








1+1 Library and 
Archives Canada 

Bibliotheque et 
Archives Canada 

Published Heritage 
Branch 

Direction du 
Patrimoine de !'edition 

395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

• •• 
Canada 

AVIS: 

Your file Votre reference 
ISBN: 978-0-494-33422-5 
Our file Notre reference 
ISBN: 978-0-494-33422-5 

L'auteur a accorde une licence non exclusive 
permettant a Ia Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par !'Internet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

L'auteur conserve Ia propriete du droit d'auteur 
et des droits moraux qui protege cette these. 
Ni Ia these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

Conformement a Ia loi canadienne 
sur Ia protection de Ia vie privee, 
quelques formulaires secondaires 
ant ete enleves de cette these. 

Bien que ces formulaires 
aient inclus dans Ia pagination, 
il n'y aura aucun contenu manquant. 





FINITE-STATE PARSING OF CAYUGA MORPHOLOGY 

St. John's 

by 

©Dougal Graham 

A thesis submitted to the 

School of Graduate Studies 

in partial fulfillment of the 

requirements for the degree of 

Master of Arts 

Department of Linguistics 

Memorial University of Newfoundland 

September 2007 

Newfoundland and Labrador 



Abstract 

This paper presents a detailed description of the design and implementation of a comput­

erized morphological segmentation tool for Cayuga nouns. Speakers of polysynthetic First 

Nations languages are presented with an array of difficulties when it comes to word seg­

mentation and dictionary access. This program demonstrates that finite-state techniques 

are applicable to these morphologically complex languages and are worth further study and 

development in order to create useful tools for speakers and learners of thesis languages. 

ii 



Acknowledgments 

I would like to thank my supervisor, Dr. Carrie Dyck, for the constant support and insight 

she provided me during the course of this project and the writing of this document and for 

travel funding. As well, I thank Dr. Todd Wareham for providing me with an introduction 

to the world of finite-state computing. 

My parents have been very supportive throughout my work, and my academic career, 

for which I am very thankful. 

The kind donation of on-campus working space by Dr. Yvan Rose was also very much 

appreciated and saved me a lot of walking time. 

I would like to thank the department of linguistics at Memorial for helping me to stay 

well organised, despite my worst efforts, and for the funding I received. 

Lastly, I'd like to thank Krista Gammon for encouraging me to keep on working and 

persevering with me. 

lll 



Abbreviations 

Terminology 

FS Finite-State 

FSM Finite-State Machine 

FSA Finite-State Automaton 

FST Finite-State Transducer 

TTS Text-to-speech 

NLP Nat ural Language Processing 

kB Kilobytes 

Glosses 

UR Underlying representation 

SR Surface representation 

A Agent: arbitrary term used to denote the type of prefix that represents the subject of an 
active transitive verb 

P Patient: arbitrary term used to denote the type of prefix that represents the direct object 
of an active transitive verb 

1-3 1st to 3rd persons 

i Inclusive: the 2nd person is included in the speech act 

e Exclusive: the 2nd person is excluded from the speech act 

s Singular: one participant 

d Dual: two participants, including the speaker and another 

p Plural: three or more participants 

dp Non-singular: two or more participants 

m Masculine 

f(i) Feminine(-Indefinite): refers to females, a mixed group of people or 'someone' 

zn Zoic-Neuter: refers to animals or inanimate objects 

iv 



Contents 

Abstract 

Acknowledgments 

Abbreviations 

1 Introduction 

2 Prior Work 

3 

4 

2.1 On-Line Spanish Morphological Analyser/ Generator . 

2.2 Templatic Morphology and Reduplication . 

2.3 Syllabification ............... . 

2.4 Spelling Correction . . . . . . . . . . . . . 

2.5 Finite-state Applications to Polysynthetic Languages 

Finite-state machines 

3.1 FSA as a Model of Behaviour 

3.2 FSA as Linguistic Model 

3.3 Finite-state Transducers 

3.4 Bidirectionality 

3.5 Composition . 

3.6 Modularity 

The Cayuga Language 

4.1 Orthography . ... . .. 

4.2 Morphology of Cayuga Nouns 

4.2.1 Defective Nouns . 

4.2.2 Basic Nouns ... 

4.2.3 Inalienably Possessed Nouns (Body Part Nouns) 

4.2.4 De-verbal Nouns .............. . 

4.3 Overview of Cayuga Morpho-phonological Variation 

4.4 Implications of the Data . . . . . . . . . . . . . . . 

5 Issues in Implementation 

v 

ii 

lll 

lV 

1 

4 

5 

5 

8 

9 

10 

12 

12 

14 

15 

16 

17 

19 

21 

22 

23 

23 

24 

28 

31 

32 

33 

34 



5.1 Dictionary Access . . . . 

5.2 Computational Problems 

5.2.1 Non-determinism 

5.2.2 Long-distance Dependancies 

5.3 Summary 

6 Methodology 

6.1 Requirements ......... . 

6.1.1 Ideal Dictionary Output 

6.1.2 Thorough Testing of Morpho-phonological Rules . 

34 

38 

38 

40 

43 

44 

44 

44 

48 

6.1.3 Applicability of FS Framework to Morphologically Complex Languages 48 

6.2 Specifications . . . . . . . 49 

6.3 Tools and Data Structure 50 

6.3.1 Lexc . . . . . . . . 51 

6.3.2 Rule-like Notation 

6.4 Summary 

7 Results 

7.1 Final Program Components 

7.1.1 Lexicon Module 

7.1.2 Rules Module . 

7.1.3 Semantics Modules 

7.1.4 Interface ..... . 

7.2 Addressing the requirements 

7.2.1 Testing of Rules ... 

53 

54 

55 

55 

55 

69 

72 

73 

76 

76 

7.2.2 Generation & Segmentation 78 

7.2.3 FS Applicability to Polysynthetic Languages 78 

7.2.4 Ideal Dictionary Access . . . . . . . . . . . . 79 

7.2.5 Efficiency, Elegance and Usability- Abstract vs. Concrete Versions 79 

8 Conclusion 

8.1 Future Work . 

8.2 Summary Conclusions 

A Morpho-phonological and Clean-up rules 

vi 

83 

83 

84 

87 



B Code 89 

B.1 Abstract Version 89 

B.l.1 Abstract Lexicon 89 

B.l.2 Abstract Semantic Lexicon . 103 

B.2 Concrete Version •••• 0 ••••• 118 

B.2.1 Concrete Lexicon ...... 118 

B.2.2 Concrete Semantic Lexicon . 140 

c Test Cases 165 

C.1 Data for the Abstract Approach 165 

C.2 Data for the Concrete Approach . 177 

vii 



List of Tables 
4.1 Phonemic Inventory and Spellings . . . . . . . . 

4.2 Alternate Orthographies ............ . 

4.3 Basic Nouns Patient Prefix Allomorphs- C-stems 

4.4 Basic Nouns Patient Prefix Allomorphs- V-stems 

4.5 Inalienably Possessed Noun Agent Prefix Allomorphs- C-Stems 

4.6 Inalienably Possessed Noun Agent Prefix Allomorphs- V-Stems 

4. 7 Multiple Rule Applications . . . . . . . . . . . . . . 

6.1 Sample Cayuga lexc Lexicon. 

7.1 Basic Noun "allRoots" Sub-lexicon 

7.2 Two Rules for Optional Prefix Segment Removal . 

7.3 Morpho-phonological Rule Application ..... . 

7.4 lexc samples for semantics module and lexicon module 

7.5 Stages of Output from User Interface ...... . 

7.6 Rule-testing Samples ............... . 

7.7 Basic Nouns Patient Prefix Allomorphs- C-stems 

22 

23 

26 

27 

29 

29 

32 

52 

59 

71 

71 

72 

75 

77 

77 

7.8 Sizes of Final Segmenter FSTs . . . . . . . . . . . 79 

7.9 Time (in seconds) for 100 iterations of morpheme combination of the test 

corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 

7.10 Time (in seconds) for 100 iterations of segmentation of the test corpora 80 

C.1 Unpossessed Basic Nouns . 

C.2 Possessed Basic Nouns 

C.3 Deverbal Nouns . 

C.4 Defective Nouns . 

C.5 Inalienable Nouns 

C.6 Unpossessed Inalienable Nouns 

C.7 Unpossessed Basic Nouns. 

C.8 Possessed Basic Nouns 

C.9 Deverbal Nouns . 

C.10 Defective Nouns . 

C.ll Inalienable Nouns . 

C.12 Unpossessed Inalienable Nouns 

Vlll 

165 

166 

171 

172 

173 

176 

177 

178 

182 

183 

184 

187 



List of Figures 

7.1 Abstract Defective Noun Sub-lexicon Structure 56 
7.2 Abstract De-verbal Noun Sub-lexicon Structure 57 
7.3 Abstract Basic Noun Sub-lexicon Structure ... 58 
7.4 Abstract Inalienable Noun Sub-lexicon Structure . 60 
7.5 Abstract Lexicon Structure ........ 65 
7.6 Concrete Approach Basic Noun Lexicons 68 
7.7 Complete Program Flow Chart ..... 74 

IX 



X 



CHAPTER 1 

Introduction 

Recently, finite-state methodology has emerged as the primary framework for natural lan­

guage processing (NLP) and computational models of languages (Beesley and Karttunen, 

2003:pg. XV). In the past several years, much work has been done to create finite-state 

implementations of lexicons, spelling correction systems (Vilares et al., 2004), morphological 

parsers (Reichel and Weilhammer, 2004), speech synthesis programs and so forth for a wide 

variety of languages (Alegria et al., 2002; Beesley and Karttunen, 2003; Beesley and Kart­

tunen, 2000). The initial demand for the production of these sorts of systems tends to fall on 

the most widely spoken languages, and those with the longest linguistic traditions, such as 

English, Finnish, German, French and other European languages. Not much, if any, work, 

however has yet been done with respect to the specific needs of First Nations languages in 

particular or, more generally, polysynthetic languages. 

Such work would, however, be worthwhile. It would allow for a thorough and systematic 

evaluation of the posited morpho-phonological rules for the language studied. It would 

extend our understanding of finite-state machines (FSM) since polysyntehtic languages tend 

to be significantly more morphologically complex than the European languages traditionally 

studied. Furthermore, such a project could lead to further useful applications in the future 

such as an auto-segmenting dictionary or text to speech (TTS) system for the language. 

1 



In that light, I have created an FSM that recognizes1
, generates2 and segments all and 

only the valid noun forms of Cayuga (Iroquoian) with four primary goals in mind. 

The first goal is to demonstrate that useful segmentation tools could be quickly gener-

ated for morphologically complex languages in which speakers encounter difficulties because 

of segmentation issues. Secondly this project will provide a thorough testing of the morpho­

phonological rules currently posited for Cayuga nominal forms. Thirdly the project will 

determine the potential computational costs and usability issues of designing finite-state 

transducers (FST) with different kinds of output. Finally, this project will provide a pre­

liminary investigation into the applicability of the finite-state framework to polysynthetic 

languages. 

This document has been designed so as to satisfy the needs of the disciplines of both 

linguistics and computer science. With that in mind, it should be clear why this document 

is somewhat different from a standard linguistics thesis, and from a computer science thesis. 

The first half of the document (chapters 2-4) are primarily linguistically oriented. Chapter 

5 sits nicely on the fence and forms a bridge into the latter half of the document (chapters 

6-7) which are generally more computationally oriented. 

The document is organized as follows: chapter 2 discusses prior work in finite-state 

natural language processing; chapter 3 contains an overview of what finite-state machines are 

and how they work; chapter 4 is a discussion of Cayuga nominal morphology and morpho­

phonology; the 5th chapter describes some linguistic and computational problems arising 

from the data discussed in chapter 4. Chapter 6 lays out the requirements for the creation 

of the program and describes the tools and data structures used to create it. Chapter 7 

1 A finite-state machine that recognizes all and only the valid words of a language reports an error on 
any word that does not exist in the language and never reports an error for a word that does exist in the 
language. 

2 A finite-state machine can also be set to output all words that it recognizes (footnote 1). 

2 



contains a detailed explanation of the program and its components as well as an analysis 

of how well the program was able to meet the requirements laid out in chapter 6. Finally, 

chapter 8 contains an overview of lessons learned and potential applications for future work. 

3 



CHAPTER 2 

Prior Work 

The applications of FSMs have been an important domain for research in the fields of math-

ematics, computer science and more recently, linguistics. Numerous applications make use of 

FSMs to work with a wide variety of languages, from Spanish (Tzoukerman and Liberman, 

1990; Tinsley, Accessed: 2007 02 13), to Finnish (Koskenniemi, 1997) to Arabic and Malay 

(Beesley and Karttunen, 2000). 

Finite-state technology is widely used in the field of NLP (Beesley and Karttunen, 

2003: and references; Roche and Schabes, 1997: and references; Mohri, 1997: and references; 

Karttunen, 2001: and references), but the focus has been on European languages(Tzoukerman 

and Liberman, 1990; Kiraz and Mobius, 1998), with some attention paid to agglutinating1 

languages(Koskenniemi and Church, 1988; Ofiazer, 1994), but no attention to highly polysyn­

thetic2 languages. I will briefly describe here a few implementations of finite-state technol­

ogy that deal with a variety of languages in order to illustrate the versatility of finite-state 

methodology. 

1 Agglutinative: "A language in which words typically contain a linear sequence of morphs" (Crystal, 
2003:17) 

2Polysynthetic: "A language "characterized by morphologically complex long word forms" (Crystal, 
2003:359) 

4 



2.1 On-Line Spanish Morphological Analyser/Generator 

Finite-state methods are ideal for the decomposition and analysis of concatenative3 mor-

phology. John Tinsley developed a morphological analyser and generator for Spanish using 

XFST (Tinsley, Accessed: 2007 02 13). The machine takes user input in the form of sen-

tences, parses them into single-word tokens using a program called tokenize and analyses 

them individually using another program named lookup, then returns the result to the user. 

The analyser currently achieves approximately 85% coverage on unrestricted text. The 

machine parses each word-form from a lexical form into a surface form as follows: 

(1) Lexical: hablar+Verb+Preslnd+1P+Sg 
Surface: hablo 

Tinsley's model is a good demonstration of how finite-state machines can be applied to 

practical applications. The entered word is associated with a set of semantic tags describing 

the class of word (noun, verb, etc.) and also its semantic constituents (singular, plural, 

present, past etc.) all of this information is then output to the user in an easy to read 

manner. 

2.2 Templatic Morphology and Reduplication 

Initially, it is unclear whether FS technology can handle complex morphosyntactic phe-

nomena such as reduplication and templatic morphology. Recursive processes in natural 

languages, such as reduplication, are context sensitive and therefore cannot be generally 

represented as finite-state (Chomsky, 1956). However, these non-finite-state aspects of Ian-

3 Concatenative: "Characterised by the joining together of a linear sequence of morphemes" (Crystal, 
2003:93) 

5 



guage can be implemented in the finite-state for any specific case of a bounded length. (Frank 

and Satta, 1998) 

The finite-state framework can not only deal with concatenative morphology but also 

complex non-concatenative morphology such as reduplication as found in Malay or tern-

platic morphology as found in Arabic. Compile-replace is a formalism developed by Beesley 

and Karttunen (2000:375-420) to handle phenomena such as templatic morphology(2) and 

reduplication(3), and is a great example of the versatility and applicability of finite-state 

methods to a variety of morphologically complex languages. 

In (2) we see an example of templatic morphology in Arabic in which there is a conso-

nantal root template which can take a variety of vowels to convey aspect, voice, etc. 

(2) a. k _ t _ b -Ttiliteral Root 
b. C a C a C -Template 
c. katab -Surface Representation 

The compile-replace formalism makes it possible to create general templates (2-a, 2-b) from 

specific words (2-c). The consonantal and vowel templates can be separated by one FST and 

then processed by a second FST in order to determine the meaning of the triliteral root and 

the meaning of the CaCaC templatic morpheme. 

Without compile-replace, reduplication can be difficult to formalise in a traditional finite-

state framework. There are, essentially, two types of reduplication: fixed-length reduplication 

in which a constant number of phones or syllables are reduplicated or full-length reduplication 

in which an entire morpheme or group of morphemes form is copied. 

Fixed-length reduplication is easily formalised by specifying the criteria describing what 

must be reduplicated. Full-length reduplication, however, is of variable length and relies 

6 



on information that lies in the lexicon (i.e., a stem, or some other morpheme group) of 

potentially unbounded length. This means reduplication cannot easily be specified using 

only a normal rule-based formalism, since it does not have access to lexical information. 

In (3) we see an example of the type of full-stem reduplication that compile-replace can 

handle. 

(3) a. buku 
book 
book 

b. buku -buku 
book -Reduplication (Plural) 
books 

The programmer can specify "buku" as a stem that may be reduplicated and the compile-

replace algorithm will take such information into account, producing the form in example 

(3-b ). Compile-replace can also handle less complex types of reduplication such as redupli-

cated prefixes and affixes. One need only specify the sub-lexicon containing the forms that 

can undergo reduplication and the rule for processing them and then XFST is able to copy 

the form according to the specifications.4 

This work demonstrates the finite-state framework's ability to deal with both concatena-

tive and non-concatenative morphology. The following discussion explains other applications 

of the finite-state framework in NLP such as syllabification and spelling correction. 

4XFST and the notion of "sub-lexicon" are detailed in chapter 6.3 

7 



2.3 Syllabification 

Text to speech (TTS) systems often face the problem of creating a natural intonation contour 

and stress pattern in the words they produce. Such patterns are generally based at least 

partly upon the syllable structure of the words being spoken. It is therefore often very 

desirable to have an algorithm for the syllabification of word-forms. 

With these applications in mind, Kiraz and Mobius (1998) created a finite-state ap­

plication in order to syllabify German and English words. For example, the English nouns 

below in (4) and (5) 5 take different syllabifications, affecting the pronunciation: 

(4) a. Nightrate 

b. [nart '-.Iet] 

(5) a. Nitrate 

b. [na1-t~et] 

As can be seen in (4)-(5) the different syllabifications affect both the voicing of the [.1] and 

the release of the [t]. 

This, particular example, however, could not at first be accounted for using Kiraz et al. 's 

syllabification system. Because the two words are underlyingly identical (UR: /nait.Iet/), 

the machine has no way of determining that there is a difference between the two. In 

this case, Kiraz et al. were able to encode references to morpheme boundaries as a way 

of dealing with this specific problem. By specifically defining a morpheme boundary, the 

machine was able to syllabify taking that reference point into account, thereby generating 

5 From (Kiraz and Mobius, 1998) 

8 



proper syllabifications for most compound nouns. However, Kiraz et al. mention (without 

examples) that in some cases even the specific designation of morpheme boundaries was not 

sufficient for the machine to determine which syllabification was correct, and so in some 

cases the most common syllabification was not always correct. 

The Kiraz et al algorithm also used a probabilistic 'weighting' method to determine 

which syllabification was most likely in a given case. This allowed the machine to run more 

quickly (as per the demands of a TTS system), but had the drawback of occasionally pro­

ducing incorrect output if the most common syllabification was not always correct. Despite 

these algorithmic drawbacks, Kiraz et al. 's system is a good example of the use of the finite­

state framework for the development of a complex high speed NLP application. A further 

example of such an application follows below. 

2.4 Spelling Correction 

As a back end to future NLP work in Basque, Alegria et al. (2002) created a finite-state 

spelling correction program and analyser/generator composed of three separate modules. 

This modular approach lends itself well to the finite-state framework, as discussed in more 

detail in §3.6. 

The first module checks the spelling of a word against the standard Basque spelling. If 

unable to find a correct spelling in the first module, the machine then employs the second 

module to see if the word conforms to certain dialectal variances or common competence 

errors. Finally, should both those options fail, the program accesses a third module that 

attempts to guess what form the user was attempting to produce such that it might be 

corrected. The advantage of such an approach is that one can implement all three dictionary 

types in a single machine. The second and third modules are especially useful for Basque, 

9 



since there are numerous regional dialectal variances. 

Another spell-checking/ error-correction system has been developed for Galician (Vilares 

et al., 2004), and a system has been developed for Turkish as well (Oflazer, 1994). This wide 

variety of languages for which such systems have been developed demonstrates that finite­

state techniques are widely cross-linguistically applicable. Additionally such systems have a 

variety of uses, for example in checking potential mis-spellings in an online dictionary. 

2.5 Finite-state Applications to Polysynthetic Languages 

One motivation for this project was to attempt to determine if the finite-state framework 

would be computationally and practically useful for designing tools for morphologically com­

plex languages. 

Most languages for which finite-state approaches have been used are less morphologically 

complex than First Nations languages (§2). There are several aspects of First Nations 

languages that could cause problems for the finite-state framework and it is necessary to 

determine if the framework is computationally adequate for the needs of these languages. 

Most Indo-European languages do not have extensive obligatory prefixation, and fur­

thermore only generally allow for a small number of a small set of prefixes to attach to a 

word, with very few changes occurring; the same is true of their suffixes. Cayuga words, 

however, require a high number of obligatory prefixes and many allomorphic rules. 

For example the finite-state analyzer of Spanish applies only 4 replace rules to deal with 

changes to the form of noun stems and affixes (Tinsley, Accessed: 2007 02 13). Cayuga, on 

the other hand, will minimally require 10. The greater number of morpho-phonological rules 

and the need to encode long-distance dependancies are the two primary potential sources of 

10 



computational complexity facing the design of a finite-state application for a First Nations 

language. 

As discussed in §2.2, other very morphologically complex languages, such as Arabic and 

Malay, have benefited from applications implemented in the finite-state framework (Beesley 

and Karttunen, 2003). However, these languages display a different kind of complexity of 

morphology from First Nations languages. While reduplication and templatic morphology 

are very complex, they are essentially different from the large degree of prefixation, morpho­

logical variation and long-distance dependancy that occur in First Nations languages. The 

following chapters demonstrate that despite these differences and challenges, it is generally 

plausible to implement polysynthetic morphology in the FS framework. 

11 



CHAPTER 3 

Finite-state machines 

Before describing the structure of my program, it is necessary to define finite-state machines 

and some of their formal properties. 

Abstractly, finite state machines (FSM) are a model of behavior, which is described 

as consisting of states, transitions and actions. 1 More concretely, they can be viewed as 

flexible computer programs that can implement a wide variety of NLP tasks (§2). FSMs 

can be broken down into two main sub-categories, the finite-state automata (FSA), and the 

finite-state transducers (FSTs). In this chapter I will briefly discuss the properties of both 

FSAs and FSTs. 

3.1 FSA as a Model of Behaviour 

An FSA is the simplest type of FSM, and can be used to model a behaviour. An FSA takes 

input from a user, but the only feedback it gives is whether or not the input is valid. It can 

also generate a list of all valid input sequences. 

Diagrammatically, an FSM is much like a flow chart: one starts at a given point and 

moves following the appropriate arrows in a diagram. Each circle is called a 'state' (1-a) 

(generally denoted with the letter 'q' and a subscript number). A circle marked with an 

arrow represents the initial, or starting, state; and a circle with double lines is a potential 

1 A full review of basic information on FSMs, can be found in Beesley and Karttunen (2003) and Nederhof 
(1996) 

12 



final state. Each arrow joining two states is called a transition (1-b). Transitions have 

conditions (1-c) attached to them that determine which state to move to next. 

(1) a. States: @ ~ ~ 
b. Transitions: -t 

c. Conditions/ Actions: "open door", "close door", etc. 

An action can be performed either upon entering a state, leaving a state or during a tran-

sition. (Wikipedia, 2006; Beesley and Karttunen, 2003; Sproat, 1992). In the following 

example I will use the concept of a door, and the user's input is the action of either opening 

or closing the door. The machine shown in (2) can generate a list of all valid sequences of 

opening and closing the door. 

(2) An FSA representing the use of a door (Wikipedia, Accessed: 2006 03 24) 2 

From the 'open' state the door can be 'closed' by performing the 'close door' action and 

following the topmost arrow to the 'closed' state. Or, if there are no more actions, then the 

machine stops since 'open' is a valid final state. If the machine moves to the 'closed' state, 

it can either stop if there are no further actions, or it can perform the 'open door' action to 

move once more into the 'open' state. 

However, if one were to try to tell the machine to close the door from the closed state, 

2This example from Wikipedia was used because of its simplicity and clarity. More complex examples 
can be found in (Beesley and Karttunen, 2003), (Sproat, 1992) and elsewhere in this document. 

13 



there would be an error because the 'close' action flows into the 'closed' state, not out from 

it. The machine can stop running when it reaches either final state, or it can continue 

indefinitely so long as the actions being performed are a series of alternating openings and 

closings. 

3.2 FSA as Linguistic Model 

FSAs can also model linguistic behaviour, by treating transitions as symbols, with all possible 

paths through an FSA defining a 'language'. A formal language means merely the collection 

of strings3 that the FSA will recognize and generate. Suppose we have a language; "Splort"; 

with only four words, as defined below: 

(3) Language 'Splort': 

a. Cat 
b. Cats 
c. Cart 
d. Carts 

This language can be expressed by the following FSA: 

(4) 

The automaton diagrammed in ( 4) can both recognize and generate all the strings in the 

language Splort. If the FSM were to generate all words it would generate each possible word 

3 A string is a linear sequence of symbols (words, phones, morphs, graphs, or even features can all be viewed 
as symbols) that can be recognized by the machine, where each symbol is an indivisible unit. Symbols are 
defined within an FSM, such that one machine make take words to be indivisble symbols and another letters. 
In the context of my program letters can be accepted as the basic symbols along with a few diacritics to 
mark morpheme and word boundaries. 

14 



in sequence. For example, starting in state q1 , the only possible option for the first output 

symbol is 'c'. Once the machine has output 'c' it moves to state q2 . 

From q2 the machine will have no choice but to output 'a' and move to q3 . At q3 , 

however, the machine will have to choose between moving to q4 and outputting 'r', or q5 and 

outputting 't'. If the machine moved to q5 it could stop there and go back to q1 to output 

another word, or it could continue on to q6 and output 's'. If the machine moved to q4 , on 

the other hand, it would have to continue on at least until q5 before stopping. Once it was 

done outputting one form, it would then move on to another until all possible paths through 

the machine had been completed. 

The automaton can also check if a given word exists in the language by comparing the 

first symbol (letter) in a candidate word against all possible transitions from the start state 

q1 . If there is a transition whose condition matches the first letter from the given word, the 

automaton would move on to the state joined by that transition (q2 ) and for a transition 

whose condition matches the next symbol in the word. If, however, there are no transitions 

matching the next letter, or if the automaton runs out of letters while in a non-final state, 

then the automaton can tell us that the given word does not exist in the language. If 

for example, we wished to test that the word 'can' is in the language "Splort" using (4), 

the machine would arrive at state q3 , but it would then report an error, since there is no 

transition with the condition 'n' attached to it leading out of q3 . Similarly, the word 'car' 

would also fail, because q4 is a non-final state, so 'car' is not a word that exists in "Splort". 

An FSA can both recognize and generate a language that consists of any number of 

strings. Finite-state Transducers, described below, are even more powerful: they are able to 

represent the relationship between two languages. 

3.3 Finite-state Transducers 

A more complex type of FSM is the finite-state transducer (FST). An FST not only generates 

and recognizes valid strings from a language, but also generates output. It maps the relation 

between two strings (or languages) by allowing one to convert one string (or language) 

into another (Beesley and Karttunen, 2003; Nederhof, 1996; Sproat, 1992). This model can 

implement transformational rules that convert an underlying form into a surface form and 

vice-versa. 

15 



Example (5) diagrams an FST which converts between underlying and surface forms, 

modeling allomorphy. 

(5) An FST transducing UR to SR for cat(s) and car(s): 

In the FST formalism, all characters that appear above a transition line are part of 

one language, often referred to as the "input language", while those below the line are 

their counterparts in the so-called "output language". The FST in (5) translates between 

the underlying representation and the pronunciation by applying the rules for plural suffix 

allophones (ie: devoicing [z] following a voiceless obstruent). If the above machine were to 

be fed the string [kffitz] it would output [kffits]. Conversely it would also be able to output 

[kffitz] as the UR form if it were given [kffits] as the SR. This is due to the property of 

bidirectionality, described below. 

3.4 Bidirectionality 

All FSTs, are actually bidirectional. This means that they can be run just easily "backwards" 

as "forwards". This distinction does not mean running from a final state to a start state, 

but instead it means generating an 'input' from an 'output'. The labels 'input' and 'ouput' 

are really only useful for distinguishing which specific language one is working with in the 

context of a given FST. 

Bidirectionality is useful because the machines created are able to fulfill the roles of 

(a) generator/recognizer of 'input' forms, (b) generator/recognizor of 'output' forms, (c) 

translator between 'input' and 'output' forms and, (d) generator/recognizer of input-output 

forrri pairs. In the case of (a), the machine just ignores the "upper" transition labels, acting 

like an FSM. For (b) it does the same but in reverse, ignoring the "lower" transition labels. 

To account for (c) the machine follows the "upper" or "lower" path and outputs the symbols 

on the other side of the transition. For (d) the machine outputs both symbols on each 

16 



transition as it follows the path. 

One could take a collection of underlying morphemes and use them to generate the 

surface forms, and with the same FST then take the surface forms and break them down 

into their constituent parts again. All FSTs described in §2 are bidirectional. For example, 

the German/English syllabification system described in 2.3 could de-syllabify words as well 

as syllabify them. 

The bidirectional properties of FS machines greatly increases their usefulness and ap­

plicability to NLP. The specific applications of bidirectionality will be discussed in greater 

detail in chapter 6. 

3.5 Composition 

Up until now, I have discussed FSTs as individual discrete units. Here I will explain the 

composition operation that allows multiple small FSTs to be used as component parts of a 

single larger FST. Any two FSTs can be joined together into a single FST by composition 

(Kaplan and Kay, 1994). Composition allows us to initially declare two rules, for example, 

a-+c and c-+g and then morph them into a single rule: a-+g. This only works when the 

output side of the first machine is identical to a valid input form of the second machine. 

Where there is such an occurrence the original output of the first machine is replaced with 

the output of the second machine. 

Example (6) encodes a concatenation of symbols as a transducer where the UR and 

SR are identical. Example (7) encodes a rule that defines a morpho-phonological change. 

Example (8), discussed later, is the product of the composition of (6) and (7), a machine 

that encodes the relationship between differing URs and their SRs. 

(6) 

17 



(7) 

Composition works not only on single rules but also on entire FSTs; allowing us to join 

them together with rules. In order to compose the two transducers defined in (6) and (7) 

all one needs to do is look for an output sequence from (6) that is identical to the input 

sequence of (7) (tz). That output sequence ((6): q3 ~ q5 ~ q6) is then replaced with the 

output from (7) (ql ~ q2 ~ q3: ts): 

(8) 

We can see now in (8) that the output for q3 ~ q6 has changed to match the output 

from (7). 

The process of composition means that we can separately formulate all the rules that 

we wish to implement, and then compose them together to create a final product. If we 

determine that a rule is mis-ordered or unnecessary, it can be moved or changed and then we 

can re-compose the rules. This mechanism emulates the sort of cascading or ordered rules 

commonly used to define morpho-phonological alternations. 

Composition means that FSTs are almost infinitely expandable, as long as we stay 

within the bounds of disk space and processing power. Some examples of the power of FSTs 

were described above (chapter 2) including Alegria et al. 's (2002) spelling correction system, 

demonstrating the power of modularity in FSTs by being constructed of three separate 

modules composed together as one. 

The drawback to composition is that can cause an FST to become very complex. The 

18 



un-minimized product of the composition of two FSTs has a number of states equal to the 

number of states of each original machine multiplied together. In some cases few of these 

extra state are redundant and cannot be removed, potentially allowing machine size to double 

with each composition. (Kaplan and Kay, 1994) If we are constantly replacing a rather simple 

group of states and transitions with a much more complex group, it is easy to imagine how 

complexity can be introduced rather quickly. 

3.6 Modularity 

A final property of FS machines is that of modularity. When creating a finite-state machine to 

recognize and generate valid words in a language, it is common practice to create a number of 

separate finite-state machines that each shoulder some small part of the burden of recognition 

and generation and join them together into a single final product using composition. This 

concept is known as "modularity" (Beesley and Karttunen, 2003:284). Broadly, it is possible 

to look at two main modules for most finite-state implementations of morphological parsers: 

the lexicon module, and the rules module. 

The lexicon module is essentially a representation of the mental lexicon of underlying 

root forms and affixes, with as little redundancy included as possible. As few semantically 

equivalent allophones were included as possible. The idea is to not represent any regular 

phonological alternations, in order to reduce the storage of redundant forms in the lexicon. 

This module contains a description of which morphemes are valid in the language, and to 

which other morphemes they can join, and under what conditions. 

The rules module can be viewed as the sum of several separate transducers, each of 

which represents some sort regular alternation in the language. For example, one rule might 

be /s/--+ [z] / Cvd- (as in (5)). By then joining these rules and the lexicon, a final machine 

is created which can join morphemes together and apply any applicable alternation rules to 

those joined morphemes. 

Polysynthetic First Nations languages may require either more complex lexicon modules, 

or more complex operators for implementing some morpho-phonological rules than have been 

used with other languages. There is also some question of how much of the alternation 

should be viewed as a result of morpho-phonological rule derivations and how much should 

be viewed as lexical (see §6.1.1.1). I will attempt to discuss those parts of Cayuga that may 

19 



cause problems for either the lexicon module or the rules module, given current methodology 

for implementing those modules. The following chapter contains the Cayuga data which 

was implemented in my program as well as a description of its morphology and morpho­

phonological processes. 

20 



CHAPTER 4 

The Cayuga Language 

Cayuga is an Iroquoian language, closely related to Oneida, Seneca and Mohawk. Tradition­

ally, the Cayuga and Seneca peoples lived in modern day Cayuga County, New York, but 

they have since relocated and Cayuga is currently spoken by approximately 100 people at Six 

Nations (Froman et al., 2002). Cayuga is a polysynthetic language, characterized by "mor­

phologically complex, long word-forms" (Crystal, 2003:359). Combining affixes and roots 

often results in morphophonemic changes, making the final word difficult to decompose, and 

the stem hard to identify even for native speakers. If one cannot identify the stem, then it 

becomes impossible to search for a stem in a dictionary. 

Given that Cayuga has numerous obligatory prefixes, there are too many forms to 

feasibly list in a dictionary. For this reason, dictionaries are organised by stems, or using 

a designated type of citation form. This means that a program that segments word-forms 

automatically would be invaluable in that it would make Iroquoian dictionaries accessible 

for everyone; the machine could determine the stem and prefix and look them up for the 

user. As it stands, there are a variety of ways to encode dictionaries for obligatorily prefixing 

polysynthetic languages but they are neither simple nor concise (See §5.1). 

As a subset of the words of Cayuga the nouns are less complex than verbs, especially 

when considering that verbs can incorporate nouns. Despite being less complex, they are 

still rather complex relative to most common Indo-European languages and demonstrate 

important characteristics of Cayuga words in general, like obligatory prefixation. This com­

bination of general complexity, yet relative simplicity compared to Cayuga verbs makes the 

nouns an ideal place to start work on the morphological parsing and segmentation of Cayuga 

words using FSTs. 

This chapter will briefly discuss the orthography and spelling conventions of Cayuga, 

followed by a description of the morphology of the four classes of nouns that are treated by 

the program and a brief discussion of some of the morpho-phonological processes undergone 

by Cayuga nouns. 

21 



4.1 Orthography 

There exist two commonly used orthographies for Cayuga: the standard Henry Orthography 

and the linguistic orthography. The sound-to-symbol combinations for each are described in 

table 4.1 below. The primary dissimilarities lie in the representation of the plosives and the 

affricates. 

Table 4.1: Phonemic Inventory and Spellings 

Phonetic Henry Linguistic Phonetic Henry Linguistic 
Realizations Orth. Orth. Realizations Orth. Orth. 

[ d, t l d t [ i l l l 

[ th l t th [ a ] a a 
[ ds, c8, ts, if] J ts, tsy [ e] e e 

[ tsh] ts tsh [ 0 l 0 0 

[ g, k l g k [ u l u u 
[ s l s s [ £ l ~ ~ 
[ n] n n [ 0 l Q Q 
[ r] r r 
[ h l h h 
[? l ' ' 

For this project I have used a modified orthography to represent surface forms of words 

rather than either of the standards. The standard orthographies represent several predictable 

processes, including accent placement, and laryngeal metathesis. 1 

Table 4.2 demonstrates some of the differences between the orthographies. Note that 

the unmodified orthography essentially omits diacritics. 

The advantage of such a modified orthography is that it allows me to focus on implement­

ing the morpho-phonemic rules component, without needing to worry about processes such 

as accent placement and laryngeal metathesis. The accent placement rule, despite being 

predictable, is rather complex, and is not relevant within the scope of this project. Fur­

thermore, an implementation of laryngeal metathesis would require a working stress accent 

1The unmodified Henry orthography and the linguistic orthography use diacritics and spelling metathesis 
to encode LM. LM is not actually an instance of metathesis; it is a process of coalescence which affects 
metrically weak syllables. 

22 



Table 4.2: Alternate Orthographies 

Modified Representation hE2nahsi'da 'geh sahsi'da 'geh 
Henry Orthography hE2nahs 'ida'geh s~hs:ld'ageh 

Linguistic Orthography hE2nahs 'ita'keh s~hs:lt 'ageh 

placement algorithm which in turn requires a syllabification algorithm, including a means 

of syllable counting. The drawback to using a modified orthography such as this, however, 

is that it means that users will not be able to type words directly into this version of the 

machine since the spelling will differ from the standard spelling. At a later date, however, 

it is entirely feasible to create modules which translate to/from the modified representation 

into (a) the actual Henry orthography, or (b) the Linguistic orthography and vice versa. 

4.2 Morphology of Cayuga Nouns 

This discussion of the morphology of Cayuga is based on data from (Froman et al., 2002). The 

nouns of Cayuga can be divided into five basic classes or types of nouns: defective nouns, 

basic or "regular" nouns, inalienably possessed nouns, de-verbal nouns and instrumental 

nouns. 2 

4.2.1 Defective Nouns 

The simplest of the nouns are the defective nouns, which have no internal morphological 

structure. They do not take the regular affixes of other nouns as described below; instead 

they are composed of single lexicalised chunk: 

( 1) gwisgwis3 

pig 

pzg 

2Instrumental nouns display near identical properties to the de-verbal nouns and will therefore not be 
treated by this project. 

3Not all defective nouns are apparent reduplicated forms e.g., tehtg'(ground hog, woodchuck, gopher) 

23 



These nouns are computationally the simplest because they can each be stored as a single 

unit with no need for the finite-state transducer4 to try to segment them. They are also the 

most accessible for users of traditional dictionaries since their meanings are invariable and 

they have no root form or alternate prefixes and are therefore easily located in a dictionary. 

4.2.2 Basic Nouns 

Basic nouns in Cayuga can take one of two forms; either possessed or unpossessed. All basic 

nouns consist of a prefix, a noun stem and a noun stem former. The prefix varies depending 

on whether the noun is possessed or not, and the type of the noun. 

Unpossessed Basic Nouns 

As described in example (2) below, unpossesssed basic nouns take either ga-, o- or a- as 

their prefix. The choice between the three prefixes is arbitrary and must be learned by the 

speakers. 

{ 

ga- (3znA) 
(2) o- (3znP) 

a- (3znA) 
} + noun stem +a' (NSF) 

Example (3) gives a representative sample of nouns stems taking each of the three unpos­

sessed prefixes. 

(3) Sample Basic Nouns - Unpossessed 

a. ga+ 'wahsa: +a' 
3znA earring NSF 
earring(s) 

b. o+ 'nhghs +a' 
3znP egg NSF 
egg(s) 

4See §3.3 for more info on FSTs 

24 



c. a+ ahdahditr +a" 

3znA sock NSF 

sock(s) 

Some basic nouns have a choice to take either ga- or o- in their unpossessed form such as 

the word for in example (4-a): 

( 4) a. ga- j ihoha: -a 
3znA- straight pin(s) -NSF 
straight pin(s) 

b. o- jihoha: -a 
3znP- straight pin(s) -NSF 
straight pin(s) 

Similarly, some basic nouns have the option to drop the 3znP prefix o as in example (5) 

(5) a. ohgna"da" 

potato(es) 

b. hgna"da" 

potato(es) 

Possessed Basic Nouns 

The possessed basic nouns take one of 12 prefixes called 'patient prefixes' that denote the 

gender, number and person of the possessor(s). All basic nouns take the same noun stem 

forming suffix -a'. Possessed basic nouns have the form described in example (6-a): 

( 6) a. Patient Prefix+ noun stem +a' (NSF) 

b. age+ tsgo'd +a" 
lsP balsam fir NSF 
my balsam fir 

25 



c. Qkni+ tsgo 'd +a' 
ldP balsam fir NSF 
our (dual) balsam fir 

In examples ( 6-b) and ( 6-c) the noun stem begins with a sequence of characters that matches 

the "elsewhere" column in table 4.3. Therefore it attaches prefixes such as age- or yQkni­

from that column. 

Prefixes undergo both morpheme-initial and morpheme-final alternations, resulting in a 

great deal of allomorphy. The morpheme-final alternations are dependant upon the following 

stem-initial phones (as shown in tables 4.3 and 4.4). Depending on the final phones of the 

prefix and the initial phones of the stem, phones from either the stem or the prefix may be 

deleted or altered. 

Table 4.3: Basic Nouns Patient Prefix Allomorphs- C-stems 

I Gloss I Prefix URI ,CV I hV I hCV I nV I r I y /w I Elsewhere5 I 
lsP (w)ag+ ag- ak-*6 age- ak- ag- ag- age-
ldP (y)Qkni+ Qkni- Qkni- Qkni- Qkni- Qkni- Qkni- Qkni-
lpP (y)Qgwa+ Qgwa- Qgwa- Qgwa- Qgwa- Qgwa- Qgwa- Qgwa-
2sP sa+ sa- sa- sa- sa- sa- sa- sa-
2dP sni+ sni- sni- sni- sni- Sill- Sill- sni-
2pP swa+ swa- swa- swa- swa- swa- swa- swa-
3msP ho+ ho- ho- ho- ho- ho- ho- ho-
3fisP (ya)go+ go- go- go- go- go- go- go-
3znsP (y)o+ 0- 0- 0- 0- 0- 0- 0-

3mdpP hodi+ hodi- hodi- hodi- hodi- hodi- hodi- hodi-
3fidpP (ya)godi+ godi- godi- godi- godi- godi- godi- godi-
3zndpP (y)odi+ odi- odi- odi- odi- odi- odi- odi-

5 The C-stem conditioning environments listed here (as well as for inalienable nouns below) are partial. 
For discussion of why this is the case, please see §7.2.1 

6 An * indicates that the first segment of the stern is deleted 

26 



Table 4.4: Basic Nouns Patient Prefix Allomorphs - V-stems 

I Gloss I Prefix UR I i Ia I e/fi I o/Q I 
lsP (w)ag+ ag- ag- ag- ag-
ldP (y)gkni+ gkn- Qgy- gkn- gkn-
lpP (y)ggwa+ ggw~-* ggw- ggw- ggy-
2sP sa+ s~-* s-a s- s-
2dP sni+ sn- j- sn- sn-
2pP swa+ sw~-* sw- sw- J-
3msP ho+ ho-* ho-* haw- h-
3fisP (ya)go+ go-* go-* gaw- g-
3znsP (y)o+ o-* o-* aw- -

3mdpP hodi+ hod- hon- hon- hon-
3fidpP (ya)godi+ god- gon- gon- gon-
3zndpP (y)odi+ od- on- on- on-

The obligatory prefixation of the basic nouns, both possessed and unpossessed, can 

obscure the initial vowel segment of the noun stem. This means that these stems can be 

very difficult to locate in a dictionary. For example, when combined with the first person 

possessive prefix, the noun stem for 'egg' loses the glottal stop: [ aknhQhsa ']. If na·ive speakers 

were trying to look for the root in the dictionary, they might well search for a root looking 

like [ -nhQhs-] rather than [- 'nhQhs-], assuming that they were even able to recognize that 

there were in fact two entities, the stem and the prefix. 

