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Abstract 

The purpose of this study was to investigate the influence of macro synthetic fibre 

on the shear behaviour of Glass Fibre Reinforced Polymers (GFRP) reinforced concrete 

beams. The experimental program was carried out in two phases: material tests and 

structural investigation. 

In the material investigation, thirty two prisms (100 mm x 100 mm x 400 mm) and 

thirty six cylinders (100 mm x 200 mm and 150 mm x 300 mm) were cast to determine 

the mechanical properties of concrete containing macro-synthetic fibres. The samples 

were tested to investigate and to develop a clear understanding of the effect of the amount 

of macro synthetic fibre on the concrete properties. For the prisms, the investigation 

focused on the modulus of rupture, flexural toughness, toughness indices, while for the 

cylinders, the compressive strength and splitting tensile strength were investigated. 

In the structural investigation, sixteen reinforced concrete beams were tested up to 

failure at the structural laboratory of Memorial University (MUN) to study the behaviour 

of the beams in terms of deflection characteristics, shear and flexural behaviour, concrete 

and GFRP strains and ultimate load capacity. The dimensions of the simply supported 

beams were 250 x 350 x 2840, 250 x 350 x 2840, 250 x 500 x 3540 and 250 x 350 x 

3540, measured in millimetres. The main variables in the structural investigation were the 

amount of synthetic fibre by volume, reinforcement ratio, effective depth, and shear span 

to depth ratio. 

The test results revealed that the inclusion of different volumes of macro synthetic 

fibre enhanced the shear failure behaviour of GFRP reinforced concrete beams, and 

increased the normalized shear strength of the reinforced concrete beams by an average 



of 35% for beams reinforced with 1.3 Ph and 1.5 Ph respectively. The increase in the 

normalized shear strength for the deeper beams with a depth of 441 mm was 

approximately 39 %. Furthermore, GFRP reinforced concrete beams an increase in the 

post cracked stiffness of the beams. As it was expected, the addition of fibre increased the 

increased the beams' maximum deformation by 35%, when it was compared to the 

control beams that had 0% of macro synthetic fibre. 

The capacity of the beams was compared to the predictions of the different models 

propsed I the literature for steel fibre reinforced beams. The model proposed by 

Greenough and Nehdi (2008) which gave the best predictions of the test results. 

Finally, a finite element analysis was carried out using ANSYS and a finite element 

model was developed. The FEA model was calibrated using the experimental results. All 

the necessary steps to create and calibrate the model are presented and explained. A 

comparison of the test results with the finite element model predictions was carried out in 

terms of the ultimate load capacity, the maximum deflection and the cracks pattern of the 

test specimens. The load-deflection characteristics obtained from the finite element 

solution at the center of the beam were in close agreement with the experimental test 

results at first cracking stage and at failure stage. In terms of, the initial crack, progressive 

cracking or the failure mechanism, the finite element model compared well to the 

experimental data obtained and the predicted failure load was very close to the measured 

load during experimental testing. 
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Chapter 1 

Introduction 

1.1. General 

The use of fibres in building materials to improve their behaviour is an old and 

intuitive concept. For example, adding straw fibres to sun-dried mud bricks and asbestos 

fibres to pottery to create a composite with a better performance. Moreover, the use of 

strong and discrete fibres as concrete reinforcement has been a challenge to many 

material engineers. Adding the reinforcement to the mixer in the form of fibres, like 

adding the aggregates, to create a homogeneous, isotropic and mouldable material is a 

task that started more than a century ago and nowadays can be considered a reality. The 

successful employment of fibre reinforced concrete started in early sixties, and, since 

then, many researchers have been trying to evaluate the potential properties of this 

material for a broader use. 

Because of the brittle behaviour of plain concrete in tension, shear failure in 

reinforced concrete (RC) beams is generally catastrophic. However, this type of failure 

can be avoided with proper shear reinforcement. Despite every effort, therefore, shear 

failure remains a distinct possibility in RC elements and one of the primary reasons for 

building collapse. There is another issue with reinforcement congestion and lack of 

concrete quality itself. Shear reinforcement, such as stirrups, which are placed too closely 

in an element, interfere with concrete compaction, resulting in poor quality concrete. 

Therefore, if the shear strength and shear toughness of concrete as a material could be 

improved, shear failure in RC beams could be avoided, and the mode of failure in 

reinforced concrete beams could be changed from brittle to ductile. It is now well known 
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that fibre reinforcement is one of the most effective means of enhancing fracture 

toughness in all failure modes. 

Most of the civil structures made of steel reinforced concrete normally suffer from 

corrosion of the steel, which results in the failure of those structures. Constant 

maintenance and repairing is needed to enhance the life cycle of those civil structures. 

Canada's adverse climate and extensive use of de-icing salts have very significant effects 

on traditional concrete structures in an exposed environment such as bridges and airport 

pavement. Besides that, underground structures all over the world are always affected by 

environmental effects. Maintaining, repairing and rebuilding the concrete structures are 

expensive, and a more effective and affordable solution is needed. 

Minimizing the failure and enhancing the life cycle of the concrete structures made 

of steel reinforced concrete by replacing the steel bars with fibres to produce a fibre 

reinforced concrete and this is termed as FRC. Adding small quantities of fibres by 

weight or by volume to fibre reinforcing concrete can basically alter the properties of the 

cement-based matrix, which is brittle in nature and possesses little tensile strength. The 

principal reason for incorporating fibres into a cement matrix is to increase the toughness, 

tensile strength and to improve the cracking deformation characteristics of the resultant 

composite. 

Randomly oriented fibres are an effective way of improving the concrete properties. 

Fibre reinforced concrete has a wide range of applications, particularly for airport, 

highway pavements, structures exposed to severe environment, bridge decks, bridge 

piers, erosion resistant structures, explosion resistant structures and sewer pipes. In order 
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for fibre reinforced concrete to be available as a construction material, it must be able to 

compete economically with existing reinforcing systems. 

In recent years, there has been considerable interest in fibre reinforced polymer 

(FRP) as non metallic reinforcement for concrete structures. FRP reinforcement has high 

tensile strength, low density, and is non susceptible to classical type of corrosion. Hence, 

they are ideal for concrete structures in the aggressive Canadian environment such as 

structures in marine environment, and bridges and parking garages exposed to de-icing 

salts. 

Synthetic fibres, typically made of polypropylene, have primarily been used in 

concrete materials to control shrinkage cracking and, to a limited extent, to improve 

toughness and impact resistance. In recent years, increasing efforts have been devoted 

toward the development of new generation of macro-synthetic fibres that impart 

significant toughness and ductility to concrete comparable to commonly used steel fibres . 

Accordingly, the application of synthetic fibres in the concrete industry has extended 

beyond shrinkage and thermal cracking control to structural applications. 

1.2. Problem Definition 

Generally, the shear failure of a reinforced concrete beam is directly related to the 

diagonal tensile cracking that develops in a direction perpendicular to the principal tensile 

stress. Once the tensile cracking occurs, the tensile stress at the crack surfaces softens, 

which significantly reduces the shear strength of the beam. 

Most of the published work on shear of FRC has focused exclusively on steel fibres. 

A large data bank of test results for shear strength of steel fibre reinforced concrete 
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beams was reported by several investigators. However, most of the research on steel­

fibre reinforced concrete reported in literature has been concerned on small size beams 

and slabs on grade. 

On the other hand, there is little data on macro-synthetic fibres and their applications 

in reinforced concrete members. The few available studies were conducted on steel­

reinforced concrete elements. No data are available on the use of macro-synthetic fibres 

in structural elements reinforced with Fibre reinforced polymer (FRP) bars. Hence, the 

current study focuses on large scale beams to investigate the effect of macro synthetic 

fibre on the shear behaviour of GFRP reinforced concrete beams without shear 

reinforcement. 

1.3. Scope and Objectives 

This investigation deals specifically with the behaviour of GFRP fibre-reinforced 

concrete beams in shear. The main variables in this investigation are the amount of macro 

synthetic fibre by volume (V), reinforcement ratio (p) , effective depth (d) , and shear span 

to depth ratio (aid). The primary objective of this investigation is to develop a better 

understanding of the effect of the amount of non-metallic fibres in volume percentage 

with respect to other variables included in this investigation on the: 

• The properties of fresh concrete (workability and balling at higher quantities of 

fibres) and the mechanical properties of hardened concrete (tensile strength, 

compressive strength and flexural toughness). 

• Load capacity and failure modes of reinforced concrete beams. 
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• Flexural behaviour (up to the occurrence of the shear failure) with a special focus on 

deflection and load carrying capacity. 

• Shear behaviour of longitudinally reinforced concrete beams without shear 

reinforcement. 

1.4. Thesis Outline 

Chapter 2 contains the literature review that is relevant to this investigation. In this 

chapter, some of the previous work is discussed concerning the effectiveness of adding 

fibres to the reinforced concrete in terms of shear strength, ductility, workability, 

compressive strength, flexural strength, and cracking mechanism. 

Chapter 3 presents a material investigation that covers the properties of hardened 

concrete that was used to cast the beams (compressive strength, splitting tensile strength, 

flexural toughness and toughness indices). 

In Chapter 4, details of the test setup, loading, specimens' preparation, instrumentation 

and the data acquisition system are provided. 

Chapter 5 reports the test results and observations obtained from the experimental 

program. Load-deflection relationship, concrete strain, GFRP strains, modes of failure 

and ultimate capacity are presented. 

Chapter 6 contains the calibration of a finite element model using the experimental data 

(concrete properties and load-deformation behaviour) of the concrete beams. All the 

necessary steps to create the calibrated model are explained in detail. The general purpose 

finite element program ANSYS was used in the simulations. The chapter also contains 

the comparisons of the test results, and the finite element model predicted results in terms 
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of the linear region, initial cracking, the nonlinear region, ultimate load capacity and the 

maximum deflection of the test specimens. 

Chapter 7 summarizes the findings from the experimental and analytical investigations 

and presents recommendations for future research. 

6 



Chapter 2 

Literature Review 

2.1. Introduction 

Concrete made of Portland cement has certain characteristics. It is relatively strong 

in compression but weak in tension and tends to be brittle. The weakness in tension can 

be overcome using conventional rod reinforcement and to some extent, by the inclusion 

of a sufficient volume of certain fibres. The use of fibres also alters the behaviour of the 

fibre-matrix composite after it has cracked, thereby improving its toughness. 

Brittle materials are considered to have no significant post-cracking ductility. 

Fibrous composites have been and are being developed to provide improved mechanical 

properties to otherwise brittle materials. When subjected to tension, these un-reinforced 

brittle matrices deform elastically. The elastic response is followed by micro-cracking, 

localized macro-cracking, and finally by fracture at relatively low strains. Introduction of 

fibre into concrete results in post-elastic property changes that range from subtle to 

substantial, depending upon a number of factors, including matrix strength, fibre type, 

fibre modulus, fibre aspect ratio, fibre strength, fibre surface bonding characteristics, 

fibre content, fibre orientation, and aggregate size effects (Johnston, 2000). For many 

practical applications, the matrix first-crack strength is not increased. In these cases, the 

most significant enhancement from the fibres is the post-cracking composite response. 

This is most commonly evaluated and controlled through toughness testing (such as 

measurement ofthe area under the load-deformation curve). 

If properly engineered, one of the greatest benefits to be gained by using fibre 

reinforcement is improved long-term serviceability of the structure or product. 
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Serviceability is the ability of the specific structure or part to maintain its strength and 

integrity and to provide its designed function over its intended service life. One aspect of 

serviceability that can be enhanced by the use of fibres is the control of cracking. Fibres 

can prevent the occurrence of large crack widths that are either unsightly or permit water 

and contaminants to enter, causing corrosion of reinforcing steel or potential deterioration 

of concrete (Shah, 1991 ). In addition to crack control and serviceability benefits, use of 

fibres at high volume percentage (5 to 10% or higher with special production techniques) 

can substantially increase the matrix tensile strength (Shah, 1991 ). 

The most important applications of fibres are generally to prevent or control the 

tensile cracking occurring in concrete structures by bridging these cracks and restraining 

them. In order to increase the deflection of the beam, additional forces and energies are 

required to pull out or fracture the fibres. This process improves the load carrying 

capacity beyond cracking. This improvement creates a long post-peak-descending portion 

in the load-deflection curve. 

Recently, structurally efficient synthetic fibres have been developed. Synthetic 

fibres have high strength and high modulus of elasticity. The fibres exhibit structurally 

effective properties such as an increase of toughness and/or load-carrying capacity after 

cracking. These synthetic fibres have advantages compared to steel or other fibres in that 

they are corrosion-resistant and exhibit a high-energy absorption capacity. 

2.2. Historical Background 

Fibres are manufactured from many materials such as metal, glass, carbon and 

graphite, polymer, boron, ceramic, and silicon carbide (Mallick, 1993). The last three 

decades have seen a growing interest in the use of fibres in ready-mixed concrete, pre-
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cast concrete and shotcrete. Currently, steel fibres are available in a variety of shapes, 

sizes and thickness; they may be round, flat, crimped or deformed with typical lengths of 

6 mm to 150 mm and thickness ranging from 0.005 mm to 0.75 mm, as shown in Figure 

2.1. They are added to the concrete during mixing. The main factors that control the 

performance of the composite material are: 

1. The physical properties of fibres and matrix. 

2. The strength of bond between fibres and matrix. 

Although the basic governing principles are the same, there are several characteristic 

differences between conventional reinforcement and fibre systems: 

1. The fibres are generally distributed throughout a given cross section, whereas 

reinforcing bars or wires are placed only where required. 

2. Most fibres are relatively short and closely spaced as compared with continuous 

reinforcing bars or wires. 

3. It is generally not possible to achieve the same area of reinforcement in an area of 

concrete using fibres as compared to using a network of reinforcing bars or wires. 

Fibres are typically added to concrete in volume dosages and have been shown to be 

effective in reducing plastic shrinkage cracking. Fibres typically do not significantly alter 

free shrinkage of concrete. However, at high enough volume dosages, they can increase 

the resistance to cracking and decrease crack widths (Shah et al., 1998). 

The Twentieth century interest in synthetic fibres as a component of construction 

materials was first reported in 1965. At that time synthetic monofilament fibres were used 

in the blast resistant structures for the US army corps of engineers. 
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2.3. Composition of Fibres 

2.3.1. Steel Fibre Reinforced Concrete (SFRC) 

The mechanical properties of steel fibre reinforced concrete (SFRC) mainly depend 

on the shape of fibres rather than the material (Johnston, 2000). ASTM A820 (2001) 

classifies steel fibres based upon the method used in their manufacture, in contrast with 

ACI 544.1 R (1996) that considers the shape of fibres' cross-section in their classification. 

