FINTE-STATE PARSING OF CAYUGA MORPHOLOGY

DOUGAL GRAHAM

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-33422-5
Our file Notre référence
ISBN: 978-0-494-33422-5
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

FINITE-STATE PARSING OF CAYUGA MORPHOLOGY

by

© Dougal Graham

A thesis submitted to the

School of Graduate Studies

in partial fulfillment of the
requirements for the degree of

Master of Arts

Department of Linguistics

Memorial University of Newfoundland

September 2007

St. John’s Newfoundland and Labrador

Abstract

This paper presents a detailed description of the design and implementation of a comput-
erized morphological segmentation tool for Cayuga nouns. Speakers of polysynthetic First
Nations languages are presented with an array of difficulties when it comes to word seg-
mentation and dictionary access. This program demonstrates that finite-state techniques
are applicable to these morphologically complex languages and are worth further study and

development in order to create useful tools for speakers and learners of thesis languages.

il

Acknowledgments

I would like to thank my supervisor, Dr. Carrie Dyck, for the constant support and insight
she provided me during the course of this project and the writing of this document and for
travel funding. As well, I thank Dr. Todd Wareham for providing me with an introduction

to the world of finite-state computing.

My parents have been very supportive throughout my work, and my academic career,

for which I am very thankful.

The kind donation of on-campus working space by Dr. Yvan Rose was also very much

appreciated and saved me a lot of walking time.

I would like to thank the department of linguistics at Memorial for helping me to stay

well organised, despite my worst efforts, and for the funding I received.

Lastly, I'd like to thank Krista Gammon for encouraging me to keep on working and

persevering with me.

iii

Abbreviations

Terminology

FS Finite-State

FSM Finite-State Machine
FSA Finite-State Automaton
FST Finite-State Transducer
TTS Text-to-speech

NLP Natural Language Processing
kB Kilobytes

Glosses

UR Underlying representation
SR Surface representation

A Agent: arbitrary term used to denote the type of prefix that represents the subject of an
active transitive verb

P Patient: arbitrary term used to denote the type of prefix that represents the direct object
of an active transitive verb

1-3 1st to 3rd persons

i Inclusive: the 2nd person is included in the speech act

e Exclusive: the 2nd person is excluded from the speech act
s Singular: one participant

d Dual: two participants, including the speaker and another
p Plural: three or more participants

dp Non-singular: two or more participants

m Masculine

f(i) Feminine(-Indefinite): refers to females, a mixed group of people or ‘someone’

zn Zoic-Neuter: refers to animals or inanimate objects

iv

Contents

Abstract
Acknowledgments
Abbreviations

1 Introduction

2 Prior Work
2.1 On-Line Spanish Morphological Analyser/Generator
2.2 Templatic Morphology and Reduplication.
2.3 Syllabification
2.4 Spelling Correction
2.5 Finite-state Applications to Polysynthetic Languages

3 Finite-state machines
3.1 FSA as a Model of Behaviour
3.2 FSA as Linguistic Model L
3.3 Finite-state Transducers o
3.4 Bidirectionality e
3.5 Composition
3.6 Modularity

4 The Cayuga Language
4.1 Orthography e
4.2 Morphology of Cayuga Nouns
4.2.1 Defective Nounso e
422 BasicNouns e
4.2.3 Inalienably Possessed Nouns (Body Part Nouns)
4.24 De-verbal Nouns o
4.3 Overview of Cayuga Morpho-phonological Variation
4.4 Implications of the Data L. Lo

5 Issues in Implementation

i

iii

iv

© 00 Tt Ot R

10

12
12
14
15
16
17
19

21
22
23
23
24
28
31
32
33

34

5.1 Dictionary Access 34

5.2 Computational Problems 38
5.2.1 Non-determinism 38

5.2.2 Long-distance Dependancies 40

5.3 Summary e e 43
6 Methodology 44
6.1 Requirements 44
6.1.1 Ideal Dictionary Output 44
6.1.2 Thorough Testing of Morpho-phonological Rules 48
6.1.3 Applicability of FS Framework to Morphologically Complex Languages 48

6.2 Specifications e 49
6.3 Tools and Data Structure Lo 50
6.3.1 Lexc e 51
6.3.2 Rule-like Notation, 53

6.4 Summaryo e e 54
7 Results 55
7.1 Final Program Components 55
7.1.1 Lexicon Module o 55
7.1.2 RulesModule 69
7.1.3 Semantics Modules o 72
7.1.4 Interface 73

7.2 Addressing the requirements Lo 76
721 Testingof Rules. 76
7.2.2 Generation & Segmentation oL L. 78
7.2.3 TS Applicability to Polysynthetic Languages 78
7.2.4 Ideal Dictionary Access o v v v v v it 79

7.2.5 Efficiency, Elegance and Usability - Abstract vs. Concrete Versions . 79

8 Conclusion ' 83
8.1 Future Work e 83
8.2 Summary Conclusions 84

A Morpho-phonological and Clean-up rules 87

vi

B Code 89

B.1 Abstract Version 89
B.1.1 Abstract Lexicon 89

B.1.2 Abstract Semantic Lexicon 103

B.2 Concrete Version e 118
B.2.1 Concrete Lexicon 118

B.2.2 Concrete Semantic Lexicon o o i 140

C Test Cases 165
C.1 Data for the Abstract Approach, ... 165
C.2 Data for the Concrete Approach 177

vii

List of Tables

4.1 Phonemic Inventory and Spellings 22
4.2 Alternate Orthographies 23
4.3 Basic Nouns Patient Prefix Allomorphs - C-stems 26
4.4 Basic Nouns Patient Prefix Allomorphs - V-stems 27
4.5 Inalienably Possessed Noun Agent Prefix Allomorphs - C-Stems 29
4.6 Inalienably Possessed Noun Agent Prefix Allomorphs - V-Stems 29
4.7 Multiple Rule Applications 32
6.1 Sample Cayuga lexc LEXICOM. .« o o v oo 52
7.1 Basic Noun “allRoots” Sub-lexicon 59
7.2 Two Rules for Optional Prefix Segment Removal 71
7.3 Morpho-phonological Rule Application 71
7.4 lexc samples for semantics module and lexicon module 72
7.5 Stages of Output from User Interface 75
7.6 Rule-testing Samples L L 77
7.7 Basic Nouns Patient Prefix Allomorphs - C-stems 77
7.8 Sizes of Final Segmenter FSTs 79
7.9 Time (in seconds) for 100 iterations of morpheme combination of the test
COTPOTA v v v v e v e v e e e e e e e e e e e 80
7.10 Time (in seconds) for 100 iterations of segmentation of the test corpora . . . 80
C.1 Unpossessed Basic Nouns 165
C.2 Possessed Basic Nouns 166
C.3 Deverbal Nouns e 171
C.4 Defective Nouns o v i it e e e e 172
C.5 Inalienable Nouns 173
C.6 Unpossessed Inalienable Nouns, 176
C.7 Unpossessed Basic Nouns. oo 177
C.8 Possessed Basic Nouns o oo 178
C.9 Deverbal Nouns 182
C.10 Defective Nouns o v it e 183
C.11 Inalienable Nouns e 184
C.12 Unpossessed Inalienable Nouns 187

7.1
7.2
7.3
74
7.5
7.6
7.7

List of Figures

Abstract Defective Noun Sub-lexicon Structure 56
Abstract De-verbal Noun Sub-lexicon Structure 57
Abstract Basic Noun Sub-lexicon Structure 58
Abstract Inalienable Noun Sub-lexicon Structure. 60
Abstract Lexicon Structure. 65
Concrete Approach Basic Noun Lexicons 68
Complete Program Flow Chart 74

ix

CHAPTER 1

Introduction

Recently, finite-state methodology has emerged as the primary framework for natural lan-
guage processing (NLP) and computational models of languages (Beesley and Karttunen,
2003:pg. XV). In the past several years, much work has been done to create finite-state
implementations of lexicons, spelling correction systems (Vilares et al., 2004), morphological
parsers (Reichel and Weilhammer, 2004), speech synthesis programs and so forth for a wide
variety of languages (Alegria et al., 2002; Beesley and Karttunen, 2003; Beesley and Kart-
tunen, 2000). The initial demand for the production of these sorts of systems tends to fall on
the most widely spoken languages, and those with the longest linguistic traditions, such as
English, Finnish, German, French and other European languages. Not much, if any, work,
however has yet been done with respect to the specific needs of First Nations languages in

particular or, more generally, polysynthetic languages.

Such work would, however, be worthwhile. 1t would allow for a thorough and systematic
evaluation of the posited morpho-phonological rules for the language studied. It would
extend our understanding of finite-state machines (FSM) since polysyntehtic languages tend
to be significantly more morphologically complex than the European languages traditionally
studied. Furthermore, such a project could lead to further useful applications in the future

such as an auto-segmenting dictionary or text to speech (TTS) system for the language.

In that light, I have created an FSM that recognizes!, generates? and segments all and

only the valid noun forms of Cayuga (Iroquoian) with four primary goals in mind.

The first goal is to demonstrate that useful segmentation tools could be quickly gener-
ated for morphologically complex languages in which speakers encounter difficulties because
of segmentation issues. Secondly this project will provide a thorough testing of the morpho-
phonological rules currently posi‘ped for Cayuga nominal forms. Thirdly the project will
determine the potential computational costs and usability issues of designing finite-state
transducers (FST) with different kinds of output. Finally, this project will provide a pre-
liminary investigation into the applicability of the finite-state framework to polysynthetic

languages.

This document has been designed so as to satisfy the needs of the disciplines of both
linguistics and computer science. With that in mind, it should be clear why this document
is somewhat different from a standard linguistics thesis, and from a computer science thesis.
The first half of the document (chapters 2-4) are primarily linguistically oriented. Chapter
5 sits nicely on the fence and forms a bridge into the latter half of the document (chapters

6-7) which are generally more computationally oriented.

The document is organized as follows: chapter 2 discusses prior work in finite-state
natural language processing; chapter 3 contains an overview of what finite-state machines are
and how they work; chapter 4 is a discussion of Cayuga nominal morphology and morpho-
phonology; the 5th chapter describes some linguistic and computational problems arising
from the data discussed in chapter 4. Chapter 6 lays out the requirements for the creation

of the program and describes the tools and data structures used to create it. Chapter 7

LA finite-state machine that recognizes all and only the valid words of a language reports an error on
any word that does not exist in the language and never reports an error for a word that does exist in the
language.

2A finite-state machine can also be set to output all words that it recognizes (footnote 1).

contains a detailed explanation of the program and its components as well as an analysis
of how well the program was able to meet the requirements laid out in chapter 6. Finally,

chapter 8 contains an overview of lessons learned and potential applications for future work.

CHAPTER 2

Prior Work

The applications of FSMs have been an important domain for research in the fields of math-
ematics, computer science and more recently, linguistics. Numerous applications make use of
FSMs to work with a wide variety of languages, from Spanish (Tzoukerman and Liberman,
1990; Tinsley, Accessed: 2007 02 13), to Finnish (Koskenniemi, 1997) to Arabic and Malay
(Beesley and Karttunen, 2000).

Finite-state technology is widely used in the field of NLP (Beesley and Karttunen,
2003: and references; Roche and Schabes, 1997: and references; Mohri, 1997: and references;
Karttunen, 2001: and references), but the focus has been on European languages(Tzoukerman
and Liberman, 1990; Kiraz and Mdbius, 1998), with some attention paid to agglutinating!
languages(Koskenniemi and Church, 1988; Oflazer, 1994), but no attention to highly polysyn-
thetic? languages. I will briefly describe here a few implementations of finite-state technol-
ogy that deal with a variety of languages in order to illustrate the versatility of finite-state

methodology.

1 Agglutinative: “A language in which words typically contain a linear sequence of morphs” (Crystal,
2003:17)

2Polysynthetic: “A language “characterized by morphologically complex long word forms” (Crystal,
2003:359)

2.1 On-Line Spanish Morphological Analyser/Generator

Finite-state methods are ideal for the decomposition and analysis of concatenative® mor-
phology. John Tinsley developed a morphological analyser and generator for Spanish using
XFST (Tinsley, Accessed: 2007 02 13). The machine takes user input in the form of sen-
tences, parses them into single-word tokens using a program called tokenize and analyses

them individually using another program named lookup, then returns the result to the user.

The analyser currently achieves approximately 85% coverage on unrestricted text. The

machine parses each word-form from a lexical form into a surface form as follows:

(1) Lexical: hablar+Verb+PresInd+1P+Sg

Surface: hablo
Tinsley’s model is a good demonstration of how finite-state machines can be applied to
practical applications. The entered word is associated with a set of semantic tags describing
the class of word (noun, verb, etc.) and also its semantic constituents (singular, plural,
present, past etc.) all of this information is then output to the user in an easy to read

manner.

2.2 Templatic Morphology and Reduplication

Initially, it is unclear whether FS technology can handle complex morphosyntactic phe-
nomena such as reduplication and templatic morphology. Recursive processes in natural
languages, such as reduplication, are context sensitive and therefore cannot be generally

represented as finite-state (Chomsky, 1956). However, these non-finite-state aspects of lan-

3Concatenative: “Characterised by the joining together of a linear sequence of morphemes” (Crystal,
2003:93)

guage can be implemented in the finite-state for any specific case of a bounded length. (Frank

and Satta, 1998)

The finite-state framework can not only deal with concatenative morphology but also
complex non-concatenative morphology such as reduplication as found in Malay or tem-
platic morphology as found in Arabic. Compile-replace is a formalism developed by Beesley
and Karttunen (2000:375-420) to handle phenomena such as templatic morphology(2) and
reduplication(3), and is a great example of the versatility and applicability of finite-state

methods to a variety of morphologically complex languages.

