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ABSTRACT
Inheritance and linkage of RAPO (randomly amplified polymorphic: DNA)

genetic markers were assessed in Daphnia pulex. Genetic markers are a useful addition to

studies in areas of Daphnia biology, such as in investigations of population genetic

strueruce and in estimating levels of gene flow between populations, that have been

largely dominated by allozyme analyses. Daphnia pvIu are freshwater CJadocerans that

are ideal organisms for breeding studies because of their cyclical parthenogenetic mode .

of reproduction. Therefore, the inheritance of the genetic markers, generated using the

RAPO molecu.lar technique, can be examined in parent and progeny. In this study,

crosses were made among ten clones from two Daphnia populations in southern Ontario.

The percentage of hatched eggs in the F1 ranged from 0-44.4%, with a survival rate to

the production of first brood ranging from 40-100%. Four of the 18 interclonal crosses

had sufficient FI sample sizes for examination using the RAPD technique. Eighty-ooe

RAPD loci. both monomorphic and polymorphic. were scored (prescnt or absent for each

individual) and fifty of these loci were unique (some RAPD loci were present in

individuals in more than ODe cross). Eighty-two percent of the RAPD loci were inherited

according to the Mendelian segregation ratios of 1:1 or 3:1. Twenty-six of 29 loci

conforming to I:1 ratios were funber examined for linkage to each other, but no linkage

was found. However, linkage as tight as approximatdy r = 0.30 may not be detected

because of small sample size (N -21· 47). Overall, the RAPD technique was successful

in generating 46 segregating genetic markers for Daphnia pulex. Additional markers that
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are shown to be inherited in a Mendelian fashion may lead to detection of a marlc:er

linked to a gene of interest in Daphnia. such as the meiosis suppressor gene, and in future

studies of variation in natural populations ofDaphnia.
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CHAPTER ONE

INTRODUcnON

1.1 Molecular Overview

Molecular markers can reveal numerous sites of variation at the DNA sequence

level and in many cases this variation is not expressed in the phenotype and may be

nothing more than a single nucleotide difference in a gene: or a piece of repetitive DNA

(Jones et aI., 1997). The main advantage of molecular genetic markers is lhat they are

much more numerous than morphological genetic marker.;; (Jones et al.. 1997). Genetic

markers generated for the Cladoceran. Daphnia. would be very useful in a number of

areas in Daphnia biology that presently pose problems for n:sean:bers.

The generation of genetic markers is achieved. through standard molecular

techniques at the protein and DNA levels, sucn as aUozymc electrophoresis, RFLPs

(restriclion fragment length polymorpbisms), microsatcllites. mitochondrial DNA and

RAPDs (randomly amplified polymorphic DNA). These markers allow investigators the

means 10 delermine population genetic structure in Daphnia, as well as estimate levels of

gene flow between Daphnia populations (Saunders., 1995). Additional genetic markers

would contribute to more detailed studies of the clonal structure in Daphnia populations

than previously studied using a1lozymes. For example, high clonal diversiry over

microgeographica1 scales was encountered in Daphnia pulex which exhibits obligate

parthenogenesis over much of its range (Hebert and Crease, 1980). The initial surveys
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revealed a total of 22 a1lozyme clones in II populations with up to 7 genotypes

coexisting in a single pond.. More recent studies of Daphnia pulex using milOCboodrial

DNA and allozyme marlcers revealed many additional clones and demonstrated that

obligate parthenogenesis had a polyphyletic origin from cyclical parthenogenesis within

this species (Crease et at. 1989; Hebert et aI., 1989).

Despite me extensive StUdies using Daphnia species with respect to the variation

in its breeding systems and now it has evolved, there remain many unanswered questions

surrounding this topic. Specifically, there are two modes of reproduction in Daphnia,

cyclical and obligate parthenogenesis. The latter incorporates strict asexual reproduction

without any recombination (Innes, 1989) while the fonner involves asexual as well as

sexual reproduction and therefore the opponunity exists for recombination. There is an

additional aspect of cyclical parthenogenesis. where a population may consist of some

clones capable of producing males (male producers. MP). while other clones do DOt

produce males (non·maJe producers. NMP) (lnnes and Ounbrack, 1993). In both forms,

the: resting eggs produced by cyclically parthenogenetic females will require fertilization

by a male.

Some areas for future research of Daphnia, using genetic markers, include

identification ofgenetic marlcea that can be further tested for linkage to genes controlling

uaits of interest such as the meiosis supressor gene in the obligate parthenogenetic

Daphnia, the non·male producing gene in cyclical parthenogenetic Daphnia, and the

identification of a genetic marker linked to recessive deleterious alleles known to be
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present in Daplvlia as a result of inbreeding depression in both obUgate and cyclical

parthenogenetic Daphnia (Innes and Hebert. 1988; Innes and Dunbrack, 1993; lones.

1989).

The oon-male producing capability of a cyclical parthenogen is a fascinating

occWTetlce which bas DOt been srudicd in great detail, but lnnes and Dunbrack (1993)

have shown, in their genetic analysis, that sex allocation with respect to the pcescoce or

absence of male production has a large genetic component. Such a life history trait would

conceivably be better understood if its heritability was thoroughly examined. For

example. if a genetic marker was identified as closely linked to the non·maIe producing

gene then sampled clones could be screened for the presence of the non-male producing

marker instead of closely examining broods for the presence of males over lengthy

periods oftime.

The difficulties in understanding the life history variation in Daphnia, such as

non-male production mentioned above, suggests that a linkage map would be an

invaluable tool in further studies of Daphnia genetics. Methods for generating numerous

markers are becoming more accessible in the production of linkage maps, especially for

many plant species that are of agronomic importance. Such a map for DaphniD would

enable oaits to be associated with specific marlcer loci, allowing for subsequent

investigation of traits in breeding studies or trait selection.

An initial exploration of the RAPD (Randomly Amplified Polymorphic DNA)

method for generating variable loci was undertaken with Daphnia pulex:. Daphnia is ideal



"for this kind of investigation. since matings can be set up between and within clones

tbat are genetically different or identical, respectively. 'The potential to perform matiDgs

allows me determination of whether RAPD marker loci are inherited in any predictable

genetic manner from parent to progeny in Daphnia, which is essential for their use as

genetic markers.

1.2 Ba<:kgrouDd aad DistributiOD of1JfzplfliUl

Daphnia are freshwater erustaceans of the order Cladocera. Recent phylogenetic

studies of the genus, in North America. have led to the renaming of three subgenera

including Clcnodaphnia. Hyalodaplutia and Daphnia (Colbowne and Hebert. 1996).

Dophina reproduce by parthenogenesis and they are found worldwide. In particular, D.

pulex. according 10 Hebe" (1995), has a very broad distribution throughout Canada and

the United Slates. In Canada. the nonhem limit of the distribution is near the boreal

forest-tundra transition and is commonly found in all areas south of this, except in the

Atlantic provinces. In the United States. D. pilla is also quite common except in the

states along the Atlantic coast and the southernmost states (Hebert. 1995). Daphnia pula

is commonly found in forest ponds. prairie potholes and rock pools and appears to be

limited to c1eaNv<uer habitats (Hebert. 1995). There is great variation among the size of

D. pulex females, ranging in length from I.lmm (in ponds) up to 1.7mm (in laboratory)

and exceeding upwards of 3mm in the early spring (Hebert, 1995) when investment in

parthenogenetic reproduction is probably at its highest.

Throughout Canada, more than 9()O/a of the Daphnia in pond habitats are members
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of the pula group. and most populations srudied reproduce by obligate partbnogeoesis..

but cyclical parthenogenetic populations appear 10 pen;lst in the mid-west United States

(Hebert. (987). Since D. pulex is the most commonly distributed species throughout

Nonh America. it is often misidentified amid other members aCtbe pula: group but~

are morphological distinctions which help differeutla1e D. pula from the others (Hebert.

1995). The two species. D. pula and D. puJicoria. ~ by far the most difficult to

distinguish and can produce F I hybrids. therefore additional analysis with allozymes is

necessary (Hebert, 1995).

1.3 Reproduction in Dophinll

Typically the Life cycle of Daphnia, in a temporary pond, will begin in the spring

when the pond is replenished with water after the winter season. Female Daphnia emerge

from protective structures. ephippia., each of which contain rwo resting eggs that were

produced the previous year through sexua.l reproduction (Figure I.IA). The females

which emerged are referred to as "ex-ephippial femalesM
• When these females ttaeh

reproductive maturity they will begin to reproduce parthenogenetically_ Partbenogeoetic

eggs are released into the brood chamber, which. is the space between the upper side of

the body and the dorsal part of the carapace of the female (Zaffagnini, 1987) (Figure

1.1 B). These eggs arc produced ameiotically (without meiosis). develop immediately and

are carried in the brood chamber until they are fully developed. The young swim out of

the brood chamber shortly before the females' moult- The parthenogenetic offspring will

be genetically identical to the female parent that produced it (Hebert and Ward. 1972;



"Lynch 1983, [984; Hebert. 1987). Adult females continue to release broods of mostly

females, increasing the population density, until the conditions in the temporary pond

deteriorate. Deteriorating conditions include overcrowding. changes in photoperiod and

low food levels in the pond. When these conditions are approaching, female Daphnia

begin to release broods of males, (Figure LlC), with increased frequency and females

begin to enter into a sexual stage where they release haploid resting eggs into their brood

chamber (Figure t.ID). After the resting eggs are fertilized by a male, the brood chamber

is modified into an ephippium (Heben, (980) that is shed through moulting nfche female.

The ephippial structure and its resting eggs, representing the diapause stage of Daphnia,

are capable of withstanding freezing and dessication (Zaffagnini. 1987) until favorable

conditions rerum in the spring and diapause is broken. The resting eggs are the primary

dispersal stage for Daphnia and populations will rely on the production of resting eggs to

ensure recruiunent from year to year, especially in temporary nabitats (Hebert, 1978).

Variations exist in the mode of reproduction in Daphnia. consisting of either

cyclical or obligate parthenogenesis. The fltSt of two phases for cydical panhenogens

include an asexual reproductive phase, with parthenogenetically produced offspring. The

parthenogenetic broods may be either all female or all male, although some mixed broods

have been reponed (Barker and Heben, 1986; Zaffagnini, 1987). A sexual phase follows,

where females release a haploid resting egg into the brood chamber, fertilized by males.

These males may be from the same clone or from a genetically different clone than the

female. Therefore, the sexual phase pennits an opportunity for genetic recombination in



Daphnia populations.

The obligate parthenogenetic individuals have continuous asexual reproduction,

which is the main differeacc from cyclical panhenogens. Both modes of reproduction

have similar aspectS of life history stages. for example, the release of partbeoogeoetic

offspring by ex-ephippial females. The most striking difference occurs when

environmental conditions deteriorate: and the obligate female releases diploid resting

eggs, as opposed to haploid resting eggs in cyclical parthenogens. into her brood chamber

due to suppression of meiosis (Innes and Hebert, 1988). The resting eggs will diapause

and develop normally without any genetic contribution from any other individual. The

potential for recombination does not exist for the obligale asexuals.

Cyclical parthenogenesis is the dominant and ancestral mode of reproduction in

cladocernn crustaceans and the transition has been made by some species to obligale

asexuality (Hebert, 1987). The only species in !he subgenus Daphnia. known to

reproduce in this way. are D. pula. D. pulicaria. and D. micidendoifftana (Cerny and

Hebert. 1993). Innes and Heben. (1988) have attributed this transition in breeding system

to a sex-linked meiosis suppressor of asexuality via inteIbn:eding. The growing evidence

of introgression between these species suppons the COllClusion that the br-eeding system

transitions in all three species owe their origin to the diffusion ofa single mutation across

species boundaries (Cerny and Hebert, 1993). The breeding system variation in the

Daphnia pulex group is both dynamically and structurally complex. The exploration of

such complexity seems likely to contribute to the understanding of the evolutionary fate



18
ofasexuals (Cerny and Hebert, 1993).

Cyclical and obligate parthenogenetic populations of Daphnia are distributed

worldwide. The Nonh American populations of Daphnia, especially in the Great Lakes

area in particular. include individuals reproducing by both obligate and cyclical

parthenogenesis (Hebert and Crease, 1980, 1983; Hebert and Loaring, 1986). In the

United States and England it has been revealed that a higher incidence of cyclical

parthenogens exits (Lynch, 1983; Innes et.a1. 1986).

