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ABSTRACT 

Atlantic snailfish (Liparis atlanticus) and dusky snailfish (Liparis gibbus) belong 

to a large family of benthic and pelagic marine fishes that inhabit northern regions of the 

Atlantic Ocean. Both species spawn during the winter months in ice-laden inshore coastal 

regions around Newfoundland. Due to their harsh winter environment, snailfish are prime 

candidates for production of antifreeze proteins (AFPs). 

Initial results confirmed that plasma from both species contain alanine rich, a

helical, type I AFPs that are significantly larger (>9.3 kDa) than all previously described 

type I AFPs. Surprisingly, their skin tissues produce AFPs that are identical to those 

which circulate in blood. While all snailfish consistently express antifreeze mRNA in 

skin tissue, there is extreme individual variation in liver expression - an unusual 

phenomenon that has never been reported previously. Molecular analyses revealed that 

snailfish AFPs are products of multi gene families that consist of at least ten gene copies 

per genome. It is unclear if liver and skin antifreeze mRNAs are expressed by the same 

gene or a separate subset of genes which is typical of other fish that produce skin-type 

AFPs. 

Although the 113 residue snailfish AFPs are unusually long, their amino acid 

composition, highly a-helical secondary structure and the bipyramidal ice-crystals they 

create are characteristic of all type I AFPs. However, unlike other type I AFPs, snailfish 

proteins do not contain any obvious amino acid repeats or a continuous hydrophobic face 

that typify the structure of most other type I AFPs. These structural differences might 

have implications for their ice crystal binding properties. Biochemical experiments 



demonstrated that physiological concentrations of normal salts are responsible for a 

significant increase in thermal hysteresis activity in antifreeze proteins and glycoproteins. 

The colligative effects of these salts can account for the supplementary freezing point 

depression ofblood required to ensure survival of marine fish in ice-laden seawater 

during winter. 

Two eDNA clones were identified from a snailfish liver eDNA library that code 

for fish eggshell proteins while a third one codes for a type II keratin. However, all three 

of these clones contain sections with substantial amino acid and nucleotide sequence 

similarity to snailfish type I AFPs. It is plausible that one or more of these proteins 

represent the ancestral proteins of snailfish type I AFPs. 

Novel type I AFPs were isolated and partially characterized from skin tissues of 

cunner (Tautogolabrus adspersus). Type II AFPs that are identical to those expressed in 

liver for export into blood were isolated from sea raven (Hemitripterus americanus) skin 

tissue extracts. Taken together the data generated in this thesis has strengthened and 

widened the scope of the hypothesis that skin represents the primordial source of AFP 

expression. It is clear that epithelial tissues are a primarily important source for antifreeze 

expression to enhance the complement of AFPs that protect fish from freezing in extreme 

cold environments. 
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CHAPTER 1: 

General Introduction 



1.1 Background -Adaptations to Cold and Freezing 

The ability of animals to survive extreme cold or freezing conditions has intrigued 

the scientific community for centuries. Early investigations sought to develop a rational 

explanation for the seemingly extraordinary observations of cold or frozen animals in 

nature. Since the first scientific endeavors more that three centuries ago, much has been 

learned regarding how organisms cope with cold and freezing (Smith 1961 ). A number of 

these adaptations probably evolved from responses to other stressors such as dehydration 

and osmotic stress. Now, researchers are beginning to unravel how unicellular and 

multicellular organisms coordinate their numerous and varied responses to extreme cold. 

While clearly some ofthe responses are at the whole animal level (e.g. behavioral, 

physiological etc.), adaptation at the cellular level in response to temperature fluctuation 

occurs by alterations in metabolism, membrane composition, and gene expression. 

Water is a key component in biochemical reactions and is integral for the 

hydration of most structurally important biological macromolecules (Franks et al 1990, 

Mazur 1984, Somero et al1992, Zachariassen 1991). For a cell, extracellular freezing is 

essentially a form of dehydration stress. Furthermore, the physical damage (i.e. to cell 

membranes) that could result from uncontrolled ice formation is lethal. With the inherent 

risks, it is surprising that organisms thrive in cold oceans and in polar and north 

temperate regions where temperature ranges around the freezing point of water. Whereas 

endothermic animals that populate cold habitats produce heat to elevate their temperature 

well above freezing, ectotherms remain at the temperature of their immediate 

environment and must utilize methods to survive freezing stress. Studies of ectothermic 
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species have revealed an array of adaptations that reduce the risk of intra- and 

extracellular freezing. 

To cope with exposure to temperatures below the freezing point of their body 

fluids, ectothermic animals use one oftwo general strategies: freeze-avoidance or freeze

tolerance. While both strategies include adaptations at behavioral, physiological, and 

biochemical levels there is one fundamental difference. Freeze-avoiding animals maintain 

body fluids in liquid form even at very low temperatures by substantially increasing their 

low molecular weight solute concentration (e.g. glycerol) but freeze-tolerant animals 

allow ice to form in extracellular space and only require cellular cytoplasm to remain 

unfrozen (Storey and Storey 1988, Storey 1989, Storey and Storey 1996, Storey and 

Storey 1999). The type of adaptation utilized varies among species in accordance with 

their specific environment. 

Three different mechanisms are utilized in freeze avoidance strategies. The first 

involves accumulation of ions and low molecular weight solutes to colligatively lower the 

freezing point of extracellular fluids (Storey and Storey 1988, Storey and Storey 1996). 

In the second method, the organism lives in a supercooled state without freezing by 

eliminating contact with ice nucleators (Storey and Storey 1999, Sidell 2000). Finally, the 

freezing point of extracellular fluids can be lowered non-colligatively by synthesis of 

antifreeze proteins, which inhibit ice crystal growth (Davies et al 1988, Fletcher et al 

1998, Fletcher et al2001). 
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1.2 The Discovery of Antifreeze in Marine Fish 

While adaptations for either freeze strategy are available to terrestrial ectotherms, 

the biology of teleost fish necessitates a freeze avoidance strategy. Teleost fish from the 

Northern hemisphere that inhabit extremely cold seawater in winter, (as low as -1.8°C) 

but do not come in contact with ice can live in a supercooled state. Indeed, fish 

colligatively lower the freezing point of their blood plasma to help deal with low 

seawater temperatures. For example, winter flounder seasonally elevate their extracellular 

sodium and chloride ions and rainbow smelt synthesize large quantities of glycerol during 

winter months to help raise blood osmolality to nearer that of seawater (Fletcher 1977, 

Fletcher 1981, Raymond 1992). However, the combination of supercooling and ice 

contact is lethal. Therefore, fish which live in shallow areas that are ice laden can come 

into contact with ice nucleating crystals must avoid ice crystal formation at all costs. 

In the 1950s, Scholander and his colleagues traveled to Labrador to determine 

how Arctic fish avoid freezing in apparently deadly conditions. They observed that while 

some fish appeared to exist in a supercooled state and quickly died when contacted by 

ice, others survived in icy seawater with blood plasma freezing points the same as the 

seawater (Smith 1961, Gordon et al1962, Scholander and Maggert 1971). Further 

experiments established that a plasma solute(s) was responsible for the protective effects. 

They named the solute "antifreeze" but it took another 1 0 years before the nature of these 

freeze protecting solutes was determined to be proteins/polypeptides and glycoproteins 

(Scholander and Maggert 1971, Fletcher et al2001). 

4 



Fish antifreeze proteins/polypeptides and glycoproteins [AF(G)Ps] lower the 

freezing point of plasma non-colligatively by irreversibly binding to certain surfaces of 

ice crystals, modifying their structure and inhibiting further growth - a mechanism 

known as adsorption inhibition (Raymond and DeVries 1977, Hew and Yang 1992, 

Davies and Hew 1990). Essentially, the freezing point of a solution is lowered by 

AF(G)Ps while the melting point (equilibrium freezing point) is unaffected. The interval 

between the freezing and melting points is termed thermal hysteresis and can be 

measured in vitro using a Clifton nanoliter osmometer. AF(G)Ps are 200 to 300 times 

more effective in lowering the freezing point than would be expected on the basis of 

colligative properties alone and do not alter osmotic properties of the plasma. Therefore, 

marine fish that produce AF(G)Ps can maintain extracellular freezing points equal to 

seawater but with much lower solute concentrations. 

Interestingly, the strategy of synthesizing AFPs to help avoid freezing is not the 

sole purview of marine fishes. In fact, they have been discovered in organisms from most 

phyla, in species ranging from fish to insects to plants and fungi. The structures of these 

AFPs are quite diverse but all seem to have evolved to serve the same function by a 

common mechanism. However, the effectiveness of the different forms of AFPs does 

relate somewhat to the environment in which the organism inhabits. For example, the 

insect AFPs are very highly active providing up to 8 degrees of freeze protection (Duman 

1982, Graham et al 1997, Liou et al 1999, Duman 2001). This level of activity would be 

necessary considering the extreme cold that they may face during the winter months. 
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1.3 Structural Classification of Fish AF(G)Ps 

Species from diverse taxonomic groups produce AFGPs and AFPs that are 

classified as four distinct types based on their physical characteristics - termed type I, II, 

III and IV (Davies and Sykes 1997, Cheng 1998, Ewart et al1999, Fletcher et al2001). 

Type I AFPs are usually polypeptides that have high alanine content (>60 mol%) and an 

entirely amphipathic a-helical secondary structure. These proteins were originally 

identified in winter flounder and were later observed in other right-eye flounders and in 

certain unrelated sculpin species (Harding et al1999, Fletcher et al2001) (see table 2-2). 

Typically, type I AFPs are small polypeptides (3.3- 4.5 kDa) but can be much larger as 

in the case of shorthorn sculpin (Low et al 1998). The prototypical type I AFP contains a 

specific 11 amino acid repeat motif(Thr-XrAsn/Asp-X7), where X is usually alanine or 

may be another amino acid that favours helix formation but variations on this theme have 

been observed recently. 

Type II AFPs are cysteine-rich globular proteins that contain disulfide bonds and 

a mixed secondary structure. These proteins range in size from 14 to 24 kDa and share an 

evolutionary relationship with C-type lectins (Fletcher et al2001). Type II AFPs have 

been isolated and characterized from sea raven, smelt and herring. Type III AFPs are 

smaller proteins (6- 7 kDa) that contain short P-strands and one helix turn that gives it a 

unique flat-faced globular fold. The proteins are found in several families of Zoarcids 

including many eelpout species (i.e. ocean pout) and wolffish. The recently discovered 

Type IV AFP from the longhorn sculpin (Myoxocephalus octodecimspinosis) consists of 

four amphipathic alpha-helices of similar length which are folded into a four-helix 
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bundle. The 12 kDa protein has sequence similarity to certain plasma apolipoproteins 

(Deng et al1997, Deng and Laursen 1998, Zhao et al1998). 

The AFGPs, which are produced by Antarctic notothenioids and Northern cods, 

are made up of many tandem repeats of Ala-Ala-Thr. These proteins are folded into an 

amphipathic polyproline type II helix with a disaccharide attached to each threonine. 

Regardless of protein or polypeptide structure, all classes of fish AFPs lower the freezing 

point of plasma by the same adsorption inhibition mechanism (Fletcher et al 1998, 

Fletcher et al 2001 ). 

1.4 Physiology and Function of Antifreeze Proteins 

1.4.1 Liver type AFPs 

The winter flounder, Pseudopleuronectes americanus (formerly Pleuronectes 

americanus), has provided an excellent model for developing an understanding of AFP 

function and regulation. Winter flounder type I AFP is synthesized in the liver as an 82 

amino acid preproprotein which contains a secretion signal sequence. After the pre

section is removed post-translationally, protein is secreted into the blood where the 

proprotein is finally cleaved to produce the mature 37 amino acid AFP (Fletcher et al 

1989, Chan et al1993, Gong et al1995, Fletcher et al1998). The circulating extracellular 

AFP protects the entire fish from freezing since the integrity and spatial structure of cell 

membranes reduce the risk of intracellular ice formation. Furthermore, skin and scales are 

effective barriers to the propagation of ice into the fish from the external environment. In 

fact, experimental evidence has demonstrated that the freezing point of blood plasma 

closely predicts the freezing point of the whole fish (Fletcher et al 1988, Goddard and 
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Fletcher 1994, Fletcher et al 2001 ). In extremely cold seawater, ice crystals enter the fish 

but without causing lethal consequences because extracellular plasma AFPs bind to and 

prevent them from uncontrolled growth. 

Winter flounder liver AFP (wflAFP) gene expression and protein translation 

follows a seasonal cycle that is primarily controlled by photoperiod (see reviews by 

(Chan et al1993, Fletcher et al1989, Fletcher et al2001). In fish from waters around 

Newfoundland, AFP appears in the plasma during November as the water temperature 

declines below 8°C and reaches peak levels of 10-15 mg/ml during winter. Regulation of 

AFP production is mediated through the pituitary gland in response to day-length and is 

repressed by growth hormone production. Water temperature is not a major factor in 

initiating AFP mRNA or protein synthesis in the fall, nor does it appear to be involved in 

terminating AFP production in the spring. However, water temperature must be 

sufficiently low for AFP mRNA to accumulate to high levels in winter to ensure elevated 

protein synthesis. 

Some of the molecular mechanisms and important transcription factors regulating 

winter flounder liver AFP gene expression are beginning to be better understood. Studies 

have even identified the DNA elements controlling winter flounder liver-type AFP gene 

transcription. Current knowledge is comprehensive enough that a model has been 

proposed involving a repression mechanism to explain the complex seasonal, hormonal 

and tissue-specific regulation of the wflAFP genes (Miao ct al 1998, Miao et al 2000, 

Miao et al 2002). While the regulation of AFP production in other fish species is not as 

well understood as in winter flounder, it is known that the controlling factors are not 
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necessarily similar. In northern cod for example, water temperature plays a much more 

significant role in determining the onset and level of AFGP synthesis (Goddard et al 

1992, Fletcher et al1987, Goddard et al1994). 

1.4.2 Skin type AFPs 

Until the past decade, it was generally accepted that the synthesis of AFPs was 

confined solely to liver tissue for secretion into blood for extracellular freeze protection. 

A paper published in 1982 that reported the isolation of AFP from the skin of European 

shorthorn sculpin was largely disregarded (Schneppenheim and Theede 1982). Almost 10 

years later, Valerio et al (1990) found evidence of antifreeze activity in the epithelial 

tissue of cunner, but its significance was also unrecognized. However, interest was 

piqued with a report of AFP mRNA transcripts in winter flounder and ocean pout 

epithelial tissues (Gong et al 1992). Follow-up reports detailed the expression of winter 

flounder AFPs in numerous epithelial tissues which were related to, but distinct from, 

protein synthesized in liver (Gong et al 1995, Gong et al 1996). Recent publications of 

skin-type AFP isolation from shorthorn and longhorn sculpins indicate that the up

regulated production of AFP in peripheral epithelial tissues may be a common trait in 

many fish species (Low et al 1998, Low et al 2001 ). 

Sequence analysis of clones isolated from a winter flounder skin eDNA library 

revealed that the epithelial protein lacks a peptide signal sequence which suggested that 

the protein remains intracellular (Gong et al 1996). In fact, subsequent 

immunohistochemical experiments have hinted that winter flounder skin-type AFP is 

restricted to the cytoplasm of the gill epithelial cells (Murray et al 2002). However, the 
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same authors found that in skin tissue, AFPs were localized outside of the cells despite 

the lack of secretion signal sequence. The skin-type AFPs presumably were exported out 

of cells via alternative pathways for protein secretion that circumvent the usual 

endoplasmic reticulum-Golgi pathway (Mignatti et al 1992, Menon and Hughes 1999). 

The somewhat controversial hypothesis that skin-type AFPs remain intracellular, 

perhaps to protect cell membranes, is supported by some experimental evidence that 

AF(G)Ps might have functions other than freeze resistance (Wang 2000). It has been 

reported that AF(G)Ps could protect cold sensitive mammalian cells membranes from 

cold damage perhaps by blocking ion channels responsible for passive leakage across cell 

membranes (Negulescu et al 1992, Rubinsky et al 1992). Furthermore, new evidence 

suggests that fish AF(G)Ps stabilize cells during hypothermic storage and can afford 

thermal protection to model membranes by binding to and preserving membrane lipid 

order (Wu et al2001, Wu and Fletcher 2001, Tomczak et al2002a, Tomczak et al 

2002b). 

It is apparent that a different gene family codes for skin-type AFPs and these 

genes are expressed constitutively with much less seasonal variation than liver-type 

(Gong et al 1995, Gong et al 1996). In addition, the skin-type AFP mRNA levels do not 

appear to be influenced by removal of the pituitary gland (hypophysectomy). Overall, 

results indicate that the two sets of genes are not controlled by the same regulatory 

mechanisms. However, in contrast to the liver-type AFP genes, much less of the 

physiological or molecular regulatory mechanisms that control the expression of skin-
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type AFPs have been fully deciphered. More work will need to be completed before the 

complex nature of antifreeze protein gene expression can be decoded. 

1.5 Genetics and Evolution of AF(G)Ps 

A puzzling aspect of the distribution of different classes offish AF(G)Ps is that it 

does not correspond to teleost taxonomic groups very well. As illustrated in Fig 1-1, 

closely related species can produce widely variant proteins while at the same time single 

AFP types can be found in different Orders or even Super-Orders. The significant 

diversity in AFP structure in closely related species has been rationalized by the idea that 

the requirement for antifreeze arose relatively recently after current speciation had been 

established (Scott et al 1986). This theory suggests that recent sea-level glaciation 

selected for proteins which had ice binding potential and could potentially protect fish 

from freezing. The lateness of AFP evolution from pre-existing proteins was responsible 

for species developing radically different AFPs to control ice growth. Furthermore, the 

multifaceted structure of ice crystals could present a variety of surfaces for different 

proteins to bind (Davies et al 2002). 
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Figure 1-1. Phylogenetic tree illustrating the evolution and distribution of plasma 

AFPs and AFGPs in marine fishes. Adapted from a figure in Fletcher et al (200 1 ). Tree 

distances are not drawn to scale. 

aType I AFPs have also been isolated from skin tissues of winter flounder, shorthorn and 

longhorn sculpins. 

bBased on results from this study (Evans and Fletcher 2001 ). 
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The original hypothesis however, does not explain the occurrence of similar 

AF(G)Ps in unrelated fishes that could inhabit different hemispheres. In the case of 

AFGPs for example, proteins from Antarctic Notothenioids are so similar to those from 

Northern cods probably due to recent convergent evolution (Chen et al1997a, Chen et al 

1997b, Cheng and Chen 1999). While the Notothenioid gene appears to have evolved 

from elements of a trypsinogen-like protease gene, the northern cod gene seems to be 

evolutionarily unrelated. However, even convergent evolution cannot entirely explain the 

descent of type II AFPs from the C-type lectin superfamily of proteins. Three species of 

fish from diverse orders seem to have evolved their AFPs separately from C-type lectins 

at different times in their history - a type of convergent evolution in parallel (Ewart et al 

1992, Ewart and Fletcher 1993, Fletcher et al 1998, Ewart et al 1998, Ewart et al 1999). 

The same convergence in parallel hypothesis is a reasonable explanation of the presence 

of dissimilar type I AFPs in diverse species. Overall, it seems that the selective pressure 

derived from recent geological cooling events has resulted in many different protein 

adaptations to help fish species cope in new, cold water environments. 

It is clear from genetic analysis of marine fish that rapid environmental cooling 

has led to the amplification of liver specific AFP genes. In fish species with significant 

levels of antifreeze activity, AF(G)Ps are encoded by large gene families that reflect 

differences in environmental selective pressure (Scott et al 1987, Scott et al 1988). 

Winter flounder contain a set of at least 30-50 gene copies arranged in tandem repeats 

while another Pleuronectid, the yellowtail flounder, possess only 10 copies without the 

same repeat structure. Estimates in other species range from 80 copies in wolffish, to 150 
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copies in one population of ocean pout (Fletcher et al 2001 ). It appears that skin specific 

AFP genes are also encoded in multigene families that are just as extensive and complex 

as the liver specific types (Gong et al 1996). 

1.6 Description of Experimental Fish Species 

The snailfishes belong to the family Cyclopteridae, which includes a large number 

of benthic and pelagic marine fishes inhabiting northern regions of the Atlantic, Pacific 

and Arctic oceans. This family is closely related to sculpins, which belong to a different 

family of the same order Scorpaeniformes. The Atlantic snailfish (Liparis at/anticus) is a 

very small species, with mature adults ranging in length from 9.5 to 14 em. The body is 

elongate with a small head, 31-35 dorsal fin rays and 25-29 anal fin rays (Scott and Scott 

1988). Their colour varies from olive to reddish brown with some occasional lighter 

coloured bars. They inhabit inshore waters of the northwest Atlantic Ocean from Ungava 

Bay in northern Quebec and south to New York (Scott and Scott 1988). During the winter 

months, January to March, fish move further inshore where females spawn small egg 

masses, in depths less than 2 metres. 

Dusky snailfish (Liparis gibbus) is a larger species, averaging 11cm in length but 

adult females can reach up to 50 em. The elongate body is compressed posteriorly with a 

large rounded head and snout. These fish contain 40-45 dorsal fin rays and 34-37 anal fin 

rays. Body colour is variable from dark to light brownish with many dark bands. Their 

habitat extends from the Canadian Arctic Ocean, across to Greenland and down to the 

coast ofNewfoundland where they live mainly on muddy bottoms at depths up to 200m 

(Scott and Scott 1988). 
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1. 7 Proposed Research and Thesis Objectives 

It is known that closely related species from the order Scorpaeniformes produce 

type I, II and IV AFPs in liver for export into blood plasma. Because of the phylogenetic 

relationship of snailfish to other fish in this order, species from this genus were chosen to 

identify their constituent AFPs. Initially, the unknown snailfish AFPs would be isolated 

and characterized which could be useful to understanding protein structure/function 

relationships. The second stage would involve sequence and expression analysis of 

corresponding snailfish AFP genes. This information would help to clarify the 

evolutionary relationship between AFPs in the order Scorpaeniformes. 

The primary objectives ofthe study are as follows: 

( 1) Purification and characterization AFPs from both species of snail fish using a 

variety of standard biochemical and analytical techniques. 

(2) Construction and screening of eDNA libraries for both snailfish species in 

order to obtain the nucleotide sequence corresponding to isolated AFPs. 