In (2) we see an example of templatic morphology in Arabic in which there is a conso-

nantal root template which can take a variety of vowels to convey aspect, voice, etc.

(2) a. k _t _ b -Triliteral Root
b. Ca C a C -Template
c. katab -Surface Representation

The compile-replace formalism makes it possible to create general templates (2-a, 2-b) from
specific words (2-c). The consonantal and vowel templates can be separated by one FST and
then processed by a second FST in order to determine the meaning of the triliteral root and

the meaning of the CaCaC templatic morpheme.

Without compile-replace, reduplication can be difficult to formalise in a traditional finite-
state framework. There are, essentially, two types of reduplication: fixed-length reduplication
in which a constant number of phones or syllables are reduplicated or full-length reduplication

in which an entire morpheme or group of morphemes form is copied.

Fixed-length reduplication is easily formalised by specifying the criteria describing what

must be reduplicated. Full-length reduplication, however, is of variable length and relies

on information that lies in the lexicon (i.e., a stem, or some other morpheme group) of
potentially unbounded length. This means reduplication cannot easily be specified using

only a normal rule-based formalism, since it does not have access to lexical information.

In (3) we see an example of the type of full-stem reduplication that compile-replace can

handle.
(3) a. buku
book
book
b. buku -buku
book -Reduplication (Plural)
books

The programmer can specify “buku” as a stem that may be reduplicated and the compile-
replace algorithm will take such information into account, producing the form in example
(3-b). Compile-replace can also handle less complex types of reduplication such as redupli-
cated prefixes and affixes. One need only specify the sub-lexicon containing the forms that
can undergo reduplication and the rule for processing them and then XFST is able to copy

the form according to the specifications.*

This work demonstrates the finite-state framework’s ability to deal with both concatena-
tive and non-concatenative morphology. The following discussion explains other applications

of the finite-state framework in NLP such as syllabification and spelling correction.

4XFST and the notion of ”sub-lexicon” are detailed in chapter 6.3

2.3 Syllabification

Text to speech (TTS) systems often face the problem of creating a natural intonation contour
and stress pattern in the words they produce. Such patterns are generally based at least
partly upon the syllable structure of the words being spoken. It is therefore often very

desirable to have an algorithm for the syllabification of word-forms.

With these applications in mind, Kiraz and Mobius (1998) created a finite-state ap-
plication in order to syllabify German and English words. For example, the English nouns

below in (4) and (5)° take different syllabifications, affecting the pronunciation:

(4) a. Nightrate

b. [nart’-iet]

(5) a. Nitrate

b. [nar-tzet]

As can be seen in (4)-(5) the different syllabifications affect both the voicing of the [1] and

the release of the [t].

This, particular example, however, could not at first be accounted for using Kiraz et al.’s
syllabification system. Because the two words are underlyingly identical (UR: /nattiet/),
the machine has no way of determining that there is a difference between the two. In
this case, Kiraz et al. were able to encode references to morpheme boundaries as a way
of dealing with this specific problem. By specifically defining a morpheme boundary, the

machine was able to syllabify taking that reference point into account, thereby generating

5From (Kiraz and Mdbius, 1998)

proper syllabifications for most compound nouns. However, Kiraz et al. mention (without
examples) that in some cases even the specific designation of morpheme boundaries was not
sufficient for the machine to determine which syllabification was correct, and so in some

cases the most common syllabification was not always correct.

The Kiraz et al algorithm also used a probabilistic ‘weighting’ method to determine
which syllabification was most likely in a given case. This allowed the machine to run more
quickly (as per the demands of a TTS system), but had the drawback of occasionally pro-
ducing incorrect output if the most common syllabification was not always correct. Despite
these algorithmic drawbacks, Kiraz et al.’s system is a good example of the use of the finite-
state framework for the development of a complex high speed NLP application. A further

example of such an application follows below.

2.4 Spelling Correction

As a back end to future NLP work in Basque, Alegria et al. (2002) created a finite-state
spelling correction program and analyser/generator composed of three separate modules.
This modular approach lends itself well to the finite-state framework, as discussed in more

detail in §3.6.

The first module checks the spelling of a word against the standard Basque spelling. If
unable to find a correct spelling in the first module, the machine then employs the second
module to see if the word conforms to certain dialectal variances or common competence
errors. Finally, should both those options fail, the program accesses a third module that
attempts to guess what form the user was attempting to produce such that it might be
corrected. The advantage of such an approach is that one can implement all three dictionary

types in a single machine. The second and third modules are especially useful for Basque,

9

since there are numerous regional dialectal variances.

Another spell-checking/error-correction system has been developed for Galician (Vilares
et al., 2004), and a system has been developed for Turkish as well (Oflazer, 1994). This wide
variety of languages for which such systems have been developed demonstrates that finite-
state techniques are widely cross-linguistically applicable. Additionally such systems have a,

variety of uses, for example in checking potential mis-spellings in an online dictionary.

2.5 Finite-state Applications to Polysynthetic Languages

One motivation for this project was to attempt to determine if the finite-state framework
would be computationally and practically useful for designing tools for morphologically com-

plex languages.

Most languages for which finite-state approaches have been used are less morphologically
complex than First Nations languages (§2). There are several aspects of First Nations
languages that could cause problems for the finite-state framework and it is necessary to

determine if the framework is computationally adequate for the needs of these languages.

Most Indo-European languages do not have extensive obligatory prefixation, and fur-
thermore only generally allow for a small number of a small set of prefixes to attach to a
word, with very few changes occurring; the same is true of their suffixes. Cayuga words,

however, require a high number of obligatory prefixes and many allomorphic rules.

For example the finite-state analyzer of Spanish applies only 4 replace rules to deal with
changes to the form of noun stems and affixes (Tinsley, Accessed: 2007 02 13). Cayuga, on
the other hand, will minimally require 10. The greater number of morpho-phonological rules

and the need to encode long-distance dependancies are the two primary potential sources of

10

computational complexity facing the design of a finite-state application for a First Nations

language.

As discussed in §2.2, other very morphologically complex languages, such as Arabic and
Malay, have benefited from applications implemented in the finite-state framework (Beesley
and Karttunen, 2003). However, these languages display a different kind of complexity of
morphology from First Nations languages. While reduplication and templatic morphology
are very complex, they are essentially different from the large degree of prefixation, morpho-
logical variation and long-distance dependancy that occur in First Nations languages. The
following chapters demonstrate that despite these differences and challenges, it is generally

plausible to implement polysynthetic morphology in the FS framework.

11

CHAPTER 3

Finite-state machines

Before describing the structure of my program, it is necessary to define finite-state machines

and some of their formal properties.

Abstractly, finite state machines (FSM) are a model of behavior, which is described

as consisting of states, transitions and actions.!

More concretely, they can be viewed as
flexible computer programs that can implement a wide variety of NLP tasks (§2). FSMs
can be broken down into two main sub-categories, the finite-state automata (FSA), and the

finite-state transducers (FSTs). In this chapter I will briefly discuss the properties of both
FSAs and FSTs.

3.1 FSA as a Model of Behaviour

An FSA is the simplest type of FSM, and can be used to model a behaviour. An FSA takes
input from a user, but the only feedback it gives is whether or not the input is valid. It can

also generate a list of all valid input sequences.

Diagrammatically, an FSM is much like a flow chart: one starts at a given point and
moves following the appropriate arrows in a diagram. Each circle is called a ‘state’ (1-a)
(generally denoted with the letter ‘q” and a subscript number). A circle marked with an

arrow represents the initial, or starting, state; and a circle with double lines is a potential

LA full review of basic information on FSMs, can be found in Beesley and Karttunen (2003) and Nederhof
(1996)

12

final state. Each arrow joining two states is called a transition (1-b). Transitions have

conditions (1-c) attached to them that determine which state to move to next.

(1) a. States:

b. Transitions: —

c. Conditions/Actions: “open door”, “close door”, etc.

An action can be performed either upon entering a state, leaving a state or during a tran-
sition. (Wikipedia, 2006; Beesley and Karttunen, 2003; Sproat, 1992). In the following
example I will use the concept of a door, and the user’s input is the action of either opening
or closing the door. The machine shown in (2) can generate a list of all valid sequences of

opening and closing the door.

(2) An FSA representing the use of a door (Wikipedia, Accessed: 2006 03 24)?

Close Door

Closed, q,

From the ‘open’ state the door can be ‘closed’ by performing the ‘close door’ action and
following the topmost arrow to the ‘closed’ state. Or, if there are no more actions, then the
machine stops since ‘open’ is a valid final state. If the machine moves to the ‘closed’ state,
it can either stop if there are no further actions, or it can perform the ‘open door’ action to

move once more into the ‘open’ state.

However, if one were to try to tell the machine to close the door from the closed state,

2This example from Wikipedia was used because of its simplicity and clarity. More complex examples
can be found in (Beesley and Karttunen, 2003), (Sproat, 1992) and elsewhere in this document.

13

there would be an error because the ‘close’ action flows into the ‘closed’ state, not out from
it. The machine can stop running when it reaches either final state, or it can continue
indefinitely so long as the actions being performed are a series of alternating openings and

closings.

3.2 FSA as Linguistic Model

FSAs can also model linguistic behaviour, by treating transitions as symbols, with all possible
paths through an F'SA defining a ‘language’. A formal language means merely the collection
of strings® that the FSA will recognize and generate. Suppose we have a language; “Splort”;

with only four words, as defined below:

(3) Language ‘Splort’:

a. Cat
b. Cats
c. Cart
d. Carts

This language can be expressed by the following FSA:

(4)

()-()-~()

The automaton diagrammed in (4) can both recognize and generate all the strings in the

language Splort. If the FSM were to generate all words it would generate each possible word

3 A string is a linear sequence of symbols (words, phones, morphs, graphs, or even features can all be viewed
as symbols) that can be recognized by the machine, where each symbol is an indivisible unit. Symbols are
defined within an FSM, such that one machine make take words to be indivisble symbols and another letters.
In the context of my program letters can be accepted as the basic symbols along with a few diacritics to
mark morpheme and word boundaries.

14

in sequence. For example, starting in state qi, the only possible option for the first output

symbol is ‘c’. Once the machine has output ‘c’ it moves to state qs.

From gy the machine will have no choice but to output ‘a’ and move to q3. At gz,
however, the machine will have to choose between moving to q4 and outputting ‘r’, or g5 and
outputting ‘t’. If the machine moved to g5 it could stop there and go back to q; to output
another word, or it could continue on to gg and output ‘s’. If the machine moved to q4, on
the other hand, it would have to continue on at least until qs before stopping. Once it was
done outputting one form, it would then move on to another until all possible paths through

the machine had been completed.

The automaton can also check if a given word exists in the language by comparing the
first symbol (letter) in a candidate word against all possible transitions from the start state
qi. If there is a transition whose condition matches the first letter from the given word, the
automaton would move on to the state joined by that transition (qs) and for a transition
whose condition matches the next symbol in the word. If, however, there are no transitions
matching the next letter, or if the automaton runs out of letters while in a non-final state,
then the automaton can tell us that the given word does not exist in the language. If
for example, we wished to test that the word ‘can’ is in the language “Splort” using (4),
the machine would arrive at state g3, but it would then report an error, since there is no
transition with the condition ‘n’ attached to it leading out of qz. Similarly, the word ‘car’

would also fail, because g4 is a non-final state, so ‘car’ is not a word that exists in “Splort”.

An FSA can both recognize and generate a language that consists of any number of
strings. Finite-state Transducers, described below, are even more powerful: they are able to

represent the relationship between two languages.

3.3 Finite-state Transducers

A more complex type of FSM is the finite-state transducer (FST). An FST not only generates
and recognizes valid strings from a language, but also generates output. It maps the relation
between two strings (or languages) by allowing one to convert one string (or language)
into another (Beesley and Karttunen, 2003; Nederhof, 1996; Sproat, 1992). This model can
implement transformational rules that convert an underlying form into a surface form and

vice-versa.

15

Example (5) diagrams an FST which converts between underlying and surface forms,

modeling allomorphy.

(5) An FST transducing UR to SR for cat(s) and car(s):

o
~0—

In the FST formalism, all characters that appear above a transition line are part of

one language, often referred to as the “input language”, while those below the line are
their counterparts in the so-called “output language”. The FST in (5) translates between
the underlying representation and the pronunciation by applying the rules for plural suffix
allophones (ie: devoicing [z] following a voiceless obstruent). If the above machine were to
be fed the string [keetz] it would output [keets]. Conversely it would also be able to output
[keetz] as the UR form if it were given [keets] as the SR. This is due to the property of

bidirectionality, described below.

3.4 Bidirectionality

All FSTs, are actually bidirectional. This means that they can be run just easily “backwards”
as “forwards”. This distinction does not mean running from a final state to a start state,
but instead it means generating an ‘input’ from an ‘output’. The labels ‘input’ and ‘ouput’
are really only useful for distinguishing which specific language one is working with in the

context of a given FST.