A significant problem with using SFRC is its sensitivity to corrosion and subsequent 

loss of strength throughout its life time. Cracks in SFRC have been indicated to cause 

corrosion of fibres in laboratory and field testing when exposed to chloride environments 

due to fibres passing across the crack (Hoff, 1987). Appearance of the flexural or tensile 

cracking on SFRC can lead to catastrophic structural conditions, so that full consideration 

should be given to the possibility of corrosion at cracks (ACI 544.1 R, 1996). Since SFRC 

is not in the scope of this thesis, the properties of such fibres will not be addressed in 

further details. 

2.3.2. Synthetic Fibre Reinforced Concrete (SNFRC) 

Synthetic fibres are man-made fibres resulting from research and development in the 

petrochemical and textile industries. Aramid (aromatic polyamide), a high-modulus 

polymeric material, was one of the first synthetic fibres used in the construction industry 

introduced for commercial application by late 1970s (Walton and Majumdar, 1978). The 

use of aramid fibres in Portland cement concrete based matrix was followed by acrylic, 

carbon, nylon, polyester, polyethylene, and polypropylene. For many of these fibres, 

there is little reported research or field experience; while others are found in commercial 
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applications and have been the subject of extensive reporting (Bentur and Mindess, 

2007). 

While durability in concrete in some respects relates specifically to the chemistry of 

each fibre type, some general physical considerations can be essential. All these polymers 

melt at a relatively low temperature between about 134°C for polyethylene and 257°C for 

polyester (ACI 544.1 R, 1996), so they cannot be expected to perform under conditions 

where the concrete temperature approaches or exceeds these values, as in the case of fire 

. . 
m servtce. 

The advantage of using synthetic fibres over SFRC is their corrosion resistance and 

according to ASTM CI 116 (2002) their compatibility with moisture, cement alkalis, and 

chemical admixtures. In addition, the use of synthetic fibres is advantageous over steel 

fibres due to the elimination of potential injuries caused by handling and placement. 

Polypropylene and polyethylene have been reported to be very resistant to strong alkalis, 

while polyester was not as resistant (Wang et al., 1987). 

2.3.2.1. Polypropylene Fibres 

Polypropylene fibres are produced from homo-polymer polypropylene resin in a 

variety of shapes and sizes, and with differing properties. Polypropylene has tended to be 

the most widely used polymeric form of fibre reinforcement in concrete because of its 

excellent resistance to moisture, acids and alkalis and the economy of the raw material on 

a volume basis compared with steel and other alternatives (Krenchel and Jensen, 1980; 

Larsen and Krenchel, 1991 ). Polypropylene fibres are generally used at low volume 

fractions, about 0.1 %, to control plastic shrinkage cracking, and in larger amounts in 

11 



fibrillated form up to 0. 7% to improve the hardened concrete mechanical properties 

(Johnston, 2000). 

Fibrillated fibres were developed to increase mechanical bonding with the concrete 

by separation and branching of the fibrils in the polymer strand during the mixing stage. 

Monofilament form of polypropylene is also available to be used in concrete, in some 

cases with surface treatment or surface texturing to improve bonding between fibres and 

concrete resulting in an enhancement in pullout resistance and overall reinforcing 

effectiveness (Krenchel and Shah, 1985). Polypropylene fibres are not expected to bond 

chemically in concrete matrix, due to the nature of polypropylene that is hydrophobic so 

that there is difficulty of wetting the surface by the cement paste. However, bonding has 

been shown to occur by mechanical interaction. Figure 2.2 shows a picture of different 

Polypropylene fibres. 

2.3.2.2. Polyethylene Fibres 

There has been considerable interest in the use of polyethylene fibres in FRC (Bijen, 

1990; Kobayashi and Cho, 1981) due to its higher elastic modulus and better mechanical 

properties than polypropylene fibres. However, from an economical point of view they 

have relatively higher price than polypropylene fibres. High-density polyethylene in 

monofilament forms (40 x 0.9 mm) with wart-like surface deformations along the length 

of the fibre at volume fraction of 0.2-0.4% have been used in Japan (Kobayashi and Cho, 

1981). These deformations are intended to improve the mechanical bonding in cement 

paste and mortar. It has been reported that polyethylene fibres could be easily dispersed 
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in concrete mixtures in volume percentages of up to 4% using conventional mixing 

techniques (Kobayashi and Cho, 1981 ). 

2.3.2.3. Macro-Synthetic Fibres 

Macro-synthetic fibres are a blend of polypropylene/polyethylene. Table 2.1 

illustrates that the elastic modulus of macro synthetic fibres is significantly higher than 

polyethylene and polypropylene, while the tensile strength is equivalent to the high range 

of the other two fibres. It is highly resistant to alkali, acid, and salt environments, and 

has almost the same specific gravity as polyethylene and polypropylene. Concrete 

reinforced with macro synthetic fibres have three-dimensional reinforcing with enhanced 

flexural toughness, impact and abrasion resistance and will also help mitigate the 

formation of plastic shrinkage cracking in concrete. 

The primary applications for macro synthetic fibres are in shotcrete as ground 

support in underground works, concrete for footpaths, and for some ground supported 

slabs. Structural applications of macro synthetic fibres include: thin walled pre-cast 

(septic tanks, vaults, walls, etc.), shotcrete for tunnel linings, pool construction and slope 

stabilization, pavements and white-toppings, slab on Grade construction (distribution 

centers, warehouses, etc.), and elevated decking. Macro synthetic fibres have also been 

used in marine/coastal applications, and for non-magnetic applications such as track 

slabs. A further application is in composite steel floor decks as a suitable alternative to 

replace temperature and shrinkage steel reinforcement. 
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2.4. Fibre Reinforced Polymers (FRP) 

Fibre Reinforced Polymers are composite materials consisting of a matrix and 

reinforcing fibres. Some FRP products are shown in Figure 2.3 (FRP sheets, 2D FRP 

grids, 30 FRP grids, FRP bars, pipes, tubes and other various shapes according to the 

different needs). 

The fibres are usually made of glass, carbon, aramid and hybrid fibres. Polyester 

resin, Vinyl Ester resin, Epoxy resin, Polyimide resin and thermoplastic resins are used as 

Matrix. Fibres are used as reinforcement in FRP for strength, stiffness and dimensional 

stability. The matrix is used to provide lateral support to the fibres and to protect the fibre 

from physical and chemical trauma due to the surroundings. In addition, the matrix 

provides some important physical characteristic to the FRP such as stiffness, strength, 

fracture toughness, diffusivity, thermal susceptibility etc. 

The fibres are stronger than the matrix. The strength of FRP composite depends on 

the strength of the fibre and matrix both. The mechanical properties of the final FRP 

product depend on the fibre quality, orientation, shape, volumetric ratio and adhesion to 

the matrix and on the manufacturing process. A qualitative stress-strain relation of fibre, 

matrix and FRP are depicted in Figure 2.4. 

FRP bars have been successfully used as reinforcement for reinforced concrete 

members instead of the traditional mild-steel reinforcement. The main advantages of such 

a selection are: 1) corrosion resistance, 2) high tensile strength, 3) low mechanical 

relaxation, 4) good toughness, 5) high fatigue resistance, 6) dimensional stability, 7) 

particular electrical and magnetic properties (transparent to electromagnetic emissions), 
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and 8) light Weight (specifiC gravity 1.8 X 1 o-3 g/mm3 COmpared tO 2.8 X 1 o-3 g/mm3for 

the Aluminum and 7.6 X 1 o-3 g/mm3 for steel). 

Glass fibre reinforced bars are the most common type ofFRP. The lower modulus of 

elasticity is a drawback in using the GFRP as reinforcing material. GFRP have been used 

for bridge decks, parking structures, marine structures and also used to strengthen 

masonry buildings and concrete members to resist flexure and shear. 

2.5. Shear Strength of GFRP Reinforced Concrete Beams 

There are several mechanisms by which shear force is transmitted between two 

planes in a concrete member. Joint ASCE-ACI Committee 445 (1998) reported that after 

the formation of diagonal cracks in members without stirrups, shear is carried by concrete 

as a combination of five mechanisms as shown in Figure 2.5: (1) shear resistance of 

uncracked concrete compression zone, Vcz , (2) vertical component, ( Vay ), of the interface 

shear, ( va) (aggregate interlock), (3) dowel force of longitudinal reinforcement, vd ' ( 4) 

arching action, and (5) residual tensile stress across the cracks ( J, ). The total contribution 

to the shear resistance from the five mechanisms is termed as the concrete contribution to 

the shear resistance, ~ . 

A database of published test results on shear strength of conventional steel 

reinforcement for simply supported rectangular beams without axial force was compiled 

by Brown et al. (2006). The database contained the test results of twelve hundreds beams 

failing in shear. In contrast, the results of less than one-hundred FRP reinforced concrete 

beams without web reinforcement are available in the literature (Sherwood et al. , 2008; 

Hoult et al., 2008; El-Sayed et al. , 2005; and Alam, 2010). 
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The mechanical behaviour of FRP bars differs from the behaviour of conventional 

steel bars. FRP bars have high tensile strength combined with low elastic modulus, and 

elastic brittle stress-strain relationship. When FRP bars are used as flexural 

reinforcement, additional complications arise due to their different behaviour, different 

bond, and surface characteristics. Consequently, the shear behaviour of FRP reinforced 

concrete members is different than that of steel reinforced concrete members (Alam, 

2010). 

The mechanisms of shear transfer discussed above for conventional steel reinforced 

members are expected to be affected when using FRP bars. In addition, the relative 

contribution from these mechanisms may not be the same as in conventional steel 

reinforced concrete. 

Due to the lower elastic modulus of FRP bars, their axial rigidity would be smaller 

than conventional steel reinforcement. Therefore, the area of concrete under compression 

would be smaller than that developed in similar steel reinforced sections. Hence, it is 

expected that the contributions of the uncracked concrete will be reduced. 

To sustain a given load, due to the higher strength of the bars, a smaller amount of 

FRP reinforcement is required compared to steel. This leads to higher strain in the FRP 

bars. This higher strain coupled with the lower stiffness of the bars reduces the total 

stiffness of the member and thus larger deflections and wider cracks are attained. 

Therefore, a smaller amount of shear force is expected to be carried by aggregate 

interlock in FRP-reinforced members. Wider cracks also reduce the contribution from 

residual tensile stresses. 
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The dowel strength of GFRP bar is 8. 7% of the ultimate tensile strength, obtained in 

pure dowel strength test (Grieef, 1996). Consequently, for FRP reinforcement, which has 

a low transverse stiffness and strength, an even smaller load will be carried by dowel 

action. Hence, the dowel contribution from FRP reinforcement could be neglected. 

The shear strength of FRP reinforced concrete beams has been the subject of several 

studies, for example Yost et al., 2001; Alkhrdaji et al. , 2001; Tureyen and Frosch, 2002; 

Razaqpur et al., 2004; El- Sayed et al., 2006a, 2006b; and Alam, 2010. 

The main objective of the current thesis is to investigate the enhancement of the 

macro-synthetic fibres to the shear strength of GFRP reinforced beams. For a 

comprehensive literature review on the shear behaviour of FRP reinforced concrete 

beams, the reader should refer to Alam (20 1 0). 

2.6. Shear Strength of FRC Beams 

Shear failure can be sudden and catastrophic. This is true for critical sections where, 

due to construction constraints, little or no reinforcement may be placed. For more than 

three decades, fibre reinforced concrete (FRC) has been the object of studies dealing with 

shear in FRC members. Tests performed to study the shear behaviour of FRC can be 

categorized into two general groups: direct shear tests and tests on beams. The direct 

shear tests are required to understand the basic shear transfer mechanisms of FRC, while 

the tests on beams are necessary to understand the behaviour of FRC structural members. 
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2.6.1. Direct Shear Tests 

The investigations on direct shear behaviour included those of Swamy et al., 1987; 

Barr, 1987; and Tan and Mansur, 1990. Valle and Buyukozturk (1993) reported the 

results of an investigation on the strength and ductility of fibre reinforced concrete under 

direct shear. Three parameters were investigated: (1) concrete type - high strength versus 

normal strength concrete, (2) type of fibre - steel versus polypropylene fibres, and (3) the 

presence of steel stirrups crossing the shear plane. The direct shear transfer behaviour of 

fibre reinforced concrete was investigated through testing of specimens that had 

dimensions of 75 mm x 250 mm x 525 mm. In general, fibres proved to be more 

effective in high strength concrete than in normal strength concrete. It increased both 

ultimate load and overall ductility. Shear strength increase was found with fibre 

reinforced high strength concrete specimens to be 60% with steel fibres and 17% with 

polypropylene fibres. Whereas, for fibre reinforced normal strength concrete specimens, 

the shear strength increase was 36% with steel fibres and there was no increase with 

polypropylene fibres when compared to the strength of their respective un-reinforced 

plain concrete specimens. The enhancement performance of fibres in high strength 

concrete is attributed to the improved bond characteristics associated with the use of 

fibres in conjunction with high strength concrete. For the specimens with steel fibres, 

significant increases in ultimate load and ductility were observed. With polypropylene 

fibres, a lower increase in ultimate load was obtained when compared to the increase due 

to steel fibres. Ductility of the polypropylene fibre reinforced specimens was greater than 

that of the steel fibre reinforced specimens. In the tests involving the combination of 

fibres and conventional stirrups, slight increase in ultimate load with major improvements 
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in ductility were observed in comparison to the corresponding values for plain concrete 

specimens with conventional stirrups. 

Direct shear tests on FRC specimens for steel and synthetic fibres were also carried 

out by Majdzadeh et al. (2006). The results showed that the steel fibre performed better 

than the synthetic fibres. It was found that for all fibres' types, an almost linear increase 

in shear strength of the composite with increasing fibre volume fraction. 

2.6.2. Shear in FRC Beams 

In general, the shear failure of a reinforced concrete beam is directly related to the 

diagonal tensile cracking that develops in the direction perpendicular to the principal 

tensile stress axis. Once tensile cracking occurs, the tensile stress at the crack surfaces 

rapidly softens, which significantly reduces the shear strength of the beam. 

Mansur et al. (1986) tested beams with b = 152 mm, d = 197 mm, and aid = 3.6. The 

researcher found that adding 0.5% of hooked-end steel fibres by volume with length of 

30 mm and aspect ratio of 60 increased the shear capacity by only 8%. 

According to experimental results (Narayanan and Darwish, 1987; and Li et al., 

1992), the addition of fibres to concrete effectively improved the shear strength of 

concrete. This is attributed to the effect of fibres transferring the tensile stress across 

crack surfaces that are called the crack-bridging stress. Due to such material 

characteristics of the fibres, the shear strength of a fibre reinforced concrete (FRC) beam 

increases. Furthermore, the failure mode of the beam is changed to be more ductile. 

