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Abstract

In this thesis, the work to develop the vision system for the Emulsion Loading
Automation Project (ELAP) is presented. The ELAP project was a collaborative
effort among various team members to develop an intelligent system to automate
the complex task of an emulsion loader used in underground mining operations.
The vision system was tasked with the challenging imaging requirements of locating
and identifying drill-holes in the rock face of an underground mine, and to pro-
vide visual guidance for the hose guide to load the drill-holes with emulsion. The
first part of this thesis outlines the development of image processing algorithms to
segment and identify drill-holes present in an image acquired from a video stream.
This involved applying thresholding and morphological techniques to preprocess
the image to improve contrast, separate touching objects, and fill any holes. A
pattern recognition model was then developed using drill-hole feature data to clas-
sify segmented objects as either drill-holes or background artifacts. The second
part of this thesis presents the work performed for visual guidance to position the
robotic boom in front of a drill-hole for loading. Using a camera mounted to the
end of a robotic boom, camera and hand-eye calibration routines were developed to
transform the drill-hole image object to both the camera and end-effector reference
frames. A visual guidance algorithm was then developed using the calibration pa-
rameters to visual servo the robotic boom to a drill-hole for loading. Finally, testing
performed in an underground mine after the critical subsystems were integrated
and operational, verified the vision system operation as designed.
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Chapter 1

Introduction

1.1 Automation in the Mining Industry

Much of the mineral resources in this country are accessible through underground
mining operations. Underground mining can be simply described as two main ac-
tivities: drift development (extending an underground tunnel toward or through
an ore body), and production (removal of the ore to bring to the surface for pro-
cessing). However, these activities involve manually controlled, complex pieces of

equipment which are used to:
e Provide ground support (i.e. spraying Shotcrete) to protect miners operating
equipment in the drift.

e Drill holes in the rock face (at front of a drift), the drift back (ceiling), or

floor.

o Insert blasting material (emulsion) into the drilled holes.
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e Insert primers and detonators into the emulsion prior to blasting.

e Muck (remove) the rock or ore after blasting using LHDs (Load-Haul-Dump

vehicles).

The ground support/drill/load/blast/muck (GS/D/L/B/M) cycle is repeated as

required to develop a drift and produce the available ore [1].

Given the nature of the GS/D/L/B/M cycle and a global economy, the Canadian
mining industry faces serious obstacles with their current operations in the long
term. The best and most accessible deposits in Canada have already been devel-
oped, and the costs of further exploration and development are greater than those
in less developed countries. The Canadian mining industry also has no control over
world prices, and thus is adversely affected by the decline in metal prices caused
by lower cost foreign producers selling in a global marketplace. Also, rising expec-
tations for social and environmental responsibility have resulted in additional costs
borne by producers, which do not reduce production costs and are very difficult to
recover. These obstacles have placed the Canadian mining industry at a competi-
tive disadvantage relative to countries with more accessible mineral deposits, lower

labor costs, and less restrictive environmental regulations [2].

Given the current trend, mining companies whether underground or open pit, are
beginning to develop programs for both equipment and process automation, similar
to those in the manufacturing industry with the anticipation that it will offset
present obstacles. Automation has the potential to improve the Canadian mining
industry’s competitive position through increased productivity and reduced costs,
while protecting the safety of workers and the environment. Productivity could be

improved by reducing the amount of machine idle-time caused by operator absence
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during work breaks, meals, and shift changes. Reduction in labor costs could be
achieved by having only one operator operating multiple pieces of equipment from
a remote location, or having fully autonomous machinery requiring no operator
at all. Remote machine operation helps to protect the workers by removing them
from the hazardous work environment of the mine, which will also reduce workers
compensations costs incurred from accidents and injuries. Automated solutions to
reflect strict environmental regulations, such as diesel emission controls, will help

protect the environment [2].

The focus toward mining automation has already been realized as technology de-
velopment programs have already been initiated. In 1996, companies Dyno Nobel,
Inco Ltd., Tamrock, and Natural Resources Canada agreed to a five-year joint
research and development plan, the Mining Automation Program, to investigate
technology solutions for automating mining operations [3]. Inco Ltd. has imple-
mented a vision-based autonomous guidance system called the Light Rope System,
whereby a mining vehicle follows a specific path of the lighted rope to perform the
required task. Implementation of this system has proved that a single miner could
operate three machines at the same time. Recognizing the interest in automation,
Laurentian University located in Sudbury, ON has established the Laurentian Uni-
versity Mining Automation Laboratory (LUMAL) with the objective to provide
both educational and research expertise to develop, enhance, and support automa-

tion in the mining sector [4].



1.2 Emulsion Loading Process

In recent years, companies have been actively involved in automating the various
components of GS/D/L/B/M mining cycle. However, attempts to automate the
emulsion loading and blasting process (ELBP) have had no commercial success.
The ELBP is practically the same for both development holes (12 - 15’ long) and
production holes (up to 150’ long). The following outlines the steps of the ELBP

which are performed manually with the assistance of emulsion pumping equipment:

e Emulsion hose is pushed to toe of drill-hole.

Emulsion is pumped into the hole as the hose is withdrawn at a rate which

deposits a specified amount of emulsion per foot of hole.

- Emulsion loading is completed before the front (collar) of the hole.

- A detonator and primer assembly is inserted to initiate the blast.

Wit}jl manual development of a drift (all equipment is operator controlled and the
emulsion and detonators are loaded manually), the GS/D/L/B/M cycle delivers
10 féet of drift per day. Using an automated cycle (all equipment is tele-remote
cont‘rolled and emulsion and detonators are loaded automatically), advancing a
drift :40 feet or more per day is entirely feasible. However, this level of productivity
is not achievable due to the lack of technology for automated emulsion loading and

blasting [1].



1.3 Emulsion Loading Automation Challenges

Automating the emulsion loading and blasting process is a rather challenging task.
The automated system would first require a machine vision system to find the drill-
holes. Given the underground mining environment is extremely harsh, where the
atmosphere is moist and dusty, the use of a vision system would be very challenging.
In addition, the vision system would have difficulty in locating drill-holes that
are often obscured by overhanging rock, drill-holes that have been filled in by
falling debris, or partial drill-holes resulting from a previous blast. Secondly, the
automated system would also require a robotic boom and controller to move the
emulsion hose to the drill-hole for loading. The robotic boom would also need to
interact with the vision system to receive the appropriate guidance. A detonator
loading and management system would load the detonator and primer components
after loading the drill-holes with emulsion. Finally, a high level loading process
control system would be required to supervise the entire emulsion loading process
to ensure all required tasks are performed in the appropriate sequence and to deal

with any problems that occur.

Given the challenging tasks of each system, and their mutual dependence, it is
clear how difficult it is to automate the emulsion loading and blasting process for

underground mining,.

1.4 Objectives

The objective of this research is to develop a vision system that is tasked with

the challenging imaging requirements of locating and identifying the difficult to
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see drill-holes in the rock face that make up the drill plan in an underground
mine. In addition, the vision system is also required to interact with a robot
boom controller to provide visual guidance. This includes the development of drill-
hole segmentation and classification algorithms using image processing techniques
to find the drill-holes. In addition, visual guidance algorithms are developed to
position a robotic boom in front of a drill-hole using processed image data. The
data used for this research was collected from an underground research mine located

in Sudbury, Ontario.

1.5 ELAP System Overview

The work in this thesis has been done as a part of a project called the Emulsion
Loading Automation Project (ELAP). ELAP was a collaborative effort among
team members to develop an intelligent system to automate the complex task of
an emulsion loader used in underground mining. The team members included Inco
Ltd. who provided funding and access to a research mine; Maclean Engineering,
who developed the low level controller and human machine interface; C-CORE, who
developed the vision system and supervisory controller; International Submarine
Engineering Ltd. (ISE), who developed the robotic boom and controller; and
ORICA Ltd., who developed the detonator handling and management system.

Figure 1.1 shows the overall system diagram for the ELAP system.

The work in this thesis focuses on the development of the vision system component
for the ELAP system. Figure 1.2 shows the vision system diagram. Upon request
from the supervisory controller, an image is acquired from a video stream and

image analysis is performed to find a drill-hole. Once an object has been correctly
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identified as a drill-hole, image, sensory, and calibration data are used to guide a
robotic boom to the drill-hole. This process continues until the robotic boom has

been positioned in front of the drill-hole within a specified tolerance.

1.6 Document Organization

The first part of this thesis focuses on the primary requirement of the vision system
which is the ability to correctly identify and locate a drill-hole within a digital
image. A segmentation algorithm is first developed to isolate drill-hole candidates
within the image. A classification technique using feature data is applied to identify

which candidates are actually drill-holes and those that are background artifacts.



The second part of this thesis outlines the second requirement of the vision system:
to provide visual guidance for positioning the robotic boom in front of a drill-hole
for loading. Using a camera attached to the end of a robotic boom, the position and
orientation of a drill-hole with respect to the camera frame must be determined,
and then mapped to the robot boom frame to move the boom to the drill-hole.
This overall mapping is achieved using both camera and hand-eye calibrations,
which are presented in detail. A visual guidance algorithm is then used to visual

servo the robotic boom to a drill-hole for loading.

Chapter 2 provides background information of image segmentation and analysis
techniques. Chapter 3 presents the drill-hole segmentation and classifications algo-
rithms developed to isolate and identify a drill-hole in an image. Chapter 4 outlines
the camera and hand-eye calibrations used to calculate the mapping from image
frame to robotic boom frame. It also presents the algorithm developed to visually
guide the robotic boom to a drill-hole. Finally, the conclusions and recommenda-

tions for this work are given in Chapter 5.



Chapter 2

Background

In this chapter, many fundamental techniques used in this work for image pre-
processing, image segmentation, shape répresentation, and blob analysis are pre-
sented. A brief explanation of typical morphological operations used in this work
are also described. For a more in depth explanation of the various techniques

presented, please consult the reference material as indicated.

2.1 Image Pre-processing

Image pre-processing is often the first stage in image analysis. Pre-processing
does not increase information content but rather provides a means of suppressing
information that is not relevant to the specific image processing or analysis task,
and to enhance features or areas of concern. These operations include improving
contrast, background isolation, smoothing, etc. This section provides an overview

of various methods used for image pre-processing.
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2.1.1 Window Leveling

If the contrast or brightness range within an image is very small, the information
in the image may not be interpreted well by an observer or a program. Typical
digitizers convert the analog voltage range from the camera or other sensor to
numbers from 0 to 255 (8 bits). If the range of variation in brightness of the image
is much smaller than the dynamic range of the camera or digitizer, then the actual
range of values will be smaller than the full range of 0 to 255. This results in low
image contrast and can be observed from the image histogram where the number
of pixels at each of the 256 intensity levels is displayed. A narrow peak in the

histogram indicates only a small range of intensities are represented.

However, the visibility of the image can be improved by performing window leveling,
or contrast stretching. Window leveling takes a range of pixel values and maps
them to a different range of pixel values. In essence, the input range is linearly
“stretched” or “contracted” to the desired output range. By stretching the entire
range or a sub-range of values present in an image to the full dynamic range,
window leveling permits the use of all available intensities in the image to improve

interpretation.

2.1.2 Histogram Equalization

Using histogram equalization can also enhance image contrast. This technique im-
proves the image by equally distributing the intensity levels over the whole output
intensity scale. Contrast is enhanced for intensity values close to the histogram

maximal, and decreases contrast near minima. This is achieved by using the cu-
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Table 2.1: Histogram equalization formulations.

Method Output Probability Density Model Transfer functions

Uniform Pg(g) = m g = [gmaz - gmm]Pf(f) + Gmin

Exponential Py(g9) = « (e[(_“)(g_gmi")]) 9 = Gmin — 3 In[1 — Py(f)]
(y—ymgn)z

Rayleigh Py(g) = &ipin [6[ e ]] 9 = Gmin + 3 {20‘2 n {11%} }

mulative image histogram to find the pixel intensity transformation:

Py(f) =" Hr(m) (2.1)

where Py(f) is the cumulative probability distribution [5]. Several equalization
formulations are used including a uniform histogram equalization, which results in
a more uniform distribution of your image’s pixel values, as well as exponential
and Rayleigh equalization. These redistribution functions enhance contrast and
increase dynamic range in a non-linear manner. Table 2.1 provides a summary of

some of the more common histogram equalization formulations.

2.1.3 Neighborhood Averaging

Digital images often have high frequency spatial noise presentvthat causes a reduc-
tion in image quality. Noise gets introduced into the data via any electrical system
used for storage, transmission, and/or processing. To remove noise from digital

images, low pass filtering techniques, or “smoothing” can be employed. One such
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smoothing technique is neighborhood averaging. This method can be accomplished
by replacing each pixel by a weighted-average of the pixels in some neighborhood

around it.

+m
i jm—m Wi Potiyti
i Wi

i:j:_m

PR, = (2.2)

where W, ; is the specified kernel weights, and P is the pixel intensity value. The

weights are non-negative, and if all the weights are equal, then this is a mean filter

[6].

2.1.4 Median Filtering

A median filter is another smoothing technique used to reduce noise in an image. It
is similar to the neighborhood averaging process, but it preserves edges and other
sharp features in the image. For each pixel being considered, its value is replaced
with the median or middle value of its neighboring pixels when sorted. This linear
filtering technique is very effective for removing shot noise. However, due to the

large amount of sorting that is required, it is computationally expensive.

2.2 Segmentation Techniques

Image segmentation is a crucial step in the process of reducing raw image data
into meaningful components or objects. There are a wide variety of segmentation
techniques employed such as thresholding, edge-based, region-based, and textural-

based operations. Generally, segmentation techniques can be grouped into two
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basic categories: discontinuity, and similarity. Edge-based segmentation belongs
to the first category since this method focuses on the detection of lines, edges, and
other discontinuities in the image. Thresholding, region-based, and textural-based
methods belong to the second category where areas of similarity in the image data
are to be exploited. The following is a brief outline of the various segmentation

techniques mentioned above.

2.2.1 Thresholding

Thresholding is often the first technique applied to extract information from raw
image data. Since images are characterized by intensity levels over a given dynamic
range, a brightness level or threshold can be used to segment objects and the
background. Thresholding is a computationally inexpensive and fast method of
image segmentation that can easily be performed in real time using specialized
hardware. Typically, a gray scale input image f is transformed to an output

(segmented) image g by:

9(i,j) =1 for f(i,5) > T
(2.3)
T

=0 for f(i,j) <

where T is the threshold, g(i,j) = 1 represents objects, and g(7,j) = 0 represents
the image background [7]. This method can be further extended to multi-band

images whereby a threshold is selected for each image band (ie. r,g,b).
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Figure 2.1: Pixels below the threshold will be labeled as object pixels, those above
will be labeled as background pixels.

2.2.1.1 Global Thresholding

In some instances, separation between the object and the background is significant
enough to permit the use of a simple global threshold to segment the whole image.
The intensity histogram of the image as shown in Figure 2.1, is analyzed for features
such as peaks that often identify various homogeneous regions within the image
with approximately the same gray-level. Depending on the gray-level distribution,
there may be more than one peak representing a multi-modal histogram. Using the
mode method, a threshold is found by selecting the histogram minima between the
two highest local histogram maxima and apply it to the image for segmentation.
However, this method does not guarantee correct segmentation in cases where

objects are located on a background of varying gray levels [7].

2.2.1.2 Local Thresholding

In only very controlled situations may a simple threshold prove successtul for the

entire image. Often, gray-level variations in both objects and background resulting
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from such factors as non-uniform lighting prevent the use of a single threshold
for segmentation. As a result, segmentation using variable thresholds or adaptive
thresholding in which the threshold varies over the entire image as a function of
local image characteristics. This can be achieved by dividing the image f into sub-
images f. and determine the threshold for each using the corresponding subimage

histogram:

T=T(f,f) (24)

where T is the image or sub-image threshold.