Bidirectionality is useful because the machines created are able to fulfill the roles of
(a) generator/recognizer of ‘input’ forms, (b) generator/recognizor of ‘output’ forms, (c)
translator between ‘input’ and ‘output’ forms and, (d) generator/recognizer of input-output
form pairs. In the case of (a), the machine just ignores the ”upper” transition labels, acting
like an FSM. For (b) it does the same but in reverse, ignoring the ”lower” transition labels.
To account for (¢) the machine follows the ”upper” or "lower” path and outputs the symbols

on the other side of the transition. For (d) the machine outputs both symbols on each

16

transition as it follows the path.

One could take a collection of underlying morphemes and use them to generate the
surface forms, and with the same FST then take the surface forms and break them down
into their constituent parts again. All FSTs described in §2 are bidirectional. For example,
the German/English syllabification system described in 2.3 could de-syllabify words as well
as syllabify them.

The bidirectional properties of F'S machines greatly increases their usefulness and ap-
plicability to NLP. The specific applications of bidirectionality will be discussed in greater
detail in chapter 6.

3.5 Composition

Up until now, I have discussed FSTs as individual discrete units. Here I will explain the
composition operation that allows multiple small FSTs to be used as component parts of a
single larger FST. Any two FSTs can be joined together into a single FST by composition
(Kaplan and Kay, 1994). Composition allows us to initially declare two rules, for example,
a—c¢ and c¢—g and then morph them into a single rule: a—g. This only works when the
output side of the first machine is identical to a valid input form of the second machine.
Where there is such an occurrence the original output of the first machine is replaced with

the output of the second machine.

Example (6) encodes a concatenation of symbols as a transducer where the UR and
SR are identical. Example (7) encodes a rule that defines a morpho-phonological change.
Example (8), discussed later, is the product of the composition of (6) and (7), a machine

that encodes the relationship between differing URs and their SRs.

17

)
(WD

Composition works not only on single rules but also on entire FSTs; allowing us to join
them together with rules. In order to compose the two transducers defined in (6) and (7)
all one needs to do is look for an output sequence from (6) that is identical to the input
sequence of (7) (tz). That output sequence ((6): q3 — q5 — qg) is then replaced with the
output from (7) (q1 — g2 — qs: ts):

(8)

We can see now in (8) that the output for q3 — q¢ has changed to match the output
from (7).

The process of composition means that we can separately formulate all the rules that
we wish to implement, and then compose them together to create a final product. If we
determine that a rule is mis-ordered or unnecessary, it can be moved or changed and then we
can re-compose the rules. This mechanism emulates the sort of cascading or ordered rules

commonly used to define morpho-phonological alternations.

Composition means that FSTs are almost infinitely expandable, as long as we stay
within the bounds of disk space and processing power. Some examples of the power of FSTs
were described above (chapter 2) including Alegria et al.’s (2002) spelling correction system,
demonstrating the power of modularity in FSTs by being constructed of three separate

modules composed together as one.

The drawback to composition is that can cause an FST to become very complex. The

18

un-minimized product of the composition of two FSTs has a number of states equal to the
number of states of each original machine multiplied together. In some cases few of these
extra state are redundant and cannot be removed, potentially allowing machine size to double
with each composition.(Kaplan and Kay, 1994) If we are constantly replacing a rather simple
group of states and transitions with a much more complex group, it is easy to imagine how

complexity can be introduced rather quickly.

3.6 Modularity

A final property of F'S machines is that of modularity. When creating a finite-state machine to
recognize and generate valid words in a language, it is common practice to create a number of
separate finite-state machines that each shoulder some small part of the burden of recognition
and generation and join them together into a single final product using composition. This
concept is known as “modularity” (Beesley and Karttunen, 2003:284). Broadly, it is possible
to look at two main modules for most finite-state implementations of morphological parsers:

the lexicon module, and the rules module.

The lexicon module is essentially a representation of the mental lexicon of underlying
root forms and affixes, with as little redundancy included as possible. As few semantically
equivalent allophones were included as possible. The idea is to not represent any regular
phonological alternations, in order to reduce the storage of redundant forms in the lexicon.
This module contains a description of which morphemes are valid in the language, and to

which other morphemes they can join, and under what conditions.

The rules module can be viewed as the sum of several separate transducers, each of
which represents some sort regular alternation in the language. For example, one rule might
be /s/ — [z] / Cua- (as in (5)). By then joining these rules and the lexicon, a final machine
is created which can join morphemes together and apply any applicable alternation rules to

those joined morphemes.

Polysynthetic First Nations languages may require either more complex lexicon modules,
or more complex operators for implementing some morpho-phonological rules than have been
used with other languages. There is also some question of how much of the alternation
should be viewed as a result of morpho-phonological rule derivations and how much should

be viewed as lexical (see §6.1.1.1). I will attempt to discuss those parts of Cayuga that may

19

cause problems for either the lexicon module or the rules module, given current methodology
for implementing those modules. The following chapter contains the Cayuga data which
was implemented in my program as well as a description of its morphology and morpho-

phonological processes.

20

CHAPTER 4

The Cayuga Language

Cayuga is an Iroquoian language, closely related to Oneida, Seneca and Mohawk. Tradition-
ally, the Cayuga and Seneca peoples lived in modern day Cayuga County, New York, but
they have since relocated and Cayuga is currently spoken by approximately 100 people at Six
Nations (Froman et al., 2002). Cayuga is a polysynthetic language, characterized by “mor-
phologically complex, long word-forms” (Crystal, 2003:359). Combining affixes and roots
often results in morphophonemic changes, making the final word difficult to decompose, and
the stem hard to identify even for native speakers. If one cannot identify the stem, then it

becomes impossible to search for a stem in a dictionary.

Given that Cayuga has numerous obligatory prefixes, there are too many forms to
feasibly list in a dictionary. For this reason, dictionaries are organised by stems, or using
a designated type of citation form. This means that a program that segments word-forms
automatically would be invaluable in that it would make Iroquoian dictionaries accessible
for everyone; the machine could determine the stem and prefix and look them up for the
user. As it stands, there are a variety of ways to encode dictionaries for obligatorily prefixing

polysynthetic languages but they are neither simple nor concise (See §5.1).

As a subset of the words of Cayuga the nouns are less complex than verbs, especially
when considering that verbs can incorporate nouns. Despite being less complex, they are
still rather complex relative to most common Indo-Furopean languages and demonstrate
important characteristics of Cayuga words in general, like obligatory prefixation. This com-
bination of general complexity, yet relative simplicity compared to Cayuga verbs makes the
nouns an ideal place to start work on the morphological parsing and segmentation of Cayuga

words using FSTs.

This chapter will briefly discuss the orthography and spelling conventions of Cayuga,
followed by a description of the morphology of the four classes of nouns that are treated by
the program and a brief discussion of some of the morpho-phonological processes undergone

by Cayuga nouns.

21

4.1 Orthography

There exist two commonly used orthographies for Cayuga: the standard Henry Orthography
and the linguistic orthography. The sound-to-symbol combinations for each are described in

table 4.1 below. The primary dissimilarities lie in the representation of the plosives and the

affricates.
Table 4.1: Phonemic Inventory and Spellings
Phonetic Henry | Linguistic Phonetic Henry | Linguistic
Realizations | Orth. Orth. Realizations | Orth. Orth.

[d,t] d t [1] i i
[th] t th [a] a a
[ds, &, ts,]] ts, tsy [e] e e
[tsh] ts tsh [o] 0 0
[g k| 8 k [u] u u
[s] s 5 [€] ¢ ¢
[n] n n [0] 0 0

[r] r r

h | h h

2] 5 3

For this project I have used a modified orthography to represent surface forms of words
rather than either of the standards. The standard orthographies represent several predictable

processes, including accent placement, and laryngeal metathesis.!

Table 4.2 demonstrates some of the differences between the orthographies. Note that

the unmodified orthography essentially omits diacritics.

The advantage of such a modified orthography is that it allows me to focus on implement-
ing the morpho-phonemic rules component, without needing to worry about processes such
as accent placement and laryngeal metathesis. The accent placement rule, despite being
predictable, is rather complex, and is not relevant within the scope of this project. Fur-

thermore, an implementation of laryngeal metathesis would require a working stress accent

1The unmodified Henry orthography and the linguistic orthography use diacritics and spelling metathesis
to encode LM. LM is not actually an instance of metathesis; it is a process of coalescence which affects
metrically weak syllables.

22

Table 4.2: Alternate Orthographies

Modified Representation | henahsi'da’geh | sahsi’da’geh
Henry Orthography henahs'ida’geh | sahsi'd’ageh
Linguistic Orthography | henahs'itd’keh | sahsi't’ageh

placement algorithm which in turn requires a syllabification algorithm, including a means
of syllable counting. The drawback to using a modified orthography such as this, however,
is that it means that users will not be able to type words directly into this version of the
machine since the spelling will differ from the standard spelling. At a later date, however,
it is entirely feasible to create modules which translate to/from the modified representation

into (a) the actual Henry orthography, or (b) the Linguistic orthography and vice versa.

4.2 Morphology of Cayuga Nouns

This discussion of the morphology of Cayuga is based on data from (Froman et al., 2002). The
nouns of Cayuga can be divided into five basic classes or types of nouns: defective nouns,
basic or “regular” nouns, inalienably possessed nouns, de-verbal nouns and instrumental

l'lOIlIlS.2

4.2.1 Defective Nouns

The simplest of the nouns are the defective nouns, which have no internal morphological
structure. They do not take the regular affixes of other nouns as described below; instead

they are composed of single lexicalised chunk:

(1) gwisgwis®

pig
pig

?Instrumental nouns display near identical properties to the de-verbal nouns and will therefore not be
treated by this project.
3Not all defective nouns are apparent reduplicated forms e.g., tehto’(ground hog, woodchuck, gopher)

23

These nouns are computationally the simplest because they can each be stored as a single
unit with no need for the finite-state transducer? to try to segment them. They are also the
most accessible for users of traditional dictionaries since their meanings are invariable and

they have no root form or alternate prefixes and are therefore easily located in a dictionary.

4.2.2 Basic Nouns

Basic nouns in Cayuga can take one of two forms; either possessed or unpossessed. All basic
nouns consist of a prefix, a noun stem and a noun stem former. The prefix varies depending

on whether the noun is possessed or not, and the type of the noun.

Unpossessed Basic Nouns

As described in example (2) below, unpossesssed basic nouns take either ga-, o- or a- as

their prefix. The choice between the three prefixes is arbitrary and must be learned by the

speakers.
ga- (3znA)

(2) ¢ o- (3znP) + noun stem +a’ (NSF)
a- (3znA)

Example (3) gives a representative sample of nouns stems taking each of the three unpos-

sessed prefixes.

(3) Sample Basic Nouns - Unpossessed

a. ga+ 'wahsa: +a'
3znA earring NSF
earring(s)

b. o+ "nhohs +a’
3znP egg NSF
egg(s)

4See §3.3 for more info on FSTs

24

¢. a+ ahdahditr +a’
3znA sock NSF
sock(s)

Some basic nouns have a choice to take either ga- or o- in their unpossessed form such as

the word for in example (4-a):

(4) a. ga- jihoha: -a’
3znA- straight pin(s) -NSF
straight pin(s)

b. o- jihoha: -a’
3znP- straight pin(s) -NSF
stratght pin(s)

Similarly, some basic nouns have the option to drop the 3znP prefix o as in example (5)

(5) a. ohgna'da’
potato(es)

b. hona'da’
potato(es)

Possessed Basic Nouns

The possessed basic nouns take one of 12 prefixes called ‘patient prefixes’ that denote the
gender, number and person of the possessor(s). All basic nouns take the same noun stem

forming suffix -a". Possessed basic nouns have the form described in example (6-a):

(6) a. Patient Prefix+ noun stem +a' (NSF)

b. age+ tsgo'd +a’
1sP balsam fir NSF
my balsam fir

25

c. okni+ tsgo'd +a'
1dP balsam fir NSF
our (dual) balsam fir

In examples (6-b) and (6-¢) the noun stem begins with a sequence of characters that matches
the “elsewhere” column in table 4.3. Therefore it attaches prefixes such as age- or yokni-

from that column.

Prefixes undergo both morpheme-initial and morpheme-final alternations, resulting in a
great deal of allomorphy. The morpheme-final alternations are dependant upon the following
stem-initial phones (as shown in tables 4.3 and 4.4). Depending on the final phones of the
prefix and the initial phones of the stem, phones from either the stem or the prefix may be
deleted or altered.