The ultimate shear strength of longitudinally reinforced fibre concrete beams 

without shear stirrups were examined (Li et al., 1992) to illustrate the effectiveness of 
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both steel and synthetic fibres as shear reinforcement. The test program employed four 

fibre types (steel, acrylic, aramid and polyethylene); shear span to effective depth ratio 

(a/d) ranging from 1.0 to 4.25; reinforcement ratios of 1.1%, 2.2% and 3.3%; and beam 

depths of 102 mm and 204 mm. In all beams with shear span to depth ratio (a/d) of 2.5 or 

greater, failure occurred suddenly when the first diagonal shear crack appeared. Fibre 

reinforced beams with aid greater than 2.5 exhibited flexural-shear cracking, with 

diagonal shear cracks forming as an extension of flexural crack, a number of shear cracks 

formed along the beam span before ultimate load. This work showed correlations exist 

between the shear strength and a parameter that involved, moreover, demonstrates 

experimentally the dependence of shear structural properties on material tensile 

properties that can be efficiently modified by short random fibre reinforcement. 

It was also suggested in earlier studies that the stirrups, as shear reinforcement in 

concrete members, can be partially or totally replaced using fibres (Mansur et al., 1986; 

and Lim et al., 1987). It should be noted that most of the work on shear in beams was 

limited to concrete of normal strength with steel fibres. 

Noghabai (2000) performed shear tests on beams with b = 200 mm, d = 180 mm, 

and shear span to depth ratio (a/d) of 3.3. The researcher found that adding 0.5% and 

0.75% of hooked-end steel fibres by volume with a length of 60 mm and aspect ratio of 

86 increased the shear capacity by 20% and 25%, respectively. 

Kwak et al. (2002) tested beams with hooked-end steel fibres with b = 125 mm, d = 

212 mm, and aid = 3.0. The results showed that adding 0.5% and 0.75% of the fibres by 

volume increased the shear capacity by 22% and 28% respectively. 
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Dupont and Vandewalle (2003) reported a test program in which beams with b = 

200 mm, d = 260 mm, and aid= 3.5 were tested. It was shown that using hooked-end 

steel fibres with a length of 60 mm and aspect ratio of 67 with volume fractions of 0.51% 

and 0.76% increased the shear strength of the beams by 35% and 65% respectively. 

A detailed investigation on the shear behaviour of fibre reinforced self-consolidating 

concrete (FR-SCC) beams was carried out by Greenough and Nehdi (2008). FR-SCC 

mixtures were designed to study the influence of fibre type, fibre anchorage, fibre aspect 

ratio and fibre content on the shear performance of reinforced concrete slender beams 

without stirrups, and to determine the suitability of using fibres to satisfy minimum shear 

reinforcement requirements. It was observed that the short discrete fibres could 

significantly improve the shear behaviour of reinforced sec slender beams and beams 

incorporating 1% steel fibre addition could achieve a 128% increase in shear capacity 

over that of the reference beam without fibres. Furthermore, the FR-SCC beams 

performed better under shear loading than conventional fibre-reinforced concrete (FRC) 

beams. The experimental results obtained on 13 FR-SCC slender beams indicated the 

possibility of using fibres as minimum shear reinforcement. 

Choi et al. (2007) presented an interpretation of the variations of normal and shear 

stresses according to flexural deformation at cross section as shown in Figure 2.6. In 

reinforced concrete slender beams, the applied shear force is resisted mainly by the 

compression zone of intact concrete rather than by tension zone. On the other hand, in 

fibre reinforced concrete beams, because post-cracking tensile strength is developed by 

fibres, the applied shear force is resisted also by the tension zone. In the study done by 

the overall shear strength was defined as the sum of the contribution of compression and 
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tension zones. The contribution of the compression zone was evaluated considering the 

interaction with compressive stress developed by flexural moment. The contribution of 

tension zone was evaluated considering the effect of the post-cracking tensile strength of 

FRC. The magnitude and distribution of compressive stress in the compression zone vary 

according to the flexural deformation, which affects the shear capacity of a cross section. 

A large database of test results for shear strength of steel fibre reinforced concrete 

(SFRC) beams obtained by many researchers was recently compiled by Parra-Montesions 

(2006). 

2.6.3. Shear in FRC beams with Synthetic Fibres 

Although the majority of the previous work on shear of FRC has been performed 

with steel fibres, there are few studies reported results on shear with synthetic fibres. Li et 

al. (1992) tested beams reinforced with flexural bars that contained several types of 

synthetic (acrylic, aramid and polyethylene) and steel fibres as mentioned earlier. Two of 

the three synthetic fibres (polyethylene and aramid) showed significant improvements in 

shear strength of the concrete beams. 

Altoubat et al. (2007) investigated six large scale beams with d = 400 mm, b = 280 

mm, aid= 3.5 and macro synthetic fibres that have volumes of 0.5% and 0.75%. The test 

results showed that the addition of synthetic fibres enhanced the shear strength of the 

concrete beams by 12% and 25% by adding 0.5% and 0.75% respectively. The fibres 

modified the shear failure behaviour; in general the shear failure of the SNFRC beams 

was less brittle. 
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Altoubat et al. (2009) tested twenty-seven steel reinforced beams to determine the 

effect of a newly developed high-modulus macro synthetic fibres on the shear strength 

and failure behaviour of longitudinally reinforced concrete (RC) beams without stirrups. 

The results showed that the addition of macro synthetic fibres significantly improved the 

shear strength and ductility of the RC beams and modified the cracking and failure 

behaviour. The authors concluded that macro-synthetic fibres could be used as an 

alternative to minimum shear reinforcement as required by ACI 318-08. 

The current research is focused on the effect of macro synthetic fibres on the shear 

behaviour of GFRP reinforced concrete beams. Since this type of fibre is relatively new; 

there is very little published research work available regarding the shear enhancement of 

such fibres. In addition, and to the best of the authors' knowledge, there was no 

investigation of the behaviour of macro-synthetic fibre reinforced beams with GFRP 

reinforcement. 

2.7. Existing Shear Strength Models for FRC 

Test results revealed that the material strength ofFRC is significantly affected by the 

volume ratio, aspect ratio, and shape of the fibres. Like the shear strengths of reinforced 

concrete beams, as the compressive strength of concrete and the amount of longitudinal 

tensile reinforcement increase, the shear strengths of FRC beams increase. As the shear 

span to depth ratio increases, the shear strengths of FRC beams decrease. Therefore, the 

primary parameters that affect the shear strengths of FRC beams are the volume ratio, 

aspect ratio and shape of the fibres, the compressive strength of concrete, the ratio of 

flexural reinforcement, and the shear span to depth ratio. Based on the experimental 
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results, many researchers proposed design equations that were defined as functions of the 

primary design parameters. Existing shear strength models, however, do not accurately 

predict the strengths of both normal-strength FRC and high-strength FRC beams. Table 

2.2 summarizes the different expressions that were proposed by several researchers to 

calculate the shear strength of FRC beams. Almost, all of those expressions were 

developed for FRC with steel fibres. From a code prospective, ACI Committee 544 

(1996) recommended Sharma's model, but a code-based design equation for the shear 

strengths of FRC beams does not exist yet in the North American codes. 

2.8. Design Codes Equations for FRP Reinforced Concrete Members 

Most of the current design provisions for FRP-reinforced concrete beams follow the 

same approach as conventional steel reinforced concrete design methods; using the well­

known (Vc + Vs) format to compute the shear resistance of FRP reinforced concrete 

members. Although, the specific manner in which the codes specify the contribution of 

concrete, Vc, may differ considerably, the steel contribution, Vs, is determined using the 

same equations as those for conventional steel reinforcement. This section summarizes 

the design equations used to compute Vc as recommended by the American Concrete 

Institute (ACI 440.1 R-06) and the Canadian Standard Association (CSA S806-1 0). 

Nonetheless, both codes are used to give the shear strength of FRP reinforced concrete 

members that contain no fibres. 
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2.8.1. American Concrete Institute (ACI 440.1R-06) 

To address some issues and to find a reasonable equation for calculating the shear 

strength of FRP reinforced concrete beams, the American Concrete Institute has revised 

the shear equation in ACI 440.1R-06 for a third time based on the work of Tureyen and 

Frosch (2002). According to this new revision, the concrete shear capacity, Vc, for 

flexural members with FRP as main reinforcement is given as: 

(2.1) 

where bw is the width of the web and c is the cracked transformed section neutral axis 

depth. 

2.8.2. Canadian Standard Association (CSA 8806-10) 

According to the Canadian Standard Association (CSA S806-10) Code, the shear 

strength of a section, having either at least the minimum amount of transverse 

reinforcement as specified by the CSA standard or an effective depth not exceeding 300 

mm and with no axial load acting on them is given by: 

(2.2) 

where A reflects the concrete density factor and t/Jc represents the concrete material 

resistance factor. The factors km and k, can be calculated as follows: 

(2.3) 

(2.4) 
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It should be noted that Vc calculated according to Eq. (2.2) shall not be taken greater 

than 0.2¢cft bwd nor less than O.l¢cft bwd. In the determination of Vc, J;.: shall not 

be taken greater than 60 MPa. The quantity d v11 M1 is equivalent to d/ a, and shall not be 

taken as greater than 1.0, where V1 and M1 are the factored shear force and bending 

moment at the section of interest. This equation considers the effect of axial stiffness (EJ 

PJ), shear span-to-depth ratio (a/d) , and concrete compressive strength ( fc) for 

calculating the shear strength. 

To account for the size effect for sections with an effective depth greater than 300 

mm and with no transverse shear reinforcement or less transverse reinforcement than the 

minimum given by CSA standard, the value of Vc shall be multiplied by the factor ks as 

given by the following equation: 

k = 750 s; 1.0 
s 450+ d 

(2.5) 

This equation gives the concrete contribution to the shear strength of FRP 

reinforced concrete members regardless of the FRP type or the FRP reinforcement ratio, 

which is anomalous to the findings that the shear strength increases with an increase in 

the reinforcement ratio. Thus, the equation gives more conservative results for the beams 

with high axial stiffness (E1 p1) of the longitudinal FRP bar (El-Sayed et al. , 2006a). In 

addition, the equation neglects the shear transfer by arch action and it is quite 

conservative for beams with aid less than 2.5 (Razaqpur and Isgor, 2006). The transition 

between the limits of shear strength is abrupt and unusual, and hence this issue should be 

considered in the future issues of the Code. 
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2.9. Finite Element Analysis 

To model the nonlinear behaviour of concrete and its complex behaviour, such as 

cracking, aggregate interlock, bond, and dowel action, numerous finite element models 

have been developed (ASCE, 1982). Some of the available finite element models can 

simulate the nonlinear behaviour of traditional reinforced concrete beam in a realistic 

way. Various approaches of these finite element models differ in: a) material models, b) 

element formulations, and c) solution procedures. 

Extensive research has been done on the application of finite element method to 

model the behaviour of reinforced concrete members. A comprehensive summary by 

Darwin ( 1993) gives a wide range of options available to perform a reliable finite element 

analysis of steel reinforced concrete. It concluded that there are both usefulness and 

limitations of finite element modeling of reinforced concrete. These limitations may be 

due to the nonlinear behaviour of reinforced concrete. Three major factors cause the non­

linear response of reinforced concrete, namely: (a) crushing in compression, (b) cracking 

of concrete in tension, and (c) yielding of reinforcement. It can generally be argued that a 

specific approach will be more suited to certain structure/loading situations and less to 

others; no single approach performs well over the entire range of structural details and 

loading conditions encountered in practice (Coronelli and Mulas, 2006). 

Kachlakev et al. (200 1) used ANSYS to study concrete beam members with 

externally bonded Carbon Fibre Reinforced Polymer (CFRP) fabric. One quarter of the 

beam was modeled as shown in Figure 2.7. Nonlinear Newton Raphson approach was 

utilized to trace the equilibrium path during the load-deformation response. It was found 

that convergence of solutions for the model was difficult to be achieved due to the 

27 



nonlinear behaviour of reinforced concrete. At certain stages in the analysis, load step 

sizes were varied from large (at points of linearity in the response) to small (when 

instances of cracking and steel yielding occurred). The load-deflection curve for the non­

CFRP reinforced beam that was plotted showed a reasonable correlation with 

experimental data of McCurry and Kachlakev (2000), as shown in Figure 2.8. 

Furthermore, concrete cracking/crushing plots were created at different load levels to 

examine the different types of cracking that occurred within the concrete, as shown in 

Figure 2.9. The different types of concrete failure that can occur are flexural cracks, 

compression failure (crushing), and diagonal tension cracks. Flexural cracks (Figure 2.9a) 

form vertically up to the beam. Compression failures (Figure 2.9b) are shown as circles. 

Diagonal tension cracks (Figure 2.9c) form diagonally up to the beam towards the 

loading that is applied. 

Tavarez (2001) discusses three techniques that exist to model steel reinforcement in 

finite element models for reinforced concrete (Figure 2. 1 0), the discrete model, the 

embedded model, and the smeared model. The reinforcement in the discrete model 

(Figure 2.1 Oa) uses bar or beam elements that are connected to concrete mesh nodes. 

Therefore, the concrete and the reinforcement mesh share the same nodes. The embedded 

model shown in Figure 2.1 Ob overcomes the concrete mesh restriction because the 

stiffness of the reinforcing steel is evaluated separately from the concrete elements. The 

model is built in a way that keeps reinforcing steel displacements compatible with the 

surrounding concrete elements. When reinforcement is complex, this model is very 

advantageous. However, this model increases the number of nodes and degrees of 

freedom in the model. The smeared model shown in Figure 2.1 Oc assumes that 
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reinforcement is uniformly spread throughout the concrete elements in a defined region 

of the FE mesh. This approach is used for large-scale models where the reinforcement 

does not significantly contribute to the overall response of the structure. Fanning (2001) 

modeled the response of the reinforcement using the discrete model and the smeared 

model for reinforced concrete beams. It was found that the best modeling strategy was to 

use the discrete model when modeling reinforcement. 

FRP has different properties than those of steel reinforcement. Hence, the finite 

element modelling of shear critical FRP reinforced members may differ from that of steel 

reinforced members (Alam, 201 0). The difference in the predicted behaviour of the 

GFRP reinforced beam can be attributed to the low modulus of elasticity, different bond 

characteristics, and difference in tension stiffening. Since FRP does not yield before 

failure, this will not create any nonlinearity. However, the interaction of the constituents 

of reinforced concrete, such as bond-slip between FRP and surrounding concrete, 

aggregate interlock at a crack, and dowel action of the longitudinal FRP at a crack, create 

nonlinearities. 

Nour et al. (2007) investigated the nonlinear response of concrete members 

reinforced with internal and external FRP bars using finite element analysis. A 3D hypo­

elastic concrete constitutive law that models the nonlinear behaviour of concrete using a 

scalar damage parameter was utilized in the investigation. In tension, the model adopted a 

macroscopic approach that was directly integrated into the concrete law. The proposed 

tension stiffening model was based on the nature of the reinforcement and varied as a 

function of the member strain. The model simulated the behaviour of internal and 

external FRP reinforced members, which agreed well with the experimental results. 
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Nonetheless, the investigation was carried out for beams that were designed to fail in 

flexure rather than in shear. 