2.2.1.3 Optimal Thresholding

Correct threshold selection for successful image segmentation is not easily achieved.
As a result, various approaches have been developed to improve threshold selection

for segmentation.

Isodata Method

This iterative technique for choosing a threshold was proposed by Ridler and Cal-
vard [8]. First, the histogram is separated into two parts using a starting threshold

value such as:

=352 (2.5)

which is half the maximum dynamic range, where B is the image resolution. The

sample mean (my,0) of the gray levels associated with the foreground pixels, and
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the sample mean (my,0) of the gray levels associated with the background pixels
are computed. A new threshold value 6; is then computed as the average of the

two sample means.
0, = (mf,k_l + mb,k_l)/2 until 0, = 0,1 (2.6)

Using the new threshold, the process is repeated until the threshold value does not

change.

Background-Symmetry Method

This technique assumes a distinct and dominant peak in the imagé histogram
for the background that is symmetric about its maximum. The maximum peak
(max,) is first found by searching for the maximum value in the histogram. The
algorithm requires prior information for the image to search on the non-object side
of the maximum to find a chosen p% point. Because of the assumed symmetry,
the threshold is computed as a displacement to the left of the maximum (maz,),

which is equal to the displacement to the right where p% is found.
8 = maz, — (p% — maz,) (2.7)

This technique can easily be adapted to the opposite case where there are light

objects on a dark dominant background.

Triangle Method

This technique presented by [9] is illustrated in Figure 2.2. A line is drawn between
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Figure 2.2: The triangle method is based on finding the value of b that gives the
maximum distance d.

the maximum of the histogram at brightness b,,,, and the lowest level b,,;, for the
image. The distance d, between the line and the histogram h[b], is computed for all
values of b from b = by, t0 b = byper. The brightness value b, where the distance

between h[b,| and the line is maximal is selected as the image threshold value.

Otsu’s Method

This method of thresholding separates the pixels into two classes Cy and C; (objects
and background) using a threshold ¢. Cy represents pixels with intensity levels
0,1,2,...,t, and C; represents pixels with intensity levels t+1,t+2,...,L — 1,
with L being the number of gray levels. Let o7 and o3 be the between-class variance
and the within-class variance, respectively. An optimal threshold can be obtained
by maximizing the separability of the histogram, that is, the ratio of the between-

class variance and the within-class variance with respect to ¢,

n(t) = Z—g (2.8)

The approach performs well in situations where there is little contrast between

background and the object of interest. However, this method assumes a bi-modal
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histogram, and is very sensitive to noise which can often produce a biased result

for ¢ [53].

2.2.2 Edge-based Segmentation

Thresholding techniques segment the image to yield all the pixels that belong to
the objects of interest in the image. An alternative to thresholding is to identify
those pixels that belong to the borders or edges of the objects. Techniques that
follow this approach result in a edge-based segmentation of the image. Edge-based
segmentation relies on the presence of edges in the image that are identified as
local gray-level intensity changes, or discontinuities in the gray-levels, color, or
even texture. These discontinuities are represented in images where step-edges,
lines, or stripes occur. In fact, it is the discontinuities that are used as visual cues

when we interpret and understand image content.

Given the nature of discontinuities, most edge detectors facilitate the use of the
gradient or first derivative, which simplifies to a difference operator across pixels.
One of the early edge operators was developed by Roberts [6]. This involved the use
of two 2 x 2 image masks applied to the image to calculate the gradient magnitude.
Other edge operators such as the Prewitt and Sobel [6] use two 3 x 3 masks to obtain
the gradient magnitude, but also incorporate the gradient direction to find edges.
In instances where edges in an image have ramp intensity profiles rather than step-
like, gradient detectors have erratic performance, and thus edge detectors using
the second derivative, or Laplacian are more suited [6]. Still, other methods such
as the Canny edge detector provides a more advanced approach to edge detection

[10]. This method included the use of Gaussian smoothing filters to alleviate the
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presence of noise, non-maximal suppression to find local maxima in the direction
perpendicular to the edge, and hysteresis thresholding to identify which edges are

significant and form a part of the edge contour.

The effectiveness of edge-based segmentation techniques depends on the nature
of the edge information present in the image. It is difficult to design a general
edge detection algorithm which will perform well in many applications. Usually,
edges segmented rarely form closed contours around objects and thus subsequent
algorithms such as edge linking must be applied to aid segmentation. In addition,
noisy images containing speckles, or other high frequency data will obscure the
edges of interest, making the use of edge-based techniques unsuitable in these

conditions.

2.2.3 Region-based Segmentation

The aim of edge-based segmentation techniques is to find borders between regions
or objects; however, in instances where borders are extremely difficult to detect,
particularly due to noise, region growing methods may give better results. Region
growing techniques focus on isolating homogeneous regions in the image, using
a homogeneity criteria such as gray-level, color, shape, or texture. In general,
the objective of segmentation is to divide an image R into a finite set of regions

Rla"wRS)

R=|JR, RNR;=0 fori#j (2.9)
=1
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For region-based segmentation, the following additional conditions must also be

satisfied:

H(R) = TRUE i=1,2,..,8 (2.10)

H(R;,UR;) i#j R;adjacent to R; (2.11)

where S is the total number of regions in the image and H(R;) is the homogeneous
binary result for region R;. Regions R; must also be maximal such that the homo-
geneity criterion would not hold true after being merged with an adjacent region
[7]. Using these conditions, various techniques have been developed which employ

region-based analysis.

2.2.3.1 Region Merging and Splitting

The most direct method of segmenting an image into regions is to begin by letting
each individual pixel represent a single region. Each pixel is then compared to its
neighbors and if the merging criterion is satisfied, the two regions are merged. The
process continues between all neighboring regions, including newly formed ones,
until the regions cannot be merged with any of its neighbors and it is marked as
“final”. The merging process stops when all regions have been so marked. The
starting regions and merging criteria can be defined by any suitable method to
begin the process. The result of region merging usually depends on the order in
which regions are merged, and thus segmentation results will probably be different

if merging begins in different image locations.

Region splitting is the opposite of region merging. It begins with the whole image

represented as a single region, which does not usually satisfy the condition of homo-
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geneity. The existing image regions are sequentially split to satisfy all conditions
of homogeneity. Region splitting does not result in the same segmentation even if
the same homogeneity criteria are used. Some regions may be homogeneous during

the splitting process and therefore are not split any more [7].

A better segmentation may result by using a combination of splitting and merging
methods. This approach uses a pyramid structure to represent the image, whereby
regions are in the shape of squares and correspond to elements at a particular level.
If any region at any pyramid level (excluding the start) is not homogeneous, it is
split into four sub-regions to create a new level. If four regions with the same
parent node exist at any pyramid level with approximately the same value of ho-
mogeneity measure, they are merged into a single region in an upper pyramid level.
The segmentation process is similar to that of a quad tree where each leaf node
represents a homogeneous region. Splitting and merging corresponds to removing
or adding parts to the quad tree. The number of leaf nodes corresponds to the
number of segmented regions after the split and merge process is over [11]. Unfor-
tunately, this method assumes a fixed square shape for each region, which imposes

a restriction on the true shape of a particular region.

2.2.3.2 Seeded Region Growing

The seeded region growing algorithm is based on the conventional approach of
region growing where the image is segmented into homogeneous regions using a se-
lected similarity measure. However, the mechanism for growing regions is controlled
by choosing a selected number of pixels, referred to as seeds. The seed pixels have

been isolated by segmentation techniques already applied and are grouped into
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sets: Aj, Ag, ..., A,. For each set of pixels representing a region, the immediate
neighbors of each pixel in the set are compared to the region using the selected
similarity measurement criteria. If the similarity measure is met, the pixels are
labeled as part of the region. The process continues until all pixels in each set,
including those newly added, have their neighboring pixels analyzed to maximize
each region limits. This technique does not have a shape restriction, since each

region is grown one pixel at a time.

2.2.4 Background Subtraction

The application»of a background subtraction algorithm is a useful technique for
segmenting images that have nonuniform brightness. Variations in image contrast
and brightness can seriously affect the ability to segment objects in an image. The
basis of this technique involves comparing an observed image with an estimate of
the image if it contained no objects of interest (ie. the background). As the name
implies, the technique subtracts the estimated background image from the observed

image, and thresholds the resultant image to segment the objects of interest.

To apply the background subtraction algorithm, an estimate of the image back-
ground must be generated. This is accomplished by dividing the gray scale image
into non-overlapping sub-images, or blocks of a specified size. The average of each
of these blocks will then correspond to one pixel of a newly created block-averaged
image [12, 13]. For example, a gray scale image of size 640 x 480 pixels and us-
ing a block size of 32 pixels, the resulting image has dimensions of 20 x 15. The
block-averaged image produces an estimate of the overall lighting profile for the

image.
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The block-averaged image has an 8-bit dynamic range (i.e. each pixel has an in-
tensity range from 0 to 255) which is then normalized between 0 and 1. The
normalization process results in dark areas with values close to zero to become
darker, whereas brighter areas with values close to one will change very little. The
end result is an image where the separation between the lighter and darker areas is
increased. Repeating the normalization process will further increase the separation
between dark and light areas. A threshold is selected that provides optimal sepa-
ration between the objects and the background. The image is rescaled to the full

dynamic range, and resized to the original dimensions using cubic interpolation.

2.2.5 Texture Segmentation

Many images contain regions that are not characterized by a unique value of bright-
ness, but rather a variation of brightness that is often referred to as texture. Gen-
erally, texture refers to properties that represent the surface or structure of an
object. Formulating a precise definition for textural objects is hard to achieve due

to its wide variability.

However, given that textural features may be used to identify objects, texture is
often used during image segmentation and object classification stages. In image
processing, texture may be defined as a group of mutually related pixels often
referred to as a texture primitive or texture element having particular gray-level
properties and spatial organization [7]. Various methods have been used to estimate

and describe texture.
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2.2.5.1 Gray Level Co-occurrence

The gray level spatial dependence approach of texture description characterizes
texture by the co-occurrence of its gray levels. The distribution varies rapidly with
distance in fine textures, and slowly in coarse textures. Te gray level co-occurrence
can be specified in a matrix of relative frequencies Pjq4(a,b), which describes how
frequently two pixels with gray-levels @ and b appear in a region separated by a
distance d in direction f. For angles quantized to 45 intervals, the non-normalized

frequencies are defined as:

Poa(a,b) = [{[(k, ) (m,n)] € D: k—m =0,[l —n| =4, f(k,]) = a, f(m,n) = b}|
Pys 4(a,b) = {[(k,)) (m,n)] € D: k—m=d,|l — n| = —d, f(k,]) = a, f(m,n) = b}
Py aa,b) = {[(k,1) (m,n)] € D:k—m=d, |l —n| =0, f(k,l) = a, f(m,n) = b}|

Pigs 4(a,b) = {[(k,)) (m,n)] € D:k—m=d,|l —n|=d, f(k,]) = a, f(m,n) = b}

where [{...}| refers to set cardinality, D = (M x N) x (M x N),and M x N is a
rectangular sub-image of size M by N. Texture classification can then be achieved

by calculating features from the co-occurrence matrix [14].

2.2.5.2 Joint probability Distribution

A generalization of the gray level co-occurrence approach is to consider more than
two pixels at a time. Given a local neighborhood (i.e a 3 x 3 neighborhood) and
a subimage, a parametric estimate of the joint probability distribution of the gray
levels over the neighborhoods in the subimage can be calculated. For parametric

estimation, the multivariate normal is used. If xy, ..., XN represent the N K-normal
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vectors coming from neighborhoods in a subimage, then the mean vector g, and

covariance matrix 3 can be estimated by:

N
1
H = I,l,()]., where : Ho = N nil ]-Xn (212)
1 N
- /
and Y= N E: (Xn — 1) (Xm — 1) (2.13)

n==l

Where 1 is a column vector whose components have the volume 1 [15].

2.2.5.3 Autocorrelation Texture Description

Measurement of spatial frequencies provides a means for texture recognition. Tex-
tural character is directly related to the spatial size of texture primitives. Primitives
of large size are indicative of coarser textures with lower spatial frequency, while
primitives of smaller size are indicative of finer textures with higher spatial fre-
quency. The autocorrelation function is a method to describe the size of textural
primitives. Using this model, a single pixel is considered a texture primitive and the
correlation coefficient evaluates linear spatial relationships between primitives. If
the textural primitives a relatively large, the autocorrelation function will drop off
slowly with distance; if the primitives are small, the autocorrelation function will
drop off quickly with distance. If primitives are spatially periodic, the autocorrela-
tion function will drop off and rise again in a periodic manner. The autocorrelation

coefficients can be evaluated for different values of p, ¢ by

MN  SEPSIfL) f+ g+ a)
M —p)(N —q) S S f2G,5)

Crs(pq) = ( (2.14)
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where p, q is the position difference in the 4, 7 direction, and M, N are the image

dimensions [7].

2.2.5.4 Discrete Image Transform

The application of an image transform may also be used for texture description.
Typically, an image is divided into a set of non overlapping square sub-images. If
the subimage size is n x n, the gray-levels of its pixels may be thought of as an
n?-dimensional vector, and an image can be represented as a set of vectors. These
vectors are then transformed using various techniques into a new coordinate system
where they relate to spatial frequencies of texture present in the image and can be

used for texture description. The following transforms methods are often used.

Fourier Transform

mu nv

F(u,v) = f(m,n)exp [—27ri (W + W)} (2.15)

u=01,...M-1 v=01,.,N-1

Hadamard Transform

1
F= HMMf HNN f = WHMMF HNN (216)

Cosine Transform

2c(u ) o= 2m + 1 o+ 1
F(u,v) = Zmencos( 5N uw)cos( o vw) (2.17)

m=0 n=0
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u=0,1,.,.N—-1 v=01,.,N—1

where

1
=— for k=0
V2 (2.18)

=1 otherwise

c(k)

2.2.6 Shape-based Segmentation

If an image contains objects of known shape and size, segmentation can be viewed as
the process of finding these objects in the image. A common method to find specific
objects is to use a mask of appropriate shape and size, and look for correlation
between it and the image. However, mask performance is greatly reduced if the

objects are partially occluded, or distorted.

2.2.6.1 Hough Transform

These issues may be overcome by using the Hough transform, which is tolerant to
these problems. The Hough transform is a technique which can be used to isolate
features of a specified shape within an image. It requires that the desired features be
represented in some parametric form, i.e. a curve. The classical Hough transform
is most commonly used for the detection of regular curves such as lines, circles,
ellipses, etc. For more complicated shapes, the Generalized Hough transform is
used since a simple analytic description of a feature is not possible. In this case,
instead of using a parametric equation of the curve, a pre-defined look-up table

representing the feature boundary description is used.
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During implementation, the algorithm uses an accumulator array A, with bin di-
mensions corresponding to the number of unknowns in the parametrized curve. For
example, to find line segments the equation d = rsin 8 + ccosf can be used, where
d is the perpendicular distance from the line to the origin, 6 is the angle the per-
pendicular makes with the x-axis, and (r, c) are the corresponding constant (z,y)
image pixel coordinates known. The accumulator array has quantized values of d
and €. Using edge pixels of candidate objects resulting from prior image processing,
the parameters of the specified curve are calculated. The parameters for each pixel
are then quantized to the appropriate values d and 6 and the accumulator A(d, 9)
is incremented. After all pixels are processed, the accumulator array is searched
for peaks. These peaks indicate the parameters of the most likely lines occurring
in the image [15]. For circles, the equation (z; — a)? + (22 — b)? = r? is used where
the circle has center (a, b) and radius r. In this case, the accumulator array is three

dimensional, and the cell A(a,b,r) is incremented.