In contrast to the prefix-final alternations, the prefix-initial alternations exist because of 

certain 'deleting phones' that are deleted word-initially. Example (7) below gives an example 

of a prefix in a position where its initial [y] is deleted (7-a) and in a position where the initial 

[y] remains intact (7-b). 

(7) a. SR: o- 'nhghs +a' 
UR: (y)o+ 'nhghsa' 
3znP+ egg+ NSF eggs(s) 

b. SR: de- yo- 'nhghs +a:ge: 
UR: de+ (y)o+ 'nhghs +age: 
dualic+ 3znP+ egg +more-than-2 two eggs 

27 



The prefix-initial and prefix-final allomorphy described above is true of all pronominal prefix 

types including not only basic noun prefixes, but also inalienable noun and verbal prefixes. 

4.2.3 Inalienably Possessed Nouns (Body Part Nouns) 

Inalienably possessed nouns occur in three forms, a normal possessed form, a basic noun 

type of unpossessed form and a lexicalised unpossessed form that occurs only rarely and is 

idiomatic. 

Possessed Inalienables 

The structure of the inalienable nouns is similar to that of the possessed basic noun. In­

alienable nouns take an obligatory prefix denoting the gender and person of the possessor, 

and an obligatory locative suffix. Rather than take patient prefixes, as the basic nouns do, 

they instead take one of 14 agent prefixes (see table 4.5). Example (8) below illustrates the 

structure of possessed inalienable nouns: 

(8) Agent Prefix+ inalienable noun stem +a'geh (locative suffix meaning 'on') 

Example (9) gives two examples of inalienably possessed nouns: 

(9) Inalienably Possessed Nouns (Body Parts) 

a. s+ n~ts +a 'geh 
2sA arm on 
(on} your (sg) arm 

b. e+ n~ts +a 'geh 
3f(i)A arm on 
(on} her arm 

Agent prefixes display the same two types of allomorphy as described above for the 

possessed basic noun patient prefixes, including deletion of word-initial segments and prefix-

28 



Table 4.5: Inalienably Possessed Noun Agent Prefix Allomorphs - C-Stems 

I Gloss I Prefix UR I 'CV I hV I hCV I nV I r I y /w I Elsewhere I 
lsA g+ k-* k-* k-* k- g- g- ge-
lidA ( e)kni+ kni- kni- kni- kni- kni- kni- kni-
lidA (e)tni+ tni- tni- tni- tni- tni- tni- tni-
ledA (y)akni+ akni- akni- akni- akni- akni- akni- akni-
lip A (e)dwa+ dwa- dwa- dwa- dwa- dwa- dwa- dwa-
lepA (y)agwa+ agwa- agwa- agwa- agwa- agwa- agwa- agwa-
2sA (h)s+ se- s-* se- s- s- s- se-
2dA (h)sni+ sni- sni- Sill- Sill- sni- sni- sni-
2pA (h)swa+ swa- swa- swa- swa- swa- swa- swa-
3msA ha+ ha- ha- ha- ha- ha- ha- ha-
3f(i)A (y) [Q/~/e/ag]+ e- e- e- e- e- e- e-
3znsA gaj(y)/w+ ga- ga- ga- ga- ga- ga- ga-
3mdpA hadi+ hadi- hadi- hadi- hadi- hadi- hadi- hadi-
3f(i)dpA gagjgaejga:g+ gae- gae- gae- gae- gae- gae- gae-
3zndpA gadi+ gadi- gadi- gadi- gadi- gadi- gadi- gadi-

Table 4.6: Inalienably Possessed Noun Agent Prefix Allomorphs- V-Stems 

I Gloss I Prefix UR I i Ia I e/£; I o/Q I 
lsA g+ g- g- g- g-
lidA ( e)kni+ kn- gy- kn- kn-
lidA (e)tni+ tn- gy- tn- tn-
ledA (y)akni+ akn- agya- akn- akn-
lip A (e)dwa+ dw~- dw- dw- gy-
lepA (y)agwa+ agw~- agw- agw- agy-
2sA ( eh)s+ s- s- s- s-
2dA (eh)sni+ sn- J- sn- sn-
2pA (eh)swa+ sw~-* sw- sw- sw-
3msA ha+ h~-* h- h- h-
3f(i)A (y)[g/~/e/ag]+ ~-* Q-* ag- ag-
3znsA ga/(y)/w+ g~- w- w- 0-
3mdpA hadi+ had- h~n- h~n- h~n-

3f(i)dpA gagjgae/ga:g+ gae- gag-* ga:g- ga:g-
3zndpA gadi+ gad- g~n- g~n- g~n-

29 



final/stem-initial alternation and deletion processes. In (9) the stem begins with n~ which 

fits the n V template in tables 4.5 and 4.6. In order to find the appropriate prefix form 

merely cross-reference the prefix type with the nV column in table 4.5 to determine the 

appropriate form of the prefix. 

From tables 4.5 and 4.6 we see that there are two kinds of prefixes. Most have ob­

viously related allomorphs, but some others have lexicalised prefix allomorphs. The 3fiA 

((y)Q /(y)r;/(y)ej(y)ag), 3fidpA ( gaQ/gaejga:g) and 3znsA (gaj(y)jw) prefixes each have 

allomorphs that are historically unrelated, and cannot be derived using morpho-phonological 

rules; therefore each UR would be listed separately in a dictionary. 

'Basic' Unpossessed Body Parts 

Inalienable nouns can appear in basic noun form taking the 3znP prefix o- and having a 

"detached" meaning (Froman et al., 2002). These nouns are structured as in example (10): 

(10) a. o+ inalienable noun root +a' 

b. o- ng'a: -a' 
3znP head NSF 
A (detached) head 

These formations are considered semantically odd, except when used in compounds as in 

example (11): 

(11) gwisgwis ong 'a:' 

pig head 

Lexicalised Unpossessed Body Parts 

Inalienable nouns may also occasionally appear in forms that take the 3znA prefix ga­

and have a lexicalised meaning as in (12-a). For comparison, see (12-b) which shows the 

corresponding inalienable possessed noun. 

30 



(12) a. ga- ya ,d -a 
3znA body NSF 
doll (basic noun) 

b. g- ya ,d -a ,geh 
1sA body NSF 
on my body (inalienable body part) 

4.2.4 De-verbal Nouns 

The de-verbal nouns are formed by a nominal prefix, a verb root, a nominalizing suffix and 

a noun stem former. Essentially, the unit composed of verb stem plus nominalizing suffix 

acts exactly as the basic nouns described earlier. 

(13) De-verbal Nouns 

Prefix+ Verb stem +Nominalizing Suffix +NSF 

a. ga+ tki +tr +a, 
3znA ugly Nominalizer NSF 
'junk' - (to be ugly) 

b. o+ y~ +hsr +a, 
3znP lie.on.the.ground Nominalizer NSF 
'blanket' - (to be lying on the ground) 

The choice of nominalizing suffix is unpredictable, so it seems reasonable to treat these forms 

separately from actual nominal morphology. By this I mean that I will not be decomposing 

the derivational morphology within the de-verbal nouns, and I will be treating the combina­

tion of verb-stem + nominalizer as a regular nominal root that is not decomposed (-y~hsr­

& -tkihsr- would each be considered a single unit in my system and act as a regular nominal 

root) (See §7.1). It would, however, be possible to replace such non-decomposed forms in the 

future with a module that correctly decomposes verbs and their derivational morphology. 

31 



4.3 Overview of Cayuga Morpho-phonological Variation 

As has been alluded to in this chapter already, Cayuga words undergo a great deal of change 

when moving from the abstract underlying form to the surface form or vice versa. The 

morpho-phonological rules required to make these changes are listed fully in Appendix C, 

but I will briefly discuss a subset of them here. 

A major feature of both Cayuga and other Iroquoian languages is a set of vowel hierarchy 

deletion rules (Hopkins, 1989). Vowels in these languages are ranked on a "strength hierar­

chy" according to which vowels are deleted when adjacent to a weaker vowel at morpheme 

boundaries. 

( 14) a. g > o > ~ > e > a > i 

b. UR: gag+ ahghd +a 'geh 
SR: gag- hghd -a 'geh 

Example (14-a) describes the vowel hierarchy and (14-b) gives an example of a deletion 

caused by the hierarchy. As is clear from the example, this can easily cause the initial vowel 

of the stem or the final vowel of a prefix to be obscured. 

There are two other additional rules which state that lw I ----+ [y] preceding [o, g] and 

that I dl ----+ [g] preceding [y]. These two rules, in addition to the vowel strength deletion 

rules can all apply to a single prefix+stem combination; as shown in table 4.7. 

Table 4.7: Multiple Rule Applications 

UR: ( e )dwa+gts+a 'geh 
Hierachy deletions: ( e)dw+gts+a 'geh 
lw I ----+ [y]: (e)dy+gts+a'geh 

I dl ----+ [gJ: ( e )gy+gts+a 'geh 
Other Rules----+SR: gygtsa'geh 

Here three rules have applied to a single prefix, rendering it almost completely opaque. 

One can easily imagine that in cases of multiple prefixes, even more rules could apply to a 

single word. Other First Nations languages, especially those in the Athapaskan family, which 

32 



have very high numbers of prefixes, can undergo an even greater number of rule applications 

to a single word form, producing even more variation and opacity. Implementing an FSM for 

Cayuga should thus demonstrate the general applicability of the FSTs to other polysynthetic 

languages. 

4.4 Implications of the Data 

The morphology and morpho-phonology of Cayuga nouns is quite complex, as has been 

shown from the brief overview contained in this chapter. Not only are there four types of 

nouns, but there are two important issues with the basic and inalienable nouns: firstly the 

number of possessive prefixes each basic or inalienable noun stem may take, and secondly 

the number allomorphs for each prefix. 

This second problem can be addressed in two ways. It is possible to assume that speakers 

have learned a small set of abstract prefix morphemes and an extensive set of rules to derive 

the actual spoken forms of those prefixes. It is also possible, however, to instead assume a 

more limited set of rules and a much larger set of prefix morphemes listed in the lexicon that 

more concretely resemble the spoken form. 

The implementation of both an abstract (rule-based) approach to the segmentation of 

Cayuga nouns as well as a more concrete (lexical) approach will be discussed in greater detail 

in 6.1.1.2. The following chapter will discuss in greater detail the implications of Cayuga for 

the development of dictionaries and the development in the finite-state framework. 

33 



CHAPTER 5 

Issues in Implementation 

The structure of Cayuga nouns raises two types of problems. The first and most important 

problem is that of dictionary access. Given the quantity of variation that occurs within pre­

fixes and stems of Cayuga, it is difficult to learn to use a dictionary for Cayuga. Although 

this program is a direct implementation of the linguistic description it is also a computer 

program and the constraints of processing power and hard drive space entail that some 

potential problems ought to be avoided : non-determinism, and long-distance depen­

dancies. These two computational problems will be discussed following a discussion of the 

linguistic problem of dictionary access. 

5.1 Dictionary Access 

There have long been problems regarding dictionary access for speakers of obligatorily pre­

fixing languages, especially polysynthetic languages such as Iroquoian and Athapaskan lan­

guages. Because these languages prefix obligatorily and undergo a high degree of morpho­

phonological variation at prefix boundaries it can be difficult for speakers to properly segment 

morphemes in order to find them in a standard dictionary. Example (1) presents a sample 

of the difficulties that might arise. 

(1) a. UR: hadi+ihn+a'geh 
SR: hadi-hn-a 'geh 
(on) their (male) skin 

b. UR: hadi+ahghd+a 'geh 
SR: h~n-ahghd-a 'geh 
(on) their (male) ears 

In (1-a) the underlying form of the prefix (hadi+) is clearly related to the surface pronunci­

ation ( hadi+). However, in ( 1-b) the surface and underlying forms for the same prefix are 

34 



different ( hadi+ vs. hf-n+). 

The problem of dictionary access is not a new one. To date there are essentially two 

types of paper dictionaries for highly prefixing languages such as Cayuga: "base dictionaries" 

and "root dictionaries" (Foster et al., 1991). 

A "base dictionary" is a dictionary in which forms are organized by meaning. A base is 

defined as stem or combination of stem plus affix( es) that has an at least partly lexicalised 

meaning. Morphologically related forms are related by cross-references. This is in contrast to 

the stem dictionaries in which forms are related by morphology. Such dictionaries are similar 

to traditional Indo-European dictionaries, but include rules for deriving related forms. Unlike 

European dictionaries, however, citation forms are not necessarily whole words. 

The drawback to both of these approaches is that they require users to look up forms 

which lack the obligatory prefixes. This requires that the user be able to perform some 

amount of segmentation, in order to use the dictionary. 

For some polysynthetic languages, this is not an issue. For example, because the morpho­

phonology of Algonquian prefixes is generally straightforward, it is not too difficult to orga­

nize a traditional dictionary that is easily usable. Often, stems can just be listed without 

affixes; prefixation is not obligatory in some forms. Another alternative, as in (MacKenzie 

and Jancewicz, 1994), is to choose a specific prefix and list all verbs with that prefix. 

In example (2) we see how the initial 'mu' was used to standardise the entries in the 

Innu dictionary. 

(2) An example of a stem dictionary entry (MacKenzie and Jancewicz, 1994:p. 39): 
J/\l <Jo 
ltlllllpimanhaaw 

she/he feeds him/her grcaSt.' 
it lui fait manger Jc· In grais..~· 

JAL o 

mupiffUUJ\\ 

she/he cuL~ grca"'-' 
il mange de Ia grai>.~c 

_lf\,')=<10 
muHpi:'ilU\\'fJtJ\1-' 

sh~/hc vbit~ him/h<'r 
il lui n:nd vbitc 

VTA 

VAl 

VTA 

35 



Slightly more complex languages, such as Oneida or Cayuga, however, pose a greater problem 

to the user. There are often a large number of forms whose semantic meaning is unpredictable 

directly from their morphology and these need to be listed separately. Michelson and Doxta­

tor (2002), to alleviate this problem have used the base approach to dictionary construction, 

to group semantically related items together. 1 

In example (3) we see how a single base is listed along with several varieties of forms 

related to that base as well as its component parts. 

(3) An example of a base dictionary entry of a verb (Michelson and Doxtator, 2002:p. 465): 
-ka?tatye- v.m. have a lot of while 

going along. With t- cislocative: 
tyakoka ?ttiti? she had a lot of things 
with her there. With n- partitive: 
niswakka ?tdti? I have so much with 
me as I'm going along. With -khw­
food, and nis- partitive and repet­
itive: nitsyuknikhwaka ?ttiti? we 
two have all this food along with us 
again. With -hle?n- bundle, and nis­
partitive and repetitive: 
nitsyakohle ?naka ?flitj? she has such 
a bundle along with her again. With 
-itsy- fish, and n- partitive: 
nisAtsyaka ?ftiti? what a lot of fish 
you have got with you, 
nihotsyaka ?fati? he has such a lot of 
fish with him. With -yAt- wood, 
cord of wood: loy A taka ?ttiti? he has 
a lot of wood with him. 

• Ne· s thiki nA ish/awe? 
loyAtaka?ttiti? a?e· nihoh/e·na? 
thiki. When he gets home he has a 
lot of wood with him, a great big 
bundle of it. (Gl) 

COMPOSED OF: -ka?t(e)· be or have a 
lot of, -tye- progressive. 

NOTE: Many speakers have 
-ka7tati- before a final ?. 

1 In the finite-state approach the semantics of lexicalised forms must also be listed separately. This is 
straightforward to accomplish so there is no particular gain or loss with respect to this problem and the FS 
framework. 

36 



( 4) An example of a base dictionary entry of a noun (Michelson and Doxtator, 2002:p. 465): 

ka?nhehsatA.sha V > N silk, taffeta. 
NOTE: A slightly different form, 

ka?nheksatA.sha, is also attested. It 
has been suggested that 
ka?nhehsatA.sha refers to silk, while 
ka?nheksatA.sha refers to taffeta. 
Both forms include the ka- neuter 
agent prefix, the noun base -?nheks-/ 
-?nhehs- ribbon, strap, and the verb 
base -tAs- be thick; but it's not clear 
what the final -ha is. 

Unfortunately, this approach does not alleviate a second and equally important problem: that 

of how to appropriately list forms in a logical, accessible manner such that users can easily 

find a written entry from a spoken form. When Michelson and Doxtator (2002) compiled 

their dictionary of Oneida, a hybrid approach was used with nouns listed as whole words 

(including obligatory pronominal prefixes such as 'ka' in exaple (4)) and verbs were listed 

without the obligatory prefixes such that morphologically related forms would be grouped 

together. Compare examples (3) and (4) to see the difference in noun and verb listings. In 

contrast the Cayuga dictionary of Froman et al. (2002) lists all forms without prefixes. 

Neither of these approaches is superior to the other; both present considerable usage 

difficulties. If users wish to look up a word in a whole word dictionary they must first know 

the conventions used to prefix each type of word (e.g., basic nouns are prefixed with the 

appropriate 3zn prefix ('ga', 'o' or 'a') but inalienable nouns with the lsP prefix ('ak', 'age', 

or 'ag'). Second, they must know the correct form of the prefix for the word that they wish 

to look up. In the case of a dictionary listing bare stems, users must know the form of the 

bare stem to be looked up: they must be able to properly segment the word. So either the 

users must know enough about the grammatical parts of speech to know how to determine 

the proper prefix for whole word forms or they must have a thorough knowledge of how to 

segment their language. 

Unfortunately, speakers of a language often do not have conscious access to the underly­

ing forms of morphemes. Mithun (1979) notes that in Mohawk, speakers cannot distinguish 

between epenthetic stem-initial 'e' and underlying stem-initial 'e'. If speakers cannot deter­

mine an epenthetic stem-initial sound, they may misconstrue the apparent stem they heard 

and be unable to look it up. Alternately, a stem-initial sound could have been deleted (de-

37 



pending on the form that the user heard), and again they would have difficulty locating the 

form. 

Often dictionaries are required to contain rather detailed explanations of the morphology 

of the language in order for users to be able to access them properly and even then they 

are still quite complex. For example, see (Froman et al., 2002:pp. xvi-xxxix, §8.2-8.3). This 

is a major barrier to the usability of dictionaries for these languages. The problems are 

only compounded when dealing with Athapaskan languages which tend have an even greater 

number of prefixes (Young and Morgan, 1987). 

A finite-state application with a simple interface consisting of a web-based form would 

make dictionaries easily accessible to all speakers. One would need only type a word into the 

form to access its morphology and semantics and not have to learn the morpho-phonology 

of the language. 2 

5.2 Computational Problems 

Some problems have, in the past, been considered non-computable in the finite-state. Re­

cently work-arounds have been developed that solve some of these problems. Unfortunately, 

such solutions introduce complexity (§2.2). 

When constructing an FST for Cayuga nominals, it is important to be careful to avoid 

using too many complexity-heavy operations as they can introduce significant complexity 

into the machine. Non-determinism and long-distance dependancies are two such problems 

that will need to be avoided. These two operations when coupled with composition, which 

already introduces complexity, can lead to a very high degree of complexity very quickly. 

5.2.1 Non-determinism 

Non-determinism (Beesley and Karttunen, 2003:§9.2.3) refers to an ambiguity within the 

finite-state machine. I distinguish two types of ambiguity, external ambiguity and internal 

ambiguity. A case of external ambiguity might be a surface form which could be derived 

2 A guesser could even be incorporated to make spelling easier for users who might have difficulties in 
that area. 

38 



from either of two or more underlying forms. This ambiguity is external because it is visible 

to the programmer and the user. Internal ambiguity is a case where at a given point the 

FSA can follow either one of two different paths, which are disambiguated later on. 

Both types are undesirable, but external ambiguity is necessary and internal ambiguity 

can be difficult to locate or prevent. Examples (5)-(6) illustrate an externally ambiguous 

FST: 

(5) a. ~dwayQ' 

(6) 

we all will give it to someone OR we all will arrive 

b. ~+ dwa +y +g +'3 
future lidpA give epenthetic [y] punctual 
we all (inclusive) will give it to someone 

c. ~+ dwa +YQ +' 
future lidpA arrive punctual 
we all (inclusive} will arrive 

The FST that would recognize the forms in (5) is described in example (6). 

£ 

The symbol 't:' is used to denote an empty string in the FS framework, and is conceptually 

similar to the linguistic formalism of using '0'. It is generally used when one needs to output 

on one side more symbols than have been inputted. However, as we will see, the £-transition 

can lead to non-determinism. 

The FST in (6) is fine so long as we are only trying to recognize an underlying form or 

remove the morpheme boundaries from a segmented form. Unfortunately, if we try to go the 

3The literature generally reports that the form meaning we all (incl) will give it to someone is [©gyQ '] from 
I ©-dwa-Q-'I----> I ©-dw-Q-'I----> I ©-dy-Q-'I----> I ©-gy-Q-'/. However, speakers currently prefer the more transparent 
form in (5-b) (Froman et al., 2002:Appendix J). 

39 



other direction, we reach a point of non-determinism at q8. At that state, when converting 

from SR to UR, the machine has no way of determining which is the correct path to take. 

In this case, we would want the transducer to output both forms, but this would require 

that the machine explore all possible paths and output any that could be correct. In some 

cases, the FST may run quite far down a path before hitting a roadblock of some sort and 

aborting that path. If there are dozens of such forks the machine may have to explore tens, 

hundreds or thousands of paths to figure out where it is going. Obviously, such a program 

would run significantly more slowly than a program that only has one valid transition out 

of each state. 

These examples show how certain operations can introduce non-determinism into an 

FST. In an FST representing an entire language, non-determinism is virtually unavoidable, 

but one must be careful to avoid needless non-determinism since it will significantly slow 

down the processing (Nederhof, 1996; Beesley and Karttunen, 2003). 

5.2.2 long-distance Dependancies 

A long-distance dependancy is when the occurrence of a morpheme or morpho-phonological 

variant is governed by a factor that is not immediately adjacent to it. An FSM has no 

memory; it can only know the immediately preceding segment and the current segment. It 

is often costly, therefore, to model long-distance dependancies. 

In example (7) we have a case of a long-distance dependancy where the suffix and prefix 

are co-dependant. The prefix (e)kni- requires the suffix -ageh' (compare (7-a) and (7-d)) and 

o- requires the suffix -a' (compare (7-b) and (7-c)). 

(7) a. (e)kni + gahgwaos + a'geh 
llncDu +eyebrow +on 
(on) our (two people including listener and speaker) eyebrow(s) 

b. o + gahgwaos +a' 
3NP + eyebrow + NSF 
an eyebrow (detached) 

c. *o + gahgwaos + a 'geh 
3NP +eyebrow +on 

40 



d. *(e)kni + gahgwaos +a' 
llncDu + eyebrow + NSF 

Example (8) shows the most parsimonious way to model the production of the forms in (7). 

However, the FSA in (8) overgenerates, producing not only (7-a) and (7-b) but also the 

invalid forms (7-c) and (7-d): 

(8) 

(e)kni 

To model these forms correctly one would actually need to include an arc for the root form 

twice. This implementation, however, is relatively inefficient, in this case, doubling the 

number of arcs per root form, thereby increasing storage space required: 

(9) 

The program I will be using to construct the FST has a built-in methodology for pro­

gramming long-distance dependancies in the lexicon called "flag diacritics" (Beesley and 

Karttunen, 2003:339-373). These are used at run-time to constrain relationships. While the 

size of the machine is unaffected, actual run-time processing is slower. 

Several types of flag diacritics exist for a variety of purposes, but for the construction 

of my machine the type that is of interest are the "u-type" flag diacritics. These flags can 

be placed anywhere within the lexicon, as needed. If a string is generated with mismatched 

flags, that string is discounted as invalid at run-time (10-c). This means that prefixes that 

41 



can only take certain suffixes can be marked with the same flags whereas the other prefixes 

and suffixes are marked with different flags. 

The FST program would recognize the words in examples (10-a) and (10-b) as valid 

because the two flags in the words are identical. In (10-c), however, there is an 'UNPOSS' 

and a 'POSS' flag, which do not match up, so the word would be marked as invalid. 

(10) a. @U.INALIEN.POSS@ g+ ng'a: @U.INALIEN.POSS@ +ageh' 
Possessive Flag 1sA head Possessive Flag LOC 
'On my head' 

b. @U.INALIEN.UNPOSS@ o+ ng'a: @U.INALIEN.UNPOSS@ +a' 
Unpossessed Flag 3znP head Unpossessed Flag LOC 
'My detached head' 

c. *@U.INALIEN.POSS@ g+ ng'a: @U.INALIEN.UNPOSS@ +a' 
Possessive Flag 3znP head Unpossessed Flag LOC 

It is possible for the FST programming tool to automatically remove flags and re-construct 

an equivalent FST which does not require flags. This means that I can automatically convert 

from an FST like that in example (8) that uses flags to the equivalent machine as in example 

(9) that does not use flags. The advantage to such a conversion is generally an increase in 

processing speed, but the one drawback is that this can drastically increase the size of the 

transducer. 

Flags have the format X.FEATURE.VALUE where X is the flag type, feature is a 

feature name and value is the value of the feature. Other flag diacritics are P-type flags 

that allow the user to set a certain value to a feature (e.g.: P.INALIEN.POSS flag follow­

ing a U.INALIEN.UNPOSS would act as if the user had initially set a U.INALIEN.POSS 

flag); N-type flags that set the value of a flag to the complement of a given value (e.g.: 

N.INALIEN.POSS will match with any INALIEN.* where * is not equal to POSS); R­

type flags that check if a feature has a certain value (e.g.: if P.INALIEN.POSS is set then 

R.INALIEN.POSS will succeed but R.INALIEN.* will fail if* is not equal to POSS); D-type 

flags that only succeed if the feature is not yet set; and C-type flags that reset a feature to 

a neutral value. (Beesley and Karttunen, 2003:pp. 353-356) 

Please note that flag diacritics do not confer any greater-than-finite-state power to an 

FSM. They are merely for convenience of composing lexicons. More in-depth discussion can 

42 



be found in (Beesley and Karttunen, 2003:pp. 339-341) 

5.3 Summary 

The problem of dictionary access can be greatly alleviated by having a computer program 

that can do all the morpho-phonological heavy lifting. A finite-state solution seems almost 

ideal, except for some of the potential computational problems mentioned above. These 

problems however, can be satisfactorily addressed, as the following two chapters explain. 

43 



CHAPTER 6 

Methodology 

This chapter will give an overview of the practical and technical requirements and specifica­

tions for the design of the FST, as well as a discussion of the tools that I used to implement 

the machine. 

6.1 Requirements 

There were two requirements that a successful morphological analyser/ generator for Cayuga 

needs to fulfill. It needs to (a) produce useful dictionary output; (b) be easy to use. For 

the purposes of producing useful output it will also be valuable to (c) test the morpho­

phonological rules posited for Cayuga nominals. Finally there are two other empirical re­

quirements for the consideration of future work: (d) determine the usefulness of the finite­

state framework for such polysynthetic languages; and also (e) serve as a way of comparing 

machines of varying degrees of linguistic elegance for their usefulness and complexity. 

6.1.1 Ideal Dictionary Output 

Given that speakers do not have conscious access to their underlying linguistic knowledge 

regarding morpho-phonology (Mithun, 1979), it is unclear what sort of information would 

be the most useful output for a speaker attempting to access a dictionary: would a set of 

underlying prefixes not necessarily obviously related to the actual pronunciation be useful; or 

would the output of a prefix not obviously related to other prefixes with a similar meaning 

be useful? To return to the example (I) (originally from §5.1 and repeated below): is it 

more useful for the speaker entering the words in ( 1) to be told that (a) there is a single 

underlying prefix (hadi+) whose meaning is 3mdpA and can be pronounced in several ways 

including both (hadi) and (h~n); or (b) there are several prefixes which all mean 3mdpA and 

are produced in several different situations? Speakers tend to prefer the second alternative 

44 



(Dyck, 2006). 

(I) a. UR: hadi+ihn+a'geh 
SR: hadi-hn-a 'geh 
" (on) their (male) skin" 

b. UR: hadi+ahghd+a'geh 
SR: h~n-ahghd-a 'geh 
"(on) their (male) ears" 

As has been described above (§4.2), the majority of nouns in Cayuga take some form of 

obligatory prefix, often with a stem change, leading to difficulties in segmentation and stem 

identification. This problem is discussed more fully below. 

6.1.1.1 Abstractness vs. Concreteness 

One problem that I will need to resolve is that it is not clear whether all prefix variants 

should be listed in the lexicon (concrete), or whether they should instead each be derived 

by rules from a smaller set of prefixes (abstract). Firstly, some prefix combinations (as in 

example (2) are lexicalised, or non-transparent. 

(2) a. gag+ 

3fidpA+a-root 

b. gae+ 

3fidpA+i-root OR C-root 

c. ga:g+ 

3fidpA+other root 

The relationship between these alternants is opaque. This means that they should be listed 

separately in the lexicon to represent the speaker's intuition, especially since they are not 

easily derivable from morpho-phonological rules. 

Other prefixes, such as those in example (3), however, are derivable, but are still not 

fully accessible to speakers in their underived forms. In this case, it still might be more 

useful to list these prefixes in the lexicon, again to represent speaker intuition, despite the 

45 



fact that they can be easily derived. 

(3) a. UR: -(y)gkni- N 
SR: -(y)gkni- N 
1DuP [c/i]-initial root 

b. UR: -(y)gkni- -a 
SR: -(y)ggy- -a 
1DuP [a]-initial root 

It is possible to represent underlying /-(y)gkni-/ as two separate affixes in the lexicon, one, 

the SR (3-a), that precedes most nouns and another that precedes noun stems beginning 

with [a], the SR in(3-b). This is the concrete approach. In contrast it is possible to list 

only /-(y)gkni-/, the UR in both (3-a) and (3-b), in the lexicon, using a rule (4) to derive 

[-(y)ggy-]. This is the abstract approach. 

(4) kni+a-+ gya 

Linguists such as Froman et al. (2002); MacKenzie and Jancewicz (1994); Michelson and 

Doxtator (2002); Chafe (1967); Young and Morgan (1987) and Foster (1986) tend to represent 

the most abstract form when constructing dictionaries so that (3) (a) and (b) would be listed 

as a single underlying prefix ' ( y)Qkni-'. 

For a user it would likely be more useful to have a more concrete representation of 

affixes that are easily relatable to the actual pronunciation. It may however become clear 

once the project is underway that the specification of all affixes and base forms is not the 

most efficient method for the structuring of the project. 

6.1.1.2 Computation of Abstractness vs. Concreteness 

Considering that there are two possible linguistic solutions (listing allomorphs in the lexicon 

or deriving them from rules), it is also important to determine if both these approaches are 

equally computationally viable. If one method results in a machine that is too large or slow, 

it does not particularly matter if it is more useful to users since it will be unimplementable. 

46 



Adding morpho-phonological rule transducers will require additional compositions of 

FSTs which can very quickly lead to significant increases in the size of the final automaton 

and its running time. It might well be reasonable, therefore, to implement allomorphy in 

the lexicon rather than in the rules module. 

I therefore decided to design my program in two separate versions. One version assumes 

fairly abstract prefix morphemes while the other assumes more concrete lexicalised prefix 

allomorphs as the UR. 

In the abstract approach, the forms that are output to users are more linguistically and 

descriptively elegant, but are less useful to the users, who would require more specialized 

knowledge of the morpho-phonemics of the language to interpret the output (§5.1). The 

concrete approach, however, attempts to design with the end user in mind such that it 

will generate a set of prefixes that the user will be able to consciously relate to the actual 

pronounced surface forms. 

The project should provide a means for comparison in terms of computational elegance 

and computational complexity of the two approaches described above. I compared the two 

machines to each other rather than to a separate set of arbitrary criteria. This was done 

because I am only attempting to determine which machine is most efficient. As mentioned 

earlier (§6.1.3) it is beyond the scope of this project to determine the applicability of the 

framework to these languages for a full implementation, so for the moment a comparative 

method will have to suffice. The criteria for computational elegance and complexity are 

listed below. 

Computational Elegance: 

• Time/difficulty of creation of machine 

• Time/difficulty of modification of machine 

Computational complexity: 

• Relative numbers of states 

• Relative numbers of transitions 

47 



• Relative run-time 

• Relative machine size in kB 

Computational elegance will be viewed loosely in terms of the difficulty of creation and 

modification of the design. If it is difficult or tedious to update the program or requires 

significantly more time to effect changes, one version will be deemed less computationally 

elegant than the other. In terms of complexity, this will be judged by comparing the numbers 

of states and transitions that each machine contains, as well as average running times and 

final machine sizes in kB. 

6.1.2 Thorough Testing of Morpho-phonological Rules 

The finite-state framework allows for a high speed testing of the rule formalisms relating 

surface and underlying forms that have been already posited for Cayuga. The machine is 

designed to relate the surface and underlying forms of the words; and rule formalisms are the 

most straightforward way to generalize that relationship so that the program must naturally 

represent a testing environment for the rule formalisms. 

It is often difficult to test the ordering of large numbers of rules against large numbers 

of word-forms to ensure that there are no incorrect forms generated or inconsistencies in the 

output. Also, applying large numbers of rules by hand to large data sets leaves a margin 

for human error. Having a computerized version of the rule formalism, however, solves this 

problem. 

It becomes possible to easily and quickly test very large sets of data against the machine 

to ensure that the output is correct for all cases. One can design a set of input data knowing 

what the output should be and automatically compare that to the actual output of the 

machine (§7.2.1). 

6.1.3 Applicability of FS Framework to Morphologically Complex Languages 

The project must demonstrate that the finite-state framework is capable of handling the 

complex morphological and morpho-phonological processes of First Nations languages ef­

ficiently. This means that the program must be able to quickly process words containing 

48 



long-distance dependancies (§5.2.2) and prefixes which may be opaque, semi-opaque or am­

biguous (§4.2.2-4.2.3). 

Despite the fact that nouns display the majority of interesting morphological and 

morpho-phonological properties of Cayuga, such as large degrees of allomorphy and long­

distance dependancies, there are a few caveats to keep in mind. Verbs have more prefixes 

and more prefix combinations than the nouns. Furthermore, verbs also have a much higher 

incidence of long-distance dependancies. It is possible therefore, that despite the fact that 

the machine described in later chapters is computationally adequate, that the expansion 

of the machine may pose efficiency problems. In particular, a large number of additional 

long-distance dependancies could pose a problem. My machine models only a single long­

distance dependancy whereas a model that handles verbs would require several long-distance 

dependancies (where the greatest complexity is likely to be introduced). 

6.2 Specifications 

I will here briefly overview the specific requirements of the abstract and concrete FSTs. They 

each follow essentially the same design, so differences are only mentioned where applicable. 

A fully detailed description of the programs can be found in §7.1. In light of the motivations 

described above the programs must conform to several technical requirements. 

1. In order to satisfy the needs of dictionary users, the program must generate and 

segment all the basic noun types described in §4.2: 

• Unpossessed Basic Nouns - A 3rd person neuter prefix followed by a basic 

noun root and a noun stem forming suffix. 

• Possessed Basic Nouns - A patient prefix followed by a basic noun root and a 

noun stem forming suffix. 

• Possessed Inalienable Nouns - A agent prefix followed by an inalienable noun 

root and an external locative suffix. 

• Unpossessed Inalienable Nouns - A single 3rd person neuter singular patient 

j(y)o-j prefix followed by an inalienable noun root and a noun stem forming 

suffix. 

49 



• De-verbal Nouns -A third person neuter prefix followed by a verb root and 

deverbal suffix and noun stem former. 

• Defective Nouns - A single defective noun root. 

2. The program must generate and segment only these word forms. In order to be 

appropriate for a dictionary tool and to properly represent the language, the machine 

must not give false positives (i.e., no incorrect forms should be judged as correct). 

3. The program must provide basic semantic output for all word form morphemes. 

To satisfy the needs of a dictionary application, semantic output must be generated 

for the user (My program only generates a basic semantic representation, however, to 

demonstrate that it is possible). 

4. The program must encode an ordered rule formalism that is adequate for testing the 

set of morpho-phonological rules and their ordering as currently posited for Cayuga. 

5. The program must be able to have an easy to use interface created such that users 

need only type a word to receive its morphology and semantics. 

6. The program must satisfy the requirement of testing the adequacy of the finite-state 

framework for applications in First Nations languages. The final machine must present 

data on the comparative levels of efficiency of the two approaches. 

6.3 Tools and Data Structure 

To implement the program I used XFST (Beesley and Karttunen, 2003), a finite-state devel­

opment environment developed by Xerox for use by computational linguists. XFST makes 

the creation of finite-state machines somewhat more intuitive. It is a tool that allows a com­

putational linguist with only modest knowledge of programming and computational theory 

to create and modify finite state machines. 

Without a tool like XFST one might need to know how to create a 'regular expression' 

that would look something like: 

(5) /(hlc)at/ 

50 



A regular expression is a formalism for describing a language, in this case the language 

consisting of the strings 'hat' and 'cat' (Beesley and Karttunen, 2003; Nederhof, 1996). 

However if one were attempting to encode an entire language, the resulting regular expression 

could easily become very long. 

(6) /((hlrlc)at)l((clb)ar)(elc)/ 

£ denotes the 'empty' character 

Example (6) describes a very small language containing: 'hat', 'rat', 'cat', 'car', 'bar', 'hate', 

'rate', 'care', 'bare' and *'cate' (The 'cate' example shows how it can be quite easy to make 

a mistake with regular expressions that need to match many forms). In contrast, using 

XFST, one can simply create a lexicon file which details (a) the morphemes that exist in the 

language and (b) how they can join together. XFST can then turn that result into an FST 

that correctly encodes a regular expression. 1 

Another positive aspect of XFST is that it is constantly compiling and optimizing the 

machine as it is being created by the user. This means that it is significantly more efficient 

and simple than writing a finite-state machine and then optimizing it afterwards; the machine 

will run more quickly and take up less space overall. Additionally, users can check their work 

as it progresses, with no need to wait until programming is complete. 

Finally, XFST also includes several specialized tools for creating linguistic descriptions. 

Two of these tools are described in the following two sections. 

6.3.1 Lexc 

The Lexc language is an XFST formalism developed specifically for designing lexicons. Lexc 

allows the user to design several "sub-lexicons" (e.g., a prefix lexicon and a stem lexicon) 

and define how the lexicons each join to each other in terms of what are called "continuation 

classes". (Beesley and Karttunen, 2003:§4) 

1 Regular expressions and FSMs are generally equivalent in that a regular expression can be represented 
as an FSM and vice-versa, but there is often a loss of efficiency in translation (Nederhof, 1996). There are 
also other formalisms (such as finite-state grammars) for specifying FSM, but generally reguiar expressions 
are the most popular. 

51 



Table 6.1: Sample Cayuga lexc Lexicon. 

LEXICON nominalPrefixes 
ga+ gaNouns) 
o+ oNouns; 
a+ aNouns ; 

LEXICON gaNouns 
deverbalNouns ; 

gaBasicNounRoot ; J 
LEXICON gaBasicN ounRoot 
' wahsa: NSF;)' 'earrings' 
nahda NSF; ! 'comb' 
hnyg'ghsra NSF; ! 'steel, iron' 

LEXICON NSF 
+a' #; 

#; 

Each sub-lexicon specifies a morpheme in the left column and the "continuation" class 

(if any) in the right-hand column. The continuation class is simply the name of another 

sub-lexicon whose morphemes are allowed to follow after the given morpheme in this sub­

lexicon. 

In the table 6.1, four sample lexicons are given in lexc format. The first lexicon specifies 

all the nominal prefixes (in the left column) as well as the name of the lexicon that specifies 

what can follow each prefix (on the right). So, the prefix ga can be followed by anything 

found in the lexicon named gaNouns which in turn specifies two further lexicons that can 

follow it. This allows the linguist to break down the forms into as many parts as are necessary 

to describe the URs of all words in the language. 

Example (7) gives a sample possible output from the FST define in table 6.1. 

(7) nominalPrefixes+ gaNouns+ gaBasicNounRoot +NSF 
ga+ 0+ 'wahsa: +a'# 
ga+ 'wahsa:+a' earrings 

52 



Because ga+ was the output from the 'nominalPrefixes' sub-lexicon, the next segment 

has to come from the 'gaNouns' sub-lexicon. The output of either option in that sub-lexicon 

is 0 followed by either of the applicable sub-lexicons ( 'deverbalNouns' or 'gaBasicNounRoot'). 

After an item from 'gaBasicNounRoot', an item from the sub-lexicon 'NSF' must follow. This 

sub-lexicon specifies # as the continuation class, which signals to the compiler that it is a 

valid end state (§3.2). 2 

The lexicon description in lexc format is converted into an FST by the lexc compiler. 

This FST can then be composed with other FSTs that represent other modules of the 

final program (§3.6), including a rules module or a semantics module. Such a methodology 

facilitates the modification of either module independantly from the others. 

6.3.2 Rule-like Notation 

Just as XFST provides the lexc formalism for defining lexicons, it also provides a number of 

built-in rule-formalism shortcuts that make the writing of morpho-phonological rules much 

simpler for linguists. In the same way that a lexc lexicon is compiled into an FST, so too 

are these rules compiled into an FST. The two resulting modules can then be composed 

together. 

Rules are defined using a notation very similar to standard phonological rule notation. 

For example a vowel coalescence rule written as: 

(s) 1 a + i I --+ [+~l 

would instead be written as: 

(9) define ai~ [a%+ i - > %+ ~];3 

The rules are composed together to form a module of rules. The order in which the rules are 

composed is identical to the order in which they will apply, meaning that the rule ordering 

2When using lexc, one need not have a word-initial word boundary marker if one is only working with 
single words. The transducer will report an error if it encounters a multi-word token. 

3In the Lexc formalism, the + symbol is a character with special properties, and to encode the + as a 
normal symbol it must be prefixed by a % symbol. 

53 



m the finite-state machine IS logically identical to the posited morpho-phonological rule 

orderings. 

6.4 Summary 

Having described the basic types of structures from which my machines were formed, I will 

now go on in the following chapter to specifically describe the structure of the machines and 

what findings were determined during their construction. 

54 



CHAPTER 7 

Results 

Here I will discuss the structure of the final program, giving a description of each module 

and of the construction of both the concrete and the abstract machines. Following that, 

I will analyse the ability of the machines to meet the requirements as set out in §6.1 and 

compare their performances. 

7.1 Final Program Components 

The final machine was composed of several parts; firstly, the morphological analyser, secondly 

the semantics module and thirdly, the user interface. The morphological analyser itself was 

constructed of several modules, which are explained below. An explanation of the semantics 

module and the interface follows the discussion of the morphological analyser 

Since the finite-state framework is inherently modular (§3.6), I developed my programs 

each in three separate modules. I developed a lexicon module, a rules module and a basic 

semantics module. The semantics module was produced only to make a more satisfying final 

product and demonstrate that a semantic component could easily be added. It does not lie 

within the primary focus of the project to output more than a basic semantic gloss. 

7 .1.1 Lexicon Module 

As explained in §6.3.1 the lexicon module is constructed by the concatenation of multiple 

sub-lexicons using lexc. These lexicons concatenate noun morphemes together, but do not 

perform any rule-based operations. 

There are four separate sub-lexicons for 'defectives', 'deverbals', 'basics' and, 'inalien­

ables' which in turn point to their own set of specialised sub-lexicons. The sets of sub-lexicons 

for generating each noun type in the abstract lexicon will be discussed below. 

55 



I will be only discussing the specifics of the abstract approach as it is much simpler 

in terms of sub-lexicons than the concrete approach. The concrete approach is essentially 

similar, but with more sub-lexicons. This aspect of the concrete approach will be discussed 

in more detail later. 

7.1.1.1 Defective Nouns 

The defective nouns are the most straightforward and are illustrated in fig. 7.1. The main 

over-arching sub-lexicon "nouns" points to a sub-lexicon named "defectives" that in turn 

merely lists all defective nouns. Since there is no internal morphology, there is no need for 

further sub-lexicons; so the "defectives" sub-lexicon is merely followed by a word-boundary. 1 

Figure 7.1: Abstract Defective Noun Sub-lexicon Structure 

# 

I 
Nouns 

I 
Defectives 

I 
# 

Description of the series of sub-lexicons used to generate a defective 
noun. 

