14 442.34970 64.38626 17.26530 

Table 4.3: The final measuring results in Scenario Three. 

Capacitance According to the sensor capacitance data shown in Figure ( 4-10a), 

the basic fitting tools in Matlab give a linear regression model when the water ratio 

is greater than 0.07 ( Water Ratio > 0.07 ): 

Capacitance = 283.27 x (Water Ratio) + 161.24 (4.10) 

Further analysis shows that the correlation coefficients between the predicted data 

and the measured data are greater than 0.998 (Water Ratio> 0.07 ). In other words, 

the measuring capacitances have a good linearity when the water ratio is greater than 

0.07, which is in accordance with the theoretical analysis in Equation (4.4). 

Conductance As shown in Figure (4-10b), the changing pattern of the measured 

loss conductances in scenario three is a combination of patterns of conductances mea

sured in scenario one and scenario two. When the water ratio is less than 0.07 ( 

Water Ratio < 0.07 ), no relationship can be obtained between the measured con-
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Figure 4-10: The diagrams for the final measuring results in Scenario Three. 
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Figure 4-11: The diagrams for the measuring conductances in Scenario Three. 
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ductances and the water ratios, which is the same as the experiments in scenario 

one. When the water ratio is greater than 0.07 ( Water Ratio > 0.07 ), two linear 

regression models are used in scenario one; however, they cannot be used in scenario 

three because of the effect of the oil in the experiments. Instead, two cubic regression 

models are obtained in scenario three. Moreover, in scenario three, the the zero loss 

conductance occurs when the water ratio is around 0.3, which is different from the 

zero loss conductance in scenario one. 

Two cubic regression models for the loss conductances are: 

Conductance - 3698.3 x (Water Ratio )3 
- 2237.8 x (Water Ratio )2 

+235.92 x (Water Ratio)+ 33.205 (4.11) 

where Water Ratio E (0.07, 0.3) 

Conductance - 474.54 x (Water Ratio) 3
- 1073.7 x (Water Ratio) 2 

+840.4 x (Water Ratio) - 175.6 

where Water Ratio E (0.3, 1.0) 

(4.12) 

In Figure ( 4-10a and 4-10b ), the correlation coefficients between the measured 

data and the predicted data are greater than 0.9972. In other words, the measured 

conductances match these two cubic models when the water ratio is greater than 0.07 

(Water Ratio> 0.07 ). 
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4.5 Summary of Experiments 

In the previous three experiments, the water ratio is the most significant factor in 

the capacitance and conductance measurements of the air/oil/water mixtures. When 

the water ratio is between 0 and 0.07, the capacitances and loss conductance are 

changed dramatically, and no regression models can be obtained in the experiments. 

However, when the water ratio is greater than 0.07, the corresponding capacitance 

and conductance regression models can be accurately achieved in the experiments. As 

a result, the impedance measurements should be used to measure component fractions 

in the region ( Water Ratio > 0.07 ). 

Analysis across the three experiments shows that the capacitances and loss con

ductances measured in scenario one are higher than the results obtained in scenario 

three when their water ratios are the same. The regular tap water is employed in sce

nario one, whereas the dyed water is used in scenario three. Therefore, the measured 

impedances are not only dependent on the water ratio in the experiments, but also 

on the purity of the water. This is a very important observation for future research in 

subsea crude oil because the same issue will occur in sea water that is not uniformly 

saline in different oceans, and has a specific conductance of approximately 50,000 

J-LS/cm. 
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4.6 Concluding Remarks 

This chapter discusses the design of experiments and the three different mixutre ex

periments that were performed to determine the relationships among the individual 

components. The measured capacitances in the three experiments are all in accor

dance with the theoretical analysis in Equation ( 4.4), which means that the DSP

based impedance measuring instrument can be employed to measure the component 

fractions in the air/oil/water mixture. The next chapter will give the conclusion and 

future work that can performed within this area of research. 
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Chapter 5 

Conclusion and Future Work 

The research presented in this thesis is focused on the design and implementation 

of a DSP-based impedance measuring instrument that is developed for the subsea 

multiphase measurement in particular. This chapter will first give the conclusion 

for the research described in this thesis. Next, suggestions for future work will be 

discussed. 

5.1 Conclusion 

A DSP-based impedance measuring instrument has been successfully implemented 

to measure capacitances and conductances from the multiphase flow of crude oil. 