The main advantage of the Hough transform technique is that it is tolerant of
gaps in feature boundary descriptions and is relatively unaffected by image noise.
However, the Hough transform is only efficient if a high number of votes fall in
the correct bin, such that the bin can be easily detected amid the background
noise. Therefore, bin size must be carefully chosen to ensure votes do not fall
in neighboring bins, thus reducing the visibility of the main bin. Also, with a
high parameter count (;3), the vote count per bin will be low, which again causes
problems during detection. As a result, the Hough transform must be used carefully

when detecting curves with complicated shapes.
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2.2.7 Conclusion

The preceding material provided a brief overview of the common segmentation
techniques of thresholding, edge-based, region-based, background, texture-based,
and shape-based segmentation. As stated, the techniques can generally be divided
into two categories: discontinuity or similarity. Edge-based techniques attempt to
exploit the discontinuities present in an image. These techniques rely on the pres-
ence of edges in the image that are identified as local gray-level intensity changes
resulting from lines or stripes. The effectiveness of the these techniques is limited in

noisy images containing random frequency data that obscures the edges of interest.

Image thresholding is typically the first technique used to process an image, and
belongs to the second segmentation category. A brightness level is often deter-
mined either on a global or local basis using various methods, and applied to the
image respectively. Thresholding requires minimal processing overhead, and can
be performed in real time when using specialized hardware. However, determining
a threshold value to achieve accurate segmentation results is rather challenging,

and thus it is often combined with other techniques.

Region-based and textural-based techniques focus on areas of similarity within the
image. Region-based methods attempt to isolate homogeneous regions using a
selected criteria such as gray-level, or color. However, the process of identifying
a region is often computationally expensive. In contrast, texture-based methods
attempt to isolate regions by their variation in brightness. Formulating a texture
definition for the textural objects is difficult due to high variability within the

region.

For shape-based segmentation, a prior information such as shape and size about
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the object, can be used to isolate from the image. Rudimentary objects such as
squares, rectangles, circles, and lines can be easily defined and applied to an image
using a mask. However, mask performance is often reduced if the objects are

partially occluded, or distorted, or if complex object shapes are being sought.

2.3 Morphological Operations

Morphological operators in image processing are used to modify the shape or form
of a regibn or object. A morphological operation is a type of neighborhood opera-
tion that determines the new value for a pixel based on the relationship between its
neighborhood and a given set of numbers. The numbers are often represented in
a matrix known as a structuring element. The effect of a morphological operation
depends on the algorithm used for the operation type and the composition of the
structuring element being used [5]. The basic operations of binary morphology are

erosion, dilation, opening, and closing [14].

2.3.1 Binary Erosion and Dilation

Erosion is the morphological operation that applies the structuring element to the
image, such that at each position where every 1-pixel of the structuring element
covers a 1-pixel of the binary image, the binary image pixel corresponding to the
origin of the structuring element is ORed to the output image [14]. The erosion of

binary image X by structuring element B is denoted by X © B and is defined by

XoB={z|z+bec X Vbe B} (2.19)
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Erosion, as the name implies, reduces or shrinks the object or region, and is often

used to remove extraneous pixels and small particles from the image.

Dilation is the morphological dual of erosion. Dilation applies the structuring
element to the image, such that each time the origin of the structuring element
touches a binary 1-pixel, the entire translated structuring element shape is ORed
to the output image [14]. The dilation of binary image X by structuring element
B is denoted by X @ B and is defined by

XoB=|]S (2.20)

beB

Dilation adds layers to objects or particles, thereby enlarging the objects.

2.3.2 Binary Opening and Closing

Erosion followed by dilation performs a morphological operation called opening.
The opening of an image X by a structuring element B is denoted by X o B and

is defined as
XoB=(X©oB)®B (2.21)

Opening removes small particles and breaks isthmuses or connections between

touching objects.

Dilation followed by erosion performs a morphological operation called closing.

The closing of an image X by a structuring element B is denoted by X e B and is
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defined as
XeB=(X®B)©oB (2.22)

Closing fills holes in objects and connects close objects.

Although the morphological operators presented have been applied to binary im-
ages, the operations can also be applied to gray scale images [7]. Refer to the cited

material for a more in-depth study.

2.4 Blob Analysis

The objective of the segmentation process is to isolate objects of interest within the
image and discard the background. Once this is achieved, information about the
objects is often required and is usually determined by performing blob analysis.
Blob analysis is a branch of image analysis that provides the means to identify
connected regions of pixels, referred to as blobs, within an image. Blobs are areas
of touching pixels that are in the same logical pixel state. This pixel state is
called the foreground state, while the alternate state is called the background state.
Typically, the background has the pixel value 0 and the foreground is everything

else, usually 255 for binary images, or vice versa.

In many applications, we are only interested in blobs whose features satisty a certain
criteria. Since feature computation can be time-consuming, blob analysis is often
used as an elimination process whereby only blobs of interest are considered for

further analysis. By calculating selected features for each blob, feature criteria
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is used to automatically discard blobs that are not of interest, and calculate the

required information for those remaining.

The Matrox Imaging Library (MIL Ver. 6.1) [5] software package includes a blob
analysis module that can extract a wide assortment of blob features, such as the
blob area, perimeter, extract holes from blobs, Feret diameter at a given angle,
minimum bounding box, compactness, as well as many others. A typical blob

analysis procedure is as follows:
1. Grab or load an image that was captured under good lighting conditions

2. Process the image to reduce the amount of noise present.

3. Segment the image to separate blobs from the background and each other
to produce a binary blob identifier image. The original gray scale image is

required to perform gray scale calculations as well.
4. Select a result buffer and feature list applicable to the objects of interest.

5. Calculate the features and analyze the results. Exclude those blobs that do

not meet the specified feature criteria.

6. Repeat the calculation of features and blob exclusion until only the desired

blobs remain.

2.5 Conclusion

This chapter provided a brief review of the many techniques used for image pre-

processing, image segmentation, shape representation, and blob analysis. The in-
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tent of this review was to provide a brief explanation of some techniques that may

be used during image processing algorithm development.

Drill-hole images typically have poor contrast and will require application of pre-
processing techniques before segmentation can be performed. The rather noisy,
coarsé nature of a rock face excludes the use of edge-based techniques, as the re-
sulting image would contain thousands of edges that would provide little assistance
during drill-hole segmentation, and therefore was not used. As a result, a combi-
nation of thresholding and region-based techniques were employed to isolate the
typical dark region of a drill-hole. Using the Matrox Imaging Library [5], morpho-
logical operations can be applied to fill holes in objects, and remove small objects.
The blob analysis component may be used to calculate features, and remove or

select blobs meeting the selected feature criteria.
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Chapter 3

Hole Segmentation: Image Analysis

and Drill-Hole Classification

One of the main tasks in the development of the ELAP vision system is to identify
the difficult to see holes in the rock face that make up the blast pattern in an
underground mine. A video camera attached to the end of a boom provides digital
images of a rock face that are to be analyzed to determine the presence of a hole.
Once the analysis is complete, information collected from the image is used to
calculate coordinate transformations to position the camera/boom assembly in
front of the hole for loading. Therefore, the first task in developing the ELAP
vision system is the development of image processing and classification algorithms

to segment and identify holes present in an image of an underground rock face.

35



3.1 Image Analysis

Figure 3.1 contains an assortment of 640 x 480 color JPEG images of holes drilled
in various underground rock faces. These images illustrate the challenging imaging
requirements of the vision system to operate in an underground mine. For instance,
support structures such as wire screen, Shotcrete (mixture of metal fibers and
concrete sprayed on the rock wall), and rock bolts are often used to improve the
mines integrity, and can obscure the locations of drill-holes. Rock and other fallen
debris often occupy the drill-hole collar, and again obscure its location. The rock
type and surface also makes it difficult to locate drill-holes. The surface is typically
non-planar which often causes shadows to be cast in the vicinity of a drill-hole. The
rock surrounding a drill-hole can be very different in color, wet from ground water,
or exhibit glare when exposed to a light source, making it difficult to locate in an
image due to lack of contrast. In addition, attempting to locate the hole when
the camera is off center from the hole’s axis can exacerbate the factors previously
described. At first glance, the suggestion of using simple thresholding may be a
sufficient means for segmenting the drill holes in the image. However, a review
of the database of underground images collected shows the difference both within
and between images, as well as lighting conditions and the other factors, would not
make this approach adaptive to these variations. Therefore, the drill-hole images
will first undergo pre-processing to improve the quality of the image such that
successive techniques can achieve better performance when applied. Techniques
such as window leveling or histogram equalization will be required to improve the

image contrast so that the image content may be better segmented and interpreted.
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Figure 3.1: Typical images of underground rock faces. (a), (b), and (c) are
Shotcrete with water and rust. (d) shows wire screen on rock face. (e) exhibits
glare. (f) shows a dark image. (g) holes hidden behind a rock brow. (h) and (i)

show holes obscured by debris.
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Due to the challenging imaging requirements, the provision of adequate uniform
lighting will play a critical role in effectively and reliably segmenting a hole from
an image. Artificial lighting located next to the camera will attempt to provide
an optimum quality image for analysis and subsequent segmentation of drill holes.
However, the image processing algorithms developed must be able to cope with an

image acquired under less than ideal conditions.

3.1.1 Segmentation Scheme Selection

As stated in Chapter 2, segmentation methods can be separated into two categories:
discontinuity and similarity, due to the dominant techniques employed. The first
group relies on the presence of edges in the image that are identified as areas
with local gray-level discontinuities. However, they have poor response in images
containing significant background noise. This is particularly true for images of
an underground rock face. As shown in Figure 3.1, the non-planar surface of the
rock face resulting from blasting would produce an image entirely composed of
edges if such a technique was employed in an attempt to find the edges of the
drill-hole. Isolating the edges of the drill-hole from that of the surrounding rock
surface would be very challenging. As a result, edge-segmentation methods would
further complicate the segmentation of drill-holes from the image, and thus are not

appropriate for this application.

The second group comprising of threshold-based, region-based, and textural-based
techniques, focus on utilizing image content that is similar or common in the im-
age or a portion of it. Threshold-based methods are effective when objects are

characterized by having a different homogeneous gray level as compared to that of
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the background. Using the brightness histogram, a peak corresponding to the gray
level intensity of the object sought may be used to segment it. Given the variation
in brightness levels for the images shown in Figure 3.1, the image will first undergo
pre-processing to improve image contrast, and then use a suitable thresholding
technique for segmentation. Given the limited information from the image color
space in drill-hole images, the ELAP Vision System (VS) will use monochrome

images when applying various methods during segmentation.

Due to the limited contrast in drill-hole images and irregular textures of a rock face,
both region and textural-based methods will not be used for primary segmentation.
Rather, a region-based technique will be used to define the boundaries of possible
drill-holes after they have been segmented during the initial stages to see if they
are in fact a drill-hole or a background object. Textural features will be used to
classify the candidates segmented as a drill-hole or a background artifact, rather

than a direct method for segmentation.

3.1.1.1 Image Segmentation Process

As stated previously, image analysis will be performed using monochrome images
since there is little information in the original color image that could aid in drill-
hole segmentation. Thus, the original color image is converted to a monochrome

image and is input to the segmentation process.

However, it is worth noting that before any segmentation is performed on the image,
an undistortion process must first be applied to remove any distortions resulting
from the lens characteristics. This lens distortion causes the image contents to be

skewed from where they should actually be located in the image. Given that the
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hole center is used during the visual servoing process, an accurate projection must
be provided to ensure correct guidance. A more detailed explanation of the lens

distortion issue is provided in Chapter 4.

The first step in image segmentation is to apply pre-processing techniques to im-
prove image contrast. Given the irregular shape of the rock face and lack of uniform
lighting, many dark shadowy areas exist in the image and create a low contrast
effect that must be improved. Next, using the resulting pre-processed image, a
threshold is determined and applied to binarize the image to produce an image
composed of foreground objects (drill-holes), and background artifacts (shadows,
water, etc). Finally, morphological techniques are applied to remove small objects
and fill holes. Figure 3.2 illustrates the segmentation process for the drill-hole im-
age. The steps required for image segmentation are presented and discussed in the

following sections.

3.1.1.2 Image Pre-processing

As stated in Chapter 2, image pre-processing is often the first stage in image
analysis. Pre-processing operations help to improve image contrast by suppressing
information that is not relevant, and enhancing areas of interest. From the images
shown in Figure 3.3, non-uniform lighting in combination with the rock surface can
create shadow areas that make it hard to discern a drill-hole from the rest of the
background. In addition, thresholding in these areas may cause false objects to be
segmented and confused with an actual drill-hole. Thus, pre-processing techniques

need to be applied first in order to improve contrast and image clarity.

To improve image contrast, a window leveling technique is applied. Referring to
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Figure 3.2: Flow chart illustrating image segmentation process.

the images in Figure 3.3, drill-holes typically have a small brightness range con-
sisting of low intensity values (0 — 30) while the remaining intensities correspond
to the background. This range represents only a small portion of the full dynamic
range of an image (0 — 255), and is observed at the left of the histogram as shown
in Figure 3.4. The range of intensities to re-map starts from 10, the lower value, to
the intensity value that corresponds to a percentage (30%) of the area under the
histogram curve starting from 0. Intensities greater than the 30% value are all set
to the maximum intensity value (255). These values were determined after investi-
gating an extensive database of drill-hole images of actual underground mines, and

provide very good results.

To ensure optimal response, this process is performed at a local level using a mov-

ing window of size 160 x 120 pixels, where the range for re-mapping is determined

41



(8)

Figure 3.3: Examples of images with poor lighting. Images indicate difficulty in
discerning the drill-hole from the background.
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dynamically for each sub-image. After the window leveling process is performed,
the image shows an improved contrast compared to that of the original by maximiz-
ing the dynamic range. This process retains all dark image content and brightens
the remaining background to provide improved object segmentation. The window
leveling result is demonstrated using the image in Figure 3.3(f) as shown in Figure

3.5.

However, in images with poor contrast, drill-holes appear ‘washed out’ and result
in poor segmentation after window leveling is applied. This is particularly evident
with simulated drill-hole images captured in the presence of background ambient
lighting. Also, images of drill-holes where the surrounding area is wet tend to
reflect light, which again, results in reduced contrast and sub-optimal drill-hole
segmentation. As a result, additional techniques to process images where the rock
face is wet, may need to be explored, and adequate lighting conditions are critical

to ensure adequate and reliable drill-hole segmentation is achieved.

The sample image in Figure 3.3(f) is further used to illustrate the results from the
subsequent image segmentation processes applied. The segmentation results for all
the images in Figure 3.3 are included in Appendix A, and on the accompanying

CD-ROM at the end of this document.

3.1.1.3 Thresholding and Morphology

After the image has been pre-processed, the resulting image is then binarized using
a thresholding operation. Thresholding results in a binary image (0/1) where white
pixels represent the background, and black pixels represent objects that may be

drill-holes since their intensity value is lower than the selected threshold value. The
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Figure 3.4: Sample drill-hole image identifying intensity range of interest at left of

the histogram as indicated.
threshold value is determined using the respective pre-processed image histogram.
The binary image after the threshold is applied is shown in Figure 3.6(a). Image
thresholding is then followed by morphological opening and closing operations that
remove small image objects, connections between touching objects, and fill holes
within objects. Figure 3.6(b) shows the resulting image after morphological oper-
ations are applied to Figure 3.6(a). Small objects have been removed leaving only

a few objects to remain for further processing and identification.