Alam (20 1 0) carried out a finite element analysis to simulate the behaviour of shear 

critical FRP reinforced concrete beams with a wide range of design parameters such as 

shear span-to-depth ratio, depth of beam, reinforcement ratio, concrete strength, and 

reinforcement type. Two concrete material models were used. The models were a 

concrete damage plasticity model (Model-l) and a hypo-elastic concrete model (Model-

2). An idealized tension-stiffening model was proposed based on the reinforcement type 

and varies as a function of the member strain. The models were implemented in general 

purpose finite element programs ABAQUS and ADINA, respectively. The models were 

used to simulate the experimental results of some of the beams tested in this investigation 

and to examine how well these models simulate the behaviour of shear critical FRP 

reinforced concrete members. The models predicted results were in a reasonable 

agreement with the experimental results. It was observed that a better prediction can be 

achieved using a proper tension-stiffening idealization. 

The behaviour of FRC under tensile loading can be understood from Figure 2.11. A 

plain concrete member cracks in two pieces when the structure is subjected to the peak 

tensile load and cannot withstand further load or deformation. The fibre reinforced 

concrete structure cracks at the same peak tensile load, but does not separate and can 

maintain a load up to the point of very large deformation. The area under the curve shows 

the energy absorbed by the FRC when subjected to tensile load. This can be termed as the 

post cracking response of the FRC. 
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Despite the large number of experimental results available on the effectiveness of 

steel fibres in substituting the minimum code-required shear reinforcement in beams, 

only a few numerical studies have been published concerning fibre-reinforced concrete 

structures. 

Minelli and Vecchio (2006) analyzed the behaviour of full-scale steel fibre­

reinforced concrete (SFRC) elements using a finite element code based on the modified 

compression field theory (MCFT) and the disturbed stress field model (DSFM), and 

suitably adapted for steel fibre reinforcement. The numerical model was validated against 

the experimental results obtained on SFRC structural elements and was shown to 

adequately simulate the strength, stiffness, ductility, crack pattern development, and 

failure modes of all specimens tested, including those lightly reinforced or with fibres 

only. 

Ozcan et al. (2009) presented an experimental and finite element analysis of three 

SFRC beams. For this purpose, three SFRC beams with 250 mm x 350 mm x 2000 mm 

dimensions were produced using a concrete class of C20 with 30 kg/m3 dosage of steel 

fibres and steel class S420 with shear stirrups. SFRC beams were subjected to bending by 

a four-point loading setup in certified beam-loading frame. The tests were conducted in 

load control mode. The beams were loaded until failure and the loadings were stopped 

when the tensile steel bars were broken into two pieces. One of the SFRC beams was 

modeled by using nonlinear material properties adopted from experimental study and was 

analyzed till the ultimate failure cracks by ANSYS. Eight-node solid brick elements were 

used to model the concrete. Internal reinforcement was modeled by using 30 spar 

elements. A quarter of the full beam was taken into account in the modeling process. The 

31 



results obtained from the finite element and experimental analyses were compared to 

each other. It was seen from the results that the finite element failure behaviour indicated 

a good agreement with the experimental failure behaviour. 
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Table 2.1 : Properties comparison of macro-synthetic, Polypropylene and Polyethylene 

fibres 

Fibre Type Macro synthetic 1 Polyethy lene2 

Specific Gravity 0.92 
Absorption None 
Modulus of Elasticity, GPa 9.5 
Tensile Strength, MPa 620 
Melting Point, °C 320 
Ignition Point, oc 590 
Alkali Resistance High 

I ' Denved from Grace Company s Product InformatiOn. 
2 Derived from ACI 544.1R-96. 
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0.92-0.96 
None 

5.0 
76-586 

134 
-----
High 

Polypropylene1 

0.90-0.91 
None 

3.4-4.8 
138-689 

166 
593 

High 



Table 2.2: Existing shear strength models for FRC beams without web reinforcement 

Investigator Shear strength models, MPa 
Mansur et al. (1986) 

( 11 J ( ,Jl pV d) V11 =0.41 rV1 df + 0.16 fc +17.2----u----

Sharma ( 1986) (d)"" v" = k!, -:; Recommended by ACI Committee 544.1R-96 

k = 1 if.ft is obtained by direct tension test; 
k = 2/3 if ft is obtained by indirect tension test; 
k = 4/9 if.ft is obtained using modulus of rupture; or 

!, = 0.79[i,fc inMPa. 

Narayanan and 
vn = e[ 0.24 fcP +80 p ~]+0.41 r F Darwish (1987) 

e = 1 for aid > 2.8 
e = 2.8 d/a for other case 

Ashour et al. (1992) ( fi )d d ' v" = 0.7 fc +7 F -:;+17.2p-:;,fc inMPa. 

Li et al. (1992) For FRC, din m. 

v" = 1.25 + 4.68[ (!; !,, )"' ( p ~ r d_,,] for aid> 2.5 

v" = 9.16[ (J;) "' (p )'" ( ~)] for aid< 2.5 
Shin et al. (1994) 

v" = 0.22J:.p + 217 p( ~)+0.34r Ffor aid< 3 

vn = 0.19 h p +93 p( ~) + 0.34r Ffor ald2. 3 

Khuntia et al. (1999) v" = (0.167 +0.25 F)[i,fc inMPa. 

( d )fi '• V
11 

= 0.418 -;;+ 0.25F fc , fora / d < 2.5,fc mMPa. 

Kwak et al. (2002) 
0.7 0.97 ( d)'" V11 =2.1e.J:.P P-:; +0.8(0.41rF) 

e = 1 for aid > 3.5 
e = 3.5d/a for other case 

Greenough and ( ~J ( dr Nehdi (2008) Vn = 0.35 1 + d h0 18 
(I + F ) P-:; + 0.907]0 r F 

Note: J,. = modulus of rupture; fsp = splitting tensile strength; F = V1(L/ D) fJ = fibre factor; 
VJ = volume ratio of fibre; Ll D = aspect ratio of fibre; fJ = factor for fibre shape and 
concrete type; and r = average interfacial bond stress of fibre matrix ( r= 4.15 MPa). 
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Figure 2.1: Steel, glass, synthetic and natural fibres with different length and shape 

Figure 2.2: Polypropylene fibres are produced either as (left) fine fibri ls with rectangular 

cross section or (right) cylindrical monofilament 
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Figure 2.3: Available shapes ofFRP products (ISIS, 2003) 
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Figure 2.4: Stress vs. strain relationships for FRP reinforcement and matrix (ISIS, 2003) 

Figure 2.5: Internal forces in a cracked beam without stirrups 
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cross section (Choi et al., 2007) 
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loading location 

Figure 2.7: FEM discretization for a quarter of the beam (Kachlakev et al., 2001) 
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Figure 2.8: Load vs. deflection plot (Kachlakev et al., 2001) 
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Figure 2.9: Typical cracking signs in finite element models: (a) Flexural cracks; (b) 

Compressive cracks; (c) Diagonal tensile cracks (Kachlakev et al., 2001) 
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Figure 2.10: Models for reinforcement in reinforced concrete: (a) Discrete; (b) 

Embedded; (c) Smeared (Tavarez, 2001) 
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Figure 2.11: Tensile load vs. deformation for plain and fibre reinforced concrete 
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Chapter 3 

Material Properties 

3.1. Introduction 

This chapter describes the different materials used in the current research work. The 

different concrete mixtures are presented. The properties of the macro-synthetic fibres 

and GFRP bars are also given as per the manufacturers' specifications. 

Four different mixes were used in the current investigation. The main variable was 

the fibre ratio by volume. The four levels of fibre volume percentages were: 0%, 0.5%, 

0.75% and 1.0%. 

The mechanical properties of the hardened concrete were examined to develop a 

better understanding of the effect of the different macro-synthetic fibre volumes on the 

hardened concrete properties. Thirty two prisms (1 00 mm x 100 mm x 400 mm) and 

thirty six cylinders (1 00 mm x 200 mm and 150 mm x 300 mm) were cast to determine 

the mechanical properties of concrete. The examined mechanical properties were the 

compressive strength, indirect tension, modulus of rupture and flexure toughness. All 

tests were carried out in accordance with the appropriate ASTM standards. 

3.2. Materials 

3.2.1. Concrete 

Ordinary Portland cement CSA type I 0 was used. The coarse aggregate was mostly 

crushed sandstone with a maximum nominal size of 19 mm. The fine aggregate was 

identical in composition to the coarse aggregate. The water-cement ratio used for the 

present concrete mix was w/c = 0.36. The target compressive strength was 40 MPa. 
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Details of the concrete mix proportions are given in Table 3.1. The concrete used in 

casting the test beams was hatched at a local batch plant and delivered to the concrete 

laboratory. 

The concrete used in the beams was delivered at different times of the year. As a 

result, and due to the weather conditions in Newfoundland, there was a difference 

between the targeted and actual strength due to the difference in the moisture content in 

the fine aggregates. The setting of the batch plant was such that it ensured a uniform 

value of the compressive strength, which was acceptably satisfied for almost all the 

beams. It should be noted that it is practically impossible to replicate an identical batch 

with no tolerances from a batch plant. 

The concrete mix proportions were maintained for all the different mixes. The fibres 

were added to the concrete mix at the batch plant. The fibres were added to the mix after 

the concrete was hatched to the concrete truck. After the fibres were added, sufficient 

mixed time was used to ensure adequate dispersion ofthe fibres. 

For the mixes with fibres ratio of 0.5% and 0.75%, a superplasticizer was added to 

improve the workability of the mix. The superplasticizer had a modified naphthalene 

sulfonate base and is commercially known as DARACEM® 19. The mix with 0.5% fibres 

ratio had an excellent workability while pouring the beams. On the other hand, the 0.75% 

fibres mix showed some balling and less workability. The operator accidentally added 

some water to improve the workability. That action was stopped and the workability was 

adjusted using the plasticizer. For the 1% mix, care was given to the mixing procedure 

and a polycarboxlate based high-range water-reducing admixture (commercially known 
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as ADV A® 190) was used. This mix showed excellent workability and uniformity when 

casting the test beams. 

3.2.2. Synthetic Fibres 

The synthetic fibres used in this investigation, as shown in Figure 2.2, were 40 mm 

long, with an aspect ratio of 90 and tensile strength of 620 MPa. It is commercially know 

as STRUX® 90/40. The fibres are composed of a polymer blend that partially fibrillates 

during mixing to increase its bond with the cement matrix, which improves the 

mechanical characteristics of the concrete. 

3.2.3. GFRP Bars 

The reinforcing materials used in this investigation were Glass Fibre Reinforced 

Polymer (GFRP). Two different sizes of the GFRP bars were used in this study. The bars 

were manufactured by Pultrall Inc. Quebec, Canada, and were sand coated to enhance the 

bond between the bars and the concrete. 

Figure 3.1 shows GFRP bars used in the experimental investigation. The mechanical 

properties of GFRP bars are presented in Table 3.2, as provided by the manufacturer. 

Based on the pullout test provided by the manufacturer, the maximum bond stress is 11.6 

MPa. The bond stress is an important factor that affects the cracking behaviour of 

concrete members. 
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3.3 Properties of Hardened Concrete 

3.3.1. Compressive Strength 

Six standard concrete cylinders (150 mm x 300 mm) and three small cylinders (100 

mm x 200 mm) were prepared from each concrete mix at the time of casting of the 

concrete test beams. The cylinders were cured and kept at the same location as the test 

beams in the laboratory at temperature of around 20 °C. The cylinders were tested at the 

same time of testing the beams. 

The test cylinders were capped with a high-strength sulphur compound on both ends 

and tested in accordance with ASTM C39 for determining the compressive strength. A 

picture of the compression test machine is depicted in Figure 3 .2. The compression 

machine has a capacity of 2200 kN. The automatic loading cycle is controlled by a 

closed-loop microprocessor hydraulic system in load control. The results could also be 

shown in real time through a digital display system. A loading rate of 0.235 MPa/s was 

used until failure occurred as per the ASTM C39 standard. 

The obtained values of the compressive strength of the different mixtures are shown 

m Table 3.3 based on the average results of three 150 mm x 300 mm cylinders. 

Comparing the results of mixes 2 (0.5%) and 4 (1 %) indicated that there was an increase 

in the compressive strength as the fibre volume was increased. As mentioned earlier, the 

concrete was hatched and mixed at a local batch plant. It was not possible to completely 

replicate the mixes produced by the plant without any tolerances. Therefore, there was 

some variation in the compressive strength of the different concrete mixtures. Hence, it 

was not possible to conclude, in the current study, whether increasing the fibre volume 

has an effect on the compressive strength of concrete. The apparent increase could have 
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been as a result in the variation in the compressive strength of the concrete produced at 

the batch plant. 

The results of the compressive strength for the 100 mm x 200 mrn and 150 mrn x 

300 mm cylinders, for mix no. 2 (0.5%), are given in Table 3.4. The results indicated 

that the 100 mm x 200 mm cylinders showed a higher compressive strength compared to 

the standard 150 mm x 300 mm cylinders. It should be noted that the fibres were 40 mrn 

long and the smaller cylinders had a 100 mm diameter. It appears that the size of the 

specimen had an effect on the measured compressive strength. Hence, it was decided to 

use only the standard size cylinders to obtain the compressive strength of the different 

concrete mixtures. 

3.3.2. Splitting Tensile Strength 

The splitting tensile strength was measured using 150 mm x 300 mrn cylinders. 

Three cylinders were tested, from each mix, in accordance with ASTM C496. The test 

method consisted of applying a diametric compressive force along the length of the 

specimen, as shown in Figure 3.3. The applied loading rate was 1333 N/s until failure 

occurred. 

The obtained values of the splitting tensile strength of the different mixtures are 

shown in Table 3.3. Figure 3.4 shows the increase in tensile strength due to the addition 

of fibres. In general, it can be seen that the splitting tensile strength was increased with 

the addition of fibres. It can be noticed that the fibres increased the concrete splitting 

tensile strength by holding the concrete together after the cracking occurred and before 

failure, as shown in Figure 3.5. Hence, the fibres seem to increase the tensile strength 
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when compared to plain concrete. On the other hand, increasing the fibre volume beyond 

0.5% did not result any significant increase in the splitting tensile strength. 

3.3.3. Modulus of Rupture 

Four concrete prisms ( 1 00 mm x 1 00 mm x 400 mm) were prepared from each 

concrete mix at the time of casting of the concrete test beams. The prisms were cured and 

kept under the same conditions as the test cylinders and were tested at the same time of 

testing the beams. The modulus of rupture ((,.) tests were carried out in accordance with 

ASTM C78, using simple beam with third-point loading, as shown in Figure 3.6. The 

loading rate was 1.0 MPa per minute. 

The measured values of the modulus of rupture, for the different mixtures, are 

shown in Table 3.3. Figure 3.7 shows the increase in modulus of rupture due to the 

addition of fibres. In general, and as in the case of splitting tensile strength, the modulus 

of rupture was increased with the addition of fibres. The addition of fibres increased the 

modulus of rupture when compared to plain concrete. Nonetheless, increasing the fibre 

volume beyond 0.5% did not result any significant increase in the modulus of rupture. 