Experimental results show that this measuring device has both good linearity and 

good resolution in the capacitance and conductance measurements. 

In Chapter 3, "Design and Implementation of an impedance-based measuring 

instrument", an analog solution is tested at the beginning of the research, in which 

the principle and implementation of the stray-immune current detector, the DDS

based 90° phase shifter and the analog PSDs are described in detail. The testing 

results show that the measuring accuracy of this analog instrument cannot meet the 

requirement of the research due to the noise and poor stability in the measurement. 
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A digital signal processing concept has then been introduced in the research. This 

technique reduces significantly the need for the analog circuit, and implements the 

90° phase shifter and PSDs in the digital domain. Simulations in Matlab show that 

this DSP method has both good linearity and good resolution in the capacitance 

and conductance measurements. As a result, a realtime digital solution has been de

signed by using a DSP chip, TMS320F2812 from Texas Instruments, to perform data 

acquisition and signal analysis simultaneously. In addition to this DSP measuring 

system, a supervisory computer is used to analyze and display the measuring data 

from the DSP system. In summary, this DSP-based impedance measuring instrument 

is composed of the following three parts: 

• Signal conditioning part- including the stray-immune current detector, the AC 

instrumentation amplifier, the voltage level shifter, the serial communication 

voltage converter and the power supply. 

• Digital signal processing part- including the eZdsp™ F2812 development board 

and the C language processing software. 

• Supervisory part - including the supervisory computer and the VB data man

agement software. 

The calibrating tests of this DSP-based impedance measuring instrument show 

less than 0.1% errors between the input impedances and the measured impedances. 

In addition, the stray-immune tests show that the measured capacitances have a low 

dispersion when different length cables are used between the impedance sensor and 

the measuring instrument. This result confirms that this measuring device has an 

instinctive stray-immune characteristic, which is essential to the impedance sensor 

subsea installation in the research. 
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In Chapter 4, "Experimental Results", the experiments in three different scenar

ios are carried out to verify the relevance of this instrument for the measurements in 

multiphase flows. First, the vertical parallel electrodes are compared to the horizontal 

electrodes. The former configuration gives a linear output with a high sensitivity and 

has been therefore selected in the experiments. Next, the tests have been performed 

in three different scenarios (air /water, air/ oil, and oil/water). In each scenario, the 

mathematical regression models are given to the capacitance and conductance mea

surements. The error analysis shows less than 1.5% measuring error between the 

measured impedances and the predicted impedances from the regression models. In 

other words, a maximum 1.5% measuring error occurs in the component fraction 

measurements, which is better than the current industrial requirement ±5% [10]. 

The water fraction has been also found to play a dominant role in the capacitance 

and conductance measurements of the air/oil/water mixtures. When the water frac

tion is less than 0.07, no regression models can be acquired from the experiments, 

which is the reason why the impedance-based multiphase flowmeter requires a con

tinuous water flow in the measurements. In addition to the water fraction, the water 

purity is another important factor in the mixture measurements. Tests show that the 

purer water has the higher impedance output at a certain water fraction. 
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5.2 Future Work 

The DSP-based impedance measuring instrument described in this thesis is a success 

and has had the characteristics for the use in the offshore oil & gas industry; however, 

several suggestions for future work can be added. For instance, an onboard sine wave 

signal generator and a higher performance digital signal processor will be selected for 

further improvement of this instrument. Reference impedances and self-calibration 

will also be considered in the future research to provide a complete industrial solution 

for an impedance-based multiphase flowmeter. 

(1) Onboard sine wave signal generator A function generator ( HP 3310A) 

is employed to generate the 50KHz sine wave for the measuring system in this thesis. 

However, the compact design of the measuring system requires an onboard sine wave 

signal generator to replace this HP function generator. According to the sine wave 

generation techniques described in the application notes from National Semiconductor 

[29], the Wein bridge method is selected for the future design of the onboard sine wave 

signal generator because the method used has extremely low distortion (0.01%). 

(2) A higher performance digital signal processor In this research, 

TMS320F2812 is selected as the digital signal processor, which operates at 150MHz 

(6.67ns Cycle Time) and supports 12-Bit, 500Ksps dual-channel ADC simultaneous 

sampling. The performance of this DSP chip is sufficient to the current research. 