Table 4.3: Basic Nouns Patient Prefix Allomorphs - C-stems

| Gloss [Prefix UR L’CV | hV ’ hCV [nV |r | y/w | Elsewhere® |
1sP (w)ag+ ag- ak-* | age- | ak- ag- ag- age-

1dP (y)okni+ okni- | okni- | okni- | okni- | okni- | okni- | okni-
1pP (y)ogwa+ OgWa- | QgWa- | QgWa- | QgWa-~ | Qgwa- | Qgwa- | ogwa-

2sP sa+ sa- sa- sa- sa- sa- sa- sa-
2dP sni+ sni- sni- sni- sni- sni- sni- sni-
2pP swa+ swa- | swa- |swa- |swa- |swa- |swa- | swa-
3msP ho+ ho- ho- ho- ho- ho- ho- ho-
3fisP (ya)go+ go- go- go- go- go- go- go-
3znsP | (y)o+ o- o- o- o- o- o- o-
3mdpP | hodi+ hodi- | hodi- | hodi- | hodi- | hodi- | hodi- | hodi-

3fidpP | (va)godi+ | godi- | godi- | godi- | godi- | godi- | godi- | godi-
3zndpP | (y)odi+ odi- |odi- |odi- |odi- |odi- |odi- | odi-

5The C-stem conditioning environments listed here (as well as for inalienable nouns below) are partial.
For discussion of why this is the case, please see §7.2.1
6An * indicates that the first segment of the stem is deleted

26

Table 4.4: Basic Nouns Patient Prefix Allomorphs - V-stems

[Gloss [Prefix UR[1__ |a |e/e |o/o |

1sP (w)ag+ ag- ag- | ag- | ag-
1dP (y)okni-+ okn- ogy- | okn- | okn-
1pP (v)ogwa+ | ogwe-* | ogw- | 0gw- | 0gy-
2sP sa+ se-* s-a | s- s-
2dP sni+ sn- j- sn- sn-
2pP swa+ swe-* | sw- | sw- |-
3msP | ho+ ho-* ho-* | haw- | h-
3fisP (ya)go+ go-* go-* | gaw- | g-
3znsP | (y)o+ o-* o-* |aw- |-
3mdpP | hodi+ hod- hon- | hon- | hon-
3fidpP | (ya)godi+ | god- gon- | gon- | gon-
3zndpP | (y)odi+ od- on- |on- |on-

The obligatory prefixation of the basic nouns, both possessed and unpossessed, can
obscure the initial vowel segment of the noun stem. This means that these stems can be
very difficult to locate in a dictionary. For example, when combined with the first person
possessive prefix, the noun stem for ‘egg’ loses the glottal stop: [aknhghsa’]. If naive speakers
were trying to look for the root in the dictionary, they might well search for a root looking
like [-nhohs-] rather than [-"nhghs-], assuming that they were even able to recognize that

there were in fact two entities, the stem and the prefix.

In contrast to the prefix-final alternations, the prefix-initial alternations exist because of
certain ‘deleting phones’ that are deleted word-initially. Example (7) below gives an example
of a prefix in a position where its initial [y] is deleted (7-a) and in a position where the initial

[y] remains intact (7-b).

(7) a. SR: o- "nhohs +a’
UR: (y)o+ "nhohsa’
3znP+ egg + NSF eggs(s)
b. SR: de- yo- "nhohs +a:ge:
UR: de+ (y)o+ mhohs +age:
dualic+ 3znP+ egg +more-than-2 two eggs

27

The prefix-initial and prefix-final allomorphy described above is true of all pronominal prefix

types including not only basic noun prefixes, but also inalienable noun and verbal prefixes.

4.2.3 Inalienably Possessed Nouns (Body Part Nouns)

Inalienably possessed nouns occur in three forms, a normal possessed form, a basic noun
type of unpossessed form and a lexicalised unpossessed form that occurs only rarely and is

idiomatic.

Possessed Inalienables

The structure of the inalienable nouns is similar to that of the possessed basic noun. In-
alienable nouns take an obligatory prefix denoting the gender and person of the possessor,
and an obligatory locative suffix. Rather than take patient prefixes, as the basic nouns do,
they instead take one of 14 agent prefixes (see table 4.5). Example (8) below illustrates the

structure of possessed inalienable nouns:

(8) Agent Prefix+ inalienable noun stem +a'geh (locative suffix meaning ‘on’)

Example (9) gives two examples of inalienably possessed nouns:

(9) Inalienably Possessed Nouns (Body Parts)

a. s+ nets +a’'geh
2sA arm on
(on) your (sg) arm
b. e+ nets +a'geh
3f(i)A arm on
(on) her arm

Agent prefixes display the same two types of allomorphy as described above for the

possessed basic noun patient prefixes, including deletion of word-initial segments and prefix-

28

Table 4.5: Inalienably Possessed Noun Agent Prefix Allomorphs - C-Stems

] Gloss | Prefix UR "CV ThV ‘ hCV] nV | r | y/wW | Elsewhere |
1sA g+ k-* k-* k-* k- g- g- ge-
lidA (e)kni+ kni- | kni- | kni- | kni- | kni- | kni- | kni-
lidA (e)tni+ tni- | tni- | tni- | tni- | tni- | tni- | tni-
ledA (y)akni+ akni- | akni- | akni- | akni- | akni- | akni- | akni-
lipA (e)dwa+ dwa- |dwa- | dwa- | dwa- |dwa- | dwa- | dwa-
lepA (y)agwa+ agwa- | agwa- | agwa- | agwa- | agwa- | agwa- | agwa-
2sA (h)s+ se- s-* se- s- s- s- se-
2dA (h)sni+ sni- sni- sni- sni- sni- sni- sni-
2pA (h)swa-+ swa- | swa- |swa- |swa- |swa- |swa- |swa-
3msA ha+ ha- ha- ha- ha- ha- ha- ha-
3f(i)A (V)o/e/e/ag]+ | e- e- e- e- e- e- e-
3znsA ga/(y)/w+ ga- ga- ga- ga- ga- ga- ga-
3mdpA | hadi+ hadi- | hadi- | hadi- | hadi- | hadi- | hadi- | hadi-
3f(i)dpA | gag/gae/ga:g+ | gae- | gae- | gae- | gae- | gae- | gae- | gae-
3zndpA | gadi+ gadi- | gadi- | gadi- | gadi- | gadi- | gadi- | gadi-

Table 4.6: Inalienably Possessed Noun Agent Prefix Allomorphs - V-Stems

| Gloss | Prefix UR |i | a le/e [o/o |

1sA g+ g g g g
lidA (e)kni+ kn- gy- kn- | kn-
1lidA (e)tni+ tn- gy- | tn- | tn-
ledA (y)akni+ akn- | agya- | akn- | akn-
1lipA (e)dwa+ dwe- | dw- | dw- | gy-
lepA (v)agwa+ agwe- | agw- | agw- | agy-
2sA (eh)s+ s- 8 s- s
2dA (eh)sni+ sn- j- sn- | sn-
2pA (eh)swa+ swe-* | sw- | sw- | sW-
3msA ha+ he-* | h- h- h-
WA | (v)lo/e/e/agl+ | ¢* | o* |ag- |ag
3znsA ga/(y)/w+ ge- w- W- 3~
3mdpA | hadi+ had- | hen- | hen- | hen-
3f(i)dpA | gag/gae/ga:g+ | gae- | gap-* | gag- | ga:g-
3zndpA | gadi+ gad- | gen- | gen- | gen-

29

final/stem-initial alternation and deletion processes. In (9) the stem begins with ne which
fits the nV template in tables 4.5 and 4.6. In order to find the appropriate prefix form
merely cross-reference the prefix type with the nV column in table 4.5 to determine the

appropriate form of the prefix.

From tables 4.5 and 4.6 we see that there are two kinds of prefixes. Most have ob-

viously related allomorphs, but some others have lexicalised prefix allomorphs. The 3fiA

((v)o /(y)e/(y)e/(y)ag), 3AdPA (gag/gae/ga:g) and 3znsA (ga/(y)/w) prefixes each have
allomorphs that are historically unrelated, and cannot be derived using morpho-phonological

rules; therefore each UR would be listed separately in a dictionary.

‘Basic’ Unpossessed Body Parts

Inalienable nouns can appear in basic noun form taking the 3znP prefix o- and having a

“detached” meaning (Froman et al., 2002). These nouns are structured as in example (10):

(10) a. o+ inalienable noun root +a’

b. o~ nga:-a'
3znP head NSF
A (detached) head

These formations are considered semantically odd, except when used in compounds as in

example (11):

(11) gwisgwis ong'a:”

pig head

Lexicalised Unpossessed Body Parts

Inalienable nouns may also occasionally appear in forms that take the 3znA prefix ga-
and have a lexicalised meaning as in (12-a). For comparison, see (12-b) which shows the

corresponding inalienable possessed noun.

30

(12) a. ga- yad -a
3znA body NSF
doll (basic noun)

b. g yad -a'geh
1sA body NSF
on my body (inalienable body part)

4.2.4 De-verbal Nouns

The de-verbal nouns are formed by a nominal prefix, a verb root, a nominalizing suffix and
a noun stem former. Essentially, the unit composed of verb stem plus nominalizing suffix

acts exactly as the basic nouns described earlier.

(13) De-verbal Nouns
Prefix+ Verb stem +Nominalizing Suffix +NSF

a. ga+ tki Jtr +a’
3znA ugly Nominalizer NSF
‘junk’ - (to be ugly)

b. o+ ye +hsr +a’
3znP lie.on.the.ground Nominalizer NSF
‘blanket’ - (to be lying on the ground)

The choice of nominalizing suffix is unpredictable, so it seems reasonable to treat these forms
separately from actual nominal morphology. By this I mean that I will not be decomposing
the derivational morphology within the de-verbal nouns, and I will be treating the combina-
tion of verb-stem + nominalizer as a regular nominal root that is not decomposed (-yehsr-
& -tkihsr- would each be considered a single unit in my system and act as a regular nominal
root) (See §7.1). It would, however, be possible to replace such non-decomposed forms in the

future with a module that correctly decomposes verbs and their derivational morphology.

31

4.3 Overview of Cayuga Morpho-phonological Variation

As has been alluded to in this chapter already, Cayuga words undergo a great deal of change
when moving from the abstract underlying form to the surface form or vice versa. The
morpho-phonological rules required to make these changes are listed fully in Appendix C,

but I will briefly discuss a subset of them here.

A major feature of both Cayuga and other [roquoian languages is a set of vowel hierarchy
deletion rules (Hopkins, 1989). Vowels in these languages are ranked on a “strength hierar-
chy” according to which vowels are deleted when adjacent to a weaker vowel at morpheme

boundaries.

(14) a. 9g>o0>e>e>a>i

b. UR: gag+ ahohd +a’'geh
SR: gag- hohd -a'geh

Example (14-a) describes the vowel hierarchy and (14-b) gives an example of a deletion
caused by the hierarchy. As is clear from the example, this can easily cause the initial vowel

of the stem or the final vowel of a prefix to be obscured.

There are two other additional rules which state that /w/ — [y] preceding [o, ¢] and
that /d/ — [g] preceding [y]. These two rules, in addition to the vowel strength deletion

rules can all apply to a single prefix+stem combination; as shown in table 4.7.

Table 4.7: Multiple Rule Applications

UR: (e)dwa-+ots+a'geh
Hierachy deletions: | (e)dw+ots+a'geh
[w/ — [yl (e)dy+ots+a'geh
/d/ — g]: (e)gy+ots+a'geh
Other Rules—SR: gyotsa'geh

Here three rules have applied to a single prefix, rendering it almost completely opaque.
One can easily imagine that in cases of multiple prefixes, even more rules could apply to a

single word. Other First Nations languages, especially those in the Athapaskan family, which

32

have very high numbers of prefixes, can undergo an even greater number of rule applications
to a single word form, producing even more variation and opacity. Implementing an FSM for
Cayuga should thus demonstrate the general applicability of the FST's to other polysynthetic

languages.

4.4 Implications of the Data

The morphology and morpho-phonology of Cayuga nouns is quite complex, as has been
shown from the brief overview contained in this chapter. Not only are there four types of
nouns, but there are two important issues with the basic and inalienable nouns: firstly the
number of possessive prefixes each basic or inalienable noun stem may take, and secondly

the number allomorphs for each prefix.

This second problem can be addressed in two ways. It is possible to assume that speakers
have learned a small set of abstract prefix morphemes and an extensive set of rules to derive
the actual spoken forms of those prefixes. It is also possible, however, to instead assume a
more limited set of rules and a much larger set of prefix morphemes listed in the lexicon that

more concretely resemble the spoken form.

The implementation of both an abstract (rule-based) approach to the segmentation of
Cayuga nouns as well as a more concrete (lexical) approach will be discussed in greater detail
in 6.1.1.2. The following chapter will discuss in greater detail the implications of Cayuga for

the development of dictionaries and the development in the finite-state framework.

33

CHAPTER 5

Issues in Implementation

The structure of Cayuga nouns raises two types of problems. The first and most important
problem is that of dictionary access. Given the quantity of variation that occurs within pre-
fixes and stems of Cayuga, it is difficult to learn to use a dictionary for Cayuga. Although
this program is a direct implementation of the linguistic description it is also a computer
program and the constraints of processing power and hard drive space entail that some
potential problems ought to be avoided : non-determinism, and long-distance depen-
dancies. These two computational problems will be discussed following a discussion of the

linguistic problem of dictionary access.

5.1 Dictionary Access

There have long been problems regarding dictionary access for speakers of obligatorily pre-
fixing languages, especially polysynthetic languages such as Iroquoian and Athapaskan lan-
guages. Because these languages prefix obligatorily and undergo a high degree of morpho-
phonological variation at prefix boundaries it can be difficult for speakers to properly segment
morphemes in order to find them in a standard dictionary. Example (1) presents a sample
of the difficulties that might arise.

(1) a. UR: hadi+ihn+a’geh
SR: hadi-hn-a’geh
(on) their (male) skin
b. UR: hadi+-ahghd+a’geh
SR: hen-ahghd-a’geh
(on) their (male) ears

In (1-a) the underlying form of the prefix (hadi+) is clearly related to the surface pronunci-

ation (hadi+). However, in (1-b) the surface and underlying forms for the same prefix are

34

different (hadi+ vs. hgn+).

The problem of dictionary access is not a new one. To date there are essentially two
types of paper dictionaries for highly prefixing languages such as Cayuga: “base dictionaries”

and “root dictionaries” (Foster et al., 1991).

