DESIGNING ALGORITHMS FOR IMPROVING QUANTUM CHEMICAL CALCULATIONS

AISHA EL SHERBINY









Library and Archives Canada

Published Heritage Branch

395 Wellington Street Ottawa ON K1A 0N4 Canada Bibliothèque et Archives Canada

Direction du Patrimoine de l'édition

395, rue Wellington Ottawa ON K1A 0N4 Canada

> Your file Votre référence ISBN: 978-0-494-55387-9 Our file Notre référence ISBN: 978-0-494-55387-9

#### NOTICE:

The author has granted a nonexclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or noncommercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission. AVIS:

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

Canada

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.

#### Designing Algorithms For Improving Quantum Chemical Calculations

by

© Aisha El Sherbiny B.Sc. (Ain Shams University), M.Sc. (University of Cairo), M.Sc. Memorial University of Newfoundland

> A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Ph.D.

Department of Chemistry Memorial University of Newfoundland

February 26, 2008

St. John's

NEWFOUNDLAND

# Contents

| A                         | bstra  | nct    |                            | iv   |
|---------------------------|--------|--------|----------------------------|------|
| A                         | cknov  | wledgn | nents                      | vi   |
| $\mathbf{L}_{i}$          | ist of | Tables | ;                          | vii  |
| $\mathbf{L}_{\mathbf{i}}$ | ist of | Figure | 2S                         | viii |
| 1                         | Intr   | oducti | on                         | 1    |
|                           | 1.1    | Hartre | e-Fock Equation            | 1    |
|                           | 1.2    | Rooth  | aan's Equation             | 6    |
|                           | 1.3    | Molec  | ular Numerical Integration | 8    |
|                           |        | 1.3.1  | Becke Weight Functions     | 9    |
|                           |        | 1.3.2  | Lebedev Grids              | 12   |
|                           |        | 1.3.3  | The Radial Quadrature      | 14   |
|                           |        | 1.3.4  | Atomic Grids               | 14   |
|                           | 1.4    | The SC | G0 Grid                    | 18   |

| 2 | Nu  | merical Integration                                  | 19 |
|---|-----|------------------------------------------------------|----|
|   | 2.1 | Computational Method                                 | 19 |
|   | 2.2 | Results and Discussion                               | 20 |
|   | 2.3 | Conclusions                                          | 23 |
| 3 | Cor | nprehensive Study of Molecular Numerical Integration | 35 |
|   | 3.1 | Introduction                                         | 35 |
|   | 3.2 | Results and Discussion                               | 36 |
|   |     | 3.2.1 Number of Electrons                            | 37 |
|   |     | 3.2.2 Dipole Moment                                  | 39 |
|   |     | 3.2.3 Potential Energy                               | 40 |
|   |     | 3.2.4 Coulomb Repulsion Energy $V_{ee}^1$            | 42 |
|   |     | 3.2.5 Coulomb Repulsion Energy $V_{ee}^2$            | 42 |
|   | 3.3 | Some Interesting Observations                        | 45 |
|   | 3.4 | The Effect of the Parameter $R$ on the Integration   | 45 |
|   | 3.5 | Numerical Integration Efficiency                     | 46 |
|   |     | 3.5.1 Number of Points of The Atomic Grid            | 46 |
|   |     | 3.5.2 Constructing the Atomic Grid Efficiently       | 47 |
|   | 3.6 | Conclusions                                          | 48 |
| 4 | Pro | jection Between Basis Sets                           | 59 |
|   | 4.1 | Introduction                                         | 59 |
|   | 4.2 | Change of Basis                                      | 60 |
|   | 4.3 | Projection of the Molecular Coefficients             | 61 |

|   | 4.4  | Projection of the Fock Matrix                                       | 62  |
|---|------|---------------------------------------------------------------------|-----|
|   | 4.5  | Improving Projection I                                              | 64  |
|   |      | 4.5.1 A Better Transformation Matrix                                | 64  |
|   |      | 4.5.2 Mixing Exact and Projected Values                             | 65  |
|   | 4.6  | Improving Projection II                                             | 66  |
|   | 4.7  | The Relation Between H, G, and F                                    | 69  |
|   | 4.8  | Conclusions                                                         | 75  |
| 5 | Two  | o-electron Integrals                                                | 111 |
|   | 5.1  | Introduction                                                        | 111 |
|   | 5.2  | Two-Electron Integral in MUNgauss                                   | 114 |
|   | 5.3  | A New Algorithm for Skipping Zero Two-Electron Integrals $\ldots$ . | 117 |
|   | 5.4  | Conclusions                                                         | 120 |
| 6 | Init | ial Guess for Large Basis Sets                                      | 153 |
|   | 6.1  | Introduction                                                        | 153 |
|   | 6.2  | Extended Hückel                                                     | 153 |
|   | 6.3  | Initial Guess Using Projection                                      | 154 |
|   | 6.4  | Conclusions                                                         | 158 |
| 7 | Alg  | orithms Based on Molecular Fragmentation                            | 169 |
|   | 7.1  | Introduction                                                        | 169 |
|   |      | 7.1.1 Efficient Algorithms Applied To the Hartree-Fock Method .     | 170 |
|   |      | 7.1.2 Divide and Conquer                                            | 173 |
|   | 7.2  | Dividing the Molecule into Fragments                                | 176 |

| Α | Num  | erical Integration Results   | 195 |
|---|------|------------------------------|-----|
| 8 | Cond | clusions                     | 193 |
|   | 7.4  | Divide and Conquer II        | 178 |
|   | 7.3  | Partitioning The Fock Matrix | 177 |

To the people who led me to where I am mama and papa

## Abstract

This work involves studying and developing new algorithms for molecular numerical integration used for density functional theory and new algorithms for Hartree-Fock method.

New insight about molecular numerical integration is presented through a detailed study of the performance of some of the well known grids in addition to our implementation of the most recently developed MultiExp grid. A comprehensive study of numerical integration was conducted by evaluating several molecular properties: number of electrons, dipole moment, potential energy, and Coulomb repulsion energy using fifteen grids including a large benchmark grid. The standard grid (SG-1) and a slightly modified version of the Treutler and Alhrichs (TA) grid performed reasonably well. The MultiExp grid, which is more efficient, was studied as well and found to be less accurate.

Studying large molecules using Hartree-Fock method is a challenge both in terms of CPU time and memory requirements. However, there is a high demand to perform quantum chemical calculations for large molecules. Projection from a smaller basis set to a larger basis set was studied in detail. It was found that projection from the STO- 3G basis set to the 6-31G basis set performed well. Projection was used to develop a new version of a divide and conquer algorithm. Our divide and conquer algorithm was used to calculate the protonation energy for a series of peptides. Algorithms to skip calculating two-electron integrals of zero or negligible values are presented in addition to an algorithm to generate a better initial guess.

## Acknowledgments

There are several individuals I would like to thank for their guidance and support while this work was being completed. First, I would like to thank my supervisor Raymond. A. Poirier for his advice and assistance which was invaluable in the completion of this work. Also, I would like to thank Dr. C. Flinn and Dr. E. Merschrod for their continued support and encouragement. I would like to express my gratitude to Dr. P. Warburton for his help and support and for providing some of the test cases used in this work. I also like to thank Prof. P.M.W. Gill and Siu-Hung Chien for providing some of the MultiExp grids. Thanks to the Department of Chemistry, the School of Graduate Studies, the National Sciences and Engineering Research Council of Canada, and Memorial University of Newfoundland for financial support and giving me the opportunity to complete my Ph.D. program.

I would like to extend a special thanks to my family and friends, especially my wonderful mother. Their continued support and encouragement throughout the completion of this project will always be greatly appreciated.

# List of Tables

| 2.1 | Optimized Values of R (First Row) and the Corresponding Accuracies                             |    |
|-----|------------------------------------------------------------------------------------------------|----|
|     | (Second Row) for the MultiExp Grids.                                                           | 25 |
| 2.2 | Accuracy and total number of grid points for the three MultiExp grids                          |    |
|     | using three different angular grids, $6-86-110$ , $6-86-194$ , $6-86-302$ for                  |    |
|     | rows 1, 2 and 3 respectively for each molecule.                                                | 26 |
| 2.3 | Accuracy and Total Number of Grid Points Using the Original TA,                                |    |
|     | TA(new), SG-1, and Becke Grids.                                                                | 32 |
| 2.4 | Accuracy and Total Number of Grid Points for Atoms Using the Orig-                             |    |
|     | inal TA, TA(new), SG-1, and Becke Grids.                                                       | 34 |
| 3.1 | Set of molecules used for numerical integration calculations                                   | 49 |
| 3.2 | Mean absolute error MAE for the number of electrons <sup><math>a</math></sup> , equation (3.2) | 50 |
| 3.3 | Mean absolute error of the dipole moment <sup><i>a</i></sup> au, equation (3.3)                | 51 |
| 3.4 | Mean absolute error of the potential energy <sup>a</sup> $V_{ne}$ (µH), equation (3.4)         | 52 |
| 3.5 | Mean absolute error of the Coulomb energy <sup><i>a</i></sup> $V_{ee}^1$ (µH), equation (3.5)  | 53 |
| 3.6 | Mean absolute error of the Coulomb energy <sup><i>a</i></sup> $V_{ee}^2$ (µH), equation (3.6)  | 54 |
|     | X                                                                                              |    |

| 3.7  | The error in $V_{ee}^2$ (µH) for peptides using Becke, TA, TA(new), SG-1,                                                                                    |    |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|      | SG0, Benchmark                                                                                                                                               | 55 |
| 3.8  | The new $R$ parameters <sup><i>a</i></sup> for atoms from the first and second rows and                                                                      |    |
|      | the corresponding accuracies                                                                                                                                 | 56 |
| 3.9  | The error in $V_{ee}^2$ (µH) for molecules containing second-row atoms using                                                                                 |    |
|      | two sets of $R$ parameters                                                                                                                                   | 57 |
| 3.10 | Number of points of the atomic grids                                                                                                                         | 58 |
| 4.1  | Error in the projection of $G$ from STO-3G to 3-21G                                                                                                          | 76 |
| 4.2  | Error in the projection of $G$ from STO-3G to 6-31G $\ldots$ $\ldots$ $\ldots$                                                                               | 77 |
| 4.3  | Error in the projection of $G$ from STO-3G to 6-31G(d)                                                                                                       | 78 |
| 4.4  | The diagonal elements of $H, H_p, G, G_p, x$ and $x_p$ for SiH <sub>4</sub>                                                                                  | 79 |
| 4.5  | The diagonal elements of $F$ , $F_p$ , and $F'_p$ for SiH <sub>4</sub>                                                                                       | 81 |
| 4.6  | $\ \Delta H_p\ , \ \Delta G_p\ , \ \Delta F_p\  \dots \dots$ | 83 |
| 4.7  | Relative error, equation $(4.43)$ , in the projection for molecules contain-                                                                                 |    |
|      | ing atoms from the first row                                                                                                                                 | 84 |
| 4.8  | Relative error, equation $(4.43)$ , in the projection for molecules contain-                                                                                 |    |
|      | ing atoms from the second row elements $\ldots \ldots \ldots \ldots \ldots \ldots$                                                                           | 85 |
| 4.9  | Relative error, equation $(4.43)$ , in the projection for molecules contain-                                                                                 |    |
|      | ing atoms from the third row elements                                                                                                                        | 86 |
| 4.10 | Relative error, equation $(4.43)$ , in the projection for molecules contain-                                                                                 |    |
|      | ing atoms from the fourth row elements                                                                                                                       | 87 |
| 4.11 | Percentage error in energy ( $\Delta E\%$ ), equation (4.46), using $H_p$ for the                                                                            |    |
|      | first row elements                                                                                                                                           | 88 |

| 4.12 | Percentage error in energy ( $\Delta E\%$ ), equation (4.46), using $H_p$ for the   |     |
|------|-------------------------------------------------------------------------------------|-----|
|      | second row elements                                                                 | 89  |
| 4.13 | Percentage error in the energy ( $\Delta E\%$ ), equation (4.46), using $H_p$ for   |     |
|      | the third row elements                                                              | 90  |
| 4.14 | Percentage error in the energy ( $\Delta E\%$ ), equation (4.46), using $H_p$ for   |     |
|      | the fourth row elements                                                             | 91  |
| 4.15 | Percentage error in energy ( $\Delta E\%$ ) using, equation (4.46), H for molecules |     |
|      | containing first-row elements                                                       | 92  |
| 4.16 | Percentage error in energy ( $\Delta E\%$ ) using, equation (4.46), H for molecules |     |
|      | containing second-row elements                                                      | 93  |
| 4.17 | Percentage error in the energy ( $\Delta E\%$ ) using, equation (4.46), H for       |     |
|      | molecules containing third-row elements                                             | 94  |
| 4.18 | Percentage error in the energy ( $\Delta E\%$ ) using, equation (4.46), $H$ for     |     |
|      | molecules containing fourth-row elements                                            | 95  |
| 4.19 | Relative error, equation (4.43), for peptides                                       | 96  |
| 4.20 | Relative error, equation (4.43), for silicon hydrides                               | 97  |
| 4.21 | Relative error, equation (4.43), for germanium hydrides $\ldots$ $\ldots$ $\ldots$  | 98  |
| 5.1  | The effect of changing the cutoff from 45 to 20 on the number of zero               |     |
|      | integrals calculated and the energy<br>( $\mu H$ ) in addition to the % savings     | 121 |
| 5.2  | Percentage of skipped integrals for cutoffs of 17, 15, 12 and the corre-            |     |
|      | sponding $\Delta E(\mu \mathrm{H})$                                                 | 125 |
| 5.3  | The percentage increase in the skipped two-electron integrals with the              |     |
|      | decrease of the cutoff                                                              | 129 |
|      | xii                                                                                 |     |

| 5.4 | Number of zero integrals skipped and the corresponding error in energy                                                                                                             |     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | $(\mu H)$ for $ \mathcal{H}_{ab}  \leq 10^{-5} \dots \dots$                                                      | 133 |
| 5.5 | Number of zero integrals skipped and the corresponding error in energy                                                                                                             |     |
|     | ( $\mu$ H) for $ \mathcal{H}_{ab}  \le 10^{-4} \dots \dots$                                                | 137 |
| 5.6 | Percentage of the two-electron integrals skipped using a cutoff of 17                                                                                                              |     |
|     | and using the $\mathcal{H}$ matrix, see text                                                                                                                                       | 141 |
| 6.1 | Results for initial guess using projected extended Hückel and projec-                                                                                                              |     |
|     | tion from STO-3G to 3-21G basis set                                                                                                                                                | 159 |
| 6.2 | Results for initial guess using projected extended Hückel and projec-                                                                                                              |     |
|     | tion from STO-3G to 6-31G basis set                                                                                                                                                | 161 |
| 6.3 | Results for initial guess using projected extended Hückel and projec-                                                                                                              |     |
|     | tion from STO-3G to STO-3G(d) basis set $\hdots$                                                                                                                                   | 163 |
| 6.4 | Results for initial guess using projected extended Hückel and projec-                                                                                                              |     |
|     | tion from STO-3G to 6-31G(d) basis set $\hdots$                                                                                                                                    | 165 |
| 6.5 | Results for initial guess using projected extended Hückel and projec-                                                                                                              |     |
|     | tion from STO-3G to 6-311G(d) basis set                                                                                                                                            | 167 |
| 7.1 | HF and NDC barriers (kJmol <sup>-1</sup> ) for the cytidine $\ldots \ldots \ldots \ldots$                                                                                          | 182 |
| 7.2 | HF and NDC energies (Hartrees) for the four peptides $\ldots \ldots \ldots$                                                                                                        | 183 |
| 7.3 | Protonation energies (kJmol <sup>-1</sup> ) using NDC and 6-31G basis $\ldots$ .                                                                                                   | 184 |
| 7.4 | Protonation energies (kJmol $^{-1})$ using NDC and 6-31G(d) basis                                                                                                                  | 185 |
| A.1 | MAE of number of electrons using MultiExp grid with 20 radial points                                                                                                               |     |
|     | for molecules containing $1^{st}$ row atoms $\ldots \ldots \ldots$ | 196 |

| A.2  | MAE of number of electrons using MultiExp grid with 20 radial points                           |     |
|------|------------------------------------------------------------------------------------------------|-----|
|      | for molecules containing $2^{nd}$ row atoms $\ldots \ldots \ldots \ldots \ldots$               | 197 |
| A.3  | MAE of the integration of the electron density using MultiExp grid                             |     |
|      | with 20 radial points for molecules containing $3^{rd}$ row atoms and tran-                    |     |
|      | sition states                                                                                  | 198 |
| A.4  | MAE of the integration of the electron density using MultiExp grid                             |     |
|      | with 20 radial points for complexes, ions, and peptides $\ldots$                               | 199 |
| A.5  | MAE of number of electrons using MultiExp grid with 25 radial points                           |     |
|      | for molecules containing $1^{st}$ row atoms $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | 200 |
| A.6  | MAE of the integration of the electron density using MultiExp grid                             |     |
|      | with 25 radial points for molecules containing $2^{nd}$ row atoms                              | 201 |
| A.7  | MAE of the integration of the electron density using MultiExp grid                             |     |
|      | with 25 radial points for molecules containing $3^{rd}$ row atoms and tran-                    |     |
|      | sition states                                                                                  | 202 |
| A.8  | MAE of the integration of the electron density using MultiExp grid                             |     |
|      | with 25 radial points for complexes, ions, and peptides $\ldots$                               | 203 |
| A.9  | MAE of the integration of the electron density using MultiExp grid                             |     |
|      | with 30 radial points for molecules containing $1^{st}$ row atoms $\ldots$ .                   | 204 |
| A.10 | MAE of the integration of the electron density using MultiExp grid                             |     |
|      | with 30 radial points for molecules containing $2^{nd}$ row atoms                              | 205 |
| A.11 | MAE of the integration of the electron density using MultiExp grid                             |     |
|      | with 30 radial points for molecules containing $3^{rd}$ row atoms and tran-                    |     |
|      | sition states                                                                                  | 206 |
|      | xiv                                                                                            |     |

| A.12 $MAE$ of the integration of the electron density using MultiExp grid               |      |
|-----------------------------------------------------------------------------------------|------|
| with 30 radial points for complexes, ions, and peptides $\ldots$ $\ldots$ $\ldots$      | 207  |
| A.13 $MAE$ of the dipole moment calculated using MultiExp grid with 20                  |      |
| radial points for molecules containing $1^{st}$ row atoms $\ldots \ldots \ldots$        | 208  |
| A.14 $MAE$ of the dipole moment calculated using MultiExp grid with 20                  |      |
| radial points for molecules containing $2^{nd}$ row atoms                               | 209  |
| A.15 $MAE$ of the Dipole moment calculated using MultiExp grid with 20                  |      |
| radial points for molecules containing $3^{rd}$ row atoms and transition                |      |
| states                                                                                  | 210  |
| A.16 $MAE$ of the Dipole moment calculated using MultiExp grid with 20                  |      |
| radial points for complexes, ions, and peptides                                         | 211  |
| A.17 $MAE$ of the dipole moment calculated using MultiExp grid of 25 radial             |      |
| points for molecules containing $1^{st}$ row atoms $\ldots \ldots \ldots \ldots \ldots$ | 212  |
| A.18 $MAE$ of the dipole moment calculated using MultiExp grid with 25                  |      |
| radial points for molecules containing $2^{nd}$ row atoms                               | 213  |
| A.19 $MAE$ of the dipole moment calculated using MultiExp grid with 25                  |      |
| radial points for molecules containing $3^{rd}$ row atoms and transition state          | s214 |
| A.20 $MAE$ of the dipole moment calculated using MultiExp grid with 25                  |      |
| radial points for complexes, ions, and peptides                                         | 215  |
| A.21 $MAE$ of the dipole moment calculated using MultiExp grid with 30                  |      |
| radial points for molecules containing $1^{st}$ row atoms                               | 216  |
| A.22 $MAE$ of the dipole moment calculated using MultiExp grid with 30                  |      |
| radial points for molecules containing $2^{nd}$ row atoms                               | 217  |
|                                                                                         |      |

| A.23 $MAE$ of the dipole moment calculated using MultiExp grid with 30                       |      |
|----------------------------------------------------------------------------------------------|------|
| radial points for molecules containing $3^{rd}$ row atoms and transition state               | s218 |
| A.24 $MAE$ of the dipole moment calculated using MultiExp grid with 30                       |      |
| radial points for complexes, ions, and peptides $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ | 219  |
| A.25 $MAE$ of the potential energy, $V_{ne}$ calculated using MultiExp grid with             |      |
| 20 radial points for molecules containing $1^{st}$ row atoms $\ldots \ldots \ldots$          | 220  |
| A.26 $MAE$ of the potential energy calculated using MultiExp grid with 20                    |      |
| radial points for molecules containing $2^{nd}$ row atoms                                    | 221  |
| A.27 $MAE$ of the potential energy calculated using MultiExp grid with 20                    |      |
| radial points for molecules containing $3^{rd}$ row atoms and transition states              | s222 |
| A.28 $MAE$ of the potential energy calculated using MultiExp grid with 20                    |      |
| radial points for complexes, ions, and peptides                                              | 223  |
| A.29 $MAE$ of the potential energy calculated using MultiExp grid with 25                    |      |
| radial points for molecules containing $1^{st}$ row atoms                                    | 224  |
| A.30 $MAE$ of the potential energy calculated using MultiExp grid with 25                    |      |
| radial points for molecules containing $2^{nd}$ row atoms                                    | 225  |
| A.31 $MAE$ of the potential energy calculated using MultiExp grid with 25                    |      |
| radial points for molecules containing $3^{rd}$ row atoms and transition states              | s226 |
| A.32 $MAE$ of the potential energy calculated using MultiExp grid with 25                    |      |
| radial points for complexes, ions, and peptides                                              | 227  |
| A.33 $MAE$ of the potential energy calculated using MultiExp grid with 30                    |      |
| radial points for molecules containing $1^{st}$ row atoms                                    | 228  |

| A.34 $MAE$ of the potential energy calculated using MultiExp grid with 30                          |     |
|----------------------------------------------------------------------------------------------------|-----|
| radial points for molecules containing $2^{nd}$ row atoms                                          | 229 |
| A.35 $MAE$ of the potential energy calculated using MultiExp grid with 30                          |     |
| radial points for molecules containing $3^{rd}$ row atoms and transition states                    | 230 |
| A.36 $MAE$ of the potential energy calculated using MultiExp grid with 30                          |     |
| radial points for complexes, ions, and peptides                                                    | 231 |
| A.37 $MAE$ of the Coulomb potential energy $V^1_{ee}$ calculated using MultiExp                    |     |
| grid with 20 radial points                                                                         | 232 |
| A.38 $MAE$ of the Coulomb potential energy $V^1_{ee}$ calculated using MultiExp                    |     |
| grid with 20 radial points                                                                         | 233 |
| A.39 $MAE$ of the Coulomb potential energy $V^1_{ee}$ calculated using MultiExp                    |     |
| grid with 20 radial points for molecules containing $3^{rd}$ row atoms and                         |     |
| transition states                                                                                  | 234 |
| A.40 $MAE$ of the Coulomb potential energy $V^1_{ee}$ calculated using MultiExp                    |     |
| grid with 20 radial points for complexes, ions, and peptides                                       | 235 |
| A.41 $MAE$ of the Coulomb potential energy $V^1_{ee}$ calculated using MultiExp                    |     |
| grid with 25 radial points                                                                         | 236 |
| A.42 $MAE$ of the Coulomb potential energy $V^1_{ee}$ calculated using MultiExp                    |     |
| grid with 25 radial points $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ | 237 |
| A.43 $MAE$ of the Coulomb potential energy $V^1_{ee}$ calculated using MultiExp                    |     |
| grid with 25 radial points for molecules containing $3^{rd}$ row atoms and                         |     |
| transition states                                                                                  | 238 |

| A.44 $MAE$ of the Coulomb potential energy $V^1_{ee}$ calculated using MultiExp |     |
|---------------------------------------------------------------------------------|-----|
| grid with 25 radial points for complexes, ions, and peptides                    | 239 |
| A.45 $MAE$ of the Coulomb potential energy $V^1_{ee}$ calculated using MultiExp |     |
| grid with 30 radial points                                                      | 240 |
| A.46 $MAE$ of the Coulomb potential energy $V^1_{ee}$ calculated using MultiExp |     |
| grid with 30 radial points                                                      | 241 |
| A.47 $MAE$ of the Coulomb potential energy $V^1_{ee}$ calculated using MultiExp |     |
| grid with 30 radial points for molecules containing $3^{rd}$ row atoms and      |     |
| transition states                                                               | 242 |
| A.48 $MAE$ of the Coulomb potential energy $V_{ee}^1$ calculated using MultiExp |     |
| grid with 30 radial points for complexes, ions, and peptides                    | 243 |
| A.49 $MAE$ of the Coulomb energy $V_{ee}^2$ calculated using MultiExp grid with |     |
| 20 radial points                                                                | 244 |
| A.50 $MAE$ of the Coulomb energy $V_{ee}^2$ calculated using MultiExp grid with |     |
| 20 radial points                                                                | 245 |
| A.51 $MAE$ of the Coulomb energy $V_{ee}^2$ calculated using MultiExp grid with |     |
| 20 radial points for molecules containing $3^{rd}$ row atoms and transition     |     |
| states                                                                          | 246 |
| A.52 $MAE$ of the Coulomb energy $V_{ee}^2$ calculated using MultiExp grid with |     |
| 20 radial points for complexes, ions, and peptides                              | 247 |
| A.53 $MAE$ of the Coulomb energy $V_{ee}^2$ calculated using MultiExp grid with |     |
| 25 radial points                                                                | 248 |

| A.54 $MAE$ of the Coulomb energy $V_{ee}^2$ calculated using MultiExp grid with  |     |
|----------------------------------------------------------------------------------|-----|
| 25 radial points                                                                 | 249 |
| A.55 $MAE$ of the Coulomb energy $V^2_{ee}$ calculated using MultiExp grid with  |     |
| 25 radial points for molecules containing $3^{rd}$ row atoms and transition      |     |
| states                                                                           | 250 |
| A.56 $MAE$ of the Coulomb energy $V^2_{ee}$ calculated using MultiExp grid with  |     |
| 25 radial points for complexes, ions, and peptides $\ldots \ldots \ldots \ldots$ | 251 |
| A.57 $MAE$ of the Coulomb energy $V^2_{ee}$ calculated using MultiExp grid with  |     |
| 30 radial points                                                                 | 252 |
| A.58 $MAE$ of the Coulomb energy $V^2_{ee}$ calculated using MultiExp grid with  |     |
| 30 radial points                                                                 | 253 |
| A.59 $MAE$ of the Coulomb energy $V^2_{ee}$ calculated using MultiExp grid with  |     |
| 30 radial points for molecules containing $3^{rd}$ row atoms and transition      |     |
| states                                                                           | 254 |
| A.60 $MAE$ of the Coulomb energy $V_{ee}^2$ calculated using MultiExp grid with  |     |
| 30 radial points for complexes, ions, and peptides                               | 255 |
| A.61 $MAE$ of the integration of the electron density using Becke, TA,           |     |
| TA(new), SG-1, SG0 for molecules containing $1^{st}$ row atoms $\ldots$ .        | 256 |
| A.62 $MAE$ of the integration of the electron density using Becke, TA,           |     |
| TA(new), SG-1, SG0 for molecules containing $2^{nd}$ row atoms                   | 257 |
| A.63 $MAE$ of the integration of the electron density using Becke, TA,           |     |
| TA(new), SG-1, SG0 for molecules containing $3^{rd}$ row atoms and tran-         |     |
| sition states                                                                    | 258 |

| A.64 $MAE$ of the integration of the electron density using Becke, TA,                    |     |
|-------------------------------------------------------------------------------------------|-----|
| TA(new), SG-1, SG0 for complexes, ions, and peptides $\ldots \ldots \ldots$               | 259 |
| A.65 $MAE$ of the dipole moment calculated using Becke, TA, TA(new),                      |     |
| SG-1, SG0 for molecules containing $1^{st}$ row atoms $\ldots \ldots \ldots \ldots$       | 260 |
| A.66 $MAE$ of the dipole moment calculated using Becke, TA, TA(new),                      |     |
| SG-1, SG0 for molecules containing $2^{nd}$ row atoms                                     | 261 |
| A.67 $MAE$ of the dipole moment calculated using Becke, TA, TA(new),                      |     |
| SG-1, SG0 for molecules containing $3^{rd}$ row atoms and transition states               | 262 |
| A.68 $MAE$ of the dipole moment calculated using Becke, TA, TA(new),                      |     |
| SG-1, SG0 for complexes, ions, and peptides                                               | 263 |
| A.69 $MAE$ of the potential energy calculated using Becke, TA, TA(new),                   |     |
| SG-1 for molecules containing $1^{st}$ row atoms $\ldots \ldots \ldots \ldots \ldots$     | 264 |
| A.70 $MAE$ of the potential energy calculated using Becke, TA, TA(new),                   |     |
| SG-1 for molecules containing $2^{nd}$ row atoms                                          | 265 |
| A.71 $MAE$ of the potential energy calculated using Becke, TA, TA(new),                   |     |
| SG-1 for molecules containing $3^{rd}$ row atoms and transition states $\ .$ .            | 266 |
| A.72 $MAE$ of the potential energy calculated using Becke, TA, TA(new),                   |     |
| SG-1 for complexes, ions, and peptides $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | 267 |
| A.73 $MAE$ of the Coulomb energy $V_{ee}^1$ calculated using Becke, TA, TA(new),          |     |
| SG-1, SG0 for molecules containing $1^{st}$ row atoms $\ldots$ $\ldots$ $\ldots$          | 268 |
| A.74 $MAE$ of the Coulomb energy $V^1_{ee}$ calculated using Becke, TA, TA(new),          |     |
| SG-1 for molecules containing $2^{nd}$ row atoms                                          | 269 |
| XX                                                                                        |     |

| A.75 $MAE$ of the Coulomb energy $V_{ee}^1$ calculated using Becke, TA, TA(new),    |        |
|-------------------------------------------------------------------------------------|--------|
| SG-1, SG0 for molecules containing $3^{rd}$ row atoms and transition states         | \$ 270 |
| A.76 $MAE$ of the Coulomb energy $V_{ee}^1$ calculated using Becke, TA, TA(new),    |        |
| SG-1, SG0 for complexes, ions, and peptides                                         | 271    |
| A.77 $MAE$ of the Coulomb energy $V_{ee}^2$ calculated using Becke, TA, TA(new),    |        |
| SG-1, SG0 for molecules containing $1^{st}$ row atoms $\ldots \ldots \ldots \ldots$ | 272    |
| A.78 $MAE$ of the Coulomb energy $V_{ee}^2$ calculated using Becke, TA, TA(new),    |        |
| SG-1, SG0 for molecules containing $2^{nd}$ row atoms                               | 273    |
| A.79 $MAE$ of the Coulomb energy $V_{ee}^2$ calculated using Becke, TA, TA(new),    |        |
| SG-1, SG0 for molecules containing $3^{rd}$ row atoms and transition states         | 274    |
| A.80 $MAE$ of the Coulomb energy $V_{ee}^2$ calculated using Becke, TA, TA(new),    |        |
| SG-1, SG0 for complexes, ions, and peptides                                         | 275    |

# List of Figures

| 4.1  | $H_{\mu\nu}$ vs $(H_p)_{\mu\nu}$ for 1G_pep                                                   | 99  |
|------|-----------------------------------------------------------------------------------------------|-----|
| 4.2  | $G_{\mu\nu}$ vs $(G_p)_{\mu\nu}$ for 1G_pep                                                   | 100 |
| 4.3  | $F_{\mu\nu}$ vs $(F_p)_{\mu\nu}$ for 1G_pep                                                   | 101 |
| 4.4  | $H_{\mu\nu}$ vs $(H_p)_{\mu\nu}$ for CCl <sub>4</sub>                                         | 102 |
| 4.5  | $G_{\mu\nu}$ vs $(G_p)_{\mu\nu}$ for CCl <sub>4</sub>                                         | 103 |
| 4.6  | $F_{\mu\nu}$ vs $(F_p)_{\mu\nu}$ for CCl <sub>4</sub>                                         | 104 |
| 4.7  | $H_{\mu\nu}$ vs $(H_p)_{\mu\nu}$ for Ge <sub>5</sub> H <sub>12</sub>                          | 105 |
| 4.8  | $G_{\mu\nu}$ vs $(G_p)_{\mu\nu}$ for Ge <sub>5</sub> H <sub>12</sub>                          | 106 |
| 4.9  | $F_{\mu\nu}$ vs $(F_p)_{\mu\nu}$ for Ge <sub>5</sub> H <sub>12</sub>                          | 107 |
| 4.10 | $H_{\mu\nu}$ vs $(H_p)_{\mu\nu}$ for Sn <sub>4</sub> H <sub>10</sub>                          | 108 |
| 4.11 | $G_{\mu\nu}$ vs $(G_p)_{\mu\nu}$ for Sn <sub>4</sub> H <sub>10</sub>                          | 109 |
| 4.12 | $F_{\mu\nu}$ vs $(F_p)_{\mu\nu}$ for Sn <sub>4</sub> H <sub>10</sub>                          | 110 |
| 51   | $C_{\rm VS} H_{\rm W}$ where $-10^{-5} < H_{\rm V} < 10^{-5}$ for 1C per                      | 145 |
| 0.1  | $G_{\mu\nu}$ vs $H_{\mu\nu}$ where $-10 \leq H_{\mu\nu} \leq 10$ for rd-pep                   | 140 |
| 5.2  | $F_{\mu\nu}$ vs $H_{\mu\nu}$ where $-10^{-5} \le H_{\mu\nu} \le 10^{-5}$ for 1G_pep           | 146 |
| 5.3  | $G_{\mu\nu}$ vs $H_{\mu\nu}$ where $-10^{-5} \le H_{\mu\nu} \le 10^{-5}$ for $\text{CCl}_4$   | 147 |
| 5.4  | $F_{\mu\nu}$ vs $H_{\mu\nu}$ where $-10^{-5} \le H_{\mu\nu} \le 10^{-5}$ for CCl <sub>4</sub> | 148 |
|      | xxii                                                                                          |     |

| 5.5 | $G_{\mu\nu}$ vs $H_{\mu\nu}$ where $-10^{-5} \le H_{\mu\nu} \le 10^{-5}$ for $\text{Ge}_5\text{H}_{12}$     | 149 |
|-----|-------------------------------------------------------------------------------------------------------------|-----|
| 5.6 | $F_{\mu\nu}$ vs $H_{\mu\nu}$ where $-10^{-5} \le H_{\mu\nu} \le 10^{-5}$ for $\text{Ge}_5\text{H}_{12}$     | 150 |
| 5.7 | $G_{\mu\nu}$ vs $H_{\mu\nu}$ where $-10^{-5} \le H_{\mu\nu} \le 10^{-5}$ for $\mathrm{Sn}_4\mathrm{H}_{10}$ | 151 |
| 5.8 | $F_{\mu\nu}$ vs $H_{\mu\nu}$ where $-10^{-5} \le H_{\mu\nu} \le 10^{-5}$ for $\mathrm{Sn}_4\mathrm{H}_{10}$ | 152 |
| 7.1 | A molecule is divided into two fragments $A$ and $B$                                                        | 186 |
| 7.2 | Cytidine divided into two fragments as indicated by the line, $A=$ exact,                                   |     |
|     | B=frozen, fragmentation a                                                                                   | 187 |
| 7.3 | Cytidine divided into two fragments as indicated by the line, $A=$ exact,                                   |     |
|     | B=frozen, fragmentation b                                                                                   | 188 |
| 7.4 | $2G_{-pep}$ divided into two fragments $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$            | 189 |
| 7.5 | 3G_pep divided into two fragments in two different ways, a and b, in                                        |     |
|     | the position of the straight line                                                                           | 190 |
| 7.6 | 4G_pep divided into two fragments in three different ways, a, b and c,                                      |     |
|     | in the position of the straight line                                                                        | 191 |
| 7.7 | $5G_{-}pep$ divided into two fragments in four different ways, a, b, c and                                  |     |
|     | d, in the position of the straight line                                                                     | 192 |

## Chapter 1

## Introduction

### **1.1 Hartree-Fock Equation**

The Schrödinger equation for a molecular system can be written as [1]:

$$\hat{H}\Psi = E\Psi \tag{1.1}$$

where  $\hat{H}$  is the Hamiltonian operator which represents the energy terms of the system,  $\Psi$  is the wavefunction, and E is the total energy of the system.

$$|\Psi|^2 = \Psi^* \Psi \tag{1.2}$$

is the probability density distribution function. For a molecule of N electrons and M nuclei, the Hamiltonian can be written explicitly, using atomic units, as [1]:

$$\hat{H} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} - \frac{1}{2} \sum_{A=1}^{M} \frac{1}{M_{A}} \nabla_{A}^{2} - \sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_{A}}{r_{iA}} + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{r_{ij}} + \sum_{A=1}^{M} \sum_{B>A}^{M} \frac{Z_{A}Z_{B}}{R_{AB}} \quad (1.3)$$

The first term is the kinetic energy operator of the N electrons and the second term is the kinetic energy operator of the M nuclei ,

$$M_A = \frac{m_A}{m_e} \tag{1.4}$$

 $m_A$  is the mass of a nucleus A,  $m_e$  is the mass of an electron. The third term is the potential energy operator between the nuclei and the electrons where  $r_{iA}$  is the distance between electron i and nucleus A.  $Z_A$  is the charge of nucleus A. The fourth term is the repulsion energy operator between the electrons where  $r_{ij}$  is the distance between electrons i and j. The last term is the repulsion energy between the nuclei, where  $R_{AB}$  is the distance between two nuclei A and B. Since the nuclei are much heavier than the electrons, the Born-Oppenheimer approximation treats the molecule as N electrons moving in the field of M fixed positively charged points [1] [2] [3]. Therefore the nuclear kinetic energy is neglected and the repulsion energy between nuclei is a constant. Within the Born-Oppenheimer approximation the total wavefunction  $\Psi$  is a product of the nuclear wavefunction  $\Psi_{nuc}$  and the electronic wavefunction  $\Psi_{ele}$ .

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N,\mathbf{R}_1,\ldots,\mathbf{R}_M) = \Psi_{ele}(\mathbf{r}_1,\ldots,\mathbf{r}_N)\Psi_{nuc}(\mathbf{R}_1,\ldots,\mathbf{R}_M)$$
(1.5)

where the electronic wavefunction depends explicitly on the coordinates  $\{\mathbf{r}_i\}$  of the electrons and parametrically on the  $\mathbf{R}_i$  coordinates of the nuclei. The nuclear wavefunction depends only explicitly on the nuclear configuration  $\mathbf{R}_i$ . Thus the Schrödinger equation of the electronic system is given by:

$$\left(-\frac{1}{2}\sum_{i=1}^{N}\nabla_{i}^{2}-\sum_{i=1}^{N}\sum_{A=1}^{M}\frac{Z_{A}}{r_{iA}}+\sum_{i=1}^{N}\sum_{j>i}\frac{1}{r_{ij}}\right)\Psi_{ele}=E_{ele}\Psi_{ele}$$
(1.6)

where  $E_{ele}$  is the electronic energy. From now on the subscript will be dropped. Let us assume we have a system of N non-interacting electrons. Then the Hamiltonian is:

$$\hat{H} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_i^2 - \sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_A}{r_{iA}}$$
(1.7)

which is a summation of a one-electron Hamiltonian h(i):

$$h(i) = -\frac{1}{2}\nabla_i^2 - \sum_{A=1}^M \frac{Z_A}{r_{iA}}$$
(1.8)

This form of the Hamiltonian implies that the wavefunction  $\Psi$  can be written as a product of N spin orbitals  $\chi_i$ , where a spin orbital is obtained from a one-electron spatial function  $\psi_i(\mathbf{r})$  by multiplying  $\psi_i(\mathbf{r})$  by a spin function,

$$\Psi(x_1, x_2, \dots, x_N) = \chi_i(x_1)\chi_j(x_2)\dots\chi_k(x_N)$$
(1.9)

where the coordinates  $\{x_i\}$  combine the spatial coordinates  $\{\mathbf{r}_i\}$  and the spin coordinates. Since this form of the wavefunction, called the Hartree product, is not antisymmetric, it does not satisfy the Pauli exclusion principle. An alternative form of the non-interacting N-electron wavefunction which is antisymmetric and therefore satisfies the Pauli principle is the Slater determinant [1]:

$$\Psi(x_1, x_2, \dots, x_N) = \left(\frac{1}{\sqrt{N!}}\right) \begin{vmatrix} \chi_i(x_1) & \chi_j(x_1) & \dots & \chi_k(x_1) \\ \vdots & \vdots & \vdots & \vdots \\ \chi_i(x_N) & \chi_j(x_N) & \dots & \chi_k(x_N) \end{vmatrix}$$
(1.10)

Given the full Hamiltonian of N electrons, including electron-electron repulsion, what are the "best"  $\{\chi_i\}$  that constitute the wavefunction of the ground state  $\Psi_0$ ? By applying the variational principle the Hartree-Fock method minimizes the energy of the ground state  $E_0$ ,

$$E_0 = <\Psi_0 |\hat{H}|\Psi_0>$$
(1.11)

with respect to the spin orbitals under the constraint that they remain orthonormal. This optimal set of spin orbitals satisfies the Hartree-Fock equations:

$$\hat{f}(x_1)\chi_i(x_1) = \epsilon_i\chi_i(x_1) \tag{1.12}$$

where  $\hat{f}$  is the Fock operator and is defined by:

$$\hat{f}(x_1) = \hat{h}(x_1) + \sum_j \left( \hat{J}_j(x_1) - \hat{K}_j(x_1) \right)$$
(1.13)

 $\hat{h}(x_1)$  is the sum of the kinetic energy of an electron and its potential energy with all of the nuclei.  $\hat{J}_j(x_1)$  is the Coulomb operator and is defined by:

$$\hat{J}_j(x_1)\chi_i(x_1) = \left[\int \chi_j^*(x_2)r_{12}^{-1}\chi_j(x_2)dx_2\right]\chi_i(x_1)$$
(1.14)

 $\hat{K}_j(x_1)$  is the exchange operator and is given by:

.

$$\hat{K}_j(x_1)\chi_i(x_1) = \left[\int \chi_j^*(x_2)r_{12}^{-1}\chi_i(x_2)dx_2\right]\chi_j(x_1)$$
(1.15)

 $\epsilon_i$  is the energy of the spin orbital  $\chi_i$ . If the  $\chi_i$ 's are restricted spin orbitals and all the electrons are paired, i.e. for each spatial function  $\psi(\mathbf{r})$  there are two spin orbitals obtained from  $\psi(\mathbf{r})$  by multiplying by a spin up and spin down function, then the Hartree-Fock equations become:

$$\hat{f}(\mathbf{r}_1)\psi_{\mathbf{i}}(\mathbf{r}_1) = \epsilon_{\mathbf{i}}\psi_{\mathbf{i}}(\mathbf{r}_1)$$
(1.16)

where the spin was integrated out in equation (1.16) and  $\hat{f}(\mathbf{r_1})$  is given by:

$$\hat{f}(\mathbf{r_1}) = \hat{h}(\mathbf{r_1}) + \sum_{i}^{N/2} \left( 2\hat{J}_i(\mathbf{r_1}) - \hat{K}_i(\mathbf{r_1}) \right)$$
(1.17)

where  $\hat{J}_i$  and  $\hat{K}_i$  are given by expressions similar to equations (1.14) and (1.15) except that the spin orbitals  $\{\chi_i\}$  are replaced by the spatial orbitals  $\{\psi_a\}$ .

#### 1.2 Roothaan's Equation

The spatial orbitals  $\{\psi_i(\mathbf{r})\}\$  can be expanded in terms of a set of basis functions  $\{\phi_\mu(\mathbf{r})\}, \mu = 1, 2, ..., k$  as follows:

$$\psi_i(\mathbf{r}) = \sum_{\mu=1}^k C_{\mu i} \phi_\mu(\mathbf{r}) \tag{1.18}$$

 $C_{\mu i}$  are the expansion coefficients and are called the molecular coefficients. Substituting equation (1.18) in the Hartree-Fock equation (1.16) leads to Roothaan's equation:

$$FC = SC\epsilon \tag{1.19}$$

where F, the Fock matrix, is the matrix representation of the Fock operator in the basis functions  $\{\phi_{\mu}(\mathbf{r})\}$ .

$$F_{\mu\nu} = \int \phi_{\mu}^{*}(\mathbf{r}_{1})\hat{f}(\mathbf{r}_{1})\phi_{\nu}(\mathbf{r}_{1})d\mathbf{r}_{1}$$
(1.20)

C is the coefficient matrix where the  $i^{th}$  column of C represents the expansion coefficients of a molecular orbital  $\psi_i$ . S is the overlap matrix, where

$$S_{\mu\nu} = \int \phi^*_{\mu}(\mathbf{r}_1) \phi_{\nu}(\mathbf{r}_1) d\mathbf{r}_1 \qquad (1.21)$$

measures the degree of the overlap between the two basis functions  $\mu$  and  $\nu$ .  $\epsilon$  is the diagonal matrix of the orbital energies  $\epsilon_i$ . By substituting  $\hat{f}(\mathbf{r_1})$  from equation (1.17) in equation (1.20),  $F_{\mu\nu}$  can be written as:

$$F_{\mu\nu} = H_{\mu\nu} + \sum_{\lambda\sigma} P_{\lambda\sigma} \left[ (\mu\nu|\sigma\lambda) - \frac{1}{2} (\mu\lambda|\sigma\nu) \right]$$
(1.22)

 ${\cal P}$  is the density matrix and is related to the molecular coefficients by the formula:

$$P_{\lambda\sigma} = 2\sum_{a}^{N/2} C_{\lambda a} C_{\sigma a}^* \tag{1.23}$$

and

$$H_{\mu\nu} = \int \phi^*_{\mu}(\mathbf{r}_1) \hat{h}(\mathbf{r}_1) \phi_{\nu}(\mathbf{r}_1) d\mathbf{r}_1 \qquad (1.24)$$

 $(\mu\nu|\sigma\lambda)$  is a two-electron integral and is given by:

$$(\mu\nu|\sigma\lambda) = \int \phi_{\mu}^{*}(\mathbf{r}_{1})\phi_{\nu}(\mathbf{r}_{1})r_{12}^{-1}\phi_{\sigma}^{*}(\mathbf{r}_{2})\phi_{\lambda}(\mathbf{r}_{2})d\mathbf{r}_{1}d\mathbf{r}_{2}$$
(1.25)
# **1.3** Molecular Numerical Integration

Three-dimensional integrals of the form:

$$I = \int F(\mathbf{r}) \, d\mathbf{r} \tag{1.26}$$

where  $F(\mathbf{r})$  is a three-dimensional molecular function occur frequently in the calculation of the electronic structure of molecules [4]. Usually, the integral I has to be evaluated numerically. Although complex, numerical integration is an essential part of density functional theory, DFT, where it is used to calculate the exchange correlation energy [5] [6]:

$$E_{xc} = \int F(\rho, \nabla \rho, \ldots) \, d\mathbf{r} \tag{1.27}$$

where F is a functional of the electron density  $\rho$ , its gradient  $\nabla \rho$  and possibly other parameters. A popular solution for integrals of the form given by equation (1.27) is the nuclear weight functions proposed by Becke[7]. Becke's scheme transfers the problem from a multi-center integral over the whole molecule into a sum of three-dimensional atomic integrals over the individual atoms of the molecule. The numerical solution of the integral I, as proposed by Becke, involves dividing the molecular integrand  $F(\mathbf{r})$ into atomic contributions using nuclear weight functions as follows:

$$F(\mathbf{r}) = \sum_{i=1}^{N_a} F_i(\mathbf{r})$$
(1.28)

$$F_i(\mathbf{r}) = W_i(\mathbf{r})F(\mathbf{r}) \tag{1.29}$$

where  $N_a$  is the number of atoms. The atomic contributions  $F_i(\mathbf{r})$  at each point  $\mathbf{r}$  are defined by the normalized atomic weight functions  $W_i(\mathbf{r})$ . The molecular integral I can be written as:

$$I = \sum_{i=1}^{N_a} \int F_i(\mathbf{r}) \, d\mathbf{r} = \sum_{i=1}^{N_a} I_i \tag{1.30}$$

Each atomic integral  $I_i$  can be written in spherical polar coordinates as:

$$I_i = \int_0^\infty \int_0^\pi \int_0^{2\pi} F_i(r,\theta,\phi) r^2 dr \sin\theta \, d\theta \, d\phi \tag{1.31}$$

This triple integral can be rearranged into a radial integral  $I_r$  over r and a spherical integral  $I_{\omega}$  over  $(\theta, \phi)$ . While all DFT codes, to the best of our knowledge, use Becke's nuclear weight functions to divide the molecular integral into a sum of atomic integrals, many algorithms have been developed to carry out the atomic integral  $I_i$ . These algorithms use Lebedev angular grids [8] [9] [10] of different orders in addition to different radial quadratures. The rest of this section will explain in some detail the Becke weight functions, the Lebedev spherical grids, and some of the better known radial quadratures and atomic grids.

#### **1.3.1** Becke Weight Functions

The weight functions  $W_i(\mathbf{r})$  are required to fulfill [12]:

•  $W_i(\mathbf{r}) \geq 0$ 

- $\sum_{i=1}^{N_a} W_i(\mathbf{r}) = 1$  at any point  $\mathbf{r}$  in the space.
- Every  $W_i(\mathbf{r})$  is zero or has a negligible value close to each nucleus of the molecule, except for the nucleus *i*, where it should be almost unity.

Becke started by partitioning the molecular space into the conventional Voronoi polyhedra such that each nucleus is enclosed in one of these polyhedra where the Voronoi polyhedron on a nucleus i is defined by the product [7]:

$$w_i(\mathbf{r}) = \prod_{j \neq i} s(\mu_{ij}) \tag{1.32}$$

*j* runs over the rest of the nuclei of the molecule.  $w_i(\mathbf{r})$  is called a 'cell function' and equal to unity if  $\mathbf{r}$  lies inside the cell, and zero if  $\mathbf{r}$  lies outside.  $s(\mu_{ij})$  is a step function given by:

$$s(\mu_{ij}) = \begin{cases} 1 & -1 \le \mu_{ij} \le 0 \\ 0 & 0 < \mu_{ij} \le +1 \end{cases}$$

and  $\mu_{ij}$  is defined as:

$$\mu_{ij} = (r_i - r_j)/R_{ij} \qquad -1 \le \mu_{ij} \le 1 \tag{1.33}$$

where  $r_i$  and  $r_j$  are the distances to the nuclei i and j from a point  $\mathbf{r}$  and  $R_{ij}$  is the

distance between both nuclei. To 'soften' the discontinuity at  $\mu_{ij} = 0$ , the mid-point between atoms *i* and *j*,  $s(\mu_{ij})$  is defined in terms of  $g(\mu_{ij})$ :

$$s(\mu_{ij}) = \frac{1}{2} [1 - g(\mu_{ij})]. \tag{1.34}$$

 $g(\mu_{ij})$  is obtained from the polynomial  $h(\mu_{ij})$ ,

$$h(\mu_{ij}) = \frac{3}{2} \mu_{ij} - \frac{1}{2} \mu_{ij}^{3}$$
(1.35)

by iterating h three times as follows:

$$g(\mu_{ij}) = h \{ h [h(\mu_{ij})] \}$$
(1.36)

The normalized weight functions  $W_i(\mathbf{r})$  can be calculated from the cell functions  $w_i(\mathbf{r})$  by:

$$W_i(\mathbf{r}) = \frac{w_i(\mathbf{r})}{\sum_{j=1}^{N_a} w_j(\mathbf{r})}$$
(1.37)

where the summation over j in the denominator includes all nuclei in the system. In the scheme given so far, the space is divided equally between two atoms. Becke recognized that it is important to have regions of different sizes around each atom. Therefore, Becke introduced a change of variable:

$$\nu_{ij} = \mu_{ij} + a_{ij} \left( 1 - \mu_{ij}^2 \right) \tag{1.38}$$

$$a_{ij} = \frac{u_{ij}}{u_{ij}^2 - 1} \tag{1.39}$$

$$u_{ij} = \frac{\chi - 1}{\chi + 1}$$
(1.40)

$$\chi = \frac{R_i}{R_j} \tag{1.41}$$

where  $R_i$  and  $R_j$  are Bragg-Slater radii.

# 1.3.2 Lebedev Grids

The spherical part of the integral  $I_i$  is usually carried out using the angular grids developed by Lebedev [8] [9] [10]. Let S be a unit sphere in the three-dimensional space,  $S = \{(x, y, z) : x^2 + y^2 + z^2 = 1\}$  and

$$I(f) = \int_{S} f(S) \, dS \tag{1.42}$$

A quadrature of order n that integrates polynomials of order  $\leq n$  on the surface S is given by the Gauss-Markov quadrature formula:

$$I_{n}(f) = A_{1} \sum_{i=1}^{6} f(a_{i}^{(1)}) + A_{2} \sum_{i=1}^{12} f(a_{i}^{(2)}) + A_{3} \sum_{i=1}^{8} f(a_{i}^{(3)})$$
  
+ 
$$\sum_{k=1}^{N_{1}} B_{k} \sum_{i=1}^{24} f(b_{i}^{(k)}) + \sum_{k=1}^{N_{2}} C_{k} \sum_{i=1}^{24} f(c_{i}^{(k)}) + \sum_{k=1}^{N_{3}} D_{k} \sum_{i=1}^{48} f(d_{i}^{(k)}) \quad (1.43)$$

 $a_i^{(1)}, a_i^{(2)}, a_i^{(3)}, b_i^{(k)}, c_i^{(k)}, and d_i^{(k)}$  are called the nodes and  $A_1, A_2, A_3, B_k, C_k$  and  $D_k$  are the corresponding weights. The nodes have the following coordinates:

$$\begin{aligned} a_i^{(1)} &: (0, 0, \pm 1), (0, \pm 1, 0), (\pm 1, 0, 0) \\ \\ a_i^{(2)} &: (\pm 2^{-1/2}, \pm 2^{-1/2}, 0), (\pm 2^{-1/2}, 0, \pm 2^{-1/2}), (0, \pm 2^{-1/2}, \pm 2^{-1/2}) \\ \\ a_i^{(3)} &: (\pm 3^{-1/2}, \pm 3^{-1/2}, \pm 3^{-1/2}) \\ \\ b_i^{(k)} &: (\pm l_k, \pm l_k, \pm m_k), (\pm l_k, \pm m_k, \pm l_k), (\pm m_k, \pm l_k, \pm l_k) \end{aligned}$$

$$c_i^{(k)}$$
 :  $(\pm p_k, \pm q_k, 0), (\pm p_k, 0, \pm q_k), (0, \pm p_k, \pm q_k), (\pm q_k, 0, \pm p_k)$ 

$$d_i^{(k)} : (\pm r_k, \pm u_k, \pm w_k), (\pm r_k, \pm w_k, \pm u_k), (\pm u_k, \pm r_k, \pm w_k), (\pm u_k, \pm w_k, \pm r_k), (\pm w_k, \pm u_k, \pm r_k), (\pm w_k, \pm r_k, \pm u_k)$$

where

$$2l_k^2 + m_k^2 = 1 (1.44)$$

and

$$p_k^2 + q_k^2 = 1. (1.45)$$

Lebedev gave the nodes and the weights for Gauss-Markov quadrature up to n = 53with 974 angular points. An angular grid as large as 5810 angular points with n = 131was given by Lebedev and Laikov [11].

### 1.3.3 The Radial Quadrature

The integration of a one-dimensional function A(x) can be approximated by a quadrature of the form [13]:

$$\int_{a}^{b} A(x) \, dx \, \approx \, \sum_{i=1}^{n} a_i \, A(x_i) \tag{1.46}$$

where  $a_i$  is the weight of the function A at the point  $x_i$  and n is the number of points in the interval [a, b]. Some of the well known quadratures are the Gauss-Chebyshev and Euler-Maclaurin formulas. To use any of these quadratures to calculate  $I_r$ , the points  $\{x_i\}$  have to be mapped to the points  $\{r_i\}$  [7] where,

$$0 \le r_i < \infty \tag{1.47}$$

i.e., into the limits of the radial part of the integral  $I_i$ . The choice of the mapping is crucial. The mapping determines how the radial points are distributed in the molecular space and if the core and the chemical bonding regions are appropriately represented in the integration.

#### **1.3.4** Atomic Grids

The combination of both the angular grid and the radial grid constitutes what we call the atomic grid. The radial grid involves the radial quadrature and the mapping. The rest of this section presents some of the atomic grids that are used in quantum chemistry codes and are implemented in MUNgauss [14]. In all of the following the

parameter R controls the extension of the atomic grid around the nucleus.

#### 1- Standard Grid

- The standard grid (SG-1) [15] was developed by Pople and his group. It uses Lebedev grids of 6, 38, 86, and 194 angular points to evaluate the angular part I<sub>ω</sub> of the atomic integral I<sub>i</sub>. The number of angular points increases from 6 points in the core to 194 points as we move further from the nucleus to the valence region.
- SG-1 uses the Euler-Maclaurin scheme to calculate the radial part  $I_r$  with 50 radial points. The mapping, nodes, and weights are given as follows:

$$r_i = R \frac{x_i^2}{(1 - x_i)^2} \tag{1.48}$$

$$x_i = \frac{i}{n+1} \tag{1.49}$$

$$w_i = \frac{2R^3}{(n+1)} \frac{x_i^5}{(1-x_i)^7} \tag{1.50}$$

#### 2- Treutler and Ahlrichs Grid/Treutler and Ahlrichs(new) Grid

• The Treutler and Ahlrichs (TA) grid [12] was developed by Treutler and Ahlrichs. It divides the atomic space into three regions and uses Lebedev grids of 14 and 50 angular points for the first and the second regions, respectively, and 194, or 302 for the third region. The choice of any of these two angular grids depends on the atomic number of the atom for which the numerical integration is performed. • TA uses Gauss-Chebyshev quadrature of the second kind for the radial part  $I_r$  with a number of radial points in the range from 20-45 radial points. We use the M3 mapping as defined by Treutler and Ahlrichs where the mapping, nodes, and weights are given by the formulae:

$$r_i = \frac{R}{\ln 2} (1+x_i)^{\alpha} \ln \frac{2}{1-x_i}$$
(1.51)

$$x_i = \cos\left(\frac{i\pi}{n+1}\right) \tag{1.52}$$

$$w_{i} = \left(\frac{R}{\ln 2}\right)^{3} (1+x_{i})^{3\alpha} \left(\ln \frac{2}{1-x_{i}}\right)^{3} \left(\sqrt{\frac{1+x_{i}}{1-x_{i}}} \ln \frac{1-x_{i}}{2} + \alpha \sqrt{\frac{1-x_{i}}{1+x_{i}}}\right) \left(\frac{\pi}{n+1}\right)$$
(1.53)

Treutler and Ahlrichs(new) [16], TA(new), is our new implementation of the TA grid and it uses smaller grids for the angular part of the integral  $I_i$ .

#### 3- Becke

- The Becke grid [7] uses Lebedev grids of 110 and 194 angular points.
- Becke uses Gauss-Chebyshev quadrature with 20-45 radial points. The mapping, nodes, and weights are given by:

$$r_i = R \frac{1 + x_i}{1 - x_i} \tag{1.54}$$

$$x_i = \cos\left(\frac{i\pi}{n+1}\right) \tag{1.55}$$

$$w_i = \frac{2\pi}{n+1} \frac{(1+x_i)^{5/2}}{(1-x_i)^{7/2}} R^3$$
(1.56)

#### 4- MultiExp Grids

- The MultiExp grids use the most recent, MultiExp radial grid [17]. We developed nine different grids based on the MultiExp grid with 20, 25, or 30 radial points [16].
- For each radial grid we designed three angular grids with Lebedev grids of 6 and 86 angular points for the core and middle parts of the atomic space. The outer grid can be as large as 110, 194, or 302 angular points.

$$r_i = -R \ln x_i \tag{1.57}$$

$$w_i = \left(\frac{a_i}{x_i}\right) R^3 \tag{1.58}$$

The points  $x_i$  are given in reference [17].

#### 5- Benchmark

• The benchmark grid is a larger version of the SG-1 grid where 100 radial points are used and a single grid of 1202 angular points is used for the whole atomic space.

# 1.4 The SG0 Grid

The SG0 grid [18] was developed based on the MultiExp grid of Chien and Gill. Other than our implementation of the MultiExp grid of 20 radial points and 6, 86 and 110 angular points, the SG0 is the smallest known grid. Chien and Gill did not divide the atomic space into zones, as in most of the atomic grids, but used different angular grids on different radial points. However, they followed the technique of using very small angular grids in the core, 6 angular points, and progressed to larger grids and then to smaller grids much further from the nucleus. They used different combinations of angular grids with 6, 18, 26, 38, 50, 74, 86, 110, 146, and 170 angular points. In our code we followed all the specifications of SG0 except the 18 angular points grid was replaced by a 26 angular points grid.

# Chapter 2

# **Numerical Integration**

This chapter presents the paper 'An Evaluation of The Radial Part of The Numerical Integration Commonly Used in DFT' [16] except for the introduction part which is given in more detail in Chapter 1.

# 2.1 Computational Method

All calculations were performed with MUNgauss [14]. In all cases, the electron density is calculated at the HF/6-31G(d)//HF/6-31G(d) level. Our numerical integration code uses the nuclear weight functions developed by Becke. Lebedev grids with 6, 14, 38, 50, 86, 110, 194 and 302 angular points for the spherical part of the integration have been implemented. For the radial part, we have implemented the Becke grid [7], the TA grid by Treutler and Alhrichs (TA) [12], the Gill et al. grid (SG-1) [15] and the MultiExp grids by Gill and Chien [17]. The charge density is integrated to obtain the total number of electrons for a variety of molecules containing first and second row elements in different bonding environments in addition to some closed shell atoms and third row transition metal fluorides (CuF and ZnF<sub>2</sub>). We use the integration of the charge density to evaluate the performance of some of the numerical integration grids, both in terms of accuracy and efficiency (number of grid points). The error in the total number of electrons can only be used as an estimate of errors in other properties [12] [19]. The MultiExp grid, which uses fewer radial points and a very simple mapping from the [0, 1) to  $[0, \infty)$  interval, is of special interest. The accuracy of the integration is calculated using the formula given by Gill and Chien:

$$\operatorname{accuracy} = -\log_{10} \left| \frac{\operatorname{approx}}{\operatorname{exact}} - 1 \right|$$
 (2.1)

where "approx" is the value of the integrated charge density and "exact" is the exact number of electrons. Mean absolute deviations (MAD) in the total number of electrons are also included for comparison.

# 2.2 Results and Discussion

In the application of the MultiExp grid, we used the well known technique of "pruning", i.e. using very small spherical grids in the core region where the charge density is more symmetric than in the region further from the nucleus [15]. After a great deal of experimenting with the MultiExp grid we found that dividing the atomic space into three regions with larger spherical grids as we move away from the nucleus, gives errors that are well within the acceptable error. The acceptable error was defined

by Gill et al. to be within 300  $\mu H$  for the energy or equivalently  $3 \times 10^{-4}$  for the exact number of electrons. An error of  $3 \times 10^{-4}$  corresponds to an accuracy, as defined by equation (2.1), of 3.5 to 5.5 for 1 to 100 electrons. All the mappings depend on a scaling parameter R. For the MultiExp grid the different values of R investigated were Bragg-Slater radii, the values used by TA [12], and those given by Gill et al [15]. The best performance was for the R values given by Gill et al. after optimizing some of them. Namely, the R values were optimized for Si, P, S, Cl, Cu and Zn for the 20, 25, and 30 radial grids. In addition, values of R were optimized for Li and F for the 25 radial grid and Li for the 30 radial grid. The optimized values of R along with the corresponding accuracies are given in Table 2.1. For the set of molecules for which R values were optimized, the average accuracy of the integration, excluding CuF and  $ZnF_2$  (R values not available), increased from 3.90 to 6.88 for the 20 radial grid, 4.13 to 7.49 for the 25 radial grid, and from 4.46 to 7.97 for the 30 radial grid. Only the 25 and 30 radial grids gave such high accuracies for CuF and  $ZnF_2$ . In general, it is possible to optimize R values for atoms to give a very high accuracy for a given molecule. For this reason, the molecules used for optimizing R values, LiCl, HF, SiH<sub>4</sub>, PH<sub>3</sub>, H<sub>2</sub>S, HCl, CuF and ZnF<sub>2</sub> are excluded from our test set, in order to get a more realistic measure of the performance of the MultiExp grids. For each radial grid the atomic space was partitioned into three regions, (core, middle and outer). For the 20, 25 and 30 radial grids, the space was divided into, (6,6,8), (6,8,11) and (6,10,14), respectively. For each radial grid, a spherical grid of six angular points was used for the core and 86 angular points was used for the middle region. For the outer region, we used three different spherical grids of 110, 194, and

302 angular points to give a total of 9 grids. The largest grid gives a total of 5124 grid points (6x6+10x86+14x302) per atom. For each grid, we calculated the average accuracy of the number of electrons for the set of molecules. A larger spherical grid with 302 angular points for the whole atomic space was used as a benchmark grid to evaluate the error introduced by using smaller grids in the three regions, especially the core and the middle regions. Performance of the MultiExp grid is also compared with the TA, SG-1, and Becke grids for the same set of molecules. From Table 2.2, the average accuracy for the MultiExp grids ranges from 5.03 to 6.21 while the MAD ranges from  $2.62 \times 10^{-4}$  to  $4.00 \times 10^{-5}$ . Surprisingly, even the small grid (6,6,8) with the 6-86-194 angular grid performed well (5.30) compared with the much larger SG-1 grid (5.71) and even better than the Becke grid (4.83) results given in Table 2.3. The benchmark grid gives average accuracies in the integrated charge density of 5.22, 5.79, and 6.18, for the 20, 25, and 30 radial grids, respectively. The 6-86-302 angular grid, when compared with the benchmark grid, results in no significant loss of accuracy, supporting our pruning strategy for the core and middle regions. For future calculations with first and second row elements, we recommend the use of the 20 radial points grid with the 6-86-194 angular grid, which gives an average accuracy of 5.30 and a MAD of  $1.65 \times 10^{-4}$ . This grid is both accurate and efficient. Table 2.3 shows that, for our set of molecules, the TA grid of Treutler and Alhrichs gives an average accuracy of 4.23 for the integrated charge density. On the other hand, as given in Table 2.4 for the atoms He, Ne, Mg, Ar and Zn, we obtain a much higher average accuracy of 6.69 which is comparable to the accuracy Treutler and Alhrichs obtained for atoms H to Kr (Table III in ref. [12]). For the TA grid, Treutler and Ahlrichs

used partitioning schemes of (10, 5, 15) for H, He, (11, 6, 18) for Li-Ne, (13, 7, 20)for Na-Ar and (15, 7, 23) for K-Kr. We investigated different divisions of the radial points with different angular grids. Again, the atomic space was divided into three regions with (6, 8,  $n_r - 14$ ), where  $n_r$  is the total number of radial points (30, 35, 40 or 45). The best performance was obtained using a 6-86-110 angular grid for the H atom and a 6-110-194 angular grid for the other atoms. With fewer number of grid points, our new implementation of the TA grid, TA(new), gives a much better average accuracy of 5.58 for the complete set of test molecules, as given in Table 2.3. With the TA, TA(new) and Becke grids, CuF and  $ZnF_2$  give accuracies similar to the average accuracy for the corresponding grid. As seen from Table 2.4, with TA(new) we obtain the same average accuracy as the original TA grid, of 6.69, for the atoms He, Ne, Mg, Ar and Zn. This shows that it is dangerous to draw conclusions about numerical integration algorithms based solely on atomic calculations. The same table shows the average accuracy and MAD of both SG-1 and Becke grids. It should be noted that although a grid and partitioning scheme may perform well at integrating the density, other molecular properties, such as energetics and vibrational frequencies, may not necessarily perform equally as well [25].

# 2.3 Conclusions

We have implemented the MultiExp grid introduced by Gill and Chien to integrate the charge density. MultiExp grids of 20, 25, and 30 radial points with different angular grids were investigated. We found that dividing the atomic space into three regions with a very small grid in the core, a medium grid in the middle, and a reasonably

large grid in the outer region works well. The 20 radial points MultiExp grid with the 6-86-194 angular grid proved to be both accurate and efficient for first and second row elements. For the third row transition metals we recommend the use of the 25 radial points with the 6-86-194 angular grid. Our new implementation of the Treutler and Alhrichs algorithm improved the accuracy of the TA grid by more than one order of magnitude with fewer grid points.

|                  |                 | radial grids |        |              |  |
|------------------|-----------------|--------------|--------|--------------|--|
| Atom             | Molecule        | 20           | 25     | 30           |  |
| Li               | LiCl            | $3.0769^{a}$ | 2.9770 | 3.3540       |  |
|                  |                 | 4.19         | 9.42   | 8.28         |  |
| F                | HF              | $0.7692^{a}$ | 0.7360 | $0.7692^{a}$ |  |
|                  |                 | 5.11         | 7.31   | 6.15         |  |
| Si               | ${ m SiH}_4$    | 1.5877       | 1.7260 | 1.6420       |  |
|                  |                 | 7.35         | 7.18   | 7.74         |  |
| Р                | $\mathrm{PH}_3$ | 1.4500       | 1.5930 | 1.4670       |  |
|                  |                 | 6.37         | 6.79   | 7.73         |  |
| S                | $H_2S$          | 1.3600       | 1.4930 | 1.3970       |  |
|                  |                 | 6.61         | 7.12   | 8.72         |  |
| Cl               | HCl             | 1.2730       | 1.3840 | 1.3220       |  |
|                  |                 | 7.18         | 7.15   | 7.41         |  |
| Cu               | CuF             | 0.7070       | 0.9980 | 0.8980       |  |
|                  |                 | 3.84         | 7.83   | 7.89         |  |
| $\mathbf{Zn}$    | $ZnF_2$         | 0.7010       | 0.8050 | 1.0970       |  |
|                  |                 | 4.55         | 7.06   | 7.06         |  |
| Average accuracy |                 | 5.65         | 7.48   | 7.19         |  |

Table 2.1: Optimized Values of R (First Row) and the Corresponding Accuracies(Second Row) for the MultiExp Grids.