However, this processor has two significant drawbacks. 

• A fixed-point digital signal processor. 

• A limited memory for the user's programme and data. 

Since this processor does not support the floating-point multiplication, in order to ob

tain the high accuracy in the multiplications, the long integer type variables should be 

assigned as big as possible, so that the overflow sometimes occurs in the calculations. 
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Figure 5-1: The communication interface between ADS8361 and TMS320C6713 [31]. 

In addition, this processor does not have enough user's free memory spaces that can 

be used in the FFT operations. As mentioned in Chapter 3, only 18K-Word program 

and data memory can be used in the programming due to the huge system reservation 

in the total addressable 4M-Word memory spaces. Therefore, the signal processing 

program in this thesis has to choose 256-point FFT in the signal processing, which 

also reduces the accuracy of the FFT operations. 

In this way, TMS320C6713, a higher performance floating-point digital signal pro

cessor, is brought forward to future research. This processor operates at 225MHz, has 

8K-Byte 11 memory, 256K-Byte 12 memory and 512M-Byte total addressable exter

nal memory spaces [30]. However, its ADC unit cannot perform 500K samples per 

second like TMS320F2812. Instead, an external ADC chip ( ADS8361) or its eval

uation module (ADS8361EVM), is employed in the new system, which can perform 

16-Bit, 500kSPS, dual channel simultaneous sampling. As shown in Figure (5-1), 

the sampled data can be directly transmitted to multi-channel buffered serial ports 

(McBSPs) of TMS320C6713 via high-speed serial communication [31]. 

(3) Reference impedances Reference impedances are used to reduce the 

measuring drifts caused by the temperature and power supply changes. In Chapter 2, 

a thermal coupling method is used to construct an impedance reference system; how

ever, it is difficult and expensive to be implemented in real applications. Therefore, 

a relatively simple solution should be investigated in the future research. 
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( 4) Self-calibration This characteristic is a necessary requirement for the off

shore multiphase fl.owmeters. Due to the harsh environment at sea, these fl.owmeters 

cannot be calibrated easily and frequently. Therefore, the future impedance measur

ing instrument should include several low temperature coefficient precise capacitors 

and resistors in the circuit. By these reference elements, the self-calibrating process 

can be performed everyday or as needed. 

5.3 Concluding Remarks 

This thesis first discusses the background of the impedance measuring techniques 

and the principles of the impedance signal detection and demodulation. It then illus

trates the design and implementation of a DSP-based impedance measuring instru

ment. Next, the calibration tests and the mixture component fraction measurements 

are performed in the thesis. The results show this DSP-based impedance measur

ing instrument can be employed in the component fraction measurements of the 

air/ oil/water mixtures. This chapter then discusses the conclusion for the thesis and 

future work that could be performed in this area of research. 
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Appendix A 

Design Diagrams 

A.l The schematic diagram of the DSP signal con

ditioning board 

A.2 The PCB diagrams of the DSP signal condi

tioning board 
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Figure A.l: DSP signal conditioning board schematic diagram. 
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(a) Top side 

(b) Bottom side 

Figure A.2: The PCB diagrams of the DSP signal conditioning board. 
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Appendix B 

Source Code Listings 

B.l Simulation programs in Matlab 

%% 

%% Original filter program from 

%% 

%% 

Engr 8821/9821 - Winter 2005 

Module 5 - 9821 - Application 

%% FIR Filter Design for Signal in Noise 

%%Rewrote by Xiang Fang (Scott), on Sep 30, 2005 

%% 

%%%% PART ONE: Setting up the Signals 

clear all 

close all 

format long e 

%% Initial setup 

num_fft_samples = 4096; 

n = 1:1:num_fft_samples; 

psd_type=1; % 1 for in-phase (0 degree) 
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% psd_type=2; % 2 for quadrature (90 degree) 

analysis_type=1; %% 1 for Resistance 

% analysis_type=2; % 2 for Capacitance 

if analysis_type==1 

Replications=10; % the number of different resistances 

y_out=zeros(Replications,1); 

x_out=[0.0987,0.1985,0.501,0.841,1.002, 

1.772,2.201,3.285,3.90,4.01]; 

elseif analysis_type==2 

end 

Replications=? % the number of different capacitances 

y_out=zeros(Replications,1); 

x_out=[1.2,1.5,1.9, 5.3, 6.1, 8.7, 10.6]; 

for replica_n=1:9 

for freq_n=1:1% only 50KHz is selected 

for experiment_n=1:Replications 

if (experiment_n<10) 

filename!= ['0', num2str(experiment_n)]; 

else 

filename! num2str(experiment_n); 

end 

filename3 = num2str(replica_n-1); 

if analysis_type==1 

file= ['rO', filename1,'.00',filename3]; 

elseif analysis_type==2 

file= ['cO', filename1,'.00',filename3]; 
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end %if analysis_type==i 