The plain concrete prisms cracked in two pieces when the prism reached the peak 

load and could not withstand further load or deformation. The fibre reinforced concrete 

prisms did not separate when the peak load was reached and maintained some load up to 

the point of large deformation. The area under the curve shows the energy absorbed by 

the prisms, as shown in Figure 3.8. 
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Table 3.1: Mix proportions of one cubic meter of concrete 

350 
825 
1050 
0.36 

Table 3.2: ISOROD Glass-Vinyl ester properties provided by the manufacturer 

Cross Tensile Modulus of 
Bar sectional area Diameter strength elasticity Ultimate strain 

Designation mrn2 mrn MPa GPa % 
5/8 (16) 198 15.9 727 44 1.65 ± 0.03 
1/2 (13) 127 12.7 756 45 1.70 ± 0.03 

Table 3.3: Properties of hardened concrete 

Fibre Compressive Splitting tensile Modulus of 
Mix Volume * strength strength rupture 
No. % MPa MPa MPa 

1 0.0% 40 2.90 4.20 
2 0.5% 44 4.01 6.20 
3 0.7% 41 3.44 5.80 
4 1.0% 47 4.21 5.94 .. 

Based on 150 mrn x 300 mrn cylmders 

Table 3.4: Concrete compressive strength of mix no. 2 for different cylinder sizes 

Cylinder 100 x 200 mrn 150 x 300 mrn 
No. MPa MPa 

1 47.72 44.19 
2 44.14 43.49 
3 47.01 45.28 

Average 46.29 44.32 
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Figure 3.1: GFRP bars used in the test 

Figure 3.2: Compressive strength test setup 
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Figure 3.3: Splitting tensile test setup 
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Figure 3.4: Relative increases in splitting tensile strength due to fibre addition 
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(a) Splitting tensile failure (b) Compression failure 

Figure 3.5: Fibres holding the concrete on test cylinder: (a) Splitting tensile failure; (b) 

Compression failure 

Figure 3.6: Modulus of rupture test setup 
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Chapter 4 

Experimental Program 

4.1. Introduction 

This chapter describes the details of the experimental program that was carried out, 

at the structural lab of Memorial University (MUN), to investigate the shear behaviour of 

macro synthetic fibre-reinforced concrete beams with Glass Fibre Reinforced Polymer 

(GFRP) bars. The experimental program consisted of casting, testing and evaluation of 

the structural performance of sixteen beams. The details of the test specimens and the 

procedure used in preparing the specimens are discussed in this chapter. The test set-up 

and the different equipments used to measure the load, deformations and strains, 

throughout the testing program, are also described in this chapter. 

4.2. Test Specimens 

The test specimens were divided into four groups. The first group has no fibre that is 

a fibre volume percentage of 0%. This was the reference group. The other three groups 

had three levels of fibre volume equal to 0.5%, 0. 75% and 1.0%. The main test variables 

were the fibre volume (V), reinforcement ratio (pj) , effective depth (d) and shear span to 

depth ratio (aid). The definition of the variables is shown in Figure 4.1. A summary of 

the test program with the parameters investigated is shown in Figure 4.2. 

The specimens were divided into four groups. Each group consisted of four 

specimens. Within the same group, the beams had different fibre volumes of 0%, 0.5%, 

0.75% and 1.0%. The beams in the first group had the following dimensions (b x h x L): 

250 mrn x 350 mrn x 2840 mm. The reinforcement ratio (p1) was 0.87% and the shear 
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span to depth ratio (a/d) was 2.5. The beam depth (d) was calculated from the extreme 

fibres in compression to the centroid of the flexural reinforcement based on a 40 mm 

clear cover, as shown in Figure 4.2. The beams in the second group had b x h x L equal 

to 250 mm x 350 mm x 2840 mm, P! equal to 1.45% and aid ratio of 2.6. The beams in 

the third group had b x h x L equal to 250 mm x 500 mm x 3540 mm, P! equal to 0.87% 

and aid ratio of 2.6. The beams in the fourth group had b x h x L equal to 250 mm x 350 

mm x 3540 mm, p1 equal to 0.87 and aid ratio of 3.5. The design of the experiment was 

such that to examine the effect of the different variables (pf, d and a/d) for a given volume 

of fibre, where Vwas equal to 0%, 0.5%, 0.75% and 1.0%. 

All of the beams were over-reinforced as recommended by the FRP codes and 

guidelines. The balanced reinforcement ratio, Pb, was calculated assuming that crushing 

of concrete occurs simultaneously at the same time as the rupture of the reinforcement. 

The balanced reinforcement ratio was calculated according to CSA S806-1 0 as follows: 

(4.1) 

where J; is the compressive strength of concrete (MPa), .fu and E1are the tensile strength 

and modulus of elasticity of the reinforcement (MPa), respectively. The parameters a1 

and /31 are the equivalent stress block parameters, as shown in Figure 4.3 . Based on CSA 

8806-10, a 1 = 0.85 - 0.00ISi ;::: 0.67 and /31 = 0.97 - 0.0025h ;::: 0.67 . 

A section with a reinforcement ratio of P! /ph < 1.0 is defined as tension-controlled 

failure and a section with a reinforcement ratio P! /ph > 1.0 is defined as compression-

controlled failure (over-reinforced). The general design approach for FRP reinforced 
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beams is to use a compression-controlled failure in the concrete. However, in some rare 

cases, GFRP reinforced sections could be designed for tension-controlled failure. 

That test beams were over reinforced at the section capacity level. The minimum 

reinforcement ratio was 0.87% that was equivalent to 1.3 Pb and the maximum 

reinforcement ratio was 1.45% that corresponded to 2.0 Pb within Group 2. 

4.3. Formwork and Fabrication 

The formwork was designed and constructed using 25 mm thick plywood sheets. 

The sides of the formwork were cut according to the height of each beam. A sufficient 

number of vertical supports and top bracings were used to maintain the integrity of the 

formwork during casting, and to ensure that the dimensions of the beams remained 

unchanged. Figure 4.4 shows a typical formwork and reinforcement layout for a single 

formwork. The bars were placed on plastic chairs to maintain uniform clear concrete 

cover. The longitudinal bars were tied using several cross bars of the same diameter and 

the same width of the beam to maintain uniform side concrete cover. 

4.4. Casting and Curing of the Specimens 

Four beams were cast from batch depending on the fibre volume. For example, 

beams B 1, BS, B9 and B 13 were poured from the same batch where V = 0%. The same 

casting sequence was used for all beams. First, some concrete was poured in the 

formwork to form a layer that extend just above the level of the reinforcement. The 

concrete, which poured for this layer, was spread throughout the whole length of the 

beam and vibrated to ensure the proper compaction of the concrete within the 
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reinforcement area. The remaining portion of the beam was poured in layers depending 

on the depth of the beam. Test cylinders were prepared from the same batch of concrete 

according to the ASTM-C192. At the end of the pour, the surface of each beam was 

finished with a steel trowel. 

After casting the beams in one batch, the beams were covered with plastic sheets to 

prevent moisture loss. Curing of test specimens is an essential way to avoid evaporation 

from the surface of the beam and to achieve the design properties. Without proper curing, 

significant shrinkage can be found in the specimen. This could lead to a large number of 

shrinkage cracks on the surface of the beams. It was noticed that covering test specimens 

with plastic sheets after casting was an effective way to reduce shrinkage. After 18 hours, 

the concrete mixture began to harden and produced a lot of heat due to the chemical 

reaction. Spraying water on the specimens at this stage reduced the heat of hydration and 

did not impair the concrete strength development. The specimens were watered 2-3 times 

a day. The test specimens were cured in this way for seven days and then kept in the 

laboratory until the day of testing. 

4.5. Test Setup 

The tests were performed in the structural engineering laboratory of Memorial 

University of Newfoundland. Figure 4.5 shows the detail of the test setup. The frame 

consists of two vertical columns of W31 0 x 107 sections. The columns were braced using 

two C31 0 x 45 sections on both sides. The bottoms of the columns were stiffened using 

15 mm thick plates, and the columns were supported on two 20 mm thick plates to avoid 

any possible bending. The columns were mounted with 1000 mm thick reinforced 
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structural floor, using four bolts with 40 mm diameter for each column. The front column 

was braced at the bottom, using two 152 mm x 152 mm angles on both sides, to spread 

the loads and to facilitate the use of 4 more bolts, as this column will experience tensile 

force. The beam supporting the actuator consists of two C460 x 86 sections that were 

bolted to the columns. Both of the channels were stiffened using 15 mm thick plates to 

avoid the warping of the flange. The channels were connected to each other using 

horizontal plates at both top and bottom of the channels to provide more stiffness to the 

channels. 

4.6. Instrumentation 

During the test, each beam was instrumented with six electrical resistance strain 

gauges, as shown in Figure 4.6. Four electrical strain gauges designated as RS were 

placed on the reinforcement. For protection against any possible water damage during 

casting, the strain gauges were coated with a protective sealant and then covered with a 

shrink tube waxed at the ends. The strain gauges were bonded to the outside bars equally 

spaced from the faces of the beam. For ease of fabrication, the strain gauges were placed 

on the outer bars. Two of the gauges were placed at the mid span of the beam. One gauge 

was placed at the center of each shear span. Two strain gauges designated as CS were 

placed on the top surface of the beam at mid span to measure the concrete strains. The 

locations of the concrete strain gauges were marked on the compression surface of the 

beam. The concrete surface was smoothed using a hand grinder and then a very thin film 

of epoxy resin was placed on the concrete surface. After drying, each strain gauge was 
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placed in a position located, as shown in Figure 4.6. All of the strain gauges were 10 rnm 

long. The resistance of the strain gauges was 120 n with a gauge factor of2.07 ± 0.5%. 

Three Linear Variable Differential Transformers (L VDTs) were placed at the same 

location of the reinforcement strain gauges to measure the deflections of the beam at the 

centre of the beam and at the centre of each shear span. These L VDTs were also used to 

check the symmetry of the loading on the beam. It should also be noted that the mid-span 

displacement measurements from the built-in LVDT of the MTS actuator were also 

recorded. However, such measurements would be susceptible to any settlement in the set­

up that would also be recorded in addition to the deflection of the beam. 

4.7. Data Acquisition System 

The electrical strain gauges, L VDT' s and the load readings were logged to a 

computerized data acquisition system. This system can be divided into two broad 

categories, analog systems and digital systems. In analog systems, the measurement 

information is processed and displayed in analog form. In digital systems, the original 

information may also be acquired in the form of an analog electrical signal, but the signal 

is then converted to a digital signal for further processing and display. A digital electrical 

signal has the form of a group of discrete and discontinuous pulses. Typically, the 

instrument first subjects the analog signal to amplification. Next, the amplified signal is 

converted into digital form by an analog-to-digital (AID) conversion circuit. Finally, the 

digital signal is either displayed on a digital display device or is made available for 

transmission to other digital instruments such as a computer for further processing and 

display. All measurements were stored in Microsoft Excel files. The software (Lab-
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VIEW, 2005) was used and the data scanning and saving rate was set to record the 

readings every 3 seconds. 

4.8. Test Procedure 

All beams were simply supported and loaded with four-point loading. Figure 4.7 

shows a photograph of the test setup and data acquisition system. The loading was 

applied using a 670 kN servo-hydraulic MTS actuator in displacement control. The load 

was applied gradually using the 407 Controller. A spreader beam was used to divide the 

load into two points. Each beam was preloaded to approximately 10 kN to minimize the 

settlement of the beam. The preload was released prior to starting the test. During a test, 

the load was applied in increments of approximately 10 kN to 20 kN. The load increment 

was chosen depending on the beam dimensions. Smaller load increment was used at the 

beginning of the test to capture the load that caused the first cracking in the beam. At 

each load increment, the beam was inspected and the cracks were monitored and mapped 

until failure load was reached, as shown in Figure 4.8. The applied load, deflections, and 

strains from the different sensors were recorded using a high speed data acquisition 

system. The data was monitored by a personnel computer using LABVIEW program and 

stored on the hard disk ofthe computer. The frequency of the data sampling was 2.0 Hz. 

58 



Table 4.1: Details of test specimens 

Test Beam Fibre fc' Reinforcement P/ Pb Effective Shear span 
series No. volume, V MPa ratio depth, d to depth ratio 
No. (%) pflo mm aid 

Bl 0.00 40 0.87 1.3 302 2.5 

I 
82 0.50 44 0.87 1.3 302 2.5 
83 0.75 41 0.87 1.3 302 2.5 
84 1.00 47 0.87 1.3 302 2.5 
85 0.00 40 1.45 2.0 291 2.6 

2 86 0.50 44 1.45 2.0 291 2.6 
87 0.75 41 1.45 2.0 291 2.6 
88 1.00 47 1.45 2.0 291 2.6 
89 0.00 40 0.87 1.3 441 2.5 

3 BIO 0.50 44 0.87 1.3 441 2.5 
Bll 0.75 41 0.87 1.3 441 2.5 
81 2 1.00 47 0.87 1.3 441 2.5 
813 0.00 40 0.87 1.3 302 3.5 

4 814 0.50 44 0.87 1.3 302 3.5 
815 0.75 41 0.87 1.3 302 3.5 
816 1.00 47 0.87 1.3 302 3.5 
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Figure 4.7: Test setup and data acquisition system 

Figure 4.8: Cracks mapping 
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Chapter 5 

Test Results and Discussion 

5.1. Introduction 

The test results and observations obtained from the experimental program are 

presented in this chapter. The four macro-synthetic fibre concrete mixes mentioned in 

Chapter 4 were used in casting the test beams. Sixteen full-size normal strength concrete 

beams reinforced with GFRP bars were tested. The test beams were divided into four 

series according to their fibre volume percentages. Details of the test beams are given in 

Table 4.1. The test results are arranged in a manner that illustrates the influence of the 

fibre volume, V, 0%, 0.5%, 0.75%, and 1.0%; the ratio of the reinforcement ratio to the 

balanced reinforcement ratio, PJIPb, 1.5 and 2.5; the effective depth of the beam, d, 291 

mm, 302 mm, and 441 mm; and the shear span to depth ratio, aid, 2.5, 2.6 and 3.5 on the 

behaviour of the beams. The structural behaviour of the beams is presented in terms of 

load-deflection characteristics; concrete strains; GFRP reinforcement strains; crack 

patterns; failure modes and ultimate capacity. Due to the large quantity of experimental 

data, only representative results are presented in this chapter. All test data are presented 

in Appendix A. Finally, the capacity of thebeams are compared with the predictions of 

some of the models that are available in the literature. 

5.2. Load-Deflection Characteristics 

As mentioned in Section 4.6, three Linear Variable Differential Transformers 

(L VDTs) were used to measure the deflections of the beam at the centre of the beam and 

at the centre of each shear span, as shown in Figure 4.6. During the test, the load was 
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paused at certain intervals to map the cracks. When the system was put on hold, the 

readings of the load decreased slightly due to relaxation of the beams' internal stresses. 