A “base dictionary” is a dictionary in which forms are organized by meaning. A base is
defined as stem or combination of stem plus affix(es) that has an at least partly lexicalised
meaning. Morphologically related forms are related by cross-references. This is in contrast to
the stem dictionaries in which forms are related by morphology. Such dictionaries are similar
to traditional Indo-European dictionaries, but include rules for deriving related forms. Unlike

European dictionaries, however, citation forms are not necessarily whole words.

The drawback to both of these approaches is that they require users to look up forms
which lack the obligatory prefixes. This requires that the user be able to perform some

amount of segmentation, in order to use the dictionary.

For some polysynthetic languages, this is not an issue. For example, because the morpho-
phonology of Algonquian prefixes is generally straightforward, it is not too difficult to orga-
nize a traditional dictionary that is easily usable. Often, stems can just be listed without
affixes; prefixation is not obligatory in some forms. Another alternative, as in (MacKenzie

and Jancewicz, 1994), is to choose a specific prefix and list all verbs with that prefix.

In example (2) we see how the initial 'mu’ was used to standardise the entries in the

Innu dictionary.

(2) An example of a stem dictionary entry (MacKenzie and Jancewicz, 1994:p. 39):
AnL<e

munpimanhaaw VTA
she/he feeds him/her grease
il lui fait manger de la graisse

AnLe

mupimaaw VAL
she/he cats grease
il mange de la graisse

AASDEP

muupistuwanw
shefhe visits himfher
il lui rend visite

VTA

35

Slightly more complex languages, such as Oneida or Cayuga, however, pose a greater problem
to the user. There are often a large number of forms whose semantic meaning is unpredictable
directly from their morphology and these need to be listed separately. Michelson and Doxta-
tor (2002), to alleviate this problem have used the base approach to dictionary construction,

to group semantically related items together.!

In example (3) we see how a single base is listed along with several varieties of forms

related to that base as well as its component parts.

(3) An example of a base dictionary entry of a verb (Michelson and Doxtator, 2002:p. 465):

-ka’tatye- v.m. have a lot of while
going along. With t- cislocative:
tyakoka?tdti? she had a lot of things
with her there. With n- partitive:
niswakka?titi? 1 have so much with
me as I'm going along. With -khw-
food, and nis- partitive and repet-
itive: nitsyuknikhwaka?tdti? we
two have all this food along with us
again. With -hle’n- bundle, and nis-
partitive and repetitive:
nitsyakohle >naka?tdti? she has such
a bundle along with her again. With
-itsy- fish, and n- partitive:
nisatsyaka?tdti? what a lot of fish
you have got with you,
nihotsyaka?titi? he has such a lot of
fish with him. With -yat- wood,
cord of wood: loyataka?titi? he has
a lot of wood with him.

o Né- s thikA na Ashlawe?
loyataka?tdti? a?¢é- nihohlé-na?
thikA. When he gets home he has a
lot of wood with him, a great big
bundle of it. {G1)

COMPOSED OF: -ka’t(e)- be or have a
lot of, -tye- progressive.

NOTE: Many speakers have
-ka’tati- before a final ?.

IIn the finite-state approach the semantics of lexicalised forms must also be listed separately. This is
straightforward to accomplish so there is no particular gain or loss with respect to this problem and the F'S
framework.

36

(4) An example of a base dictionary entry of a noun (Michelson and Doxtator, 2002:p. 465):

ka?nhehsatAsha V > N silk, taffeta.
NOTE: A slightly different form,

ka?nheksatdsha, is also attested. It
has been suggested that
ka?nhehsatAsha refers to silk, while
ka?nheksatAsha refers to taffeta.
Both forms include the ka- neuter
agent prefix, the noun base -?nheks-/
-’nhehs- ribbon, strap, and the verb
base -tas- be thick; but it's not clear
what the final -ha is.

Unfortunately, this approach does not alleviate a second and equally important problem: that
of how to appropriately list forms in a logical, accessible manner such that users can easily
find a written entry from a spoken form. When Michelson and Doxtator (2002) compiled
their dictionary of Oneida, a hybrid approach was used with nouns listed as whole words
(including obligatory pronominal prefixes such as ‘ka’ in exaple (4)) and verbs were listed
without the obligatory prefixes such that morphologically related forms would be grouped
together. Compare examples (3) and (4) to see the difference in noun and verb listings. In

contrast the Cayuga dictionary of Froman et al. (2002) lists all forms without prefixes.

Neither of these approaches is superior to the other; both present considerable usage
difficulties. If users wish to look up a word in a whole word dictionary they must first know
the conventions used to prefix each type of word (e.g., basic nouns are prefixed with the
appropriate 3zn prefix (‘ga’, ‘o’ or ‘a’) but inalienable nouns with the 1sP prefix (‘ak’, ‘age’,
or ‘ag’). Second, they must know the correct form of the prefix for the word that they wish
to look up. In the case of a dictionary listing bare stems, users must know the form of the
bare stem to be looked up: they must be able to properly segment the word. So either the
users must know enough about the grammatical parts of speech to know how to determine
the proper prefix for whole word forms or they must have a thorough knowledge of how to

segment their language.

Unfortunately, speakers of a language often do not have conscious access to the underly-
ing forms of morphemes. Mithun (1979) notes that in Mohawk, speakers cannot distinguish
between epenthetic stem-initial ‘¢’ and underlying stem-initial ‘e’. If speakers cannot deter-
mine an epenthetic stem-initial sound, they may misconstrue the apparent stem they heard

and be unable to look it up. Alternately, a stem-initial sound could have been deleted (de-

37

pending on the form that the user heard), and again they would have difficulty locating the

form.

Often dictionaries are required to contain rather detailed explanations of the morphology
of the language in order for users to be able to access them properly and even then they
are still quite complex. For example, see (Froman et al., 2002:pp. xvi-xxxix, §8.2-8.3). This
is a major barrier to the usability of dictionaries for these languages. The problems are
only compounded when dealing with Athapaskan languages which tend have an even greater
number of prefixes (Young and Morgan, 1987).

A finite-state application with a simple interface consisting of a web-based form would
make dictionaries easily accessible to all speakers. One would need only type a word into the
form to access its morphology and semantics and not have to learn the morpho-phonology

of the language.?

5.2 Computational Problems

Some problems have, in the past, been considered non-computable in the finite-state. Re-
cently work-arounds have been developed that solve some of these problems. Unfortunately,

such solutions introduce complexity (§2.2).

When constructing an FST for Cayuga nominals, it is important to be careful to avoid
using too many complexity-heavy operations as they can introduce significant complexity
into the machine. Non-determinism and long-distance dependancies are two such problems
that will need to be avoided. These two operations when coupled with composition, which

already introduces complexity, can lead to a very high degree of complexity very quickly.

5.2.1 Non-determinism

Non-determinism (Beesley and Karttunen, 2003:89.2.3) refers to an ambiguity within the
finite-state machine. I distinguish two types of ambiguity, external ambiguity and internal

ambiguity. A case of external ambiguity might be a surface form which could be derived

2A guesser could even be incorporated to make spelling easier for users who might have difficulties in
that area.

38

from either of two or more underlying forms. This ambiguity is external because it is visible
to the programmer and the user. Internal ambiguity is a case where at a given point the

FSA can follow either one of two different paths, which are disambiguated later on.

Both types are undesirable, but external ambiguity is necessary and internal ambiguity
can be difficult to locate or prevent. Examples (5)-(6) illustrate an externally ambiguous
FST:

(5) a. edwayg’
we all will give it to someone OR we all will arrive
b. e+ dwa +y 4o +3
future lidpA give epenthetic [y] punctual
we all (inclusive) will give it to someone

c. e+ dwa +yo +°
future lidpA arrive punctual
we all (inclusive) will arrive

The FST that would recognize the forms in (5) is described in example (6).

€

€ € € y * o 3 7
OO DD DD DD O~®

~

+

The symbol ‘¢’ is used to denote an empty string in the F'S framework, and is conceptually
similar to the linguistic formalism of using ‘@’. It is generally used when one needs to output
on one side more symbols than have been inputted. However, as we will see, the e-transition

can lead to non-determinism.

The FST in (6) is fine so long as we are only trying to recognize an underlying form or
remove the morpheme boundaries from a segmented form. Unfortunately, if we try to go the

3The literature generally reports that the form meaning we oll (incl) will give it to someone is [egyo] from
Je-dwa-0-"/— Je-dw-0-"/ — [e-dy-0-"/— [¢-gy-0-"/. However, speakers currently prefer the more transparent
form in (5-b) (Froman et al., 2002: Appendix J).

39

other direction, we reach a point of non-determinism at qg. At that state, when converting

from SR to UR, the machine has no way of determining which is the correct path to take.

In this case, we would want the transducer to output both forms, but this would require
that the machine explore all possible paths and output any that could be correct. In some
cases, the FST may run quite far down a path before hitting a roadblock of some sort and
aborting that path. If there are dozens of such forks the machine may have to explore tens,
hundreds or thousands of paths to figure out where it is going. Obviously, such a program
would run significantly more slowly than a program that only has one valid transition out

of each state.

These examples show how certain operations can introduce non-determinism into an
FST. In an FST representing an entire language, non-determinism is virtually unavoidable,
but one must be careful to avoid needless non-determinism since it will significantly slow
down the processing (Nederhof, 1996; Beesley and Karttunen, 2003).

5.2.2 Long-distance Dependancies

A long-distance dependancy is when the occurrence of a morpheme or morpho-phonological
variant is governed by a factor that is not immediately adjacent to it. An FSM has no
memory; it can only know the immediately preceding segment and the current segment. It

is often costly, therefore, to model long-distance dependancies.

In example (7) we have a case of a long-distance dependancy where the suffix and prefix
are co-dependant. The prefix (e)kni- requires the suffix -ageh” (compare (7-a) and (7-d)) and
o- requires the suffix -a” (compare (7-b) and (7-c)).

(7) a. (e)kni + gahgwaos + a'geh
1IncDu + eyebrow + on
(on) our (two people including listener and speaker) eyebrow(s)

b. o 4+ gahgwaos + a’
3NP + eyebrow + NSF
an eyebrow (detached)

c. *o + gahgwaos + a'geh
3NP + eyebrow + on

40

d. *(e)kni + gahgwaos + a’
1IncDu + eyebrow + NSF

Example (8) shows the most parsimonious way to model the production of the forms in (7).

However, the FSA in (8) overgenerates, producing not only (7-a) and (7-b) but also the
invalid forms (7-c) and (7-d):

(8)

(e)kni a’geh

gahgwaos @
a’

To model these forms correctly one would actually need to include an arc for the root form

twice. This implementation, however, is relatively inefficient, in this case, doubling the

number of arcs per root form, thereby increasing storage space required:

(9)

Y . gahgwaos . a_~ .

The program I will be using to construct the FST has a built-in methodology for pro-

gramming long-distance dependancies in the lexicon called “flag diacritics” (Beesley and
Karttunen, 2003:339-373). These are used at run-time to constrain relationships. While the

size of the machine is unaffected, actual run-time processing is slower.

Several types of flag diacritics exist for a variety of purposes, but for the construction
of my machine the type that is of interest are the “u-type” flag diacritics. These flags can
be placed anywhere within the lexicon, as needed. If a string is generated with mismatched

flags, that string is discounted as invalid at run-time (10-c¢). This means that prefixes that

41

can only take certain suffixes can be marked with the same flags whereas the other prefixes

and suffixes are marked with different flags.

The FST program would recognize the words in examples (10-a) and (10-b) as valid
because the two flags in the words are identical. In (10-c), however, there is an ‘UNPOSS’
and a ‘POSS’ flag, which do not match up, so the word would be marked as invalid.

(10) a. QU.INALIEN.POSS@ g+ ng¢'a: QU.INALIEN.POSS@ +ageh’

Possessive Flag 1sA head Possessive Flag LOC
‘On my head’

b. QU.INALIEN.UNPOSSQ o+ ng'a: QU.INALIEN.UNPOSS@ +a’
Unpossessed Flag 3znP head Unpossessed Flag LOC

‘My detached head’

c. *QU.INALIEN.POSS@ g+ ng¢'a: @QU.INALIEN.UNPOSS@ +a’
Possessive Flag 3znP head Unpossessed Flag LOC

It is possible for the FST programming tool to automatically remove flags and re-construct
an equivalent FST which does not require flags. This means that I can automatically convert
from an FST like that in example (8) that uses flags to the equivalent machine as in example
(9) that does not use flags. The advantage to such a conversion is generally an increase in
processing speed, but the one drawback is that this can drastically increase the size of the

transducer.

Flags have the format X.FEATURE.VALUE where X is the flag type, feature is a
feature name and value is the value of the feature. Other flag diacritics are P-type flags
that allow the user to set a certain value to a feature (e.g.: P.INALIEN.POSS flag follow-
ing a UINALIEN.UNPOSS would act as if the user had initially set a U.INALIEN.POSS
flag); N-type flags that set the value of a flag to the complement of a given value (e.g.:
N.INALIEN.POSS will match with any INALIEN.* where * is not equal to POSS); R-
type flags that check if a feature has a certain value (e.g.: if PINALIEN.POSS is set then
R.INALIEN.POSS will succeed but R.INALIEN.* will fail if * is not equal to POSS); D-type
flags that only succeed if the feature is not yet set; and C-type flags that reset a feature to
a neutral value.(Beesley and Karttunen, 2003:pp. 353-356)

Please note that flag diacritics do not confer any greater-than-finite-state power to an

FSM. They are merely for convenience of composing lexicons. More in-depth discussion can

42

be found in (Beesley and Karttunen, 2003:pp. 339-341)

5.3 Summary

The problem of dictionary access can be greatly alleviated by having a computer program
that can do all the morpho-phonological heavy lifting. A finite-state solution seems almost
ideal, except for some of the potential computational problems mentioned above. These

problems however, can be satisfactorily addressed, as the following two chapters explain.