3.1.1.4 Feature Data Extraction

The resulting segmented image in Figure 3.6(b) contains potential drill-holes ob-
jects that must be identified as such. This is achieved by performing blob analysis
on the image to calculate object feature data. The analysis data is first used to
further exclude small objects with area < 10, and objects touching the image bor-
der. Selected features are then calculated for the remaining blobs (objects) and
input to a classification process discussed in Section 3.2, to identify them as either

drill-holes or background objects.
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Figure 3.5: Drill-hole with window leveling applied. (a) original image, (b) result
after window leveling.
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(b)

Figure 3.6: Drill-hole image after binarizing and morphology.
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3.1.2 Conclusion

The preceding image segmentation scheme resulted in reliable isolation of potential
drill-hole objects. A computationally intensive image processing algorithm could
not be afforded since the overall segmentation process is required to be sufficiently
fast to facilitate efficient, visual servoing of the end-effector to a drill-hole. Thus, a
simplified segmentation approach was taken to fulfill this requirement given that,
(1) the camera will be positioned approximately in front of the drill-hole by us-
ing recorded drill plan information, thus reducing the search area; (2) a pattern
recognition model will be applied to the segmented objects to assist in identifying
which objects are drill-holes and which are background artifacts; and (3) the drill
plan information will also be used to determine which of the classified objects is
of interest using location information. Thus, a simplified segmentation approach,
along with classification and location information provides the system response
required for visual servoing. The next section outlines the development of the pat-
tern recognition model used to classify segmented image objects, including feature

selection, classifier design, and optimization.

3.2 Drill-Hole Classification

Once the drill-hole image has been segmented, potential candidates are isolated.
However, not all objects segmented are drill-holes and thus a standard drill-hole
pattern or model must be compared to each segmented object for classification.
The model is designed using image features of segmented drill-hole objects from a

large number of samples. Image features of new drill-hole candidates are compared
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to the feature values of the training set to see if they are similar. Based on the
result of the particular metric used for comparison, the object can be labeled as
belonging to one of two classes: drill-holes or background objects. The following
sections present the work performed to develop the pattern recognition model used

to classify segmented image objects.

3.2.1 Classification Model

The classical pattern recognition approach as shown in Figure 3.7, is that of taking
raw data and assigning the data to one of several potential classes. As shown in
the previous section, raw image data is processed to segment potential drill-hole
objects. The next step is feature extraction, where sensed properties or features
describing the segmented objects are calculated. For each object, a pattern or
feature vector x, is a fixed set of elementary features of length d, where x is the
d dimensional column vector. Using this approach, an object can be abstractly
represented as a point in d dimensional feature space as shown in Figure 3.8 [16].
In practice, different objects input to the feature extractor will produce different
feature vectors. However, the hope is that the within-class variability is small

relative to the between-class variability [16].

The next step is classification, where x is evaluated and assigned to one class, w;,
from the set of predefined classes {w; - wy,}, where n = 2 for this work. For
this work, the statistical maximum likelihood classifier (MLC), based on Bayesian
decision theory was used. This classifier accounts for differences in scale between
features, compensates for highly correlated features, and permits curved as well as

linear class decision boundaries [16]. The classifier is trained using feature data
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Figure 3.7: Classical model for pattern recognition.

Figure 3.8: Feature vector in d-dimensional feature space.

from known objects belonging to each class, and new objects are then compared
to the training set to determine if they can be labeled as belonging to one of the

two classes.

To achieve optimal classification performance, the classifier normally requires op-
timization. This is often accomplished by selecting the best classifier parameters,
or more commonly, by feature subset selection (FSS). FSS consists of choosing a
subset from the initial set of features used to describe the target objects. Ideally,
the feature subset would provide high separability for the target objects, and any
redundant or irrelevant features are removed. In this work, FSS is used for classifier

optimization and three selection methods are investigated, namely: a genetic al-
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Table 3.1: The initial 19 features proposed for classification.

(1) Minimum Pixel (11) Binary Central Moment X1Y1
(2) Mean Pixel (12) Energy

(3) Pixel Standard Deviation (13) Entropy

(4) Compactness (14) Homogeneity

(5) Feret Elongation (15) Contrast

(6) Central Moment X0Y?2 (16) Inverse Diff. Moment

(7) Central Moment X2Y0 (17) Correlation

(8) Central Moment X1Y1 (18) Elongation

(9) Binary Central Moment X0Y2  (19) Roughness

(10) Binary Central Moment X2Y0

gorithm (GA), sequential forward selection (SFS), and an exhaustive search (ES).
Although the exhaustive search method would undoubtedly provide the optimum
feature subset, the GA and SFS methods were investigated to compare their perfor-
mance given their reduced computational time. Finally, the classifier performance

for each of the FSS techniques is presented, including a summary of the results.

3.2.2 Feature Selection

The basic problem that pattern classification is concerned with is the assignment
of a given object to one of n known classes. An object is represented by a pattern
of features which, presumably, contains sufficient information to distinguish among
the classes. Instead of performing a thorough investigation of features that would
be most suitable for drill-hole objects, this work focused on FSS. Typically, an
initial set of features describing relevant object characteristics is considered, and
then a subset is selected that maximizes the classifiers performance. As previously

stated, the subset selection methods investigated include a GA, SFS, and ES.

The initial set of features included those commonly used as a starting point for
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image analysis, and were applicable to the target object being sought. In addition,
several textural features were included that produced encouraging results during
the initial feature investigation. Features that were irrelevant, indicated a possible
bias, or are inefficient or difficult to calculate, were removed. The idea was to
include only relevant features while trying to keep the feature count to a minimum
in order to achieve system robustness and minimize the computational overhead.
Having a high feature count would make it difficult to isolate an optimum subset

within the feature space, and thus decrease the classification performance.

Thus, the initial 19 features calculated for each object are shown in Table 3.1
(refer to Appendix B for feature definitions). The numbers in brackets are used to
reference the specific features from this point onward. The final feature subset is

determined during classifier optimization.

3.2.3 Feature Vector Extraction

To develop the recognition model, drill-hole images were segmented and features
extraction algorithms were employed to produce a feature vector for each of the
selected drill-hole and background objects. The classifier then processed the fea-
ture vector, and assigned the object to the class that has similar feature space
characteristics. A total of 1170 drill-hole and background objects were gathered
and used for both classifier training and testing. The sample object data is divided

between the object classes as described in Section 3.2.4.
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Table 3.2: Summary of the data set samples for the classes.

] Class | No. of Samples }
Wh 520
Wh 650
total samples 1170

3.2.4 Object Classes

The 1170 feature vector samples of both drill-hole and background objects were

gathered from image ground truth data. As a result, two object classes were created

1. drill-holes; hereafter indicated by the subscript A, as in wy

2. background; hereafter indicated by the subscript b, as in wy

The drill-hole feature data was selected from sample images captured in a research
mine under average lighting conditions. The diffuse lighting provided good sepa-
ration between the drill-holes and their surroundings. The lighting conditions also
caused the drill-hole region to have an homogeneous appearance in the image, with
intensity values less than 30. Also, the drill-holes are relatively centered in the
image, and captured on-axis with the drill-hole to provide a more circular shape.
The background object feature data was taken from the same set of images, and is
comprised of background image artifacts segmented during analysis. These back-
ground objects represent shadows created due to rock texture, or areas of wet rock.
These objects vary in size and shape, with mean intensity values covering the full
dynamic range. Table 3.2 shows how the 1170 data objects are grouped for each

class.
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3.2.5 Classifier Design

For this work, the statistical MLC was selected which is based on Bayesian decision

theory [17]. Bayesian classification is based on Bayes formula given by

Pl = Pl Ple) (3.)

p(x)

where P(w;) is the prior (a priori) probability, P(w;|x) is the posterior (a posteri-
ort) probability that the object belongs to class ¢ given the sampled feature vector
x, p(x|w;) is the class-conditional probability function for x given that the class is
w;, and p(x) acts as a scale factor that ensures the posterior probabilities sum to

one, which is usually dropped for classification.

For classification, the approach is then to minimize the probability of classification
error by choosing the class that maximizes the posterior probability P(w;|x). Bayes
decision rule is then to sample x, calculate P(w;|x)Vi € 1... N and select the class
w; for which P(w;|x) is greatest. The Bayesian classifier results in the maximum
theoretical classification accuracy, however it requires knowledge of p(x|w;) which

is typically unavailable.

Following the maximum-likelihood approach, p(x|w;) is modeled as a Gaussian

distribution, and the MLC can be formulated using the discriminate function
9i(x) = P(wilx) = p(x|wi) P(w;) (3.2)

If f is a monotonically increasing function, g;(x) can be replaced with f(g;(x))

without changing the classification results. Hence, the discriminate function is
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written in logarithm form as
gi(x) = In p(x|w;) + In P{w;) (3.3)

Therefore, using the Gaussian for w;, p(x|w;) can be formulated as

1 1 _
p(x|w;) = WW exrp *§(X - pfi)TZi 1(X - ;) (3.4)

where x is the d dimensional feature vector of an sample object, u, is the d dimen-
sional mean vector of class w;, and X; is the d x d covariance matrix of w; calculated
from the training data set. The MLC discriminate function for w; can be derived
by substituting Equation 3.4 into Equation 3.3 to give the following

1 d; 1
gi(%) = —5(x - ) S (x — ) — 5 In(2m) — 5 1% +In P(w;)  (3.5)
In the above equation, (x — u)TY¥"1(x — u) = r? is known as the squared Maha-
lanobis distance. The Mahalanobis metric is a non-linear distance measurement
that compares a sample feature vector x, to the mean p of class w;. The use of
¥ in the Mahalanobis classifier accounts for differences in scale between features,

compensates for highly correlated features, and permits curved as well as linear

class decision boundaries [16].

Recall from Section 3.2.4, two object classes were created, thus ¢ € {h,b}. The
sample data for w; is used to calculate the classifier parameters, specifically, the
mean feature vector p,;, the covariance matrix ¥;, and the determinate |%;|. The
term d;/21n(27) is a constant because the dimensionality of both classes is fixed:

d =19. P(w;) is the MLC prior probability of class i, and is intended to improve
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classification results by helping to resolve confusion among classes that are poorly
separable. However, reliable class prior probabilities are difficult to determine, and

thus for this work they were set equal.

P(wh) = P(wb) =0.5 (36)

Hence, the final MLC discriminate functions are

gn(x) = —5 0~ ) S~ ) — 21Tl + MPOS)  (37)
@) = 50— )5 (x— ) — 5[] + WPO5)  (38)

The above equations formulate the MLC design, such that a new sample feature

vector x is classified as wy, if g, > g3, otherwise its classified as wy.

3.2.6 Classifier Optimization

In this work, classifier optimization is accomplished by FSS. The objective of FSS
is to determine the set of features which provide the greatest separation between
the different classes. Initially, all relevant features shown in Table 3.1 are included
to describe the objects characteristics. However, some features may be biased,
noisy, or highly correlated with other features. The number of features should also
be kept to a minimum without affecting classifier performance. Minimizing the
feature number will also improve the software speed by reducing the calculation

overhead during classification.

Mathematically, F'SS is a search problem. Depending on which search method is

used, FSS methods can be categorized into three techniques: (a) random search
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(e.g. genetic algorithms), (b) heuristic search (e.g. sequential selection), and (c)
optimal search (e.g. exhaustive search algorithms). While random searches are
computationally more efficient, optimal search strategies guarantee an optimum
solution [18]. To perform FSS, the three selection strategies listed above are in-
vestigated using the MLC determinant as the evaluation criteria to measure the

accuracy of the feature subset.

3.2.6.1 FSS: Genetic Algorithm

Genetic algorithms are a stochastic optimization method inspired by the theory of
natural selection and evolutionary processes [18]. GA’s are an efficient method of
iteratively searching a large sample space and arriving at near-optimal solutions
based on some fitness function. GA-based feature selection was first introduced by
Siedlecki & Sklansky [19], and has been actively studied by numerous researchers
such as Yang & Honavar [20], Richeldi & Lanzi [21], and Sun et al. [22]. In
GA-based feature selection, the n potential features are mapped onto an n bit
chromosome where each bit (or gene) represents a specific feature. If the gene = 1
then that feature is used, otherwise it is not. For example, in the chromosome
1001111111111111111, all 19 features as enumerated in Table 3.1 are included in

the classifier instance, except for the features 2 and 3.

The algorithm commences by randomly selecting an initial population of chromo-
somes, n, for the initial generation go. Each chromosome is then assessed by the
fitness function (MLC for this work) to calculate its fitness f. The chromosomes
are ranked in order of fitness, the higher the chromosome fitness, the higher the

probability it will be selected to mate. The mating is performed using the sin-
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gle point crossover operator, where the crossover point is randomly selected. The
crossover rate, p., determines if the chromosomes undergo mating or if they simply
migrate to the next generation, g;y1, unchanged. The mutation operator is then
applied to generation g; of chromosomes where each bit has a probability, p,,, of
being mutated. Finally, the chromosomes are evaluated using the corresponding
feature subset. The generated classifier is then trained and tested using the fitness
function (MLC) and the results are compared to determine if the terminating cri-
teria (acceptable fitness value or maximum number of generations, n,) is satisfied.
If the terminating criteria is satisfied, the algorithm returns the chromosome with
the highest fitness, otherwise any duplicates in the population are removed, and

the process repeats. The GA implementation is summarized in Algorithm 1.

The GA algorithm parameters were not investigated specifically, to determine the
optimal values for this application. Rather, standard GA parameter values were
used that have been derived from recognized sources [23, 24, 21| and were set to

the following values: n, = 10, p. = 0.7, and p,, = 0.02.

Algorithm 1 FSS using a Genetic Algorithm (GA)
Require: initial population of chromosomes of size n,
1: evaluate fitness of each chromosome using fitness, f
2: for g =1 to ny do
3:  chromosomes selected from P, ; based on fitness
4:  create P, using crossover operator, p.
5:  mutate each chromosome in P, using p,,
6: evaluate fitness of each chromosome in P, using f
7: end for
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3.2.6.2 FSS: Sequential Forward Selection

The SFS algorithm begins with an empty set of features, Fs, and sequentially
evaluates and adds features to F;. Once a feature f;, has been identified as the
best feature for the feature space being evaluated, F,, it is permanently added to
F;, and removed from the list of features, Frp, available for subsequent selection.
The SFS algorithm is listed in Algorithm 2. However, SFS cannot guarantee the
optimality of the subset found since the sequential nature of searching may result
in it getting stuck in a local minima [25]. This also applies to GAs, however the

GA mutation (random) operator attempts to overcome this possibility.

Algorithm 2 FSS using Sequential Forward Selection (SFS)
Require: FIS={},ES={},TS={f1,fa,..., fn}
Ensure: FSCTS{}
1. fori=1tondo
2:  accuracy =0
bestFeature = {}
best Accuracy = 0
for j = 1 to length(7'S) do
ES=TS(G)UFS
train discriminate functions (MLC) for feature space T'S
calculate accuracy from discriminate functions ES
if (accuracy > bestAccuracy) then
10: bestAccuracy = accuracy
11 bestFeature = T'S(j)
12: end if
13:  end for
14:  bestFeature assigned to F'S
15:  bestFeature removed from T'S
16: end for
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3.2.6.3 FSS: Exhaustive Search

The exhaustive search strategy is a brute force technique that examines all possible
subsets 2" (where n is the number of features), and finds the optimal one. It starts
with an empty set, then considers all possible subsets containing one feature, two
features, and so on, up to the entire set of n features. For each subset containing ¢
features, the MLC discriminate functions are trained and the accuracy is calculated.
The combination of i features having the best accuracy is then stored in a feature
subset accuracy buffer. The process is then continued for the remaining subsets of
{i+1,i+2,...,n} features. Once complete, the feature subset buffer is searched
to find the subset of ¢ features with the bést accuracy. This subset of ¢ features is
then the optimum set for this sample data. This can be computationally expénsive
especially for a large initial feature set. Thus, for n = 19 features, a total of 524, 288
subsets of features were examined for each classifier (wp,wp). The algorithm was
implemented in Matlab, running on a P4 3.2GHz computer, and took just under two
days to complete. This was much longer that the GA and SFS approaches which
took on the order of hours to complete. The exhaustive search implementation is

shown in Algorithm 3.