A sample defective noun as generated by the machine by joining the constituents of the 

appropriate sub-lexicons is shown below in example (1): 

(1) Nouns+ Defectives 
0+ sgwa:gwagdg "# 
sgwa:gwagdg " toad 

7.1.1.2 De-verbal Nouns 

De-verbal nouns are slightly more complex than the defective nouns. As described in figure 

7.2, the sub-lexicon named "deverbals" contains a list of prefixes that can attach to deverbal 

1 Word boundary symbols ( #) are used to represent the start and end of the machine but do not appear 
in the input or output. 

56 



noun roots such as ga+, a+, o+, 0. 

Figure 7.2: Abstract De-verbal Noun Sub-lexicon Structure 

I 
null 

roots 
I 

# 

I 
Nouns 

I 
Deverbals 

I 
ga roots a roots 

I 
I 

I 

NSF 

I 
# 

o roots 

I 

Description of the series of sub-lexicons used to generate a defective 
noun. 

Each prefix points to the appropriate sub-lexicon containing roots that may attach to 

it; so for example, the ga+ entry in the "deverbals" sub-lexicon would point to a further 

sub-lexicon named "ga roots" which contains a list of all roots which may take ga+ as a 

prefix. (These nouns roots were divided in the lexicon because the prefixes that they take 

are fully lexicalised and do not depend on any morpho-phonological factors). 

Example (2) gives an example of a deverbal noun as constructed by the FST from the 

constituents of each sub-lexicon. 

(2) Nouns+ Deverbals+ a roots +NSF 
0+ a+ atsho 'kdghsr +a'# 
a+atsho 'kdghsr+a' hoe 

7.1.1.3 Basic Nouns 

The structure of the sub-lexicons to generate the basic nouns is significantly more complex 

than that for generating the deverbals. There are two primary branches in this series of 

sub-lexicons. The first branch is a sub-lexicon containing the unpossessed prefixes and 

their appropriate sub-lexicons, the second branch contains the possessed prefixes and their 

57 



appropriate sub-lexicon. 

The sub-lexicon for unpossessed basic nouns ("unpossessed prefixes") acts identically to 

the de-verbal lexicon described above. For this reason as in the deverbal lexicon, the basic 

noun roots have been sub-divided according to the unpossessed 3rd person neuter prefixes 

that they can take. The prefixes in the "unpossessed prefixes" sub-lexicon each point to the 

appropriate sub-lexicons of roots that take either ga- as a prefix ( "gaRoots" ), a- as a prefix 

( "aRoots"), o- as a prefix ( "oRoots"), or 0- ( "nullRoots"). 2 

Figure 7.3: Abstract Basic Noun Sub-lexicon Structure 

# 
I 

Nouns 
I 

Basics 

~ 
unpossessed possessed 

prefixes prefixes 

I all~oots 
I I 

gaRoots aRoots 
I I 

I I 
oRoots nullRoots 

I I 

NSF 
I 

I 
loanWords 

#------___j 

Description of the series of sub-lexicons used to generate a defective 
noun. 

The other main branch of the basic noun sub-lexicons is the "possessed prefixes" series. 

This sub-lexicon contains all the possessed prefixes that may attach to a basic noun root and 

each prefix then points to a sub-lexicon named "allRoots". "allRoots" is empty except for a 

reference to each of the other sub-lexicons. Instead of attaching specific prefixes to specific 

basic noun roots, it allows all possessive prefixes to attach to all basic noun roots. 

As can be seen from table 7.1, the "allRoots" sub-lexicon contains no morphological 

2 As described in §4.2.2 some basic noun roots have a choice of two prefixes. These roots are listed in 
sub-lexicons that are linked up with both appropriate prefixes. These (very small) sub-lexicons have been 
omitted from the diagram for the sake of simplicity. 

58 



Table 7.1: Basic Noun "allRoots" Sub-lexicon 

LEXICON 
0 
0 
0 
0 

allRoots 
gaRoots; 
oRoots; 
aRoots; 

nullRoots; 

data3 , merely references to the other sub-lexicons. This enables me to reference the sub­

lexicon "allRoots" once rather than to reference all the other sub-lexicon for each prefix. If 

I did not have this structure, each prefix would have to be listed once for each sub-lexicon 

to which it could attach, rather than being listed as merely attaching to the "allRoots" 

sub-lexicon. 

Two examples of these structures can be found below in example (3): 

(3) a. Nouns+ Basics+ Possessed Prefixes+ allRoots +nullRoots +NSF 
0+ 0+ (w)ag+ 0+ ~'nhotr +a'# 
(w)ag+~'nhotr+a' my ball 

b. Nouns+ Basics+ Unpossessed Prefixes+ oRoots +NSF 
0+ 0+ o+ 'dgdr +a'# 
o+ 'dQdr+a' gristle 

Once a root from one of the 5 root sub-lexicons has been joined to its prefix one of two 

things is done. The "gaRoots" , the "aRoots", the "oRoots" and "nullRoots" lexicons link 

to the "NSF" sub-lexicon, which adds the NSF suffix and terminates the word-formation 

process. Alternately, if a root from the "loan Words" sub-lexicon was added, no NSF suffix 

is attached to the word, it leads directly to the terminal # marker. 

7.1.1.4 Inalienable Nouns 

Inalienably possessed nouns have the most complex structure in the abstract lexicon. This is 

for two reasons: (a) they make use of severallexicalised prefixes that required a sub-division 

3 the 0 symbol is added for clarity, but is not part of the lexc formalism 

59 



of the lexicons (see §4.2.3, and §6.1.1.1 for more discussion on this topic) and (b) they contain 

long-distance dependancies that are handled with flag diacritics. 

As with the basic nouns, there are two primary divisions in the nouns generated by this 

lexicon. As shown in 7.4 the first type are the "Flagl" 4 inalienables and the second type 

"Flag2" inalienables. "Flagl" and "Flag2" designate the attachment of flag diacritics, that 

eventually ensure that the agent prefixes (Flag2) co-occur with the locative suffix (-a 'geh) 

while the 3znS prefix ((y)o-, Flagl) co-occurs with the NSF suffix -a'. These flags (and the 

3znS prefix) are added in the initial "inalienables" sub-lexicon. 

Figure 7.4: Abstract Inalienable Noun Sub-lexicon Structure 

# 

I 
Nouns 

I 
Inalienables 

1\ 
prefixes-- roots 

I 
f- C roots­

f- Vroots­

r- a roots­

r- 9 roots­

...._ ... roots-

I 
Inalienable Suffixes __ ...... F_..la""'g,....J _ _, 

L locativeSuffix NSF 

~ 
# 

Description of the series of sub-lexicons used to generate an inalien­
able noun. 

4 Please note that "Flagl" used here is a short form of @U.INALIEN.POSS@ used in §5.2.2 and "Flag2" 
a short form of @U.INALIEN.UNPOSS@. 

60 



Paths With 'o+Flagl' 

Forms with "o+Flag1" are followed by the sub-lexicon named "roots". This sub-lexicon is 

a directory that outputs nothing (¢) and points to all of the sub-lexicons which contain 

the various inalienable noun roots ( "C roots", "V roots", "a roots", etc. There are 10 

sub-lexicons, not all of which are listed; " ... roots" is an abbreviation for these sub-lexicons). 

A noun root from any of these sub-lexicons is added on the (y)o+Flagl construction 

previously output by the "inalieneables" sub-lexicon. The result is (y)o+Flagl +any specific 

noun root. This construction then points to the "Inalienable Suffixes" sub-lexicon. 

The "Inalienable Suffixes" sub-lexicon either attaches "Flag1" and points to the "NSF" 

sub-lexicon (containing +a') or it attaches nothing (0) and points to the "locativeSuffix" 

sub-lexicon (containing Flag2+a'geh). The end result can generate both well-formed and 

ill-formed constructions as in example ( 4) below. 

( 4) a. Nouns+ Inalienables+ Roots+ a roots +Inalienable Suffixes +NSF 
0+ (y)o-Flag1+ 0+ ahghd +Flag1 +a'# 
(y)o+ Flag1 +ahghd+ Flag1 +a' ears (detached) 

b. *Nouns+ Inalienables+ Roots+ a roots +Inalienable Suffixes +locativeSuffix 
0+ (y)o-Flag1+ 0+ ahghd +Flag2 +ageh'# 
(y) o+ Flag 1 +ahghd +Flag 1 +a., Nonsensical form 

Paths With 'Flag2' 

Forms with "Flag2" are followed by the "prefixes" sub-lexicon. This sub-lexicon lists two 

types of possessed agentive prefixes (§4.2.3, pg. 27): (a) the transparent prefixes whose 

allomorphs can be derived by rules and (b) the opaque prefixes whose allomorphs are not 

synchronically morpho-phonologically related. 

The transparent prefixes point to the "roots" sub-lexicon and proceed identically from 

there, as do the 'o+ Flag1' inalienables described above, resulting in a form of the type 

Flag2+any specific noun root+Flag2+a 'geh or Flag2+any specific noun root+Flagl +a', the 

latter being ill-formed. 

The opaque prefixes (e.g., 3znsA or 3fiA), however, are derived differently. Each of 

61 



these prefixes points to a specific sub-lexicon containing a sub-set of noun roots. For example 

the 3fisA prefix I (y)e-1 points to the "C roots" sub-lexicon while the 3fisA prefix I (y)Q-1 

points to the "a roots" sub-lexicon. The results then are Flag2+(y)e+consonant-initial root 

and Flag2+(y)Q+[a)-initial root as show in example (5) below. 

The output from these root sub-lexicons then proceeds as previously described, giving 

both valid forms such as Flag2+(y)e+consonant-initial root+ Flag2+a 'geh and invalid forms 

such as (y)o+Flagl+any specific noun root+Flag2+a'geh. These invalid forms are then 

removed at run-time or during later composition as described in §5.2.2. 

(5) a. Nouns+ Inalienables+ Prefixes+ a roots +Inalienable Suffixes +NSF 
0+ Flag2+ (y)g+ ahghd +Flag2 +ageh'# 
(y )o+ Flag1 +ahghd + Flag1 +a' ears (detached) 

b. *Nouns+ Inalienables+ Prefixes+ a roots +Inalienable Suffixes +locativeSuffix 
0+ Flag2+ (y)g+ ahghd +Flag1 +a'# 
(y) o+ Flag 1 +ahghd +Flag 1 +a' 

7.1.1.5 Flag Diacritics 

Figure 7.4 (p. 60) also illustrates how flag diacritics (§5.2.2) operate. Flag1 attaches with 

the prefix "o+" and the NSF suffix for the formation of basic noun style inalienables 4.2.3. 

Flag2 is inserted with all other agent prefixes and with the locative suffix. This allows the 

machine to generate illegal forms in which conflicting flags co-occur, as described earlier. 

These illegal forms as in example (6), are then filtered out at a later point. 

(6) *o+ hsohgw +a'geh 
3znP+ lip +LOC 

The form in example (6) is not valid because the prefix 'o+' with an inlienable noun stem 

requires the suffix '+a'' and cannot take the suffix '+ageh". In order to avoid having to define 

the inalienable noun root sublexicon twice I decided to have a machine that overgenerates 

by producing even the invalid prefix and suffix combinations. 

To constrain the output to only the valid word forms I used flag diacritics (Beesley 

and Karttunen, 2003:339). A "u-type" flag was used to mark the possessive or unpossessive 

62 



prefix and suffix. At runtime the machine then checks these flags to make sure that the 

prefix flag corresponds to the suffix flag. If they do not the machine returns an "invalid" 

response for the word. In the final version of the program these flags were removed and an 

equivalent FST was automatically generated by XFST (as described in §5.2.2). 

7.1.1.6 Possible Modifications of Inalienables Nouns Sub-lexicons 

When constructing the inalienable noun lexicon for the abstract approach I decided to create 

sublexicons to handle the alternations of the 3fiA, 3znsA and 3fidpA prefixes for inalienable 

nouns. These prefixes are not morpho-phonologically related to each other. Being historically 

un-related they are traditionally listed as separate underlying prefixes in a dictionary. For 

this reason, I chose to list them as separate underlying prefixes and specify the noun roots 

to which they could attach in the lexicon, mimicking the structure used in the concrete 

approach. 

The use of sub-lexicons makes the construction of the abstract semantics module some­

what difficult and inconsistent. The basic function of such a module is unimpaired, but it 

now has a concrete component: noun roots now must be compartmentalized into sub-lexicons 

based on their initial phones. As well the complexity of the lexicon is greatly increased and 

this complexity will hamper any future modifications to that lexicon. 

Fortunately, the opaque prefix alternations are conditioned by their environment, so 

they are not strictly arbitrary. Despite being lexicalised, their alternation is phonologically 

governed. That is, each prefix only occurs before a regular sub-set of roots (e.g., roots 

beginning in [a] or roots beginning in a consonant). This means that it will be possible to 

rework the more "concrete" portion of the abstract approach, as described below. 

There are two viable ways in which this series of sub-lexicons can be remodeled. The 

machine can be modified to either (a) over-generate with all abstract prefix allomorphs which 

can then be constrained using a rule, or to (b) replace the allomorphs with a single abstract 

prefix that can then be transformed into the appropriate surface form with a rule on the 

output side and into the appropriate underlying form with a rule on the input side. 

The first approach, overgeneration, works by attaching all prefixes to all stems, regard­

less of whether or not this generates valid URs. Then, in the rules module, filter rules are 

63 



added that remove the invalid forms that were generated in the lexicon. In this approach 

both example (7-a) and example (7-b) would be generated, but a rule would filter out the 

incorrect form ( 7-b). 

(7) a. UR: (y)g+ ahsi'd +ageh' 
Sem: 3fiA + foot + LOC 

b. *UR: (y)~+ ahsi'd +ageh' 
Sem: 3fiA + foot + LOC 

This approach is exponential in generation of incorrect forms and would require more rules 

for each valid surface form. This would mean a greater degree composition and subsequent 

minimisation. Compile-time would therefore be adversely affected. 

The second, more abstract approach would replace all three prefixes with a single ab­

stract prefix, possibly denoting the prefix's semantics as in examples (8-a) and (8-b). 

(8) a. Lexical: 3fiA + ahsi'd +ageh' 
Surface: (y)g+ ahsi'd +ageh' 

b. Lexical: 3fiA+ gts +ageh' 
Surface: (y)ag+ gts +ageh' 

Spell-out rules (such as in (9)) would then be created. These would change this abstract 

prefix, as in examples (8-a) and (8-b), into one of the appropriate surface forms. 

(9) 3fiA---.(y)g/ --+[a] 

3fiA---.(y)ag/ --+[ Q] 

This approach is deterministic and therefore puts less of a burden on the machine at compile 

time as it does not generate a vast number of incorrect forms. It is therefore somewhat more 

preferable despite producing the same final result. 

64 



Figure 7.5: Abstract Lexicon Structure 

'"d 
""l 
(!) 

::t:> 
:X: ........ 
(!) ::s ........ Ul Pl ::s 
I 

,...._. 
Pl (D' ,...._. 

<'() Pl < (') ::s (D' 
~ ::s ""l ""l ""l ""l ""l ""l 

Pl 0 0 0 0 0 0 ,...._. 

F~ 
0 0 0 0 0 0 (!) 
rt rt rt rt rt rt Ul 
Ul Ul Ul Ul Ul Ul 

I ,...._. EB 0 
0 :X: 
Pl (!) 
rt Ul 

=2' 
(!) 
(/l 

s:: (1q 

EB Pl 

:X: ""l 
0 t:i 
0 (1) 
rt < Ul 

(1) 
""l 

Pl 
cr" 

(1q Pl 
Pl ""l 

,...._. 
0 Ul 

-""l 
0 0 
0 rt 
rt Ul z 
Ul 0 
Pl 0 s:::::-'1:1: 
""l ""l 

::s 
0 0 

Ul 

-o 0 rt rt Ul Ul 

0 s:: 
z ""l ::s _o_ 

'"d (/l 0 '"d ..., rt ""l 0 
Ul (1) Ul 

::t:> Ul 

::s :X: (1) 
(1) Ul s:: Ul Ul 

t:l:i ,...._. =2' ,...._. 
Pl 

""l- (1) Ul 
0 '"d ()' 
0 
rt '"d 0 Ul 

Ul Pl ""l Ul 
(1) Ul 

0 ~-::t:> (1) 
Ul 

Pl 0 :X: Ul 
::s 0 ~ 

....... 
< 

~ rt (1) 
Ul 

0 t:i ""l 
p... (1) 

Ul (if> 
0 
rt ....... 
< 
(1) 
Ul 

Description of the continuation classes of the abstract noun lexicon including subdivisions 
based on lexicalised prefixes (ga roots, o roots ... ), subdivision based on stem-initial phones 
( C roots, V roots, Q roots ... ) and flag diacritics (Flagl & Flag2). 

65 



7.1.1.7 Structural Overview of the Lexicons 

Having described each part of the lexicon in detail, I will now briefly compare the concrete 

lexicon to the abstract lexicon. (The latter is diagrammed in full in figure 7.5). It is important 

to note that while in several cases there are redundant paths that would cause the same word 

form to be defined multiple times, these do not actually affect the final number of words in 

the FST. Identical forms are automatically removed by the XFST compiler. 

In some respects, the two versions of the FST are identical. For example, both the 

concrete and the abstract machine process unpossessed basic nouns as in example (10). 

(10) Nouns+ Basic+ Unpossessed prefixes+ gaRoots +NSF 
¢+ ¢+ ga+ 'wahsa: +a'# 

These nouns are represented identically because the prefix that is used is lexicalized. The 

major difference between the concrete FST and the abstract FST resides in the lexicon in 

the processing of the regular affixes. 

The abstract model was straightforward to develop; the noun stems needed to be sub­

divided into classes depending on the lexicalised unpossessed prefix that they take and rules 

were used to generate all other prefix allomorphs as in example (12). 

(11) a. Nouns+ Basic+ Possessed prefixes+ allRoots+ gaRoots +NSF 
¢+ ¢+ ag+ ¢+ 'wahsa: +a'# 

b. I ag+ 'wahsa:+a 'I ---7 I age 'wahsa: 'I 

Example (11-a) represents the output of the abstract lexicon module and (11-b) represents 

the application of the rules module the converts the UR to a valid SR. 

In the case of the concrete approach, however, there were two methods that could be 

used to design the machine: either a fully lexicalised approach could be taken, or a machine 

could be designed that overgenerates and uses rules to filter out the unnecessary forms. 

Part of the basis for the decision to create a concrete and abstract approach was to 

test if there was a computational cost for the addition of extra rules; it therefore seemed 

66 



counter-intuitive to design that concrete approach with a large number of additional rules 

to filter out over-generating forms; such an approach would be essentially analogous to the 

abstract approach itself. 

The fully lexicalised (concrete) approach requires defining specific sub-lexicons for the 

noun stems. These sub-lexicons contain noun roots grouped by their stem-initial phones 

(graphs) and the lexicalised unpossessed prefixes. In example (12) the prefix "age-" must be 

followed by a noun root that begins with 'CV. 

(12) Nouns+ Basic+ Unpossessed prefixes+ ,CV roots +NSF 
0+ 0+ age+ ,wahsa: +a,# 

This approach means that for each type of noun the stems were sub-divided into groups 

based upon their initial phones and the unpossessed prefix form they take making for a total 

of 73 lexicons in the concrete approach versus 34 in the abstract approach. The very high 

number of sub-lexicons results from the need to repeat all sub-lexicons for each stem type 

for each class of unpossessed prefix, as explained below. A small sub-set of the necessary 

sub-lexicons are listed in examples (13)-(16) here while the full spectrum is detailed in figure 

7.6. 

(13) Basic nouns taking jga-/ when unpossessed but /age-/ when possessed in the first 

person singular. 

(14) Basic nouns taking jga-/ when unpossessed but jag-/ when possessed in the first person 

singular. 

(15) Basic nouns taking /o-/ when unpossessed but /age-/ when possessed in the first person 

singular. 

(16) Basic nouns taking /o-/ when unpossessed but jag-/ when possessed in the first person 

singular. 

Figure 7.6 clearly demonstrates the two types of subdivisions for the basic nouns: lex­

icalised prefixes (3: ga+, o+, a+) and based on initial phone(s) (11 conditioning environ-

67 



Figure 7.6: Concrete Approach Basic Noun Lexicons 

Noun Class 

Basic 
Nouns 

Division By: 
Lexicalised 

Prefix 

ga+ 
nouns 

o+ 
nouns 

a+ 
nouns 

Stem-Initial 
Phone 

a 

e/<: 

o/c;> 
7 CV 

hv 

hcv 

nV 

r 

y/w 

Elsewhere 

a 

o/c;> 
7 CV 

hv 

hcv 

nV 

y/w 

Elsewhere 

a 

e/<: 

o/c;> 
7 CV 

hv 

hCV 

nV 

y/w 

Elsewhere 

Multiple subdividing of nouns based on lexicalised prefix and stem-initial phones results in 
a very high number of sub-lexicons (potentially 33 for possessed basic nouns alone) that can 
quickly become difficult to manage. 

68 



ments). Examples (13) and (14) show two types of words which share the same unpossessed 

prefix, but different possessed prefixes, and hence need to appear in different sub-lexicons. 

The words are first sub-divided into 3 sub-lexicons according to the lexicalised unpos­

sessed prefixes they take. Then, the forms in these sub-lexicons were again sub-divided based 

on initial phone. This makes for a total of 33 possible lexicons for just the basic noun roots. 

Although there are currently no attested forms for some of the possible sub-lexicons, nouns 

that appear in these categories could theoretically exist. The manner in which this creates 

a large number of sub-lexicons is clear. 

Now having thoroughly described how the lexicons concatenate morphemes and some 

possible alternative approaches that were not used in my project, I will go on to discuss the 

rules module that turns segmented morpheme sequences into surface forms and vice versa. 

7.1.2 Rules Module 

Unlike in the case of the lexicon module, the rules modules for the two versions contain 

nearly identical rulesets. The set of rules for the concrete approach is a simple subset of the 

rules for the abstract approach. Rules for the concrete approach implement almost none of 

the prefix rules, just stem+suffix alternations and clean-up rules. This made the generation 

of the rules module for the concrete machine more straightforward. 

The variety of vowel changes in Cayuga is rather large, and the juncture of two mor­

phemes is rarely just a case of A + B = AB. The rules module of the FST replicates the 

morpho-phonological processes that occur at morpheme boundaries in Cayuga (see §6.1.1): 

Example (17) demonstrates just a few possible vowel sandhi rules that occur in Cayuga 

morphology. 

(17) Example Morpho-phonemic Alternations 

a. o + idghgwa +a' 

odghgwa' 

3NP flame NSF flame 

b. o + adesh~ +a' 

odesh~' 

69 



3NP cocoon NSF cocoon 

c. ga + itsga: +a' 

g~tsga:' 

3NA mattress NSF mattress 

We see that o + i/a at a prefix/stem boundary gives o (see examples (17-a) and (17-b)). 

The data in (17-c) also show that a+ i at a prefix/stem boundary produces~ and that V + 

a' produces V' at the stem/NSF boundary. 

7.1.2.1 Rules Module Components 

The rules module consists of three component parts: (a) a module that removes deleting 

prefix segments (§4.2.2), (b) the actual morpho-phonological rules and (c) a set of "clean-up" 

rules. The entire set of rules contained in the rules module are contained in appendix C. 

Each of these rule components were only separated for clarity. Some grammars have separate 

rules components for nouns and for verbs. 5 

In XFST, rules are generally specified only in terms of phones and morpheme boundaries. 

Any symbols other than letters, vowel length markers, or morpheme boundary markers can 

block the application of rules. For this reason, the first module to apply removes any word­

initial deleting prefix segments (denoted by parentheses) as in the (y) in (y)o+ (3znsP). 

Then for deleting segments that are not word-initial, it removes the parentheses surrounding 

the segment.6 

Table 7.2 gives examples of word-initial segment deletions. 

In table 7.2 we see the application of two rules. Rule 'Delete Opt' deletes any deleting. 

segments that are word-initial. The second rule, 'Delete Parentheses' then removes any 

other parenthesis that remain in the words. These two rules together remove all paren­

theses while keeping non-word-initial prefix segments and allowing further rules to apply 

unobstructed. 

5In this case, however, all rules apply to all word forms, so there is no need to separate the separate 
modules. 

6 The symbols '(' and ')' were not used while formulating the morpho-phonological rules; therefore they 
could block rule application. A rule stating that /e/-+0/u+-- would not apply to du+(e)tni+ ... because 
the parentheses are not stated in rule. 

70 



Table 7.2: Two Rules for Optional Prefix Segment Removal 

Rule UR: (y )o+ 'nhghs+a' UR: de+(y)o+ 'nhghs+age: 
Delete Opt o+ 'nhghs+a' de+(y)o+ 'nhghs+age: 
Delete Parentheses o+ 'nhghs+a' de+ yo+ 'nhghs+age: 
Output o+ 'nhghs+a' de+ yo+ 'nhghs+age: 

The second module applies the remaining morpho-phonological rules, including vowel 

hierarchy deletions, vowel coalescence processes, epentheses and so forth. Table 7.3 shows 

the application of a subset of rules to an abstract and a concrete underlying form. 

Table 7.3: Morpho-phonological Rule Application 

Concrete Abstract 
UR: (h)j+ahyagwiy+ageh' (h)sni+ahyagwiy+ageh' 
sn-----+j/ _ _i+a n/a (h)ji+ahyagwiy 
Vowel Hierarchy n/a (h)j+ahyagwiy 
Output: (h )j +ahyagwiy+ageh (h)ji+ahyagwiy 

This module contains 23 rules in the abstract version and 11 in the concrete approach. 

The concrete approach only contains basic rules such as vowel hierarchy deletion rules; 

vowel lengthening rules and so forth. It does not specify most forms of coalescence; voicing 

or devoicing rules because, as can be seen in table 7.3, these rules are already encoded in 

the UR. 

The third module applies clean-up processes such as the deletion of multiple identical 

vowels at morpheme boundaries, the removal of morpheme boundaries and the removal of 

abstract consonants. Some roots contain abstract phones ([C]) which block the application 

of some coalescence and vowel hierarchy rules. Example (18) shows the actual (18-a) UR 

and SR of a form with an abstract C versus the expected (18-a) UR and SR. 

(18) a. UR: ga+ Cisra +a' 
SR: ga- isr -a' 

b. UR: ga+ Cisra +a' 
SR: *g~- sr -a-. 

71 



The abstract C in (18-a) blocks the application of the vowel coalescence rule that turns I 
a + i I into [ f2 ]. In (18-b) since there is no abstract C to block the process, the vowels 

incorrectly coalesce into [ f2 ]. 

7 .1.3 Semantics Modules 

I created a simple semantics modules that glosses the stems, prefixes and suffixes with a 

very basic English gloss. The semantics module was generated by slightly modifying the 

lexicon module such that the transductions between a morpheme and its semantics were 

directly encoded into a lexc file. Essentially the semantics module is an enhanced lexicon 

that contains not only morphemes and how they can connect, but also the semantics for 

each morpheme. 

Table 7.4 compares a regular lexicon used for segmentation (left) with a modified lexicon 

used for generation for semantics (right). 

Table 7.4: lexc samples for semantics module and lexicon module 

Regular Lexicon Semantics Lexicon 
LEXICON inalienablePrefixes LEXICON inalienablePrefixes 
(y)agwa+ inalienableStems ; lepA+ : (y)agwa+ inalienableStems ; 

LEXICON inalienableStems LEXICON inaliena bleStems 
ahghd NSF; on your ears : ahghd NSF; 

LEXICON NSF LEXICON NSF 
+a' #; +NSF: +a' #; 

As can be seen in the right-hand columnn of table 7.4, the basic semantic definition of 

a form is given to its left separated by a colon (for example, +NSF : +a'). An alternative 

method of implementing the semantics module would have been a list of transformation 

rules that would contain the semantics for all stems, prefixes and suffixes. Either method 

would produce the same results; however, a major drawback of the method I applied was 

that when the basic lexicon was changed, the semantic lexicon had to be changed to match. 

A rule-based approach (in which semantic glosses are added by rules) would not need such 

changes. 

72 



It is also important to note that I could not just use the semantics lexicon in place of 

the regular lexicon because then the intermediate output (the segmented morpheme) would 

not be generated, just the semantics. 

7.1.4 Interface 

A user interface was not part of the original set of specifications, but I decided that it 

was more satisfying to create a basic one. I designed a simple web based interface for the 

program using Python 7 and PHP. 8 This interface allows users to enter words into a simple 

form field and then receive the segmented form of the word, the semantics and the set of 

related prefixes. Currently this interface uses the concrete version of the FST to give users 

concrete underlying forms. Additionally the interface gives a brief explanation of the prefix 

semantics. 

Figure 7. 7 outlines the entire process in the form of a flow chart explicitly stating the 

intermediate tasks assigned to the python script. At point (A), the user is presented with a 

form field in which to input a word. This word is passed to the Python script which renders 

the word to lower-case9 and ensures that only a single word has been entered (B). 

This single lowercase word is then passed by the script to point (C) the segmenting FST 

(the composition of the lexicon and rules components as described above). The output of 

the segmenting FST is returned to the script (D) which outputs the result to the user and 

also passes the information to (E): the semantics FST. 

The semantics FST in turn returns its result to the script (F). The script then outputs 

this result, and then separates the prefix semantics to be passed back to the semantics FST 

in reverse (G). The result of (G) is then passed to the script (H) which outputs that result 

to the user. 

Table 7.5 describes the information flow through the interface. 

7 Python is a standard procedural programming language. For more information please visit 
http:/ /www.python.org 

8 PHP is a standard procedural programming language. For more information please visit 
http:/ /www.php.net. The PHP scripting performs no task other than to pass the user-input to the python 
script for processing. 

9 The FST has been designed in lower-case, it can however, be modified to be case insensitive. 

73 



Figure 7.7: Complete Program Flow Chart 

A:~~ ________ u_s_e_r_ln_p_u_t_J_w __ e_b_F_o_rm ________ ~ 
B: 

C: 

\. 

D: 

Python Script: Word tokenization & 
capitalisation regularization 

Noun Prefix Morpho-
Joiner Phonological Lexicon Removal Rules 

Python Script: Output result & 
forward it to: 

Clean 
-up 

Rules 

E:~~ ___________ s_e_m __ an_t_ic_s_F_s_r __________ ~ 
F: Python Script: Output result & 

forward prefix to: 

G:l~ ________ s_e_m_a_n_t_ic_s_F_s_T_:R_e_v_e_r_se ________ ~ 

H:~~-----P_y_t_h_o_n_s_c_ri_p_t:_o_u_t_p_u_t_re_s_u_lt------~ 
Flow chart demonstrating how user input is passed through to each module of the machine 
using the python script as an intermediary. 

74 



Table 7.5: Stages of Output from User Interface 

a User Input to Segmentation ohQna'da' 
b Segmentation Output (y)o+hQna'd+a' 
c Input to Semantics (y)o+hQna 'd+a' 
d Semantics Output 3znsP +potato+ NSF 
e Input to Reverse Semantics 3znsP+ 
f Reverse Semantics Output List of prefix allomorphs with conditioning 

environments, see example (19) 

The interface actually runs three FSTs in order to produce the results. First the word 

entered by the user is run through the combined lexicon module and the rules module (table 

7.5 a). This FST outputs the segmented form (table 7.5 b) or an error if the word does not 

exist in the machine. 

The output from that FST is then run through the semantics module to generate the 

semantics for the form (table 7.5 c and d). 

Finally, the prefix from the output of the semantics module is run through the semantics 

module again, this time in reverse (table 7.5 e and f and example (19)), exploiting the 

bidirectionality of FSTs. At both stages the output is saved and displayed to the user. 

The output of the second pass through the semantics (Table 7.5 f) module is formatted 

as such: 

(19) Prefixes meaning 3zndpA: 

•g~n+inalienable noun root beginning with +a 

•gad+inalienable noun root beginning with +i 

•gadi+inalienable noun root beginning with + 'C 

•... 
This interface was quite straight-forward to design, demonstrating that XFST is worthwhile 

for developing usable applications. 

75 



7.2 Addressing the requirements 

There were several requirements that each machine should meet in order to determine which 

approach was most useful. The machines should (a) provide an adequate arena for testing 

the morpho-phonological rules of Cayuga; (b) properly generate and segment all and only 

Cayuga nouns; (c) help investigate the usefulness of the FS framework for polysynthetic 

languages; (d) provide ideal dictionary access; and (e) be efficient and elegant. Each of these 

requirements is discussed below. 

7.2.1 Testing of Rules 

Determination of morpho-phonological rules and their orderings can often be difficult for a 

variety of reasons. Applying rules to a large number of forms can be very time consuming 

and difficult if done manually. Finite-state machines allow the user to run large corpora of 

data against a given ruleset very quickly, and furthermore allow the changing and updating 

of those rules with ease. 

I compiled a set of test-case files included in Appendix C in order to ensure that the 

rule-orderings were producing the appropriate results for all noun types. This required firstly 

determining the set of conditioning environments (e.g., Table 7.7) and then selecting a set 

of words exemplifying each underlying prefix form with each stem type. 

Two lists were created, one containing the valid underlying forms and one containing 

valid surface forms of those same words for comparison with the machine's output. A second 

set of underlying forms had to be generated for the concrete approach since the prefix 

alternants are lexicalised. 

After running the list of underlying forms through the machine I compared its output 

automatically with my list of correct surface forms. The automatic comparison listed forms 

that should not have been output as well as forms that should have been, for example, see 

table 7.6 (b): 

76 



Table 7.6: Rule-testing Samples 

Input Output Expected Output Result 
(a) (ya)godi+hgna 'd+a' godihgna 'da' godihgna 'da' OK 
(b) ( w )ag+hsgwa~ 'd +a., aksgwa~ 'da., agehsgwa~ 'da., The SR "aksgwa~ 'da ,, was 

produced which is not a 
valid noun of type X. 
The SR "agehsgwa~ ,da ,, 
was not produced. 

Finally, I ran the same process in "reverse" to check that the bidirectionality of the 

machine was intact: surface forms gave the proper underlying forms and vice versa. As 

described in the following section, some errors in the posited rules were revealed. 

7.2.1.1 Errors Discovered 

One problem was discovered with the rule formulations: that the lsP basic noun prefix 

was not always generating the correct allomorph. The lsP prefix was listed as having the 

following C-stem allomorphs: 

Table 7.7: Basic Nouns Patient Prefix Allomorphs- C-stems 

Prefix UR Elsewhere 
(w)ag+ age-

In the course of testing it became clear that this description was not fully adequate. The 

current description describes nouns beginning in [ 'CC ] as a single environment. However, 

as can be seen from example (20), not all [ 'CC ] stems in fact pattern identically. 

(20) a. age+ 'drehd +a' 
lsP car; truck; vehicle NSF 
My car(s) 

b. *age+ 'nhghs +a., 

77 



c. ak+ 'nhghs +a' 
lsP egg NSF 
my egg(s) 

According to the current description of morph-phonological alternations, the stems -'drehd­

and -'nhrhs- should both pattern identically and take the same lsP allomorph age+. How­

ever, as can be seen in ( 20-b) and ( 20-c), this is not the proper allomorph for the stem 

- 'nhrhs-. This demonstrates that the machine description, by systematically applying it­

self to all nouns, can detect inconsistencies in rule formulation/ conditioning environment 

description. 10 

7.2.2 Generation & Segmentation 

The above method for testing covered all regular alternation types. If there are any unrecog­

nized forms still in the machine they are then a fault of either an error in the initial data or 

caused by human error in the creation of the lexicon file. The machines each generate and 

segment over 4000 nouns with almost 100% coverage, with the only errors resulting from the 

occasional mis-analysis of [e]-epenthesis described in the preceding section. 

7.2.3 FS Applicability to Polysynthetic Languages 

In general, it does not seem that any inordinate amount of complexity arises as a result of 

the large number of phonological alternation rules or as a result of (a limited number of) 

long-distance dependancies. In fact the two machines that I created were each quite small in 

final size. However, because this machine only implements a single long-distance dependancy 

it is not clear whether or not a fully implemented language FST would encounter difficulties 

arising from that issue. 

While there were no complexity issues in the development of either machine, there may 

be some issues that arise in future work due almost solely to the morphological complexity 

10There are two ways to approach the modelling of [e]-epenthesis: (a) a linear description (0-->[ e ]jC __ CC), 
or (b) a non-linear description (apply the rule in (a) only in the case where some of the Cs would remain 
unsyllabified otherwise). I have assumed a linear approach as a non-linear approach would require either 
a complex environment that accounts for the differing syllabifications of continuants and non-continuants, 
or a syllabification module. It is beyond the scope of this paper to model the complex environments of 
[e]-epenthesis. 

78 



found in First Nations languages. It seems likely that highly synthetic11 languages, such as 

those in the Athapaskan family, may require special care for the designing of morphological 

segmenters. There will be not only many prefixes but also many more cases of long-distance 

dependancies and morpho-phonological variation will be much higher. 

7 .2.4 Ideal Dictionary Access 

The machine produces a basic semantic gloss for all valid noun forms and has a straightfor­

ward interface. The user need only type a word into a text box to retrieve its morphological 

and semantic information. The output of the machine is very accessible. 

A potential drawback of the current version of the machine is that it is somewhat 

restricted by its use of an intermediate (non-standard) orthography lacking accent-related 

diacritics (§4.1). In its current version therefore it does not meet all the criteria of an 

accessible dictionary. This problem, however, can be easily resolved by the introduction of 

additional transducers to take input in either of the Henry or linguistic orthographies. 

7.2.5 Efficiency, Elegance and Usability - Abstract vs. Concrete Versions 

Both the abstract and the concrete versions are almost identical in the terms of computational 

efficiency initially laid out in §6.1.1.2. The two machines have statistically insignificant 

differences in the number of states, transitions and in file size. As can be seen in table 7.8 

the abstract machine is slightly larger (by 0.4Kb), has 6 additional states (out of 1054), and 

20 additional transitions (out of 1943). The comparative evaluation of the two machines, 

therefore, must rest on other criteria, as discussed below. 

Table 7.8: Sizes of Final Segmenter FSTs 

File Size (Kb) States Transitions Paths Rules Roots Prefixes 
Abstract 40.5 1054 1943 4009 28 413 45 
Concrete 40.1 1048 1923 4006 19 413 149 

11 Synthetic languages "typically contain more than one morpheme". In a highly synthetic language the 
words would typically contain more than 3 or 4 morphemes, as in, for example, Totonac. (Crystal, 2003) 

79 



In terms of processing speeds, the abstract and concrete versions are, again, nearly 

identical. I timed 5 sets of 100 iterations of segmentation and combination of morphemes 

using the test cases described above (713 words per iteration for the abstract machine and 

712 for the concrete machine). As can be seen from the data in tables 7.9 and 7.10, the speed 

of running the combination of an underlying form to produce a surface form was very slightly 

slower than segmenting a surface form into an underlying form. However, both machines 

show little difference in speed and on average segment single words in about 0.0002145s and 

combine single words in about 0.2315s. 

Table 7.9: Time (in seconds) for 100 iterations of morpheme combination of the test corpora 

Machine Run 1 Run 2 Run 3 Run 4 Run 5 Average Average/word 
Abstract 15.325 15.626 15.203 15.102 15.110 15.273 0.0214 
Concrete 15.870 15.329 15.749 14.979 14.784 15.342 0.0215 

Table 7.10: Time (in seconds) for 100 iterations of segmentation of the test corpora 

Machine Run 1 Run 2 Run 3 Run 4 Run 5 Average A veragejword 
Abstract 16.570 16.317 16.504 16.528 17.319 16.648 0.0233 
Concrete 16.633 16.245 16.254 16.284 16.325 16.348 0.0230 

The two machines contain both internal and external ambiguity (non-determinism). The 

external ambiguity was necessary because some lexical items have more than one potential 

meaning and some surface prefixes can be analysed as one of 2 or more underlying prefixes. 

This non-determinism does not seem to impede the performance of the final machine, most 

likely as it occurs early on in the words processing time is only marginally affected and as 

there are only a small number of cases machine size is not greatly affected either. 

Initially, the concrete approach shows some distinct advantages over the abstract ap­

proach. It is easier to have it generate useful output for the users. As well, there are some 

possessive prefixes that need to be listed lexically regardless of the approach. This some­

what mitigates the argument of linguistic elegance as an advantage of the abstract approach. 

Since some continuation classes are necessary regardless, and the concrete machine uses them 

throughout, the concrete approach is more consistent. (See §4.2.3, §6.1.1.1 and §7.1.1 for a 

further discussion of the opaque prefixes). 

80 



The abstract approach has more composition operations than the concrete approach 

and to expand the machine to include verbs and other word-forms would certainly require 

even more rules to be added (resulting in more composition operations). However, there 

are unlikely to be many more rules that need to be added to account for other word-forms 

and several of those rules would still need to be applied to the concrete machine, so it seems 

unlikely that there will be a substantial growth in the size of the abstract machine relative to 

the concrete machine with the addition of further roots and prefixes. So, in terms of future 

machine growth, the two approaches seem equal. 

The distinct advantage to the abstract approach that makes it the best choice for future 

work, however, is that of elegance (not just linguistic elegance, but equally importantly, com­

putational elegance). The abstract approach is significantly simpler to design, implement, 

maintain and update than the concrete approach, as described below. 

When a bug was found in the abstract approach, either a single form in the lexicon 

needed to be edited, or a small number of rules needed to be modified or rearranged. In 

the case of the concrete approach, however, all major bugs were in the lexicon; if there was 

an initial design error, then going back to fix it was significantly more difficult. In other 

words, the concrete approach was significantly less computationally elegant than the abstract 

approach. For example, suppose it had been incorrectly assumed that l(e)dwa+g ... l become 

I ( e )dw+g ... I. To fix this problem in the concrete approach, all inalienable roots beginning 

with [ Q] would have to be relocated to new sub-lexicons. Since the roots beginning with [ Q] 
are distributed across multiple sub-lexicons, and it is necessary to keep their other groupings 

intact, this would be a lengthy endeavour. To fix this problem in the abstract approach, 

however, one would need only to modify a single rule to effect the change. 

Finally, while the abstract machine in its current form is slightly less usable than the 

concrete machine, it can be modified to provide more user-friendly output. Currently, the 

abstract machine cannot provide a list of related prefix forms for an underlying prefix, while 

the concrete machine can. Such a list is of great use to speakers who might have difficulty 

identifying related prefix allomorphs. This problem can easily be solved at a later date 

by modifying the semantics module and combining it with a modified version of the rules 

module. 

The abstract approach, then, is more computationally and linguistically elegant, mean­

ing it will be easier to upgrade and modify in the future. Any drawbacks that it may have 

81 



compared to the concrete approach can be satisfied by the creation of a number of further 

modules, at an apparently low cost in terms of computational efficiency. 

82 



CHAPTER 8 

Conclusion 

8.1 Future Work 

There is a wide array of uses to which my application can be put. The innate modularity of 

the FS framework means that my work can be.easily extended to include enhancements such 

as orthographic conversion between the three orthographies or recognition of more complex 

prefix combinations and more word types. 

Dictionaries can be constructed that will be more accessible to their users. The user 

will no longer need to have a complex grasp of the morphology and morpho-phonology of 

their language, simply to find the definition of a word (§5.1). 

This machine could be expanded to include all Cayuga word-forms. Almost all of 

the rules that are necessary for analyzing verbal forms are independently needed to model 

nominal forms, so very few new rules would need to be added. In principle this approach 

should work for verbs, but it remains to be fully tested. It would also be useful to implement 

a more rigorous semantics module that could more fully implement dictionary-like semantic 

readings. 