43

CHAPTER 6

Methodology

This chapter will give an overview of the practical and technical requirements and specifica-
tions for the design of the FST, as well as a discussion of the tools that I used to implement

the machine.

6.1 Requirements

There were two requirements that a successful morphological analyser/generator for Cayuga
needs to fulfill. It needs to (a) produce useful dictionary output; (b) be easy to use. For
the purposes of producing useful output it will also be valuable to (c¢) test the morpho-
phonological rules posited for Cayuga nominals. Finally there are two other empirical re-
quirements for the consideration of future work: (d) determine the usefulness of the finite-
state framework for such polysynthetic languages; and also (e) serve as a way of comparing

machines of varying degrees of linguistic elegance for their usefulness and complexity.

6.1.1 Ideal Dictionary Output

Given that speakers do not have conscious access to their underlying linguistic knowledge
regarding morpho-phonology (Mithun, 1979), it is unclear what sort of information would
be the most useful output for a speaker attempting to access a dictionary: would a set of
underlying prefixes not necessarily obviously related to the actual pronunciation be useful; or
would the output of a prefix not obviously related to other prefixes with a similar meaning
be useful? To return to the example (1) (originally from §5.1 and repeated below): is it
more useful for the speaker entering the words in (1) to be told that (a) there is a single
underlying prefix (hadi+) whose meaning is 3mdpA and can be pronounced in several ways
including both (hadi) and (hen); or (b) there are several prefixes which all mean 3mdpA and

are produced in several different situations? Speakers tend to prefer the second alternative

44

(Dyck, 2006).

(1) a. UR: hadi+ihn+a’geh
SR: hadi-hn-a’geh
“(on) their (male) skin”
b. UR: hadi+ahohd+a'geh
SR: hen-ahohd-a'geh

“(on) their (male) ears”

As has been described above (8§4.2), the majority of nouns in Cayuga take some form of
obligatory prefix, often with a stem change, leading to difficulties in segmentation and stem

identification. This problem is discussed more fully below.

6.1.1.1 Abstractness vs. Concreteness

One problem that I will need to resolve is that it is not clear whether all prefix variants
should be listed in the lexicon (concrete), or whether they should instead each be derived
by rules from a smaller set of prefixes (abstract). Firstly, some prefix combinations (as in

example (2) are lexicalised, or non-transparent.

(2) a. gaop+
3fidpA+a-root
b. gae+
3fidpA+i-root OR C-root
c. gag+

3fidpA-+other root

The relationship between these alternants is opaque. This means that they should be listed
separately in the lexicon to represent the speaker’s intuition, especially since they are not

easily derivable from morpho-phonological rules.

Other prefixes, such as those in example (3), however, are derivable, but are still not
fully accessible to speakers in their underived forms. In this case, it still might be more

useful to list these prefixes in the lexicon, again to represent speaker intuition, despite the

45

fact that they can be easily derived.

(3) a. UR:-(y)okni- N
SR: -(y)gkni- N
1DuP [c¢/i]-initial root

b. UR: -(y)okni- -a
SR: -(y)ogy- -a
1DuP [a]-initial root

It is possible to represent underlying /-(y)okni-/ as two separate affixes in the lexicon, one,
the SR (3-a), that precedes most nouns and another that precedes noun stems beginning
with [a], the SR in(3-b). This is the concrete approach. In contrast it is possible to list
only /-(y)okni-/, the UR in both (3-a) and (3-b), in the lexicon, using a rule (4) to derive
[-(y)ogy-]. This is the abstract approach.

(4) kni+a — gya

Linguists such as Froman et al. (2002); MacKenzie and Jancewicz (1994); Michelson and
Doxtator (2002); Chafe (1967); Young and Morgan (1987) and Foster (1986) tend to represent
the most abstract form when constructing dictionaries so that (3) (a) and (b) would be listed

as a single underlying prefix ‘(y)okni-".

For a user it would likely be more useful to have a more concrete representation of
affixes that are easily relatable to the actual pronunciation. It may however become clear
once the project is underway that the specification of all affixes and base forms is not the

most efficient method for the structuring of the project.

6.1.1.2 Computation of Abstractness vs. Concreteness

Considering that there are two possible linguistic solutions (listing allomorphs in the lexicon
or deriving them from rules), it is also important to determine if both these approaches are
equally computationally viable. If one method results in a machine that is too large or slow,

it does not particularly matter if it is more useful to users since it will be unimplementable.

46

Adding morpho-phonological rule transducers will require additional compositions of
FSTs which can very quickly lead to significant increases in the size of the final automaton
and its running time. It might well be reasonable, therefore, to implement allomorphy in

the lexicon rather than in the rules module.

I therefore decided to design my program in two separate versions. One version assumes
fairly abstract prefix morphemes while the other assumes more concrete lexicalised prefix
allomorphs as the UR.

In the abstract approach, the forms that are output to users are more linguistically and
descriptively elegant, but are less useful to the users, who would require more specialized
knowledge of the morpho-phonemics of the language to interpret the output (§5.1). The
concrete approach, however, attempts to design with the end user in mind such that it
will generate a set of prefixes that the user will be able to consciously relate to the actual

pronounced surface forms.

The project should provide a means for comparison in terms of computational elegance
and computational complexity of the two approaches described above. I compared the two
machines to each other rather than to a separate set of arbitrary criteria. This was done
because 1 am only attempting to determine which machine is most efficient. As mentioned
earlier (§6.1.3) it is beyond the scope of this project to determine the applicability of the
framework to these languages for a full implementation, so for the moment a comparative
method will have to suffice. The criteria for computational elegance and complexity are
listed below.

Computational Elegance:

e Time/difficulty of creation of machine

e Time/difficulty of modification of machine

Computational complexity:

o Relative numbers of states
o Relative numbers of transitions

47

e Relative run-time

e Relative machine size in kB

Computational elegance will be viewed loosely in terms of the difficulty of creation and
modification of the design. If it is difficult or tedious to update the program or requires
significantly more time to effect changes, one version will be deemed less computationally
elegant than the other. In terms of complexity, this will be judged by comparing the numbers
of states and transitions that each machine contains, as well as average running times and

final machine sizes in kB.

6.1.2 Thorough Testing of Morpho-phonological Rules

The finite-state framework allows for a high speed testing of the rule formalisms relating
surface and underlying forms that have been already posited for Cayuga. The machine is
designed to relate the surface and underlying forms of the words; and rule formalisms are the
most straightforward way to generalize that relationship so that the program must naturally

represent a testing environment for the rule formalisms.

It is often difficult to test the ordering of large numbers of rules against large numbers
of word-forms to ensure that there are no incorrect forms generated or inconsistencies in the
output. Also, applying large numbers of rules by hand to large data sets leaves a margin
for human error. Having a computerized version of the rule formalism, however, solves this

problem.

It becomes possible to easily and quickly test very large sets of data against the machine
to ensure that the output is correct for all cases. One can design a set of input data knowing
what the output should be and automatically compare that to the actual output of the
machine (§7.2.1).

6.1.3 Applicability of FS Framework to Morphologically Complex Languages

The project must demonstrate that the finite-state framework is capable of handling the
complex morphological and morpho-phonological processes of First Nations languages ef-

ficiently. This means that the program must be able to quickly process words containing

48

long-distance dependancies (§5.2.2) and prefixes which may be opaque, semi-opaque or am-
biguous (§4.2.2-4.2.3).

Despite the fact that nouns display the majority of interesting morphological and
morpho-phonological properties of Cayuga, such as large degrees of allomorphy and long-
distance dependancies, there are a few caveats to keep in mind. Verbs have more prefixes
and more prefix combinations than the nouns. Furthermore, verbs also have a much higher
incidence of long-distance dependancies. It is possible therefore, that despite the fact that
the machine described in later chapters is computationally adequate, that the expansion
of the machine may pose efficiency problems. In particular, a large number of additional
long-distance dependancies could pose a problem. My machine models only a single long-
distance dependancy whereas a model that handles verbs would require several long-distance

dependancies (where the greatest complexity is likely to be introduced).

6.2 Specifications

I will here briefly overview the specific requirements of the abstract and concrete FSTs. They
each follow essentially the same design, so differences are only mentioned where applicable.
A fully detailed description of the programs can be found in §7.1. In light of the motivations

described above the programs must conform to several technical requirements.

1. In order to satisfy the needs of dictionary users, the program must generate and

segment all the basic noun types described in §4.2:

e Unpossessed Basic Nouns - A 3rd person neuter prefix followed by a basic

noun root and a noun stem forming suffix.

e Possessed Basic Nouns - A patient prefix followed by a basic noun root and a

noun stem forming suffix.

e Possessed Inalienable Nouns - A agent prefix followed by an inalienable noun

root and an external locative suffix.

e Unpossessed Inalienable Nouns - A single 3rd person neuter singular patient
/(y)o-/ prefix followed by an inalienable noun root and a noun stem forming

suffix.

49

6.3

e De-verbal Nouns -A third person neuter prefix followed by a verb root and

deverbal suffix and noun stem former.

e Defective Nouns - A single defective noun root.

The program must generate and segment only these word forms. In order to be
appropriate for a dictionary tool and to properly represent the language, the machine

must not give false positives (i.e., no incorrect forms should be judged as correct).

The program must provide basic semantic output for all word form morphemes.
To satisfy the needs of a dictionary application, semantic output must be generated
for the user (My program only generates a basic semantic representation, however, to

demonstrate that it is possible).

The program must encode an ordered rule formalism that is adequate for testing the

set of morpho-phonological rules and their ordering as currently posited for Cayuga.

. The program must be able to have an easy to use interface created such that users

need only type a word to receive its morphology and semantics.

The program must satisfy the requirement of testing the adequacy of the finite-state
framework for applications in First Nations languages. The final machine must present

data on the comparative levels of efficiency of the two approaches.

Tools and Data Structure

To implement the program I used XFST (Beesley and Karttunen, 2003), a finite-state devel-

opment environment developed by Xerox for use by computational linguists. XFST makes

the creation of finite-state machines somewhat more intuitive. It is a tool that allows a com-

putational linguist with only modest knowledge of programming and computational theory

to create and modify finite state machines.

Without a tool like XFST one might need to know how to create a ‘regular expression’

that would look something like:

(5) /(hlc)at/

50

A regular expression is a formalism for describing a language, in this case the language
consisting of the strings ‘hat’ and ‘cat’ (Beesley and Karttunen, 2003; Nederhof, 1996).
However if one were attempting to encode an entire language, the resulting regular expression
could easily become very long.

(6) /((hirlc)at)|((cIb)ar)(ele)/

¢ denotes the ‘empty’ character

Example (6) describes a very small language containing: ‘hat’, ‘rat’, ‘cat’, ‘car’, ‘bar’, ‘hate’,
‘rate’, ‘care’, ‘bare’ and *‘cate’ (The ‘cate’ example shows how it can be quite easy to make
a mistake with regular expressions that need to match many forms). In contrast, using
XFST, one can simply create a lexicon file which details (a) the morphemes that exist in the
language and (b) how they can join together. XFST can then turn that result into an FST

that correctly encodes a regular expression.?

Another positive aspect of XFST is that it is constantly compiling and optimizing the
machine as it is being created by the user. This means that it is significantly more efficient
and simple than writing a finite-state machine and then optimizing it afterwards; the machine
will run more quickly and take up less space overall. Additionally, users can check their work

as it progresses, with no need to wait until programming is complete.

Finally, XFST also includes several specialized tools for creating linguistic descriptions.

Two of these tools are described in the following two sections.

6.3.1 Lexc

The Lexc language is an XFST formalism developed specifically for designing lexicons. Lexc
allows the user to design several “sub-lexicons” (e.g., a prefix lexicon and a stem lexicon)
and define how the lexicons each join to each other in terms of what are called “continuation
classes”. (Beesley and Karttunen, 2003:§4)

!Regular expressions and FSMs are generally equivalent in that a regular expression can be represented
as an FSM and vice-versa, but there is often a loss of efficiency in translation (Nederhof, 1996). There are
also other formalisms (such as finite-state grammars) for specifying FSM, but generally regular expressions
are the most popular.

51

Table 6.1: Sample Cayuga lexc Lexicon.

LEXICON nominalPrefixes

ga+ gaNouns ;
o+ oNouns ;
a+ aNouns ;
LEXICON gaNouns

deverbalNouns ;

gaBasicNounRoot ;)

LEXICON gaBasicNounRoot

“wahsa: NSF ;< ! ‘earrings’
nahda NSF ;<! ‘comb’
hny¢ohsra NSF ;| ! ‘steel, iron’
LEXICON NSF
+a’ # 3

#5

Each sub-lexicon specifies a morpheme in the left column and the “continuation” class
(if any) in the right-hand column. The continuation class is simply the name of another
sub-lexicon whose morphemes are allowed to follow after the given morpheme in this sub-

lexicon.