3.2.7 Classifier Performance

During F'SS optimization, the classifier performance for both classes, (wp,w;), was
determined implicitly. For each feature subset selected, the classifier was trained
and tested using the leave-one-out cross-validation method (LOOCYV) [26]. The
sample data for each class containing 520 drill-holes, and 650 background objects

was divided such that a single observation from each sample set, as well as the
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Algorithm 3 FSS using an Exhaustive search strategy.
Require: FS = {fi, fo,..., fu},ES={}
Ensure: FSCTS{}

1. fori=1tondo

2:  accuracy =0

3. BS(i) = {}

4:  BSAccuracyli] =0

5. for j =1 to Perm(i,n) do

6: ES(j) C FS

i train discriminate functions (MLC) for feature space ES(j)
8: calculate accuracy from discriminate functions ES(j)
9: if (accuracy > BSAccuracyli]) then

10: BSAccuracy[i] = accuracy

11: BS(i) = ES(j)

12: end if

13:  end for

14: end for

15: optimum F'S = BS(i) with maz(BSAccuracyli])

sample data for the other class, was used for testing, and the remaining samples
were used to train each classifier. The process was repeated until each sample is
used for testing. Using the MLC classifier discriminants, each test sample feature
vector x is classified as wy if g5 > g¢p, otherwise its classified as wp. The average

error rate was then calculated for each feature subset identified using Equation 3.9.
p=1yp (3.9)
o i=1 2 .

The classifier results for each of the FSS optimization techniques is summarized
in the corresponding confusion matrices as illustrated in Table 3.3 and Table 3.4.
The accuracy for each optimized feature space identified using each FSS strategy
is shown in Figure 3.9. The classifier accuracy found for each FSS strategy was
very similar differing only by 0.5%. Also, each strategy resulted in approximately

the same number of features, 8 for the GA, and 9 for both the SFS and ES clas-
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Table 3.3: Classifier performance for each FSS optimization strategy illustrated in
a confusion matrix. wp samples = 650, wy, samples = 520.

(a) GA (b) SFS (c) ES
W, Wy Wy, Wy Wh Wp
wp | 516 | 48 wp, | 506 | 32 wp | 504 | 30
wp | 4 | 602 wp | 14 | 618 wp | 16 | 620

sifiers. Five features were also found common to all three classifier configurations,
(4,9,14,18,19). As shown in Figure 3.9, after feature space of size 7, the accuracy
for each optimization strategy tended to level off and only begin to worsen for the
GA configuration. Thus, indicating that the addition of more features did little to

improve the accuracy, and only increased the computational overhead.

All but one of these features are shape based, while the other feature(14) is based
on gray level intensity. An initial thought might be to exclude all but shape based
features from the feature set, but the exhaustive search clearly indicates that the
inclusion of this feature does increase the classification performance for this training
data set. Another training set may show otherwise, and a somewhat different

optimum feature subset altogether.

Arguably, any of the three classifier configurations could be used for the final
design given their similar accuracies, with only a slight increase in computation
for the SF'S and ES configurations resulting from the extra feature. Although, the
ES strategy identified the optimum feature subset, the time required for training
makes it somewhat impractical if re-training is needed and the number of features
or samples in the training set is increased. However, for this work, re-training the
classifier was not required, and thus the feature subset found using the ES strategy

was used in the final classifier design.
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Table 3.4: Optimized feature space and accuracy for each FSS optimization strategy
(Feature subset enumerated as in Table 3.1).

FSS Strategy | Accuracy | No. of Features | Opt. Feature Subset
GA 0.9556 8 4,89,11,13,14,18,19
SFS 0.9607 9 4,5,89,12,14,16,18,19
ES 0.9607 9 4,5,79,13,14,17,18,19

e MLCES ——MLC-SFS — MLCGA
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095 4 =2,
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Figure 3.9: Classifier performance for FSS optimization strategies: GA, SFS, and
ES.
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3.3 Conclusion

The first task in developing the ELAP VS was the development of the image
processing algorithms to segment and identify holes present in an image of a un-
derground rock face. An underground mine is a dynamic environment where non-
uniform lighting and drill-hole obscurities challenge the imaging requirements. The
image processing algorithms developed attempted to mitigate these conditions for
successful segmentation of drill-hole objects. Initial image pre-processing tech-
niques such as window leveling were employed to improve image contrast. Thresh-
olding and morphological operations were then applied which remove small image

objects, connections between touching objects, and fills any holes within objects.

However, not all objects segmented are drill-holes and thus a classification model
was developed using image features calculated with blob analysis, of actual drill-
hole objects. The classifier was designed using the MLC discriminate and image
features of new drill-hole candidates are compared to the feature values of the
training model. The candidate object is then classified as either a background
artifact and the object is discarded, or as a drill-hole where the results are returned
to the calling function for further consideration. FSS selection techniques were
employed to both reduce and find an optimum feature subset for classification. This
resultant feature set achieved an accuracy of 96.07% for drill-hole and background

objects.

Overall system performance is further increased as the camera is always positioned
in front of the drill-hole at start, and drill plan location information is used to
determine which of the classified objects is of interest. However, the resulting

image segmentation and object classification performance is dependent on image
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quality which requires suitable lighting, and how representative the classification

model is compared to new data input.

64



Chapter 4

Vision System Design

4.1 System Overview

The requirements of the ELAP vision system (VS) is to first identify the difficult to
see drill-holes in the rock face that make up the drill plan of in an underground mine
(Chapter 3), and secondly, use the corresponding image data to guide a robot boom
to position an emulsion tube for insertion into the hole for loading with emulsion
(i.e. an explosive). Using a vision system to accomplish this type of objective has
already been implemented successfully in the manufacturing setting [27, 28, 29, 30].
However, the dynamic nature of the underground mining environment adds an
extra level of complexity to the overall system design that must be mitigated. As a
result, the vision system must be sufficiently robust to operate in the underground

environment without compromising the required functionality.

The proposed vision system conceptual design is illustrated in Figure 4.1. It in-

volves ridgedly mounting a camera/lens assembly to the end-effector of a robotic
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Figure 4.1: ELAP prototype concept illustrating vision system components. Sup-
porting electronics including industrial computer, framegrabber, and other required
hardware and software are housed in the system electronics enclosure.
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boom. This location is required to provide optimum viewing capabilities when
imaging the rock face. The design also includes rigidly mounting a distance sensor,
and a light source to the robotic boom’s end-effector. The distance sensor serves to
provide the depth information lost during image capture, which is required when
performing image analysis and visual servoing. The halogen lighting is needed to
illuminate the viewing area with a diffuse light pattern to provide optimum imaging
without restricting the working area of the robotic boom. An industrial computer
on-board the ELAP unit houses a framegrabber that samples the cameras video
signal and presents the image data in digital format for analysis. Installed appli-
cation software developed, incorporates the image processing algorithms used to
analyze image data to identify drill-holes, and communicates with the Loading Pro-
cess Supervisor (LPS) control software. The drill-hole image data and previously
determined calibration parameters will be used to transform the image information
between the camera and end effector reference frames to perform visual servoing
of the robotic boom to a drill-hole for loading. The LPS controller terminates the

visual servoing process once the robotic boom-tip is within a specified tolerance of
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the drill-hole collar.

The following outlines the various vision system components, both hardware and
software, used in the design. Also, a detailed description of the visual servoing
control process including established reference frames, required calibrations, and
their corresponding parameters is discussed. Finally, results from both lab testing

and field trials are presented.

4.2 System Components

The ELAP Vision System (VS) is comprised of both hardware and software com-
ponents as illustrated in Figure 4.2. The system hardware consists of a Pulnix
TMC-7DSP progressive scan CCD color camera, a Pentax 3.5mm wide angle lens,
and a Matrox 4-Sight II Pentium class industrial PC. The camera output is an
analog RGB-Sync signal and is input to the PC via a Matrox Meteor-1I/4MB PCI
frame grabber for digitizing. Distance measuring is performed using a Massa M-
5000 ultrasonic distance sensor over a serial communication link, and polled by the
VS software during visual servoing. The VS is connected via Ethernet to the LPS
over TCP/IP, and is configured as a server to perform its specified tasks during

the emulsion loading process.

The VS software, VisSys, is a command-line based application developed using Mi-
crosoft Visual C++ 6.0, the Intel Open Source Computer Vision Library (OpenCV)
Beta 2.0, and the Matrox Image Processing Library (MIL) 6.1 running under the
Windows NT 4.0 operating system. The VisSys software consists of two main com-

ponents: system software, and the analysis/control software. The system software
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Figure 4.2: ELAP vision system hardware and software components.

component is responsible for configuring the system components, monitoring sys-
tem hardware and its resources, image acquisition, and subsystem communications.
The analysis/control software encapsulates the image processing and classification
algorithms used to locate and identify drill-holes in captured images. It also con-
tains the control process used for visual servoing the robotic boom once a drill-hole

has been identified.

A separate supporting software application, CamCal, performs both the camera
and hand-eye calibrations required by the VS. This software is a Windows-based
application developed using Microsoft Visual C++ 6.0, MIL 6.1, and OpenCV
Beta 2.0. The CamClal software is used to determine the camera and hand-eye
calibration parameters required to visual servo a robotic boom when using image

based techniques.

68



4.3 Visual Servoing

Vision is a useful robotic sensor since it simulates the human sense of vision and
allows for non-contact measurement of the environment [31]. By using visual in-
formation, the pose (position and orientation) of a robotic manipulator may be
controlled relative to a target object. This type of control is referred to as visual

servoing.

Visual servoing is accomplished by first knowing the different transformations (i.e.
translations and rotations) between the various system reference frames. The co-
ordinates of a point P with respect to a coordinate frame x is noted by *P. Given
two coordinate frames, z and y, the rotation matrix representing the orientation of
frame y with respect to frame z is denoted by *R,,, while the location of the origin
of frame y with respect to frame x is denoted by the vector *T,. Together, the
position and orientation represent the pose of the coordinate frame, and is denoted

by “x, = (*R,,* T,) [31].

The robot used for the ELAP system was required to have 6 joints, providing
it with 6 degrees-of-freedom (DOF) to move (Figure 4.3). The robot’s reference
frame, B, is located at the base of the robot and its working area is defined with
reference to this point. The end-effector reference frame (interchangeably referred
to as boom-tip frame), E, located at the center of the boom-tip, is referenced to
the robots base frame. It is the end-effector frame origin that is used to visual

servo the emulsion hose to a hole for loading.

The ELAP VS reference frames and corresponding transformations are illustrated

in Figure 4.4. The camera reference frame C, cannot be accurately measured since
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Figure 4.3: ELAP robotic boom conceptual design. 6-joints to provide 6-degrees
of freedom (6-DOF). B, robot base frame; E, robot end-effector frame.

T cssan sl

Figure 4.4: Vision System reference frames and transformations. The reference
frames include: E - robot end-effector frame; C — camera frame; | — image frame;
S — sensor frame; O — object frame.

70



camera orig

Figure 4.5: Camera geometry with perspective projection.

it is located inside the camera housing, and is specific to each camera-lens con-
figuration. It is the geometric relationship between the camera coordinate frame,
C, and the end-effector frame, E, that is critical to perform visual servoing, and

therefore must be determined.

The geometry model for a camera/lens system is shown in Figure 4.5. The z and
y axis form a basis for the image plane, the z-axis is perpendicular to the image
plane along the optical axis, and intersects the image plane at the principle point
P = [up, vp). The cameras origin is located at a distance f, behind the image plane,

where f is the effective focal length of the camera lens.

The camera lens forms a 2D projection of the scene on the image plane where the
camera sensor is located. This projection causes direct depth information to be lost
as each point on the image plane corresponds to a ray in 3D space. The projective
geometry of the camera is modeled by perspective projection, where a 3D object
point °P = [z,y, z]T, whose coordinates are expressed with respect to the camera
coordinate frame, will project onto the image plane with coordinates p = [u,v]%,

given by

— A[RT| M (4.1)
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where A is the camera intrinsic (ie. internal) parameters:

f: 0 po
0 0 1

and R, T corresponds to the pose of the camera referenced to the 3D object frame

where R is the rotation matrix, and T is the translation vector,
T
T = [ te t, t, } (4.3)

1 T2 T3
o1 T2 T3 (4.4)

31 T32 T33

Since the camera sensor can only provide a 2D reference for the target object, depth
information must be obtained by other means to complete the cameras pose with
respect to an object. For this work, it is accomplished by mounting an ultrasonic
sensor next to the camera to provide distance measurement. The sensor reference
frame S, has its origin located at the end of the sensor housing. Therefore, when an
object is imaged, the sensor performs a distance measurement and the relationship
between the camera frame C, and the sensor frame S (Figure 4.4) transforms the
distance measurement to provide object depth information, and thus completing

the reference of the object with respect to the camera frame.

Thus, to perform visual servoing, the remaining transformation required is between
the camera frame C, and the boom-tip frame E. This transformation completes

the mapping from image units (pixels) to real world units (mm). A summary of
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the required transformations to reference a object point P from the camera frame

C, to the boom-tip frame E, is given by the following transformation equation:

Ep = EX. “Xgs “X; P (4.5)

where X represents the transformation between reference frames.

However, before the required transformations between the different reference frames
can be applied, various parameters must be determined, such as the camera pa-
rameters discussed previously. These parameters are determined by performing
two calibrations: a camera and a hand-eye calibration. The following will discuss

these calibrations outlining the required parameters calculated for each.

4.3.1 Vision System Calibrations

Using a camera/lens assembly attached to the end of a robot’s end-effector, the
pose of the drill-hole with respect to the camera frame must be determined, and
then mapped to boom-tip reference frame to move the boom-tip to the drill-hole.
To accomplish this overall mapping, a camera calibration and hand-eye calibration
must be performed. The camera calibration is required to calculate the camera
model parameters and the location of the hole with respect to the camera frame;
while the hand-eye calibration is required to determine the mapping from robot
boom-tip frame to camera frame. Once both calibrations are determined, visual

servoing the end-effector to a drill-hole for loading with emulsion can be achieved.
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4.3.1.1 Camera Calibration

Camera calibration in the context of three-dimensional (3D) machine vision is the
process of determining the internal camera geometric and optical characteristics
(intrinsic parameters) and/or the 3D position and orientation of the camera frame
relative to a certain world coordinate system (extrinsic parameters) [32]. For this
application, a camera calibration is required in order to infer the 3D information
using computer image coordinates [u,v], from a moving camera held by a robotic
boom relative to the target world coordinate system. As a result, both intrinsic

and extrinsic camera parameters must be calculated.
Camera Calibration Parameters

The parameters for the transformation from 3D object coordinates in the camera
coordinate system to computer image coordinates are called the intrinsic param-
eters. These parameters are specific to each camera and lens setting. Changing
either the camera type, lens, or lens setting will require a new calibration to be per-
formed since the parameters will be different in each case. The intrinsic parameters

are:
o fu. fy 1 effective focal length; the distance from the optical center to the
image plane in the z and y directions.

® p,,p, - principal point; the intersection of the optical axis with the image

plane.