(3) Generate a reasonable hypothesis to describe the evolutionary origins and to 

clarify some of the relationships between the antifreezes from fish in the order 

Scorpaeniformes. 
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CHAPTER 2: 

Isolation and Characterization of Antifreeze Proteins from Blood 

Plasma of Atlantic and Dusky Snailfish 

Preface 

This chapter consists of a manuscript previously published in the journal Biochimica 

Biophysica Acta [Evans, R.P. and Fletcher, G.L. (2001). Isolation and characterization of 

type I antifreeze proteins from Atlantic snailfish (Liparis at/anticus) and dusky snailfish 

(Liparis gibbus). Biochim Biophys Acta. 1547:235-244]. The experimental research and 

data analysis were performed by RPE. The manuscript was written by RPE with editorial 

input from Dr. Fletcher. Some sections of the original manuscript have been altered to 

provide clarity for thesis presentation. 
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2.1 Introduction 

Atlantic snailfish (Liparis at/anticus) and dusky snailfish (Liparis gibbus) inhabit 

northern regions of the Atlantic ocean (see chapter 1). Because their harsh natural 

environments would frequently expose both of these snailfish species to ice laden 

seawater, they were considered excellent candidates for possession of AFPs. It was 

originally hypothesized that the genus Liparis might produce either type I or type II 

AFPs, since closely related species from the order Scorpaeniformes produce both classes 

of AFPs. Shorthorn sculpin, Myoxocephalus scorpius and grubby sculpin, M aenaeus 

have type I AFP while sea raven, Hemitripterus americanus has type II AFP in their 

blood plasma. Furthermore, it has recently been shown that another Scorpaeniforme, the 

longhorn sculpin Myoxocephalus octodecimspinosis, produces an entirely unrelated 

antifreeze protein in its blood plasma- type IV (Deng et al 1997, Deng and Laursen 1998, 

Zhao et al 1998). For these reasons, we have purified and characterized AFPs from 

snailfish to help elucidate their evolutionary origins and to clarify some of the 

relationships between the antifreezes from fish in the order Scorpaeniformes. 

2.2 Materials and Methods 

2.2.1 Sample collection 

Sixty-five Atlantic snailfish, L. at/anticus, were collected by divers near Logy 

Bay, Newfoundland between December 1995 and August 1996. Three specimens of 

dusky snailfish, L. gibbus, were collected from Placentia Bay, Newfoundland during the 

winter of 1995. The species were distinguished by size, colour and their unique number 

of dorsal and anal fin rays. The Atlantic snailfish specimens ranged from 7.5-14 em while 
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the dusky snailfish specimens were up to 29 em long. The live fish were brought into the 

laboratory and placed into holding tanks supplied with ambient temperature seawater 

prior to blood collection. Fish were anaesthetized using MS-222 and blood was collected 

from the caudal vein using a heparin containing syringe and 23-gauge needle. Blood 

samples were centrifuged at 2000 rpm for 10 minutes and the plasma was removed with a 

pipette. 

2.2.2 Isolation and purification of plasma AFPs 

Pooled plasma samples from Atlantic snailfish or from individual dusky snailfish 

(1 ml each) were applied to a Sephadex G-150 gel filtration column (0.9 x 60 em) and 

eluted with 0.1M NH4HC03. Protein fractions that exhibited antifreeze activity were 

collected and lyophilized. These were redissolved in O.lM NH4HC03 and applied a 

second time to the G-150 column. Following dialysis in O.lM NH4HC03 and 

lyophilization, samples were further purified by reverse phase HPLC. The partially 

purified AFPs were separated on a Nucleosil C8 column (0.46 x 25 em). A gradient of 

40-62% acetonitrile (solvent A) and 0.1% trifluoroacetic acid (solvent B) was used with a 

flow rate of 1 mllmin. Individual peaks were collected, lyophilized and redissolved in 

0.01M NH4HC03 for activity measurements. The purified proteins were separated on 

15% polyacrylamide gels in a Tris-Tricine buffer system (SDS-PAGE) and stained with 

0.1% Coomassie® Brilliant Blue R-250. Amino acid analysis and amino terminal 

sequencing were performed by the Biotechnology Service Centre; Hospital for Sick 

Children, Toronto, and mass spectrometry (MS) was performed by the Carbohydrate 

Centre, University of Toronto. 
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2.2.3 Measurement of antifreeze activity 

Antifreeze activity was measured as thermal hysteresis using a Clifton Nanolitre 

Osmometer (Clifton Technical Physics, Hartford, NY), following the procedure ofKao et 

al (1986). Thermal hysteresis is defined as the difference between the melting and 

freezing temperatures (in °C) of a test solution. L. at/anticus AFP (designated La-AFP) 

and L. gibbus AFP (designated Lg-AFP) were dissolved in 0.1M NH4HC03 and 

centrifuged before use. For each sample, measurements were made in triplicate, and the 

average value taken. Video recordings were made of ice crystals for analysis of crystal 

morphologies. In some cases, individual frames were captured and the digital images 

were used to make photographs. 

2.2.4 Circular dichroism spectroscopy 

Circular Dichroism (CD) spectra were recorded on an Aviv Circular Dichroism 

Spectrometer model 62DS (Lakewood, NJ) in the Department of Medical Biophysics, 

University ofToronto. Spectra were obtained from 200 to 260 nm, with a 0.5 nm step, 1-

nm bandwidth, and 20 seconds collection time per step. For thermal denaturation profiles, 

ellipticity was measured at 222 nm and data was collected at a rate of 1 sec per point for 

300 data points. Samples were cooled at a rate of 1 °C every 16 seconds. Lyophilized 

protein was dissolved in 0.01 M NH4HC03 (pH 8.5). The protein concentration was 

approximately 0.35 mg/ml (La-AFP) and 0.15 mg/ml (Lg-AFP1). CD measurement was 

carried out using a cuvette of 0 .1-cm path length. The following equation was used to 

calculate the predicted mean residue ellipticity for 100% helix: 
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Equation 2-1 (Low et al 1998) 

Where n is the chain length and k is a wavelength dependent factor (2.57 at 222 nm) and 

[e)"'= 39,500 degree•cm2•dmor1
. The percentage ofhelix for AFPs was determined from 

the average mean residue ellipticity at 222 nm. 

2.3 Results 

2.3.1 Purification and analysis of snailfish AFPs 

Analysis of blood plasma from both snailfish species indicated that fish contained 

antifreeze activity during the winter months from January to March. Atlantic snailfish 

had an average thermal hysteresis measurement of0.73 ± 0.15 °C (n = 65) while dusky 

snailfish plasma was measured as 0.92 ± 0.20 °C (n = 3). Additionally, a seasonal cycle 

was observed for Atlantic snailfish antifreeze activity since it peaked during February and 

subsequently decreased during the spring to where it was nonexistent in August (0.05 °C). 

The antifreeze activity found in blood plasma was first isolated and then purified 

using a variety of standard techniques. Partially purified protein isolated from plasma by 

Sephadex G-150 gel filtration chromatography, could be further resolved by HPLC (Fig 

2-1, 2-2). A single peak from L. at/anticus (designated as La-AFP) was isolated and 2 

separate peaks were resolved for L. gibbus (designated as Lg-AFP1 and Lg-AFP2). These 

peaks were collected and analyzed by SDS-PAGE. Based on these results, it appeared 

that the collected fractions were purified to homogeneity since there was a single band on 

the gel for each of these three protein peaks (Fig 2-1, 2-2). The minor peaks observed on 

some HPLC profiles were also collected and analyzed for the presence of antifreeze 
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activity. Initially, these small peaks appeared to contain some possible antifreeze activity 

but this activity was subsequently lost when the fractions were lyophilized and re

dissolved in 0.1M NH4HC03. Additionally, these fractions did not alter ice crystal 

structure and were not consistently observed between HPLC runs whereas the major AFP 

peaks were always seen. For these reasons it appears that all AFPs are contained within 

the major peaks collected and that the small ones were probably due to the presence of 

salts and other small blood solutes. 

On SDS-PAGE, the relative molecular weights ofLa-AFP, Lg-AFP1 and Lg

AFP2 were 6.2 kDa (Fig 2-1, 2-2). Also based on SDS-PAGE, it appeared that the HPLC 

peaks collected during protein purification contained single proteins. However, upon 

further analysis by mass spectrometry this was concluded not to be accurate. It was 

determined that the single band from La-AFP on the gel was actually 2 different proteins 

having molecular weights of9344 Da (major) and 9415 Da (minor). Amino terminal 

sequencing of the first 17 amino acid residues, by Edman degradation (see Table 2-2), 

indicated that the 71 Da difference was due to a single alanine residue that was missing 

from the major protein form at the amino terminus. The sequence suggests that the two 

different forms ofLa-AFP are probably due to differences in post-translational 

processing of the individual proteins, possibly during signal peptide cleavage. Analysis of 

Lg-AFP1 and Lg-AFP2 by SDS-PAGE also indicated that the single bands were 

individual proteins. 
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Figure 2-1. Outline of the purification of Liparis atlanticus AFPs. Panel (A) shows a 

typical Sephadex G-150 profile of crude blood plasma with fractions that contained 

antifreeze activity indicated. (B) Sephadex G-150 purified antifreeze from plasma were 

separated on a Nucleosil C8 column (25 x 0.46 em); flow rate was set at 1 ml/min with a 

40-62% acetonitrile, 0.1% trifluoroacetic acid gradient. The sole AFP peak found is 

labelled as L. atlanticus AFP (La-AFP). Panel (C) is the SDS-PAGE separation of L. 

atlanticus AFP. A 15% polyacrylamide gel was used with the Tris-Tricine buffer system. 

Lane 1, pooled G-150 column fractions of L. atlanticus AFPs (approx. 150 j.!g oftotal 

protein); Lane 2, HPLC purified protein (approx. 75 j.!g of protein). 
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Figure 2-2. Outline of the purification of Liparis gibbus AFPs. Panel (A) shows a 

typical Sephadex G-150 profile of crude blood plasma with fractions that contained 

antifreeze activity indicated. (B) Sephadex G-150 purified antifreeze from plasma were 

separated on a Nucleosil C8 column (25 x 0.46 em); flow rate was set at 1 ml/min with a 

40-62% acetonitrile, 0.1% trifluoroacetic acid gradient. The AFP peaks found are labelled 

as L. gibbus peak 1 (Lg-AFP1) and L. gibbus peak 2 (Lg-AFP2). Panel (C) is the SDS-

p AGE separation of L. gibbus AFPs. A 15% polyacrylamide gel was used with the Tris

Tricine buffer system. Lane 1, pooled G-150 column fractions of L. gibbus AFPs 

(approx. 200f.lg oftotal protein); Lane 2, HPLC purified Lg-AFPl (approx. 100 f.lg of 

protein); Lane 3, HPLC purified Lg-AFP2 (approx. 80 11g of protein). 
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However, analysis by mass spectrometry revealed that it was more complicated 

than initially surmised. Lg-AFPl contained three isoforms; 9646 Da (major) and 2 minor 

isoforms of 9514 Da and 9814 Da. Additionally, the Lg-AFP2 band contained a major 

isoform with a mass of9573 Da and a minor one of9742 Da. The observed discrepancy 

in molecular mass between electrophoretic and mass spectrometry data may be a direct 

consequence of the amino acid content of these proteins. The large number of alanine 

residues would give rise to a larger than average number of SDS molecules associated 

with the proteins which would affect gel mobility (Hew et al 1980). Repeated attempts to 

separate the protein mixtures into their individual protein isoforms by HPLC or SDS-

p AGE proved to be unsuccessful. 

2.3.2 Amino acid composition 

The amino acid compositions of snailfish AFPs (La-AFP, Lg-AFPl and Lg-

AFP2) are given in Table 2-1. These proteins are typical of all type I AFPs in that they 

have a high alanine content, which accounts for between 51 to 59 mol%. The abundance 

of alanine residues is similar to winter flounder liver/skin AFPs which are between 60-

62% alanine (Gong et al 1996) but is somewhat lower than shorthorn sculpin skin AFP 

which is ~ 70% alanine (Low et al 1998). An interesting aspect of these antifreeze 

proteins is their proline content which is 2.5 mol% for La-AFP and ~ 4.2 mol% in Lg

AFPl, 2 (Table 2-1). This would correspond to between 3 and 5 proline residues for each 

of these AFPs, which may disrupt the helix content of the protein backbone since proline 

residues are known to disrupt a-helices (Chakrabartty and Baldwin 1995). 
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Table 2-1. Amino acid composition (Mol %) and molecular mass of 

Liparis AFPs 

Amino Liparis atlanticus 
Acids La-AFP 

ASP 
GLU 
SER 
GLY 
ARG 
THR 
ALA 
PRO 
VAL 
ILE 
LEU 
PHE 
LYS 

3.63 
2.95 
2.80 
4.56 
1.57 

1Q,26 
58':79 
:2.50 
5.57 
1.28 
2.55 
0.12 
3.43 

Mol Mass* 9344 (major) 
Da 9415** 

Liparis gibbus 
Lg-AFPl L_g_-AFP2 

5.41 
2.61 
2.03 
3.85 
1.75 

"8.93 
"51.22 
'4.18 
8.41 
1.74 
2.31 
1.00 
6.57 

9646 (major) 
9514; 9814 

5.46 
2.63 
2.05 
3.88 
0.87 
9.01 

51.68 
4.21 
8.48 
1.75 
2.33 
1.01 
6.63 

9573 (major) 
9742 

*Based on Mass Spectroscopic analysis 
* * 15% of protein molecules contain 1 fewer Ala residue at amino terminus 
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2.3.3 Antifreeze activity and ice crystal morphology of snailfish AFPs 

All of the snailfish AFPs tested here, (La-AFP, Lg-AFPl and Lg-AFP2) display 

concentration-dependent thermal hysteresis activities that are not significantly different 

from each other. As shown in Figure 2-3, the thermal hysteretic ability of snailfish AFPs 

is intermediate on a molar basis, with activity lower than that of winter flounder liver 

HPLC-6 (wflAFP-6) but higher than winter flounder skin (wfsAFP-2). Owing to the fact 

that snailfish AFPs are nearly three times larger than wflAFP-6, their activity on a weight 

basis is substantially lower than this winter flounder AFP, as would be expected. 

However, the activity of snailfish AFPs is also lower on a weight basis when compared to 

recombinant shorthorn sculpin skin AFP (sssAFP-2) that has a similar molecular mass 

(9700 Da) (Low et al 1998). At low protein concentrations, snailfish AFPs impart the 

typical hexagonal bipyramidal shape to ice crystals that other type I AFPs give (Fig 2-4A, 

B) and these are subsequently elongated/sharpened into spicule-like forms at high protein 

concentrations (Fig 2-4C), a characteristic typical of active AFPs. 

2.3.4 Secondary structure of snailfish AFPs 

CD spectral analyses of La-AFP and Lg-AFP2 (Fig 2-SA, C) show strong minima 

at 208 and 222 nm, which are typical of an a-helical secondary structure. Calculation of 

helix content indicates that La-AFP is 79% a-helical and Lg-AFP2 is 83% a-helical when 

measured at 0 oc. 
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Figure 2-3. Comparison of thermal hysteresis activity curves on (A) molar basis and 

(B) weight basis. HPLC purified AFPs from Liparis at/anticus (La-AFP) and Liparis 

gibbus peak 1 (Lg-AFP1) and 2 (Lg-AFP2). Data for winter flounder plasma (HPLC-6) 

AFP were taken from (Kao et al 1986) while winter flounder skin AFP (wfsAFP-2) data 

was taken from (Gong et a11996). Shorthorn sculpin skin (sssAFP-2) data are from (Low 

et al 1998, Chadwick et al 1990). 
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Figure 2-4. Ice crystal morphology in the presence of AFPs. Crystals were videotaped 

at temperatures below their melting point after they had remained a constant size for at 

least ten seconds. Individual frames were captured from tape and converted to image 

files. (A) La-AFP used at a concentration of approximately 1.25 mM (thermal hysteresis 

0.16 °C). (B) Lg-AFP2 used at a concentration of approximately 1.5 mM (thermal 

hysteresis 0.2 °C) or (C) at 5 mM concentration (thermal hysteresis 0.6 °C). 
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Figure 2-5. CD spectra and thermal denaturation profiles of L. at/anticus and L. 

gibbus AFPs. (A) CD spectrum and (B) thermal denaturation curve for L. atlanticus AFP 

(La-AFP). The protein concentration was approximately 0.35 mg/ml in 0.1 M NH4HC03 

(pH 8.5) and cell length was 0.1 em. (C) CD spectrum and (D) thermal denaturation 

curve for L. gibbus peak 1 (Lg-AFP1). The protein concentration was approximately 0.15 

mg/ml in 0.1 M NH4HC03 (pH 8.5) and cell length was 0.1 em. 
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The helix content begins to disappear as the temperature increases and the proteins are 

fully denatured after 40 °C but will regain their full helix content when cooled back down 

to 0 °C, indicating reversible thermal denaturation is occurring. These AFPs become 

irreversibly unfolded after 70 oe, The midpoint of thermal denaturation (Tm) was 

calculated as 22 oc for La-AFP and 28 oc Lg-AFP2 which is similar to that of winter 

flounder liver AFP (Wen and Laursen 1992). The thermal denaturation profile (Fig 2-5B, 

D) for Liparis AFPs appears to be cooperative in nature as indicated by the CD spectral 

data. This property of these AFPs may be associated with the proline residues in the 

proteins that are known to disrupt helical proteins (Chakrabartty and Baldwin 1995) and 

seems to indicate that these antifreeze proteins are unfolding as separately distinct 

helices. 

2.4 Discussion 

The results of the present study clearly demonstrate that snailfish produce AFPs 

during winter. These proteins are similar to type I AFPs in their high alanine content and 

a-helical secondary structure, but are significantly larger than all type I AFPs isolated 

from any other source. Table 2-2 gives an overall comparison of the major type I AFPs 

investigated to date indicating the species from which they originate. Fish from the 

Teleostei Superorder Acanthopterygii contain all known types offish AFPs I AFGPs and 

diverse species from two of its orders (Scorpaeniformes and Pleuronectiformes) produce 

all type I AFPs discovered thus far (Cheng 1998, Harding et al 1999). Here 
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Table 2-2. Species origin and physical properties of Type I AFPs. 

Species 

Winter flounder 

Yello\vtail flounder 
Alaskan plaice 
Shorthorn sculpin 

Gmbby sculpin 

Arctic sculpin 

Atlantic snailfish 
Dusky snailfish 

Winter flounder 
Shorthorn sculpin 

Protein I Helix 
Peptide Mr Content Activity 
Name (kDa) (%) ("C) 

HPLC6 3.2 85 0.68 
HPLC8 3.3 85 0.60 
AFP9 4.3 - -

YTAFP 4.0 - -
AP 3.5 - -
SS3 2.9 45 0.39 
SS8 4.0 i3 0.6i 
GS5 3.0 - -
GS8 3.4 - 0.68 
ASI 3.4 - -
AS3 2.9 - -

La-AFP 9.3 79 0.15 
Lg-AFP2 9.6 83 0.15 

wfsAFP2 3.4 81 0.45C 
sssAFP-2 7.7b i4 0.30 

Amino Acid Sequence 
10 20 30 40 

DTASDAAAAAALTAANAKAAAELTAANAAAAAAATAR 
DTASDAAAAAALTAANAKAAAKLTADNAAAAAAATAR 
DTASDAAAAAMTAATAAAAAAATAVIAAKAAALTAANAAAAAAATAAAARG 
DTASDAAAAAAATAAAAAKAAADTAAAAAKAAADTAAAAAEAAAATAR 
DTASDAAAAAAATAAAAKAAAEKTARDAAAAAAATAAAAR 
MNAPARAAAKTAADALAAAKKTAADAAAAAAA 
MNGETPAQKAARLAAAAALAAKTAADAAAKAAAKAAAIAAAAASA 
MDAPAIAAAKTAADALAAAKKTAADAAAAAAKP 
MDGETPAQKAARLAAAAAALAAKTAADAAAKAAAIAAAAA 
MDGETPAGKAARLAAAAALAAKTAADAAAKAAAIAAAAA 
MDAPARAAAKTAADALAAANKTAADAAAAAAAA 
~A)ATPAQRAAATATAAAA ... 

MDAPAKAAAATAAAAKAAAEATAAAAAKAAAATKAGAAR 
1t1AAA.AK.AAEAAAI1AAANAAEAAATKAADAAASAAAAAIAAIAEAAEAAFA 
AATKSM'VAAAAAATSAAAAAKATANAAAAASAAAAAAAAVA 

a15% of protein molecules contain I fewer Ala residue at amino terminus 
bMass of native protein. Reported mass of9.7 kDa for recombinant protein 
cActivity at 7 mg/ml protein 

1(Duman and DeVries 1974); 2(Chao et all996); 3(Scott et al1987); \Knight et al1991); \Hew et al1980); 6(Hew et al 
1985); \Reisman et al1987); 8(Fletcher et al1982); 9(Gong et al1996); 10(Low et al1998) 

Refs 

1 
I 
2 
3 
4 
5,6 

7 

8 

9 
10 



we have demonstrated that another family from the order Scorpaeniformes; namely 

Cyclopteridae, produces type I AFPs that circulate in snailfish blood plasma. 

The type I AFPs found in snailfish plasma are interesting since although there is 

high similarity amongst snailfish species they are unlike closely related sculpin plasma 

AFPs in their amino terminal sequence and their large size. This indicates that the 

snailfish AFPs derived from the same progenitor protein prior to the differentiation of 

these species but that the sculpin AFPs derived from another one. However, we also have 

evidence that snailfish skin AFP sequences are very similar to those from shorthorn 

sculpin skin AFPs both at the DNA and amino acid levels (Evans, R.P. and Fletcher, G.L. 

unpublished data). Taken together, this information suggests that type I AFPs have 

emerged on more than one occasion from a common progenitor. Only after an ancestral 

protein (or proteins) that is common to all type I AFPs is discovered will we know for 

certain. Furthermore, it would also be helpful to determine the primary nucleotide 

sequence of snailfish plasma AFPs in order to confirm the presence of any repeat regions 

and to identify possible ice binding sites or surfaces to see how they compare to others. 

The activity of snailfish plasma AFPs is quite low when measured on a weight 

basis (mg/ml) compared to wfl-AFP6 and even sssAFP-2 (Fig 2-3). However, when their 

molecular mass is taken into account when measurements are made (mM), the ability of 

these AFPs to lower solution freezing points is intermediate compared to other type I 

AFPs (Kao et al 1986, Ewart and Fletcher 1990) but still lower than sssAFP-2 (Fig 2-3). 