In the table 6.1, four sample lexicons are given in lexc format. The first lexicon specifies
all the nominal prefixes (in the left column) as well as the name of the lexicon that specifies
what can follow each prefix (on the right). So, the prefix ga can be followed by anything
found in the lexicon named gaNouns which in turn specifies two further lexicons that can
follow it. This allows the linguist to break down the forms into as many parts as are necessary

to describe the URs of all words in the language.

Example (7) gives a sample possible output from the FST define in table 6.1.

(7) nominalPrefixes+ gaNouns+ gaBasicNounRoot +NSF
ga+ g+ "wahsa: +a'#
ga+'wahsa:+a' earrings

52

Because ga+ was the output from the ‘nominalPrefires’ sub-lexicon, the next segment
has to come from the ‘gaNouns’ sub-lexicon. The output of either option in that sub-lexicon
is g followed by either of the applicable sub-lexicons (‘deverbalNouns’ or ‘gaBasicNounRoot’).
After an item from ‘gaBasicNounRoot’, an item from the sub-lexicon ‘NSF’ must follow. This
sub-lexicon specifies # as the continuation class, which signals to the compiler that it is a
valid end state (§3.2).2

The lexicon description in lezc format is converted into an FST by the lezc compiler.
This FST can then be composed with other FSTs that represent other modules of the
final program (§3.6), including a rules module or a semantics module. Such a methodology

facilitates the modification of either module independantly from the others.

6.3.2 Rule-like Notation

Just as XFST provides the lexc formalism for defining lexicons, it also provides a number of
built-in rule-formalism shortcuts that make the writing of morpho-phonological rules much
simpler for linguists. In the same way that a lexc lexicon is compiled into an FST, so too
are these rules compiled into an FST. The two resulting modules can then be composed

together.

Rules are defined using a notation very similar to standard phonological rule notation.

For example a vowel coalescence rule written as:

8) fa+i/— [+¢]

would instead be written as:

(9) define aig [a %o+ 1 — > %+ ¢f;?

The rules are composed together to form a module of rules. The order in which the rules are

composed is identical to the order in which they will apply, meaning that the rule ordering

2When using lexc, one need not have a word-initial word boundary marker if one is only working with
single words. The transducer will report an error if it encounters a multi-word token.

3In the Lexc formalism, the + symbol is a character with special properties, and to encode the + as a
normal symbol it must be prefixed by a % symbol.

33

in the finite-state machine is logically identical to the posited morpho-phonological rule

orderings.

6.4 Summary

Having described the basic types of structures from which my machines were formed, I will
now go on in the following chapter to specifically describe the structure of the machines and

what findings were determined during their construction.

54

CHAPTER 7

Results

Here 1 will discuss the structure of the final program, giving a description of each module
and of the construction of both the concrete and the abstract machines. Following that,
I will analyse the ability of the machines to meet the requirements as set out in §6.1 and

compare their performances.

7.1 Final Program Components

The final machine was composed of several parts; firstly, the morphological analyser, secondly
the semantics module and thirdly, the user interface. The morphological analyser itself was
constructed of several modules, which are explained below. An explanation of the semantics

module and the interface follows the discussion of the morphological analyser

Since the finite-state framework is inherently modular (§3.6), I developed my programs
each in three separate modules. I developed a lexicon module, a rules module and a basic
semantics module. The semantics module was produced only to make a more satisfying final
product and demonstrate that a semantic component could easily be added. It does not lie

within the primary focus of the project to output more than a basic semantic gloss.

7.1.1 Lexicon Module

As explained in §6.3.1 the lexicon module is constructed by the concatenation of multiple
sub-lexicons using lexc. These lexicons concatenate noun morphemes together, but do not

perform any rule-based operations.

There are four separate sub-lexicons for ‘defectives’, ‘deverbals’, ‘basics’ and, ‘inalien-
ables’ which in turn point to their own set of specialised sub-lexicons. The sets of sub-lexicons

for generating each noun type in the abstract lexicon will be discussed below.

95

I will be only discussing the specifics of the abstract approach as it is much simpler
in terms of sub-lexicons than the concrete approach. The concrete approach is essentially
similar, but with more sub-lexicons. This aspect of the concrete approach will be discussed

in more detail later.

7.1.1.1 Defective Nouns

The defective nouns are the most straightforward and are illustrated in fig. 7.1. The main
over-arching sub-lexicon “nouns” points to a sub-lexicon named “defectives” that in turn
merely lists all defective nouns. Since there is no internal morphology, there is no need for

further sub-lexicons; so the “defectives” sub-lexicon is merely followed by a word-boundary.!

Figure 7.1: Abstract Defective Noun Sub-lexicon Structure

#
Noxlms
Defegtives
L
Description of the series of sub-lexicons used to generate a defective
noun.

A sample defective noun as generated by the machine by joining the constituents of the

appropriate sub-lexicons is shown below in example (1):

(1) Nouns+ Defectives
o+ sgwa:gwaodQ #
sgwa:gwaodo " toad

7.1.1.2 De-verbal Nouns

De-verbal nouns are slightly more complex than the defective nouns. As described in figure

7.2, the sub-lexicon named “deverbals” contains a list of prefixes that can attach to deverbal

'Word boundary symbols (#) are used to represent the start and end of the machine but do not appear
in the input or output.

56

noun roots such as ga+, a+, o+, @.

Figure 7.2: Abstract De-verbal Noun Sub-lexicon Structure
#

|

Nouns

|
Deverbals

l
ol | o
garoots aroots oroots
i I B

Description of the series of sub-lexicons used to generate a defective
noun.

Each prefix points to the appropriate sub-lexicon containing roots that may attach to
it; so for example, the ga+ entry in the “deverbals” sub-lexicon would point to a further
sub-lexicon named “ga roots” which contains a list of all roots which may take ga+ as a
prefix. (These nouns roots were divided in the lexicon because the prefixes that they take

are fully lexicalised and do not depend on any morpho-phonological factors).

Example (2) gives an example of a deverbal noun as constructed by the FST from the

constituents of each sub-lexicon.

(2) Nouns+ Deverbals+ a roots +NSF
@+ a+ atsho'kdohsr +a'#
a+atsho kdohsr+a’ hoe

7.1.1.3 Basic Nouns

The structure of the sub-lexicons to generate the basic nouns is significantly more complex
than that for generating the deverbals. There are two primary branches in this series of
sub-lexicons. The first branch is a sub-lexicon containing the unpossessed prefixes and

their appropriate sub-lexicons, the second branch contains the possessed prefixes and their

57

appropriate sub-lexicon.

The sub-lexicon for unpossessed basic nouns (“unpossessed prefixes”) acts identically to
the de-verbal lexicon described above. For this reason as in the deverbal lexicon, the basic
noun roots have been sub-divided according to the unpossessed 3rd person neuter prefixes
that they can take. The prefixes in the “unpossessed prefixes” sub-lexicon each point to the
appropriate sub-lexicons of roots that take either ga- as a prefix (“gaRoots”), a- as a prefix

(“aRoots”), o- as a prefix (“oRoots”), or g- (“nullRoots”).?

Figure 7.3: Abstract Basic Noun Sub-lexicon Structure

#
I

Nouns
[
Basics

unpossessed possessed

prefixes prefixes
I
alIIRoots

I I I I 1
gaRoots aRoots oRoots nullRoots loanWords

I l I |

NSF

I
#

Description of the series of sub-lexicons used to generate a defective
noun.

The other main branch of the basic noun sub-lexicons is the “possessed prefixes” series.
This sub-lexicon contains all the possessed prefixes that may attach to a basic noun root and
each prefix then points to a sub-lexicon named “allRoots”. “allRoots” is empty except for a
reference to each of the other sub-lexicons. Instead of attaching specific prefixes to specific

basic noun roots, it allows all possessive prefixes to attach to all basic noun roots.

As can be seen from table 7.1, the “allRoots” sub-lexicon contains no morphological
i

2As described in §4.2.2 some basic noun roots have a choice of two prefixes. These roots are listed in
sub-lexicons that are linked up with both appropriate prefixes. These (very small) sub-lexicons have been
omitted from the diagram for the sake of simplicity.

58

Table 7.1: Basic Noun “allRoots” Sub-lexicon

LEXICON allRoots
gaRoots ;
oRoots ;
aRoots ;
nullRoots ;

[SESRSREN

data®, merely references to the other sub-lexicons. This enables me to reference the sub-
lexicon “allRoots” once rather than to reference all the other sub-lexicon for each prefix. If
I did not have this structure, each prefix would have to be listed once for each sub-lexicon
to which it could attach, rather than being listed as merely attaching to the “allRoots”

sub-lexicon.

Two examples of these structures can be found below in example (3):

(3) a. Nouns+ Basics+ Possessed Prefixes+ allRoots +nullRoots +NSF
o+ g+ (w)ag+ @+ e'nhotr +a'#
(w)ag+emhotr+a my ball

b. Nouns+ Basics+ Unpossessed Prefixes+ oRoots +NSF

o+ o+ o+ “dodr +a'#
o+'dodr+a’ gristle

Once a root from one of the 5 root sub-lexicons has been joined to its prefix one of two
things is done. The “gaRoots”, the “aRoots”, the “oRoots” and “nullRoots” lexicons link
to the “NSF” sub-lexicon, which adds the NSF suffix and terminates the word-formation
process. Alternately, if a root from the “loanWords” sub-lexicon was added, no NSF suffix

is attached to the word, it leads directly to the terminal # marker.

7.1.1.4 Inalienable Nouns

Inalienably possessed nouns have the most complex structure in the abstract lexicon. This is

for two reasons: {(a) they make use of several lexicalised prefixes that required a sub-division

3the @ symbol is added for clarity, but is not part of the lexc formalism

99

of the lexicons (see §4.2.3, and §6.1.1.1 for more discussion on this topic) and (b) they contain

long-distance dependancies that are handled with flag diacritics.

As with the basic nouns, there are two primary divisions in the nouns generated by this
lexicon. As shown in 7.4 the first type are the “Flagl”* inalienables and the second type
“Flag2” inalienables. “Flagl” and “Flag2” designate the attachment of flag diacritics, that
eventually ensure that the agent prefixes (Flag2) co-occur with the locative suffix (-a’geh)
while the 3znS prefix ((y)o-, Flagl) co-occurs with the NSF suffix -a”. These flags (and the

3znS prefix) are added in the initial “inalienables” sub-lexicon.

Figure 7.4: Abstract Inalienable Noun Sub-lexicon Structure

#

Nouns
|

Inalienables

X

prefixes roots

— C roots —
— V roots —j
— a roots —

— @ roots —

- ... roots —

Inalienable Suffixes ——ﬂz&l—l
E locativWF

#

Description of the series of sub-lexicons used to generate an inalien-
able noun.

4Please note that “Flagl” used here is a short form of QU.INALIEN.POSS@ used in §5.2.2 and “Flag2”
a short form of @U.INALIEN.UNPOSSQ.

60

Paths With ‘o+Flagl’

Forms with “o+Flagl” are followed by the sub-lexicon named “roots”. This sub-lexicon is
a directory that outputs nothing (¢) and points to all of the sub-lexicons which contain
the various inalienable noun roots (“C roots”, “V roots”, “a roots”, etc. There are 10

sub-lexicons, not all of which are listed; ... roots” is an abbreviation for these sub-lexicons).

A noun root from any of these sub-lexicons is added on the (y)o+Flag! construction
previously output by the “inalieneables” sub-lexicon. The result is (y)o+Flagl+any specific

noun root. This construction then points to the “Inalienable Suffixes” sub-lexicon.

The “Inalienable Suffixes” sub-lexicon either attaches “Flagl” and points to the “NSF”
sub-lexicon (containing +a’) or it attaches nothing (¢) and points to the “locativeSuffix”
sub-lexicon (containing Flag2+a’geh). The end result can generate both well-formed and

ill-formed constructions as in example (4) below.

(4) a. Nouns+ Inalienables+ Roots+ a roots +Inalienable Suffixes +NSF
8+ (y)o-Flagl+ g+ ahohd +Flagl +a'#
(y)o+Flagl+ahohd+Flagl+a’ ears (detached)

b. *Nouns+ Inalienables+ Roots+ a roots +Inalienable Suffixes +locativeSuffix
8+ (y)o-Flagl+ o+ ahohd +Flag2 +ageh'#
(y)o+Flagl+ahohd+Flagl4a'Nonsensical form

Paths With ‘Flag2’

Forms with “Flag2” are followed by the “prefixes” sub-lexicon. This sub-lexicon lists two
types of possessed agentive prefixes (§4.2.3, pg. 27): (a) the transparent prefixes whose
allomorphs can be derived by rules and (b) the opaque prefixes whose allomorphs are not

synchronically morpho-phonologically related.

The transparent prefixes point to the “roots” sub-lexicon and proceed identically from
there, as do the ‘o+Flagl’ inalienables described above, resulting in a form of the type
Flag2+any specific noun root+Flag2+a’geh or Flag2+any specific noun root+Flagl+a’, the
latter being ill-formed.

The opaque prefixes (e.g., 3znsA or 3fiA), however, are derived differently. Each of

61

these prefixes points to a specific sub-lexicon containing a sub-set of noun roots. For example
the 3fisA prefix /(y)e-/ points to the “C roots” sub-lexicon while the 3fisA prefix /(y)o-/
points to the “a roots” sub-lexicon. The results then are Flag2+(y)e+consonant-initial root

and Flag2+(y)o+[a/-initial root as show in example (5) below.