 $^{a}$  For these atoms we used the R-values given in ref.  $\left[ 15\right]$ 

Table 2.2: Accuracy and total number of grid points for the three MultiExp grids using three different angular grids, 6-86-110, 6-86-194, 6-86-302 for rows 1, 2 and 3 respectively for each molecule.

| Radial points    | 20       |            | 25       | 5          | 30       |            |  |
|------------------|----------|------------|----------|------------|----------|------------|--|
|                  |          | Total grid |          | Total grid |          | Total grid |  |
| Molecule         | Accuracy | points     | Accuracy | points     | Accuracy | points     |  |
| $BF_3$           | 5.17     | 5728       | 4.91     | 7736       | 5.04     | 9744       |  |
|                  | 6.3      | 8416       | 5.28     | 11432      | 5.56     | 14448      |  |
|                  | 5.79     | 11872      | 5.51     | 16184      | 6.21     | 20496      |  |
| $BH_3$           | 4.81     | 5728       | 5.4      | 7736       | 5.65     | 9744       |  |
|                  | 4.67     | 8416       | 6.01     | 11432      | 5.55     | 14448      |  |
|                  | 4.71     | 11872      | 6.19     | 16184      | 5.93     | 20496      |  |
| $\mathrm{BeH}_2$ | 5.44     | 4296       | 4.97     | 5802       | 5.73     | 7308       |  |
|                  | 5.83     | 6312       | 4.91     | 8574       | 5.45     | 10836      |  |
|                  | 5.72     | 8904       | 4.93     | 12138      | 5.5      | 15372      |  |
| $C_2H_2$         | 4.76     | 5728       | 6.08     | 7736       | 5.61     | 9744       |  |
|                  | 4.8      | 8416       | 6.27     | 11432      | 5.93     | 14448      |  |
|                  | 4.81     | 11872      | 6.08     | 16184      | 6.06     | 20496      |  |
| $C_2H_4$         | 4.51     | 8592       | 4.32     | 11604      | 4.33     | 14616      |  |
|                  | 5.01     | 12624      | 5.24     | 17148      | 5.37     | 21672      |  |
|                  | 4.84     | 17808      | 6.08     | 24276      | 6.20     | 30744      |  |
| CCl <sub>4</sub> | 4.89     | 7160       | 5.25     | 9670       | 5.38     | 12180      |  |

 $\dots$  continued

| Radial points                     | 20       |            | 25       | 5          |          | 30         |  |  |
|-----------------------------------|----------|------------|----------|------------|----------|------------|--|--|
|                                   |          | Total grid |          | Total grid |          | Total grid |  |  |
| Molecule                          | Accuracy | points     | Accuracy | points     | Accuracy | points     |  |  |
|                                   | 5.05     | 10520      | 5.71     | 14290      | 6.19     | 18060      |  |  |
|                                   | 5.04     | 14840      | 5.71     | 20230      | 6.22     | 25620      |  |  |
| $\mathrm{CF}_4$                   | 5.06     | 7160       | 5.45     | 9670       | 5.05     | 12180      |  |  |
|                                   | 6.37     | 10520      | 5.32     | 14290      | 6.46     | 18060      |  |  |
|                                   | 6.86     | 14840      | 5.29     | 20230      | 7.03     | 25620      |  |  |
| $\mathrm{CH}_2(\mathrm{CH}_3)_2$  | 5.87     | 15752      | 4.97     | 21274      | 5.03     | 26796      |  |  |
|                                   | 6.15     | 23144      | 5.08     | 31438      | 5.16     | 39732      |  |  |
|                                   | 5.17     | 32648      | 5.51     | 44506      | 6.12     | 56364      |  |  |
| $\mathrm{CH}_2(\mathrm{PH}_2)_2$  | 4.72     | 12888      | 4.85     | 17406      | 4.86     | 21924      |  |  |
|                                   | 5.38     | 18936      | 6.53     | 25722      | 5.86     | 32508      |  |  |
|                                   | 5.50     | 26712      | 6.75     | 36414      | 6.73     | 46116      |  |  |
| $\mathrm{CH}_2(\mathrm{SH})_2$    | 4.84     | 10024      | 5.04     | 13538      | 5.01     | 17052      |  |  |
|                                   | 5.11     | 14728      | 5.58     | 20006      | 5.45     | 25284      |  |  |
|                                   | 5.28     | 20776      | 6.70     | 28322      | 5.94     | 35868      |  |  |
| $\mathrm{CH}_2(\mathrm{SiH}_3)_2$ | 5.79     | 15752      | 5.23     | 21274      | 5.31     | 26796      |  |  |
|                                   | 6.30     | 23144      | 5.57     | 31438      | 5.67     | 39732      |  |  |
|                                   | 5.49     | 32648      | 6.39     | 44506      | 6.73     | 56364      |  |  |
| $CH_3$ -F                         | 4.84     | 7160       | 5.32     | 9670       | 5.18     | 12180      |  |  |
|                                   | 5.17     | 10520      | 5.59     | 14290      | 6.03     | 18060      |  |  |
|                                   | 5.14     | 14840      | 5.66     | 20230      | 6.26     | 25620      |  |  |

| Radial points                    | 20       |            | 28       | 5          | 30       |            |  |
|----------------------------------|----------|------------|----------|------------|----------|------------|--|
|                                  |          | Total grid |          | Total grid |          | Total grid |  |
| Molecule                         | Accuracy | points     | Accuracy | points     | Accuracy | points     |  |
| CH <sub>3</sub> -NH <sub>2</sub> | 5.25     | 10024      | 5.19     | 13538      | 5.33     | 17052      |  |
|                                  | 5.11     | 14728      | 5.35     | 20006      | 5.57     | 25284      |  |
|                                  | 5.00     | 20776      | 5.66     | 28322      | 6.42     | 35868      |  |
| CH <sub>3</sub> -OH              | 4.88     | 8592       | 4.64     | 11604      | 4.67     | 14616      |  |
|                                  | 5.08     | 12624      | 5.67     | 17148      | 6.45     | 21672      |  |
|                                  | 5.05     | 17808      | 5.82     | 24276      | 6.61     | 30744      |  |
| $CH_3$ - $PH_2$                  | 4.99     | 10024      | 5.13     | 13538      | 5.16     | 17052      |  |
|                                  | 5.87     | 14728      | 6.27     | 20006      | 6.19     | 25284      |  |
|                                  | 5.74     | 20776      | 7.68     | 28322      | 6.72     | 35868      |  |
| CH <sub>3</sub> -SH              | 5.5      | 8592       | 5.16     | 11604      | 5.17     | 14616      |  |
|                                  | 5.57     | 12624      | 5.94     | 17148      | 6.07     | 21672      |  |
|                                  | 5.40     | 17808      | 6.58     | 24276      | 6.28     | 30744      |  |
| $\rm CH_3\text{-}SiH_3$          | 5.31     | 11456      | 5.10     | 15472      | 5.16     | 19488      |  |
|                                  | 5.61     | 16832      | 7.63     | 22864      | 5.99     | 28896      |  |
|                                  | 5.57     | 23744      | 8.34     | 32368      | 6.02     | 40992      |  |
| $\rm CH_3Cl$                     | 5.41     | 7160       | 5.19     | 9670       | 5.32     | 12180      |  |
|                                  | 6.25     | 10520      | 5.52     | 14290      | 5.89     | 18060      |  |
|                                  | 6.43     | 14840      | 5.51     | 20230      | 5.84     | 25620      |  |
| $\mathrm{CH}_4$                  | 4.63     | 7160       | 4.44     | 9670       | 4.45     | 12180      |  |
|                                  | 5.06     | 10520      | 5.49     | 14290      | 5.63     | 18060      |  |

| Radial points   | 20       | )          | 25       | j          | 30       | 30         |  |  |
|-----------------|----------|------------|----------|------------|----------|------------|--|--|
|                 |          | Total grid |          | Total grid |          | Total grid |  |  |
| Molecule        | Accuracy | points     | Accuracy | points     | Accuracy | points     |  |  |
|                 | 4.95     | 14840      | 6.22     | 20230      | 6.53     | 25620      |  |  |
| СО              | 5.37     | 2864       | 5.11     | 3868       | 5.30     | 4872       |  |  |
|                 | 5.03     | 4208       | 5.56     | 5716       | 6.80     | 7224       |  |  |
|                 | 5.04     | 5936       | 5.55     | 8092       | 7.50     | 10248      |  |  |
| $\mathrm{CO}_2$ | 5.67     | 4296       | 5.03     | 5802       | 5.16     | 7308       |  |  |
|                 | 5.03     | 6312       | 5.65     | 8574       | 6.54     | 10836      |  |  |
|                 | 5.04     | 8904       | 5.61     | 12138      | 6.97     | 15372      |  |  |
| $Cl_2$          | 5.2      | 2864       | 5.34     | 3868       | 5.13     | 4872       |  |  |
|                 | 5.82     | 4208       | 5.69     | 5716       | 7.00     | 7224       |  |  |
|                 | 6.16     | 5936       | 5.72     | 8092       | 6.66     | 10248      |  |  |
| $H_2$           | 4.73     | 2864       | 5.34     | 3868       | 5.94     | 4872       |  |  |
|                 | 4.73     | 4208       | 5.36     | 5716       | 6.03     | 7224       |  |  |
|                 | 4.72     | 5936       | 5.36     | 8092       | 6.02     | 10248      |  |  |
| $H_2CO$         | 4.86     | 5728       | 4.57     | 7736       | 4.61     | 9744       |  |  |
|                 | 4.96     | 8416       | 5.72     | 11432      | 6.45     | 14448      |  |  |
|                 | 4.96     | 11872      | 5.69     | 16184      | 6.62     | 20496      |  |  |
| $H_2O$          | 5.3      | 4296       | 5.16     | 5802       | 5.28     | 7308       |  |  |
|                 | 5.08     | 6312       | 5.5      | 8574       | 5.79     | 10836      |  |  |
|                 | 5.02     | 8904       | 5.76     | 12138      | 6.64     | 15372      |  |  |
| LiF             | 4.92     | 2864       | 4.23     | 3868       | 5.12     | 4872       |  |  |

| Radial points   | 20       | )          | 25       | j          | 3        | 30         |  |
|-----------------|----------|------------|----------|------------|----------|------------|--|
|                 |          | Total grid |          | Total grid |          | Total grid |  |
| Molecule        | Accuracy | points     | Accuracy | points     | Accuracy | points     |  |
|                 | 4.91     | 4208       | 4.21     | 5716       | 5.09     | 7224       |  |
|                 | 4.91     | 5936       | 4.21     | 8092       | 5.09     | 10248      |  |
| LiH             | 3.96     | 2864       | 4.2      | 3868       | 4.39     | 4872       |  |
|                 | 3.96     | 4208       | 4.21     | 5716       | 4.41     | 7224       |  |
|                 | 3.96     | 5936       | 4.21     | 8092       | 4.41     | 10248      |  |
| $NH_3$          | 4.61     | 5728       | 4.47     | 7736       | 4.5      | 9744       |  |
|                 | 5.23     | 8416       | 5.48     | 11432      | 5.92     | 14448      |  |
|                 | 5.13     | 11872      | 5.73     | 16184      | 6.61     | 20496      |  |
| $P_2$           | 5.49     | 2864       | 5.15     | 3868       | 5.55     | 4872       |  |
|                 | 5.28     | 4208       | 5.03     | 5716       | 5.31     | 7224       |  |
|                 | 5.34     | 5936       | 5.06     | 8092       | 5.37     | 10248      |  |
| $\mathrm{PF}_5$ | 5.2      | 8592       | 5.57     | 11604      | 5.35     | 14616      |  |
|                 | 5.06     | 12624      | 5.29     | 17148      | 6.04     | 21672      |  |
|                 | 5.03     | 17808      | 5.28     | 24276      | 6.16     | 30744      |  |
| $\mathrm{SF}_6$ | 5.24     | 10024      | 5.16     | 13538      | 4.77     | 17052      |  |
|                 | 5.01     | 14728      | 5.14     | 20006      | 6.09     | 25284      |  |
|                 | 4.95     | 20776      | 5.15     | 28322      | 6.38     | 35868      |  |
| average         | 5.07     |            | 5.03     |            | 5.12     |            |  |
|                 | 5.32     |            | 5.54     |            | 5.87     |            |  |
|                 | 5.25     |            | 5.80     |            | 6.25     |            |  |

| Radial points | 20                    | )                       | 25                   | 5      | 30                    |            |  |
|---------------|-----------------------|-------------------------|----------------------|--------|-----------------------|------------|--|
|               | Total grid            |                         | Total grid           |        |                       | Total grid |  |
| Molecule      | Accuracy              | $\operatorname{points}$ | Accuracy             | points | Accuracy              | points     |  |
| MAD           | $2.62 \times 10^{-4}$ |                         | $2.48 	imes 10^{-4}$ |        | $2.47 \times 10^{-4}$ |            |  |
|               | $1.65\times 10^{-4}$  |                         | $1.28\times 10^{-4}$ |        | $5.84 	imes 10^{-5}$  |            |  |
|               | $1.70 	imes 10^{-4}$  |                         | $1.14 	imes 10^{-4}$ |        | $4.00\times 10^{-5}$  |            |  |

Table 2.2 – continued

|                                      | TA       |           | TA(n     | TA(new)   |          | SG-1      |          | Becke      |  |
|--------------------------------------|----------|-----------|----------|-----------|----------|-----------|----------|------------|--|
|                                      | ŗ        | Fotal gri | d S      | Fotal gri | d .      | Fotal gri | d 7      | Fotal grid |  |
| Molecule                             | Accuracy | points    | Accuracy | points    | Accuracy | points    | Accuracy | points     |  |
| BF <sub>3</sub>                      | 4.18     | 23560     | 4.93     | 19960     | 5.39     | 14920     | 4.82     | 27160      |  |
| $BH_3$                               | 3.88     | 15790     | 4.93     | 12442     | 5.64     | 14632     | 3.66     | 13390      |  |
| $\mathrm{BeH}_2$                     | 3.70     | 12490     | 5.26     | 9958      | 6.33     | 10998     | 4.11     | 11190      |  |
| $C_2H_2$                             | 4.43     | 30160     | 5.94     | 24928     | 5.48     | 14728     | 5.09     | 31560      |  |
| $\mathrm{C}_{2}\mathrm{H}_{4}$       | 3.44     | 24980     | 5.57     | 19916     | 5.19     | 21996     | 4.41     | 22380      |  |
| $\mathrm{CCl}_4$                     | 4.82     | 32178     | 8.32     | 28830     | 6.02     | 18426     | 6.01     | 41710      |  |
| $\mathrm{CF}_4$                      | 6.35     | 29450     | 5.57     | 24950     | 4.83     | 18650     | 5.15     | 33950      |  |
| $\mathrm{CH}_2(\mathrm{CH}_3)_2$     | 4.14     | 44070     | 5.08     | 34842     | 5.03     | 40262     | 4.60     | 37970      |  |
| $\mathrm{CH}_2(\mathrm{PH}_2)_2$     | 4.20     | 38834     | 5.13     | 31814     | 6.32     | 32882     | 3.81     | 37450      |  |
| $\mathrm{CH}_2(\mathrm{SH})_2$       | 4.05     | 32234     | 5.34     | 26846     | 5.68     | 25614     | 4.44     | 33050      |  |
| $\mathrm{CH}_2(\mathrm{SiH}_3)_2$    | 4.30     | 45434     | 5.59     | 36782     | 5.32     | 40150     | 4.30     | 41850      |  |
| CH <sub>3</sub> -F                   | 4.34     | 21680     | 5.35     | 17432     | 5.96     | 18362     | 4.51     | 20180      |  |
| $CH_3$ - $NH_2$                      | 3.63     | 28280     | 5.12     | 22400     | 5.54     | 25630     | 4.21     | 24580      |  |
| CH <sub>3</sub> -OH                  | 4.36     | 24980     | 5.23     | 19916     | 6.16     | 21996     | 4.38     | 22380      |  |
| $\mathrm{CH}_3\text{-}\mathrm{PH}_2$ | 3.76     | 28962     | 5.75     | 23370     | 6.25     | 25574     | 4.40     | 26520      |  |
| $CH_3$ - $SH$                        | 4.26     | 25662     | 5.69     | 20886     | 5.28     | 21940     | 4.57     | 24320      |  |
| $\mathrm{CH}_3	ext{-}\mathrm{SiH}_3$ | 4.08     | 32262     | 5.30     | 25854     | 6.06     | 29208     | 4.64     | 28720      |  |
| CH <sub>3</sub> Cl                   | 4.15     | 22362     | 5.95     | 18402     | 5.76     | 18306     | 4.84     | 22120      |  |
| $\mathrm{CH}_4$                      | 3.78     | 19090     | 5.50     | 14926     | 5.65     | 18266     | 4.29     | 15590      |  |
| СО                                   | 4.95     | 11780     | 5.91     | 9980      | 6.32     | 7460      | 5.98     | 13580      |  |
| $\mathrm{CO}_2$                      | 5.46     | 17670     | 6.31     | 14970     | 6.12     | 11190     | 7.11     | 20370      |  |

Table 2.3: Accuracy and Total Number of Grid Points Using the Original TA, TA(new), SG-1, and Becke Grids.

|                  | ТА                    |           | TA(ne                 | rA(new) SG |                       | SG-1 B   |                       | cke        |
|------------------|-----------------------|-----------|-----------------------|------------|-----------------------|----------|-----------------------|------------|
|                  | j                     | Fotal gri | id 7                  | fotal gr   | id S                  | Fotal gr | id 7                  | Fotal grid |
| Molecule         | Accuracy              | points    | Accuracy              | points     | Accuracy              | points   | Accuracy              | points     |
| $Cl_2$           | 3.91                  | 13144     | 6.72                  | 11920      | 4.99                  | 7348     | 6.13                  | 17460      |
| $H_2$            | 3.68                  | 6600      | 5.30                  | 4968       | 5.32                  | 7268     | 3.80                  | 4400       |
| $\rm H_2CO$      | 3.90                  | 18380     | 5.78                  | 14948      | 5.63                  | 14728    | 4.71                  | 17980      |
| $H_2O$           | 4.36                  | 12490     | 5.19                  | 9958       | 6.25                  | 10998    | 4.85                  | 11190      |
| ${ m LiF}$       | 5.81                  | 11780     | 4.70                  | 9980       | 4.77                  | 7460     | 3.79                  | 13580      |
| LiH              | 3.90                  | 9190      | 4.81                  | 7474       | 5.24                  | 7364     | 4.20                  | 8990       |
| $\rm NH_3$       | 3.96                  | 21680     | 5.41                  | 17432      | 5.76                  | 14632    | 6.68                  | 8730       |
| $P_2$            | 4.17                  | 13144     | 5.96                  | 11920      | 6.36                  | 7348     | 4.65                  | 20180      |
| $P_4$            | 3.75                  | 32860     | 5.95                  | 29800      | 8.72                  | 14696    | 5.70                  | 17460      |
| $\mathrm{PF}_5$  | 3.72                  | 36022     | 5.91                  | 30910      | 5.01                  | 22324    | 6.03                  | 42680      |
| $SF_6$           | 3.85                  | 41912     | 5.04                  | 35900      | 4.21                  | 26054    | 4.61                  | 49470      |
| Average          | 4.23                  |           | 5.58                  |            | 5.71                  |          | 4.83                  |            |
| MAD              | $2.59 \times 10^{-3}$ |           | $1.06 \times 10^{-4}$ |            | $3.12 \times 10^{-4}$ |          | $8.34 \times 10^{-4}$ |            |
| $\mathrm{CuF}$   | 4.87                  | 13396     | 5.55                  | 11920      |                       |          | 4.64                  | 16490      |
| $\mathrm{ZnF}_2$ | 4.71                  | 19286     | 5.43                  | 16910      |                       |          | 4.43                  | 23280      |

Table 2.3 – continued

|         | TA                   |                       | TA(nev               | TA(new) |                      | SG-1   |                      | e e e e e e e e e e e e e e e e e e e |
|---------|----------------------|-----------------------|----------------------|---------|----------------------|--------|----------------------|---------------------------------------|
|         |                      | $\operatorname{Grid}$ |                      | Grid    |                      | Grid   |                      | $\operatorname{Grid}$                 |
| Atom    | Accuracy             | points                | Accuracy             | points  | Accuracy             | points | Accuracy             | points                                |
| Не      | 7.23                 | 3300                  | 7.23                 | 2484    | 9.31                 | 3634   | 6.14                 | 6790                                  |
| Ne      | 7.22                 | 5890                  | 7.22                 | 4990    | 9.11                 | 3730   | 6.66                 | 6790                                  |
| Mg      | 6.69                 | 6572                  | 6.69                 | 5960    | 6.52                 | 3674   | 6.68                 | 8730                                  |
| Ar      | 6.37                 | 6572                  | 6.37                 | 5960    | 8.36                 | 3674   | 7.06                 | 8730                                  |
| Zn      | 5.94                 | 7506                  | 5.94                 | 6930    |                      |        | 5.97                 | 9700                                  |
| Average | 6.69                 |                       | 6.69                 |         | 8.33                 |        | 6.50                 |                                       |
| MAD     | $1.19\times 10^{-5}$ |                       | $1.19\times 10^{-5}$ |         | $1.34\times 10^{-6}$ |        | $1.04\times 10^{-5}$ |                                       |

Table 2.4: Accuracy and Total Number of Grid Points for Atoms Using the Original TA, TA(new), SG-1, and Becke Grids.

# Chapter 3

# Comprehensive Study of Molecular Numerical Integration

# 3.1 Introduction

In Chapter 2 we compared the performance of some of the well known grids used in molecular numerical integration, both in terms of accuracy and efficiency. We concluded, based on the number of electrons only [16], that the MultiExp grid performed well compared to the grids proposed by Becke [7], Gill et al [15], and Treutler and Ahlrichs [12]. In this chapter we reexamine the performance of the same set of grids in addition to the SG0 [18] grid and the benchmark grid described in Chapter 1. Since the exact value of the numerical integration is not always available, the numerical integration accuracy is evaluated by calculating the total number of electrons or the total energy using a larger grid as a reference [12] [15] [21]. Our approach is different. We calculated the number of electrons  $N_{el}$ , potential energy  $V_{ne}$ , dipole moment  $\mu$  and coulomb potential energy  $V_{ee}$  using both Hartree-Fock theory and numerical integration, where the charge density used for numerical integration is calculated from HF theory. Therefore the HF values of  $V_{ne}$ ,  $\mu$ , and  $V_{ee}$  serve as exact values to compare with those calculated by numerical integration. We used a set of eighty nine molecules, see Table 3.1, representing different molecular environments, ground states, and transition states. In addition, we developed our own Fortran 90 code within the framework of MUNgauss [14].

# 3.2 **Results and Discussion**

To test the performance of the different grids, seven sets of molecules are used. The first three sets represent elements from the first, second, and third rows of the periodic table. The other four sets represent transition states, ions, complexes, and peptides. For all of the grids, the set of peptides consisted of one to five glycine amino acids except for the benchmark grid where only one and two glycine peptides were used. The error in each set was measured using the mean absolute error, MAE which is calculated by the formula:

$$MAE = \sum_{i} |P_{NI}^{i} - P_{HF}^{i}| / N$$
(3.1)

 $P_{NI}^{i}$  is the value of the molecular property,  $N_{el}$ ,  $V_{ne}$ ,  $\mu$ , or  $V_{ee}$  calculated using numerical integration for a molecule *i* and  $P_{HF}^{i}$  is the corresponding value of the same property calculated using HF. N is the number of molecules in each set. The no-

tations 20(110), 20(194), 20(302), 25(110), 25(194), 25(302), 30(110), 30(194), and 30(302) denote MultiExp grids of 20, 25, or 30 radial points with 6-86-110, 6-86-194, or 6-86-302 angular grids. The parameter R was optimized for Ge, As, Se, and Br in the molecules CH<sub>3</sub>GeH<sub>3</sub>, CH<sub>3</sub>AsH<sub>2</sub>, CH<sub>3</sub>SeH, and CH<sub>2</sub>Br<sub>2</sub>, respectively. Values of R are only available for elements up to argon for SG0 and SG-1 and up to krypton for TA and TA(new).

#### 3.2.1 Number of Electrons

The number of electrons is calculated by integrating the electron density using the equation:

$$N_{el} = \int \rho(\mathbf{r}) \, d\mathbf{r} \tag{3.2}$$

Table 3.2 gives MAE of the integration of the electron density for the seven sets of molecules described above with the 14 grids mentioned previously. For molecules containing first row atoms, the accuracy of the integration of the electron density using MultiExp grid with 20 radial points improves slightly as the angular grid for the outermost region increases from 110 angular points to 194 but it does not improve by further increasing the number of angular points to 302. The accuracy slightly increases by increasing the size of the outermost grid using MultiExp grid with 25 radial points. The 30(302) grid is the most accurate while 25(302) and 30(194) are almost of the same accuracy. SG0 and Becke are of comparable accuracies to our implementation of the 20 radial points MultiExp grid. The least accurate grid is TA. Our new implementation of the TA grid, TA(new), is almost an order of magnitude

more accurate than TA. SG-1 and TA(new) give almost the same accuracy. The third column of Table 3.2, molecules with atoms from the first and second rows, shows a similar trend for the MultiExp grids. The worst accuracy is given by the TA grid. The TA(new) grid is the most accurate grid and is more accurate than TA by more than an order of magnitude. For molecules containing third row atoms, TA is again the least accurate and the best accuracy is given by TA(new) while Becke and the nine MultiExp grids give nearly the same accuracy. For the transition states, 30(194) is the most accurate and TA is the least accurate. The performance of the MultiExp grids improves slightly by increasing the number of angular points in the outermost region. For complexes, 30(194), 30(302), TA(new) and SG-1 grids give better accuracies than the rest of the grids. The TA grid is the least accurate, almost two orders of magnitude less accurate than TA(new). For ions, 25(302) and 30(302) are the most accurate and TA is the least accurate. TA(new) and SG-1 grids are of comparable accuracies. SG0 performance is similar to our implementation of the MultiExp grid. For peptides, the 30(302) grid is the most accurate while TA is the least accurate. The 20(110) and Becke grids are of similar accuracy which is relatively low. The 25(194), 25(302), 30(194), TA(new) and SG-1 are of similar MAE which is around  $2.0 \times 10^{-4}$ , an order of magnitude less than that of the most accurate grid 30(302). The MAE of the benchmark grid is in the range of  $1.2 \times 10^{-7}$  to  $2.5 \times 10^{-8}$ which is extremely accurate. For all of the seven sets, the best accuracies are for the 30(194), 30(302), TA(new) and SG-1 grids while the performance of the 25(194) is reasonable.

## 3.2.2 Dipole Moment

The dipole moment is calculated using the formula:

$$\mu = \int \rho(\mathbf{r}) \, \mathbf{r} \, d\mathbf{r} \tag{3.3}$$

Table 3.3 gives MAE for the different test sets with the 14 grids. For molecules containing first-row atoms, except for the TA grid, which gave an MAE of  $4.6 \times$  $10^{-3}$  au, the MAE for the rest of the thirteen grids was in the range of  $9 \times 10^{-4}$ au to  $1.5 \times 10^{-4}$  au. However, an improvement can be noticed as the number of angular points is increased in the outermost region from 110 to 194 and almost no improvement by increasing to 302 angular points for 20, 25 or 30 radial points. The same observation can be made for molecules containing second-row atoms. Table 3.3 shows that, for molecules containing atoms from the second and third rows, the TA grid was the least accurate. TA(new) is more accurate than TA and of the same accuracy as SG-1. It also shows that the SG0 grid performed as well as the 20(110)MultiExp grid. From the fourth column of Table 3.3, molecules containing third-row atoms, the MAE for the nine MultiExp grids, Becke and TA is almost the same and in the range of  $1.3 \times 10^{-2}$  au to  $3.7 \times 10^{-2}$  au while the MAE of TA(new) is  $3.5 \times 10^{-4}$ au, two orders of magnitude less than all of the other grids. For transition states, the error in calculating the dipole moment using 20(194) MultiExp grid is less than using 20(110). However, the error does not decrease by using the larger grid 20(302). The same pattern is also observed with the MultiExp grids of 25 radial points. The accuracy does not improve by increasing the grid size from 25(194) to 25(302) but the error decreases by increasing the grid from 25(110) to 25(194). The same trend can be also observed in the dipole moment calculated using the MultiExp grids of 30 radial points. For complexes, the accuracy of 20(110), Becke, TA and SG0 are of the same order of magnitude and these grids are less accurate than the rest of the grids. It also shows that TA(new) and SG-1 are almost of the same accuracy. For ions, 20(110), 25(110), and 30(110) grids give almost the same accuracy which is less than the rest of the grids. The grid 25(302) gave the best accuracy, even better than 30(302). TA(new) is as accurate as SG-1, while SG0 is almost as accurate as 20(194). For peptides, Becke and TA grids were the least accurate grids while 30(302) was the most accurate. Again, TA(new) and SG-1 have the same accuracy. The general trend amongst the MultiExp grids is also clear. An angular grid of 194 angular points gives better accuracy than 110 while 302 does not offer an improvement over the 194 grid. The *MAE* of the benchmark grid for all sets is around  $1.0 \times 10^{-7}$  au. As in the case of number of electrons, the best performance for all sets was obtained by using 30(194), 30(302), TA(new) and SG-1.

## **3.2.3** Potential Energy

The potential energy between electrons and nuclei is given by:

$$V_{ne} = \sum_{A} Z_{A} \int \frac{\rho(\mathbf{r})}{|\mathbf{r} - \mathbf{R}_{A}|} d\mathbf{r}$$
(3.4)

where  $R_A$  is the position of the atom A of atomic charge  $Z_A$ . Table 3.4 gives MAEfor the potential energy. For molecules containing first-row atoms, the highest MAEis given by the MultiExp grid of 20 radial points  $(7.9 \times 10^5 \mu H)$  while the lowest is given by SG-1  $(1.5 \times 10^3 \mu H)$ . The nine MultiExp grids from 20(110) to 30(302) give

MAE around 10<sup>5</sup> $\mu H$ . TA(new) gave MAE very close to that of SG-1. For molecules containing second-row atoms, the 20(110), 20(194), and 20(302) grids gave MAE of about  $10^7 \ \mu\text{H}$  while the *MAE* for the rest of the MultiExp grids was around  $10^6 \ \mu\text{H}$ . The most accurate grid was TA(new) followed by SG-1. For molecules containing atoms from the third row, the nine MultiExp grids gave similar accuracies while TA is slightly more accurate than TA(new). For transition states, the MultiExp grid of 20 radial points is the least accurate. Increasing the size of the outermost grid for the MultiExp grid of 20 radial points did not change the accuracy significantly, which is the same for MultiExp grids of 25 and 30 radial points. The most accurate grid for transition states is SG-1 followed by TA(new). For complexes, the MultiExp grid of 20 radial points was the least accurate grid while SG-1 is the most accurate. For complexes and ions, the nine MultiExp grids performed in a similar fashion as in the case of transition states. The most accurate grid for complexes is SG-1 while TA(new) is the most accurate grid for ions. For peptides, SG-1 is the most accurate grid followed by TA(new). The error in calculating the potential energy drops significantly when the benchmark grid is used, but is still relatively high. This huge error in potential energy suggests that the grids currently used for numerical integration are not suitable for the calculation of potential energy and that numerical integration is dependent on the form of the function to be integrated. Although the errors in calculating the potential energy using all of the 14 grids are large, the grids TA(new) and SG-1 performed relatively better than the rest of the grids. To our knowledge all DFT codes calculate the potential energy using analytical integration, probably

because it is more efficient. However, with these results, there is one more reason not to use numerical integration to calculate potential energy.

# **3.2.4** Coulomb Repulsion Energy $V_{ee}^1$

A double numerical integration was performed to calculate the Coulomb energy using the formula:

$$V_{ee}^{1} = \int \int \frac{\rho(\mathbf{r}_{1})\rho(\mathbf{r}_{2})}{r_{12}} d\mathbf{r}_{1} d\mathbf{r}_{2}$$
(3.5)

where  $\rho(\mathbf{r})$  is the electron density and  $r_{12}$  is the distance between two points  $\mathbf{r_1}$ and  $\mathbf{r_2}$ . Table 3.5 shows *MAE* for  $V_{ee}^1$  for all sets using all of the 14 grids, the error is consistently higher than  $10^5 \ \mu H$ . These results imply that double numerical integration is very inaccurate. Using the benchmark grid, the error is still extremely high and in the range of  $9.1 \times 10^4 \ \mu \text{H}$  to  $3.1 \times 10^5 \ \mu \text{H}$ .

# **3.2.5** Coulomb Repulsion Energy $V_{ee}^2$

Since the double numerical integration is time consuming and very inaccurate, we recalculated the Coulomb energy using the formula:

$$V_{ee}^{2} = \int \rho(\mathbf{r}_{2}) \left[ \sum_{\mu\nu} P_{\mu\nu} \int \frac{\phi_{\mu}(\mathbf{r}_{1})\phi_{\nu}(\mathbf{r}_{1})d\mathbf{r}_{1}}{r_{12}} \right] d\mathbf{r}_{2}$$
(3.6)

 $P_{\mu\nu}$  is a density matrix element,  $\rho$  is the charge density and  $\phi_{\mu}$  and  $\phi_{\nu}$  are basis functions. The first integral, in the brackets, was performed analytically while the second integral was performed numerically. In density functional theory, equation 3.6

is used to calculate the Coulomb repulsion energy. Table 3.6 shows that for some of the data sets, molecules containing atoms from the first and third rows, complexes, and ions, the 20(110) grid is surprisingly more accurate than 25(194). An explanation for this apparently odd behaviour could be that the MultiExp grids of 20 and 25 radial points are too small to calculate the Coulomb energy and that their accuracies are unreliable. Another possible explanation may be that the R parameter is very critical for the accuracy of the numerical integration. Since R is optimized to give the best accuracy in the integration of the electron density, then, by reoptimizing Rto give the most accurate Coulomb energy, the 20 and 25 grids may perform in a more reliable fashion. From Table 3.6, for molecules containing first-row atoms, the most accurate grid is 30(302) and the second most accurate is 30(194) and both of them are more accurate than TA(new) and SG-1. Compared to the rest of the grids, SG0 is of an average accuracy. The least accurate grid is the MultiExp grid 25(110). While the error for the 14 grids was in the range of 239  $\mu$ H to 8960  $\mu$ H, the error for the benchmark grid was incredibly small, 0.38  $\mu$ H. For molecules containing atoms from the second row, TA(new) is by far the most accurate and its MAE is almost 30 times less than that of TA. SG-1 follows TA(new) in accuracy. The least accurate grid from the nine MultiExp grids is the 25(110) grid which is less accurate than the smaller grids 20(110) and SG0. The error varied from 675  $\mu$ H to 11133  $\mu$ H. The 20(194), 20(302), 30(110) and Becke grids are of similar accuracy, although they vary a lot in size. The benchmark grid is extremely accurate with a MAE of 1.81  $\mu$ H. For molecules containing atoms from the third row, TA(new) is the most accurate grid. The largest error is of the MultiExp grid 25(302) which is a relatively large
grid. Again, the large errors for molecules containing third-row atoms, 445333  $\mu$ H for 25(302), points to a serious problem either with the optimization of the parameter R or the MultiExp grid size. However, since the parameter R for the third-row atoms was optimized using the same technique used for the first and second-row atoms, we expect that the 20, 25, or 30 radial points grids are not large enough to calculate the Coulomb repulsion energy. Both Becke and TA grids are more accurate than the nine MultiExp grids. For transition states, the MultiExp grids performance is reasonable. For the 20, 25, and 30 radial MultiExp grids, the MAE decreases as the outermost angular grid increases from 110 to 194 angular points. However, the accuracy does not increase much as the size increases from 194 to 302 angular points. The 30(194)grid is the most accurate followed by TA(new). SG0 has a MAE almost equivalent to that of the 20(110), 25(110), and 30(110) grids. The MAE of the benchmark grid is only 1.63  $\mu$ H. For complexes, TA(new) continued to be the most accurate followed by the 30(194) grid, while TA is the least accurate. For ions, 30(302) is the most accurate followed by TA(new). Again TA is by far the least accurate grid. For peptides, 30(302) is the most accurate while 30(194) is the second most accurate. In general, the accuracy of SG0 was consistent with that of 20(110). The overall performance of the TA(new) and SG-1 grids for the seven sets was the best. In general the 30(194) and 30(302) gave a relatively small MAE, however their poor performance for molecules containing third-row atoms makes them unreliable.

# **3.3** Some Interesting Observations

Table 3.7 gives the error in  $V_{ee}^2$  using the Becke, TA, TA(new), SG-1, SG0, and benchmark grids for a series of five peptides ranging in size from one to five glycine amino acids. It is obvious from the table that the error changes randomly as the size of the peptide increases, even with some of the larger and more accurate grids, TA(new) and SG-1. For example, SG-1 predicts the error for 3G\_pep to be smaller than the error for 2G\_pep and the error with TA(new) jumps from -3,960  $\mu H$  for 4G\_pep to 5,890  $\mu H$  for 5G\_pep. The error in  $V_{ee}^2$  increases consistently with the size of the peptide only when the benchmark grid is used. Using the benchmark grid, the error increased from 0.6  $\mu H$  for 1G\_pep to 24.9  $\mu H$  for 5G\_pep which is a relatively large error given the size of the benchmark grid. Since the benchmark grid is very time consuming, one can only wonder how big the error would be for much larger peptides and just how reliable the numerical integration would be using smaller grids.

# **3.4** The Effect of the Parameter *R* on the Integration

In Chapter 2, the parameter R of the MultiExp grid was optimized to give the best accuracy in the number of electrons. The R values were reoptimized to give the best accuracy in  $V_{ee}^2$  for molecules containing atoms from the first and second rows. Table 3.8 gives the new R values for the MultiExp grid of 20 radial points along with the accuracy calculated using equation (2.1). Table 3.9 shows the error in the Coulomb potential  $V_{ee}^2$  calculated using the old set of R values,  $R_1$ , and the new set of R values,  $R_2$ . The overall MAE decreased from 8,280  $\mu$ H to 7,231  $\mu$ H. However, from Table 3.9, we notice that the error for the set of molecules containing chlorine did not change systematically. The error did not change for pNO<sub>2</sub>BzCl, but changed in sign for HOCl and CH<sub>2</sub>Cl<sub>2</sub>, changed by half an order of magnitude in Cl<sub>2</sub>, and dramatically changed in both sign and magnitude for NaCl, CH<sub>3</sub>Cl, CCl<sub>4</sub>, and ClF. The same pattern can be observed for the set of molecules containing phosphorous, P<sub>2</sub>, PF<sub>5</sub>, PH, CH<sub>3</sub>PH<sub>2</sub>, and CH<sub>2</sub>PH<sub>2</sub>PH<sub>2</sub> as well as the set containing sulfur, SO, SO<sub>2</sub>, CH<sub>3</sub>SH, and CH<sub>2</sub>SHSH. Of special interest is the comparison of the molecules SO and SO<sub>2</sub>. The error doubled for SO but increased more than an order of magnitude for SO<sub>2</sub>. This analysis shows that the accuracy of the numerical integration using MultiExp grid is highly sensitive to the change in the parameter R. This dependence on R could explain the odd behaviour of MultiExp grid where a larger grid, 25(110), gave an overall mean absolute error larger than that of the smaller grid 20(110) (see the third column of Table 3.6).

# 3.5 Numerical Integration Efficiency

#### 3.5.1 Number of Points of The Atomic Grid

Table 3.10 gives the number of points for the atomic grids except for SG0 where the number of points of SG0 can vary from one atom to another. The number of points of SG0 from hydrogen to chlorine is in the range of 1406 to 1480 which makes it one of the smallest grids and comparable in size to the 20(110) grid. Table 3.10 shows that except for H and He, the largest grid is the Becke grid followed by the TA grid. It can

be seen that the larger grids are not necessarily the most accurate grids and that the mapping and the radial quadrature play a crucial rule in determining the accuracy of the numerical integration. Also Table 3.10 shows that, except for H and He, the TA(new) grid is larger than the SG-1 grid, that the 30(194) grid is comparable in size to the SG-1 grid, and the 25(194) grid is medium in size between the SG0 and SG-1 grids.

#### 3.5.2 Constructing the Atomic Grid Efficiently

To build the atomic grid around a nucleus, the radial points and their weights, the cartesian coordinates of the angular points, and the angular weights are required. The smallest grid SG0 consists of 1406 points for hydrogen while the largest grid, the Becke grid, can be as large as 8730 angular points. For large molecules, storing the atomic grid for each atom requires a large allocation of memory. To minimize the memory requirements for storing the atomic grid, we developed an algorithm [22] that only constructs the atomic grid for atoms of different atomic numbers, not for each atom in the molecule. For example the molecule  $C_2H_6$  consists of eight atoms but it only has two atoms of different atomic numbers, hydrogen and carbon. For  $C_2H_6$  our algorithm calculates the atomic grids for hydrogen and carbon at the center of the coordinate system. A linear transformation which involves the addition of the nuclear coordinates of a specific atom to the grid built at the centre of the coordinate system translates the grid to the position of the atom under consideration. The savings in building the grid using this algorithm will increase with the size of the molecule,

since the number of atoms of different atomic numbers could be the same or increase slightly.

# 3.6 Conclusions

The performance of the MultiExp grid was reexamined in addition to some of the well known grids, including the most recently developed grid SG0, and a benchmark grid. We used numerical integration to calculate the number of electrons, dipole moment, potential energy and Coulomb repulsion energy. In general, the most accurate grids are our new implementation of the Trutler and Alhrichs grid TA(new) and the standard grid SG-1. Increasing the size of the outermost grid of the MultiExp grid from 110 to 194 angular points improved the accuracy but increasing it further to 302 angular points did not. All the grids were very inaccurate in calculating the potential energy. The Coulomb energy calculations showed the inconsistency of the performance of the MultiExp grid. Also the random behaviour of the numerical integration, specifically with calculating Coulomb energy, was noticed with some of the larger grids such as SG-1 and TA(new).

| 1 <sup>st</sup> row              | 2 <sup>nd</sup> row               | complexes                         | $3^{rd}$ row               | $\mathrm{TS}^a$             | ions                 |
|----------------------------------|-----------------------------------|-----------------------------------|----------------------------|-----------------------------|----------------------|
| BF <sub>3</sub>                  | $\mathrm{CCl}_4$                  | $(\mathrm{CH}_2\mathrm{O}_2)_2$   | $AsH_3$                    | $CH_3Cl_2$                  | $ArNH_3^+$           |
| $BH_3$                           | $CH_2ClCl$                        | FH-CO                             | $\mathrm{CH}_3\mathrm{Br}$ | $\mathrm{CH}_3\mathrm{F}_2$ | $H_3^+O$             |
| $\mathrm{BeH}_2$                 | $\mathrm{CH}_2(\mathrm{PH}_2)_2$  | FH-FH                             | ${\rm Ge_2H_6}$            | CH <sub>3</sub> FCl         | HCOO-                |
| $C_2H_2$                         | $\rm CH_2SHSH$                    | FH-NCH                            | ${\rm Ge_3H_8}$            | $\rm CH_5OF$                | $\rm NH_3^+CH2COO^-$ |
| $C_2H_4$                         | $\mathrm{CH}_2(\mathrm{SiH}_3)_2$ | $FH-NH_3$                         | ${\rm Ge_4H_{10}}$         | $Ethyl-OSO_2-CH_3$          |                      |
| $\mathrm{CF}_4$                  | $\mathrm{CH}_3\mathrm{PH}_2$      | FH-NN                             | ${\rm Ge_5H_{12}}$         | $BzCl^+CN^-$                |                      |
| $\rm CH_2 CHCOOH$                | $\mathrm{CH}_3\mathrm{SH}$        | $\mathrm{FH}	ext{-}\mathrm{OH}_2$ | ${\rm GeH}_4$              |                             |                      |
| $\mathrm{CH}_{2}\mathrm{FF}$     | $\mathrm{CH}_3\mathrm{SiH}_3$     | $H_2O-CO_2$                       | $\mathrm{H}_2\mathrm{Se}$  |                             |                      |
| $\mathrm{CH}_2(\mathrm{CH}_3)_2$ | $\rm CH_3Cl$                      | $H_2O_H_2O$                       |                            |                             |                      |
| $\mathrm{CH}_{3}\mathrm{F}$      | $\mathbf{CS}$                     |                                   |                            |                             |                      |
| $\mathrm{CH}_3\mathrm{NH}_2$     | $\mathrm{Cl}_2$                   |                                   |                            |                             |                      |
| $\rm CH_3OH$                     | ClF                               |                                   |                            |                             |                      |
| $\mathrm{CH}_3\mathrm{CONH}_2$   | HOCl                              |                                   |                            |                             |                      |
| $\mathrm{CH}_4$                  | Mg                                |                                   |                            |                             |                      |
| CO                               | NaCl                              |                                   |                            |                             |                      |
| $\mathrm{CO}_2$                  | $P_2$                             |                                   |                            |                             |                      |
| EtOTs                            | $\mathrm{PF}_5$                   |                                   |                            |                             |                      |
| $F_2$                            | PH                                |                                   |                            |                             |                      |
| $H_2$                            | $PH_3$                            |                                   |                            |                             |                      |
| $\rm H_2CO$                      | ${ m SF}_6$                       |                                   |                            |                             |                      |
| $H_2O$                           | SO                                |                                   |                            |                             |                      |
| H2O2                             | $\mathrm{SO}_2$                   |                                   |                            |                             |                      |
| HCOOH                            | SiO                               |                                   |                            |                             |                      |
| $Li_2$                           | $pNO_2BzCl^b$                     |                                   |                            |                             |                      |
| ${ m LiF}$                       | peptides                          |                                   |                            |                             |                      |
| LiH                              | $1G_{-}pep$                       |                                   |                            |                             |                      |
| NH <sub>3</sub>                  | $2G_{-}pep$                       |                                   |                            |                             |                      |
| benzaldehyde                     | 3G_pep                            |                                   |                            |                             |                      |
| $\operatorname{cytosine}$        | 4G_pep                            |                                   |                            |                             |                      |
| formamidine                      | 5G_pep                            |                                   |                            |                             |                      |
| methoxide                        |                                   |                                   |                            |                             |                      |
| naphthalene                      |                                   |                                   |                            |                             |                      |
| uracil                           |                                   |                                   |                            |                             |                      |
| a m                              |                                   |                                   |                            |                             |                      |

Table 3.1: Set of molecules used for numerical integration calculations

 $^{a}$  Transition states

 $^{b}$ Para nitrobenzyl chloride

| grid      | $1^{st}$ row | $2^{nd}$ row | $3^{rd}$ row | $\mathrm{TS}^{b}$ | complexes | ions    | peptides             |
|-----------|--------------|--------------|--------------|-------------------|-----------|---------|----------------------|
| 20(110)   | 4.3E-04      | 9.2E-04      | 8.2E-03      | 6.0E-04           | 4.5E-04   | 6.7E-04 | 1.3E-03              |
| 20(194)   | 2.5E-04      | 6.3E-04      | 8.4E-03      | 2.8E-04           | 4.2E-04   | 4.3E-04 | 6.8E-04              |
| 20(302)   | 2.4E-04      | 6.5 E- 04    | 8.5E-03      | 1.9E-04           | 4.2E-04   | 3.0E-04 | 6.2E-04              |
| 25(110)   | 5.1E-04      | 6.2E-04      | 6.1E-03      | 6.8E-04           | 4.1E-04   | 7.8E-04 | 7.1E-04              |
| 25(194)   | 1.2 E-04     | 3.6E-04      | 6.2E-03      | 1.2E-04           | 2.1E-04   | 1.5E-04 | 2.4E-04              |
| 25(302)   | 7.9E-05      | 3.2E-04      | 6.2E-03      | 1.7E-04           | 2.0E-04   | 4.6E-05 | 2.7E-04              |
| 30(110)   | 4.7E-04      | 5.7 E-04     | 5.9E-03      | 6.5E-04           | 2.6E-04   | 7.6E-04 | 8.8E-04              |
| 30(194)   | 6.9E-05      | 2.2E-04      | 6.0E-03      | 8.5E-05           | 5.2E-05   | 1.4E-04 | 1.1E-04              |
| 30(302)   | 2.9E-05      | 1.8E-04      | 6.0E-03      | 1.1E-04           | 4.7E-05   | 3.1E-05 | 1.2E-05              |
| Becke     | 5.6E-04      | 8.4E-04      | 4.5E-03      | 2.5E-03           | 3.5E-04   | 3.8E-04 | 2.8E-03              |
| ТА        | 2.2E-03      | 2.7E-03      | 1.2E-02      | 2.9E-03           | 1.7E-03   | 1.9E-03 | 4.8E-03              |
| TA(new)   | 1.8E-04      | 8.3E-05      | 2.5E-04      | 1.2E-04           | 4.6E-05   | 1.3E-04 | 2.8E-04              |
| SG-1      | 1.3E-04      | 2.9E-04      | NA           | 2.2E-04           | 4.1E-05   | 2.2E-04 | 2.1E-04              |
| SG0       | 3.7E-04      | 5.0E-04      | NA           | 7.0E-04           | 2.1E-04   | 4.4E-04 | 5.2E-04              |
| Benchmark | 3.4E-08      | 1.2E-07      | NA           | 1.5E-07           | 2.5E-08   | 8.4E-08 | 6.0E-08 <sup>c</sup> |

Table 3.2: Mean absolute error MAE for the number of  $electrons^a$ , equation (3.2)

<sup>a</sup> See Table 3.1 for list of molecules

 $^{b}$  Transition states

 $^{c}$  Only 1G\_pep and 2G\_pep are calculated

| grid      | $1^{st}$ row | $2^{nd}$ row              | $3^{rd}$ row              | $\mathrm{TS}^b$ | complexes | ions    | peptides                    |
|-----------|--------------|---------------------------|---------------------------|-----------------|-----------|---------|-----------------------------|
| 20(110)   | 9.0E-04      | 1.7E-03                   | 2.0E-02                   | 1.4E-03         | 1.2E-03   | 1.7E-03 | 9.5E-03                     |
| 20(194)   | 6.1E-04      | $3.7\mathrm{E}\text{-}04$ | 2.2 E- 02                 | 5.6E-04         | 8.4E-04   | 7.0E-04 | 5.6E-03                     |
| 20(302)   | 5.3E-04      | 5.0E-04                   | 2.2E-02                   | 5.0E-04         | 8.8E-04   | 4.9E-04 | 4.4E-03                     |
| 25(110)   | 8.7E-04      | 1.4E- $03$                | 1.5E-02                   | 9.9E-04         | 9.3E-04   | 1.9E-03 | 6.7E-03                     |
| 25(194)   | 3.5E-04      | 4.4E-04                   | 1.7 E-02                  | 2.6E-04         | 2.9E-04   | 1.6E-04 | 1.0E-03                     |
| 25(302)   | 2.9E-04      | 2.6E-04                   | 1.7E-02                   | 2.9E-04         | 2.6E-04   | 2.3E-05 | 1.9E-03                     |
| 30(110)   | 7.3E-04      | 1.4E-03                   | 1.5E-02                   | 1.1E-03         | 9.9E-04   | 1.9E-03 | 7.5E-03                     |
| 30(194)   | 2.4E-04      | 2.7E-04                   | 1.6E-02                   | 1.9E-04         | 2.3E-04   | 2.5E-04 | 9.0E-04                     |
| 30(302)   | 1.5E-04      | 1.5 E-04                  | 1.6E-02                   | 1.8E-04         | 1.7E-04   | 9.1E-05 | 1.8E-04                     |
| Becke     | 8.6E-04      | 1.9E-03                   | 1.3E-02                   | 3.4E-03         | 1.7E-03   | 6.0E-04 | 2.0E-02                     |
| ТА        | 4.6E-03      | 4.9E-03                   | 3.7E-02                   | 7.7E-03         | 6.5E-03   | 6.2E-03 | 4.6E-02                     |
| TA(new)   | 3.9E-04      | 2.1E-04                   | $3.5\mathrm{E}\text{-}04$ | 3.2E-04         | 2.0E-04   | 4.8E-04 | 2.1E-03                     |
| SG-1      | 2.8E-04      | 3.3E-04                   | NA                        | 4.7E-04         | 1.7 E-04  | 3.9E-04 | 2.1E-03                     |
| SG0       | 7.1E-04      | 1.3E-03                   | NA                        | 1.3E-03         | 1.1E-03   | 8.0E-04 | 2.4E-03                     |
| Benchmark | 4.2E-08      | 2.0E-07                   | NA                        | 1.9E-07         | 1.3E-07   | 1.1E-07 | $1.9\mathrm{E}\text{-}07^c$ |

Table 3.3: Mean absolute error of the dipole moment<sup>a</sup> au, equation (3.3)

<sup>c</sup> Only 1G\_pep and 2G\_pep are calculated

| grid      | 1 <sup>st</sup> row | $2^{nd}$ row | 3 <sup>rd</sup> row | $\mathrm{TS}^b$ | complexes            | ions      | peptides    |
|-----------|---------------------|--------------|---------------------|-----------------|----------------------|-----------|-------------|
| 20(110)   | 7.9E+05             | 1.5E+07      | 1.5E+08             | 9.8E+06         | $5.9\mathrm{E}{+}05$ | 6.1E+05   | $2.0E{+}06$ |
| 20(194)   | 7.9E+05             | 1.5E+07      | 1.5E+08             | 9.9E+06         | 5.9E + 05            | 6.1E + 05 | 2.0E + 06   |
| 20(302)   | 7.9E+05             | 1.5E+07      | 1.5E+08             | $9.9E{+}06$     | 5.9E + 05            | 6.1E + 05 | 2.0E + 06   |
| 25(110)   | 3.8E+05             | 7.4E+06      | 1.2E+08             | 4.8E+06         | 2.8E + 05            | 3.1E + 05 | 1.0E+06     |
| 25(194)   | 3.8E+05             | 7.4E + 06    | 1.2E+08             | 4.8E+06         | 2.8E + 05            | 3.0E+05   | 1.0E+06     |
| 25(302)   | 3.8E+05             | 7.4E+06      | 1.2E+08             | 4.8E+06         | 2.8E + 05            | 3.0E + 05 | 1.0E+06     |
| 30(110)   | $1.9E{+}05$         | 3.7E + 06    | 1.3E+08             | 2.4E+06         | $1.4E{+}05$          | 1.5E+05   | 4.8E + 05   |
| 30(194)   | $1.9E{+}05$         | 3.7E + 06    | 1.3E+08             | 2.4E+06         | 1.4E+05              | 1.4E+05   | 4.7E+05     |
| 30(302)   | $1.9E{+}05$         | 3.7E+06      | 1.3E+08             | 2.4E+06         | $1.4E{+}05$          | 1.4E+05   | 4.8E+05     |
| Becke     | 6.0E+03             | $2.9E{+}04$  | 6.8E + 05           | 4.8E + 04       | $4.8E{+}03$          | 3.1E+03   | 6.4E+04     |
| TA        | $1.6E{+}04$         | 3.9E+04      | 1.8E+05             | $3.0E{+}04$     | 1.8E+04              | 3.1E+04   | 6.7E+04     |
| TA(new)   | 2.2E+03             | 5.8E+03      | 3.0E + 05           | 5.7E+03         | 1.8E+03              | 1.0E+03   | 6.2E + 03   |
| SG-1      | $1.5E{+}03$         | $6.5E{+}03$  | NA                  | 4.4E+03         | 8.0E+02              | 3.1E+03   | 3.8E+03     |
| Benchmark | 15.8                | 337.0        | NA                  | 195.5           | 10.9                 | 10.4      | $21.6^{c}$  |

Table 3.4: Mean absolute error of the potential energy<sup>a</sup>  $V_{ne}$  ( $\mu$ H), equation (3.4)

 $^{c}$  Only 1G\_pep and 2G\_pep are calculated

| grid      | $1^{st}$ row | $2^{nd}$ row | $3^{rd}$ row | $\mathrm{TS}^b$ | complexes   | ions        | peptides                 |
|-----------|--------------|--------------|--------------|-----------------|-------------|-------------|--------------------------|
| 20(110)   | 1.7E+06      | 9.1E+06      | $4.5E{+}07$  | 7.2E+06         | 1.8E+06     | 1.9E+06     | 6.4E + 06                |
| 20(194)   | 1.7E+06      | 9.0E+06      | 4.5E+07      | 7.1E+06         | 1.7E + 06   | 1.9E+06     | $6.3E{+}06$              |
| 20(302)   | $1.6E{+}06$  | 9.0E + 06    | 4.4E+07      | 7.1E+06         | 1.7E+06     | 1.9E+06     | 6.2E + 06                |
| 25(110)   | $1.1E{+}06$  | 6.4E + 06    | 4.2E+07      | 5.0E + 06       | 1.1E+06     | 1.3E+06     | 4.3E+06                  |
| 25(194)   | $1.1E{+}06$  | 6.4E + 06    | 4.3E+07      | 5.0E + 06       | 1.1E + 06   | 1.3E+06     | 4.2E + 06                |
| 25(302)   | $1.1E{+}06$  | 6.4E + 06    | 4.2E+07      | 4.9E+06         | 1.1E+06     | 1.2E+06     | 4.1E+06                  |
| 30(110)   | 8.2E + 05    | 4.3E+06      | 4.1E+07      | 3.5E+06         | $8.9E{+}05$ | 8.7E + 05   | 3.1E + 06                |
| 30(194)   | 8.2E + 05    | 4.3E+06      | $4.1E{+}07$  | 3.4E+06         | $8.6E{+}05$ | 9.3E+05     | 3.1E + 06                |
| 30(302)   | 8.0E + 05    | 4.3E + 06    | 4.1E+07      | 3.4E+06         | 8.6E + 05   | 9.1E+05     | 3.0E+06                  |
| Becke     | 5.2E + 05    | 1.6E+06      | 1.0E+07      | 1.6E+06         | 6.3E + 05   | 6.3E+05     | 2.0E+06                  |
| ТА        | $4.6E{+}05$  | 1.4E+06      | 8.9E+06      | 1.4E+06         | 5.5E + 05   | 5.4E + 05   | 1.9E + 06                |
| TA(new)   | $6.3E{+}05$  | 2.0E+06      | 1.3E+07      | $1.9E{+}06$     | 7.6E + 05   | 7.4E + 05   | 2.5E + 06                |
| SG-1      | 2.4E+05      | 2.7E + 05    | NA           | 3.9E+05         | $1.7E{+}05$ | 3.2E+05     | 9.9E + 05                |
| SG0       | 1.6E+06      | 6.2E+06      | NA           | 6.2E+06         | $2.2E{+}06$ | $1.9E{+}06$ | 6.3E+06                  |
| Benchmark | $9.1E{+}04$  | $3.1E{+}05$  | NA           | 2.8E+05         | 1.1E+05     | $1.0E{+}05$ | $1.9\mathrm{E}{+}05^{c}$ |

Table 3.5: Mean absolute error of the Coulomb energy<sup>*a*</sup>  $V_{ee}^1$  (µH), equation (3.5)

\_

 $^{c}$  Only 1G\_pep and 2G\_pep are calculated

| grid      | $1^{st}$ row | $2^{nd}$ row | $3^{rd}$ row | $\mathrm{TS}^b$ | complexes | ions       | peptides   |
|-----------|--------------|--------------|--------------|-----------------|-----------|------------|------------|
| 20(110)   | 2,685        | 8,280        | 379,000      | 5,191           | 2,676     | 3,292      | 14,594     |
| 20(194)   | 3,219        | 5,746        | 382,667      | $3,\!515$       | $3,\!231$ | 5,030      | $12,\!622$ |
| 20(302)   | 3,051        | 6,052        | 384,333      | 3,032           | 3,233     | 3,907      | $11,\!632$ |
| 25(110)   | 8,960        | $11,\!133$   | 444,111      | 4,048           | 1,933     | 3,958      | 7,345      |
| 25(194)   | $2,\!170$    | 9,504        | 443,667      | 3,109           | 983       | 1,129      | 3,560      |
| 25(302)   | $1,\!840$    | 9,385        | 445,333      | 2,966           | 928       | 654        | 4,176      |
| 30(110)   | $2,\!344$    | 5,728        | 441,444      | $5,\!117$       | $1,\!132$ | 3,696      | 9,354      |
| 30(194)   | 481          | 3,390        | 440,111      | 793             | 194       | $1,\!248$  | 1,248      |
| 30(302)   | 239          | 3,066        | 442,778      | $1,\!157$       | 225       | 282        | 286        |
| Becke     | 2,912        | 5,083        | $68,\!116$   | 14,725          | 1,753     | 1,235      | 28,768     |
| TA        | 7,930        | $20,\!587$   | 138,228      | 14,632          | 8,285     | $14,\!225$ | 33,628     |
| TA(new)   | 991          | 675          | 2,208        | 844             | 152       | 442        | $2,\!890$  |
| SG-1      | 727          | $2,\!428$    | NA           | 1,166           | 266       | $1,\!460$  | $1,\!915$  |
| SG0       | 2,535        | 9,510        | NA           | 4,987           | 2,241     | $2,\!807$  | $5,\!545$  |
| Benchmark | 0.38         | 1.81         | NA           | 1.63            | 0.22      | 0.23       | $2.07^{c}$ |

Table 3.6: Mean absolute error of the Coulomb energy<sup>a</sup>  $V_{ee}^2$  (µH), equation (3.6)

<sup>c</sup> Only 1G<sub>-</sub>pep and 2G<sub>-</sub>pep are calculated

| Molecule | Becke  | TA      | TA(new) | SG-1   | SG0       | Benchmark |
|----------|--------|---------|---------|--------|-----------|-----------|
| 1G_pep   | -3,570 | -7,580  | -382    | -263   | -215      | 0.6       |
| 2G_pep   | 21,100 | -49,000 | -1,260  | -1,390 | -6,460    | 3.6       |
| 3G_pep   | 6,070  | -20,100 | -2,960  | 783    | -4,350    | 6.8       |
| 4G_pep   | 14,200 | -86,200 | -3,960  | -1,440 | -8,710    | 13.4      |
| 5G_pep   | 98,900 | -5,260  | 5,890   | 5,700  | -7,990    | 24.9      |
| MAE      | 28,768 | 33,628  | 2,890   | 1,915  | $5,\!545$ | 9.8       |

Table 3.7: The error in  $V_{ee}^2$  ( $\mu$ H) for peptides using Becke, TA, TA(new), SG-1, SG0, Benchmark

| Atom | Molecule        | R     | $Accuracy^b$ |
|------|-----------------|-------|--------------|
| Н    | $H_2$           | 0.852 | 6.5          |
| Li   | LiH             | 1.700 | 4.3          |
| С    | $\mathrm{CH}_4$ | 1.233 | 8.3          |
| Ν    | $ m NH_3$       | 1.042 | 7.1          |
| 0    | $H_2O$          | 0.756 | 7.5          |
| F    | HF              | 0.694 | 7.6          |
| Na   | $Na_2$          | 2.008 | 7.6          |
| Mg   | $Mg_2$          | 1.851 | 7.6          |
| Si   | ${ m SiH}_4$    | 1.573 | 6.3          |
| Р    | $\mathrm{PH}_3$ | 1.445 | 6.3          |
| S    | $ m H_2S$       | 1.356 | 6.1          |
| Cl   | HCl             | 1.268 | 6.0          |

Table 3.8: The new R parameters<sup>*a*</sup> for atoms from the first and second rows and the corresponding accuracies

<sup>*a*</sup> Optimized to give the best accuracy in  $V_{ee}^2$ <sup>*b*</sup> as defined by equation (2.1)

| Molecule                          | error in $V_{ee}^2 (R_1^a)$ | error in $V_{ee}^2 (R_2^{\ b})$ |
|-----------------------------------|-----------------------------|---------------------------------|
| $Cl_2$                            | -9.2E+03                    | -3.43E+03                       |
| ClF                               | -1.3E+03                    | 5.92E + 03                      |
| HOCl                              | -3.7E+03                    | 2.66E + 03                      |
| $pNO_2BzCl$                       | 4.9E + 04                   | 5.17E + 04                      |
| NaCl                              | -1.8E+04                    | 1.78E + 03                      |
| CH <sub>3</sub> Cl                | -2.9E+03                    | $3.16\mathrm{E}{+02}$           |
| $\mathrm{CCl}_4$                  | -7.8E+02                    | $1.23E{+}04$                    |
| $\rm CH_2 \rm Cl_2$               | -2.8E+03                    | 4.20E + 03                      |
| Mg                                | 5.4E + 04                   | 1.25E + 03                      |
| $P_2$                             | -4.5E+03                    | -2.87E+02                       |
| $\mathrm{PF}_5$                   | -1.7E+03                    | $1.60E{+}04$                    |
| PH                                | -2.2E+03                    | 1.03E + 03                      |
| $\mathrm{CH}_2(\mathrm{PH}_2)_2$  | -1.1E+04                    | -3.29E+03                       |
| $\mathrm{CH}_3\mathrm{PH}_2$      | -4.2E+03                    | -1.83E+03                       |
| $\mathbf{CS}$                     | -1.1E+03                    | 8.56E + 02                      |
| ${ m SF}_6$                       | 5.4E + 03                   | 2.62E + 04                      |
| SO                                | -2.1E+03                    | 3.76E + 03                      |
| $SO_2$                            | -8.4E+02                    | $1.37E{+}04$                    |
| $\mathrm{CH}_2(\mathrm{SH})_2$    | -8.5E+03                    | -2.57E+03                       |
| $\rm CH_3SH$                      | -1.9E+03                    | 1.24E + 03                      |
| SiO                               | -2.2E+02                    | 5.73E + 03                      |
| $\rm CH_3SiH_3$                   | -2.0E+03                    | $2.56E{+}03$                    |
| $\mathrm{CH}_2(\mathrm{SiH}_3)_2$ | -4.1E+03                    | $3.71E{+}03$                    |
| MAE                               | 8,280                       | 7,231                           |

Table 3.9: The error in  $V_{ee}^2$  ( $\mu$ H) for molecules containing second-row atoms using two sets of R parameters.

<sup>a</sup> Optimized to give the best accuracy in number of electrons <sup>a</sup> Optimized to give the best accuracy in  $V_{ee}^2$ 

|                   |      | Atom  |       |      |  |  |  |  |
|-------------------|------|-------|-------|------|--|--|--|--|
| Grid              | H,He | Li-Ne | Na-Ar | K-Kr |  |  |  |  |
| 20(110)           | 1432 | 1432  | 1432  | 1432 |  |  |  |  |
| 20(194)           | 2104 | 2104  | 2104  | 2104 |  |  |  |  |
| 20(302)           | 2968 | 2968  | 2968  | 2968 |  |  |  |  |
| 25(110)           | 1934 | 1934  | 1934  | 1934 |  |  |  |  |
| 25(194)           | 2858 | 2858  | 2858  | 2858 |  |  |  |  |
| 25(302)           | 4046 | 4046  | 4046  | 4046 |  |  |  |  |
| 30(110)           | 2436 | 2436  | 2436  | 2436 |  |  |  |  |
| 30(194)           | 3612 | 3612  | 3612  | 3612 |  |  |  |  |
| 30(302)           | 5124 | 5124  | 5124  | 5124 |  |  |  |  |
| Becke             | 2200 | 6790  | 7760  | 8730 |  |  |  |  |
| $\mathrm{TA}^{a}$ | 3300 | 5890  | 6572  | 7506 |  |  |  |  |
| TA(new)           | 2484 | 4990  | 5960  | 6930 |  |  |  |  |
| $SG-1^b$          | 3752 | 3816  | 3760  | NA   |  |  |  |  |

Table 3.10: Number of points of the atomic grids

a These values are taken from reference [12] b These values are taken from reference [15]

# Chapter 4

# **Projection Between Basis Sets**

# 4.1 Introduction

In general projection means a transformation from a larger dimension to a smaller dimension which includes a loss of information as in the case of projecting a 3dimensional vector on a plane or projecting a vector from a plane on a line. What we mean by projection in this chapter, and throughout this thesis, is exactly the opposite, namely, projecting from a smaller dimension to a larger one. Our goal is to use the Fock matrix, density matrix, etc. that are available at the end of an SCF using a small basis such as STO-3G to predict the corresponding values for a larger basis set such as 6-31G(d).

Section 4.2 presents the relationship between different basis sets of the same vector space. Section 4.3 is an overview of the projection algorithm for the molecular coefficients that already existed in MUNgauss. Section 4.4 introduces our new version of the projection algorithm. The rest of the chapter discusses new ways to improve the projection algorithm along with its performance.