1.4 Genetic VariatioD in Dtlphnia

Daphnia are considered by some to be parthenogenetically reproducing organisms

heading towards an evolutionary dead-end. For example, Grebelnyi (1996) states that the

suppression of recombination (parthenogenesis) gives a certain competitive advantage at

first and it also decreases the evolutionary potential ofa species because of the reduction

in diversity. In actual fact, these organisms maintain a high level of variation,

heterozygosity and diversity with respect to their genetic composition (Heben and

Crease, 1983; lnnes et at., 1986; Mon, 1991). Historically. cyclical parthenogenesis has

generated much interest in regards 10 its effect on patterns of genetic variation in

populations in nature (Heben. 1987).

There is considerable variation among members of the genus Daphnia with

respect to their life history (Lynch, 1980; Schwartz, 1984), which could give way to

intraspecific variation in these characters. Studies that have shown evidence of

intraspecific variation in gene control of an array of characters. such as competitive



"ability (loafing and Hebert. 1981; Weider, 1985), tcmpernture tolerance: (Carvalho,

1987) and reproductive behaviour (Ferrari and Hebert. 1982). Focal studies then switched

00 single-locus variation (allozyme) instead ofpolygenic traits.

Studies with a1lo:z:yme analysis of genetic variation in natural populations of D.

pula have exhibited inteTeSting patterns. Lynch (1983) examined an intermittent pond

and discovered. that the population was in~entwith Hanly-Weinberg expectatioos.

He suggested that. if composite genotypes within individual clonal groups mate

randomly, they will not experience differential selection or introgression from other

clonal groups and will have similar timing mechanisms (or ephippial hatching. Then.

genotype frequencies should be in agreement with Hardy-Weinberg expectations.

Similarly, Hebcn et aI. (\988) found that some pond populations of D. pulex. in the Great

Lakes watershed, showed genotype frequencics congruent with Hardy-Weinberg

expectations and it was therefore assumed that these populations were reproducing via

cyclical panhenogensis. [n comparison, Hebert et aI. (1988) also found that other poDd

populations of D. pulu largely deviated from Hardy-Weinberg expectations and woere

considered to be reproducing by obligate panhenogencsis.

Heben (l987) summarized work that had been dooe on populations of Daphnia

magna, in England, that showed two distinct typeS of populations. Those populations.,

living in intermittent habitats, revealed stable geootypic frequencies that were in good

agreement with Hardy.Weinberg expectations and, by contrast, permanent populations

showed both rapid shifts in genotypic frequencies and gross deviations from Hardy-
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Weinbet"g expectations. In addition to these ~ts. findings in lake populations.

presented by Man. and Wolf (l985,1986). have shown a population structure for lake

populations similar 10 those of intermittent populations of D. fJlQgntJ, with the genotypic

frequencies remaining fairly stable and ordinari.ly in Hardy-Weinberg agrecmc:nL This

result is intuitiveiy unexpected since it would be pccsumed that lake populations reflect

the same genetic patterns as permanent pond populations as opposed to reflecting genetic

patterns observed in intcnninent ponds. In any case. Hebert (1987) concluded that the

genotypic composition of most c1adoccran populations closely resembles that of sexually

reproducing organisms, and essentially there is a great deal of genetic variation among

Daphnia populations. contrary to what is expected for an organism reproducing via

parthenogenesis.

1.5 Molecular Studia ia DGplll.UI - RAPD poteatial

Approaches have DOW become available that combine molecular and quantitative

genetic techniques with ecology and tbc:y have led to some inten:sting findings and

ge~ted further questions concerning genetic variation in Daphnia.. For example,

Beaton and Hebcn (1988) revealed through DNA quantification studies that there is a

high incidence of cndopolyloidy in Daphnia ceUs. Hebert (1987) has suggested that this

could occur as a direct consequence of genome miniaturization and may reflect the need

to amplify cenain segments of the genome. In addition. the baploid genome size of

members of the Daphnia genus represents one of the smallest arthropod genomes

(Hebert. 1987) and Cavalier-Smith (19g5) bas stated that this genome miniaturization is
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likely to be the product ofselection for a rapid developmental rate.

Other molecular SOJdjes include analysis of mitoclJondria.l. DNA variation by

Crease et at (1989) that demonstrated a polyphyletic origin for obligate asexuality in D.

pulu_ Crease et aI. (1990) also examined the geographic structure of D. pula from the

central United States with respect to aUozyme and mitocbondrial DNA variation.. 1lle:y

found that cyclical partbeoogens are one ofche most extremely subdivided species to dale

and the population subdivision for the mitebondrial genome increases approximately

three times as rapidly with distance as does that for nuclear genes, which is slower then

the neutral expectation. Giebler et at (1997) have recOnstnlcted species phylogenetic

relationships of four ~ies and four interspe<:ific hybrids in the Daphnia [ongispinQ

complex. Schwenk ct aI. (1996) similarly identified species and interspecific bybrids

within the Daphnia go/cola complex across Europe, using a combined approach of

nuclear randomly amplified DNA (RAPO), mitochondrial restriction fragment length

polymorphism analysis and morphology.

Randomly amplified polymorphic DNA (RAPO) (Williams et aI., 1990; Welsh

and McCelland, 1990) is a technique which has been used sioce the early 1990's in many

diffe~nl applications to study genetic variation. Williams et a1. (1990) described a clear

and simple process based on the PeR (polymerase chain reaction) amplification of

genomic DNA with single lO·mer primers of arbitrary nucleotide sequence. When the

primer is sbort (ten bases) there is a higher probability that, scattered throughout the

genome. are small complementary inverted repeats in close proximity to one another to
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save as priming sites (Hadrys et aI•• 1992). Essentially the genome is scanned by the

primers for the small inverted repeats and tbcsc intel'VClling DNA $CgmCDts of variable

length are amplified (Hadrys et 011.,1992).

The RAPD technique provides a means of revealing polymorpbisms in the

absence of specific nucleotide sequence information that function as genetic markers [and

are detectable upon examination oran agarose gel stained with etbidiwn bromide]. The

polymorphisms revealed by RAPDs are proposed to occur, in some instances, through

only a single base change in gcoomic DNA (Williams et aI., 1990), while other sources of

polymorphisms may be due to deletions of a priming sire, insertions distancing the

priming sites too extensively for amplification 10 occur, or insertions that will change the

size of the DNA fragment but still permit its amplification. RAPD markers are often

found to be inherited in a Mendelian fashion (Williams et aI., 1990). However,

inheritance should be tested in each study. RAPD markers are usually dominant because

if at [east onc cllromosomc has the primer site, a DNA fragment will be amplifed. With

dominant markers it is impossible to distinguish whether a fragment ofONA is amplified

from a heterozygous locus (one copy) or homozygous locus (two copies) (Lynch and

Milligan. 1993). The possibility also exists for detecting co-dominant RAPD markers.

observed as differing sized fragments amplified from the same locus, but this occurs

rarely (Hadrys et aI.• 1992).

Over the last decade, the RAPD procedure has been used extensively in studies

dealing with gene mapping (Reiter et at., 1992; Sobral and Honeycutt, (99); Lodhi et aI.,
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1995; Promboon ct al ... 1995; Verbaegen and PiomioD, 1996; Pessino et aL. 1997;

Subudhi et aI.. 1997; Alstrom·Rapapn et at, 1998;), pedigree analysis (Levitan aDd

Grosberg. 1993; Jones et aI., 1994; Frey and Frey, 1995; Bishop et al.. 1996), laXooomy

issues (Yang and Quiros. 1993; Navy et aI.., 1994; Van de Yen and McNicol. 1995),

quantitative rrait loci (Chalmers et at... 1993; Dirlewanger et aI... 1996; Verhagen et aI.•

1997) examining interspecific hybridization (Schwenk et aI., (996), phylogenetic analysis

(Smith ct aI., 1994) and in srudying genetic variation in natura.I populations (Okamura et

aL. 1993; Fukatsu and [shilcawa, 1994; Plomion et aI., 1995; Caccone et aI., 1997;

D'Amato and Corach. 1997). Additional studies have used RAPDs in combination with

other charncters when examining genetic variation, such as RAPDs and morphological

markers (Klcinhofs et aI., 1993; D'ennequm et aI•• 1997). RAPDs and RFLPs (restriction

fragment length polymorphisms) (Jermstad, 1994; Becker and Heun. 1995; lu et aI.•

1996: Kaga et al., 1996; Loarce et aI., 1996; Nilsson et aI., 1997; Jean et al., 1997;

Svitashev et aL, 1998). RAPDs and mitochondrial DNA (Aagaard et at, 1995; Simon ct

aI., 1996; OhM et aI._ 1997), RAPDs and microsatellite maril:ers (Ender et aI., 1996; Sun

et aI•• 1997) as well as RAPDs and isozymes (lin aDd Ritlaod, 1996; Co~ et aI., 1997;

Ayres and Ryan., 1997; Buso et aI•• 1998). These studies have shown that RAPO markers

are useful in many applicatioDS.

The potential usefulness or RAPDs brings with it some disadvantages and thus

some studies over the last rew years have felt it important to examine such subject maner.

For example, competition occurring in the amplification of all RAPO products was



24
examined as a source of error in the RAPD analysis by Hallden et at (1996) aDd they

discovered that some primers and bands are more liable to errors than otbcB. Rieseber&

(I9%) considered homology among RAPD fragments in interspecific comparisons for

three species of wild sunflowers. Penner et a1. (1993) attempted reproducibility of RAPD

analysis among laboratOries, flOding that temperature profiles used is largely the

determining factor. and the inheritance ofRAPD bands was examined using F. hybrids of

com (Heun and Helentjaris, 1993) and it was found that a majority of the fragments

produced are inherited in a Mendelian fashion.

1.6 ObjectiVe!

The objective of this study was to address the questions of whether loci,

generated by the RAPD technique (representing genetic markers), are polymorphic and

confonn to Mendelian segregation ratios when inherited in D. pula F1 progeny. If this

was the case for some loci. then these loci would be examined to detennine whether any

of the markers ~re linked to each other. The goal of this research was to determine the

overall usefulness of the: RAPD technique for gCDenlIting marker loci. and how many of

the loci detected would be useful and feasible in the final analysis of testing for linkage:.



Figure 1.1 Life history stages of Daphnia pulex. A) an ephippiwn, the diapausing stage, B)

an asexual female with a pathenogenetic brood. C) a male, and D) a sexual female with two

diapausing eggs in the brood chamber which will be molted as an epbippiwn.
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CHAPTER TWO

l\IETHODS AND MATElUALS

2.1 Daplrnifz Sa.puc
Sample coUectioos were taken from two D. pula populations in soutbem Ontario in

the Spring of 1996. ODe population was long Point 8A (LP8A population), a pond in a

woodlot surrounded by agricultwal. land, and the other population was located in a flooded

woodlot next to Disputed road (DISP population) (see Innes, 1991 foe site location).

Collections were taken with a plankton net (-250 IJrn size) and the Daphnia samples placed

in plastic containers with their respective pond water.

2.2 Maint~DaD" ofDapIIl'UI ultures
In the laboratory, 96 brood carrying females from each aCthe two populations were

randomly isolated into individual LSOrnL plastic cups cootaining artificial zooplankton

media (Hebert and Crease, 1980) in order CO establish clooes. A clone is considered

established when the original female bas rrleased many healthy parthenogenetic broods.

Healthy clones were then transferred into 1000 mL jan and fed approximately 20mL of

aquarium-eultuml algae (Aniistrodesmus and S«neduml6) daily. All clones (from both

the D[SP and LP8A populations) were chccked for male production aDd their a1lozyme

genotypes were determined at three loci (Pg:m.. phosphoglucomutase; Pgi, pbosphogfucose

isomerase; Amy, amylase) according to the methods descnbed in section 2.8.

The detection of maJes in a clone led to this clone being designated as a male
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producer (MP) while the rcmaioing clones~ desigrwcd noo-maIe producers (NMP's)

(Larsson, 1991; Innes and Dunbrack., 1993,lnnes. 1(91). The clones designaled as DCXMDalc

producers were checked periodically for presence of rnaics over a severn..I month period. The

genotypeS of each clone were determined for three allozyme loci (Pgm. PiP. Amy) (Table

2.1) using the methods described in section 2.8.