% Read data from Oscilloscope data files 

[chi_sample,ch2_sample,chimult,ch2mult,sec_per_div] 

= filedata(file); 

chitemp = chimult ·* chi_sample; 

chi= chitemp- mean(chitemp); 

ch2temp = ch2mult ·* ch2_sample; 

ch2 = ch2temp- mean(ch2temp); 

% for signal input 

% for reference input 

% Apply Multiplier Function to signal and reference 

if psd_type==i 

x= chi .* ch2; 

elseif psd_type==2 

% Form (pi/2) shifted reference signal 

% From time domain to frequency domain, 

% then back to time domain 

CH2 = fft(ch2,num_fft_samples); 

%Here FFT() is employed, so the omega range is (0, 2*pi). 

% DTFT() function's range is (-pi, pi) 

CH2_NEW= CH2 ·* j; %% shift pi/2 exp(j*pi/2); 

%(cos(wO*n+pi/2))->(j*pi*delta(w-wO)-j*pi*delta(w+w0)) 

for I= (num_fft_samples/2+i):num_fft_samples, 

end 

% points (i,2048) means the w from (O,pi) 

% points (2049,4096) means the w from (pi,2*pi) or (-pi,O) 

CH2_NEW(I) =- CH2_NEW(I); 

ch2_quadrature=ifft(CH2_NEW,num_fft_samples); %Inverse FFT 
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x= chi .* ch2_quadrature; 

end % (if psd_type==1) 

[CH1,W] = dtft(ch1,num_fft_samples); 

if psd_type==1 

[CH2,W] = dtft(ch2,num_fft_samples); 

else 

[CH2,W] = dtft(ch2_quadrature,num_fft_samples); 

end 

%%X is freq. response for the output/of the multiplier 

[X,W] = dtft(x,num_fft_samples); 

%%%% PART TWO : FILTER DESIGN 

%% Design parameters - in two sets, for different design modes 

mode = 1; %%mode = 1 to filter out AC signals 

fprintf('\n -----------Mode= %d --------------',mode) 

if (mode == 1) %% To filter out AC 

end 

delta! = 0.02; 

delta2 = 0.01; 

delta= min(delta1, delta2); 

omega_p = 0.002*pi; 

omega_s = 0.01*pi; 

delta_omega = omega_s-omega_p; 

omega_c = omega_p + delta_omega/2; 

%% Now design a Kaiser windowed FIR filter to these specifications 

%% Kaiser window calculations 

A=-20*log10(delta) 
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beta = 0.0; 

if (A>50) 

beta= 0.1102 *(A-8.7); 

elseif ((A >= 21) & (A <=50)) 

beta= 0.5842*(A-21)-o.4 + 0.07886*(A-21); 

end 

M = (A-8)/(2.285*delta_omega); 

M = ceil (M) 

win= kaiser(M+1,beta); 

alpha = M/2; 

nh=0:1:M; 

%% the ideal desired impluse response 

if (mode == 1 ) 

ir = (omega_c/pi)*sinc((omega_c/pi)*(nh-alpha)); 

%% Using Matlab function sinc(x) = sin(pi*x)/(pi*x) 

elseif (mode == 2) 

ir1 = (omega_c2/pi)*sinc((omega_c2/pi)*(nh-alpha)); 

ir2 = (omega_c1/pi)*sinc((omega_c1/pi)*(nh-alpha)); 

ir = ir1 - ir2 ; 

end 

ir_win = transpose(ir) ·* win; 

%% Transform into frequency 

N = num_fft_samples; 

[H,w]=dtft(ir_win,N); 

delta1=(1+delta)*ones(N,1); 

delta2=(1-delta)*ones(N,1); 

delta3=delta*ones(N,1); 