# 4.2 Change of Basis

If  $X = \{x_1(\mathbf{r}), \dots, x_n(\mathbf{r})\}$  and  $Y = \{y_1(\mathbf{r}), \dots, y_n(\mathbf{r})\}$  are complete basis sets of a vector space V then, any vector  $A(\mathbf{r}) \in V$  can be written as a linear combination of X as follows [1]:

$$A(\mathbf{r}) = \sum_{i}^{n} a_{i} x_{i}(\mathbf{r})$$
(4.1)

and of Y as:

$$A(\mathbf{r}) = \sum_{j}^{n} b_{j} y_{j}(\mathbf{r})$$
(4.2)

where  $\{a_i\}$  and  $\{b_j\}$  are the components of the vector  $A(\mathbf{r})$  in the basis sets X and Y respectively. In addition if X and Y are orthonormal basis sets then:

$$\int x_i^*(\mathbf{r}) x_j(\mathbf{r}) d\mathbf{r} = \delta_{ij} \tag{4.3}$$

$$\int y_i^*(\mathbf{r}) y_j(\mathbf{r}) d\mathbf{r} = \delta_{ij} \tag{4.4}$$

where  $\delta_{ij}$  is the Kronecker delta function. Any basis vector  $x_j \in X$  can be written in terms of the basis set Y as [1]:

$$x_j = \sum_i y_i u_{ij} \tag{4.5}$$

Similarly a basis vector  $y_j \in Y$  can be written in terms of the basis set X as:

$$y_j = \sum_i x_i u_{ij}^* \tag{4.6}$$

where  $u_{ij}$  are the elements of a unitary matrix U and defined as:

$$u_{ij} = \int x_i^*(\mathbf{r}) y_j(\mathbf{r}) d\mathbf{r}$$
(4.7)

Thus the two complete and orthonormal basis sets  $\{X\}$  and  $\{Y\}$  are related by a unitary transformation U which is the overlap matrix between  $\{X\}$  and  $\{Y\}$ . If  $O_x$ is the matrix representation of an operator  $\hat{O}$  in the basis  $\{X\}$  and  $O_y$  is another matrix representation in the basis  $\{Y\}$  then  $O_x$  and  $O_y$  are related by the unitary transformation U as follows [1]:

$$O_x = U O_y U^{\dagger} \tag{4.8}$$

Equation (4.8) represents the theoretical foundation for the projection of a matrix representation of an operator from a basis set to another.

### 4.3 **Projection of the Molecular Coefficients**

If at the end of an SCF which is carried out using basis set  $X = \{x_1, \ldots, x_n\}$ , we have the coefficient matrix  $C_x$ , the corresponding coefficient matrix  $C_y$  defined for a basis set Y where  $Y = \{y_1, \ldots, y_m\}$  and m > n can be approximated by the equation [14]:

$$C_y = S_y^{-1} U C_x \tag{4.9}$$

where U is a rectangular matrix of dimension  $m \times n$  and represents the overlap between the two basis sets X and Y and  $S_y$  is the overlap matrix in the basis Y. While  $C_x$  is a square matrix of dimensions  $n \times n$  and its columns represent the molecular coefficients in the basis set X,  $C_y$  is a rectangular matrix of dimension  $m \times n$ . The n columns of  $C_y$  represent the new representation of  $C_x$  in the basis set Y. To make  $C_y$  a square matrix, m - n more columns are needed. MUNgauss uses the eigenvectors of  $S_y$  in conjunction with the n columns of  $C_y$  to produce the additional m - n columns.

### 4.4 **Projection of the Fock Matrix**

The theoretical basis of our approach lies in the fact that the choice of the basis of a vector space is not unique [1], where in this context the elements of the vector space are the eigenfunctions of the Fock operator  $\hat{f}$ . In general if  $F_x$  is the matrix representation of the Fock operator in the basis set  $X = \{x_1, \ldots, x_n\}$  and  $F_y$  is another matrix representation of  $\hat{f}$  in the basis set  $Y = \{y_1, \ldots, y_n\}$  where both basis sets are orthonormal, then  $F_x$  and  $F_y$  are related by a unitary transformation U, equation (4.8) :

$$F_y = U F_x U^{\dagger} \tag{4.10}$$

where the elements of the matrix U are given by equation (4.7). In practice the basis sets are not orthogonal and are of different size. One way to deal with the nonorthogonality of the basis is to orthogonalize  $F_x$ , transform to  $F_y$  and then unorthogonalize  $F_y$ . The orthogonalization can be achieved easily by using the transformation [1]:

$$F_x^o = S_x^{-1/2} F_x S_x^{-1/2} \tag{4.11}$$

where  $F_x^o$  is the orthogonalized Fock matrix and  $S_x$  is the overlap matrix in the basis set X. Since X and Y are of different sizes, the transformation matrix U is a rectangular matrix and hence is not unitary. Then a straight forward transformation of the Fock matrix  $F_x$  to  $F_y$  where  $F_y$  is of higher dimension using equation (4.10) would be:

$$F_y = S_y^{1/2} S_{yx} S_x^{-1/2} F_x S_x^{-1/2} S_{xy} S_y^{1/2}$$
(4.12)

where  $S_{yx}$  is the overlap between the basis sets X and Y. The purpose of the multiplication from both sides by  $S_y^{1/2}$  is to obtain the unorthogonalized Fock matrix  $F_y$ in the new basis Y which is the reverse of the transformation (4.11). The unitary characteristic of the transformation matrix U, equation (4.10), is a direct consequence of the orthonormality of the basis sets. Therefore, to make the transformation matrix  $S_{yx}$  as "unitary" as possible, we multiply  $S_{yx}$  by  $S_y^{-1/2}$  from the left and by  $S_x^{-1/2}$ from the right. Thus equation (4.12) becomes:

$$F_y = S_y^{1/2} (S_y^{-1/2} S_{yx} S_x^{-1/2}) (S_x^{-1/2} F_x S_x^{-1/2}) (S_x^{-1/2} S_{xy} S_y^{-1/2}) S_y^{1/2}$$
(4.13)

or

$$F_y = S_{yx} S_x^{-1} F_x S_x^{-1} S_{xy} (4.14)$$

An inevitable hurdle is that the basis sets X and Y are incomplete. So even if we use two basis sets of equal size like 3-21G and 6-31G the transformation (4.14) is not exact. It is only exact for a transformation from a basis set to itself.

# 4.5 Improving Projection I

As was stated in the introduction, our goal of studying projection is to skip calculating some of the Fock matrix elements and to use the projected values instead. Therefore, the more accurate the projection is, the closer the Fock matrix will be to the exact one. The following two subsections present some of our attempts at increasing the accuracy of projection.

#### 4.5.1 A Better Transformation Matrix

One way to make the projection more accurate is to improve the matrix  $S_{yx}$ . Equation (4.14) can be rewritten as:

$$S_{yx}F_x'S_{xy} = F_y \tag{4.15}$$

where

$$F'_x = S_x^{-1} F_x S_x^{-1} (4.16)$$

Multiplying equation (4.15) from right by  $S_{yx}$  we obtain:

$$S_{yx}F_x'S_{xy}S_{yx} = F_yS_{yx} \tag{4.17}$$

$$S_{yx}F_x'r_x = F_y S_{yx} \tag{4.18}$$

where,  $r_x = S_{xy}S_{yx}$ , and

$$S_{yx} = F_y S_{yx} (F'_x r_x)^{-1} ag{4.19}$$

or

$$S_{yx}^{n+1} = F_y S_{yx}^n (F_x' r_x)^{-1}$$
(4.20)

We start with the overlap matrix  $S_{yx}$  and then solve equation (4.20) iteratively for  $S_{yx}$ until we reach convergence. This algorithm was implemented but did not converge.

#### 4.5.2 Mixing Exact and Projected Values

The Fock matrix can be written as a sum of the matrices H and G as follows:

$$F_x = H_x + G_x \tag{4.21}$$

where  $H_x$  is the matrix representation of the core Hamiltonian,  $G_x$  represents the electron-electron repulsion part of the Fock operator, and both are defined over the basis set X. Multiplying both sides of equation (4.21) from the left by  $S_{yx}S_x^{-1}$  and from right by  $S_x^{-1}S_{xy}$ , we obtain:

$$S_{yx}S_x^{-1}F_xS_x^{-1}S_{xy} = S_{yx}S_x^{-1}H_xS_x^{-1}S_{xy} + S_{yx}S_x^{-1}G_xS_x^{-1}S_{xy}$$
(4.22)

which can be rewritten as:

$$F_y = H_y + G_y \tag{4.23}$$

Where  $H_y$  and  $G_y$  are the projected  $H_x$  and  $G_x$  matrices to the basis Y, respectively. From now on the subscript p will be used to denote the projected results and no subscripts will be used for the exact matrices.

Since the computational cost of calculating the H matrix is low, in general,  $H_p$  could be replaced by H and equation (4.23) becomes:

$$F_p = H + G_p \tag{4.24}$$

Using H instead of  $H_p$  in equation (4.24) makes it appealing to assume that  $F_p$  will be more accurate than the projected Fock matrix calculated by equation (4.23). By substituting some of the Fock matrix elements by elements from  $F_p$  calculated using equation (4.24), the SCF either did not converge or converged to a completely wrong answer. Since H is exact then the error must be totally in  $G_p$ . This conclusion was the beginning of the quest for a more accurate projection of the G matrix.

# 4.6 Improving Projection II

The exact Fock matrix F can be written as:

$$F = H + G \tag{4.25}$$

while the projected Fock matrix is given by:

$$F_p = H_p + G_p \tag{4.26}$$

Defining  $\delta$  as the matrix which transforms  $H_p$  to H:

$$H_p\delta = H \tag{4.27}$$

where,

$$\delta_{ij} = \frac{H_{ij}}{(H_p)_{ij}} \tag{4.28}$$

The matrix  $\delta$  serves as a correction to  $H_p$  to give the exact H. Assume that  $\delta$  can be used to calculate the matrix  $G_c$  as follows

$$(G_c)_{ij} = \delta_{ij} (G_p)_{ij} \tag{4.29}$$

Since  $\delta_{ij}$  is not defined for  $(H_p)_{ij} = 0$ , we used the following formula to calculate the corresponding  $(G_c)_{ij}$ :

$$(G_c)_{ij} = -1.8H_{ij} \tag{4.30}$$

 $\delta$  corrects  $H_p$  to H, but it will only be a correction to  $G_p$  if  $||G - G_c|| < ||G - G_p||$ where the following definition of the norm of a matrix A is used:

$$|| A || = \sum_{ij} a_{ij}^2$$
 (4.31)

After a great deal of experimenting it was found that using a slightly different formula:

$$(G_c)_{ii} = 1.25\delta_{ii}(G_p)_{ii} \tag{4.32}$$

to calculate the diagonal elements of the  $G_c$  matrix for the d-type basis functions could improve the results. To test the improvement in the projection of the G matrix the following quantities:

$$\|\Delta G_p\| = \|G - G_p\| \tag{4.33}$$

$$\|\Delta G_c\| = \|G - G_c\| \tag{4.34}$$

were calculated for a test set of 21 molecules containing atoms from the first and second rows. The projection was performed from STO-3G to the basis sets: 3-21G, 6-31G, and 6-31G(d), see Table 4.1, Table 4.2 and Table 4.3.

In all of the tables, 1G\_pep, 2G\_pep, 3G\_pep, 4G\_pep stand for one, two, three, and four glycine amino acids, respectively. From Table 4.1,  $G_c$  is more accurate than  $G_p$  except in three cases: 2G\_pep, 4G\_pep and CH<sub>3</sub>CONH<sub>2</sub>. It is also obvious from Table 4.2 that  $G_p$  can in general be improved by the algorithm given by equation (4.28) to equation (4.32) except for 3G\_pep, CH<sub>2</sub>PH<sub>2</sub>PH<sub>2</sub>, and CH<sub>2</sub>SHSH. The inconsistency in the improvement of the projection can also be noticed in Table 4.3. We performed a similar study for the projection from 3-21G to 6-31G and 6-31G(d), and from 6-31G to 6-31G(d) and the same pattern was observed, i.e. the projection of the G matrix can be improved but will arbitrarily fail in some cases, which makes it unreliable.

# 4.7 The Relation Between H, G, and F

As was stated in section 4.4, the projected Fock matrix can be calculated using one of the following formulas:

$$F_p = H_p + G_p \tag{4.35}$$

$$F'_p = H + G_p \tag{4.36}$$

To study the relation between  $H_p$ ,  $G_p$ , and  $F_p$  and H, G, and F, let us define  $x_p$  and x as follows:

$$(x_p)_{ii} = \frac{(G_p)_{ii}}{(H_p)_{ii}}$$
(4.37)

$$x_{ii} = \frac{G_{ii}}{H_{ii}} \tag{4.38}$$

Table 4.4 shows the diagonal elements of the matrices H,  $H_p$ , G, and  $G_p$  in addition to x and  $x_p$  for the molecule SiH<sub>4</sub> where the projection was performed from STO-3G to 6-31G(d). Table 4.5 gives the values of the diagonal elements of the matrices F,  $F_p$ , and  $F'_p$ . Table 4.5 shows that the elements  $(F_p)_{ii}$  where  $i = 1, \ldots, 6$  are better estimates of  $F_{ii}$  than  $(F'_p)_{ii}$  for the same set of basis functions (d-type basis functions in this case). The projection using equation (4.35) is more accurate than using equation (4.36) contrary to our earlier assumption that using H instead of  $H_p$ would give better accuracy. The value of  $x_p$  is very close to that of x for each basis function i which suggests that projection maintains the ratio between the elements of G and H. It is obvious that the error introduced by the projection of G is canceled to some extent by the error in the projection of H. We noticed a similar pattern for other molecules such as 1G\_pep, 2G\_pep. Figure 4.1 shows the elements of H versus the elements of  $H_p$  for 1G\_pep. Some of the elements of the  $H_p$  matrix have values close to zero while their exact values are much different than zero. The same observation can be made from Figure 4.2 which represents the elements of the G matrix against those of  $G_p$  for 1G\_pep. Projection poorly predicts some of the large elements of the G matrix to be much smaller than their exact values. However, projection predicts the elements of F more accurately as shown in Figure 4.3. The same pattern can be noticed for CCl<sub>4</sub>, Ge<sub>5</sub>H<sub>12</sub> and Sn<sub>4</sub>H<sub>10</sub> as seen in Figures 4.4 - 4.12. Those four molecules were carefully chosen to represent elements of the four first rows of the periodic table.

To further investigate the error introduced in H, G, and F, the following quantities were calculated:

$$\|\Delta H_p\| = \|H - H_p\| \tag{4.39}$$

$$\|\Delta G_p\| = \|G - G_p\| \tag{4.40}$$

$$\|\Delta F_p\| = \|F - F_p\| \tag{4.41}$$

Table 4.6 gives  $\|\Delta H_p\|$ ,  $\|\Delta G_p\|$  and  $\|\Delta F_p\|$  for four sets of molecules representing the first, second, third, and fourth rows of the periodic table in addition to a series of peptides. It is clear from Table 4.6 that the error in  $F_p$  compared to the exact Fock

matrix F is consistently far smaller than the errors in both matrices  $H_p$  and  $G_p$  and that,

$$\|\Delta F_p\| \approx \|\Delta G_p\| - \|\Delta H_p\| \tag{4.42}$$

which confirms that the errors in  $H_p$  and  $G_p$  almost cancel each other giving  $F_p$  of higher accuracy than both of  $H_p$  and  $G_p$ . The error cancellation decreases as we progress to the third and fourth rows of the periodic table.

We tested the projection of the Fock matrix for a set of molecules containing atoms of the first four rows of the periodic table among the following basis sets: STO-3G, 3-21G, 6-31G, STO-3G(d), 6-31G(d), and 6-311G(d). To measure the error of the projection irrespective of the Fock matrix size or the values of its elements, we calculated the relative error in  $F_p$  as follows:

relative error 
$$= \frac{\parallel F - F_p \parallel}{\parallel F \parallel}$$
 (4.43)

The first column in each of Tables 4.7 - 4.10 gives the basis sets projected from and the basis sets projected to, while the second, third , fourth, and the fifth columns give the relative error in the Fock matrix for molecules containing atoms from the first, second, third, or the fourth rows. The last column in each table gives the sum of the relative errors for each row for a projection from a basis set X to a basis set Y. From Table 4.7, the smallest sum of relative errors is that of the projection from 3-21G to 6-31G where the two basis sets are of equal size. Table 4.7 also shows that the projection from 3-21G or 6-31G to any of the basis sets STO-3G(d), 6-31G(d), and 6-311G(d) is almost equal to that from STO-3G to 6-31G(d) and 6-311G(d)

and in the range of 0.7031 to 0.7974. Since the difference in the basis set size is the largest for STO-3G to 6-311G(d), projection from STO-3G to 6-311G(d) would be more efficient. If a higher accuracy is required, a projection from STO-3G to 6-31G or from STO-3G(d) to 6-31G(d) is more accurate than any of the projections mentioned above, e.g. STO-3G to 6-31G(d). From Table 4.8, it is obvious that the most accurate projection is the one from 3-21G to 6-31G. The sums of the relative errors are in general smaller than the sums of the relative errors of Table 4.7 except for the projections from STO-3G, 3-21G, 6-31G, or 6-31G(d) to 6-311G(d) which are slightly higher than that of Table 4.7. The projection from STO-3G to 6-31G is relatively small. Table 4.9 and Table 4.10 show that for every projection from a basis set X to Y, the relative errors for molecules containing elements of the third and fourth rows are less than those of the first or the second rows see Table 4.7 and Table 4.8, respectively. From both tables the sum of the relative errors is consistently less than 0.1 for each projection. The projection from STO-3G to 3-21G is almost of the same accuracy as from STO-3G to 6-31G and therefore we recommend the projection from STO-3G to 6-31G. It is obvious from Tables 4.7, 4.8, 4.9, and 4.10 that, as the difference in size between the basis set projected from and the basis set projected to increases, the relative error increases as well.

The exact electronic energy is calculated by the formula:

$$E = \frac{1}{2} \operatorname{Tr} P \left( H + F \right) \tag{4.44}$$

Therefore the projected electronic energy can be calculated by:

$$E_{proj} = \frac{1}{2} \operatorname{Tr} P_p \left( H_p + F_p \right) \tag{4.45}$$

and the percentage error in the projected electronic energy relative to the exact electronic energy is given by:

$$\Delta E\% = \left(\frac{E - E_{proj}}{E}\right) \times 100\% \tag{4.46}$$

Tables 4.11 - 4.14 give  $\Delta E\%$  for four sets of molecules containing atoms from the first, second, third and fourth rows for the projection among the basis sets shown in the first column of each table. The sum of the  $\Delta E\%$  for each row is given in the last column of each table. The smallest  $|\Delta E\%|$  was for the projection from 6-31G to 6-31G(d) followed by the projection from STO-3G to STO-3G(d). In addition, for all of the four tables, the projection from 3-21G to any other basis set is less accurate than the projection from STO-3G to the other basis sets except in the case of the projection from STO-3G to STO-3G(d). From Table 4.11, the projection from STO-3G to STO-3G(d) is far more accurate than the projection to 3-21G or 6-31G although STO-3G(d) is larger in size than 3-21G and 6-31G. The same observation can also be made for the projection from 3-21G to STO-3G(d) and 6-31G(d) which suggests that the difference in size between basis sets is not the only factor in determining the accuracy of the projection. How closely the basis sets are built is also important.

Equation (4.45) reflects the error in  $P_p$ ,  $H_p$ , and  $F_p$ . To minimize the error, the projected energy was calculated using H and equation (4.45) becomes:

$$E_{proj} = \frac{1}{2} \operatorname{Tr} P_p \left( H + F_p \right) \tag{4.47}$$

Tables 4.15, 4.16, 4.17, and 4.18 give the percentage errors in the electronic energy using equation (4.47) for the same four sets of molecules. From Table 4.15, the error of the projection from 6-31G to 6-31G(d) is far less than the projection from the same basis set to STO-3G(d) although 6-31G(d) is larger than STO-3G(d). From Table 4.16, it is interesting to note that the projection from 3-21G to 6-31G is less accurate than the projection from 3-21G to 6-31G(d). Also, the projection from 6-31G(d). 31G to both of 6-31G(d) and 6-311G(d) is very accurate. A peculiar behaviour of the projection can be noticed from Table 4.18 where the projection from STO-3G to 6-31G(d) is more accurate than the projection to 6-31G. From Tables 4.15, 4.16, 4.17 and 4.18 the projection from 3-21G to 6-31G has a similar accuracy to the projection to 6-31G(d) therefore, the projection from 3-21G to 6-31G(d) is more favoured. Also the projection from STO-3G to 6-31G or 6-31G(d) is reasonable although it is less accurate compared to the projection from 3-21G for the second and fourth rows. The percentage error using H is much lower, as expected, than the percentage error using  $H_p$ . The percentage error for all molecules is under 1%, and it is amazingly small for the projection from STO-3G to 6-31G(d) for molecules of the third row elements.

To study the relationship between the molecule size and the projection, the relative error in the Fock matrix was calculated using equation(4.43) for three series of molecules. The first series is 1G\_pep, 2G\_pep, 3G\_pep, 4G\_pep, and 5G\_pep, the second series is SiH<sub>4</sub>, Si<sub>2</sub>H<sub>6</sub>, Si<sub>3</sub>H<sub>8</sub>, Si<sub>4</sub>H<sub>10</sub>, Si<sub>5</sub>H<sub>12</sub>, and Si<sub>6</sub>H<sub>14</sub>, and the third series is GeH<sub>4</sub>, Ge<sub>2</sub>H<sub>6</sub>, and Ge<sub>3</sub>H<sub>8</sub>. Tables 4.19, 4.20 and 4.21 show the relative error in the Fock matrix for the three series. Table 4.19 shows that the relative error is almost constant for each projection from a basis set X to a basis set Y as the size of the molecule increases from 1G\_pep to 5G\_pep. The same observation is also true for the second and the third series, as seen in Tables 4.20 and 4.21. The projection from 3-21G to 6-31G is the most accurate, while the projection from STO-3G to 6-31G is second in accuracy. However, there is more gain in projecting from STO-3G to 6-31G so we recommend the projection from STO-3G to 6-31G when possible.

# 4.8 Conclusions

We developed an algorithm to project the Fock matrix from a smaller basis set to a larger basis set. This algorithm gave poor results when the exact H matrix was mixed with the projected G matrix. It was shown that there is a ratio between the elements of the H and G matrices and that projection keeps this ratio fixed. The projection among different basis sets was studied. The closer the basis sets are in size, the more accurate the projection. The projection from STO-3G basis set to 6-31G or 6-31G(d) basis sets is reasonably accurate.

| Molecule                         | $\ \Delta G_p\ $ | $\ \Delta G_c\ $ |
|----------------------------------|------------------|------------------|
| 1G_рер                           | 45.48            | 36.47            |
| 2G_pep                           | 76.50            | 118.52           |
| $3G_{-}pep$                      | 104.63           | 70.04            |
| 4G_pep                           | 131.01           | 200.08           |
| $BH_3$                           | 5.82             | 2.09             |
| $\mathrm{BeH}_2$                 | 3.67             | 1.44             |
| $C_2H_2$                         | 13.90            | 3.41             |
| $\mathrm{C_{2}H_{4}}$            | 14.49            | 4.77             |
| $\mathrm{CCl}_4$                 | 48.63            | 7.26             |
| $\mathrm{CH}_2(\mathrm{PH}_2)_2$ | 26.25            | 12.26            |
| $\mathrm{CH}_2(\mathrm{SH})_2$   | 27.18            | 5.93             |
| $CH_3F$                          | 25.13            | 12.34            |
| $CH_3CONH_2$                     | 35.09            | 73.53            |
| $\mathrm{CH}_4$                  | 8.365            | 2.73             |
| $\mathrm{CO}_2$                  | 30.13            | 13.39            |
| $FHOH_2$                         | 27.78            | 7.72             |
| $H_2O$                           | 14.80            | 4.59             |
| HF                               | 19.09            | 6.40             |
| $N_2$                            | 19.75            | 5.45             |
| $ m NH_3$                        | 11.27            | 3.37             |
| $\mathrm{SF}_6$                  | 104.99           | 29.00            |
| MAD                              | 27.09            | 33.41            |
| Mean                             | 37.81            | 29.74            |
| Max                              | 131.01           | 200.08           |
| Min                              | 3.67             | 1.44             |
|                                  |                  |                  |

Table 4.1: Error in the projection of G from STO-3G to 3-21G

| Molecule                         | $\ \Delta G_p\ $ | $\ \Delta G_c\ $ |
|----------------------------------|------------------|------------------|
| 1G_pep                           | 38.22            | 7.49             |
| 2G_pep                           | 68.20            | 18.60            |
| 3G_pep                           | 95.63            | 101.98           |
| 4G_pep                           | 121.53           | 104.5            |
| $BH_3$                           | 5.04             | 1.76             |
| $\mathrm{BeH}_2$                 | 3.12             | 1.19             |
| $C_2H_2$                         | 11.34            | 2.50             |
| $C_2H_4$                         | 12.22            | 3.33             |
| $\mathrm{CCl}_4$                 | 46.46            | 6.59             |
| $\mathrm{CH}_2(\mathrm{PH}_2)_2$ | 24.91            | 51.05            |
| $\mathrm{CH}_2(\mathrm{SH})_2$   | 25.64            | 63.02            |
| $CH_3F$                          | 19.39            | 4.65             |
| $CH_3CONH_2$                     | 29.49            | 6.31             |
| $CH_4$                           | 7.06             | 2.19             |
| $\mathrm{CO}_2$                  | 23.41            | 5.98             |
| FHOH <sub>2</sub>                | 20.94            | 5.57             |
| $H_2O$                           | 10.68            | 3.42             |
| HF                               | 13.9             | 4.33             |
| $N_2$                            | 15.38            | 3.46             |
| NH <sub>3</sub>                  | 8.60             | 2.53             |
| $SF_6$                           | 89.48            | 10.75            |
| MAD                              | 24.97            | 23.07            |
| Mean                             | 32.89            | 19.58            |
| Max                              | 121.53           | 104.50           |
| Min                              | 3.12             | 1.19             |

Table 4.2: Error in the projection of G from STO-3G to 6-31G

| Molecule                         | $\ \Delta G_p\ $ | $\ \Delta G_c\ $ |
|----------------------------------|------------------|------------------|
| 1G_pep                           | 123.47           | 141.53           |
| 2G_pep                           | 216.05           | 350.14           |
| 3G_pep                           | 298.84           | 134.77           |
| $4G_{pep}$                       | 375.86           | 225.87           |
| $BH_3$                           | 15.75            | 4.39             |
| $\mathrm{BeH}_2$                 | 10.29            | 2.72             |
| $C_2H_2$                         | 41.15            | 7.33             |
| $C_2H_4$                         | 43.00            | 7.72             |
| $\mathrm{CCl}_4$                 | 204.8            | 45.01            |
| $\mathrm{CH}_2(\mathrm{PH}_2)_2$ | 97.10            | 126.95           |
| $ m CH_2(SH)_2$                  | 104.07           | 71.06            |
| $CH_3F$                          | 53.83            | 8.34             |
| $\rm CH_3 CONH_2$                | 96.75            | 76.76            |
| $\mathrm{CH}_4$                  | 22.34            | 3.61             |
| $\mathrm{CO}_2$                  | 73.35            | 38.56            |
| FHOH <sub>2</sub>                | 51.17            | 8.37             |
| $H_2O$                           | 27.06            | 6.59             |
| HF                               | 30.52            | 7.79             |
| $N_2$                            | 46.00            | 9.31             |
| $ m NH_3$                        | 24.47            | 4.11             |
| ${ m SF}_6$                      | 263.74           | 121.04           |
| MAD                              | 80.82            | 68.00            |
| Mean                             | 105.70           | 66.76            |
| Max                              | 375.86           | 350.14           |
| Min                              | 10.29            | 2.72             |

Table 4.3: Error in the projection of G from STO-3G to 6-31G(d)

| (i,i)       | $(H)_{ii}$ | $(H_p)_{ii}$ | $(G)_{ii}$ | $(G_p)_{ii}$ | $(x)_{ii}$ | $(x_p)_{ii}$ |
|-------------|------------|--------------|------------|--------------|------------|--------------|
| 3d-type: Si |            | <u> </u>     |            |              |            |              |
| (1,1)       | -8.45      | -5.14        | 8.36       | 4.74         | -0.99      | -0.92        |
| (2,2)       | -8.45      | -5.14        | 8.36       | 4.74         | -0.99      | -0.92        |
| (3,3)       | -8.46      | -5.25        | 8.35       | 4.86         | -0.99      | -0.92        |
| (4,4)       | -7.85      | -0.70        | 8.58       | 0.73         | -1.09      | -1.04        |
| (5,5)       | -7.83      | -0.35        | 8.59       | 0.37         | -1.10      | -1.04        |
| (6,6)       | -7.83      | -0.35        | 8.59       | 0.37         | -1.10      | -1.04        |
| 2p-type: Si |            |              |            |              |            |              |
| (7,7)       | -23.70     | -23.29       | 19.48      | 19.33        | -0.82      | -0.83        |
| (8,8)       | -23.70     | -23.29       | 19.48      | 19.33        | -0.82      | -0.83        |
| (9,9)       | -23.70     | -23.29       | 19.48      | 19.33        | -0.82      | -0.83        |
| 3p-type: Si |            |              |            |              |            |              |
| (10, 10)    | -8.64      | -8.71        | 8.11       | 8.23         | -0.94      | -0.94        |
| (11, 11)    | -8.64      | -8.71        | 8.11       | 8.23         | -0.94      | -0.94        |
| (12, 12)    | -8.64      | -8.71        | 8.11       | 8.23         | -0.94      | -0.94        |
| 4p-type: Si |            |              |            |              |            |              |
| (13, 13)    | -5.05      | -4.05        | 4.85       | 3.80         | -0.96      | -0.94        |
| (14, 14)    | -5.05      | -4.05        | 4.85       | 3.80         | -0.96      | -0.94        |
| (15, 15)    | -5.05      | -4.05        | 4.85       | 3.80         | -0.96      | -0.94        |
| 1S-type: H  |            |              |            |              |            |              |

Table 4.4: The diagonal elements of  $H, H_p, G, G_p, x$  and  $x_p$  for SiH<sub>4</sub>

... continued
| (i,i)       | $(H)_{ii}$ | $(H_p)_{ii}$ | $(G)_{ii}$ | $(G_p)_{ii}$ | $(x)_{ii}$ | $(x_p)_{ii}$ |
|-------------|------------|--------------|------------|--------------|------------|--------------|
| (16,16)     | -5.94      | -5.29        | 5.93       | 5.11         | -1.00      | -0.97        |
| (17, 17)    | -5.94      | -5.29        | 5.93       | 5.11         | -1.00      | -0.97        |
| (18, 18)    | -5.94      | -5.29        | 5.93       | 5.11         | -1.00      | -0.97        |
| (19, 19)    | -5.94      | -5.29        | 5.93       | 5.11         | -1.00      | -0.97        |
| 2S-type: H  |            |              |            |              |            |              |
| (20, 20)    | -5.95      | -5.80        | 5.43       | 5.25         | -0.91      | -0.91        |
| (21, 21)    | -5.95      | -5.80        | 5.43       | 5.25         | -0.91      | -0.91        |
| (22, 22)    | -5.95      | -5.80        | 5.43       | 5.25         | -0.91      | -0.91        |
| (23, 23)    | -5.95      | -5.80        | 5.43       | 5.25         | -0.91      | -0.91        |
| 1S-type: Si |            |              |            |              |            |              |
| (24, 24)    | -99.34     | -98.29       | 30.59      | 30.35        | -0.31      | -0.31        |
| 2S-type: Si |            |              |            |              |            |              |
| (25, 25)    | -28.78     | -28.93       | 18.36      | 18.63        | -0.64      | -0.64        |
| 3S-type: Si |            |              |            |              |            |              |
| (26, 26)    | -9.55      | -9.24        | 8.49       | 8.24         | -0.89      | -0.89        |
| 4S-type: Si |            |              |            |              |            |              |
| (27, 27)    | -7.38      | -7.40        | 6.41       | 6.41         | -0.87      | -0.87        |

Table 4.4 - continued

| (i,i)    | F     | $F_p$ | $F'_p$ |
|----------|-------|-------|--------|
|          |       |       |        |
| (1,1)    | -0.10 | -0.40 | -3.72  |
| (2,2)    | -0.10 | -0.40 | -3.72  |
| (3,3)    | -0.11 | -0.40 | -3.60  |
| (4,4)    | 0.72  | 0.03  | -7.13  |
| (5,5)    | 0.76  | 0.01  | -7.46  |
| (6,6)    | 0.76  | 0.01  | -7.46  |
|          |       |       |        |
| (7,7)    | -4.23 | -3.96 | -4.37  |
| (8,8)    | -4.23 | -3.96 | -4.37  |
| (9,9)    | -4.23 | -3.96 | -4.37  |
|          |       |       |        |
| (10,10)  | -0.53 | -0.49 | -0.41  |
| (11, 11) | -0.53 | -0.49 | -0.41  |
| (12, 12) | -0.53 | -0.49 | -0.41  |
|          |       |       |        |
| (13, 13) | -0.20 | -0.24 | -1.24  |
| (14, 14) | -0.20 | -0.24 | -1.24  |
| (15, 15) | -0.20 | -0.24 | -1.24  |
|          |       |       |        |

Table 4.5: The diagonal elements of  $F, F_p$ , and  $F'_p$  for SiH<sub>4</sub>

... continued

| (i,i)    | F      | $F_p$  | $F_p'$ |
|----------|--------|--------|--------|
| (16, 16) | -0.01  | -0.18  | -0.83  |
| (17, 17) | -0.01  | -0.18  | -0.83  |
| (18, 18) | -0.01  | -0.18  | -0.83  |
| (19,19)  | -0.01  | -0.18  | -0.83  |
| (20,20)  | -0.53  | -0.54  | -0.70  |
| (21,21)  | -0.53  | -0.54  | -0.70  |
| (22,22)  | -0.53  | -0.54  | -0.70  |
| (23,23)  | -0.53  | -0.54  | -0.70  |
| (24,24)  | -68.75 | -67.94 | -68.99 |
| (25,25)  | -10.42 | -10.31 | -10.16 |
| (26, 26) | -1.06  | -1.00  | -1.31  |
| (27,27)  | -0.97  | -1.00  | -0.97  |

 Table 4.5 - continued

| Table 4.6: $\ \Delta H_p\ $ , $\ \Delta G_p\ $ , $\ \Delta F_p\ $ |                  |                  |                  |  |  |  |  |
|-------------------------------------------------------------------|------------------|------------------|------------------|--|--|--|--|
| Molecule                                                          | $\ \Delta H_p\ $ | $\ \Delta G_p\ $ | $\ \Delta F_p\ $ |  |  |  |  |
| $\mathrm{CH}_4$                                                   | 7.70             | 11.17            | 3.75             |  |  |  |  |
| $ m NH_3$                                                         | 8.73             | 12.23            | 3.86             |  |  |  |  |
| $H_2O$                                                            | 9.78             | 13.53            | 4.18             |  |  |  |  |
| HF                                                                | 11.12            | 15.26            | 4.65             |  |  |  |  |
|                                                                   |                  |                  |                  |  |  |  |  |
| ${ m SiH_4}$                                                      | 15.30            | 16.70            | 1.96             |  |  |  |  |
| $PH_3$                                                            | 17.16            | 18.79            | 2.26             |  |  |  |  |
| $H_2S$                                                            | 19.35            | 21.27            | 2.60             |  |  |  |  |
| HCl                                                               | 21.47            | 23.53            | 2.64             |  |  |  |  |
|                                                                   |                  |                  |                  |  |  |  |  |
| ${ m GeH}_4$                                                      | 52.61            | 55.22            | 7.95             |  |  |  |  |
| $AsH_3$                                                           | 56.68            | 59.53            | 8.40             |  |  |  |  |
| $ m H_2Se$                                                        | 61.19            | 64.20            | 8.75             |  |  |  |  |
| HBr                                                               | 65.32            | 68.57            | 9.24             |  |  |  |  |
|                                                                   |                  |                  |                  |  |  |  |  |
| ${ m SnH_4}$                                                      | 35.19            | 32.72            | 11.55            |  |  |  |  |
| ${ m SbH}_3$                                                      | 37.31            | 34.83            | 11.81            |  |  |  |  |
| $H_2 Te$                                                          | 40.43            | 37.99            | 12.22            |  |  |  |  |
| HI                                                                | 44.15            | 41.84            | 12.67            |  |  |  |  |
| $1G_{-}pep$                                                       | 53.78            | 61.74            | 8.68             |  |  |  |  |
| $2\mathrm{G_{-}pep}$                                              | 97.45            | 108.02           | 11.53            |  |  |  |  |
| 3G_pep                                                            | 136.77           | 149.42           | 13.79            |  |  |  |  |
| 4G_pep                                                            | 173.50           | 187.93           | 15.73            |  |  |  |  |
| $5G_{-}pep$                                                       | 219.08           | 235.34           | 17.65            |  |  |  |  |

| Basis             | $CH_4$ | NH <sub>3</sub> | $H_2O$ | HF     | Sum    |
|-------------------|--------|-----------------|--------|--------|--------|
| From STO-3G to    |        |                 |        |        |        |
| 3-21G             | 0.0756 | 0.0725          | 0.0740 | 0.0763 | 0.2984 |
| 6-31G             | 0.0617 | 0.0524          | 0.0502 | 0.0514 | 0.2157 |
| STO-3G(d)         | 0.2715 | 0.2148          | 0.1809 | 0.1577 | 0.8249 |
| 6-31G(d)          | 0.2461 | 0.1994          | 0.1717 | 0.1534 | 0.7706 |
| 6-311G(d)         | 0.1873 | 0.1916          | 0.1977 | 0.2019 | 0.7785 |
| From 3-21G to     |        |                 |        |        |        |
| 6-31G             | 0.0114 | 0.0149          | 0.0182 | 0.0198 | 0.0643 |
| STO-3G(d)         | 0.2654 | 0.2033          | 0.1673 | 0.1484 | 0.7844 |
| 6-31G(d)          | 0.2340 | 0.1820          | 0.1514 | 0.1357 | 0.7031 |
| 6-311G(d)         | 0.1659 | 0.1743          | 0.1848 | 0.1919 | 0.7169 |
| From 6-31G to     |        |                 |        |        |        |
| STO-3G(d)         | 0.2665 | 0.2078          | 0.1725 | 0.1507 | 0.7974 |
| 6-31G(d)          | 0.2343 | 0.1847          | 0.1539 | 0.1346 | 0.7075 |
| 6-311G(d)         | 0.1688 | 0.1787          | 0.1886 | 0.1947 | 0.7308 |
| From STO-3G(d) to |        |                 |        |        |        |
| 6-31G(d)          | 0.0804 | 0.0646          | 0.0543 | 0.0514 | 0.2507 |
| 6-311G(d)         | 0.1516 | 0.1474          | 0.1563 | 0.1727 | 0.6280 |
| From 6-31G(d) to  |        |                 |        |        |        |
| 6-311G(d)         | 0.1274 | 0.1311          | 0.1439 | 0.1642 | 0.5665 |
|                   |        |                 |        |        |        |

Table 4.7: Relative error, equation (4.43), in the projection for molecules containing atoms from the first row

| Basis             | $\mathrm{SiH}_4$ | PH <sub>3</sub> | $H_2S$ | HCl    | Sum    |
|-------------------|------------------|-----------------|--------|--------|--------|
| From STO-3G to    |                  |                 |        |        |        |
| 3-21G             | 0.0146           | 0.0136          | 0.0129 | 0.0085 | 0.0495 |
| 6-31G             | 0.0166           | 0.0164          | 0.0162 | 0.0120 | 0.0612 |
| STO-3G(d)         | 0.0162           | 0.0140          | 0.0140 | 0.0136 | 0.0577 |
| 6-31G(d)          | 0.0261           | 0.0258          | 0.0257 | 0.0228 | 0.1003 |
| 6-311G(d)         | 0.2139           | 0.2086          | 0.2162 | 0.2087 | 0.8473 |
| From 3-21G to     |                  |                 |        |        |        |
| 6-31G             | 0.0079           | 0.0077          | 0.0076 | 0.0075 | 0.0306 |
| STO-3G(d)         | 0.0182           | 0.0162          | 0.0159 | 0.0132 | 0.0636 |
| 6-31G(d)          | 0.0221           | 0.0219          | 0.0218 | 0.0212 | 0.0869 |
| 6-311G(d)         | 0.2141           | 0.2088          | 0.2165 | 0.2086 | 0.8480 |
| From 6-31G to     |                  |                 |        |        |        |
| STO-3G(d)         | 0.0203           | 0.0189          | 0.0192 | 0.0162 | 0.0745 |
| 6-31G(d)          | 0.0205           | 0.0202          | 0.0199 | 0.0193 | 0.0799 |
| 6-311G(d)         | 0.2139           | 0.2087          | 0.2164 | 0.2086 | 0.8476 |
| From STO-3G(d) to |                  |                 |        |        |        |
| 6-31G(d)          | 0.0171           | 0.0177          | 0.0189 | 0.0174 | 0.0711 |
| 6-311G(d)         | 0.2133           | 0.2081          | 0.2158 | 0.2083 | 0.8454 |
| From 6-31G(d) to  |                  |                 |        |        |        |
| 6-311G(d)         | 0.2133           | 0.2080          | 0.2157 | 0.2079 | 0.8448 |

Table 4.8: Relative error, equation (4.43), in the projection for molecules containing atoms from the second row elements

| Basis                       | ${ m GeH_4}$ | $AsH_3$ | $ m H_2Se$ | HBr    | Sum    |
|-----------------------------|--------------|---------|------------|--------|--------|
| From STO-3G to <sup>a</sup> |              |         |            |        |        |
| 3-21G                       | 0.0090       | 0.0081  | 0.0081     | 0.0076 | 0.0327 |
| 6-31G                       | 0.0165       | 0.0162  | 0.0157     | 0.0155 | 0.0639 |
| 6-31G(d)                    | 0.0171       | 0.0168  | 0.0164     | 0.0162 | 0.0665 |
| From 3-21G to               |              |         |            |        |        |
| 6-31G                       | 0.0115       | 0.0126  | 0.0126     | 0.0134 | 0.0501 |
| STO-3G(d)                   | 0.007        | 0.006   | 0.006      | 0.005  | 0.0243 |
| 6-31G(d)                    | 0.0122       | 0.0133  | 0.0136     | 0.0146 | 0.0537 |
| From 6-31G to               |              |         |            |        |        |
| STO-3G(d)                   | 0.010        | 0.010   | 0.010      | 0.009  | 0.0394 |
| 6-31G(d)                    | 0.0045       | 0.0050  | 0.0055     | 0.0060 | 0.0211 |
| From STO-3G(d) to           |              |         |            |        |        |
| 6-31G(d)                    | 0.0171       | 0.0168  | 0.0164     | 0.0162 | 0.0665 |

Table 4.9: Relative error, equation (4.43), in the projection for molecules containing atoms from the third row elements

<sup>a</sup> For 3<sup>rd</sup> row, STO-3G=STO-3G(d)

| Basis                       | ${ m SnH}_4$ | ${ m SbH_3}$ | $H_2Te$ | HI     | Sum    |
|-----------------------------|--------------|--------------|---------|--------|--------|
| From STO-3G to <sup>a</sup> |              |              |         |        |        |
| 3-21G                       | 0.0066       | 0.0064       | 0.0063  | 0.0063 | 0.0255 |
| 6-31G                       | 0.0091       | 0.0089       | 0.0088  | 0.0087 | 0.0354 |
| 6-31G(d)                    | 0.0092       | 0.0090       | 0.0089  | 0.0088 | 0.0359 |
| From 3-21G to               |              |              |         |        |        |
| 6-31G                       | 0.0047       | 0.0047       | 0.0046  | 0.0046 | 0.0187 |
| STO-3G(d)                   | 0.004        | 0.004        | 0.004   | 0.004  | 0.0158 |
| 6-31G(d)                    | 0.0048       | 0.0049       | 0.0048  | 0.0048 | 0.0193 |
| From 6-31G to               |              |              |         |        |        |
| STO-3G(d)                   | 0.007        | 0.007        | 0.007   | 0.007  | 0.0283 |
| 6-31G(d)                    | 0.0008       | 0.0008       | 0.0007  | 0.0008 | 0.0030 |
| From STO-3G(d) to           |              |              |         |        |        |
| 6-31G(d)                    | 0.0092       | 0.0090       | 0.0089  | 0.0088 | 0.0359 |

Table 4.10: Relative error, equation (4.43), in the projection for molecules containing atoms from the fourth row elements

<sup>a</sup> For 4<sup>th</sup> row, STO-3G=STO-3G(d)

| Basis          | $CH_4$  | $\rm NH_3$ | $H_2O$  | HF      | Sum     |
|----------------|---------|------------|---------|---------|---------|
| From STO-3G to |         |            |         |         |         |
| 3-21G          | 0.6091  | 0.8288     | 1.0361  | 1.2300  | 3.7041  |
| 6-31G          | 0.9082  | 1.1880     | 1.4383  | 1.6661  | 5.2006  |
| STO-3G(d)      | 0.0334  | 0.0436     | 0.0429  | 0.0311  | 0.1510  |
| 6-31G(d)       | 0.9341  | 1.2143     | 1.4503  | 1.6557  | 5.2543  |
| 6-311G(d)      | 0.9208  | 1.1358     | 1.3089  | 1.4583  | 4.8239  |
| From 3-21G to  |         |            |         |         |         |
| 6-31G          | 0.4511  | 0.5200     | 0.5857  | 0.6172  | 2.1739  |
| STO-3G(d)      | -0.5001 | -0.7398    | -0.9734 | -1.1681 | -3.3812 |
| 6-31G(d)       | 0.4542  | 0.5392     | 0.6119  | 0.6355  | 2.2408  |
| 6-311G(d)      | 0.4689  | 0.5545     | 0.6177  | 0.6544  | 2.2955  |
| From 6-31G to  |         |            |         |         |         |
| STO-3G(d)      | -1.0088 | -1.4710    | -1.8448 | -2.1201 | -6.4447 |
| 6-31G(d)       | 0.0271  | 0.0333     | 0.0312  | 0.0187  | 0.1102  |
| 6-311G(d)      | 0.0461  | 0.0649     | 0.0635  | 0.0566  | 0.2310  |

Table 4.11: Percentage error in energy ( $\Delta E\%$ ), equation (4.46), using  $H_p$  for the first row elements

 $\mathrm{SiH}_4$  $\mathrm{PH}_3$  $\mathrm{H}_{2}\mathrm{S}$ Basis HCl Sum From STO-3G to 3-21G 0.77310.77890.79630.83523.18356-31G 1.18544.72091.16811.16821.1991STO-3G(d)0.02170.01970.01530.07680.02016-31G(d)1.19721.16984.73371.17701.18984.52366-311G(d) 1.1406 1.12811.12311.1319 From 3-21G to 6-31G 0.57450.56702.32440.59880.5841STO-3G(d)-0.6654-0.7377-0.8616-0.7523-3.01696-31G(d)0.60030.57980.56360.5493 2.29316-311G(d)0.54170.52790.51900.51372.1023From 6-31G to STO-3G(d)-1.1691 -1.2443-1.3771-1.2969-5.08746-31G(d)0.00990.01650.01450.00500.04586-311G(d)0.0252 0.0216 0.01640.01180.0749

Table 4.12: Percentage error in energy ( $\Delta E\%$ ), equation (4.46), using  $H_p$  for the second row elements

| Basis          | ${ m GeH}_4$ | $AsH_3$ | $H_2Se$ | HBr     | Sum     |
|----------------|--------------|---------|---------|---------|---------|
| From STO-3G to |              |         |         |         |         |
| 3-21G          | 1.2011       | 1.1334  | 1.0519  | 1.0007  | 4.3871  |
| 6-31G          | 1.3442       | 1.3129  | 1.2914  | 1.2712  | 5.2197  |
| STO-3G(d)      | 0.0334       | 0.0436  | 0.0429  | 0.0311  | 0.1510  |
| 6-31G(d)       | 1.3295       | 1.2978  | 1.2752  | 1.2543  | 5.1567  |
| From 3-21G to  |              |         |         |         |         |
| 6-31G          | 0.5806       | 0.5729  | 0.5558  | 0.5666  | 2.2759  |
| STO-3G(d)      | -0.0704      | -0.0897 | -0.1502 | -0.1732 | -0.4835 |
| 6-31G(d)       | 0.5641       | 0.5588  | 0.5431  | 0.5550  | 2.2210  |
| From 6-31G to  |              |         |         |         |         |
| STO-3G(d)      | -1.6724      | -1.5713 | -1.4874 | -1.4392 | -6.1703 |
| 6-31G(d)       | 0.0031       | 0.0032  | 0.0029  | 0.0022  | 0.0114  |

Table 4.13: Percentage error in the energy ( $\Delta E\%$ ), equation (4.46), using  $H_p$  for the third row elements

| Basis          | ${ m SnH_4}$ | $SbH_3$ | H <sub>2</sub> Te | HI      | Sum     |
|----------------|--------------|---------|-------------------|---------|---------|
| From STO-3G to |              |         |                   |         |         |
| 3-21G          | 0.9250       | 0.8894  | 0.8641            | 0.8400  | 3.5184  |
| 6-31G          | 1.2419       | 1.2004  | 1.1731            | 1.1481  | 4.7635  |
| 6-31G(d)       | 1.1548       | 1.1247  | 1.1057            | 1.0897  | 4.4749  |
| From 3-21G to  |              |         |                   |         |         |
| 6-31G          | 0.4241       | 0.4195  | 0.4190            | 0.4236  | 1.6861  |
| STO-3G(d)      | -0.0078      | -0.0325 | -0.0559           | -0.0750 | -0.1712 |
| 6-31G(d)       | 0.4236       | 0.4194  | 0.4189            | 0.4234  | 1.6853  |
| From 6-31G to  |              |         |                   |         |         |
| STO-3G(d)      | -0.4352      | -0.4551 | -0.4792           | -0.5125 | -1.8820 |
| 6-31G(d)       | 0.0008       | 0.0008  | 0.0007            | 0.0005  | 0.0029  |

Table 4.14: Percentage error in the energy ( $\Delta E\%$ ), equation (4.46), using  $H_p$  for the fourth row elements

| <u></u>          |         |            |         |         |         |
|------------------|---------|------------|---------|---------|---------|
| Basis            | $CH_4$  | $\rm NH_3$ | $H_2O$  | HF      | Sum     |
| From STO-3G to   |         |            |         |         |         |
| 3-21G            | 0.1823  | 0.1868     | 0.1525  | 0.1201  | 0.6417  |
| 6-31G            | 0.3300  | 0.2468     | 0.1277  | 0.0179  | 0.7224  |
| STO-3G(d)        | 0.0334  | 0.0436     | 0.0429  | 0.0311  | 0.1510  |
| 6-31G(d)         | 0.3525  | 0.3224     | 0.2325  | 0.1083  | 1.0156  |
| 6-311G(d)        | 0.4825  | 0.6625     | 0.7946  | 0.9083  | 2.8479  |
| From 3-21G to    |         |            |         |         |         |
| 6-31G            | 0.2206  | 0.2540     | 0.2911  | 0.3026  | 1.0682  |
| STO-3G(d)        | -0.2380 | -0.4539    | -0.5998 | -0.7075 | -1.9992 |
| 6-31G(d)         | 0.1948  | 0.2697     | 0.3217  | 0.3241  | 1.1104  |
| 6-311G(d)        | 0.2492  | 0.3355     | 0.4042  | 0.4421  | 1.4310  |
| From 6-31G to    |         |            |         |         |         |
| STO-3G(d)        | -0.4242 | -0.7729    | -0.9472 | -1.0474 | -3.1917 |
| 6-31G(d)         | 0.0271  | 0.0333     | 0.0312  | 0.0187  | 0.1102  |
| 6-311G(d)        | 0.0377  | 0.0454     | 0.0450  | 0.0506  | 0.1786  |
| From 6-31G(d) to |         |            |         |         |         |
| 6-311G(d)        | 0.0121  | 0.0100     | 0.0125  | 0.0495  | 0.0841  |

Table 4.15: Percentage error in energy ( $\Delta E\%$ ) using, equation (4.46), H for molecules containing first-row elements

| Basis              | ${ m SiH}_4$ | PH <sub>3</sub> | H <sub>2</sub> S | HCl     | Sum     |
|--------------------|--------------|-----------------|------------------|---------|---------|
| From STO-3G to     |              |                 |                  |         |         |
| 3-21G              | 0.2278       | 0.1778          | 0.1087           | -0.0095 | 0.5049  |
| 6-31G              | 0.4959       | 0.4445          | 0.3687           | 0.1996  | 1.5088  |
| STO-3G(d)          | 0.0217       | 0.0197          | 0.0153           | 0.0201  | 0.0768  |
| 6-31G(d)           | 0.4715       | 0.4326          | 0.3686           | 0.2191  | 1.4918  |
| 6-311G(d)          | 0.5889       | 0.5905          | 0.6081           | 0.3529  | 2.1405  |
| From 3-21G to      |              |                 |                  |         |         |
| 6-31G              | 0.3075       | 0.2974          | 0.2922           | 0.2905  | 1.1876  |
| STO-3G(d)          | -0.4288      | -0.4075         | -0.4765          | -0.2813 | -1.5941 |
| 6-31G(d)           | 0.2762       | 0.2569          | 0.2470           | 0.2387  | 1.0188  |
| 6-311G(d)          | 0.2958       | 0.2982          | 0.2945           | 0.2274  | 1.1158  |
| From 6-31G to      |              |                 |                  |         |         |
| STO-3G(d)          | -0.6585      | -0.6525         | -0.7357          | -0.5383 | -2.5849 |
| 6-31G(d)           | 0.0165       | 0.0145          | 0.0099           | 0.0050  | 0.0458  |
| 6-311G(d)          | 0.0178       | 0.0201          | 0.0178           | 0.0110  | 0.0667  |
| From $6-31G(d)$ to |              |                 |                  |         |         |
| 6-311G(d)          | 0.0010       | 0.0045          | 0.0074           | 0.0058  | 0.0187  |

Table 4.16: Percentage error in energy ( $\Delta E\%$ ) using, equation (4.46), H for molecules containing second-row elements

| Basis          | ${ m GeH}_4$ | $AsH_3$ | $H_2Se$ | HBr     | Sum     |
|----------------|--------------|---------|---------|---------|---------|
| From STO-3G to |              |         |         |         |         |
| 3-21G          | 0.6075       | 0.4995  | 0.4530  | 0.3610  | 1.9210  |
| 6-31G          | -0.0527      | -0.0190 | -0.0107 | 0.0022  | -0.0802 |
| 6-31G(d)       | 0.0218       | 0.0115  | 0.0171  | 0.0265  | 0.0769  |
| From 3-21G to  |              |         |         |         |         |
| 6-31G          | 0.1786       | 0.2207  | 0.1827  | 0.2162  | 0.7981  |
| STO-3G(d)      | -0.5178      | -0.3853 | -0.3456 | -0.2666 | -1.5152 |
| 6-31G(d)       | 0.2068       | 0.2490  | 0.2097  | 0.2415  | 0.9070  |
| From 6-31G to  |              |         |         |         |         |
| STO-3G(d)      | -0.7495      | -0.6811 | -0.6084 | -0.5745 | -2.6135 |
| 6-31G(d)       | 0.0031       | 0.0032  | 0.0029  | 0.0022  | 0.0114  |

.

Table 4.17: Percentage error in the energy ( $\Delta E\%$ ) using, equation (4.46), H for molecules containing third-row elements

| Basis          | $\mathrm{SnH}_4$ | $\mathrm{SbH}_3$ | $H_2Te$ | HI      | Sum     |
|----------------|------------------|------------------|---------|---------|---------|
| From STO-3G to |                  |                  |         |         |         |
| 3-21G          | 0.3565           | 0.3232           | 0.3022  | 0.2781  | 1.2599  |
| 6-31G          | 0.5503           | 0.5121           | 0.4806  | 0.4483  | 1.9912  |
| 6-31G(d)       | 0.4529           | 0.4224           | 0.3960  | 0.3693  | 1.6407  |
| From 3-21G to  |                  |                  |         |         |         |
| 6-31G          | 0.2129           | 0.2132           | 0.2084  | 0.2063  | 0.8407  |
| STO-3G(d)      | -0.1812          | -0.0944          | -0.0454 | -0.0240 | -0.3450 |
| 6-31G(d)       | 0.2089           | 0.2104           | 0.2059  | 0.2060  | 0.8313  |
| From 6-31G to  |                  |                  |         |         |         |
| STO-3G(d)      | -0.4040          | -0.3334          | -0.3042 | -0.2841 | -1.3257 |
| 6-31G(d)       | 0.0008           | 0.0008           | 0.0007  | 0.0005  | 0.0029  |

Table 4.18: Percentage error in the energy ( $\Delta E\%$ ) using, equation (4.46), H for molecules containing fourth-row elements

-

| Basis            | 1G_pep | 2G_pep | $3G_{-}pep$ | $4G_{-}pep$ | $5G_{-}pep$ |
|------------------|--------|--------|-------------|-------------|-------------|
| From STO-3G to   |        |        |             |             |             |
| 3-21G            | 0.0677 | 0.0670 | 0.0667      | 0.0665      | 0.0671      |
| 6-31G            | 0.0481 | 0.0480 | 0.0480      | 0.0480      | 0.0482      |
| STO-3G(d)        | 0.2081 | 0.2120 | 0.2133      | 0.2141      | 0.2185      |
| 6-31G(d)         | 0.1892 | 0.1917 | 0.1924      | 0.1928      | 0.1973      |
| 6-311G(d)        | 0.1899 | 0.1887 | 0.1881      | 0.1878      | 0.1892      |
| From 3-21G to    |        |        |             |             |             |
| 6-31G            | 0.0139 | 0.0134 | 0.0132      | 0.0131      | 0.0133      |
| STO-3G(d)        | 0.1967 | 0.1999 | 0.2012      | 0.2019      | 0.2185      |
| 6-31G(d)         | 0.1719 | 0.1740 | 0.1746      | 0.1750      | 0.1797      |
| 6-311G(d)        | 0.1757 | 0.1740 | 0.1731      | 0.1726      | 0.1742      |
| From 6-31G to    |        |        |             |             |             |
| STO-3G(d)        | 0.2010 | 0.2042 | 0.2054      | 0.2062      | 0.2105      |
| 6-31G(d)         | 0.1745 | 0.1740 | 0.1772      | 0.1775      | 0.1822      |
| 6-311G(d)        | 0.1799 | 0.1781 | 0.1772      | 0.1768      | 0.1783      |
| From 6-31G(d) to |        |        |             |             |             |
| 6-311G(d)        | 0.1327 | 0.1310 | 0.1302      | 0.1297      | 0.1306      |

Table 4.19: Relative error, equation (4.43), for peptides

| Basis                          | ${\rm SiH}_4$ | ${\rm Si_2H_6}$ | ${\rm Si_3H_8}$ | $\mathrm{Si}_4\mathrm{H}_{10}$ | $\mathrm{Si}_{5}\mathrm{H}_{12}$ | ${\rm Si_6H_{14}}$ |
|--------------------------------|---------------|-----------------|-----------------|--------------------------------|----------------------------------|--------------------|
| From STO-3G to                 |               |                 |                 |                                |                                  |                    |
| 3-21G                          | 0.0146        | 0.0140          | 0.0139          | 0.0138                         | 0.0138                           | 0.0138             |
| 6-31G                          | 0.0166        | 0.0164          | 0.0164          | 0.0164                         | 0.0164                           | 0.0164             |
| STO-3G(d)                      | 0.0162        | 0.0163          | 0.0164          | 0.0165                         | 0.0165                           | 0.0165             |
| 6-31G(d)                       | 0.0261        | 0.0260          | 0.0259          | 0.0259                         | 0.0259                           | 0.0259             |
| 6-311G(d)                      | 0.2139        | 0.2138          | 0.2138          | 0.2138                         | 0.2138                           | 0.2138             |
| From 3-21G to                  |               |                 |                 |                                |                                  |                    |
| 6-31G                          | 0.0079        | 0.0078          | 0.0077          | 0.0077                         | 0.0077                           | 0.0077             |
| STO-3G(d)                      | 0.0182        | 0.0183          | 0.0183          | 0.0183                         | 0.0183                           | 0.0183             |
| 6-31G(d)                       | 0.0221        | 0.0219          | 0.0218          | 0.0218                         | 0.0218                           | 0.0217             |
| 6-311G(d)                      | 0.2141        | 0.2141          | 0.2141          | 0.2141                         | 0.2140                           | 0.2140             |
| From 6-31G to                  |               |                 |                 |                                |                                  |                    |
| STO-3G(d)                      | 0.0203        | 0.0204          | 0.0205          | 0.0205                         | 0.0205                           | 0.0205             |
| 6-31G(d)                       | 0.0205        | 0.0204          | 0.0203          | 0.0203                         | 0.0203                           | 0.0202             |
| 6-311G(d)                      | 0.2139        | 0.2139          | 0.2139          | 0.2139                         | 0.2139                           | 0.2139             |
| From 6-31G(d) to               |               |                 |                 |                                |                                  |                    |
| $6-311 \mathrm{G}(\mathrm{d})$ | 0.2133        | 0.2132          | 0.2132          | 0.2132                         | 0.2132                           | 0.2132             |

| Table 4.20: | Relative error. | equation ( | (4.43). | for silicon hydri | des |
|-------------|-----------------|------------|---------|-------------------|-----|

| Basis          | ${ m GeH}_4$ | ${ m Ge_3H_8}$ | $\mathrm{Ge}_4\mathrm{H}_{10}$ |
|----------------|--------------|----------------|--------------------------------|
| From STO-3G to |              |                |                                |
| 3-21G          | 0.0090       | 0.0090         | 0.0090                         |
| 6-31G          | 0.0165       | 0.0165         | 0.0166                         |
| 6-31G(d)       | 0.0171       | 0.0171         | 0.0172                         |
| From 3-21G to  |              |                |                                |
| 6-31G          | 0.0115       | 0.0115         | 0.0115                         |
| STO-3G(d)      | 0.0068       | 0.0069         | 0.0069                         |
| 6-31G(d)       | 0.0122       | 0.0122         | 0.0121                         |
| From 6-31G to  |              |                |                                |
| STO-3G(d)      | 0.0104       | 0.0105         | 0.0105                         |
| 6-31G(d)       | 0.0045       | 0.0045         | 0.0045                         |

Table 4.21: Relative error, equation (4.43), for germanium hydrides



Figure 4.1:  $H_{\mu\nu}$  vs  $(H_p)_{\mu\nu}$  for 1G\_pep



Figure 4.2:  $G_{\mu\nu}$  vs  $(G_p)_{\mu\nu}$  for 1G\_pep



Figure 4.3:  $F_{\mu\nu}$  vs  $(F_p)_{\mu\nu}$  for 1G\_pep



Figure 4.4:  $H_{\mu\nu}$  vs  $(H_p)_{\mu\nu}$  for CCl<sub>4</sub>



Figure 4.5:  $G_{\mu\nu}$  vs  $(G_p)_{\mu\nu}$  for CCl<sub>4</sub>



Figure 4.6:  $F_{\mu\nu}$  vs  $(F_p)_{\mu\nu}$  for CCl<sub>4</sub>



Figure 4.7:  $H_{\mu\nu}$  vs  $(H_p)_{\mu\nu}$  for Ge<sub>5</sub>H<sub>12</sub>



Figure 4.8:  $G_{\mu\nu}$  vs  $(G_p)_{\mu\nu}$  for Ge<sub>5</sub>H<sub>12</sub>



Figure 4.9:  $F_{\mu\nu}$  vs  $(F_p)_{\mu\nu}$  for Ge<sub>5</sub>H<sub>12</sub>



Figure 4.10:  $H_{\mu\nu}$  vs  $(H_p)_{\mu\nu}$  for Sn<sub>4</sub>H<sub>10</sub>



Figure 4.11:  $G_{\mu\nu}$  vs  $(G_p)_{\mu\nu}$  for Sn<sub>4</sub>H<sub>10</sub>



Figure 4.12:  $F_{\mu\nu}$  vs  $(F_p)_{\mu\nu}$  for Sn<sub>4</sub>H<sub>10</sub>

## Chapter 5

## **Two-electron Integrals**

## 5.1 Introduction

Calculation of the two-electron integrals is one of the bottlenecks in Hartree-Fock calculations. Formally the number of two-electron integrals scale as  $N^4$ , where N is the number of basis functions. However, many of these integrals are equal to zero or of negligible value [23]. This chapter investigates ways of predetermining twoelectron integrals that can be neglected and therefore avoiding calculating them. The two-electron integral  $(\mu\nu|\sigma\lambda)$  is given by:

$$(\mu\nu|\sigma\lambda) = \int \int \phi_{\mu}^{*}(\mathbf{r}_{1})\phi_{\nu}(\mathbf{r}_{1})r_{12}^{-1}\phi_{\sigma}^{*}(\mathbf{r}_{2})\phi_{\lambda}(\mathbf{r}_{2})d\mathbf{r}_{1}d\mathbf{r}_{2}$$
(5.1)

where  $(\phi_{\mu}, \mu = 1, ..., k)$  are contracted basis functions. Each contracted basis function is a linear combination of primitive Gaussian functions  $\{g_i\}$  [24]:

$$\phi_{\mu} = \sum_{i=1}^{m_{\mu}} d_{i\mu} g_i \tag{5.2}$$

 $m_{\mu}$  is the number of the primitive Gaussian functions  $\{g_i\}$  and  $\{d_{i\mu}\}$  are the contraction coefficients. An unnormalized primitive Gaussian function  $g_i$  centered on an atom A is given by [25]:

$$g_i(\alpha, \mathbf{r} - \mathbf{R}_A) = (x - X_A)^l (y - Y_A)^m (z - Z_A)^n e^{-\alpha |\mathbf{r} - \mathbf{R}_A|^2}$$
(5.3)

 $\alpha$  is the Gaussian exponent and defines its width. l, m, and n are three nonnegative integers and the sum l + m + n is the angular momentum of the Gaussian. For example l + m + n = 0 defines a Gaussian of spherical symmetry and is called an s-type Gaussian, l + m + n = 1 corresponds to a p-type Gaussian, l + m + n = 2 to a d-type Gaussian and so on [26]. Substituting equation (5.2) in equation (5.1), the two electron-integral can be written as:

$$(\mu\nu|\sigma\lambda) = \sum_{i=1}^{m1} \sum_{j=1}^{m2} \sum_{k=1}^{m3} \sum_{l=1}^{m4} d_{i\mu} d_{j\nu} d_{k\sigma} d_{l\lambda} \int \int g_i^*(\mathbf{r}_1) g_j(\mathbf{r}_1) r_{12}^{-1} g_k^*(\mathbf{r}_2) g_l(\mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2 \quad (5.4)$$

If  $g_i$  and  $g_j$  are Gaussian functions with exponents  $\alpha$  and  $\beta$  centered on atoms A and B respectively then their multiplication is another Gaussian  $G_{ij}$  of exponent  $\epsilon_1$  and centered at the point p on the line connecting the two atoms A and B [24, 26]. For two 1s Gaussians:

$$G_{ij} = K_{AB} e^{-\epsilon_1 |\mathbf{r} - \mathbf{R}_p|^2} \tag{5.5}$$

The constant  $K_{AB}$  is given by:

$$K_{AB} = exp(\frac{-\alpha\beta}{\alpha+\beta}|\mathbf{R}_A - \mathbf{R}_B|^2)$$
(5.6)

and

$$\epsilon_1 = \alpha + \beta \tag{5.7}$$

Similarly if  $g_k$  and  $g_l$  are centered on atoms C and D and of exponents  $\gamma$  and  $\delta$  respectively, their multiplication is a third Gaussian  $G_{kl}$  of exponent  $\epsilon_2$  and centered at point q on the line connecting the two atoms C and D:

$$G_{kl} = K_{CD} e^{-\epsilon_2 |\mathbf{r} - \mathbf{R}_q|^2} \tag{5.8}$$

where:

$$K_{CD} = exp(\frac{-\gamma\delta}{\gamma+\delta}|\mathbf{R}_C - \mathbf{R}_D|^2)$$
(5.9)

$$\epsilon_2 = \gamma + \delta \tag{5.10}$$

Thus a two-electron integral of the form  $(\mu\nu|\sigma\lambda)$  reduces to integrals of the form  $(G_{ij}|G_{kl})$ :

$$(\mu\nu|\sigma\lambda) = \sum_{i=1}^{m1} \sum_{j=1}^{m2} \sum_{k=1}^{m3} \sum_{l=1}^{m4} d_{i\mu} d_{j\nu} d_{k\sigma} d_{l\lambda} (G_{ij}|G_{kl})$$
(5.11)

The same discussion can be easily extended to Gaussians other than 1s which makes Gaussian basis functions the most efficient basis functions for calculating two-electron integrals.

A very brief overview of two-electron integral calculations in MUNgauss is presented in Section 5.2. Section 5.3 describes a new algorithm to make the two-electron integrals calculations more efficient. Section 3.4 presents the results of this algorithm in addition to a comparison to the present performance of MUNgauss.

## 5.2 **Two-Electron Integral in MUNgauss**

For each group of four basis functions  $\mu$ ,  $\nu$ ,  $\sigma$  and  $\lambda$  there are 24 possible permutations and consequently 24 integrals of the form  $(\mu\nu|\sigma\lambda)$  need to be calculated. However, only three of the 24 integrals are unique and thus need be calculated. MUNgauss implements the concept of shells. Given four different shells a, b, c, and d, the three different combinations are (ab|cd), (ac|bd) and (ad|cb). (ab|cd), e.g., represents a set of integrals, or a block, over all of the basis functions which belong to the four shells (a, b, c, and d) taken in this order. For example if  $(\mu\nu|\sigma\lambda)$  is one of these integrals, then  $\mu$  represents the bases from the shell a,  $\nu$  the bases from the shell b,  $\sigma$  the bases from the shell c, and finally  $\lambda$  the bases from the shell d. It often occurs that all integrals of a block are either equal to zero or so small that they can be neglected. By default, two-electron integrals of value  $\leq 10^{-7}$  are considered negligible in MUNgauss. Since the value of the integral  $(G_{ij}|G_{kl})$  depends on  $K_{AB}$  and  $K_{CD}$ , both  $K_{AB}$  and  $K_{CD}$ , see equations (5.5), (5.8), and (5.11), are useful parameters to predict whether to calculate  $(G_{ij}|G_{kl})$  or to skip it. If all the integrals  $(G_{ij}|G_{kl})$  belonging to a block (ab|cd) satisfy the following condition:

$$\min(K_{AB} + K_{CD}) \le \text{cutoff} \tag{5.12}$$

then these integrals will be calculated, otherwise, all such integrals are of negligible

value and thus all the two-electron integrals for this block can be avoided [14]. Given the integral  $(\mu\nu|\sigma\lambda)$  where  $\mu$ ,  $\nu$ ,  $\sigma$  and  $\lambda$  are contracted basis functions as mentioned in the introduction, the inequality (5.12) can be further used to avoid calculating integrals with small values where the sum  $K_{AB} + K_{CD}$  is defined over the primitive gaussians constituting the basis functions  $\mu$ ,  $\nu$ ,  $\sigma$  and  $\lambda$ .