2.3 DctcnniDatioa ofSuitable Cloan for Mating EJ;perime.ts

There ate two methods by which Daphnia pula cloaes can rqxoduce. lbese .

methods include cyclical parthenogenesis or obligate partbcnogeoesis. The intraclonal and

interc!onal marings canoot be performed with obligaIdy parthenogenetic reproducing

clones. Obligate patthenogens can be identified because they rt:1case eggs into their ephippia

in the abseo«, ofmales (Inncs et aI., 1986; Hebert et aI., 1989).

Females were chosen from Daphnia clones originating from both DlSP and LP8A

populations. The females were placed individuaHy into conditions known to stimulate them

to become sexual (induce them to produce cphippial eggs), such as short day photoperiod

(Korpelainen. 1989; Carvalho and Wolf, 1989) and were monitored for the presence ofeggs

in the ephippiwn. In me abseoce of males, iftbe females formed an eph.ippia without eggs.

then these: clones were cyclically parthenogenetic and appropriate for the intlaclonal and

interclonai mating experiments (Table 2.1).

2.4 lot.-ac:loaal Matings
Founeen of the maJe producing cyclical D. pulex clones were chosen for the

intraclonal matings. The matings involved females and males from a single healthy clone in
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an individual jar (lL) containing artificial zooplankton media. These jars were placed in

conditions known to induce male production and ephippial furmation. including short day

photoperiod (8 L:16 D. 15°q and crowding (Banta, 1939; Stross and Hill, 1965 & 1968;

Korpelainen. 1989; Lamon. 1991; Spaak. 1995; Deng, 1996). The matings were monitored

for the production of ephippia and the presence of eggs in the ephippiwu. Ephippia indicate

that the females are sexual and the presence ofeggs verify that the females were mating with

males from its clone. Thus, the resulting eggs would be the product of an imraclonal mating

or of a self mating (Innes, 1989). For each of lhe fourteen matings. ephippia were collected

and a random sample opened. and checked for the presence of eggs. Ephippia from every

intraclonal mating (- 6910 total) were placed in an eppendorftube wrapped in tinfoil and

Stored in the dark at 4°C for a minimum of four weeks, imitating the photo-refractory phase

of the diapause period in D. pulex (Stross. 1966, 1969& 1971).

2.5 [ntC,.doDal Matiags

Eighteen crosses between five non-male producing (NrvlP) (female parenl) and five

male producing eMP) (male parent) clones ofD. pulex were set up in duplicate and triplicate

(Table 2.2). The nwnber of replicates depended on availability of sexually mature females

from the non-male producing clone and of males present in the male producing clones. A

female was designated as suitable for the interclonal mating experiment ifits brood chamber

was empty and its ovaries were enlarged along the length of the digestive tract. Males were

chosen if they were sexually mature (Winsor, 1997). The mating set-up involved isolating

15-30 females from a NMP clone and 10-15 males from a MP clone in a 150 mL cup
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containing 50:50 (synthetic :moplanJaon media: coDditiooed media). Conditioned media

was obtained by pouring off media from jars of healthy Daphnia pula clones through a

plankton netting essentially removing all individuals and ephippia. then diluting this media

50 per-ec:nt with synthetic zooplankton media (Hebert and Crease.. 1980; Lyoch et aI.,

1986).

All cups containing males and females for each mating ,,:ere placed uodc:r specific

conditions known to stimulate the females to become sexual. Such cooditioos include a

shan day photoperiod of 8 L: 16 0 at a temperatme of tS"C and crowding (Banta. 1939;

Stross and Hill 1965 & 1968; Stross, 1969; Korpelainen, 1986). Crosses werecbecked daily

for the occurrence of a mating. The female showed early signs of ephippiaI formation and

the resting eggs were visibly present in the brood chamber. These m.aled females were

placed in a separate 150 mL plastic cup with other previously mated females from the same

cross. Here the ephippiwn was sMd. from the female through molting. At a later date, wbeo

the ephippia nwnbers were sufficiently large from each cross, they were caUceted lbe

collected ephippia (-2361 total) were placed in separate cppendorf tubes, wrapped in tinfoil,

labeled and stored in the dark for four weeks at 4°C. These conditions have been known to

be similar to the photo-refractory phase of diapause in D. pula (Schwartz and Hebert.

1987).

2.6 HalchiDg of [)Qplrn;a plda
The hatching method was identical for both intraelonal maJings and interclonal

matings. After four weeks. under simulated diapausal conditions. the experimentally
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produc:ed ephippia were relDO\"ed and opened with dissecting pins, geoeralJy releasing two

eggs each. Eggs from a single matillg were placed in small labeled petri dishes (SO eggs per

dish) containing synthetic zooplankton media and kept in an incubator at tSoC. 40mm from

a 24 hr light source (40W). These conditions are similar to the photo-stimulatory phase that

is known to break. diapause for D. pul~ (Schwam: and Hebert, 1987). Eggs in the petri

dishes \ve:rc: chec::ked daily for devdopment and any aboormal eggs were removed.

Developmc:nt to the batching of a oeoaate takes an average four to five days. Once the

Daphnia staned to hatch out and were swimming around in the petri dish. tbcse neonates

were removed and placed in alSO m.L cup containing zooplankton media and labeled for

the specific mating. A single cup would contain hatchlings from each mating, but just prior

10 the ~Iease of a first brood., approximately one week. after hatching, each F I progeny was

placed into a separately labeled cup to permit cstablishmem. of a single donal liocage

through parthenogenetic reproduction.

2.7 The F. Progeny from Intradonal and (nlerclo.a. MalinI'
In order to examine the progeny with respect 10 allozyme and RAPD genotypes, me

hatched F, progeny from the intraelonal and interclonal matiogs must first reproduce

parthenog~caUy to establish themselves as a c100al lineage. If an FI clone did DOt

reproduce partbcnogentically, it would be included in the hatching data. but the clone could

not be used in further analysis. A nWllber of indivKtuals from each of the FI clones did

establisn themselves as a clonal lineage for both the intraclonal and interclonai matings.

Samples from each established clone were cOllected. placed in an eppendorftube and fro;n:n
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at -7f1'C for later allozyme analysis. live DopIuria from both the inttaclooal and

inlefdonal matings were taken fO[" DNA extraction. The production of males by the FI was

noted in the intett:lonal matingsonly.

2.8 Allozyme Characterization
Both intraelonal and interclonal F I individuals were examined for one to thn:e

allozyme loci (Pgm. Pgi and Amy) using the standard allozyme electrophoresis methods

outlined in Hebert and Beaton (1989). Allozyme variation, corresponding to several loci.

provided generic markers for crossing experiments (Imes and Hebert, 1988). Previous

crossing c.'(periments and observaJioos 00 the segregation oftbese aUozymes confirmed the

genetic basis of this variation (tnoes et aL. 1986). Parents of the intraclonal matings must

have heterozygous allozyme (OCi in order for that locus to show segregation when ex.amined

elecuophoretically. Therefore the segregation expected in the F l progeny would follow a

L:2: 1 Mendelian ratio for a heterozygous c1onc.

Genotypes of all F l progeny were dctennined for matings that would be expected

to show segregation based 00 the genotype: of the parents. The allozyme geootypes that

were expected to show a 1:1 segregation (heterozygote crossed with a homozygote) in the

progeny for euh of the inten::lonaJ matings were examined using the Chi-square teSt for

independenc1:. Ifone of these parents. in a particular cross. had a double heterozygous

genotype for two a1lozymes, then the geno[)'peS of the offspring could also be tested for

any evidence of linkage.
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2.9 DNA E1tractioa (bo..tioa oCDNA)

Foe RAPD analysis. IOta! genomic DNA from D. pukx was isolated by a crAB

(cetylttimethyLammonium bromide) mini-mini prep extraction protocol. a variation of the

original procedure from Zolan and Pukkila (1986). Fresh tissue was homogenized in a 2X

crAB Extroetion Buffer (1.4 M Nael, tOO mM TRl8-pH8. 20 mM EDTA. 2% CTAB,

0.2% mercllptoethanol) in a 1.5 microfuge tube. The mixture was incubated at We for- at

least 45 minutes and men]~L ofChloroform:Isoarnyl alcohol (24: I. volJvoI.) was added.

The mixture was centrifuged (13000 rpm. 10 min. 2S"C) and the upper aqueous layer

containing DNA was transfened to a new tube. The nucleic acid was precipitated by

addition of 350iJ..L cold 100% isopropanol at room temperature for 10 minutes. tben

centrifuged (13000 rpm, 2 min, 2S'C) and the supernatant was pipctted of[ The pellet was

washed lWice with 500].ll. of fresh cold 70% ethanol and centrifuged (13000 rpm. 2 min.

25"C) after each wash. The: supernatant was discarded and the pellet dried in a dessicator at

37"C until the ethanol bad c:vaporated. The pellet ofONA was resuspended in 20~L dHzO

either overnight at 4°C, or incubated at 6O"e for 10 minutes.

2.10 peR Amplifkalioa CoaditioDS

Amplification reactioas were performed in volumes of 2~ cootaining lOX

thermophilic buffer (:50 mM KCL. 10 mM Tris-HCL pH 9 at 25"q (Promega); 2mM MgC1;

2 mM each ofdCTP. dGTP, dATP, dTTP (pbarmacia Biotech); 0.2 mM of primer (DNA

synthesis lab. University of Calgary); 0.12·2.3 ng of genomic DNA (DNA fluorometer.

model TKO 100); and 0.6 unit of Taq DNA polymerase (Promega). The reaction mixtures



"were kept OD ice and overlain with a drop of tight mioera1 oil (Sigma). Amplifications

were performed in a Pedrin Elmer 480 Tberma1 cycler. prcbcated to 9SOC- and programmed

for 42 cycles of 94"<: for 1 min:; 36"c for I min; tr>C, with a mmp of 50 sees, for 1 min;

and an llUloe:xtensioD of J seconds per cycle; \Vim a final extension of five minutes at 72"c.

Eight primers were used in each set of PeR reactions to geocratc markers for the parental

and the F1 offspring of the inttaclooal and the interdonal individuals (fable 2.4). At least

one negative connol tube was included per primer, with each oftbese PCR amplifications.

The control tubes contained the PeR reaction mixture without the addition of genomic

DNA.

2.11 Elttcrophoresis .{PCR Product

The entire amplification prodoct (20IoLL) was electrophoresed in 1.2¥. agarose gels

(Sigma) in O.5X WE (44.5 mM Tris base, 44.5 mM boric acid, I M EDTA pH 8) buffer for

approx:imately 2 hoUlS at 99-101 volts. Two reference standards of a ( Kb ladder (Life

Technologies) wen: run on each end-well of the agarose gels. Generally the PeR products

from each amplification were run on an agarosc gel which bad two tim of fourteen weUs

(24 samples per gel and 4 standard ladders). The rcsu.Iting PeR samples loaded onlo a gel

were usually all F I progeny from a single mating. amplified by a single primer. Following

electrophoresis., the RAPD fragments were visualized by staining the gd with etbidiwn

bromide for fifteen minutes, destaining foe thirty minutes and photographing the gel UDder

ultraviolet light with 665 Polaroid film. Each photograph contained a single eel with 24 F I

progeny from a single mating that could be scored. using the photograph. A limited number



"ofgels did coDtain the paleDts of the cross, although their presence was not crucial for the

scoring of the RAPD bands. The scoring oftbc RAPD loci involved c:omparing individuals

and determining the "presc:na:" or "absence" ofa band on a gel. A RAPD locus was defined

as a band amplified by a single primer at a specific locality. measured in base pails. on a gel

2.12 Characterizatioa oftbe PCR Products ia F, Proce.y
The Polaroid photograph of each gel was scanned on a flatbed desk scanner, saved

ilS a LiP' file and analyzed using Pro·RFLP molecular weight software, version 137 (DNA

Proscan lne., NashviUe. TN). The Pro-RFLP program permits the unknown molecular

weight bands (each RAPD locus), genemted by RAPD primer, to be scored according to its

migration on the gel in alignment with the molecular weight standard. The scheme for the

naming of each RAPD locus on the gels includes the nwnber of the primer which amplified

the band (locus) reUewed by the size of the marker in basepairs. FIX" example, 153-748 is a

locus thai bas bttn. amplified by RAPD primer 153 and is 748 basepairs in length..