These observations suggest that although the snailfish AFPs are very large they may 

possess fewer ice-binding surfaces or motifs than do the sssAFP-2 and wfl-AFP6. This 
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relationship appears to be consistent for the large type I AFPs from snailfish and 

shorthorn sculpin since these proteins have lower thermal hysteresis activities than their 

smaller type I counterparts (Low et al 1998). One puzzling fact that arises from these 

results is the apparent inability of plasma AFPs to protect snailfish from freezing in ice

cold seawater that they would be exposed to in winter. Even at very high concentrations 

of 20 mg/ml, purified proteins would provide approximately 0.25 oc of freeze protection, 

which does not meet required levels (up to 0.7 °C). This suggests that some other factor is 

augmenting the plasma AFPs that protect these fish from freezing in extreme 

environmental conditions. We have evidence that physiological concentrations of typical 

plasma salts can significantly enhance the thermal hysteresis activity of purified type I 

AFPs from winter flounder (see chapter 3). These data have clear implications for studies 

that attempt to quantify the 'true' antifreeze capability of a particular type I AFP and 

when comparisons are made between AFPs isolated by different groups. Other studies 

have demonstrated that some common blood solutes (i.e. sorbitol, glycerol, alanine etc.) 

can significantly enhance the activity of beetle, Dendroides canadensis, AFP (Li et al 

1998) while rainbow smelt Osmerus mordax synthesize glycerol as an additional, 

colligative antifreeze in blood plasma (Raymond and Driedzic 1997, Driedzic et al 1998). 

More work needs to be done to determine which mechanism(s) is (are) involved in 

snailfish. 

The results of this research, and that of others, suggest that it may be necessary to 

simplify the definition of type I antifreeze proteins. Since their discovery, this class of 

AFPs has been defined as small helical proteins/polypeptides (less than 4.5 kDa) that 
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have a specific 11 amino acid repeat motif(Thr-X2-Asn/Asp-X7), where X is usually 

alanine or may be another amino acid that favours helix formation (Fletcher et al 1998, 

Ewart et al 1999, Harding et al 1999). It was also proposed that the repeating nature of 

type I AFPs matched the ice-crystal lattice structure in such a way that polar residues 

interacted through hydrogen bonding while the hydrophobic side was exposed to the 

water molecules which prevented further crystal growth (Fletcher et al 1998, Ewart et al 

1999, Harding et al1999). However, recent studies have suggested that non-polar 

interactions may also play important roles in ice binding (Chao et al 1997, Cheng and 

Merz, 1997) while other groups have examined the roles of putative ice binding motifs 

(IBM) and the properties are necessary to allow an AFP to function correctly (Lin et al 

1999a, Lin et al 1999b ). It has also been speculated that motifs that were originally 

thought to be important for ice binding are actually functioning in protein solubility, and 

a new site for ice binding has been proposed that involves hydrophobic interactions 

between the ice surface and the protein hydrophobic surface (i.e. alanine residues) 

(Harding et al 1999, Baardsnes et al 1999, Loewen et al 1999). The research presented 

here and other work on shorthorn sculpin skin AFP (Low et al 1998) has shown that both 

plasma and skin type I AFP can be significantly larger than previously thought and not 

necessarily contain the 11 amino acid repeat sequence. Essentially, this class of antifreeze 

proteins is defined by its high alanine content and a-helical secondary structure. 
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CHAPTER 3: 

The Importance of Dissolved Salts to the In Vivo Efficacy of 

Antifreeze Proteins 
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3.1 Introduction 

The blood plasma of most marine teleost species freezes at around -0. 7°C 

(Holmes and Donaldson 1969). However, some teleost fish inhabiting icy seawater are 

able to synthesize AF(G)Ps for protection against extracellular freezing. Since seawater 

temperatures can fall to -1.8°C in winter, a level ofthermal protection near this 

temperature would be necessary to survive in such extreme conditions. In addition to the 

non-colligative (thermal hysteretic) action of AF(G)Ps, the colligative effects of 

dissolved plasma solutes contribute to overall freeze protection. 

In chapter 2 (Evans and Fletcher 2001) it was noted that the standard curves of 

thermal hysteresis (TH) activity for purified snailfish AFPs suggested that the proteins 

had inherently low activity that did not relate well to plasma freezing points. Therefore, a 

physiological concentration ( ~ 10 mg/ml) of the AFPs could not protect the fish from 

extracellular freezing at temperatures below -0.9°C. Over the years, many researchers 

have been puzzled by the discrepancy between plasma freezing points and TH activity 

measured using solutions of purified AFPs. Moreover, numerous reports have indicated 

that TH is diminished during AFP purification as solutes are removed from the protein 

solution. Such observations suggest that AFP activity is improved by compounds in the 

plasma that are removed during the purification process. 

DeVries et al (1970) attributed the difference between plasma and pure AFP 

solution freezing points strictly to the colligative effects of plasma solutes (particularly 

Na+ and cr ions). This has been the paradigm that researchers in the field have worked 

under since then. However, the additional colligative freezing point depression cannot 
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explain the phenomenon of increased AFP thermal hysteresis. Experiments have 

demonstrated that high molecular weight solutes could have "superadditive" effects on 

the measured TH activity of fish AF(G)Ps in solution (Caple et al 1986, Kerr et al 1985). 

A more recent study has shown that low molecular weight solutes can enhance the 

antifreeze activity of Dendroides canadensis larvae AFP (Li et al 1998). However, in all 

cases the effects were observed using highly concentrated solutions of the test solutes 

which make it unclear if there is any physiological significance of the enhanced activity. 

To address the problem more fully, experiments were designed here to measure 

thermal hysteresis of AFPs dissolved in salt solutions at concentrations similar to fish 

plasma. The purpose is to formulate a general mechanism describing the effects of salts 

on TH activity that is applicable to all antifreeze protein classes. 

3.2 Materials and Methods 

3.2.1 Plasma sample collection 

Winter flounder (Pseudopleuronectes americanus) and ocean pout (Macrozoarces 

americanus) were collected by gillnet and brought to the fish hatchery in Wesleyville, 

Trinity Bay, Newfoundland. These two teleost species produce type I and type III AFP, 

respectively. For AFGP isolation, rock cod (Gadus ogac) were collected as by-catch from 

lobster traps. Live fish were brought into the laboratory and placed into holding tanks 

supplied with ambient temperature seawater prior to blood collection. Fish were 

anaesthetized using MS-222 and blood was collected from the caudal vein using a 

heparin containing syringe and 23-gauge needle. Blood samples were centrifuged at 2000 

rpm for 10 minutes and the plasma was removed with a pipette. 
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3.2.2 Isolation and purification of plasma AFPs 

Winter flounder or ocean pout plasma was applied to a Sephadex G-75 gel 

filtration column, eluted with 0.1 M NH4HC03, and collected in a fraction collector. 

Fractions that exhibited antifreeze activity were pooled, lyophilized and redissolved in 

O.lM NH4HC03 Proteins were further purified on a Sephadex G-75 column, re

lyophilized and stored at -20°C over desiccant in a sealed container until required. 

Antifreeze glycoproteins (AFGP) were purified from the blood plasma of rock 

cod using the method ofWu et al (2001). Plasma was treated with 50% ethanol at 4°C 

and the precipitated proteins were removed by centrifugation. The resulting supernatant 

containing AFGP was dialyzed against 2.5mM Tris-HCl (pH 9.4) using Spectropore 3 

dialysis tubing with a molecular weight cut off of 3500. The dialyzed proteins were 

applied to a DEAE-Bio-gel ion exchange column and eluted with a stepwise gradient of 

2.5-250 mM Tris-HCl (pH 9.4). Fractions that exhibited antifreeze activity as assessed 

with the Clifton Nanolitre Osmometer (see below) were pooled, lyophilized, and stored at 

-20°C over desiccant in a sealed container until required. 

3.2.3 Preparation of salt solutions 

Molecular biology grade NaCl, KCl and LiCl were purchased from Fisher 

Scientific. The Stock solutions of each salt were prepared in distilled water at the 

beginning of each experiment and diluted to twice the final desired concentration. Stock 

solutions of each AFP in 10 mM NH4HC03 (or pure water) were made such that the final 

desired concentration was achieved when mixed with an equal volume of test salt 

solution. 
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3.2.4 Measurement of antifreeze activity 

Antifreeze activity was measured as thermal hysteresis using a Clifton Nanolitre 

Osmometer (Clifton Technical Physics, Hartford, NY), following the procedure of (Kao 

et al 1986). Thermal hysteresis is defined as the difference between the melting and 

freezing temperatures (in °C) of a test solution. For each sample, measurements were 

made in triplicate, and the average value taken. 

3.3 Results 

Figure 3-1 shows the freezing and melting curves ofthree types of AF(G)Ps 

measured in increasing concentration ofNaCl, KCl and LiCl solutions. Since there was 

no significant difference between the data points for the individual salt solutions, they 

were combined for the regression analysis and displayed as a single line for clarity. 

Clearly the addition of salts to the AF(G)Ps lowers the freezing points of the solutions in 

a linear fashion that almost parallels the melting curves. The difference between the 

freezing and melting curves is attributable to the thermal hysteresis (TH) or antifreeze 

activity of the particular AFP or AFGP in the solution. However, as the salt concentration 

increases, the lines deviate increasingly from parallel, illustrating that the effect of salt on 

the freezing temperature of AF(G)P solutions is not strictly colligative (additive). There 

is an effect which enhances the activity of the antifreeze proteins. The results were 

similar when a divalent salt (MgClz) was used for comparison purposes (data not shown). 

As is evident in figure 3-2, the measured thermal hysteresis activity of each 

AF(G)P increased concomitantly with salt concentration. Overall, thermal hysteresis of 
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Figure 3-1. The effects of increasing salt concentration on melting and freezing 

curves of AF(G)Ps. Linear regression lines for melting and freezing curves are drawn 

through grouped values of three individual salt solutions. Regression analysis was 

performed using SigmaPlot™ software. Thermal Hysteresis (TH) is calculated as the 

difference between freezing and melting curves. The dashed line represents the calculated 

freezing point from added salt solution based on colligative effects alone. Type I and III 

AFP (5 mg/ml); AFGP (10 mg/ml). 
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Figure 3-2. The effects of increasing salt concentration on thermal hysteresis activity 

of AF(G)P solutions. Individual linear regression lines are drawn for each protein in the 

individual salt solutions using SigmaPlot™ software. Type I and III AFP (5 mg/ml); 

AFGP (10 mg/ml). 
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type I AFP rose by approximately 57%, type III AFP by 64% and AFGP by 118% 

between zero salt and the maximum concentration tested. Comparing high and low salt 

conditions, the increase in measured thermal hysteresis levels of type III AFP and AFGP 

is consistent regardless of protein concentration (Fig 3-3). 

3.4 Discussion 

It is evident from these data that the observed freezing point depression produced 

by AF(G)Ps is linearly related to the concentration of salts present in the solution. Figure 

3-4 illustrates that at higher salt concentrations, colligative effects are responsible for an 

increasing proportion of the total freezing point depression (FDP). At 300mM, 

approximately 1 oc (57-67%) ofFPD is provided by dissolved salts while the remaining 

33-43% is derived from thermal hysteresis ofthe AF(G)Ps. In these nonideal salt 

solutions, the hydration of dissolved ions reduces the number of free water molecules 

thereby increasing the amount of "un-freezable" water. As fewer bulk water molecules 

are available to join the growing ice crystal, the freezing point is lowered- a colligative 

effect. 

The colligative explanation for the majority of increased freezing point depression 

agrees with a paper published by DeVries et al (1970) on the chemical properties of 

antifreeze glycoproteins. The authors described the effects of 50mM NaCl on the freezing 

point of various concentrations of Trematomus borchgrevinki AFGP solutions. Based on 

the parallel nature of the no-salt and salt added curves, they concluded that the increase in 

freezing point depression was entirely colligative (additive). However, the authors did not 

measure the effects of increasing salt concentration on antifreeze TH activity. As is 
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Figure 3-3. Thermal hysteresis curves of increasing type III AFP and AFGP 

concentrations measured in two different NaCl solutions. Best fit lines are drawn 

through individual salt curves using regression analysis performed with SigmaPlot™ 

software. 
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Figure 3-4. Freezing point depression of AF(G)Ps dissolved in salt solutions. The 

stacked bar graphs represent the proportions ofFPD due to dissolved salts or AF(G)Ps as 

indicated. Values are averaged for the three salts used in figure 3-1. Thermal hysteresis 

(TH) is the combination of the no-salt portion for an AF(G)P and the extra, salt-induced, 

component. 
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evident from these data, TH activity is compromised when measured in low ionic 

strength solutions, but increases as the salt concentration is elevated (see Figure 3-1). 

Freezing point depression can thus be divided into three components- a colligative 

portion produced by dissolved salts, a portion produced by AF(G)P alone (in vitro TH), 

and a portion produced by dissolved salts affecting AF(G)P (in vivo TH). 

The effect of increasing concentrations of salt on TH activity appears to be similar 

for all the AF(G)Ps tested, suggesting that there is no specific interaction between the salt 

(dissociated ions) and the protein structure itself. The mechanism by which THis 

increased in the presence of increasing concentrations of salt could be related to the effect 

of dissolved ions on the hydration shell surrounding the AF(G)Ps in solution. The salts 

used here dissociate into ions which are effective at 'salting-in' or increasing the 

solubility of proteins (Somero et al 1992). As the protein molecules become completely 

hydrated in solution (reducing the likelihood of aggregation), the protein surface area 

available to adsorb at the ice/water interface should ice crystals start to form is 

maximized. This would result in an apparent increase in thermal hysteresis activity per 

unit of dry protein dissolved. The increase in TH activity would presumably continue 

until a plateau is reached once all of the protein is fully hydrated. This outcome has been 

observed in beetle larvae AFP with the addition of various low molecular weight solutes 

(Li et al 1998). When measured in various NaCl solutions, there was an approximately 

49% increase in activity at 500mM which levelled off up to 1.5M NaCl. However, it is 

also possible that physiologically relevant salt concentrations are required simply for 

correct protein functioning. Thus in a low ionic strength environment, protein structure is 
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compromised, TH is sub-optimal and increased salt concentration can remedy this 

situation. While there is evidence that even plasma TH activity is enhanced by the 

addition of salt (R.P. Evans and G.L. Fletcher, unpublished results) more work is needed 

to confirm the precise mechanism. 

The current hypothesis for the in vivo function of antifreeze proteins in fish 

proposes that freeze protection is provided on two levels. Extracellular protection is 

supplied by AF(G)Ps which are produced in the liver, secreted into the plasma and 

distributed throughout the extracellular space to inhibit growth of ice within the body 

fluids of the fish (Fletcher et al2001, Ewart 2002). Additional protection is provided to 

the external epithelial cells, in particular to gills, skin and gut, by the presence of 

AF(G)Ps located within the cells that are providing the first line of defense against entry 

of ice into the fish (Gong et al 1992, Gong et al 1996, Fletcher et al 2001, Ewart 2002, 

Murray et al 2002, Murray et al 2003). Murray et al (2003) also noted that in the skin of 

the winter flounder, AFP was present in the interstitial spaces of the skin epidermis. 

In fish during winter, the concentration of plasma electrolytes can increase up to 

300mM (Pearcy 1961, Fletcher 1977). As Figure 3-4 illustrates, at this salt concentration 

the freezing point is decreased to below approximately -1.75°C for all AF(G)Ps tested. 

This lowered freezing point is in the range necessary to protect fish from freeze damage 

during winter, should nascent ice crystals find their way into the blood stream or other 

extracellular fluids. The salt enhanced TH activity of AP(G)Ps appears significant 

physiologically since it would help fish avoid freezing without altering their electrolyte 

balance and causing osmotic problems. 
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The enhancement of low antifreeze activity by ions in solution may be 

particularly important in preventing ice propagation into fish from their external 

environment. Biological membranes have been shown to be very effective barriers to ice 

propagation, and experiments have demonstrated that fish skin is no exception (Valerio et 

al 1992). In fact, ice would not propagate across isolated winter flounder skin until a 

temperature considerably lower than the freezing temperature of the blood was reached, 

and that addition of AFPs enhanced this ability. They also suggested that for every 

increase in skin solute concentration, there was a doubling of the structural freezing point 

depression and that the solute concentration in the skin extracellular space may be higher 

than plasma. In tissues in immediate contact with the marine environment, elevated ion 

concentrations in interstitial fluids (possibly of marine origin) might be of significant 

importance in enhancing the freeze protection produced by AF(G)Ps at the external 

surface. 

While those authors (Valerio et al 1992) were uncertain about the amount and 

location of AFPs in skin, recent studies (Murray et al2002, Murray et al2003) have 

shown that AFPs present in fish skin are localized both inside and outside cells in the 

epithelial layer. Results here establish that in high salt concentrations, even a low amount 

of AFPs would be effective in controlling ice crystal growth and therefore ice 

propagation into the fish. It seems that in fish skin, the effects of solutes and AF(G)Ps act 

in concert to provide freeze protection. 

While certain studies of the AF(G)Ps require dissolution in distilled water, it is 

clear from the data presented here that their full thermal hysteresis activity only becomes 
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realized when they are dissolved in salt solutions (as in plasma). Such conditions give the 

most realistic picture of the way the AF(G)Ps are acting in vivo, and the of level of freeze 

protection they are capable of conferring on fish in the ocean. Thus, in order to draw 

conclusions between antifreeze levels, physiological levels of freeze protection, 

distribution within the temperature field, and survival in the wild, the antifreeze proteins 

and glycoproteins should be studied in solutions which better reflect the physiological 

environment from which they originated. 

For many teleost species, the ability to survive at temperatures down to -1.8°C is 

unequivocal. Fish are capable of surviving in ice-laden seawater during winter and the 

freezing point of a fish's blood is a good measure of the freezing point of the whole 

animal (Fletcher et al 2001 ). While dissolved solutes provide ~ 1 °C of protection in 

extracellular fluids, the freezing point depression is augmented with antifreeze proteins. 

Taken separately, these two mechanisms of freeze protection might not be sufficient to 

protect fish down to the lowest environmental temperatures they could face. However, 

the shortfall, which has long puzzled researchers in this field, can be made up in vivo by 

the addition dissolved of salts to AF(G)Ps. 
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CHAPTER 4: 

Isolation of Antifreeze Proteins from Skin Tissues of Atlantic Snailfish, 

Cunner and Sea Raven 
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4.1 Introduction 

Previous research has shown that winter flounder and two sculpin species produce 

skin-type I AFPs in many epithelial tissues that are distinct from liver expressed protein 

(Gong et al1996, Low et al1998, Low et al2001). In each case, the skin-type AFPs are 

synthesized as mature proteins that lack both the signal and pro-sequences typical of 

liver-type (plasma) proteins and thus could remain intracellular. It has been suggested 

that the skin-type AFPs are a widespread antifreeze class which might represent a 

common adaptation in many cold ocean species (Low et al 2002). Other authors further 

suggested that liver-type AFPs evolved from skin-type proteins (Gong et al 1996, Low et 

al 2002). If this hypothesis is accurate, then all fish that contain plasma AFPs should also 

contain evidence of skin expression or at least the remnants of an ancestral gene. 

Based on the above information, it was hypothesized that skin tissue was a prime 

source from which to successfully clone snailfish AFP cDNAs. The initial stage in this 

process would require isolation of AFPs from snailfish skin followed by characterization 

of the purified proteins. In order to better access the distribution of skin type AFPs in 

general, two additional species were studied. Sea raven (Hemitripterus americanus), 

which contains type II AFP in blood plasma, was judged to be an ideal comparison 

species since they are closely related to sculpins and snailfish that produce type I AFPs 

(Scott and Scott 1988, Fletcher et al 2001 ). If sea raven also contains type I AFP in skin, 

this would help to clarify the phylogenetic distribution of skin type I AFPs. 

An unrelated species, cunner (Tautogolabrus adspersus) is known to contain 

antifreeze activity in epithelial tissue but no protein has been isolated (Vale rio et al 
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1990). The assumption has been that cunner survives in part by depending on an 

epidermis that is fortified by AFPs to provide a barrier to ice (Valerio et al 1990, Fletcher 

et al2001). Isolation of AFPs from cunner skin would confirm the earlier results and 

would give credence to the argument that skin-type proteins are ubiquitous in all species 

producing AFPs. 

4.2 Materials and Methods 

4.2.1 Tissue sample collection 

Twelve Atlantic snailfish (Liparis at/anticus) and two cunner (Tautogolabrus 

adspersus) were collected by divers near Logy Bay, Newfoundland, Canada in the winter 

of2000. Two sea raven (Hemitripterus americanus) were collected by divers in the 

winter of 1998. In each case the live fish were brought into the laboratory and placed into 

holding tanks supplied with ambient temperature seawater. Prior to tissue collection, fish 

were anaesthetized using MS-222 and bled using a syringe and needle containing 

heparin. In the case of Atlantic snailfish and sea raven, skin epithelial tissue was peeled 

away from the body of the anaesthetized fish, immediately frozen in liquid nitrogen and 

stored at -70°C. In the case of the cunner, scales containing epithelial tissue were scraped 

from the body using a knife blade, frozen in liquid nitrogen and stored at -70°C. 

4.2.2 Isolation and purification of skin AFPs 

Frozen skin tissues were first pulverized using a mortar and pestle containing 

liquid nitrogen prior and homogenized in 0.1M NH4HC03 using a Polytron™ 

homogenizer. Samples were then centrifuged at 5,000 rpm for 10 minutes; supernatants 

were transferred to new containers and subsequently lyophilized. The homogenates for 
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antifreeze activity measurements were removed both before and after lyophilization. 

After re-dissolving in 0.1 M NH4HC03, total protein was assayed using a Modified Lowry 

Protein Assay kit (Pierce Biotechnology, Inc.) as described by the manufacturer. 

Normally 1.5 ml aliquots were applied to a Sephadex G-75 gel filtration column (0.9 x 60 

em) and eluted with O.lM NH4HC03. Protein fractions that exhibited antifreeze activity 

were pooled and lyophilized. Following dialysis in 0.1M NH4HC03, samples were 

further purified by reverse phase HPLC. The partially purified AFPs were separated on a 

Nucleosil C8 column (0.46 x 25 em). A gradient of 35-65% acetonitrile (solvent A) and 

0.1% trifluoroacetic acid (solvent B) was used with a flow rate of 1 ml/min. Individual 

peaks were collected, lyophilized and redissolved in 0.01M NH4HC03 for activity 

measurements. 