In MUNgauss, the value of the cutoff was set to 45. However, different values of the cutoff were used in this project and it was found that, while a cutoff of 20 almost maintained the same accuracy in energy, six decimal places, it skipped calculating many integrals within the threshold of  $10^{-7}$  as shown in Table 5.1. From now on, the term zero integrals will be used to refer to two-electron integrals with values  $\leq 10^{-7}$ . In Table 5.1,  $N_{45}$  is the number of negligible integrals calculated with a cutoff of 45, and  $N_{20}$  is the number of integrals calculated with a cutoff of 20 and considered to be equal to zero. The fifth column in Table 5.1 represents the percentage of the integrals that was predicted to be  $\leq 10^{-7}$  and was not calculated based on the 20 cutoff.

While a cutoff of 20 did not skip calculating any integrals for small molecules, e.g. AsH<sub>3</sub>, it saved calculating almost 90% of the zero integrals calculated with the cutoff of 45 for large molecules like N<sub>46</sub> and N<sub>50</sub>H<sub>28</sub>. However, there is still a large number of integrals calculated and then discarded i.e. 1,511,100,350 for N<sub>50</sub>H<sub>28</sub>.  $\Delta E_{20}$  in the sixth column in Table 5.1 represents the difference in energy in  $\mu H$  between the 45 cutoff and the 20 cutoff.  $\Delta E_{20}$  is zero for most of the test cases and as large as 7  $\mu H$  for Sn<sub>4</sub>H<sub>10</sub>, while its value is only 2  $\mu H$  for the largest molecule N<sub>50</sub>H<sub>28</sub>. For the series of molecules GeH<sub>4</sub> to Ge<sub>5</sub>H<sub>12</sub>, SiH<sub>4</sub> to Si<sub>6</sub>H<sub>14</sub>, and SnH<sub>4</sub> to Sn<sub>4</sub>H<sub>10</sub>, %N<sub>20</sub> was zero for the smallest molecules in these sets, but in general increased with the
increase in size of the molecule. This feature is desirable since it is computationally inexpensive to calculate all the two-electron integrals for small molecules while the accuracy is maintained. To confirm the adequacy of a cutoff of 20, a larger data set was used and additional molecular properties were calculated. The results, which are not shown in this thesis, indicate that a cutoff of 20 does not affect the accuracy of quantum chemical calculations. The same study was performed for cutoffs of 17, 15, and 12 and the results are given in Table 5.2. With a cutoff of 17, the error in energy was still reasonable for most members of the data set. The largest  $|\Delta E_{17}|$  is 47  $\mu H$ for the molecule  $N_{46}$  followed by 32  $\mu H$  for N<sub>50</sub>H<sub>28</sub>. However, as Table 5.2 shows, as the cutoff decreases to 15 and then to 12,  $\Delta E$  increases rapidly. The largest error is -7192  $\mu H$  for the molecule N<sub>46</sub> with a cutoff of 12. To evaluate the increase in the number of skipped two-electron integrals with respect to the decrease in the cutoff,  $N_{17} - N_{20}$ ,  $N_{15} - N_{17}$ ,  $N_{12} - N_{15}$  were calculated and given in Table 5.3. This table shows that the number of two-electron integrals that could be skipped does not increase much as the cutoff decreases from 15 to 12. For instance, for the molecule  $N_{32}H_{14}$ ,  $\Delta E_{15} = 375$  and  $\Delta E_{12} = 6601$  while the percentage of integrals of negligible values increased by only 0.6%. The same pattern is obvious for the series of molecules 1G\_pep to 8G\_pep. Although large molecules such as  ${\rm GaN}_{25},\,{\rm N}_{26}{\rm H}_{16},\,{\rm and}$  $N_{32}H_{14}$  gained dramatically from decreasing the cutoff form 45 to 20 and maintained the same accuracy in energy, the gain was almost negligible for a cutoff less than 17 with a huge loss in the accuracy of the energy. Therefore, we do not recommend using an aggressively small cutoff.

# 5.3 A New Algorithm for Skipping Zero Two-Electron Integrals

The H matrix can be calculated by:

$$H_{\mu\nu} = \int \phi^*_{\mu}(\mathbf{r}_1) \hat{h}(\mathbf{r}_1) \phi_{\nu}(\mathbf{r}_1) d\mathbf{r}_1$$
(5.13)

where the one-electron integral in the above equation can be calculated easily. It was shown in Chapter 4 that there is a ratio between the elements of the H and Gmatrices which suggests that if the zero elements of the H matrix are known, the zero elements of the G matrix could be predicted and the calculations of the corresponding integrals could be avoided. Figure 5.1 shows the elements  $H_{\mu\nu}$  and the corresponding  $G_{\mu\nu}$  values for the molecule 1G\_pep where:

$$-10^{-5} \le H_{\mu\nu} \le 10^{-5} \tag{5.14}$$

This figure shows that the elements  $G_{\mu\nu}$  are well contained in the range of  $-6 \times 10^{-3}$ to  $6 \times 10^{-3}$ . Figure 5.2 shows the same elements of H versus the corresponding elements of F. The relationship between the elements of H and F is almost identical to that of the elements of H and G. The same graphs for  $G_{\mu\nu}$  versus  $H_{\mu\nu}$  and  $F_{\mu\nu}$ versus  $H_{\mu\nu}$  where  $H_{\mu\nu}$  is given by equation (5.14) were plotted for the molecules CCl<sub>4</sub>, Ge<sub>5</sub>H<sub>12</sub>, and Sn<sub>4</sub>H<sub>10</sub>, see Figures 5.3, 5.4, 5.5, 5.6, 5.7, and 5.8. Elements of F and G for CCl<sub>4</sub> are in the interval  $-4 \times 10^{-4}$  to  $4 \times 10^{-4}$ , while for Ge<sub>5</sub>H<sub>12</sub>, F and G are in the interval  $-4 \times 10^{-3}$  to  $4 \times 10^{-3}$ , and for Sn<sub>4</sub>H<sub>10</sub>, F and G are in the interval  $-3 \times 10^{-3}$  to  $3 \times 10^{-3}$ . Since MUNgauss implements the concept of shells and we have to loop over shells before progressing to the basis functions belonging to these shells, it is more efficient to decide on the level of shells if a block of integrals has zero values for all of its integrals. Therefore a matrix  $\mathcal{H}$  of dimensions  $m \times m$ , where m is the number of shells, is calculated.  $\mathcal{H}_{ab}$  is defined by:

$$\mathcal{H}_{ab} = \sum_{\mu \in a, \nu \in b} |H_{\mu\nu}| \tag{5.15}$$

where  $\mu$  and  $\nu$  are two basis functions, a and b are two shells. In other words, the matrix H defined over k basis functions is condensed to a matrix  $\mathcal{H}$  over m shells. Table 5.4 shows the number of zero integrals not calculated since they are used to calculate Fock matrix elements corresponding to elements of the  $\mathcal{H}$  matrix of values  $|\mathcal{H}_{ab}| \leq 10^{-5}$ . The corresponding error in energy  $\Delta E$  is included in Table 5.4 as well. The results in Table 5.4 were obtained in combination with a cutoff of 20 as mentioned in the previous section. While SCF did not converge for CH<sub>4</sub>, CO<sub>2</sub>, GeH<sub>4</sub>, SiH<sub>4</sub>, SnH<sub>4</sub>, and TS\_CH<sub>3</sub>Br<sub>2</sub>, the error in energy for  $Ge_2H_6$  to  $Ge_5H_{12}$ ,  $Si_2H_6$  to  $Si_6H_{14}$  and  $Sn_2H_6$ to  $Sn_4H_{10}$  was zero or at most 4  $\mu H$ . It is interesting to notice that although the SCF did not converge for small molecules, for larger molecules the error was negligible and a large number of zero integrals could actually be skipped. Using the  $\mathcal{H}$  matrix we could save calculating 185,530,656 unnecessary two-electron integrals for the molecule  $N_{50}H_{28}$  with  $\Delta E$  as small as 2  $\mu H$ . For the set of molecules 1G\_pep to 8G\_pep the error in energy was zero. Although using the  $\mathcal{H}$  matrix to bypass calculating some of the zero integrals is unreasonable for small molecules, the results in Table 5.4 show that this algorithm can be used with large molecules which is the primary goal.

The same study was repeated for  $|\mathcal{H}_{ab}| \leq 10^{-4}$ . In Table 5.5, column 2 presents the number of zero integrals while column 3 gives the error in energy. The SCF did not converge or converged to a completely wrong energy for the molecules CCl<sub>4</sub>, CH<sub>4</sub>, CO<sub>2</sub>, GeH<sub>4</sub>, SiH<sub>4</sub>, SnH<sub>4</sub>, and TS\_CH<sub>3</sub>Br<sub>2</sub>, TS\_CH<sub>3</sub>BrI, and TS\_CH<sub>3</sub>ClBr. However, the error for the peptide series was reasonable. The largest error of any of the peptides was 67  $\mu$ H for 8G\_pep. For the large molecules GaN<sub>25</sub>, N<sub>26</sub>H<sub>16</sub>, ScN<sub>25</sub>, N<sub>32</sub>H<sub>14</sub>, N<sub>46</sub>, and N<sub>50</sub>H<sub>28</sub> the error was in the range of -48  $\mu$ H to -211  $\mu$ H which is smaller than the error of the diatomic molecules HI, I<sub>2</sub>, and KI.

In this chapter two methods were presented to detect which integrals will be of zero value and therefore could be skipped. One algorithm uses the threshold introduced in the last section and the other uses the  $\mathcal{H}$  matrix. To compare the performance of the two algorithms, the percentage of two-electron integrals calculated and thrown away either using a cutoff of 17 or the  $\mathcal{H}$  matrix algorithm,  $|\mathcal{H}_{ab}| \leq 10^{-4}$ , relative to those thrown away at 20 cutoff was calculated. The second column of Table 5.6 gives the percentage of the two-electron integrals skipped using the  $\mathcal{H}$  matrix and the corresponding error in energy is given in column 4. The third column gives the percentage of the two-electron integrals skipped using a threshold of 17 while the corresponding error in energy is given in the last column of Table 5.6. It is clear from Table 5.6 that the error in energy introduced by using a cutoff of 17 is less than that introduced by using the  $\mathcal{H}$  matrix algorithm in addition to the advantage that there was no convergence problem using a cutoff of 17. For small molecules such as AsH<sub>3</sub>, Br<sub>2</sub> and C<sub>3</sub>H<sub>8</sub> the  $\mathcal{H}$  matrix algorithm saved more two-electron integrals than the cutoff of 17 did. But starting from 1G-pep to the end of the Table 5.6 the

cutoff of 17 saved more two-electron integrals than the  $\mathcal{H}$  matrix. Therefore using the criterion (5.12) is more efficient and accurate than the  $\mathcal{H}$  matrix.

### 5.4 Conclusions

The cutoff used in MUNgauss to skip calculating zero integrals was studied and found to be too weak. A new value of the cutoff was suggested which skipped as many zero integrals as possible while maintaining the same accuracy of the energy, six decimal places. We developed a new algorithm based on the  $\mathcal{H}$  matrix to detect the zero integrals in advance. The performance of this algorithm was studied and it was found to cause convergence problems for the SCF and huge errors for some of the test cases as a result of skipping significant integrals.

| Molecule                         | Number of | $N_{45}$        | $N_{20}$        | $\%N_{20}$ | $\Delta E_{20}$ |
|----------------------------------|-----------|-----------------|-----------------|------------|-----------------|
|                                  | $basis^a$ |                 |                 |            |                 |
| $AsH_3$                          | 41        | 113,670         | 113,670         | 0          | 0               |
| $\mathrm{Br}_2$                  | 70        | $816,\!463$     | 288,133         | 64.7       | 0               |
| $C_2H_4$                         | 38        | 9,498           | 9,493           | 0.1        | 0               |
| $C_2H_6$                         | 42        | 10,327          | $10,\!305$      | 0.2        | 0               |
| $C_3H_8$                         | 61        | 65,331          | 43,740          | 33.1       | 0               |
| $\mathrm{C}_4\mathrm{H}_{10}$    | 80        | 772,709         | $221,\!397$     | 71.4       | 0               |
| $\mathrm{C}_{5}\mathrm{H}_{12}$  | 99        | $2,\!984,\!866$ | $672,\!188$     | 77.5       | 0               |
| $C_6H_{14}$                      | 118       | 7,784,632       | $1,\!546,\!541$ | 80.1       | 0               |
| $\mathrm{CCl}_4$                 | 91        | 2,064,989       | 722,665         | 65.0       | 0               |
| $\mathrm{CH}_{2}\mathrm{Br}_{2}$ | 89        | $1,\!537,\!212$ | 769,714         | 49.9       | 0               |
| $(\mathrm{HCOOH})_2$             | 98        | 3,715,796       | $618,\!425$     | 83.4       | 1               |
| $\mathrm{CH}_2(\mathrm{PH}_2)_2$ | 65        | $232,\!316$     | 232,316         | 0.0        | 0               |
| $\mathrm{CH}_2(\mathrm{SH})_2$   | 61        | $209,\!534$     | 209,534         | 0.0        | 0               |
| $CH_3F$                          | 36        | $10,\!158$      | 10,138          | 0.2        | 0               |
| $\rm CH_3AsH_2$                  | 60        | 199,465         | 168,223         | 15.7       | 0               |
| $\mathrm{CH}_3\mathrm{Br}$       | 56        | 183,900         | 155,890         | 15.2       | 0               |
| $CH_3CONH_2$                     | 70        | $140,\!519$     | 86,298          | 38.6       | 0               |
| CH <sub>3</sub> SeH              | 58        | $190,\!351$     | $161,\!278$     | 15.3       | 0               |

Table 5.1: The effect of changing the cutoff from 45 to 20 on the number of zero integrals calculated and the energy( $\mu$ H) in addition to the % savings

| Molecule                         | Number of | $N_{45}$         | $N_{20}$        | $N_{20}$ | $\Delta E_{20}$ |
|----------------------------------|-----------|------------------|-----------------|----------|-----------------|
|                                  | basis     |                  |                 |          |                 |
| CH <sub>4</sub>                  | 23        | 4,698            | 4,698           | 0.0      | 0               |
| СО                               | 30        | $9,\!397$        | 9,397           | 0.0      | 0               |
| $\rm CO_2$                       | 45        | 23,820           | 21,646          | 9.1      | 0               |
| $\operatorname{EtBr}$            | 75        | 826,185          | 360,181         | 56.4     | 0               |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$  | 82        | $1,\!355,\!250$  | 588,950         | 56.5     | 0               |
| $Ge_3H_8$                        | 121       | 7,548,545        | 2,728,766       | 63.9     | 0               |
| $\mathrm{Ge}_4\mathrm{H}_{10}$   | 160       | $26,\!391,\!426$ | $7,\!355,\!882$ | 72.1     | 0               |
| $\mathrm{Ge}_{5}\mathrm{H}_{12}$ | 199       | $64,\!287,\!644$ | 21,768,761      | 66.1     | 0               |
| ${ m GeH}_4$                     | 43        | $113,\!814$      | 113,814         | 0.0      | 0               |
| $H_2$                            | 4         | 0                | 0               | 0.0      | 0               |
| $H_2O$                           | 19        | 4,698            | 4,698           | 0.0      | 0               |
| $(H_2O)_2$                       | 38        | 50,527           | $23,\!474$      | 53.5     | 0               |
| $H_2Se$                          | 39        | $113,\!544$      | $113,\!544$     | 0.0      | 0               |
| HF                               | 17        | 4,698            | 4,698           | 0.0      | 0               |
| HI                               | 41        | 173,723          | 173,723         | 0.0      | 0               |
| $I_2$                            | 78        | 1,331,178        | 864,275         | 35.1     | 0               |
| KI                               | 74        | 776,008          | 391,403         | 49.6     | 0               |
| LiF                              | 30        | 9,396            | 9,396           | 0.0      | 0               |
| $\rm NH_3$                       | 21        | $4,\!698$        | 4,698           | 0.0      | 0               |
| ${ m SbH}_3$                     | 45        | $177,\!540$      | $177,\!540$     | 0.0      | 0               |
| Si <sub>2</sub> H <sub>6</sub>   | 50        | 91,634           | 61,837          | 32.5     | 0               |

#### Table 5.1 – continued

| Molecule                         | Number of | $N_{45}$              | $N_{20}$          | $\%N_{20}$ | $\Delta E_{20}$ |
|----------------------------------|-----------|-----------------------|-------------------|------------|-----------------|
|                                  | basis     |                       |                   |            |                 |
| Si <sub>3</sub> H <sub>8</sub>   | 73        | 792,434               | 358,479           | 54.8       | 0               |
| $\rm Si_4H_{10}$                 | 96        | 3,409,063             | 1,095,550         | 67.9       | 0               |
| $\mathrm{Si}_{5}\mathrm{H}_{12}$ | 119       | $9,\!272,\!778$       | $2,\!595,\!770$   | 72.0       | 0               |
| $\rm Si_6H_{14}$                 | 142       | 19,068,291            | 4,714,937         | 75.3       | 0               |
| ${ m SiH_4}$                     | 27        | $11,\!178$            | 11,178            | 0.0        | 0               |
| $\mathrm{Sn_2H_6}$               | 90        | $2,\!148,\!942$       | 1,416,958         | 34.1       | 3               |
| $\mathrm{Sn_3H_8}$               | 133       | 12,815,728            | $6,\!591,\!339$   | 48.6       | 4               |
| $\mathrm{Sn}_4\mathrm{H}_{10}$   | 176       | 42,254,613            | $18,\!058,\!263$  | 57.3       | 7               |
| ${ m SnH_4}$                     | 47        | 180,483               | 180,483           | 0.0        | 0               |
| $\mathrm{CH}_3\mathrm{Br}_2$     | 91        | 2,735,407             | $875,\!462$       | 68.0       | 0               |
| $\rm CH_3BrI$                    | 95        | 3,421,595             | $1,\!350,\!152$   | 60.5       | 0               |
| $\rm CH_3 ClBr$                  | 75        | $1,\!135,\!297$       | 439,364           | 61.3       | 0               |
| 1G_pep                           | 85        | 830,788               | $229,\!552$       | 72.4       | 0               |
| 2G_pep                           | 151       | $23,\!181,\!106$      | 3,883,937         | 83.25      | 0               |
| 3G_pep                           | 217       | 94,889,733            | $13,\!193,\!173$  | 86.1       | 0               |
| 4G_pep                           | 283       | $209,\!597,\!287$     | 29,218,901        | 86.1       | 0               |
| 5G_pep                           | 349       | $366,\!480,\!522$     | 51,759,654        | 85.9       | 0               |
| $6G_{-}pep$                      | 415       | 567,976,000           | 81,798,289        | 85.6       | 0               |
| $7G_{-}pep$                      | 481       | 785,632,884           | $104,\!913,\!535$ | 86.7       | 0               |
| 8G_pep                           | 547       | 1,068,128,965         | $145,\!363,\!348$ | 86.4       | 0               |
| $\mathrm{GaN}_{25}$              | 410       | $1,\!216,\!514,\!747$ | 128,384,024       | 89.5       | 0               |

Table 5.1 – continued

| Molecule                         | Number of | $N_{45}$               | $N_{20}$          | $\%N_{20}$ | $\Delta E_{20}$ |
|----------------------------------|-----------|------------------------|-------------------|------------|-----------------|
|                                  | basis     |                        |                   |            |                 |
| $N_{26}H_{16}$                   | 422       | 1,789,442,991          | $205,\!943,\!432$ | 88.5       | 1               |
| $\mathrm{ScN}_{25}$              | 404       | $1,\!038,\!465,\!436$  | $112,\!902,\!134$ | 89.1       | 0               |
| $N_{32}H_{14}$                   | 508       | $2,\!874,\!861,\!671$  | $301,\!488,\!732$ | 89.5       | 1               |
| N <sub>46</sub>                  | 690       | $9,\!421,\!886,\!881$  | $800,\!531,\!450$ | 91.5       | 1               |
| $\mathrm{N}_{50}\mathrm{H}_{28}$ | 806       | $16,\!218,\!225,\!948$ | 1,511,100,350     | 90.7       | 2               |

## Table 5.1 – continued

<sup>*a*</sup> 6-31G(d) basis set

| Molecule                                | $\%N_{17}$ | $\%N_{15}$ | $\%N_{12}$ | $\Delta E_{17}$ | $\Delta E_{15}$ | $\Delta E_{12}$ |
|-----------------------------------------|------------|------------|------------|-----------------|-----------------|-----------------|
| AsH <sub>3</sub>                        | 0.0        | 0.0        | 0.0        | 0               | 1               | 10              |
| $\mathrm{Br}_2$                         | 65.6       | 67.2       | 70.8       | 1               | 5               | 304             |
| $C_2H_2$                                | 0.2        | 0.4        | 0.7        | 0               | 0               | -1              |
| $C_2H_4$                                | 0.2        | 0.5        | 0.9        | 0               | 0               | 6               |
| $C_2H_6$                                | 1.3        | 3.6        | 8.7        | 1               | 1               | -4              |
| $C_3H_8$                                | 56.3       | 70.1       | 78.1       | 0               | 0               | -7              |
| $C_4H_{10}$                             | 88.4       | 94.4       | 97.4       | 0               | -1              | -15             |
| $C_5H_{12}$                             | 92.0       | 96.9       | 99.1       | 1               | -1              | -18             |
| $C_6H_{14}$                             | 92.7       | 97.4       | 99.5       | 0               | -1              | -46             |
| $\mathrm{CCl}_4$                        | 80.2       | 91.2       | 96.3       | 4               | 37              | 48              |
| $\mathrm{CH}_{2}\mathrm{Br}\mathrm{Br}$ | 60.8       | 71.8       | 79.6       | 2               | 18              | 155             |
| $(HCOOH)_2$                             | 94.5       | 97.6       | 99.0       | 3               | 25              | 170             |
| $\mathrm{CH}_2(\mathrm{PH}_2)_2$        | 0.0        | 78.9       | 85.9       | 0               | 13              | 106             |
| $\rm CH_2(SH)_2$                        | 64.9       | 77.7       | 84.6       | 1               | 11              | 56              |
| $\mathrm{CH}_3\mathrm{F}$               | 1.4        | 4.2        | 7.5        | 0               | 1               | 19              |
| $\mathrm{CH}_3\mathrm{AsH}_2$           | 21.3       | 27.7       | 38.4       | 1               | 10              | 125             |
| $CH_3Br$                                | 19.2       | 24.3       | 33.9       | 1               | 7               | 85              |
| $CH_3CONH_2$                            | 61.9       | 78.1       | 86.5       | 0               | 3               | 44              |
| $\rm CH_3SeH$                           | 20.2       | 25.0       | 35.8       | 1               | 8               | 87              |

Table 5.2: Percentage of skipped integrals for cutoffs of 17, 15, 12 and the corresponding  $\Delta E(\mu {\rm H})$ 

| Molecule                         | $N_{17}$ | $N_{15}$ | $\%N_{12}$ | $\Delta E_{17}$ | $\Delta E_{15}$ | $\Delta E_{12}$ |
|----------------------------------|----------|----------|------------|-----------------|-----------------|-----------------|
| CH <sub>4</sub>                  | 0.0      | 0.0      | 0.0        | 0               | 0               | 0               |
| СО                               | 0.0      | 0.0      | 0.0        | 0               | 0               | 0               |
| $\mathrm{CO}_2$                  | 20.3     | 39.7     | 40.2       | 0               | 2               | 43              |
| $\operatorname{EtBr}$            | 68.1     | 78.7     | 83.4       | 1               | 7               | 47              |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$  | 73.1     | 73.1     | 73.1       | 1               | 1               | 1               |
| $\mathrm{Ge}_3\mathrm{H}_8$      | 79.0     | 87.4     | 91.3       | 2               | 0               | -605            |
| $\mathrm{Ge}_4\mathrm{H}_{10}$   | 83.9     | 90.1     | 94.4       | 3               | 0               | -1343           |
| $\mathrm{Ge}_{5}\mathrm{H}_{12}$ | 81.4     | 89.5     | 95.4       | 8               | -15             | -7401           |
| ${ m GeH}_4$                     | 0.0      | 0.0      | 0.0        | 0               | 1               | 15              |
| $H_2$                            | 0.0      | 0.0      | 0.0        | 0               | 0               | 0               |
| $H_2O$                           | 0.0      | 0.0      | 0.0        | 0               | 0               | 0               |
| $(H_2O)_2$                       | 78.0     | 79.2     | 81.1       | 1               | 0               | 31              |
| $H_2Se$                          | 0.0      | 0.0      | 0.0        | 0               | 2               | 8               |
| HF                               | 0.0      | 0.0      | 0.0        | 0               | 0               | 0               |
| HI                               | 0.0      | 0.0      | 0.0        | 0               | 0               | 5               |
| $I_2$                            | 56.9     | 65.1     | 66.0       | -1              | 6               | 255             |
| KI                               | 50.7     | 51.2     | 54.4       | 3               | 5               | 96              |
| LiF                              | 0.0      | 0.0      | 0.0        | 0               | 1               | 14              |
| NH <sub>3</sub>                  | 0.0      | 0.0      | 0.0        | 0               | 0               | 0               |
| $\mathrm{SbH}_3$                 | 0.0      | 0.0      | 0.3        | 0               | 4               | 12              |
| $\rm Si_2H_6$                    | 46.1     | 71.5     | 74.3       | 0               | 2               | 19              |
| $\rm Si_3H_8$                    | 74.8     | 89.0     | 94.1       | -1              | 1               | -26             |

 Table 5.2 - continued

| Molecule                         | $N_{17}$ | $\%N_{15}$ | $\%N_{12}$ | $\Delta E_{17}$ | $\Delta E_{15}$ | $\Delta E_{12}$ |
|----------------------------------|----------|------------|------------|-----------------|-----------------|-----------------|
| $Si_4H_{10}$                     | 84.6     | 93.1       | 97.2       | -1              | 0               | -85             |
| $\mathrm{Si}_{5}\mathrm{H}_{12}$ | 87.2     | 94.4       | 98.1       | -1              | 0               | -121            |
| $\rm Si_6H_{14}$                 | 88.9     | 95.1       | 98.5       | -2              | 1               | -182            |
| $\mathrm{SiH}_4$                 | 0.0      | 0.0        | 0.0        | 0               | 0               | 6               |
| $\mathrm{Sn}_{2}\mathrm{H}_{6}$  | 44.6     | 65.6       | 73.2       | 1               | 26              | -3149           |
| $\mathrm{Sn_3H_8}$               | 61.5     | 76.4       | 86.7       | -1              | 51              | -9441           |
| ${ m Sn_4H_{10}}$                | 69.9     | 81.5       | 90.4       | -3              | 73              | -19091          |
| ${ m SnH}_4$                     | 0.0      | 0.2        | 0.7        | 0               | 4               | 19              |
| $TS_CH_3Br_2$                    | 76.2     | 83.7       | 87.8       | 0               | 0               | -280            |
| $TS_CH_3BrI$                     | 73.5     | 80.1       | 86.0       | -2              | 8               | 127             |
| $TSCH_3ClBr$                     | 72.6     | 81.2       | 85.7       | 0               | -16             | 23              |
| 1G_pep                           | 89.4     | 94.6       | 96.9       | 1               | 10              | 97              |
| $2G_{pep}$                       | 95.1     | 98.4       | 99.7       | 3               | 25              | 294             |
| $3G_{-}pep$                      | 95.9     | 98.7       | 99.8       | 6               | 35              | 276             |
| 4G_pep                           | 95.6     | 98.5       | 99.8       | 7               | 45              | 192             |
| $5G_{-}pep$                      | 95.4     | 98.4       | 99.7       | 7               | 57              | 73              |
| $6G_{pep}$                       | 95.0     | 98.2       | 99.7       | 10              | 71              | 4               |
| 8G_pep                           | 95.4     | 98.3       | 99.7       | 11              | 78              | -736            |
| $\mathrm{GaN}_{25}$              | 96.9     | 99.0       | 99.8       | 20              | 180             | -2965           |
| $\mathrm{N_{26}H_{16}}$          | 97.0     | 99.2       | 99.9       | 18              | 144             | 2320            |
| $ m ScN_{25}$                    | 96.4     | 98.9       | 99.9       | 20              | 194             | 2404            |
| $N_{32}H_{14}$                   | 97.2     | 99.3       | 99.9       | 15              | 193             | 6601            |

Table 5.2 – continued

| Molecule        | $\%N_{17}$ | $\%N_{15}$ | $\%N_{12}$ | $\Delta E_{17}$ | $\Delta E_{15}$ | $\Delta E_{12}$ |
|-----------------|------------|------------|------------|-----------------|-----------------|-----------------|
| N <sub>46</sub> | 98.0       | 99.5       | 99.9       | 47              | 376             | -7192           |

Table 5.2 – continued

| Molecule                         | $\% N_{17} - \% N_{20}$ | $\% N_{15} - \% N_{17}$ | $\% N_{12} - \% N_{15}$ |
|----------------------------------|-------------------------|-------------------------|-------------------------|
| AsH <sub>3</sub>                 | 0.0                     | 0.0                     | 0.0                     |
| $Br_2$                           | 0.9                     | 1.6                     | 3.6                     |
| $C_2H_2$                         | 0.3                     | 0.1                     | 0.3                     |
| $C_2H_4$                         | 0.1                     | 0.3                     | 0.4                     |
| $C_2H_6$                         | 1.0                     | 2.4                     | 5.0                     |
| $C_3H_8$                         | 23.3                    | 13.7                    | 8.0                     |
| $C_4H_{10}$                      | 17.1                    | 6.0                     | 2.9                     |
| $C_5H_{12}$                      | 14.6                    | 4.8                     | 2.2                     |
| $C_{6}H_{14}$                    | 12.6                    | 4.7                     | 2.1                     |
| $\mathrm{CCl}_4$                 | 15.2                    | 11.0                    | 5.1                     |
| $\mathrm{CH}_{2}\mathrm{Br}_{2}$ | 10.9                    | 11.0                    | 7.8                     |
| $(\mathrm{HCOOH})_2$             | 11.2                    | 3.1                     | 1.4                     |
| $\mathrm{CH}_2(\mathrm{PH}_2)_2$ | 0.0                     | 78.9                    | 7.0                     |
| $\mathrm{CH}_2(\mathrm{SH})_2$   | 64.9                    | 12.8                    | 6.8                     |
| $CH_3F$                          | 1.2                     | 2.7                     | 3.3                     |
| $\mathrm{CH}_3\mathrm{AsH}_2$    | 5.6                     | 6.4                     | 10.8                    |
| $\mathrm{CH}_3\mathrm{Br}$       | 4.0                     | 5.1                     | 9.5                     |
| $\rm CH_3 \rm CONH_2$            | 23.4                    | 16.2                    | 8.3                     |
| $\rm CH_3SeH$                    | 4.9                     | 4.8                     | 10.9                    |

Table 5.3: The percentage increase in the skipped two-electron integrals with the decrease of the cutoff

| Molecule                         | $\% N_{17} - \% N_{20}$ | $\%N_{15} - \%N_{17}$ | $N_{12} - N_{15}$ |
|----------------------------------|-------------------------|-----------------------|-------------------|
| $CH_4$                           | 0.0                     | 0.0                   | 0.0               |
| СО                               | 0.0                     | 0.0                   | 0.0               |
| $\mathrm{CO}_2$                  | 11.2                    | 19.3                  | 0.5               |
| $\operatorname{EtBr}$            | 11.7                    | 10.6                  | 4.6               |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$  | 16.6                    | 0.0                   | 0.0               |
| $\mathrm{Ge_{3}H_{8}}$           | 15.1                    | 8.4                   | 3.9               |
| $\mathrm{Ge}_4\mathrm{H}_{10}$   | 11.7                    | 6.3                   | 4.2               |
| $\mathrm{Ge}_{5}\mathrm{H}_{12}$ | 15.2                    | 8.2                   | 5.8               |
| ${ m GeH}_4$                     | 0.0                     | 0.0                   | 0.0               |
| $H_2$                            | 0.0                     | 0.0                   | 0.0               |
| $H_2O$                           | 0.0                     | 0.0                   | 0.0               |
| $(H_2O)_2$                       | 24.4                    | 1.2                   | 1.9               |
| $\rm H_2Se$                      | 0.0                     | 0.0                   | 0.0               |
| HF                               | 0.0                     | 0.0                   | 0.0               |
| HI                               | 0.0                     | 0.0                   | 0.0               |
| $I_2$                            | 21.8                    | 8.2                   | 0.9               |
| KI                               | 1.1                     | 0.5                   | 3.2               |
| LiF                              | 0.0                     | 0.0                   | 0.0               |
| NH <sub>3</sub>                  | 0.0                     | 0.0                   | 0.0               |
| $\mathrm{SbH}_3$                 | 0.0                     | 0.0                   | 0.3               |
| $\rm Si_2H_6$                    | 13.6                    | 25.5                  | 2.7               |
| $\rm Si_3H_8$                    | 20.0                    | 14.2                  | 5.1               |

Table 5.3 – continued

| Molecule                        | $\%N_{17} - \%N_{20}$ | $\%N_{15} - \%N_{17}$ | $\% N_{12} - \% N_{15}$ |
|---------------------------------|-----------------------|-----------------------|-------------------------|
| $\rm Si_4H_{10}$                | 16.7                  | 8.6                   | 4.1                     |
| $\rm Si_5H_{12}$                | 15.2                  | 7.2                   | 3.7                     |
| $\rm Si_6H_{14}$                | 13.6                  | 6.2                   | 3.4                     |
| $\mathrm{SiH}_4$                | 0.0                   | 0.0                   | 0.0                     |
| $\mathrm{Sn}_{2}\mathrm{H}_{6}$ | 10.5                  | 21.0                  | 7.6                     |
| $\mathrm{Sn_3H_8}$              | 13.0                  | 14.9                  | 10.2                    |
| $\mathrm{Sn}_4\mathrm{H}_{10}$  | 12.6                  | 11.7                  | 8.9                     |
| ${ m SnH}_4$                    | 0.0                   | 0.2                   | 0.5                     |
| $TS_CH_3Br_2$                   | 8.2                   | 7.5                   | 4.1                     |
| $TS\_CH_3BrI$                   | 13.0                  | 6.6                   | 5.9                     |
| $TS_CH_3ClBr$                   | 11.3                  | 8.5                   | 4.5                     |
| 1G_pep                          | 17.0                  | 5.2                   | 2.4                     |
| $2G_{-pep}$                     | 11.9                  | 3.3                   | 1.2                     |
| $3G_{-pep}$                     | 9.8                   | 2.8                   | 1.1                     |
| 4G_pep                          | 9.6                   | 2.9                   | 1.2                     |
| 5G_pep                          | 9.5                   | 3.0                   | 1.3                     |
| 6G_pep                          | 9.4                   | 3.2                   | 1.5                     |
| 8G_pep                          | 9.0                   | 2.9                   | 1.4                     |
| $\mathrm{GaN}_{25}$             | 7.4                   | 2.1                   | 0.9                     |
| $N_{26}H_{16}$                  | 8.5                   | 2.3                   | 0.7                     |
| $ m ScN_{25}$                   | 7.3                   | 2.5                   | 1.0                     |
| $N_{32}H_{14}$                  | 7.6                   | 2.1                   | 0.6                     |

Table 5.3 – continued

| Molecule        | $\% N_{17} - \% N_{20}$ | $\% N_{15} - \% N_{17}$ | $\% N_{12} - \% N_{15}$ |
|-----------------|-------------------------|-------------------------|-------------------------|
| N <sub>46</sub> | 6.5                     | 1.5                     | 0.5                     |

#### Table 5.3 - continued

| Molecule                         | zero integrals skipped | $\Delta E$ |
|----------------------------------|------------------------|------------|
| AsH <sub>3</sub>                 | 2754                   | 17         |
| $\mathrm{Br}_2$                  | 1954                   | 0          |
| $C_2H_2$                         | 0                      | 0          |
| $C_2H_4$                         | 0                      | 0          |
| $C_2H_6$                         | 0                      | 0          |
| $C_3H_8$                         | 12256                  | 0          |
| $C_4H_{10}$                      | 67456                  | -1         |
| $C_5H_{12}$                      | 253446                 | 0          |
| $C_6H_{14}$                      | 514840                 | 0          |
| $\mathrm{CCl}_4$                 | 35521                  | 27624      |
| $\mathrm{CH}_{2}\mathrm{BrBr}$   | 5650                   | 0          |
| $(\text{HCOOH})_2$               | 144115                 | 1          |
| $\mathrm{CH}_2(\mathrm{PH}_2)_2$ | 20256                  | 0          |
| $\rm CH_2(SH)_2$                 | 12912                  | 0          |
| CH <sub>3</sub> -F               | 688                    | 0          |
| $CH_3AsH_2$                      | 15283                  | 17         |
| $CH_3Br$                         | 6406                   | 62         |
| $CH_3CONH_2$                     | 21433                  | 0          |
| CH <sub>3</sub> SeH              | 8250                   | 35         |

Table 5.4: Number of zero integrals skipped and the corresponding error in energy (µH) for  $|\mathcal{H}_{ab}| \leq 10^{-5}$ 

| Molecule                         | zero integrals | $\Delta E$      |
|----------------------------------|----------------|-----------------|
| CH <sub>4</sub>                  | 5211           | $NC^{a}$        |
| СО                               | 0              | 0               |
| $\rm CO_2$                       | 65179          | $\mathrm{NC}^a$ |
| $\operatorname{EtBr}$            | 47371          | 0               |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$  | 145680         | 0               |
| $\mathrm{Ge_{3}H_{8}}$           | 605712         | 1               |
| $\mathrm{Ge}_4\mathrm{H}_{10}$   | 1200068        | 2               |
| $\mathrm{Ge}_{5}\mathrm{H}_{12}$ | 3293523        | 0               |
| ${ m GeH}_4$                     | 75444          | $\mathrm{NC}^a$ |
| $H_2$                            | 0              | 0               |
| $H_2O$                           | 0              | 0               |
| $(H_2O)_2$                       | 11868          | 0               |
| $H_2Se$                          | 2511           | 35              |
| HF                               | 0              | 0               |
| HI                               | 21987          | -202            |
| $I_2$                            | 399813         | -19             |
| KI                               | 16053          | -158            |
| LiF                              | 0              | 0               |
| NH <sub>3</sub>                  | 0              | 0               |
| $\mathrm{SbH}_3$                 | 26163          | -83             |
| $\rm Si_2H_6$                    | 32280          | 0               |
| $\rm Si_3H_8$                    | 201725         | 0               |

Table 5.4 - continued

| Molecule                         | zero integrals | $\Delta E$        |
|----------------------------------|----------------|-------------------|
| $Si_4H_{10}$                     | 529378         | 0                 |
| $\mathrm{Si}_{5}\mathrm{H}_{12}$ | 1114295        | -1                |
| $\mathrm{Si}_{6}\mathrm{H}_{14}$ | 1933084        | 0                 |
| $SiH_4$                          | 13878          | $\mathrm{NC}^{a}$ |
| $\mathrm{Sn}_{2}\mathrm{H}_{6}$  | 178259         | 1                 |
| $\mathrm{Sn_3H_8}$               | 882358         | 2                 |
| $\mathrm{Sn}_4\mathrm{H}_{10}$   | 2521562        | 4                 |
| ${ m SnH_4}$                     | 161325         | $\mathrm{NC}^{a}$ |
| $TS\_CH_3Br_2$                   | 117483         | $\mathrm{NC}^{a}$ |
| TS_CH <sub>3</sub> BrI           | 272553         | -156              |
| $TS_CH_3ClBr$                    | 43992          | 0                 |
| $1G_{-}pep$                      | 77682          | 0                 |
| 2G_pep                           | 1170338        | 0                 |
| 3G_pep                           | 4015586        | 0                 |
| 4G_pep                           | 7683375        | 0                 |
| 5G_pep                           | 12822899       | 0                 |
| 6G_pep                           | 18876492       | 0                 |
| 7G_pep                           | 22425106       | 0                 |
| 8G_pep                           | 29370098       | 0                 |
| $\mathrm{GaN}_{25}$              | 20381969       | 0                 |
| $N_{26}H_{16}$                   | 31628755       | 1                 |
| $\mathrm{ScN}_{25}$              | 12861056       | 0                 |

Table 5.4 – continued

| Molecule       | zero integrals | $\Delta E$ |
|----------------|----------------|------------|
| $N_{32}H_{14}$ | 40028164       | 0          |
| $N_{50}H_{28}$ | 185530656      | 2          |

Table 5.4 – continued

<sup>a</sup> Failure in convergence

| Molecule                         | zero integrals skipped | $\Delta E$        |
|----------------------------------|------------------------|-------------------|
| AsH <sub>3</sub>                 | 5499                   | 236               |
| $\mathrm{Br}_2$                  | 66451                  | 108               |
| $C_2H_2$                         | 637                    | -1                |
| $C_2H_4$                         | 0                      | 0                 |
| $C_2H_6$                         | 929                    | 0                 |
| $C_3H_8$                         | 57352                  | -1                |
| $C_4H_{10}$                      | 257726                 | -8                |
| $C_5H_{12}$                      | 705857                 | -1                |
| $C_6H_{14}$                      | 1635744                | -7                |
| $\mathrm{CCl}_4$                 | 702391                 | $\mathrm{NC}^{a}$ |
| $\mathrm{CH}_{2}\mathrm{BrBr}$   | 277826                 | 803               |
| $(\mathrm{HCOOH})_2$             | 746114                 | 9                 |
| $\mathrm{CH}_2(\mathrm{PH}_2)_2$ | 142282                 | -6                |
| $\mathrm{CH}_2(\mathrm{SH})_2$   | 98344                  | -4                |
| CH <sub>3</sub> -F               | 688                    | 0                 |
| $\rm CH_3AsH_2$                  | 49016                  | 229               |
| $\mathrm{CH}_3\mathrm{Br}$       | 44935                  | 748               |
| $CH_3CONH_2$                     | 82621                  | -11               |
| CH <sub>3</sub> SeH              | 42878                  | 447               |

Table 5.5: Number of zero integrals skipped and the corresponding error in energy (µH) for  $|\mathcal{H}_{ab}| \leq 10^{-4}$ 

| Molecule                         | Skipped integrals | $\Delta E$        |
|----------------------------------|-------------------|-------------------|
| CH <sub>4</sub>                  | 5211              | $\mathrm{NC}^{a}$ |
| CO                               | 0                 | 0                 |
| $\mathrm{CO}_2$                  | 65179             | $\mathrm{NC}^{a}$ |
| EtBr                             | 253794            | 751               |
| ${ m Ge}_2{ m H}_6$              | 348841            | 275               |
| $\mathrm{Ge}_3\mathrm{H}_8$      | 1531466           | 141               |
| $\mathrm{Ge}_4\mathrm{H}_{10}$   | 3340618           | 17                |
| $\mathrm{Ge}_{5}\mathrm{H}_{12}$ | 10788551          | 32                |
| ${ m GeH}_4$                     | 92094             | $\mathrm{NC}^{a}$ |
| $H_2$                            | 0                 | 0                 |
| $H_2O$                           | 0                 | 0                 |
| $(H_2O)_2$                       | 17537             | 1                 |
| $\rm H_2Se$                      | 5013              | 453               |
| HF                               | 0                 | 0                 |
| HI                               | 30033             | 10494             |
| $I_2$                            | 418388            | -304              |
| KI                               | 87981             | 11164             |
| LiF                              | 0                 | 0                 |
| $ m NH_3$                        | 0                 | 0                 |
| ${ m SbH_3}$                     | 32580             | 9028              |
| $\rm Si_2H_6$                    | 40715             | -5                |
| $\rm Si_3H_8$                    | 271525            | -12               |

Table 5.5 – continued

| Molecule                        | Skipped integrals | $\Delta E$        |
|---------------------------------|-------------------|-------------------|
| $\rm Si_4H_{10}$                | 788584            | -20               |
| $\rm Si_5H_{12}$                | 1764628           | -30               |
| $\rm Si_6H_{14}$                | 3063098           | -40               |
| ${ m SiH}_4$                    | 13878             | $\mathrm{NC}^{a}$ |
| $\mathrm{Sn}_{2}\mathrm{H}_{6}$ | 801236            | -119              |
| $\mathrm{Sn_3H_8}$              | 3193876           | -119              |
| $\mathrm{Sn}_4\mathrm{H}_{10}$  | 8262764           | -134              |
| ${ m SnH_4}$                    | .216729           | $\mathrm{NC}^{a}$ |
| $TS\_CH_3Br_2$                  | 402539            | $\mathrm{NC}^{a}$ |
| $TS_CH_3BrI$                    | 706413            | $\mathrm{NC}^{a}$ |
| $TS\_CH_3ClBr$                  | 237914            | $\mathrm{NC}^{a}$ |
| $1 \mathrm{G_{-}pep}$           | 183099            | -3                |
| 2G_pep                          | 3256085           | -18               |
| 3G_pep                          | 9817960           | -32               |
| 4G_pep                          | 19617567          | -36               |
| 5G_pep                          | 31987865          | -47               |
| 6G_pep                          | 46598658          | -54               |
| 7G_pep                          | 54855668          | -58               |
| 8G_pep                          | 72761573          | -67               |
| $\mathrm{GaN}_{25}$             | 65705393          | -48               |
| $N_{26}H_{16}$                  | 101668193         | -89               |
| $ m ScN_{25}$                   | 57744162          | -57               |

Table 5.5 – continued

| Molecule       | Skipped integrals | $\Delta E$ |
|----------------|-------------------|------------|
| $N_{32}H_{14}$ | 148104509         | -91        |
| N46            | 345934398         | -211       |
| $N_{50}H_{28}$ | 621063924         | -179       |

Table 5.5 – continued

 $^{a}$  Failure in convergence

| Molecule                                | $\mathrm{N}(\mathcal{H})\%$ | N(17)% | $\Delta \mathrm{E}(\mathcal{H})$ | $\Delta$ E(17) |
|-----------------------------------------|-----------------------------|--------|----------------------------------|----------------|
| AsH <sub>3</sub>                        | 2.22                        | 0      | 236                              | 0              |
| $\mathrm{Br}_2$                         | 11.75                       | 2.43   | 108                              | 1              |
| $C_2H_2$                                | 0.52                        | 0.29   | -1                               | 0              |
| $C_2H_4$                                | 0                           | 0.14   | 0                                | 0              |
| $C_2H_6$                                | 6.96                        | 1.04   | 0                                | 1              |
| $C_3H_8$                                | 51.08                       | 34.76  | -1                               | 0              |
| $\mathrm{C}_4\mathrm{H}_{10}$           | 61.38                       | 59.65  | -8                               | 0              |
| $C_5H_{12}$                             | 64.17                       | 64.65  | -1                               | 1              |
| $C_6H_{14}$                             | 66.26                       | 63.45  | -7                               | 0              |
| $\mathrm{CCl}_4$                        | 60.56                       | 43.44  | NC                               | 4              |
| $\mathrm{CH}_{2}\mathrm{Br}\mathrm{Br}$ | 29.22                       | 21.68  | 803                              | 2              |
| $(\mathrm{HCOOH})_2$                    | 66.52                       | 67.14  | 9                                | 3              |
| $\mathrm{CH}_2(\mathrm{PH}_2)_2$        | 78.8                        | 0      | -6                               | 0              |
| $\rm CH_2(SH)_2$                        | 77.05                       | 64.91  | -4                               | 1              |
| $CH_3F$                                 | 6.79                        | 1.23   | 0                                | 0              |
| $\rm CH_3AsH_2$                         | 20.77                       | 6.67   | 229                              | 1              |
| $CH_3Br$                                | 18.36                       | 4.72   | 748                              | 1              |
| $CH_3CONH_2$                            | 53.45                       | 38.03  | -11                              | 0              |
| CH <sub>3</sub> SeH                     | 18.44                       | 5.78   | 447                              | 1              |

Table 5.6: Percentage of the two-electron integrals skipped using a cutoff of 17 and using the  $\mathcal{H}$  matrix, see text.

Continued

| Molecule                         | $\mathrm{N}(\mathcal{H})$ | N(17) | $\Delta \ { m E}({\cal H})$ | $\Delta$ E(17) |
|----------------------------------|---------------------------|-------|-----------------------------|----------------|
| CH <sub>4</sub>                  | 33.33                     | 0     | -79275743                   | 0              |
| СО                               | 0                         | 0     | 0                           | 0              |
| $\mathrm{CO}_2$                  | 54.6                      | 12.33 | -1311358674                 | 0              |
| $\operatorname{EtBr}$            | 47.74                     | 26.87 | 751                         | 1              |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$  | 46.72                     | 38.13 | 275                         | 1              |
| ${ m Ge_3H_8}$                   | 48.68                     | 41.9  | 141                         | 2              |
| $\mathrm{Ge}_4\mathrm{H}_{10}$   | 40.46                     | 42.05 | 17                          | 3              |
| $\mathrm{Ge}_{5}\mathrm{H}_{12}$ | 45.55                     | 44.95 | 32                          | 8              |
| ${ m GeH}_4$                     | 34.86                     | 0     | NC                          | 0              |
| $H_2$                            | 0                         | 0     | 0                           | 0              |
| $H_2O$                           | 0                         | 0     | 0                           | 0              |
| $(H_2O)_2$                       | 49.34                     | 52.57 | 1                           | 1              |
| $ m H_2Se$                       | 2.2                       | 0     | 453                         | 0              |
| HF                               | 0                         | 0     | 0                           | 0              |
| HI                               | 9.34                      | 0     | 10494                       | 0              |
| $I_2$                            | 47.23                     | 33.6  | -304                        | -1             |
| KI                               | 8.97                      | 2.18  | 11164                       | 3              |
| LiF                              | 0                         | 0     | 0                           | 0              |
| $\rm NH_3$                       | 0                         | 0     | 0                           | 0              |
| $\mathrm{SbH}_3$                 | 9.18                      | 0     | 9028                        | 0              |
| $\rm Si_2H_6$                    | 56.02                     | 20.08 | -5                          | 0              |
| Si <sub>3</sub> H <sub>8</sub>   | 67.4                      | 44.2  | -12                         | -1             |

Table 5.6 – continued

Continued

| Molecule                         | $\mathrm{N}(\mathcal{H})$ | N(17) | $\Delta \operatorname{E}(\mathcal{H})$ | $\Delta \mathrm{E}(17)$ |
|----------------------------------|---------------------------|-------|----------------------------------------|-------------------------|
| Si <sub>4</sub> H <sub>10</sub>  | 63.11                     | 51.94 | -20                                    | -1                      |
| $\mathrm{Si}_{5}\mathrm{H}_{12}$ | 60.56                     | 54.18 | -30                                    | -1                      |
| $\mathrm{Si}_{6}\mathrm{H}_{14}$ | 58.54                     | 54.99 | -40                                    | -2                      |
| $SiH_4$                          | 40.1                      | 0     | -80598259                              | 0                       |
| $\mathrm{Sn}_{2}\mathrm{H}_{6}$  | 47.21                     | 15.99 | -119                                   | 1                       |
| $\mathrm{Sn_3H_8}$               | 44.87                     | 25.2  | -119                                   | -1                      |
| ${ m Sn_4H_{10}}$                | 43.59                     | 29.51 | -134                                   | -3                      |
| ${ m SnH_4}$                     | 54.77                     | 0.01  | NC                                     | 0                       |
| $TS_{-}CH_{3}Br_{2}$             | 33.03                     | 25.52 | NC                                     | 0                       |
| $TS_{-}CH_{3}BrI$                | 44.55                     | 32.9  | 85780057                               | -2                      |
| $TS_CH_3ClBr$                    | 40.3                      | 29.27 | 32136338                               | 0                       |
| 1G_pep                           | 58.6                      | 61.66 | -3                                     | 1                       |
| 2G_pep                           | 62.03                     | 70.96 | -18                                    | 3                       |
| 3G_pep                           | 60.13                     | 70.7  | -32                                    | 6                       |
| $4G_{-}pep$                      | 57.01                     | 68.74 | -36                                    | 7                       |
| 5G_pep                           | 54.26                     | 67.34 | -47                                    | 7                       |
| 6G_pep                           | 51.33                     | 65.37 | -54                                    | 10                      |
| 8G_pep                           | 46.99                     | 66.01 | -67                                    | 11                      |
| $\mathrm{GaN}_{25}$              | 46.65                     | 70.55 | -48                                    | 20                      |
| $N_{26}H_{16}$                   | 44.75                     | 73.66 | -89                                    | 18                      |
| $ m ScN_{25}$                    | 45.39                     | 66.8  | -57                                    | 20                      |
| $N_{32}H_{14}$                   | 44.76                     | 72.89 | -91                                    | 15                      |

Table 5.6 – continued

Continued

| Molecule        | $\mathrm{N}(\mathcal{H})$ | N(17) | $\Delta  \operatorname{E}(\mathcal{H})$ | $\Delta { m E}(17)$ |
|-----------------|---------------------------|-------|-----------------------------------------|---------------------|
| N <sub>46</sub> | 40.46                     | 76.82 | -211                                    | 47                  |
| $N_{50}H_{28}$  | 39.47                     | 74.32 | -179                                    | 32                  |

Table 5.6 - continued



Figure 5.1:  $G_{\mu\nu}$  vs  $H_{\mu\nu}$  where  $-10^{-5} \le H_{\mu\nu} \le 10^{-5}$  for 1G\_pep



Figure 5.2:  $F_{\mu\nu}$  vs  $H_{\mu\nu}$  where  $-10^{-5} \le H_{\mu\nu} \le 10^{-5}$  for 1G\_pep



Figure 5.3:  $G_{\mu\nu}$  vs  $H_{\mu\nu}$  where  $-10^{-5} \le H_{\mu\nu} \le 10^{-5}$  for CCl<sub>4</sub>



Figure 5.4:  $F_{\mu\nu}$  vs  $H_{\mu\nu}$  where  $-10^{-5} \le H_{\mu\nu} \le 10^{-5}$  for CCl<sub>4</sub>



Figure 5.5:  $G_{\mu\nu}$  vs  $H_{\mu\nu}$  where  $-10^{-5} \leq H_{\mu\nu} \leq 10^{-5}$  for Ge<sub>5</sub>H<sub>12</sub>



Figure 5.6:  $F_{\mu\nu}$  vs  $H_{\mu\nu}$  where  $-10^{-5} \le H_{\mu\nu} \le 10^{-5}$  for  $\text{Ge}_5\text{H}_{12}$ 



Figure 5.7:  $G_{\mu\nu}$  vs  $H_{\mu\nu}$  where  $-10^{-5} \le H_{\mu\nu} \le 10^{-5}$  for  $\mathrm{Sn_4H_{10}}$


Figure 5.8:  $F_{\mu\nu}$  vs  $H_{\mu\nu}$  where  $-10^{-5} \le H_{\mu\nu} \le 10^{-5}$  for  $\text{Sn}_4\text{H}_{10}$ 

# Chapter 6

# Initial Guess for Large Basis Sets

# 6.1 Introduction

Roothaan's equation:

$$FC = SC\epsilon \tag{6.1}$$

has to be solved self consistently [1]. An initial guess of the density matrix  $P^0$  should be available at the first iteration. There are different ways to produce the initial guess, e.g., by using a semiempirical method like extended Hückel [24, 26], or by projecting the Fock matrix obtained from the calculation with a smaller basis set. A brief overview of both algorithms is presented in the following two sections.

# 6.2 Extended Hückel

In extended Hückel (EH) theory the Fock matrix in equation (6.1) is calculated using the formula [24]:

$$F_{ij}^{EH} = \frac{1}{2}k(F_{ii} + F_{jj})S_{ij}$$
(6.2)

where S is the overlap matrix and k is a parameter. The diagonal element  $F_{ii}$  is the negative of the ionization potential for an electron in orbital *i*. The Fock matrix calculated using equation (6.2) is of the same size as for a minimal basis set (e.g., STO-3G). If the initial guess is required for a basis set larger than STO-3G, then  $F^{EH}$  is projected to the larger basis set, (see chapter 4). By substituting  $F^{EH}$  in equation (6.1) and solving for C, the density matrix  $P^0$  can be calculated by:

$$P^0 = 2CC^{\dagger} \tag{6.3}$$

# 6.3 Initial Guess Using Projection

An alternative way to create the initial guess is:

- obtain  $F^x$  for a smaller basis set  $\{X\}$  than the one actually required.
- project  $F^x$  to  $F^y$ , where  $\{Y\}$  is a larger basis set, see chapter 4.
- diagonalize  $F^{y}$  to obtain the coefficient matrix and the guess density matrix.

In MUNgauss the SCF is considered converged (by default) when the norm of the difference between two density matrices calculated in consecutive iterations  $\parallel \Delta P \parallel$  is given by:

$$\|\Delta P\| \le 5 \times 10^{-6} \tag{6.4}$$

In this section we investigate the effect of using a less strict convergence criterion for the SCF performed with the smaller basis set on the quality of the initial guess. We also investigate the effect of using a smaller cutoff for the two-electron integrals on the initial guess, see Chapter 5. The quality of the initial guess is measured by the number of cycles required for the SCF, with the larger basis set, to converge to the correct density matrix. The number of SCF cycles was determined for three cases:

- 1.  $N_{app}$  is the number of SCF cycles where the initial guess is created from an approximate SCF converged with the criterion  $|| \Delta P || \leq 5 \times 10^{-2}$  and a cutoff of 10 is used for the two-electron integrals.
- N<sub>acc</sub> is the number of SCF cycles where the initial guess is created from a fully converged SCF, exact SCF, with a smaller basis set and the cutoff for the two-electron integrals is 45.
- 3.  $N_{EH}$  is the number of SCF cycles where the initial guess is created using projected extended Hückel.

These three calculations were performed for the projection from STO-3G to the following basis sets:

- 3-21G
- 6-31G
- STO-3G(d)
- 6-31G(d)

• 6-311G(d)

The SCF did not converge with a cutoff of 10 for the two-electron integrals in the case of  $Sn_4H_{10}$  while it converged with a cutoff of 12 for all cases. Table 6.1 gives the number of SCF cycles,  $N_{app}$ ,  $N_{acc}$ , and  $N_{EH}$ , where the SCF was performed using 3-21G basis set. Table 6.1 shows that, for the series of molecules  $SnH_4$ ,  $Sn_2H_6$ ,  $Sn_3H_8$ , and  $Sn_4H_{10}$ , that the SCF converged equally well whether or not the ininitial guess was created with an exact SCF or an approximate SCF ( $N_{app} \sim N_{acc}$ ). However, the number of cycles using an initial guess created by projected EH varied a lot, from 11 cycles with  $SnH_4$  to 20 cycles with  $Sn_2H_6$  and  $Sn_4H_{10}$ , and SCF did not converge for  $Sn_3H_8$ . For the same series of molecules, the largest  $N_{app}$  is nine cyles while the largest  $N_{acc}$  is eight cycles. Also, from Table 6.1,  $N_{app} > N_{acc}$  for  $GaN_{25}$  while  $N_{acc} > N_{app}$  for 1G\_pep. Calculating an initial guess by projecting with strict thresholds for SCF convergence and two-electron integrals does not necessarily lead to a smaller number of SCF cycles.

From Table 6.2, where the 6-31G basis set is used,  $N_{EH}$  is not much larger than  $N_{app}$  or  $N_{acc}$  for SnH<sub>4</sub> and Sn<sub>2</sub>H<sub>6</sub>. However, for Sn<sub>3</sub>H<sub>8</sub> and Sn<sub>4</sub>H<sub>10</sub>,  $N_{EH}$  is much larger than both of  $N_{app}$  and  $N_{acc}$ . For the molecules N<sub>46</sub> and GaN<sub>25</sub>,  $N_{EH}$  is far larger than  $N_{app}$  and  $N_{acc}$ . Calculating the initial guess using a projected EH seems to be computationally inexpensive, but if it leads to an SCF requiring many more cycles to converge, the Hückel guess would be more expensive than other alternatives.

Table 6.3 gives the number of SCF cycles,  $N_{app}$ ,  $N_{acc}$ , and  $N_{EH}$ , for the STO-3G(d) basis set. Since STO-3G and STO-3G(d) basis sets are the same for the third and fourth rows,  $N_{acc} = 1$  for molecules containing atoms from the third and fourth rows. However, the corresponding  $N_{app}$  is different than one since the SCF was not allowed to fully converge for STO-3G calculations. For STO-3G(d) calculations, a projected EH initial guess seems to do as well as an initial guess calculated from projection.

Table 6.4 gives the number of SCF cycles,  $N_{app}$ ,  $N_{acc}$ , and  $N_{EH}$ , for the SCF using 6-31G(d) basis set. Using a projected EH initial guess, the SCF converged for SnH<sub>4</sub> in ten cyles compared to eight cycles when the projection was used to create the initial guess which implies a good parametrization is used for the EH guess. However, for Sn<sub>2</sub>H<sub>6</sub>,  $N_{EH}$  was almost three times larger than  $N_{app}$  and  $N_{acc}$ , and the SCF did not converge for both of Sn<sub>3</sub>H<sub>8</sub> and Sn<sub>4</sub>H<sub>10</sub>. Thus a projected EH guess can produce an initial guess that leads to an SCF of similar number of cycles to that of an SCF performed with an initial guess produced by projection, an SCF with much higher number of cycles, or to an unconverged SCF. For N<sub>26</sub>H<sub>16</sub> and N<sub>50</sub>H<sub>28</sub>, the projected EH initial guess that the parameters used by EH for both of hydrogen and nitrogen are reasonable. However, for N<sub>46</sub> the SCF did not converge using a projected EH initial guess. Also, the SCF did not converge for GaN<sub>25</sub> using a projected EH initial guess and converged when projection is used to produce the initial guess.

Table 6.5 gives  $N_{app}$ ,  $N_{acc}$ , and  $N_{EH}$  where the SCF was performed using a 6-311G(d) basis set. 6-311G(d) basis set is not available for the third and fourth row atoms. The SCF did not converge using a cutoff of 10 for the two-electron integrals for N<sub>50</sub>H<sub>28</sub> but converged with a cutoff of 12 in 13 cycles which is even less than  $N_{acc}$ .  $N_{app}$ ,  $N_{acc}$ , and  $N_{EH}$  are of comparable values for all of the test cases shown in Table 6.5.

From all of the above tables, it is clear that using projection with weak criteria for SCF convergence and for two-electron integrals calculations with the STO-3G basis set to produce an initial guess for calculations with a larger basis set, the SCF converges equally well to an initial guess using projection and strict criteria.