® ki, ks, p1,p2 ¢ lens distortion coeflicients.
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Once the intrinsic parameters are determined, the extrinsic camera parameters
[R,T] which describe the pose of the camera system in the 3D world frame can

then be calculated.

The camera geometry model with perspective projection and radial lens distortion
is shown in Figure 4.6. Point P(zy, Y, 2w) is the 3D coordinate of the object point
in the 3D world coordinate system. Point P(x,y, z) is the same object point relative
to the 3D camera coordinate system, which is centered at point O., the optical
center, with z-axis the same as the optical axis. (u;,v;) is the image coordinate
system with origin at O; and parallel to the cameras x and y axes. f is the
effective focal length which is the distance between the front image plane and
the optical center. Point P,(u,,v,) is the image coordinate of the object point
P(z,y, z) projected on the image frame if a perfect pin-hole camera model is used
[32]. However due to lens distortion, primarily radial, the object point P(z,y, z) is
located at the distorted image coordinate Py(ug4,v4). Due to this error in projection
resulting from lens distortion, the distortion parameters must be determined to
compensate for this offset when calibrating the camera. This is particularly critical
for this work, since a wide angle lens is required for this application which exhibits

considerable lens distortion that must be handled.

Extensive research has been performed to develop an effective and efficient means
of performing camera calibration for 3D computer vision. The classical approach
[33] originating from the field of photogrammetry performs a calibration by ob-
serving a calibration object whose geometry in 3-D space is known with very good
precision. The calibration object usually consists of two or three planes that are
mutually orthogonal. This approach requires sophisticated precision equipment

and an elaborate setup that can be rather expensive. Other techniques employ a
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Figure 4.6: Camera geometry with perspective projection and radial lens distortion.

means of self-calibration which do not use a calibration object [34]. By moving
a camera in a static scene, the rigidity of the scene permits using image informa-
tion to identify correspondence between images (at least three) to allow for the
reconstruction of a 3-D structure. This technique requires estimating many of the
critical calibration parameters, and thus does not provide reliable results. Recent
work has focused on developing flexible and robust methods that use off the shelf
cameras and equipment, and can be performed by individuals who have minimal

experience in computer vision [32].

The method proposed by Zhang [35] was developed with the aforementioned con-
siderations in mind. The technique only requires a camera to observe a planar
pattern or object from several views (at least two). The pattern is of known ge-

ometry and should be printed at high resolution using a laser printer and attached
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to a reasonable planar surface such as plexiglass or a hard book cover. Either the
camera or the planar pattern can be moved since the motion need not be known.
For each view, the points on the object or model plane are projected onto the image
plane and the homography matrix for all points in the series of images is found.

The procedure developed is outline in Algorithm 4 [36].

Algorithm 4 Camera calibration

1: calibration object images, I = {I1, I5,...,I,,}

2: calibration points per image, p

3: for g =1to I, do
4:  find homography (ie. chessboard corners) for all points, p
5:  initialize intrinsic parameters, A; distortion is set to 0
6
7
8

find extrinsic parameters for each image of the object or pattern, [R,T]
: end for
: make main optimization by minimizing error of projection points with all pa-
rameters

Results generated using both computer simulation and real world data have proved
the effectiveness of this technique for camera calibration. A recent study conducted
by Sun and Cooperstock [37] compared the conventional world-reference based (3-
D object) approach to that proposed by Zhang. Their investigation identified that
the conventional approach does achieve higher accuracy when trained on data with
low measurement error. However, the calibration requires expensive equipment,
and a time-consuming measurement process that is not always easily afforded or
accessible. While the method proposed by Zhang, requires neither a laborious
measuring task nor specialized equipment, and can produce better results with
less accurate data. Improving the sensitivity of Zhang’s algorithm to pixel noise
can simply be overcome by increasing the number of grid corner points on the

chessboard pattern. This study demonstrated that Zhang’s planar approach is
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Figure 4.7: Chessboard pattern used for camera calibration.

both flexible and suitable for performing calibrations in dynamic environments
making it ideally suitable for this application. This approach developed by Zhang
has been incorporated into OpenCV [36], is free for use, and thus was used to

perform the required camera calibration for this work.

The camera to be calibrated was a Pulnix TMC-7DSP 1/2” CCD progressive scan
camera with a 3.5mm wide angle lens, and input to a Matrox Meteor-11/4MB
PCI frame grabber. The image resolution was 640 x 480 pixels. The calibration
object model was a chessboard pattern of 16 x 18 squares, with a square size of
10.159mm each. The chessboard pattern was printed at high resolution using a
laser printer and attached to a 1/8” white aluminum plate as shown in Figure 4.7.
The CamCal camera calibration software (GUI) application, as shown in Figure
4.9, was developed and included the OpenCV camera calibration routines. The
camera was mounted rigidly to the end-effector of the robotic boom as illustrated
in Figure 4.1 and four images of the chessboard object at different orientations
were acquired (Figure 4.8). Each image was then processed to locate the internal

object points (ie. chessboard corners) used to generate the homography matrix.

After the object points are extracted as shown in Figure 4.9, the user would deter-
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Figure 4.10: Camera calibration process.

mine if they (i.e. chessboard internal corners) have been labeled correctly to accept
the image for calibration. If the labeling was incorrect, the extracted object points
and image would be discarded and the process would continue until at least four
images were captured with correct labeling. The process of performing a camera

calibration is illustrated in Figure 4.10.

Although only two images are sufficient to perform a calibration, more images are
suggested to improve the accuracy of the calibration parameters. Therefore, four

images with the chessboard corners extracted and correctly identified are used.
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Table 4.1: Camera calibration parameters calculated. Calibration used a chessboard
size of 16 x 18, and a square size 10.0159mm (calc.).

Parameter Test 1 Test 2 Test 3
FocalLength Xpixels | 347.2757 353.9817 366.2279
FocalLength Ypixels | 346.3365 353.2321 366.1256
PrincPointX 321.3295 322.6051 327.3821
PrincPointY 251.6542 250.4295 256.7823
CameraMatrix0 347.2757 353.9817 366.2279
CameraMatrix1 0.0000 0.0000 0.0000
CameraMatrix2 321.3295 322.6051 327.3821
CameraMatrix3 0.0000 0.0000 0.0000
CameraMatrix4 346.3365 353.2321 366.1256
CameraMatrixb 251.6542 250.4295 256.7823
CameraMatrix6 0.0000 0.0000 0.0000
CameraMatrix7 0.0000 0.0000 0.0000
CameraMatrix8 1.0000 1.0000 1.0000
Distortionl -1.9551e-01 | -2.2248e-01 | -2.0364e-01
Distortion2 5.0969¢-02 | 8.4222¢-02 | 4.956e-02
Distortion3 8.4428e-04 | 1.1911e-03 | 9.1433e-05
Distortion4 2.9581e-03 | 2.8967e-03 | -1.3251e-03

For every image view, the extracted internal corner points on the model plane
(ie. chessboard) and their projections onto the image are passed to the calibration
routine to calculate the camera calibration parameters. The calibration parameters
calculated, are automatically saved to the file ELAPCalibration.cal to be used for
image distortion correction and visual servoing. The camera calibration parameters

calculated are shown in Table 4.1 for three calibrations performed.

Once a camera calibration is performed, it is then reviewed to determine the qual-
ity of the results. The quality of calibration parameters calculated is dependent on
how well the calibration grid corners were segmented using the OpenCYV calibration
function FindChessboardCorners(). Poor or uneven lighting may cause blurring
at the grid corners, which would result in errors for their extracted locations. To

evaluate the calibration performed, the calibration parameters are applied to an
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Figure 4.11: Correcting image distortion after camera calibration parameters deter-
mined. (a) is the original image of the chessboard grid, and (b) shows the corrected
image after distortion parameters are applied.

image as illustrated in Figure 4.11. The original chessboard image (Figure 4.11(a))
appears curved toward the image border and is a direct result of radial lens distor-
tion. The image shown in Figure 4.11(b) is the original image after calibration is
applied. The lens distortion has been removed and the chessboard has regained its
orthogonal characteristics. Depending on the quality of the calibration parameters,
this distortion may not be sufficiently estimated, and thus the calibration must be
repeated until the results are satisfactory. The calibration parameters determined
for each of the tests provided in Table 4.1 were evaluated to determine the best cal-
ibration. The first distortion coefficient for each test resulted in a negative value.
The negative represents barrel-type distortion which was clearly observed in all
images. However, once the distortion parameters for tests 2 and 3 were applied to
the calibration images, the lens distortion was not fully corrected as compared to
that of test 1. Thus as a result, the parameters from Calibration 1 in Table 4.1

provided the best overall results and were used for this work.
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4.3.1.2 Hand-Eye Calibration

In order to use a gripper mounted sensor such as a camera, for a robotic task, the
relative 3D position and orientation between the camera and the gripper must be
known. The problem of determining this relationship is referred to as the hand-eye
calibration problem [38]. More specifically, its the relative rotation and translation
between the two coordinates frames, one centered at the camera coordinate frame,
C, and the other at the end-effector, E, as shown in Figure 4.4. The end-effector
coordinate frame is typically centered on the last link of the robot manipulator

(end effector/boom-tip frame for this work).

Direct measurements between coordinate frames are difficult as there may be ob-
stacles to obstruct the measurement path, the points of interests may be inside
equipment and therefore unreachable, or the coordinate frames may differ in their
orientation. The measurement path can be obstructed by the geometry of the
sensor or robot, the sensor mount, cables, etc. The camera frame is unreachable
since it is inside the camera housing, however, the robotic end-effector frame has
been provided by the robotic arm design team and is located at the center of the
end-effector hose guide, mounted at the end of the robotic boom, which is acces-
sible for measurement [39]. Rather than direct measurement, this relationship can
be determined by displacing the robot and observing the resulting motion in the

image frame.

The hand-eye problem has been formally described as the solution to the homoge-

neous transform equation of the form:

AX =XB (4.6)
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Figure 4.12: Finding the mounting position of a camera with respect to the robotic
arm end-effector frame by solving a homogeneous transform equation of the form
AX = XB, where A is the robot motion, B is the resulting camera motion, Oy; is
the object referenced to the camera frame, and X is the camera mounting position.
where A is the known change in the end-effector position, B is the known resulting

sensor displacement, and X is unknown transformation of the camera relative to

the end-effector frame as shown in Figure 4.12.

Considerable research has been performed to develop a procedure for hand-eye
calibration with much success, each with varying observations and assumptions
to formulate a solution. Practically all methods attempt to solve a homogeneous
transform equation of the form in Equation 4.6. Tsai and Lenz [40], Shiu and
Ahmad [39], Chou and Kamel [41], Chen [42], and Wang [43] all use a closed form
solution to solve the system of equations developed. Tsai and Lenz, and Shiu and
Ahmad decouple the hand-eye calibration from the robot model calibration and use
linear rather than high dimensional non-linear optimization methods which require
a good initial guess and accurate data for convergence as proposed by Dornaika
and Horaud [38]. They formalize the system of homogeneous equations of the form

AX = 7B, where X is the end-effector to camera transformation as before, and Z
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is the robot to world transformation. This technique does not require the camera
intrinsic and extrinsic calibration parameters to be known, but does require a good
initial guess for a solution. Another self-viewing hand-eye calibration is proposed by
Meinicke and Zhang [44] where the camera directly observes the end-effector. Being
purely vision based, this calibration method is not restricted by the precision in the
robots kinematics, and can provide an on-line updated calibration to compensate
for any disturbance in the hand-eye geometry. However, the end-effector calibration
points for this setup may be few in number, collinear or concentrated in a small

region, or not easily segmented from the image accurately.

For this work, the hand-eye calibration was performed using a variation of the
method outlined by Shiu and Ahmad [39]. Shiu and Ahmad formulate the homo-
geneous transform equation using Figure 4.12. By moving the robot from position
E; to E;, and the position of the fixed object relative to the camera frame is found

to be Op;1 and Oyjo respectively; then the following equation can be obtained:
E;'E;X = X004} (4.7)

where E;'E; is the relative motion made by the robot and which is denoted by A

as in Equation 4.6, thus
A = E’ E, (4.8)

Similarly, Obngb“jll can be denoted by B, again as in Equation 4.6 which is the

relative motion of the camera frame.
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The transform matrices A and B are known, since E; and E, can be obtained
directly from the robot controller to provide the 3D points in world coordinates; and
Op;1 and Op;o can be found relative to the camera frame after a camera calibration
has been performed. In addition, the robot manipulator must possess enough
degrees-of-freedom (DOF) to be able to rotate the camera around two different

axes while keeping the camera focused on the calibration object.

However, a complete hand-eye calibration was not performed as a part of this
project. It was decided that by mounting the camera and gripper in an attempt
to align their coordinate frames (i.e. no rotation, only translation) would reduce
the complexity of the calibration without jeopardizing the usefulness and quality
of the solution. Thus, this specification reduced the hand-eye calibration to one

equation:
X =" To Oy (4.10)

where T represents the translation from the object frame relative to the end-effector
frame E, and Oy, is the object projected onto the image frame measured relative to
the camera frame. Again, all frames were aligned as closely as possible, including
the object frame, to reduce the requirement of knowing the rotation component.
The hand-eye transformation X, can then be found once the other transformations

have been determined.

4.3.1.3 Hand-Eye Calibration Setup

The hand-eye calibration setup involved ridgedly mounting the same camera and

lens configuration used for the camera calibration to the gripper of a RT200 robot
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arm, as illustrated in Figure 4.13. The camera and lens were aligned with the
gripper frame to minimize the rotation component of the calibration. A chessboard
calibration object of size 8 x 10 squares measuring 20mm each, was aligned with the
gripper frame to minimize the rotation component between the respective reference

frames.

The process of performing a hand-eye calibration is illustrated in Figure 4.15 us-
ing the CamCal software. The CamCal, includes a software component developed
to determine the hand-eye calibration by capturing images of the chessboard cal-
ibration object, as shown in Figure 4.14. For each image captured, the camera
calibration parameters previously calculated are applied to compensate for lens
distortion, and subsequently undistort the image. The extracted chessboard cor-
ner points are then used to calculate the extrinsic parameters for each image. The

-
bj »

extrinsic parameters provide the object transformation O, ", relative to the camera
frame for the corresponding gripper position. Once three chessboard object images
are acquired (one image would suffice, however, three images are captured and the
average result is used), the object frame translation Ty relative to the gripper
frame is measured and input to the software. Using the O;;' and ?To transforma-

tions determined, the hand-eye calibration was calculated using Equation 4.10.

To verify this approach for calculating the hand-eye calibration, the calibration
object was moved to several locations with respect to the RT200 robot’s gripper
frame. At each location, alignment was maintained between the object and grip-
per reference frames and the hand-eye calibration was calculated. The results were
validated by taking an approximate measurement of the translation between the
gripper and camera frames, noting the gripper as the reference frame. The mea-

sured and calculated translations for the three object locations are listed in Table
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Figure 4.13: Setup for hand-eye calibration using the RT200 robot arm. Equipment
setup includes: a RT200 robot arm, a gripper mounted camera, and diffuse lighting
using two frosted 40W bulbs as shown.
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Table 4.2: Hand-Eye

calibration results for the RT200 robot arm.

Translation | Measured (mm) | Location 1 (mm) | Location 2 (mm) | Location 3 (mm)
X -165 -162.54 -162.2 -161.66
Y -315 -317.72 -309.4 -314.85
Z -80 -92.59 -91.10 -78.8

R

Figure 4.14: Hand-Eye calibration GUI window.

4.2 and represent the hand-eye calibration parameter values for this configuration.