The purified proteins were separated on 16.5% tricine polyacrylamide gels in a 

Tris-Tricine buffer system (Bio-Rad Laboratories, Inc) and stained with 0.1% 

Coomassie® Brilliant Blue R-250 (Schagger and von Jagow 1987). A polypeptide 

standard (Bio-Rad Laboratories, Inc) was run in each gel to estimate the approximate 

molecular weight of AFPs. Amino acid analysis and mass spectrometry (MS) were 

performed on HPLC purified protein samples. For comparison, individual protein bands 

were also cut out of SDS-PAGE gels and purified using Ultrafree-MC® Centrifugal Filter 

Units and Zip-Tips® (Millipore Corporation) prior to amino acid and mass spectrometry 

analyses. Amino acid analyses and ESI-QqTOF MS were performed by the Advanced 

Protein Technology Centre (Hospital for Sick Children, Toronto ON). 
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4.2.3 Measurement of antifreeze activity 

Antifreeze activity was measured as thermal hysteresis using a Clifton Nanolitre 

Osmometer (Clifton Technical Physics, Hartford, NY), following the procedure of (Kao 

et al 1986). Thermal hysteresis is defined as the difference between the melting and 

freezing temperatures (in °C) of a test solution. Samples were dissolved in 0.1 M 

NH4HC03 and centrifuged before use. For each sample, measurements were made in 

triplicate, and the average value taken. 

4.2.4 RT-PCR and sequencing of sea raven AFP RNA 

One f.!g of DNase-treated total RNA from sea raven skin and liver tissue was 

combined with 70 pmol of an anchored poly-T primer and Superscript™ II RNase K 

Reverse Transcriptase (Invitrogen Canada Inc) was used to generate first strand eDNA in 

a I hr reaction at 42°C, as described by the manufacturer. The forward and reverse 

primers were designed to span an intron/exon boundary and were based on the published 

sequence of sea raven type II eDNA (see Fig 4-4) (Ng et al 1986, Hayes et al 1989). 

Normally, 1/lOth of the RT reaction was combined with the primers and touchdown PCR 

amplification was performed using ELONGase® Enzyme Mix polymerase (Invitrogen 

Canada Inc) in an Eppendorf Mastercycler® thermocycler. The touchdown cycling 

conditions consisted of an initial 94 oc denaturing step ( 1 minute), followed by 1 0 cycles 

of94°C (15s), 72°C decreased to 60°C (15s), 72°C (60s) and 25 more cycles of94°C 

(15s), 60°C (15s), noc (60s). RT-PCR reaction products were separated on 1% agarose 

gels and visualized using ethidium bromide. 
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Bands containing DNA were excised from the gel and purified using 

CONCERT™ Gel Extraction System (Invitrogen Canada Inc) prior to cloning. The 

pGEM®-T Easy Vector System was used to clone the purified RT-PCR products for 

sequencing into a pGEM®-T Easy cloning vector, as described by the manufacturer 

(Promega). Sequencing was performed on at least three independent clones using M13 

Forward and M13 Reverse primers at the DNA sequencing facility in The Centre for 

Applied Genomics (Hospital for Sick Children, Toronto, ON). 

4.3 Results 

Crude homogenates prepared from skin tissue from all three fish species 

contained antifreeze activity that could be purified in order to identify the unknown 

antifreeze proteins. After an initial centrifugal step to remove insoluble debris, snailfish 

skin homogenate had a thermal hysteresis of 0.18 °C while cunner skin was 0.17 oc and 

sea raven was 0.19 °C. The initial homogenates were then lyophilized and redissolved in 

half of their original volumes. The thermal hysteresis activity of the new snailfish skin 

homogenate increased to 0.26 °C, cunner to 0.22 oc and sea raven to 0.24 °C- an average 

increase of 35%. The new homogenates were then used in the further purification of 

AFPs. 

4.3.1 Purification and analysis of snailfish skin AFP 

Partially purified protein from Sephadex G-75 gel filtration chromatography 

could be further resolved by HPLC into a single major peak (designated as La-sAFP) and 

a few minor peaks (Fig 4-1A, B). Although all peaks were initially collected and 

analyzed for the presence of antifreeze activity, only the major one contained activity. 
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Figure 4-1. Outline of the purification of snailfish (Liparis atlantic us) skin AFPs. 

Panel (A) shows a typical Sephadex G-75 profile of crude skin homogenates with 

fractions that contained antifreeze activity indicated. (B) Sephadex G-75 purified 

antifreeze from skin homogenates were separated on a Nucleosil C8 column (see 

Methods for details). Approximately 6.4 mg of total protein was loaded onto the column 

with ~30% recovery from the column. The sole AFP peak found is labelled as L. 

at/anticus skin AFP (La-sAFP). Panel (C) is the SDS-PAGE separation of L. at/anticus 

skin AFP. Lane 1, pooled G-75 column fractions of skin AFPs (approx. 25 11g of total 

protein); Lane 2, HPLC purified protein ( approx. 10 ~J.g of protein). 
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Based on the SDS-PAGE results, it appeared that the collected HPLC fraction was 

purified to homogeneity since there was a single band on the gel with a Mr of ~6.5 kDa 

(Fig 4-1 C). However, analysis by mass spectrometry determined that there were actually 

five different proteins within the HPLC peak; two major proteins (9344 Da and 9415 Da) 

and three minor ones (see Table 4-1). Similar analysis ofthe excised SDS-PAGE band 

confirmed these results. 

The two major skin proteins have identical molecular weights to the type I AFPs 

previously isolated from L. at/anticus plasma (Evans and Fletcher 2001; chapter 2). 

Previously, it was determined that these two proteins differ by a single alanine residue at 

their amino terminal ends and the discrepancy between electrophoretic and mass 

spectrometry data is likely a direct consequence of the structure of these proteins (Evans 

and Fletcher 2001 ). The amino acid content of the snailfish skin AFPs is typical of all 

type I AFPs in that they have very high alanine composition, around 46 mol% (Table 4-

1 ). The abundance of alanine residues is slightly lower than the plasma AFP but the 

content of other amino acids such as threonine and proline were quite similar. The AFPs 

purified from snailfish skin give the typical hexagonal bipyramidal shape to ice crystals 

and these are subsequently elongated into spicule-like forms at high protein 

concentrations (data not shown- see chapter 2 for details). 

4.3.2 Purification and analysis of cunner skin AFP 

Homogenized cunner skin was initially fractionated on Sephadex G-75 gel 

filtration columns and the active fractions were collected and further purified using 

HPLC. Only a single peak collected from HPLC retained antifreeze activity, which was 
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Table 4-1. Amino acid composition (Mol%) and molecular mass of snailfish (L. 

at/anticus) and cunner (T adspersus) skin AFPs. 

Amino Acids 

ASP 
GLU 
SER 
GLY 
ARG 
THR 
ALA 
"PRO 
VAL 
ILE 
LEU 
PHE 
LYS 

Mol Mass* 
(Da) 

Snailfish 
(La-skin) 

5.5 
4.9 
4.7 
3.7 
2.4 
10J~ 
45.9 
2:9 
4.9 
2.1 
4.1 

4.1 

9344. 9415 (major) 
9457, 9387, 9501 

*Based on ESI-MS analysis ofHPLC peaks 

Cunner 
(Cun-skin) 

5.0 
1.1 
2.5 
3.4 
5.8 
7.3 

54.1 
2.8 
1.8 
1.2 
3.1 
1.1 
8.2 

7009, (major) 
6993, 6961 
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designated as Cun-sAFP (Fig 4-2A, B). The active HPLC peak was run on SDS-PAGE 

and shown to have a strong major band with a Mr of ~6.2 kDa and some very faint larger 

bands indicating that the column had removed many impurities from the protein (Fig 4-

2C). Analysis by mass spectrometry determined that the HPLC peak contained a major 

protein with a molecular mass of7009 Da and two minor ones (see table 4-1). Based on 

mass spectrometry determination, the molecular mass of the most prominent band 

excised from the gel was identical to the major HPLC peak. The size of the cunner skin 

protein is larger than all type I AFPs reported to date with the exception of snailfish 

plasma/skin AFP (Evans and Fletcher 2001) and shorthorn sculpin skin AFP (Low et al 

1998). 

Alanine is the most prominent amino acid with just over 54 mol% of the total, 

which is consistent with type I AFPs (table 4-1). Threonine and lysine levels are also 

similar to type I AFPs reported before from sculpin skin and the percentage of proline 

suggest that the protein contains 2 or 3 of these residues. The sequence AAAA T AEAA 

was determined by preliminary MS/MS sequence analysis of peptides prepared from the 

excised gel band. The cunner skin AFPs produced ice crystals that had the typical 

hexagonal bipyramidal shape that other fish AF(G)Ps produce. 

4.3.3 Purification and analysis of sea raven skin AFP 

Sea raven skin homogenates that contained antifreeze activity were initially 

fractionated on Sephadex G-75 gel filtration columns and the active fractions were 

collected and purified by HPLC (Fig 4-3A,B). A large HPLC peak containing antifreeze 

activity, which was mixed with several smaller peaks, was collected and analyzed on an 
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Figure 4-2. Outline of the purification of cunner (Tautogolabrus adspersus) skin 

AFPs. Panel (A) shows a typical Sephadex G-75 profile of crude skin homogenates with 

fractions that contained antifreeze activity indicated. (B) Sephadex G-75 purified 

antifreeze from skin homogenates were separated on a Nucleosil C8 column (see 

Methods for details). Approximately 5.2 mg of total protein was loaded onto the column 

with -30% recovery from the column. The sole AFP peak found is labelled as T 

adspersus skin AFP (Cun-sAFP). Panel (C) is the SDS-P AGE separation ofT adspersus 

skin AFP. Lane 1, pooled G-7 5 column fractions of skin AFPs ( approx. 25 ).lg of total 

protein); Lane 2, HPLC purified protein ( approx. 10 ).lg of protein). 
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Figure 4-3. Outline of the purification of sea raven (Hemitripterus american us) skin 

AFPs. Panel (A) shows a typical Sephadex G-75 profile of crude skin homogenates with 

fractions that contained antifreeze activity indicated. (B) Sephadex G-75 purified 

antifreeze from skin homogenates were separated on a Nucleosil C8 column (see 

Methods for details). Approximately 5.8 mg of total protein was loaded onto the column 

with ~30% recovery from the column. The sole AFP peak found is labelled asH 

americanus skin AFP (SR-sAFP). Panel (C) is the SDS-PAGE separation of H 

americanus skin AFP. Lane 1, pooled G-75 column fractions of skin AFPs (approx. 25 

flg of total protein); Lane 2, HPLC purified protein ( approx. 10 flg of protein). 
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SDS-PAGE gel (Fig 4-3C). The results indicated that while impurities were removed 

from column fractions by HPLC there appeared to be two individual bands- a prominent 

one with a Mr ~18 kDa and a smaller, fainter, band of ~14 kDa. When the collected 

HPLC peak was analyzed by mass spectrometry, the two molecular masses were 

determined to be 18345 Da and 14006 Da (Table 4-2). The HPLC purified sea raven skin 

AFPs produced ice crystals that had modified shapes similar to previous reports for sea 

raven plasma AFPs. While it is likely that the gel bands correspond to true sea raven 

AFPs, the gel bands would need to be analyzed separately for activity before this is 

absolutely certain. 

Results of amino acid analysis of the isolated proteins showed they had elevated 

cystine but only ~12% alanine. Clearly they were not type I AFPs but more resembled 

type II AFPs that sea raven synthesize in liver for circulation in blood plasma. When 

compared to the published amino acid content of the plasma type II AFP, there was 

considerable similarity between the skin and plasma AFPs (Table 4-2). Furthermore, it is 

known that the circulating AFP in sea raven is 129 amino acids long (14 kDa) and is 

derived from an initial 163 amino acid translation product that is 17.5 kDa (Duncker et al 

1996). These two molecular masses also correspond well with the two proteins isolated 

from skin tissue. RT-PCR was used to determine if any AFP mRNA expressed in the skin 

tissue was related to the known liver sequence using primers from the published eDNA 

sequence (Fig 4-4A). The identity of the sea raven Type II AFP mRNA was confirmed 

since only two nucleotide differences were observed between the RT-PCR result and 

published eDNA sequence and their translation products were identical (Fig. 4-4B). 
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Table 4-2. Amino acid composition (Mol %) and molecular mass of sea raven (H 

americanus) skin and liver AFPs. 

Sea Raven SR-Iiver 0 SR-Iiver 0 

Amino Acids (SR-skin) (163 AA) (129 AA) 

ASP 12.8 5.5 5.4 
GLU 10.5 3.1 3.1 
SER 7.3 6.7 7.0 
GLY 8.7 7.4 7.8 
HIS 3.3. 2.5 3.1 

ARG 3.4 1.8 2.3 
THR 7.3 8.6 7.8 
ALA 12.2 13.5 13.2 
PRO 6.6 4.9 5.4 
TYR 2.0 1.2 1.6 
VAL 4.3 4.3 3.1 
CYS 5 .. 8 6.7 7.8 
ILE 3.3 3.1 3.1 
LEU 6.6 8.0 6.2 
PHE 2.5 1.5 2.3 

Mol Mass 18345, 140068 17469° 13993b 
(Da) 

aBased on ESI-MS analysis of HPLC peaks 
bBased on published protein sequence (Ng et al 1986, Hayes et al 1989) 
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Figure 4-4. RT -PCR results and eDNA sequence of sea raven skin AFP mRNA. 

Panel (A) lanes 1 and 2 are duplicate samples oftotal skin RNA; Cl and C2 are RT-PCR 

controls. Panel (B) sequence comparison between published sea raven type II AFP eDNA 

and RT-PCR results. 
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600 bp-

1 (Forward Primer)CAACAGGCTGACACTGAAACAAGAG 70 
CACACATGAATGCAGAGGCAACAGGCTGACACTGAAACAAGAGAAGATATTTCTACAGCAGGGCTATCAA 
------------------ .0.0 ••••• 0 0 0 •••••• 0 •• 0 0 0 •••••••••••••• 0 •• 0. 0 •• 0 ••••• 

71 140 
TCATCTTCATCGTCTGCACCATCTCTACCACGAGGATGCTGACTGTGTCTCTACTGGTTTGTGCCATGAT 

141 210 
GGCTCTGACTCAAGCTAATGATGACAAAATACTCAAAGGCACGGCTACAGAGGCTGGACCGGTCTCTCAG 

211 280 
AGAGCCCCACCAAACTGTCCCGCTGGTTGGCAACCTCTTGGTGACCGCTGTATCTATTATGAGACAACAG 

281 350 
CGATGACTTGGGCTCTGGCTGAGACAAACTGTATGAAATTGGGTGGACACCTTGCATCCATCCACAGCCA 

351 420 
GGAGGAGCATAGTTTCATTCAGACCTTGAATGCTGGTGTTGTATGGATCGGAGGCTCCGCTTGCCTCCAG 

421 490 
GCAGGTGCTTGGACCTGGTCTGATGGTACACCTATGAATTTTCGTTCCTGGTGTTCTACCAAACCTGATG 

491 560 
ATGTACTGGCCGCGTGCTGTATGCAGATGACTGCTGCAGCTGACCAATGCTGGGATGACTTGCCTTGTCC 

561 630 
GGCATCCCACAAATCAGTCTGCGCCATGACATTCTGAGCTAACACAGAGGCCATCCATCACACAAACACT 
••• G •••••••••••••.•••.••••••••••••••••••••••••••••••••••••••.•••••••.• 

631 700 
TTAGTGGGTGTTTGATTGTGTGTGTTCGCATACTCATCTGTGTTCGTGTCAACAGCCTCATGCTGAACCT 

701 770 
GAAGGTTGAAAATCTCATATGACATCTTTAATTCTTTGCTATTGTTGGAGCTGCCTGAAAGGATGAGACG 

771 840 
ACAAGAGCTGGAAAGCATCTGAGGGCTTTTAGGAAGAAATTGAATGGTTATGAAAATGATGGTCTTTTTA 

-------------------------------.0 0 •• 0 •• 0 •••••••••• 0 •••• •••••• 0 ••••••• 

GCATCTGAGGGCTTTTAGGAAGAAA(Reverse Primer) 

841 874 
SR-cDNA TGTATTATGTCAAATTAAAAGGCTGACACGTTGA 
RT-PCR ----------------------------------
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4.4 Discussion 

Skin-type AFPs are thought to be a widespread class of type I AFPs, so it was 

decided that skin tissue would be the most appropriate source from which to isolate and 

characterize new snailfish AFPs. The results here confirm that snailfish skin tissue did 

contain antifreeze activity that could be purified by standard chromatography techniques. 

The purified proteins, which gave a single peak on an SDS-P AGE gel, could be 

characterized as type I AFPs based on their amino acid content, specifically the high 

levels of alanine. This is another example of a fish from the order Scorpaeniformes which 

expresses type I AFP in epithelial tissues. Three species were previously known to 

produce skin type I AFPs - winter flounder (Gong et al 1996), shorthorn and longhorn 

sculpins (Low et al 1998, Low et al 2001 ). 

Unexpectedly, the two major AFPs isolated from skin had identical molecular 

masses to snailfish plasma AFPs (chapter 2; Evans and Fletcher 2001). Although it is 

practically impossible to completely avoid blood plasma contamination when isolating 

proteins from epithelial tissues, caution was used when removing the skin in order to 

minimize blood contamination. The evidence here clearly indicates that Atlantic snailfish 

have identical type I AFPs circulating in blood and also in skin tissues, for protection 

from freezing. Although it is obvious that snailfish plasma AFPs are extracellular, it is 

not clear whether some skin proteins remain intracellular or are exported to blood as a 

source of circulating AFPs (see chapter 5 for further discussion). 

With the isolation and partial characterization of AFPs from cunner skin tissues, 

we have confirmed an earlier report from Valerio et al (1990) that cunner have antifreeze 
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in their skin. It is apparent that these skin AFPs have properties that would designate 

them as type I. Amino acid analysis indicated that cunner skin AFPs are alanine rich and 

mass spectrometry measurements show they are larger than all type I AFPs, except those 

from snailfish and shorthorn sculpin skin. Moreover, their high alanine content would be 

indicative of an a-helical secondary structure, which is also characteristic of type I AFP. 

Cunner are from the order Perciformes, which is unrelated to the other known 

orders with fish producing skin AFPs. These results provide more evidence that skin 

AFPs might be ubiquitous across all teleost orders. Other data (Fletcher et al, unpublished 

results) indicate that cunner also have type I AFPs circulating in their blood, although at 

this time it is unclear how these are related to the skin localized protein. While the 

evidence presented here is informative, it would be necessary to clone the corresponding 

eDNA which codes for this protein, to determine its complete amino acid sequence. With 

this sequence data, the nature of possible amino acid repeats could be used to help clarify 

its relationship to other known type I AFPs from skin and the evolution of type I AFPs in 

general. 

Results here demonstrate that sea raven skin tissues contain antifreeze activity 

that could be purified by gel chromatography and HPLC to two individual bands on an 

SDS-P AGE gel. Amino acid and mass spectrometric analyses indicated that these 

proteins are nearly identical to the previously identified circulating type II AFPs from sea 

raven. The mature plasma sea raven AFP is 129 amino acids long (14.0 kDa) which is 

derived from an initial163 amino acid translation product (17.5 kDa) that is synthesized 

in liver (Duncker et al1996). There is a 146 amino acid (16 kDa) proAFP intermediate 
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stored in the liver, which is processed to mature AFP through signal peptide cleavage, 

during or soon after, its release into blood circulation. Given that the molecular mass of 

the major AFP found in skin tissue corresponds with the hepatic expressed pre

proprotein, it is unlikely to represent contaminating blood protein since no significant 

amount ofthe unprocessed AFP exists in blood (Duncker et al1996). Furthermore, RT

PCR experiments confirmed that skin tissue does express the requisite mRNA necessary 

to code for the pre-proprotein. Since the primers spanned an intron/exon boundary the 

product generated by RT-PCR was not due to DNA contamination. 

It has been assumed that sea raven type II AFPs are expressed specifically in liver 

tissue since a 1992 study reported that no expression of type II AFP mRNA could be 

detected in skin or gill tissue RNA by northern blot (Gong et al 1992). Evidence from 

snailfish however, indicates that there can be significant tissue variability in type I AFP 

mRNA expression between individual fish (chapter 5). Until expression analysis is 

performed on many individual sea raven using blood cells and epithelial tissues, the 

extent and importance of the type II expression in skin will remain unresolved. It is also 

not known whether the untranslated regions of the mRNA are identical or ifthere is any 

significant sequence divergence in the corresponding gene. Although the tissue contains 

measurable antifreeze activity, the physiological significance of the skin expressed AFP 

mRNA remains unknown since no northern blots were performed to determine the 

relative levels of expression. Data from chapter 3 shows that even a small quantity of 

AFPs can be effective at controlling ice growth since their activity is enhanced by co

occurring salts. 
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This is the first clear report of the isolation of a class- other than type I- of AFP 

from skin tissues and the second example of a fish having identical plasma and epithelial 

AFPs. These data provide more evidence that skin tissue is a common site of AFP 

expression. Closely related species to sea raven, sculpins and snailfish, also synthesize 

AFPs in skin tissue. Until now, the paradigm has been that skin AFPs are expressed as 

mature proteins by an independent set of genes different from the liver multigene family 

that express plasma AFPs. The data presented here demonstrate that AFPs can also be 

expressed in skin tissues that include pre-pro sequences similar to liver-type proteins. 

While it is clear that unprocessed protein remains in skin tissue, it is also possible that the 

signal sequences are cleaved such that some protein is exported into blood. The 

expression of antifreeze genes in sea raven is not as simple as originally believed in that 

these fish utilize additional means to bolster their antifreeze complement for protection 

from freezing during winter. Although the precise physiological function of epithelia 

expressed AFPs has not been unequivocally established, they likely act as an additional 

extracellular barrier to ice-crystal propagation into peripheral tissues of fish (see chapter 

5 for further discussion). 
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CHAPTER 5: 

Snailfish Type I AFPs Expressed in Skin Tissues are Identical to 

Circulating Plasma Proteins 
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5.1 Introduction 

In 1996, a novel class of type I AFPs was isolated and characterized from the skin 

ofwinter flounder (Gong et al 1996). These AFPs, which are encoded by a separate 

subset of genes from liver expressed proteins, were designated as skin-type AFPs. 