2.13 Analysis ofRAl'D Lod in tile F1 Progeny
[t is known that the RAPD mad:ers are dominant aDd result in identification of only

rwo phenotypes... For example, the genotypes could be designated as PP or PA. resulting in

the"p~" ofa band at a RAPO locus; and the AA genotype resulting in the "absence"

ofa band at a RAPD locus.

As a result of meiosis. two alleles at a locus should segregate with equal frequencies

into the gametes. If the alleles at one locus are PI and At. then the gametes of a diploid

heterozygous individual will be half PI and half AI_ Similarly, at a separate locus., alleles P2



and Az will show equal segregation into gametes..

The two RAPD pbenotypes resulting from an iolen:looal mating are either the

"prescnce~ofa band 0(" the "absence" ofa band at a RAPD locus. Three different ouu:omes

are expected at each RAPD locus.. 1hese outcomes include the~ ofa band fix" all F,

presence ora band for the F l progeny of the cross PIA, x PIAl and a ratio of 1:1 fO(" the

In an individual containing two heterozygous loci (PIAl at ODC locus and PzA.J. at

another locus) that are unlinked (on separate chromosomes), the alleles will undergo

independent segregation and give foW" possible gametes. For example. PIAl PzAJ: will

then the genotypes can be inferted in the phenotypes of tile FI progeny_ This type ofcross is

referred to as a testcross. The resulting FE progeny from such a te:steross will consist of the

following (phenotypes) genotypes:

F,genention: PIAtPzAz
PIA\AzAZ
A\AIPzAz
AjAIAzAJ:

The four phenotypes will occur in equal frequencies in the progeny if the loci are wtlinked.

If the loci are linked. the recombinant phenotypes will only arise wbencrossing over occurs



"between the linked loci, and tbcir frequency will be less than SO Yo. In order 10 determine

the parental types fiom recombinant types it bas to be determined wbetber the alleles ofeach

locus are in the coupling or the repulsion phases. For example. iftbe loci are in the coupling

phase then the parental genotypes expected would be: PIP;zIAIAz crossed with AlAI/A2AZ_

If the loci ate in the repulsion phase then the parental genotypes expected would be:

2.14 Analysis

Hatching data were tested for differences within intraelonal matings and also

between the jmraclonal and interclonal matings USlna the f·statistic one-way ANOYA.

Male production was examined for a Mendelian mode of inheritance (NMP's crossed with

MP's) using a Chi-square sratistic (Microsoft Excel, 1994). Each RAPD and aIJozyme locus

was tested for fit to I: I and ]:1 ratios using Xl tests. Those loci with an ex value greater than

the adjusted 0: value for the 1:1 tc:sts were assumed to conform to Mendelian inheritance and

were included in further Xl tests for linkage. lbe Cl value wasco~ using the Bonferroni

approach (Sakal and Rohlf. 1995), where an experimentwise error rate a; must be obtained

when testS are canied out as suggested by the oulcome of the overall analysis. Therefore,.

each individual teSt must be carried out at a critical probability of «' - aIk (Bonfenom1

where k is lhc numberofinttnded lests (Sokal and Rohlf: 1995).



n
Table 2.1 List ofthe male producing (MP) and non-aWe producing (NMP) Daphnia
puluclooes. coUected in the Spring of 1996. from two populations (DISP and LPSA) in
southern Ontario, used in the inten::lonal and/or intraclooal malings.

AIIozyme GeDOtypes:
Clone: Pom Pel Amy Type: MatiDl:
DISP \·1 MF SM FF MP lntraclonal
DIS? 1-4 MF SM IT MP Intraclonal
DIS? 1-7 IT MM IT MP Both
DISP 2-5 IT MM FF MP Inttaelonal
DISP 2-17 SM SS IT MP Both
DISP2-IS SM MM IT MP Both
DISP2-15 SS SS IT NMP lnten::looal
DISP 2-14 MF SM IT NMP lnle<C1ooaI
DISP 3-27 IT MM SF NMP lnle<C1ooaI

LP8A I-I MF MM IT MP lntr.oclooal
LP8A 1-3 MF IT SS MP lntr.oclonal
lP8A 1-7 MM SM SF MP Intraclonal
LP8A 1-9 MM SM SF MP lntraclooal
LP8A 1-!8 MM MF SF MP lntraclooal
LP8A2-ll MM MF SF MP lntraclonal
LP8A2-!4 IT MM SF MP Both
LP8A)-17 MM SM SS MP Both
LP8A 3-2 MM MM SF NMP lnterclonal
LP8A2-6 MM MM SF NMP Inten::lonal
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Table 2.3 The l<kner primer scqueoccs used to geoc:rate various RAPD loci in the Fl

progeny ofthc interclooal marings.

PRIMER

J4

'"66

115

153

154

169

177

SEQUENCE (S' - 3')

ceGGCCCCAA

ITACCTGGGC

GAGGGCGTGA

TfCCGCGGGC

GAGTCACOAG

TCCATGCCGT

ACGACOTAGG

TCAGGCAGTC



Figure 2.1. An agarose gel stained with ethidiwn bromide showing the reproducibility of the

RAPD bands using RAPD primer #115 during peR. The IKb standard marker (M) is in the

far left and right lanes, while the negative control (C) is in lane nine. Lanes ooethrough four

and five through eight are individuals from two separate clones.. DISP 1-1 and LPSA 2-6.

respectively. Arrows point to specific bands unique to each of the four individuals from the

two clones.
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Figure 2.2. A tweH:iered agarose gel stained with ethidium bromide showing the

polymorphic loci (upper arrow) and monomorphic loci (lower arrow) detectable in the FI

progeny. from the cross or LPSA 2-6 x DlSP 1.7. with primer NilS. The IKb standard

marker (m) is present in the rar left and right lanes. while the negative control (c) is present

in Jane 24.
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CHAPTER THREE

RESULTS

3.1 Hatching Success
Daphnia pulex neonatal hatchings usually occurred within four 10 five days of

exposure to the pboto-stimulus. Hatching percentages did oot differ between the intraeJonal

and the interdonal matings (F'=O.816, df=l, 30, P=O.J74). Hatch rate percentages averaged

20.3% (range: 53% • 63.4%) for the intradonal matings (Table 3.1) and 14.3% (0"10 ­

44.4%) for the interclonal matings [fable 3.2). A comparison of the batching percentages

among the intraelonaI matings did not show a significant difference between the DISP and

LP8A populations (F=1.412. df=l, 12, p::Q.258).

3.1 Survival of the F I Progcay
The mean survival of progeny from the intraelonal matings (9.15% t; SE 2.68) was

significantly less than the mean swvival of progeny from the interclooal matings (76.4% *
SE 6.78 ), (f=76.44. df =1,28, P< 0.001) (Table 3.1 and 3.2). Among tbe intraelonal

matings the O(SP and LP8A populations did not differ significantly with respect to mean

survival (F=O.06. df-I. 12, P=O.81) (Table 3.l).

3.3 Male production in the Progeny of tbe Inter-doD•• Matings
The F I progeny from the interdonal non-male producers (Nfv{P) mated with the

male producers (MP), were monitored for the production of males. Some FI progeny in ten

of the eighteen matings produced males (fable 32). Two ofthese ten matings, (DISP 3-27 x

DISP 1-7 and DISP 2·15 x DISP 2-18), had only 3 and 6 progeny, respectively and were not
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considered in any further statistical tests. The pett:entage of male production raogod from

8..?A - 45.4% (average 24.9%) in the remaining eight matings. The pen:entage of DOO-male

producing F, clooes in each mating ranged from 33%·100%. with the average ofoon-male

producing progeny in a cross being 83.4%.

To dete:nnioe whether male production in the f I progeny from the interelonal

matings had a simple genetic interpretation, the ratio of male producers to oon-male

producers per cross was lestcd for 1:1 (NMP:MP) segregation using the Chi-square test for

independence, similar to the tests performed by hIDes and Dunbrack., 1993.10 this stUdy it

was found that six out of the eight crosses deviated significantly from the expected 1:1

segregation ratio, (fable 33).

3.4 Segregation of Enzyme Loci for the lotradoDa. FI Proceny
Four aCme eighteen intraclooa.l matings had sufficient numbers ofF l progeny to test

for fit to a 1:2:1 segregation ratio (Table 3.4). The results did DOt deviate from the c:xpected

ratio for any of the inuaclooal matings except in clone LPSA 3-17 for the Pgi locus. Forlhis

clone all aCthe F t progeny wen: beterozygous and oeitberoftbe two expected homozygous

3.5 SegregatioD of Enzyme Loci for the (alenla••t F1Procuy
The allozyme genetic markers confumed the success of the crosses of the NMP x

MP. Parents homozygous for different alleles at a locus always produced progeny

heterozygous at that locus. Five of the thirteen lests for the interclonal matings deviated

significantly from the expecled Mendelian ratios (P< 0.05), (fable 3.5). Notably, both
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matings ofDISP 2-15 lC DISP 2-18 and LP8A2-6 x DISP 2-18 were parental crosses with

the genotype of 55 crossed with SM. respectively, for the Pgm locus. For each of these

crosses only one genotype of two classes was detected. The heterozygous genotype was

present for the mating ofDISP 2-15 x DlSP 2-18. and only the homozygous genotype was

present for the mating ofLP8A 2-6 x DISP 2-18.

Two enzyme loci (Pgm and Pgi) from the interclonal mating of DISP 2-14 x DISP

1-7 were heterozygous in the D1SP 2-14 parent and homozygous in the DISP 1-7 parenL

These loci did not depart from the 1:1 Mendelian ratio (fable 3.S).lberefore these loci could

be tested for evidence of Linkage. Although the sample size was small (0 =-15), it was found

that the loci did not significantly deviate from the (:(:1:1 ratio expected for unlinked loci.

3.6 RAPO Loci in the F I Progeny

There were a toW of 81 RAPD fragments scored among all the F1 progeny

genotypes from four interclonal matings (Tables 3.6-3.9). Each afthe 81 RAPD loci can be

categorized into one of four groups; L band present in both parents that does not show

segregation in the progeny, 2. band present in both parents that does show segregation in the

progeny, 3. band present in one parent that does show segregation in the progeny and 4.

band prescnt in one parent that does not show segregation in the progeny (Table 3.1 0). Ofall

81 RAPD fragments, the total number of segregating loci in the F 1 progeny was 56 (69.1%

of all RAPD loci scored), the remaining 25 Loci were present in one or both parents and all

progeny. Fifty of the RAPD loci scored (repreSGting potential genetic markers) were

unique among all crosses. with 21 loci represented in two or more separate crosses,



"amplified by the same RAPD primer (see Appendix [).

At least one non·segregating locus was amplified with each RAPD primer in each of

the interclonal matings. Interestingly, there were only two situations where one parent bad a

band at a RAPD locus (the other parent did DOt show a band, in other words the parent was

homozygous recessive for that locus· PP )( AA) and the presence of that band did nol vary

among any of tlle F l progeny. Among the four interc10nal matings, homozygous (000-

polymorphic) RAPD loci~ amplified for each primer consistently in each cross. Three

homozygous loci was the average per primer in the F[, ranging from 1 homozygous locus

for primers 40 and lIS, up to 6 bomozygous loci in primer 153 (fable 3.6 -3.9).

The number of loci thai confonned to the 3:1 segregation ratio was 17 of 18 loci

(94.4%) (Table 3.11). The numberofloci confonning to the 1:1 segregation ratio was 29 out

of 38 loci (76.3%) (fable 3.10). Therefore. only loci conforming to genetic ratios could be

used 10 test for linkage. The 29 RAPD loci that confonned to the expected Mendelian ratio

of 1: I ranged from 428 base pairs (hp) up to 1728 bp in length. with an overall average of

906 bp.