As shown in Table 4.2, the calculated results for the hand-eye calibration using the

RT200 robot arm and the gripper mounted camera were very close to the expected

values, thus verifying the approach used.

The same approach was used to perform the hand-eye calibration between the cam-

era and robotic boom end-effector for the ELAP vision system, as shown in Figure

4.16. The calibration object was aligned with the end-effector coordinate frame

and the translation measurements between them were recorded. The CamCal soft-

ware was then used to capture images of the calibration object, and subsequently

calculate the hand-eye calibration using the input object to end-effector translation

measurements. Results of the hand-eye calibration were output to the same cal-
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Figure 4.15: Hand-Eye calibration process.
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Figure 4.16: Hand-Eye calibration setup for the full-scale ELAP robotic boom
assembly. Equipment shown includes: end-effector hose guide, tracker lights for
drill-hole lighting, camera enclosure, distance sensor enclosure, and calibration jig
temporarily mounted to end-effector.

Table 4.3: Hand-Eye calibration results for the translation component for the full-
scale ELAP unit.

Parameter | Measured (mm) | Test 1 (mm) | Test 2 (mm)
X -65 -63.50 -69.66
Y -202 -206.375 -209.55
Z -163 -161.925 -163.32

ibration file, FLAPCalibration.cal, containing the camera calibration parameters.

The ELAP hand-eye calibration results are provided in Table 4.3.

The hand-eye parameters are then used during visual servoing to transform object
(i.e. drill-hole) measurements in the camera frame to the gripper frame for guidance
purposes. The effects of not including the rotation component for the coordinate
transformations is investigated during visual servoing, which is discussed in Section

4.5.

91



4.4 Control Scheme Selection

Visual servoing has proved to be a highly effective means to control a robot manip-
ulator through the use of visual data. Visual servo methods have classically been of
the look-and-move type which can be divided into two approaches: position-based,
and image-based control systems. In position-based visual servoing, features are
extracted from the image and used in conjunction with a geometric target model
and the camera model (ie. camera calibration) to estimate the pose of the target
with respect to the camera. Using the feature values, an error between the current
and desired pose of the robot is estimated in pose space. However, in image-based
visual servoing the control values are computed using the image features directly
[31]. The control scheme for each servoing approach is illustrated in Figure 4.17
(a) and (b). For this application, an image-based Look-and-Move approach is used,
Figure 4.17 (c¢), whereby a gripper-mounted sensor (i.e. a camera) is used to vi-
sually guide a robot gripper to move to different locations within its workspace.
To do this, both the relationship between the gripper and camera (hand-eye cali-
bration), and between the object and camera (camera calibration) must be known,
and subsequently applied to each image captured. These calibrations and their

corresponding parameters were discussed in Section 4.3.1.
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Figure 4.17: Visual servoing control schemes. (a) Position-based visual servoing
(PBVS), (b) Image-based visual servoing (IBVS), and (c) Proposed ELAP Look-
and-Move visual servoing.
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4.5 Vision System Implementation

As previously stated, the second objective of the ELAP vision system is to visual
servo the robotic boom to each drill-hole for loading with emulsion. To achieve
this objective, a review of the existing manual process of loading drill-holes was
performed, and the process was then incorporated into the LPS as the main high
level logic controller as illustrated in Figure 4.18. The implementation of the LPS
controller into software was a separate development project and is not included as
a part of this thesis. The next section provides an overview of the LPS control
process, and outlines the vision system implementation for visual servoing the

robotic boom to each drill-hole for loading with emulsion.

4.5.1 LPS Control Process

During drift development, holes are drilled into the rock face, the back, or the floor
according to the specified drill plan diagram. The drill plan diagram is produced
by mine personnel and is based on the outline of the ore-body. Holes are drilled
at specified locations to develop the ore-body, and maximize the amount of raw
material produced from each blast. The drilling machine is setup in the area to be
drilled, and information such as drill-hole depth, size, and hole collar coordinates

are recorded.

The LPS begins by selecting a drill-hole from the drill plan diagram recorded during
the drilling process. After drilling, the coordinates of each drill-hole is known only
in mine space, and thus are transformed to end-effector space which is controlled by

the ELAP Robotic Boom Controller (RBC). Once transformed, an approach pose
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Figure 4.18: LPS control procedure for loading drill-holes for a specified drill plan.
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is calculated which positions the robotic boom such that the drill-hole is in view
of the end-effector mounted camera. This initial approach pose reduces the search
area for locating the target drill-hole in the image, and thus enables the use of a
simplified segmentation algorithm as previously discussed. After the camera/boom
assembly has been positioned using the approach pose, the visual servoing process
first aligns the camera with the drill-hole and then visual servos the hose guide to
the drill-hole. After all drill-holes have been loaded, the boom is stowed to prepare

for blasting.

4.5.2 VS Commands

The VS software is a server-based command line application that continuously waits
for a command to be sent from the LPS controller (the VS only communicates with
the LPS sub-system) over Ethernet communications. The commands issued by the
LPS to the VS are GetStatus, FindHole, and FindHoleROI as shown in Figure
4.19. The GetStatus command is sent to inquire about the operational state of
the VS which performs diagnostic checking (ie. valid video stream, sensor commu-
nications, and temperature) to ensure the VS is operating normally. FindHole and

FindHoleROI are the main LPS commands transmitted to the VS to both identify
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and visual servo to drill-holes after the approach pose is complete. Figure 4.20

outlines the process details for these three commands.

4.5.3 Visual Servoing Process

With reference to Figure 4.18, after the LPS positions the camera at the approach
pose for a drill-hole, the LPS begins by first sending the FindHole command to the
VS. As shown in Figure 4.20, upon receiving this command, an image is acquired
from the video stream and the camera calibration parameters previously calculated
are applied to correct for lens distortion. Image processing algorithms developed
are then used to segment drill-holes from the image, and classify each using the
corresponding feature data. Figure 4.22 shows the approach pose image acquired

by the FindHole command with found drill-holes indicated by a cross-hair.

For visual servoing to occur, each drill-hole found must be referenced to the camera
frame. The cameras center of projection intersects the image frame at the principal
point, and thus aligning this point with drill-hole image coordinates (u,v), effec-
tively aligns the camera with the drill-hole. This is accomplished by calculating
a delta or offset from the drill-hole (u,v) relative to the principal point, (ps,py).
However, this delta move must be calculated in real world units (mm) for posi-
tioning of the end-effector. This transformation is illustrated in Figure 4.23, and
the delta move in pixels (dz,dy) was calculated in real world units (mm) using

Equations 4.11 and 4.12.

do = -“—;—p—“’-z (4.11)
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(a)b Actual rock face image captured from (b) Corresponding image with found drill-
video stream. ‘ holes indicated.

Figure 4.22: Actual approach pose image and corresponding found drill-hole after
image processing.

dy = ”;—pyz (4.12)
Yy

dx,dy : required delta move in mm.

u,v: image coordinates of the object (i.e. drill-hole) that the camera is to be

aligned with in pixels.

Pe, Py ©  coordinates of the principal point in the image frame (i.e. the intersection
of the cameras optical axis with the image frame) in pixels. Calculated during

camera calibration.

fz, fy :  effective focal length calculated (i.e. the distance from the cameras center
of projection to the principal point) in pixels. Calculated during camera

calibration.

Z : real world distance referenced from the lens to the object in mm. Provided

by the boom mounted ultrasonic distance sensor.
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The effective focal length, f;, f,, and the principal point coordinates p;, p, were
calculated during camera calibration. The Z distance is measured using the ultra-
sonic sensor and is referenced to the camera frame. These parameters are loaded
from the calibration file FLAPCalibration.cal, a sample of which is provided in

Appendix C.

After the delta move is calculated, the FindHole command is completed, and
the VS returns the required information for each potential drill-hole identified in
the image to the LPS for processing, specifically: the delta move (z,y, z) in mm
referenced to the camera frame, and the cameras principal point (p,,p,). The
LPS then compares the location of each potential drill-hole using the delta move
information, to the expected location as specified in the drill plan. The drill-hole
that is within a specified tolerance of the expected location is selected for visual
servoing. If no drill-holes are within the tolerance, operator assistance is requested

to locate and visual servo to the drill-hole.

Once a drill-hole has been selected for visual servoing, the LPS begins the process
of aligning the cameras reference frame (ie. the principle point) with the drill-hole
image center (u,v) using the corresponding delta move information provided. The
LPS sends a move command to the RBC to offset its current location in end-effector
space using the delta move information. Once the robotic boom has reached its
new location, the LPS sends the FindHoleROI command to begin visual servoing.
The FindHoleROI command is very similar to the FindHole command as shown in
Figure 4.20. However, the FindHoleROI command is used to take advantage of the
information found after issuing the FindHole command by focusing the attention to
a region of interest (ROI) in the image where the drill-hole is expected to be located

after performing the delta move. This is accomplished by passing the expected
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(u,v) coordinate of the drill-hole along with the drill-hole diameter, as command
arguments. The drill-hole diameter is recorded in the drill plan and is a standard
size depending on the type of holes drilled; production (4-inch) or development
(2-inch) holes. The expected (u,v) coordinate of the drill-hole can be referenced
to either the camera frame or the boom-tip frame by passing either CAMERA or
BOOM-TIP as the parameter for visual servoing. Visual servoing with respect
to the camera will align the drill-hole with the cameras principle point (ps, py),
while visual servoing with respect to the boom-tip will align the boom-tip to the
drill-hole, since the hand-eye calibration parameters are used to calculate the delta
move image plane coordinates (u,v) corresponding to the boom-tip. Depending
on the reference frame selected, the (u,v) coordinate locates the ROI or subimage
center while the drill-hole diameter is used to determine its size (ie. width and
height). By obtaining a distance measurement at the current position referenced
to the camera frame, the size of the drill-hole in image pixels can be determined
using Equations 4.13 and 4.14. The dimensions are increased by 10% to ensure

that the drill-hole does not lie on the ROI subimage border.

ROI, = 7 (4.13)
RroI, = 42 0v (4.14)
Z
ROI,,, ROI, : delta move in pixels.
d: drill-hole diameter in mm.
fz, fy: focal length calculated (i.e. the distance from the cameras center of

projection to the principal point) in pixels.
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Figure 4.23: Delta move calculation for visual servoing.

Z . real world distance from the lens to the object in mm.

The ROI subimage then undergoes the same image processing as before with the
FindHole command, to segment and classify any drill-holes in view, typically only
one for a ROI subimage. The delta move to align the camera or boom-tip with the
drill-hole, along with the (u,v) coordinate of the expected image location of the
drill-hole after the delta mové is performed, is returned to the LPS for processing.
Visual servoing continues until it is determined by the LPS that the calculated
delta move is within a specified tolerance. If the tolerance criteria is not met,
subsequent FindHoleROI commands are sent to the VS until it is achieved. If the
tolerance is met, the LPS terminates the visual servoing as the camera or boom-tip
is now aligned with the drill-hole. The proposed ELAP visual servoing process is

summarized in the flow chart shown in Figure 4.21.

4.5.4 Visual Servoing Results
45.4.1 Lab Testing

To verify the visual servoing technique proposed, a similar setup for the hand-eye

calibration was used consisting of the RT200 robot arm, an Opticom 1/2” CCD
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Figure 4.24: Visual servoing test setup. (a) shows the equipment used for testing
(RT200 robotic arm, camera, and simulated underground rock face containing drill-
holes), and (b) shows the VS and LPS software, and the current image grabbed and
processed from the video stream.

color camera, a simulated underground rock face containing drill-holes, and versions
of the VS, LPS, and RT200 control software installed on a desktop computer as
shown in Figure 4.24. The RT200 robot base was positioned at a fixed location and
maintained an offset distance of Z = 1000mm from the simulated rock face. An
approximate measurement of the locations (i.e. the hole collar) of five drill-holes
in the simulated rock face was recorded with respect to the RT200 robot’s base
frame. The location information recorded was then used to provide the respective
approach pose for each of the drill-holes. The LPS software then tasked the robot
arm to position the camera at the approach pose for each drill-hole. The LPS then
began the visual servoing process, by sending the required commands to the VS and
robot arm controller software until the delta move tolerance was met, indicating
that the camera is aligned with the drill-hole. The offset (i.e. error) of the cameras
principal point with respect to the drill-hole center was measured and recorded
once the camera was aligned. The visual servoing process of aligning the camera
to each drill-hole continued for the remaining holes. The same process was also
performed to test the visual servoing of the robot gripper to each of the five drill-

holes. The visual servoing error for the gripper was measured from the gripper tip
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Figure 4.25: Visual servoing error (rms) using simulated rock face and RT200
robot for five drill-holes. (a) error measured when visual servoing the camera to
each drill-hole, and (b) error measured when visual servoing the gripper to each
drill-hole.

center to the center of the drill-hole. The visual servoing error (rms) recorded for

both the camera and gripper frames is shown in Figure 4.25.

Based on the measured data, an approximate offset (i.e. to achieve alignment) of
{dx = —9,dy = —5} pixels was required and used to improve the camera align-
ment. This offset referenced to the camera frame, represented moving the camera
left and upward to achieve alignment. However, adding this offset did not elim-
inate the visual servoing error completely. A small misalignment continued to
remain that may be resultant from errors introduced during camera calibration,
inaccurate segmentation of the drill-hole center during image segmentation, the
considerable amount of ‘slack’ in the RT200 robot arm joints, or a combination
thereof. Attempts to minimize this offset further by reducing the tolerance during
visual servoing were unsuccessful, and only increased the number of delta move

iterations to achieve the same alignment accuracy.

Similar performance was observed when visual servoing the RT200 robot arm grip-

per to each drill-hole, which required an offset of {dz = —19,dy = —13} mm for
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alignment. This error may be the result of the errors in the hand-eye calibration,
particularly the absence of the rotational component, and the sources of error al-
ready mentioned. The testing was repeated 10 times for each simulated drill-hole,
and produced similar results. Given that the results could be repeated with a small
error present, the testing demonstrated that the proposed visual servoing approach
was successful and it could be implemented as the design for the full scale ELAP

system.

4.5.4.2 Full Scale System Testing

Full scale system testing using the ELAP robotic boom and VS components, were
conducted in an underground research mine after the required ELAP subsystems
were integrated and operational. Drill plan data recorded for a ring of drill-holes
was used to test the VS, LPS, and RBC subsystems to verify the process control,
image capture, drill-hole identification, and the visual servoing capability for the
ELA»P syétem prototype. The images in Figure 4.26 are a subset of an actual mis-
sion, and represents the images of a drill-hole that were captured and processed to
first visual servo the camera and then the boom-tip for loading. This image set is
also found on the CD-ROM located at the end of the document. The first image in
F igufe 4.26(a) represents the initial approach pose. This image was processed and
three objects were identified as indicated by the cross and returned to the LPS.
Using drill plan information, the LPS selected the target object and proceeded to
visual servo the camera to the drill-hole using the FindHoleR0I command by pass-
ing the CAMERA parameter first to indicate alignment with the camera reference
frame as shown in images (b) through (d). Once the camera was aligned, the LPS

procéeded with visual servoing the boom-tip to the drill-hole. The remaining im-
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ages (e) through (k) represent the visual servoing of the boom-tip to the drill-hole
by sending the FindHoleROI command and passing the BOOM-TIP parameter to

indicate the specified reference frame.