Generally, these proteins are synthesized as mature polypeptides that lack both signal and 

prosequences which suggests that skin-type AFPs remain intracellular (Gong et al 1996). 

Recently, additional type I AFPs have been isolated from skin tissues of2 closely related 

species of sculpin, shorthorn and longhorn (Low et al 1998, Low et al 2001 ). 

The characterization of known skin-type AFPs and the presence of antifreeze 

activity in skin tissues of other species has led to the hypothesis that skin-type AFPs are 

the widespread ancestors of liver-type (plasma) AFPs. The discovery that snailfish 

plasma and skin tissues contain identical antifreeze proteins was entirely unexpected (see 

chapter 4). Further analysis of the snailfish AFPs would be helpful in determining the 

function and deciphering the evolutionary relationships of skin type I AFPs in general. 

Pursuant to this, a snailfish skin eDNA library was constructed and screened using type I 

AFP cDNAs from shorthorn sculpin skin. This method was used in combination with 

other molecular techniques to generate insight into the expression of AFPs in snailfish 

tissues. 

5.2 Materials and Methods 

5.2.1 Tissue sample collection 

Twelve Atlantic snailfish (Liparis at/anticus) were collected by divers near Logy 

Bay, Newfoundland, in the winter of2000. Two specimens of dusky snailfish (Liparis 
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gibbus) were collected from Placentia Bay, Newfoundland during the winter of 1999. 

Live fish were brought into the laboratory and placed into holding tanks supplied with 

ambient temperature seawater. Prior to tissue collection, fish were anaesthetized using 

MS-222 and bled using a heparin containing syringe and needle. Tissues were removed 

from anaesthetized fish, immediately frozen in liquid nitrogen and stored at -70°C. 

5.2.2 Skin library construction and screening 

Total RNA from Atlantic snailfish skin tissue was isolated using TRizol® reagent 

(Invitrogen Canada Inc.) as described by the manufacturer. Poly A+ mRNA was isolated 

from total RNA using an Oligotex mRNA Kit (QIAGEN) as described by the 

manufacturer. A skin eDNA library was constructed, as described by the manufacturer, 

using Lambda ZAP® II library and ZAP-eDNA® Synthesis Kits and Gigapack® Gold III 

packaging extracts (Stratagene, La Jolla, CA). The primary skin eDNA library contained 

around 5 x 105 clones. Normally,~ 50,000 plaques were grown on 15 em NZYCM 

plates for primary screening while 9 em plates were used in secondary and tertiary 

screens. 

Hybond-N nylon membranes (Amersham Biosciences) were prepared and 

screened according to the manufacturer. Briefly, membranes were hybridized at 42°C 

overnight in the following buffer: 5X SSC, 5X Denhardt's, 0.5% SDS, 50% formamide 

and 100 f.!g/ml calfthymus DNA. Probe was labelled with 32P-dCTP using an AU-in-One 

Random-Primed Labelling Mix (Sigma-Aldrich) and purified prior to use with 

ProbeQuant G-50 Micro Columns (Amersham Biosciences). The final wash was 

performed in 1.0X SSC, and 0.1 % SDS, at 52°C for 20 minutes. A 300 bp DNA 
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fragment corresponding to the ORF (open reading frame) of shorthorn sculpin skin (s3-2) 

clone (Low et at, 1998) was used as a probe to screen approximately 2.0 x 105 clones of 

the primary eDNA library. Positive plaques were first isolated and then pBluescript® 

phagemids, to be used for sequencing inserts, were produced using an in vitro excision 

protocol (Stratagene, La Jolla, CA). 

5.2.3 Northern blot analysis 

Total RNA from various tissues of Atlantic and dusky snailfish were isolated 

using TRizol® reagent (Invitrogen Canada Inc.) as described by the manufacturer. Five 

1-lg aliquots of total RNA were separated on 1% formaldehyde gels and were analyzed by 

a non-radioactive northern blotting procedure using positively charged nylon membranes 

(Roche Diagnostics Corporation). RNA was transferred to membranes using a VacuGene 

XL Vacuum Blotting System (Amersham Biosciences) and cross-linked with UV light. 

The membrane was hybridized at 50°C overnight in DIG Easy Hyb buffer (Roche 

Diagnostics Corporation). Probe was labelled with DIG-11-dUTP using a DIG-High 

Prime DNA Labelling kit or in some cases with a PCR DIG Probe Synthesis Kit (Roche 

Diagnostics Corporation) with chemiluminescent signal detection using CDP-Star®. The 

final wash was performed in O.IX SSC, and 0.1% SDS, at 50°C for 2x 15 min. A 175 bp 

DNA fragment corresponding to the 3' UTR (untranslated region) of the skin clone was 

used as a probe. 

5.2.4 Southern blot analysis 

Genomic DNA was isolated from liver of Atlantic and dusky snailfish using a 

Wizard® Genomic DNA Purification Kit (Promega Corporation). Aliquots of RNAse A 
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treated genomic DNA were digested with various restriction endonucleases (Invitrogen). 

Five J.lg aliquots of the digestion products were separated in a 0.8% agarose gel, 

transferred to positively charged nylon membranes (Roche Diagnostics Corporation) 

using a VacuGene XL Vacuum Blotting System (Amersham Biosciences) and cross

linked with UV light. A chemiluminescent based non-radioactive method was used to 

detect sequences on the membrane (Roche Diagnostics Corporation). Briefly, the 

membrane was hybridized at 42°C overnight in DIG Easy Hyb buffer (Roche Diagnostics 

Corporation). Probe was labelled with DIG-11-dUTP using a PCR DIG Probe Synthesis 

Kit (Roche Diagnostics Corporation) with chemiluminescent signal detection using CDP

Star®. The final wash was performed in 0.5X SSC, and 0.1 % SDS, at 65°C for 2x 15 

minutes. A 175 bp DNA fragment corresponding to the 3' UTR of the skin clone was 

used as a probe. Autoradiography was performed as described in the northern blot 

section. 

5.2.5 RACE procedure 

Both 5 '- and 3 '-RACE reactions were performed using the RNA ligase-mediated 

GeneRacer™ Kit, as described by the manufacturer (Invitrogen Canada Inc). One J.lg of 

DNase treated total RNA combined with Thermoscript™ Reverse Transcriptase 

(Invitrogen Canada Inc) was used to generate adapter-linked first strand eDNA for 1 hr in 

a 50°C reaction. The first strand eDNA was combined with the appropriate primers and 

touchdown PCR amplification was performed using DyNAzyme EXT™ DNA 

polymerase (Finnzymes Oy) in an EppendorfMastercycler® thermocycler. The 

touchdown cycling conditions consisted of an initial 95°C denaturing step (2 minutes), 
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followed by 10 cycles of94°C (15s), 72°C decreased to 60°C (15s), 72°C (60s) and 25 

more cycles of94°C (15s), 60°C (15s), 72°C (60s). In order to obtain a product in most 

reactions, DMSO was added at 10% (v/v) which allows the GC base pairs to melt at a 

lower temperature. RACE reaction products were separated on 1% agarose gels and then 

purified using a spin columns provided in the kit GeneRacer™ Kit or by CONCERT™ 

Gel Extraction System (Invitrogen Canada Inc), as described by the manufacturer. A 

TOPO TA Cloning® kit was used to clone the purified RACE products for sequencing 

into a pCR®4-TOPO cloning vector (Invitrogen Canada Inc). At least three independent 

clones were isolated and the purified plasmids sequenced. 

5.2.6 RT-PCR analysis 

One ).lg ofDNase treated total RNA from each ofthe specified tissues was 

combined with 70 pmol of an anchored poly-T primer. Thermoscript™ Reverse 

Transcriptase (Invitrogen Canada Inc) was then used to generate first strand eDNA in a 1 

hr reaction at S0°C, as described by the manufacturer. Normally, 1/lOth of the RT 

reaction was combined with the appropriate primers and touchdown PCR amplification 

was performed using DyNAzyme EXT™ DNA polymerase (Finnzymes Oy) in an 

Eppendorf Mastercycler® thermocycler. The touchdown cycling conditions consisted of 

an initial 9S°C denaturing step (2 min), followed by 10 cycles of94°C (ISs), 72°C 

decreased to 60°C (ISs), 72°C (60s) and 2S more cycles of94°C (ISs), 60°C (ISs), 72°C 

(60s). RT-PCR reaction products were separated on 1% agarose gels and visualized using 

ethidium bromide. 
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5.2.7 DNA sequencing 

Sequencing was performed on the pBluescript® phagemids or pCR®4-TOPO 

plasmids using T3 and T7 primers at the DNA sequencing facility in The Centre for 

Applied Genomics (Hospital for Sick Children, Toronto, ON). 

5.2.8 Bioinformatics Programs 

Homologous nucleotide and protein sequences were searched through BLAST 

searches on the NCBI web server (www.ncbi.nlm.nih.gov/BLAST/). The NCBI ORF 

Finder was utilized to identify putative open reading frames in the nucleotide sequences 

(www.ncbi.nlm.nih.gov/gorf/gorf.html). Helical net and helical wheel diagrams were 

constructed using EMBOSS package located on the Canadian Bioinformatics Resource 

web page (www.cbr-rbc.nrc-cnrc.gc.ca/index e.php). Swiss PDB software used to 

generate 3D model ofLas-AFP. ClustalX and Tree View (1.6.1) software were used to 

create un-rooted neighbour joining trees. 

5.3 Results 

5.3.1 eDNA Library screening and cloning of snailfish skin AFP 

After establishing the presence of AFPs in the skin of snailfish (chapter 4 ), a 

eDNA library was constructed to investigate the presence of corresponding mRNA in 

skin tissues. Approximately half of the primary library was initially screened using the 

ORF of a shorthorn sculpin skin clone, s3-2, as a probe under low stringency conditions. 

Following the tertiary screen, two independent clones were identified and these 

phagemids were sequenced. The -260 bp clones (las-cl and las-c2) contained identical 

sequences, apart from a small difference in the length ofpolyA tail and a few nucleotides 
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at their 5' ends. However, after closer inspection the clones appeared to be truncated 

versions of complete type I AFP messages. As indicated in figure 5-l, the sequence 

translated in one reading frame generates a mere 26 amino acid peptide, which is alanine

rich, but lacks the obligatory in-frame start codon. The sequence information was then 

used in 5'-RACE reactions to ascertain the remainder of the skin AFP eDNA sequence. 

During the initial optimization of 5'-RACE, numerous primer sets were designed 

and utilized in reactions. Due to excessive GC content in this particular RNA species, the 

standard homopolymer tailing RACE method (Gibco-BRL) and the SMART™ system 

(BD Biosciences) proved ineffective since smeared products were frequently obtained. 

Even when single bands could be excised for analysis, the sequences were completely 

unrelated to AFP. Furthermore, many enzyme combinations and chemical additives failed 

to give acceptable results. A technique based on RNA ligase-mediated RACE 

(GeneRacer™) was used successfully in combination with a DNA polymerase 

specialized for GC rich templates (with 10% DMSO) to clone the remaining 5' portion of 

the snailfish AFP eDNA. The full L. atlanticus skin eDNA is 568 bp long and contains a 

complete 342 bp ORF (Fig 5-1). The ORF encodes an alanine-rich protein of 113 

residues and was designated as Las-AFP (Liparis atlanticus skin AFP). The putative start 

and stop codons are underlined as well as three possible polyadenylation signal sequences 

(Graber et al 1999). 
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Figure 5-1. Nucleotide sequence and primary translation product of Liparis 

at/anticus skin AFP eDNA. The ORF is in lower case letters while the 5' and 3' UTRs 

are in non-bold capitalized letters. The putative start and stop codons are underlined in 

bold and the three possible polyadenylation signal sequences. The sequence obtained 

from the initiallas-cl and las-c2 eDNA clones are underlined. RT-PCR or RACE primer 

sequences are shown above (5' ~ 3') or below (3' ~ 5') the nucleotide sequence. 
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Las-AFP 

1 CATGGACTGAAGGAGTAGAAAACTAACAGAAGGAGAAACAGAAAGAACatggccgctgca 60 
1 M A A A 4 

61 acccccgcccagagagccgctgccactgccactgctgccgccgccgccgccgcttccgcc 120 
5 T P A Q R A A A T A T A A A A A A A S A 24 

(LaS-RT Forward primer) ccgccagcaccgccgccaaagtctct 
121 gccgctgccgccgcagccaccaccgccagcaccgccgccaaagtctctgccggtgcagct 180 

25 A A A A A A T T A S T A A K V S A G A A 44 

181 gccaccgccgctgccgctgtcgtcgccgccaaaaacgctgccaccgccgttgcccccaac 240 
45 A T A A A A V V A A K N A A T A V A P N 64 

241 accggggccatcaccgccgccaccgctgcctctgccaccgccgccgccgccgccaaagcc 300 
65 T G A I T A A T A A S A T A A A A A K A 84 

301 gcccaggccaccgccgacgccgctgccaccaaagccgccgcagccgctgtgacctccaaa 360 
85 A Q A T A D A A A T K A A A A A V T S K 104 

361 gccgccgccgctgccctcgccgccctttaaAGGGAAACCCAAAGCAGGACATTTTATCAG 420 
ccgccgctgccctcgccgcccttta (LaS-5'RACE/RT reverse primer) 

105 A A A A A L A A L 113 

421 TGGCCTCAAGTGAGCTTCGGTTTAGTTGGGATCATGTGTTTTCCTGTATTATGATTATTG 480 

481 TAGTGGCCATTTGTCCGTCCAAAATCAACAAACAATAATCTTAATCAAACTGCCACTGAT 540 

541 GCACCGGGGTCTCGGTGTTGACGCACGCA(n)570 
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The Las-AFP sequence data were utilized to design appropriate RT-PCR and 3'-

5' RACE primers for de-novo cloning of AFP sequence from dusky snailfish skin RNA. 

Initial RT-PCR experiments, using primers designed from Las-AFP 3'-UTR, indicated 

that there was a similar sized product in dusky snailfish skin (data not shown). The 3'

RACE procedure (primers indicated in Fig 5-2) produced a single band that was 

approximately 450 bp while 5'-RACE gave a 370 bp product. The overlapping sequences 

were combined into a 587bp clone which contained a 342 bp ORF that encodes a 113 

residue, alanine-rich, protein designated as Lgs-AFP (Liparis gibbus skin AFP). The 

putative start and stop codons are underlined in the figure along with the standard 

polyadenylation signal sequence. 

The AFP cDNAs cloned from the skin tissues of Atlantic and dusky snailfish have 

strikingly similar nucleotide sequences that encode nearly identical proteins (Fig 5-3). A 

few minor nucleotide substitutions and insertions in the ORF translate into four amino 

acids differences at the carboxy terminus of the proteins. However, there is a 19 bp 

insertion in Lgs-AFP 3'-UTRjust before the polyA tail region. The snailfish AFP eDNA 

sequences are similar to skin-type AFPs from winter flounder and sculpins in that they do 

not appear to contain signal sequence nor prosequences (Gong et al 1996, Low et al 1998, 

Low et al2001). Surprisingly, snailfish express AFPs in skin tissues that are identical to 

those found in their blood plasma. The amino acid composition of proteins purified from 

Atlantic snailfish skin tissue is quite similar to AFP predicted from the eDNA sequence 

(Table 5-1). Any differences could be attributed to variations in analytical procedures and 

the fact that mixtures of AFPs were analyzed. Most importantly, the predicted molecular 
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Figure 5-2. Nucleotide sequence and primary translation product of Liparis gibbus 

skin AFP eDNA. The ORF is in lower case letters while the 5' and 3' UTRs are in non

bold capitalized letters. The putative start and stop codons and the polyadenylation signal 

are underlined. RT-PCR or RACE primer sequences are shown above (5' ---t 3') or below 

(3' ---t 5') the nucleotide sequence. 
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Lgs-AFP 

1 CATGGACTGAAGGAGTAGAAAACTAACAGAAGGAGAAACAGAAAGAACatggccgctgct 60 
1 M A A A 4 

61 acccccgcccagagagccgctgccactgccactgctgccgccgccgccgccgcttccgcc 120 
5 T P A Q R A A A T A T A A A A A A A S A 24 

(LgS-3'RACE/RT Forward) ccgccagcaccgccgccaaagtctct 
121 gccgctgccgccgcagccaccaccgccagcacagccgccaaagtctctgccggcgccgct 180 

25 A A A A A A T T A S T A A K V S A G A A 44 

181 gccaccgccgctgccgctgtcgtcgccgccaaaaacgctgccaccgccgttgcccccaac 240 
45 A T A A A A V V A A K N A A T A V A P N 64 

241 accggggccatcaccgccgccaccgctgcctctgccaccgccgccgccgccgccaaagcc 300 
65 T G A I T A A T A A S A T A A A A A K A 84 

301 gcccaggccaccgccgacgccgctgccaccaaagccgccgcagccgctgtgacctccaaa 360 
85 A Q A T A D A A A T K A A A A A V T S K 104 

361 gccgccgccgcgctgcctcgccgcctttaaAGGGAAACCAAAGCAGGACATTTTATCAGT 420 
ccgccgctgccctcgccgcccttta (LgS-5'RACE/RT reverse) 

105 A A A A L P R R L 113 

421 GGCCTCAAGTGAGCTTCGGTTTAGTTGGGATCATGTGTTTTCCTGTATTATGATTATTGT 480 

481 AGTGGCCATTTGTCCGTCCAAAATCAACAAACAATAATCTAAATCAAACTGCCACTGATG 540 

541 CACCGTGGGTCTCTGTGTTGTTGCACGCAAAATAAAACAATGTCCCGA(n)588 
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Figure 5-3. Nucleotide and amino acid sequence alignments of Atlantic and dusky 

snailfish type I AFPs. Panel (A) is nucleotide sequence alignment and (B) amino acid 

alignment. Dusky snailfish (Lgs-AFP) sequence which is identical to Atlantic (Las-AFP) 

sequence are indicated by dots. Mismatched Lgs-AFP nucleotides or amino acids are 

written below Las-AFP sequences. 
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A 
1 70 

LaS CATGGACTGAAGGAGTAGAAAACTAACAGAAGGAGAAACAGAAAGAACATGGCCGCTGCAACCCCCGCCC 
LgS ........................................................... T ......... . 

LaS 
LgS 

71 140 
AGAGAGCCGCTGCCACTGCCACTGCTGCCGCCGCCGCCGCCGCTTCCGCCGCCGCTGCCGCCGCAGCCAC 

141 210 
LaS CACCGCCAGCACCGCCGCCAAAGTCTCTGCCGGTGCAGCTGCCACCGCCGCTGCCGCTGTCGTCGCCGCC 
LgS ............ A .................... C .. C ................................ . 

211 280 
LaS 
LgS 

AAAAACGCTGCCACCGCCGTTGCCCCCAACACCGGGGCCATCACCGCCGCCACCGCTGCCTCTGCCACCG 

281 350 
LaS 
LgS 

CCGCCGCCGCCGCCAAAGCCGCCCAGGCCACCGCCGACGCCGCTGCCACCAAAGCCGCCGCAGCCGCTGT 

351 420 
LaS GACCTCCAAAGCCGCCGCCGC---TGCCCTCGCCGCCCTTTAAAGGGAAACCCAAAGCAGGACATTTTAT 
LgS ..................... -GC .... - ........ - .............. - ................ . 

421 490 
LaS 
LgS 

CAGTGGCCTCAAGTGAGCTTCGGTTTAGTTGGGATCATGTGTTTTCCTGTATTATGATTATTGTAGTGGC 

491 560 
LaS CATTTGTCCGTCCAAAATCAACAAACAATAATCTTAATCAAACTGCCACTGATGCACCG-GGGTCTCGGT 
LgS .................................. A ........................ T ....... T .. 

561 611 
LaS GTTGACGCACGC-------------------AAAAAAAAAAAAAAAAAAAA 
LgS .... TT ...... AAAATAAAACAATGTCCCG ................... . 

8 
1 70 

LaS 
LgS 

MAAATPAQRAAATATAAAAAAASAAAAAAATTASTAAKVSAGAAATAAAAVVAAKNAATAVAPNTGAITA 

71 113 
LaS ATAASATAAAAAKAAQATADAAATKAAAAAVTSKAAAAALAAL 
LgS ...................................... LPRR. 
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Table 5-1. Amino acid composition (Mol%) and molecular mass of L. at/anticus, type I 
AFPs. 

LaP-AFP 
Amino Acids (protein) 

ASP 3.6 
GLU 3.0 
SER 2.8 
GLY 4.6 
ARG 1.6 
THR 10.3 
ALA 58.8 
PRO 2.5 
VAL 5.6 
ILE 1.3 
LEU 2.6 
LYS 3.4 

Mol Mass 9344, 9415* 
(Da) 

*Based on ESI-MS analysis ofHPLC peaks 
**Predicted from eDNA sequence excluding Met 

LaS-AFP LaS-AFP 
(protein) (eDNA) 

5.5 0.9 
4.9 0.0 
4.7 4.5 
3.7 1.8 
2.4 0.9 
10.8 13.4 
45.9 61.6 
2.9 1.8 
4.9 4.5 
2.1 0.9 
4.1 1.8 
4.1 4.5 

9344, 9415* 9415** 
9457, 9387 9501 

LaP-AFP = Liparis at/anticus plasma AFP; LaS-AFP = L. at/anticus skin AFP 

Table 5-2. Amino acid composition (Mol%) and molecular mass of L. gibbus, type I 
AFPs. 

LgP-AFP1 LgP-AFP2 
Amino Acids (protein) (protein) 

ASP 5.4 5.5 
GLU 2.6 2.6 
SER 2.0 2.0 
GLY 3.9 3.9 
ARG 1.8 0.9 
THR 8~9 9.0 
ALA 5t.2 51.7 
PRO 4.2 4.2 
VAL 8.4 8.5 
ILE 1.7 1.8 
LEU 2.3 2.3 
LYS 6.6 6.6 

Mol Mass 9646* 9573, 9742* 
(Da) 9514, 9814 

*Based on ESI-MS analysis ofHPLC peaks 

**Predicted from eDNA sequence including Met 

LgS-AFP 
(eDNA) 

0.9 
0.0 
4.4 
1.8 
2.7 
13.3 
58.4 
2.7 
4.4 
0.9 
1.8 
4.4 

9742** 
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mass and amino terminal sequence (see chapter 2) for Las-AFP is identical to the isolated 

plasma proteins. Dusky snailfish also express the same type I AFP in skin tissue that is 

circulating in their blood (Table 5-2). 