3.7 Segregation and Linkage Analysis among RAPD L~i

The criterion required to tests for linkage among loci included segregating according

to a I: I ratio for individual loci and also a cross of a double heterozygote with a double

recessive homozygote. This decreases the number of potential tests, despite the overall

number of loci initially scored and the number of individual loci confomling to the I: 1

segregation ratios. For example, in one ofthe four inten:1onal marings (DISP 2·15 x DlSP 2-



..
17) where two RAPD loci confonn to the expected 1:[ Meodclian ratio, tbcsc loci could

not be used in further linkage ICStS because the loci we:R DOt present: appropriately in the

parents (fable 3.11).

Tweoty-six out of the 29 RAPD loci. which fit the Mendelian ratio of 1:1 Cex

segregation. could be used in analysis for linkage: (fable 3.11), resulting in 68 combi.DatiOll5

[0 test for linkage. All 68 combinations originated from ooly three of the four interclooal

matings. LP8A2-6 x DISP 1-7, LP8A3-2 x Df5P 1-1 andLP8A 2-6 x DlSP 2-17, resulting

in loci lhat were possible for usage in linkage tests. 1be test for linkage involved one of the

parents in a single cross having the presence ofany two RAPD loci while the other parent

has an absence for both loci. The expected progeny would have one of foue possible

genotyPeS. tribe loci were in coupling phase. then lbc: two palertW genotypes would have a

presence for both loci or an absence for both loci, while the two recombinant genotypeS

would consistofa presence for one ofdic: loci and an abseDce for the other. Forcxample. if

the alleles at each of two loci are "P" and "A" and these loci are linked, then the

arrangement for alleles on each chromosome in the coupl.irag phase are "P,PiA.A2" while

the arrangement for alldes on chromosomes in the repuJ.sioa phase: would be "PIA~:AI".

These arrangements wI.ll be reflected in the expected genotypes and in tum the pbeoolypc:s.

when offspring are examined.

Linkage among loci was tested by determining if each of the four expected

geootypes occurred in equal frequencies fitting a 1:1:1:1 ratio with an adjusted a value of

0.00074, which would be the case if there was no Linkage (fable 3.12-3.16). Only ODe of
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the: 68 pairwise combinatioos of loci. when tested for linkage., were found to be

significant. These loci weft; 40-855 and 66-666, Table 3.14.

3.8 Segregatioa aDd Lia.kap: AD.lysis aDloag RAPD alld Eazyme Loci

Testing linkage among RAPD and enzyme loci was similar to the test for linkage

among RAPD markers. In a mating., if one parent is heterozygous al a RAPD locus

(PIAl) and also at an enzyme locus. while the other parent is homozygous aI the same

RAPD and cnyrne locus, then linkage could be tested. Three enzyme loci from the DOD-

maJe producing clones crossed with the male producing clones that did DOt deviate from

the expected 1:1 Mendelian ratio could therefore be used in the linkage analysis. All the

enzyme and RAPD loci were tested for the goodness of fit 10 a I: I; 1: I Mendelian ratio,

lhe (l value adjusted 10 0.01. None of the five pairwise combinations possible involving

the allozyme markel'S and the RAPD loci showed a significant deviation from the

expected ratio (Table 3.17).



Table 3.1 The hatching, swvival to first brood and DNA extracted clones from

inttaclooal matings ofDaphnia pulex:. Survival to first brood was calculated as a~tage

ofl.b.e numberofeggs hatched.

Clone: Eggs: EWHatcbed Sunival to tint
("I.), brood %:

DlSP {·I 550 62(1l3) 16.13

DISP 1-4 300 21 (7.0) 0

Drsp 1-7 1200 83(6.9) 4.82

DlSP2-5 750 204(272) 15.69

DlSP 2-17 410 34(8.3) 2.94

DISP2-18 900 98(10.9) 11.22

LP8A I-I 300 59(19.7)

LP8A 1-3 300 16(53) 0

LP8A 1-7 500 86(17.2) 2326

LP8AI·9 500 317(93.4) 536

LP8A 1-18 300 29(9.7)

LP8A2-11 300 122(40.7) 0

LP8A2-14 300 55(18.3) 20.0

LP8A3-17 300 24(8.0) 29.17

Averages: 493.6 86.43 (20.26) 9.15



Table 3.2 Hatching percentages, suO'ivallo first brood, male produc!ion and !he number of clones for which DNA was cxtl'&C!cd

for the interclonal matings of DclfJlmia pI/lex. Non-male producing (NMP) clones mated with male-producing (MP) clones. The tl

male production was detennined for clones lhat survived to firs! brood.

Mlttdelones: E,K" [gphatched 'I,Survival to DNA Extracted Fe male-prod"ten
(NMP,MP) ('!o), finlbrood: Nordonel: MP NMP
LP8A 2-6 x DISP 1·7 266 79 (29.7) 92.4 73 6 67
LPSA 2-6 x DISP2-17 JI3 99 (31.6) 96.0 95 18 77

LP8A 2-6 x DISP2-18 179 7 (3.9) 71.4 5 0 5

Ll>8A2-6xlP8A2·14 256 0 (0)

LP8A 3-2 x DlSP 2·17 59 7 (11.9) 57.1 4

lP8A 3-2> DISP 1-7 104 30 (28.8) 90.0 27 3 24

DISP 2-14 x DISP 1·7 116 23 (19.8) 100 23 2 21

D1SP2·14 x DISP2·18 96 12 (11.5) 100 12 I 11

DISP 2-14 x LP8A 2-14 98 2 (;.0) 100 2 0 2

DISP2-14 x LP8A )-17 30 5 (16.7) 40.0 2 0 2
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Table 3.3 The F I progeny ofDaphnia pulex (from non-male producing clones mated with

male producingcloaes) tested using the Cbi-squarestatistic to fita 1:1 Mendelian ratio of

NW'stoMP's

Cross: (NMPxMP) Obsenred: EqtKted: P-value:
<NMP'MP) <NMP,MP)

LP8A 2-6 x DISP 1-7 67:6 36.5:36.5 <0.001

LP8A 2-6 x DISP 2-17 77: 18 42.5:42.5 <0.001

LP8A 3-2 x DISP 1-7 24:3 13.5:13.5 <0.001

DlSP 2-14 x DISP 1-7 21:2 II.S: lL5 <0.001

DlSP 2-14 x DISP 2-18 1I:1 6:6 <0.005

DlSP 2-5 x DISP 2-t7 45:54 49.5:495 >0.05

DISP 2-5 x LP8A 2-14 4:22 13:13 <0.001

DISP 3-27 x LP8A 3-17 12: 16 14: 14 >0.05



Table 3.4 Chi-square tests ofalJozYl11C genotypes fromlhc FI progeny of the intraclonal matings.

CklDC: Lom Number or Ralios: Genotypes: Xl ".Iue: p·"alue:
(genotype): individual!:

SS SF FF
D1SP2·5 Amy (SF) 36 Exp: , 18 , 5,944 0.0512

Cbs: 7 25 4

LP8AI·7 Amy (SF) 16 Exp: 4 8 4 5.375 0.0681
Obs: 5 II

SS SM MM
Pgm (SM) 12 Exp: 3 6 3 4.000 0.1353

0"': 0 8 4

LP8A )·9 PO; (SM) 16 Exp: 4 8 4 1.000 0.6065
Cbs:

LPSA3·17 Psi (SM) 7 Exp: 1.8 3.4 1.8 7.412 0.0246
Cbs: 0 7 0

~



Table J.5 Chi-square leSlS oflhe rcsultinij allozym~ g~nolypes from lhe Daphnia plllex inlc:rcJOllal mOlings fordeviolions from

expecled Mendeliun ralios.

C"",: (NMPIMP) Locus (grnocype): Numbrror Grtlotypa: X·nluc: p-nlue:
lndl"kluals:

SS SM
DISP2-15 x D1SP2·17 Pgm(SS'SM) 96 Exp: .8 48 1,500 0,221

Obs: .2 54
OISP 2·15 x DISP2·18 Pgm(SS'SM) 7 EllP: 3.5 3.5 7.000 0.008

Obs: 0 7

1'1' SF
DISP 2-1 5 II LP8A2-14 Amy (FF'SF) 15 EllP: 7.5 7.5 8.067 0.004

Dbs: IJ 2
DISP 2·14 x D1SP 1·7 Pgm(MI"FF) IS Exp: 7.5 7.5 0.600 0.439

0"': 9 2

SM MM
Pgi(SM'MM) 15 £lip: 7.5 7.5 1.667 0.197

01>.: 5 10
OISP2-14x DISP2·18 Pgi(SM'MM) 10 £lip: 5 5 3.600 0.058

0"': 8 2

MM SM
DISP 3·27 x LP8A3·13 Pgi(MM'SM) 24 Exp: 12 12 0.667 0.414

Obs: I' 10

~



Table J.5 continued.
Cross: (NMPxMP) Locus (gcnolype): Number of Gcnotypes: X'value: p-Yilluc:

indiyWUllls:
SF SS

D1SP 3·27 x LP8A 3·13 Amy (SF'SS) 24 Exp: 12 12 8,167 0,004
Db!: 19 5

SF FF
lPSA 2-6 x OISP 1-7 Amy (SF'FF) 74 Exp: 37 37 0,667 0,642

Obs: 39 35

MM SM
LP8A 2-6 x 01S1'2-17 Pgm(MM$SM) 99 Exp: 49.5 49.5 4.455 O.oJ5

Db!: 39 60

SF FF
Amy (SF$FF) 100 Exp: 50 50 1.440 0,230

Obs: 56 44

MM SM
lPSA 2-6 x 0ISP2-18 Pgm(MM'SM) 5 Exp: 2,5 2,5 5,000 0,025

Obs: 5 0

SF FF
LPSA 3·2xDlSP 1·7 Amy (SP'PP) 27 Exp: 115 115 1.815 0,178

Db!: 10 17

~



Table 3.6 The RAPO loci seored for the inlerclonal maling of LP8A 2-6 (NMP) crossed with DISP 1-7 (MP). Notalion for each
locus includes the RAPO primer lind the Ienglh of tile rrogmelll in bascpairs; for example, 153-766 means that primer 153
amplified a productlhat was 766 basepairs long. The allele producing a band is denoted by "1'" and lhe allele that does not produce
a band is denoted "An. The adjusted«· 0.0036.
Locus (base pain) : Inrcrrtd Pllrent.1 Genotype:

LPSA2-ii DlSlll·'
Fl PrOgeny Genotype: xl,lgnlfican(e:

34-2130 AA PP
34-656 P P-
34-1747 AA PA
34-1505 AA PA
34-992 PA AA
34·727 AA PA
34-561 PA PA

154-1131 P P
154-616 AA PA

153-1536
153-1018
153-1688
153·1270
153·1113
153·766
153-656
153-477

P- P_
P P
AA PA
PA AA
AA PA
AA PA
AA PA
AA PA

46P
46P-
14PA:32AA(I:I)
34PA: 12AA(I:I)
31 PA: 15AA(I:J)
25PA:21 AA(I:I)
19PA:27AA(I:I)
34 PA: 12 AA (1:1)

47PA
47 P
13 PA: 34AA(I:I)
21 PA:26AA(I:I)
23PA:24AA(I:I)
37PA: IOAA(l:I)
34P_: IJAA(l:I)

33P
17PA: 16AA(I:I)

0,0080
0.0012·
0.0183
0.5553
0,2382
0,0012·

0.0022·
0.4658
0,8840
·OOסס.0

0,6737

0,8618

~



Table].6continued.

Locus (base pain) : Inferred Parental Genotype: F l Progeny Genotype: x'significance:
l.P8AZ-6 DlSPI-7

66-1681 I' I' 441'
66·1419 1'=

1'- 44 P-
66-666 AA PA 301'1\: 14AA(I:I) 0.0159
66428 AA PA 24PA:20AA(I:I) 0.5465
66-1192 PA AA 29PA: 15AA(I:I) 0.0348

169-540 AA PI' 23 PA
169·1192 l'A PA 18P_: 5 AA(3:1) 0.0324
169-93] PA AA 13JlA:IOAA(I:I) 0.2230

115-1045 AA PI' 45PA
115-1505 AA PA 15 PA:30AA(I:I) 0.0253
115-880 AA PA 22PA:23AA(I:I) 0.8815
115-761 PA PA 341'_: 11 AA(3:1) 0.9314
115-554 PA PA 301' : 15AA(3:1) 0,1%7



TaMe 3.7 The RAPD loci scored for the interclonal mating ofLP8A 2-6 (NMP) crossed with DISP 2-17 (MP). Notation for each
locus includes the RAPD primer and the length ofthe fragment in bascpairs; for example, 40-989 means that primer 40 amplified a
product that was 989 basepairs long, The allele producing a band is denoted by "P" and the allele that does not produce a band is
denoted "AU. The adjusted a = 0.0042.