Thus, the load deflection graphs were not very smooth. However, this did not affect the 

behaviour and the capacity of the beam. 

The load versus deflection curves of each test beam are shown in Appendix A. The 

results are presented for the deflection measurements at mid-shear span and at mid span 

(Figure 4.6) for all beams. 

Typically, the shape of the load-deflection diagram for mid-shear span (presented in 

Appendix A) was approximately the same as the load-deflection diagram for mid-span. 

However, at a certain load level, the deflection at mid-shear spans was, as expected, less 

than the deflection at mid-span. The deflection measurements obtained from the two 

L VDTs that were placed at the center of each mid-shear span were very close. This 

indicated that the beams were symmetrically loaded. 

In the following sections, the load-deflection curves obtained only from the mid­

span L VDT are discussed for all of the beams in different test series. Figures 5.1 to 5.3 

show the load versus central deflection curves for all test beams. In general, the load­

deflection behaviour of the beams can be defined by three stages; before cracking, 

transition from uncracked to cracked stage, and after cracking. The first and third stages 

of a typical load deflection curve can be represented by two straight lines with different 

slopes. The first line has a steep slope corresponding to the stiffness of the uncracked 

beam. This indicates the higher stiffness of the uncracked beam. As the applied load was 

increased, initial cracks formed and the test beams experienced a slight gradual loss in 

stiffness at this transition stage and the slope of the load-deflection curve was changed to 
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another straight line that represented the stiffness of the cracked beam. The transition 

between these two lines was not abrupt; it was rather a smooth transition. This indicates 

that the beam did not completely lose its uncracked stiffness once the first crack was 

formed. 

It should be noted that the beams with fibre volume of 0.5%, i.e. beams B2, B6, B 10 

and B 14, where tested using different L VDTs than those used in testing all other beams. 

It appears that the load-deflection curves for those beams did not conform to the trends 

observed from the results of other beams. Hence, the beams of those beams are excluded 

in the current discussion. 

The load that caused the first crack in the beam was observed with the naked eye. In 

general, the addition of the fibres increased the first crack-load for all beams as can be 

noticed from Table 5.1. The stiffness, load and deflection values at the first crack and at 

failure are presented in Table 5.1. The stiffness of a beam represents the amount of load 

needed for unit displacement at the centre of a beam. The initial stiffness, K1, is the 

tangential value of the slope of the load-deflection curve at the uncracked stage. The 

cracked stiffness, Kcr. is calculated as the average tangential value of the slope of the 

load-deflection curve after the transition stage has ended. The values of K1 and Kcr are 

tabulated in Table 5.1. From the table, it is apparent that the beams had a stiffer response 

before and after cracking when the reinforcement ratio and the beam depth increased. 

Among all variables, changing of the depth of the beam yielded the most prominent 

influence on the stiffness. There were no consistent trends that could be observed from 

the uncracked stiffness results. The cracked stiffness of the beams increased with 
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increasing the fibre volume. Also, the change in fibre volume has no effect on beams 

with aid ratio equal to 3.5. 

The load deflection curves can give an indication of the failure mode of the beam. 

From the load deflection curves shown in Figures 5.2 and 5.3, one can notice that all the 

beams have a positive slope up to failure and that failure is abrupt due to shear. This 

means that the load deflection curve for the test beams is not complete, since the beams 

did not develop its full flexural capacity; instead the load deflection curve is triggered by 

sudden shear failure. Hence, the effect of macro synthetic fibre on the flexural ductility of 

the beams can not be obtained from the current study. 

The load-deflection curves for beams that have different reinforcement ratios are 

shown in Figure 5.2. In general, it could be noted that increasing the flexural 

reinforcement ratio resulted in increasing the ultimate failure load but at the same time 

did not result in increasing the maximum deflection. In general, for the same fibre 

volume, increasing the reinforcement always resulted in increasing the ultimate failure 

load. 

The load-deflection curves for beams that have different effective depths are shown 

in Figure 5.3. It could be noted that increasing the beams effective depths resulted in 

increasing the ultimate shear failure load. In general, for the same fibre volume 

increasing the beam effective depth by 46% resulted in increasing the ultimate failure 

load by 33%. However, a significant increase was achieved in the ultimate shear failure 

load for the same fibre volume of 1.0% when the beam effective depth was increased. 

Test results revealed that for the same fibre volume of 1.0%, increasing the beam 

effective depth by 46% resulted in increasing the ultimate shear failure load by 82%. 
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Table 5.1 presents the load and deflection, at the first crack and at failure, for the 

different test beams. In general, it could be noted that the addition of synthetic fibre 

resulted in increasing the ultimate shear failure load when the same reinforcement ratio, 

the same effective depth, and the same shear span to depth ratio were used, respectively. 

5.3. Strain Behaviour 

The measured applied loads are plotted as a function of the concrete and 

reinforcement strains for all beams. Typical load versus strain plots for concrete and 

reinforcement are shown in Figure 5.4. In the pre-cracking stage, all strain gauges 

exhibited a linear behaviour. The strains in the longitudinal bars were very small. After 

cracking, the strain in the bars at mid-span increased as a portion of the concrete was not 

able to carry tension. 

The flowing sections show the relation between load and concrete and GFRP 

reinforcement strains for the reinforced concrete beams. The concrete strain here was the 

strain at the extreme compression fibre of the mid span and GFRP strain at the tension 

zone of the mid-span. 

5.3.1. Concrete Strains 

The concrete strains were measured at the central location by using the strain gauges 

shown in Figure 4.6. This location was selected to measure the concrete strains at mid­

span of the beam. The load versus concrete strain strains is shown in Figure 5.4 for all 

beams. The concrete strains did not reach 3500 !!£, which is the concrete crushing strain, 

in any of the test beams. In addition, there was no physical damage at any location that 
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could be identified by the naked eye, which would indicate crushing of the concrete. 

This indicates that none of the test beams reached it flexural capacity. 

5.3.2. GFRP Strains 

The strain gauge locations on the GFRP reinforcement were described in Chapter 4 

(Figure 4.6). The strain gauge locations were selected and placed at a distance of L/2 and 

a/2 to measure the maximum strain in GFRP reinforcement during the test. The load 

versus mid-span GFRP strain plots are shown in Figure 5.5 for all beams. The load 

versus mid shear-span GFRP strain curves are shown in Figure 5.6 for all beams. 

All the beams had an over reinforced section capacity. The ultimate strain that a 

GFRP bar can reach, before rupture, is around 15000 ).!£. The recorded maximum strain 

in the GFRP bars was around 5000 ).!£ which is less than the ultimate tensile strain of 

GFRP bars. 

In general, it could be noted that the shape of the load versus mid-shear span strain 

is approximately the same as the load versus mid-span strain that is bilinear. Also, the 

transition between the two lines is smooth, and this could be due to the existence of 

macro synthetic fibre that bridged the formed cracks. The slope of the first line is steeper 

compared to the slope of the first line of load versus mid-span strain. Before cracking, the 

reinforcement strains in the left and right shear spans also showed a similar trend as the 

mid-span strain. While the GFRP strains at mid-span of the beam increased gradually, 

the strains in the mid-shear span increased rapidly after cracking. This could be due to the 

rapid opening up of the cracks near the strain gauge location. It could be noted also, that 

the increase in load after cracking near the mid-shear span was small. This behaviour 
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suggests that the beam failed shortly after the formation of the cracks at the vicinity of 

that location. 

5.4. Crack Patterns 

The cracks were marked manually at the end of each load increment; the growth of 

cracks was marked on each test beam. This was done to identify the direction of crack 

propagation and to determine the different crack patterns. Figures 5.7 to 5.10 show the 

crack patterns for different test beams. The extent of a crack at the end of each loading 

increment was marked by a short horizontal line. The loads shown at each crack tip 

corresponds to the actuator loads. The actuator loads were twice the test loads; the load 

was applied by the actuator on the spreader beam and hence the load was divided into 

two point loads. 

For all beams, the first flexural crack initiated at the tension side of the beam in the 

constant moment region, where the flexural tension stress was the highest and the shear 

stress was equal to zero. The observed flexural cracks propagated vertically upward to the 

level of the neutral axis that reflected the absence of shear stress. As the load was 

increased, additional flexural cracks were developed within the shear span. Due to the 

presence of shear stresses, the flexural cracks became progressively more inclined and 

propagated towards the load points. These types of cracks are known as flexural-shear 

cracks. These cracks extended rapidly through the beam leading to the so-called a 

diagonal-tension failure. In general, the slope of the inclined crack decreased as the shear 

span to depth ratio (a/d) of the beam increased for all reinforcement ratios as can be 

observed by comparing Figures 5.7 and 5.10. 
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It is clear from different crack patterns that the amount of fibre volume affected the 

cracks spacing. In general, the crack spacing was decreased and hence cracks width as the 

amount of fibre by volume was increased. Also, the existence of fibres enhanced the post­

cracking behaviour and delayed the opening of shear cracking in a similar way to the 

existence of shear reinforcement. The addition of macro synthetic fibre changed the mode 

of failure of short beams from web-shear cracking to flexural shear cracking. However, 

despite the existence of synthetic fibre, concrete beams eventually collapsed due to 

localized shear stresses. 

5.5. Failure Modes 

Figures 5.17 to 5.10 show the observed failure modes for different test beams. 

Unfortunately, the picture that represents the final failure mode of test beam B8 was lost, 

rather a photo that represents the crack pattern of the mentioned beam just before failure 

(i.e. at 82% of the failure load) is shown in Figure 5.8(d). 

In general, the failure modes of the beams were either by shear-tension, or shear­

compression, or diagonal tension, as shown in Figure 5.11. The slope of the inclined 

shear cracks decreased as the shear span to depth ratio (aid) was increased. Also, it was 

observed that the increase in shear span to depth ratio (a/d) resulted in a more ductile 

behaviour. 

For some beams, a secondary bond/anchorage failure was observed within the shear 

span, as shown in Figures 5.7(a) and 5.9(a). All Beams in series 4 that have shear span to 

depth ratio of 3.5 failed by bond failure between the bars and the concrete cover, which 

resulted in pulling off the bars from one end of the beam (see Figure 5.1 0). 
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Test beams in series 3 that had a 500 mm thickness and shear span to depth ratio of 

2.5 failed a more brittle manner. For these beams, few inclined cracks were observed in 

the shear span zone. These cracks propagated and merged into one diagonal crack, which 

started from the support and penetrated in a straight line into the compression side of the 

beam at the inner side of the loading point. As a result, an arch action formed in the 

compression strut between the loading point and the support above the inclined crack. 

This beam failed by crushing of the concrete near the loading point (see Figure 5.9). 

In general, as the amount of fibre by volume was increased, the number of flexural 

cracks was increased. However, the existence of macro synthetic fibre did not affect the 

final failure modes. All test beams experienced brittle failure modes. The test results 

showed that macro synthetic fibre did not change the failure mode, instead the existence 

of fibre slowed down the propagation and widening of the diagonal shear crack and thus 

increased the load at which the major diagonal crack fully developed. 

5.6. Shear Capacity 

The shear investigation of fibre reinforced concrete beams was made for different 

fibre volumes (0%, 0.5%, 0.75%, and 1.0%) and the same variables (reinforcement ratio, 

effective depth and shear span to depth ratio) to observe the enhancement of the macro 

synthetic fibre to the shear capacity of the fibre reinforced concrete beams. Moreover, the 

effect of reinforcement ratio, effective depth, and shear span to depth ratio on the shear 

capacity of FRC for the same fibre volume was also examined. The contribution of fibre 

to shear capacity can be calculated by comparing the beams with different fibre volumes 

to those with no fibres added. 
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The reactions at the supports were equal to the applied load that was one-half of the 

actuator loads. The shear force in a beam was equal to the reactions. Hence, in the 

following discussion of the results, the term shear capacity (Vc,rest) is used to refer to the 

ultimate shear that a beam carries as shown in Table 5.2. The nominal shear strength of a 

beam, Vn, is obtained by dividing Vc,resr by bd, where b is the width of the beam and d is 

the depth of the beam (Table 5.3). As mentioned in Chapter 4, there was some slight 

difference in the compressive strengths of the beams. Hence, to make the comparison 

between the shear strength relevant for different beams, the nominal shear strength was 

normalized with respect to the square root of the compressive strength. This is referred to 

as the normalized shear strength, v" 1 ..Jl: (Table 5.4) 

5.6.1. Effect of Reinforcement Ratio 

In general, it could be noted that increasing the flexural reinforcement ratio resulted 

in increasing the normalized shear strength. The normalized shear strength, for the same 

fibre volume was increased from 0.16, 0.16 and 0.17 to 0.19, 0.21 and 0.19, for fibre 

volumes of 0.5%, 0.75%, and 1.0%, respectively, when the reinforcement ratio was 

increased from 1.3 Pb to 2.0 Pb· 

This means, that increasing the reinforcement ratio by 67% resulted in increasing the 

average shear capacity by about 21% when the same amount of fibre volume was used. In 

general, this is due to the reduced size of cracks and the possible increase in the total 

dowel force prior to failure. 
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5.6.2. Effect of Shear Span to Depth Ratio 

In general, it could be noted that increasing the shear span to depth ratio did not 

result in a significant change in the normalized shear strength of the beams with fibres. 

For beams that have no fibre, increasing the shear span to depth ratio (a/d) from 2.5 to 3.5 

resulted in decreasing the normalized shear strength from 0.13 to 0.09 but it was not 

enough to change the shear failure mode. 

5.6.3. Effect of Effective Depth 

In general, it could be noted that increasing the beam effective depth resulted in a 

slight decrease in the normalized shear strength and at the same time resulted in a slightly 

more brittle failure. For the beams with no fibres, increasing the effective depth from 302 

mm to 441 mm resulted in decreasing the normalized shear strength from 0.13 to 0.11. 

For beams with fibres, increasing the effective depth from 302 mm to 441 mm resulted in 

no significant change in the nominal shear strength, which is around 6. 7% on the average. 

5.6.4. Effect of Fibre Volume 

Test results indicated that the addition of the macro synthetic fibre enhanced the 

shear strength of the GFRP concrete beams as shown in Figure 5.12. 

Figures 5.12(a) and 5.12 (b) present the influence of fibre volume on the normalized 

shear strength of the FRC beams that have the same reinforcement ratio of 1.3 Pb and 2.0 

Pb, respectively. It can be noted that increasing the volume of synthetic fibre from 0.0% 

to 1.0% resulted in an increase in the normalized shear strength from 0.13 to 0.17 and 

from 0.14 to 0.19 for the beams with 1.3 Pb and 2.0 Pb, respectively. This means that the 
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contribution to the normalized shear strength of 1.0% fibre by volume was about 35% on 

the average the same reinforcement ratio was used. 