# 6.4 Conclusions

Using projected extended Hückel as an initial guess can lead to a larger number of SCF cycles or to problems with SCF convergence compared to using projection from a smaller basis set to calculate the initial guess. By using very weak criteria for SCF convergence and the two-electron integrals cutoff, and using a small basis set such as STO-3G, an initial guess of high quality can be calculated which is similar in performance to the initial guess created by projection from a fully converged SCF but computationally less expensive. We recommend using the criteria  $|| \Delta P || \leq 5 \times 10^{-2}$  for SCF convergence and a cutoff of 12 for two-electron integrals with the STO-3G basis set to create an initial guess used for larger basis sets.

|                                   | N                    | umber of SCF Cy   | ycles    |
|-----------------------------------|----------------------|-------------------|----------|
| Molecule                          | $\overline{N_{app}}$ | $N_{\mathrm acc}$ | $N_{EH}$ |
| $C_2H_2$                          | 9                    | 9                 | 9        |
| $C_2H_4$                          | 10                   | 10                | 9        |
| $\mathrm{CH}_4$                   | 7                    | 8                 | 7        |
| $\rm CO_2$                        | 8                    | 8                 | 10       |
| FH-NN                             | 11                   | 14                | 11       |
| $FH-OH_2$                         | 9                    | 9                 | 10       |
| $CH_3$ -F                         | 9                    | 9                 | 10       |
| $\rm CH_3 \rm CONH_2$             | 14                   | 14                | 15       |
| $H_2O$                            | 9                    | 9                 | 10       |
| HF                                | 8                    | 8                 | 9        |
| LiH                               | 8                    | 6                 | 7        |
| $N_2$                             | 7                    | 7                 | 7        |
| $ m NH_3$                         | 10                   | 11                | 9        |
| ${ m SF}_6$                       | 7                    | 7                 | 7        |
| $\mathrm{CCl}_4$                  | 8                    | 9                 | 10       |
| $\mathrm{CH}_2(\mathrm{PH}_2)_2$  | 10                   | 9                 | 9        |
| $\mathrm{CH}_2(\mathrm{SH})_2$    | 10                   | 11                | 9        |
| $\mathrm{CH}_2(\mathrm{SiH}_3)_2$ | 8                    | 8                 | 11       |

Table 6.1: Results for initial guess using projected extended Hückel and projection from STO-3G to 3-21G basis set

|                                 | Number of SCF Cycles |                  |                   |
|---------------------------------|----------------------|------------------|-------------------|
| Molecule                        | $N_{\mathrm app}$    | N <sub>acc</sub> | $N_{EH}$          |
| 1G_pep                          | 13                   | 20               | 16                |
| $2\mathrm{G_{-}pep}$            | 17                   | 16               | 14                |
| 3G_pep                          | 17                   | 15               | 16                |
| 4G_pep                          | 16                   | 14               | 15                |
| $5 { m G}_{-} { m pep}$         | 16                   | 17               | 14                |
| N <sub>46</sub>                 | 17                   | 11               | 19                |
| $N_{26}H_{16}$                  | 13                   | 12               | 17                |
| $N_{50}H_{28}$                  | 10                   | 12               | 9                 |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$ | 7                    | 7                | 8                 |
| ${ m Ge_3H_8}$                  | 7                    | 7                | 8                 |
| ${ m GeH}_4$                    | 8                    | 8                | 8                 |
| $Br_2$                          | 7                    | 7                | 8                 |
| $I_2$                           | 8                    | 8                | 17                |
| $\mathrm{Sn}_{2}\mathrm{H}_{6}$ | 8                    | 8                | 20                |
| $\mathrm{Sn_3H_8}$              | 9                    | 7                | $\mathrm{NC}^{a}$ |
| $\mathrm{Sn}_4\mathrm{H}_{10}$  | 7                    | 7                | 20                |
| ${ m SnH_4}$                    | 8                    | 8                | 11                |
| $TS\_CH_3Br_2$                  | 9                    | 9                | 9                 |
| $TS\_CH_3ClBr$                  | 9                    | 12               | 13                |
| GaN <sub>25</sub>               | 18                   | 15               | 20                |

Table 6.1 – continued

 $^{a}$ SCF did not converge

-----

|                                  | N                             | umber of SCF C | ycles           |
|----------------------------------|-------------------------------|----------------|-----------------|
| Molecule                         | $\overline{N_{\mathrm{a}pp}}$ | $N_{ m acc}$   | N <sub>EH</sub> |
| BeH <sub>2</sub>                 | 6                             | 6              | 6               |
| $C_2H_2$                         | 10                            | 10             | 10              |
| $C_2H_4$                         | 9                             | 10             | 9               |
| $\mathrm{CH}_4$                  | 8                             | 8              | 8               |
| $\rm CO_2$                       | 9                             | 9              | 10              |
| FH-NN                            | 14                            | 11             | 15              |
| $FH-OH_2$                        | 11                            | 11             | 12              |
| CH <sub>3</sub> -F               | 9                             | 9              | 11              |
| $\mathrm{CH}_3\mathrm{CONH}_2$   | 18                            | 16             | 16              |
| $H_2O$                           | 10                            | 12             | 11              |
| HF                               | 8                             | 8              | 9               |
| LiH                              | 8                             | 8              | 7               |
| $N_2$                            | 8                             | 8              | 8               |
| $ m NH_3$                        | 10                            | 10             | 11              |
| $\mathrm{SF}_6$                  | 8                             | 8              | 8               |
| $\mathrm{CCl}_4$                 | 8                             | 9              | 9               |
| $\mathrm{CH}_2(\mathrm{PH}_2)_2$ | 11                            | 9              | 9               |
| $\mathrm{CH}_2(\mathrm{SH})_2$   | 11                            | 11             | 9               |

Table 6.2: Results for initial guess using projected extended Hückel and projection fromSTO-3G to 6-31G basis set

|                                 | Number of SCF Cycles          |                  |          |
|---------------------------------|-------------------------------|------------------|----------|
| Molecule                        | $\overline{N_{\mathrm{a}pp}}$ | N <sub>acc</sub> | $N_{EH}$ |
| $CH_2(SiH_3)_2$                 | 8                             | 9                | 10       |
| 1G_pep                          | 14                            | 18               | 20       |
| 2G_pep                          | 19                            | 14               | 18       |
| 3G_pep                          | 21                            | 18               | 18       |
| 4G_pep                          | 20                            | 18               | 16       |
| $5G_{-}pep$                     | 19                            | 17               | 14       |
| $N_{46}$                        | 17                            | 14               | 28       |
| $\mathrm{N_{26}H_{16}}$         | 14                            | 15               | 13       |
| $N_{50}H_{28}$                  | 11                            | 12               | 11       |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$ | 8                             | 8                | 8        |
| ${ m Ge_3H_8}$                  | 9                             | 9                | 10       |
| ${ m GeH}_4$                    | 10                            | 10               | 12       |
| $\mathrm{Br}_2$                 | 7                             | 7                | 7        |
| $I_2$                           | 9                             | 9                | 11       |
| $\mathrm{Sn}_{2}\mathrm{H}_{6}$ | 8                             | 8                | 12       |
| $\mathrm{Sn_3H_8}$              | 9                             | 9                | 22       |
| $\mathrm{Sn}_4\mathrm{H}_{10}$  | 8                             | 8                | 28       |
| ${ m SnH_4}$                    | 7                             | 7                | 10       |
| $TS\_CH_3Br_2$                  | 12                            | 11               | 12       |
| $TSCH_3ClBr$                    | 11                            | 11               | 12       |
| $\mathrm{GaN}_{25}$             | 19                            | 24               | 30       |

Table 6.2 – continued

|                                  | N                    | umber of SCF C | ycles    |
|----------------------------------|----------------------|----------------|----------|
| Molecule                         | $\overline{N_{app}}$ | $N_{ m acc}$   | $N_{EH}$ |
| BeH <sub>2</sub>                 | 5                    | 5              | 6        |
| $C_2H_2$                         | 6                    | 6              | 6        |
| $C_2H_4$                         | 7                    | 7              | 7        |
| $\mathrm{CH}_4$                  | 7                    | 6              | 7        |
| $\mathrm{CO}_2$                  | 8                    | 8              | 9        |
| FH-NN                            | 8                    | 8              | 7        |
| $FH-OH_2$                        | 8                    | 8              | 7        |
| CH <sub>3</sub> -F               | 8                    | 9              | 8        |
| $\mathrm{CH}_3\mathrm{CONH}_2$   | 10                   | 9              | 11       |
| $H_2O$                           | 8                    | 9              | 7        |
| HF                               | 8                    | 8              | 6        |
| LiH                              | 9                    | 7              | 7        |
| $N_2$                            | 8                    | 7              | 7        |
| $ m NH_3$                        | 7                    | 8              | 10       |
| ${ m SF}_6$                      | 7                    | 7              | 8        |
| $\mathrm{CCl}_4$                 | 9                    | 8              | 14       |
| $\mathrm{CH}_2(\mathrm{PH}_2)_2$ | 10                   | 9              | 8        |
| $\mathrm{CH}_2(\mathrm{SH})_2$   | 9                    | 10             | 10       |

Table 6.3: Results for initial guess using projected extended Hückel and projection from STO-3G to STO-3G(d) basis set

|                                  | Number of SCF Cycles          |              |                 |
|----------------------------------|-------------------------------|--------------|-----------------|
| Molecule                         | $\overline{N_{\mathrm{a}pp}}$ | $N_{ m acc}$ | N <sub>EH</sub> |
| $CH_2(SiH_3)_2$                  | 8                             | 8            | 9               |
| 1G_pep                           | 10                            | 9            | 10              |
| 2G_pep                           | 12                            | 9            | 14              |
| 3G_pep                           | 11                            | 9            | 12              |
| 4G_pep                           | 11                            | 9            | 12              |
| 5G_pep                           | 13                            | 9            | 14              |
| $N_{46}$                         | 14                            | 13           | 17              |
| $N_{26}H_{16}$                   | 11                            | 10           | 12              |
| $\mathrm{N}_{50}\mathrm{H}_{28}$ | 10                            | 10           | 9               |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$  | 5                             | 1            | 7               |
| ${ m Ge_3H_8}$                   | 6                             | 1            | 7               |
| ${ m GeH}_4$                     | 5                             | 1            | 7               |
| $Br_2$                           | 5                             | 1            | 6               |
| $I_2$                            | 4                             | 1            | 6               |
| $\mathrm{Sn}_{2}\mathrm{H}_{6}$  | 7                             | 1            | 8               |
| $\mathrm{Sn_3H_8}$               | 7                             | 1            | 9               |
| ${ m Sn_4H_{10}}$                | 7                             | 1            | 13              |
| ${ m SnH_4}$                     | 6                             | 1            | 8               |
| $TS\_CH_3Br_2$                   | 8                             | 10           | 7               |
| $TS\_CH_3ClBr$                   | 9                             | 9            | 8               |
| $\mathrm{GaN}_{25}$              | 16                            | 20           | 20              |

Table 6.3 – continued

|                                   | Nı                   | umber of SCF C | ycles    |
|-----------------------------------|----------------------|----------------|----------|
| Molecule                          | $\overline{N_{app}}$ | $N_{acc}$      | $N_{EH}$ |
| $C_2H_2$                          | 9                    | 9              | 9        |
| $C_2H_4$                          | 10                   | 10             | 9        |
| $\mathrm{CH}_4$                   | 9                    | 9              | 8        |
| $\rm CO_2$                        | 8                    | 9              | 8        |
| FH-NN                             | 12                   | 14             | 11       |
| $FH-OH_2$                         | 11                   | 11             | 12       |
| $CH_3$ -F                         | 10                   | 10             | 9        |
| $\rm CH_3 \rm CONH_2$             | 14                   | 14             | 16       |
| $H_2O$                            | 10                   | 11             | 10       |
| HF                                | 11                   | 11             | 9        |
| LiH                               | 8                    | 7              | 7        |
| $N_2$                             | 8                    | 8              | 9        |
| $ m NH_3$                         | 10                   | 11             | 10       |
| ${ m SF}_6$                       | 8                    | 8              | 9        |
| $\mathrm{CCl}_4$                  | 9                    | 8              | 12       |
| $\mathrm{CH}_2(\mathrm{PH}_2)_2$  | 9                    | 9              | 9        |
| $\rm CH_2(SH)_2$                  | 11                   | 10             | 9        |
| $\mathrm{CH}_2(\mathrm{SiH}_3)_2$ | 8                    | 9              | 10       |

Table 6.4: Results for initial guess using projected extended Hückel and projection from STO-3G to 6-31G(d) basis set

|                                  | Number of SCF Cycles          |                  |                   |
|----------------------------------|-------------------------------|------------------|-------------------|
| Molecule                         | $\overline{N_{\mathrm{a}pp}}$ | N <sub>acc</sub> | $N_{EH}$          |
| 1G_pep                           | 19                            | 16               | 12                |
| 2G_pep                           | 15                            | 15               | 15                |
| 3G_pep                           | 16                            | 15               | 16                |
| 4G_pep                           | 15                            | 14               | 15                |
| 5G_pep                           | 18                            | 15               | 15                |
| $N_{46}$                         | 17                            | 17               | $\mathrm{NC}^{a}$ |
| $\mathrm{N_{26}H_{16}}$          | 15                            | 13               | 13                |
| $\mathrm{N}_{50}\mathrm{H}_{28}$ | 11                            | 11               | 12                |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$  | 14                            | 14               | 14                |
| ${ m Ge_3H_8}$                   | 12                            | 12               | 12                |
| ${ m GeH}_4$                     | 14                            | 14               | 14                |
| $\mathrm{Br}_2$                  | 10                            | 10               | 11                |
| $I_2$                            | 9                             | 9                | 15                |
| $\mathrm{Sn}_{2}\mathrm{H}_{6}$  | 8                             | 8                | 23                |
| $\mathrm{Sn_3H_8}$               | 8                             | 8                | $\mathrm{NC}^{a}$ |
| ${ m Sn_4H_{10}}$                | 8                             | 8                | $\mathrm{NC}^{a}$ |
| ${ m SnH_4}$                     | 8                             | 8                | 10                |
| $TS_CH_3Br_2$                    | 12                            | 15               | 14                |
| $TS_CH_3ClBr$                    | 12                            | 12               | 12                |
| $\mathrm{GaN}_{25}$              | 20                            | 25               | $\mathrm{NC}^{a}$ |

Table 6.4 – continued

<sup>a</sup>SCF did not converge

|                                  | N                            | umber of SCF Cy | ycles    |
|----------------------------------|------------------------------|-----------------|----------|
| Molecule                         | $\overline{N_{\mathrm app}}$ | $N_{ m acc}$    | $N_{EH}$ |
| BH <sub>3</sub>                  | 8                            | 8               | 8        |
| $\mathrm{BeH}_2$                 | 6                            | 6               | 6        |
| $C_2H_2$                         | 9                            | 9               | 9        |
| $C_2H_4$                         | 9                            | 10              | 9        |
| $CH_4$                           | 7                            | 7               | 8        |
| $\mathrm{CO}_2$                  | 9                            | 9               | 8        |
| FH-NN                            | 12                           | 11              | 12       |
| $FH-OH_2$                        | 8                            | 8               | 9        |
| CH <sub>3</sub> -F               | 9                            | 9               | 9        |
| $\rm CH_3 \rm CONH_2$            | 14                           | 10              | 17       |
| $H_2O$                           | 8                            | 8               | 9        |
| HF                               | 8                            | 8               | 8        |
| LiH                              | 7                            | 6               | 7        |
| $N_2$                            | 8                            | 8               | 8        |
| $ m NH_3$                        | 11                           | 10              | 10       |
| $SF_6$                           | 8                            | 8               | 13       |
| $\mathrm{CCl}_4$                 | 12                           | 8               | 13       |
| $\mathrm{CH}_2(\mathrm{PH}_2)_2$ | 9                            | 9               | 9        |

Table 6.5: Results for initial guess using projected extended Hückel and projection from STO-3G to 6-311G(d) basis set

|                                   | Number of SCF Cycles          |                   | 3        |
|-----------------------------------|-------------------------------|-------------------|----------|
| Molecule                          | $\overline{N_{\mathrm{a}pp}}$ | $N_{\mathrm acc}$ | $N_{EH}$ |
| $\rm CH_2(SH)_2$                  | 10                            | 12                | 9        |
| $\mathrm{CH}_2(\mathrm{SiH}_3)_2$ | 9                             | 9                 | 9        |
| 1G_pep                            | 12                            | 11                | 16       |
| $2G_{-}pep$                       | 13                            | 11                | 16       |
| 3G_pep                            | 12                            | 10                | 15       |
| 4G_pep                            | 12                            | 9                 | 15       |
| 5G_pep                            | 15                            | 11                | 16       |
| $N_{46}$                          | 17                            | 16                | 18       |
| $N_{26}H_{16}$                    | 16                            | 15                | 12       |
| $N_{50}H_{28}$                    | $13^a$                        | 19                | 14       |

Table 6.5 – continued

 $^{a}\mathrm{A}$  cutoff of 12 is used for two-electron integrals

\_\_\_\_\_

# Chapter 7

# Algorithms Based on Molecular Fragmentation

# 7.1 Introduction

Quantum mechanical calculations for macromolecules are very demanding both in terms of CPU time and memory requirements. For example, performing full Hartree-Fock calculations for proteins consisting of thousands of atoms is out of the question. However, there is more than ever a great need to perform accurate calculations on large molecules including DNA, polymers, and proteins which motivated quantum chemists to develop more efficient algorithms. The most time consuming calculations in the Hartree-Fock (HF) method are: the diagonalization of the Fock matrix to calculate the coefficient matrix and the calculation of the two-electron integrals. The diagonalization of the Fock matrix scales as  $N^3$  where N is the number of basis functions while the two electron integrals scale formally as  $N^4$ . With the application of a variety of algorithms designed to improve the efficiency of Hartree-Fock calculations, HF can scale as  $(N^2 log N)$  which is still computationally demanding and prohibits the study of macromolecules. For almost fifteen years, there has been a great deal of research with the goal of achieving linear scaling [27] [28] [29] [30] [31] which means the computational cost increases linearly with the size of the system. The rest of this section briefly reviews some of the algorithms for macromolecules and gives an overview of the divide and conquer, D&C, algorithm. The rest of the chapter presents our new version of the D&C algorithm.

#### 7.1.1 Efficient Algorithms Applied To the Hartree-Fock Method

One of the popular methods used to study the chemical properties of biological molecules is the QM/MM approach [32] [33] where the system is divided into two parts. One part, e.g. the active site of an enzyme, is treated quantum mechanically while the rest of the molecule is treated by molecular mechanics. The total Hamiltonian of the system is then written as:

$$\hat{H} = \hat{H}_{QM} + \hat{H}_{MM} + \hat{H}_{QM/MM}$$
(7.1)

 $\hat{H}_{QM}$  and  $\hat{H}_{MM}$  are the Hamiltonian operators of the quantum and molecular mechanics regions respectively.  $\hat{H}_{QM/MM}$  represents the interaction energy between the two regions. While calculating the energy of the first two terms of equation (7.1) is straight forward, calculating the interaction energy between the two regions is problematic. There are two approaches to deal with the interface problem, the link atom method and the local self-consistent field method LSCF [33]. In the link atom approach, hydrogen or halogen atoms are added to the covalent bonds cut in the process of dividing the molecule into two subsystems. In the LSCF approach, calculations are performed on a smaller molecule containing bonds similar to those that were cut in the biological molecules and then the corresponding molecular orbitals are transferred to the larger molecule where they are kept frozen during the SCF. Karplus et al compared the two approaches and concluded that both are of similar accuracy.

In the ONIOM approach [34], (Our own N-layer Integrated molecular Orbital+molecular Mechanics) the molecule, or the molecule and its surroundings, is divided into three regions. The active site is described quantum mechanically and the second layer surrounding the active site is described using a semi-empirical method. The rest of the system is treated with molecular mechanics. The basic difference between different implementations of the ONIOM algorithm is how the interaction between different parts is taken into account.

Other algorithms that aim at reaching linear scaling include the local self consistent field method, which is different than the one mentioned above, molecular fractionation with conjugate caps (MFCC), adjustable density matrix assembler (ADMA), density matrix minimization (DMM), and divide and conquer (D&C). The common aspect of these algorithms is that they bypass the expensive diagonalization of the Fock matrix.

In the local self consistent field method [35], Stewart replaced the Fock matrix diagonalization by the annihilation of the Fock matrix elements that connect the occupied and unoccupied localized molecular orbitals, LMOs. Since LMOs are concentrated over an atom or two, the Fock matrix elements between LMOs far apart on a large molecule naturally vanish and only Fock matrix elements between LMOs on neighboring atoms are annihilated.

In the density matrix assembler ADMA, see [30] [36] and references therein, approach the macromolecule is divided into fragments and the density matrix of each fragment is obtained by performing quantum chemical calculations on a smaller molecule which contains this fragment. The macromolecule is called the "target" molecule and the smaller molecules are called the "parent" molecules. The full density matrix of the target molecule is constructed by assembling the density matrices of the fragments. Properties like dipole moment, energy, and partial charges can be calculated from the full density matrix.

Da. W. Zhang and J. Z. H. Zhang developed the molecular fractionation with conjugate caps (MFCC) method [31] [37]. The MFCC is designed specifically to describe the interaction between a protein and a smaller molecule. The protein is divided into its individual amino acids. Caps are added to both sides of each amino acid. The total energy is then the sum of the interaction energies between the smaller molecule and the capped amino acids. Since the computational cost of the interaction energies is almost constant, MFCC scales linearly. Another advantage of the MFCC is the ease of parallelization.

DMM was originally proposed by Li, Nunes, and Vanderbilt [38]. It was implemented in *ab inito* calculations by different groups [39, 40, 41]. DMM replaces the diagonalization of the Fock matrix on each iteration of the SCF by minimizing the density matrix P under the following conditions:

- 2- P is idempotent i.e. PSP = P
- 3- At the end of the SCF P and F commute, FP = PF

The first two conditions satisfy the N-representability conditions. The energy functional to be minimized has the following form:

$$\Omega(P) = Tr(\tilde{P}F + \mu(Tr(P) - N))$$
(7.2)

$$\tilde{P} = 3P - 2P^3 \tag{7.3}$$

 $\tilde{P}$  is the purified density matrix using McWeeny purification transformation. This transformation converts a nearly idempotent matrix with eigenvalues in the range -0.5 to 1.5 to an idempotent matrix with eigenvalues either zero or one. The first term in the energy functional, equation (7.2), is related to the electronic energy.  $\mu$  is the Lagrange multiplier which was set to the chemical potential in the original work of Li, Nunes, and Vanderbilt.

### 7.1.2 Divide and Conquer

Divide and conquer [27, 42, 43, 44, 45, 28, 46, 47, 48, 49, 50, 51] was first introduced by Yang in 1991 [27] where he divided a large molecular system into subsystems and calculated the total electron density in the density functional theory framework as a sum of the electron densities of the subsystems. Later Yang reformulated his scheme to divide the electron density matrix instead of the density [43]. Yang pointed out that his newer version of the divide and conquer could be implemented in Hartree-Fock theory as well. In 1996 Merz and Dixon developed the divide and conquer algorithm in the context of molecular orbital theory [28, 47]. The following is a brief overview of the Merz and Dixon implementation. Roothaan's equation is given by:

$$FC = SC\epsilon \tag{7.4}$$

In the divide and conquer algorithm the molecule is divided into overlapping fragments and Roothan's equation for a fragment  $\alpha$  can be written as:

$$F^{\alpha}C^{\alpha} = S^{\alpha}C^{\alpha}\epsilon^{\alpha} \tag{7.5}$$

where all matrices in equation (7.5) are of dimension  $N_{\alpha} \times N_{\alpha}$  where  $N_{\alpha}$  is the number of basis functions in the subsystem  $\alpha$ . The overlap matrix is given by:

$$S^{\alpha}_{\mu\nu} = \int \phi^*_{\mu}(\mathbf{r})\phi_{\nu}(\mathbf{r})d\mathbf{r} \quad \text{where}\\ \mu,\nu \in \alpha$$
(7.6)

and the Fock matrix given by  $F^{\alpha}$ :

$$F^{\alpha}_{\mu\nu} = H^{\alpha}_{\mu\nu} + \sum_{\lambda\sigma} P_{\lambda\sigma} \left[ (\mu\nu|\sigma\lambda) - \frac{1}{2} (\mu\lambda|\sigma\nu) \right]$$
(7.7)

where, in the equation above, the subscripts  $\mu$  and  $\nu$  span the basis functions in the fragment  $\alpha$ , while  $\lambda$  and  $\sigma$ , in general, span the whole molecular system. The general definition of the density matrix for a closed shell Hartree-Fock approximation is:

$$P_{\mu\nu} = 2\sum_{i} C^*_{\mu i} C_{\nu i}$$
(7.8)

where the summation runs over the occupied molecular orbitals. This definition of the density matrix has to be modified in the case of dealing with subsystems, as it is not known exactly how many electrons occupy a molecular orbital. Yang suggested that the density matrix of a subsystem  $\alpha$  to be given by:

$$P^{\alpha}_{\mu\nu} = \sum_{i} n^{\alpha}_{i} (C^{\alpha}_{\mu i})^{*} C^{\alpha}_{\nu i}$$
(7.9)

where  $n_i^{\alpha}$  is the occupation number of molecular orbital *i* and is given by:

$$n_i^{\alpha} = \frac{2}{1 + \exp\left[\left(\epsilon_i^{\alpha} - \epsilon_F\right)/kT\right]}$$
(7.10)

 $\epsilon_F$  is a common Fermi energy of the whole system, k is the Boltzmann constant, and T is the absolute temperature. Roothan's equation is solved self consistently for each fragment and at the end of the SCF the global density matrix P is calculated from the density matrices  $\{P^{\alpha}\}$  by the formula:

$$P_{\mu\nu} = \sum_{\alpha=1}^{N_{sub}} D^{\alpha}_{\mu\nu} P^{\alpha}_{\mu\nu}$$
(7.11)

 $D^{\alpha}_{\mu\nu}$  are weight functions given by:

$$D^{\alpha}_{\mu\nu} = \begin{cases} 0 & \text{if } \chi_{\mu} \text{ or } \chi_{\nu} = \text{buffer functions} \\\\ 1/n_{\mu\nu} & \text{otherwise} \end{cases}$$

where the buffer functions belong to buffer atoms defined at both ends of each fragment to reduce the truncation errors.  $n_{\mu\nu}$  is the number of fragments having the basis functions  $\mu$  and  $\nu$  in common.

## 7.2 Dividing the Molecule into Fragments

There are different strategies to divide large molecules. One approach is to divide the molecule into two fragments, where one fragment includes the active site and the other fragment is the rest of the molecule. Another strategy is to divide the molecule into its building units, e.g., dividing a peptide into its individual amino acids. Our approach is to divide a molecule into two fragments A and B based on Mulliken population analysis. The number of electrons shared between two atoms i and j,  $N_{ij}$ , can be calculated using the formula:

$$N_{ij} = \sum_{\mu \in i, \nu \in j, \mu \neq \nu} P_{\mu\nu} S_{\mu\nu}$$

$$(7.12)$$

where P is the density matrix and S is the overlap matrix. By using equation (7.12), we can construct a square matrix of dimensions equal to the number of atoms and that represents the number of shared electrons between each pair of atoms. The minimum of this matrix corresponds to the pair of atoms, say k and l, which share the least number of electrons and we call seeds. Each seed will belong to a different fragment. The assignment of the rest of the atoms either to fragment A or to fragment B depends on how many electrons are shared between the atom in question and the atoms k and *l*. For example, atom *m* in Figure 7.1 belongs to fragment *A* if  $N_{km} > N_{lm}$  and will belong to fragment *B* if  $N_{lm} > N_{km}$ . This algorithm was implemented in MUNgauss and was successful in dividing a molecule into two fragments. For example C<sub>2</sub>H<sub>6</sub> was divided into two methyl groups.

# 7.3 Partitioning The Fock Matrix

Our goal is to develop a new version of the divide and conquer approach where the global Fock matrix is constructed and diagonalized, but fewer two-electron integrals are calculated. If we divide the molecular system into two fragments A and B, the Fock matrix can be written as:

$$F = F_A + F_B + F_{AB} \tag{7.13}$$

where  $F_A$  and  $F_B$  are the Fock matrices of the fragments A and B and are calculated over basis functions that belong to A or B respectively.  $F_{AB}$  is the Fock matrix calculated over basis functions from A and B. The matrices  $F_A$ ,  $F_B$  and  $F_{AB}$  are of dimensions  $N \times N$  where N is the number of basis functions for the whole molecule.  $F_A$  is calculated using the formula:

$$(F_{\mu\nu})_A = (H_{\mu\nu})_A + \sum_{\lambda\sigma} P_{\lambda\sigma} \left[ (\mu\nu|\sigma\lambda) - \frac{1}{2}(\mu\lambda|\sigma\nu) \right]$$
(7.14)

 $F_B$  is calculated by a similar formula while  $F_{AB}$  is approximated. The exact full calculations of the molecular system are performed using a smaller basis set and the converged Fock matrix is projected to the larger basis set, where the part  $F_{AB}$  is

extracted and added to  $F_A$  and  $F_B$  and the SCF continues the normal way. The quality of this D&C algorithm depends on the quality of the division of the molecule into fragments and the quality of the projection from the smaller basis set. The projection was studied in detail in Chapter 4.

### 7.4 Divide and Conquer II

Another approach is to divide the molecule into two fragments A and B where A presents the part of the molecule of chemical interest. As in the previous approach an SCF is performed with a smaller basis set and the Fock matrix on the larger basis set is given by:

$$F = F_A + F_{B,AB}$$

 $F_A$  is calculated exactly using the larger basis set while  $F_{B,AB}$  is taken from the projected Fock matrix.  $F_{B,AB}$  includes the *B* part and the interaction between *A* and *B* and is kept frozen during the SCF. This algorithm has the advantage that only a small fraction of the calculations on the higher level basis set needs to be done. In addition, the interaction between *A* and *B* is taken into account through projection which eliminates the boundary problems between the two fragments. We call our new version of the divide and conquer algorithm NDC. NDC was applied to cytidine where it was divided into two fragments in two ways, a and b, Figure 7.2 and Figure 7.3. The straight line in both figures defines the point of division. In Figure 7.2 the cytosine and the two water molecules were treated exactly while the sugar and the interaction between the two fragments were approximated by the projected Fock matrix from a

smaller basis set. The only difference in the second fragmentation in Figure 7.3 is that extra carbon and hydrogen atoms were added to the exact part as shown in the figure. In both figures, the approximated part of the Fock matrix was kept frozen during the SCF. For the projection from STO-3G to 3-21G, 6-31G or 6-31G(d) the SCF did not converge. However, it converged with projection from 3-21G to 6-31G and from 6-31G to 6-31G(d). Table 7.1 shows the energy barrier given by HF/3-21G, HF/6-31G and HF/6-31G(d) in addition to the NDC results with both ways of fragmentation. NDC(3-21G)/6-31G refers to NDC energy with basis set 6-31G, where the frozen part came from 3-21G results. NDC(6-31G)/6-31G(d) denotes NDC with basis set 6-31G(d) where the projection was performed from 6-31G.

To further test this algorithm, the protonation energy of the molecules 2G\_pep, 3G\_pep, 4G\_pep and 5G\_pep was calculated. Each peptide is divided into two fragments where fragments of different size were examined. Figure 7.4 shows the division of 2G\_pep into two fragments, Figure 7.5 shows the division of 3G\_pep into two fragments in two different ways a and b, Figure 7.6 shows the division of 4G\_pep into two fragments in three different ways a, b and c, while Figure 7.7 shows the division of 5G\_pep into two fragments in four different ways a, b, c and d. In each figure, the point from the straight line to the right end of the peptide is denoted exact (fragment A) while to the left end of the peptide is denoted frozen (fragment B). Table 7.2 gives the energies of the four peptides (without protonation) using the STO-3G, 6-31G and 6-31G(d) basis sets where the frozen part of the Fock matrix comes from calculations performed with STO-3G. The frozen part includes the interaction between the two fragments as well. In Table 7.2, the notations NDC(STO-3G)/6-31G and NDC(STO-3G)/6-31G(d) are used to denote NDC energies calculated with 6-31G or 6-31G(d) basis sets while the frozen part was calculated with STO-3G basis sets. Table 7.2 shows the NDC energies for the 2G\_pep, 3G\_pep, 4G\_pep and 5G\_pep with the defined divisions. In each case, the NDC energy is lower than the STO-3G energy but higher than the corresponding 6-31G or 6-31G(d) energy.

Table 7.3 shows the protonation energies for the four peptides with different fragmentations. Also, the results of exact STO-3G and 6-31G were included for comparison. The fourth column gives the protonation energy while the fifth column gives  $|\Delta E|$ which is either the difference in the protonation energies between STO-3G and 6-31G or NDC and 6-31G.  $|\Delta E|$  shows that NDC is more accurate than STO-3G in calculating the protonation energy for any of the peptides with any fragmentation. However, one disadvantage of NDC is that its accuracy does not improve systematically as the size of the frozen part decreases. For example  $|\Delta E|$  for the 4G\_pep(c), Figure 7.6(c), is 70 kJmol<sup>-1</sup> and increases to 145 kJmol<sup>-1</sup> for 4G\_pep(b), Figure 7.6(b), and then decreases to 82 kJmol<sup>-1</sup> for 4G\_pep(a), Figure 7.6(a). An interesting feature of the NDC is that when the division involves the greater approximation, the error seems, in general, to decrease. The errors for 3G\_pep(b), 4G\_pep(c) and 5G\_pep(d), where the frozen part is the largest, are 57 kJmol<sup>-1</sup>, 70 kJmol<sup>-1</sup> and 78 kJmol<sup>-1</sup> respectively which is much less than the corresponding STO-3G values.

The same calculations with the same set of molecules were repeated for the 6-31G(d) basis set, see Table 7.4 where NDC(STO-3G)/6-31G(d) refers to the NDC energy for the 6-31G(d) basis set and the frozen part was projected from STO-3G. As

with the 6-31G basis set, the error in the protonation energy using NDC is smaller than that of STO-3G. It is also clear from Table 7.4 that the largest approximations do not give the largest error, the same characteristic which was noticed previously from Table 7.3. Since the error in projecting from STO-3G to 6-31G(d) is higher than the error in projecting from STO-3G to 6-31G, the error in the protonation energy using 6-31G(d) is in general higher than that of 6-31G which is obvious from Table 7.3 and Table 7.4.

|                     |                | •      |
|---------------------|----------------|--------|
| Method/Basis        | fragmentation  | Energy |
| HF/3-21G            |                | 136    |
| HF/6-31G            |                | 129    |
| NDC(3-21G)/6-31G    | see Figure 7.2 | 155    |
| NDC(3-21G)/6-31G    | see Figure 7.3 | 132    |
| HF/6-31G(d)         |                | 160    |
| NDC(6-31G)/6-31G(d) | see Figure 7.2 | 251    |
| NDC(6-31G)/6-31G(d) | see Figure 7.3 | 233    |

Table 7.1: HF and NDC barriers  $(kJmol^{-1})$  for the cytidine

| Peptide     | Method/Basis                                    | fragmentation | Energy       |
|-------------|-------------------------------------------------|---------------|--------------|
| $2G_{-}pep$ |                                                 |               |              |
|             | HF/STO-3G                                       |               | -483.231742  |
|             | $\mathrm{HF}/6-31\mathrm{G}$                    |               | -489.405341  |
|             | NDC(STO-3G)/6-31G                               |               | -488.340146  |
|             | $\mathrm{HF}/6\text{-}31\mathrm{G}(\mathrm{d})$ |               | -489.642483  |
|             | NDC(STO-3G)/6-31G(d)                            |               | -488.388743  |
| $3G_{-}pep$ |                                                 |               |              |
|             | HF/STO-3G                                       |               | -687.355305  |
|             | $\mathrm{HF}/6-31\mathrm{G}$                    |               | -696.135636  |
|             | NDC(STO-3G)/6-31G                               | a             | -695.032790  |
|             | NDC(STO-3G)/6-31G                               | b             | -694.221828  |
|             | $\mathrm{HF}/6-31\mathrm{G}(\mathrm{d})$        |               | -696.450522  |
|             | NDC(STO-3G)/6-31G(d)                            | a             | -695.109842  |
|             | NDC(STO-3G)/6-31G(d)                            | b             | -694.148923  |
| 4G_pep      |                                                 |               |              |
|             | HF/STO-3G                                       |               | -891.483674  |
|             | HF/6-31G                                        |               | -902.858087  |
|             | NDC(STO-3G)/6-31G                               | a             | -901.733220  |
|             | NDC(STO-3G)/6-31G                               | b             | -900.889293  |
|             | NDC(STO-3G)/6-31G                               | с             | -900.155443  |
|             | $\mathrm{HF}/6-31\mathrm{G}(\mathrm{d})$        |               | -903.266395  |
|             | NDC(STO-3G)/6-31G(d)                            | a             | -901.898629  |
|             | NDC(STO-3G)/6-31G(d)                            | b             | -900.899862  |
|             | NDC(STO-3G)/6-31G(d)                            | с             | -900.049176  |
| $5G_{-}pep$ |                                                 |               |              |
|             | HF/STO-3G                                       |               | -1095.612263 |
|             | HF/6-31G                                        |               | -1109.580967 |
|             | NDC(STO-3G)/6-31G                               | a             | -1108.441270 |
|             | NDC(STO-3G)/6-31G                               | b             | -1107.580703 |
|             | NDC(STO-3G)/6-31G                               | с             | -1106.813659 |
|             | NDC(STO-3G)/6-31G                               | d             | -1106.098860 |
|             | HF/6-31G(d)                                     |               | -1110.082602 |
|             | NDC(STO-3G)/6-31G(d)                            | a             | -1108.697252 |
|             | NDC(STO-3G)/6-31G(d)                            | b             | -1107.679023 |
|             | NDC(STO-3G)/6-31G(d)                            | с             | -1106.791368 |
|             | NDC(STO-3G)/6-31G(d)                            | d             | -1105.964010 |

Table 7.2: HF and NDC energies (Hartrees) for the four peptides

| Peptide | Method/Basis                        | Fragmentation | Protonation Energy | $ \Delta E $ |
|---------|-------------------------------------|---------------|--------------------|--------------|
| 2G_pep  |                                     |               |                    |              |
|         | HF/6-31G                            |               | 998                |              |
|         | HF/ STO-3G                          |               | 1153               | 155          |
|         | NDC(STO-3G)/6-31G                   |               | 1088               | 89           |
| 3G_pep  |                                     |               |                    |              |
|         | HF/6-31G                            |               | 961                |              |
|         | HF/STO-3G                           |               | 1141               | 180          |
|         | NDC(STO-3G)/6-31G                   | a             | 860                | 101          |
|         | NDC(STO-3G)/(6-31G)                 | b             | 903                | 57           |
| 4G_pep  |                                     |               |                    |              |
|         | $\mathrm{HF}/6-31\mathrm{G}$        |               | 967                |              |
|         | HF/STO-3G                           |               | 1146               | 179          |
|         | NDC(STO-3G)/6-31G                   | a             | 885                | 82           |
|         | NDC(STO-3G)/6-31G                   | b             | 822                | 146          |
|         | NDC(STO-3G)/6-31G                   | с             | 897                | 71           |
| 5G_pep  |                                     |               |                    |              |
|         | $\mathrm{HF}/6\text{-}31\mathrm{G}$ |               | 971                |              |
|         | HF/STO-3G                           |               | 1149               | 178          |
|         | NDC(STO-3G)/6-31G                   | a             | 911                | 60           |
|         | NDC(STO-3G)/6-31G                   | b             | 852                | 119          |
|         | NDC(STO-3G)/6-31G                   | С             | 805                | 166          |
|         | NDC(STO-3G)/6-31G                   | d             | 893                | 78           |

Table 7.3: Protonation energies  $(kJmol^{-1})$  using NDC and 6-31G basis

| Peptide     | Method/Basis                             | Fragmentation | Protonation Energy | $ \Delta E $ |
|-------------|------------------------------------------|---------------|--------------------|--------------|
| 2G_pep      |                                          |               |                    |              |
|             | HF/6-31G(d)                              |               | 961                |              |
|             | HF/STO-3G                                |               | 1153               | 192          |
|             | NDC(STO-3G)/6-31G(d)                     |               | 922                | 39           |
| 3G_pep      |                                          |               |                    |              |
|             | $\mathrm{HF}/\mathrm{6-31G}(\mathrm{d})$ |               | 966                |              |
|             | HF/STO-3G                                |               | 1141               | 175          |
|             | NDC(STO-3G)/6-31G(d)                     | a             | 817                | 149          |
|             | NDC(STO-3G)/6-31G(d)                     | b             | 882                | 83           |
| 4G_pep      |                                          |               |                    |              |
|             | $\mathrm{HF}/\mathrm{6-31G}(\mathrm{d})$ |               | 973                |              |
|             | HF/STO-3G                                |               | 1146               | 173          |
|             | NDC(STO-3G)/6-31G(d)                     | a             | 859                | 114          |
|             | NDC(STO-3G)/6-31G(d)                     | b             | 782                | 191          |
|             | NDC(STO-3G)/6-31G(d)                     | С             | 874                | 98           |
| $5G_{-}pep$ |                                          |               |                    |              |
|             | $\mathrm{HF}/\mathrm{6-31G}(\mathrm{d})$ |               | 977                |              |
|             | HF/STO-3G                                |               | 1149               | 172          |
|             | NDC(STO-3G)/6-31G(d)                     | a             | 896                | 81           |
|             | NDC(STO-3G)/6-31G(d)                     | b             | 825                | 151          |
|             | NDC(STO-3G)/6-31G(d)                     | с             | 761                | 216          |
|             | NDC(STO-3G)/6-31G(d)                     | d             | 868                | 109          |

Table 7.4: Protonation energies  $(kJmol^{-1})$  using NDC and 6-31G(d) basis



.

Figure 7.1: A molecule is divided into two fragments A and B



Figure 7.2: Cytidine divided into two fragments as indicated by the line, A=exact, B=frozen, fragmentation a


Figure 7.3: Cytidine divided into two fragments as indicated by the line, A=exact, B=frozen, fragmentation b



Figure 7.4: 2G\_pep divided into two fragments



(a)



Figure 7.5: 3G\_pep divided into two fragments in two different ways, a and b, in the position of the straight line



(a)



(b)



Figure 7.6: 4G\_pep divided into two fragments in three different ways, a, b and c, in the position of the straight line





(b)





(d)

Figure 7.7: 5G\_pep divided into two fragments in four different ways, a, b, c and d, in the position of the straight line

## Chapter 8

## Conclusions

The performance of the molecular numerical integration was studied. We recommend using the standard grid SG-1 or our new implementation of the Treutler and Alhrichs grid TA(new) for density functional theory. More efficient grids, although less accurate, are the SG0 and 25(194) grids. Both grids offer a reasonable compromise between efficiency and accuracy.

The projection from a smaller basis set to a larger basis set was studied in detail and used to develop a divide and conquer algorithm. Our divide and conquer algorithm was used to calculate the protonation energy for a series of peptides and reasonable results were obtained. Calculations of most of the zero two-electron integrals were avoided by introducing a more strict criterion to MUNgauss. An efficient algorithm to obtain the initial guess for Hartree-Fock calculations was developed.

Future work includes:

• developing a new algorithm to optimize the parameter R

- parallelizing our numerical integration code
- a more efficient way of calculating the nuclear weight functions used in numerical integration, where only the nearest neighbours are considered
- applying our new divide and conquer algorithm to larger molecules

## Appendix A

## Numerical Integration Results

| Molecule                   | 20(110)                   | 20(194)  | 20(302)                |
|----------------------------|---------------------------|----------|------------------------|
| BF <sub>3</sub>            | -2.2E-04                  | -1.6E-05 | 5.2E-05                |
| BH <sub>3</sub>            | 1.3E-04                   | 1.7E-04  | 1.6E-04                |
| $BeH_2$                    | 2.2E-05                   | 8.8E-06  | 1.1 E-05               |
| $C_2H_2$                   | 2.4E-04                   | 2.2E-04  | 2.2E-04                |
| $C_2H_4$                   | -5.0E-04                  | 1.6E-04  | 2.3E-04                |
| $\mathrm{CF}_4$            | 3.6E-04                   | 1.8E-05  | 5.8E-06                |
| CH <sub>2</sub> CHCOOH     | -5.5E-04                  | 3.2E-04  | 3.9E-04                |
| $CH_2FF$                   | 4.6E-04                   | 3.4E-05  | 8.3 E-05               |
| $\rm CH_2\rm CH_3\rm CH_3$ | -3.5E-05                  | 1.8E-05  | 1.8E-04                |
| $CH_3F$                    | 2.6E-04                   | 1.2E-04  | 1.3E-04                |
| $\rm CH_3 NH_2$            | 1.0E-04                   | 1.4E-04  | 1.8E-04                |
| CH <sub>3</sub> OH         | -2.4E-04                  | 1.5E-04  | 1.6E-04                |
| $\rm CH_3 \rm CONH_2$      | -1.5E-04                  | 2.1E-04  | 2.3E-04                |
| $CH_4$                     | -2.4E-04                  | 8.6E-05  | 1.1 E-04               |
| CO                         | $5.9\mathrm{E}\text{-}05$ | 1.3E-04  | 1.3E-04                |
| $\rm CO_2$                 | 4.7 E-05                  | 2.1E-04  | 2.0E-04                |
| EtOTs                      | 1.0E-03                   | 4.2E-04  | 4.3E-04                |
| $\mathbf{F}_2$             | 4.7E-04                   | 1.2E-04  | 1.5 E-04               |
| $H_2$                      | 3.8 E-05                  | 3.8E-05  | 3.8 E-05               |
| $H_2CO$                    | -2.2E-04                  | 1.8E-04  | 1.8E-04                |
| $H_2O$                     | 5.1 E- 05                 | 8.3E-05  | $9.6\mathrm{E}$ - $05$ |
| $H_2O_2$                   | 2.6E-04                   | 1.7E-04  | 1.5 E-04               |
| HCOOH                      | -4.1E-05                  | 2.0E-04  | 2.1E-04                |
| $\mathrm{Li}_2$            | 4.1E-04                   | 4.2E-04  | 4.2E-04                |
| LiF                        | 1.5 E-04                  | 1.5E-04  | 1.5 E-04               |
| $\rm NH_3$                 | -2.5E-04                  | 5.9E-05  | $7.5 	ext{E-} 05$      |
| benzaldehyde               | -2.1E-03                  | 8.7E-04  | 6.8E-04                |
| cytosine                   | 1.0E-03                   | 4.2E-04  | 5.1 E-04               |
| formamidine                | 6.7E-04                   | 3.5E-04  | 2.7E-04                |
| methoxide                  | -1.2E-04                  | 1.3E-04  | 1.5E-04                |
| naphthalene                | -2.7E-03                  | 1.6E-03  | 9.4E-04                |
| uracil                     | -5.0E-04                  | 5.6 E-04 | 6.0E-04                |
| MAE                        | 4.3E-04                   | 2.5E-04  | 2.4E-04                |

Table A.1: MAE of number of electrons using MultiExp grid with 20 radial points for molecules containing  $1^{st}$  row atoms

| for molecules comanin            |          |           |          |
|----------------------------------|----------|-----------|----------|
| Molecule                         | 20(110)  | 20(194)   | 20(302)  |
| CCl <sub>4</sub>                 | 9.6E-04  | 6.6E-04   | 6.8E-04  |
| $CH_2ClCl$                       | 6.8E-06  | 3.9E-05   | 6.5E-05  |
| $CH_2PH_2PH_2$                   | -8.0E-04 | -1.8E-04  | -1.3E-04 |
| $CH_2SHSH$                       | -6.1E-04 | -3.3E-04  | -2.2E-04 |
| $\rm CH_2SiH_3SiH_3$             | -6.8E-05 | 2.1E-05   | 1.4E-04  |
| $\mathrm{CH}_{3}\mathrm{PH}_{2}$ | -2.6E-04 | -3.5E-05  | -4.8E-05 |
| $CH_3SH$                         | 8.3E-05  | -7.0E-05  | -1.0E-04 |
| $\rm CH_3SiH_3$                  | -1.3E-04 | 6.4 E- 05 | 7.0E-05  |
| CH <sub>3</sub> Cl               | -1.0E-04 | -1.5E-05  | -9.7E-06 |
| CS                               | 1.9E-04  | 1.9E-04   | 1.9E-04  |
| $\mathrm{Cl}_2$                  | -2.1E-04 | 5.2E-05   | 2.4E-05  |
| ClF                              | 9.2E-04  | 1.1E-03   | 1.0E-03  |
| HOCI                             | -3.2E-05 | -1.6E-04  | -1.3E-04 |
| Mg                               | 3.6E-03  | 3.6E-03   | 3.6E-03  |
| NaCl                             | -3.8E-03 | -3.9E-03  | -3.9E-03 |
| $P_2$                            | 2.0E-04  | 2.2E-04   | 2.0E-04  |
| $\mathrm{PF}_5$                  | -3.8E-04 | -5.2E-04  | -5.6E-04 |
| РН                               | -3.6E-05 | -8.7E-05  | -8.4E-05 |
| $PH_3$                           | -7.8E-06 | -1.1E-04  | -1.2E-04 |
| ${ m SF}_6$                      | 4.0E-04  | -6.9E-04  | -7.9E-04 |
| SO                               | 3.7E-04  | 2.4 E-04  | 2.4E-04  |
| $\mathrm{SO}_2$                  | 1.1E-03  | 9.3E-04   | 9.3E-04  |
| SiO                              | 8.2E-04  | 6.5 E-04  | 6.5E-04  |
| $pNO_2BzCl$                      | 5.5 E-03 | -1.1E-04  | 5.8E-04  |
| MAE                              | 9.2E-04  | 6.3E-04   | 6.5E-04  |

Table A.2: MAE of number of electrons using MultiExp grid with 20 radial points for molecules containing  $2^{nd}$  row atoms

| Molecule                         | 20(110)  | 20(194)         | 20(302)           |
|----------------------------------|----------|-----------------|-------------------|
| 3rd row                          |          |                 |                   |
| $AsH_3$                          | 1.6E-03  | 1.2E-03         | 1.2E-03           |
| $ m CH_3Br$                      | 7.3E-03  | 7.4E-03         | 7.4E-03           |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$  | -4.1E-03 | -3.1E-03        | -3.3E-03          |
| $\mathrm{Ge}_{3}\mathrm{H}_{8}$  | -5.6E-03 | -6.8E-03        | -6.7E-03          |
| $\mathrm{Ge}_4\mathrm{H}_{10}$   | -9.9E-03 | -1.0E-02        | -1.0E-02          |
| $\mathrm{Ge}_{5}\mathrm{H}_{12}$ | -8.3E-03 | -1.0E-02        | -1.1E <b>-</b> 02 |
| ${ m GeH_4}$                     | -2.4E-03 | -2.4E-03        | -2.4E-03          |
| $\rm H_2Se$                      | 6.0E-03  | 4.7E-03         | 4.8E-03           |
| MAE                              | 8.2E-03  | 8.4E-03         | 8.5E-03           |
| transition states                |          |                 |                   |
| $TSCH_3Cl_2$                     | -1.5E-03 | -2.5E-04        | -2.7E-04          |
| $TS\_CH_3F_2$                    | -1.5E-04 | 2.8E-04         | 1.6E-04           |
| TS_CH <sub>3</sub> FCl           | -1.7E-05 | 8.9E-05         | 4.5 E- 05         |
| $TS\_CH_5OF$                     | 4.4E-04  | 2.5E-04         | 1.8E-04           |
| $TS\_Ethyl-OSO_2-CH_3$           | 4.0E-04  | 2.7 E-04        | 2.5E-04           |
| $TS_pHBzCl$                      | -1.0E-03 | $5.6	ext{E-04}$ | 2.4E-04           |
| MAE                              | -3.1E-04 | $2.0	ext{E-04}$ | 1.9E-04           |

Table A.3: MAE of the integration of the electron density using MultiExp grid with 20 radial points for molecules containing  $3^{rd}$  row atoms and transition states

| Molecule               | 20(110)           | 20(194)              | 20(302)   |
|------------------------|-------------------|----------------------|-----------|
| complexes              |                   |                      |           |
| $\rm CH_2O_2\_CH_2O_2$ | -9.2E-05          | 3.5 E-04             | 3.1E-04   |
| FH-CO                  | 1.2E-04           | 1.9E-04              | 1.9E-04   |
| FH-FH                  | 6.7E-05           | 1.3E-04              | 1.3E-04   |
| FH-NCH                 | 2.8E-04           | 3.1E-04              | 3.1E-04   |
| FH-NH <sub>3</sub>     | -6.2E-04          | 1.0E-04              | 9.6E-05   |
| FH-NN                  | 2.4E-03           | 2.4 E- 03            | 2.4E-03   |
| FH-OH <sub>2</sub>     | -2.9E-05          | 6.2E-05              | 7.7E-05   |
| $H_2O-CO_2$            | -1.1E <b>-</b> 04 | 1.2E-04              | 1.2E-04   |
| $H_2O_H_2O$            | 3.1E-04           | 1.7 E-04             | 1.7E-04   |
| MAE                    | 4.5E-04           | 4.2E-04              | 4.2E-04   |
| ions                   |                   |                      |           |
| ${ m ArNH}^+_3$        | -2.0E-03          | 1.0E-03              | 5.2E-04   |
| $H_3O^+$               | -2.8E-05          | $4.5 \text{E}{-} 05$ | 5.0 E- 05 |
| HCOO <sup>-</sup>      | 4.6E-05           | 2.3E-04              | 2.3E-04   |
| $\rm NH_3^+CH_2COO^-$  | 6.5 E- 04         | 4.1E-04              | 3.9E-04   |
| MAE                    | -3.2E-04          | 4.3E-04              | 3.0E-04   |
| peptides               |                   |                      |           |
| 1G_pep                 | 3.9E-04           | 3.6E-04              | 3.4 E-04  |
| $2G_{-}pep$            | 1.1E-03           | 3.7E-04              | 4.7E-04   |
| $3G_{-}pep$            | 1.8E-03           | 8.3E-04              | 7.7E-04   |
| $4G_{-}pep$            | 1.7E-03           | 1.0E-03              | 1.0E-03   |
| 5G_pep                 | -1.4E-03          | 8.5E-04              | 4.6E-04   |
| MAE                    | 7.2E-04           | 6.8E-04              | 6.2E-04   |

Table A.4: MAE of the integration of the electron density using MultiExp grid with20 radial points for complexes, ions, and peptides

| Molecule               | 25(110)                   | 25(194)  | 25(302)                   |
|------------------------|---------------------------|----------|---------------------------|
| BF <sub>3</sub>        | -3.9E-04                  | -1.7E-04 | -9.9E-05                  |
| $BH_3$                 | -3.2E-05                  | 7.8E-06  | -5.2E-06                  |
| $BeH_2$                | -6.4E-05                  | -7.3E-05 | -7.1E-05                  |
| $C_2H_2$               | 1.2E-05                   | -7.6E-06 | -1.2E-05                  |
| $C_2H_4$               | -7.7E-04                  | -9.2E-05 | -1.3E-05                  |
| $\mathrm{CF}_4$        | 1.5 E-04                  | -2.0E-04 | -2.2E-04                  |
| CH <sub>2</sub> CHCOOH | -1.0E-03                  | -1.6E-04 | -8.2E-05                  |
| $CH_2FF$               | 2.8E-04                   | -1.4E-04 | -8.5E-05                  |
| $\rm CH_2 CH_3 CH_3$   | -2.8E-04                  | -2.2E-04 | -8.1E-05                  |
| $CH_3F$                | 8.7 E-05                  | -4.6E-05 | -4.0 <b>E</b> -05         |
| $\rm CH_3 \rm NH_2$    | -1.2E-04                  | -8.0E-05 | -4.0E-05                  |
| $CH_3OH$               | -4.2E-04                  | -3.8E-05 | -2.7E-05                  |
| $\rm CH_3 \rm CONH_2$  | -4.5E-04                  | -7.5E-05 | -7.1E-05                  |
| $\mathrm{CH}_4$        | -3.6E-04                  | -3.2E-05 | -6.0E-06                  |
| CO                     | -1.1E-04                  | -3.8E-05 | -4.0E-05                  |
| $\rm CO_2$             | -2.0E-04                  | -5.0E-05 | -5.4E-05                  |
| EtOTs                  | 5.5 E- 04                 | -6.2E-05 | -2.6E-05                  |
| $F_2$                  | 3.2E-04                   | 4.6E-06  | 3.1E-05                   |
| $H_2$                  | 9.2E-06                   | 8.7E-06  | 8.7E-06                   |
| $H_2CO$                | -4.3E-04                  | -3.1E-05 | -3.3E-05                  |
| $H_2O$                 | -6.9E-05                  | -3.1E-05 | -1.7E-05                  |
| $H_2O_2$               | $7.4\mathrm{E}\text{-}05$ | -1.6E-05 | -2.7E-05                  |
| НСООН                  | -3.0E-04                  | -6.0E-05 | -5.0E-05                  |
| Li <sub>2</sub>        | -4.7E-05                  | -4.0E-05 | -4.0E-05                  |
| LiF                    | -7.1E-04                  | -7.4E-04 | -7.3E-04                  |
| LiH                    | 2.5 E-04                  | 2.5 E-04 | 2.5 E-04                  |
| NH <sub>3</sub>        | -3.4E-04                  | -3.3E-05 | -1.9E-05                  |
| benzaldehyde           | -2.8E-03                  | 7.0E-05  | -6.2E-05                  |
| cytosine               | 3.2E-04                   | -2.3E-04 | -1.5E-04                  |
| formamidine            | 3.5 E-04                  | 3.9E-05  | -3.7E-05                  |
| methoxide              | -3.0E-04                  | -4.6E-05 | -3.5E-05                  |
| naphthalene            | -3.7E-03                  | 5.3E-04  | 2.9E-05                   |
| uracil                 | -1.4E-03                  | -2.1E-04 | -1.3E-04                  |
| MAE                    | 5.1E-04                   | 1.2E-04  | $7.9\mathrm{E}\text{-}05$ |

Table A.5: MAE of number of electrons using MultiExp grid with 25 radial points for molecules containing  $1^{st}$  row atoms

| Pointo for in                                   |          |           |           |
|-------------------------------------------------|----------|-----------|-----------|
| Molecule                                        | 25(110)  | 25(194)   | 25(302)   |
| CCl <sub>4</sub>                                | 4.1E-04  | 1.4E-04   | 1.5E-04   |
| $CH_2ClCl$                                      | -1.3E-04 | -8.8E-05  | 6.8E-05   |
| $\mathrm{CH}_{2}\mathrm{PH}_{2}\mathrm{PH}_{2}$ | -6.0E-04 | -1.2E-05  | 7.5E-06   |
| $\rm CH_2SHSH$                                  | -3.8E-04 | -1.1E-04  | 8.5E-06   |
| $\mathrm{CH}_2\mathrm{SiH}_3\mathrm{SiH}_3$     | -2.5E-04 | -1.1E-04  | 1.7 E- 05 |
| $\mathrm{CH}_{3}\mathrm{PH}_{2}$                | -1.9E-04 | 1.4E-05   | 5.4E-07   |
| $\rm CH_3SH$                                    | 1.8E-04  | 3.0E-05   | 6.9E-06   |
| $\mathrm{CH}_3\mathrm{SiH}_3$                   | -2.1E-04 | -6.2E-07  | 1.2E-07   |
| $CH_{3}Cl$                                      | -1.7E-04 | -7.8E-05  | 8.0E-05   |
| CS                                              | 1.2E-04  | 1.2E-04   | 1.2E-04   |
| $\mathrm{Cl}_2$                                 | -1.6E-04 | 6.9 E- 05 | 6.5E-05   |
| ClF                                             | 6.9E-04  | 7.5E-04   | 7.4 E-04  |
| HOCl                                            | -2.8E-05 | -1.8E-04  | 1.7E-04   |
| Mg                                              | -2.6E-03 | -2.6E-03  | 2.6E-03   |
| NaCl                                            | -1.2E-03 | -1.3E-03  | 1.3E-03   |
| $P_2$                                           | 1.7E-04  | 2.4 E-04  | 2.2E-04   |
| $\mathrm{PF}_5$                                 | -1.6E-04 | -3.1E-04  | 3.2E-04   |
| PH                                              | 1.2E-05  | -4.2E-05  | 3.8E-05   |
| $\mathrm{PH}_3$                                 | 1.0E-04  | 2.9E-06   | 5.8E-06   |
| ${ m SF}_6$                                     | 4.9 E-04 | -5.0E-04  | 5.0E-04   |
| SO                                              | 2.1E-04  | 8.6E-05   | 8.8E-05   |
| $\mathrm{SO}_2$                                 | 5.4E-04  | 2.6E-04   | 2.6E-04   |
| SiO                                             | 5.3E-04  | 3.7E-04   | 3.8E-04   |
| $pNO_2BzCl$                                     | 4.8E-03  | -9.1E-04  | 1.4E-04   |
| MAE                                             | 6.2E-04  | 3.6E-04   | 3.2E-04   |

Table A.6: MAE of the integration of the electron density using MultiExp grid with 25 radial points for molecules containing  $2^{nd}$  row atoms

| Molecule                         | 25(110)  | 25(194)   | 25(302)  |
|----------------------------------|----------|-----------|----------|
| 3rd row                          |          |           |          |
| $AsH_3$                          | -2.8E-03 | -3.2E-03  | -3.2E-03 |
| CH₃Br                            | -3.2E-03 | -3.1E-03  | -3.1E-03 |
| ${ m Ge}_2{ m H}_6$              | -6.3E-03 | -5.2E-03  | -5.3E-03 |
| ${ m Ge}_{3}{ m H}_{8}$          | -7.4E-03 | -8.1E-03  | -8.0E-03 |
| ${ m Ge_4H_{10}}$                | -1.1E-02 | -1.1E-02  | -1.1E-02 |
| $\mathrm{Ge}_{5}\mathrm{H}_{12}$ | -1.1E-02 | -1.3E-02  | -1.3E-02 |
| ${ m GeH}_4$                     | -2.6E-03 | -2.6E-03  | -2.6E-03 |
| $ m H_2Se$                       | -2.4E-03 | -3.4E-03  | -3.4E-03 |
| MAE                              | 6.1E-03  | 6.2E-03   | -6.2E-03 |
| transition states                |          |           |          |
| $TSCH_3Cl_2$                     | -1.5E-03 | -2.6E-04  | -2.7E-04 |
| $TS\_CH_3F_2$                    | -3.4E-04 | 9.4E-05   | -2.6E-05 |
| $TS\_CH_3FCl$                    | -2.3E-04 | -1.4E-04  | -1.6E-04 |
| $TS\_CH_5OF$                     | 2.5 E-04 | 7.5 E- 06 | -4.9E-05 |
| $TS\_Ethyl-OSO_2-CH_3$           | 1.0E-05  | -8.2E-05  | -3.6E-05 |
| TS_pHBzCl                        | -1.8E-03 | -1.3E-04  | -5.0E-04 |
| MAE                              | 6.8E-04  | 1.2E-04   | 1.7E-04  |

Table A.7: MAE of the integration of the electron density using MultiExp grid with

| Molecule                          | 25(110)  | 25(194)  | 25(302)  |
|-----------------------------------|----------|----------|----------|
| complexes                         |          |          |          |
| $CH_2O_2\_CH_2O_2$                | -7.0E-04 | -1.4E-04 | -8.6E-05 |
| FH-CO                             | -1.2E-04 | -3.8E-05 | -3.7E-05 |
| FH-FH                             | -7.1E-05 | -4.6E-07 | 3.3E-06  |
| FH-NCH                            | -5.4E-05 | -2.1E-05 | -1.9E-05 |
| $FH-NH_3$                         | -7.5E-04 | -9.5E-06 | -2.1E-05 |
| FH-NN                             | 1.5E-03  | 1.5E-03  | 1.5E-03  |
| $FH-OH_2$                         | -1.3E-04 | -3.8E-05 | -2.2E-05 |
| $H_2O-CO_2$                       | -2.7E-04 | -6.4E-05 | -6.2E-05 |
| H <sub>2</sub> O_H <sub>2</sub> O | 9.0E-05  | -4.4E-05 | -3.2E-05 |
| MAE                               | 4.1E-04  | 2.1E-04  | 2.0E-04  |
| ions                              |          |          |          |
| $\mathrm{ArNH_{3}^{+}}$           | -2.6E-03 | 4.1E-04  | -5.0E-05 |
| $H_3O^+$                          | -1.0E-04 | -2.3E-05 | -1.6E-05 |
| HCOO-                             | -2.3E-04 | -6.1E-05 | -5.1E-05 |
| $\rm NH_3^+CH_2COO^-$             | 1.5E-04  | -8.7E-05 | -6.9E-05 |
| MAE                               | 7.8E-04  | 1.5E-04  | 4.6E-05  |
| peptides                          |          |          |          |
| 1G_pep                            | -3.9E-05 | -7.9E-05 | -8.4E-05 |
| 2G_pep                            | 3.1E-04  | -2.4E-04 | -1.1E-04 |
| 3G_pep                            | 6.0E-04  | -3.1E-04 | -2.8E-04 |
| 4G_pep                            | 1.2E-04  | -4.8E-04 | -3.5E-04 |
| 5G_pep                            | -2.5E-03 | -1.1E-04 | -5.0E-04 |
| MAE                               | 7.1E-04  | 2.4E-04  | 2.7 E-04 |

 Table A.8: MAE of the integration of the electron density using MultiExp grid with

 25 radial points for complexes, ions, and peptides

| so radiar points for n     | forecures containing 1 | Tow atoms    |            |
|----------------------------|------------------------|--------------|------------|
| Molecule                   | 30(110)                | 30(194)      | 30(194)    |
| BF <sub>3</sub>            | -2.93E-04              | -8.84E-05    | -1.96E-05  |
| $BH_3$                     | -1.80E-05              | 2.26E-05     | 9.39E-06   |
| $\mathrm{BeH}_2$           | -1.12E-05              | -2.13E-05    | -1.91E-05  |
| $C_2H_2$                   | 3.45 E-05              | 1.63E-05     | 1.23E-05   |
| $C_2H_4$                   | -7.43E-04              | -6.75E-05    | 1.01E-05   |
| $\mathrm{CF}_4$            | 3.76E-04               | 1.45E-05     | 3.88E-06   |
| $\rm CH_2 CHCOOH$          | -9.32E-04              | -6.97 E - 05 | 6.11E-06   |
| $CH_2FF$                   | 3.48E-04               | -7.81E-05    | -1.40E-05  |
| $\rm CH_2\rm CH_3\rm CH_3$ | -2.42E-04              | -1.80E-04    | -1.97E-05  |
| $CH_3F$                    | 1.18E-04               | -1.69E-05    | -9.92E-06  |
| $CH_3NH_2$                 | -8.42E-05              | -4.81E-05    | -6.79E-06  |
| $CH_{3}OH$                 | -3.85E-04              | -6.43E-06    | 4.47E-06   |
| $CH_3CONH_2$               | -3.54E-04              | 1.32E-05     | 1.65 E- 05 |
| $CH_4$                     | -3.51E-04              | -2.35E-05    | 2.94E-06   |
| СО                         | -6.94E-05              | 2.24E-06     | 4.45E-07   |
| $\rm CO_2$                 | -1.52E-04              | 6.39E-06     | 2.37E-06   |
| EtOTs                      | 6.25 E-04              | 1.80E-06     | 4.40E-05   |
| $F_2$                      | 3.08E-04               | -1.57E-05    | 9.96E-06   |
| $H_2$                      | 2.28E-06               | 1.87E-06     | 1.92E-06   |
| $H_2CO$                    | -3.91E-04              | 5.68E-06     | 3.84E-06   |
| $H_2O$                     | -5.28E-05              | -1.61E-05    | -2.30E-06  |
| $H_2O_2$                   | 1.07E-04               | 1.54E-05     | 2.83E-06   |
| HCOOH                      | -2.48E-04              | -4.65E-06    | 3.42E-06   |
| $Li_2$                     | -1.98E-05              | -1.03E-05    | -1.08E-05  |
| LiF                        | -1.05E-04              | -1.36E-04    | -1.34E-04  |
| LiH                        | 1.86E-04               | 1.80E-04     | 1.79E-04   |
| $ m NH_3$                  | -3.18E-04              | -1.21E-05    | 2.45 E-06  |
| benzaldehyde               | -2.68E-03              | 2.28E-04     | 1.00E-04   |
| cytosine                   | 4.83E-04               | -6.45 E - 05 | 8.23E-06   |
| formamidine                | 4.04 E-04              | 9.06E-05     | 1.51E-05   |
| methoxide                  | -2.67E-04              | -1.21E-05    | -6.07E-07  |
| naphthalene                | -3.52E-03              | 7.45 E-04    | 2.46E-04   |
| uracil                     | -1.24E-03              | -6.28E-05    | 2.84E-05   |
| MAE                        | 4.7 E-04               | 6.9E-05      | 2.9E-05    |

Table A.9: MAE of the integration of the electron density using MultiExp grid with 30 radial points for molecules containing  $1^{st}$  row atoms

| ou radiar pointo for h                          | iorocuros comanning 2 | 1011 0001110 |           |
|-------------------------------------------------|-----------------------|--------------|-----------|
| Molecule                                        | 30(110)               | 30(194)      | 30(194)   |
| CCl <sub>4</sub>                                | 3.1E-04               | 4.8E-05      | 4.5E-05   |
| $\rm CH_2 ClCl$                                 | -1.1E-04              | -5.8E-05     | -4.0E-05  |
| $\mathrm{CH}_{2}\mathrm{PH}_{2}\mathrm{PH}_{2}$ | -5.8E-04              | -5.8E-05     | -7.8E-06  |
| $\rm CH_2SHSH$                                  | -4.1E-04              | -1.5E-04     | -4.8E-05  |
| $\mathrm{CH}_2\mathrm{SiH}_3\mathrm{SiH}_3$     | -2.1E-04              | -9.0E-05     | 7.8E-06   |
| $CH_3PH_2$                                      | -1.8E-04              | 1.7E-05      | 5.0 E- 06 |
| $\rm CH_3SH$                                    | 1.7E-04               | 2.2E-05      | -1.4E-05  |
| $\rm CH_3SiH_3$                                 | -1.8E-04              | 2.7E-05      | 2.5 E- 05 |
| $CH_{3}Cl$                                      | -1.3E-04              | -3.3E-05     | -3.8E-05  |
| CS                                              | 4.9E-05               | 4.7E-05      | 4.4E-05   |
| $\mathrm{Cl}_2$                                 | -2.5E-04              | 3.4E-06      | -7.4E-06  |
| ClF                                             | 4.6E-05               | 1.4E-04      | 1.3E-04   |
| HOCI                                            | 2.4E-05               | -9.0E-05     | -7.4E-05  |
| Mg                                              | 1.3E-03               | 1.3E-03      | 1.3E-03   |
| NaCl                                            | 1.8E-03               | 1.7E-03      | 1.7E-03   |
| $P_2$                                           | 1.2E-04               | 1.6E-04      | 1.4E-04   |
| $\mathrm{PF}_5$                                 | 2.7E-04               | 5.4E-05      | 4.2E-05   |
| PH                                              | 1.2E-05               | -4.8E-05     | -4.2E-05  |
| $\mathrm{PH}_3$                                 | 9.9E-05               | -3.4E-07     | -6.2E-06  |
| ${ m SF_6}$                                     | 1.2E-03               | 5.7 E- 05    | 2.9E-05   |
| SO                                              | 1.1E-04               | -2.2E-05     | -2.1E-05  |
| $SO_2$                                          | 2.7E-04               | -6.5E-06     | -5.1E-06  |
| SiO                                             | 4.1E-04               | 2.4 E-04     | 2.5 E-04  |
| $pNO_2BzCl$                                     | 5.1E-03               | -6.9E-04     | 7.2 E- 05 |
| MAE                                             | 5.71E-04              | 2.18E-04     | 1.76E-04  |

Table A.10: MAE of the integration of the electron density using MultiExp grid with 30 radial points for molecules containing  $2^{nd}$  row atoms

| 50 radiar points for mo          | lecules containing 5 | 10w atoms and transition states | <u> </u> |
|----------------------------------|----------------------|---------------------------------|----------|
| Molecule                         | 30(110)              | 30(194)                         | 30(194)  |
| 3rd row                          |                      |                                 |          |
| $AsH_3$                          | -2.6E-03             | -3.1E-03                        | -3.0E-03 |
| $\mathrm{CH}_3\mathrm{Br}$       | -2.9E-03             | -2.7E-03                        | -2.7E-03 |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$  | -6.3E-03             | -5.2E-03                        | -5.3E-03 |
| ${ m Ge_3H_8}$                   | -7.3E-03             | -8.1E-03                        | -8.0E-03 |
| $\mathrm{Ge}_4\mathrm{H}_{10}$   | -1.1E-02             | -1.1E-02                        | -1.1E-02 |
| $\mathrm{Ge}_{5}\mathrm{H}_{12}$ | -1.1E-02             | -1.3E-02                        | -1.4E-02 |
| ${ m GeH}_4$                     | -2.6E-03             | -2.6E-03                        | -2.6E-03 |
| $H_2Se$                          | -2.0E-03             | -3.0E-03                        | -3.1E-03 |
| MAE                              | 5.9E-03              | $6.0 	ext{E-03}$                | 6.0E-03  |
| transition states                |                      |                                 |          |
| $TS_CH_3Cl_2$                    | -1.4E-03             | -1.8E-04                        | -2.0E-04 |
| $TS\_CH_3F_2$                    | -3.2E-04             | 1.1E-04                         | -1.3E-05 |
| TS_CH <sub>3</sub> FCl           | -1.6E-04             | $-3.5 \pm -05$                  | -6.3E-05 |
| $TS\_CH_5OF$                     | 2.7E-04              | 5.4E-05                         | -6.7E-06 |
| $TS\_Ethyl-OSO_2-CH_3$           | 1.9E-04              | 4.4E-05                         | 8.1E-05  |
| $TS_{pHBzCl}$                    | -1.6E-03             | 9.3E-05                         | -2.7E-04 |
| MAE                              | 6.5 E-04             | 8.5 E-05                        | 1.1E-04  |

Table A.11: MAE of the integration of the electron density using MultiExp grid with <u>30 radial points for molecules containing</u>  $3^{rd}$  row atoms and transition states

| Molecule               | 30(110)   | 30(194)                   | 30(194)   |
|------------------------|-----------|---------------------------|-----------|
| complexes              |           |                           |           |
| $\rm CH_2O_2\_CH_2O_2$ | -5.8E-04  | -2.7E-05                  | 1.4E-05   |
| FH-CO                  | -8.5E-05  | -6.5E-06                  | -4.7E-06  |
| FH-FH                  | -7.9E-05  | -9.2E-06                  | -6.5E-06  |
| FH-NCH                 | -3.5E-05  | 1.2E-06                   | 2.9E-06   |
| FH-NH <sub>3</sub>     | -7.3E-04  | 3.5 E-06                  | -5.9E-06  |
| FH-NN                  | -3.5E-04  | -3.8E-04                  | -3.8E-04  |
| FH-OH <sub>2</sub>     | -1.2E-04  | -2.3E-05                  | -8.3E-06  |
| $H_2O-CO_2$            | -2.2E-04  | 4.5 E-06                  | 2.8E-06   |
| $H_2O_H_2O$            | 1.2E-04   | -1.3E-05                  | -2.0E-06  |
| MAE                    | 2.57 E-04 | 5.23E-05                  | 4.72E-05  |
| ions                   |           |                           |           |
| $ArNH_3^+$             | -2.5E-03  | 5.5 E-04                  | 9.4E-05   |
| $H_3O^+$               | -8.5E-05  | -4.9E-06                  | 1.3E-06   |
| HCOO-                  | -1.8E-04  | -5.8E-06                  | 2.2 E- 06 |
| $\rm NH_3^+CH_2COO^-$  | 2.5 E-04  | 1.2E-05                   | 2.5 E- 05 |
| MAE                    | 2.5E-04   | 1.2E-05                   | 2.5E-05   |
| peptides               |           |                           |           |
| 1G_pep                 | 6.5E-05   | 2.1E-05                   | 7.4E-06   |
| 2G_pep                 | 5.5 E-04  | -1.0E-04                  | -1.3E-06  |
| 3G_pep                 | 9.9E-04   | -9.0E-06                  | -2.6E-05  |
| 4G_pep                 | 6.4E-04   | -5.2E-05                  | 2.0E-05   |
| 5G_pep                 | -2.2E-03  | $3.6\mathrm{E}\text{-}04$ | -7.1E-06  |
| MAE                    | 8.8E-04   | 1.1E-04                   | 1.2E-05   |