Furthermore the simple parser that I have described can be enhanced by the addition of 

a variety of other modules such as spell-checkers, syllabifiers and the ability to use multiple 

orthographies (something that is of particular use in the context of First Nations languages 

which typically make use of multiple orthographies). A spell-checking dictionary that could 

guess what a user meant if they mis-typed a word would be ideal for many First Nations 

languages where the spelling system and the morphology are often complex and confusing 

to speakers. 

83 



8.2 Summary Conclusions 

In this document I have detailed my implementation of a morphological parser for Cayuga 

using the finite-state framework. This parser demonstrates that the finite-state framework 

can generally handle problems typical of polysynthetic languages such as obligatory prefixing 

and long-distance dependancies and that the finite-state framework is a versatile tool for NLP 

applications. 

Much future work will need to be done to fully et>tablish the finite-state framework's use­

fulness for full-scale implementations of morphologically complex languages but my machine 

as a proof-of-concept is the first step towards such a full-scale implementation. 

84 



BIBLIOGRAPHY 
ALEGRIA, INAKI, MAxux ARANZABE, NEREA EZEIZA, AITZOL EZEIZA, and RUBEN URIZAR. 2002. 

Using Finite State Technology in Natural Language Processing of Basque. In Implementation 
and Application of Automata: 6th International Conference in the Lecture Notes in Computer 
Science Series, ed. by B.W. Watson and D. Wood, volume 2494, 1-11. Berlin, Heidelberg: 
Springer-Verlag GmbH. 

BEESLEY, R. KENNETH, and LAURI KARTTUNEN. 2000. Finite-State non-concatenative morpho­
tactics. In Special Interest Group in Computational Phonetics, volume (2000), 1-12. 

BEESLEY, R. KENNETH., and LAURI KARTTUNEN. 2003. Finite State Morphology. Stanford, CA.: 
Center for the Study of Language and Information Publications. 

CHAFE, WALLACE L. 1967. Seneca Morphology and Dictionary. Number 4 in Smithsonian Con­
tributions to Anthropology. Washington D.C.: Smithsonian Press. 

CHOMSKY, NOAM. 1956. Three Models for the Description of Language. IRE Transactions on 
Information Theory 2: 113-124. 

CRYSTAL, DAVID. 2003. A Dictionary of Linguistics and Phonetics. Malden, MA: Blackwell 
Publishing, 5th edition. 

DYCK, CARRIE. 2006. Speakers prefer concrete prefixes. Personal Communication. 

FOSTER, MICHAEL. 1986. Updating the terminology of tense, mood, and aspect in Northern 
Iroquoian descriptions. International Journal of American Linguistics 52: 65-72. 

--, KARIN MICHELSON, and HANNI WOODBURY. 1991. Base and affix dictionary for Iroquoian 
languages. N.Y.: Ms. Snyder. 

FRANK, RoBERT, and GIORGIO SATTA. 1998. Optimality theory and the generative complexity 
of constraint violability. Computational Linguistics 24.2: 307-315. 

FROMAN, FRANCES, ALFRED KEYE, LOTTIE KEYE, and CARRIE DYCK. 2002. English-Cayuga/ 
Cayuga-English Dictionary. Toronto: University of Toronto Press. 

HOPKINS, ALICE W. 1989. Theoretical Perspectives on Native American Linguistics, chapter 
Vowel Doubling in Mohawk, 445-459. Albany: State University of New York press. 

KAPLAN, RoNALD M., and MARTIN KAY. 1994. Regular models of phonological rule systems. 
Computational Linguistics 20.3: 331-378. 

KARTTUNEN, LAURI. 2001. Applications of Finite-State Transducers in Natural Language Process­
ing. In Implementation and Application of Automata : 5th International Conference, ed. by 
S. Yu and A. Paun, volume 2088, 33-46, Berlin, Heidelberg. CIAA, Springer-Verlag GmbH. 

KIRAZ, GEORGE ANTON, and BERND MOBIUS. 1998. Multilingual syllabification using weighted 
Finite-State Transducers. In Proceedings of the Third ESCA Workshop on Speech Synthesis, 
Australia. Jenolan Caves. 

85 



KosKENNIEMI, KIMMO. 1997. Representations and Finite-State components in Natural Language. 
In Finite-State Language Processing, ed. by Emmanuel Roche and Yves Schabes, 99-110. 
Cambridge: MIT Press. 

~-, and KENNETH WARD CHURCH. 1988. Complexity, Two-Level Morphology and Finnish. In 
COLING, 335-340. 

MACKENZIE, MARGUERITE, and BILL JANCEWICZ (eds.) 1994. Naskapi Lexicon. Kawawachika­
mach: Naskapi Development Corporation. 

MICHELSON, KARIN, and MERCY DOXTATOR. 2002. Oneida-English/ English-Oneida Dictionary. 
Toronto: University of Toronto Press. 

MITHUN, MARIANNE. 1979. The Consciousness of Levels of Phonological Structure. International 
Journal of American Linguistics 45.4: 343-348. 

MOHRI, MEHRYAR. 1997. Finite-State Transducers in language and speech processing. In Associ­
ation for Computational Linguists, volume 23, 269-311. 

NEDERHOF, MARK-JAN. 1996. Introduction to Finite-State techniques. Lecture notes. 

OFLAZER, KEMAL. 1994. Two-level description of Turkish morphology. Literary and Linguistic 
Computing 9.2. 

REICHEL, UwE, and KARL WEILHAMMER. 2004. Automated Morphological Segmentation and 
Evaluation. Lisbon, Portugal: nja. 

RocHE, EMMANUEL, and YvES SCHABES. 1997. Finite-State Language Processing. Cambridge, 
Mass.: MIT Press. 

SPROAT, RICHARD W. 1992. Morphology and Computation. Cambridge, Mass.: MIT Press. 

TINSLEY, JOHN. Accessed: 2007 02 13. Spanish Morphological Analyser j Generator. 
http://www. red brick. dcu. ie/ tinsley/ . 

TZOUKERMAN, EVELYN, and MARK Y. LIBERMAN. 1990. A finite-state morphological proces­
sor for Spanish. In COLING-90: Papers Presented to the 13th International Conference of 
Computational Linguistics, ed. by Hans Karlgren, 277-282, Helsinki. Helsingiensis Universitas. 

VILARES, M., J. OTERO, F.M. BARCALA, and J. DoMINGUEZ. 2004. Automatic Spelling Cor­
rection in Galician. In Lecture Notes in Artificial Intelligence, number 3230 in Espana for 
Natural Language Processing 2004, 45-57. Berlin: Springer-Verlag. 

WIKIPEDIA. Accessed: 2006 03 24. Finite State Machines. http://en.wikipedia.org/wiki/Finite 
_state_machine . 

YOUNG, ROBERT W., and WILLIAM MORGAN. 1987. The Navajo Language, A Grammar and 
Colloquial Dictionary. Albuquerque: University of New Mexico Press, revised edition. 

86 



APPENDIX A 

Morpho-phonological and Clean-up rules 

This section contains the morpho-phonological rules and the clean-up rules as described in §7.1.2.1. 
The optional prefix segment rules were left out as they are relatively straightforward. 

Rules prefixed by * appear only in the abstract version of the program. Other rules appear 
in both versions1. Finally rules prefix by a t implement minor spelling variations characteristic of 
the Henry Orthography. 

L 't /g/ ~ [k] /-- + { ~i~)V } 
2. t I hI-+ 0 Is +--v 

3. I h, 'I -+ 0 1 k __ + c 

1. '• ~ [e] I { ; } - { ~c } 
(Co consists of [ k, g, t, d, h, s, j]) 

5. Some prefixes have additional initial vowels that are only pronounced when preceded by 
another phone, these are deleted as necessary here, and actually consists of 3 separate rules. 

6. I a + il -+ [~] 

7. * lol -+ [aw] I __ + { : } 

s. IV I -+ 0 I { ~ ~ +v } --
VV+ 

(The final vowel in a tri-moraic vowel sequence at a morpheme boundary is deleted) 

9. *I nil -+ [y] I __ + a 

10. * ladil -+ [~nJ 1 __ + v_i 
(V_i is the set of all vowels except [i]) 

1 In some cases I have have combined rules together for clarity where they are actually stated as separate 
in the rules module. 

87 



11. */di/---) [nJ 1 __ + v_i 

Rules (12 - 16) represent vowel hierarchy deletions. The hierarchy from strongest to weakest 
is [ g, o, ~' e, a, i ] 

12. /V/--+ 0/ { --+Q} 
Q + --

13. jo, ~' e, a, i/ --+ 0/ { 
--+o} 
o+ --

14. /~, e, a, i/ --+ 0/ { -- + ~ } 
12 + --

15. /e, a, i/ --+ 0/ { -- + e } 
e + --

16. fa, i/--+ 0/ {--+a} 
a+--

17. */w/--+[y]/ 
{ 

--+ 0 } 
o+ --
--+ Q 

Q + --

1s. * /k, t, d/ ---) [gJ ; __ y +2 

19. * /sy/--+ [j] / __ + 

20. /V1+V1/--+ [V1:J 

21. /r/--+ 0 I v __ v 

22. /C AI ---) 0 
Some roots require abstract consonants that block morpho-phonological processes such as 
the coalescence rule in (6). These abstract consonants are deleted here. 

23. ;v 1 I --+ 0 I v 1 (:) -- + 
Some rules leave behind groups of identical vowels at morpheme boundaries such as ' ... a:+a ... ' 
or 'Q+Q ... '. All such sequences are cleaned up here. 

24. /+/---) 0 
8his rule deletes the morpheme boundary marker. 

2This rule implements a difference between the lower Cayuga dialect dealt with in this study, and the 
upper Cayuga dialect. 

88 



APPENDIX B 

Code 

This appendix contains the XFST Lexc code used to generate the abstract and concrete lexicons. 
This code specifies the valid morpheme combinations, but does not apply any rules. The design of 
this code is outlined in §7.1.1. This code is written in Lexc as described in §6.3.1. 

There are four sections to this appendix. The broad division is between the abstract and concrete 
version and within those sections is the code for both the semantic lexicon and the regular lexicon. 

B.l Abstract Version 

8.1.1 Abstract Lexicon 

Multichar_Symbols ©U.INALIEN.POSS© ©U.INALIEN.UNPOSS© 

LEXICON 

LEXICON 

LEXICON 
sgwa: gwaQdQ, 
dago:s 
da:gu:s 
dakshae ,dohs 
so:wa:s 
tw~:tw~:t 

hg:ga:k 
dog~:t 

gwihsgwihs 

# 

# 

# 

# 

ROOT 
allNouns 

allNouns 
inalienableNouns 
basicNouns ; 
deverbalNouns ; 
defectiveNouns ; 

defectiveNouns 

# ; 

# 

# 

# 

# 

89 



gwa,yg, # 

sohg:t # 

gyo:gyo: 
, 

# 

jogrihs # ; 
gwido ,gwido, # 
di ,di:, # 

jikjiye: 
, 

# 
ga ,ga:, # 

hihi: # ; 
gwiyE2 ,gwiyE2, # ; 

dihsdihs # 

j i ,nhQWE2: se: # ; 
duwisduwi:, # ; 
sa,sa, # ; 

gwE2:dihs # 
gwe: SE2, # 

tsahgo :wah # 
jihsgogo, # 

gwaoh # 
j ohwE2 ,sdaga, # ; 
gwE2 ,gohnyE2, # ; 
hnyagwai, # ; 
gg:deh # 

tgwiyo:gE2, # ; 

jinhghgwahE2h # 

j i ,nghdo : ya 
, 

# 

j i ,dana: WE2: # ; 
jinghsangh # ; 

jihsda: # 

ji,ao:yE2: # 

jinghyahae: # ; 
degriya ,gQ, # ; 
j ihnyo ,gE2, # 

hehshai: # 
sgwa,ahda, # 
tehtg, # 
jg,daga, # 

j ino :wE2: # ; 

tea:Cgt # ; 

sa:no: # ; 

drE2:na: # 

dre:na: # 

joni:tsgrg:t # ; 
kdagg, # ; 

do:dihs # 

90 



sgwa:y~h 

gwiyo:gf 
jg:nyg:, 
nghsodai:yg: 
gwa,da: 
jid~:·~h 

jg'dae:ya:' 
j i ,drg: w~: 
onohotsg~y 

teo: j i, 
tsa,g~: da' 
yahg~hda' 

tsinyohgwa:k 
gih!2:k 
naw!2,da, 
jihsg:dahk 
otahyg:ni: 
tahyg:ni: 
jihsg~: 

ji 'o: 
grahe:t 

LEXICON 
o+ 
a+ 
ga+ 

LEXICON 
~dehsr 

~·nyotr 

~,nhotr 

LEXICON 
idehsra 
Y!2nawahsr 
ya 'dowehdahsr 
ya 'dagenhahsr 
atgw~nya 'tr 
atggnya'tr 
tgi,tr 
nohgkdehsr 
nhehsr 

# 

# ; 
# 

# ; 

# 

# 
# ; 

# 

# ; 

# ; 

# 

# 

# ; 
# ; 

# 

# 

# 

# 

# 

# 

# 

deverbalNouns 
deverbalORoots 
deverbalARoots 

deverbalGaRoots 
deverbalNullRoots ; 

deverbalNullRoots 
NSF ; 
NSF 
NSF ; 

deverbalGaRoots 
NSF 

NSF 
NSF 

NSF 

NSF 
NSF ; 

NSF 
NSF ; 

NSF ; 

91 



na 'j owi 'tr 
risr 
rihwiyohsd~hsr 

rihwane 'aksra 
riho'd~hsr 

hyadghsr 
hshahsd12hsr 
Cahghsr 

LEXICON 
y12hsr 
atgahngnihsr 
nrahdgdahsr 
ngnhe'dr 
niga:h12hsr 
hshahsd12hsr 
adgtgadghsr 
adgtgadehsr 
'drohsr 
i 'daiht2hdr 

LEXICON 
atsho 'kdghsr 
atna'tsotr 
atna 'gwihdr 
atgahnyehtr 
nahaotr 
agya 'dawi 'tr 
adrihwagyaghsr 
adra'wihsd 
adgnhehsr 
adi 'grghsra 
ad12na 'tr 
adekwahahsra 
adao 'tra 
ahdahdi'tr 

LEXICON 
©U.INALIEN.POSS© 
©U.INALIEN.UNPOSS©o+ 

end with the NSF 

NSF ; 
NSF 

NSF ; 
NSF ; 

NSF 
NSF ; 

NSF 
NSF ; 

deverbalORoots 
NSF ; 
NSF ; 

NSF ; 
NSF 

NSF 
NSF 
NSF 

NSF 

NSF 
NSF 

deverbalARoots 
NSF ; 

NSF ; 
NSF 

NSF 

NSF 

NSF 
NSF 

NSF ; 
NSF 

NSF 
NSF 

NSF 

NSF 

NSF 

inalienableNouns 
inalienablePrefixes 

inalienableStems ; ! Unpossessed inalienables 

92 



LEXICON 
g+ 
(e)tni+ 

(e)kni+ 

(y)akni+ 
(e)dwa+ 
(y)agwa+ 
( 

ha+ 
(y) 

ga+ 
(y)+ 
w+ 
hadi+ 
gag+ 
gae+ 
ga:g+ 
gadi+ 

LEXICON 
h)s+ 
h)sni+ 
h)swa+ 
eh)s+ 
eh)sni+ 
eh)swa+ 

LEXICON 
g+ 
~+ 

ag+ 
e+ 

LEXICON 

LEXICON 

inalienablePrefixes 
inalienableStems 

inalienableStems 
are interchangeable) 

inalienableStems 

! 1S 
1ID 

1ID 
are interchangeable) 

inalienableStems ; ! 1ED 
inalienableStems ; ! 1IPL 

inalienableStems ; ! 1EPL 
inalienablePrefixes2 ; 

inalienableStems ; ! 3MS 
inalienable3FIPrefixes ; 
inalienableiCStems ; ! 3N 
inalienableOgStems ; 3N 

inalienableNotiOgStems 
inalienableStems ; ! 3MPL 

3N 

(This and the following 

(This and the preceding 

(For I-stems and C-stems) 
(For o-stems) 

(For other stems) 

inalienableAStems ; ! 3FIPL (For a-stems) 
inalienableiCStems ; ! 3FIPL (For i-stems and C-Stems) 

inalienableNotAIStems ; ! 3FIPL (For other stems) 
inalienableStems ; ! 3NPL 

inalienablePrefixes2 
inalienableVStems 

inalienableVStems ; ! 2D 
inalienableVStems ; ! 2P 

inalienableCStems ; 2S 
inalienableCStems 2D 
inalienableCStems ! 2P 

inalienable3FIPrefixes 

2S 

inalienableAStems ; ! 3FI (For a-stems) 
inalienableiStems ; ! 3FI (For i-stems) 

inalienableNotAIStems ; ! 3FI (For other V-stems) 
inalienableCStems ; ! (For C-stems) 

inalienableiCStems 
inalienableiStems ! 3FIPL (For i-stems) 
inalienableCStems ; ! 3FIPL (For C-stems) 

inalienableVStems 
inalienableAStems 
inalienableiStems 

93 



LEXICON 

LEXICON 

LEXICON 

LEXICON 

LEXICON 
ahQhd 
ahsi,d 

ahyagwiy 

LEXICON 
ihn 

!LEXICON 

!LEXICON 

!LEXICON 

inalienableEStems 
inalienable~Stems 

inalienableOStems 
inalienableQStems ; 

inalienableStems 
inalienableAStems 
inalienableiStems 
inalienableNotAIStems 
inalienableCStems ; 

inalienableNotAIStems 
inalienableEStems 
inalienable~Stems ; 
inalienableOStems ; 

inalienableQStems ; 

inalienableNotiOQStems 
inalienableAStems ; 

inalienableEStems 
inalienable~Stems ; 

inalienableOQStems 
inalienableOStems 

inalienableQStems ; 

inalienableAStems 
inalienableSuffix ; 
inalienableSuffix 

inalienableSuffix ; 

inalienableiStems 
inalienableSuffix 

inalienableEStems 

inalienable~Stems 

inalienableOStems 

94 



LEXICON 
QtS 

LEXICON 
w~'nahs 

w~'nohs 

gah 
gahehd 
gahgwaohs 
gQhS 
gQhStQ' 
gQ'd 
gfsd 
ha'd 
han 
hdega: 
hetga' 
hna'ts 
hn~s 

hnya's 
hny~dahs 

hsgwa: 
hsin 
hsQhga: 
hsna'd 
hsohd 
hsohgw 
hswa'n 
hswe'n 
hyohs 
'nhQhsga: 
'nyQhs 
'yohgw 
'ahs 

kse'd 
nQ'a: 
nQ'gw 
nQnhe'dr 
no'j 
nr 
n~tsh 

ny~d 

inalienableQStems 
inalienableSuffix 

inalienableCStems 
inalienableSuffix ; 
inalienableSuffix ; 

inalienableSuffix 
inalienableSuffix 

inalienableSuffix ; 
inalienableSuffix 

inalienableSuffix 
inalienableSuffix ; 
inalienableSuffix ; 

inalienableSuffix ; 
inalienableSuffix 

inalienableSuffix ; 
inalienableSuffix 
inalienableSuffix 

inalienableSuffix ; 
inalienableSuffix 

inalienableSuffix ; 
inalienableSuffix ; 

inalienableSuffix ; 
inalienableSuffix 

inalienableSuffix ; 
inalienableSuffix ; 
inalienableSuffix ; 
inalienableSuffix ; 
inalienableSuffix ; 
inalienableSuffix ; 

inalienableSuffix ; 
inalienableSuffix 
inalienableSuffix 

inalienableSuffix ; 
inalienableSuffix 
inalienableSuffix 
inalienableSuffix 

inalienableSuffix ; 
inalienableSuffix 

inalienableSuffix 
inalienableSuffix ; 

inalienableSuffix ; 

95 



rad 
ragwahd 
w~,yQhga: 

jaoho,gw 
j i,ohd 
j i ,ehd 
jisgo,gw 
ya,d 
ya,ga: 
yo,d 
yo,gw 
yo,ts 
yu,ts 

LEXICON 
@U.INALIEN.POSS@ 
@U.INALIEN.UNPOSS@ 

LEXICON 
+a,geh 

LEXICON 

LEXICON 
ga+ 
o+ 
a+ 

LEXICON 
(w)ag+ 
(y)Qkni+ 
(y)Qgwa+ 
sa+ 
sni+ 
swa+ 
ho+ 
(ya)go+ 
(y)o+ 
hodi+ 

inalienableSuffix 
inalienableSuffix ; 

inalienableSuffix 
inalienableSuffix ; 

inalienableSuffix 
inalienableSuffix 

inalienableSuffix ; 
inalienableSuffix 

inalienableSuffix 
inalienableSuffix ; 
inalienableSuffix 
inalienableSuffix 
inalienableSuffix 

inalienableSuffix 
locativeSuffix 

NSF ; 

locativeSuffix 
# ; 

basicNouns 
basicNounUnpossessedPrefixes 
basicNounPossessedPrefixes ; 

basicNounUnpossessedPrefixes 
gaBNouns 

oBNouns ; 
aBNouns ; 

nullBNouns ; 

basicNounPossessedPrefixes 
allBasicNounStems ; ! 1st person singular 

allBasicNounStems ; ! 1st person dual 
allBasicNounStems ; ! 1st person plural 

allBasicNounStems ; ! 2nd person singular 
allBasicNounStems ; ! 2nd person dual 

allBasicNounStems ; ! 2nd person plural 
allBasicNounStems ; ! 3rd person masculine singular 

allBasicNounStems ! 3rd person feminine indefinite? 
allBasicNounStems 3rd person neuter 
allBasicNounStems 3rd person masculine plural 

96 



(ya)godi+ 
(y)odi+ 

LEXICON 

LEXICON 

LEXICON 

LEXICON 

LEXICON 
di: 
ji:s 

LEXICON 
hgna,d 
hsgwa~,d 

LEXICON 
,yohgw 
,wahsd 
hehn 
hny~dahs 

hg,jihsd 
hsdagw 
ji,gw 

allBasicNounStems ; ! 3rd person feminine indefinite plural 
allBasicNounStems ; ! 3rd person neuter plural 

allBasicNounStems 
gaBNouns ; 
oBNouns ; 
aBNouns ; 
nullBNouns 

gaBNouns 
normalGaBNouns 
gaoBNouns ; 

oBNouns 
normalOBNouns 
gaoBNouns ; 
aoBNouns; 
nullBNouns; 
oLoanWords; 

aBNouns 
normalABNouns 
aoBNouns ; 

oLoanWords 
# ; 

# ; 

nullBNouns 
NSF ; 

NSF ; 

gaoBNouns 
NSF 
NSF ; 

NSF ; 
NSF 
NSF 

NSF 
NSF ; 

97 



jihoha: 

LEXICON 
adghne'ts 

LEXICON 
ad«;)h«;) 
adehsw 
ad«;)na'tr 
ado'j in 
adoda: 
adog«;) 
adowadg: 
adra'sw 
ahdahgw 
ahgw«;)ny 
ahsgw 
atrgni'd 
atsog«;) 
aw«;)h«;! 
aw«;)nohgr 

LEXICON 
'dgdr 
'ga: 
'g«i)h«i) 
'gr 
'nehs 
'nest 
'nost 
'nhahgy 
nhahd 
'nh«;)hts 
'nhw«;)hts 
'nhghs 
'nghs 
'nihsda: 
'nhghd 
'nhghs 
'ghgwa: 
'ghs 
a'«;)n 
adehsh~ 

NSF 

aoBNouns 
NSF 

normalABNouns 
NSF ; 

NSF 

NSF ; 
NSF 

NSF ; 
NSF ; 

NSF ; 

NSF 
NSF 
NSF ; 

NSF ; 
NSF 

NSF ; 
NSF 

NSF ; 

normalOBNouns 
NSF 

NSF ; 
NSF 

NSF 
NSF 
NSF 
NSF 

NSF 
NSF ; 

NSF 
NSF 

NSF ; 
NSF ; 

NSF 
NSF ; 
NSF ; 

NSF ; 
NSF 
NSF 

NSF ; 

98 



ad~nihs NSF ; 
ahshed NSF ; 
ahy NSF 
ga: NSF 
ga'd NSF ; 
gahdr NSF 
gahehd NSF ; 
gahgwaohs NSF ; 
gaho'j NSF ; 
gany~'d NSF 
ge'a: NSF 
gg'dr NSF ; 
gwiy NSF ; 
ha'd NSF ; 
hah NSF 
hakd NSF ; 
he'a: NSF ; 
hehd NSF ; 
h~hda: NSF 
hehs NSF 
hets NSF 
hey NSF ; 
hikd NSF 
hj i 'gr NSF 
hn NSF 
hnya: NSF ; 
hnye:h NSF ; 
hnyo'gw NSF ; 
hnyghs NSF ; 
hgd NSF 
hodr NSF 
hohsgr NSF 
hohwa: NSF 
hsa: NSF 
hsahe'd NSF 
hsda: NSF ; 
hsdai NSF ; 
hsdao'gw NSF 
hs~h~ NSF ; 
hsg~'dr NSF ; 
ahsg~'dr NSF 
hsgeh NSF ; 
hsgoh NSF ; 
hsgwi'dr NSF 
hsgyfda: NSF ; 

99 



hsgyg,w NSF 
hshe, NSF ; 

hsiy NSF 
hsna,d NSF ; 

hstgdr NSF ; 
hsw~,d NSF ; 
hwahd NSF ; 
hw~,ga: NSF ; 

hw~hda: NSF ; 

hw~hsd NSF ; 
i,d NSF 
i,da: NSF 
i ,dghgw NSF 
ijg,d NSF 
jags NSF ; 
ji,a: NSF ; 
ji ,drgwahd NSF ; 
j i ,llQW NSF 
jigw~d NSF ; 
jihgw NSF ; 
jihsgw NSF ; 

jihsQda: NSF 
jihw~d NSF ; 
j ike,d NSF ; 

jinghgr NSF ; 

jitgwa: NSF ; 

kd NSF 
kdeh NSF 
kjin NSF 
kw NSF 
na,da: NSF ; 
na,ga: NSF ; 
na,gwiy NSF ; 
na,sgw NSF ; 

nawad NSF ; 

nfd NSF 
ne,da: NSF 
negr~d NSF 
negw NSF ; 

n~h~: NSF ; 

n~noga: NSF 
n~nyo,gw NSF 
ng,gw NSF ; 

nggfd NSF ; 

nghgw~ NSF ; 

100 



ngny NSF ; 
nrahd NSF ; 
nregfd NSF 
nr~h~ NSF ; 
nya,gw NSF 
nyah NSF 
ny~d NSF ; 

rihw NSF 
sehd NSF 
shaihsd NSF 
te,tr NSF 
tgo,d NSF ; 
tragw~,d NSF 
tr~,d NSF ; 
tsad NSF 
tsehsd NSF 
tsgf~: NSF 
tsgo,d NSF 
tsgr NSF 
wa: NSF 
wa,wihsd NSF ; 
wajihsd NSF ; 
way NSF 
hw~,hga: NSF ; 

w~n NSF 
widr NSF ; 
widr~hd NSF ; 
wiy NSF ; 
y NSF ; 
ya,d NSF ; 
yad NSF 
yahgw NSF 
yan NSF 
y~: NSF 
y~,gw NSF 
y~d NSF 
y~hsa: NSF ; 
YQ,d NSF ; 
yo,gw NSF 
ygw NSF ; 

LEXICON normalGaBNouns 
,ahdr NSF ; 
,drehd NSF ; 

101 



,droda NSF ; 
,ka: NSF 
,na,gw NSF ; 
'niggh NSF ; 
'wahsha: NSF 
Cagwa: NSF ; 

Catsg~'d NSF 
Cidr~hd NSF 
Cihsd NSF 
Cisr NSF 
ga'd NSF 
gahihsd NSF ; 

gahwehs NSF ; 
gawehs NSF 
gehd NSF ; 
gg'dr NSF 
gghs NSF ; 

had NSF 
hgga: NSF 
hgw NSF 
hsdow NSF 
hs~n NSF 
hsgwa: NSF ; 

hsgwahd NSF ; 

itsga: NSF ; 

j~ NSF 
jihay NSF ; 
jihsd NSF 
jihw NSF ; 

kw NSF ; 
na'j NSF ; 

na'johsgw NSF ; 

nad NSF 
nahd NSF 
nahgw NSF ; 

nahsgw NSF 
nai'd NSF ; 

nakd NSF ; 

nehsda: NSF 
nehw NSF ; 
nhe'd NSF 
nhy NSF 
nghs NSF ; 

ngny NSF 
now NSF ; 

102 



nyod NSF ; 
qm NSF 
rihwihs NSF ; 
rgd NSF 
tg~hets NSF 
tgwfd NSF ; 
tse,d NSF ; 
i tse ,d NSF ; 
tsen~ NSF 
ya: NSF 
ya,d NSF ; 

LEXICON NSF 
+a, # 

B.1.2 Abstract Semantic Lexicon 

Multichar_Symbols ©U.INALIEN.POSS@ @U.INALIEN.UNPOSS@ 

LEXICON ROOT 
allNouns 
allRoots 
all Suffixes 

LEXICON stemArchetypes 
0 a% a #; 

0 i% i #· 
' 

0 e% e #· 
' 

0 ~% ~ #· 
' 

0 o% o #; 

0 Q% Q #· 
' 

0 ,CV% ,CV #· 
' 

0 hV% hV #· 
' 

0 hCV% hCV #· 
' 

0 g% C/nC/"CC/hCC/"V #; 

0 nV% nV #· 
' 

0 r% r #· 
' 

0 y% y/w #· 
' 

LEXICON allRoots 

103 



deverbalRoots ; 
inalienableStems 
allBasicNounStems ; 

LEXICON 

LEXICON 

LEXICON 

3zn 0 

LEXICON 
toad : sgwa:gwagdQ, 
cat : dago:s 
cat : da:gu:s 
chicken : dakshae,dohs 
dog : so:wa:s 
duck : tw~:tw~:t 
goose : hg:ga:k 
guinea% hen : dog~:t 
pig : gwihsgwihs 
rabbit : gwa,yg, 

all Suffixes 
NSF ; 
locativeSuffix 

deverbalRoots 
deverbalORoots 
deverbalARoots 
deverbalGaRoots ; 
deverbalNullRoots 

allNouns 
inalienableNouns 
basicNouns ; 
deverbalNouns ; 
defectiveNouns ; 

defectiveNouns 
# ; 

# 

# 

# 

# 

# 

# 

# turkey : sohg:t 
Baltimore% oriole 
blackbird : jogrihs 

gyo :gyo:, # ; 

black% breasted% woodpecker 
blue% jay : di,di:, 
chickadee : jikjiye:, 
crow,% raven : ga ,ga:, 
great% horned% owl : hihi: 

# 
gwido ,gwido, 

# ; 

# 

# ; 

high% soaring% hawk : gwiyfgwiy~· 
house% woodpecker : dihsdihs # 

hummingbird : ji,nhgw~:se: # 

104 

# 

; 

; 

; 

# 

; 

# 

# 

# 

# 



killdeer : duwisduwi:' 
mockingbird,% chatterbox 
night% hawk : gw~:dihs 
partridge : gwe:s~· 
pigeon : tsahgo:wah 
robin : jihsgogo' 
screech% owl : gwaoh 
seagull : j ohw12 'sdaga, 
whip-poor-will : gwfgohnyl2' 

sa'sa, 
# 

# 

# 
# ; 

# . 
' 

# 

bear : hnyagwai' # 

# 

# . 
' 

eel : gg:deh # 

Channel% catfish : tgwiyo:g12' # 

ants : j inhghgwah12h # 
bed% bug : ji'nghdo:ya' # ; 

# 

butterfly% (something% is% wet%;% refers% to% the% transformation) ji'dana:w12: # 

cricket : jinghsangh # ; 

grasshopper : jihsda: # 

spider : j i 'ao: Yl2: # 
garter% snake : jinghyahae: # 

buffalo : degriya'gg' # ; 

chipmunk% (refers% to% the% stripe% on% the% chipmunk's% back) 
fox : hehshai: # ; 

frog : sgwa 'ahda, # ; 

ground% hog,% woodchuck,% gopher tehtg' 
mink : j Q 'daga, 
mouse : jino:w12: 
muskrat : tea:gt 

# ; 

# 

# 

raccoon : sa:no:' # 

skunk : dr~:na: 
skunk : dre:na: 
squirrel : joni:tsgrg:t # . 

' 
grey% squirrel,% black% squirrel 
salamander : do:dihs 

kdagg' 

otter : sgwa:y~h 
barn% swallow : gwiyo:g12' 
bluebird : jg:nyg:' 
mud% puppies,% dogfish : nghsodai:yg: 
flying% squirrel : gwa'da: 
bird : j id~: ·~h 
raspberries : jg'dae:ya:' 
sea% shell : j i 'drg: W!2: 
beech : onohotsg12 '12, 

# 

# 

iron% wood% (tree)%;% red% oak : teo:ji' 

; 

# 

# 

; 

# 

corn% tassel : tsa 'g12: da, # ; 

# 

# 

# 

# 

# 

# 

morel,% black% type% of% mushroom : yahg12hda' 

105 

; 

# 

# 

# 

# 

j ihnyo 'g12, # 

# 



wild% walnut : tsinyohgwa:k 
river,% stream,% creek : gih~:k 
sugar : naw~ 'da' 

# 
# . 

' 
# 

strawberry : jihsQ:dahk 
wolf : otahyQ:ni: 
wolf : tahyQ:ni: 
a% ghost : jihsg~: 
a% crab : j i 'o: 
tree : grahe:t 

LEXICON 
P+ o+ 

A+ 
A+ 

a+ 

ga+ 

LEXICON 
deverbal% noun% root 0 
sexuality : idehsra 
help : y~nawahsr 

# . 
' 

#· 
' 

# 

# 

# 

# 

deverbalNouns 
deverbalORoots 
deverbalARoots 

deverbalGaRoots 
deverbalNullRoots ; 

deverbalGaRoots 

NSF ; 
NSF 

the% ability% to% think%;% thinking% skills 
helpfulness : ya'dagenhahsr 

ya 'dowehdahsr 
NSF 

corn% bread% paddles%;% corn% soup% paddles 
corn% bread% paddles%;% corn% soup% paddles 
junk : tgi 'tr 

atgw~nya 'tr 
atgQnya'tr 

sickness : nohQkdehsr 
to% take% someone's% part%;% 
water% drum : na 'j owi 'tr 
leggings : risr 
religion%;% the% Christian% 
sin : rihwane'aksra 
work : riho'd~hsr 
paper : hyadQhsr 

advocacy nhehsr 
NSF ; 

faith rihwiyohsd~hsr 

NSF 

power,% strength : hshahsd~hsr 
cradleboard : CahQhsr 

LEXICON 
deverbal% noun% root : 0 
blankets : y~hsr NSF 
flint% (stone) : tragw~'d 
wealth : atgahnQnihsr 
poplar : nrahdQdahsr 

deverbalORoots 

NSF ; 
NSF 

NSF ; 
soother,% pacifier,% nipple nQnhe'dr 

106 

NSF 
NSF ; 

NSF ; 
NSF 

NSF ; 

SF 
NSF 
NSF 

NSF 

# 

NSF 

NSF ; 
NSF ; 

NSF 

# 



material,% cloth : niga:h~hsr 
power,% strength : hshahsd~hsr 
fun : adQtgadQhsr NSF 
celebration : adQtgadehsr 
fat,% pig% rinds : ,drohsr 
sweat : i,daih~hdr 

NSF 

NSF ; 
NSF 

LEXICON deverbalARoots 
deverbal% noun% root 
hoe : atsho ,kdQhsr 
pants : atna ,tsotr 
belt : atna ,gwihdr 

0 

NSF ; 
NSF 

NSF 

NSF 
NSF 

# 

NSF sports,% games : atgahnyehtr 
hat : nahaotr NSF 
coat,% dress : agya ,dawi ,tr 
disaster : adrihwagyaQhsr 
bat% (mammal) : adra ,wihsd 
birth : adQnhehsr 
shyness : adi,grQhsra 
lunch,% groceries : ad~na ,tr 
table : adekwahahsra 

NSF 
NSF 

NSF ; 
NSF 

friendship%;% also% refers% to% a% ceremonial% friend 
NSF ; 

adao ,tra NSF 
socks : ahdahdi ,tr NSF ; 

LEXICON 
mittens : fnyotr 
ball : ~ ,nhotr 
sexuality : ~dehsr 

LEXICON 
O:©U.INALIEN.POSS© 
O:©U.INALIEN.UNPOSS©o+ 

LEXICON 
1sA+ : g+ 
1idA+ (e)tni+ 
1idA+ 
1edA+ 
1ipA+ 
1epA+ 
( 

3m sA+ 

(e)kni+ 
(y)akni+ 
(e)dwa+ 
(y)agwa+ 

ha+ 

deverbalNullRoots 

inalienableNouns 

NSF 
NSF ; 

NSF 

inalienablePrefixes 
inalienableStems ; 

inalienablePrefixes 
inalienableStems 

inalienableStems ; ! 1ID 
inalienableStems ; ! 1ID 
inalienableStems ; ! 1ED 

inalienableStems ; ! 1IPL 
inalienableStems ; ! 1EPL 

inalienablePrefixes2 
inalienableStems ; ! 3MS 

107 

1S 

NSF 
NSF 



3fiA+ : (y) 
3znsA+ ga+ 
3znsA+ (y)+ 
3znsA+ w+ 
3mdpA+ hadi+ 
3fidpA+ gaQ+ 
3fidpA+ gae+ 
3fidpA+ ga:g+ 
3zndpA+ gadi+ 

LEXICON 
2sA+ h)s+ 
2dA+ h)sni+ 
2pA+ h)swa+ 
2sA+ 
2dA+ 
2pA+ 

LEXICON 
0 

0 

0 
0 

Q+ 
~+ 

ag+ 
e+ 

LEXICON 

LEXICON 

LEXICON 

eh)s+ 
eh)sni+ 
eh)swa+ 

inalienable3FIPrefixes 
inalienableiCStems ; ! 3N 

inalienableOQStems ; 3N 
inalienableNotiOQStems ! 3N 

inalienableStems ; ! 3MPL 
inalienableAStems ; 3FIPL 
inalienableiCStems ; ! 3FIPL 

inalienableNotAIStems ; ! 3FIPL 
inalienableStems ; ! 3NPL 

inalienablePrefixes2 
inalienableVStems 2S 

inalienableVStems ; ! 2D 
inalienableVStems ; ! 2P 

inalienableCStems ; ! 2S 
inalienableCStems 2D 
inalienableCStems ; ! 2P 

inalienable3FIPrefixes 
inalienableAStems ; ! 3FI 
inalienableiStems ; ! 3FI 

inalienableNotAIStems ; ! 3FI 
inalienableCStems ; ! (For% C-stems) 

inalienableiCStems 
inalienableiStems 
inalienableCStems ; 

inalienableVStems 
inalienableAStems 
inalienable I Stems 
inalienableEStems 
inalienable~Stems ; 
inalienableOStems ; 

inalienableQStems ; 

inalienableStems 
inalienableAStems 
inalienableiStems 
inalienableNotAIStems 
inalienableCStems ; 

108 

3FIPL 
3FIPL 



LEXICON 

LEXICON 

LEXICON 

LEXICON 

inalienable% noun% root% 
on% your% ears : ahQhd 
on% your% foot : ahsi'd 
on% my% toes : ahyagwiy 

LEXICON 

inalienable% noun% root% 
(on)% my% skin : ihn 

!LEXICON 

!LEXICON 

!LEXICON 

LEXICON 

inalienable% noun% root% 
on% your% knee : Qts 

inalienableNotAIStems 
inalienableEStems 
inalienable~Stems ; 
inalienableOStems ; 

inalienableQStems ; 

inalienableNotiOQStems 
inalienableAStems ; 
inalienableEStems 
inalienable~Stems ; 

inalienableOQStems 
inalienableOStems 

inalienableQStems ; 

inalienableAStems 
stemArchetypes 

beginning% with% %+a : 0 # ; 

inalienableSuffix 
inalienableSuffix 

inalienableSuffix ; 

inalienableiStems 
stemArchetypes 

beginning% with% %+i : 0 # ; 

inalienableSuffix 

inalienableEStems 

inalienable~Stems 

inalienableOStems 

inalienableQStems 
stemArchetypes 

beginning% with% %+Q : 0 # . 
' 

inalienableSuffix 

109 



LEXICON inalienableCStems 
stemArchetypes 

inalienable% noun% root% beginning% with% a% consonant : 0 # 

on% your% tongue : w~,nahs inalienableSuffix 
on% your% tongue : w~,nohs inalienableSuffix 
on% your% thumb : w~,yghga: inalienableSuffix ; 
on% your% eyes : gah inalienableSuffix 
on% your% eyelashes : gahehd 
on% your% eyebrow : gahgwaohs 

inalienableSuffix ; 
inalienableSuffix ; 

on% your% hairline,% upper% brow%;% forehead 
on% the% bridge% of% my% nose : gg,d 

g~,sd inalienableSuffix 
inalienableSuffix ; 

inalienableSuffix 
inalienableSuffix ; 

inalienableSuffix ; 
inalienableSuffix ; 

inalienableSuffix 
inalienableSuffix ; 

inalienableSuffix 

on% your% face : gghs 
on% its% whiskers : gghstg, 
on% its% throat : ha ,d 
on% your% groin : han 
on% your% ribs : hdega: 
on% your% anus : hetga, 
on% your% buttocks : hna ,ts 
on% your% shoulders : hn~s 
on% your% neck% (front% of% the% neck) 
on% its% beak : hny~dahs 
his% testicles : hsgwa: 
on% your% leg : hsin 
on% your% calf% (of% leg) : hsna,d 
on% your% hand : hsohd 
on% your% upper% lip : hsghga: 
on% your% lip : hsohgw 
on% your% upper% back hswa,n 
on% your% upper% back hswe,n 
on% your% (p)% elbows hyohs 
on% my% chest : ,ahs 
on% my% inner% thigh : ,nhghsga: 
on% your% nose : ,nyghs 
on% its% tail% (pertaining% to% birds) 
on% your% belly : kse,d 
on% your% arm : n~tsh 
on% your% head : ng,a: 
on% your% breast : ng,gw 
on% your% teeth : no~ 
on% your% nipples : ngnhe,dr 
on% his% penis,% phallus : nr 
on% your% shin : ny~d 
on% your% heel : rad 
on% the% ball% of% my% foot ragwahd 
on% your% ankle : jaoho,gw 

inalienableSuffix ; 
hnya,s inalienableSuffix 

inalienableSuffix 
inalienableSuffix 

inalienableSuffix ; 
inalienableSuffix 

inalienableSuffix ; 
inalienableSuffix ; 

inalienableSuffix 
inalienableSuffix ; 
inalienableSuffix ; 

inalienableSuffix ; 
inalienableSuffix 

inalienableSuffix ; 
inalienableSuffix 

,yohgw inalienableSuffix 
inalienableSuffix 

inalienableSuffix ; 
inalienableSuffix 

inalienableSuffix ; 
inalienableSuffix 

inalienableSuffix ; 
inalienableSuffix ; 

inalienableSuffix ; 
inalienableSuffix 

inalienableSuffix ; 
inalienableSuffix 

110 



on% my% nail : j i 'ehd 
on% my% nail : j i 'ohd 
on% your% hip : jisgo'gw 
on% your% body : ya'd 
on% your% waist : ya'ga: 
on% your% gums : yo'd 
on% your% cheeks : yo'gw 
on% your% chin yo'ts 
on% your% chin : yu'ts 

LEXICON 
©U.INALIEN.POSS© 
©U.INALIEN.UNPOSS© 

LEXICON 
+Loc : +a 'geh 

LEXICON 

LEXICON 
3znA+ ga+ 
3znP+ o+ 
3znA+ a+ 

LEXICON 
1sP+ (w)ag+ 
1dP+ (y)gkni+ 
1pP+ (y)ggwa+ 
2sP+ sa+ 
2dP+ sni+ 
2pP+ swa+ 
3msP+ : ho+ 
3fisP+ (ya)go+ 
3znsP+ (y)o+ 
3mdpP+ hodi+ 
3fidpP+ (ya)godi+ 
3zndpP+ : (y)odi+ 

inalienableSuffix 
inalienableSuffix 

inalienableSuffix ; 
inalienableSuffix 

inalienableSuffix ; 
inalienableSuffix 

inalienableSuffix ; 
inalienableSuffix 
inalienableSuffix 

inalienableSuffix 
locativeSuffix 

NSF ; 

locativeSuffix 
# ; 