Lotus (!)a-It pain) : Inferred Puental Genotype: Fl Progeny Genotype: "tsignirlCaBee:
LPSAl-6 DlSP1-1?

40-1453 P P 42P
40-989 PI. PI. 28(:14AA(3:1) 0.2123
40-855 PA AA 12PA:30AA(I:I) 0.0055

66-1681 I' I'- 41 I'
66-1419 .- 1'- 41 P-
66-1192 PI. AA 30PA: 11 AA(I:I) 0.0030'
66-666 PA AA 15PA:26AA(I:I) 0.0858
66-533 PA PA 281'_: IJAA(3:I) 0.3213

34-656 P P 45 I'
34-992 PI. PI. 32(:13AA(3:1) 0.5469
34·561 PA AA 30PA: 15AA(I:I) 0.0153
34-433 AA PA 31 PA: 14AA(I:I) 0.0011'
34·2550 AA PA 30PA: 15AA(I:1) 0.0253
34-2130 AA PA 29 PA: 16 AA (1:1) 0.0526

169-540 AA PI' 42PA
169-1825 PA PA 15P_:27AA(3:1) 0,0000'
169-1585 PA PA 361'_: 6AA(3:1) 0.1088

~



Table 3.8 The RAPD loci scored for the imcrclonal mating ofDlSP 2-15 (NMP) crossed with DISP 2-17 (MP). Notation for each
locus includes the RAPD primer and the length of the fragment in basepairs; for example, 153-766 means that primer 153
amplified a product that was 766 bascpairs long. 111e allele producing a band is denoted by "P" and the allele Ihat does not produce
a band is dcnoted "A". The adjusted a = 0.0042.

Lo4:us(basepain) : Inrerrtd ra-rinia-I Genotype: FIrroieny·GeiiOijrpe : Xl sigaifiunte:
DlSP2·15 0181'2·17

153-1536 I' l' 43 l'
153·1018 p- I'- 431'-
153·766 I'A PA 26(: 16AA(3:1) 0.0645
153-656 PA PA 281'_: 15AA(3:1) 0.1345
153-578 PA PA 251'_: 18AA(3:1) 0.0107

177-901 l' 1'- 41 l'
177-1346 PA AA 31 PA: IOAA(I:I) 0.0010*
177-1230 PA PA 30P_: II AA(3:I) 0.7868
177-823 PA AA 20PA:21 AA(I:I) 0.8759
177·460 PA PA 361'_: 5AA(3:1) 0.0583

169-1585 l' l' 35 l'
169·1825 PA PA 37(:7AA(3:1) 0.1660
169-506 AA PA 38PA:8AA(I:I) 0.0000·

34-656 l' l' 45 l'
34·1747 AA PA 37PA: 7AA(I:I) 0.0000·
34-1534 AA PA 25PA:20AA(I:I) 0.4561
34-850 I'A PA 341': IIAA(3:1) 0.9314

~



Table 3.9 The RAI'D loci scored forlhc inlerclonal maling ofLP8A 3-2 (NMP) crossed with DISP 1-7 (MP). Notalion for each
locus includes the RAPD primer and the length oflhe fragment in basepairs; for example, 154-1728 means lhal primer 154
amplified a product Ihal was 1728 basepairs long. The allelc producing a band is denoted by "P" and the allele lhat does not
produce a band is denoted "A". The adjustcd a = 0.0042.

LOCus(base pain): Inferred Parental Genotype: F, Progeny Genotype: X~ signifiean«:
LP8A3·2 DlSP 1-7

154-1131 P- P ISP
154-1728 AA PA JOPA:8AA(I:I) 0.6374

153·\536 P P 21P
153·101S P- P- 21 P-
153-1192 PA AA 17PA'4AA(J,I) 0.0046
153·766 AA I'A I3PA,SAA(I,I) 0.2752
153-656 PA PA 16I'_:5AA(3:1) 0.8997

34-992 P- P 22P
34-727 PA AA 12PA: IOAA(I:1) 0.6698

66-16SI P P 21 P
66-1419 P= ( 21 P-
66-1192 PA AA I3PA, SAA(I,I) 0,2752
66-1045 PA AA SPA,13AA(U) 0,2752
66-918 PA AA 14PA: 7AA(I:I) 0.1266
66-666 AA PA 7PA: 14AA(I:l) 0.1266
66-533 PA PA ISP_, 3AA(H) 0.256S
66-428 AA PA 9PA,12AA(I,I) 0,5127



Table 3.10 Summary ofsegregating RAPD loci from the progeny oftbe 63
interclonal matings.

Cross: Parent Loci conronai.ng to ntios:
Genotypes:

~ #lloei 1:0 1:1 1:3

LP8A 2-6 DISP 1-7 PP p- O

n=47 AA PA 17 13

AA PP

PA PA

LP8A 2-6 DISP 2-17 PP P-

n=-4S AA PA

AA PP

PA PA

DlSP 2-15 DISP2-17 PP P-
n=43 AA PA

AA PP

PA PA

LP8A3-2 DlSP 1~7 PP P-
n"'21 AA PA

AA PP

PA PA



Table 3.11 Summary of all the variable RAPD loci from the interclonal F1 progeny and lhe proportion oflhe RAPD loci thaI

could be used in tests for linkage. The segregating loci are lhose which were presenl in one or bolh pmcnls while being absenl in

somcoflheF I progeny.

Number o( Loci conforming Loci conformlDgfest. (or Total number o(--lOei
CROSS: segregating to J:I ratio: to 1:1 ratio: Iiakage 1MtS5ible: pain tested (or

loci: (Iotilioti) (-;.0(3:1) (0/.0£1:1) linkageW..):
LP8A 2-6 x D1SP 1-7 21 (30) 4 (100) 13 (76.5) 78 48 (61.5)

LP8A2-6xDISP2-17 12(17)

DISP2-15 x DISP2-17 12(17)

LP8A 3-2 x DISP 1-7 11 (17)

Total: 56(81)

4(80.0)

7(100)

2(100)

17(94.4)

5(71.4)

2(40.0)

9(100)

29(76.3)

10

36

125

4(40)

0(0)

16(44.4)

68(54.4)

~



Table 3.12 Joint segregation analysis for RAPD loci in the DISP 1-7 parent from the mating of D1SP 1-7 x LPRA 2·6. 'Ille
adjusted level of significance is a ·0.00074 for linkage.

Part.'s: L<>cu.(bp), Progeny: Obsen·ttI: Elp«lrd: xlv.lue: p-value:

DISP )-7 x LP8A2-6 15)·766 15)·656 PAPA 12 11.5 2.5n 0.411
AAPA 13 11.5
PAAA 7 11.5
AAAA 14 11.5

DISP 1·7 x LP8A 2~ 153·766 ],4-1505 PAPA 10 115 1.478 0.687
AAPA 15 11.5
PAAA 10 11.5
AAAA II 11.5

DISP 1-7 x LP8A 2-6 15)·766 66-428 PAPA I) II 0.909 0.82)
AAPA 9 II
PAAA 12 II
AAAA 10 II

DISP 1-7 x LP8A2~ 15)·766 115·161 PAPA 12 II 0.546 0.909
AAPA 12 II
PAAA 9 II
AAAA II II

D1SPI-7 x LP8A2-6 153-656 34·1505 PAPA 9 11.5 2.910 0.412
AAPA 9 11.5
PAAA 12 115
AAAA 16 11.5

~
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Table 3.12 conlinued
Parents: LOeus(bp): Progeny: Oburved: El elro: x·v.lue: p-nlue:

DISP 1-7 x LP8A 2·6 154-61 153-766 PAPA 8 .222 O.
AAPA 8
PAAA 9
AAAA 1

D1SP 1-1 x LPSA 2-6 154·616 15J·656 PAPA J 8 6.250 0.100
AAPA IJ 8
PAAA 8 8
AAAA 8 8

DISP 1-7 x LP8A 2-6 154-616 34-1505 PAPA II 8.25 1.788 0.618
AAPA 6 8.25
PAAA 1 8.25
AAAA 9 8.25

DISP 1-7 x LP8A 2-6 154-616 115-761 PAPA IJ 8 5.150 0.124
AAPA 4 8
PAAA 6 8
AAAA 9 8

DISP 1-7 x LPSA2-6 154-616 66-428 PAPA II 1.5 J.JJJ 0.J4J
AAPA 4 1.5
PAAA 1 1.5
AAAA 8 1.5

DISP 1-7 x LPSA 2-6 66-666 153-766 PAPA 13 11 7.274 0.064
AAPA 9 II
PAAA 11 II
AAAA 5 II

~
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Tobie 3.12 continued
Parenls: Locus (bp): Progeny: Obscnoed: Expedetl: x'Ylilue: p-yalue:

D1SP 1-7" LP8A 2-6 IIS·ISOS 66-428 PAPA IS 10.S 3.m 0.343
AAPA 7 10.S
PAAA 9 10.S
AAAA II 10.l

D1SP 1-7" lP8A 2-6 115-1505 115-761 PAPA 13 1l.2S 1,133 0.770
AAPA 10 11.25
PAAA 9 1l.2S
AAAA 13 1l.2S

DISP )-7 It lP8A 2-6 115-761 34-1505 PAPA 13 11.25 1.133 0.769
AAPA 9 1l.2S
PAAA 10 1l.2S
AAAA IJ 1l.2S

DIS? 1-7 It LP8A 2-6 115-761 66-428 PAPA IS II 4.238 0.087
AAPA S II
PAAA 8 II
AAAA 14 II

~
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Tllblc 3.14 Joint sel&regalion analysis for RAPD loci in the DISP 2-17 parent from the muting ofLP8A 2-6 x DlSP 2-17 liS
well !IS RAPD loci from the LP8A 2-6 parent frOlllthe matingofLP8A 2·6 x DISP 2-17. For both parents, the level of
significance is a "0.0007410 Icst for linkllge.

Partnls: ---------Lotus (bp): Progeny:
-

ObH.-Yed: EXPftled: - xlv.luc: p-vllue:

DISP2-17x LP8A2-6 34-2550 34-2130 PAPA 18 11.25 7.711 0.052
AAPA 12 1I.2S
PAAA 10 11.25
AAAA S 11.2S

LPSA 2-6 x D1SP 2·17 4O-8S5 66-666 PAPA 8 9.25 21.27 0.000'
AAPA J 9.2S
jJAAA 5 9.2S
AAAA 21 9.2S

LP8A2·6 x DISP2-17 40-855 34-561 PAPA 10 10.25 J 1.39 0.001
AAPA 2 10.2S
PAAA 17 10.2S
AAAA 12 10.25

LPlA2-611 OISP2-17 )4·S61 66-666 PAPA 8 10.25 7.878 0.049
AAPA 18 10.25
PAAA 7 1O.2S
AAAA 8 10.2S

~



Tlble 3.15 Joint segregation analysis for RAPD loci in the DISP \·7 parent from the mating ofDISP 1-7 x LP8A 3-2. The
adjusted level ofsignificance is a • 0.00074 for linkage.

Pannb: Lotus (bp): Progeny: Observed: Elptcted: X'vltluc: ....VIlluc:
DISP '·7 x LP8A 3·2 154·1728 153·766 IIAf'A 7 4,25 2,529 0.467

AAPA 3 4,25
PAAA 3 4,25
AAAA 4 4,25

DISP 1-7 x LP8A )·2 154·1728 66-666 PAPA I 4,5 5,556 0,135
AAPA 8 4,5
PAAA 5 45
AAAA 4 4,5

DISP \·7 x LPSA ]·2 154·1728 66-428 PAPA 7 4,5 9,111 0,028
AAPA 3 4,5
f'AAA 0 4,5
AAAA 8 4,5

DlSP )·7 x LPSA )·2 15)·766 66-666 IIAPA 4 5 2,800 0.423
AAPA 8 5
PAAA 3 5
AAAA 5 5

DISP 1·7 x LPIA 3·2 153-766 66-428 PAPA 7 5 3.25 0,423
AAPA 5 5
PAAA 2 5
AAAA 6 5

DISP 1-7 x LP8A )·2 66-666 66-428 PAPA 3 5,25 2.S10 0.421
AAPA 4 5.25
PAAA 6 5,25
AAAA 8 5,25



Table 3.16 Joint segregation analysis for RAPD loci in the L1'8A 3-2 parent from the milling ofLP8A 3-2 x DIS!' 1-7. llte
adjusted level of significance is a • 0.00074 for linkage.