5.3.2 Analysis of snailfish AFP genes 

Northern blots were performed to access the tissue distribution of snailfish AFP 

mRNA. A 175 bp fragment from the 3'-UTR ofLas-AFP was used to probe total RNA 

from Atlantic snailfish tissues (Fig. 5-4A). A very strong specific band is clearly visible 

even after short exposure times in skin tissue and a fainter band from gill begins to be 

detectable with longer exposures. No other tissues gave detectable signals on this 

northern blot. When this experiment was repeated using another fish, the same banding 

pattern was detected except that there was a definite detectable signal in liver tissue RNA 

(Fig. 5-4B). The more sensitive RT-PCR technique performed using the same RNA (with 

ORF primer set) illustrates that positive bands are clearly visible for skin, gill, blood 

cells, kidney, spleen and liver but are not evident for any other tissues tested (Fig. 5-4C). 

Additional RT-PCR reactions, using a set of primers designed within the 3' UTR ofLas

AFP, showed the same pattern of expression in tissues that the ORF primer set showed 

(data not shown). 

Additional northern experiments were performed to further examine possible 

individual variation of AFP mRNA levels. Using the same probe DNA, skin tissues from 

4 Atlantic snailfish and a dusky snailfish gave very intense autoradiographic signals (Fig 

5-5A) which were confirmed by RT-PCR analysis (Fig 5-5B). The northern experiment 

was repeated using liver RNA from eight individual Atlantic snailfish and a dusky 
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Figure 5-4. Tissue distribution of Atlantic snailfish skin AFP mRNA. Panels (A) and 

(B) are northern blots of samples from two individual fish with lanes labelled with RNA 

tissue source. Blots were probed with snailfish AFP UTR sequence. Panel (C) is a typical 

result ofRT-PCR analysis. Numbers correspond with the tissue labels from the northern 

blots. 
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Figure 5-5. Distribution of snailfish AFP mRNA in skin tissues of 5 sample fish. 

Panel (A) Northern blot analysis from four individual Atlantic snailfish and one dusky 

snailfish. Blots were probed with snailfish AFP UTR sequence. Panel (B) is the 

corresponding RT-PCR results from the same tissue samples. 
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Figure 5-6. Distribution of snailfish AFP mRNA in liver tissues of 9 sample fish. 

Panel (A) Northern blot analysis from eight individual Atlantic snailfish and one dusky 

snailfish. Blots were probed with snailfish AFP UTR sequence. Panel (B) is the 

corresponding RT-PCR results from the same tissue samples. 
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snailfish (Fig 5-6A). Results showed that three of the Atlantic snailfish samples, but not 

the dusky, gave positive signals of varying intensities. RT-PCR gave the same result as 

the northern blots with the exception of one of the samples (Fig 5-6B). 

To analyze snailfish genes, a Southern blot was probed with the same DNA probe 

applied to the previous northerns. At least nine individual bands can be distinguished 

when Atlantic snailfish DNA is digested with Hindiil (Fig 5-7; lane 3) while at least I 0 

are visible for dusky snailfish and the same restriction enzyme (Fig 5-7; lane 7). Results 

of this experiment indicate that snailfish AFPs are expressed via a multigene family but 

the exact number gene copies cannot be determined precisely here. 

5.4 Discussion 

Using a combination of eDNA library screening and 5'-RACE, a complete eDNA 

corresponding to type I AFP was cloned from Atlantic snailfish skin tissue and 

subsequently in closely related dusky snailfish. Both the nucleotide and protein sequences 

are nearly identical, suggesting that these AFPs shared a common ancestral gene prior to 

snailfish species divergence. This differs from taxonomically related shorthorn and 

longhorn sculpin skin AFPs which produce quite contrasting proteins while untranslated 

regions ofmRNA are nearly identical (Low et al2001). 

Based on eDNA sequence, both snailfish species express 113 residue AFPs that 

are the largest described to date. The predicted proteins lack signal or pro-sequences, 

which indicates the mature polypeptides remain intracellular. This would imply that their 

location and function is analogous to the presumptive intracellular skin AFPs of winter 

flounder (Gong et all996) and sculpins (Low et all998, Low et al2001). However, the 
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Figure 5-7. Southern blot analysis of snailfish AFP genes. 1 0 11g of DNA were 

digested with the indicated restriction enzymes. The blot was probed with snailfish AFP 

UTR sequence. 
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molecular mass of snailfish skin proteins predicted from eDNA and their amino terminal 

sequence are identical to the results determined for their purified plasma AFPs. 

Furthermore, northern blots indicate that snailfish AFP mRNA has consistently 

significant expression only in skin tissue. Taken together, the evidence reported here and 

in chapter 4 demonstrates that the circulating plasma AFPs and skin localized AFPs are 

identical proteins that are normally expressed by the same skin specific gene. 

These results represent the first definitive report of fish which synthesize identical 

AFPs for protection in two different physiological locations. The assumption has been 

that skin-type AFPs are expressed via a different subset of genes from the liver multigene 

family (Gong et al1996, Low et al1998, Low et al2001). The evidence from snailfish 

contradicts the original hypothesis that separate sets of genes code for unique AFP 

isoforms to provide extracellular and intracellular antifreeze protection. Although the 

exact sub-cellular location has not yet been unequivocally established for skin-type AFPs, 

evidence from winter flounder indicates that skin AFPs are present in gill cell cytoplasm 

as well as in contact with the plasma membrane outside epithelial cells (Murray et al 

2002). Clearly, snailfish AFPs produced in the cytoplasm of epithelial cells are secreted 

into blood to provide extracellular protection but it is still unclear if some protein remains 

inside these cells as well. It is also uncertain exactly how snailfish AFPs are secreted 

from the cells that express them if they do not contain the requisite signal sequences. 

Alternative pathways for protein export that circumvent the usual endoplasmic reticulum

Golgi complex have been described previously (Mignatti et al 1992, Menon and Hughes 

1999). 
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The northern blot experiments exhibited a startling and unexpected variation in 

AFP expression patterns among individual fish. While skin tissues consistently produced 

high levels of AFP mRNA, expression in liver ranged from undetectable to high levels. 

This extreme individual variation in mRNA expression has not been reported previously 

for any species producing antifreeze. However, studies have demonstrated geographic 

dependent population differences in antifreeze gene copy number (Hew et al 1988, Hayes 

et al1991). In fact, individual fish from one population ofNewfoundland ocean pout had 

demonstrable differences in antifreeze gene copies which indicates the malleability of 

antifreeze genes within a given fish genome. It would be informative to determine if the 

diverse nature of the snailfish multigene family or if regulatory control regions within 

snailfish AFP gene(s) are responsible for the variation in observed tissue specific gene 

expression. 

The physiological significance of the variation in snailfish mRNA expression is 

not clear since all fish examined had significant levels of protein in blood and skin during 

the winter. It is possible that different physiological or environmental cues initiate 

expression in each tissue separately. Previous studies have demonstrated that type I AFP 

expression in liver is seasonally adjusted from low in summer to high in winter based on 

environmental cues (reviewed in Fletcher et al 1998, Fletcher et al 2001 ). Furthermore, 

skin AFP expression is uniformly high in winter flounder but has an annual variation in 

shorthorn sculpin. It seems likely that skin AFP expression provides the primary source 

of AFP production in snailfish and the liver is an ancillary site of expression for 

contributing supplementary protection. In this sense snailfish may be similar to cunner in 
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that they rely more on skin (and its AFP content) to provide the primary barrier to ice 

crystal propagation. 

Overall, the evidence presented here supports the hypothesis that AFPs from skin 

are the primordial protein source from which the liver type (plasma AFP) later evolved 

(Gong et al 1996, Low et al 2002). The skin AFP acts as the first line of defense to 

protect from external ice damage and may also protect the integrity of cellular 

membranes. In order for an undercooled fish to freeze, ice must propagate into it from the 

external environment. Several studies have shown that biological membranes can be 

effective at preventing ice propagation to undercooled fluids and that epithelial tissues act 

as effective barriers to ice propagation (Fletcher et al 2001, Valerio et al 1992). It is 

possible that the dual skin/liver expression in snailfish could represent the intermediate 

state between primary skin specific and liver specific AFP expression prior to the 

divergence of skin AFPs into distinct liver isoforms- a snapshot of evolution in action. 

While skin appears to be the original location for ubiquitous AFP expression in marine 

fish, a distinct subset of genes evolved later for liver expression of different AFP 

isoforms for circulation in blood. Eventually, the liver specific genes further evolved into 

the primary production site of circulating AFPs in most species. Evidence from chapter 6 

suggests that snailfish AFPs may have evolved from proteins expressed in epithelial 

tissues via gene cooption from a chimeric AFP intermediate. A similar gene cooption 

mechanism is responsible for the transformation of a trypsinogen-like serine protease 

gene into AFPG in notothenioids (Chen et al 1997a, Chen et al 1997b, Cheng and Chen 

1999). 
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The primary structure of snailfish AFPs is unlike most other known type I AFPs. 

While they are extremely a-helical proteins - determined experimentally by circular 

dichroism spectrometry- they possess only moderate thermal hysteresis activity 

compared to other type I AFPs (chapter 2). Helical net and helical wheel representations 

(Fig 5-8A, B) ofLas-AFP indicate that there are none of the ice binding motifs that were 

originally identified as important for ice binding (Sicheri andY ang 1995, Lin et all999, 

Zhang and Laursen 1998). Recently, amino acid substitution experiments have 

determined that it is the conserved alanine-rich hydrophobic surface which is most 

important for ice-binding in type I AFPs (Baardsnes et al 1999, Harding et al 1999, 

Baardsnes et al2001, Fairley et al2002). A rudimentary 3D representation ofLas-AFP 

suggests that no full-length hydrophobic surface is free from interfering polar residue side 

chains (Fig 5-8C). Furthermore, snailfish AFPs do not contain the requisite hydrogen 

bonding amino acids necessary to create the elaborate terminal cap structures found in 

most type I AFPs (Sicheri and Yang 1995). The lack of complete hydrophobic face and 

terminal caps might be responsible for the low activity of these AFPs. It should be noted 

however that the predicted structure of snailfish AFP may not exactly correspond with 

structural data provided by experimental methods. It is possible that the protein contains 

kinks or bends in the backbone around the helix-breaking proline residues. 

Based on protein primary structure, most type I AFPs cluster into three distinct 

groups, depending on the nature of their highly conserved amino terminal sequences 

(Figure 5-9). Two ofthe groups contain the classic 11 residue (ThrX10) repeat sequence 

while the third group contains no such repeat structure. 
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Figure 5-8. Schematic representations of Atlantic snailfish AFP secondary structure. 

(A) Helical net (B) Helical wheel diagrams were constructed by the EMBOSS package 

located on the Canadian Bioinforrnatics Resource web page. Hydrophilic residues 

DENQST are marked with diamonds. Positively charged residues HKR are marked with 

octagons. Aliphatic residues IL VM are marked with squares. (C) Swiss PDB software 

generated 3D model of Las-AFP projected from amino and carboxy terminals. Only the 

polar amino acid side chains are visible in the model. 
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Figure 5-9. Evolutionary groupings of all known type I AFP protein/polypeptide 

sequences. (A) Sequence comparisons were performed using ClustalX software to create 

un-rooted neighbour joining trees that are visualized with Tree View (1.6.1) software. (B) 

Amino acid sequence alignments ofthe groups created by ClustalX analysis. Identical 

amino acids are shown with black backgrounds while similar ones are shaded. 
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While all polypeptides that fit in the three groups are small (~3.3- 4.5 kDa), the 

unusually large snailfish and shorthorn sculpin skin AFPs are outliers that do not conform 

to either of the parsimonious categories. Interestingly, there seems to be no connection 

between the AFP structural groups and phylogenie classification or tissue source of the 

proteins. With the discovery of snailfish skin proteins, it is apparent that type I AFPs can 

also be separated into distinct structural subclasses based on size and the absence of 

traditional amino acid repeat structure. This subclass could have unique evolutionary 

origins and a distinctive mechanism for ice-binding separate from the three groups 

mentioned above. Perhaps the fundamental property of type I AFP, as represented by 

snailfish AFPs, is an alanine rich protein with a-helical secondary structure that is 

capable of ice-binding. 
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CHAPTER 6: 

Molecular Cloning of Liver Expressed Proteins from Snailfish: 

Possible Evolutionary Origins of Type I AFPs 
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6.1 Introduction 

While type I AFPs have been characterized in many species, winter flounder 

(Pseudopleuronectes arnericanus) is the best studied and is considered the prototypical 

example for developing an understanding of AFP function and regulation. It is known 

that winter flounder synthesize pre-proAFP in the liver, and that it undergoes post

translational modifications before and after secretion into blood for extracellular freeze 

protection (Davies et al1982, Pickett et al1984). The expression ofliver-type AFP genes 

in winter flounder is controlled primarily by photoperiod and follows a seasonal cycle 

with levels of AFP mRNA in winter increased several fold over summer levels (reviewed 

by Fletcher et al1989, Chan et al1993, Fletcher et al1998). Currently, the genes for all 

AFPs from plasma are believed to be expressed primarily in liver tissue, which gave rise 

to the original name 'liver-type AFP' (Gong et al1992). 

Experiments described in chapter 2 revealed that both snailfish species have type I 

AFPs circulating in their blood plasma. To further characterize snailfish plasma AFPs, 

much useful information can be derived from cloning and sequencing their corresponding 

cDNAs from a eDNA library. Therefore, it was decided that a liver eDNA library would 

be constructed since it should provide high probability for successful isolation of snailfish 

AFP clones. 

6.2 Materials and Methods 

6.2.1 Tissue collection 

Atlantic snailfish (Liparis at/anticus) were collected by divers near Logy Bay, 

Newfoundland in the winters of 1995 and 1996. Dusky snailfish (Liparis gibbus) were 
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collected from Placentia Bay, Newfoundland during the winter of 1995. The live fish 

were brought into the laboratory and placed into holding tanks supplied with ambient 

temperature seawater prior to tissue collection. Tissues of freshly killed fish were 

removed, immediately frozen in liquid nitrogen and stored at -70°C before use. 

6.2.2 Northern blot analysis 

Total RNA from liver and skin tissues of Atlantic and dusky snailfish were 

isolated using TRizol® reagent (Invitrogen Canada Inc.) as described by the 

manufacturer. Ten J.tg aliquots of total RNA were analyzed by standard northern blotting 

procedures using Hybond-N nylon membrane as described by the manufacturer 

(Amersham Biosciences). The membrane was hybridized at 42°C overnight in the 

following buffer: 5X SSC, 5X Denhardt's, 0.5% SDS, 50% formamide and lOOJ.tg/ml 

calf thymus DNA. Probe was labelled with 32P-dCTP using a Megaprime DNA Labelling 

System and purified prior to use with ProbeQuant G-50 Micro Columns (Amersham 

Biosciences). The final wash was performed in 0.2X SSC, and 0.1% SDS, at 45°C for 15 

min. A 300 bp DNA fragment corresponding to the open reading frame (ORF) of 

shorthorn sculpin skin (s3-2) clone (Low et at, 1998) was used as a probe. In the other 

blot, the ORF of a winter flounder liver AFP clone (pKenc-17) was used as a DNA probe. 

It was necessary to use the ORFs to ensure some signal because there is little or no 

sequence conservation of the untranslated regions (UTRs) from type I AFPs between the 

species of fish of different families. After approximately 20 hrs exposure, a hybridization 

signal was detected by autoradiography. 

120 



6.2.3 Library construction and screening 

A liver eDNA library from a female Atlantic snailfish was obtained from Dr. Z. 

Gong (the Dr. C.L. Hew lab at University of Toronto). Briefly, total liver RNA was 

isolated using the guanidinium thiocyanate-phenol-chloroform extraction method 

(Chomczynski and Sacchi 1987) and poly A+ mRNA was separated using Oligo ( dT) 

columns. The eDNA library was constructed and amplified, as described by the 

manufacturer, using Lambda ZAP® library and ZAP-eDNA® Synthesis Kits and 

Gigapack® Gold packaging extracts (Stratagene, La Jolla, CA). Normally, 50,000 plaques 

were grown on 15 em NZYCM plates for primary screening while 9 em plates were used 

in secondary and tertiary screens. 

Hybond-N nylon membranes (Amersham Biosciences) were prepared and 

screened according to the manufacturer. Briefly, membranes were hybridized at 42°C 

overnight in the following buffer: 5X SSC, 5X Denhardt's, 0.5% SDS, 50% formamide 

and 100~-tg/ml calfthymus DNA. Probe was labelled with 32P-dCTP using a Megaprime 

DNA Labelling System and purified prior to use with ProbeQuant G-50 Micro Columns 

(Amersham Biosciences). The final wash was performed in l.OX SSC, and 0.1 % SDS, at 

52°C for 20 minutes. A 300 bp DNA fragment corresponding to the ORF of shorthorn 

sculpin skin (s3-2) clone (Low et at, 1998) was used as a probe to screen approximately 

5.0 x 105 clones ofthe amplified eDNA library. 

6.2.4 DNA sequencing 

Positive plaques were first isolated and then pBluescript® phagemids were 

produced using an in-vitro excision protocol according to the manufacturer (Stratagene, 
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La Jolla, CA). Sequencing was performed using T3 and T7 primers at the DNA 

sequencing facility in The Centre for Applied Genomics (Hospital for Sick Children, 

Toronto, ON). 

6.2.5 Bioinformatics Programs 

Homologous nucleotide and protein sequences were searched through BLAST 

searches on the NCBI web server (www.ncbi.nlm.nih.gov/BLAST/). The NCBI ORF 

Finder was utilized to identify putative open reading frames in the nucleotide sequences 

(www.ncbi.nlm.nih.gov/gorf/gorf.html). Sequence alignments were generated via 

MultAlin (www.prodes.toulouse.inra.fr/multalin/multalin.html). Visualization of 

sequence alignments were made with BOXSHADE 3.21 program on Swiss EMBnet 

server (www.ch.embnet.org/index.html). 

6.3 Results 

6.3.1 Northern blot analysis 

Total RNA from snailfish liver and skin were probed using the ORFs of type I 

AFP eDNA clones from shorthorn sculpin. As is seen in Figure 6-1, the Atlantic snailfish 

liver RNA produced a signal ~850 bp and the band was a little larger in dusky snailfish. 

The skin tissues for both species have fainter bands ~850 bp but very strong signals up at 

~2.3 kb. The results were similar when this northern blot was probed with the winter 

flounder ORF eDNA probe (data not shown). Based on these results, it was concluded 

that these probes would be satisfactory to successfully screen the liver eDNA library for 

type I AFP clones. 
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6.3.2 eDNA library screening and clone isolation 

The initial screen of the Atlantic snailfish liver eDNA library produced more than 

100 positive signals. Of these, approximately 20 independent clones were analyzed by 

Southern blot (data not shown) and clones that gave strong positive signals were 

sequenced. The first clone isolated from the library was termed lal-Al (for Liparis 

atlanticus liver-clone AI) and its sequence is shown in Figure 6-2. The sequence 

indicated that although it was longer than predicted from northern blots, a section toward 

the 5' end with many GC-rich codons translated into alanine residues, similar to type I 

AFP. However, this reading frame was incomplete and no other ORFs translated entirely 

into type I AFP sequence. 

As shown in Figure 6-2, the largest ORF contains 441 amino acids (47 kDa) and 

short 5' and 3' UTRs. The putative start and stop codons are underlined as well as the 

common alternative polyadenylation signal, ATT AAA (Graber et al 1999). When the 

nucleotide sequence oflal-Al was used in a BLAST search, there was very significant 

sequence similarity with structural proteins from fish eggs (i.e. choriogenin H, zona 

pellucida protein etc - Table 6-1 ). A protein sequence BLAST search also showed strong 

similarity with the same proteins as the nucleotide homologies (table 6-2). In nucleotide 

and protein sequences, there was no homology with the fish eggshell proteins toward the 

end portion oflal-Al which includes the 'AFP like' section. 
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Figure 6-1. Northern blot analysis of snailfish liver and skin RNA for Type I AFPs. 