# 

basicNouns 
basicNounUnpossessedPrefixes 
basicNounPossessedPrefixes ; 

basicNounUnpossessedPrefixes 
gaBNouns 

oBNouns ; 
aBNouns ; 

nullBNouns 

basicNounPossessedPrefixes 
allBasicNounStems ; 

allBasicNounStems ; 
allBasicNounStems ; 

allBasicNounStems 
allBasicNounStems 

allBasicNounStems ; 
allBasicNounStems 

allBasicNounStems 
allBasicNounStems 
allBasicNounStems 

allBasicNounStems ; 
allBasicNounStems 

111 



LEXICON 

LEXICON 

LEXICON 

LEXICON 

LEXICON 

allBasicNounStems 
gaBNouns ; 
oBNouns ; 
aBNouns ; 
nullBNouns 

gaBNouns 
normalGaBNouns 
gaoBNouns ; 

oBNouns 
normalOBNouns 
gaoBNouns ; 
aoBNouns ; 
nullBNouns 
oLoanWords 

aBNouns 
normalABNouns 
aoBNouns ; 

oLoanWords 
stemArchetypes 

basic% noun% root 
tea : di: 
cheese : j i: s 

0 

# 

LEXICON nullBNouns 

basic% noun% root : 0 
potato : hgna ,d 
colts% foot : hsgwafd 

NSF 

LEXICON gaoBNouns 

basic% noun% root : 0 
clothespin : ,wahsd 
cargo%;% bundle%;% load : hehn 
beak : hny12dahs 
a% motor%;% engine : hg,jihsd 
dirty% clothes : hsdagw 

NSF 

# 

stemArchetypes 

NSF 

stemArchetypes 

NSF 
NSF 

NSF 
NSF 

112 

# 

# 

# 



nakedness%;% nudity : ji'gw NSF ; 
straight% pin%;% pin%;% brooch%;% safety% pin : jihoha: 

LEXICON aoBNouns 

basic% noun% root : 0 
ladder%;% stairs : adghne'ts 

LEXICON normalABNouns 

basic% noun% root : 0 
fence : ad~h~ 
blouse%;% middy : adehsw 
lunch%;% groceries : ad~na'tr 

skate : ado 'j in 
bow% (as% in% bow% and% arrow) 
axe%;% tomahawk : adog~ 
hunt : adowadg: NSF 
luck : adra'sw 
shoes : ahdahgw 
clothing%;% clothes ahgw~ny 

roof : ahsgw 

NSF 

NSF 
adoda: 

NSF ; 
NSF 

NSF 

stemArchetypes 

NSF ; 

stemArchetypes 

NSF 
NSF 

NSF 

NSF 

closthes : atrgni'd NSF 
calendar : atsog~ NSF 
flower : aw~h~ NSF 
weeds : aw~nohgr NSF 

LEXICON normalOBNouns 
stemArchetypes 

basic% noun% root : 0 
it% is% fat%;% gristle%;% rind : 'dgdr 
a% parable%;% tale%;% story%;% legend 'ga: 
ashes%;% bullet%;% dust : 'g~h~ 

snow%;% snowflake : 'gr 
sand : 'nehs 
nudity : 'nest 
nudity : 'nost 

NSF ; 
NSF ; 

NSF 

NSF 

lumber% logs% (large)%;% timber 
lumber% logs% (large)%;% timber 
tail% of% an% animal 'nh~hts 

tail% of% an% animal : 'nhw~hts 
eggs : 'nhghs 

NSF ; 
NSF 
NSF 

'nhahgy 
nhahd 

NSF 

NSF 
stem%;% hull% of% berries : 'nihsda: 

113 

NSF ; 
NSF 

NSF 

NSF 

NSF 

# 

# 

# 

NSF 



bur : ,nhghd NSF ; 
onions : ,nghs 
sod%;% moss : ,Qhgwa: 
vines : ,ghs 
skirt%;% tail%;% feather : ,yohgw 
snowsnake%;% pole : a ,~n 

NSF 
NSF 

NSF ; 

cocoon%;% nest%;% hive%;% bee-hive : adehsh~ 
wall : ad~nihs NSF ; 
number : ahshed 
fruit : ahy 
a% price% (on% it) 
pants : ga,d 

ga: 

a% tear% (in% one's% eye) 

NSF ; 
NSF 

NSF ; 
gahdr 

NSF 
NSF ; 

NSF ; 

NSF ; 

NSF 

eyelash%;% the% stem% of% a% berry%;% the% eye% of% the% corn% kernel gahehd NSF 
eyebrow : gahgwaohs NSF ; 
grass : gaho ,j NSF ; 
cadaver%;% dead% body : gany~ ,d NSF ; 
hair%;% a% rag%;% (it% is)% ragged%;% tattered ge,a: NSF 
cotton% batting%;% q-tips : gg,dr NSF 
a% limb%;% twig%;% branch : gwiy NSF ; 
quill%;% plume%;% feather%;% voice%;% throat%;% larynx%;% esophagus ha,d 
road : hah NSF ; 
soot : hakd NSF ; 
corn% husk : he,a: NSF 
dirt%;% earth%;% ground%;% land : hehd 
fur : h~hda: NSF ; 
decayed% tree%;% log%;% wood%;% board : hehs 
(raw)% sausage%;% bologna%;% wieners : hets 
one% corn% stalk hey 
thorn%;% thistle : hikd 

NSF ; 
NSF 

cloud : hj i ,gr NSF ; 
grease%;% oil : hn 
nutmeat : hnya: 
flint% corn% soup hnye:h 
nut : hnyo ,gw 
squash%;% melon : hnyghs 
a% bush%;% a% whip : hgd 
basswood : hodr 
slippery% elm hohsgr 
pelt : hohwa: 
mouth : hsa: 
beans : hsahe ,d 
rain : hsda: 

NSF 

NSF ; 

NSF ; 

NSF 
NSF ; 

NSF 

NSF ; 

NSF 

NSF 

NSF 
NSF 

scale% (of% a% fish) 
scale% (of% a% fish) 

hsda: NSF 
hsdai NSF 

114 

NSF 

NSF 

NSF ; 
NSF ; 



necklace : hsdao"gw 
frost : hs~h~ 
rust : hsg~ "dr 
rust : ahsg~ "dr 
louse : hsgeh 
branch : hsgoh 
wrinkles : hsgwi"dr 
bone%;% bare% bones 
blue% beech% (tree) 
dough : hshe" 

hsgyfda: 
hsgyQ"w 

NSF ; 
NSF ; 

NSF 
NSF ; 

NSF 

NSF ; 

NSF 

NSF 
NSF 

NSF ; 

thread%;% string%;% cord hsiy 
hamstrings%;% calves% (of% the% legs)%;% outer% thighs 
straw : hstQdr NSF ; 
coal : hsw~ "d NSF ; 
maple : hwahd NSF 
a% splint : hw~"ga: 
corn% ears : hw~hda: 
foam : hw12hsd 
feces%;% shit%;% excrement : i"d 
clay%;% mud%;% mortar : i"da: 
flame : i "dQhgw 
fish : ijQ"d 

NSF 

NSF 

NSF 
NSF 

NSF 
leaves% of% corn jaQs 
curtains%;% lace J1 a: 
the% brain : ji"drQwahd NSF ; 
bug%;% insect%;% worm : ji"nQw 
gonorrhea : jigw~d 
porridge%;% mush : jihgw 
mush : jihsgTN NSF 
cluster% of% stars%;% star jihsQda: 
bell : j ihw~d 
salt : j ike "d 
nasal% mucous : jinQhgr 
yellow : jitgT.Ja: 
a% nutshell : kd 

NSF 
NSF 

NSF 

NSF 

NSF 

NSF 

NSF 

NSF ; 
NSF ; 

NSF 

NSF ; 
hsna"d NSF 

NSF 
NSF ; 

NSF 

root%;% edible% roots% (pepper% roots%;% 
stump%;% knots% in% a% tree : kjin 

turnips%;% carrots) : kdeh 

its% food : kw 
bread : na "da: NSF 
horns%;% antlers na"ga: 
cotton% batting : na"gwiy 
a% mattress : na "sgw 
clay%;% plaster%;% white-wash nawad 
evergreen%;% conifer : n~"d 
roe% (fish% eggs) : ne"da: 

NSF ; 
NSF ; 

NSF 
NSF 

NSF 
NSF 

NSF j 

NSF 

115 

NSF 



morel% mushroom negr~d 

peas : negw 
corn : n~h~: 
hickory% wood%;% stick 
pills : n~nyo ,gw 
milk : ng,gw 
catfish : nggfd 
corn% cob : nghgw~ 
a% husk : ngny 
leaf : nrahd 

n~noga: 

NSF ; 
NSF 

NSF ; 
NSF 

NSF 
NSF 

NSF ; 
NSF ; 

NSF 

tripe% (cow% stomach% lining)%;% animal% stomache 
tapeworm : nr~h~ NSF 
vomit%;% vomitus : nya ,gw NSF 
native% mush% dishes% made% with% corn nyah 
stem : ny~d NSF ; 

NSF 

nreg~,d NSF 

message%;% it% matters%;% it% is% 
willow%;% nape% of% neck : sehd 
snake : shaihsd 

its% fault%;% word%;% affair%;% 

flour%;% powder te,tr 
sumac : tgo ,d 
housefly%;% fly tr~ ,d 
mist%;% steam%;% fog : tsad 
syrup%;% honey%;% gum : tsehsd 
peach% pit : tsgf~: 
balsam% fir : tsgo,d 
saliva%;% spit%;% sputum : tsgr 
air%;% wind%;% a% moth : wa: 
a% peeling : wa ,wihsd 

NSF 

NSF ; 

peelings%;% bark% of% a% tree : wajihsd 
fin% of% a% fish%;% wings : way 
wood% chips : hw~,hga: 

NSF 

NSF 
NSF 

NSF 

NSF 

NSF 

NSF 
NSF 

NSF 

NSF 

NSF 

NSF 
NSF 

word%;% voice%;% speech : w~n NSF ; 
ice : widr NSF ; 
sleep%;% a% dream : widr~hd NSF ; 

; 

NSF ; 

business 

young%;% offspring% (i.e.% of% an% animal)%;% baby : wiy NSF 
other%;% another : y NSF ; 
body : ya ,d NSF 
basement%;% track%;% ditch : yad NSF 
pants : yahgw NSF 
tire%;% its% track%;% anything% that% leaves% tracks 
beads : y~: NSF ; 
tobacco%;% cigarettes y~,gw 

wood%;% firewood : y~d 
bandage : y~hsa: 
a% dead% body%;% cadaver YQ,d 

NSF 

116 

NSF 
NSF ; 

yan 

NSF 

NSF 

rihw NSF 



cheeks : yo 'gw 
guts%;% intestines YQW 

NSF 
NSF 

LEXICON normalGaBNouns 
stemArchetypes 

basic% noun% root : 0 
basket : 'ahdr 
car%;% truck%;% vehicle 
diaper 'droda 
skirt%;% slip : 'ka: 
marriage : 'na 'gw 
the% mind : 'nigQh 
earrings : 'wahsha: 

'drehd 
NSF ; 

NSF ; 
NSF 

NSF ; 
NSF 

NSF ; 
Avocet% blue% stocking% 
a% celestial% orb% (ie.% 
a% rope : Catsgfd 
tin%;% metal : Cihsd 
leggings : Cisr 

(bird) : 'yohgw NSF; 
the% sun%;% the% moon) : Cagwa: 

sleep%;% a% dream : Cidr~hd 
white% oak : ga 'd 
eye% glasses : gahihsd 
shovel : gahwehs 
paddle : gawehs 
tie%;% scarf : gehd 
pillow%;% cushion : gQ'dr 
the% mask : gQhs 
forest%;% bush had 
elm : hQga: 
boat : hQw 
headdress : hsdow 
a% name : hs~n 
stone%;% rock%;% boulder%;% bullet 
nails%;% wire%;% needle : hsQwahd 
mattress%;% sleeping% mat : itsga: 
dish%;% plate%;% bowl : j~ 

the% devil : jihay 
lamp : jihsd 
hammer : jihw 
food : kw 
pail : na J 
cup : na 'j ohsgw 
town%;% community nad 
comb : nahd 
bass% drum : nahgw 

NSF ; 
NSF 

NSF ; 

NSF 
NSF 

NSF 
NSF ; 

NSF 
NSF 

NSF 
NSF 

NSF ; 
NSF ; 

NSF 
NSF 

hsgwa: 

NSF 
NSF ; 

NSF 
NSF ; 

NSF 
NSF 

NSF ; 
NSF 

117 

NSF 

NSF 

NSF 

# 

NSF ; 

NSF 

NSF ; 
NSF ; 

NSF ; 



tame% animal%;% pet%;% domestic% animal : nahsgw 
a% peacock%;% bride%;% boastfulness : nai,d 
bed : nakd NSF ; 
a% board : nehsda: 
leather%;% hide : nehw 
porcupine : nhe,d 
stick : nhy 
a% house : nghs 
a% dance : ngny 

NSF 

NSF ; 
NSF 

NSF 

NSF ; 
NSF ; 

NSF 
NSF ; 

guitar%; string% instrument%;% (refers% to% round% back% of% a% turtle) : now NSF 
spoon%;% canoe%;% birch% bark% canoe : nyod NSF ; 
song : r~n NSF ; 
an% agreement : rihwihs 
log : rgd 
a% handle : tg~hets 
wallet%;% purse%;% pocketbook%;% 
bottle%;% jar : tse,d 
bottle%;% jar : itse,d 
one% animal%;% pet : tsen~, 

NSF 
NSF ; 

NSF ; 
sui tease : tgw~ ,d NSF 

NSF ; 
NSF 

bag%;% mattress%;% tick%;% pouch% (ie.% 
NSF 

a% mattress% bag% into% which% straw% is% stuffed) 
doll : ya ,d NSF ; 

LEXICON 
+NSF : +a, 

NSF 

8.2 Concrete Version 

8.2.1 Concrete Lexicon 

# 

# 

Multichar_Symbols ©U.INALIEN.POSS© ©U.INALIEN.UNPOSS© 

LEXICON allNouns 
inalienableNouns 
allBasicNouns ; 
deverbalNouns ; 
defectiveNouns ; 

118 

ya: NSF 



LEXICON defectiveNouns 
sgwa: gwagdg' # 

dago:s # ; 
da:gu:s # 
dakshae 'dohs # 

so:wa:s # 

tw~:tw~:t # 

hg:ga:k # 

dog~:t # 

gwihsgwihs # 

gwa'yg' # 

sohg:t # 

gyo:gyo: # 

jogrihs # ; 

gwido 'gwido' # 
di'di:' # 

jikjiye: ' # 

ga 'ga:' # 

hihi: # ; 

gwiy~'gwiy~' # ; 

dihsdihs # 

j i 'nhgw~: se: # ; 
duwisduwi:' # ; 

sa'sa' # ; 

gw~:dihs # 

gwe:sf # 

tsahgo :wah # 

jihsgogo' # 

gwaoh # 

j ohw~ 'sdaga' # ; 

gw~ 'gohny~' # ; 

hnyagwai' # ; 

gg:deh # 

tgwiyo:g~' # ; 

jinhghgwah~h # 

j i 'nghdo : ya' # 

j i 'dana: w~: # ; 
jinghsangh # ; 
jihsda: # 

j i 'ao: y~: # 

jinghyahae: # ; 

degriya 'gg' # ; 

jihnyo'gf # 

hehshai: # 

sgwa'ahda' # 

119 



tehtg' 
jg'daga' 
j ino :w12: 
tea:gt 
sa: no: 
dr12:na: 
dre:na: 
joni:tsgrg:t 
kdagg' 
do:dihs 
sgwa:y12h 
gwiyo:gf 
jg:nyg:' 
nghsodai:yg: 
gwa'da: 
j id!2: '!2h 
jg'dae: ya:' 
ji'drg:w~: 

onohotsg12 ·~' 
teo:ji' 
tsa'g12:da' 
yahgt2hda' 
tsinyohgwa:k 
gih~:k 

naw~'da' 

jihsg:dahk 
otahyg:ni: 
tahyg:ni: 
jihsg12: 
j i 'o: 
grahe:t 

LEXICON 
o+ 

a+ 
ga+ 

LEXICON 
12dehsr 
12'nyotr 
12'nhotr 

# 

# . 
' 

# 

# . 
' 

# 

# 

# 

# ; 

# ; 

# 

# 

# ; 

# 

# . 
' 

# 

# 

# ; 

# 

# 

# 

; 

# 

# 

; 

# ; 
# ; 

# 

# 

# 

# 

# 

# 

# 

deverbalNouns 
deverbalORoots 
deverbalARoots 

deverbalGaRoots 
deverbalNullRoots ; 

deverbalNullRoots 
NSF ; 
NSF 
NSF ; 

120 



LEXICON 
idehsra 
yc;?nawahsr 
ya "dowehdahsr 
ya "dagenhahsr 
atgwc;)nya "tr 
atgQnya"tr 
tgi "tr 
nohgkdehsr 
nhehsr 
na "j owi "tr 
risr 
rihwiyohsdc;?hsr 
rihwane "aksra 
riho "dc;)hsr 
hyadQhsr 
hshahsdc;)hsr 
CahQhsr 

LEXICON 
yc;?hsr 
atgahnQnihsr 
nrahdQdahsr 
nQnhe"dr 
niga: hc;?hsr 
hshahsdc;)hsr 
adQtgadQhsr 
adQtgadehsr 
"drohsr 
i"daihc;)hdr 

LEXICON 
atsho "kdQhsr 
atna"tsotr 
atna "gwihdr 
atgahnyehtr 
nahaotr 
agya "dawi "tr 
adrihwagyaQhsr 
adra"wihsd 
adQnhehsr 
adi "grghsra 
adc;)na"tr 

deverbalGaRoots 
NSF 

NSF 
NSF 
NSF 

NSF 
NSF ; 

NSF 
NSF ; 

NSF 
NSF ; 

NSF 
NSF ; 

NSF ; 

NSF 

NSF 
NSF ; 

NSF ; 

deverbalORoots 
NSF ; 
NSF ; 

NSF ; 
NSF 

NSF 
NSF 
NSF 

NSF 

NSF 
NSF 

deverbalARoots 
NSF 

NSF ; 
NSF ; 
NSF 

NSF 
NSF ; 

NSF 
NSF 

NSF ; 
NSF 

NSF ; 

121 



adekwahahsra 
adao'tra 
ahdahdi'tr 

LEXICON 
©U.INALIEN.POSS© 
©U.INALIEN.UNPOSS©o+ 

LEXICON 

LEXICON 
g+ 
(e)gy+ 
(y)agy+ 
(e)dw+ 
(y)agw+ 
(h)s+ 
(h) j+ 

(h)sw+ 
h+ 
(y)Q+ 
w+ 
h©n+ 
gaQ+ 
g©n+ 

LEXICON 
g+ 
(e)kn+ 
(e)tn+ 

NSF 
NSF 

NSF 

inalienableNouns 
inalienablePrefixes 

inalienableStems ; !This is for all 
the unpossessed inalienables. 

These should get the NSF 

inalienablePrefixes 
inalienableAPrefixes 
inalienableiPrefixes 

inalienableE©Prefixes 
inalienableOQPrefixes ; 
inalienableH'CPrefixes ; 
inalienableH'CCPrefixes ; 
inalineableNPrefixes ; 
inalienableYWRPrefixes ; 
inalienableOtherCPrefixes 
inalienableUPrefixes ; 

inalienableAPrefixes 
inalienableAStems 

inalienableAStems ; 
inalienableAStems ; 

inalienableAStems ; 
inalienableAStems 

inalienableAStems ; 
inalienableAStems ; 
inalienableAStems ; 

inalienableAStems 
inalienableAStems ; 

inalienableAStems 
inalienableAStems 
inalienableAStems 
inalienableAStems 

inalienableiPrefixes 
inalienableiStems 

inalienableiStems 
inalienableiStems 

122 



(y)akn+ 
(e)dw~+ 

(y)agw~+ 

(h)s+ 
(h)sn+ 
(h)sw~+ 

h~+ 

(y)~+ 

g~+ 

had+ 
gae+ 
gad+ 

!LEXICON 
!g+ 
!(e)kn 
!(e)tn+ 
!(y)akn+ 
!(e)dw+ 
!(y)agw+ 
! (h)s+ 
!(h)sn+ 
!(h)sw+ 
!h+ 
!(y)ag+ 
!w+ 
!h~n+ 

!ga:g+ 
!g~n+ 

LEXICON 
g+ 
(e)kn+ 
(e)tn+ 
(y)akn+ 
(e)gy+ 
(y)agy+ 
(h)s+ 
(h)sn+ 
(h) j+ 

h+ 
(y)ag+ 
(y)+ 

inalienableiStems 
inalienableiStems 

inalienableiStems ; 
inalienableiStems ; 
inalienableiStems ; 
inalienableiStems ; 

inalienableiStems 
inalienableiStems ; 

inalienableiStems 
inalienableiStems 
inalienableiStems 
inalienableiStems 

inalienableE~Prefixes 

inalienableOgPrefixes 
inalienableOgStems 

inalienableDgStems ; 
inalienableOgStems ; 
inalienableOgStems ; 

inalienableOgStems ; 
inalienableOgStems ; 

inalienableOgStems ; 
inalienableOgStems ; 

inalienableOgStems ; 
inalienableOgStems 

inalienableOgStems ; 
inalienableOgStems 

123 



h~n+ 

ga:g+ 
g~n+ 

!LEXICON 
!g+ 
!kn+, tn+ 
!akn+ 
!gy+ 
!agy+ 
!s+ 
!sn+ 
! j+ 
!h+ 
!ag+ 
!w+ 
!h~n+ 

!ga:g+ 
!g~n+ 

LEXICON 
k+ 
(e)kni+ 
(e)tni+ 
(y)akni+ 
(e)dwa+ 
(y)agwa+ 
(eh)s+ 
(eh)sni+ 
(eh)swa+ 
ha+ 
(y)e+ 
ga+ 
hadi+ 
gae+ 
gadi+ 

LEXICON 
ge+ 
(e)kni+ 
(e)tni+ 
(y)akni+ 
(e)dwa+ 

inalienableOQStems ; 
inalienableOgStems ; 

inalienableOgStems ; 

inalienableUPrefixes 

inalienableH,CPrefixes 
inalienableWCVStems 

inalienableWCVStems ; 
inalienableH,CVStems ; 

inalienableWCVStems ; 
inalienableH,CVStems ; 

inalienableWCVStems ; 
inalienableWCVStems ; 

inalienableH,CVStems 
inalienableWCVStems ; 

inalienableWCVStems 
inalienableWCVStems ; 

inalienableH,CVStems 
inalienableH,CVStems ; 

inalienableH,CVStems ; 
inalienableWCVStems ; 

inalienableH,CCPrefixes 
inalienableH,CCStems 

inalienableWCCStems ; 
inalienableWCCStems ; 

inalienableWCCStems ; 
inalienableWCCStems 

124 



(y)agwa+ 
(eh)se+ 
(eh)sni+ 
(eh)swa+ 
ha+ 
(y)e+ 
ga+ 
hadi+ 
gae+ 
gadi+ 

LEXICON 
k+ 
(e)kni+ 
(e)tni+ 
(y)akni+ 
(e)dwa+ 
(y)agwa+ 
(eh)s+ 
(eh)sni+ 
(eh)swa+ 
ha+ 
(y)e+ 
ga+ 
hadi+ 
gae+ 
gadi+ 

LEXICON 
g+ 
(e)kni+ 
(e)tni+ 
(y)akni+ 
(e)dwa+ 
(y)agwa+ 
(eh)s+ 
(eh)sni+ 
(eh)swa+ 
ha+ 
(y)e+ 
ga+ 
hadi+ 
gae+ 

inalienableWCCStems ; 
inalienableH,CCStems 

inalienableWCCStems ; 
inalienableH,CCStems ; 

inalienableWCCStems 
inalienableWCCStems ; 

inalienableH,CCStems 
inalienableWCCStems ; 

inalienableWCCStems ; 
inalienableH,CCStems ; 

inalineableNPrefixes 
inalineableNStems 

inalineableNStems ; 
inalineableNStems ; 

inalineableNStems ; 
inalineableNStems ; 

inalineableNStems ; 
inalineableNStems ; 

inalineableNStems 
inalineableNStems ; 

inalineableNStems 
inalineableNStems ; 

inalineableNStems 
inalineableNStems ; 

inalineableNStems ; 
inalineableNStems ; 

inalienableYWRPrefixes 
inalienableYWRStems 

inalienableYWRStems ; 
inalienableYWRStems ; 

inalienableYWRStems ; 
inalienableYWRStems ; 

inalienableYWRStems ; 
inalienableYWRStems ; 

inalienableYWRStems 
inalienableYWRStems ; 

inalienableYWRStems 
inalienableYWRStems ; 

inalienableYWRStems 
inalienableYWRStems ; 

inalienableYWRStems ; 

125 



gadi+ 

LEXICON 
ge+ 
(e)kni+ 
(e) tni + 
(y)akni+ 
(e)dwa+ 
(y)agwa+ 
(eh)se+ 
(eh)sni+ 
(eh)swa+ 
ha+ 
(y)e+ 
ga+ 
hadi+ 
gae+ 
gadi+ 

LEXICON 

LEXICON 
ahQhd 
ahsi,d 
ahyagwiy 

LEXICON 
ihn 

!LEXICON 

LEXICON 

inalienableYWRStems 

inalienableOtherCPrefixes 
inalienableOtherCStems 

inalienableOtherCStems ; 
inalienableOtherCStems ; 
inalienableOtherCStems ; 

inalienableOtherCStems 
inalienableOtherCStems ; 

inalienableOtherCStems 
inalienableOtherCStems ; 

inalienableOtherCStems ; 
inalienableOtherCStems 

inalienableOtherCStems ; 
inalienableOtherCStems 

inalienableOtherCStems ; 
inalienableOtherCStems ; 

inalienableOtherCStems ; 

inalienableStems 
inalienableAStems 
inalienableiStems 
inalienableOQStems ; 
inal i enabl eH'CVSt ems 
inalienableH,CCStems 
inalineableNStems ; 
inalienableYWRStems ; 
inalienableOtherCStems 

inalienableAStems !3 
inalienableSuffix ; 
inalienableSuffix 

inalienableSuffix ; 

inalienableiStems !1 
inalienableSuffix ; 

inalienableE~Stems 

inalienableOQStems !1 

126 



QtS 

LEXICON 
ha,d 

han 
hdega: 
hetga, 
hna,ts 

hn~s 

hsin 
hsghga: 
hsohd 
hsohgw 
hyohs 
,yohgw 

LEXICON 
hnya,s 

hny~dahs 

hsgwa: 
,nhghsga: 
,nyQhs 
hsna,d 
hswa,n 
hswe,n 

LEXICON 
ng,a: 
ng,gw 
ngnhe,dr 
no,j 

nr 
n~tsh 

ny~d 

LEXICON 
ya,d 
ya,ga: 
yo,d 
yo,gw 
yo,ts 
yu,ts 

inalienableSuffix 

inalienableH'CVStems ! 12 
inalienableSuffix ; 

inalienableSuffix 
inalienableSuffix ; 
inalienableSuffix 
inalienableSuffix 

inalienableSuffix ; 
inalienableSuffix ; 

inalienableSuffix 
inalienableSuffix ; 
inalienableSuffix ; 

inalienableSuffix ; 
inalienableSuffix ; 

inalienableH'CCStems ! 8 
inalienableSuffix ; 

inalienableSuffix ; 
inalienableSuffix ; 

inalienableSuffix ; 
inalienableSuffix 
inalienableSuffix 
inalienableSuffix 
inalienableSuffix 

inalineableNStems !7 
inalienableSuffix 
inalienableSuffix ; 

inalienableSuffix ; 
inalienableSuffix 

inalienableSuffix 
inalienableSuffix ; 

inalienableSuffix ; 

inalienableYWRStems !10 
inalienableSuffix ; 

inalienableSuffix ; 
inalienableSuffix ; 
inalienableSuffix 
inalienableSuffix 
inalienableSuffix 

127 



w~,nahs 

w~,nohs 

w~,yQhga: 

rad 
ragwahd 

LEXICON 
gah 
gahehd 
gahgwaohs 
gQhS 
gQhStQ, 
gQ,d 

gfsd 
,ahs 
kse,d 
jaoho,gw 
j i ,ohd 
j i ,ehd 
jisgo,gw 

LEXICON 
@U.INALIEN.POSS@ 
@U.INALIEN.UNPOSS@ 

LEXICON 
+a,geh 

LEXICON 

LEXICON 

inalienableSuffix ; 
inalienableSuffix ; 

inalienableSuffix 
inalienableSuffix 

inalienableSuffix ; 

inalienableOtherCStems !14 
inalienableSuffix 

inalienableSuffix 
inalienableSuffix ; 

inalienableSuffix ; 
inalienableSuffix 

inalienableSuffix ; 
inalienableSuffix ; 

inalienableSuffix ; 
inalienableSuffix ; 

inalienableSuffix ; 
inalienableSuffix 
inalienableSuffix 

inalienableSuffix ; 

inalienableSuffix 
locativeSuffix 

NSF ; 

locativeSuffix 
# ; 

allBasicNouns 
basicNounPossessedPrefixes 
basicNounUnpossessedPrefixes 

basicNounPossessedPrefixes 
wagPrefixes ; 
yQkniPrefixes 
yQgwaPrefixes 
saPrefixes ; 
sniPrefixes ; 
swaPrefixes ; 
hoPrefixes ; 
yagoPrefixes ; 

128 



LEXICON 
(w)ag+ 
(w)ag+ 

(w)ak+ 
(w)ag+ 
(w)age+ 

LEXICON 
(y)ggy+ 
(y)gkn+ 
! (y)gkn+ 
! (y)gkn+ 
! (y)gkn+ 
! (y)gkn+ 
(y)gkni+ 

LEXICON 
(y)ggw+ 
(y)ggw~+ 

!(y)ggw+ 
! (y)ggw+ 
! (y)ggy+ 
!(y)ggy+ 
(y)ggwa+ 

LEXICON 
s+ 
s~+ 

!s+ 
!s+ 
!s+ 
!s+ 
sa+ 

yoPrefixes ; 
hodiPrefixes 
yagodiPrefixes 
yodiPrefixes ; 

wagPrefixes 
basicNounsAStems 
basicNounsiStems 

basicNounsEStems 
basicNouns~Stems 

basicNounsOStems 
basicNounsgStems 

basicNounshor'CornStems 
basicNounsyorwStems ; 

basicNounsCOtherStems 

ygkniPrefixes 
basicNounsAStems 
basicNounsiStems 

basicNounsEStems 
basicNouns~Stems 

basicNounsOStems 
basicNounsgStems 
basicNounsOtherStems 

yggwaPrefixes 
basicNounsAStems 

basicNounsiStems 
basicNounsEStems 
basicNouns~Stems 

basicNounsOStems 
basicNounsgStems 

basicNounsOtherStems ; 

saPrefixes 
basicNounsAStems 
basicNounsiStems 
basicNounsEStems 
basicNouns~Stems 

basicNounsOStems 
basicNounsgStems 
basicNounsOtherStems 

129 



LEXICON 
j+ 
sn+ 
!sn+ 
!sn+ 
!sn+ 
!sn+ 
sni+ 

LEXICON 
sw+ 
sw~+ 

!sw+ 
!sw+ 
! j+ 
! j+ 
swa+ 

LEXICON 
ho+ 
ho+ 
!haw+ 
!haw+ 
!h+ 
!h+ 
ho+ 

LEXICON 
(ya)go+ 
(ya)go+ 
! (ya)gaw+ 
! (ya)gaw+ 
!(ya)g+ 
! (ya)g+ 
(ya)go+ 

LEXICON 
(y)o+ 
(y)o+ 
! (y)aw+ 

sniPrefixes 
basicNounsAStems 

basicNounsiStems ; 
basicNounsEStems 
basicNouns~Stems 

basicNounsOStems 
basicNounsQStems 
basicNounsOtherStems 

swaPrefixes 
basicNounsAStems 

basicNounsiStems ; 
basicNounsEStems ; 
basicNouns~Stems ; 

basicNounsOStems 
basicNounsQStems 

basicNounsOtherStems ; 

hoPrefixes 
basicNounsAStems 
basicNounsiStems 

basicNounsEStems ; 
basicNouns~Stems ; 

basicNounsOStems 
basicNounsQStems 
basicNounsOtherStems 

yagoPrefixes 
basicNounsAStems 
basicNounsiStems 

basicNounsEStems ; 
basicNouns~Stems ; 

basicNounsOStems 
basicNounsQStems 
basicNounsOtherStems 

yoPrefixes 
basicNounsAStems 
basicNounsiStems 

basicNounsEStems 

130 



!(y)o+ 
!(y)+ 
! (y)+ 
(y)o+ 

LEXICON 
hon+ 
hod+ 
!hon+ 
!hon+ 
!hon+ 
!hon+ 
hodi+ 

LEXICON 
(ya)gon+ 
(ya)god+ 
!(ya)gon+ 
!(ya)gon+ 
!(ya)gon+ 
! (ya)gon+ 
(ya)godi+ 

LEXICON 
(y)on+ 
(y)od+ 
!(y)on+ 
!(y)on+ 
!(y)on+ 
!(y)on+ 
(y)odi+ 

LEXICON 
ga+ 
o+ 
a+ 

basicNouns~Stems ; 
basicNounsOStems 
basicNounsQStems 

basicNounsOtherStems ; 

hodiPrefixes 
basicNounsAStems 
basicNounsiStems 

basicNounsEStems 
basicNouns~Stems 

basicNounsOStems 
basicNounsQStems 
basicNounsOtherStems 

yagodiPrefixes 
basicNounsAStems ; 
basicNounsiStems ; 

basicNounsEStems 
basicNouns~Stems 

basicNounsOStems 
basicNounsQStems 
basicNounsOtherStems 

yodiPrefixes 
basicNounsAStems 
basicNounsiStems 

basicNounsEStems 
basicNouns~Stems 

basicNounsOStems 
basicNounsQStems 
basicNounsOtherStems 

basicNounUnpossessedPrefixes 
gaBNouns 

oBNouns ; 
aBNouns ; 

nullBNouns ; 

! Grouping by initial stem vowel for possessed basic nouns 
LEXICON basicNounshor ,CornS terns 

nullBNounshVStems ; 

131 



LEXICON 

LEXICON 

LEXICON 

LEXICON 

!LEXICON 

!LEXICON 

!LEXICON 

LEXICON 

gaoh ,CNouns ; 
normalOBNounsh,CnStems 
normalGaBNounsh,CnStems ; 

basicNounsyorwStems 
normalOBNounsYWStems 
normalGaBNounsYWStems ; 

basicNounsCOtherStems 
gaoJNouns ; 
normalOBNounsOtherCStems 
normalGaBNounsOtherCStems 
oLoanWords ; 
nullBNounshCStems 

basicNounsAStems 
aoBNouns ; 
normalABNouns ; 
normalOBNounsAStems 

basicNounsiStems 
normalOBNounsiStems 
normalGaBNounsiStems 

basicNounsEStems 
# ; 

basicNouns~Stems 

# ; 

basicNounsgStems 
# ; 

basicNounsOtherStems 
oLoanWords ; 
nullBNouns ; 
gaoBNouns ; 
normalOBNounsOtherStems 
normalGaBNounsOtherStems ; 

End grouping by stem vowel for possessed basic nouns 

132 



LEXICON gaBNouns 
normalGaBNouns 
gaoBNouns ; 

LEXICON oBNouns 
normalOBNouns 
gaoBNouns ; 

aoBNouns; 
nullBNouns; 
oLoanWords; 

LEXICON aBNouns 
normalABNouns 
aoBNouns ; 

LEXICON oLoanWords 
di: # . 

' 
ji:s # . 

' 

LEXICON nullBNouns 
nullBNounshVStems 
nullBNounshCStems 

LEXICON nullBNounshVStems 
hgna'd NSF ; 

LEXICON nullBNounshCStems 
hsgwa(,:;'d NSF 

LEXICON gaoBNouns 
gaoh 'CN ouns 
gaoJNouns ; 

LEXICON gaoJNouns 
ji'gw NSF ; 
jihoha: NSF ; 
hny(,:;dahs NSF ; 

133 



hsdagw 

LEXICON 
,wahsd 
,yohgw 
hehn 
hg,jihsd 

LEXICON 
adghne,ts 

LEXICON 
ad~h~ 

adehsw 
ad~na,tr 

ado ,j in 
adoda: 
adog~ 

adowadg: 
adra,sw 
ahdahgw 
ahgw~ny 

ahsgw 
atrgni,d 
atsog~ 

aw~h~ 

aw~nohgr 

LEXICON normalOBNouns 

LEXICON 

LEXICON 
,ghgwa: 

NSF 

gaoh ,CNouns 
NSF 
NSF ; 

NSF ; 

NSF 

NSF 

aoBNouns 

normalABNouns 
NSF ; 

NSF ; 
NSF 

NSF ; 
NSF ; 

NSF ; 
NSF ; 

NSF 
NSF 
NSF ; 

NSF ; 
NSF 

NSF ; 
NSF 

NSF ; 

normalOBNounsAStems ; 
normalOBNounsiStems ; 
normalOBNounsOtherStems 

normalOBNounsOtherStems 
normalOBNounsh,CnStems ; 
normalOBNounsYWStems ; 
normalOBNounsOtherCStems 

normalOBNounsOtherCStems 
NSF ; 

134 



'QhS 

ga: 
ga'd 
gahdr 
gahehd 
gahgwaohs 
gaho'j 
gany~'d 

ge'a: 
gQ'dr 
gwiy 
jaQs 
ji'a: 
ji'drQwahd 
j i 'nQW 

jigw~d 

jihgw 
jihsgw 
jihsQda: 
jihw~d 

j ike 'd 
jinQhgr 
jitgwa: 
kd 
kdeh 
kjin 
kw 
sehd 
shaihsd 
te'tr 
tgo'd 
tragw~'d 

trfd 
tsad 
tsehsd 
tsgf~: 
tsgo'd 
tsgr 

LEXICON 
wa: 
wa'wihsd 
wajihsd 

NSF ; 
NSF 

NSF ; 
NSF 

NSF ; 
NSF ; 

NSF ; 
NSF 

NSF ; 

NSF ; 

NSF 

NSF ; 
NSF ; 
NSF ; 

NSF 
NSF ; 

NSF ; 
NSF ; 

NSF 
NSF ; 
NSF ; 

NSF ; 
NSF ; 

NSF 
NSF 

NSF 
NSF ; 

NSF 
NSF 

NSF ; 
NSF 

NSF ; 

NSF 
NSF 

NSF ; 

NSF 

NSF 

NSF 
normalDBNounsh'CCStems 

NSF 

normalDBNounsYWStems 
NSF 

NSF ; 

135 



way NSF 
hwfhga: NSF ; 

w~n NSF 
widr NSF 
widr~hd NSF ; 
wiy NSF 
y NSF ; 
ya,d NSF 
yad NSF 
yahgw NSF 
yan NSF 
y~: NSF 
y~,gw NSF 
y~d NSF 
y~hsa: NSF ; 
YQ,d NSF ; 
yo,gw NSF ; 
YQW NSF ; 
rihw NSF ; 

LEXICON normalOBNounsh,CCStems 
,nhahgy NSF 
,nh~hts NSF ; 
,nhw~hts NSF 
,nhghs NSF ; 
,nhghd NSF ; 
,nghs NSF ; 

hnya: NSF ; 
hnye:h NSF ; 
hnyo,gw NSF ; 
hnyghs NSF ; 
hsda: NSF ; 
hsdai NSF ; 
hsdao,gw NSF 
hsgfdr NSF 
hsgeh NSF ; 
hsgoh NSF ; 
hsgwi,dr NSF 
hsgy~,da: NSF 
hsgyg,w NSF ; 
hshe, NSF ; 
hsna,d NSF ; 

hstgdr NSF ; 
hsw~,d NSF ; 

136 



nrahd 
nreg~'d 

nr~h~ 

nya'gw 
nyah 
ny~d 

nhahd 
'gr 

LEXICON 
na'da: 
na'ga: 
na'gwiy 
na'sgw 
nawad 
n~'d 

ne'da: 
negr~d 

negw 
n~h~: 

n~noga: 

n~nyo'gw 

ng'gw 
ngg~'d 

nghgw~ 

ngny 
'dgdr 
'nost 
'ga: 
'g~h~ 
'nehs 
'nest 
'nihsda: 
ha'd 
hah 
hakd 
he'a: 
hehd 
h~hda: 

hehs 
hets 
hey 
hikd 
hj i 'gr 

NSF 

NSF ; 
NSF 

NSF ; 
NSF 

NSF ; 
NSF ; 

NSF 
NSF 

normalDBNounsh'CnStems 
NSF ; 
NSF ; 

NSF ; 
NSF ; 

NSF ; 

NSF 
NSF 

NSF ; 
NSF ; 

NSF 

NSF ; 
NSF ; 
NSF ; 

NSF ; 
NSF 
NSF 

NSF 
NSF 
NSF 

NSF 

NSF 

NSF 

NSF ; 
NSF ; 

NSF ; 
NSF 

NSF 

NSF 
NSF 

NSF 
NSF 

NSF ; 
NSF 

137 



hn 
hgd 
hodr 
hohsgr 
hohwa: 
hsa: 
hsahe'd 
hs~h~ 

hsiy 
hwahd 
hw~'ga: 

hw~hda: 

hw~hsd 

LEXICON 
ahsg~'dr 

a'~n 

adehsh~ 

ad~nihs 

ahshed 
ahy 

LEXICON 
i'd 
i'da: 
i 'dghgw 
ijg'd 

LEXICON 

LEXICON 

LEXICON 
'ahdr 
ga'd 
gahihsd 

NSF ; 
NSF ; 

NSF 
NSF 
NSF 

NSF 
NSF 

NSF 
NSF 

NSF 
NSF 
NSF ; 

NSF ; 

normalOBNounsAStems 
NSF ; 

NSF 
NSF ; 
NSF ; 

NSF 
NSF 

normalOBNounsiStems 
NSF ; 

NSF 
NSF 

NSF 

normalGaBNouns 
normalGaBNounsiStems 
normalGaBNounsOtherStems 

normalGaBNounsOtherStems 
normalGaBNounsh'CnStems ; 
normalGaBNounsYWStems ; 
normalGaBNounsOtherCStems 

normalGaBNounsOtherCStems 
NSF ; 

NSF 
NSF ; 

138 



gahwehs 
gawehs 
gehd 
gQ'dr 
gQhS 
j~ 
jihay 
jihsd 
jihw 
kw 

tg~hets 

tgw~'d 

tse'd 
tsen~ 

LEXICON 
ya: 
ya'd 
Cagwa: 
Catsg~'d 

Cidr~hd 

Cihsd 
Cisr 
r~n 

rihwihs 
rQd 

LEXICON 
hsdow 
'drehd 
'droda 
hsgwa: 
nhe'd 
nhy 
nyod 

LEXICON 
had 
hQga: 
hQW 
hs~n 

hSQWahd 

NSF ; 
NSF 

NSF ; 
NSF 

NSF 
NSF ; 

NSF ; 
NSF 

NSF 
NSF 

NSF 
NSF ; 

NSF ; 
NSF ; 

normalGaBNounsh'CCStems 

normalGaBNounsYWStems 
NSF ; 
NSF 

NSF 
NSF ; 

NSF 
NSF 

NSF 
NSF 

NSF ; 
NSF 

normalGaBNounsh'CCStems 
NSF ; 
NSF ; 
NSF ; 
NSF ; 

NSF ; 
NSF 

NSF ; 

normalGaBNounsh'CnStems 
NSF 

NSF 
NSF 

NSF 
NSF ; 

139 



,ka: 
,na,gw 
, 
nigQh 

, wahsha: 
na,j 
na,johsgw 
nad 
nahd 
nahgw 
nahsgw 
nai,d 
nakd 
nehsda: 
nehw 
llQhS 
nQny 
now 

LEXICON 
i tse ,d 
itsga: 

LEXICON 
+a, 

NSF 

NSF 
NSF 
NSF ; 

NSF 
NSF 

NSF ; 

# 

NSF 
NSF ; 

NSF 
NSF ; 

NSF ; 
NSF 

NSF 

NSF 

NSF 

NSF 

NSF ; 

normalGaBNounsiStems 
NSF ; 
NSF ; 

8.2.2 Concrete Semantic Lexicon 

Multichar_Symbols @U.INALIEN.POSS@ ©U.INALIEN.UNPOSS@ 

LEXICON root 

LEXICON allSuff ixes 

allNouns ; 
allRoots ; 
allSuffixes 

NSF ; 
locativeSuffix 

140 



LEXICON 

LEXICON 

LEXICON 
toad : sgwa:gwagdg' 
cat : dago:s 
cat : da:gu:s 
chicken : dakshae'dohs 
dog : so:wa:s 
duck : tw~:tw~:t 

# 

# . 
' 

allRoots 

allNouns 

defectiveNouns 
# ; 

# . 
' 

# 
# . 

' 
# . 