Figure 5 .12( c) represents presents the influence of fibre volume on shear capacity of 

FRC beams that have the same shear span to depth ratio (a/d) of 3.5. It can be noted that 

increasing the volume of synthetic fibre from 0.0% to 1.0% resulted in an increase in the 

normalized shear strength from 0.09 to 0.17. This means, that the maximum contribution 

of 1.0% fibre by volume was about 90% when the shear span to depth ratio (a/d) of 3.5 

was used. 

Figure 5.21(d) presents the influence of fibre volume on shear capacity of FRC 

beams that have the same effective depth of 441 mm. It can be noted that increasing the 

volume of synthetic fibre from 0.0% to 1.0% resulted in an increase in the normalized 

shear strength from 0.11 to 0.15. This means, that the maximum contribution of 1.0% 

fibre by volume was about 39% when the same effective depth of 441 mm was used. The 

enhancement of the shear capacity was not noticeable when the fibre volume was 

increased from 0.5% to 1.0%, for beams that had the effective depth of 441 mm. 

As mentioned earlier and as observed from the experimental program, the beams 

with synthetic fibre continued to resist higher loads after the appearance of the first 

diagonal shear crack. The addition of macro synthetic fibre modified the shear failure 

behaviour of the reinforced concrete beams. In general, the shear failure of the SNFRC 

beams was less brittle compared to the sudden brittle failure of control beams. 
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5.7. Test Results versus Design Models Predictions 

Many researchers proposed design equations that were defined as functions of the 

primary design parameters (Table 2.2). Existing shear capacity models, however, were 

developed for steel fibre reinforced concrete and not for macro synthetic fibres. Hence, 

they should be used with caution as they may not be fully applicable. ACI Committee 

544 recommended Sharma's model, but a code-based design equation for the shear 

capacities of FRC beams does not exist yet. 

To account for the real material properties and section dimensions, the average shear 

capacity of the RC beams was calculated from the ultimate loads using actual dimensions 

of the beams. The average shear capacity was then normalized to the square root of the 

compressive strength. It is well established that the shear capacity of concrete beams is 

directly proportional to the square root of concrete compressive strength. In addition, the 

existing equations were applied with the adjustment of the axial rigidity ofthe reinforcing 

bars by replacing p with PJ Ejl Es in the equations, where PJ is the reinforcement ratio of 

the longitudinal bars, E1 is the modulus of elasticity of the GFRP bars and Es is the 

modulus of Elasticity of steel. 

The normalized results are shown in Figure 5.13 for all beams tested in this 

program. The graph shows that the addition of macro-synthetic fibres has minimum 

normalized shear strength of 0.15, oln the average. The results obtained from this study 

show that beams with macro synthetic fibre of 0.5% and more by volume can enhance the 

shear capacity lower limit established by CSA S806-1 0 for normal concrete. 

A comparison of the predicted shear capacity using the experimental measured 

failure shear capacity, as reported by seven different existing formulas, is shown in Table 
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5.5 and Figure 5.14. In general, it could be noted that available shear capacity models 

overestimated the shear capacity of test beams except for the model proposed by 

Greenough and Nehdi (2008) which gave the best results. This is expected, as those 

empirical equations are developed using data obtained from beams with steel fibres and 

reinforced with traditional steel reinforcement. 
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Table 5.1: Load•, deflection and stiffness values at first crack and at failure 

Test Fibre First Crack Failure 

series Beam fc' volume Load Deflection Load Deflection K, Kcr 
No. No. MPa V% (kN) (mm) (kN) (mm) (kNimm) (kNimm) 

Bl 40 0.00 27.0 0.38 122.0 15.73 53.0 5.9 

I 
B2 44 0.50 60.0 1.30 158.7 13.50 62.9 11.1 
B3 41 0.75 44.5 1.48 158.9 20.30 35.3 7.3 
B4 47 1.00 45.0 0.88 176.8 18.22 54.6 7.0 
B5 40 0.00 26.3 0.89 130.9 9.71 23 .7 6.5 

2 
B6 44 0.50 53.9 1.0 I 182.0 13.36 49.5 10.3 
B7 41 0.75 66.7 1.41 200.1 19.29 75.4 9.4 
B8 47 1.00 69.2 2.42 191.5 18.76 35.4 9.7 
B9 40 0.00 36.7 0.57 154.3 15.20 70.2 7.2 

3 
BIO 44 0.50 - - 214.9 13.32 - -
Bll 41 0.75 65.7 1.22 217.6 16.07 58.0 7.7 
B12 47 1.00 66.9 1.36 232.3 27.50 43.9 9.8 
B13 40 0.00 25.6 1.47 87.3 22.31 25.2 3.2 

4 
B14 44 0.50 39.0 2.40 147.8 31.35 29.5 3.3 
B15 41 0.75 35.6 2.05 164.1 43 .11 24.9 3.0 
Bl6 47 1.00 35.6 2.68 180.4 51.11 21.3 3.3 

*Loads reported in this table are actuator loads. The actuator loads were twice the test loads; the load was 
applied by the actuator on the spreader beam and hence the load was divided into two point loads. 

Table 5.2: Shear Capacity of beams ( v,_,.,,) 

Fibre volume Vc.••s• (kN) 
(V%) 

1.3 Ph 2.0ph d(44l mm) aid (3 .5) 
0.00 61.2 65.5 77.2 43.7 
0.50 79.4 91.0 107.5 73.9 
0.75 79.5 100.1 108.8 82.1 
1.00 88.4 95.8 116.2 90.2 

Table 5.3: Nominal shear strength of beams ( vn = Vc,est I bd) 

Fibre volume vn (MPa) 
(V%) 1.3 Ph 2 .0ph d(44l mm) aid (3.5) 
0.00 0.81 0.90 0.70 0.58 
0.50 1.05 1.25 0.97 0.98 
0.75 1.05 1.38 0.99 1.09 
1.00 1.17 1.32 1.05 1.19 
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Table 5.4: Normalized shear strength W. r. t. .J7: ( vn I .J7:) 

Fibre volume 
Vn I .J7: 

(V%) 
1.3 Pb 2.0 Pb d(441 mm) aid (3.5) 

0.00 0.13 0.14 0.11 0.09 
0.50 0.16 0.19 0.15 0.15 
0.75 0.16 0.21 0.15 0.17 
1.00 0.17 0.19 0.15 0.17 

Table 5.5: Strength predictions by existing models 

Vc.equation I Vc,test 

Fibre Li et Ashour Khuntia Shin et Kwak Greenough CSA 
Beam volume v c ,tesl al. et al. et al. Sharma al. et al. and Nehdi S806-IO 
No. V% kN (1992) (1992) (1999) (1986) (1994) (2002) (2008) (2010) 
Bl 0.00 61 2.06 2.21 1.30 1.83 0.97 1.56 0.62 0.98 
82 0.50 79 1.87 3.13 1.84 2.09 1.39 1.90 0.98 0.78 
83 0.75 80 1.77 3.73 2.16 1.95 1.47 1.94 1.21 0.76 
84 1.00 88 1.68 4.07 2.44 1.80 1.64 2.09 1.32 0.72 
85 0.00 66 1.94 1.93 1.17 1.64 0.98 1.50 0.68 1.00 
86 0.50 91 1.68 2.54 1.55 1.74 1.24 1.69 0.92 0.74 
87 0.75 100 1.43 2.76 1.65 1.48 1.19 1.56 1.03 0.66 
88 1.00 96 1.60 3.49 2.17 1.58 1.53 1.95 1.28 0.74 
B9 0.00 77 2.31 2.50 1.51 2.11 1.12 1.74 0.65 0.97 
810 0.50 108 1.93 3.29 1.99 2.24 1.49 2.00 1.00 0.72 
811 0.75 109 1.81 3.88 2.30 2.07 1.56 2.02 1.23 0.70 
812 1.00 116 1.78 4.40 2.72 1.98 1.82 2.28 1.40 0.68 
813 0.00 44 2.81 2.21 1.82 2.36 1.29 1.45 0.76 1.16 
814 0.50 74 1.94 2.40 1.98 2.06 1.44 1.50 0.98 0.71 
815 0.75 82 1.65 2.58 2.09 1.74 1.38 1.44 1.11 0.62 
816 1.00 90 1.58 2.85 2.39 1.62 1.57 1.59 1.22 0.59 

Average 1.87 3.00 1.94 1.89 1.38 1.76 1.02 0.78 
Standard deviation 0.33 0.74 0.43 0.25 0.24 0.26 0.25 0.16 
Coeff. of variation 0.18 0.25 0.22 0.13 0.17 0.15 0.24 0.20 
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(a) Bl 
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(c) B3 

(d) B4 

Figure 5.7: Crack patterns for beams of Group 1 (aid = 2.5) 
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(c) B7 

(d) B8 

Figure 5.8: Crack patterns for beams of Group 2 (aid = 2.6) 
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Figure 5.9: Crack patterns for beams of Group 3 (aid = 2.5) 
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(c) B15 

(d) B16 

Figure 5.10: Crack patterns for beams of Group 4 (aid = 3.5) 
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(a) Flexural and diagonal shear cracks 

(b) Shear flexural crack 

(c) Bond/anchorage crack 

Figure 5.11 : Typical cracks: (a) Flexural and diagonal shear cracks; (b) shear flexural 

crack, and (c) bond/anchorage crack 
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Figure 5.12: Influence of fibre volume on the normalized shear strength (shear strength is 

normalized with respect to .JY: ) 
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Chapter 6 

Finite Element Analysis 

6.1. Introduction 

This chapter presents a numerical approach to model the fibre reinforced concrete 

beams with GFRP bars that were tested in the experimental program. The focus of the 

finite element (FE) analysis is to develop a numerical model to predict the response of 

such beams in terms of first crack, load-deflection behaviour and ultimate load capacity. 

A three-dimensional non-linear FE model was constructed to simulate the behaviour of the 

beams from linear through nonlinear response and up to failure. The model was constructed 

in the general-purpose FE program ANSYS (2005). A description of the FE model and 

the calibration of the model are discussed. Finally, a comparison between the 

experimental and finite element results is presented. 

6.2. Constitutive Models 

6.2.1. Concrete Model 

The three-dimensional element "Solid65" from the ANSYS library was used. The 

element is capable of simulating plastic deformation, cracking and crushing of the 

concrete. This element was used to model the concrete and is shown in Figure 6.1 . It has 

eight nodes with three translational degrees of freedom at each node. A Gaussian 

integration scheme over the element faces and the smeared crack approach are used with 

the element. Cracking may develop in up to three orthogonal directions at each 

integration point when the predefined tensile capacity of the concrete is exceeded, as 
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shown in Figure 6.1, a combination of an angle 8 in the xy plane and an angle of¢ in the 

three-dimensional space define a smeared band of the cracks. 

In addition to cracking, the concrete constitutive model has a yield and failure 

surfaces in uniaxial, biaxial, or triaxial compression. The concrete is assumed to crush 

under that condition. A three-dimensional failure surface for concrete is shown in Figure 

6.2. The most significant nonzero principal stresses are represented by fJxp and fJyp , 

respectively. The failure surfaces under different conditions are shown as the projections 

on the fJxp-fJyp plane (see Figure 6.2). The mode of failure is a function of the sign of fJzp 

(the principal stress in the z direction). 

The occurrence of cracks in a concrete structure reduces the shear stiffness. This is 

taken into account by using shear transfer coefficients. The shear transfer coefficient, flt, 

represents conditions of an open crack. Typical shear transfer coefficients range from 0.0 

to 1.0, with 0.0 representing a smooth crack and 1.0 representing a rough crack. 

In general, the cracking criterion of concrete in tension is expressed in terms of 

principal tensile stresses or strains. Concrete in tension is assumed to behave in a linear 

elastic fashion prior to cracking. The initial tangent modulus Ec determines the maximum 

positive (tensile) stress. Once cracking occurs, a smeared model is used to represent the 

discontinuous macro crack behaviour. The cracked concrete can still carry some tensile 

stress perpendicular to the crack, which is termed tension stiffening. Figure 6.3 shows the 

cracking model for concrete used in the present analysis. One disadvantage of the 

ANSYS model is the default value of the strain at which the tension stiffening stress 

reduced to zero. The default values cannot be changed and it is set to a value equal to six 

times the strain that corresponds to the maximum elastic tensile stress. 

95 



6.2.2. Reinforcement 

The element Solid65 is capable of describing the reinforcing bars. However, in this 

study an additional element, Link8, was used to investigate the stress along the 

reinforcement rather than using the smeared reinforcement used in the element. The link 

element is a three-dimensional spar element that carries a uniaxial tension-compression 

and it has two nodes with three degrees of freedom, translations in the nodal x , y, and z 

directions. Based on the experimental observations, no reinforcement slip was assumed. 

The link elements were superposed on the mesh that was used to model the concrete. The 

constitutive model for FRP bar was assumed to be linear elastic. The dowel action of the 

FRP reinforcement is neglected. 

6.3. Finite Element Model 

6.2.3. Finite Element Mesh 

Due to symmetry in the x direction, only one half of a beam was used assuming 

symmetric boundary conditions. Hence, the modelled beams were 1420, 1770 and 1770 

mm long, with a cross-section of 250 mm x 350 mm, 250 mm x 500 mm and 250 mm x 

350 mm, respectively. Figure 6.4 shows the finite element mesh used to model the beams. 

The FE concrete model approximates the actual stress distribution depending on the 

selection of the mesh size. Therefore, it is important to choose an appropriate mesh size 

to meet the requirements of accuracy and to avoid having convergence problems due to 

cracking. To obtain reasonable results, the use of a square mesh is recommended. The 

typical mesh size was selected to be equal to 50 mm x 50 mm x 50 mm that was 

approximately twice the aggregate size. This also follows the recommendations of Shah 
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(2010) that were based on a mesh sensitivity analysis for beams reinforced with GFRP 

bars. 

The internal reinforcement for the beams was modelled using the spare element link 

8, embedded in the solid mesh. This option was favoured over the alternative smeared 

mesh, since it allowed the reinforcement to be precisely located where it was needed. 

Figure 6.5 shows the applied displacement and boundary conditions. The boundary 

conditions were applied at points of symmetry and where the supports and loadings exist. 

The supports were modeled as pins supports where translations were constrained in y and 

z directions. A beam was loaded through an applied displacement to simulate the actual 

tests where all beams were loaded through the hydraulic actuator in displacement control. 

6.2.4. Material Properties 

The actual material properties, obtained from the material investigation presented in 

Chapter 4, were used. Typical parameters used to defme the material models could be 

found in Table 6.1. As presented in Table 6.1, there are multiple parts of the material 

model for each element. 

Material Model Number 1 refers to the concrete elements. An element requires 

linear isotropic and multi-linear isotropic material properties to properly model concrete. 