Despite the reliability of the visual servoing process with respect to the boom-
tip frame, tests performed on various drill-holes identified that a regular offset of
{dz = —25mm, dy = 17mm} referenced to the end-effector frame was required to
dock the hose guide with the drill-hole collar. This reproduced the same operational
performance observed with the prototype setup during ‘lab testing. The error may
be a result of the limited accuracy of the transformation measurements recorded
during initial setup, required calibrations performed, or the accuracy of the drill
plan data recorded during surveying. During full-scale testing, the offset was ap-
proximated only, by looking down the hose guide and observing if the hose guide
was centered with the drill-hole. By including this offset when docking, aligning
the hose guide with the drill-hole could be achieved, and the hose could be suc-
cessfully inserted into the drill-hole for subsequent loading with emulsion. Visual
servoing to other drill-holes within the mine was successfully performed to validate
the identified offset. The results for each drill-hole servoed, verified the visual ser-
voing capability as designed, with the successful insertion of the end-effector’s hose

into each drill-hole for loading with emulsion.
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(a) Approach pose (b) (c)

6] (k) Boom-tip aligned

Figure 4.26: ELAP full scale visual servoing tests in an underground mine. (a) is
the approach pose image, (b)-(d) represent images grabbed during visual servoing
the camera to the drill-hole, and (e)-(k) represent images grabbed during visual
servoing the boom-tip to the drill-hole using hand-eye calibration information. Full
size images of this set are included on the accompanying CD-ROM.
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Chapter 5

Conclusions and Recommendations

5.1 Summary of Results and Conclusions

The use of vision equipped robots has been a proven tool in the manufacturing
setting for a long time. However, the underground environment of an operating
mine cannot be closely controlled, and thus adapting vision guided systems to this
dynamic environment is no trivial task. With these challenges in mind, the ELAP
project forged ahead with the goal of automating an emulsion loader used in un-
derground mining operations. This thesis focused on the vision system component
for this project, and thus organized the work into two main parts: to fulfill the
challenging imaging requirements of locating and identifying drill-holes in the rock
face of an underground mine, and secondly, to provide visual guidance to the hose

guide for loading identified drill-holes with emulsion.

The first task in developing the ELAP VS was the development of the image

processing algorithms to segment and identify drill-holes present in an image of
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a underground rock face acquired from the video stream. An underground mine
is a dynamic environment where non-uniform lighting, dust, water, and drill-hole
obscurities challenge the imaging requirements. However, a key operation of the
proposed ELAP system assists to reduce the drill-hole search task by using drill
plan information to provide an initial pose for the robotic boom which positions
the camera in front of the drill-hole. Rather than having to process an image of an
entire rock face, the search area is greatly reduced to that of the drill-hole vicinity,
provided that the blast plan data recorded is accurate. This approach reduced the
image data to process, reduced the amount of background clutter, and permitted

the use of simplified segmentation techniques to provide greater system response.

The image processing algorithms developed attempted to mitigate the adverse
conditions for successful segmentation of drill-hole objects. Initial image pre-
processing techniques such as window leveling were employed to improve image
contrast. Thresholding and morphological operations were then also applied to
remove small image objects, connections between touching objects, and fill any
holes within objects. Blob analysis was then performed on the segmented image
objects to calculate feature data to formulate a criteria for drill-hole selection. Over
1100 images were evaluated to determine the robustness of the algorithm. Using
the specified lighting configuration with a diffuse pattern, the algorithms would

perform sufficiently well to segment the drill-hole from image.

However, not all segmented objects were drill-holes and thus a classification model
was developed using image features calculated during blob analysis. The classifier
was designed using the MLC discriminate, and image features of new drill-hole
candidates sampled were compared to the feature values of the training model.

The candidate objects were then classified as either a background artifact and
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discarded, or as a drill-hole where the results were returned to the calling function
for further consideration. The FSS techniques which included a genetic algorithm,
a sequential forward selection, and an exhaustive search were employed to both
reduce and find an optimal feature subset for classification from the initial set
of 19 features: Due to the small initial feature count, the ES strategy could be
used. This resulted in a subset of only 9 features with an accuracy of 96.07%.
The GA and SFS techniques, although non-optimal, were also tested to compare
performance. For this data set, both the GA and SFS methods had comparable
performance with a difference of only 0.5%. However, using a different or modified
training and testing set will likely widen the performance result between the ES

method and the other techniques.

The second part of this thesis focused on the overall vision system design to provide
visual guidance to position the robotic boom’s hose guide in front of a drill-hole
for loading with emulsion. This included the selection of system components both
hardware and software, necessary to fulfill the operational requirements. Using
the camera and distance sensor mounted to the end of the robotic boom, camera
and hand-eye calibration procedures were developed and implemented into a GUI
software package. The two procedures determined the required calibration data to
transform the drill-hole appearing in an image to both the camera and end-effector
reference frames. A visual guidance algorithm included into the developed VisSys
application software, communicates with the LPS to permit visual servoing of the
robotic boom’s hose guide to a drill-hole for loading. Visual servoing testing was
conducted both in the lab using a RT200 robot using a simulated rock face, and in
an underground mine with the full-scale ELAP unit. Both levels of testing validated

the overall system design with the successful visual servoing to a drill-hole.
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As a result, for optimum performance during drill-hole segmentation and classifi-

cation, the following conclusions were drawn:

e Images of drill-holes captured where the surrounding area is wet, cause drill-
holes to appear ‘washed out’ and result in poor segmentation after window
leveling is applied. Additional techniques to process images containing water

should be investigated further.

e Diffuse lighting is required to provide optimum contrast between drill-holes
and the background rock face. The lighting should have no distinct pattern

such that it provides an even distribution of light for the viewable area.

e The pattern recognition model and subsequent classification performance is
dependent on how representative the training data is in comparison to new
data being classified. Once the lighting type and configuration has been
finalized, training data should then be gathered for different rock types and
conditions, and updated regularly to sufficiently train the recognition model

to ensure optimum performance.

e The ES feature subset selection strategy should be used when practical, to
provide the optimum classification performance. However, if results are re-
quired in a more timely manner or if a large number of features are used,
the GA and SFS techniques should be investigated to provide comparable

performance.
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5.2 Recommendations

The work presented in this thesis represents the initial research and development
phase for the ELAP vision system. Further development will be necessary to mit-
igate deficiencies and issues identified during system integration, and field testing.
The following recommendations are suggested for subsequent development of the

ELAP vision system.

e Improve image segmentation. In cases where lighting is sub-optimal, suggest
selecting a series of threshold values and combine the results from each in
an attempt to increase the robustness of the segmentation process. Also,
investigate techniques that may be more effective in segmenting images of

reduced contrast, particularly, those that contain wet or watery areas.

e Review the foreground lighting design. The halogen tractor lights used, do
not provide the flat diffuse lighting required to provide good contrast, and
thus should be replaced with a more suitable lighting source. Also, the light-
ing mounting arrangement should be streamlined such that they do not limit

the maneuverability and work space of the end-effector.

e Position the camera such that the end-effector can been observed in the cam-
eras field of view. This will serve as a constant reference point between the
camera and the end-effector, and will attempt to improve the visual servoing

accuracy of the end-effector to the drill-hole.

e Update the drill-hole training model data online, as each new drill-hole is
identified. This will provide a better representation for the drill-hole training

model to help assist in reducing the false positive rate.
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e Improve the camera calibration process. Correctly and accurately isolating
the corners on the calibration object (i.e. checkerboard) proved to be difficult
if lighting conditions were less than ideal. Substituting the checkerboard
with a similar grid of dots has been successfully demonstrated, and can be

segmented more easily under adverse lighting conditions.
e Modify the hand-eye calibration to include the rotation component.

e Re-design the imaging system to incorporate a 3D laser scanner for imaging
the rock face rather than video. A laser scanner would eliminate the depen-
dency on recorded drill plan data, since the drill-hole locations will now be
identified using the same equipment within the same reference plane, and

thus minimizing the errors introduced.
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Appendix A

Image Segmentation Results For
Sample Drill-Hole Images

121



(a) sampled image (b) contrast enhancement applied

(¢) morphology applied (d) segmented image

Figure A.1: Example #1 - Drill-hole image segmentation results.
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(a) sampled image

{¢) morphology applied (d) segmented image

Figure A.2: Example #2 - Drill-hole image segmentation results.
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(c) morphology applied (d) segmented image

Figure A.3: Example #3 - Drill-hole image segmentation results.
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(a) sampled image (b) contrast enhancement applied

(¢) morphology applied (d) segmented image

Figure A.4: Example #4 - Drill-hole image segmentation results.
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(a) sampled image (b) contrast enhancement applied

(c) morphology applied (d) segmented image

Figure A.5: Example #5 - Drill-hole image segmentation results.
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(a) sampled image (b) contrast enhancement applied
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(c) morphology applied (d) segmented image

Figure A.6: Example #6 - Drill-hole image segmentation results.
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(a) sampled image (b) contrast enhancement applied

(¢) morphology applied (d) segmented image

Figure A.7: Example #7 - Drill-hole image segmentation results.
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Appendix B

Features Used For Classification

The following provides a description of the original 19 features selected for classi-
fication of segmented image objects. The final set of features used are a subset as
selected by the F'SS optimization techniques discussed in Chapter 3. The features
are enumerated for identification as in Table 3.1.

e Minimum Pixel(1) The minimum intensity value in a blob.

e Mean Pixel(2) The average pixel intensity value in a blob: EA” L pi is the

intensity of the it" pixel.

e Standard Deviation of Pixels(3) The standard deviation of the pixel
values in a blob.

where: N= the number of pixels, and p;= the intensity of the i*" pixel.

o Compactness(4) Derived from the perimeter P and area A, which has the
minimum value of 1 for a circle. The more convoluted the shape, the greater
the value.

e Feret Elongation(5) A measure of the shape of the blob. A Feret diameter
is calculated by measuring the diameter of the blob at a certain angle mea-
sured from the horizontal. For minimum Feret diameter, f, n Feret diameters
are measured at n/180 angles and the minimum diameter is selected. The
maximum Feret diameter, F', is calculated the same way, but the maximum
diameter is selected. Feret elongation is equal to F/f.
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e Central Moment X0Y2(6) Normalized gray scale second order central
moment. It is a measure of how horizontally dispersed the object’s pixels are
from its centroid.

, > Yips
CMX0Y2 = —A2—f- (B.2)
where:
y;= horizontal distance from the ** pixel to the centroid of the object.
pi= the intensity of the i* pixel.
A= the area of the object in pixels.

e Central Moment X2Y0(7) Normalized gray scale second order central
moment. It is a measure of how vertically dispersed the object’s pixels are
from its centroid.

2.
CMX2Y0 = Zj;p : (B.3)

where:

x;= vertical distance from the 7*" pixel to the centroid of the object.
p;= the intensity of the it" pixel.

A= the area of the object in pixels.

e Central Moment X1Y1(8) Normalized gray scale second order central
moment. It is a measure of how horizontally and vertically dispersed the
-object’s pixels are from its centroid.

CMX1Y1= ;;# (B.4)
where:
x;= vertical distance from the i** pixel to the centroid of the object.
y;= horizontal distance from the i** pixel to the centroid of the object.
-p;= the intensity of the i*" pixel.
A= the area of the object in pixels.

e Binary Central Moment X0Y2(9) Normalized binary second order cen-
‘tral moment. It is a measure of how horizontally dispersed the object’s pixels
are from its centroid.

2.
BCMX0Y?2 = zj;'pl (B.5)

where:
y;= horizontal distance from the i*" pixel to the centroid of the object.
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pi= the intensity of the " pixel.
A= the area of the object in pixels.

e Binary Central Moment X2Y0(10) Normalized binary second order cen-
tral moment. It is a measure of how vertically dispersed the object’s pixels
are from its centroid.

> Tipi
where:
x;= vertical distance from the 7*" pixel to the centroid of the object.
p;= the intensity of the it" pixel.
A= the area of the object in pixels.

e Binary Central Moment X1Y1(11) Normalized binary second order cen-
tral moment. It is a measure of how horizontally and vertically dispersed the
object’s pixels are from its centroid.

D TiYipi
BCMX1Y1 = TR (B.7)
where:
x;= vertical distance from the ** pixel to the centroid of the object.
y;= horizontal distance from the i*" pixel to the centroid of the object.
p;= the intensity of the i*" pixel.
A= the area of the object in pixels.

e Energy(12) An homogeneity measure — the more homogeneous the object,
the larger the value [7].

Energy = ZP¢d(a, b)? (B.8)
a,b

where:

P,4(a,b) determined from the Grey Level Co-occurrence Matrix (GLCM)
and represents the probability that two pixels with a specified separation
have gray levels a and b. The separation is specified by a displacement d,
and and angle ¢. For this work, the values used for d and ¢ were d(1),
#(0,45,90,135). Refer to Section 2.2.5.1 for further explanation.

e Entropy(13) Measure of the homogeneity of an object.

Entropy = —_ Psa(a,b)log Psa(a,b) (B.9)
ab
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See Energy definition for parameter explanation.

Homogeneity(14) Measure of local image variations.

(B.10)

See Energy definition for parameter explanation.

Contrast(15) A measure of local image variations; typically k= 2, =1 [7].

Contrast =Y _|a—b|* (Pu)" (B.11)

a,b

See Energy definition for parameter explanation.

Inverse Difference Moment(16) Determined from the GLCM and attains
a maximum value when all the image pixels that are compared have the same
value [52).

_ (Pab)l
IDM =" p— (B.12)
a,b

See Energy definition for parameter explanation.

Correlation(17) Measure of image linearity; linear directional structures in
direction ¢ result in large correlation values [7].

—p)(b— p) P,
Correlation = Z (a ,u)(UZ ) Fao (B.13)
a,b
and
p=> iPy (B.14)
ab
where:

i is the gray level intensity. See Energy definition for parameter explanation.

Elongation(18) A measure of the shape of an object and is derived from
area A and perimeter P,
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e Roughness(19) A measure of the roughness of a blob’s surface. A smooth
convex object will have the minimum roughness of 1 [5]. It is calculated
using P/C; where P is the blob’s perimeter (i.e. the total length in pixels of
the edges in a blob, including the edges of any holes), and C' is the convex
perimeter (i.e. the length of the perimeter of the convex hull of the blob).

133



Appendix C

ELAP Vision System Calibration File
Data

[Camera Calibration Parameters]
Board_Width = 16
Board_Height = 18

SquareSize = 10.159
FocalLength X _pixels = 347.2757
FocalLength_ Y pixels = 346.3365
PrincPoint_X = 321.3295
PrincPoint_Y = 251.6542
CameraMatrix(Q = 347.2757
CameraMatrixl = 0.0
CameraMatrix2 = 321.3295
CameraMatrix3 = 0.0
CameraMatrix4 = 346.3365
CameraMatrixb = 351.6542
CameraMatrix6 = 0.0
CameraMatrix7 = 0.0
CameraMatrix8 = 1.0
Distortionl = -1.9551e-1
Distortion2 = 5.0969¢-1
Distortion3 = 8.4428e-4
Distortion4d = 2.9581e-3

[Hand-Eye Calibration Parameters]
HandEyeX[0][0] = 9.997477531433106e-001
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HandEyeX[0][1] = 1.547639910131693e-002
HandEyeX[0][2] = 1.612677238881588¢-002
HandEyeX|[0][3] = -60

HandEyeX|[1][0] = -1.527536660432816e-002
HandEyeX|[1][1] = 9.998015165328980¢-001
HandEyeX[1][2] = -1.256382465362549¢-002
HandEyeX[1][3] = -18

HandEyeX[2][0] = -1.631853543221951e-002
HandEyeX[2][1] = 1.231363220453564e-002
HandEyeX[2][2] = 9.997899532318115¢-001
HandEyeX[2][3] = -115

HandEyeX[3][0] = 0.0

HandEyeX|[3][1] = 0.0

HandEyeX|[3][2] = 0.0

HandEyeX|[3][3] = 1.0

[Boom To Sensor Transform]
TranslationX = -65.50
TranslationY = -206.375
TranslationZ = -161.925
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