' 
# 

# 

goose : hg:ga:k 
guinea% hen : dog~:t 
pig : gwihsgwihs 
rabbit : gwa'yg' 
turkey : sohg:t 
Baltimore% oriole 
blackbird : jogrihs 

gyo :gyo:' 
# . 

' 
black% breasted% woodpecker 
blue% jay : di'di:' 
chickadee : jikjiye:' 

gwido 'gwido' 

crow,% raven : ga'ga: 
great% horned% owl : hihi: 
high% soaring% hawk : gwiy~ 'gwiy~' 
house% woodpecker : dihsdihs 

# 

deverbalORoots ; 
deverbalARoots ; 
deverbalGaRoots ; 
deverbalNullRoots 
inalienableStems 
basicNounsAStems 
basicNounsiStems 

basicNounsEStems 
basicNouns~Stems 

basicNounsOStems 
basicNounsgStems 

basicNounshor'CornStems 
basicNounsyorwStems ; 
basicNounsCOtherStems 

inalienableNouns 
allBasicNouns ; 
deverbalNouns ; 
defectiveNouns ; 

# . 
' # . 
' 

# 

# 

# 
# 

# 

# 

# 

141 



hummingbird : ji"nhgw~:se: # ; 

killdeer : duwisduwi:" 
mockingbird,% chatterbox : sa"sa" 
night% hawk : gw~:dihs 
partridge : gwe: s~, 
pigeon : tsahgo:wah 
robin : jihsgogo" 
screech% owl : gwaoh 
seagull : johw~"sdaga" 

whip-poor-will : gw~ "gohnyf 
bear : hnyagwai, 
eel : gg:deh 
Channel% catfish : tgwiyo:g~" 
ants : jinhQhgwah~h 
bed% bug : j i "nQhdo: ya, 

# 

# ; 
# 

# 

# ; 
# . 

' 
# 

# ; 
# 

; 

# 

; 
# 

# 

# 

# 

; 

butterfly% (something% is% wet%;% 
cricket : jinghsanQh 

refers% to% the% transformation) j i "dana: w~: 
# ; 

grasshopper : jihsda: # 

spider : ji"ao:y~: # 

garter% snake : jinghyahae: # 

buffalo : degriya"gQ" # ; 

chipmunk% (refers% to% the% stripe% on% the% chipmunk's% back) 
fox : hehshai: # ; 

frog : sgwa "ahda, 
ground% hog,% woodchuck,% gopher 
mink : j Q "daga, 
mouse : jino:w~: 
muskrat : tea:gt 
raccoon : sa:no: 
skunk : dr~:na: 
skunk : dre:na: 
squirrel : joni:tsgrg:t 
grey% squirrel,% black% 
salamander : do:dihs 
otter : sgwa:y~h 

squirrel 

barn% swallow : gwiyo:g~" 
bluebird : jQ:nyg:" 

# ; 

tehtg" 

# . 
' 

kdagg" 

# 

# 

mud% puppies,% dogfish : nghsodai:yg: 
flying% squirrel : gwa"da: # 

bird : j id~: "~h 
raspberries : jQ"dae :ya:" 
sea% shell : j i "drg: w~: 
beech : onohotsgff 
iron% wood% (tree)%;% red% oak 
corn% tassel : tsa "g~: da, 

# ; 

# 
teo: j i, 

# ; 

# 

; 

# ; 

# 

# 

# 

# 

# 

# 

# 

# 

142 

# 

# 

# 

# 

j ihnyo "g~, # 

# 



morel,% black% type% of% mushroom yahg~hda' 

wild% walnut : tsinyohgwa:k # 

river,% stream,% creek : gih~:k 
sugar : nawfda' 

# . , 
# 

strawberry : jihsQ:dahk 
wolf : otahyQ:ni: 
wolf : tahyQ:ni: 
a% ghost : jihsg~: 
a% crab : j i 'o: 
tree : grahe:t 

LEXICON 
3znP+ 
3znA+ 
3znA+ 

LEXICON 

o+ 
a+ 
ga+ 

mittens : ~ 'nyotr 
ball : ~ 'nhotr 
sexuality : ~dehsr 

LEXICON 
0 : deverbal% noun% root 
deverbal% noun% root : 0 
sexuality : idehsra 
help : y~nawahsr 

# . , 
#· , 

# 

# 

# 

# 

deverbalNouns 
deverbalORoots 
deverbalARoots 

deverbalGaRoots 
deverbalNullRoots 

deverbalNullRoots 

deverbalGaRoots 

NSF ; 
NSF 

NSF 

# 

# 

NSF 

# 

NSF ; 

the% ability% to% think%;% thinking% skills 
helpfulness : ya'dagenhahsr 

ya 'dowehdahsr NSF 
NSF 

corn% bread% paddles%;% corn% soup% paddles 
corn% bread% paddles%;% corn% soup% paddles 
junk : tgi'tr 

atgw~nya 'tr NSF ; 
atgQnya 'tr NSF ; 

sickness : nohQkdehsr 
to% take% someone's% part%;% advocacy nhehsr 
water% drum : na 'j owi 'tr NSF 
leggings : risr 
religion%;% the% Christian% faith rihwiyohsd~hsr 

sin : rihwane 'aksra 

NSF 
NSF 

work : riho 'd~hsr NSF 
paper : hyadQhsr NSF ; 
power,% strength : hshahsd~hsr NSF ; 
cradleboard : CahQhsr NSF 

143 

NSF 

NSF ; 
NSF ; 
NSF ; 



LEXICON deverbalORoots 
0 : deverbal% noun% root 
deverbal% noun% root : 0 
blankets : y~hsr NSF 
flint% (stone) : tragwfd 
wealth : atgahnQnihsr 
poplar : nrahdQdahsr 
soother,% pacifier,% nipple : nQnhe,dr 
material,% cloth : niga:h~hsr 
power,% strength : hshahsd~hsr 
fun : adQtgadQhsr NSF 
celebration : adQtgadehsr 
fat,% pig% rinds : ,drohsr 
sweat : i ,daih~hdr NSF 

LEXICON deverbalARoots 
0 : deverbal% noun% root 
deverbal% noun% root : 0 
hoe : atsho ,kdQhsr 
pants : atna ,tsotr 
belt : atna ,gwihdr 
sports,% games : atgahnyehtr 
hat : nahaotr 
coat,% dress : agya ,dawi ,tr 
disaster : adrihwagyaQhsr 
bat% (mammal) : adra,wihsd 
birth : adQnhehsr 
shyness : adi ,grghsra 
lunch,% groceries : ad~na,tr 

table : adekwahahsra 

NSF 

NSF ; 
NSF 

NSF 

NSF 

NSF 

NSF 

# 
# 

NSF 
NSF ; 

NSF ; 
NSF 

NSF ; 

NSF 
NSF 

NSF 
NSF 

NSF ; 
NSF 

NSF 

NSF 
friendship%;% also% refers% to% a% ceremonial% friend 
socks : ahdahdi ,tr 

adao ,tra NSF 
NSF ; 

LEXICON 
0 ©U.INALIEN.POSS© 
0 : ©U.INALIEN.UNPOSS©o+ 

LEXICON 

inalienableNouns 

inalienablePrefixes 
inalienableAPrefixes 
inalienableiPrefixes 

inalienablePrefixes ; 
inalienableStems ; 

inalienableE~Prefixes 

inalienableOQPrefixes ; 
inalienableH,CPrefixes 

144 

# 

# 



LEXICON 
1sA+ : g+ 
1idA+ (e)gy+ 
1edA+ (y)agy+ 
1ipA+ (e)dw+ 
1epA+ (y)agw+ 
2sA+ (h)s+ 
2dA+ : (h) j+ 
2pA+ : (h) sw+ 
3msA+ : h+ 
3fisA+ (y)Q+ 
3znsA+ : w+ 
3mdpA+ : h~n+ 
3fidpA+ gaQ+ 
3zndpA+ : g~n+ 

LEXICON 
1sA+ : g+ 
1idA+ (e)kn+ 
1idA+ (e)tn+ 
1edA+ (y)akn+ 
1ipA+ (e)dw~+ 

1epA+ (y)agw~+ 

2sA+ (h)s+ 
2dA+ : (h) sn+ 
2pA+ : (h) sw~+ 
3msA+ : h~+ 
3fisA+ (y)~+ 

3znsA+ g~+ 

3mdpA+ had+ 
3fidpA+ gae+ 
3zndpA+ : gad+ 

!LEXICON 
!1sA+ : g+ 
!1idA+ (e)kn 
!1idA+ : (e)tn+ 

inalienableH,CCPrefixes ; 
inalineableNPrefixes ; 
inalienableYWRPrefixes ; 
inalienableOtherCPrefixes 
inalienableUPrefixes ; 

inalienableAPrefixes 
inalienableAStems 

inalienableAStems ; 
inalienableAStems ; 

inalienableAStems ; 
inalienableAStems 

inalienableAStems ; 
inalienableAStems ; 

inalienableAStems ; 
inalienableAStems 

inalienableAStems ; 
inalienableAStems 

inalienableAStems ; 
inalienableAStems 
inalienableAStems ; 

inalienableiPrefixes 
inalienableiStems 

inalienableiStems ; 
inalienableiStems ; 
inalienableiStems 
inalienableiStems 

inalienableiStems ; 
inalienable I Stems 
inalienableiStems ; 
inalienableiStems ; 

inalienableiStems 
inalienableiStems ; 

inalienableiStems 
inalienableiStems ; 
inalienableiStems 
inalienableiStems ; 

inalienableE~Prefixes 

145 



!ledA+ (y)akn+ 
!lipA+ (e)dw+ 
!lepA+ (y)agw+ 
!2sA+ (h)s+ 
! 2dA+ : (h) sn+ 
! 2pA+ : (h) sw+ 
!3msA+ : h+ 
!3fisA+ (y)ag+ 
!3znsA+ : w+ 
!3mdpA+ : h~n+ 
!3fidpA+ ga:g+ 
!3zndpA+ : g~n+ 

LEXICON 
lsA+ : g+ 
lidA+ (e)kn+ 
lidA+ (e)tn+ 
ledA+ (y)akn+ 
lipA+ (e)gy+ 
lepA+ (y)agy+ 
2sA+ (h)s+ 
2dA+ : (h) sn+ 
2pA+ : (h) j+ 
3msA+ : h+ 
3fisA+ (y)ag+ 
3znsA+ : (y)+ 
3mdpA+ : h~n+ 
3fidpA+ ga:g+ 
3zndpA+ : g~n+ 

!LEXICON 
!lsA+ : g+ 
! lidA+ kn+ 
!lidA+ tn+ 
!ledA+ akn+ 
! lipA+ gy+ 
!lepA+ agy+ 
!2sA+ s+ 
!2dA+ : sn+ 
!2pA+ : j+ 
!3msA+ : h+ 
!3fisA+ ag+ 
!3znsA+ : w+ 

inalienableOgPrefixes 
inalienableOgStems 

inalienableOgStems ; 
inalienableOgStems ; 
inalienableOgStems ; 

inalienableOgStems ; 
inalienableOgStems 

inalienableOgStems ; 
inalienableOgStems ; 

inalienableOgStems ; 
inalienableOgStems 

inalienableOgStems ; 
inalienableOgStems 

inalienableOgStems ; 
inalienableOgStems 

inalienableOgStems ; 

inalienableUPrefixes 

146 



!3mdpA+ : h~n+ 
!3fidpA+ ga:g+ 
!3zndpA+ : g~n+ 

LEXICON 
1sA+ : k+ 
1idA+ (e)kni+ 
1idA+ (e)tni+ 
1edA+ (y)akni+ 
1ipA+ (e)dwa+ 
1epA+ (y)agwa+ 
2sA+ (eh)s+ 
2dA+ : (eh) sni+ 
2pA+ : (eh) swa+ 
3msA+ : ha+ 
3fisA+ (y)e+ 
3znsA+ : ga+ 
3mdpA+ : hadi+ 
3fidpA+ gae+ 
3zndpA+ : gadi+ 

LEXICON 
ge+ 
(e)kni+ 
(e)tni+ 
(y)akni+ 
(e)dwa+ 
(y)agwa+ 
(eh)se+ 
(eh)sni+ 
(eh)swa+ 
ha+ 
(y)e+ 
ga+ 
hadi+ 
gae+ 
gadi+ 

LEXICON 
1sA+ : k+ 
1idA+ (e)kni+ 
1idA+ 
1edA+ 

(e)tni+ 
(y)akni+ 

inalienableH'CPrefixes 
inalienableH'CStems 

inalienableH'CStems 
inalienableH'CStems 

inalienableH'CStems ; 
inalienableH'CStems 

inalienableH'CStems ; 
inalienableH'CStems 

inalienableH'CStems ; 
inalienableH'CStems ; 

inalienableH'CStems 
inalienableH'CStems 

inalienableH'CStems 
inalienableH'CStems ; 
inalienableH'CStems ; 

inalienableH'CStems ; 

inalienableH'CCPrefixes 
inalienableH'CCStems 

inalienableH'CCStems ; 
inalienableH'CCStems ; 

inalienableH'CCStems ; 
inalienableH'CCStems 

inalienableH'CCStems ; 
inalienableH'CCStems 

inalienableH'CCStems ; 
inalienableH'CCStems ; 

inalienableH'CCStems 
inalienableH'CCStems ; 

inalienableH'CCStems 
inalienableH'CCStems ; 

inalienableH'CCStems ; 
inalienableH'CCStems ; 

inalineableNPrefixes 
inalineableNStems 

inalineableNStems 
inalineableNStems 

inalineableNStems 

147 



1ipA+ : (e)dwa+ 
1epA+ : (y)agwa+ 
2sA+ (eh)s+ 
2dA+ : (eh) sni + 
2pA+ : (eh) swa+ 
3msA+ : ha+ 
3fisA+ (y)e+ 
3znsA+ : ga+ 
3mdpA+ : hadi+ 
3fidpA+ gae+ 
3zndpA+ : gadi+ 

LEXICON 
1sA+ : g+ 
1idA+ (e)kni+ 
1idA+ (e)tni+ 
1edA+ (y)akni+ 
1ipA+ (e)dwa+ 
1epA+ (y)agwa+ 
2sA+ (eh)s+ 
2dA+ : (eh) sni+ 
2pA+ : (eh) swa+ 
3msA+ : ha+ 
3fisA+ (y)e+ 
3znsA+ : ga+ 
3mdpA+ : hadi+ 
3fidpA+ gae+ 
3zndpA+ : gadi+ 

LEXICON 
1sA+ : ge+ 
1idA+ (e)kni+ 
1idA+ (e)tni+ 
1edA+ (y)akni+ 
1ipA+ (e)dwa+ 
1epA+ (y)agwa+ 
2sA+ (eh)se+ 
2dA+ : (eh) sni+ 
2pA+ : (eh)swa+ 
3msA+ : ha+ 
3fisA+ (y)e+ 
3znsA+ 
3mdpA+ 

ga+ 
hadi+ 

inalineableNStems ; 
inalineableNStems ; 

inalineableNStems 
inalineableNStems ; 
inalineableNStems ; 

inalineableNStems 
inalineableNStems 

inalineableNStems 
inalineableNStems ; 
inalineableNStems ; 
inalineableNStems ; 

inalienableYWRPrefixes 
inalienableYWRStems 

inalienableYWRStems 
inalienableYWRStems 

inalienableYWRStems ; 
inalienableYWRStems 

inalienableYWRStems ; 
inalienableYWRStems 

inalienableYWRStems ; 
inalienableYWRStems ; 

inalienableYWRStems 
inalienableYWRStems 

inalienableYWRStems 
inalienableYWRStems ; 
inalienableYWRStems ; 

inalienableYWRStems ; 

inalienableOtherCPrefixes 
inalienableOtherCStems 

inalienableOtherCStems ; 
inalienableOtherCStems ; 
inalienableOtherCStems ; 

inalienableOtherCStems ; 
inalienableOtherCStems ; 

inalienableOtherCStems ; 
inalienableOtherCStems ; 

inalienableOtherCStems ; 
inalienableOtherCStems 

inalienableOtherCStems ; 
inalienableOtherCStems 

inalienableOtherCStems ; 

148 



3fidpA+ 
3zndpA+ 

gae+ 
gadi+ 

inalienableOtherCStems ; 
inalienableOtherCStems ; 

LEXICON 

LEXICON 

inalienableStems 
inalienableAStems 
inalienableiStems 
inalienableOQStems ; 
inalienableH'CStems ; 
inalienableH'CCStems ; 
inalineableNStems ; 
inalienableYWRStems ; 
inalienableOtherCStems 

inalienableAStems 
0 : inalienable% noun% root% beginning% with% %+a 
inalienable% noun% root% beginning% with% %+a : 0 
on% your% ears : ahQhd 
on% your% foot : ahsi'd 
on% my% toes : ahyagwiy 

LEXICON inalienableiStems 
0 : inalienable% noun% root% beginning% with% %+i 
inalienable% noun% root% beginning% with% %+i : 0 
(on)% my% skin : ihn 

!LEXICON inalienableE~Stems 

LEXICON inalienableOQStems 
0 : inalienable% noun% root% beginning% with% %+Q 

inalienable% noun% root% beginning% with% %+Q : 0 
on% your% knee : QtS 

# 0 

' 
# ; 

inalienableSuffix 
inalienableSuffix 

inalienableSuffix ; 

# 0 

' 
# ; 

inalienableSuffix 

# ; 
# ; 

inalienableSuffix 

LEXICON inalienableH'CStems !12 
0 : inalienable% noun% root% beginning% with% %+h 
0 : inalienable% noun% root% beginning% with% %+'C 
inalienable% noun% root% beginning% with% %+h : 0 
inalienable% noun% root% beginning% with% %+'C : 0 
on% its% throat : ha'd 
on% your% groin : han 
on% your% ribs : hdega: 

149 

# 

# 

# 

# ; 

inalienableSuffix 
inalienableSuffix ; 

inalienableSuffix 



on% your% anus : hetga' inalienableSuffix 
on% your% buttocks : hna'ts inalienableSuffix ; 

on% your% shoulders : hn~s inalienableSuffix ; 

on% your% leg : hsin inalienableSuffix 
on% your% hand : hsohd inalienableSuffix 
on% your% upper% lip : hsQhga: inalienableSuffix ; 
on% your% lip : hsohgw inalienableSuffix 
on% your% (p)% elbows : hyohs inalienableSuffix ; 

on% its% tail% (pertaining% to% birds) 'yohgw inalienableSuffix ; 

LEXICON inalineableNStems !7 
0 : inalienable% noun% root% beginning% with% 
inalienable% noun% root% beginning% with% %+n 
on% your% arm : n~tsh 
on% your% head : nQ'a: 
on% your% breast : nQ 'gw 
on% your% teeth : no 'j 
on% your% nipples : nQnhe'dr 
on% his% penis,% phallus : nr 
on% your% shin : ny~d 

# . 
' 

%+n 
: 0 # ; 

inalienableSuffix 
inalienableSuffix 

inalienableSuffix ; 
inalienableSuffix 

inalienableSuffix ; 
inalienableSuffix 

inalienableSuffix 

LEXICON inalienableYWRStems !10 
inalienable% noun% root% beginning% with% %+y 0 
inalienable% noun% root% beginning% with% %+w 0 
inalienable% noun% root% beginning% with% %+r 0 
0 inalienable% noun% root% beginning% with% %+y 
0 inalienable% noun% root% beginning% with% %+w 
0 inalienable% noun% root% beginning% with% %+r 
on% your% body : ya'd 

# ; 
# ; 

# ; 

# ; 
# ; 

# ; 

inalienableSuffix 
inalienableSuffix 

inalienableSuffix ; 
inalienableSuffix ; 

inalienableSuffix 
inalienableSuffix 

inalienableSuffix 

on% 
on% 
on% 
on% 
on% 
on% 
on% 
on% 
on% 
on% 

your% waist : ya'ga: 
your% gums : yo'd 
your% cheeks : yo'gw 
your% chin : yo 'ts 
your% chin : yu 'ts 
your% tongue : w~ 'nahs 
your% tongue : wfnohs 
your% thumb : w~ 'yQhga: 
your% heel : rad 

inalienableSuffix 
inalienableSuffix ; 

inalienableSuffix 
the% ball% of% my% foot ragwahd inalienableSuffix ; 

LEXICON inalienableOtherCStems !14 
inalienable% noun% root% beginning% with% %+g : 0 
inalienable% noun% root% beginning% with% %+'V : 0 

150 

# 

# 



inalienable% noun% root% beginning% with% %+k : 0 
inalienable% noun% root% beginning% with% %+w% : 0 
inalienable% noun% root% beginning% with% %+j : 0 
0 inalienable% noun% root% beginning% with% %+g 
0 inalienable% noun% root% beginning% with% %+,V 
0 inalienable% noun% root% beginning% with% %+k 
0 inalienable% noun% root% beginning% with% %+w 
0 inalienable% noun% root% beginning% with% %+j 

# 

# 
# 

# 

# 

# 
# . 

' 
# 

on% your% eyes : gah inalienableSuffix 
on% your% eyelashes : gahehd 
on% your% eyebrow : gahgwaohs 
on% your% hairline,% upper% brow%;% forehead 
on% the% bridge% of% my% nose : gg,d 
on% your% face : gghs 
on% its% whiskers : gghstg, 
on% my% chest : ,ahs 
on% your% belly : kse,d 
on% your% ankle : jaoho,gw 
on% my% nail : j i ,ehd 
on% my% nail : ji,ohd 
on% your% hip : jisgo,gw 

inalienableSuffix ; 
inalienableSuffix ; 

g!iJ,sd inalienableSuffix 
inalienableSuffix ; 

inalienableSuffix 
inalienableSuffix ; 
inalienableSuffix ; 

inalienableSuffix 
inalienableSuffix ; 

inalienableSuffix 
inalienableSuffix 

inalienableSuffix ; 

LEXICON inalienableWCCStems ! 8 
on% my% inner% thigh : ,nhghsga: inalienableSuffix 
on% your% nose : ,nyghs inalienableSuffix 
on% your% neck% (front% of% the% neck) hnya,s inalienableSuffix ; 
on% its% beak : hny!iJdahs inalienableSuffix ; 
his% testicles : hsgwa: inalienableSuffix 
on% your% calf% (of% leg) : hsna,d inalienableSuffix ; 
on% your% upper% back hswa,n inalienableSuffix 
on% your% upper% back : hswe,n inalienableSuffix 

LEXICON 
0 @U.INALIEN.POSS@ 
0 : @U.INALIEN.UNPOSS@ 

LEXICON 
+ loc : +a ,geh 

LEXICON 

inalienableSuffix 

locativeSuffix 
# ; 

# ; 

NSF 

allBasicNouns 
basicNounPossessedPrefixes 

151 

locativeSuffix 



LEXICON 
1sP+ 0 
1dP+ 0 
1pP+ 0 
2sP+ 0 
2dP+ 0 
2pP+ 0 

3msP+ : 0 

3fisP+ 0 

3znsP+ : 0 
3mdpP+ : 0 
3fidpP+ 
3zndpP+ : 

LEXICON 
0 (w)ag+ 
0 : (w)ag+ 

0 

0 
0 

(w)ak+ 
(w)ag+ 
(w)age+ 

LEXICON 

0 

0 

0 : (y)Qgy+ 
0 : (y)Qkn+ 
!0 (y)Qkn+ 
!0 (y)Qkn+ 
!0 (y)Qkn+ 
!0 (y)Qkn+ 
0 : (y)Qkni+ 

LEXICON 
0 : (y)Qgw+ 
0 : (y)Qgw~+ 

!0 (y)Qgw+ 
!0 (y)Qgw+ 
!0 (y)Qgy+ 

basicNounUnpossessedPrefixes 

basicNounPossessedPrefixes 
wagPrefixes ; 
yQkniPrefixes 
yQgwaPrefixes 
saPrefixes ; 
sniPrefixes 
swaPrefixes ; 
hoPrefixes ; 
yagoPrefixes 
yoPrefixes ; 
hodiPrefixes 
yagodiPrefixes 
yodiPrefixes ; 

wagPrefixes 
basicNounsAStems 
basicNounsiStems 

basicNounsEStems 
basicNouns~Stems 

basicNounsOStems 
basicNounsQStems 

basicNounshor'CornStems 
basicNounsyorwStems ; 

basicNounsCOtherStems 

yQkniPrefixes 
basicNounsAStems 
basicNounsiStems 

basicNounsEStems 
basicNouns~Stems 

basicNounsOStems 
basicNounsQStems 
basicNounsOtherStems 

yQgwaPrefixes 
basicNounsAStems 
basicNounsiStems 
basicNounsEStems 
basicNouns~Stems 

basicNounsOStems 

152 



!0 : (y)Qgy+ 
0 : (y)Qgwa+ 

LEXICON 
0 : s+ 
0 : s~+ 

!0 s+ 
!0 s+ 
!0 
!0 

s+ 
s+ 

0 : sa+ 

LEXICON 
0 : j+ 
0 : sn+ 
!0 sn+ 
!0 sn+ 
!0 sn+ 
!0 sn+ 
0 : sni+ 

LEXICON 
0 : sw+ 
0 : sw~+ 
!0 sw+ 
!0 sw+ 
!0 j+ 
!0 j+ 
0 : swa+ 

LEXICON 
0 : ho+ 
0 : ho+ 
!0 haw+ 
!0 

!0 

!0 

haw+ 
h+ 
h+ 

0 : ho+ 

LEXICON 
0 : (ya)go+ 

basicNounsQStems ; 
basicNounsOtherStems 

saPrefixes 
basicNounsAStems 
basicNounsiStems 
basicNounsEStems 
basicNouns~Stems 

basicNounsOStems 
basicNounsQStems 
basicNounsOtherStems 

sniPrefixes 
basicNounsAStems 

basicNounsiStems ; 
basicNounsEStems 
basicNouns~Stems 

basicNounsOStems 
basicNounsQStems 
basicNounsOtherStems 

swaPrefixes 
basicNounsAStems 

basicNounsiStems ; 
basicNounsEStems ; 
basicNouns~Stems ; 

basicNounsOStems ; 
basicNounsQStems ; 

basicNounsOtherStems 

hoPrefixes 
basicNounsAStems 
basicNounsiStems 

basicNounsEStems ; 
basicNouns~Stems ; 

basicNounsOStems 
basicNounsQStems 
basicNounsDtherStems 

yagoPrefixes 
basicNounsAStems 

153 



0 : (ya)go+ 
!(0 : ya)gaw+ 
!0 (ya)gaw+ 
!0 : (ya)g+ 
! 0 : (ya)g+ 
0 : (ya)go+ 

LEXICON 
0 : (y)o+ 
0 : (y)o+ 
!0 (y)aw+ 
!0 (y)o+ 
!0 (y)+ 
!0 (y)+ 
0 : (y)o+ 

LEXICON 
0 : hon+ 
0 : hod+ 
!0 hon+ 
!0 hon+ 
!0 hon+ 
!0 hon+ 
0 : hodi+ 

LEXICON 
0 : (ya)gon+ 
0 : (ya)god+ 
!0 (ya)gon+ 
!0 (ya)gon+ 
!0 (ya)gon+ 
!0 (ya)gon+ 
0 : (ya) godi + 

LEXICON 
0 : (y)on+ 
0 : (y)od+ 
!0 (y)on+ 
!0 (y)on+ 
!0 (y)on+ 
!0 (y)on+ 
0 : (y)odi+ 

basicNounsiStems ; 
basicNounsEStems 
basicNouns~Stems 

basicNounsOStems ; 
basicNounsgStems ; 
basicNounsOtherStems 

yoPrefixes 
basicNounsAStems 
basicNounsiStems 

basicNounsEStems ; 
basicNouns~Stems ; 

basicNounsOStems 
basicNounsgStems 
basicNounsOtherStems 

hodiPrefixes 
basicNounsAStems 
basicNounsiStems 

basicNounsEStems 
basicNouns~Stems 

basicNounsOStems 
basicNounsgStems 
basicNounsOtherStems 

yagodiPrefixes 
basicNounsAStems 
basicNounsiStems 

basicNounsEStems 
basicNouns~Stems 

basicNounsOStems 
basicNounsgStems 
basicNounsOtherStems 

yodiPrefixes 
basicNounsAStems 
basicNounsiStems 

basicNounsEStems 
basicNouns~Stems 

basicNounsOStems 
basicNounsgStems 
basicNounsOtherStems 

154 



LEXICON 
3znA+ ga+ 
3znP+ o+ 
3znA+ a+ 

basicNounUnpossessedPrefixes 
gaBNouns 

oBNouns ; 
aBNouns ; 

nullBNouns 

! Grouping by initial stem vowel for possessed basic nouns 
LEXICON basicNounshor ,CornS terns 

nullBNounshVStems ; 

LEXICON 

LEXICON 

LEXICON 

LEXICON 

!LEXICON 

!LEXICON 

gaoh 'CNouns ; 
normalOBNounsh'CnStems 
normalGaBNounsh,CnStems ; 

basicNounsyorwStems 
normalOBNounsYWStems 
normalGaBNounsYWStems ; 

basicNounsCOtherStems 
gaoJNouns ; 
normalOBNounsOtherCStems 
normalGaBNounsOtherCStems 
oLoanWords ; 
nullBNounshCStems 

basicNounsAStems 
aoBNouns ; 
normalABNouns ; 
normalOBNounsAStems 

basicNounsiStems 
normalOBNounsiStems 
normalGaBNounsiStems 

basicNounsEStems 
# ; 

basicNouns~Stems 

# ; 

155 



!LEXICON 

LEXICON 

basicNounsgStems 
# ; 

basicNounsOtherStems 
oLoanWords ; 
nullBNouns ; 
gaoBNouns ; 
normalOBNounsOtherStems 
normalGaBNounsOtherStems ; 

End grouping by stem vowel for possessed basic nouns 

LEXICON 

LEXICON 

LEXICON 

gaBNouns 
normalGaBNouns 
gaoBNouns ; 

oBNouns 
normalOBNouns 
gaoBNouns ; 
aoBNouns; 
nullBNouns; 
oLoanWords; 

aBNouns 
normalABNouns 
aoBNouns ; 

LEXICON oLoanWords 
0 : basic% noun% root% (loan% words) 
basic% noun% root% (loan% words) : 0 
tea : di: 
cheese : j i: s 

LEXICON nullBNouns 
0 : basic% noun% root% (unprefixed) 
basic% noun% root% (unprefixed) : 0 

nullBNounshVStems 
nullBNounshCStems 

156 

# . 
' 

# 

# 

# 

# 
# 



LEXICON nullBNounshVStems 
basic% noun% root% (beginning% in% %+hV) : 0 
potato : hQna ,d NSF ; 

LEXICON nullBNounshCStems 
basic% noun% root% (beginning% in% %+hCC) : 0 
colts% foot : hsgwa~,d NSF 

LEXICON gaoBNouns 
gaoh ,CN ouns 
gaoJNouns ; 

LEXICON gaoJNouns 

# 

# 

basic% noun% root% (beginning% in% %+j% or% 
0 : basic% noun% root% (beginning% in% %+j% 
nakedness%;% nudity : ji,gw 

hCC% that% takes% ga%+% or% o%+) : 0 # 

or% hCC% that% takes% ga%+% or% o%+) # 

NSF ; 
jihoha: NSF straight% pin%;% pin%;% brooch%;% safety% pin : 

dirty% clothes : hsdagw 
beak : hny~dahs 

NSF 
NSF ; 

LEXICON gaoh ,CNouns 
0 : basic% noun% root% (beginning% in% %+hV% 
basic% noun% root% (beginning% in% %+hV% or% 
clothespin : ,wahsd 
cargo%;% bundle%;% load : hehn 
a% motor%;% engine : hQ,jihsd 

LEXICON aoBNouns 

NSF 

or% ,CV% that% takes% ga%+% 
,CV% that% takes% ga%+% or% 

NSF ; 
NSF ; 

0 : basic% noun% root% (beginning% in% %+a% that% takes% o%+% or% a%+) 
basic% noun% root% (beginning% in% %+a% that% takes% o%+% or% a%+) : 0 
ladder%;% stairs : adQhne,ts NSF ; 

LEXICON normalABNouns 
0 : basic% noun% root% (beginning% in% %+a% that% takes% a%+) 
basic% noun% root% (beginning% in% %+a% that% takes% a%+) : 0 
fence : ad~h~ NSF 
blouse%;% middy : adehsw 
lunch%;% groceries : ad~na ,tr 
skate : ado ,j in 
bow% (as% in% bow% and% arrow) 
axe%;% tomahawk : adog~ 

NSF 

adoda: 

157 

NSF ; 

NSF 

NSF ; 
NSF 

or% o%+) 
o%+) : 0 

# . 
' 

# . 
' 



hunt : adowadg: 
luck : adra ,sw 
shoes : ahdahgw 
clothing%;% clothes 
roof : ahsgw 
closthes : atrgni 'd 
calendar : atsog~ 
flower : aw~h~ 

weeds : aw~nohgr 

LEXICON normalOBNouns 

LEXICON 

LEXICON 

NSF 
NSF ; 

NSF 
ahgw~ny NSF ; 

NSF 
NSF ; 

NSF 
NSF 

NSF 

normalOBNounsAStems ; 
normalOBNounsiStems ; 
normalOBNounsOtherStems 

normalOBNounsOtherStems 
normalOBNounsh'CnStems ; 
normalOBNounsYWStems ; 
normalOBNounsOtherCStems 

normalOBNounsOtherCStems 
0 : basic% noun% root% (beginning% with% a% C% other% than% %+y/w/r/% taking% o%+) # 

basic% noun% root% (beginning% with% a% C% other% than% %+,C/y/w% taking% o%+) : 0 # ; 

sod%;% moss : ,Qhgwa: NSF 
vines : ,ghs NSF ; 
a% price% (on% it) : ga: NSF ; 
pants : ga 'd NSF ; 

eye) gahdr NSF a% tear% (in% one's% 
eyelash%;% the% stem% 
eyebrow : gahgwaohs 
grass : gaho 'j 

of% a% berry%;% the% eye% of% the% corn% kernel 
NSF ; 

NSF ; 
cadaver%;% dead% body : gany~'d 
hair%;% a% rag%;% (it% is)% ragged%;% tattered 
cotton% batting%;% q-tips gg'dr 
a% limb%;% twig%;% branch gwiy 
leaves% of% corn : jags 
curtains%;% lace : J 1 a: 
the% brain : ji,drgwahd 
bug%;% insect%;% worm : ji'ngw 
gonorrhea : jigw~d 
porridge%;% mush : jihgw 
mush : jihsgw 

NSF ; 

NSF 

NSF 
cluster% of% stars%;% star jihsgda: 

158 

NSF 

NSF ; 
ge'a: 

NSF 

NSF ; 
NSF ; 

NSF 

NSF 

NSF ; 

NSF 

gahehd NSF 



bell : j ihw~d 
salt : j ike 'd 
nasal% mucous : jinQhgr 
yellow : jitgwa: 
a% nutshell : kd 

NSF 
NSF 

NSF 
NSF 

NSF 
root%;% edible% roots% (pepper% roots%;% turnips%;% carrots) : kdeh NSF 
stump%;% knots% in% a% tree : kjin NSF 
its% food : kw NSF ; 
willow%;% nape% of% neck : sehd 
snake : shaihsd 
flour%;% powder 
sumac : tgo 'd 
housefly%;% fly 

te'tr 

trfd 
mist%;% steam%;% fog : tsad 
syrup%;% honey%;% gum : tsehsd 
peach% pit : tsg~ ·~: 
balsam% fir : tsgo'd 
saliva%;% spit%;% sputum tsgr 

NSF 

NSF 
NSF 

NSF 
NSF 

normalOBNounsh'CCStems 

LEXICON normalOBNounsYWStems 

NSF ; 

NSF 

NSF 
NSF 

NSF 

0 : basic% noun% root% (beginning% with% %+y/w/r% that% takes% o%+) 
basic% noun% root% (beginning% with% %+y/w/r% that% takes% o%+) : 0 
air%;% wind%;% a% moth : wa: NSF 
a% peeling : wa 'wihsd NSF ; 
peelings%;% bark% of% a% tree : wajihsd 
fin% of% a% fish%;% wings : way 
wood% chips : hwfhga: NSF 

NSF 
NSF 

word%;% voice%;% speech : w~n NSF ; 
ice : widr NSF ; 
sleep%;% a% dream : widr~hd NSF ; 
young%;% offspring% (i.e.% of% an% animal)%;% baby : wiy 
other%;% another : y NSF ; 
body : ya 'd NSF 
basement%;% track%;% ditch : yad NSF 
pants : yahgw NSF 
tire%;% its% track%;% anything% that% leaves% tracks yan 
beads : y~: NSF ; 

tobacco%;% cigarettes y~'gw NSF 
wood%;% firewood : y~d NSF ; 

bandage : y~hsa: NSF 
a% dead% body%;% cadaver YQ'd NSF 
cheeks : yo'gw NSF ; 

guts%;% intestines : YQW NSF 

159 

NSF 

NSF 



message%;% it% matters%;% it% is% its% fault%;% word%;% affair%;% business rihw 

LEXICON 
leaf : nrahd 

normalOBNounsh,CCStems 
NSF ; 

tripe% (cow% stomach% lining)%;% animal% stomache : nreg~,d 
tapeworm : nr~h~ NSF 
vomit%;% vomitus : nya,gw NSF 
native% mush% dishes% made% with% corn : nyah 
stem : ny~d NSF ; 
lumber% logs% (large)%;% timber nhahd 
snow%;% snowflake : ,gr 
lumber% logs% (large)%;% timber ,nhahgy 
tail% of% an% animal ,nh~hts 

NSF 
NSF 

NSF 
tail% of% an% animal : ,nhw~hts NSF ; 
egg : ,nhghs 
bur : ,nhghd 
onion : ,nghs 
nutmeat : hnya: 
flint% corn% soup : hnye:h 
nut : hnyo ,gw 
squash%;% melon : hnyghs 
rain : hsda: 
scale% (of% a% fish) hsda: 

NSF ; 
NSF ; 

NSF ; 
NSF 

NSF ; 

NSF ; 

NSF 

NSF 

NSF 
scale% (of% a% fish) 
necklace : hsdao,gw 
rust : hsg~ ,dr 

hsdai NSF 

louse : hsgeh 

hsgy~,da: 

hsgyg,w 

NSF 
NSF ; 

NSF 

NSF ; 

NSF 

NSF 
NSF 

NSF ; 

NSF 

branch : hsgoh 
wrinkles : hsgwi,dr 
bone%;% bare% bones 
blue% beech% (tree) 
dough : hshe, 
hamstrings%;% calves% 
straw : hstgdr 

(of% the% legs)%;% outer% thighs 
NSF 

hsna,d 

coal : hsw~ ,d NSF ; 

LEXICON normalOBNounsh ,CnStems 

NSF 

NSF 

NSF 

0 : basic% noun% root% (beginning% with% %+,CV/hCV/n% that% takes% o%+) 
basic% noun% root% (beginning% with% %+,CV/hCV/n% that% takes% o%+) : 0 
bread : na,da: NSF ; 
horns%;% antlers : na,ga: 
cotton% batting : na,gwiy 
a% mattress : na ,sgw NSF 

160 

NSF 
NSF 



clay%;% plaster%;% white-wash nawad 
evergreen%;% conifer : n~,d 

roe% (fish% eggs) : ne,da: 
morel% mushroom : negr~d 
peas : negw 
corn : n~h~: 

NSF ; 
NSF 

hickory% wood%;% stick 
pills : n~nyo ,gw 

n~noga: 

milk : nQ,gw 
catfish : nQgfd 

NSF 
NSF 

NSF 
corn% cob : nQhgw~ NSF 
a% husk : nQny NSF ; 
% is% fat%;% gristle%;% rind : ,dQdr 
a% parable%;% tale%;% story%;% legend ,ga: 
ashes%;% bullet%;% dust : ,g~h~ 

sand : ,nehs 
nudity : ,nest 
nudity : ,nost 

NSF ; 
NSF 
NSF 

stem%;% hull% of% berries : ,nihsda: 

NSF 
NSF ; 

NSF 
NSF ; 

NSF 

NSF 

NSF 

NSF ; 

NSF 

skirt%;% tail%;% feather : ,yohgw 
quill%;% plume%;% feather%;% voice%;% throat%;% 

NSF ; 
larynx%;% esophagus 

road : hah NSF ; 
soot : hakd NSF ; 
corn% husk : he,a: NSF 
dirt%;% earth%;% ground%;% land : hehd 
fur : h~hda: NSF ; 
decayed% tree%;% log%;% wood%;% board : hehs 
(raw)% sausage%;% bologna%;% wieners : hets 
one% corn% stalk hey 
thorn%;% thistle : hikd 
cloud : hj i ,gr 
grease%;% oil : hn 
a% bush%;% a% whip : hQd 
basswood : hodr 
slippery% elm : hohsgr 
pelt : hohwa: 
mouth hsa: 
beans : hsahe ,d 
frost : hs~h~ 
thread%;% string%;% cord hsiy 
maple : hwahd 
a% splint : hwfga: 
corn% ears : hw~hda: 
foam : hw~hsd 

NSF 

NSF 
NSF 

NSF ; 
NSF 

NSF 
NSF 

NSF 
NSF 

NSF 
NSF 

161 

NSF ; 
NSF 

NSF 
NSF 

NSF 

NSF 

NSF 
NSF 

ha,d NSF 



LEXICON normalOBNounsAStems 
0 : basic% noun% root% (beginning% with% %+a% that% takes% o%+) 
basic% noun% root% (beginning% with% %+a% that% takes% o%+) : 0 
rust : ahsgfdr NSF 
snowsnake%;% pole 
cocoon%;% nest%;% hive%;% bee-hive 
wall : adl2nihs 
number : ahshed 
fruit : ahy 

NSF 
adehshl2 

NSF 

LEXICON normalOBNounsiStems 

NSF ; 

0 : basic% noun% root% (beginning% with% %+i% that% takes% o%+) 
basic% noun% root% (beginning% with% %+i% that% takes% o%+) : 0 
feces%;% shit%;% excrement : i,d 
clay%;% mud%;% mortar : i,da: 
flame : i ,dghgw NSF 
fish : ijg,d 

LEXICON 

LEXICON 

LEXICON 

normalGaBNouns 
normalGaBNounsiStems 
normalGaBNounsOtherStems 

normalGaBNounsOtherStems 
normalGaBNounsh,CnStems ; 
normalGaBNounsYWStems ; 
normalGaBNounsOtherCStems 

normalGaBNounsOtherCStems 

NSF ; 

NSF 

# 

# 

# 

# 

NSF ; 

0 : basic% noun% root% (beginning% with% a% C% other% than% %+,C/y/w% taking% ga%+) 
basic% noun% root% (beginning% with% a% C% other% than% %+,C/y/w% taking% ga%+) : 0 
basket : ,ahdr NSF ; 
white% oak : ga ,d NSF ; 
eye% glasses : gahihsd 
shovel : gahwehs 
paddle : gawehs 
tie%;% scarf : gehd 
pillow%;% cushion : gg,dr 
the% mask : gghs 
dish%;% plate%;% bowl 
the% devil : jihay 
lamp : jihsd 
hammer : jihw 

NSF ; 
NSF 

NSF 

NSF ; 

NSF ; 
NSF ; 

162 

NSF 

NSF 

NSF 

NSF 

# . 
' # . 

' 



food : kw NSF ; 
a% handle : tg~hets NSF ; 
wallet%;% purse%;% pocketbook%;% suitcase : tgw~'d NSF 
bottle%;% jar : tse 'd NSF ; 
one% animal%;% pet : tsen~· NSF 

LEXICON normalGaBNounsYWStems 
0 : basic% noun% root% (beginning% with% %+y/w/r% that% takes% ga%+) 
basic% noun% root% (beginning% with% %+y/w/r% that% takes% ga%+) : 0 
bag%;% mattress%;% tick%;% pouch% (ie.% a% mattress% bag% into% 

which% straw% is% stuffed) : ya: NSF ; 
doll : ya'd 
a% celestial% orb% (ie.% 
a% rope : Catsg~ 'd 
tin%;% metal : Cihsd 
leggings : Cisr 

the% sun%;% the% moon) : Cagwa: 

sleep%;% a% dream : Cidr~hd 
song : r~n 
an% agreement : rihwihs 
log : rgd 

NSF ; 

NSF ; 

NSF 
NSF 

NSF 

LEXICON normalGaBNounsh 'CnStems 

NSF 

NSF ; 

# 0 

' 

NSF 
NSF ; 

0 : basic% noun% root% (beginning% with% %+'C/n/h% taking% ga%+) 
basic% noun% root% (beginning% with% %+'C/n/h% taking% ga%+) : 0 # 

forest%;% bush : had NSF 
elm : hgga: 
boat : hgw 
headdress : hsdow 
a% name : hs~n 

NSF ; 
NSF 

NSF ; 
hsgwa: stone%;% rock%;% boulder%;% bullet 

nails%;% wire%;% needle hsgwahd 
car%;% truck%;% vehicle : 'drehd 
diaper : 'droda 

NSF 
NSF ; 

skirt%;% slip : 'ka: 
marriage : 'na 'gw NSF ; 
the% mind : 'niggh NSF ; 
earrings : 'wahsha: 
Avocet% blue% stocking% (bird) : 'yohgw 
pail : na'j 
cup : na 'j ohsgw NSF 
town%;% community nad 
comb : nahd 
bass% drum : nahgw 

163 

NSF 

NSF 

NSF 

NSF 

NSF 
NSF 

NSF 

NSF ; 
NSF 

NSF 



tame% animal%;% pet%;% domestic% animal : nahsgw 
a% peacock%;% bride%;% boastfulness : nai'd NSF 
bed : nakd 
a% board : nehsda: 
leather%;% hide : nehw 
porcupine : nhe'd 
stick : nhy 
a% house : nQhs 
a% dance : nQny NSF ; 

NSF ; 

NSF 

NSF 
NSF 

NSF ; 

NSF 

guitar%;% any% string% instrument%;% (refers% to%rounded% back% of% a% turtle) 
spoon%;% canoe%;% birch% bark% canoe : nyod NSF ; 

LEXICON normalGaBNounsiStems 
0 : basic% noun% root% (beginning% with% %+i% that% takes% ga%+) 
basic% noun% root% (beginning% with% %+i% that% takes% ga%+) : 0 
bottle%;% jar : itse'd NSF ; 
mattress%;% sleeping% mat : itsga: 

LEXICON 
+NSF : +a' 

NSF 
# 

# 

164 

# 
# . 

' 

NSF ; 

NSF 

now NSF 



APPENDIX C 

Test Cases 

This appendix contains tables listing all the surface and underlying forms that were used to the 
validity of my machine. There are two sets of data, one for use with testing the abstract approach 
and one for testing the concrete approach. Each data set consists of six series of tables; one for 
each type of noun (the tables are divided by prefix type where applicable: ie. a separate table for 
possessed an unpossessed basic nouns). 