Table A.12: MAE of the integration of the electron density using MultiExp grid with30 radial points for complexes, ions, and peptides

| Molecule                   | 20(110)                   | 20(194)                | 20(302)                   |
|----------------------------|---------------------------|------------------------|---------------------------|
| BF <sub>3</sub>            | 1.6E-03                   | 6.3E-04                | 5.6E-04                   |
| $BH_3$                     | 5.2E-05                   | 1.4E-04                | 1.4E-04                   |
| ${ m BeH_2}$               | 5.4E-05                   | 2.2E-05                | 2.9E-05                   |
| $C_2H_2$                   | 2.7 E-04                  | 2.5E-04                | 2.5 E-04                  |
| $C_2H_4$                   | 6.2E-04                   | 2.0E-04                | 2.9E-04                   |
| $\mathrm{CF}_4$            | 5.9E-04                   | 2.3E-04                | 1.5E-04                   |
| CH <sub>2</sub> CHCOOH     | 1.4E-03                   | 2.4E-05                | -1.5E-04                  |
| $CH_2FF$                   | -7.1E-05                  | -7.8E-05               | -2.4E-05                  |
| $\rm CH_2\rm CH_3\rm CH_3$ | -6.5 E-04                 | -2.5E-04               | $5.4\mathrm{E}\text{-}05$ |
| $CH_3F$                    | 1.0E-03                   | 2.7 E-04               | 2.7 E-04                  |
| $\rm CH_3 \rm NH_2$        | 3.2E-05                   | 2.9E-04                | 2.1E-04                   |
| $CH_{3}OH$                 | $4.3	ext{E-04}$           | $2.6\mathrm{E}$ -04    | $1.7\mathrm{E}\text{-}04$ |
| $\rm CH_3 \rm CONH_2$      | 6.8E-04                   | 3.9E-04                | 4.6E-04                   |
| $CH_4$                     | 2.8 E- 04                 | 1.4E-04                | 1.3E-04                   |
| CO                         | 2.0E-04                   | 3.5 E-04               | 3.5E-04                   |
| $\rm CO_2$                 | 1.0E-04                   | 4.5E-04                | 4.4E-04                   |
| EtOTs                      | -4.3E-04                  | 5.1E-04                | 3.4E-04                   |
| $\mathbf{F}_2$             | 6.0E-04                   | 1.5E-04                | 1.9E-04                   |
| $H_2$                      | $2.6\mathrm{E}\text{-}05$ | 2.6E-05                | 2.6E-05                   |
| $H_2CO$                    | -2.6E-04                  | 3.4E-04                | 3.5E-04                   |
| $H_2O$                     | 2.4E-04                   | $9.0\mathrm{E}$ - $05$ | 6.8E-05                   |
| $H_2O_2$                   | 7.8E-05                   | 1.1E-04                | 1.4E-04                   |
| HCOOH                      | -3.2E-04                  | 2.3E-04                | 2.2E-04                   |
| $Li_2$                     | 1.1E-03                   | 1.1E-03                | 1.1 E-03                  |
| ${ m LiF}$                 | -5.8E-03                  | -5.8E-03               | -5.8E-03                  |
| LiH                        | 1.2E-03                   | 1.2 E- 03              | 1.2E-03                   |
| $ m NH_3$                  | 6.1E-04                   | 1.3E-04                | $7.9\mathrm{E}\text{-}05$ |
| benzaldehyde               | 3.3E-03                   | -1.5E-03               | -6.4E-04                  |
| cytosine                   | 5.2 E-04                  | 6.8 E-04               | 6.1 E- 04                 |
| formamidine                | $1.7\mathrm{E}\text{-}04$ | -3.1E-05               | 4.4E-05                   |
| methoxide                  | 7.3E-04                   | $4.6\mathrm{E}$ -04    | 4.2E-04                   |
| naphthalene                | 3.6E-03                   | 2.1E-03                | 1.3E-03                   |
| uracil                     | 2.7 E- 03                 | 1.7E-03                | 1.5 E-03                  |
| MAE                        | 9.0E-04                   | 6.1E-04                | 5.3E-04                   |

Table A.13: MAE of the dipole moment calculated using MultiExp grid with 20 radial points for molecules containing  $1^{st}$  row atoms

| radiai pointo ioi more                          | cures containing 2 | 1011 0001110 |           |
|-------------------------------------------------|--------------------|--------------|-----------|
| Molecule                                        | 20(110)            | 20(194)      | 20(302)   |
| CCl <sub>4</sub>                                | 1.1E-03            | 3.4E-04      | 3.4E-04   |
| $CH_2ClCl$                                      | 1.5E-04            | 3.6E-04      | 3.9E-04   |
| $\mathrm{CH}_{2}\mathrm{PH}_{2}\mathrm{PH}_{2}$ | 1.5E-03            | 8.0E-04      | 8.0E-04   |
| $\rm CH_2SHSH$                                  | -1.4E-03           | -6.7E-04     | -4.3E-04  |
| $\mathrm{CH}_2\mathrm{SiH}_3\mathrm{SiH}_3$     | -1.3E-03           | -9.9E-05     | 2.1E-04   |
| $\mathrm{CH}_3\mathrm{PH}_2$                    | -1.9E-04           | 1.9E-04      | 1.3E-04   |
| $CH_3SH$                                        | 5.4 E- 04          | -4.8E-04     | -5.6E-04  |
| $\mathrm{CH}_3\mathrm{SiH}_3$                   | 1.8E-04            | 5.1E-04      | 4.9E-04   |
| $CH_{3}Cl$                                      | -7.5E-05           | -2.4E-04     | -2.4E-04  |
| CS                                              | -4.7E-04           | -4.0E-04     | -4.0E-04  |
| $\mathrm{Cl}_2$                                 | 4.0E-04            | 9.7E-05      | 4.5E-05   |
| ClF                                             | -1.0E-04           | 1.6E-04      | 1.6E-04   |
| HOCI                                            | 4.4E-04            | 3.0E-04      | 3.0E-04   |
| Mg                                              | 1.6E-17            | -7.6E-18     | -2.2E-18  |
| NaCl                                            | 2.3E-04            | 9.7E-05      | 1.0E-04   |
| $P_2$                                           | 3.5E-04            | 3.8E-04      | 3.6E-04   |
| $\mathrm{PF}_5$                                 | 8.7E-04            | 3.4E-04      | 2.9E-04   |
| PH                                              | 9.1E-04            | 9.4E-04      | 9.4 E- 04 |
| $SF_6$                                          | -7.4E-12           | -1.4E-11     | -1.5E-11  |
| SO                                              | -1.9E-04           | -4.5E-04     | -4.5E-04  |
| $\mathrm{SO}_2$                                 | 3.5E-04            | 1.0E-04      | 1.1E-04   |
| SiO                                             | 8.8E-04            | 5.8E-04      | 5.9E-04   |
| $pNO_2BzCl$                                     | 2.7E-02            | 1.0E-03      | 4.2E-03   |
| MAE                                             | 1.7 E-03           | 3.7E-04      | 5.0E-04   |

Table A.14: MAE of the dipole moment calculated using MultiExp grid with 20 radial points for molecules containing  $2^{nd}$  row atoms

| Molecule                        | 20(110)   | 20(194)         | 20(302)  |
|---------------------------------|-----------|-----------------|----------|
| 3rd row                         |           |                 |          |
| $\mathrm{AsH}_3$                | 1.9E-02   | 1.9E-02         | 1.9E-02  |
| $ m CH_3Br$                     | 5.0E-02   | $5.0	ext{E-02}$ | 5.0E-02  |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$ | 9.4E-03   | 7.2E-03         | 7.4E-03  |
| $\mathrm{Ge}_{3}\mathrm{H}_{8}$ | -1.0E-03  | 5.1 E- 03       | 4.8E-03  |
| $\mathrm{Ge}_4\mathrm{H}_{10}$  | 5.5E-02   | 5.7 E- 02       | 5.7E-02  |
| ${ m Ge}_5{ m H}_{12}$          | 2.4 E- 02 | 3.8 E- 02       | 4.0E-02  |
| ${ m GeH}_4$                    | 4.5E-04   | 2.6 E-04        | 2.7E-04  |
| $\rm H_2Se$                     | 1.9E-02   | 2.0 E- 02       | 2.0E-02  |
| MAE                             | 2.0E-02   | 2.2 E- 02       | 2.2E-02  |
| transition states               |           |                 |          |
| $TS\_CH_3Cl_2$                  | 2.6E-04   | 5.6E-05         | 1.4E-04  |
| $TS\_CH_3F_2$                   | 4.2E-05   | 2.3 E- 04       | 1.2E-04  |
| TS_CH <sub>3</sub> FCl          | 4.6E-04   | 1.7E-03         | 1.7E-03  |
| $TSCH_5OF$                      | -8.1E-04  | 6.8E-05         | -3.8E-05 |
| $TS\_Ethyl-OSO_2-CH_3$          | 2.0E-03   | 7.6E-04         | 6.7E-04  |
| TS_pHBzCl                       | -5.1E-03  | -5.9E-04        | 4.0E-04  |
| MAE                             | 1.4E-03   | 5.6E-04         | 5.0E-04  |

Table A.15: MAE of the Dipole moment calculated using MultiExp grid with 20 radial points for molecules containing  $3^{rd}$  row atoms and transition states

| Molecule                          | 20(110)   | 20(194)             | 20(302)          |
|-----------------------------------|-----------|---------------------|------------------|
| $\operatorname{complexes}$        |           |                     |                  |
| $\rm CH_2O_2\_CH_2O_2$            | -3.5E-04  | 1.3E-03             | 1.2E-03          |
| FH-CO                             | -1.7E-03  | -1.6E-03            | -1.8E-03         |
| FH-FH                             | 4.0E-04   | 3.6E-04             | 3.7 E-04         |
| FH-NCH                            | 4.4E-04   | 8.7E-04             | 8.8E-04          |
| $FH-NH_3$                         | -2.6E-03  | 1.8E-04             | 5.4E-04          |
| FH-NN                             | -2.6E-03  | -2.6E-03            | -2.6E-03         |
| $FH-OH_2$                         | 5.4E-04   | 8.4 E- 05           | 5.5 E- 05        |
| $H_2O-CO_2$                       | 6.1E-04   | 1.2E-04             | 1.1E-04          |
| H <sub>2</sub> O_H <sub>2</sub> O | -1.3E-03  | -4.7E-04            | -4.5 E-04        |
| MAE                               | 1.2E-03   | 8.4E-04             | 8.8E-04          |
| ions                              |           |                     |                  |
| $ArNH_3^+$                        | -2.6E-03  | 2.1E-03             | 1.4 <b>E-0</b> 3 |
| $H_3O^+$                          | 4.0E-04   | $5.7 	ext{E-05}$    | 1.8E-05          |
| HCOO-                             | 3.0E-05   | 2.1E-04             | 1.9E-04          |
| $\rm NH_3^+CH_2COO^-$             | -3.7E-03  | -5.0E-04            | -3.8E-04         |
| MAE                               | 1.7E-03   | $7.0	ext{E-04}$     | 4.9E-04          |
| peptides                          |           |                     |                  |
| 1G_pep                            | 4.0E-04   | $7.4	ext{E-05}$     | 3.8E-05          |
| 2G_pep                            | 3.5E-03   | 1.2E-03             | 1.1E-03          |
| $3G_{-}pep$                       | 1.8E-02   | 8.0E-03             | 6.3E-03          |
| 4G_pep                            | 1.3E-02   | 9.9E-03             | 9.3E-03          |
| $5 \mathrm{G_{-pep}}$             | -1.3E-02  | 8.7E-03             | 5.3E-03          |
| MAE                               | 9.5 E- 03 | $5.6\mathrm{E}$ -03 | 4.4E-03          |

Table A.16: MAE of the Dipole moment calculated using MultiExp grid with 20 radial points for complexes, ions, and peptides

| Molecule                   | 25(110)                   | 25(194)                   | 25(302)                   |
|----------------------------|---------------------------|---------------------------|---------------------------|
| BF <sub>3</sub>            | 1.1E-03                   | 1.1E-04                   | 4.3E-05                   |
| $BH_3$                     | 1.8E-04                   | 1.4E-05                   | 1.0E-05                   |
| $\mathrm{BeH}_2$           | 1.6E-04                   | 1.9E-04                   | 1.8E-04                   |
| $C_2H_2$                   | 1.3E-05                   | 8.5 E-06                  | 1.3E-05                   |
| $C_2H_4$                   | 9.5 E-04                  | 1.1E-04                   | 1.7 E-05                  |
| $CF_4$                     | 4.3E-04                   | 1.6E-04                   | -6.2E-06                  |
| $CH_2CHCOOH$               | 1.6E-03                   | 2.1E-04                   | $6.1 	ext{E-05}$          |
| $CH_2FF$                   | -2.2E-04                  | -2.3E-04                  | -1.6E-04                  |
| $\rm CH_2\rm CH_3\rm CH_3$ | -7.7E-04                  | -3.0E-04                  | -1.0E-04                  |
| $\mathrm{CH}_3\mathrm{F}$  | 7.3 E- 04                 | -2.5E-05                  | -2.6E-05                  |
| $\rm CH_3 \rm NH_2$        | -1.8E-04                  | 8.9 E- 05                 | $1.0\mathrm{E}$ -05       |
| $CH_3OH$                   | 2.2E-04                   | 3.4E-05                   | -4.6E-05                  |
| $\rm CH_3 \rm CONH_2$      | 2.6E-04                   | -1.1E-05                  | 8.4 E-05                  |
| $\mathrm{CH}_4$            | 1.9E-04                   | 2.8E-05                   | 4.1E-06                   |
| СО                         | -1.4E-04                  | -1.0E-06                  | -9.8E-07                  |
| $\rm CO_2$                 | 4.4E-04                   | 1.1E-04                   | 1.2E-04                   |
| EtOTs                      | -8.0E-04                  | 6.6 E- 05                 | -6.0E-05                  |
| $F_2$                      | 4.1E-04                   | 5.8 E-06                  | $3.9\mathrm{E}\text{-}05$ |
| $H_2$                      | 6.3E-06                   | 6.0 E- 06                 | $6.0 	ext{E-06}$          |
| $H_2CO$                    | -6.4E-04                  | -4.4E-05                  | -4.2E-05                  |
| $H_2O$                     | $1.7\mathrm{E}\text{-}04$ | $1.7\mathrm{E}\text{-}05$ | -4.3E-06                  |
| $H_2O_2$                   | -3.9E-05                  | -1.1E-05                  | 1.3 E-05                  |
| НСООН                      | -5.1E-04                  | 4.5 E- 05                 | $2.0 	ext{E-05}$          |
| Li <sub>2</sub>            | 1.3 E-04                  | 1.1E-04                   | 1.1E-04                   |
| ${ m LiF}$                 | -6.8E-03                  | -6.9E-03                  | -6.9E-03                  |
| LiH                        | 8.0E-04                   | $7.9\mathrm{E}\text{-}04$ | $7.9\mathrm{E}\text{-}04$ |
| $\rm NH_3$                 | 5.3E-04                   | 4.9E-05                   | -1.8E-06                  |
| benzaldehyde               | 4.0E-03                   | -8.2E-04                  | -9.1E-05                  |
| cytosine                   | -2.4E-04                  | -1.0E-04                  | -1.6E-04                  |
| formamidine                | 1.2 E- 04                 | -6.9E-05                  | 6.1E-06                   |
| methoxide                  | $2.6\mathrm{E}$ -04       | -3.7E-05                  | -6.8E-05                  |
| naphthalene                | 4.9E-03                   | 7.1E-04                   | 3.9E-05                   |
| uracil                     | 6.8E-04                   | -1.0E <b>-</b> 04         | -2.9E-04                  |
| MAE                        | 8.7E-04                   | 3.5E-04                   | 2.9E-04                   |

Table A.17: MAE of the dipole moment calculated using MultiExp grid of 25 radial points for molecules containing  $1^{st}$  row atoms

| radial points for more                          | cules containing 2 |                           |          |
|-------------------------------------------------|--------------------|---------------------------|----------|
| Molecule                                        | 25(110)            | 25(194)                   | 25(302)  |
| $\mathrm{CCl}_4$                                | 1.1E-03            | 1.1E-04                   | 4.2E-05  |
| $CH_2ClCl$                                      | -2.2E-04           | -1.9E-06                  | 2.7E-05  |
| $\mathrm{CH}_{2}\mathrm{PH}_{2}\mathrm{PH}_{2}$ | 3.5E-04            | -3.6E-04                  | -1.9E-04 |
| $\rm CH_2SHSH$                                  | -8.3E-04           | -2.1E-04                  | 3.4E-05  |
| $\mathrm{CH}_2\mathrm{SiH}_3\mathrm{SiH}_3$     | -1.5E-03           | -2.4E-04                  | 2.3E-05  |
| $\rm CH_3PH_2$                                  | -4.3E-04           | -1.2E-04                  | -1.9E-04 |
| $\rm CH_3SH$                                    | 9.0E-04            | -1.5E-04                  | -2.3E-04 |
| $\mathrm{CH}_3\mathrm{SiH}_3$                   | -2.1E-04           | 1.0E-04                   | 8.3E-05  |
| $CH_{3}Cl$                                      | -1.8E-04           | -3.3E-04                  | -3.5E-04 |
| CS                                              | -4.5E-04           | -3.9E-04                  | -3.8E-04 |
| $\mathrm{Cl}_2$                                 | 2.9E-04            | 1.3E-04                   | 1.2E-04  |
| ClF                                             | -1.2E-04           | 8.1E-05                   | 9.5E-05  |
| HOCl                                            | 1.0E-04            | -4.8E-05                  | -4.1E-05 |
| Mg                                              | -1.8E-17           | -4.7E-18                  | -1.9E-18 |
| NaCl                                            | 2.3E-03            | 2.1E-03                   | 2.0E-03  |
| $P_2$                                           | 3.1E-04            | 4.1E-04                   | 3.8E-04  |
| $\mathrm{PF}_5$                                 | 6.6E-04            | 1.4E-04                   | 6.1E-05  |
| PH                                              | 3.4E-04            | $3.7\mathrm{E}\text{-}04$ | 3.7E-04  |
| ${ m SF}_6$                                     | -2.3E-12           | -7.6E-12                  | -8.9E-12 |
| SO                                              | -2.6E-04           | -5.2E-04                  | -5.1E-04 |
| $\mathrm{SO}_2$                                 | -4.4E-05           | -2.1E-04                  | -1.9E-04 |
| SiO                                             | 4.7E-04            | 1.8E-04                   | 1.9E-04  |
| $pNO_2BzCl$                                     | 2.2E-02            | -4.0E-03                  | -4.1E-04 |
| MAE                                             | 1.4E-03            | 4.4E-04                   | 2.6E-04  |

Table A.18: MAE of the dipole moment calculated using MultiExp grid with 25 radial points for molecules containing  $2^{nd}$  row atoms

| Molecule                         | 25(110)  | 25(194)   | 25(302)           |
|----------------------------------|----------|-----------|-------------------|
| 3rd row                          |          |           |                   |
| $AsH_3$                          | -4.5E-04 | -3.9E-04  | -3.7E-04          |
| $ m CH_3Br$                      | -1.2E-02 | -1.2E-02  | -1.2E-02          |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$  | 1.4E-02  | 1.2E-02   | 1.2E-02           |
| ${ m Ge_3H_8}$                   | 9.2E-03  | 1.5 E-02  | 1.5E-02           |
| $\mathrm{Ge}_4\mathrm{H}_{10}$   | 6.3E-02  | 6.0 E- 02 | 6.0E-02           |
| $\mathrm{Ge}_{5}\mathrm{H}_{12}$ | 3.6E-02  | 4.8E-02   | 5.0 E- 02         |
| ${ m GeH}_4$                     | 4.5E-04  | 2.5 E-04  | 2.7 E-04          |
| $\rm H_2Se$                      | -1.2E-03 | -6.7E-04  | -6.8E-04          |
| MAE                              | 1.5E-02  | 1.7E-02   | 1.7E-02           |
| transition states                |          |           |                   |
| $TS\_CH_3Cl_2$                   | 8.9 E-05 | 1.5 E-04  | 2.9E-05           |
| $TS\_CH_3F_2$                    | 1.0E-04  | 1.2E-04   | 1.1E-05           |
| TS_CH <sub>3</sub> FCl           | -1.4E-04 | 5.1E-04   | 5.8E-04           |
| $TSCH_5OF$                       | -6.7E-04 | 3.7 E-04  | 2.2E-04           |
| $TS\_Ethyl-OSO_2-CH_3$           | 1.2E-03  | -4.2E-05  | -1.9E <b>-</b> 04 |
| TS_pHBzCl                        | -3.8E-03 | -3.5E-04  | 7.1E-04           |
| MAE                              | 9.9E-04  | 2.6E-04   | 2.9E-04           |

Table A.19: MAE of the dipole moment calculated using MultiExp grid with 25 radial points for molecules containing  $3^{rd}$  row atoms and transition states

| rualar pointo for compres | res, ions, and peptide. | )        |          |
|---------------------------|-------------------------|----------|----------|
| Molecule                  | 25(110)                 | 25(194)  | 25(302)  |
| complexes                 |                         |          | <u>.</u> |
| $\rm CH_2O_2\_CH_2O_2$    | -1.4E-03                | -5.2E-04 | -3.2E-04 |
| FH-CO                     | 2.0E-04                 | -3.5E-05 | -1.1E-04 |
| FH-FH                     | 5.6E-05                 | 3.8E-05  | 4.7E-05  |
| FH-NCH                    | -4.2E-04                | 2.5E-06  | 2.5E-05  |
| $FH-NH_3$                 | -3.1E-03                | -2.2E-04 | 3.6E-05  |
| FH-NN                     | -1.5E-03                | -1.6E-03 | -1.6E-03 |
| $FH-OH_2$                 | 4.9E-04                 | 3.5 E-05 | 8.5E-06  |
| $H_2O-CO_2$               | 4.7E-04                 | 6.1E-05  | 3.1E-05  |
| $H_2O_H_2O$               | -7.7E-04                | 6.9E-05  | 8.0E-05  |
| MAE                       | 9.3E-04                 | 2.9E-04  | 2.6E-04  |
| ions                      |                         |          |          |
| $\mathrm{ArNH_{3}^{+}}$   | -4.0E-03                | 5.8E-04  | 3.6E-05  |
| $H_3O^+$                  | 3.8E-04                 | 3.6E-05  | -3.1E-06 |
| HCOO-                     | -1.8E-04                | -2.8E-06 | -2.1E-05 |
| $\rm NH_3^+CH_2COO^-$     | -3.2E-03                | -1.0E-05 | 3.1E-05  |
| MAE                       | 1.9E-03                 | 1.6E-04  | 2.3E-05  |
| peptides                  |                         |          |          |
| 1G_pep                    | 3.0E-04                 | -4.0E-06 | -1.9E-05 |
| 2G_pep                    | 1.8E-03                 | -3.1E-04 | -3.1E-04 |
| 3G_pep                    | 8.4E-03                 | -1.1E-03 | -2.3E-03 |
| 4G_pep                    | 3.2E-04                 | -2.9E-03 | -2.8E-03 |
| $5G_{-}pep$               | -2.3E-02                | -9.7E-04 | -4.3E-03 |
| MAE                       | 6.7 E-03                | 1.0E-03  | 1.9E-03  |

Table A.20: MAE of the dipole moment calculated using MultiExp grid with 25 radial points for complexes, ions, and peptides

| Molecule                                        | 30(110)                   | 30(194)   | 30(194)                   |
|-------------------------------------------------|---------------------------|-----------|---------------------------|
| BF <sub>3</sub>                                 | 9.8E-04                   | 7.4E-05   | 1.8E-07                   |
| $\mathrm{BH}_3$                                 | 1.9E-04                   | 4.4E-06   | $5.0\mathrm{E}\text{-}07$ |
| $\mathrm{BeH}_2$                                | 2.8E-05                   | 5.4E-05   | 4.8E-05                   |
| $C_2H_2$                                        | 3.9E-05                   | 1.8E-05   | 1.4E-05                   |
| $C_2H_4$                                        | 9.3E-04                   | 8.4 E-05  | 1.3E-05                   |
| $\mathrm{CF}_4$                                 | 4.2E-04                   | 1.5 E-04  | 1.9E-06                   |
| $CH_2CHCOOH$                                    | 1.5E-03                   | 1.6E-04   | 4.7E-06                   |
| $CH_2FF$                                        | -1.1E-04                  | -1.2E-04  | -3.8E-05                  |
| $\mathrm{CH}_{2}\mathrm{CH}_{3}\mathrm{CH}_{3}$ | -7.8E-04                  | -3.0E-04  | -2.5E-05                  |
| $CH_3F$                                         | 7.2 E- 04                 | -4.0E-05  | -4.2E-05                  |
| $CH_3NH_2$                                      | -1.7E-04                  | 9.8E-05   | 1.8E-05                   |
| $CH_3OH$                                        | 2.5 E-04                  | 6.9 E- 05 | -1.2E-05                  |
| $\rm CH_3 \rm CONH_2$                           | 1.8E-04                   | -7.9E-05  | 1.0E-05                   |
| $CH_4$                                          | $1.9\mathrm{E}\text{-}04$ | 2.8 E- 05 | 2.8E-06                   |
| СО                                              | -1.4E-04                  | 5.5 E-06  | 4.9E-06                   |
| $\mathrm{CO}_2$                                 | 3.3E-04                   | 1.4E-05   | 5.1 E-06                  |
| EtOTs                                           | -7.4E-04                  | 2.0E-04   | 3.3E-05                   |
| $F_2$                                           | 3.9E-04                   | 2.0E-05   | 1.3E-05                   |
| $H_2$                                           | 1.6E-06                   | 1.3E-06   | 1.3E-06                   |
| $H_2CO$                                         | -6.0E-04                  | -9.5E-06  | -6.9E-06                  |
| $H_2O$                                          | 1.7 E-04                  | 1.7E-05   | -4.6E-06                  |
| $H_2O_2$                                        | -5.7E-05                  | -2.9E-05  | -5.1E-06                  |
| HCOOH                                           | -5.2E-04                  | 2.5 E-05  | 4.2E-06                   |
| $\mathrm{Li}_2$                                 | 5.3 E- 05                 | 2.7 E- 05 | 2.9E-05                   |
| LiF                                             | -3.4E-03                  | -3.5E-03  | -3.5E-03                  |
| LiH                                             | 5.5 E-04                  | 5.4E-04   | 5.4E-04                   |
| NH <sub>3</sub>                                 | 5.2 E- 04                 | 4.8E-05   | -3.8E-06                  |
| benzaldehyde                                    | 3.9E-03                   | -9.4E-04  | -2.1E-04                  |
| cytosine                                        | -1.1E-04                  | 5.8E-05   | -1.4E-05                  |
| formamidine                                     | $9.6\mathrm{E}$ - $05$    | -9.1E-05  | -1.5E-05                  |
| methoxide                                       | 3.0E-04                   | 5.2E-06   | -2.6E-05                  |
| naphthalene                                     | 4.7 E-03                  | 9.9E-04   | 3.3E-04                   |
| uracil                                          | 1.1E-03                   | 2.4E-04   | 8.1E-05                   |
| MAE                                             | 7.3E-04                   | 2.4 E-04  | 1.5 E-04                  |

Table A.21: MAE of the dipole moment calculated using MultiExp grid with 30 radial points for molecules containing  $1^{st}$  row atoms

| radial points for                               | molecules containing $Z$ | Tow atoms   |          |
|-------------------------------------------------|--------------------------|-------------|----------|
| Molecule                                        | 30(110)                  | 30(194)     | 30(194)  |
| $\mathrm{CCl}_4$                                | 1.1E-03                  | 1.1E-04     | 1.3E-08  |
| CH <sub>2</sub> ClCl                            | -3.2E-04                 | -7.5E-05    | -5.0E-05 |
| $\mathrm{CH}_{2}\mathrm{PH}_{2}\mathrm{PH}_{2}$ | 3.4E-04                  | -2.2E-04    | -2.0E-04 |
| $\rm CH_2SHSH$                                  | -9.0E-04                 | -3.2E-04    | -7.3E-05 |
| $\mathrm{CH}_2\mathrm{SiH}_3\mathrm{SiH}_3$     | -1.5E-03                 | -3.3E-04    | -7.0E-05 |
| $\mathrm{CH}_3\mathrm{PH}_2$                    | -4.5E-04                 | -1.8E-04    | -2.4E-04 |
| $CH_3SH$                                        | 9.1E-04                  | -1.5E-04    | -2.3E-04 |
| $\mathrm{CH}_3\mathrm{SiH}_3$                   | -2.3E-04                 | 8.8E-05     | 5.6E-05  |
| $\rm CH_3Cl$                                    | -6.5 E - 05              | -2.1E-04    | -2.4E-04 |
| CS                                              | -1.8E-04                 | -1.2E-04    | -1.1E-04 |
| $Cl_2$                                          | 4.7E-04                  | 6.4E-06     | 1.4E-05  |
| ClF                                             | -6.1E-04                 | -3.9E-04    | -3.8E-04 |
| HOCl                                            | 3.3E-05                  | -1.0E-04    | -9.9E-05 |
| Mg                                              | -3.5E-17                 | -2.2E-17    | -2.6E-17 |
| NaCl                                            | $9.9\mathrm{E}$ - $05$   | -2.0E-05    | -2.0E-05 |
| $P_2$                                           | 2.0E-04                  | 2.8E-04     | 2.5 E-04 |
| $\mathrm{PF}_5$                                 | 5.8E-04                  | 7.8E-05     | 5.6E-08  |
| PH                                              | 1.3E-04                  | 1.6E-04     | 1.6E-04  |
| $PH_3$                                          | -6.6E-05                 | -2.1E-04    | -2.4E-04 |
| ${ m SF}_6$                                     | 3.1E-12                  | -1.9E-12    | -3.3E-12 |
| SO                                              | -2.6E-05                 | -2.9E-04    | -2.8E-04 |
| $\mathrm{SO}_2$                                 | 3.9E-05                  | -1.3E-04    | -1.2E-04 |
| SiO                                             | 3.8E-04                  | 8.2 E- $05$ | 9.1E-05  |
| $pNO_2BzCl$                                     | 2.4E-02                  | -2.9E-03    | 7.1E-04  |
| MAE                                             | 1.4E-03                  | 2.7 E- 04   | 1.5E-04  |

Table A.22: MAE of the dipole moment calculated using MultiExp grid with 30 radial points for molecules containing  $2^{nd}$  row atoms

| Molecule                         | 30(110)  | 30(194)             | 30(194)   |
|----------------------------------|----------|---------------------|-----------|
| 3rd row                          |          |                     |           |
| $AsH_3$                          | 1.6E-05  | 7.9E-05             | 9.4E-05   |
| $ m CH_3Br$                      | -9.8E-03 | -9.7E-03            | -9.8E-03  |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$  | 1.4E-02  | 1.2E-02             | 1.2E-02   |
| $\mathrm{Ge}_{3}\mathrm{H}_{8}$  | 9.3E-03  | 1.5 E- 02           | 1.5E-02   |
| $\mathrm{Ge}_4\mathrm{H}_{10}$   | 6.3E-02  | $6.0 	ext{E-02}$    | 6.0E-02   |
| $\mathrm{Ge}_{5}\mathrm{H}_{12}$ | 3.6E-02  | 4.9E-02             | 5.1 E- 02 |
| ${ m GeH}_4$                     | 4.5 E-04 | 2.4E-04             | 2.7E-04   |
| $H_2Se$                          | -4.1E-04 | 4.9E-05             | 3.0E-05   |
| MAE                              | 1.5E-02  | $1.6\mathrm{E}$ -02 | 1.6E-02   |
| transition states                |          |                     |           |
| $TS_CH_3Cl_2$                    | 1.2E-04  | 1.3E-04             | 2.5E-05   |
| $TS\_CH_3F_2$                    | 1.0E-04  | 1.1E-04             | 4.2E-06   |
| TS_CH <sub>3</sub> FCl           | -3.4E-04 | 3.1E-04             | 3.4 E- 04 |
| $TS\_CH_5OF$                     | -8.8E-04 | 1.2E-04             | -9.5E-06  |
| $TS\_Ethyl-OSO_2\text{-}CH_3$    | 1.2E-03  | 9.5 E- 05           | -7.7E-05  |
| $TS_pHBzCl$                      | -3.9E-03 | -3.8E-04            | 6.6E-04   |
| MAE                              | 1.1E-03  | 1.9E-04             | 1.8E-04   |

Table A.23: MAE of the dipole moment calculated using MultiExp grid with 30 radial points for molecules containing  $3^{rd}$  row atoms and transition states

| radial pointes for compres        | nee, rome, and populates |          |           |
|-----------------------------------|--------------------------|----------|-----------|
| Molecule                          | 30(110)                  | 30(194)  | 30(194)   |
| complexes                         |                          |          |           |
| $\rm CH_2O_2\_CH_2O_2$            | -1.8E-03                 | -1.0E-04 | 5.0 E- 05 |
| FH-CO                             | 3.9E-04                  | 2.2E-04  | 1.3E-04   |
| FH-FH                             | -7.1E-06                 | -2.8E-05 | -2.1E-05  |
| FH-NCH                            | -4.9E-04                 | -6.0E-05 | -4.1E-05  |
| $FH-NH_3$                         | -3.1E-03                 | -3.7E-04 | -9.2E-05  |
| FH-NN                             | 1.3E-03                  | 1.2E-03  | 1.2E-03   |
| $FH-OH_2$                         | 5.1E-04                  | 4.7E-05  | 2.2E-05   |
| $H_2O-CO_2$                       | 4.6E-04                  | 1.3E-05  | -6.1E-06  |
| H <sub>2</sub> O_H <sub>2</sub> O | -8.5E-04                 | -1.2E-05 | 1.5E-06   |
| MAE                               | 9.9E-04                  | 2.3E-04  | 1.7E-04   |
| ions                              |                          |          |           |
| $ArNH_3^+$                        | -3.9E-03                 | 8.0E-04  | 2.7E-04   |
| $H_3O^+$                          | 3.8E-04                  | 3.7 E-05 | -1.4E-06  |
| HCOO-                             | -1.5E-04                 | 3.0E-05  | 1.1E-05   |
| $\rm NH_3^+CH_2COO^-$             | -3.3E-03                 | -1.3E-04 | -7.9E-05  |
| MAE                               | 1.9E-03                  | 2.5E-04  | 9.1E-05   |
| peptides                          |                          |          |           |
| 1G_pep                            | 3.1E-04                  | -1.1E-05 | -2.5E-05  |
| 2G_pep                            | 2.2E-03                  | 1.8E-05  | -2.1E-05  |
| 3G_pep                            | 1.1E-02                  | 1.1E-03  | -3.1E-04  |
| 4G_pep                            | 3.7 E- 03                | 5.5 E-04 | 4.1E-04   |
| 5G_pep                            | -2.0E-02                 | 2.8E-03  | 1.3E-04   |
| MAE                               | 7.5 E- 03                | 9.0E-04  | 1.8E-04   |

Table A.24: MAE of the dipole moment calculated using MultiExp grid with 30 radial points for complexes, ions, and peptides

| Molecule                     | 20(110)               | 20(194)              | 20(302)              |
|------------------------------|-----------------------|----------------------|----------------------|
| BF3                          | 8.6E + 05             | 8.5E+05              | $8.5E{+}05$          |
| $BH_3$                       | $8.9\mathrm{E}{+}04$  | $9.0\mathrm{E}{+}04$ | 9.0E + 04            |
| $\mathrm{BeH}_2$             | 6.4E + 04             | 6.4E + 04            | $6.4E{+}04$          |
| $C_2H_2$                     | $2.4\mathrm{E}{+}05$  | $2.4E{+}05$          | 2.4E + 05            |
| $C_2H_4$                     | 2.5E + 05             | 2.4E + 05            | $2.4\mathrm{E}{+}05$ |
| $\mathrm{CF}_4$              | $1.1E{+}06$           | $1.1E{+}06$          | 1.1E + 06            |
| $CH_2CHCOOH$                 | 7.8E + 05             | 7.7E + 05            | 7.7E + 05            |
| $\mathrm{CH}_{2}\mathrm{FF}$ | $6.3\mathrm{E}{+}05$  | 6.3E + 05            | 6.3E + 05            |
| $\rm CH_2 CH_3 CH_3$         | $3.7E{+}05$           | 3.7E + 05            | 3.7E + 05            |
| $\mathrm{CH}_3\mathrm{F}$    | 3.8E + 05             | $3.8\mathrm{E}{+05}$ | $3.8E{+}05$          |
| $CH_3NH_2$                   | $2.8\mathrm{E}{+05}$  | 2.8E + 05            | 2.8E + 05            |
| $CH_{3}OH$                   | $3.3\mathrm{E}{+}05$  | $3.3E{+}05$          | 3.3E + 05            |
| $\rm CH_3 \rm CONH_2$        | $6.1 \mathrm{E}{+}05$ | $6.1\mathrm{E}{+}05$ | $6.1E{+}05$          |
| $CH_4$                       | 1.2E + 05             | $1.2\mathrm{E}{+05}$ | $1.2E{+}05$          |
| СО                           | $3.3E{+}05$           | $3.3\mathrm{E}{+}05$ | $3.3\mathrm{E}{+}05$ |
| $\mathrm{CO}_2$              | $5.3\mathrm{E}{+05}$  | $5.3E{+}05$          | $5.3\mathrm{E}{+}05$ |
| EtOTs                        | $1.1E{+}07$           | $1.1E{+}07$          | $1.1E{+}07$          |
| $F_2$                        | $5.1\mathrm{E}{+05}$  | $5.1\mathrm{E}{+05}$ | 5.1E + 05            |
| $H_2$                        | -2.8E + 01            | -2.6E + 01           | $-2.6E{+}01$         |
| $H_2CO$                      | $3.3\mathrm{E}{+}05$  | 3.3E+05              | 3.3E + 05            |
| $H_2O$                       | $2.1E{+}05$           | $2.0\mathrm{E}{+}05$ | 2.0E + 05            |
| $H_2O_2$                     | 4.1E + 05             | 4.1E + 05            | 4.1E + 05            |
| HCOOH                        | 5.3E + 05             | $5.3E{+}05$          | 5.3E + 05            |
| Li <sub>2</sub>              | $8.9E{+}04$           | $8.8E{+}04$          | $8.8E{+}04$          |
| LiF                          | $2.9\mathrm{E}{+}05$  | $2.9\mathrm{E}{+}05$ | $2.9\mathrm{E}{+}05$ |
| LiH                          | $4.5E{+}04$           | $4.5 E{+}04$         | $4.5E{+}04$          |
| NH <sub>3</sub>              | 1.6E + 05             | 1.6E + 05            | 1.6E + 05            |
| benzaldehyde                 | 1.1E + 06             | $1.1E{+}06$          | $1.1E{+}06$          |
| cytosine                     | 1.2E + 06             | 1.2E + 06            | 1.2E + 06            |
| formamidine                  | 4.4E + 05             | $4.4E{+}05$          | 4.4E + 05            |
| methoxide                    | 3.3E + 05             | 3.3E + 05            | 3.3E + 05            |
| naphthalene                  | 1.3E + 06             | 1.2E + 06            | 1.2E + 06            |
| uracil                       | 1.2E + 06             | $1.2E{+}06$          | 1.2E+06              |
| MAE                          | 7.9E + 05             | $7.9E{+}05$          | 7.9E + 05            |

Table A.25: MAE of the potential energy,  $V_{ne}$  calculated using MultiExp grid with 20 radial points for molecules containing  $1^{st}$  row atoms

| Molecule                                    | 20(110)     | 20(194)         | 20(302)     |
|---------------------------------------------|-------------|-----------------|-------------|
| $\mathrm{CCl}_4$                            | 4.5E+07     | $4.5E{+}07$     | 4.5E+07     |
| $\rm CH_2 ClCl$                             | 2.3E + 07   | 2.3E+07         | 2.3E+07     |
| $\rm CH_2PH_2PH_2$                          | 1.8E+07     | 1.8E+07         | 1.8E+07     |
| $\rm CH_2SHSH$                              | 2.0E+07     | 2.0E+07         | $2.0E{+}07$ |
| $\mathrm{CH}_2\mathrm{SiH}_3\mathrm{SiH}_3$ | $1.6E{+}07$ | $1.6E{+}07$     | $1.6E{+}07$ |
| $CH_3PH_2$                                  | $8.9E{+}06$ | $8.9E{+}06$     | 8.9E + 06   |
| $CH_3SH$                                    | $1.0E{+}07$ | 1.0E+07         | $1.0E{+}07$ |
| $ m CH_3SiH_3$                              | 8.0E + 06   | 8.0E + 06       | 8.0E + 06   |
| CH <sub>3</sub> Cl                          | 1.1E+07     | 1.1E+07         | 1.1E+07     |
| CS                                          | 1.0E+07     | $1.0E{+}07$     | 1.0E+07     |
| $\mathrm{Cl}_2$                             | $2.3E{+}07$ | 2.3E+07         | 2.3E+07     |
| ClF                                         | 1.2E+07     | 1.2E+07         | 1.2E+07     |
| HOCI                                        | 1.1E+07     | 1.1E+07         | 1.1E+07     |
| Mg                                          | $1.6E{+}07$ | $1.6E{+}07$     | $1.6E{+}07$ |
| NaCl                                        | 3.1E + 07   | $3.1E{+}07$     | 3.1E+07     |
| $P_2$                                       | 1.8E+07     | 1.8E+07         | 1.8E+07     |
| $\mathrm{PF}_5$                             | $1.0E{+}07$ | $1.0E{+}07$     | 1.0E+07     |
| PH                                          | 8.7E + 06   | $8.7E{+}06$     | 8.7E+06     |
| $\mathrm{PH}_3$                             | 8.7E + 06   | $8.7E{+}06$     | 8.7E + 06   |
| $\mathrm{SF}_6$                             | 1.2E + 07   | 1.2E+07         | 1.2E+07     |
| SO                                          | $1.0E{+}07$ | 1.0E+07         | 1.0E+07     |
| $\mathrm{SO}_2$                             | 2.0E + 07   | 2.0E+07         | 2.0E+07     |
| SiO                                         | 8.1E + 06   | 8.1E + 06       | 8.1E+06     |
| $pNO_2BzCl$                                 | 1.3E+07     | 1.3E+07         | 1.3E+07     |
| MAE                                         | 9,059,565   | $9,\!010,\!435$ | 8,990,870   |

Table A.26: MAE of the potential energy calculated using MultiExp grid with 20 radial points for molecules containing  $2^{nd}$  row atoms

| Molecule                         | 20(110)           | 20(194)           | 20(302)           |
|----------------------------------|-------------------|-------------------|-------------------|
| 3rd row                          |                   |                   |                   |
| $AsH_3$                          | 6.3E + 07         | 6.3E + 07         | 6.3E + 07         |
| $CH_3Br$                         | 7.5E + 07         | 7.5E+07           | 7.5E+07           |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$  | 1.0E + 08         | 1.0E + 08         | 1.0E + 08         |
| $\mathrm{Ge}_{3}\mathrm{H}_{8}$  | 1.6E + 08         | $1.6E{+}08$       | 1.6E + 08         |
| ${ m Ge}_4{ m H}_{10}$           | 2.1E + 08         | 2.1E + 08         | 2.1E + 08         |
| $\mathrm{Ge}_{5}\mathrm{H}_{12}$ | 2.6E + 08         | 2.6E + 08         | 2.6E + 08         |
| ${ m GeH}_4$                     | 5.2E + 07         | 5.2E + 07         | 5.2E + 07         |
| $H_2Se$                          | 6.8E + 07         | 6.8E + 07         | 6.8E + 07         |
| MAE                              | $126,\!155,\!556$ | $126,\!155,\!556$ | $126,\!155,\!556$ |
| transition states                |                   |                   |                   |
| $TS\_CH_3Cl_2$                   | 2.3E + 07         | 2.3E+07           | 2.3E+07           |
| $TS_CH_3F_2$                     | $6.3E{+}05$       | 6.3E + 05         | 6.3E + 05         |
| TS_CH <sub>3</sub> FCl           | $1.2E{+}07$       | 1.2E + 07         | 1.2E+07           |
| $TS_CH_5OF$                      | 5.8E + 05         | 5.8E + 05         | 5.8E + 05         |
| $TS\_Ethyl-OSO_2-CH_3$           | 1.1E + 07         | 1.1E+07           | 1.1E+07           |
| TS_pHBzCl                        | 1.2E + 07         | 1.2E+07           | 1.2E + 07         |
| MAE                              | 9,835,833         | 9,852,167         | 9,852,500         |

Table A.27: MAE of the potential energy calculated using MultiExp grid with 20

| Molecule                   | 20(110)     | 20(194)     | 20(302)     |
|----------------------------|-------------|-------------|-------------|
| complexes                  |             |             |             |
| $\rm CH_2O_2\_CH_2O_2$     | 1.1E + 06   | 1.1E + 06   | $1.1E{+}06$ |
| FH-CO                      | 5.8E + 05   | 5.8E + 05   | 5.8E + 05   |
| FH-FH                      | 5.1E + 05   | 5.1E + 05   | 5.1E + 05   |
| FH-NCH                     | 5.4E + 05   | 5.4E + 05   | 5.4E + 05   |
| FH-NH <sub>3</sub>         | 4.2E + 05   | $4.2E{+}05$ | $4.2E{+}05$ |
| FH-NN                      | 5.6E + 05   | 5.6E + 05   | $5.6E{+}05$ |
| FH-OH <sub>2</sub>         | 4.6E + 05   | 4.6E + 05   | 4.6E + 05   |
| $H_2O-CO_2$                | 7.4E + 05   | 7.4E+05     | 7.4E + 05   |
| $H_2O_H_2O$                | 4.1E + 05   | 4.1E + 05   | 4.1E + 05   |
| MAE                        | 586,778     | 585,111     | 585,111     |
| ions                       |             |             |             |
| $ArNH_3^+$                 | 9.1E + 05   | 8.8E + 05   | 8.9E + 05   |
| $H_3O^+$                   | 2.1E+05     | 2.0E + 05   | $2.0E{+}05$ |
| HCOO-                      | 5.3E + 05   | 5.3E + 05   | 5.3E + 05   |
| $\mathrm{NH_3^+CH_2COO^-}$ | 8.1E + 05   | $8.1E{+}05$ | 8.1E + 05   |
| MAE                        | $613,\!250$ | $605,\!500$ | 607,500     |
| peptides                   |             |             |             |
| $1 \mathrm{G_{-}pep}$      | 8.1E + 05   | $8.1E{+}05$ | 8.1E + 05   |
| $2G_{-}pep$                | 1.4E+06     | 1.4E + 06   | 1.4E+06     |
| $3 G_{-} pep$              | 2.0E + 06   | 2.0E + 06   | 2.0E + 06   |
| $4G_{-}pep$                | 2.6E + 06   | 2.6E + 06   | 2.6E + 06   |
| $5G_{-}pep$                | 3.3E + 06   | 3.2E + 06   | $3.3E{+}06$ |
| MAE                        | 2,024,000   | 2,024,200   | 2,026,200   |

 Table A.28: MAE of the potential energy calculated using MultiExp grid with 20

 radial points for complexes, ions, and peptides
| Molecule                   | 25(110)                | 25(194)               | 25(302)       |
|----------------------------|------------------------|-----------------------|---------------|
| $BF_3$                     | $3.92E{+}05$           | 3.90E + 05            | $3.89E{+}05$  |
| $BH_3$                     | 4.36E + 04             | $4.38E{+}04$          | 4.38E + 04    |
| $BeH_2$                    | 3.04E + 04             | 3.04E + 04            | 3.04E + 04    |
| $C_2H_2$                   | 1.20E + 05             | 1.20E + 05            | 1.20E + 05    |
| $C_2H_4$                   | 1.24E + 05             | 1.20E + 05            | 1.20E + 05    |
| $CF_4$                     | 5.17E + 05             | 5.21E + 05            | 5.21E + 05    |
| CH <sub>2</sub> CHCOOH     | 3.92E + 05             | 3.83E + 05            | $3.83E{+}05$  |
| $CH_2FF$                   | 2.86E + 05             | 2.91E + 05            | 2.90E + 05    |
| $\rm CH_2\rm CH_3\rm CH_3$ | 1.81E + 05             | 1.81E + 05            | 1.80E + 05    |
| $CH_3F$                    | 1.74E + 05             | 1.75E + 05            | 1.75E+0.03    |
| $\rm CH_3 \rm NH_2$        | $1.39E{+}05$           | $1.39E{+}05$          | 1.39E + 05    |
| CH <sub>3</sub> OH         | 1.63E + 05             | 1.61E + 05            | 1.61E + 05    |
| $\rm CH_3 \rm CONH_2$      | 3.03E + 05             | $3.01E{+}05$          | 3.00E + 03    |
| $CH_4$                     | 6.14E + 04             | 6.00E + 04            | 5.99E + 04    |
| CO                         | $1.62\mathrm{E}{+}05$  | 1.62E + 05            | 1.62E + 0.02E |
| $\mathrm{CO}_2$            | $2.64\mathrm{E}{+05}$  | 2.62E + 05            | 2.62E + 0.02E |
| EtOTs                      | $5.34\mathrm{E}{+06}$  | 5.35E+06              | 5.35E + 0     |
| $F_2$                      | 2.27E + 05             | $2.30\mathrm{E}{+}05$ | 2.30E + 0.02  |
| $H_2$                      | 2.71E + 01             | 2.98E + 01            | 2.97E + 0     |
| $H_2CO$                    | 1.63E + 05             | $1.61\mathrm{E}{+}05$ | 1.61E + 0.02  |
| $H_2O$                     | $1.02E{+}05$           | 1.01E + 05            | 1.01E + 0.02  |
| $H_2O_2$                   | $2.02E{+}05$           | $2.02\mathrm{E}{+}05$ | 2.02E + 0.02E |
| HCOOH                      | 2.64E + 05             | 2.62E+05              | 2.62E + 0.02E |
| Li <sub>2</sub>            | $3.72E{+}04$           | $3.72\mathrm{E}{+}04$ | 3.72E + 0.02  |
| LiF                        | $1.31E{+}05$           | 1.31E + 05            | 1.31E + 0.02  |
| LiH                        | $1.84E{+}04$           | 1.84E + 04            | 1.84E + 04    |
| NH <sub>3</sub>            | 8.02E + 04             | 7.92E + 04            | 7.91E + 0.02  |
| benzaldehyde               | $5.51E{+}05$           | $5.18E{+}05$          | 5.22E + 0.02  |
| cytosine                   | 5.77E + 05             | 5.81E + 05            | 5.80E + 0.02  |
| formamidine                | 2.13E + 05             | 2.18E + 05            | 2.18E + 0.02  |
| methoxide                  | $1.62\mathrm{E}{+}05$  | $1.61\mathrm{E}{+}05$ | 1.61E + 0.02  |
| naphthalene                | $6.40 \mathrm{E}{+}05$ | 5.88E + 05            | 5.99E + 05    |
| uracil                     | $6.14\mathrm{E}{+}05$  | $6.02\mathrm{E}{+}05$ | 6.02E + 0.02E |
| MAE                        | 384,067                | 381,213               | 381,510       |

Table A.29: MAE of the potential energy calculated using MultiExp grid with 25radial points for molecules containing  $1^{st}$  row atoms

| Molecule                                        | 25(110)               | 25(194)               | 25(302)               |
|-------------------------------------------------|-----------------------|-----------------------|-----------------------|
| $\mathrm{CCl}_4$                                | 2.16E+07              | 2.17E+07              | 2.17E+07              |
| $CH_2ClCl$                                      | 1.09E + 07            | $1.09E{+}07$          | 1.09E + 07            |
| $\mathrm{CH}_{2}\mathrm{PH}_{2}\mathrm{PH}_{2}$ | 8.56E + 06            | 8.56E + 06            | 8.55E + 06            |
| $CH_2SHSH$                                      | 9.81E + 06            | 9.80E + 06            | 9.80E + 06            |
| $\mathrm{CH}_2\mathrm{SiH}_3\mathrm{SiH}_3$     | 7.64E + 06            | 7.64E + 06            | 7.64E + 06            |
| $\mathrm{CH}_{3}\mathrm{PH}_{2}$                | 4.31E + 06            | 4.31E + 06            | 4.31E + 06            |
| $CH_3SH$                                        | 4.93E + 06            | 4.93E + 06            | 4.93E + 06            |
| $\mathrm{CH}_3\mathrm{SiH}_3$                   | 3.85E + 06            | 3.85E + 06            | 3.85E + 06            |
| $CH_{3}Cl$                                      | 5.46E + 06            | 5.46E + 06            | 5.46E + 06            |
| $\mathbf{CS}$                                   | 4.93E + 06            | 4.93E + 06            | 4.93E + 06            |
| $\mathrm{Cl}_2$                                 | 1.08E + 07            | 1.08E+07              | 1.08E+07              |
| ClF                                             | $5.52\mathrm{E}{+06}$ | $5.52E{+}06$          | 5.52E + 06            |
| HOCl                                            | $5.50\mathrm{E}{+}06$ | $5.50\mathrm{E}{+06}$ | 5.50E + 06            |
| Mg                                              | 7.38E + 06            | 7.38E + 06            | 7.38E + 06            |
| $\operatorname{NaCl}$                           | 1.39E+07              | 1.39E+07              | 1.39E+07              |
| $P_2$                                           | $8.50E{+}06$          | $8.50E{+}06$          | $8.50\mathrm{E}{+}06$ |
| $\mathrm{PF}_5$                                 | 4.81E + 06            | 4.82E + 06            | 4.82E + 06            |
| PH                                              | 4.25E + 06            | 4.25E + 06            | 4.25E + 06            |
| $PH_3$                                          | 4.25E + 06            | 4.25E + 06            | 4.25E + 06            |
| $\mathrm{SF}_6$                                 | 5.55E+06              | 5.56E + 06            | $5.56\mathrm{E}{+}06$ |
| SO                                              | 4.97E + 06            | 4.97E + 06            | 4.97E + 06            |
| $SO_2$                                          | 9.85E + 06            | $9.85E{+}06$          | 9.85E + 06            |
| SiO                                             | 3.89E + 06            | $3.89E{+}06$          | 3.89E + 06            |
| $pNO_2BzCl$                                     | 6.02E + 06            | 6.12E + 06            | 6.10E + 06            |
| MAE                                             | $6,\!413,\!478$       | $6,\!397,\!826$       | 6,370,000             |

Table A.30: MAE of the potential energy calculated using MultiExp grid with 25 radial points for molecules containing  $2^{nd}$  row atoms

| radial points for molecules containing $3^{rd}$ row atoms and transition states |              |             |              |
|---------------------------------------------------------------------------------|--------------|-------------|--------------|
| Molecule                                                                        | 25(110)      | 25(194)     | 25(302)      |
| 3rd row                                                                         |              |             |              |
| $AsH_3$                                                                         | 5.72E + 07   | 5.72E + 07  | 5.72E + 07   |
| $\mathrm{CH}_3\mathrm{Br}$                                                      | 6.27E + 07   | 6.27E + 07  | 6.27E + 07   |
| ${\rm Ge_2H_6}$                                                                 | 1.07E + 08   | 1.07E + 08  | 1.07E + 08   |
| ${ m Ge_3H_8}$                                                                  | 1.60E + 08   | 1.60E + 08  | 1.60E + 08   |
| $\mathrm{Ge}_4\mathrm{H}_{10}$                                                  | 2.14E + 08   | 2.14E + 08  | 2.14E + 08   |
| $\mathrm{Ge_5H_{12}}$                                                           | 2.68E + 08   | 2.68E + 08  | 2.68E + 08   |
| ${ m GeH}_4$                                                                    | 5.34E + 07   | 5.34E + 07  | 5.34E + 07   |
| $ m H_2Se$                                                                      | $5.99E{+}07$ | 6.00E + 07  | 6.00E+07     |
| MAE                                                                             | 123,022,222  | 123,033,333 | 123,033,333  |
| transition states                                                               |              |             |              |
| $TSCH_3Cl_2$                                                                    | 1.09E+07     | 1.09E+07    | 1.09E+07     |
| $TS\_CH_3F_2$                                                                   | 2.92E + 05   | 2.89E + 05  | 2.90E + 05   |
| $TS_CH_3FCl$                                                                    | 5.58E + 06   | 5.57E + 06  | 5.58E + 06   |
| $TS\_CH_5OF$                                                                    | 2.74E + 05   | 2.76E + 05  | 2.76E + 05   |
| $TS\_Ethyl-OSO_2-CH_3$                                                          | 5.49E + 06   | 5.49E + 06  | $5.49E{+}06$ |
| TS_pHBzCl                                                                       | 5.99E + 06   | 5.96E + 06  | 5.97E + 06   |
| MAE                                                                             | 4,754,333    | 4,747,500   | 4,751,000    |

Table A.31: MAE of the potential energy calculated using MultiExp grid with 25

| Molecule               | 25(110)    | 25(194)    | 25(302)    |
|------------------------|------------|------------|------------|
| complexes              |            |            |            |
| $\rm CH_2O_2\_CH_2O_2$ | 5.31E + 05 | 5.25E + 05 | 5.24E + 05 |
| FH-CO                  | 2.78E + 05 | 2.76E + 05 | 2.76E + 05 |
| FH-FH                  | 2.31E + 05 | 2.30E + 05 | 2.30E + 05 |
| FH-NCH                 | 2.56E + 05 | 2.54E + 05 | 2.54E + 05 |
| $FH-NH_3$              | 1.99E + 05 | 1.94E + 05 | 1.94E+05   |
| FH-NN                  | 2.64E + 05 | 2.63E + 05 | 2.63E+05   |
| FH-OH <sub>2</sub>     | 2.17E + 05 | 2.16E + 05 | 2.16E + 05 |
| $H_2O-CO_2$            | 3.66E + 05 | 3.63E + 05 | 3.63E + 05 |
| $H_2O_H_2O$            | 2.02E + 05 | 2.02E + 05 | 2.02E + 05 |
| MAE                    | 282,667    | 280,333    | 280,222    |
| ions                   |            |            |            |
| $ArNH_3^+$             | 4.62E + 05 | 4.31E + 05 | 4.39E + 05 |
| $\rm H_3O^+$           | 1.02E + 05 | 1.01E + 05 | 1.01E+05   |
| HCOO-                  | 2.63E + 05 | 2.62E + 05 | 2.62E + 05 |
| $\rm NH_3^+CH_2COO^-$  | 3.99E + 05 | 4.01E + 05 | 4.01E + 05 |
| MAE                    | 306,500    | 298,750    | 300,750    |
| peptides               |            |            |            |
| 1G_pep                 | 4.01E + 05 | 4.02E + 05 | 4.02E + 05 |
| $2G_{-}pep$            | 6.96E + 05 | 7.04E + 05 | 7.02E + 05 |
| 3G_pep                 | 9.90E + 05 | 1.01E + 06 | 1.01E + 06 |
| 4G_pep                 | 1.30E + 06 | 1.31E + 06 | 1.31E + 06 |
| 5G_pep                 | 1.66E + 06 | 1.60E + 06 | 1.61E + 06 |
| MAE                    | 1,009,400  | 1,005,200  | 1,006,800  |

Table A.32: MAE of the potential energy calculated using MultiExp grid with 25 radial points for complexes, ions, and peptides

| Molecule               | 30(110)              | 30(194)              | 30(194)     |
|------------------------|----------------------|----------------------|-------------|
| BF3                    | 2.0E + 05            | $2.0E{+}05$          | 2.0E+05     |
| $BH_3$                 | $2.1E{+}04$          | $2.1E{+}04$          | 2.1E + 04   |
| $BeH_2$                | $1.5E{+}04$          | $1.5E{+}04$          | $1.5E{+}04$ |
| $C_2H_2$               | 5.7E + 04            | 5.7E + 04            | $5.7E{+}04$ |
| $C_2H_4$               | $6.1E{+}04$          | $5.8E{+}04$          | 5.7E + 04   |
| $CF_4$                 | 2.6E + 05            | 2.7E + 05            | 2.7E+05     |
| CH <sub>2</sub> CHCOOH | $1.9E{+}05$          | $1.8E{+}05$          | $1.8E{+}05$ |
| $CH_2FF$               | 1.4E+05              | $1.5\mathrm{E}{+}05$ | 1.5E+05     |
| $\rm CH_2 CH_3 CH_3$   | $8.6E{+}04$          | 8.7E + 04            | $8.6E{+}04$ |
| $CH_3F$                | 8.7E + 04            | $8.8E{+}04$          | 8.8E+04     |
| $CH_3NH_2$             | $6.6E{+}04$          | 6.6E + 04            | $6.6E{+}04$ |
| CH <sub>3</sub> OH     | 7.8E + 04            | 7.6E + 04            | $7.6E{+}04$ |
| $\rm CH_3 \rm CONH_2$  | 1.4E+05              | 1.4E + 05            | $1.4E{+}05$ |
| $CH_4$                 | $3.0E{+}04$          | $2.9\mathrm{E}{+}04$ | $2.9E{+}04$ |
| CO                     | 7.8E + 04            | 7.7E + 04            | 7.7E+04     |
| $\rm CO_2$             | 1.3E + 05            | $1.2E{+}05$          | 1.2E + 05   |
| EtOTs                  | 2.6E + 06            | 2.6E + 06            | 2.6E + 06   |
| $F_2$                  | $1.2E{+}05$          | 1.2E + 05            | $1.2E{+}05$ |
| $H_2$                  | $1.8E{+}01$          | $2.0E{+}01$          | 2.0E+01     |
| $H_2CO$                | $7.8E{+}04$          | $7.6\mathrm{E}{+}04$ | 7.6E + 04   |
| $H_2O$                 | $4.9E{+}04$          | 4.8E + 04            | 4.8E + 04   |
| $H_2O_2$               | 9.5E + 04            | 9.5E + 04            | 9.5E + 04   |
| НСООН                  | 1.3E + 05            | 1.2E + 05            | 1.2E + 05   |
| $Li_2$                 | 2.4E + 04            | 2.4E + 04            | $2.4E{+}04$ |
| LiF                    | $6.9\mathrm{E}{+}04$ | $6.9E{+}04$          | $6.9E{+}04$ |
| LiH                    | $1.2E{+}04$          | 1.2E + 04            | $1.2E{+}04$ |
| $\rm NH_3$             | 3.9E + 04            | $3.8E{+}04$          | 3.7E + 04   |
| benzaldehyde           | 2.8E + 05            | $2.4E{+}05$          | 2.5E + 05   |
| cytosine               | 2.7E + 05            | 2.8E + 05            | 2.7E + 05   |
| formamidine            | $9.9E{+}04$          | $1.0E{+}05$          | 1.0E + 05   |
| methoxide              | 7.7E + 04            | 7.6E + 04            | 7.6E + 04   |
| naphthalene            | 3.2E + 05            | 2.7E + 05            | $2.8E{+}05$ |
| uracil                 | $3.0E{+}05$          | $2.9E{+}05$          | 2.8E + 05   |
| MAE                    | 187,498              | $184,\!685$          | 184,919     |

Table A.33: MAE of the potential energy calculated using MultiExp grid with 30 radial points for molecules containing 1<sup>st</sup> row atoms

| Molecule                                        | 30(110)     | 30(194)         | 30(194)  |
|-------------------------------------------------|-------------|-----------------|----------|
| $\mathrm{CCl}_4$                                | 1.1E+07     | 1.1E+07         | 1.1E+0   |
| CH <sub>2</sub> ClCl                            | $5.5E{+}06$ | 5.5E + 06       | 5.5E + 0 |
| $\mathrm{CH}_{2}\mathrm{PH}_{2}\mathrm{PH}_{2}$ | 4.0E + 06   | 4.0E + 06       | 4.0E+0   |
| $CH_2SHSH$                                      | 4.8E + 06   | 4.8E+06         | 4.8E+0   |
| $\mathrm{CH}_2\mathrm{SiH}_3\mathrm{SiH}_3$     | $3.9E{+}06$ | 3.9E + 06       | 3.9E+0   |
| $CH_3PH_2$                                      | 2.0E + 06   | 2.0E + 06       | 2.0E+0   |
| $CH_3SH$                                        | 2.4E + 06   | 2.4E + 06       | 2.4E+0   |
| $\mathrm{CH}_3\mathrm{SiH}_3$                   | $1.9E{+}06$ | 1.9E+06         | 1.9E+0   |
| CH <sub>3</sub> Cl                              | 2.8E + 06   | 2.8E + 06       | 2.8E+0   |
| CS                                              | 2.4E + 06   | 2.4E + 06       | 2.4E + 0 |
| $Cl_2$                                          | 5.5E + 06   | 5.5E + 06       | 5.5E+0   |
| ClF                                             | 2.8E + 06   | 2.8E + 06       | 2.8E+0   |
| HOCl                                            | 2.8E + 06   | 2.8E + 06       | 2.8E+0   |
| Mg                                              | 3.2E + 06   | 3.2E + 06       | 3.2E+0   |
| NaCl                                            | 6.7E + 06   | 6.7E + 06       | 6.7E + 0 |
| $P_2$                                           | 4.0E + 06   | 4.0E + 06       | 4.0E + 0 |
| $PF_5$                                          | 2.3E + 06   | 2.3E + 06       | 2.3E+0   |
| РН                                              | $2.0E{+}06$ | $2.0E{+}06$     | 2.0E+0   |
| $SF_6$                                          | $2.7E{+}06$ | 2.7E + 06       | 2.7E+0   |
| SO                                              | 2.4E + 06   | 2.4E + 06       | 2.4E+0   |
| $SO_2$                                          | 4.8E + 06   | 4.8E + 06       | 4.8E + 0 |
| SiO                                             | 2.0E + 06   | 2.0E + 06       | 2.0E + 0 |
| $pNO_2BzCl$                                     | 3.0E + 06   | 3.1E + 06       | 3.1E+0   |
| MAE                                             | 3,688,696   | $3,\!692,\!174$ | 3,691,30 |

Table A.34: MAE of the potential energy calculated using MultiExp grid with 30 radial points for molecules containing  $2^{nd}$  row atoms

| Molecule                         | 30(110)         | 30(194)         | 30(194)         |
|----------------------------------|-----------------|-----------------|-----------------|
| 3rd row                          |                 |                 |                 |
| $AsH_3$                          | 5.7E + 07       | 5.7E + 07       | 5.7E + 07       |
| $\mathrm{CH}_3\mathrm{Br}$       | 6.3E + 07       | 6.3E + 07       | 6.3E + 07       |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$  | 1.1E + 08       | 1.1E + 08       | 1.1E + 08       |
| ${ m Ge_3H_8}$                   | 1.6E + 08       | 1.6E + 08       | 1.6E + 08       |
| $\mathrm{Ge}_4\mathrm{H}_{10}$   | 2.1E + 08       | 2.1E + 08       | 2.1E + 08       |
| $\mathrm{Ge}_{5}\mathrm{H}_{12}$ | 2.7E + 08       | 2.7E + 08       | 2.7E + 08       |
| ${ m GeH_4}$                     | 5.3E + 07       | 5.3E + 07       | 5.3E + 07       |
| $\rm H_2Se$                      | 6.0E + 07       | 6.0E + 07       | 6.0E + 07       |
| MAE                              | 131,500,000     | 131,500,000     | 131,500,000     |
| transition states                |                 |                 |                 |
| $TSCH_3Cl_2$                     | 5.6E + 06       | 5.5E + 06       | 5.5E + 06       |
| $TS_CH_3F_2$                     | 1.5E + 05       | 1.5E+05         | 1.5E+05         |
| TS_CH <sub>3</sub> FCl           | 2.9E + 06       | 2.8E + 06       | 2.8E + 06       |
| $TSCH_5OF$                       | 1.3E+05         | 1.4E + 05       | 1.4E+05         |
| $TS\_Ethyl-OSO_2-CH_3$           | 2.7E + 06       | 2.7E + 06       | 2.7E + 06       |
| $TS_pHBzCl$                      | $3.0E{+}06$     | 3.0E + 06       | 3.0E + 06       |
| MAE                              | $2,\!397,\!333$ | $2,\!391,\!833$ | $2,\!392,\!167$ |

Table A.35: MAE of the potential energy calculated using MultiExp grid with 30 radial points for molecules containing  $3^{rd}$  row atoms and transition states

| Molecule                          | 30(110)              | 30(194)     | 30(194)     |
|-----------------------------------|----------------------|-------------|-------------|
| complexes                         |                      |             |             |
| $\rm CH_2O_2\_CH_2O_2$            | 2.5E + 05            | $2.5E{+}05$ | 2.5E + 05   |
| FH-CO                             | 1.4E + 05            | 1.4E + 05   | 1.4E + 05   |
| FH-FH                             | $1.2E{+}05$          | 1.2E + 05   | 1.2E + 05   |
| FH-NCH                            | $1.3E{+}05$          | 1.3E + 05   | 1.3E + 05   |
| FH-NH <sub>3</sub>                | 1.0E + 05            | $9.7E{+}04$ | 9.7E + 04   |
| FH-NN                             | 1.4E + 05            | 1.4E + 05   | 1.4E + 05   |
| $\mathrm{FH}	ext{-}\mathrm{OH}_2$ | $1.1E{+}05$          | 1.1E + 05   | 1.1E + 05   |
| $H_2O-CO_2$                       | 1.8E + 05            | $1.7E{+}05$ | 1.7E + 05   |
| $H_2O_H_2O$                       | 9.6E + 04            | 9.6E + 04   | 9.5E + 04   |
| MAE                               | 139,856              | 137,589     | $137,\!467$ |
| ions                              |                      |             |             |
| $ArNH_3^+$                        | 2.3E + 05            | 2.0E + 05   | 2.1E + 05   |
| $H_3O^+$                          | $4.9E{+}04$          | 4.8E + 04   | 4.8E+04     |
| HCOO-                             | $1.3E{+}05$          | 1.2E + 05   | 1.2E + 05   |
| $\rm NH_3^+CH_2COO^-$             | $1.9\mathrm{E}{+}05$ | $1.9E{+}05$ | 1.9E+05     |
| MAE                               | 148,025              | 140,400     | $142,\!375$ |
| peptides                          |                      |             |             |
| 1G_pep                            | $1.9E{+}05$          | $1.9E{+}05$ | 1.9E+05     |
| $2G_{-}pep$                       | $3.2E{+}05$          | 3.3E + 05   | 3.3E + 05   |
| 3G_pep                            | 4.6E + 05            | 4.8E + 05   | 4.8E+05     |
| $4G_{pep}$                        | 6.0E + 05            | $6.2E{+}05$ | 6.2E + 05   |
| $5 G_{-} pep$                     | 8.1E + 05            | 7.5E + 05   | 7.6E + 05   |
| MAE                               | 476,400              | 473,400     | 474,800     |