The multi-linear isotropic material uses the Von Mises' failure criterion. Ex is the 

modulus of elasticity of the concrete Ec, and PRXY is the Poisson' s ratio, v. The modulus 

of elasticity was based on the following equation: 

(6.1) 
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The values of J: were set based on the cylinder test results for the beams. Poisson's 

ratio is assumed to be equal to 0.17. The compressive uniaxial stress-strain relationship 

for the concrete model is obtained using the following equations by Collins and Mitchell 

(1991): 

where: 

f = stress at any strain£, 

t: = strain at stress J, and 

2f. 
E: =-c­

o E 
c 

t:0 = strain at the ultimate compressive strength. 

(6.2) 

(6.3) 

(6.4) 

Nonetheless, an elastic-perfectly plastic concrete material model with defming the 

concrete crush stress limit was applied in the FE model as shown in Figure 6.6. 

Typical shear transfer coefficients range from 0.0 to 1.0, with 0.0 representing a 

smooth crack and 1.0 representing a rough crack. The shear transfer coefficients for open 

and closed cracks were determined using the work of Kachlakev (2001) as a basis. 

Convergence problems occurred when the shear transfer coefficient for the open crack 

dropped below 0.2. No deviation of the response occurred with the change of the 

coefficient. Therefore, the coefficient for the open crack was set to 0.3. The shear 

transfer coefficient for the concrete with macro-synthetic fibres was set equal to that of 
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plain concrete since the macro-synthetic fibres will have negligible contribution to the 

shear transferred across the crack as it has not bending stiffness. 

The biaxial crushing stress refers to the ultimate biaxial compressive strength. 

There are no data available in the literature to define the biaxial stress envelopes for 

concrete with macro-synthetic fibres. As a result, the biaxial values were taken as 

recommended by Kupfer et al. ( 1969) that is widely accepted for normal concrete. 

The density of the concrete is not added in the material model. For the control beam, 

the L VDTs that were used to measure the deflection at the center were placed above the 

beams as in the experimental test setup. Deflections were taken relative to a zero 

deflection point after the self-weight was introduced. Therefore, the self-weight is not 

introduced in the model. 

Material Model Number 2 refers to the FRP reinforcement. An elastic modulus 

equal to 40 GPa (as discussed in Chapter 4) was used. 

6.2.5. Analysis Type 

The finite element model for this analysis is a simple beam under transverse loading. 

For the purpose of this model, static analysis was used. The Newton-Raphson equilibrium 

iterations were applied for the nonlinear analysis. A displacement controlled incremental 

loading was applied. This approach was used to simulate the experimental loading 

method. In order to obtain fast and accurate convergence, the convergence tolerance was 

set as 2.5%. A small initial step was used to detect the first crack in the connection. 

Afterwards, an automatic time stepping was used to control the load step sizes. The line 

search approach and the predictor-corrector method were also used in the nonlinear 
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analysis to accelerate the convergence. The failure of the beams was assumed when the 

solution for a small displacement increment did not converge or when a rigid body 

motion occurred. 

6.4. Finite Element Model Predictions 

The objectives of comparing the results of the FE model to the experimental test 

results was to ensure that the elements, material properties, real constants and 

convergence criteria were adequate to model the response of the beams. The different 

components that were studied were: the linear region, the initial cracking, the nonlinear 

region and the failure region. 

6.4.1. Load-Deformation Response 

The full load-deformation response can be seen in Figures 6.7 (a) and (b). The 

selected beams have fibre volumes of 0.0% and 0.5%; thus representing all beams in 

groups 1 and 2. The response predicted using the FE is plotted along with the 

experimental response. From Figure 6.7, it can be seen that the predicted response by the 

FE model was in reasonable agreements with the test results. 

6.4.2. Behaviour at First Cracking 

Comparisons were carried out in the linear region to ensure that deflections and 

loads in the FE model were consistent with the test results and followed the same pattern 

in terms of stiffness, load and deflection when first cracking occurred. Before cracking 
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occurs, the beam behaved as linear elastic. A reasonable prediction of the model was 

observed in that region. 

A typical first crack, as predicted by the model, can be seen in Figure 6.8. The first 

crack always occurred in the constant moment region. The crack was a flexural vertical 

crack. The first cracks predicted by the model were similar to those observed from the 

experiments. A comparison of the values obtained from the FE model and experimental 

observations are presented in Table 6.2. The results indicate that the FE model of the 

beam prior to cracking is acceptable and there was reasonable correlation between the 

model predictions of the first cracks and the experimental observations. 

6.4.3. Behaviour beyond First Cracking 

In the non-linear region of the response, subsequent cracking occurred as the 

additional load was applied to the beam. Cracking increased in the constant moment 

region and the cracks started to propagate towards the supports. Significant flexural 

cracking occurred in the beam. Furthermore, diagonal tension cracks began to form in the 

model. These diagonal cracks caused a sudden drop in the applied load, usually regained 

as the displacement continued. As the load was increased more cracks formed in the 

constant moment region, cracking started to reach the top of the beam. At this stage, the 

beam continued to lose its stiffness until failure occurred. Typical cracking pattern can be 

seen in Figure 6.9. 
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6.4.4. Ultimate Capacity 

As the load was increased, severe cracking propagated throughout the entire beam. 

At failure, the beam was no longer able to support the additional loads, as indicated by 

the convergence failure. Figure 6.10 shows typical cracking patterns at failure. 

The predicted load and deflection at failure are compared with the experimental 

values. The results are presented in Table 6.3. For the beams, the ratios of predicted-to­

measured ultimate loads ranged from 0.6 to 1.1 . The mean value was 0.91 with a COV of 

0.18. The ratios of the corresponding deflections at the center of the beams varied from 

0.6 to 1.4; and the mean value was 0.88 with COV of 0.23. It should be noted that the 

deformation of the beam was measured at the center of the beam only. In general, the 

mode of failure that was predicted using the FE model was a shear failure that was 

consistent with the experimental test results. 

102 



Table 6.1: Typical material parameters used in the model 

Material model Element type Material properties 
number 
1 Solid65 Linear isotropic 

Ex 28460 N 
PRXY 0.17 

Multi-linear Isotropic 

Strain Stress 
MPa 

Point1 0.000444 12.67 
Point2 0.000705 17.1 
Point3 0.001040 23.7 
Point4 0.001360 28.0 
PointS 0.001700 31.0 

Concrete 

ShrCf-Op 0.3 
ShrCf-CI 0.8 
UnTensSt 3.5 
UncompSt -1 
Bicompst 0 
HydroPrs 0 
UntensSt 0 
TenCrFac 0 
BicompSt 0 

2 Link8 Linear Isotropic 

Ex I 40000 N 
PRXY I 0.25 
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Table 6.2: Load-deflection comparison at first cracking 

Beam Load (kN) Deflection (mm) FEM!Experimental 
No. FEM Experimental FEM Experimental Load Deflection 

B1 25.5 27.0 0.35 0.38 0.94 0.94 
B2 56.0 60.0 1.06 1.30 0.90 0.81 
B3 52.6 44.5 0.91 1.48 1.20 0.62 
B4 49.4 44.9 0.98 0.88 1.10 1.12 
B5 29.9 26.3 0.44 0.89 1.14 0.50 
B6 54.7 53.9 0.82 1.01 1.01 0.81 
B8 55.3 69.3 1.93 2.42 0.80 0.79 
B9 33.8 36.7 0.53 0.57 0.92 0.93 
B11 60.2 65.4 1.05 1.22 0.92 0.86 
B13 23.9 25.6 1.32 1.47 0.93 0.89 
B14 41.3 39.0 2.17 2.40 1.05 0.90 
B15 41.3 35.6 1.98 2.05 1.20 0.97 
B16 39.2 35.6 2.23 2.68 1.10 0.83 

Table 6.3: Comparison between experimental and FE model at failure 

Model Load (kN) Deflection(mm) FEM/Experimental 
No. FEM Experimental FEM ExQ_erimental Load Deflection 

B1 135.0 122.0 16.1 15.7 1.10 1.01 
B2 168.8 158.7 19.2 13.5 1.06 1.40 
B3 158.7 158.9 19.7 20.3 1.00 0.97 
B4 169.3 176.8 17.4 18.2 0.95 0.95 
B5 131.9 130.9 9.1 9.7 1.00 0.93 
B6 200.5 182.0 13.4 13.7 1.10 1.00 
B8 175.6 191.5 16.7 18.8 0.92 0.89 
B9 146.6 154.3 10.8 15.2 0.95 0.70 
B11 220.3 217.6 15.7 16.1 1.01 0.98 
B13 70.2 87.3 19.3 22.3 0.81 0.86 
B14 98.8 147.8 19.5 31.4 0.70 0.60 
B15 112.0 164.1 29.3 43 .1 0.68 0.68 
B16 160.9 180.4 41.2 51.1 0.89 0.80 
Mean 0.91 0.88 
Coefficient of Variation 0.18 0.23 
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GFRP bars 

&ck is the cracking strain 
f 1 is the uniaxial tensile cracking stress 
T0 is a multiplier for amount of tensile stress 

Figure 6.3: Concrete cracking model 
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Figure 6.4: Used mesh; concrete elements and the GFRP reinforcement 
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Figure 6.8: First crack: model prediction and experimental observation 
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Figure 6.10: Severe cracking near failure (model prediction) 
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Chapter 7 

Summary and Conclusions 

Structural testing of sixteen scale beams reinforced with GFRP bars with additional 

macro synthetic fibre was conducted. The purpose of the investigation was to determine 

whether the macro synthetic fibre could be added to enhance the shear strength of 

longitudinally reinforced concrete beams. Four sets of beams were tested; the control set 

without fibre and another three sets included macro synthetic fibre with volume fractions 

of 0.5%, 0.75% and 1%. Moreover, material investigation was carried out by testing 

thirty two prisms and thirty six cylinders to examine the effect of fibre on the concrete 

properties. 

Results of the experimental investigation showed that the addition of the macro 

synthetic fibre enhanced the shear strength and slightly modified the shear failure 

behaviour of reinforced concrete beams. Furthermore, the shear capacity was affected by 

increasing the reinforcement ratio, effective depth and shear span to depth ratio. The 

formation of the first shear crack led to complete failure of the control beams, whereas 

the beams with macro synthetic fibre continued to resist higher loads after the appearance 

of the first diagonal shear crack. From the investigation of the two phases, structural and 

material, the following conclusions can be drawn: 

1. Adding the fibre to concrete, improved the splitting tensile strength and flexural 

tensile strength of the concrete by enhancing the toughness. The addition of fibre 

significantly increased the flexural toughness and toughness indices of concrete. 

2. The deflections of the beams showed typical bilinear-elastic behaviour up to the 

failure with a transition stage. Also, the GFRP strain was measured and reported from 
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the test beams at the mid span and mid-shear span. The strains at midspan showed 

typical bilinear-elastic behaviour up to the failure and were similar to the load 

deflection curve. The strain variation can be divided into two segments before and 

after cracking. The maximum strains occurred at the center of the beam. The recorded 

maximum strain in the GFRP bars was 4200 J..Lc in beams of Group 2, which had 0.5% 

fibre by volume, 1.3 Pb reinforcement ratio and 350 mm beam depth. This value is 

less than the ultimate tensile strain of GFRP bars, which is approximately 15000 J..LE; 

based on the reinforcement strain values provided by the manufacturer. It should be 

noted that there was no rupture of the GFRP bars in any of the test beams. 

3. The GFRP strains in the mid-shear span increased rapidly after cracking. This could 

be due to the rapid opening up of the cracks near the strain gauge location. The 

associated increase in load after cracking near the mid-shear span was small which 

suggests that the beam failed shortly after the formation of the cracks at the vicinity 

of that location. 

4. The maximum concrete strain recorded on the compression side of the beams did not 

reach the crushing concrete strain. Moreover, there were no signs observed during the 

experiments indicating that the phenomenon had occurred. 

5. The addition of macro synthetic fibre modified the shear failure behaviour of 

reinforced concrete beams an increased the cracked stiffness of the beams. 

6. Increasing the flexural reinforcement ratio resulted in increasing the normalized shear 

strength. The normalized shear strength, for the same fibre volume was increased 

from 0.16, 0.16 and 0.17 to 0.19, 0.21 and 0.19, for fibre volumes of0.5%, 0.75%, 
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and 1.0%, respectively, when the reinforcement ratio was increased from l.3pb to 

2.0pb. 

7. Increasing the shear span to depth ratio did not result in a significant change in the 

normalized shear strength of the beams with fibres. However, for beams that have no 

fibre, increasing the shear span to depth ratio (a/d) from 2.5 to 3.5 resulted in 

decreasing the normalized shear strength from 0.13 to 0. 09. 

8. For the beams with no fibres, increasing the effective depth from 302 mm to 441 mm 

resulted in decreasing the normalized shear strength from 0. 13 to 0 .11. For beams 

with fibres, increasing the effective depth from 302 mm to 441 mm resulted in no 

significant change in the nominal shear strength, which is around 6.7% on the 

average. 

9. Increasing the volume of synthetic fibre from 0.0% to 1.0% resulted in an increase in 

the normalized shear strength from 0.13 to 0.17 and from 0.14 to 0.19 for the beams 

with l.3pb and 2.0pb, respectively. This means that the contribution to the normalized 

shear strength of 1.0% fibre by volume was about 35% on the average the same 

reinforcement ratio was used. 

10. Increasing the volume of synthetic from 0.0% to 1.0%, for beams that have the same 

shear span to depth ratio (a/d) of 3.5, resulted in an increase in the normalized shear 

strength from 0.09 to 0.17. That is, an increase of 90% when in the normalized shear 

strength. 

11. Increasing the volume of synthetic fibre from 0.0% to 1.0%, for beams with effective 

depth of 441 mm, resulted in an increase in the normalized shear strength from 0.11 
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to 0.15. This means, that the maximum contribution of 1.0% fibre by volume was 

about 39% when the same effective depth of 441 mm was used. 

12. The enhancement of the shear capacity was not noticeable when the fibre volume was 

increased from 0.5% to 1.0%, for beams that had the effective depth of 441 mm. 

13. The energy absorption capacity was slightly increased as the reinforcement ratio was 

increased, approximately increased by 14% by increasing the beam effective depth 

and increasing the shear span to depth ratio. 

A finite element study was carried out to analyze the test beams. In the model, 

proper elements, boundary conditions, mesh size and nonlinear solution strategies were 

implemented. The reinforced concrete beams models were calibrated based on the data 

obtained from the material tests. The initial cracking load and the failure load of the 

beams were compared to the experimental results in terms of load deflection curve, initial 

cracking load, deflection at the cracking load and the values of the load and deflection at 

the failure point. The following conclusions can be reached: 

1. The load-deflection characteristics obtained from the finite element solution at the 

center of the beam were in close agreement with the experimental test results at 

first cracking stage and at failure stage. 

2. The initial crack and progressive cracking of the finite element model compared 

well to the experimental data obtained. 

3. The failure mechanism of the reinforced concrete beams models was very close 

to the failure load measured during experimental testing. 
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Appendix A 

Test results of all beams 
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