Blot probed with a shorthorn sculpin ORF probe. Lanes contain 10 IJ.g of L. at/anticus 

(La) or 10 !J.g of L. gibbus (Lg) total RNA. L = liver RNA; S = skin RNA 
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Figure 6-2. Full length nucleotide sequence and primary translation product of lal

Al eDNA clone. The ORF is in lower case letters while the 5' and 3' UTRs are in non

bold capitalized letters. The putative start and stop codons and the polyadenylation signal 

are underlined. 
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1 GCACGAGTCAAACTGCTGTTGAAACATGGCGACACCTGGGGTGTCACCTCTTTTGTGGCCCTAGCACTGCTAGCATGCTT 80 

81 TGCTGGGATGGAAGTAGAAGCTCAGGACAAGACCTTTTCAAATCCTCCTCCAAAGGTCATTCAACAGGGTAGCTCTCCTC 160 

161 CATTAGCCGACGGCGGTGACGGTGGCGACGGCGGCCACGGAGGCTTCATCGGCAGCGGTGGCC~gcggcagcggcggc 240 
1 M A A A A A 6 

241 gacggcagctggaccggcagcggcggcagcggcggccacggcggccatggcggcttcatcggcagcggcggcgacggtgg 320 
7 T A A G P A A A A A A A T A A M A A S S A A A A T V E 33 

321 agaaggcggagacgccctccccggctacatcccctgctggggtagccattgtccccatgtttggtttgatcagaagcagc 400 
34 K A E T P S P A T S P A G V A I V P M F G L I R S S 59 

401 gaaaccccaaaaactcacagaatcaaatcagacacattttgccaaataattctcctgcccagagttgtgacgtgccaaaa 480 
60 E T P K T H R I K S D T F C Q I I L L P R V V T C Q K 86 

481 aaacacgagagtcacatgtggacttcctgatatctctactaaacactgcgaagagataaactgctgctctgatggacaac 560 
87 N T R V T C G L P D I S T K H C E E I N C C S 0 G Q H 113 

561 actgcttttatggaaaggcagtgaccgttcagtgcaccaaggatggccagttcattgtcgtagtggcgagagatgccact 640 
114 C F Y G K A V T V Q C T K D G Q F I V V V A R D A T 139 

641 ctgcccaacattgacctcgagtcaatctcacttttgagaagcggtccaggctgtacacatgttgactctaattcaggctt 720 
140 L P N I D L E S I S L L R S G P G C T H V 0 S N S G F 166 

721 tgccatctataactttggtgttaccgcatgtggcaccgttgtttcggaggagcctggtgttataatctatgagaacagaa BOO 
167 A I Y N F G V T A C G T V V S E E P G V I I Y E N R M 193 

801 tgatctcctcatatgaagtggacactgggcctgttggagtcattagcagagacagtcaatatgaattgctcttccaatgt 880 
194 I S S Y E V D T G P V G V I S R D S Q Y E L L F Q C 219 

881 cggtacatcggcaccactgttcaaactgtggttgtagaagtatcaccgttactagatcctcctatatcagttgctgctgt 960 
220 R Y I G T T V Q T V V V E V S P L L 0 P P I S V A A V 246 

961 gggacccatcagagtagaactgaggttgggtaatggacagtgcatttcaaagggttgtgttgaagaggatgtggcctatg 1040 
247 G P I R V E L R L G N G Q C I S K G C V E E D V A Y A 273 

1041 cttcgtactacaccggtgctgactatcctgtcagtaaagtactgagggaccctgtgtacgtggaggttcgactccttgag 1120 
274 S Y Y T G A 0 Y P V S K V L R 0 P V Y V E V R L L E 299 

1121 aagacagataccaaccttgtcctgactcttggtcgctgttgggcaaccacaagccccaaccctcacactctgccccagtg 1200 
300 K T D T N L V L T L G R C W A T T S P N P H T L P Q W 326 

1201 ggacattctgacagacgggtgtccaaacaggaacgataaatacttgtcttcactgattccaatcggtccctcctctggtc 1280 
327 0 I L T D G C P N R N D K Y L S S L I P I G P S S G L 353 

1281 tgttctaccccagtcactacagacgtttccttttcaaaatgtttacctttgttggccaaacgtcatcaaagtcgatcaaa 1360 
354 F Y P S H Y R R F L F K M F T F V G Q T S S K S I K 379 

1361 tctcaacccttgagggaacaggtgtacattcactgcagtacagcagtgtgcactcctgtgaagggatactcctgtgaacc 1440 
380 S Q P L R E Q V Y I H C S T A V C T P V K G Y S C E P 406 

1441 agtgtgctacagaaaaaagagagatgtcatggatgtggaccagacaagttctcagccaaaggtcgtggcttctgtaggac 1520 
407 V C Y R K K R D V M D V D Q T S S Q P K V V A S V G P 433 

1521 cagtggacatgggtgcgtcttgggagtaaaCAGCAGTGTCAAACTCAAGAATTTGGCCGAGATCATGAAGTGAAAGATTT 1600 
434 V D M G A S W E - 441 

1601 GCATATTACAGACTGTATATTGTAATGATTGCAAACGTATTACAAAGTGTGCTGCAGGAAGAATGAAATTGATCCCCGAA 1680 

1681 AGTATTGTAGACACAATTGTATTAAAATATATGGCTTTGA(n) 1720 
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Table 6-1. Nucleotide Sequences with Significant Sequence Similarity to lal-Al. 

Organism Sequence Type/Name 

Winter flounder (Pseudopleuronectus zona pellucida protein gene 
americanus) 
Japanese medaka (Oryzias latipes) choriogenin H mRNA 

Japanese medaka (Oryzias latipes) 

Rainbow trout (Oncorhynchus 
my kiss) 
Rainbow trout (Oncorhynchus 
mykiss) 

choriogenin H gene 

vitelline envelope protein beta 
mRNA 
zona radiata structural protein mRNA 

E value* 

3e-24 

3e-15 

3e-12 

3e-10 

3e-08 

*The lower the E-value, or the closer it is to "0" the more significant the match is. 

nucleotide homology 
........................................ ....., _____ ,.. 

1 1719 

ZP I Choriogenin H I Vitelline envelope 

1 441 

protein homology 

Table 6-2. Protein Sequences with Significant Sequence Similarity to lal-A 1. 

Organism Sequence Type/Name E value 

Rainbow trout (Oncorhynchus vitelline envelope protein beta 1e-118 
my kiss) 
Japanese medaka (Oryzias latipes) choriogenin H 1 e-118 

Winter flounder (Pseudopleuronectus zona pellucida I egg envelope protein 1e-117 
americanus) 
Zebrafish (Dania rerio) egg envelope protein ZP2 variant C 1e-1 04 

Zebrafish (Dania rerio) zona pellucida glycoprotein 2 1e-1 02 
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Amongst the group of twenty clones picked initially, the most common clone isolated 

from the library was termed lal-B2 (for L_iparis g_tlanticus liver-clone B2) and its 

sequence is shown in Figure 6-3. Overall, of the clones isolated for sequencing, at least 

90% were lal-B2 while the remainder was either lal-Al or lal-C14. In one of the reading 

frames, toward the 5' end, many alanine residues were translated which suggested that it 

was type I AFP sequence. However, this reading frame was not complete in that it did not 

have the required start and stop codons in frame. The largest lal-B2 ORF contains 494 

amino acids (52 kDa) with numerous glycine residues toward the amino terminus. The 

putative start and stop codons are underlined as well as the standard polyadenylation 

signal (Fig 6-3). This clone is of similar length to lal-Al and also has very short 5' and 3' 

UTRs. 

When the nucleotide sequence oflal-B2 was used in a BLAST search, there was 

also very significant sequence homology with mRNA of structural proteins from fish 

eggs (Table 6-3). The sequence of lal-B2 is very similar to chorion protein mRNA from 

sea bream and L-SF from medaka. A protein sequence BLAST search also showed strong 

similarity with the same egg structural proteins as the nucleotide homologies (Table 6-4). 

As was the case for lal-Al, there was no homology for the nucleotide and protein 

sequences with the fish eggshell proteins in the section of the clone that initially appeared 

to contain type I AFP sequence. 
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Figure 6-3. Full length nucleotide sequence and primary translation product of lal

B2 eDNA clone. The ORF is in lower case letters while the 5' and 3' UTRs are in non

bold capitalized letters. The putative start and stop codons and the polyadenylation signal 

are underlined. 
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1 ACGAGAGCACTTGTTGTTGTGAAGC~gtgatgaagtatactgccgtgtgccttttggtactagccttgtttggcactt 80 
1 M V M K Y T A V C L LV LA L F G T F19 

81 tttgtgaggctcaaagggggggtttccagaaaccataccagaagccagcatcacccaaacaggtgccttatgaacctcaa 160 
20 C E A Q R G G F Q K P Y Q K P A S P K Q V P Y E P Q 45 

161 cagcaggcaaagcagaactttgagaaacctctcacctggattttccctgaagatcctcagcccgaagcagcagttgaagt 240 
46 Q Q A K Q N F E K P L T W I F P E D P Q P E A A V E V 72 

241 gcctttcgagctgagatatcctgttgctgctgcatctgtctctgttgagtgtagagagagtgctgtccatgtggaggtca 320 
73 P F E L R Y P V A A A S V S V E C R E S A V H V E V K 99 

321 agaaagacatgtttggaattggccagttcatcaatgcagctgaccttactctgggaaactgtggcgctgtcgcagaggac 400 
100 K D M F G I G Q F I N A A D L T L G N C G A V A E D 125 

401 tctgctggtcaagtgttggtctttgaagctgagctccagaattgtctcagctcattggggatgaccgaagattccctcat 480 
126 S A G Q V L V F E A E L Q N C L S S L G M T E D S L I 152 

481 ctacaccttcaccatgaactacattccccaacctctggggggatctcctgttgtgaggaccagccaggctgctgtaattg 560 
153 Y T F T M N Y I P Q P L G G S P V V R T S Q A A V I V 179 

561 tcgaatgccactacccaaggaagcacaatgtgagcagccttgctcttgatcccctgtggatcccattttctgcggttaag 640 
180 E C H Y P R K H N V S S L A L D P L W I P F S A V K 205 

641 atggcagaggaattcctgtacttcaccctgaaactcatgactgacgactggcagtatgagaggccaagctaccaatattt 720 
206 M A E E F L Y F T L K L M T D D W Q Y E R P S Y Q Y F 232 

721 cctgggagacaccatcaatattgaagctgtcgtcaagcagtacttccacgtgcccctccgtatatatgtggaaagctgcg 800 
233 L G D T I N I E A V V K Q Y F H V P L R I Y V E S C V 259 

801 tagctactctggaacctgacacatccgccaaccccagatatgccttcattgataacaatgggtgtttgctcgatgcaagg 880 
260 A T L E P D T S A N P R Y A F I D N N G C L L D A R 285 

881 ctcacaggatccaactctaagttctatcttcgctctgcagacaacaagcttcagttccagttggaggccttcaggttcca 960 
286 L T G S N S K F Y L R S A D N K L Q F Q L E A F R F Q 312 

961 gaatgctgaaagtggtctgctctacatcacttgccacttgaaagcaacatctgcttcctcttctatcgataatgatcata 1040 
313 N A E S G L L Y I T C H L K A T S A S S S I D N D H R 339 

1041 gagcttgttcttggaacaacgggtggcatgaggccagcaaaatcgactcagtttgtggcagctgtgaatctgccggtttg 1120 
340 A C S W N N G W H E A S K I D S V C G S C E S A G L 365 

1121 ccaccagctgccaacccaaggggagctaactttgttgccagcggcccctacaccatcagcggcggcggcggcggcggcgg 1200 
366 P P A A N P R G A N F V A S G P Y T I S G G G G G G G 392 

1201 cagcggcggcagcggtaactaccccagcggcagcggtaactaccccagcggtagcggcggcctcggcggtgccggcggcg 1280 
393 S G G S G N Y P S G S G N Y P S G S G G L G G A G G G 419 

1281 gaagcggcggctacaacggcgcccatggcggccatggcgcccacggtatcaacggcggcggcggcggcggcggcggcggc 1360 
420 S G G Y N G A H G G H G A H G I N G G G G G G G G G 445 

1361 ggcggcggcggtggcggcggctacaacggtaacagcggcggcggcatctacaacccttcaagaaagatacgtgatgtgtc 1440 
446 G G G G G G G Y N G N S G G G I Y N P S R K I R D V S 472 

1441 tgaagtattcgaatgggaaggtgatgtcaccctgggacccatccccattgcagacaagatggttgcctaaCTCAATTCCC 1520 
473 E V F E W E G D V T L G P I P I A D K M V A 494 

1521 TGCCATGCCTAGGGCCATTAAAATAAACAGTCGTATTGGTTCATA(n) 1565 
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Table 6-3. Nucleotide Sequences with Significant Sequence Similarity to lal-B2. 

Organism Sequence Type/Name E value* 

Gilthead sea bream (Sparus aurata) chorion protein mRNA 1e-1 03 

Japanese medaka (Oryzias latipes) L-SFmRNA 6e-38 

Japanese medaka (Oryzias latipes) choriogenin L gene 1e-08 

Rainbow trout (Oncorhynchus vitelline envelope protein gamma 1e-08 
mykiss) mRNA 
*The lower the E-value, or the closer it is to "0" the more significant the match is. 

nucleotide homology 

..... -----~······································--~ 
1 1565 

_J Chorion protein I L-SF precursor L.. , ________ ____., 
1 494 
..... -------------~································....,.._,. 

protein homology 

Table 6-4. Protein Sequences with Significant Sequence Similarity to lal-B2. 

Organism Sequence Type/Name E value 

Gilthead sea bream (Sparus aurata) chorion protein 1e-148 

Japanese medaka (Oryzias latipes) L-SF precursor 1e-145 

Japanese medaka (Oryzias latipes) choriogenin L 1 e-142 

Rainbow trout (Oncorhynchus vitelline envelope protein gamma 1 e-114 
mykiss) 
Common Carp (Cyprinus carpio) egg membrane protein ZP3 7e-94 

Carp ( Carassius auratus egg envelope glycoprotein ZP3 4e-90 
gibelio) 
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One other independent clone was isolated from the eDNA library during the first 

screen. The clone was ~600 bp, included a poly A tail and GC rich sequence which 

translated into many alanine codons. However, the sequence did not contain a proper start 

codon in the expected reading frame and a preliminary BLAST nucleotide search showed 

there was some homology with keratin mRNA. The library was re-screened and a single 

clone with identical sequence at the 5' end was found. The complete sequence of this 

clone, named Ial-C14 (for £)paris g_tlanticus liver-clone C14) is shown in Figure 6-4. The 

largest, complete, ORF translated in lal-C14 contains 569 amino acids (62 kDa) and is 

rich in glycine residues at the carboxy and amino termini. The putative start and stop 

codons are underlined as well as the standard polyadenylation signal (Fig 6-4). Clearly 

the 600 bp clone originally sequenced was merely a truncated version of lai-C 14. 

When the complete nucleotide sequence oflal-C14 was used in a BLAST search, 

extremely significant sequence homology was found with rainbow trout and Zebrafish 

type II keratin mRNA (Table 6-5). The same homologies were revealed when the protein 

sequence was used in a BLAST search (Table 6-6). Similar to the clones described 

previously, a portion oflal-C14 that had no significant hits in homology searches. This 

portion contains sequence that appears similar to type I AFP. 
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Figure 6-4. Full length nucleotide sequence and primary translation product of lal

C14 eDNA clone. The ORF is in lower case letters while the 5' and 3' UTRs are in non

bold capitalized letters. The putative start and stop codons and the polyadenylation signal 

are underlined. 
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1 GAAAACTCAGAGGGACTCGGCTCTCCTTTTGCAGACGGCTCATCTTCACTTTTCTTCTTGTCAGATAGTTGACCACCACT 80 

81 GCAAACACG~aggaagtcatactcagtctcaggcggcagcagcagcatcaggaggtccaatgcacctagcagctactc 160 
1 M R K S Y S V S G G S S S I R R S N A P S S Y S 24 

161 cgtccaaagaaccagctatggttccggtggcggtggaggtggtggctttgcttccggtggtttcagtagctccagtggtt 240 
25 V Q R T S Y G S G G G G G G G F A S G G F S S S S G F 51 

241 tcgggggctccggtagttatggtggatccgctggttttggttctggtatgtcttcaatgggtggtagttatggcttttct 320 
52 G G S G S Y G G S A G F G S G M S S M G G S Y G F S 77 

321 tcgagccaaggaggcggctgcatgcccccaccgatcaccgctgtccaagtcaaccagagcctgctggcccccctgaacct 400 
78 S S Q G G G C M P P P I T A V Q V N Q S L L A P L N L 104 

401 ggcgatcgacccatccatccaggtggtccgtacccaggagaaagagcagatcaagaccctcaacaaccgtttcgcctcct 480 
105 A I D P S I Q V V R T Q E K E Q I K T L N N R F A S F 131 

481 tcatcgacaaggtccgtttcctggagcagcagaacaagatgctggagaccaaatggagcctcctgcaggaccagaccaca 560 
132 I D K V R F L E Q Q N K M L E T K W S L L Q D Q T T 157 

561 acccgctccaacatcgatgccatgttcgaagcctacatttccaacctgcgcagacagctggacggggctcggcaacgaga 640 
158 T R S N I D A M F E A Y I S N L R R Q L D G A R Q R E 184 

641 agtcaagatggagggagagctgaggaacatgcagggccatgttgaggacttcaagaggaagtatgaagatgaaatcaaca 720 
185 V K M E G E L R N M Q G H V E D F K R K Y E D E I N K 211 

721 aacgtgcgagtgcagagaatgaatttgtgctcctgaagaaggatgttgatgctgcttacataaacaaggtggagctggag 800 
212 R A S A E N E F V L L K K D V D A A Y I N K V E L E 237 

801 gccagagctgacgctcttcaggatgagatcaacttcctcagggccgtctatgaggctgagctccgtgagctgcagggcca 880 
238 A R A D A L Q D E I N F L R A V Y E A E L R E L Q G Q 264 

881 gatcaaggacacctccgtcgtcgtggagatggacaacagccgtaacctggacatggactccgttgtggctgaagtgcgtg 960 
265 I K D T S V V V E M D N S R N L D M D S V V A E V R A 291 

961 ctcagtatgaggacatcgccaaccgcagcaaggcggaagcagagacctggtacaaacagaagtatgaggagatacagagc 1040 
292 Q Y E D I A N R S K A E A E T W Y K Q K Y E E I Q S 317 

1041 tctgccggacagtatggggaggacatccgatctaccaagactgagatctctgagctgaaccgcatgatctcccgtcttca 1120 
318 S A G Q Y G E D I R S T K T E I S E L N R M I S R L Q 344 

1121 gaacgagattgagtccgtcaagggacagaggagcagccttgaggcccagatcgcagaggctgaggagcgtggtgagctgg 1200 
345 N E I E S V K G Q R S S L E A Q I A E A E E R G E L A 371 

1201 cagtgaaggacgccaagctccgcatccgggacctggaggacgctctgcagagagccaagcaggacatggcccggcagatc 1280 
372 V K D A K L R I R D L E D A L Q R A K Q D M A R Q I 397 

1281 agagaaatcacgagagaagccctgcagagagccaagcaggacatggcccggcagatcagagagtaccaggacctgatgaa 1360 
398 R E I T R E A L Q R A K Q D M A R Q I R E Y Q D L M N 424 

1361 cgtcaagctggctctggacattgagatcgccacctacaggaagctgctggagggagaggaggacaggctggcgaccggca 1440 
425 V K L A L D I E I A T Y R K L L E G E E D R L A T G I 451 

1441 tcaagtccatcaacatttcccaacagagcacgagctacggcggcttccccatggagaagagcagctactcaagcggctac 1520 
452 K S I N I S Q Q S T S Y G G F P M E K S S Y S S G Y 477 

1521 tccagcggtttcagcggcgggtacggcggcgggtacggcggcagcatgagcggcggcagcatgagcggcggctacagcag 1600 
478 S S G F S G G Y G G G Y G G S M S G G S M S G G Y S S 504 

1601 cggcggcggcggctacagcagcggcggcggccacagcagcggcggcggcggcggcggcgccggattcagcagcggcagca 1680 
505 G G G G Y S S G G G H S S G G G G G G A G F S S G S T 531 

1681 ccggcggcggcggcagcagctacagcaccacccagagcaagaagaacgttgtgatcaaggtgatcgagacccgggacggc 1760 
532 G G G G S S Y S T T Q S K K N V V I K V I E T R D G 557 

1761 agggtggtgtccgagtcctccgaggtcatggaggag~GCCGTCAGGTGTAAAGGTGTAGCTACCTGTCTGGTATTGTC 1840 
558 R V V S E S S E V M E E 569 

1841 GCCTCTCCTGTCTGGTAGTTTTATACTTACAGTTCAACCCCCCCACCTGTTCCCCCCCCCCCCCACCCCCACCCCCCAAC 1920 

1921 TATGAAGTAAAACGCTTGCCAGCCACTCTCCGACGGAGTCTAAACATTTCCATGAAGCAATAAATGATCCTAACACTACC 2000 

2001 AAAGATCTGA(n) 2010 

134 



Table 6-5. Nucleotide Sequences with Significant Sequence Similarity to lal-C14. 

Organism Sequence Type/Name E value* 

Rainbow trout (Oncorhynchus type II keratin E3 mRNA 0.0 
mykiss) 
Zebrafish (Dania rerio) keratin 8 mRNA 1e-160 

Rainbow trout (Oncorhynchus simple type II keratin mRNA 5e-82 
mykiss) 
African clawed frog (Xenopus laevis) cytokeratin type II mRNA le-45 

*The lower the E-value, or the closer it is to "0" the more significant the match is. 

nucleotide homology 
....,._... .................................. _,., .......................................... ..._. .............. ~ •••••••••••••••••••• $1$ ......... ... 

1 2009 

__J Type II keratin 1--• -, ______________________________ _ 
1 569 

protein homology 

Table 6-6. Protein Sequences with Significant Sequence Similarity to lal-C 14. 

Organism Sequence Type/Name E value 

Rainbow trout (Oncorhynchus type II keratin E3 1e-141 
my kiss) 
Rainbow trout (Oncorhynchus simple type II keratin 1e-138 
mykiss) 
Goldfish (Carassius auratus) Intermediate filament protein ON3 le-136 

Zebrafish (Dania rerio) type II basic cytokeratin le-136 

Rat (Rattus norvegicus) cytokeratin 8 polypeptide 1 e-ll 0 
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6.4 Discussion 

The initial northern blot experiment indicated there was expression of type I 

mRNA in snailfish liver tissue. This result was expected given that, in other species that 

produce type I AFPs, circulating AFPs are initially synthesized in liver and then secreted 

into blood. Additional northern blots, using the same probes, showed that skin tissue also 

expressed putative type I AFP transcripts, but of a much larger size. These positive 

results provided enough evidence that construction and screening of a snailfish liver 

eDNA library would have a reasonable chance for successful isolation of the 

corresponding eDNA clones. 

6.4.1 Possible evolutionary relationship between chorion proteins and snailfish 
type I AFPs 

The snailfish liver eDNA library was screened several times using the same 

probes used for the northern blots producing many positive signals. However, although 

numerous positive plaques were picked and subsequently sequenced, none of the clones 

coded for complete type I AFPs corresponding to known amino terminal sequence of 

snailfish plasma AFP (chapter 2). Two of the clones coded for important fish egg 

structural proteins while the other coded for a ubiquitous epithelial protein, type II 

keratin. Because there is not any significant sequence conservation amongst type I AFP 

untranslated regions, the ORF of winter flounder or shorthorn sculpin skin type I AFP 

cDNAs had to be used as probes. Unfortunately, this poses the problem of using GC rich 

DNA that can generate possible false positive signals. Nevertheless, all three independent 
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clones were identified because there was sufficient sequence homology with the type I 

AFP probes. 

The clone identified as lal-Al and the highly abundant clone lal-B2 each code for 

proteins containing domains nearly identical to important structural proteins in the 

chorion of fish eggs. Unfertilized fish eggs are surrounded by the chorion, which is a 

thick extracellular envelope, composed of a few large glycoproteins. This structure is 

called zona pellucida in mammals, and perivitelline membrane or vitelline envelope in 

amphibians and birds (Bausek et al 2000). Normally chorion proteins are maternally 

synthesized in liver tissues under the influence of estrogen for deposition around the 

oocyte during oogenesis but are also produced in granulosa cells, oocyte and ovary 

(Bausek et al2000, Murata et al1997, Hyllner et al2001). Shortly after fertilization, the 

chorion transforms into a rigid structure via hydrolysis and polymerization of proteins 

which protects the egg during embryonic development (Shibata et al 2000). 