 Table A.36: MAE of the potential energy calculated using MultiExp grid with 30

 radial points for complexes, ions, and peptides

| Molecule                      | 20(110)         | 20(194)         | 20(302)         |
|-------------------------------|-----------------|-----------------|-----------------|
| BF <sub>3</sub>               | -2.7E+06        | -2.6E+06        | -2.5E+06        |
| BH <sub>3</sub>               | -3.1E+05        | -3.1E+05        | -3.1E+05        |
| BeH <sub>2</sub>              | -2.4E+05        | -2.4E+05        | -2.4E+05        |
| C <sub>2</sub> H <sub>2</sub> | -7.1E+05        | -7.1E+05        | -7.0E+05        |
| C₂H₄                          | -7.8E+05        | -7.7E + 05      | -7.7E + 05      |
| CF <sub>4</sub>               | -3.5E+06        | -3.4E + 06      | -3.3E+06        |
| CH <sub>2</sub> CHCOOH        | -2.4E+06        | -2.4E+06        | -2.4E+06        |
| $CH_2FF$                      | -2.0E+06        | -1.9E+06        | -1.9E+06        |
| $CH_2CH_3CH_3$                | -1.2E+06        | -1.2E+06        | -1.2E+06        |
| $CH_3F$                       | -1.2E+06        | -1.1E+06        | -1.1E + 06      |
| $CH_3NH_2$                    | -8.9E+05        | -8.9E+05        | -8.8E+05        |
| $CH_{3}OH$                    | -1.0E+06        | -1.0E+06        | -9.9E+05        |
| $\rm CH_3 \rm CONH_2$         | -1.8E+06        | -1.8E+06        | -1.8E+06        |
| $\mathrm{CH}_4$               | -4.0E + 05      | -3.9E + 05      | -3.9E+05        |
| СО                            | -1.0E + 06      | -9.8E + 05      | -9.7E + 05      |
| $\mathrm{CO}_2$               | -1.6E + 06      | -1.6E + 06      | -1.6E + 06      |
| EtOTs                         | -8.6E + 06      | -8.6E + 06      | -8.5E+06        |
| $F_2$                         | -1.5E+06        | -1.5E + 06      | -1.5E+06        |
| $H_2$                         | -9.2E+03        | -7.8E + 03      | -8.2E+03        |
| $H_2CO$                       | -1.0E+06        | -1.0E + 06      | -9.8E+05        |
| $H_2O$                        | -6.2E + 05      | -6.0E + 05      | -6.0E+05        |
| $H_2O_2$                      | -1.2E+06        | -1.2E + 06      | -1.2E+06        |
| НСООН                         | -1.6E+06        | -1.6E + 06      | -1.6E+06        |
| $Li_2$                        | -3.5E+05        | -3.5E+05        | -3.5E+05        |
| LiF                           | -9.5E+05        | -9.3E+05        | -9.1E+05        |
| LiH                           | -1.8E+05        | -1.8E+05        | -1.8E+05        |
| $ m NH_3$                     | -5.0E + 05      | -4.9E + 05      | -4.9E+05        |
| benzaldehyde                  | -3.3E+06        | -3.3E+06        | -3.3E + 06      |
| cytosine                      | -3.7E + 06      | -3.7E + 06      | -3.6E+06        |
| formamidine                   | -1.4E + 06      | -1.4E+06        | -1.4E+06        |
| methoxide                     | -1.0E+06        | -1.0E+06        | -1.0E+06        |
| naphthalene                   | -3.9E + 06      | -3.8E+06        | -3.8E+06        |
| uracil                        | -3.9E+06        | -3.8E+06        | -3.7E + 06      |
| MAE                           | $1,\!682,\!068$ | $1,\!658,\!662$ | $1,\!637,\!432$ |

Table A.37: MAE of the Coulomb potential energy  $V_{ee}^1$  calculated using MultiExp grid with 20 radial points

| Molecule                                        | 20(110)         | 20(194)    | 20(302)    |
|-------------------------------------------------|-----------------|------------|------------|
| CCl <sub>4</sub>                                | -2.5E+07        | -2.5E+07   | -2.5E+07   |
| $CH_2ClCl$                                      | -1.3E+07        | -1.3E+07   | -1.3E+07   |
| $\mathrm{CH}_{2}\mathrm{PH}_{2}\mathrm{PH}_{2}$ | -1.1E+07        | -1.0E+07   | -1.0E+07   |
| $\rm CH_2SHSH$                                  | -1.2E+07        | -1.2E+07   | -1.2E+07   |
| $\mathrm{CH}_2\mathrm{SiH}_3\mathrm{SiH}_3$     | -9.6E+06        | -9.6E+06   | -9.5E+06   |
| $CH_3PH_2$                                      | -5.4E + 06      | -5.4E + 06 | -5.4E+06   |
| $\rm CH_3SH$                                    | -6.0E+06        | -6.0E + 06 | -5.9E+06   |
| $ m CH_3SiH_3$                                  | -5.0E+06        | -5.0E + 06 | -5.0E+06   |
| $\mathrm{CH}_{3}\mathrm{Cl}$                    | -6.5E + 06      | -6.5E + 06 | -6.5E+06   |
| CS                                              | -6.0E+06        | -5.9E + 06 | -5.9E+06   |
| $\mathrm{Cl}_2$                                 | -1.2E+07        | -1.2E+07   | -1.2E+07   |
| ClF                                             | -6.9E + 06      | -6.9E + 06 | -6.8E+06   |
| HOCl                                            | -6.7E+06        | -6.7E + 06 | -6.7E+06   |
| Mg                                              | -5.1E + 06      | -5.1E + 06 | -5.1E + 06 |
| NaCl                                            | -1.1E+07        | -1.1E+07   | -1.1E+07   |
| $P_2$                                           | -1.0E+07        | -1.0E+07   | -1.0E+07   |
| $\mathrm{PF}_5$                                 | -8.9E+06        | -8.8E+06   | -8.7E+06   |
| PH                                              | -5.0E + 06      | -5.0E + 06 | -5.0E+06   |
| $PH_3$                                          | -5.0E + 06      | -5.0E + 06 | -5.0E+06   |
| ${ m SF}_6$                                     | -1.0E+07        | -1.0E+07   | -9.9E+06   |
| SO                                              | -6.2E + 06      | -6.2E + 06 | -6.2E+06   |
| $\mathrm{SO}_2$                                 | -1.2E+07        | -1.2E+07   | -1.2E+07   |
| SiO                                             | -5.2E + 06      | -5.2E + 06 | -5.2E+06   |
| $pNO_2BzCl$                                     | -1.1E+07        | -1.1E+07   | -1.1E+07   |
| MAE                                             | $8,\!675,\!862$ | 8,635,517  | 8,617,931  |

Table A.38: MAE of the Coulomb potential energy  $V_{ee}^1$  calculated using MultiExp grid with 20 radial points

| Molecule                         | 20(110)         | 20(194)          | 20(302)    |
|----------------------------------|-----------------|------------------|------------|
| 3rd row                          |                 |                  |            |
| $AsH_3$                          | -2.1E+07        | -2.1E+07         | -2.1E+07   |
| CH <sub>3</sub> Br               | -2.4E+07        | -2.4E+07         | -2.4E+07   |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$  | -3.8E+07        | -3.8E+07         | -3.8E+07   |
| $\mathrm{Ge}_{3}\mathrm{H}_{8}$  | -5.7E+07        | -5.7E + 07       | -5.7E+07   |
| $\mathrm{Ge}_4\mathrm{H}_{10}$   | -7.7E+07        | -7.6E+07         | -7.6E+07   |
| $\mathrm{Ge}_{5}\mathrm{H}_{12}$ | -9.6E+07        | -9.6E + 07       | -9.5E+07   |
| ${ m GeH}_4$                     | -1.9E+07        | -1.9E+07         | -1.9E+07   |
| $H_2Se$                          | -2.2E+07        | -2.2E+07         | -2.2E+07   |
| MAE                              | 44,688,889      | $44,\!555,\!556$ | 44,444,444 |
| transition states                |                 |                  |            |
| $TS_CH_3Cl_2$                    | -1.3E+07        | -1.3E+07         | -1.3E+07   |
| $TS\_CH_3F_2$                    | -2.0E+06        | -1.9E+06         | -1.9E+06   |
| TS_CH <sub>3</sub> FCl           | -7.3E + 06      | -7.3E+06         | -7.2E+06   |
| $TS_{-}CH_{5}OF$                 | -1.8E+06        | -1.8E+06         | -1.7E+06   |
| $TS\_Ethyl-OSO_2-CH_3$           | -9.6E + 06      | -9.5E+06         | -9.4E + 06 |
| TS_pHBzCl                        | -9.9E+06        | -9.7E+06         | -9.7E+06   |
| MAE                              | $7,\!201,\!667$ | 7,125,000        | 7,086,667  |

Table A.39: MAE of the Coulomb potential energy  $V^1_{ee}$  calculated using MultiExp

| Molecule               | 20(110)    | 20(194)         | 20(302)         |
|------------------------|------------|-----------------|-----------------|
| complexes              |            |                 |                 |
| $\rm CH_2O_2\_CH_2O_2$ | -3.2E+06   | -3.2E+06        | -3.1E+06        |
| FH-CO                  | -1.8E+06   | -1.7E+06        | -1.7E+06        |
| FH-FH                  | -1.5E+06   | -1.5E+06        | -1.5E+06        |
| FH-NCH                 | -1.6E+06   | -1.6E+06        | -1.6E+06        |
| $FH-NH_3$              | -1.3E+06   | -1.3E+06        | -1.2E+06        |
| FH-NN                  | -1.6E+06   | -1.6E+06        | -1.5E+06        |
| $FH-OH_2$              | -1.4E+06   | -1.4E+06        | -1.3E+06        |
| $H_2O-CO_2$            | -2.3E+06   | -2.2E+06        | -2.2E+06        |
| $H_2O_H_2O$            | -1.2E+06   | -1.2E+06        | -1.2E+06        |
| MAE                    | 1,772,222  | 1,732,222       | 1,711,111       |
| ions                   |            |                 |                 |
| $ArNH_3^+$             | -2.8E+06   | -2.8E+06        | -2.8E+06        |
| $H_3O^+$               | -6.1E + 05 | -6.0E+05        | -6.0E+05        |
| HCOO-                  | -1.7E+06   | -1.6E+06        | -1.6E+06        |
| $\rm NH_3^+CH_2COO^-$  | -2.5E+06   | -2.5E+06        | -2.5E+06        |
| MAE                    | 1,905,750  | 1,885,500       | 1,858,750       |
| peptides               |            |                 |                 |
| $1 \mathrm{G_{-}pep}$  | -2.5E+06   | -2.5E+06        | -2.5E+06        |
| 2G_pep                 | -4.5E+06   | -4.4E+06        | -4.3E+06        |
| 3G_pep                 | -6.4E+06   | -6.3E+06        | -6.2E+06        |
| $4G_{-}pep$            | -8.3E+06   | -8.2E + 06      | -8.1E+06        |
| 5G_pep                 | -1.0E+07   | -1.0E+07        | -9.9E+06        |
| MAE                    | 6,390,000  | $6,\!272,\!000$ | $6,\!194,\!000$ |

Table A.40: MAE of the Coulomb potential energy  $V_{ee}^1$  calculated using MultiExp grid with 20 radial points for complexes, ions, and peptides

| Molecule               | 25(110)    | 25(194)    | 25(302)    |
|------------------------|------------|------------|------------|
| BF <sub>3</sub>        | -1.8E+06   | -1.7E+06   | -1.6E+06   |
| $BH_3$                 | -2.0E+05   | -2.0E + 05 | -2.0E+05   |
| $\mathrm{BeH}_2$       | -1.5E+05   | -1.5E + 05 | -1.5E+05   |
| $C_2H_2$               | -5.1E + 05 | -5.0E + 05 | -5.0E + 05 |
| $C_2H_4$               | -5.2E + 05 | -5.1E + 05 | -5.1E+05   |
| $\mathrm{CF}_4$        | -2.3E+06   | -2.3E+06   | -2.2E+06   |
| CH <sub>2</sub> CHCOOH | -1.7E + 06 | -1.6E + 06 | -1.6E+06   |
| $CH_2FF$               | -1.3E+06   | -1.3E+06   | -1.2E+06   |
| $\rm CH_2 CH_3 CH_3$   | -7.9E + 05 | -7.8E + 05 | -7.7E+05   |
| $CH_3F$                | -7.8E+05   | -7.6E + 05 | -7.4E + 05 |
| $CH_3NH_2$             | -6.0E+05   | -5.9E + 05 | -5.8E + 05 |
| CH <sub>3</sub> OH     | -6.9E + 05 | -6.8E + 05 | -6.6E + 05 |
| $CH_3CONH_2$           | -1.3E+06   | -1.3E+06   | -1.2E+06   |
| $CH_4$                 | -2.7E + 05 | -2.6E + 05 | -2.6E + 05 |
| CO                     | -6.8E + 05 | -6.7E + 05 | -6.5E + 05 |
| $\rm CO_2$             | -1.1E+06   | -1.1E+06   | -1.1E+06   |
| EtOTs                  | -6.1E + 06 | -6.0E + 06 | -6.0E + 06 |
| $F_2$                  | -1.0E+06   | -9.9E + 05 | -9.4E+05   |
| $H_2$                  | -6.1E + 03 | -6.4E + 03 | -5.6E+03   |
| $H_2CO$                | -6.8E + 05 | -6.7E + 05 | -6.6E + 05 |
| $H_2O$                 | -4.2E + 05 | -4.1E + 05 | -4.0E+05   |
| $H_2O_2$               | -8.4E+05   | -8.2E+05   | -8.0E + 05 |
| НСООН                  | -1.1E+06   | -1.1E + 06 | -1.1E+06   |
| $Li_2$                 | -2.1E + 05 | -2.1E + 05 | -2.1E + 05 |
| LiF                    | -6.3E + 05 | -6.1E + 05 | -5.9E+05   |
| LiH                    | -1.1E+05   | -1.1E + 05 | -1.1E+05   |
| $\rm NH_3$             | -3.4E+05   | -3.3E + 05 | -3.3E+05   |
| benzaldehyde           | -2.3E+06   | -2.2E+06   | -2.2E+06   |
| cytosine               | -2.5E+06   | -2.5E+06   | -2.4E+06   |
| formamidine            | -9.3E + 05 | -9.2E + 05 | -9.0E+05   |
| methoxide              | -6.9E + 05 | -6.8E + 05 | -6.6E + 05 |
| naphthalene            | -2.6E + 06 | -2.5E+06   | -2.5E+06   |
| uracil                 | -2.6E + 06 | -2.5E+06   | -2.5E+06   |
| MAE                    | 1.140.307  | 1.118.072  | 1.095.049  |

Table A.41: MAE of the Coulomb potential energy  $V_{ee}^1$  calculated using MultiExp grid with 25 radial points

| Silu with 20 radia p                            | 01105      |              | -         |
|-------------------------------------------------|------------|--------------|-----------|
| Molecule                                        | 25(110)    | 25(194)      | 25(302)   |
| CCl <sub>4</sub>                                | -1.8E+07   | -1.8E+07     | -1.8E+07  |
| $\rm CH_2 ClCl$                                 | -9.0E+06   | -8.9E+06     | -8.9E+06  |
| $\mathrm{CH}_{2}\mathrm{PH}_{2}\mathrm{PH}_{2}$ | -7.5E+06   | -7.4E+06     | -7.4E+06  |
| $\rm CH_2SHSH$                                  | -8.3E+06   | -8.2E+06     | -8.2E+06  |
| $\mathrm{CH}_2\mathrm{SiH}_3\mathrm{SiH}_3$     | -6.8E+06   | -6.8E+06     | -6.8E+06  |
| $\rm CH_3PH_2$                                  | -3.9E+06   | $-3.9E{+}06$ | -3.8E+06  |
| $CH_3SH$                                        | -4.2E+06   | -4.2E+06     | -4.2E+06  |
| $\mathrm{CH}_3\mathrm{SiH}_3$                   | -3.5E+06   | -3.5E+06     | -3.5E+06  |
| CH <sub>3</sub> Cl                              | -4.6E+06   | -4.6E+06     | -4.6E+06  |
| CS                                              | -4.3E+06   | -4.2E+06     | -4.2E+06  |
| $\mathrm{Cl}_2$                                 | -8.7E+06   | -8.7E + 06   | -8.7E+06  |
| ClF                                             | -4.9E+06   | -4.8E + 06   | -4.8E+06  |
| HOCl                                            | -4.8E+06   | -4.8E+06     | -4.7E+06  |
| Mg                                              | -3.8E+06   | -3.8E+06     | -3.8E+06  |
| NaCl                                            | -8.1E+06   | -8.1E + 06   | -8.1E+06  |
| $\mathbf{P}_2$                                  | -7.2E + 06 | -7.2E + 06   | -7.2E+06  |
| $\mathrm{PF}_5$                                 | -6.2E+06   | -6.1E+06     | -6.0E+06  |
| PH                                              | -3.6E+06   | -3.6E+06     | -3.6E+06  |
| $SF_6$                                          | -7.0E+06   | -7.0E + 06   | -6.8E+06  |
| SO                                              | -4.4E+06   | -4.4E + 06   | -4.4E+06  |
| $\mathrm{SO}_2$                                 | -8.4E+06   | -8.4E + 06   | -8.3E+06  |
| SiO                                             | -3.7E + 06 | -3.7E + 06   | -3.7E+06  |
| $pNO_2BzCl$                                     | -7.3E + 06 | -7.3E+06     | -7.3E+06  |
| MAE                                             | 6,413,478  | 6,397,826    | 6,370,000 |
|                                                 |            |              |           |

Table A.42: MAE of the Coulomb potential energy  $V_{ee}^1$  calculated using MultiExpgrid with 25 radial points

| griu with 25 faular points to    | i molecules containing 5 | Tow atoms and transiti | on states        |
|----------------------------------|--------------------------|------------------------|------------------|
| Molecule                         | 25(110)                  | 25(194)                | 25(302)          |
| 3rd row                          |                          |                        |                  |
| $AsH_3$                          | -2.0E+07                 | -2.0E+07               | -2.0E+07         |
| $ m CH_3Br$                      | -2.2E+07                 | -2.2E+07               | -2.2E+07         |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$  | -3.7E+07                 | -3.7E+07               | -3.7E+07         |
| ${ m Ge_3H_8}$                   | -5.5E+07                 | -5.6E+07               | -5.6E+07         |
| $\mathrm{Ge}_4\mathrm{H}_{10}$   | -7.3E+07                 | -7.4E+07               | -7.4E+07         |
| $\mathrm{Ge}_{5}\mathrm{H}_{12}$ | -9.3E+07                 | -9.3E+07               | -9.3E+07         |
| ${ m GeH}_4$                     | -1.9E+07                 | -1.9E+07               | -1.9E+07         |
| $\rm H_2Se$                      | -2.0E+07                 | $-2.0E{+}07$           | -2.0E+07         |
| MAE                              | 42,333,333               | 42,477,778             | $42,\!444,\!444$ |
| transition states                |                          |                        |                  |
| $TSCH_3Cl_2$                     | -9.0E+06                 | $-9.0E{+}06$           | -8.9E+06         |
| $TS_CH_3F_2$                     | -1.3E+06                 | -1.3E+06               | -1.2E+06         |
| $TSCH_3FCl$                      | -5.2E+06                 | -5.1E + 06             | -5.1E+06         |
| $TS\_CH_5OF$                     | -1.2E+06                 | -1.2E+06               | -1.1E+06         |
| $TS\_Ethyl-OSO_2-CH_3$           | -6.7E + 06               | -6.6E + 06             | -6.5E + 06       |
| TS_pHBzCl                        | -6.8E + 06               | -6.8E+06               | -6.7E + 06       |
| MAE                              | 5,035,000                | $4,\!985,\!000$        | $4,\!935,\!000$  |

Table A.43: MAE of the Coulomb potential energy  $V_{ee}^1$  calculated using MultiExp grid with 25 radial points for molecules containing  $3^{rd}$  row atoms and transition states

| Molecule               | 25(110)         | 25(194)         | 25(302)         |
|------------------------|-----------------|-----------------|-----------------|
| complexes              |                 |                 |                 |
| $\rm CH_2O_2\_CH_2O_2$ | -2.2E+06        | -2.2E+06        | -2.1E+06        |
| FH-CO                  | -1.2E+06        | -1.2E+06        | -1.1E+06        |
| FH-FH                  | -1.0E+06        | -1.0E + 06      | -9.6E + 05      |
| FH-NCH                 | -1.1E+06        | -1.1E + 06      | -1.0E+06        |
| $FH-NH_3$              | -8.6E+05        | -8.3E + 05      | -8.1E+05        |
| FH-NN                  | 2.1E + 05       | -5.1E + 05      | -8.0E+05        |
| FH-OH <sub>2</sub>     | -9.4E+05        | -9.1E + 05      | -8.8E+05        |
| $H_2O-CO_2$            | -1.5E+06        | -1.5E+06        | -1.5E+06        |
| $H_2O_H2_2O$           | -8.4E+05        | -8.3E+05        | -8.0E+05        |
| MAE                    | $1,\!100,\!778$ | $1,\!108,\!444$ | 1,110,667       |
| ions                   |                 |                 |                 |
| $ArNH_3^+$             | -1.9E+06        | -1.9E + 06      | -1.9E+06        |
| $\rm H_3O^+$           | -4.2E+05        | -4.1E + 05      | -4.0E+05        |
| HCOO-                  | -1.1E+06        | -1.1E + 06      | -1.1E+06        |
| $\rm NH_3^+CH_2COO^-$  | -1.7E+06        | -1.7E + 06      | -1.7E+06        |
| MAE                    | $1,\!293,\!750$ | 1,269,000       | 1,242,000       |
| peptides               |                 |                 |                 |
| 1G_pep                 | -1.7E+06        | -1.7E + 06      | -1.6E+06        |
| $2\mathrm{G_{-}pep}$   | -3.0E + 06      | -3.0E + 06      | -2.9E+06        |
| $3G_{-}pep$            | -4.3E+06        | -4.2E+06        | -4.1E+06        |
| 4G_pep                 | -5.6E + 06      | -5.5E+06        | -5.4E + 06      |
| $5G_{-}pep$            | -7.0E+06        | -6.8E+06        | -6.6E+06        |
| MAE                    | 4,318,000       | 4,224,000       | $4,\!126,\!000$ |

Table A.44: MAE of the Coulomb potential energy  $V_{ee}^1$  calculated using MultiExp grid with 25 radial points for complexes, ions, and peptides

| Molecule                   | 30(110)    | 30(194)    | 30(194)    |
|----------------------------|------------|------------|------------|
| BF <sub>3</sub>            | -1.3E+06   | -1.3E+06   | -1.3E+06   |
| $BH_3$                     | -1.5E + 05 | -1.5E+05   | -1.5E+05   |
| $\mathrm{BeH}_2$           | -1.1E+05   | -1.1E + 05 | -1.1E + 05 |
| $C_2H_2$                   | -3.6E + 05 | -3.7E + 05 | -3.6E + 05 |
| $C_2H_4$                   | -3.7E + 05 | -3.8E + 05 | -3.7E+05   |
| $\mathrm{CF}_4$            | -1.7E+06   | -1.7E + 06 | -1.7E + 06 |
| $CH_2CHCOOH$               | -1.2E+06   | -1.2E + 06 | -1.2E+06   |
| $CH_2FF$                   | -9.7E + 05 | -9.6E + 05 | -9.3E+05   |
| $\rm CH_2\rm CH_3\rm CH_3$ | -5.6E + 05 | -5.8E + 05 | -5.6E + 05 |
| $CH_3F$                    | -5.8E+05   | -5.8E + 05 | -5.6E + 05 |
| $CH_3NH_2$                 | -4.2E+05   | -4.3E + 05 | -4.3E+05   |
| $\rm CH_3OH$               | -5.0E + 05 | -5.0E + 05 | -4.9E+05   |
| $\rm CH_3 \rm CONH_2$      | -9.4E + 05 | -9.3E + 05 | -9.1E + 05 |
| $\mathrm{CH}_4$            | -2.0E + 05 | -1.9E + 05 | -1.9E+05   |
| CO                         | -4.9E + 05 | -4.9E + 05 | -4.8E+05   |
| $\rm CO_2$                 | -8.0E + 05 | -8.0E + 05 | -7.8E+05   |
| EtOTs                      | -4.1E + 06 | -4.1E + 06 | -4.1E+06   |
| $F_2$                      | -7.6E + 05 | -7.6E + 05 | -7.3E+05   |
| $H_2$                      | -4.5E+03   | -4.5E+03   | -4.2E+03   |
| $H_2CO$                    | -5.0E + 05 | -5.0E + 05 | -4.8E+05   |
| $H_2O$                     | -2.0E+05   | -2.2E+05   | -2.7E+05   |
| $H_2O_2$                   | -6.1E + 05 | -6.1E + 05 | -5.9E + 05 |
| HCOOH                      | -8.1E + 05 | -8.0E+05   | -7.8E+05   |
| $Li_2$                     | -1.7E + 05 | -1.7E + 05 | -1.7E+05   |
| LiF                        | -4.7E + 05 | -4.7E + 05 | -4.5E+05   |
| LiH                        | -8.7E + 04 | -8.6E + 04 | -8.6E+04   |
| $ m NH_3$                  | -2.5E + 05 | -2.5E+05   | -2.4E+05   |
| benzaldehyde               | -1.7E+06   | -1.6E + 06 | -1.6E+06   |
| cytosine                   | -1.8E+06   | -1.8E+06   | -1.8E+06   |
| formamidine                | -6.8E + 05 | -6.8E + 05 | -6.6E + 05 |
| methoxide                  | -5.1E + 05 | -5.0E + 05 | -4.9E+05   |
| naphthalene                | -1.9E+06   | -1.9E+06   | -1.9E+06   |
| uracil                     | -1.9E+06   | -1.9E + 06 | -1.8E+06   |
| MAE                        | 822,334    | 819,268    | 801,734    |

Table A.45: MAE of the Coulomb potential energy  $V_{ee}^1$  calculated using MultiExp grid with 30 radial points

| <u></u>                                     |            |            |           |
|---------------------------------------------|------------|------------|-----------|
| Molecule                                    | 30(110)    | 30(194)    |           |
| $\mathrm{CCl}_4$                            | -1.2E+07   | -1.2E+07   | -1.2E+07  |
| $CH_2ClCl$                                  | -6.0E+06   | -6.0E+06   | -6.0E+06  |
| $\rm CH_2\rm PH_2\rm PH_2$                  | -4.8E+06   | -4.8E + 06 | -4.8E+06  |
| $CH_2SHSH$                                  | -5.4E+06   | -5.4E + 06 | -5.4E+06  |
| $\mathrm{CH}_2\mathrm{SiH}_3\mathrm{SiH}_3$ | -4.5E+06   | -4.5E+06   | -4.5E+06  |
| $\rm CH_3PH_2$                              | -2.5E+06   | -2.5E+06   | -2.5E+06  |
| $CH_3SH$                                    | -2.8E+06   | -2.8E+06   | -2.8E+06  |
| $\mathrm{CH}_3\mathrm{SiH}_3$               | -2.4E+06   | -2.4E+06   | -2.4E+06  |
| CH <sub>3</sub> Cl                          | -3.1E+06   | -3.1E+06   | -3.1E+06  |
| CS                                          | -2.8E+06   | -2.8E+06   | -2.8E+06  |
| $\mathrm{Cl}_2$                             | -5.8E + 06 | -5.8E + 06 | -5.8E+06  |
| ClF                                         | -3.3E+06   | -3.3E+06   | -3.2E+06  |
| HOCl                                        | -3.2E+06   | -3.2E+06   | -3.2E+06  |
| Mg                                          | -2.7E + 06 | -2.7E+06   | -2.7E+06  |
| NaCl                                        | -5.7E + 06 | -5.6E + 06 | -5.6E+06  |
| $P_2$                                       | -4.6E+06   | -4.6E + 06 | -4.6E+06  |
| $\mathrm{PF}_5$                             | -4.2E+06   | -4.2E+06   | -4.2E+06  |
| PH                                          | -2.3E+06   | -2.3E+06   | -2.3E+06  |
| $\mathrm{SF}_6$                             | -4.9E+06   | -4.9E+06   | -4.8E+06  |
| SO                                          | -2.9E+06   | -2.9E+06   | -2.9E+06  |
| $SO_2$                                      | -5.5E+06   | -5.5E + 06 | -5.5E+06  |
| SiO                                         | -2.5E+06   | -2.5E+06   | -2.5E+06  |
| $pNO_2BzCl$                                 | -5.0E + 06 | -5.1E + 06 | -5.0E+06  |
| MAE                                         | 4,285,217  | 4,288,696  | 4,262,174 |

Table A.46: MAE of the Coulomb potential energy  $V_{ee}^1$  calculated using MultiExpgrid with 30 radial points

| Molecule                                        | 30(110)         | 30(194)         | 30(194)    |
|-------------------------------------------------|-----------------|-----------------|------------|
| 3rd row                                         |                 |                 |            |
| $AsH_3$                                         | -1.9E+07        | -1.9E+07        | -1.9E+07   |
| CH <sub>3</sub> Br                              | -2.1E+07        | -2.1E+07        | -2.1E+07   |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$                 | -3.6E+07        | -3.6E+07        | -3.6E+07   |
| $\mathrm{Ge}_{3}\mathrm{H}_{8}$                 | -5.4E+07        | -5.4E+07        | -5.4E+07   |
| $\mathrm{Ge}_4\mathrm{H}_{10}$                  | -7.2E+07        | -7.2E+07        | -7.2E+07   |
| $\mathrm{Ge}_{5}\mathrm{H}_{12}$                | -9.0E+07        | -9.0E+07        | -9.0E+07   |
| ${ m GeH}_4$                                    | -1.8E+07        | -1.8E+07        | -1.8E+07   |
| $ m H_2Se$                                      | -2.0E+07        | -2.0E+07        | -2.0E+07   |
| MAE                                             | 41,444,444      | 41,444,444      | 41,433,333 |
| transition states                               |                 |                 |            |
| $\mathrm{TS}_{-}\mathrm{CH}_{3}\mathrm{Cl}_{2}$ | -6.0E+06        | -6.0E+06        | -6.0E + 06 |
| $\mathrm{TS}_{-}\mathrm{CH}_{3}\mathrm{F}_{2}$  | -9.9E+05        | -9.7E + 05      | -9.4E+05   |
| TS_CH <sub>3</sub> FCl                          | -3.5E+06        | -3.5E + 06      | -3.5E+06   |
| $TS_CH_5OF$                                     | -8.9E+05        | -8.8E+05        | -8.5E+05   |
| $TS\_Ethyl-OSO_2-CH_3$                          | -4.6E+06        | -4.6E + 06      | -4.5E + 06 |
| $TS_pHBzCl$                                     | -4.7E + 06      | -4.7E + 06      | -4.6E + 06 |
| MAE                                             | $3,\!445,\!500$ | $3,\!421,\!167$ | 3,384,833  |

Table A.47: MAE of the Coulomb potential energy  $V_{ee}^1$  calculated using MultiExp grid with 30 radial points for molecules containing  $3^{rd}$  row atoms and transition states

| Molecule                | 30(110)    | 30(194)     | 30(194)   |
|-------------------------|------------|-------------|-----------|
| complexes               |            |             |           |
| $\rm CH_2O_2\_CH_2O_2$  | -1.6E+06   | -1.6E+06    | -1.6E+06  |
| FH-CO                   | -8.8E+05   | -8.7E+05    | -8.5E+05  |
| FH-FH                   | -7.7E+05   | -7.6E + 05  | -7.3E+05  |
| FH-NCH                  | -8.1E+05   | -8.1E+05    | -7.9E+05  |
| $FH-NH_3$               | -6.4E+05   | -6.3E+05    | -6.1E+05  |
| FH-NN                   | -8.7E+05   | -8.6E + 05  | -8.4E+05  |
| $FH-OH_2$               | -6.9E+05   | -5.1E + 05  | -6.6E+05  |
| $H_2O-CO_2$             | -1.1E + 06 | -1.1E+06    | -1.1E+06  |
| $H_2O_H2_2O$            | -6.1E + 05 | -5.3E + 05  | -5.9E+05  |
| MAE                     | 887,778    | $854,\!667$ | 855,889   |
| ions                    |            |             |           |
| $\mathrm{ArNH_{3}^{+}}$ | -1.4E+06   | -1.4E + 06  | -1.4E+06  |
| $H_3O^+$                | -3.1E+05   | -3.0E + 05  | -2.9E+05  |
| HCOO-                   | -8.2E+05   | -8.1E + 05  | -7.9E+05  |
| $\rm NH_3^+CH_2COO^-$   | -9.6E + 05 | -1.3E+06    | -1.2E+06  |
| MAE                     | 871,500    | 933,750     | 912,750   |
| peptides                |            |             |           |
| 1G_pep                  | -1.3E+06   | -1.2E + 06  | -1.2E+06  |
| $2\mathrm{G_{-}pep}$    | -2.2E+06   | -2.2E + 06  | -2.1E+06  |
| 3G_pep                  | -3.1E+06   | -3.1E+06    | -3.0E+06  |
| 4G_pep                  | -4.1E+06   | -4.1E + 06  | -4.0E+06  |
| 5G_pep                  | -5.1E+06   | -5.0E + 06  | -4.9E+06  |
| MAE                     | 3,144,000  | 3,114,000   | 3,032,000 |

Table A.48: MAE of the Coulomb potential energy  $V_{ee}^1$  calculated using MultiExp grid with 30 radial points for complexes, ions, and peptides

| pointe                     |                      |                      |             |
|----------------------------|----------------------|----------------------|-------------|
| Molecule                   | 20(110)              | 20(194)              | 20(302)     |
| BF <sub>3</sub>            | 8.6E + 02            | 2.2E+03              | 2.6E+03     |
| $BH_3$                     | 1.0E + 03            | 1.0E + 03            | $1.0E{+}03$ |
| $\mathrm{BeH}_2$           | 8.4E + 02            | 8.2E + 02            | $8.3E{+}02$ |
| $C_2H_2$                   | 2.1E + 03            | $2.0E{+}03$          | 2.0E + 03   |
| $C_2H_4$                   | -2.4E+02             | $1.8E{+}03$          | $2.0E{+}03$ |
| $\mathrm{CF}_4$            | $5.2E{+}03$          | $3.1E{+}03$          | $3.1E{+}03$ |
| CH <sub>2</sub> CHCOOH     | $3.4E{+}02$          | 4.7E + 03            | 5.0E + 03   |
| $CH_2FF$                   | $3.8E{+}03$          | $1.3E{+}03$          | 1.7E + 03   |
| $\rm CH_2\rm CH_3\rm CH_3$ | $2.2E{+}03$          | 1.8E + 03            | 2.4E+03     |
| $CH_3F$                    | $2.2E{+}03$          | $1.6\mathrm{E}{+03}$ | $1.7E{+}03$ |
| $\rm CH_3 \rm NH_2$        | $1.9E{+}03$          | $1.7\mathrm{E}{+03}$ | 1.8E + 03   |
| $CH_{3}OH$                 | 6.0E + 02            | $1.6E{+}03$          | 1.7E + 03   |
| $CH_3CONH_2$               | $2.2E{+}03$          | $3.3E{+}03$          | 3.4E + 03   |
| $\mathrm{CH}_4$            | 3.0E + 01            | 7.1E + 02            | 7.6E + 02   |
| CO                         | 1.7E + 03            | 2.0E + 03            | 2.0E + 03   |
| $\rm CO_2$                 | $1.9E{+}03$          | 2.8E + 03            | 2.8E+03     |
| EtOTs                      | $9.9E{+}03$          | $3.8E{+}03$          | $3.9E{+}03$ |
| $F_2$                      | 3.3E + 03            | 1.6E + 03            | 1.8E + 03   |
| $H_2$                      | $2.4E{+}01$          | 2.4E + 01            | $2.4E{+}01$ |
| $H_2CO$                    | $9.2E{+}02$          | $2.0E{+}03$          | $2.0E{+}03$ |
| $H_2O$                     | 6.3E + 02            | 7.9E + 02            | 8.2E + 02   |
| $H_2O_2$                   | 2.1E + 03            | 1.7E + 03            | $1.7E{+}03$ |
| НСООН                      | $1.6E{+}03$          | $2.5\mathrm{E}{+03}$ | 2.6E + 03   |
| $Li_2$                     | $1.4\mathrm{E}{+03}$ | $1.4E{+}03$          | 1.4E + 03   |
| LiF                        | $7.2E{+}03$          | 7.2E + 03            | 7.2E + 03   |
| LiH                        | $5.9E{+}02$          | 5.8E + 02            | 5.8E + 02   |
| NH <sub>3</sub>            | -7.9E+01             | 6.0E + 02            | 6.4E + 02   |
| benzaldehyde               | -6.2E + 03           | $1.2E{+}04$          | $9.3E{+}03$ |
| cytosine                   | 1.0E + 04            | 7.3E + 03            | 8.1E + 03   |
| formamidine                | 5.1E + 03            | 3.0E + 03            | $2.7E{+}03$ |
| methoxide                  | 1.0E + 03            | $1.5E{+}03$          | $1.5E{+}03$ |
| naphthalene                | -8.5E+03             | $1.9E{+}04$          | 1.3E + 04   |
| uracil                     | $2.8E{+}03$          | $8.7E{+}03$          | 8.8E + 03   |
| MAE                        | 2,685                | 3,219                | 3,051       |

Table A.49: MAE of the Coulomb energy  $V_{ee}^2$  calculated using MultiExp grid with 20 radial points

| zo radiar pomito                                |             |            |           |
|-------------------------------------------------|-------------|------------|-----------|
| Molecule                                        | 20(110)     | 20(194)    | 20(302)   |
| $\mathrm{CCl}_4$                                | -7.8E+02    | -3.9E+03   | -3.6E+03  |
| $CH_2ClCl$                                      | -2.8E+03    | -3.6E+03   | -3.5E+03  |
| $\mathrm{CH}_{2}\mathrm{PH}_{2}\mathrm{PH}_{2}$ | -1.1E+04    | -5.3E+03   | -5.1E+03  |
| $\rm CH_2SHSH$                                  | -8.5E+03    | -6.4E+03   | -5.8E+03  |
| $\mathrm{CH}_2\mathrm{SiH}_3\mathrm{SiH}_3$     | -4.1E+03    | -3.6E+03   | -3.0E+03  |
| $\mathrm{CH}_{3}\mathrm{PH}_{2}$                | -4.2E+03    | -2.2E+03   | -2.3E+03  |
| $CH_3SH$                                        | -1.9E+03    | -2.5E+03   | -2.5E+03  |
| $\rm CH_3SiH_3$                                 | -2.0E+03    | -1.2E+03   | -1.2E+03  |
| CH <sub>3</sub> Cl                              | -2.9E+03    | -1.9E+03   | -1.8E+03  |
| CS                                              | -1.1E+03    | -8.6E+02   | -9.1E+02  |
| $\mathrm{Cl}_2$                                 | -9.2E+03    | -6.5E+03   | -6.6E+03  |
| ClF                                             | -1.3E+03    | 6.0E + 02  | 5.0E + 02 |
| HOCI                                            | -3.7E+03    | -3.8E+03   | -3.6E+03  |
| Mg                                              | 5.4E + 04   | 5.4E + 04  | 5.4E+04   |
| NaCl                                            | -1.8E+04    | -1.8E+04   | -1.8E+04  |
| $P_2$                                           | -4.5E+03    | -3.7E+03   | -3.9E+03  |
| $\mathrm{PF}_5$                                 | -1.7E+03    | -3.4E+03   | -4.2E+03  |
| РН                                              | -2.2E+03    | -2.3E+03   | -2.3E+03  |
| $SF_6$                                          | 5.4E + 03   | -3.4E+03   | -5.2E+03  |
| SO                                              | -2.1E+03    | -2.4E+03   | -2.5E+03  |
| $SO_2$                                          | -8.4E+02    | -6.5E + 02 | -6.9E+02  |
| SiO                                             | -2.2E+02    | -1.1E+03   | -1.1E+03  |
| $pNO_2BzCl$                                     | $4.9E{+}04$ | 1.4E+03    | 7.8E + 03 |
| MAE                                             | 8,280       | 5,746      | $6,\!052$ |

Table A.50: MAE of the Coulomb energy  $V_{ee}^2$  calculated using MultiExp grid with 20 radial points

| 20 radial points for molecules containing $3^{rd}$ row atoms and transition states |             |           |          |  |
|------------------------------------------------------------------------------------|-------------|-----------|----------|--|
| Molecule                                                                           | 20(110)     | 20(194)   | 20(302)  |  |
| 3rd row                                                                            |             |           |          |  |
| $AsH_3$                                                                            | -1.9E+05    | -1.9E+05  | -2.0E+05 |  |
| $\mathrm{CH}_3\mathrm{Br}$                                                         | -1.7E+05    | -1.6E+05  | -1.6E+05 |  |
| ${ m Ge_2H_6}$                                                                     | -3.4E+05    | -3.3E+05  | -3.3E+05 |  |
| ${ m Ge_3H_8}$                                                                     | -5.1E + 05  | -5.2E+05  | -5.2E+05 |  |
| $\mathrm{Ge}_4\mathrm{H}_{10}$                                                     | -7.4E+05    | -7.3E+05  | -7.4E+05 |  |
| $\mathrm{Ge}_{5}\mathrm{H}_{12}$                                                   | -8.8E+05    | -9.2E+05  | -9.3E+05 |  |
| ${ m GeH}_4$                                                                       | -1.6E+05    | -1.6E+05  | -1.6E+05 |  |
| $H_2Se$                                                                            | -1.7E+05    | -1.9E+05  | -1.9E+05 |  |
|                                                                                    | 379,000     | 382,667   | 384,333  |  |
| transition states                                                                  |             |           |          |  |
| $\mathrm{TS}_{-}\mathrm{CH}_{3}\mathrm{Cl}_{2}$                                    | -1.4E+04    | -6.1E+03  | -6.1E+03 |  |
| $\mathrm{TS}_{-}\mathrm{CH}_{3}\mathrm{F}_{2}$                                     | $5.9E{+}02$ | 2.5E+03   | 1.9E+03  |  |
| TS_CH <sub>3</sub> FCl                                                             | -2.7E+03    | -1.2E+03  | -1.6E+03 |  |
| $TSCH_5OF$                                                                         | 2.9E+03     | 2.1E+03   | 1.9E+03  |  |
| $TS\_Ethyl-OSO_2-CH_3$                                                             | 5.2E + 03   | 2.5E+03   | 2.3E+03  |  |
| TS_pHBzCl                                                                          | -6.2E+03    | 6.7E + 03 | 4.3E+03  |  |
| MAE                                                                                | 5,191       | $3,\!515$ | 3,032    |  |

Table A.51: MAE of the Coulomb energy  $V_{ee}^2$  calculated using MultiExp grid with

| Molecule               | 20(110)     | 20(194)     | 20(302)     |
|------------------------|-------------|-------------|-------------|
| complexes              |             |             |             |
| $\rm CH_2O_2\_CH_2O_2$ | 3.0E + 03   | 5.6E + 03   | 5.3E + 03   |
| FH-CO                  | 2.0E + 03   | 2.5E+03     | 2.6E + 03   |
| FH-FH                  | 8.6E + 02   | 1.4E+03     | 1.4E+03     |
| FH-NCH                 | 2.5E + 03   | $2.9E{+}03$ | $2.9E{+}03$ |
| $FH-NH_3$              | -1.3E+03    | 8.2E+02     | 9.0E + 02   |
| FH-NN                  | 9.9E + 03   | 9.8E+03     | $9.9E{+}03$ |
| FH-OH <sub>2</sub>     | 6.7E + 02   | 1.1E+03     | 1.2E + 03   |
| $H_2O-CO_2$            | 1.8E+03     | 3.2E + 03   | 3.2E + 03   |
| $H_2O_H2_2O$           | 2.0E+03     | 1.7E + 03   | 1.8E+03     |
| MAE                    | 2,676       | 3,231       | 3,233       |
| ions                   |             |             |             |
| $ArNH_3^+$             | -4.4E+03    | 1.2E + 04   | 7.5E+03     |
| $\rm H_3O^+$           | 1.6E + 02   | 6.3E + 02   | 6.3E + 02   |
| HCOO-                  | 1.9E+03     | 2.5E + 03   | 2.5E+03     |
| $\rm NH_3^+CH_2COO^-$  | 6.7E + 03   | 5.2E + 03   | 5.0E + 03   |
| MAE                    | 3,292       | 5,030       | 3,907       |
| peptides               |             |             |             |
| 1G_pep                 | 5.3E + 03   | 4.5E + 03   | 4.6E + 03   |
| $2G_{-}pep$            | $1.3E{+}04$ | 7.2E + 03   | 7.8E+03     |
| 3G_pep                 | 2.3E + 04   | 1.4E + 04   | 1.3E+04     |
| $4G_{-}pep$            | $2.6E{+}04$ | 1.8E + 04   | 1.8E+04     |
| $5G_{-}pep$            | -6.6E+03    | 2.0E + 04   | 1.4E+04     |
| MAE                    | 14,594      | 12,622      | 11,632      |

Table A.52: MAE of the Coulomb energy  $V_{ee}^2$  calculated using MultiExp grid with20 radial points for complexes, ions, and peptides

| Molecule           | 25(110) | 25(194)   | 25(302) |
|--------------------|---------|-----------|---------|
| BF <sub>3</sub>    | -2,550  | -1,240    | -735    |
| $BH_3$             | -59     | -59       | -84     |
| $\mathrm{BeH}_2$   | -87     | -99       | -96     |
| $C_2H_2$           | -117    | -185      | -200    |
| $C_2H_4$           | -2,460  | -383      | -203    |
| $\mathrm{CF}_4$    | 672     | -1,450    | -1,500  |
| $\rm CH_2CHCOOH$   | -5,520  | -1,240    | -915    |
| $CH_2FF$           | 1,380   | -1,040    | -647    |
| $\rm CH_2CH_3CH_3$ | -837    | -1,090    | -582    |
| $CH_3F$            | 189     | -338      | -286    |
| $CH_3NH_2$         | -288    | -424      | -314    |
| $CH_3OH$           | -1,310  | -319      | -276    |
| $CH_3CONH_2$       | -1,970  | -827      | -764    |
| $CH_4$             | -849    | -149      | -98     |
| СО                 | -598    | -228      | -239    |
| $\mathrm{CO}_2$    | -1,320  | -444      | -482    |
| EtOTs              | 11,500  | 5,320     | 5,730   |
| $F_2$              | 1,230   | -260      | -57     |
| $H_2$              | 5       | 4         | 4       |
| $H_2CO$            | -1,290  | -277      | -281    |
| $H_2O$             | -356    | -182      | -141    |
| $H_2O_2$           | 96      | -288      | -302    |
| HCOOH              | -1,490  | -582      | -518    |
| $Li_2$             | -139    | -126      | -125    |
| LiF                | 1,240   | 1,160     | 1,180   |
| LiH                | 6       | -1        | -1      |
| $ m NH_3$          | -904    | -202      | -160    |
| benzaldehyde       | -16,700 | 651       | -1,270  |
| cytosine           | -165    | -2,690    | -1,960  |
| formamidine        | 1,840   | -190      | -478    |
| methoxide          | -804    | -342      | -309    |
| naphthalene        | -22,800 | $4,\!630$ | -921    |
| uracil             | -8,960  | -2,170    | -1,840  |
| MAE                | 2,719   | 866       | 688     |

Table A.53: MAE of the Coulomb energy  $V_{ee}^2$  calculated using MultiExp grid with 25 radial points

| Molecule                                        | 25(110)     | 25(194)   | 25(302)    |
|-------------------------------------------------|-------------|-----------|------------|
| CCl <sub>4</sub>                                | 20,900      | 18,200    | 18,300     |
| CH <sub>2</sub> ClCl                            | 9,010       | 8,410     | 8,480      |
| $\mathrm{CH}_{2}\mathrm{PH}_{2}\mathrm{PH}_{2}$ | 7,180       | 12,500    | 12,500     |
| $\rm CH_2SHSH$                                  | 10,700      | 12,700    | $13,\!400$ |
| $\mathrm{CH}_2\mathrm{SiH}_3\mathrm{SiH}_3$     | 6,190       | 6,900     | $7,\!400$  |
| $CH_3PH_2$                                      | 4,520       | 6,210     | 6,130      |
| $CH_3SH$                                        | 7,160       | 6,620     | $6,\!580$  |
| $\rm CH_3SiH_3$                                 | 2,910       | 3,720     | 3,730      |
| $CH_{3}Cl$                                      | 2,930       | 4,040     | $4,\!050$  |
| CS                                              | 6,680       | 6,990     | $6,\!950$  |
| $\mathrm{Cl}_2$                                 | $6,\!940$   | 8,880     | 8,920      |
| ClF                                             | 3,500       | 4,790     | $4,\!670$  |
| HOCl                                            | 3,580       | 3,520     | $3,\!470$  |
| Mg                                              | -41,300     | -41,300   | -41,300    |
| NaCl                                            | $-15,\!600$ | -15,800   | -15,800    |
| $P_2$                                           | 12,300      | 13,500    | 13,400     |
| $\mathrm{PF}_5$                                 | 7,100       | 4,980     | 4,520      |
| PH                                              | 6,600       | $6,\!430$ | $6,\!450$  |
| $SF_6$                                          | $11,\!400$  | 4,080     | $3,\!420$  |
| SO                                              | 7,210       | 6,790     | 6,810      |
| $\mathrm{SO}_2$                                 | 14,000      | 13,000    | 13,000     |
| SiO                                             | 5,260       | $4,\!370$ | $4,\!440$  |
| $pNO_2BzCl$                                     | 43,100      | -4,870    | $2,\!140$  |
| MAE                                             | $11,\!133$  | 9,504     | 9,385      |

Table A.54: MAE of the Coulomb energy  $V_{ee}^2$  calculated using MultiExp grid with 25 radial points

~

| Molecule                         | 25(110)    | 25(194)    | 25(302)    |
|----------------------------------|------------|------------|------------|
| 3rd row                          |            |            |            |
| $AsH_3$                          | -198,000   | -202,000   | -203,000   |
| $ m CH_3Br$                      | -205,000   | -199,000   | -200,000   |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$  | -394,000   | -372,000   | -374,000   |
| $\mathrm{Ge}_{3}\mathrm{H}_{8}$  | -580,000   | -585,000   | -585,000   |
| $\mathrm{Ge}_4\mathrm{H}_{10}$   | -823,000   | -804,000   | -808,000   |
| $\mathrm{Ge}_{5}\mathrm{H}_{12}$ | -1,000,000 | -1,030,000 | -1,040,000 |
| ${ m GeH_4}$                     | -174,000   | -173,000   | -174,000   |
| $\rm H_2Se$                      | -192,000   | -209,000   | -205,000   |
| MAE                              | 444,111    | 443,667    | 445,333    |
| transition states                |            |            |            |
| $TS_CH_3Cl_2$                    | 1,560      | 7,470      | 7,620      |
| $TS\_CH_3F_2$                    | -1,800     | 113        | -400       |
| TS_CH <sub>3</sub> FCl           | 1,630      | 3,470      | 3,170      |
| $TSCH_5OF$                       | 617        | -259       | -492       |
| $TS\_Ethyl-OSO_2\text{-}CH_3$    | 7,580      | 5,120      | $5,\!570$  |
| $TS_{pHBzCl}$                    | -11,100    | 2,220      | -545       |
| MAE                              | 4,048      | 3,109      | 2,966      |

Table A.55: MAE of the Coulomb energy  $V_{ee}^2$  calculated using MultiExp grid with

| Molecule                | 25(110) | 25(194) | 25(302) |
|-------------------------|---------|---------|---------|
| complexes               |         |         |         |
| $\rm CH_2O_2\_CH_2O_2$  | -4,790  | -1,410  | -1,070  |
| FH-CO                   | -943    | -356    | -343    |
| FH-FH                   | -733    | -200    | -178    |
| FH-NCH                  | -775    | -381    | -374    |
| FH-NH <sub>3</sub>      | -2,570  | -303    | -287    |
| FH-NN                   | 4,800   | 4,930   | 4,960   |
| $FH-OH_2$               | -772    | -284    | -221    |
| $H_2O-CO_2$             | -1,880  | -621    | -612    |
| $H_2O_H2_2O$            | -137    | -361    | -305    |
| MAE                     | 1,933   | 983     | 928     |
| ions                    |         |         |         |
| $\mathrm{ArNH_{3}^{+}}$ | -13,600 | 2,890   | -1,030  |
| $H_3O^+$                | -654    | -164    | -160    |
| HCOO-                   | -1,060  | -506    | -508    |
| $\rm NH_3^+CH_2COO^-$   | 519     | -956    | -917    |
| MAE                     | 3,958   | 1,129   | 654     |
| peptides                |         |         |         |
| 1G_pep                  | -316    | -1,150  | -1,020  |
| 2G_pep                  | 1,330   | -2,760  | -1,940  |
| 3G_pep                  | 4,200   | -4,220  | -4,020  |
| 4G_pep                  | -181    | -6,580  | -5,580  |
| 5G_pep                  | -30,700 | -3,090  | -8,320  |
| MAE                     | 7,345   | 3,560   | 4,176   |

Table A.56: MAE of the Coulomb energy  $V_{ee}^2$  calculated using MultiExp grid with 25 radial points for complexes, ions, and peptides

| Molecule                   | 30(110)   | 30(194)   | 30(194)   |
|----------------------------|-----------|-----------|-----------|
| BF <sub>3</sub>            | -1,560    | -406      | 108       |
| $BH_3$                     | 55        | 55        | 30        |
| $\mathrm{BeH}_2$           | 20        | 5         | 9         |
| $C_2H_2$                   | 150       | 88        | 73        |
| $C_2H_4$                   | -2,200    | -99       | - 74      |
| $\mathrm{CF}_4$            | 2,500     | 280       | 287       |
| CH <sub>2</sub> CHCOOH     | -4,410    | -123      | 193       |
| $CH_2FF$                   | 2,100     | -343      | 113       |
| $\rm CH_2\rm CH_3\rm CH_3$ | -354      | -625      | -17       |
| $CH_3F$                    | 540       | -2        | 50        |
| $\rm CH_3 \rm NH_2$        | 56        | -83       | 29        |
| CH <sub>3</sub> OH         | -972      | 25        | 67        |
| $\rm CH_3 \rm CONH_2$      | -949      | 131       | 188       |
| $\mathrm{CH}_4$            | -724      | -24       | 27        |
| CO                         | -303      | 78        | 64        |
| $\rm CO_2$                 | -765      | 138       | 103       |
| EtOTs                      | 6,670     | 495       | 889       |
| $F_2$                      | 1,430     | -93       | 102       |
| $H_2$                      | 1         | 1         | 1         |
| $H_2CO$                    | -939      | 76        | 72        |
| $H_2O$                     | -190      | -17       | 23        |
| $H_2O_2$                   | 486       | 90        | 71        |
| HCOOH                      | -856      | 56        | 106       |
| Li <sub>2</sub>            | -47       | -33       | -32       |
| LiF                        | $1,\!540$ | 1,460     | $1,\!470$ |
| LiH                        | 37        | 27        | 28        |
| NH <sub>3</sub>            | -701      | -7        | 32        |
| benzaldehyde               | -14,800   | $2,\!680$ | 817       |
| cytosine                   | 2,030     | -414      | 225       |
| formamidine                | $2,\!440$ | 401       | 115       |
| methoxide                  | -444      | 27        | 62        |
| naphthalene                | -20,200   | $7,\!480$ | 1,960     |
| uracil                     | -6,890    | -25       | 454       |
| MAE                        | 2,344     | 481       | 239       |

Table A.57: MAE of the Coulomb energy  $V_{ee}^2$  calculated using MultiExp grid with 30 radial points

| Molecule                                        | 30(110)    | 30(194)    | 30(194)    |
|-------------------------------------------------|------------|------------|------------|
| CCl <sub>4</sub>                                | 199        | -2,330     | -2,320     |
| CH <sub>2</sub> ClCl                            | -1,110     | -1,470     | -1,370     |
| $\mathrm{CH}_{2}\mathrm{PH}_{2}\mathrm{PH}_{2}$ | -2,460     | 2,220      | $2,\!530$  |
| $CH_2SHSH$                                      | -1,960     | 22         | 661        |
| $\mathrm{CH}_2\mathrm{SiH}_3\mathrm{SiH}_3$     | -1,680     | -1,060     | -546       |
| $\mathrm{CH}_{3}\mathrm{PH}_{2}$                | -228       | $1,\!330$  | 1,260      |
| $CH_3SH$                                        | 976        | 440        | 403        |
| $\rm CH_3SiH_3$                                 | -1,000     | -153       | -166       |
| CH <sub>3</sub> Cl                              | -1,880     | -724       | -721       |
| CS                                              | 184        | 549        | 502        |
| $Cl_2$                                          | -4,000     | -1,570     | -1,550     |
| ClF                                             | -2,080     | -603       | -645       |
| HOCl                                            | -1,130     | -808       | -701       |
| Mg                                              | 24,800     | $24,\!800$ | $24,\!800$ |
| NaCl                                            | $23,\!400$ | 23,200     | 23,300     |
| $P_2$                                           | 2,220      | 3,150      | 2,980      |
| $\mathrm{PF}_5$                                 | 5,320      | 2,710      | 2,230      |
| РН                                              | $1,\!440$  | 1,200      | 1,210      |
| $SF_6$                                          | 10,700     | 2,200      | 1,400      |
| SO                                              | 983        | 390        | 369        |
| $SO_2$                                          | 1,080      | 330        | 371        |
| SiO                                             | 1,120      | 73         | 126        |
| $pNO_2BzCl$                                     | 41,800     | -6,640     | 360        |
| MAE                                             | 5,728      | 3,390      | 3,066      |

Table A.58: MAE of the Coulomb energy  $V_{ee}^2$  calculated using MultiExp grid with 30 radial points

| Molecule                         | 30(110)   | 30(194)    | 30(194)    |  |
|----------------------------------|-----------|------------|------------|--|
| 3rd row                          |           |            |            |  |
| $AsH_3$                          | -196,000  | -200,000   | -202,000   |  |
| $ m CH_3Br$                      | -204,000  | -199,000   | -199,000   |  |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$  | -392,000  | -370,000   | -371,000   |  |
| ${ m Ge_3H_8}$                   | -576,000  | -579,000   | -580,000   |  |
| $\mathrm{Ge}_4\mathrm{H}_{10}$   | -817,000  | -796,000   | -800,000   |  |
| $\mathrm{Ge}_{5}\mathrm{H}_{12}$ | -993,000  | -1,020,000 | -1,040,000 |  |
| ${ m GeH}_4$                     | -173,000  | -172,000   | -173,000   |  |
| $H_2Se$                          | -190,000  | -206,000   | -203,000   |  |
| MAE                              | 441,444   | 440,111    | 442,778    |  |
| transition states                |           |            |            |  |
| $TS\_CH_3Cl_2$                   | -8,880    | -2,210     | -2,270     |  |
| $TS\_CH_3F_2$                    | -1,310    | 566        | 54         |  |
| $TS_CH_3FCl$                     | -2,530    | -506       | -752       |  |
| $TS\_CH_5OF$                     | 1,100     | 324        | 78         |  |
| $TS\_Ethyl-OSO_2\text{-}CH_3$    | 3,880     | 866        | 1,290      |  |
| $TS_pHBzCl$                      | -13,000   | 285        | -2,500     |  |
| MAE                              | $5,\!117$ | 793        | $1,\!157$  |  |

Table A.59: MAE of the Coulomb energy  $V_{ee}^2$  calculated using MultiExp grid with 30 radial points for molecules containing  $3^{rd}$  row atoms and transition states

| Molecule               | 30(110)   | 30(194)   | 30(194) |
|------------------------|-----------|-----------|---------|
| complexes              |           |           |         |
| $\rm CH_2O_2\_CH_2O_2$ | -3,270    | 29        | 282     |
| FH-CO                  | -509      | 59        | 79      |
| FH-FH                  | -504      | 23        | 34      |
| FH-NCH                 | -340      | 86        | 88      |
| $FH-NH_3$              | -2,220    | -5        | 35      |
| FH-NN                  | -1,390    | -1,340    | -1,290  |
| $FH-OH_2$              | -532      | -38       | 22      |
| $H_2O-CO_2$            | -1,200    | 160       | 143     |
| $H_2O_H2_2O$           | 226       | -3        | 49      |
| MAE                    | 1,132     | 194       | 225     |
| ions                   |           |           |         |
| ${\rm ArNH_3^+}$       | -12,100   | 4,620     | 742     |
| $H_3O^+$               | -464      | 27        | 31      |
| HCOO-                  | -441      | 113       | 101     |
| $\rm NH_3^+CH_2COO^-$  | 1,780     | 233       | 254     |
| MAE                    | 3,696     | 1,248     | 282     |
| peptides               |           |           |         |
| $1G_{-pep}$            | 972       | 102       | 187     |
| $2G_{-}pep$            | $4,\!490$ | -395      | 193     |
| 3G_pep                 | 9,590     | 324       | 109     |
| $4G_{-}pep$            | 7,620     | 138       | 613     |
| 5G_pep                 | -24,100   | $5,\!280$ | 329     |
| MAE                    | $9,\!354$ | $1,\!248$ | 286     |

Table A.60: MAE of the Coulomb energy  $V_{ee}^2$  calculated using MultiExp grid with 30 radial points for complexes, ions, and peptides

| Molecule                   | Becke     | TA                | TA(new)   | SG-1     | SG0                       |
|----------------------------|-----------|-------------------|-----------|----------|---------------------------|
| BF <sub>3</sub>            | -4.8E-04  | 2.1E-03           | -3.8E-04  | 1.3E-04  | 6.2E-04                   |
| $BH_3$                     | -1.7E-03  | 1.1E-03           | 9.3E-05   | 1.8E-05  | 3.4E-05                   |
| $\operatorname{BeH}_2$     | 4.7 E-04  | 1.2E-03           | -3.3E-05  | -2.8E-06 | 4.0E-05                   |
| $C_2H_2$                   | 1.1E-04   | -2.2E-03          | -1.6E-05  | 4.7E-05  | -3.6E-05                  |
| $C_2H_4$                   | 6.2 E- 04 | 5.8E-03           | 4.3E-05   | -1.0E-04 | -9.9E-04                  |
| $CF_4$                     | -3.0E-04  | -1.9E <b>-</b> 05 | 1.1E-04   | 6.2E-04  | 1.4E-03                   |
| $CH_2CHCOOH$               | 4.0E-04   | 3.3E-04           | -1.4E-04  | -1.6E-04 | -3.2E-04                  |
| $\rm CH_2FF$               | 7.0E-04   | -3.9E-03          | -1.8E-04  | -2.2E-04 | 1.2E-04                   |
| $\rm CH_2\rm CH_3\rm CH_3$ | 6.5E-04   | -1.9E-03          | -2.1E-04  | -2.4E-04 | -6.2E-05                  |
| $\mathrm{CH}_3\mathrm{F}$  | 5.6 E-04  | -8.3E <b>-</b> 04 | -8.0E-05  | -2.0E-05 | 2.0E-04                   |
| $\rm CH_3 \rm NH_2$        | 1.1E-03   | -4.2E-03          | 1.4E-04   | -5.2E-05 | 1.11E-04                  |
| CH <sub>3</sub> OH         | 7.5 E-04  | -7.9E-04          | 1.1E-04   | -1.2E-05 | -9.8E-05                  |
| $\rm CH_3 \rm CONH_2$      | -2.2E-04  | -1.7E-03          | 5.3E-04   | 1.7E-05  | 7.8E-05                   |
| $CH_4$                     | 5.2 E- 04 | -1.7E-03          | 3.1 E- 05 | -2.3E-05 | -1.1E-04                  |
| CO                         | -1.5E-05  | 1.6E-04           | 1.7 E- 05 | -6.7E-06 | -2.8E-05                  |
| $\rm CO_2$                 | 1.7E-06   | 7.7E-05           | 1.1E-05   | 1.7E-05  | -1.3E-04                  |
| EtOTs                      | -8.1E-04  | -8.5E <b>-</b> 03 | -9.5E-04  | -1.5E-04 | 1.8E-03                   |
| $F_2$                      | -4.7E-05  | 8.1E-04           | -8.0E-06  | 1.4E-04  | 7.8E-04                   |
| $H_2$                      | -3.1E-04  | -4.2E-04          | -1.0E-05  | 9.5E-06  | -6.2E-05                  |
| $H_2CO$                    | 3.1E-04   | 2.0E-03           | 2.7 E-05  | 3.7E-05  | $9.6\mathrm{E}\text{-}05$ |
| $H_2O$                     | 1.4E-04   | 4.4E-04           | -6.5E-05  | -5.6E-06 | -3.8E-05                  |
| $H_2O_2$                   | 6.5 E- 05 | -8.3E-04          | 1.3E-05   | 2.2E-05  | 2.4E-04                   |
| НСООН                      | 4.8E-04   | 2.5E-04           | -6.6E-05  | -2.2E-05 | 1.3E-04                   |
| $Li_2$                     | -1.1E-05  | 1.8E-04           | 4.9E-06   | 2.2E-06  | 2.1E-04                   |
| LiF                        | 1.9E-03   | 1.9E-05           | 2.4E-04   | 2.1E-04  | 9.3E-04                   |
| LiH                        | -2.5E-04  | 5.0E-04           | 6.2E-05   | 2.3E-05  | -3.2E-04                  |
| NH <sub>3</sub>            | 2.3E-04   | -1.1E-03          | -3.9E-05  | -1.7E-05 | 8.2E-05                   |
| benzaldehyde               | 2.1E-04   | 1.3E-03           | 2.5E-04   | 3.4E-04  | -3.4E-05                  |
| cytosine                   | 4.9E-04   | 1.5E-03           | 2.2E-05   | -2.9E-04 | -5.4E-04                  |
| formamidine                | 6.0E-04   | 7.6E-03           | 2.1E-04   | 5.3E-05  | 3.8E-04                   |
| methoxide                  | -1.9E-04  | -3.5E-05          | -2.8E-06  | -3.7E-05 | -1.7E-04                  |
| naphthalene                | 3.5E-03   | 1.2E-02           | 1.7E-03   | 8.2E-04  | 1.8E-03                   |
| uracil                     | 4.4E-04   | 6.2E-03           | 2.9E-04   | -3.8E-04 | -3.1E-04                  |
| MAE                        | 5.6E-04   | 2.2E-03           | 1.8E-04   | 1.3E-04  | 3.7E-04                   |

Table A.61: MAE of the integration of the electron density using Becke, TA, TA(new), SG-1, SG0 for molecules containing  $1^{st}$  row atoms

| III(IIew); 00 1; 1                          | odo lor molec             | aree containin | <u>16 = 1011 ato</u> |           |                            |
|---------------------------------------------|---------------------------|----------------|----------------------|-----------|----------------------------|
| Molecule                                    | Becke                     | TA             | TA(new)              | SG-1      | SG0                        |
| $\mathrm{CCl}_4$                            | -1.3E-04                  | 1.1E-03        | 3.5 E- 07            | -7.1E-05  | -9.39E-04                  |
| $CH_2ClCl$                                  | -4.5E-04                  | -1.3E-04       | 2.9E-06              | -9.5E-06  | -6.24E-04                  |
| $\rm CH_2PH_2PH_2$                          | 4.2E-03                   | -2.7E-03       | 3.1E-04              | 2.0E-05   | -6.88E-04                  |
| $\rm CH_2SHSH$                              | 2.5E-03                   | -3.7E-03       | 1.9E-04              | 8.7E-05   | 5.10 E- 04                 |
| $\mathrm{CH}_2\mathrm{SiH}_3\mathrm{SiH}_3$ | -3.9E-03                  | 2.1E-03        | 1.1E-04              | -2.0E-04  | -4.40E-04                  |
| $\mathrm{CH}_3\mathrm{PH}_2$                | 4.7E-04                   | -4.5E-03       | -4.6E-05             | 1.5 E- 05 | -2.33E-04                  |
| $\rm CH_3SH$                                | 2.6E-04                   | -1.4E-03       | 5.3E-05              | 1.4E-04   | -3.38E-04                  |
| $\mathrm{CH}_3\mathrm{SiH}_3$               | -4.1E-03                  | -2.2E-03       | -1.3E-04             | -2.3E-05  | -7.54E-05                  |
| CH <sub>3</sub> Cl                          | -2.1E-04                  | -1.9E-03       | -2.9E-05             | 4.5E-05   | -1.91E-04                  |
| CS                                          | -5.3E-05                  | -2.3E-04       | -4.9E-06             | -2.0E-05  | 1.09E-04                   |
| $Cl_2$                                      | $7.9\mathrm{E}\text{-}05$ | 4.2E-03        | 6.4E-06              | -3.5E-04  | -6.67E-04                  |
| ClF                                         | -8.1E-05                  | 2.6E-03        | 2.1E-06              | -1.3E-04  | -2.08E-04                  |
| HOCl                                        | 1.6E-04                   | 1.8E-04        | 4.2E-05              | -1.6E-05  | -2.02E-05                  |
| Mg                                          | -5.2E-06                  | 2.5E-06        | 2.5E-06              | 3.6E-06   | $9.51\mathrm{E}$ - $05$    |
| NaCl                                        | 1.2E-04                   | 3.4E-03        | -1.1E-05             | -1.3E-04  | -4.03E-04                  |
| $P_2$                                       | -8.8E-05                  | 8.0E-04        | 2.0E-05              | 2.9E-05   | -1.17E-03                  |
| $\mathrm{PF}_5$                             | 7.9E-04                   | 1.1E-02        | 7.3E-05              | -5.8E-04  | 1.65E-04                   |
| PH                                          | 2.4E-04                   | -1.7E-03       | 1.3E-05              | -2.7E-05  | -5.46E-04                  |
| ${ m SF}_6$                                 | -1.1E-03                  | 9.9E-03        | -6.4E-04             | -4.4E-03  | -2.22E-03                  |
| SO                                          | -1.2E-04                  | -4.1E-04       | -1.7E-06             | 1.0E-04   | 4.29E-04                   |
| $\mathrm{SO}_2$                             | 7.7E-05                   | -1.5E-03       | -9.2E-06             | 7.4 E- 05 | $9.50\mathrm{E}\text{-}04$ |
| SiO                                         | -9.7E-05                  | 1.0E-04        | -2.4E-06             | 3.8E-05   | 4.05E-05                   |
| $pNO_2BzCl$                                 | -1.3E-04                  | 6.1E-03        | -1.9E-04             | -3.3E-04  | -8.44E-04                  |
| MAE                                         | 8.4E-04                   | 2.7E-03        | 8.3E-05              | 2.9E-04   | 4.9E-04                    |