%%% PART THREE: 
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%%% Using the design to filter AC signals out of x_w 

h ir_win; 

a = [1] ; 

y = filter(h,a,x); %in freq. domain: Y(w) 

[Y,W] = dtft(y,num_fft_samples); 

if replica_n==1 

y_out1(experiment_n,freq_n)=abs(mean(y)) 

elseif replica_n==2 

y_out2(experiment_n,freq_n)=abs(mean(y)) 

elseif replica_n==3 

y_out3(experiment_n,freq_n)=abs(mean(y)) 

elseif replica_n==4 

y_out4(experiment_n,freq_n)=abs(mean(y)) 

elseif replica_n==5 

y_out5(experiment_n,freq_n)=abs(mean(y)) 

elseif replica_n==6 

y_out6(experiment_n,freq_n)=abs(mean(y)) 

elseif replica_n==7 

y_out7(experiment_n,freq_n)=abs(mean(y)) 

elseif replica_n==8 

y_out8(experiment_n,freq_n)=abs(mean(y)) 

elseif replica_n==9 

y_out9(experiment_n,freq_n)=abs(mean(y)) 

end 

end %for experiment_n=1:5 

end %for freq_n 

end % for replica_n 

X(w) * H(w) 

y_out= (y_out1 + y_out2 + y_out3 + y_out4 + y_out5 
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+ y_out6 + y_out7 + y_out8 + y_out9 ) ./ 9 

figure 

if analysis_type==1 

plot(x_out, abs(1 ./ y_out),'ks');grid; 

elseif analysis_type==2 

plot(x_out, abs(y_out),'ks');grid; 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% No More 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%% Original file reading program ( filedata.m ) from 

%% Dr. Masek and Andrew Oldford 

%%Rewrote by Xiang Fang (Scott), on Sep 28, 2005 

%% 

function [ch1_sample,ch2_sample,ch1mult,ch2mult,sec_per_div] 

; filedata(filename) 

fid = fopen(filename,'r'); 

A= fread(fid); 

status=fclose(fid); 

i = 1; 

str = char(A(i:(i+5)))'; 

done = 0; 

while(done -- 0) 

if(str -- 'XINCR ') 

done = 1; 

else 

end 

end 

i = i+6; 

j = i; 

i = i + 1; 

str = char(A(i:(i+5)))'; 

while(char(A(j+1)) -= ';') 

j = j+1; 

end 

sec_per_div_str char(A(i:j))'; 
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sec_per_div = str2double(sec_per_div_str); 

i = j; 

str = char(A(i:(i+5)))'; 

done = 0; 

while(done -- 0) 

end 

if(str -- 'YMULT ') 

done = 1; 

else 

i = i + 1; 

str = char(A(i:(i+5)))'; 

end 

i = i+6; 

j = i; 

while(char(A(j+1)) -= ';') 

j = j+1; 

end 

temp_i=i; 

ch1mult_str = char(A(i:j))'; 

ch1mult = str2double(ch1mult_str); 

i = j; 

str = char(A(i:(i+5)))'; 

done = 0; 

while(done -- 0) 

if(str -- 'YMULT ') 

done = 1; 

else 

i = i + 1; 
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end 

end 

i = i+6; 

j = i; 

str = char(A(i:(i+5)))'; 

while(char(A(j+1)) -= ';') 

j = j+1; 

end 

ch2mult_str = char(A(i:j))'; 

ch2mult = str2double(ch2mult_str); 

i=temp_i; %% return to the first data place 

str = char(A(i:(i+4)))'; 

done = 0; 

while(done -- 0) 

if (str '44096') 

done = 1; 

else 

i = i + 1; 

str = char(A(i:(i+4)))'; 

end 

end 

i = i+5; 

ch1_sample = A(i:(i+4095)); 

str = char(A(i:(i+4)))'; 

done = 0; 

while(done -- 0) 

if(str -- '44096') 

done = 1; 
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else 

i i + 1; 

str char(A(i:(i+4)))'; 

end 

end 

i = i+5; 

ch2_sample = A(i:(i+4095)); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% No More 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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B.2 C programs in TMS320F2812 

Please see files in the attached CD. 

B.3 VB programs in the supervisory computer 

Please see files in the attached CD. 
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