Parents: Lo<.. (bp): Progeny: Olml'\lcd: Expc:clcd: x' value: p-value:

LPSAJ-2 x DISP 1-7 153-1192 34·n7 PAPA 9 5 7.600 0.055
AAPA 7
!'AAA 2
AAAA 2

lP8A 3-2 x DISP 1-7 153-1192 66-1192 PAPA 12 5 14.80 0.002
AAPA 5
PAAA 1
AAAA 2

lP8A 3-2 x DISII 1-7 153-1192 66-1045 PAPA 6 5 12.40 0.006
AAPA 11
PAAA 2
AAAA 1

lP8A J-2 x D1SP 1-7 153-1192 66-918 PAPA 11 5 11.20 O.QII
AAPA 5
PAAA 3
AAAA 1

LP8A 3-2 x DISP 1-7 34-727 66-1192 PAPA 7 5 1.952 0.572
AAPA 4
PAM 6
AAAA 3



Table3.16conlinucd
Partnts: Lucus (bp): Progeny: Observed: [xpecled: X2 valui:- p-YllIlue:

LPSA 3-2 x DISP )-7 34-727 66-1045 PAPA 5 5 1.200 0.753
AAPA 6 5
PAAA 3 5
AAAA 6 5

LJl8A3·2 x DISP 1-7 34-727 66-918 PAPA 7 5.25 2.429 0.488
AAPA 4 5.25
PAAA 7 5.25
AAAA 3 5.25

LP8A3-2 x DISII I-7 66-1192 66-1045 PAPA 5 5 2.714 0.423
AAAP 8 5
PAAA 3 5
AAAA 4 5

LP8A 3-2 x DISP 1·7 66-1192 66-918 PAPA 8 5.25 3.548 0.312
AAPA 5 5.25
PAAA 6 5.25
AAAA 2 5.25

LP8A3-2 x DISP 1-7 66·1045 66-918 PAPA 6 5.25 3.548 0.312
AAPA 2 5.25
PAAA 8 5.25
AAAA 5 5.25



Table Jh~~e~:~:;sl~~~~e ~~~::ga~el:~l~~Y~::~:~s::~~ li~lel~:~~~c~~~I~ea~;~I~~~~:;1~:~oi::~m;:~r~rromled
at tOe a=O.Ol significance level.

Cross: Primu/ 1M.. (bpi Progtny ObHrvftl: Exptelfd: x· value: P·vaillt:
AUozymt: &tnotypt): &tnotypt:

OISP2·17x D1SP 2·15 34 PBm 1514 SM PASM 9 9.75 0.282 0.%3
PASS 9 9.75
AASM II 9.75
AASS 10 9.75

DISP2·15x DISP 2·17 117 pgm 823 SM PASM 7 8.75 1.457 0.692
PASS 1 8.75
AASM II 8.75
AASS 10 8.75

lP8A2-6x DISP 1-7 l4 Amy 992 SF PASF 13 1i.75 1.255 0.740
PASS 9 11.75
AASF 11 11.75
AASS 14 1i.75

LP8A2-6xDISPJ·7 169 Amy 933 SF PASF 9 9 0.889 0.700
PASS II 9
AASF 10 9
AASS 6 9

lP8A2-6 x DlSP 2-17 66 Amy 666 SF PASF 1 9.75 6.231 0.101
PASS 6 9.75
AASF 16 9.75
AASS 10 9.75



CHAPTER FOUR

DISCUSSION

4.1 Hatching of DiapaulaI Eggs

Within four or five days exposure to photo-stimulus conditions. hatching ofDaphnia

pulex diapausal eggs began in both populations. lbis finding was similar to those of

Schwanz and Hebert (1987), lanes and Hebert (1988), Innes (1989) and Larsson (1991),

where it was commonly found that Daphnia neonates begin to emerge from eggs after five

days al \4 or 21°C. The hatching percentages were similar for both the intraclonal and the

interclonal matings under the same conditions., and agreed with Innes and Dunbrack (1993).

Schwanz and Heben (1987), found that there was no difference in hatching requirements

between sexual and asexual species and they conduded that, when populations are from the

same geographic location, regardless of species or type of reproduction this would be the

Hatching of eggs did not occur from two interclona! matings. involving four

different clones. The difficulty in hatching resting eggs has undoubtedly been the largest

drawback with respect to broad-ranging genetic studies on the Cladocem (Schwartz and

Hebert, 1987).

4.2 Survival of the F I dones
Low survival aCthe intraclonal matings to the F l clones did not pennit investigation

of the potential RAPD locus inheritance and funhermore permitted only limited aIlozyme

segregational analysis. In this study there were no differences found in a comparison of the
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mean survival of the progeny from the intraelonal matings from either the DISP or the

LP8A populations. although significant differences wen: found when comparing the mean

survival of progeny of the intrnclonal and interclonal matiDgs. This is in agreement with

results found by Innes (1989) in the species Daphnia obtusa. He found that the progeny

from the interelonal matings had significantly greater survival compared to the progeny

from the incraclonal matings for the species. Innes (1989) suggested that the higher survival

for the outerossed (interclonal) progeny compared to the inbred (intraclonal) progeny may

indicate the presence of genetic load in his sampled clones of D. obtusa. In addition. Innes

and Dunbrack (1993) found that. for the D. pulex clones studied, the progeny from the

intraclonal matings (inbred) had a significantly higher proportion of deaths during

development than did progeny from the interclonal (outcrossed) matings, and the average

survival was almost twice that of the intraelonal matings. 1be present study on D. pulex

supported this with the survival of the intraclonal matings significantly less than interclonal

matings, being on the average a 1:8 difference.

Genetic load can be estimaled when expressed in terms of lethal equivalents

(Monon et aI., 1956). The zygOie lethal equivalent can be calculated as -4ln (R) where R is

equal to the proportion of selfed (intraclonal) progeny divided by the proportion of

ou(crossed (interclonal) progeny surviving. Innes (1989) found that for D. obrusa from four

clones wl1ich. were both selfed and outcrossed that the estimate of lethal equivalents per

zygote was 0.9 to 5.2. The average survivorship ofoutcrossed and selfed progeny produced

an estimate of about 3 lethal equivalents per zygote ofD. obtusa clones (Innes. 1989). The



"data from the [nnes and Dunbrack (1993) would yield as an estimate of approximately

3 lethal equivalents per zygote of clones of D. pulex. using the calculation by Morton.,

(1956). In contrast the lethal equivalent estimate calculated for the present study on

clones of D. pulex would result in an estimate of 6.8 lethal equivalents per zygote. Ibis is

much larger than the estimate from the data of Innes and Dunbrack (1993) for D. pulex

and Innes «( 989) for D. obtusa. The estimate is also much larger than the range estimated

by Innes (1989) for D. obtusa. An explanation for this occurrence might be because of

the average age of the clones used in this present study. These had been kept in

laboratory conditions for close to [Wo years since their original sampling date. Evidence

from Banta (1939) and Hebert (l978) suggested that genetic load does exist in natural

populations of Daphnia laevis and they suggested that an increase in genetic load will

result from an increase in the number of continuous parthenogenetic generations, without

periods of genetic =ombination .

4.3 Male Production
Male production in lhe progeny was observed in half of the interclonal matings

between male producers (MP) and non-male producers (NMP). The ratio ofNMP to MP

was not in equal proportions, but rather the numbers deviated significantly from a I: I

ratio in all but two crosses. In each cross at least 55 % of the parthenogenetic progeny in

the FI were NMP. This was similar to the percentages found by Innes and Dunbrack

(1993). where 58% of the progeny from outcrossed matings were found to be non-male

producers.
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Innes and Dunbrack (1993) concluded that the ability to produce males was

under genetic control in D. pulex. but the exact basis oflhis genetic control was unclear.

In their study the occurrence of both typeS of females (NMP and MP) among the F[

progeny ofNMP females ruled out strict cytoplasmic control of male production but was

consistent with simple single-gene control. The resulls aCthe present study do not support

a single-gene basis of genetic control of male production in D. pulex. Although the

present study was not specifically designed to test the genetic basis of male production, it

did provide further insights into variation in male production,. and showed it is more

complicated than a single-gene controL lnnes and Dunbrack (1993), and this study, both

provide evidence that there was a significant excess of non-male producing clones in the

matings. An explanation provided by Innes and Dunhrack (1993) suggests evidence of

variation in the relative investment in male offspring by the parent female or variation in

the response of the female parent [0 conditions favoring male production. Similarly,

Lamon (1991) found variation in male production among progeny from a cross between

a clone not observed to produce males and a male producing clone. Lamon (1991) found

that four of the F l progeny produced males while two showed no male production when

exposed to male-stimulating conditions. These results are similar to those of Innes and

Dunbrack (1993) and the present study where the ability to produce males varies among

clones of Daphnia pulex exposed to the same conditions in the laboratory.

4.4 Segl'"egatioD of Eazyme Loci
[ntraelonal and Lnterclonal lDatings of sexual clones generally did not result in a
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distortion of segregating ratios among the progeny. The low survival observed from

hatching to the release of first brood for the intraelonal matiDgs might result, in part, from

incompatibility of certain genotypic combinations. Genotypic incompatibility in the

intraclonal matings would be expressed as deviations in the expected proportion of

genotypes at marker loci within each cross, iftbe incompabDility were linked to the enzyme

markers (Innes and Hebert, 1988). FE progeny from five of the intraclonal matings were

examined and only one of these deviated from the expected genetic ratios. lnterestingly. the

deviation detected in the progeny possessed the heterozygous genotype and none of the

other homozygous classes were represented. This could be interpreted as an clGUDple of

inbreeding depression where there may be a superiority ofheterozygotes over homozygote:!

at individual loci that are affected (Charleswonh and Charlesworth. 1981), but it appears

that in the low numbers of progeny examined in this study (and therefore limited

infonnation), that for the majority ofcases the incompatibility among the genomes involved

in these rnatings did oat result in any strong deviations from the expected mtios fOf" the

enzyme marker loci (Innes and Hebert, 1988).

Thirteen tests for segregation of alleles in F I clones from the interclonal matings

were examined and there were five which deviated from the nonnal segregation ratios. Of

the five progeny genotypes that deviated, three showed heterozygte excess. This finding is

similar to the case from the intraclonal matings where the superiority of heterozygotes over

homozygotes at individual loci may have been affected (Cbarlesworth and Charlesworth,

1987).



..
There was a single incident where linkage among two enzyme loci could be tested

(Pgm and Pgt) from the interclonal mating progeny. There was no significant deviation from

expected ratios, all expected genotypes were represented in equal frequcncies. although low

sample size limits the ability to detect linkage. Unfortunately there were no instances where

the Pgm and Amy enzyme loci could be tested for linkage, as Hebert (1985) fouod evidence

for linkage among these: two loci for Daphnia wanke/tca (subgenus Ctenodaphnia), through

a selfed seven locus beterozygote and then by observing two-(ocus associations in the

progeny. Hebert (1985) found that only Pgm and Amy were significantly associated with a

recombination fraction estimated at 0.1 t. Innes (1989) also found these loci to be linked in

his mating experiments among three pairs ofenzyme loci, Got, Amy and Pgm for D. ob/usa.

Recombination estimates between Amy and Pgm were found to be 0.15.