The translation product oflal-Al is a chimeric protein with an 'AFP like' domain at the 

amino terminus of the chorion protein. A comparison of the 'AFP like' region with the 

ORF of snailfish type I AFP (chapter 5) gives >60% alignment in the amino acid 

sequence and over 50% in a nucleotide section (Fig 6-5A, B). The majority of the 

conserved amino acids are alanine, which would impart an a-helical secondary structure 

on the hypothetical protein. For lal-B2, a shift in the largest open reading frame produces 

an 85 amino acid 'AFP like' translation product that has high alanine content. 
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Figure 6-5. Homology of chorion liver clone lal-Al and snailfish AFP. (A) Schematic 

representation of the nucleotide and amino acid' AFP like' region of clone lal-A1 (B) 

Sequence alignment oflal-A1 'AFP like' protein and L. at/anticus type I AFP. Sequence 

alignments were generated via MultAlin located on the French INRA web server 

(www.prodes.toulouse.inra.fr/multalin/multalin.html). Visualization of sequence 

alignments were made with BOXSHADE 3.21 program on Swiss EMBnet server 

(www.ch.embnet.org/index.html). 
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When this 'AFP like' protein is compared to the sequence of snailfish type I AFP, there is 

a 60% identity in the amino acid sequence (Fig 6-6A, B). While the majority of the 

identical residues are alanine, there are conserved threonines which may give the 

homology increased significance. 

Through a process termed co-option, genes can acquire new functions against 

selective pressure to maintain the original function, via alterations in the amino acid 

coding sequence and/or by regulatory changes in gene expression patterns (True and 

Carroll 2002). The most common mode of gene co-option is through gene duplication 

events which are followed by sequence divergence to create novel functions. However, 

genes may also evolve new functions via a non-duplicative mode if changes occur in 

nonessential regions of the amino acid sequence to create novel protein domains. Either 

or both of these mechanisms are responsible for the independent evolution of teleost 

antifreeze proteins (Fletcher et al2001). Evidence has been reported linking the evolution 

of different classes of AFPs and an AFGP through the co-option of unrelated genes. The 

gene for notothenoid AFGP evolved from a trypsinogen-like serine protease via gene 

duplication and amplification of a portion of nine nucleotide sequence that straddles an 

intron/exonjunction (Chen et al1997a, Chen et al1997b, Cheng and Chen 1999). Type II 

AFPs evolved from C-type lectins at separate times (Ewart and Fletcher 1993, Ewart et al 

1998, Gronwald et al 1998) and there is evidence that type IV AFP from longhorn sculpin 

plasma is structurally related to apolipoproteins (Deng et al 1997, Zhao et al 1998). 
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Figure 6-6. Homology of chorion liver clone lal-B2 and snailfish AFP. (A) Schematic 

representation of the nucleotide and amino acid 'AFP like' region of clone lal-B2 (B) 

Sequence alignment oflal-B2 'AFP like' protein and L. at/anticus type I AFP. Sequence 

alignments were generated via MultAlin located on the French INRA web server 

(www.prodes.toulouse.inra.fr/multalin/multalin.html). Visualization of sequence 

alignments were made with BOXSHADE 3.21 program on Swiss EMBnet server 

( www .ch. embnet. org/index .html). 
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There is reasonable evidence here to support the hypothesis that egg chorion 

proteins might be progenitor proteins linked to the evolution of snailfish type I AFPs. The 

chorion proteins, which are localized on the outer membrane of snailfish eggs to provide 

structural integrity, are important for protection from environmental insult. Spawning 

snailfish lay demersal eggs in shallow, ice-laden, inshore water during the winter months 

January to March (Scott and Scott 1988). Clearly the eggs would be susceptible to 

freezing or ice damage prior to water hardening or while in the ovary. It would therefore 

be important to protect outer membranes from ice damage to ensure the egg contents do 

not freeze. Eggshell or chorion proteins are extremely important to ensure this protection. 

A study in 1992 concluded that the ability of cod (Gadus morhua) eggs to survive in icy 

seawater depended upon the integrity of their chorion (Valerio et al 1992) while others 

have reported the cold hardiness and even freeze resistance of eggs from capelin 

(Mallotus villosus) and plaice (Pleuronectes platessa) (Aarset and Jorgensen 1988, 

Davenport and Stene 1986). 

The internal contents of unfertilized snail fish eggs contain identical type I AFPs 

as the maternally expressed circulating proteins (R.P. Evans and G.L. Fletcher, 

unpublished results). Presumably, the eggs contain these AFPs because they are required 

for protection from freezing and could help protect the internal membrane structure of the 

egg. It is possible that the genes for abundantly expressed chorion proteins were 

originally co-opted to help protect the egg from external freeze damage. A shift in the 

reading frame of the GC rich portion could produce the codons for alanine residues which 

could produce a candidate AFP if it had ice binding capability. In the case of snailfish 
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type I AFPs, the presence of abundant alanine residues conferring a highly helical 

secondary structure is required for antifreeze activity (see chapter 5). Furthermore, the 

gene could be generally expressed to protect all peripheral tissues from freeze/ice damage 

through changes in gene regulatory elements. It would be very instructive to express 

recombinant lal-A1 to determine if the protein is a proper chimeric protein with an AFP 

moiety that is capable of ice crystal modification or antifreeze activity. Additionally, 

characterization of snailfish chorion genes, to determine if any significant homology 

exists between the non-coding or regulatory regions and snailfish AFP genes could help 

decipher any evolutionary links. 

6.4.2 Possible evolutionary relationship between type II keratin and snailfish type 
I AFPs 

The clone lai-C 14 has significant nucleotide and amino acid sequence similarity 

with type II keratins from fish. Keratin proteins constitute the most diverse class of 

intermediate filament proteins, which form an important structural component of 

eukaryotic cells, primarily in epithelia. The proteins can be subdivided into two types 

based on their amino acid sequence, the type I (acidic) keratins and the type II 

(neutral/basic) keratins (Lodish et al 2000). Simple epithelial tissues contain only a single 

type I and a single type II keratin while more complex epithelia contain six or more 

keratins. Immunohistochemical and in situ hybridization experiments have shown that 

fish, like mammals, contain multiple keratin polypeptides that are expressed in different 

tissues and cell types (Gong et al2002). However, unlike mammals, the distribution of 

fish keratins appears to be more complex since expression is not limited to epithelial 
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tissues. The type II keratin protein coded for lal-C14 has a glycine rich carboxy terminal 

amino acid sequence. However, when this region ofthe nucleotide sequence is analyzed 

in another reading frame, a 79 residue 'AFP like' amino acid sequence is translated 

which contains 56% identity with the primary structure of snailfish AFP and 55% identity 

with its nucleotide open reading frame (Fig 6-7 A,B). While the majority of the 

conserved residues are alanine, there is some conservation of other important amino acids 

which would give the primary structure homology increased significance. 

Simple slippage in the reading frame oflal-C14 could convert codons for keratin 

glycine residues into alanine residues. Since type II keratin is ubiquitous in epithelial 

tissues, the co-option of this gene to create a candidate skin AFP seems quite plausible. 

Based on what is known about snail fish AFP expression in skin tissues (chapter 5), the 

strong signal observed at ~2.3kb in the northern blot (Fig 6-1) is likely from the 'AFP 

like' type II keratin transcripts. It has been hypothesized that skin AFP is the primordial 

protein which gave rise to the circulating liver type AFP (Gong et al 1996). If keratin is 

such a protein, it would indicate that this hypothesis might valid, at least in snailfish. 

The evolution of all teleost AF(G)Ps in species of the Northern hemisphere is 

believed to have taken place during the last Arctic ocean cooling period when ice-laden 

seawater provided strong selective pressure (reviewed in Cheng 1998, Fletcher et al 

2001). The long term survival of species in that harsh environment would depend on the 

co-option of proteins with ice binding ability to provide freezing protection. Presumably, 
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Figure 6-7. Homology of type II keratin liver clone lal-C14 and snailfish AFP. (A) 

Schematic representation of the nucleotide and amino acid 'AFP like' region of clone lal

C14 (B) Sequence alignment oflal-C14 'AFP like' protein and L. atlanticus type I AFP. 

Sequence alignments were generated via MultAlin located on the French INRA web 

server (www.prodes.toulouse.inra.fr/multalin/multalin.html). Visualization of sequence 

alignments were made with BOXSHADE 3.21 program on Swiss EMBnet server 

(www.ch.embnet.org/index.html). 
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proteins that offered the best protection improved the overall fitness of species and 

enabled them to foray further into areas where others could not. It would be necessary to 

determine the sequence of the entire keratin gene to identify any similarity between it and 

snailfish AFP genes if an evolutionary relationship is to be substantiated. Snailfish AFPs 

do not appear to contain amino acid repeats and seem to be related to type I AFPs in their 

alanine content and helical secondary structure alone (see chapter 5). The alanine residue 

conservation found here implies an evolutionary relationship between snailfish type II 

keratins and their type I AFPs. Both of the scenarios proposed in this discussion for the 

evolution of type I AFPs support the current hypothesis that epithelial tissues are the 

original source of AFPs that gave rise to separate liver expressed proteins over time. 
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CHAPTER 7: 

General Discussion 
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7.1 Review of primary research objectives 

The general purpose of the research presented in this thesis was to determine the 

type and characteristics of AFPs produced by two snailfish species. This information 

would be used in conjunction with current information to create a clearer understanding 

of snailfish AFP function and their relationship to teleost AFP evolution in general. The 

specific goals were to use standard biochemical techniques to first isolate and 

characterize the AFPs from snailfish plasma and skin tissues and then molecular cloning 

methods to determine their nucleotide and protein sequences. While the main objectives 

were realized, the process from protein isolation to gene identification did not always 

follow the expected route. 

I was successful in characterizing type I AFPs from both Atlantic snailfish 

(Liparis at/anticus) and dusky snailfish (Liparis gibbus) plasma and skin tissues. 

Furthermore, the clones for the corresponding AFP transcripts were sequenced and some 

aspects oftheir gene expression were also established. Fortuitously during the screening 

eDNA library for AFP clones, possible progenitor proteins were identified which might 

explain the origin and evolution of Type I AFPs. While several questions were answered 

by this study, unanticipated results have complicated the specific conclusions. These 

surprising results have opened exciting new possibilities and generated interesting 

questions that will need to be addressed in the future. 
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7.2 Expression of Type I antifreeze proteins in snailfish 

7.2.1 Plasma AFPs 

Significant thermal hysteresis activity was detected in all Atlantic and dusky 

snailfish blood samples that were taken during the winter months. Based on some 

preliminary analysis, there was a seasonal cycle in that measured thermal hysteresis 

declined during spring and summer. In order to identify the type and the properties of the 

presumptive AFPs in snailfish plasma, they had to be first isolated and purified. The 

strategy to purify AFPs from plasma of both snailfish species using column 

chromatographic and HPLC methods was successful. It was determined that the HPLC 

pure snailfish AFPs contained micro-heterogeneity that is typical of AFPs from many 

different species. In some cases, the mixtures of individual proteins differed by a single 

residue at their amino terminus. 

Amino acid analysis and CD measurements demonstrated that snailfish AFPs are 

type I due to their elevated alanine content and a-helical secondary structure. These are 

the largest, circulating, type I AFPs identified to date with molecular masses greater than 

9.3 kDa. Compared to other type I AFPs, the snailfish proteins have moderate activity on 

a molar basis but low on a weight basis. The initial portion of this study has shown that, 

like other related teleost fish, snailfish produce AFPs that circulate in their blood to 

protect them from extracellular freezing during the winter months. 

7.2.2 Skin proteins 

After successfully purifying AFPs from snailfish plasma, I decided to pursue the 

other known major source of the proteins- skin tissue. It was already known that winter 
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flounder, and closely related longhorn and shorthorn sculpins, express type I AFPs in 

their epithelia (Gong et al 1996, Low et al 1998, Low et al 2001 ). Antifreeze activity was 

measurable in L. at/anticus skin extracts, indicating that antifreeze protein was present. 

AFPs that were isolated and purified using gel filtration chromatography and HPLC 

methods had a Mr very similar to the plasma AFPs. Subsequent amino acid and MS 

analysis confirmed that these skin proteins were identical to the ones isolated from 

plasma. 

The discovery that the type I AFPs expressed in snailfish skin tissue are identical 

to the major plasma protein was completely unexpected. The current hypothesis contends 

that skin AFPs are isoforms of, but different from liver type proteins. Furthermore, they 

are typically expressed from a separate subset of genes and are possibly the ancestral 

protein of the liver class (Gong et al 1996, Fletcher et al 1998, Low et al 2002). This 

surprising result from snailfish has generated numerous questions concerning the 

differential expression ofliver and skin type AFPs in general. Some of the questions are 

addressed in other parts of the study. 

7.2.3 Tissue distribution and gene expression patterns 

After an initial strategy to clone the eDNA corresponding to Atlantic snailfish 

AFPs from a liver eDNA library proved unsuccessful, a skin library was subsequently 

constructed and screened. A partial skin AFP clone was isolated and the full sequence 

was later obtained using RACE and RT-PCR methods. Using the same methods, a nearly 

identical full length clone was obtained from dusky snailfish skin total RNA. The 

nucleotide and amino acid sequences were nearly identical from both species and the 

152 



proteins lacked the pre- or prosequences, suggesting that they remain intracellular 

following translation. However, northern blot and RT-PCR experiments demonstrated 

that snailfish AFP genes are expressed almost exclusively in skin tissues. Taken together, 

the evidence clearly indicates that snailfish AFPs are expressed in skin tissue and 

exported into blood for extracellular protection. As of now, it is unknown if some protein 

also remains inside the cells for intracellular freeze protection as is the case in winter 

flounder skin tissues (Murray et al 2002). 

Southern blot analysis revealed that snailfish AFPs are the products of a 

multi gene family with several copies per genome. The diverse nature of this multi gene 

family is probably responsible for some of the micro-heterogeneity of snailfish AFPs. A 

confounding result was obtained in northern experiments to determine tissue distribution 

of AFP mRNA expression. While all fish analyzed had consistently high expression 

levels in skin tissue (the primary site), signals in liver ranged from undetectable to 

intense. This is the first known report of such extreme individual variability of AFP 

expression levels - but the significance is unknown. It is also not known whether the skin 

and liver AFP mRNAs are expressed from the same gene or a distinct subset of genes, as 

in winter flounder and sculpins. This evidence clearly indicates that the liver is a 

secondary source of AFP production in some snailfish that could provide enhanced freeze 

protection in extreme winter conditions. This suggests that while skin is the original 

location for ubiquitous AFP expression in some marine fish, a distinct subset of genes 

evolved later for liver expression of different AFP isoforms for circulation in blood. 

Eventually, the liver specific genes further evolved into the primary production site of 
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circulating AFPs in most species. The dual skin/liver expression in snailfish could 

represent the intermediate state between primary skin specific and liver specific AFP 

expression. 

7.3 Evolution of Snailfish AFPs- Homology to Liver Expressed Proteins 

While screening the liver eDNA library for possible AFP clones, numerous 

positive clones were isolated that had significant sequence homology with snailfish type I 

AFPs. The positives were attributed to three different liver expressed proteins - two of 

these are maternally expressed egg-shell proteins while the third is a type II keratin that is 

constitutively expressed in epithelial tissues. When the sequences of the isolated egg 

protein cDNAs were examined more closely, small GC rich sections had substantial 

homology with type I AFPs. A shift in reading frame translated these sections into 

alanine rich domains that resembled snailfish AFP sequences which could represent the 

ancestral link between these liver expressed proteins and the snailfish type I AFPs. It is 

conceivable that a simple shift in reading frame could produce alanine rich candidate 

AFPs with possible antifreeze activity or ice crystal modification properties. More 

experiments will be required to confirm this possibility. This fortuitous discovery could 

be quite important for finally identifying the progenitor proteins of all type I AFPs. 

7.4 Effects of Salt Concentration on AF(G)P Thermal Hysteresis Activity 

A confusing result of snailfish AFP isolation was that measured thermal 

hysteresis activity of the final HPLC pure protein did not equal levels predicted by 

activity measurements of blood plasma. This phenomenon has been observed by other 
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researchers when AFP was purified, some of their measurable activity was lost. 

Furthermore, the intrinsic in vitro thermal hysteresis activity of snailfish AFPs seemed to 

be inadequate to protect the fish in their over-wintering environment in normal 

physiological concentrations. In an attempt to resolve this dilemma, several experiments 

were conducted to mimic the known salt increase in fish blood as the winter season 

progresses. 

Marine fish are known to increase the salt in their plasma during winter months 

which would have the effect of lowering the freezing point depression by colligative 

effects (Fletcher 1977, Fletcher 1981 ). Experiments were designed to determine if 

increased salt levels would increase the effectiveness AF(G)Ps. Results indicated that the 

increased salt concentration did have significant ancillary effects on the freezing point 

depression (FPD) of AF(G)P solutions. While the majority of the lowered FPD was 

strictly derived from colligative effects of salt, there was an increase in thermal hysteresis 

activity of AF(G)Ps. The colligative effects of plasma solutes and the hysteresis of AFPs 

combine to lower extracellular freezing levels enough to protect fish from freezing. These 

experiments contribute evidence that offers a reasonable explanation for observed 

diminished activity during AF(G)P purification. 

7.5 Skin AFPs Isolated from Other Species- Cunner and Sea Raven 

As a comparison to snailfish and to determine if skin AFPs are as widespread as 

has been proposed, skin AFPs were isolated from unrelated cunner and a closely related 

sea raven. Both fish species had measurable thermal hysteresis activity in extracts made 

from skin tissue. AFPs were initially isolated and purified from cunner skin tissue using 
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the standard techniques employed for snailfish AFP isolation. Cunner skin AFPs were a 

mixture of individual proteins that were determined to be ~ 7 kDa type I by amino acid 

and MS/MS micro-sequencing methods. This result confirms an earlier observation by 

Valerio et al that cunner skin contains antifreeze (Valerio et al 1990). 

Sea raven had an AFP in skin tissue with a similar amino acid profile and 

molecular mass to type II AFP previously reported in this species (Slaughter et al 1981, 

Duncker et al 1996). The corresponding eDNA was later cloned from skin total RNA 

using RT-PCR and the results verified that the skin protein message was nearly identical 

to published sequence. However, skin tissues contain the larger (163 aa and 146 aa) 

proteins which correspond to the unprocessed gene product expressed in liver prior to 

secretion into blood. This interesting discovery represents the first type II AFP isolated 

from skin tissues and the second example of the same transcript used to express a protein 

in liver and skin. Since the protein contains a secretion signal sequence, it is possible that 

is also cleaved and exported into extracellular space and finally blood circulation. 

The level of AFP expression in sea raven skin appears to be secondary to liver 

expression and therefore not as physiologically important (Gong et al 1992). If the skin 

protein is the ancestral source of AFPs then why would expression be lost from skin 

tissues? These results suggest that superfluous expression of AFPs in skin has been 

reduced over time in some species. This site is redundant as long as extracellular freeze 

protection is provided by plasma AFPs that are expressed in liver and exported by the 

standard Golgi route. More rigorous investigation is required before this puzzle can be 

unraveled fully. However, the cunner and sea raven results do provide more evidence that 
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expression of AFPs in skin is a very widespread phenomenon that is not restricted to type 

I proteins alone. 

7.6 Future Research Possibilities 

7.6.1 Evolution and origin of snailfish type I AFPs 

To confirm the possible evolutionary relationship between the 'AFP like' proteins 

expressed in liver and snailfish AFPs, a two pronged approach would be required. The 

first step would be to compare the sequences of the entire snail fish AFP gene and the 

liver expressed "AFP like" chorion and type II keratin genes to determine if the 

regulatory regions or introns have significant similarity. It is quite possible that the 

evolution of snailfish AFPs is analogous to the process by which notothenioid AFGPs 

evolved from part of a trypsinogen-like serine protease gene. The gene sequence 

comparison could help prove this hypothesis if one of the liver "AFP like" genes was co

opted to form a product with antifreeze capability. This information could be applied 

more generally to describe the evolution of all type I AFPs. 

The second approach would involve examination ofthe chimeric proteins that are 

coded for by the liver clones. Using standard molecular techniques, recombinant proteins 

that contain chimeric "antifreeze like" domains would be tested for possible antifreeze 

activity or ice crystal modification properties. The recently invented cold finger apparatus 

for purifying AFPs by adsorption to ice could be very useful in identifying candidate 

proteins (Kuiper et al 2003). Positive results would provide definitive evidence for an 

ancestral link to snailfish type I AFPs. 

157 



7.6.2 Structure and function of snailfish type I AFPs 

Currently there are a few different ice-binding models for type I AFPs that have at 

least some experimental support. Generally, the models have used smaller type I AFPs 

from winter flounder or sculpin to generate the data. Snailfish AFPs offer a unique 

opportunity for a broader test of these theories because their large size and structural 

characteristics make them easier to express in bacteria without the need for expression 

tags. The initial step would be to determine the solution structure of snailfish type I AFP 

via NMR or x-ray crystallographic methods. This would provide information regarding 

any kinks or bends in the protein backbone around the helix-breaking proline residues. 

Site directed mutagenesis methods would be used to determine if the structure of snailfish 

AFP is responsible for its low thermal hysteresis activity, as predicted by the current 

structure-function models for type I AFP mechanism of action. Mutants could be 

designed to specifically test what effect an incomplete hydrophobic face has on antifreeze 

activity. The mechanism of action might be specific to snailfish AFPs or a general feature 

of all type I AFPs. 

7.6.3 Expression patterns of snailfish AFPs 

The results of this research have generated numerous questions regarding the 

complex nature of snailfish AFP gene expression. To develop a more complete 

understanding of the relationship between skin expression and plasma protein requires 

three fundamental questions to be answered. First, it would be very informative to 

examine if there is significant antifreeze protein translation in liver tissue. This would 

help to determine the physiological significance of the individual variability in liver 
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expression of antifreeze mRNA. Next, experiments to establish ifthere is a separate 

subset of genes which express AFP mRNA in liver and skin should be conducted. Even 

though the identical protein is located in plasma and skin there might be differences in 

the regulatory elements of either gene. Finally, the sub-cellular localization of snailfish 

AFPs in skin tissue cells should be identified to determine if significant protein remains 

intracellular. 
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