Table A.62: MAE of the integration of the electron density using Becke, TA, TA(new), SG-1, SG0 for molecules containing  $2^{nd}$  row atoms

| 111(11017), DO 1, DOU 101        | molecules ee | incanning o | 100 atomb and                          |          |         |
|----------------------------------|--------------|-------------|----------------------------------------|----------|---------|
| Molecule                         | Becke        | TA          | $\overline{\mathrm{TA}(\mathrm{new})}$ | SG-1     | SG0     |
| 3rd row                          |              |             |                                        |          |         |
| $AsH_3$                          | -2.3E-03     | 2.4E-03     | -1.0E-04                               | NA       | NA      |
| $\mathrm{CH}_3\mathrm{Br}$       | 7.4E-04      | 1.1E-03     | -2.8E-05                               | NA       | NA      |
| ${ m Ge_2H_6}$                   | 3.7 E- 03    | 1.5E-02     | 3.7 E-05                               | NA       | NA      |
| $\mathrm{Ge}_{3}\mathrm{H}_{8}$  | 2.6E-03      | 1.8E-02     | 3.6E-04                                | NA       | NA      |
| ${ m Ge_4H_{10}}$                | 9.3E-03      | 3.4E-02     | 6.7E-04                                | NA       | NA      |
| $\mathrm{Ge}_{5}\mathrm{H}_{12}$ | -1.3E-03     | 3.5E-02     | 8.3E-04                                | NA       | NA      |
| ${ m GeH}_4$                     | -1.4E-02     | -1.1E-03    | -6.0E-05                               | NA       | NA      |
| $\rm H_2Se$                      | -2.5E-03     | 1.8E-03     | 1.2E-04                                | NA       | NA      |
|                                  |              |             |                                        |          |         |
| MAE                              | 4.5E-03      | 1.2 E- 02   | 2.5E-04                                |          |         |
| transition states                |              |             |                                        |          |         |
| $TSCH_3Cl_2$                     | 6.4E-03      | -6.3E-04    | 2.2 E- 05                              | -2.7E-04 | 6.3E-04 |
| $TS_CH_3F_2$                     | 7.1E-04      | -2.0E-03    | 2.3E-05                                | 7.9E-05  | 2.4E-04 |
| $TSCH_3FCl$                      | 4.4E-04      | -3.5E-04    | -1.9E-05                               | 9.0E-05  | 4.6E-04 |
| $TS\_CH_5OF$                     | 1.3E-03      | -6.0E-03    | 3.1E-04                                | 1.1E-04  | 6.9E-04 |
| $TS\_Ethyl-OSO_2\text{-}CH_3$    | 2.1E-04      | -1.4E-03    | -5.2E-05                               | 1.9E-04  | 1.8E-03 |
| $TS_pHBzCl$                      | 5.8E-03      | 7.0E-03     | 3.1E-04                                | 5.8E-04  | 4.1E-04 |
| MAE                              | 2.5E-03      | 2.9E-03     | 1.2E-04                                | 2.2E-04  | 7.0E-04 |

Table A.63: MAE of the integration of the electron density using Becke, TA, TA(new), SG-1, SG0 for molecules containing  $3^{rd}$  row atoms and transition states

NA: R parameters are not available

| Molecule               | Becke                     | TA        | TA(new)   | SG-1      | SG0       |
|------------------------|---------------------------|-----------|-----------|-----------|-----------|
| complexes              |                           |           |           |           |           |
| $\rm CH_2O_2\_CH_2O_2$ | 5.6E-04                   | -4.5E-03  | -9.5E-06  | -1.1E-04  | 4.0E-04   |
| FH-CO                  | -6.5E-05                  | 3.6E-04   | 5.1E-05   | -3.6E-06  | 1.1E-04   |
| FH-FH                  | 1.1E-05                   | 1.5E-04   | 1.0E-04   | 3.1E-05   | 3.0E-04   |
| FH-NCH                 | 6.3E-05                   | 8.1E-04   | 3.2E-05   | 4.6E-05   | 2.6E-04   |
| $FH-NH_3$              | 3.2E-04                   | 2.2 E- 03 | -1.1E-05  | -3.7E-07  | -2.5E-06  |
| FH-NN                  | -1.0E-03                  | 3.7E-03   | -2.1E-05  | 3.0E-05   | 1.8E-04   |
| $FH-OH_2$              | -8.0E-06                  | 8.6E-04   | -8.8E-05  | -4.7E-07  | -2.8E-06  |
| $H_2O-CO_2$            | 6.3E-04                   | -7.7E-04  | 6.0E-05   | 1.4E-04   | -4.5E-04  |
| $H_2O_H2_2O$           | 5.0E-04                   | 2.4E-03   | -4.1E-05  | -1.1E-05  | 1.8E-04   |
| MAE                    | 3.5E-04                   | 1.7E-03   | 4.6E-05   | 4.1E-05   | 2.1E-04   |
| ions                   |                           |           |           |           |           |
| ${ m ArNH_3}^+$        | -9.8E-04                  | -2.5E-03  | 2.0E-04   | 6.6E-04   | 7.5E-04   |
| $H_3O^+$               | 2.2E-04                   | -1.2E-03  | 3.5 E- 07 | 4.3E-06   | -7.2E-05  |
| HCOO <sup>-</sup>      | 2.0E-05                   | 6.1E-04   | -3.8E-06  | 5.1 E- 05 | 1.7E-04   |
| $\rm NH_3^+CH_2COO^-$  | -3.1E-04                  | 3.2E-03   | -3.1E-04  | 1.6E-04   | -7.7E-04  |
| MAE                    | 3.8E-04                   | 1.9E-03   | 1.3E-04   | 2.2E-04   | 4.4E-04   |
| peptides               |                           |           |           |           |           |
| $1G_{-}pep$            | -7.6E-04                  | -1.8E-03  | -9.3E-06  | -5.7E-05  | -1.4E-05  |
| $2G_{-}pep$            | 2.9E-03                   | -8.0E-03  | -8.9E-05  | -1.9E-04  | -8.3E-04  |
| 3G_pep                 | $7.6\mathrm{E}\text{-}04$ | -2.1E-03  | -2.4E-04  | 1.1E-04   | -3.9E-04  |
| $4G_{-}pep$            | 1.2 E- 03                 | -9.7E-03  | -4.1E-04  | -1.9E-04  | -8.4E-04  |
| $5G_{-}pep$            | 8.5E-03                   | -2.3E-03  | 6.4E-04   | 5.1E-04   | -5.0E-04  |
| MAE                    | 2.8 E- 03                 | 4.8E-03   | 2.8E-04   | 2.1E-04   | 5.2 E- 04 |

Table A.64: *MAE* of the integration of the electron density using Becke, TA, TA(new), SG-1, SG0 for complexes, ions, and peptides
| SGU for molecule             | Backa    | 1 <sup>°°</sup> row atom  | TA(now)   | SC 1              | 800      |
|------------------------------|----------|---------------------------|-----------|-------------------|----------|
|                              |          | 1A<br>1 7E 02             | 2 oF of   | <u> </u>          | 1 4E 02  |
| BF3                          | 1.1E-04  | 1.7E-03                   | 3.2E-04   | 1.3E-03           | 1.4E-03  |
| BH <sub>3</sub>              | 3.1E-04  | 6.2E-03                   | 1.6E-04   | 1.9E-05           | 7.7E-05  |
| $BeH_2$                      | 1.2E-03  | 3.0E-03                   | 8.3E-05   | 7.1E-06           | 1.0E-04  |
| $C_2H_2$                     | 1.3E-04  | 5.8E-04                   | 2.9E-04   | 5.2E-05           | 4.0E-05  |
| $C_2H_4$                     | 7.7E-04  | 7.2E-03                   | 5.3E-05   | 1.3E-04           | 1.2E-03  |
| $\mathrm{CF}_4$              | 3.6E-04  | 3.2E-03                   | 8.4E-04   | 9.1E-04           | 1.1E-03  |
| $CH_2CHCOOH$                 | -1.7E-03 | -6.8E-03                  | -6.1E-04  | 2.5E-04           | 8.8E-04  |
| $CH_2FF$                     | -4.9E-04 | 7.5E-03                   | -4.4E-04  | -1.0E-03          | -6.0E-04 |
| $\rm CH_2CH_3CH_3$           | -5.4E-04 | -2.8E-03                  | -6.6E-04  | -4.3E-04          | -8.7E-04 |
| $CH_3F$                      | 3.7E-05  | 2.8E-04                   | -2.2E-04  | -1.0E <b>-</b> 04 | 3.6E-04  |
| $\mathrm{CH}_3\mathrm{NH}_2$ | 2.7E-04  | 2.8E-03                   | -8.6E-06  | 8.4E-05           | -2.2E-05 |
| CH <sub>3</sub> OH           | 3.2E-04  | 2.3E-03                   | -6.2E-05  | 7.4E-05           | 7.1E-05  |
| $\rm CH_3 \rm CONH_2$        | -2.5E-05 | 6.8E-03                   | -8.3E-04  | 1.2E-04           | 1.5 E-03 |
| $\mathrm{CH}_4$              | 1.4E-04  | 4.1E-03                   | 1.2E-04   | 1.8E-05           | 8.3E-05  |
| CO                           | -2.0E-05 | -2.1E-04                  | 2.6E-05   | 6.0E-06           | -1.9E-04 |
| $\rm CO_2$                   | 3.7 E-06 | 1.7 E-04                  | 2.3E-05   | 3.6E-05           | 2.9E-04  |
| EtOTs                        | -5.9E-03 | -1.4E-02                  | -5.3E-04  | -3.0E-04          | 1.7E-03  |
| $F_2$                        | 6.0E-05  | 1.0E-03                   | 1.0E-05   | 1.7E-04           | 9.9E-04  |
| $H_2$                        | 2.2E-04  | 2.9E-04                   | 6.9E-06   | 6.6E-06           | 4.2E-05  |
| $H_2CO$                      | -8.3E-05 | 2.9E-03                   | 2.4E-04   | -8.6E-05          | 1.4E-04  |
| $H_2O$                       | -1.2E-04 | -2.1E-04                  | 1.5E-04   | 3.8E-05           | 2.0E-04  |
| $H_2O_2$                     | -7.1E-05 | 3.2E-04                   | -8.1E-05  | -1.9E-04          | -2.3E-04 |
| HCOOH                        | -1.2E-04 | 9.6E-04                   | 1.8E-04   | -1.0E-04          | -1.8E-04 |
| $Li_2$                       | 2.9E-05  | 4.8E-04                   | 1.3E-05   | 5.8E-06           | 5.6E-04  |
| LiF                          | 3.8E-03  | -4.5E-04                  | 5.7 E- 04 | 5.1E-04           | 8.4E-04  |
| LiH                          | 1.6E-03  | 4.1E-04                   | -4.8E-04  | 9.0E-06           | 8.0E-04  |
| NH <sub>3</sub>              | -1.8E-04 | $5.7\mathrm{E}\text{-}04$ | -2.4E-05  | 1.7E-05           | -7.8E-05 |
| benzaldehyde                 | 2.1E-03  | -8.8E-03                  | -1.1E-03  | -9.0E-04          | -2.7E-03 |
| cytosine                     | -1.2E-04 | -1.3E-02                  | -5.2E-04  | 2.5 E-04          | 2.7E-03  |
| formamidine                  | -1.3E-03 | -3.8E-03                  | -2.1E-04  | -4.5E-05          | -7.5E-04 |
| methoxide                    | 6.2E-04  | 8.0E-04                   | 3.0E-04   | -1.0E-04          | -1.8E-05 |
| naphthalene                  | 4.6E-03  | 1.5E-02                   | 2.2E-03   | 1.1E-03           | 2.4E-03  |
| uracil                       | 9.2E-04  | 3.2E-02                   | 1.4E-03   | -1.0E-03          | 3.6E-04  |
| MAE                          | 8.6E-04  | 4.6E-03                   | 3.9E-04   | 2.8E-04           | 7.1E-04  |

Table A.65: MAE of the dipole moment calculated using Becke, TA, TA(new), SG-1,

| 500 tor molecule                                | s containing 2 | 10w atoms |          |          |                |
|-------------------------------------------------|----------------|-----------|----------|----------|----------------|
| Molecule                                        | Becke          | TA        | TA(new)  | SG-1     | $\mathbf{SG0}$ |
| $\mathrm{CCl}_4$                                | 3.5 E- 05      | 3.5E-03   | 2.1E-04  | 6.8E-04  | 1.4E-03        |
| $CH_2ClCl$                                      | -5.1E-04       | 7.7E-04   | -5.1E-05 | -3.6E-04 | -1.7E-03       |
| $\mathrm{CH}_{2}\mathrm{PH}_{2}\mathrm{PH}_{2}$ | -1.5E-02       | 1.4E-02   | -9.5E-04 | 1.3E-04  | 2.0E-03        |
| $\rm CH_2SHSH$                                  | 6.3E-03        | -9.2E-03  | 6.2E-04  | 2.0E-04  | 1.6E-03        |
| $\mathrm{CH}_2\mathrm{SiH}_3\mathrm{SiH}_3$     | -2.9E-03       | -1.3E-03  | 1.3E-03  | -6.8E-04 | -1.5E-03       |
| $\mathrm{CH}_3\mathrm{PH}_2$                    | 1.2 E- 03      | -8.4E-05  | 2.1E-05  | 1.1E-04  | -1.5E-03       |
| $CH_3SH$                                        | 2.0E-04        | 3.8E-03   | -1.1E-04 | 6.1E-04  | -2.0E-03       |
| $\mathrm{CH}_3\mathrm{SiH}_3$                   | -9.0E-03       | -8.0E-04  | -1.6E-04 | -1.1E-04 | -2.2E-04       |
| $CH_3Cl$                                        | 1.1E-04        | -1.6E-03  | -5.4E-05 | 2.4E-04  | -4.1E-04       |
| $\mathbf{CS}$                                   | 4.9E-05        | -8.3E-05  | 1.3E-06  | 9.1E-05  | -8.4E-04       |
| $\mathrm{Cl}_2$                                 | 1.5E-04        | 7.9E-03   | 1.2E-05  | 6.5 E-04 | 1.3E-03        |
| ClF                                             | -1.4E-04       | 3.7 E-03  | -2.5E-05 | 2.3E-04  | 9.2E-04        |
| HOCl                                            | -1.6E-04       | -2.1E-03  | -6.8E-05 | -3.2E-04 | -2.4E-03       |
| Mg                                              | 2.2E-17        | -4.6E-18  | -2.4E-17 | -4.0E-17 | -3.2E-17       |
| NaCl                                            | 4.3E-04        | 1.2E-02   | -1.0E-04 | -3.4E-04 | 9.7E-06        |
| $P_2$                                           | 1.5E-04        | 1.4E-03   | 3.6E-05  | 5.1E-05  | 2.1E-03        |
| $\mathrm{PF}_5$                                 | 2.1E-03        | 1.8E-03   | 7.4E-04  | 2.2E-03  | 2.0E-03        |
| PH                                              | -4.6E-04       | 2.6E-03   | -4.3E-05 | -5.7E-05 | 9.4E-04        |
| $\mathrm{SF}_6$                                 | 1.8E-11        | 2.1E-10   | 1.7E-11  | 4.6E-11  | 4.5E-11        |
| SO                                              | -2.6E-04       | -2.1E-03  | -1.2E-05 | -2.7E-05 | -5.5E-04       |
| $\mathrm{SO}_2$                                 | 2.6E-06        | 8.4E-03   | 2.3E-04  | 2.7E-04  | -2.7E-03       |
| SiO                                             | -3.1E-04       | 5.9E-04   | -2.1E-05 | -7.4E-05 | 8.1E-04        |
| $pNO_2BzCl$                                     | -5.2E-03       | 3.4E-02   | -1.5E-04 | 1.9E-04  | 2.5E-03        |
| MAE                                             | 1.9E-03        | 4.9E-03   | 2.1E-04  | 3.3E-04  | 1.3E-03        |

Table A.66: MAE of the dipole moment calculated using Becke, TA, TA(new), SG-1, SG0 for molecules containing  $2^{nd}$  row atoms

| Molecule                         | Becke     | TA        | TA(new)                   | SG-1     | SG0       |
|----------------------------------|-----------|-----------|---------------------------|----------|-----------|
| 3rd row                          |           |           |                           |          |           |
| $AsH_3$                          | -4.6E-05  | -2.3E-02  | 3.2E-04                   | NA       | NA        |
| $\mathrm{CH}_3\mathrm{Br}$       | 1.3E-04   | 6.5 E-04  | -7.2E-05                  | NA       | NA        |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$  | 8.4 E- 03 | 3.5 E- 02 | 8.4E-05                   | NA       | NA        |
| $\mathrm{Ge_{3}H_{8}}$           | 1.9E-02   | 1.1E-02   | 1.1E-03                   | NA       | NA        |
| $\mathrm{Ge}_4\mathrm{H}_{10}$   | 4.8E-02   | 1.9E-01   | 3.7E-04                   | NA       | NA        |
| $\mathrm{Ge}_{5}\mathrm{H}_{12}$ | 4.0E-02   | -1.1E-02  | 7.5 E-04                  | NA       | NA        |
| ${ m GeH}_4$                     | 2.3 E- 03 | 8.5 E- 03 | 1.6E-04                   | NA       | NA        |
| $H_2Se$                          | 2.0E-03   | 1.8E-02   | -1.9E-04                  | NA       | NA        |
|                                  |           |           |                           |          |           |
| MAE                              | 1.3E-02   | 3.7E-02   | 3.5E-04                   |          |           |
| transition states                |           |           |                           |          |           |
| $TS\_CH_3Cl_2$                   | 2.6E-03   | 1.2 E- 02 | $3.6\mathrm{E}\text{-}04$ | 2.3E-04  | 2.4E-03   |
| $TS_CH_3F_2$                     | 9.2 E- 04 | 1.0E-04   | 8.2 E- 05                 | 2.2E-04  | 1.3 E-04  |
| TS_CH <sub>3</sub> FCl           | -5.6E-03  | 6.2E-03   | -5.9E-05                  | -2.2E-04 | 1.7 E- 03 |
| $TS\_CH_5OF$                     | -5.8E-03  | 1.7E-02   | -5.2E-04                  | 2.3E-05  | -2.9E-04  |
| $TS\_Ethyl-OSO_2\text{-}CH_3$    | -1.9E-03  | -6.2E-03  | 3.2E-04                   | 2.0E-04  | 1.7E-03   |
| TS_pHBzCl                        | -3.7E-03  | -4.5E-03  | -5.8E-04                  | -1.9E-03 | 1.4E-03   |
| MAE                              | 3.4E-03   | 7.7E-03   | 3.2E-04                   | 4.7E-04  | 1.3E-03   |

Table A.67: MAE of the dipole moment calculated using Becke, TA, TA(new), SG-1, SG0 for molecules containing  $3^{rd}$  row atoms and transition states

| Molecule                | Becke    | TA        | TA(new)   | SG-1     | SG0       |
|-------------------------|----------|-----------|-----------|----------|-----------|
| complexes               |          |           |           |          |           |
| $\rm CH_2O_2\_CH_2O_2$  | 2.1E-03  | 1.3E-02   | -3.4E-05  | -4.0E-04 | 1.5E-03   |
| FH-CO                   | 1.4E-03  | -5.1E-03  | -9.0E-04  | -1.1E-04 | -3.5E-03  |
| FH-FH                   | 1.4E-04  | 1.0E-04   | 8.5E-05   | 7.7E-05  | 6.1E-04   |
| FH-NCH                  | -4.5E-04 | 2.2E-03   | 2.0 E- 04 | 2.5 E-05 | 1.1 E- 03 |
| FH-NH <sub>3</sub>      | -6.6E-04 | -7.1E-03  | -1.2E-04  | -3.7E-04 | -4.0E-04  |
| FH-NN                   | 6.2E-03  | -1.7E-02  | 4.2E-05   | -7.6E-05 | -1.2E-03  |
| FH-OH <sub>2</sub>      | 4.2E-04  | -9.8E-04  | 1.9E-04   | 3.8E-06  | 8.4E-05   |
| $H_2O-CO_2$             | -2.4E-03 | 4.6E-03   | -3.3E-04  | -4.5E-04 | 4.1E-04   |
| $H_2O_H2_2O$            | -1.3E-03 | -9.2E-03  | 6.4E-06   | -1.3E-05 | -1.0E-03  |
| MAE                     | 1.7E-03  | 6.5 E- 03 | 2.0E-04   | 1.7E-04  | 1.1E-03   |
| ions                    |          |           |           |          |           |
| $\mathrm{ArNH_{3}^{+}}$ | 1.4E-03  | 2.3E-02   | 9.4E-04   | 6.8E-04  | 6.6E-04   |
| $H_3O^+$                | -9.1E-05 | 6.7E-04   | -1.4E-05  | -6.2E-05 | 8.5E-05   |
| HCOO <sup>-</sup>       | 5.2E-04  | -1.6E-03  | -2.2E-04  | 6.4 E-04 | 1.3E-03   |
| $\rm NH_3^+ CH_2 COO^-$ | 4.1E-04  | -2.3E-04  | 7.7E-04   | 2.0E-04  | 1.2E-03   |
| MAE                     | 6.0E-04  | 6.2E-03   | 4.8E-04   | 3.9E-04  | 8.0E-04   |
| peptides                |          |           |           |          |           |
| 1G_pep                  | 7.7E-04  | -4.9E-03  | -4.5E-05  | -1.5E-04 | 9.7E-04   |
| 2G_pep                  | 4.7E-03  | -3.2E-02  | 1.2E-04   | 4.0E-04  | -3.2E-03  |
| $3G_{-}pep$             | -5.9E-03 | 5.9E-02   | -2.1E-03  | 2.8E-03  | 2.6 E-04  |
| $4G_{-}pep$             | -1.6E-02 | -6.3E-02  | -6.1E-03  | -1.1E-03 | -5.1E-03  |
| $5G_{-}pep$             | 7.4E-02  | 7.3E-02   | 2.2E-03   | 5.8E-03  | -2.2E-03  |
| MAE                     | 2.0E-02  | 4.6E-02   | 2.1E-03   | 2.1E-03  | 2.4E-03   |

Table A.68: *MAE* of the dipole moment calculated using Becke, TA, TA(new), SG-1, SG0 for complexes ions and peptides

| Molecule                     | Becke        | ТА            | TA(new)    | SG-1        |
|------------------------------|--------------|---------------|------------|-------------|
| BF <sub>3</sub>              | -9.4E+05     | -8.2E+05      | -1.2E+06   | 1.3E+05     |
| $BH_3$                       | -1.1E + 05   | -7.3E+04      | -1.1E+05   | $1.0E{+}05$ |
| $\mathrm{BeH}_2$             | -6.8E + 04   | -5.0E + 04    | -7.0E + 04 | $1.0E{+}05$ |
| $C_2H_2$                     | -2.2E+05     | -1.8E+05      | -2.7E + 05 | 2.3E + 05   |
| $C_2H_4$                     | -2.5E+05     | -1.8E+05      | -2.9E + 05 | $1.9E{+}05$ |
| $CF_4$                       | -1.2E+06     | -1.1E+06      | -1.5E+06   | 1.4E + 05   |
| CH <sub>2</sub> CHCOOH       | -7.9E+05     | -6.8E+05      | -9.6E + 05 | 3.8E + 05   |
| $CH_2FF$                     | -6.8E + 05   | -6.3E + 05    | -8.6E + 05 | $1.1E{+}05$ |
| $\rm CH_2\rm CH_3\rm CH_3$   | -4.0E + 05   | -3.3E+05      | -4.3E + 05 | 2.8E + 05   |
| $CH_3F$                      | -4.2E + 05   | -3.6E + 05    | -5.0E + 05 | 1.0E + 05   |
| $\mathrm{CH}_3\mathrm{NH}_2$ | -3.1E + 05   | -2.8E+05      | -3.5E + 05 | 1.7E + 05   |
| CH <sub>3</sub> OH           | -3.6E + 05   | -3.1E + 05    | -4.2E + 05 | $1.4E{+}05$ |
| $CH_3CONH_2$                 | -6.3E + 05   | -5.6E + 05    | -7.4E + 05 | $3.2E{+}05$ |
| $CH_4$                       | $-1.5E{+}05$ | -1.2E + 05    | -1.6E + 05 | $9.2E{+}04$ |
| СО                           | -3.1E + 05   | -2.4E + 05    | -3.8E + 05 | 1.6E + 05   |
| $\rm CO_2$                   | -5.3E + 05   | -4.7E + 05    | -6.5E + 05 | 2.1E + 05   |
| EtOTs                        | -2.0E + 06   | -1.9E+06      | -2.4E+06   | 5.4E + 05   |
| $F_2$                        | -5.6E + 05   | -4.8E + 05    | -7.0E + 05 | 3.4E + 04   |
| $H_2$                        | -1.1E+04     | -7.6E+03      | -1.0E + 04 | -5.2E+03    |
| $H_2CO$                      | -3.3E+05     | -2.8E+05      | -4.0E + 05 | $1.5E{+}05$ |
| $H_2O$                       | -2.4E + 05   | -2.0E + 05    | -2.7E + 05 | 5.7E + 04   |
| $H_2O_2$                     | -4.3E + 05   | -3.9E + 05    | -5.2E + 05 | 1.1E + 05   |
| НСООН                        | -5.5E + 05   | -4.8E + 05    | -6.7E + 05 | $2.0E{+}05$ |
| $Li_2$                       | -4.8E + 04   | -4.9E + 04    | -7.0E + 04 | 2.0E + 05   |
| LiF                          | -3.3E+05     | -2.8E+05      | -3.9E + 05 | $9.9E{+}04$ |
| LiH                          | -4.4E+04     | -3.1E + 04    | -4.3E+04   | 9.5E + 04   |
| NH <sub>3</sub>              | $-1.9E{+}05$ | -1.6E + 05    | -2.1E+05   | 7.7E + 04   |
| benzaldehyde                 | -1.0E + 06   | -9.1E + 05    | -1.0E+06   | 7.3E+05     |
| cytosine                     | -1.2E + 06   | -1.0E + 06    | -1.4E+06   | 6.4E + 05   |
| formamidine                  | -4.6E + 05   | -3.4E+05      | -5.4E+05   | $2.5E{+}05$ |
| methoxide                    | -3.6E + 05   | -3.1E + 05    | -4.2E+05   | 1.4E + 05   |
| naphthalene                  | -9.9E+05     | -9.4E+05      | -1.3E+06   | $9.6E{+}05$ |
| uracil                       | -1.2E+06     | -1.0E+06      | -1.5E+06   | 6.2E + 05   |
| MAE                          | 5.2E + 05    | $4.6E \pm 05$ | 6.3E + 05  | 2.4E + 05   |

Table A.69: MAE of the potential energy calculated using Becke, TA, TA(new), SC 1 for molecules containing 1<sup>st</sup> row stoms

| <u>50-1</u> IOI IIIOIeculea                     | s containing 2 | 10w atoms  |            |             |
|-------------------------------------------------|----------------|------------|------------|-------------|
| Molecule                                        | Becke          | TA         | TA(new)    | SG-1        |
| $\mathrm{CCl}_4$                                | -4.2E+06       | -3.9E+06   | -5.4E+06   | 4.4E + 05   |
| CH <sub>2</sub> ClCl                            | -2.2E+06       | -2.0E+06   | -2.8E+06   | 2.7E + 05   |
| $\mathrm{CH}_{2}\mathrm{PH}_{2}\mathrm{PH}_{2}$ | -1.7E+06       | -1.6E + 06 | -2.2E+06   | 4.1E + 05   |
| $\rm CH_2SHSH$                                  | -1.9E+06       | -1.8E+06   | -2.5E+06   | 3.6E + 05   |
| $\mathrm{CH}_2\mathrm{SiH}_3\mathrm{SiH}_3$     | -1.7E+06       | -1.4E+06   | -2.0E+06   | 4.1E + 05   |
| $\mathrm{CH}_3\mathrm{PH}_2$                    | -9.5E+05       | -8.9E+05   | -1.2E+06   | 2.5E+05     |
| $\rm CH_3SH$                                    | -1.1E+06       | -9.6E + 05 | -1.3E+06   | $2.3E{+}05$ |
| $\mathrm{CH}_3\mathrm{SiH}_3$                   | -9.0E+05       | -7.9E+05   | -1.1E+06   | 2.5E+05     |
| $CH_{3}Cl$                                      | -1.2E+06       | -1.1E+06   | -1.5E+06   | 1.8E + 05   |
| $\mathbf{CS}$                                   | -1.0E+06       | -9.2E+05   | -1.3E+06   | 2.4E + 05   |
| $\mathrm{Cl}_2$                                 | -2.0E+06       | -1.8E+06   | -2.6E+06   | 1.7E + 05   |
| $\operatorname{ClF}$                            | -1.3E+06       | -1.2E+06   | -1.7E+06   | 1.0E + 05   |
| HOCl                                            | -1.3E+06       | -1.1E+06   | -1.6E+06   | 1.5E+05     |
| Mg                                              | -5.3E+05       | -4.7E+05   | -6.7E+05   | 9.7E + 04   |
| NaCl                                            | -1.5E+06       | -1.3E+06   | -1.9E+06   | 1.1E + 05   |
| $P_2$                                           | -1.6E+06       | -1.4E+06   | -2.0E+06   | 3.2E + 05   |
| $\mathrm{PF}_5$                                 | -2.2E+06       | -1.7E+06   | -2.8E+06   | 2.0E + 05   |
| РН                                              | -8.0E+05       | -7.5E+05   | -1.0E + 06 | 1.6E + 05   |
| ${ m SF}_6$                                     | -2.6E+06       | -2.1E+06   | -3.3E + 06 | 2.0E + 05   |
| SO                                              | -1.1E+06       | -1.0E+06   | -1.4E+06   | 2.0E + 05   |
| $\mathrm{SO}_2$                                 | -2.0E+06       | -1.9E+06   | -2.6E + 06 | 3.5E + 05   |
| SiO                                             | -9.1E+05       | -8.2E+05   | -1.2E+06   | 2.1E+05     |
| $pNO_2BzCl$                                     | -2.5E+06       | -2.1E+06   | -3.0E+06   | 9.1E + 05   |
| MAE                                             | 1.6E + 06      | 1.4E + 06  | 2.0E + 06  | 2.7E + 05   |

Table A.70: MAE of the potential energy calculated using Becke, TA, TA(new), SG-1 for molecules containing  $2^{nd}$  row atoms

| Molecule                         | Becke      | TA        | TA(new)     | SG-1        |
|----------------------------------|------------|-----------|-------------|-------------|
| 3rd row                          |            |           |             |             |
| $AsH_3$                          | -4.7E+06   | -4.2E+06  | -5.8E+06    | NA          |
| $CH_3Br$                         | -5.4E + 06 | -4.9E+06  | -6.8E+06    | NA          |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$  | -8.7E+06   | -7.7E+06  | -1.1E+07    | NA          |
| $\rm Ge_3H_8$                    | -1.3E+07   | -1.2E+07  | -1.7E+07    | NA          |
| $\mathrm{Ge}_4\mathrm{H}_{10}$   | -1.7E+07   | -1.5E+07  | -2.2E+07    | NA          |
| $\mathrm{Ge}_{5}\mathrm{H}_{12}$ | -2.2E+07   | -1.9E+07  | -2.8E+07    | NA          |
| ${ m GeH}_4$                     | -5.0E+06   | -4.0E+06  | -5.5E+06    | NA          |
| $H_2Se$                          | -5.0E+06   | -4.4E+06  | -6.2E+06    | NA          |
|                                  |            |           |             |             |
| MAE                              | 1.0E + 07  | 8.9E + 06 | $1.3E{+}07$ |             |
| transition states                |            |           |             |             |
| $TS\_CH_3Cl_2$                   | -2.2E+06   | -2.0E+06  | -2.8E+06    | 2.6E + 0.02 |
| $TS\_CH_3F_2$                    | -7.3E+05   | -6.5E+05  | -8.8E+05    | 9.6E + 0.02 |
| TS_CH <sub>3</sub> FCl           | -1.5E+06   | -1.3E+06  | -1.9E+06    | 1.7E+0.03   |
| $TS_CH_5OF$                      | -6.6E+05   | -6.0E+05  | -7.8E+05    | 1.6E + 0.02 |
| $TS\_Ethyl-OSO_2\text{-}CH_3$    | -2.3E+06   | -2.0E+06  | -2.7E+06    | 7.2E + 0.02 |
| TS_pHBzCl                        | -2.1E+06   | -1.8E+06  | -2.6E+06    | 9.2E + 0.02 |
| MAE                              | 1.6E + 06  | 1.4E + 06 | $1.9E{+}06$ | 3.9E + 0    |

Table A.71: MAE of the potential energy calculated using Becke, TA, TA(new), SG-1 for molecules containing  $3^{rd}$  row atoms and transition states

| Molecule               | Becke      | TA         | TA(new)     | SG-1        |
|------------------------|------------|------------|-------------|-------------|
| complexes              |            |            |             |             |
| $\rm CH_2O_2\_CH_2O_2$ | -1.1E+06   | -1.0E+06   | -1.3E+06    | 4.0E + 05   |
| FH-CO                  | -6.0E + 05 | -5.0E + 05 | -7.5E+05    | 1.7E + 05   |
| FH-FH                  | -5.9E + 05 | -5.2E + 05 | -7.1E+05    | $2.6E{+}04$ |
| FH-NCH                 | -5.5E+05   | -4.8E+05   | -6.5E+05    | 2.0E + 05   |
| $FH-NH_3$              | -4.8E+05   | -4.1E+05   | -5.7E + 05  | 9.0E+04     |
| FH-NN                  | -5.8E + 05 | -4.8E+05   | -7.2E+05    | $2.3E{+}05$ |
| $FH-OH_2$              | -5.4E + 05 | -4.6E + 05 | -6.3E+05    | 6.9E + 04   |
| $H_2O-CO_2$            | -7.6E + 05 | -6.8E + 05 | -9.3E+05    | $2.6E{+}05$ |
| $H_2O_H2_2O$           | -4.7E + 05 | -3.9E+05   | -5.5E+05    | 1.1E + 05   |
| MAE                    | 6.3E + 05  | 5.5E + 05  | 7.6E + 05   | 1.7E + 05   |
| ions                   |            |            |             |             |
| $ArNH_3^+$             | -8.8E+05   | -8.0E+05   | -1.0E+06    | 6.8E + 05   |
| $H_3O^+$               | -2.3E+05   | -2.0E+05   | -2.7E+05    | $5.9E{+}04$ |
| HCOO-                  | -5.6E+05   | -4.8E+05   | -6.6E + 05  | 1.8E+05     |
| $\rm NH_3^+CH_2COO^-$  | -8.5E+05   | -6.8E + 05 | -1.0E+06    | $3.6E{+}05$ |
| MAE                    | 6.3E + 05  | 5.4E + 05  | 7.4E + 05   | 3.2E + 05   |
| peptides               |            |            |             |             |
| 1G_pep                 | -8.5E+05   | -7.3E+05   | -1.0E+06    | 3.7E + 05   |
| $2G_{-}pep$            | -1.4E+06   | -1.4E+06   | -1.8E+06    | 6.7E + 05   |
| $3G_{-}pep$            | -2.1E+06   | -1.8E+06   | -2.5E+06    | 9.9E + 05   |
| $4G_{-}pep$            | -2.7E+06   | -2.5E+06   | -3.3E+06    | 1.3E+06     |
| 5G_pep                 | -3.1E+06   | -2.9E+06   | -4.0E+06    | 1.6E + 06   |
| MAE                    | 2.0E + 06  | 1.9E+06    | $2.5E{+}06$ | 9.9E + 05   |

Table A.72: MAE of the potential energy calculated using Becke, TA, TA(new), SG-1 for complexes, ions, and peptides

| Molecule                       | Becke         | TA            | TA(new)       | SG-1                 | SG0        |
|--------------------------------|---------------|---------------|---------------|----------------------|------------|
| BF3                            | -9.4E+05      | -8.2E+05      | -1.2E+06      | 1.3E+05              | -4.0E+06   |
| BH₃                            | -1.1E + 05    | -7.3E+04      | -1.1E + 05    | 1.0E + 05            | -3.1E+05   |
| BeH2                           | -6.8E + 04    | -5.0E+04      | -7.0E+04      | 1.0E + 05            | -2.7E+05   |
| $C_2H_2$                       | -2.2E+05      | -1.8E+05      | -2.7E+05      | $2.3E{+}05$          | -5.9E+05   |
| $C_2H_4$                       | -2.5E+05      | -1.8E+05      | -2.9E+05      | $1.9E{+}05$          | -5.9E + 05 |
| $CF_4$                         | -1.2E + 06    | -1.1E+06      | -1.5E+06      | $1.4E{+}05$          | -5.2E + 06 |
| CH <sub>2</sub> CHCOOH         | -7.9E + 05    | -6.8E + 05    | -9.6E+05      | $3.8E{+}05$          | -2.4E+06   |
| $CH_2FF$                       | -6.8E+05      | -6.3E+05      | -8.6E + 05    | $1.1E{+}05$          | -2.8E+06   |
| $\rm CH_2CH_3CH_3$             | -4.0E + 05    | -3.3E+05      | -4.3E+05      | 2.8E + 05            | -9.8E+05   |
| $CH_3F$                        | -4.2E + 05    | -3.6E+05      | -5.0E + 05    | $1.0E{+}05$          | -1.6E+06   |
| $\rm CH_3 \rm NH_2$            | -3.1E + 05    | -2.8E+05      | -3.5E+05      | $1.7E{+}05$          | -8.1E+05   |
| CH <sub>3</sub> OH             | -3.6E + 05    | -3.1E+05      | -4.2E + 05    | 1.4E+05              | -1.1E+06   |
| $\mathrm{CH}_3\mathrm{CONH}_2$ | -6.3E+05      | -5.6E+05      | -7.4E+05      | $3.2E{+}05$          | -1.8E+06   |
| $CH_4$                         | -1.5E+05      | -1.2E+05      | -1.6E + 05    | $9.2E{+}04$          | -3.4E + 05 |
| CO                             | -3.1E+05      | -2.4E+05      | -3.8E+05      | $1.6E{+}05$          | -1.0E+06   |
| $\rm CO_2$                     | -5.3E + 05    | -4.7E+05      | -6.5E + 05    | $2.1E{+}05$          | -1.4E+06   |
| EtOTs                          | -2.0E+06      | -1.9E+06      | -2.4E+06      | $5.4E{+}05$          | -7.2E+06   |
| $F_2$                          | -5.6E + 05    | -4.8E+05      | -7.0E+05      | $3.4E{+}04$          | -2.4E+06   |
| $H_2$                          | -1.1E+04      | -7.6E+03      | -1.0E+04      | -5.2E+03             | -1.0E+04   |
| $H_2CO$                        | -3.3E + 05    | -2.8E+05      | -4.0E + 05    | 1.5E+05              | -1.0E + 06 |
| $H_2O$                         | -2.4E+05      | -2.0E+05      | -2.7E+05      | 5.7E + 04            | -7.3E+05   |
| $H_2O_2$                       | -4.3E + 05    | -3.9E+05      | -5.2E + 05    | 1.1E + 05            | -1.5E + 06 |
| HCOOH                          | -5.5E + 05    | -4.8E+05      | -6.7E + 05    | $2.0\mathrm{E}{+}05$ | -1.8E+06   |
| $Li_2$                         | -4.8E+04      | -4.9E+04      | -7.0E+04      | $2.0E{+}05$          | -1.8E+05   |
| LiF                            | -3.3E+05      | -2.8E+05      | -3.9E+05      | 9.9E + 04            | -1.3E+06   |
| LiH                            | -4.4E+04      | -3.1E + 04    | -4.3E+04      | 9.5E + 04            | -9.6E + 04 |
| $\rm NH_3$                     | -1.9E + 05    | -1.6E+05      | -2.1E+05      | 7.7E + 04            | -4.8E + 05 |
| benzaldehyde                   | -1.0E+06      | -9.1E + 05    | -1.0E+06      | 7.3E + 05            | -2.9E + 06 |
| $\operatorname{cytosine}$      | -1.2E + 06    | -1.0E+06      | -1.4E+06      | $6.4\mathrm{E}{+}05$ | -3.5E + 06 |
| formamidine                    | -4.6E + 05    | -3.4E+05      | -5.4E+05      | 2.5E+05              | -1.3E+06   |
| methoxide                      | -3.6E + 05    | -3.1E + 05    | -4.2E+05      | 1.4E + 05            | -1.1E+06   |
| naphthalene                    | -9.9E + 05    | -9.4E + 05    | -1.3E+06      | 9.6E + 05            | -3.1E+06   |
| uracil                         | -1.2E+06      | -1.0E+06      | -1.5E+06      | $6.2\mathrm{E}{+}05$ | -3.7E + 06 |
| MAE                            | $5.2E \pm 05$ | $4.6E \pm 05$ | $6.3E \pm 05$ | $2.4E \pm 05$        | 1.3E + 06  |

Table A.73: MAE of the Coulomb energy  $V_{ee}^1$  calculated using Becke, TA, TA(new), SG-1, SG0 for molecules containing  $1^{st}$  row atoms

| 56-1 IOI IIIOIeculea                            | s containing 2 |            |             |             |
|-------------------------------------------------|----------------|------------|-------------|-------------|
| Molecule                                        | Becke          | TA         | TA(new)     | SG-1        |
| $\mathrm{CCl}_4$                                | -4.2E+06       | -3.9E+06   | -5.4E+06    | 4.4E + 05   |
| $CH_2ClCl$                                      | -2.2E+06       | -2.0E+06   | -2.8E+06    | 2.7E + 05   |
| $\mathrm{CH}_{2}\mathrm{PH}_{2}\mathrm{PH}_{2}$ | -1.7E+06       | -1.6E+06   | -2.2E+06    | 4.1E + 05   |
| $CH_2SHSH$                                      | -1.9E+06       | -1.8E+06   | -2.5E+06    | 3.6E + 05   |
| $\mathrm{CH}_2\mathrm{SiH}_3\mathrm{SiH}_3$     | -1.7E+06       | -1.4E + 06 | -2.0E+06    | 4.1E + 05   |
| $\mathrm{CH}_{3}\mathrm{PH}_{2}$                | -9.5E+05       | -8.9E + 05 | -1.2E+06    | 2.5E+05     |
| $\rm CH_3SH$                                    | -1.1E+06       | -9.6E + 05 | -1.3E+06    | 2.3E + 05   |
| $\mathrm{CH}_3\mathrm{SiH}_3$                   | -9.0E+05       | -7.9E+05   | -1.1E+06    | 2.5E+05     |
| $\rm CH_3Cl$                                    | -1.2E+06       | -1.1E+06   | -1.5E+06    | 1.8E+05     |
| $\mathbf{CS}$                                   | -1.0E+06       | -9.2E+05   | -1.3E+06    | 2.4E + 05   |
| $\mathrm{Cl}_2$                                 | -2.0E+06       | -1.8E+06   | -2.6E+06    | 1.7E + 05   |
| ClF                                             | -1.3E+06       | -1.2E+06   | -1.7E+06    | 1.0E + 05   |
| HOCl                                            | -1.3E+06       | -1.1E + 06 | -1.6E+06    | 1.5E+05     |
| Mg                                              | -5.3E+05       | -4.7E + 05 | -6.7E+05    | $9.7E{+}04$ |
| NaCl                                            | -1.5E+06       | -1.3E+06   | -1.9E+06    | 1.1E + 05   |
| $P_2$                                           | -1.6E+06       | -1.4E+06   | -2.0E+06    | 3.2E + 05   |
| $\mathrm{PF}_5$                                 | -2.2E+06       | -1.7E + 06 | -2.8E+06    | $2.0E{+}05$ |
| PH                                              | -8.0E+05       | -7.5E + 05 | -1.0E+06    | 1.6E + 05   |
| $\mathrm{SF}_6$                                 | -2.6E+06       | -2.1E + 06 | -3.3E+06    | 2.0E + 05   |
| SO                                              | -1.1E+06       | -1.0E + 06 | -1.4E+06    | 2.0E + 05   |
| $SO_2$                                          | -2.0E+06       | -1.9E+06   | -2.6E+06    | 3.5E + 05   |
| SiO                                             | -9.1E+05       | -8.2E+05   | -1.2E+06    | 2.1E + 05   |
| $pNO_2BzCl$                                     | -2.5E+06       | -2.1E+06   | -3.0E+06    | 9.1E + 05   |
| MAE                                             | $1.5E{+}06$    | 1.4E+06    | $1.9E{+}06$ | 2.6E + 05   |

Table A.74: *MAE* of the Coulomb energy  $V_{ee}^1$  calculated using Becke, TA, TA(new), SG-1 for molecules containing  $2^{nd}$  row atoms

| Molecule                         | Becke      | TA        | TA(new)     | SG-1      | SG0       |
|----------------------------------|------------|-----------|-------------|-----------|-----------|
| 3rd row                          |            |           |             |           |           |
| $AsH_3$                          | -4.7E+06   | -4.2E+06  | -5.8E+06    | NA        | NA        |
| $CH_3Br$                         | -5.4E+06   | -4.9E+06  | -6.8E+06    | NA        | NA        |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$  | -8.7E+06   | -7.7E+06  | -1.1E+07    | NA        | NA        |
| $\mathrm{Ge}_{3}\mathrm{H}_{8}$  | -1.3E+07   | -1.2E+07  | -1.7E+07    | NA        | NA        |
| $\mathrm{Ge}_4\mathrm{H}_{10}$   | -1.7E+07   | -1.5E+07  | -2.2E+07    | NA        | NA        |
| $\mathrm{Ge}_{5}\mathrm{H}_{12}$ | -2.2E+07   | -1.9E+07  | -2.8E+07    | NA        | NA        |
| ${ m GeH}_4$                     | -5.0E + 06 | -4.0E+06  | -5.5E + 06  | NA        | NA        |
| $ m H_2Se$                       | -5.0E + 06 | -4.4E+06  | -6.2E+06    | NA        | NA        |
|                                  |            |           |             |           |           |
| MAE                              | 1.1E+07    | 8.9E+06   | 1.3E+07     |           |           |
| transition states                |            |           |             |           |           |
| $TS\_CH_3Cl_2$                   | -2.2E+06   | -2.0E+06  | -2.8E+06    | 2.6E + 05 | -1.0E+07  |
| $TSCH_3F_2$                      | -7.3E+05   | -6.5E+05  | -8.8E+05    | 9.6E + 04 | -2.8E+06  |
| TS_CH <sub>3</sub> FCl           | -1.5E+06   | -1.3E+06  | -1.9E+06    | 1.7E + 05 | -6.5E+06  |
| $TS_CH_5OF$                      | -6.6E+05   | -6.0E+05  | -7.8E+05    | 1.6E + 05 | -2.3E+06  |
| $TS\_Ethyl-OSO_2\text{-}CH_3$    | -2.3E+06   | -2.0E+06  | -2.7E+06    | 7.2E + 05 | -7.2E+06  |
| TS_pHBzCl                        | -2.1E+06   | -1.8E+06  | -2.6E+06    | 9.2E + 05 | -7.9E+06  |
| MAE                              | 1.6E + 06  | 1.4E + 06 | $1.9E{+}06$ | 3.9E + 05 | 6.2E + 06 |

Table A.75: MAE of the Coulomb energy  $V^1_{ee}$  calculated using Becke, TA, TA(new),

SG-1, SG0 for molecules containing  $3^{rd}$  row atoms and transition states

| Molecule                 | Becke       | TA          | TA(new)    | SG-1                 | SG0       |
|--------------------------|-------------|-------------|------------|----------------------|-----------|
| complexes                |             |             |            |                      | -         |
| $\rm CH_2O_2\_CH_2O_2$   | -1.1E+06    | -1.0E+06    | -1.3E+06   | 4.0E + 05            | -3.5E+06  |
| FH-CO                    | -6.0E + 05  | -5.0E + 05  | -7.5E+05   | 1.7E + 05            | -2.2E+06  |
| FH-FH                    | -5.9E+05    | -5.2E+05    | -7.1E+05   | $2.6E{+}04$          | -2.5E+06  |
| FH-NCH                   | -5.5E+05    | -4.8E+05    | -6.5E+05   | 2.0E + 05            | -2.0E+06  |
| $FH-NH_3$                | -4.8E+05    | -4.1E+05    | -5.7E+05   | 9.0E+04              | -1.7E+06  |
| FH-NN                    | -5.8E+05    | -4.8E+05    | -7.2E+05   | 2.3E + 05            | -2.2E+06  |
| FH-OH <sub>2</sub>       | -5.4E + 05  | -4.6E+05    | -6.3E+05   | $6.9E{+}04$          | -2.0E+06  |
| $H_2O-CO_2$              | -7.6E + 05  | -6.8E+05    | -9.3E+05   | $2.6\mathrm{E}{+}05$ | -2.4E+06  |
| $H_2O_H2_2O$             | -4.7E + 05  | -3.9E+05    | -5.5E+05   | $1.1E{+}05$          | -1.5E+06  |
| MAE                      | 6.3E + 05   | 5.5E + 05   | 7.6E + 05  | 1.7E + 05            | 2.2E+06   |
| ions                     |             |             |            |                      |           |
| $ArNH_3^+$               | -8.8E+05    | -8.0E+05    | -1.0E+06   | 6.8E + 05            | -2.3E+06  |
| $H_3O^+$                 | -2.3E+05    | -2.0E+05    | -2.7E+05   | 5.9E + 04            | -7.3E+05  |
| HCOO-                    | -5.6E+05    | -4.8E+05    | -6.6E + 05 | 1.8E + 05            | -1.8E+06  |
| NH3 <sup>+</sup> CH2COO~ | -8.5E+05    | -6.8E+05    | -1.0E+06   | 3.6E + 05            | -2.6E+06  |
| MAE                      | $6.3E{+}05$ | $5.4E{+}05$ | 7.4E + 05  | $3.2E{+}05$          | 1.9E + 06 |
| peptides                 |             |             |            |                      |           |
| $1 \mathrm{G_pep}$       | -8.5E+05    | -7.3E+05    | -1.0E+06   | 3.7E + 05            | -2.6E+06  |
| $2G_{-}pep$              | -1.4E+06    | -1.4E+06    | -1.8E+06   | 6.7E + 05            | -4.4E+06  |
| $3G_{-}pep$              | -2.1E+06    | -1.8E+06    | -2.5E+06   | $9.9E{+}05$          | -6.3E+06  |
| $4G_{-}pep$              | -2.7E+06    | -2.5E+06    | -3.3E+06   | 1.3E+06              | -8.2E+06  |
| $5G_{-}pep$              | -3.1E+06    | -2.9E+06    | -4.0E+06   | 1.6E + 06            | -1.0E+07  |
| MAE                      | 2.0E+06     | 1.9E + 06   | 2.5E + 06  | 9.9E+05              | 6.3E+06   |

Table A.76: MAE of the Coulomb energy  $V_{ee}^1$  calculated using Becke, TA, TA(new),

SG-1, SG0 for complexes, ions, and peptides

| <b>501</b> , <b>500101</b> mo.                  | localos comoan |            |           |            |            |
|-------------------------------------------------|----------------|------------|-----------|------------|------------|
| Molecule                                        | Becke          | TA         | TA(new)   | SG-1       | SG0        |
| BF <sub>3</sub>                                 | -2,110         | 5,900      | -3,230    | 365        | 8,460      |
| $\mathrm{BH}_3$                                 | -3,340         | 1,750      | 168       | 37         | -63        |
| $\mathrm{BeH}_2$                                | 1,070          | 696        | -56       | 28         | 84         |
| $C_2H_2$                                        | 336            | 1,730      | -74       | 124        | -88        |
| $C_2H_4$                                        | $2,\!670$      | 14,200     | 68        | -207       | -2,190     |
| $\mathrm{CF}_4$                                 | -2,420         | -6,030     | 398       | 3,310      | 16,100     |
| CH <sub>2</sub> CHCOOH                          | $2,\!180$      | 1,660      | -922      | -568       | -1,690     |
| $\rm CH_2FF$                                    | 4,110          | -7,840     | -994      | -1,000     | 4,360      |
| $\mathrm{CH}_{2}\mathrm{CH}_{3}\mathrm{CH}_{3}$ | 4,270          | -5,810     | -929      | -893       | -203       |
| $CH_3F$                                         | 2,670          | -476       | -457      | -66        | $2,\!830$  |
| $\rm CH_3 \rm NH_2$                             | 3,730          | -12,700    | 212       | -148       | 412        |
| $CH_3OH$                                        | 2,790          | -1,160     | 157       | -41        | 10         |
| $\rm CH_3 \rm CONH_2$                           | 184            | -10,200    | 1,770     | 194        | -200       |
| $\mathrm{CH}_4$                                 | 1,770          | -2,330     | -36       | -42        | -288       |
| CO                                              | -101           | 445        | 114       | 46         | -30        |
| $\rm CO_2$                                      | -19            | -10        | 80        | 179        | -424       |
| EtOTs                                           | -9,670         | -67,800    | -6,340    | -690       | 11,300     |
| $F_2$                                           | -386           | 6,160      | -116      | 265        | 6,920      |
| $H_2$                                           | -70            | -128       | -6        | 13         | -86        |
| $H_2CO$                                         | 1,550          | 4,680      | 50        | 102        | -21        |
| $H_2O$                                          | 408            | 861        | -71       | 64         | 103        |
| $H_2O_2$                                        | 368            | -1,880     | 24        | 122        | $1,\!250$  |
| HCOOH                                           | 1,970          | 277        | -264      | -7         | 286        |
| $Li_2$                                          | -24            | 161        | 19        | 10         | 77         |
| LiF                                             | 8,390          | 1,240      | $2,\!410$ | -139       | $3,\!200$  |
| LiH                                             | -1,070         | 78         | 60        | 27         | -114       |
| $ m NH_3$                                       | 611            | -1,740     | -152      | -53        | 266        |
| benzaldehyde                                    | 3,820          | -10,000    | 1,160     | 3,330      | $1,\!480$  |
| $\operatorname{cytosine}$                       | 3,510          | -4,770     | 378       | $-1,\!540$ | -3,330     |
| formamidine                                     | 2,510          | $26,\!100$ | 511       | 251        | $1,\!120$  |
| methoxide                                       | 326            | -782       | -13       | -43        | -231       |
| naphthalene                                     | 24,800         | $34,\!100$ | 11,000    | 8,160      | $15,\!200$ |
| uracil                                          | 2,830          | 28,000     | 459       | -1,920     | -1,230     |
| MAE                                             | 2,912          | 7,930      | 991       | 727        | 2,535      |

Table A.77: MAE of the Coulomb energy  $V_{ee}^2$  calculated using Becke, TA, TA(new), SG-1. SG0 for molecules containing 1<sup>st</sup> row atoms

| Molecule                                        | Becke   | TA         | TA(new)   | SG-1       | SG0     |
|-------------------------------------------------|---------|------------|-----------|------------|---------|
| $\mathrm{CCl}_4$                                | -2,400  | 10,700     | 532       | -1,820     | -25,200 |
| $CH_2ClCl$                                      | -4,150  | $2,\!550$  | 221       | -590       | -11,900 |
| $\mathrm{CH}_{2}\mathrm{PH}_{2}\mathrm{PH}_{2}$ | 24,200  | -15,300    | $2,\!180$ | -72        | -31,300 |
| $\rm CH_2SHSH$                                  | 12,000  | -17,800    | $1,\!170$ | 296        | -4,360  |
| $\mathrm{CH}_2\mathrm{SiH}_3\mathrm{SiH}_3$     | -24,000 | 6,000      | 711       | -1,600     | -9,600  |
| $\mathrm{CH}_3\mathrm{PH}_2$                    | 3,050   | -17,900    | -154      | 11         | -14,500 |
| $\rm CH_3SH$                                    | 624     | -6,220     | 140       | 571        | -3,850  |
| $\rm CH_3SiH_3$                                 | -16,400 | -10,400    | -366      | -423       | -4,180  |
| CH <sub>3</sub> Cl                              | -1,580  | -5,750     | -24       | -76        | -5,110  |
| $\mathbf{CS}$                                   | -546    | -2,320     | -46       | -144       | -3,680  |
| $\mathrm{Cl}_2$                                 | 589     | $27,\!800$ | 365       | $-2,\!640$ | -11,800 |
| ClF                                             | -646    | 15,200     | 384       | -1,570     | -4,570  |
| HOCl                                            | 764     | 5,020      | 339       | -595       | -5,570  |
| Mg                                              | -103    | 10         | 10        | 72         | 4,530   |
| NaCl                                            | 1,260   | 24,900     | -305      | -2,250     | -8,830  |
| $P_2$                                           | -1,380  | $6,\!590$  | 366       | 3          | -32,700 |
| $\mathrm{PF}_5$                                 | 8,120   | 137,000    | $1,\!840$ | -3,430     | -810    |
| PH                                              | 691     | -3,980     | 67        | -198       | -13,600 |
| ${ m SF}_6$                                     | -7,830  | 105,000    | -4,130    | -35,100    | -5,170  |
| SO                                              | -1,110  | $3,\!140$  | -44       | 276        | -480    |
| $\mathrm{SO}_2$                                 | 17      | -142       | -35       | 714        | -3,140  |
| SiO                                             | -819    | 4,990      | 32        | 76         | -2,360  |
| $pNO_2BzCl$                                     | -4,640  | 44,800     | -2,070    | -3,320     | -11,500 |
| MAE                                             | 4,462   | 17,863     | 615       | 1,984      | 9,510   |

Table A.78: MAE of the Coulomb energy  $V_{ee}^2$  calculated using Becke, TA, TA(new), SG-1, SG0 for molecules containing  $2^{nd}$  row atoms

|                                  | 0          |             | 111 L TO 10 |           |           |
|----------------------------------|------------|-------------|-------------|-----------|-----------|
| Molecule                         | Becke      | TA          | TA(new)     | SG-1      | SG0       |
| 3rd row                          |            |             |             |           |           |
| $AsH_3$                          | -50,900    | 6,860       | 1,010       | NA        | NA        |
| $CH_3Br$                         | -1,540     | $4,\!590$   | -1,390      | NA        | NA        |
| $\mathrm{Ge}_{2}\mathrm{H}_{6}$  | 24,000     | 108,000     | -3,790      | NA        | NA        |
| $\mathrm{Ge}_{3}\mathrm{H}_{8}$  | 28,300     | 138,000     | -2,420      | NA        | NA        |
| $\mathrm{Ge}_4\mathrm{H}_{10}$   | 107,000    | 373,000     | -203        | NA        | NA        |
| $\mathrm{Ge}_{5}\mathrm{H}_{12}$ | -25,400    | $543,\!000$ | $5,\!570$   | NA        | NA        |
| ${ m GeH}_4$                     | -280,000   | -14,700     | -2,240      | NA        | NA        |
| $H_2Se$                          | -53,000    | $25,\!800$  | $1,\!050$   | NA        | NA        |
|                                  |            |             |             |           |           |
| MAE                              | $68,\!116$ | 138,228     | $2,\!208$   |           |           |
| transition states                |            |             |             |           |           |
| $TS\_CH_3Cl_2$                   | 36,100     | 2,040       | 336         | -868      | -4.2E+03  |
| $TS_CH_3F_2$                     | 857        | -9,010      | 319         | 367       | 4.8E+03   |
| TS_CH <sub>3</sub> FCl           | -472       | -2,420      | 304         | 187       | -3.0E+03  |
| $TS_CH_5OF$                      | 5,160      | -19,800     | 750         | 435       | 4.9E + 03 |
| $TS\_Ethyl-OSO_2-CH_3$           | -2,260     | -4,120      | -846        | $1,\!580$ | 1.1E + 04 |
| TS_pHBzCl                        | 43,500     | 50,400      | $2,\!510$   | 3,560     | -1.7E+03  |
| MAE                              | 14,725     | $14,\!632$  | 844         | 1,166     | 5.0E + 03 |

Table A.79: MAE of the Coulomb energy  $V_{ee}^2$  calculated using Becke, TA, TA(new), SG-1, SG0 for molecules containing  $3^{rd}$  row atoms and transition states

| Molecule                | Becke     | TA         | TA(new) | pople     | SG0         |
|-------------------------|-----------|------------|---------|-----------|-------------|
| complexes               |           |            |         |           |             |
| $\rm CH_2O_2\_CH_2O_2$  | 3,790     | -32,300    | -65     | -610      | 2.3E+03     |
| FH-CO                   | -245      | 1,300      | 231     | 70        | 1.8E+03     |
| FH-FH                   | 78        | 832        | 346     | 226       | 4.9E + 03   |
| FH-NCH                  | 108       | 3,290      | 95      | 270       | $2.6E{+}03$ |
| FH-NH <sub>3</sub>      | 899       | 2,720      | -50     | -79       | $1.4E{+}03$ |
| FH-NN                   | -5,310    | 22,000     | -74     | 134       | 2.1E + 03   |
| FH-OH <sub>2</sub>      | 18        | 1,890      | -251    | 113       | 2.3E+03     |
| $H_2O-CO_2$             | $3,\!450$ | -3,030     | 240     | 750       | -1.8E+03    |
| $H_2O_H_2O$             | $1,\!880$ | 7,200      | -21     | 140       | 9.4E + 02   |
| MAE                     | 1,753     | 8,285      | 152     | 266       | 2.2E + 03   |
| ions                    |           |            |         |           |             |
| $\mathrm{ArNH_{3}^{+}}$ | -3,070    | -30,200    | 851     | $5,\!070$ | 6.5E + 03   |
| $H_3O^+$                | 647       | -2,090     | 26      | 42        | -3.1E+00    |
| HCOO-                   | 650       | 1,210      | 28      | 138       | 7.8E + 02   |
| $\rm NH_3^+ CH_2 COO^-$ | 572       | $23,\!400$ | -864    | 590       | -4.0E+03    |
| MAE                     | 1,235     | $14,\!225$ | 442     | $1,\!460$ | 2.8E+03     |
| peptides                |           |            |         |           |             |
| 1G_pep                  | -3,570    | -7,580     | -382    | -263      | -2.2E+02    |
| $2\mathrm{G_{-}pep}$    | 21,100    | -49,000    | -1,260  | -1,390    | -6.5E+03    |
| 3G_pep                  | 6,070     | -20,100    | -2,960  | 783       | -4.4E+03    |
| $4G_{-}pep$             | 14,200    | -86,200    | -3,960  | -1,440    | -8.7E+03    |
| $5G_{-}pep$             | 98,900    | -5,260     | 5,890   | 5,700     | -8.0E+03    |
| MAE                     | 28,768    | 33,628     | 2,890   | 1,915     | $5,\!545$   |

Table A.80: MAE of the Coulomb energy  $V_{ee}^2$  calculated using Becke, TA, TA(new), SG-1, SG0 for complexes, ions, and peptides

## Bibliography

- A. Szabo and N.S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, McGraw-Hill, (1989).
- [2] W. J. Hehre, L. Radom, P. V. R. Schleyer and J. A. Pople. AB INITIO Molecular Orbital Theory, John Wiley & Sons (1986).
- [3] I. N. Levine. *Quantum Chemistry*, Prentice Hall (2000).
- [4] J. M. Pérez-Jordá, and A. D. Becke, J. Chem. Phys., 100(9), 6520 (1994).
- [5] P. Hohenberg and W. Kohn, *Phys. Rev. B*, 136, 864 (1964).
- [6] W. Kohn and L. J. Sham, *Phys. Rev. A*, 140, 1133 (1965).
- [7] A. D. Becke. J. Chem. Phys., 88, 2547 (1988).
- [8] V. I. Lebedev. Zh. Vychisl. Mat Mat. Fiz., 15(1),48 1975.
- [9] V. I. Lebedev. Zh. Vychisl. Mat. mat. Fiz., 16(2),293 1976.
- [10] V. I. Lebedev and A. L. Skorokhodov. Russ. Acad. Sci. Dokl. Math., 45(3) 587 (1992).

- [11] V. I. Lebedev and D. N. Laikov Dokl Akad Nauk, 366, 741 (1999).
- [12] O. Treutler and R. Ahlrichs. J. Chem. Phys., 102(1),346 (1995).
- [13] A. H. Stroud. Approximate Calculation of Multiple Integrals, Prentice Hall, (1971).
- [14] R.A. Poirier, *MUNgauss* (Fortran 90 version), Chemistry Department, Memorial University of Newfoundland, St. John's, NL, A1B 3X7. With contributions from S.D. Bungay, A. El-Sherbiny, T. Gosse, J. Hollett, D. Keefe, A. Kelly, C.C. Pye, D. Reid, M.Shaw, Y. Wang and J. Xidos.
- [15] P. M. W. Gill, B. G. Johnson, J. A. Pople. Chem. Phys. Let., 209(5), 506 (1993).
- [16] A. El-Sherbiny and R. A. Poirier. J. Comput. Chem., 25(11), 1378 (2004).
- [17] P. M. W. Gill and Siu-Hung Chien. J. Comput. Chem., 24(6), 732 (2003).
- [18] Siu-Hung Chien and P. M. W. Gill. J. Comput. Chem., 27, 730 (2006).
- [19] C. W. Murray, N. C. Handy, G. J. Laming. J. Mol. Phys., 78(4), 997 (1993).
- [20] J. M. L. Martin, Jr, C. W. Bauschlicher, A. Ricca. Comput. Phys. Comm., 133, 189 (2001).
- [21] M. E. Mura and P. J. Knowles. J. Chem. Phys., 104(24), 9848 (1996).
- [22] A. El-Sherbiny and R. A. Poirier. *IEEE digital library www.ieee.org* (2006).
- [23] P.M.W. Gill, B. G. Johnson and J. A. Pople. Chem. Phys. Let., 217(1), 65 (1994).

- [24] A. R. Leach. Molecular Modelling, Longman, (1996).
- [25] M. Head-Gordon and J. A. Pople. J. Chem. Phys., 89(9), 5777 (1988).
- [26] C. J. Cramer. Essentials of Computational Chemistry, Willey, (2005)
- [27] W. Yang. Phys. Rev. Lett., 66, 1438 (1991).
- [28] S. L. Dixon and K. M. Merz. Chem. Phys., 104(17) 6643 (1996).
- [29] S. Goedecker. Rev. Mod. Phys., 71, 1085 (1999).
- [30] T. E. Exner and P. G. Mezey. J. Phys. Chem. A, 106, 11791 (2002).
- [31] D. W. Zhang and J. Z. H. Zhang. J. Chem. Phys., 119(7), 3599 (2003).
- [32] V. Gogonea, D. Suarez, A. V. D. Vaart, and K. M. Merz. Cur. Opi. Str. Bio, 11, 217 (2001).
- [33] N. Reuter, A. Dejaegere, B. Maigret, and M. Karplus J. Phys. Chem. A, 104, 1720 (2000).
- [34] Q. Cui, H. Guo, and M. Karplus. J. Chem. Phys., 117(12), 5617 (2002).
- [35] J. J. P. Stewart. Int. J. Qua. Chem., 58, 133 (1996).
- [36] T. E. Exner and P. G. Mezey. J. Comput. Chem., 24, 1980 (2003).
- [37] X. H. Chen and J. Z. H. Zhang. J. Chem. Phys., 120(24), 11386 (2004).
- [38] X. P. Li, R. W. Nunes, and D. Vanderbilt. Phys. Rev. B 47, 10891 (1991).

- [39] J. M. Millam and G. E. Scuseria. J. Chem. Phys., 106(13), 5569 (1997).
- [40] A. D. Daniels, J. M. Millam and G. E. Scuseria. J. Chem. Phys., 107(2), 425 (2001).
- [41] M. Challacombe. J. Chem. Phys., 110(5) 2332 (1999).
- [42] W. Yang. Phys. Rev. A, 44, 7823 (1991)
- [43] W. Yang and T. Lee. J. Chem. Phys., 103(13) 5674 (1995)
- [44] T. Lee, D. M. York, W. Yang. J. Chem. Phys., 105(7), (1996).
- [45] W. Pan, T. Lee, W. Yang. J. Comp. Chem., 19(9), 1101 (1998).
- [46] A. V. D. Vaart, D. Suarez, K. M. Merz. J. Chem. Phys., 113(23), 10512 (2000).
- [47] S. L. Dixon and K. M. Merz. J. Chem. Phys., 107(3), 879 (1997).
- [48] A. V. D. Vaart and K. M. Merz. J. Phys. Chem. A, 103, 3321 (1999).
- [49] A. V. D. Vaart, V. Gogonea, S. L. Dixon, K. M. Merz. J. Comp. Chem., 21(16), 1494 (2000).
- [50] V. Gogonea, K. M. Merz. J. Phys. Chem. A, 103, 5171 (1999).
- [51] M. D. Ermolaeva, A. V. D. Vaart, K. M. Merz. J. Phys. Chem. A, 103, 1868 (1999).