4.5 Segregation ofRAPD loci

The RAPD technique was successful in generating a total of 81 loci from 8

primers, 46 of which were polymorphic. Therefore, on average, 5.75 polymorphic loci

were generated per RAPD primer. This finding is in mid-range when compared to

findings ofother RAPD studies. For example. on the lower end of the range, the number

of polymorphic loci generated per RAPD primer was only 1 for a study involving peach

(Chaparro et al.• 1994), 1.1 in a study on sweet cherry (Stockingeret al., 1996), and 1.6 in

a barley (Hordeum vulgare L.) investigation (Tinker et al.• 1993). Other studies show

average values similar to this study. These include 5.75 RAPD loci per primer for a

project involving a shrub, Haloragodendron lucasii. (Sydes and Peakall. 1998) and 5.9
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loci per primer for Brassica (Kresovich et aI., 1992). Some studies show greater

averages of polymorphic loci per RAPD primer. including a study on Eucalyptus

revealing 7.5 loci per primer (Verhaegen and Plomion, (996). a hydrozoan study which

had 10 polymorphic loci per primer (Levitan and Grosberg. 1993) and even 12

polymorphic loci per primer were found in a study on the bean plant. Phaseolus vulgaris

(8w et aI., 1997). ldeally, an investigator, when deciding ana molecular technique to use

to generate genetic markers, would be more inclined to choose a technique that revealed a

large nwnber of polymorphic loci per primer. Therefore studies that reveal a large

number of polymorphisms per primer (as found using the RAPD tethniquc) and have the

primer sequences listed that were used, have laid the ground work for other investigators

who may wish to lake the technique and apply it in a new way when studying that

organism or even a closely related onc.

The number of fragments that can be theoretically expected from one primer in an

amplification reaction with 100"/0 homology, and such a case occurs with RAPOs, can be

calculated from primer length and the complexity of the genome, assuming that the

nucleotides are present in equal proportions (Weising et aI,. 1995). Also. Weising et aI.

(1995) suggest that the distance between both priming sites, when only a single primer is

used, should not exceed a few kilobases, since smaller fragments are more efficiently

amplified than larger ones. Williams et ai. (1993) gave the equation:

b-(2000 x:4,la) x:C

where b is the expected number of fragments per primer. D is the primer length in
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nucleotides, and C is the complexity of the organism (for example. the genome size in

base paifS per haploid genome). In this case, Daphnia, a crustacean, has an estimated

genome size of t x 106 Kb (primrose, 1995), and therefore, 1.82 fragments per 10-

nucleotide (RAPO) primer are expected to have ((}()OlD bomology between primer and the

template DNA (all ten bases of the RAPD primer paired with the complementary ten

bases of the DNA template). This estimate not only indicates the total expected number

of polymorphic bands, but includes monomorphic hands as well. However. it does not

take into account the numerous amplified bands that have less than 100% homology.

The result ofmany investigations. according to Weising et aI. (1995), suggest that

the number of fragments per primer is in fact largely independent of the genome

complexity aClhe investigated organism and that, for example. plants with large genomes

(conifers) did not exhibit more complex. RAPD fragment patterns lhan plants with

comparatively small genomes, such as the tomalO. It aIso seems that the ploidy level, at

least in plants, does not appear to influence the number of fragments produced per primer

(Weising et aI., 1995). This independence of RAPD fragment number from genome size

may be explained by mismatch and primer competition as suggested by Weising et a1.

(1995). They state thal the outcome of the amplification reaction is detennined. in part,

by competition for priming sites in the genome, but primers preferably bind to target sites

with a higher degree of homology where a higher number is more likely to be available in

a genome that is more complex.

The number of polymorphic bands generated per primer is imponant, but what is



87
even more crucial is the number of polymorphic bands generated that. ultimately

conform to expected segregation ratios. In order for a genetic marker. such as a RAPD

locus. to be useful, each RAPD locus must show Mendelian inheritance. When using the

RAPD technique to generate markers, the ability to perform crosses with the study

organism and observe the inheritance of a RAPD marker is an invaluable asset (Avise,

1994; Levitan and Grosberg. 1993). This was the case for the current D. pulex study

where it was determined from the crosses performed that only 17.86% (to out of 56) of

the polymorphic RAPD loci generated did not conform to expected Mendelian ratios.

This value of 17.86% for Daphnia is al: the lower end of the values obtained for

organisms in other studies (for example. plants) for the percentage of polymorphic loci

not conforming to expected segregation ratios. For instance, Echt et aI. (1992) studying

diploid alfalfa detected 9 out of37 RAPD loci (24%) that had significant deviations from

expected Chi.square values. Stockinger et a1. (1996) found a value of 24% in sweet

cherry. Ronald et a1. (1997) found 29"/0 (9 out of 17) for oat. Nilsson et aL (1997)

detected 34% (84 of 244) in sugar beets, and footlad et al. (1995) found 41% (48 out of

118) in a study of a peach and aimond cross. There are studies, however, where low

percentages of deviant polymorphic RAPD loci were found. For example, in a study

using hydrozoans by Levitan and Grosberg (1993), it was found that only 4 of 133 (3%)

of the RAPD loci did not conform to expected segregation ratios, but even more

interesting, a study conducted by Tinker et at. (1993) on barley, found that none of the 31

RAPD loci deviated significantly from expected Mendelian ratios.



"The overall number of RAPD bands that were found to be polymorphic in the

present srudy was 46 of 56 10<:1 (82%), with the lengths of fragments ranging from 428­

1728 base pairs. This value is comparable to other studies. For example. in a !>tudy on

striped bass by Bielawski and Pwno (1997), 31 of 51 (60.8%) of the bands were

polymorphic, ranging in size from 160 - 3500 base pairs. An investigation of sugar beet

by Nilsson et aL (1997) found 65% of the bands to be polymorphic. lnterestingly, Gillies

et aJ. {I 997) examined Spanish cedar and discovered that 97 of 106 bands (91.5%) were

polymorph.ic, with the fragments being 300 - 3900 base pairs in size. There are

investigations where little or DO polymorprnsms were found using the RAPD technique.

For example, Palacios and Gonzalez-Candelas (1997) examined the rare and endangered

Limonium cavanj({esii and found that 131 fragments. 300 - 3500 base pairs in size, were

aU monomorphic, showing no variability among samples. Similarly, Mosseler et al.

(1992) studied the genetic diversity in red pine (Pinus resinosa Ait.) on the island of

Newfoundland compared to mainland Canada and discovered that for the 69 RAPD

primers used, the species was largely monomorphic.

The analysis of DNA fragment segregation in the progeny is extremely valuable

for studies of genetic relatedness For example, Weising et al. (1995) state that in the

study of an organism, segregation analysis is regarded as a starting point and only those

fragments showing the expected Mendelian inheritance should be included in calculations

of relatedness. They go on to stale that high levels of linkage between bands may distort

the results and therefore such loci should be avoided in studies of genetic relatedness.
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Although noo-Mendelian segregation ratios have frequently been reported for RAPD

fragments, deviations from Mendelian segregation have also been reported for other

markers such as RFLPs and a11ozymes. especially in connection with interspecific

crosses, backcrosses. or self-incompatibility genes (Weising et aI., 1995).

Heun and Heleotjartis (l993), suggested an explanation. specifically for RAPOs,

for the occurrence of non-Mendelian segregation. Since the RAPD technique utilizes

template DNA and many cycles of amplification, the fragments that arc amplified during

RAPD analysis probabLy represent the most successful produet5 among many more

competing candidates for amplification. Hence, Heun and Helentjaris (1993) state that

onc may be concerned that the overall genetic background could detennine which

candidates arc actually amplified and that marker results would only reflect the sequence

or annealing at a single iocus but be influenced by other regions of the genome. In other

words, one might expect that RAPDs would be subject to "epistatic" effects not usually

associated with other molecular markers (Heun and Helentjaris, 1993). In this case, a

specific fragment, present in two individuals, could be amplified in one genetic

background but not in another because of competition from other unlinked sites.

Therefore a conclusion that could open to misinterpretation may be drawn from the data

concerning this specific locus in both backgrounds (Heun and Helentjaris, 1993).

HaIlden et aI. (1996) performed a study on competition, occurring in the

amplification of aU RAPD fragments, as a source of error in RAPD analysis and they

found that the overaJ1 conclusion that could be drawn was chat certain primers and bands
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are more liable to errors than others. For example, it was observed that the overall error

rate per heterozygous situation was 14%. Therefore. given a randomly chosen

heterozygous situation that correctly shows an expected band. the probability that another

heterozygous situation for the same primer is correct is 90%. whereas given an observed

error, the probability that another heterozygous situation is correct is only 62%. The

corresponding probabilities at the band level are 93% and 44%, respectively, which

means that the degree of dependence within bands is greater than within primers. HaUden

et aI. (1996) discovered that the occurrence of genotyping errors increases with the

number of polymorphisms. They also found that competition resulting in the generation

of errors is not a specific feature of a cenain set of peR conditioDS. Error frequency

seemed to be independent of the type of template DNA and a tenfold change in DNA

concentration did not influence the final amount of peR product under specified

amplification conditions. The actual DNA sequence rather than the sequence copy

number seems to be the imponant determinant for successful amplification (Hallden et

at., 1996).

Reproducibility and reliability of RAPD bands bas been a concern of many

investigators. The problems of achieving reliability are usually eliminated once optimal

conditions, under which amplifications are efficient and consistent, have been determined

for a specific primer and these conditions shouJd be strictly followed (Ellsworth et at.,

1993; van Oppen et at., 1996). A study was performed in 1993 that specifically dealt

with reproducibility of RAPD bands, where five primers were used in six laboratories in
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North America. It was found by Penner et al. (1993), that the reproducibility of results

among the laboratories was affected by two factors. First. different Jabs amplified

different size ranges of DNA fragments and therefore small and large polymorphic

fragments were not always reproduced. Secondly, Penner et a1. (1993), found that

although reproducible results were obtained with four primers. reproducible results were

not obtained with the fifth primer using the same reaction conditions. Ovemll. it was

suggested that if the temperature profiles (especially the annealing temperature) inside

the tubes are identical among the lahs. lben the RAPD fragments are more Likely to be

reproducible (Penner et aI., 1993).

The polymorphic RAPD loci that did segregate according to Mendelian ratios in

D. pulex were further examined for linkage to eacb other. There were a total of 26 loci

that could be examined in 68 linkage tests, using the Chi-square test for independence.

No linkage was found among the RAPD loci, nor was there any linkage found between

the aHozyme and RAPD loci. Linkage of some loci was expected since the diploid

number of chromosomes is 24 for D. pulex. However, because of the smaU sample size,

linkage as tight as r = 0.30 (the recombination fraction) could be undetected (Maliepaard

etaL,1997).

4.7 Summary

Tltis study has provided 46 RAPD loci (representing genetic markers) that can be

useful in further studies on D. pulex. These loci have been shown to have a Mendelian

inheritance, which is of vital importance if these loci are to be further examined as
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genetic markers within and among different Daphnia clones. The loci are useful as

genetic markers, and with addition of other genetic markers. may aid investigators with

various aspects ofDaphnia biology, such as studies of natural variation in populations. In

addition. twenty-five monomorphic markers were also scored and can be useful in studies

comparing D_ pulex with other Daphnia species.
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III

APPENDIX I

Appendix I. List ofthe RAPD loci scored by each primer among all the Daphnia pula
crosses. The RAPD locus is denoted by the primer and the basepair length ofthe
fragment. A locus is characterized as: ~N" no segregation at the locus, "S" segregation at
the locus according to a genetic ratio. and ~S·~ segregation at the locus but not according
10 a genetic ratio.

RAPD Locus LP8A2-6 x LP8A2-6x DlSP2·1S x LP8A3-2 x
(primu-bases) DISP 1-7 DISP 2-17 DESP2·l7 DlSP 1-7
153·1536 N N N
153-1018 N N N
153-1688 S
153·1270 S·
153-1113 S
153-766 S
153-656 S
153-477 S·
153-578
153-1192
34-2130 N S
34-656 N N N
34-1741 S· S·
34-1505 S
34-992 S N
34-727 S· S
34-561 S S
34-433 S·
34-2550 S
34-1534
34-850
1:54-1131 N N
154-616 S
154-lnS
169-540 N N S·
169-1192 S
169-933 S
169-1825 S· S
169·1585 S N



Appendix I

66-168£ N N N
66-1419 N N N
66-666 S S S
66-428 S S
66-1192 S S' S
66-533 S S
66-1045 S
66-918 S
115-1045 N
1£5-1505 S
115-880 S
115-761 S
1£5-554 S
40-1453 N
40-989 S
40-855 S
177-901 N
177-1346 S'
177-1230 S
177-823 S
117-460 S
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