As described in §7.2.1 the data from the surface column of each table was run through the 
machine, and compared to the expected output from the underlying column. If there was a 
mismatch or missing word, the program reported an error. This process was then repeated taking 
the data from the underlying column, running it through the machine and comparing the output 
with the expected result from the surface column. 

C.l Data for the Abstract Approach 

Table C.l: Unpossessed Basic Nouns 

Surface Underlying Surface Underlying 
hgna'da' hgna'd+a' hsgwa~'da' hsgwafd+a' 
odi: o+di: oji:s o+ji:s 
ga'wahsda' ga+ 'wahsd+a' gahehna' ga+hehn+a' 
o'wahsda' o+ 'wahsd+a' ohehna' o+hehn+a' 
gahsdagwa' ga+hsdagw+a' gaji'gwa' ga+ji'gw+a' 
ohsdagwa' o+hsdagw+a' oji'gwa' o+ji'gw+a' 
adQhne 'tsa' a+adghne 'ts+a' odghne 'tsa' o+adghne 'ts+a' 
aw~nohgra' a+aw~nohgr+a' adra 'swa' a+adra 'sw+a' 
o'nhahgya' o+ 'nhahgy+a' onhahda' o+nhahd+a' 
ohya' o+ahy+a' oga:' o+ga:+a' 
ohw~hsda' o+hw~hsd+a' o'da' o+i'd+a' 

0This is an incorrect form that was used during the testing. This underscores the fact that despite using 
a computer to check for errors, work is always subject to human error. Please see the discussion in §7.2.1 
for more information. 

165 



Unpossessed Basic Nouns Continued 

Surface Underlying Surface Underlying 
okwa' o+kw+a' ona 'da:' o+na 'da:+a' 
oihwa' o+rihw+a' osehda' o+sehd+a' 
otsgra' o+tsgr+a' owa:' o+wa:+a' 
owiya ' o+wiy+a' oya' o+y+a' 
oya 'da' o+ya'd+a' ga 'wahsha:' ga+ 'wahsha:+a' 
ga:gwa:' ga+Cagwa:+a' gaga'da' ga+ga'd+a' 
gahsgwahda' ga+hsgwahd+a' g<;::tsga: ' ga+itsga:+a' 
gaj<;::' ga+j<;::+a' gakwa' ga+kw+a' 
gana'ja' ga+na'j+a' gagda' ga+rgd+a' 
gatg<;::hetsa' ga+tg<;::hets+a' gaya:' ga+ya:+a' 

Table C.2: Possessed Basic Nouns 

Surface Underlying Surface Underlying 
akgna'da' (w)ag+hgna'd+a' gknihgna 'da' (y)gkni+hgna 'd+a' 
ggwahgna 'da' (y)ggwa+hgna'd+a' sahgna'da' sa+ hgna 'd +a' 
snihgna 'da' sni+hgna'd+a' swahgna 'da' swa+hgna 'd+a' 
hohgna'da' ho+hgna 'd+a' gohgna'da' (ya)go+hgna 'd+a' 
ohgna'da' (y)o+hgna'd+a' hodihgna 'da' hodi + hgna 'd +a' 
godihgna 'da' (ya)godi+hgna 'd+a' odihgna 'da' (y)odi+hgna 'd+a' 
agehsgwa~ 'da' (w)ag+hsgwa~ 'd+a' gknihsgwa~ 'da' (y )gkni + hsgwa~ 'd +a' 
ggwahsgwa~ 'da' (y)ggwa+hsgwa<;:: 'd+a' sahsgwa<;:: 'da' sa+hsgwa<;:: 'd+a' 
snihsgwa<;:: 'da' sni+hsgwa~ 'd+a' swahsgwa~ 'da' swa+hsgwa<;::'d+a' 
hohsgwa~ 'da' ho+hsgwa~'d+a' gohsgwa~ 'da' (ya) go+ hsgwa~ 'd +a' 
ohsgwa<;:: 'da' (y)o+hsgwa~'d+a' hodihsgwa~ 'da' hodi+hsgwa~ 'd+a' 
godihsgwa~ 'da' (ya)godi+hsgwa~ 'd+a' odihsgwa~ 'da' (y)odi+hsgwa~ 'd+a' 
akwahsda' ( w )ag+ 'wahsd +a' gkni'wahsda' (y)gkni+ 'wahsd+a' 
ggwa 'wahsda' (y)ggwa+ 'wahsd+a' sa'wahsda' sa+ 'wahsd+a' 
sni'wahsda' sni+ 'wahsd+a' swa 'wahsda' swa+ 'wahsd +a' 
ho'wahsda' ho+ 'wahsd+a' go'wahsda' (ya)go+ 'wahsd+a' 
o'wahsda' (y)o+ 'wahsd+a' hodi'wahsda' hodi+ 'wahsd+a' 
godi'wahsda' (ya)godi+ 'wahsd+a' odi'wahsda' (y)odi+ 'wahsd+a' 
akehna' (w)ag+hehn+a' gknihehna' (y)gkni+hehn+a' 
ggwahehna' (y)ggwa+hehn+a' sahehna' sa+hehn+a' 
snihehna' sni+hehn+a' swahehna' swa+hehn+a' 

166 



Possessed Basic Nouns Continued 

Surface Underlying Surface Underlying 
hohehna' ho+hehn+a' gohehna' (ya)go+hehn+a' 
ohehna' (y)o+hehn+a' hodihehna ' hodi+hehn+a' 
godihehna' (ya)godi+hehn+a' odihehna' (y)odi+hehn+a' 
agej ihoha:' (w)ag+jihoha:+a' gknijihoha: ' (y)gkni+jihoha:+a' 
ggwajihoha:' (y)ggwa+jihoha:+a' sajihoha:' sa+jihoha:+a' 
snij ihoha:' sni+jihoha:+a' swajihoha: ' swa+jihoha:+a' 
hojihoha:' ho+jihoha:+a' gojihoha:' (ya)go+jihoha:+a' 
ojihoha:' (y)o+jihoha:+a' hodijihoha: 

, 
hodi+jihoha:+a' 

godijihoha:' (ya)godi+jihoha:+a' odijihoha:' (y)odi+jihoha:+a' 
agadghne 'tsa' (w)ag+adghne 'ts+a' ggyadghne 'tsa' (y )gkni +adghne 'ts+a' 
ggwadghne 'tsa' (y )ggwa+adghne 'ts+a' sadghne 'tsa' sa+adghne 'ts+a' 
jadghne 'tsa' sni+adghne 'ts+a' swadghne 'tsa ' swa+adghne 'ts+a' 
hodghne 'tsa' ho+adghne 'ts+a' godghne 'tsa ' (ya) go+adghne 'ts+a' 
odghne 'tsa' (y )o+adghne 'ts+a' honadghne 'tsa' hodi +adghne 'ts+a' 
gonadghne 'tsa' (ya) godi +adghne 'ts+a' onadghne 'tsa ' (y)odi+adghne 'ts+a' 
*age 'nhghsa ' 1 ( w) ag+ 'nhghs+a' gkni'nhghsa' (y)gkni+ 'nhghs+a' 
ggwa 'nhghsa' (y)ggwa+ 'nhghs+a' sa'nhghsa' sa+ 'nhghs+a' 
sni'nhghsa' sni+ 'nhghs+a' swa 'nhghsa' swa+ 'nhghs+a' 
ho'nhghsa' ho+ 'nhghs+a' go'nhghsa' (ya)go+ 'nhghs+a' 
o'nhghsa' (y )o+ 'nhghs+a' hodi'nhghsa ' hodi+ 'nhghs+a' 
godi'nhghsa' (ya)godi+ 'nhghs+a' odi'nhghsa' (y)odi+ 'nhghs+a' 
age 'ghgwa:' (w)ag+ 'ghgwa:+a' gkni'ghgwa:' (y)gkni+ 'ghgwa:+a' 
ggwa 'ghgwa:' (y)ggwa+ 'ghgwa:+a' sa'ghgwa:' sa+ 'ghgwa:+a' 
sni'ghgwa:' sni+ 'ghgwa:+a' swa'ghgwa: 

, 
swa+ 'ghgwa:+a' 

ho'ghgwa:' ho+ 'ghgwa:+a' go'ghgwa:' (ya)go+ 'ghgwa:+a' 
o'ghgwa: ' (y)o+ 'ghgwa:+a' hodi'ghgwa: ' hodi+ 'ghgwa:+a' 
godi'ghgwa:' (ya)godi+ 'ghgwa:+a' odi'ghgwa: ' (y)odi+ 'ghgwa:+a' 
agenhahda' (w)ag+nhahd+a' gkninhahda' (y)gkni+nhahd+a' 
ggwanhahda' (y)ggwa+nhahd+a' sanhahda' sa+nhahd+a' 
sninhahda' sni+nhahd+a' swanhahda' swa+nhahd+a' 
honhahda' ho+nhahd+a' gonhahda' (ya)go+nhahd+a' 
onhahda' (y)o+nhahd+a' hodinhahda' hodi+nhahd+a' 
godinhahda' (ya)godi+nhahd+a' odinhahda' (y)odi+nhahd+a' 
agega'da' (w)ag+ga'd+a' gkniga'da' (y)gkni+ga'd+a' 
ggwaga'da' (y)ggwa+ga'd+a' saga'da' sa+ga'd+a' 
sniga'da' sni+ga'd+a' swaga'da' swa+ga'd+a' 
hoga'da' ho+ga'd+a' goga'da' (ya)go+ga 'd+a' 
oga'da' (y)o+ga 'd+a' hodiga'da' hodi+ga 'd+a' 

167 



Possessed Basic Nouns Continued 

Surface Underlying Surface Underlying 
godiga'da' (ya)godi+ga 'd+a' odiga'da' (y)odi+ga'd+a' 
akakda' (w)ag+hakd+a' gknihakda' (y)gkni+hakd+a' 
ggwahakda' (y)ggwa+hakd+a' sahakda' sa+hakd+a' 
snihakda' sni+hakd+a' swahakda' swa+hakd+a' 
hohakda' ho+hakd+a' gohakda' (ya)go+hakd+a' 
ohakda' (y)o+hakd+a' hodihakda' hodi+hakd+a' 
godihakda' (ya)godi+hakd+a' odihakda' (y)odi+hakd+a' 
agi'dghgwa' (w)ag+i'dghgw+a' gkni'dghgwa' (y)gkni+i'dghgw+a' 
ggw~ 'dghgwa' (y )ggwa+i'dghgw+a' s~'dghgwa 

, 
sa+i'dghgw+a' 

sni'dghgwa' sni+i'dghgw+a' sw~ 'dghgwa' swa+i'dghgw+a' 
ho'dghgwa' ho+i'dghgw+a' go'dghgwa' (ya)go+i'dghgw+a' 
o'dghgwa' (y )o+i'dghgw+a' hodi'dghgwa' hodi +i'dghgw+a' 
godi'dghgwa' (ya)godi+i'dghgw+a' odi'dghgwa' (y)odi+i'dghgw+a' 
agejihsgda:' (w)ag+jihsgda:+a' gknij ihsgda:' (y)gkni+jihsgda:+a' 
ggwajihsgda:' (y)ggwa+jihsgda:+a' sajihsgda:' sa+jihsgda:+a' 
snijihsgda:' sni+jihsgda:+a' swajihsgda: 

, 
swa+jihsgda:+a' 

ho j ihsgda:' ho+jihsgda:+a' gojihsgda:' (ya)go+jihsgda:+a' 
ojihsgda:' (y)o+jihsgda:+a' hodijihsgda:' hodi+jihsgda:+a' 
godijihsgda:' (ya)godi+jihsgda:+a' o dij ihsgda:' (y)odi+jihsgda:+a' 
agekdeha' (w)ag+kdeh+a' gknikdeha' (y)gkni+kdeh+a' 
ggwakdeha' (y)ggwa+kdeh+a' sakdeha' sa+kdeh+a' 
snikdeha' sni+kdeh+a' swakdeha' swa+kdeh+a' 
hokdeha' ho+kdeh+a' gokdeha' (ya)go+kdeh+a' 
okdeha' (y)o+kdeh+a' hodikdeha' hodi+kdeh+a' 
godikdeha' (ya)godi+kdeh+a' odikdeha' (y)odi+kdeh+a' 
agrihwa' (w)ag+rihw+a' gkni:hwa' (y)gkni+rihw+a' 
ggwaihwa' (y )ggwa+rihw+a' saihwa' sa+rihw+a' 
sni:hwa' sni+rihw+a' swaihwa' swa+rihw+a' 
hoihwa' ho+rihw+a' goihwa' (ya)go+rihw+a' 
oihwa' (y)o+rihw+a' hodi:hwa' hodi+rihw+a' 
godi:hwa' (ya)godi+rihw+a' odi:hwa' (y)odi+rihw+a' 
agesehda' (w)ag+sehd+a' gknisehda' (y)gkni+sehd+a' 
ggwasehda' (y)ggwa+sehd+a' sasehda' sa+sehd+a' 
snisehda' sni+sehd+a' swasehda' swa+sehd+a' 
hosehda' ho+sehd+a' gosehda' (ya)go+sehd+a' 
osehda' (y)o+sehd+a' hodisehda' hodi+sehd+a' 
godisehda' (ya)godi+sehd+a' odisehda' (y)odi+sehd+a' 
agetsehsda' (w)ag+tsehsd+a' gknitsehsda' (y )gkni + tsehsd +a' 
ggwatsehsda' (y)ggwa+tsehsd+a' satsehsda' sa+tsehsd+a' 

168 



Possessed Basic Nouns Continued 

Surface Underlying Surface Underlying 
snitsehsda' sni+tsehsd+a' swatsehsda' swa+tsehsd+a' 
hotsehsda' ho+tsehsd+a' gotsehsda' (ya)go+tsehsd+a' 
otsehsda' (y)o+tsehsd+a' hoditsehsda' hodi+tsehsd+a' 
goditsehsda' (ya)godi+tsehsd+a' oditsehsda' (y) odi + tsehsd +a' 
agwa 'wihsda' (w)ag+wa 'wihsd+a' gkniwa 'wihsda' (y)gkni+wa 'wihsd+a' 
ggwawa 'wihsda' (y)ggwa+wa 'wihsd+a' sawa 'wihsda' sa+wa 'wihsd+a' 
sniwa 'wihsda' sni + wa 'wihsd +a' swawa 'wihsda' swa+wa 'wihsd+a' 
howa 'wihsda' ho+wa'wihsd+a' gowa 'wihsda' (ya)go+wa 'wihsd+a' 
owa 'wihsda' (y)o+wa'wihsd+a' hodiwa 'wihsda' hodi+wa 'wihsd+a' 
godiwa 'wihsda' (ya)godi+wa'wihsd+a' odiwa 'wihsda' (y)odi+wa'wihsd+a' 
agyg'da' (w)ag+yg'd+a' gkniyg'da' (y)gkni+yg'd+a' 
ggwayg'da' (y)ggwa+yg'd+a' sayg'da' sa+yg'd+a' 
sniyg'da' sni+yg 'd+a' swayg'da' swa+yg 'd+a' 
hoyg'da' ho+yg'd+a' goyg'da' (ya)go+yQ1 d+a' 
oyg'da' (y)o+yg'd+a' hodiyg'da' hodi+yg'd+a' 
godiyg'da1 (ya)godi+yg 'd+a' odiyg'da' (y)odi+yg'd+a' 
agihsda' (w)ag+Cihsd+a' gkni:hsda' (y)gkni+Cihsd+a' 
ggwaihsda' (y)ggwa+Cihsd+a' saihsda' sa+Cihsd +a' 
sni:hsda' sni+Cihsd+a' swaihsda' swa+Cihsd+a' 
hoihsda' ho+Cihsd+a' goihsda' (ya)go+Cihsd+a' 
oihsda' (y)o+Cihsd+a' hodi:hsda' hodi +Cihsd +a' 
godi:hsda' (ya)godi+Cihsd+a' odi:hsda' (y)odi+Cihsd+a' 
agatsg~ 'da' (w)ag+Catsg~'d+a' gkniatsg~ 'da' (y)gkni+Catsg~ 'd+a' 
ggwa:tsg~ 'da' (y)ggwa+Catsg~ 'd+a' sa:tsg~ 'da' sa+Catsg~ 

1 d +a' 
sniatsg~ 'da' sni +Catsg~ 'd +a' swa:tsg~ 'da' swa+Catsg~ 'd +a' 
hoatsg~ 'da 1 

ho+Catsg~ 'd +a' goatsg~ 'da' (ya)go+Catsg~ 'd+a' 
oatsg~'da' (y )o+Catsg~ 'd +a' hodiatsg~ 'da' hodi+Catsg~ 'd+a' 
godiatsg~ 'da' (ya)godi+Catsg~ 'd+a' odiatsg~ 'da' (y)odi+Catsg~'d+a' 

age'ahdra' (w)ag+ 'ahdr+a' gkni'ahdra' (y)gkni+ 'ahdr+a' 
ggwa 'ahdra' (y)ggwa+ 'ahdr+a' sa'ahdra' sa+ 'ahdr+a' 
sni'ahdra' sni+ 'ahdr+a' swa'ahdra' swa+ 'ahdr+a' 
ho'ahdra' ho+ 'ahdr+a 1 go'ahdra' (ya)go+ 'ahdr+a' 
o'ahdra' (y )o+ 'ahdr+a' hodi'ahdra' hodi+ 'ahdr+a' 
godi'ahdra 1 (ya)godi+ 'ahdr+a' odi'ahdra' (y)odi+ 'ahdr+a' 
agitsga: 1 (w)ag+itsga:+a' gknitsga: ' (y)gkni+itsga:+a' 
ggw~tsga: ' (y)ggwa+itsga:+a' s~tsga: ' sa+itsga:+a' 
snitsga:' sni+itsga:+a' sw~tsga: 

., 
swa+itsga:+a' 

hotsga:' ho+itsga:+a' gotsga: ' (ya)go+itsga:+a' 
otsga:' (y )o+itsga:+a' hoditsga:' hodi+itsga:+a' 

169 



Possessed Basic Nouns Continued 

Surface Underlying Surface Underlying 
goditsga:' (ya)godi+itsga:+a' oditsga:' (y)odi+itsga:+a' 
agr~na' (w)ag+r~n+a' gkni~na' (y)gkni+r~n+a' 
ggwa~na' (y)ggwa+r~n+a' sa~na' sa+r~n+a' 

sni~na' sni+r~n+a' swa~na' swa+r~n+a' 

ho~na' ho+r~n+a' go~na' (ya)go+r~n+a' 
o~na' (y)o+r~n+a' hodi~na' hodi+r~n+a' 

godi~na' (ya)godi+r~n+a' odi~na' (y)odi+r~n+a' 
agrihwihsa' (w)ag+rihwihs+a' gkni:hwihsa' (y)gkni+rihwihs+a' 
ggwaihwihsa' (y)ggwa+rihwihs+a' saihwihsa' sa+rihwihs+a' 
sni:hwihsa' sni+rihwihs+a' swaihwihsa' swa+rihwihs+a' 
hoihwihsa' ho+rihwihs+a' goihwihsa' (ya)go+rihwihs+a' 
oihwihsa' (y )o+rihwihs+a' hodi:hwihsa' hodi+rihwihs+a' 
godi:hwihsa' (ya) godi + rihwihs+a' odi:hwihsa ' (y)odi+rihwihs+a' 
agrgda' (w)ag+rgd+a' gknigda' (y)gkni+rgd+a' 
ggwagda' (y)ggwa+rgd+a' sagda' sa+rgd+a' 
snigda' sni+rgd+a' swagda' swa+rgd+a' 
hogda' ho+rgd+a' gogda' (ya)go+rgd+a' 
ogda' (y)o+rgd+a' hodigda' hodi+rgd+a' 
godigda' (ya)godi+rgd+a' odigda' (y)odi+rgd+a' 

170 



Table C.3: Deverbal Nouns 

Surface Underlying Surface Underlying 
~dehsra 

-, 
~dehsr+a' ©'nyotra' ©'nyotr+a' 

~'nhotra' ~'nhotr+a' g©dehsra' ga+idehsra+a' 
gay~nawahsra' ga+y~nawahsr+a' gaya 'dowehdahsra' ga+ya 'dowehdahsr+a' 
gaya 'dagenhahsra' ga+ya 'dagenhahsr+a' gatgw©nya 'tra' ga+atgw©nya 'tr+a' 
gatgQnya 'tra' ga+atgQnya 'tr+a' gatgi'tra' ga+tgi'tr+a' 
ganohQkdehsra' ga+nohQkdehsr+a' ganhehsra -, ga+nhehsr+a' 
gana 'jowi'tra' ga+na 'jowi'tr+a' gaisra -, ga+risr+a' 
gaihwiyohsd~hsra' ga+rihwiyohsd~hsr+a' gaihwane 'aksra' ga+rihwane 'aksra+a' 
gaiho 'd~hsra' ga+riho'd~hsr+a' gahyadQhsra' ga+ hyadQhsr+a' 
gahshahsd~hsra' ga+hshahsd©hsr+a' ga:hQhsra' ga+CahQhsr+a' 
oy©hsra 

-, 
o+y©hsr+a' otgahnQnihsra' o+atgahnQnihsr+a' 

onrahdQdahsra' o+nrahdQdahsr+a' onQnhe 'dra' o+nQnhe 'dr+a' 
oniga:h©hsra 

-, 
o+niga:h©hsr+a' ohshahsd©hsra' o+ hshahsd©hsr+a' 

odQtgadQhsra' o+adQtgadQhsr+a' odQtgadehsra' o+adQtgadehsr+a' 
o'drohsra' o+ 'drohsr+a' o 'daih©hdra 

-, 
o+i'daih©hdr+a' 

atsho 'kdQhsra' a+atsho 'kdQhsr+a' atna 'tsotra' a+atna 'tsotr+a' 
atna 'gwihdra' a+atna 'gwihdr+a' atgahnyehtra' a+atgahnyehtr+a' 
anahaotra' a+nahaotr+a' agya'dawi'tra' a+agya 'dawi'tr+a' 
adrihwagyaQhsra' a+adrihwagyaQhsr+a' adra 'wihsda' a+adra'wihsd+a' 
adQnhehsra' a+adQnhehsr+a' adi'grQhsra 

-, 
a+adi'grQhsra+a' 

ad©na'tra' a+ad©na 'tr+a' adekwahahsra' a+adekwahahsra+a' 
adao'tra 

-, 
a+adao 'tra+a' ahdahdi'tra' a+ahdahdi'tr+a' 

171 



Table C.4: Defective Nouns 

Surface Underlying Surface Underlying 
sgwa:gwagdg' sgwa:gwagdg' dago:s dago:s 
da:gu:s da:gu:s dakshae 'dohs dakshae 'dohs 
so:wa:s so:wa:s twE2:twE2:t twE2:twE2:t 
hg:ga:k hg:ga:k dogE2:t dogE2:t 
gwihsgwihs gwihsgwihs gwa'yg -, gwa'yg' 
sohg:t sohg:t gyo:gyo:' gyo:gyo: -, 

jogrihs jogrihs gwido 'gwido' gwido 'gwido' 
di'di:' di'di:' jikjiye:' jikjiye:' 
ga'ga:' ga'ga:' hihi: hihi: 
gwiy~ 'gwiy~ 

-, 
gwiy~ 'gwiy~ 

-, 
dihsdihs dihsdihs 

ji'nhgw~:se: ji'nhgw~:se: duwisduwi:' duwisduwi:' 
sa'sa' sa'sa' gwE2:dihs gwE2:dihs 
gwe:s~· gwe:s~· tsahgo:wah tsahgo:wah 
jihsgogo' jihsgogo' gwaoh gwaoh 
johw~ 'sdaga' johw~ 'sdaga' gwE2 'gohnyE2' gwE2 'gohnyE2' 
hnyagwai' hnyagwai' gg:deh gg:deh 
tgwiyo:g~' tgwiyo:g~' jinhghgwahE2h jinhghgwahE2h 
ji'nghdo:ya' ji'nghdo:ya' ji'dana:w~: ji'dana:w~: 

jinghsangh jinghsangh jihsda: jihsda: 
.. -, .. -, 
Jl ao:y~: Jl ao:y~: jinghyahae: jinghyahae: 
degriya'gg 

-, 
degriya 'gg' jihnyo 'gE2' jihnyo 'gE2' 

hehshai: hehshai: sgwa'ahda' sgwa'ahda' 
tehtg' tehtg' jg'daga 

-, jg'daga' 

JlilO:WE2: JlilO:WE2: tea:gt tea:gt 
sa: no:' sa: no: 

-, 
drE2:na: drE2:na: 

dre:na: dre:na: joni:tsgrg:t joni:tsgrg:t 
kdagg' kdagg' do:dihs do:dihs 
sgwa:yE2h sgwa:yE2h gwiyo:gE2' gwiyo:gE2' 
jg:nyg:' jg:nyg: 

, 
nghsodai:yg: nghsodai:yg: 

gwa'da: gwa'da: jidE2: 'E2h jidE2: 'E2h 
jg 'dae:ya:' jg 'dae:ya:' ji'drg:wE2: ji'drg:wE2: 
onohotsgE2 'E2' onohotsgE2 'E2' teo:ji' teo:ji' 
tsa 'gE2:da' tsa 'gE2:da' yahgE2hda' yahgE2hda' 
tsinyohgwa:k tsinyohgwa:k gihE2:k gihE2:k 
nawl;)'da' nawE2'da' jihsg:dahk jihsg:dahk 
otahyg:ni: otahyg:ni: tahyg:ni: tahyg:ni: 
jihsgl;): jihsgl;): ji'o: ji'o: 
grahe:t grahe:t 

172 



Table C.5: Inalienable Nouns 

Surface Underlying Surface Underlying 
gahghda 'geh g+ahghd +a 'geh gyahghda 'geh ( e)tni+ahghd+a'geh 
gyahghda 'geh ( e)kni+ahghd+a 'geh agyahghda 'geh (y)akni+ahghd+a 'geh 
dwahghda 'geh (e) dwa+ahghd +a 'geh agwahQhda 'geh (y )agwa+ahQhd +a 'geh 
sahghda 'geh (h)s+ahghd+a 'geh jahghda 'geh (h)sni+ahQhd+a 'geh 
swahghda 'geh (h)swa+ahghd+a 'geh hahghda 'geh ha+ahghd+a 'geh 
ghghda'geh (y)g+ahghd+a 'geh wahQhda 'geh w+ahQhd+a 'geh 
h~nahghda 'geh hadi+ahghd+a 'geh gaghghda 'geh gag+ahghd +a 'geh 
g~nahghda 'geh gadi+ahghd+a 'geh gahsi'da 'geh g+ahsi'd +a 'geh 
gyahsi'da 'geh ( e )tni+ahsi'd+a 'geh gyahsi'da 'geh ( e)kni+ahsi'd+a 'geh 
agyahsi'da 'geh (y) akni +ahsi'd +a 'geh dwahsi'da 'geh ( e)dwa+ahsi'd+a 'geh 
agwahsi'da 'geh (y) agwa+ahsi'd +a 'geh sahsi'da 'geh (h)s+ahsi'd+a 'geh 
jahsi'da 'geh (h)sni+ahsi'd+a 'geh swahsi'da 'geh (h )swa+ahsi'd +a 'geh 
hahsi'da 'geh ha+ahsi'd +a 'geh ghsi'da 'geh (y )g+ahsi'd +a 'geh 
wahsi'da 'geh w+ahsi'd+a 'geh h~nahsi'da 'geh hadi+ahsi'd+a 'geh 
gaghsi'da 'geh gag+ahsi'd +a 'geh g~nahsi'da 'geh gadi+ahsi'd+a 'geh 
gihna'geh g+ihn+a 'geh tnihna'geh (e)tni+ihn+a'geh 
knihna'geh (e)kni+ihn+a'geh aknihna 'geh (y)akni+ihn+a 'geh 
dw~hna'geh (e)dwa+ihn+a'geh agw~hna 'geh (y)agwa+ihn+a'geh 
sihna'geh (h)s+ihn+a'geh snihna'geh (h)sni+ihn+a 'geh 
sw~hna'geh (h)swa+ihn+a 'geh h~hna'geh ha+ihn+a'geh 
~hna'geh (y)~+ihn+a 'geh g~hna'geh ga+ihn+a 'geh 
hadihna 'geh hadi+ihn+a 'geh gaehna'geh gae+ihn+a 'geh 
gadihna 'geh gadi+ihn+a'geh gQtsa'geh g+Qts+a 'geh 
tngtsa'geh ( e )tni +gts+a 'geh kngtsa'geh ( e)kni+gts+a 'geh 
akngtsa 'geh (y)akni+gts+a'geh gygtsa'geh (e) dwa+gts+a 'geh 
agygtsa 'geh (y )agwa+gts+a 'geh sgtsa'geh (h)s+gts+a 'geh 
sngtsa'geh (h)sni+gts+a 'geh jgtsa'geh (h)swa+gts+a 'geh 
hgtsa'geh ha+gts+a 'geh aggtsa'geh (y)ag+gts+a'geh 
gtsa'geh (y) +gts+a 'geh h~ngtsa 'geh hadi+gts+a 'geh 
ga:ggtsa 'geh ga:g+gts+a 'geh g~ngtsa 'geh gadi +gts+a 'geh 
gw~ 'nahsa 'geh g+w~ 'nahs+a 'geh tniw~ 'nahsa 'geh (e)tni+w~ 'nahs+a 'geh 
kniw~ 'nahsa 'geh ( e)kni+w~ 'nahs+a 'geh akniw~ 'nahsa 'geh (y)akni+w~ 'nahs+a 'geh 
dwaw~ 'nahsa 'geh ( e )dwa+w~ 'nahs+a 'geh agwaw~ 'nahsa 'geh (y)agwa+w~ 'nahs+a 'geh 
sw~ 'nahsa 'geh ( eh)s+w~ 'nahs+a 'geh sniw~ 'nahsa 'geh ( eh)sni+w~ 'nahs+a 'geh 
swaw~ 'nahsa 'geh ( eh)swa+w~ 'nahs+a 'geh haw~ 'nahsa 'geh ha+w~ 'nahs+a 'geh 
ew~ 'nahsa 'geh (y )e+w~ 'nahs+a 'geh gaw~ 'nahsa 'geh ga+w~ 'nahs+a 'geh 
hadiw~ 'nahsa 'geh hadi+w~ 'nahs+a 'geh gaew~ 'nahsa 'geh gae+w~ 'nahs+a 'geh 
gadiw~ 'nahsa 'geh gadi+w~ 'nahs+a 'geh gegaha'geh g+gah+a 'geh 
tnigaha 'geh ( e )tni+gah+a 'geh knigaha 'geh ( e)kni+gah+a 'geh 

173 



Inalienable Nouns Continued 

Surface Underlying Surface Underlying 
aknigaha 'geh (y)akni+gah+a 'geh dwagaha 'geh ( e )dwa+gah+a 'geh 
agwagaha 'geh (y )agwa+gah +a 'geh segaha'geh ( eh)s+gah+a 'geh 
snigaha 'geh ( eh)sni+gah+a 'geh swagaha 'geh ( eh)swa+gah+a 'geh 
hagaha'geh ha+gah+a 'geh egaha'geh (y)e+gah+a'geh 
gagaha'geh ga+gah+a'geh hadigaha 'geh hadi+gah+a 'geh 
gaegaha 'geh gae+gah+a 'geh gadigaha 'geh gadi+gah+a 'geh 
ketga 'a 'geh g+ hetga '+a 'geh tnihetga 'a 'geh (e)tni+hetga'+a 'geh 
knihetga 'a 'geh ( e)kni+hetga '+a'geh aknihetga 'a 'geh (y)akni+hetga'+a'geh 
dwahetga 'a 'geh (e)dwa+hetga '+a'geh agwahetga 'a 'geh (y) agwa+ hetga '+a 'geh 
setga 'a 'geh ( eh)s+hetga '+a 'geh snihetga 'a 'geh ( eh)sni+hetga '+a 'geh 
swahetga 'a 'geh ( eh)swa+hetga '+a 'geh hahetga 'a 'geh ha+hetga '+a 'geh 
ehetga 'a 'geh (y )e+ hetga '+a 'geh gahetga 'a 'geh ga+hetga'+a'geh 
hadihetga 'a 'geh hadi+hetga '+a 'geh gaehetga 'a 'geh gae+hetga '+a 'geh 
gadihetga 'a 'geh gadi+hetga '+a 'geh ge 'nhghsga: 'geh g+ 'nhghsga:+a'geh 
tni'nhghsga: 'geh ( e)tni+ 'nhghsga:+a'geh kni'nhghsga: 'geh (e)kni+ 'nhghsga:+a'geh 
akni'nhghsga: 'geh (y)akni+ 'nhghsga:+a 'geh dwa 'nhghsga:'geh ( e )dwa+ 'nhghsga:+a 'geh 
agwa 'nhghsga:'geh (y)agwa+ 'nhghsga:+a 'geh se 'nhghsga: 'geh ( eh)s+ 'nhghsga:+a 'geh 
sni'nhghsga: 'geh ( eh)sni+ 'nhghsga:+a 'geh swa 'nhghsga: 'geh ( eh)swa+ 'nhghsga:+a 'geh 
ha 'nhghsga: 'geh ha+ 'nhghsga: +a 'geh e 'nhghsga: 'geh (y)e+ 'nhghsga:+a 'geh 
ga 'nhghsga:'geh ga+ 'nhghsga:+a'geh hadi'nhghsga: 'geh hadi+ 'nhghsga:+a'geh 
gae 'nhghsga: 'geh gae+ 'nhghsga:+a'geh gadi'nhghsga: 'geh gadi+ 'nhghsga:+a 'geh 
ge 'ahsa 'geh g+ 'ahs+a 'geh tni'ahsa 'geh ( e)tni+ 'ahs+a 'geh 
kni'ahsa 'geh ( e)kni+ 'ahs+a 'geh akni'ahsa 'geh (y)akni+ 'ahs+a'geh 
dwa 'ahsa 'geh ( e )dwa+ 'ahs+a 'geh agwa 'ahsa 'geh (y)agwa+ 'ahs+a'geh 
se 'ahsa 'geh ( eh )s+ 'ahs+a 'geh sni'ahsa 'geh ( eh)sni+ 'ahs+a 'geh 
swa 'ahsa 'geh ( eh )swa+ 'ahs+a 'geh ha 'ahsa 'geh ha+ 'ahs+a 'geh 
e'ahsa'geh (y)e+ 'ahs+a 'geh ga'ahsa'geh ga+ 'ahs+a 'geh 
hadi'ahsa 'geh hadi+ 'ahs+a 'geh gae 'ahsa 'geh gae+ 'ahs+a 'geh 
gadi'ahsa 'geh gadi+ 'ahs+a 'geh gekse 'da 'geh g+kse'd+a'geh 
tnikse 'da 'geh (e)tni+kse'd+a 'geh knikse 'da 'geh ( e)kni+kse'd+a 'geh 
aknikse 'da 'geh (y)akni+kse 'd+a 'geh dwakse 'da 'geh ( e)dwa+kse 'd+a 'geh 
agwakse 'da 'geh (y) agwa+ kse 'd +a 'geh sekse 'da 'geh ( eh)s+kse'd+a'geh 
snikse 'da 'geh ( eh)sni+kse 'd+a 'geh swakse 'da 'geh ( eh)swa+kse 'd+a 'geh 
hakse 'da 'geh ha+kse'd+a'geh ekse 'da 'geh (y)e+kse'd+a'geh 
gakse'da'geh ga+kse'd+a'geh hadikse 'da 'geh hadi+kse'd+a'geh 
gaekse 'da 'geh gae+kse'd+a'geh gadikse 'da 'geh gadi+kse'd+a'geh 
kng'a:'geh g+ng 'a:+a 'geh tning 'a:'geh ( e)tni+nQ 'a:+a 'geh 
kning 'a:'geh ( e )kni+ng 'a:+a 'geh akning 'a:'geh (y)akni+ng 'a:+a 'geh 

174 



Inalienable Nouns Continued 

Surface Underlying Surface Underlying 
dwang 'a:'geh (e)dwa+ng 'a:+a'geh agwang 'a:'geh (y)agwa+ng 'a:+a 'geh 
sng 'a:'geh ( eh)s+ng 'a:+a 'geh sning' a: 'geh ( eh)sni+ng 'a:+a 'geh 
swang 'a: 'geh ( eh)swa+ng 'a:+a 'geh hang 'a: 'geh ha+ng 'a:+a 'geh 
eng'a:'geh (y )e+ng 'a:+a 'geh gang 'a: 'geh ga+ng'a:+a'geh 
hading 'a:'geh hadi+ng 'a:+a 'geh gaeng' a: 'geh gae+ng 'a:+a 'geh 
gading 'a: 'geh gadi+ng 'a:+a 'geh gragwahda 'geh g+ragwahd+a'geh 
tniagwahda 'geh ( e)tni+ragwahd+a 'geh kniagwahda 'geh (e)kni+ragwahd+a 'geh 
akniagwahda 'geh (y)akni+ragwahd+a 'geh dwa:gwahda 'geh ( e)dwa+ragwahd+a 'geh 
agwa:gwahda 'geh (y) agwa+ ragwahd +a 'geh sragwahda 'geh ( eh )s+ ragwahd +a 'geh 
sniagwahda 'geh ( eh )sni + ragwahd +a 'geh swa:gwahda 'geh ( eh )swa+ ragwahd +a 'geh 
ha:gwahda 'geh ha+ragwahd+a 'geh eagwahda 'geh (y)e+ragwahd+a 'geh 
ga:gwahda 'geh ga+ragwahd +a 'geh hadiagwahda 'geh hadi+ragwahd+a 'geh 
gaeagwahda 'geh gae+ragwahd+a'geh gadiagwahda 'geh gadi+ragwahd+a 'geh 
gw~ 'yghga:'geh g+w~ 'yghga:+a 'geh tniw~ 'yghga: 'geh ( e)tni+w~ 'yghga:+a 'geh 
kniw~ 'yghga:'geh ( e )kni+w~ 'yghga:+a 'geh akniw~ 'yghga:'geh \y)akni+w~ 'yghga:+a 'geh 
dwaw~ 'yghga:'geh ( e )dwa+w~ 'yghga:+a 'geh agwaw~ 'yghga: 'geh (y)agwa+w~ 'yghga:+a 'geh 
sw~ 'yghga: 'geh ( eh)s+w~ 'yghga:+a 'geh sniw~ 'yghga:'geh ( eh)sni+w~ 'yghga:+a 'geh 
swaw~ 'yghga:'geh ( eh)swa+w~ 'yghga:+a 'geh haw~ 'yghga:'geh ha+w~ 'yghga:+a 'geh 
ew~ 'yghga: 'geh (y )e+w~ 'yghga:+a 'geh gaw~ 'yghga: 'geh ga+w~ 'yghga:+a 'geh 
hadiw~ 'yghga: 'geh hadi+w~ 'yghga:+a 'geh gaew~ 'yghga: 'geh gae+w~ 'yghga:+a 'geh 
gadiw~ 'yghga:'geh gadi+w~ 'yghga:+a 'geh gejaoho 'gwa 'geh g+jaoho 'gw+a 'geh 
tnijaoho 'gwa 'geh ( e)tni+jaoho 'gw+a'geh knijaoho 'gwa 'geh ( e)kni+jaoho 'gw+a 'geh 
aknijaoho 'gwa 'geh (y)akni+jaoho 'gw+a 'geh dwajaoho 'gwa 'geh ( e)dwa+jaoho 'gw+a'geh 
agwajaoho 'gwa 'geh (y)agwa+jaoho'gw+a'geh sejaoho 'gwa 'geh ( eh)s+jaoho 'gw+a 'geh 
snijaoho 'gwa 'geh ( eh)sni+jaoho 'gw+a 'geh swajaoho 'gwa 'geh ( eh)swa+jaoho 'gw+a 'geh 
hajaoho 'gwa 'geh ha+jaoho 'gw+a 'geh ejaoho 'gwa 'geh (y)e+jaoho 'gw+a 'geh 
gajaoho 'gwa 'geh ga+jaoho 'gw+a 'geh hadijaoho 'gwa 'geh hadi+jaoho 'gw+a 'geh 
gaejaoho 'gwa 'geh gae+jaoho 'gw+a 'geh gadijaoho 'gwa 'geh gadi+jaoho 'gw+a 'geh 
gya 'ga: 'geh g+ya'ga:+a'geh tniya 'ga:'geh ( e)tni+ya'ga:+a'geh 
kniya 'ga: 'geh ( e)kni+ya 'ga:+a'geh akniya 'ga: 'geh (y)akni+ya 'ga:+a 'geh 
dwaya 'ga:'geh ( e)dwa+ya 'ga:+a 'geh agwaya 'ga: 'geh (y)agwa+ya 'ga:+a 'geh 
sya 'ga: 'geh ( eh)s+ya 'ga:+a 'geh sniya 'ga: 'geh ( eh)sni+ya 'ga:+a 'geh 
swaya 'ga:'geh ( eh)swa+ya 'ga:+a 'geh haya 'ga: 'geh ha+ya 'ga:+a 'geh 
eya'ga:'geh (y)e+ya'ga:+a'geh gaya 'ga: 'geh ga+ya 'ga:+a 'geh 
hadiya 'ga:'geh hadi+ya 'ga:+a 'geh gaeya 'ga: 'geh gae+ya 'ga:+a 'geh 
gadiya 'ga:'geh gadi+ya 'ga:+a 'geh 

175 



Table C.6: Unpossessed Inalienable Nouns 

Surface Underlying Surface Underlying 
ohghda' o+ahghd+a' ohsi'da' o+ahsi'd +a' 
ohna' o+ihn+a' gtsa' o+gts+a' 
ow~'nahsa' o+w~ 'nahs+a' ogaha' o+gah+a' 
ohetga'a' o+ hetga '+a' o 'nhghsga:' o+ 'nhghsga:+a' 
o'ahsa' o+'ahs+a' okse'da' o+kse'd+a' 
ong'a:' o+ng'a:+a' oagwahda' o+ragwahd+a' 
ow~ 'yghga:' o+w~ 'yghga:+a' ojaoho 'gwa' o+jaoho 'gw+a' 
oya'ga:' o+ya'ga:+a' 

176 



C.2 Data for the Concrete Approach 

Table C.7: Unpossessed Basic Nouns 

Surface Underlying Surface Underlying 
hgna'da' hgna'd+a' hsgwa~'da' hsgwa~'d+a' 

odi: o+di: OJl:S o+ji:s 
ga'wahsda' ga+ 'wahsd+a' gahehna' ga+hehn+a' 
o'wahsda' o+ 'wahsd+a' ohehna -, o+hehn+a' 
gahsdagwa' ga+hsdagw+a' gaji'gwa' ga+ji'gw+a' 
ohsdagwa' o+hsdagw+a' oji'gwa' o+ji'gw+a' 
adghne 'tsa' a+adghne 'ts+a' odghne 'tsa' o+adghne 'ts+a' 
aw~nohgra' a+aw~nohgr+a' adra'swa' a+adra 'sw+a' 
o'nhahgya' o+ 'nhahgy+a' onhahda' o+nhahd+a' 
ohya' o+ahy+a' oga: -, o+ga:+a' 
ohw~hsda' o+hw~hsd+a' o'da' o+i'd+a' 
okwa 

-, 
o+kw+a' ona'da:' o+na'da:+a' 

oihwa' o+rihw+a' osehda' o+sehd+a' 
otsgra' o+tsgr+a' owa:' o+wa:+a' 
owiya' o+wiy+a' oya -, o+y+a' 
oya'da' o+ya'd+a' ga'wahsha: -, ga+ 'wahsha:+a' 
ga:gwa:' ga+Cagwa: +a' gaga'da' ga+ga'd+a' 
gahsgwahda' ga+hsgwahd+a' g~tsga:' ga+itsga:+a' 
gajf ga+j~+a' gakwa' ga+kw+a' 
gana'ja' ga+na'j+a' gagda' ga+rgd+a' 
gatg~hetsa' ga+tg~hets+a' gaya: 

-, 
ga+ya:+a' 

177 



Table C.S: Possessed Basic Nouns 

Surface Underlying Surface Underlying 
akQna'da' (w)ak+hQna'd+a' QknihQna 'da' (y)Qkni+hQna 'd+a' 
QgwahQna 'da' (y )Qgwa+ hQna 'd +a' sahQna'da' sa+hQna'd+a' 
snihQna 'da' sni+hQna'd+a' swahQna 'da' swa+hQna'd+a' 
hohQna'da' ho+hQna'd+a' gohQna'da' (ya)go+hQna'd+a' 
ohQna'da' (y)o+hQna'd+a' hodihQna 'da' hodi+hQna'd+a' 
godihQna 'da' (ya)godi+hQna 'd+a' odihQna 'da' (y)odi+hQna 'd+a' 
agehsgwa~ 'da' ( w) age+ hsgwa~ 'd +a' Qknihsgwa~ 'da' (y)Qkni+hsgwa~ 'd+a' 
Qgwahsgwa~ 'da' (y )Qgwa+ hsgwa~ 'd +a' sahsgwa~ 'da' sa+hsgwa~'d+a' 

snihsgwa~ 'da' sni+hsgwa~'d+a' swahsgwa~ 'da' swa+hsgwafd+a' 
hohsgwa~ 'da' ho+hsgwa~ 'd+a' gohsgwa~ 'da' (ya)go+hsgwa~ 'd+a' 
ohsgwa~ 'da' (y)o+hsgwa~ 'd+a' hodihsgwa~ 'da' hodi+hsgwa~'d+a' 

godihsgwa12 'da' (ya)godi+hsgwa~ 'd+a' odihsgwa~ 'da' (y)odi+hsgwa~'d+a' 
akwahsda' (w)ak+ 'wahsd+a' Qkni'wahsda' (y)Qkni+ 'wahsd+a' 
Qgwa 'wahsda' (y)Qgwa+ 'wahsd+a' sa'wahsda' sa+ 'wahsd+a' 
sni'wahsda' sni + 'wahsd +a' swa 'wahsda' swa+ 'wahsd+a' 
ho'wahsda' ho+ 'wahsd+a' go'wahsda' (ya)go+ 'wahsd+a' 
o'wahsda' (y)o+ 'wahsd+a' hodi'wahsda' hodi+ 'wahsd+a' 
godi'wahsda' (ya) godi + 'wahsd +a' odi'wahsda' (y )odi + 'wahsd +a' 
akehna' (w)ak+hehn+a' Qknihehna' (y)Qkni+hehn+a' 
Qgwahehna' (y)Qgwa+hehn+a' sahehna' sa+hehn+a' 
snihehna' sni + hehn +a' swahehna' swa+hehn+a' 
hohehna ' ho+hehn+a' gohehna' (ya)go+hehn+a' 
ohehna' (y)o+hehn+a' hodihehna' hodi+hehn+a' 
godihehna' (ya)godi+hehn+a' odihehna' (y)odi+hehn+a' 
agej ihoha:' (w)age+jihoha:+a' Qknij ihoha:' (y )Qkni + jihoha: +a' 
Qgwajihoha:' (y)Qgwa+jihoha:+a' sajihoha:' sa+jihoha:+a' 
snijihoha:' sni+jihoha:+a' swajihoha:' swa+jihoha:+a' 
hojihoha:' ho+jihoha:+a' gojihoha:' (ya)go+jihoha:+a' 
ojihoha: ' (y )o+jihoha:+a' hodij ihoha:' hodi+jihoha:+a' 
godijihoha:' (ya)godi+jihoha:+a' odijihoha:' (y)odi+jihoha:+a' 
agadQhne 'tsa' ( w )ag+adQhne 'ts+a' QgyadQhne 'tsa' (y )Qgy+adQhne 'ts+a' 
QgwadQhne 'tsa' (y)Qgw+adQhne 'ts+a' sadQhne 'tsa ' s+adQhne 'ts+a' 
jadQhne 'tsa' j +adQhne 'ts+a' swadQhne 'tsa' sw+adQhne 'ts+a' 
hodQhne 'tsa' ho+adQhne 'ts+a' godQhne 'tsa' (ya )go+adQhne 'ts+a' 
odQhne 'tsa' (y )o+adQhne 'ts+a' honadQhne 'tsa' hon+adQhne 'ts+a' 
gonadQhne 'tsa' (ya)gon+adQhne 'ts+a' onadQhne 'tsa' (y )on+adQhne 'ts+a' 
age 'nhQhsa' ( w) age+ 'nhQhs+a' Qkni'nhQhsa' (y)Qkni+ 'nhQhs+a' 
Qgwa 'nhQhsa' (y)Qgwa+ 'nhQhs+a' sa'nhQhsa' sa+ 'nhQhs+a' 
sni'nhQhsa' sni+ 'nhQhs+a' swa 'nhQhsa' swa+ 'nhQhs+a' 

178 



Basic Nouns Continued 

Surface Underlying Surface Underlying 
ho'nhghsa' ho+ 'nhghs+a' go'nhghsa' (ya) go+ 'nhghs+a' 
o'nhghsa' (y )o+ 'nhghs+a' hodi'nhghsa' hodi+ 'nhghs+a' 
godi'nhghsa' (ya)godi+ 'nhghs+a' odi'nhghsa' (y )odi + 'nhghs+a' 
age 'ghgwa:' (w)age+ 'ghgwa:+a' gkni'ghgwa:' (y)gkni+ 'ghgwa:+a' 
ggwa 'ghgwa:' (y )ggwa+ 'ghgwa:+a' sa'ghgwa:' sa+ 'ghgwa:+a' 
sni'ghgwa:' sni+ 'ghgwa:+a' swa 'ghgwa:' swa+ 'ghgwa:+a' 
ho'ghgwa:' ho+ 'ghgwa:+a' go'ghgwa:' (ya)go+ 'ghgwa:+a' 
o'ghgwa:' (y)o+ 'ghgwa:+a' hodi'ghgwa:' hodi+ 'ghgwa:+a' 
godi'ghgwa:' (ya)godi+ 'ghgwa:+a' odi'ghgwa:' (y)odi+ 'ghgwa:+a' 
agenhahda' (w)age+nhahd+a' gkninhahda' (y)gkni+nhahd+a' 
ggwanhahda' (y)ggwa+nhahd+a' sanhahda' sa+nhahd+a' 
sninhahda' sni+nhahd+a' swanhahda' swa+nhahd+a' 
honhahda' ho+nhahd+a' gonhahda' (ya)go+nhahd+a' 
onhahda' (y)o+nhahd+a' hodinhahda, hodi+nhahd+a, 
godinhahda, (ya)godi+nhahd+a' odinhahda' (y)odi+nhahd+a' 
agega'da' (w)age+ga'd+a' gkniga'da' (y)gkni+ga'd+a' 
ggwaga'da' (y)ggwa+ga 'd+a' saga'da' sa+ga'd+a' 
sniga 'da' sni+ga'd+a' swaga'da' swa+ga'd+a' 
hoga'da' ho+ga'd+a' goga'da' (ya)go+ga 'd+a, 
oga'da' (y)o+ga'd+a' hodiga'da' hodi +ga 'd +a' 
godiga'da' (ya)godi+ga 'd+a' odiga'da' (y)odi+ga 'd+a' 
akakda' (w)ak+hakd+a' gknihakda' (y)gkni+hakd+a' 
ggwahakda' (y)ggwa+hakd+a' sahakda' sa+hakd+a' 
snihakda' sni+hakd+a' swahakda' swa+hakd+a' 
hohakda' ho+hakd+a' gohakda' (ya)go+hakd+a' 
ohakda' (y)o+hakd+a' hodihakda' hodi+hakd+a' 
godihakda' (ya) godi + hakd +a' odihakda' (y)odi+hakd+a' 
agi'dghgwa' (w)ag+i'dghgw+a' gkni'dghgwa, (y)gkn+i'dghgw+a, 
ggw~ 'dghgwa' (y )ggw~+i'dghgw+a' s~'dghgwa ' s~+i'dghgw+a' 

sni'dghgwa, sn+i'dghgw+a, sw~ 'dghgwa, sw~+i'dghgw+a, 

ho'dghgwa' ho+i'dghgw+a, go'dghgwa' (ya)go+i'dghgw+a' 
o'dghgwa' (y )o+i'dghgw+a' hodi'dghgwa, hod+i'dghgw+a' 
godi'dghgwa' (ya)god+i'dghgw+a' odi'dghgwa' (y)od+i'dghgw+a' 
agejihsgda: ' ( w )age+jihsgda:+a' gknijihsgda:' (y)gkni+jihsgda:+a' 
ggwajihsgda:' (y)ggwa+jihsgda:+a, sajihsgda:' sa+jihsgda:+a' 
snijihsgda:' sni+jihsQda:+a, swajihsQda: 

, 
swa+jihsQda:+a' 

hojihsQda: 
, 

ho+jihsQda:+a' go j ihsQda:' (ya)go+jihsQda:+a' 
ojihsQda:' (y)o+jihsQda:+a' hodijihsQda:' hodi+jihsQda:+a' 

179 



Basic Nouns Continued 

Surface Underlying Surface Underlying 
godijihsgda:' (ya)godi+jihsgda:+a' odijihsgda:' (y )odi+jihsgda:+a' 
agekdeha' (w)age+kdeh+a' gknikdeha' (y)gkni+kdeh+a' 
ggwakdeha' (y)ggwa+kdeh+a' sakdeha' sa+kdeh+a' 
snikdeha' sni+kdeh+a' swakdeha' swa+kdeh+a' 
hokdeha' ho+kdeh+a' gokdeha' (ya)go+kdeh+a' 
okdeha' (y)o+kdeh+a' hodikdeha' hodi+kdeh+a' 
godikdeha' (ya)godi+kdeh+a' odikdeha' (y)odi+kdeh+a' 
agrihwa' (w)ag+rihw+a' gkni:hwa' (y)gkni+rihw+a' 
ggwaihwa' (y)ggwa+rihw+a' saihwa' sa+rihw+a' 
sni:hwa' sni+rihw+a' swaihwa' swa+rihw+a' 
hoihwa' ho+rihw+a' goihwa 

., 
(ya)go+rihw+a' 

oihwa' (y)o+rihw+a' hodi:hwa' hodi+rihw+a' 
godi:hwa' (ya)godi+rihw+a' odi:hwa' (y)odi+rihw+a' 
agesehda' (w)age+sehd+a' gknisehda' (y)gkni+sehd+a' 
ggwasehda' (y)ggwa+sehd+a' sasehda' sa+sehd+a' 
snisehda' sni+sehd+a' swasehda' swa+sehd+a' 
hosehda' ho+sehd+a' gosehda' (ya)go+sehd+a' 
osehda' (y)o+sehd+a' hodisehda' hodi+sehd+a' 
godisehda' (ya)godi+sehd+a' odisehda' (y)odi+sehd+a' 
agetsehsda' (w)age+tsehsd+a' gknitsehsda' (y)gkni+tsehsd+a' 
ggwatsehsda' (y)ggwa+tsehsd+a' satsehsda' sa+tsehsd+a' 
snitsehsda' sni+tsehsd+a' swatsehsda' swa+ tsehsd +a' 
hotsehsda' ho+tsehsd+a' gotsehsda' (ya)go+tsehsd+a' 
otsehsda' (y)o+tsehsd+a' hoditsehsda' hodi+tsehsd+a' 
goditsehsda' (ya)godi+tsehsd+a' oditsehsda' (y )odi+tsehsd +a' 
agwa 'wihsda' ( w) ag + wa 'wihsd +a' gkniwa 'wihsda' (y)gkni+wa'wihsd+a' 
ggwawa 'wihsda' (y)ggwa+wa 'wihsd+a' sawa 'wihsda' sa+wa 'wihsd+a' 
sniwa 'wihsda' sni+wa 'wihsd+a' swawa 'wihsda' swa+wa 'wihsd+a' 
howa 'wihsda' ho+wa'wihsd+a' gowa 'wihsda' (ya)go+wa 'wihsd+a' 
owa 'wihsda' (y)o+wa 'wihsd+a' hodiwa 'wihsda' hodi+wa 'wihsd+a' 
godiwa 'wihsda' (ya)godi+wa 'wihsd+a' odiwa 'wihsda' (y)odi+wa'wihsd+a' 
agyg'da' (w)ag+yg'd+a' gkniyg'da' (y)gkni+yg'd+a' 
ggwayg'da' (y)ggwa+yg'd+a' sayg'da' sa+yg'd+a' 
sniyg'da' sni+yg'd+a' swayg'da' swa+yg'd+a' 
hoyQ'da' ho+yQ'd+a' goyQ'da' (ya)go+yQ'd+a' 
oyg'da' (y)o+yg'd+a' hodiyg'da' hodi+yg'd+a' 
godiyg'da' (ya)godi+yQ 'd+a' odiyg'da' (y)odi+yg'd+a' 
agihsda' (w)ag+Cihsd+a' gkni:hsda' (y)gkni+Cihsd+a' 

180 



Basic Nouns Continued 

Surface Underlying Surface Underlying 
ggwaihsda' (y)ggwa+Cihsd+a' saihsda' sa+Cihsd+a' 
sni:hsda' sni+Cihsd+a' swaihsda' swa+Cihsd+a' 
hoihsda' ho+Cihsd+a' goihsda' (ya)go+Cihsd+a' 
oihsda' (y)o+Cihsd+a' hodi:hsda' hodi+Cihsd+a' 
godi:hsda' (ya)godi+Cihsd+a' odi:hsda' (y)odi+Cihsd+a' 
agatsg~ 'da' (w)ag+Catsg~ 'd+a' gkniatsg~ 'da' (y)gkni+Catsg~ 'd+a' 
ggwa:tsg~ 'da' (y )ggwa+Catsg~ 'd +a' sa:tsg~ 'da' sa+Catsg~ 'd +a' 
sniatsg~ 'da' sni+Catsg~ 'd+a' swa:tsg~ 'da' swa+Catsg~ 'd+a' 
hoatsg~ 'da' ho+Catsg~ 'd +a' goatsg~ 'da' (ya)go+Catsg~ 'd+a' 
oatsg~'da' (y)o+Catsg~ 'd+a' hodiatsg~ 'da' hodi +Catsg~ 'd +a' 
godiatsg~ 'da' (ya) godi +Catsg~ 'd +a' odiatsg~ 'da' (y)odi+Catsg~'d+a' 
age'ahdra' (w)age+ 'ahdr+a' gkni'ahdra' (y)gkni+ 'ahdr+a' 
ggwa 'ahdra' (y)ggwa+ 'ahdr+a' sa'ahdra' sa+ 'ahdr+a' 
sni'ahdra' sni+ 'ahdr+a' swa'ahdra' swa+ 'ahdr+a' 
ho'ahdra' ho+ 'ahdr+a' go'ahdra' (ya)go+ 'ahdr+a' 
o'ahdra' (y )o+ 'ahdr+a' hodi'ahdra' hodi+ 'ahdr+a' 
godi'ahdra' (ya)godi+ 'ahdr+a' odi'ahdra' (y)odi+ 'ahdr+a' 
agitsga:' (w)ag+itsga:+a' gknitsga:' (y)gkn+itsga:+a' 
ggw~tsga:' (y) ggw12+ i tsga: +a' Sli_)tsga:' s12+itsga:+a' 
snitsga:' sn+itsga:+a' swli_)tsga:' sw12+itsga:+a' 
hotsga:' ho+itsga:+a' gotsga:' (ya)go+itsga:+a' 
otsga: 

., 
(y)o+itsga:+a' hoditsga:' hod+itsga:+a' 

goditsga:' (ya)god+itsga:+a' oditsga: 
., 

(y)od+itsga:+a' 
agrli_)na' (w)ag+r12n+a' gknili_)na' (y)gkni+r12n+a' 
ggwali_)na' (y)ggwa+r12n+a' sa~na' sa+r12n+a' 
sni12na' sni+r12n+a' swali_)na' swa+r12n+a' 
holi_)na' ho+r~n+a' goli_)na' (ya)go+r12n+a' 
oli_)na' (y)o+r12n+a' hodi12na' hodi+r~n+a' 

godili_)na' (ya)godi+r~n+a' odili_)na' (y)odi+r12n+a' 
agrihwihsa' (w)ag+rihwihs+a' gkni:hwihsa' (y)gkni+rihwihs+a' 
ggwaihwihsa' (y )ggwa+rihwihs+a' saihwihsa' sa+rihwihs+a' 
sni:hwihsa' sni+rihwihs+a' swaihwihsa' swa+rihwihs+a' 
hoihwihsa' ho+rihwihs+a' goihwihsa' (ya)go+rihwihs+a' 
oihwihsa' (y)o+rihwihs+a' hodi:hwihsa' hodi+rihwihs+a' 
godi:hwihsa' (ya)godi+rihwihs+a' odi:hwihsa' (y) odi + rihwihs+a' 
agrgda' (w)ag+rgd+a' gknigda' (y)gkni+rgd+a' 
ggwagda' (y)ggwa+rgd+a' sagda' sa+rgd+a' 
snigda' sni+rgd+a' swagda' swa+rgd+a' 

181 



Basic Nouns Continued 

Surface Underlying Surface Underlying 
hogda' ho+rgd+a' gogda' (ya)go+rgd+a, 
ogda' (y)o+rgd+a' hodigda' hodi+rgd+a' 
godigda' (ya)godi+rgd+a' odigda' (y)odi+rgd+a, 

Table C.9: Deverbal Nouns 

Surface Underlying Surface Underlying 
~dehsra' ~dehsr+a' ~·nyotra' ~·nyotr+a' 

~'nhotra' ~'nhotr+a' g~dehsra' ga+idehsra+a, 
gay~nawahsra, ga+y~nawahsr+a, gaya 'dowehdahsra, ga+ya 'dowehdahsr+a, 
gaya 'dagenhahsra, ga+ya 'dagenhahsr+a, gatgw~nya 'tra, ga+atgw~nya 'tr+a, 
gatggnya 'tra, ga+atggnya 'tr+a, gatgi'tra' ga+tgi'tr+a, 
ganohgkdehsra, ga+ nohgkdehsr+a, ganhehsra' ga+nhehsr+a, 
gana 'jowrtra, ga+na 'jowi'tr+a, gaisra' ga+risr+a' 
gaihwiyohsd~hsra, ga+rihwiyohsd~hsr+a, gaihwane 'aksra, ga+rihwane 'aksra+a, 
gaiho 'd~hsra, ga+riho 'd~hsr+a, gahyadghsra, ga+ hyadghsr+a, 
gahshahsd~hsra, ga+hshahsd~hsr+a, ga:hghsra' ga+Cahghsr+a, 
oy~hsra' o+y~hsr+a' otgahngnihsra, o+atgahngnihsr+a, 
onrahdgdahsra, o+nrahdgdahsr+a, ongnhe 'dra, o+ngnhe 'dr+a, 
oniga:h~hsra, o+niga:h~hsr+a, ohshahsd~hsra, o+ hshahsd~hsr+a, 
odgtgadghsra, o+adgtgadghsr+a, odgtgadehsra, o+adgtgadehsr+a, 
o'drohsra' o+ 'drohsr+a, o 'daih~hdra, o+i'daih~hdr+a, 

atsho 'kdghsra 
, 

a+atsho 'kdghsr+a, atna 'tsotra, a+atna 'tsotr+a, 
atna 'gwihdra, a+atna 'gwihdr+a, atgahnyehtra, a+atgahnyehtr+a, 
anahaotra' a+nahaotr+a, agya 'dawi'tra, a+agya 'dawi'tr+a, 
adrihwagyaghsra 

, 
a+adrihwagyaghsr+a, adra 'wihsda, a+adra 'wihsd +a, 

adgnhehsra, a+adgnhehsr+a, adi'grghsra, a+adi'grghsra+a, 
ad~na'tra' a+ad~na 'tr+a' adekwahahsra' a+adekwahahsra+a' 
adao'tra 

, a+adao 'tra+a, ahdahdrtra' a+ahdahdi'tr+a' 

182 



Table C.lO: Defective Nouns 

Surface Underlying Surface Underlying 
sgwa:gwagdg' sgwa:gwagdg' dago:s dago:s 
da:gu:s da:gu:s dakshae 'dohs dakshae 'dohs 
so:wa:s so:wa:s tw~:tw~:t tw~:tw~:t 

hg:ga:k hg:ga:k dog~:t dog~:t 

gwihsgwihs gwihsgwihs gwa'yg' gwa'yg' 
sohg:t sohg:t gyo:gyo:' gyo:gyo:' 
jogrihs jogrihs gwido 'gwido' gwido 'gwido' 
di'di:' di'di:' jikjiye:' jikjiye:' 
ga'ga:' ga'ga:' hihi: hihi: 
gwiy~ 'gwiy~ 

, 
gwiy~ 'gwiy~' dihsdihs dihsdihs 

ji'nhgw~:se: ji'nhgw~:se: duwisduwi:' d uwisd uwi:' 
sa 'sa' sa 'sa' gw~:dihs gw~:dihs 

gwe:s~· gwe:s~· tsahgo:wah tsahgo:wah 
jihsgogo' jihsgogo' gwaoh gwaoh 
johw~ 'sdaga' johw~ 'sdaga' gw~ 'gohny~' gw~ 'gohny~' 

hnyagwai' hnyagwai' gg:deh gg:deh 
tgwiyo:g~' tgwiyo:g~ 

, 
jinhghgwah~h jinhghgwah~h 

ji'nghdo:ya' ji'nghdo:ya' ji'dana:w~: ji'dana:w~: 

jinghsangh jinghsangh jihsda: jihsda: 
ji'ao:y~: ji'ao:y~: jinghyahae: jinghyahae: 
degriya 'gg' degriya 'gg' jihnyo 'g~' jihnyo'g~· 

hehshai: hehshai: sgwa'ahda' sgwa'ahda' 
tehtg' tehtg' jg 'daga' jg 'daga' 
jino:w~: Jmo:w~: tea:gt tea:gt 
sa:no:' sa: no:' dr~:na: dr~:na: 

dre:na: dre:na: joni:tsgrg:t joni:tsgrg:t 
kdagg 

, 
kdagg' do:dihs do:dihs 

sgwa:y~h sgwa:y~h gwiyo:g~· gwiyo:g~ 
, 

jg:nyg: 
, 

jg:nyg:' nghsodai:yg: nghsodai:yg: 
gwa'da: gwa'da: jid~:·~h jid~:·~h 

jg'dae:ya: 
, 

jg 'dae:ya:' ji'drg:w~: ji'drg:w~: 

onohotsg~ ·~' onohotsg~ ·~' teo:ji' teo:ji' 
tsa'g~:da' tsa'g~:da' yahg~hda' yahg~hda' 

tsinyohgwa:k tsinyohgwa:k gih~:k gih~:k 

naw~'da' naw~'da' jihsg:dahk jihsg:dahk 
otahyg:ni: otahyg:ni: tahyg:ni: tahyg:ni: 
jihsg~: jihsg~: ji'o: 

.. , 
Jl o: 

grahe:t grahe:t 

183 



Table C.ll: Inalienable Nouns 

Surface Underlying Surface Underlying 
gahghda 'geh g+ahghd +a 'geh gyahghda 'geh (e)gy+ahghd+a'geh 
agyahghda 'geh (y)agy+ahghd+a 'geh dwahghda 'geh ( e)dw+ahghd+a 'geh 
agwahghda 'geh (y )agw+ahghd+a 'geh sahghda 'geh (h)s+ahghd+a 'geh 
jahghda 'geh (h)j+ahghd+a 'geh swahghda 'geh (h)sw+ahghd+a 'geh 
hahghda 'geh h+ahghd+a'geh ghghda'geh (y)g+ahghd+a'geh 
wahghda 'geh w+ahghd+a 'geh h!2nahghda 'geh h!2n+ahghd+a'geh 
gaghghda 'geh gag+ahghd+a 'geh gl2nahghda 'geh g!2n+ahghd+a 'geh 
gahsi'da 'geh g+ahsi'd+a 'geh gyahsi'da 'geh ( e)gy+ahsi'd+a'geh 
gyahsi'da 'geh (e) gy+ahsi'd +a 'geh agyahsi'da 'geh (y) agy+ahsi'd +a 'geh 
dwahsi'da 'geh (e) dw+ahsi'd +a 'geh agwahsi'da 'geh (y)agw+ahsi'd+a 'geh 
sahsi'da 'geh (h)s+ahsi'd+a 'geh jahsi'da 'geh (h)j+ahsi'd+a 'geh 
swahsi'da 'geh (h)sw+ahsi'd +a 'geh hahsi'da 'geh h +ahsi'd +a 'geh 
ghsi'da 'geh (y)g+ahsi'd+a 'geh wahsi'da 'geh w+ahsi'd+a 'geh 
h!2nahsi'da 'geh h!2n+ahsi'd+a 'geh gaghsi'da 'geh gag+ahsi'd+a 'geh 
gl2nahsi'da 'geh g!2n+ahsi'd+a 'geh gihna'geh g+ihn+a 'geh 
tnihna'geh ( e)tn+ihn+a 'geh knihna'geh ( e )kn+ihn+a 'geh 
aknihna 'geh (y)akn+ihn+a 'geh dw!2hna 'geh ( e)dw!2+ihn+a 'geh 
agwl2hna 'geh (y) agw!2+ ihn +a 'geh sihna'geh (h)s+ihn+a'geh 
snihna'geh (h)sn+ihn+a 'geh sw!2hna 'geh (h)sw!2+ihn+a 'geh 
h!2hna'geh h!2+ ihn +a 'geh !2hna'geh (Y)!2+ihn+a 'geh 
g!2hna'geh g!2+ihn+a 'geh hadihna 'geh had+ihn+a'geh 
gaehna'geh gae+ihn+a 'geh gadihna 'geh gad+ihn+a'geh 
ggtsa'geh g+gts+a 'geh tngtsa'geh (e)tn+gts+a'geh 
kngtsa'geh (e)kn+gts+a'geh akngtsa 'geh (y) akn +gts+a 'geh 
gygtsa'geh ( e)gy+gts+a 'geh agygtsa 'geh (y) agy +gts+ a 'geh 
sgtsa'geh (h)s+gts+a 'geh sngtsa'geh (h)sn+gts+a 'geh 
jgtsa'geh (h)j+gts+a'geh hgtsa'geh h+gts+a 'geh 
aggtsa'geh (y )ag+gts+a 'geh gtsa'geh (y) +gts+a 'geh 
h!2ngtsa 'geh h!2n+gts+a 'geh ga:ggtsa 'geh ga:g+gts+a 'geh 
gl2nQtsa 'geh g!2n+gts+a 'geh gwl2 'nahsa 'geh g+w!2 'nahs+a 'geh 
tniw!2 'nahsa 'geh ( e )tni+w!2 'nahs+a 'geh kniw!2 'nahsa 'geh ( e)kni+w!2 'nahs+a'geh 
akniw!2 'nahsa 'geh (y )akni +w!2 'nahs+a 'geh dwawl2 'nahsa 'geh ( e)dwa+w!2 'nahs+a 'geh 
agwawl2 'nahsa 'geh (y)agwa+w!2 'nahs+a 'geh SW!2 'nahsa 'geh ( eh )s+w!2 'nahs+a 'geh 
sniw!2 'nahsa 'geh ( eh)sni+w!2 'nahs+a 'geh swawl2 'nahsa 'geh ( eh)swa+w!2 'nahs+a 'geh 
hawl2 'nahsa 'geh ha+w!2 'nahs+a 'geh ewl2 'nahsa 'geh (y )e+w~ 'nahs+a 'geh 
gawl2 'nahsa 'geh ga+w!2 'nahs+a 'geh hadiw~ 'nahsa 'geh hadi +w~ 'nahs+a 'geh 
gaewl2 'nahsa 'geh gae+w!2 'nahs+a 'geh gadiw!2 'nahsa 'geh gadi+w~ 'nahs+a 'geh 
gegaha'geh ge+gah+a 'geh tnigaha 'geh (e)tni+gah+a'geh 
knigaha 'geh ( e)kni+gah+a 'geh aknigaha 'geh (y)akni+gah+a'geh 

184 



Inalienable Nouns Continued 

Surface Underlying Surface Underlying 
dwagaha 'geh ( e)dwa+gah+a 'geh agwagaha 'geh (y)agwa+gah+a 'geh 
segaha'geh ( eh)se+gah+a 'geh snigaha 'geh ( eh)sni+gah+a 'geh 
swag aha 'geh ( eh)swa+gah+a 'geh hagaha'geh ha+gah +a 'geh 
egaha'geh (y)e+gah+a'geh gagaha'geh ga+gah+a 'geh 
hadigaha 'geh hadi+gah+a'geh gaegaha 'geh gae+gah+a 'geh 
gadigaha 'geh gadi+gah+a'gehk+het ketga 'a 'geh ga'+a'geh 
tnihetga 'a 'geh ( e)tni+hetga '+a 'geh knihetga 'a 'geh ( e)kni+hetga '+a 'geh 
aknihetga 'a 'geh (y) akni + hetga' +a 'geh dwahetga 'a 'geh ( e)dwa+hetga '+a 'geh 
agwahetga 'a ,geh (y)agwa+hetga '+a 'geh setga 'a 'geh ( eh )s+ hetga '+a 'geh 
snihetga 'a 'geh ( eh)sni+hetga '+a 'geh swahetga 'a 'geh ( eh)swa+hetga '+a 'geh 
hahetga 'a 'geh ha+ hetga '+a 'geh ehetga 'a 'geh (y)e+hetga'+a'geh 
gahetga 'a 'geh ga+hetga'+a'geh hadihetga 'a 'geh hadi+hetga '+a 'geh 
gaehetga 'a 'geh gae+ hetga' +a 'geh gadihetga 'a 'geh gadi+hetga '+a 'geh 
ge 'nhghsga: 'geh ge+ 'nhghsga: +a 'geh tni'nhghsga: 'geh ( e )tni + 'nhghsga: +a 'geh 
kni'nhghsga: 'geh ( e )kni+ 'nhghsga:+a 'geh akni'nhghsga: 'geh (y)akni+ 'nhghsga:+a 'geh 
dwa 'nhghsga: 'geh (e)dwa+ 'nhghsga:+a'geh agwa 'nhghsga:'geh (y)agwa+ 'nhghsga:+a 'geh 
se 'nhghsga: 'geh ( eh)se+ 'nhghsga:+a 'geh sni'nhghsga: 'geh ( eh)sni+ 'nhghsga:+a 'geh 
swa 'nhghsga:'geh ( eh)swa+ 'nhghsga:+a 'geh ha 'nhghsga: 'geh ha+ 'nhghsga:+a 'geh 
e 'nhghsga:'geh (y)e+ 'nhghsga:+a'geh ga 'nhghsga:'geh ga+ 'nhghsga:+a 'geh 
hadi 'nhghsga: 'geh hadi + 'nhghsga:+a 'geh gae 'nhghsga: 'geh gae+ 'nhghsga:+a'geh 
gadi'nhghsga: 'geh gadi+ 'nhghsga:+a'geh ge 'ahsa 'geh ge+ 'ahs+a 'geh 
tni'ahsa 'geh (e)tni+ 'ahs+a'geh kni'ahsa 'geh (e)kni+ 'ahs+a 'geh 
akni'ahsa 'geh (y)akni+ 'ahs+a 'geh dwa 'ahsa 'geh ( e )dwa+ 'ahs+a 'geh 
agwa 'ahsa 'geh (y) agwa+ 'ahs+a 'geh se 'ahsa 'geh (eh)se+ 'ahs+a'geh 
sni'ahsa 'geh (eh)sni+ 'ahs+a'geh swa 'ahsa 'geh ( eh )swa+ 'ahs+a 'geh 
ha 'ahsa 'geh ha+ 'ahs+a 'geh e'ahsa'geh (y)e+ 'ahs+a 'geh 
ga 'ahsa 'geh ga+ 'ahs+a 'geh hadi'ahsa 'geh hadi+ 'ahs+a 'geh 
gae 'ahsa 'geh gae+ 'ahs+a 'geh gadi'ahsa 'geh gadi+ 'ahs+a 'geh 
gekse 'da 'geh ge+kse 'd+a 'geh tnikse 'da 'geh ( e)tni+kse 'd+a 'geh 
knikse 'da 'geh ( e)kni+kse'd+a'geh aknikse 'da 'geh (y)akni+kse 'd+a 'geh 
dwakse 'da 'geh ( e)dwa+kse 'd+a'geh agwakse 'da 'geh (y) agwa+ kse 'd +a 'geh 
sekse 'da 'geh ( eh)se+kse 'd+a'geh snikse 'da 'geh ( eh)sni+kse 'd+a 'geh 
swakse 'da 'geh ( eh)swa+kse 'd+a 'geh hakse 'da 'geh ha+kse 'd+a 'geh 
ekse 'da 'geh (y)e+kse 'd+a 'geh gakse 'da 'geh ga+kse 'd+a 'geh 
hadikse 'da 'geh hadi + kse 'd +a 'geh gaekse 'da 'geh gae+kse'd+a'geh 
gadikse 'da 'geh gadi+kse 'd+a 'geh kng'a:'geh k+ng 'a:+a 'geh 
tning 'a:'geh ( e )tni+ng 'a:+a 'geh kning 'a:'geh ( e)kni+ng 'a:+a 'geh 
akning 'a:'geh (y)akni+ng 'a:+a'geh dwang'a:'geh ( e)dwa+ng 'a:+a'geh 

185 



Inalienable Nouns Continued 

Surface Underlying Surface Underlying 
agwang 'a: 'geh (y)agwa+ng 'a:+a 'geh sng'a:'geh ( eh)s+ng 'a:+a 'geh 
sning 'a:'geh ( eh)sni+ng 'a:+a 'geh swang 'a: 'geh ( eh)swa+ng 'a:+a 'geh 
hang 'a: 'geh ha+ng 'a:+a 'geh eng'a:'geh (y)e+ng 'a:+a 'geh 
gang 'a:'geh ga+ng 'a:+a 'geh hading 'a: 'geh hadi+ng 'a:+a 'geh 
gaeng 'a: 'geh gae+ng'a:+a'geh gading 'a:'geh gadi+ng 'a:+a 'geh 
gragwahda 'geh g+ragwahd+a 'geh tniagwahda 'geh ( e)tni+ragwahd+a 'geh 
kniagwahda 'geh ( e)kni+ragwahd+a 'geh akniagwahda 'geh (y)akni+ragwahd+a'geh 
dwa:gwahda 'geh ( e )dwa+ragwahd+a 'geh agwa:gwahda 'geh (y) agwa+ ragwahd +a 'geh 
sragwahda 'geh ( eh)s+ragwahd+a 'geh sniagwahda 'geh ( eh)sni+ragwahd+a 'geh 
swa:gwahda 'geh ( eh)swa+ragwahd+a 'geh ha:gwahda 'geh ha+ragwahd+a 'geh 
eagwahda 'geh (y)e+ragwahd+a 'geh ga:gwahda 'geh ga+ragwahd+a 'geh 
hadiagwahda 'geh hadi+ragwahd+a'geh gaeagwahda 'geh gae+ragwahd +a 'geh 
gadiagwahda 'geh gadi+ragwahd+a 'geh gw~ 'yghga: 'geh g+w~ 'yghga:+a 'geh 
tniw~ 'yghga: 'geh ( e )tni +w~ 'yghga: +a 'geh kniw~ 'yghga: 'geh ( e)kni+w~ 'yghga:+a 'geh 
akniw~ 'yghga:'geh (y)akni+w~ 'yghga:+a 'geh dwaw~ 'yghga:'geh ( e)dwa+w~ 'yghga:+a 'geh 
agwaw~ 'yghga:'geh (y)agwa+w~'yghga:+a'geh sw~ 'yghga:'geh ( eh)s+w~ 'yghga:+a 'geh 
sniw~ 'yghga: 'geh ( eh)sni+w~ 'yghga:+a 'geh swaw~ 'yghga: 'geh ( eh)swa+w~ 'yghga:+a 'geh 
haw~ 'yghga: 'geh ha+w~ 'yghga:+a 'geh ew~ 'yghga: 'geh (y )e+w~ 'yghga:+a 'geh 
gaw~ 'yghga: 'geh ga+w~ 'yghga:+a 'geh hadiw~ 'yghga: 'geh hadi+w~ 'yghga:+a 'geh 
gaew~ 'yghga:'geh gae+w~ 'yghga:+a 'geh gadiw~ 'yghga: 'geh gadi+w~ 'yghga:+a 'geh 
gejaoho 'gwa 'geh ge+jaoho 'gw+a 'geh tnijaoho 'gwa 'geh ( e)tni+jaoho 'gw+a 'geh 
knijaoho 'gwa 'geh ( e)kni+jaoho 'gw+a 'geh aknijaoho 'gwa 'geh (y)akni+jaoho 'gw+a 'geh 
dwajaoho 'gwa 'geh ( e)dwa+jaoho 'gw+a 'geh agwajaoho 'gwa 'geh (y)agwa+jaoho 'gw+a 'geh 
sejaoho 'gwa 'geh ( eh)se+jaoho 'gw+a 'geh snijaoho 'gwa 'geh ( eh)sni+jaoho 'gw+a 'geh 
swajaoho 'gwa 'geh ( eh)swa+jaoho 'gw+a 'geh hajaoho 'gwa 'geh ha+jaoho 'gw+a 'geh 
ejaoho 'gwa 'geh (y )e+ jaoho 'gw+a 'geh gajaoho 'gwa 'geh ga+jaoho 'gw+a 'geh 
hadijaoho 'gwa 'geh hadi+jaoho 'gw+a 'geh gaejaoho 'gwa 'geh gae+jaoho 'gw+a 'geh 
gadijaoho 'gwa 'geh gadi+jaoho 'gw+a 'geh gya'ga:'geh g+ya'ga:+a'geh 
tniya 'ga: 'geh ( e)tni+ya 'ga:+a'geh kniya 'ga: 'geh ( e)kni+ya 'ga:+a 'geh 
akniya 'ga: 'geh (y)akni+ya 'ga:+a 'geh dwaya 'ga:'geh ( e)dwa+ya'ga:+a 'geh 
agwaya 'ga:'geh (y)agwa+ya 'ga:+a 'geh sya'ga:'geh ( eh)s+ya 'ga:+a 'geh 
sniya 'ga: 'geh ( eh)sni+ya'ga:+a 'geh swaya 'ga: 'geh ( eh)swa+ya 'ga:+a 'geh 
haya 'ga:'geh ha+ya 'ga:+a 'geh eya'ga:'geh (y )e+ya 'ga:+a 'geh 
gaya 'ga: 'geh ga+ya 'ga:+a 'geh hadiya 'ga:'geh hadi+ya 'ga:+a 'geh 
gaeya 'ga: 'geh gae+ya 'ga:+a 'geh gadiya 'ga: 'geh gadi +ya 'ga:+a 'geh 

186 



Table C.l2: Unpossessed Inalienable Nouns 

Surface Underlying Surface Underlying 
ohghda' o+ahghd+a' ohsi'da' o+ahsi'd+a' 
ohna' o+ihn+a' gtsa' o+gts+a' 
ow~'nahsa' o+w~ 'nahs+a' ogaha' o+gah+a' 
ohetga'a' o+hetga '+a' o 'nhghsga:' o+ 'nhghsga:+a' 
o'ahsa' o+'ahs+a' okse'da' o+kse'd+a' 
ong'a:' o+ng'a:+a' oagwahda' o+ragwahd+a' 
ow~ 'yghga:' o+w~'yghga:+a' ojaoho 'gwa' o+jaoho'gw+a' 
oya'ga:' o+ya'ga:+a' 

187 