The output from these root sub-lexicons then proceeds as previously described, giving
both valid forms such as Flag2+(y)e+consonant-initial root+Flag2+a’geh and invalid forms
such as (y)o+Flagl+any specific noun root+Flag2+a’geh. These invalid forms are then

removed at run-time or during later composition as described in §5.2.2.

(5) a. Nouns+ Inalienables+ Prefixes+ a roots +Inalienable Suffixes +NSF
g+ Flag2+ (v)o+ ahohd +Flag2 +ageh'#
(y)o+Flagl+ahohd+Flagl+a’ ears (detached)

b. *Nouns+ Inalienables+ Prefixes+ a roots +Inalienable Suffixes +locativeSuffix
g+ Flag2+ (v)o+ ahghd +Flagl +a'#
(y)o+Flagl+ahohd+Flagl+a

7.1.1.5 Flag Diacritics

Figure 7.4 (p. 60) also illustrates how flag diacritics (§5.2.2) operate. Flagl attaches with
the prefix “o+” and the NSF suffix for the formation of basic noun style inalienables 4.2.3.
Flag2 is inserted with all other agent prefixes and with the locative suffix. This allows the
machine to generate illegal forms in which conflicting flags co-occur, as described earlier.

These illegal forms as in example (6), are then filtered out at a later point.

(6) *o+ hsohgw +a’geh
3znP+ lip +LOC

The form in example (6) is not valid because the prefix ‘o+’ with an inlienable noun stem
requires the suffix ‘+a” and cannot take the suffix ‘+ageh”. In order to avoid having to define
the inalienable noun root sublexicon twice I decided to have a machine that overgenerates

by producing even the invalid prefix and suffix combinations.

To constrain the output to only the valid word forms I used flag diacritics (Beesley

and Karttunen, 2003:339). A “u-type” flag was used to mark the possessive or unpossessive

62

prefix and suffix. At runtime the machine then checks these flags to make sure that the
prefix flag corresponds to the suffix flag. If they do not the machine returns an “invalid”
response for the word. In the final version of the program these flags were removed and an

equivalent FST was automatically generated by XFST (as described in §5.2.2).

7.1.1.6 DPossible Modifications of Inalienables Nouns Sub-lexicons

When constructing the inalienable noun lexicon for the abstract approach I decided to create
sublexicons to handle the alternations of the 36 A, 3znsA and 3fidpA prefixes for inalienable
nouns. These prefixes are not morpho-phonologically related to each other. Being historically
un-related they are traditionally listed as separate underlying prefixes in a dictionary. For
this reason, I chose to list them as separate underlying prefixes and specify the noun roots
to which they could attach in the lexicon, mimicking the structure used in the concrete

approach.

The use of sub-lexicons makes the construction of the abstract semantics module some-
what difficult and inconsistent. The basic function of such a module is unimpaired, but it
now has a concrete component: noun roots now must be compartmentalized into sub-lexicons
based on their initial phones. As well the complexity of the lexicon is greatly increased and

this complexity will hamper any future modifications to that lexicon.

Fortunately, the opaque prefix alternations are conditioned by their environment, so
they are not strictly arbitrary. Despite being lexicalised, their alternation is phonologically
governed. That is, each prefix only occurs before a regular sub-set of roots (e.g., roots
beginning in [a | or roots beginning in a consonant). This means that it will be possible to

rework the more “concrete” portion of the abstract approach, as described below.

There are two viable ways in which this series of sub-lexicons can be remodeled. The
machine can be modified to either (a) over-generate with all abstract prefix allomorphs which
can then be constrained using a rule, or to (b) replace the allomorphs with a single abstract
prefix that can then be transformed into the appropriate surface form with a rule on the

output side and into the appropriate underlying form with-a rule on the input side.

The first approach, overgeneration, works by attaching all prefixes to all stems, regard-

less of whether or not this generates valid URs. Then, in the rules module, filter rules are

63

added that remove the invalid forms that were generated in the lexicon. In this approach
both example (7-a) and example (7-b) would be generated, but a rule would filter out the
incorrect form (7-b).

(7) a. UR: (y)o+ ahsi'd +ageh’
Sem: 3fiA+ foot +LOC

b. *UR: (y)e+ ahsi'd +ageh’
Sem: 3fiA+ foot +LOC

This approach is exponential in generation of incorrect forms and would require more rules
for each valid surface form. This would mean a greater degree composition and subsequent

minimisation. Compile-time would therefore be adversely affected.

The second, more abstract approach would replace all three prefixes with a single ab-

stract prefix, possibly denoting the prefix’s semantics as in examples (8-a) and (8-b).

(8) a. Lexical: 3fiA+ ahsi'd +ageh’
Surface: (y)o+ ahsi’d +ageh’

b. Lexical: 3iA+ ots +ageh’
Surface: (y)ag+ ots +ageh’

Spell-out rules (such as in (9)) would then be created. These would change this abstract

prefix, as in examples (8-a) and (8-b), into one of the appropriate surface forms.

(9) 3iA—(y)o/+[a]
3fiA—(y)ag/-+[0]

This approach is deterministic and therefore puts less of a burden on the machine at compile
time as it does not generate a vast number of incorrect forms. It is therefore somewhat more

preferable despite producing the same final result.

64

Figure 7.5: Abstract Lexicon Structure

Defectives

#
ZO#Em
] _ | _
Inalienables Deverbals Basics
. E_E _ _ _
prefixes roots . garoots aroots oroots unpossessive possessive
_ roots _ _ _ prefixes prefixes
|

L— C roots — allRoots

— V roots —

| | | [I []

aroots garoots aroots oroots null roots loanWords

— 0 roots — _ _ l J

— ... roots —

Inalienable Suffixes Flagl

locativeSuffix NSF

Description of the continuation classes of the abstract noun lexicon including subdivisions

based on lexicalised prefixes (ga roots, o roots...), subdivision based on stem-initial phones

(C roots, V roots, ¢ roots...) and flag diacritics (Flagl & Flag2).

65

7.1.1.7 Structural Overview of the Lexicons

Having described each part of the lexicon in detail, I will now briefly compare the concrete
lexicon to the abstract lexicon. (The latter is diagrammed in full in figure 7.5). It is important
to note that while in several cases there are redundant paths that would cause the same word
form to be defined multiple times, these do not actually affect the final number of words in

the FST. Identical forms are automatically removed by the XFST compiler.

In some respects, the two versions of the FST are identical. For example, both the

concrete and the abstract machine process unpossessed basic nouns as in example (10).

(10) Nouns+ Basic+ Unpossessed prefixes+ gaRoots +NSF
o+ o+ ga+ “wahsa: +a'#

These nouns are represented identically because the prefix that is used is lexicalized. The
major difference between the concrete FST and the abstract FST resides in the lexicon in

the processing of the regular affixes.

The abstract model was straightforward to develop; the noun stems needed to be sub-
divided into classes depending on the lexicalised unpossessed prefix that they take and rules

were used to generate all other prefix allomorphs as in example (12).

(11) a. Nouns+ Basic+ Possessed prefixes+ allRoots+ gaRoots +NSF
B+ g+ ag+ o+ “wahsa: +a'#

b. /ag+'wahsa:+a’'/— /age'wahsa:"/

Example (11-a) represents the output of the abstract lexicon module and (11-b) represents

the application of the rules module the converts the UR to a valid SR.

In the case of the concrete approach, however, there were two methods that could be
used to design the machine: either a fully lexicalised approach could be taken, or a machine

could be designed that overgenerates and uses rules to filter out the unnecessary forms.

Part of the basis for the decision to create a concrete and abstract approach was to

test if there was a computational cost for the addition of extra rules; it therefore seemed

66

counter-intuitive to design that concrete approach with a large number of additional rules
to filter out over-generating forms; such an approach would be essentially analogous to the

abstract approach itself.

The fully lexicalised (concrete) approach requires defining specific sub-lexicons for the
noun stems. These sub-lexicons contain noun roots grouped by their stem-initial phones
(graphs) and the lexicalised unpossessed prefixes. In example (12) the prefix “age-” must be

followed by a noun root that begins with "CV.

(12) Nouns+ Basic+ Unpossessed prefixes+ "CV roots +NSF
o+ @+ age+ "wahsa: 4a'#

This approach means that for each type of noun the stems were sub-divided into groups
based upon their initial phones and the unpossessed prefix form they take making for a total
of 73 lexicons in the concrete approach versus 34 in the abstract approach. The very high
number of sub-lexicons results from the need to repeat all sub-lexicons for each stem type
for each class of unpossessed prefix, as explained below. A small sub-set of the necessary
sub-lexicons are listed in examples (13)-(16) here while the full spectrum is detailed in figure
7.6.

(13) Basic nouns taking /ga-/ when unpossessed but /age-/ when possessed in the first

person singular.

(14) Basic nouns taking /ga-/ when unpossessed but /ag-/ when possessed in the first person

singular.

(15) Basic nouns taking /o-/ when unpossessed but /age-/ when possessed in the first person

singular.

(16) Basic nouns taking /o-/ when unpossessed but /ag-/ when possessed in the first person

singular.

Figure 7.6 clearly demonstrates the two types of subdivisions for the basic nouns: lex-

icalised prefixes (3: ga+, o+, a+) and based on initial phone(s) (11 conditioning environ-

67

Figure 7.6: Concrete Approach Basic Noun Lexicons

Division By:
Noun Class Lexicalised Stem-Initial
Prefix Phone

lI

e/e
o/9
cV
hv

hcv

ga-t
nouns

|

y/

Elsewhere

=

Basic o+
Nouns nouns ~ =

Elsewhere

efe
o/9

"V
a+
hv

nouns ~ =

|

n

=y
"<

y/w

Elsewhere

Multiple subdividing of nouns based on lexicalised prefix and stem-initial phones results in
a very high number of sub-lexicons (potentially 33 for possessed basic nouns alone) that can
quickly become difficult to manage.

68

ments). Examples (13) and (14) show two types of words which share the same unpossessed

prefix, but different possessed prefixes, and hence need to appear in different sub-lexicons.

The words are first sub-divided into 3 sub-lexicons according to the lexicalised unpos-
sessed prefixes they take. Then, the forms in these sub-lexicons were again sub-divided based
on initial phone. This makes for a total of 33 possible lexicons for just the basic noun roots.
Although there are currently no attested forms for some of the possible sub-lexicons, nouns
that appear in these categories could theoretically exist. The manner in which this creates

a large number of sub-lexicons is clear.

Now having thoroughly described how the lexicons concatenate morphemes and some
possible alternative approaches that were not used in my project, I will go on to discuss the

rules module that turns segmented morpheme sequences into surface forms and vice versa.

7.1.2 Rules Module

Unlike in the case of the lexicon module, the rules modules for the two versions contain
nearly identical rulesets. The set of rules for the concrete approach is a simple subset of the
rules for the abstract approach. Rules for the concrete approach implement almost none of
the prefix rules, just stem+suffix alternations and clean-up rules. This made the generation

of the rules module for the concrete machine more straightforward.

The variety of vowel changes in Cayuga is rather large, and the juncture of two mor-
phemes is rarely just a case of A + B = AB. The rules module of the FST replicates the

morpho-phonological processes that occur at morpheme boundaries in Cayuga (see §6.1.1):

Example (17) demonstrates just a few possible vowel sandhi rules that occur in Cayuga

morphology.

(17) Example Morpho-phonemic Alternations
a. o + idphgwa + a'
odohgwa’
3NP flame NSF flame
b. o + adeshe + a’
odeshe’

69

3NP cocoon NSF' cocoon
c. ga -+ itsga: + a’'
getsga:’
3NA mattress NSF mattress

We see that o + i/a at a prefix/stem boundary gives o (see examples (17-a) and (17-b)).
The data in (17-c) also show that a + i at a prefix/stem boundary produces ¢ and that V +
a’ produces V' at the stem/NSF boundary.

7.1.2.1 Rules Module Components

The rules module consists of three component parts: (a) a module that removes deleting
prefix segments (§4.2.2), (b) the actual morpho-phonological rules and (c) a set of “clean-up”
rules. The entire set of rules contained in the rules module are contained in appendix C.
Each of these rule components were only separated for clarity. Some grammars have separate

rules components for nouns and for verbs.®

In XFST, rules are generally specified only in terms of phones and morpheme boundaries.
Any symbols other than letters, vowel length markers, or morpheme boundary markers can
block the application of rules. For this reason, the first module to apply removes any word-
initial deleting prefix segments (denoted by parentheses) as in the (y) in (y)o+ (3znsP).
Then for deleting segments that are not word-initial, it removes the parentheses surrounding

the segment.®
Table 7.2 gives examples of word-initial segment deletions.

In table 7.2 we see the application of two rules. Rule ‘Delete Opt’ deletes any deleting
segments that are word-initial. The second rule, ‘Delete Parentheses’ then removes any
other parenthesis that remain in the words. These two rules together remove all paren-
theses while keeping non-word-initial prefix segments and allowing further rules to apply

unobstructed.

5In this case, however, all rules apply to all word forms, so there is no need to separate the separate
modules.

6The symbols ‘(" and ‘)’ were not used while formulating the morpho-phonological rules; therefore they
could block rule application. A rule stating that /e/—@/u+__ would not apply to du+(e)tni+... because
the parentheses are not stated in rule.

70

The second module applies the remaining morpho-phonological rules, including vowel

hierarchy deletions, vowel coalescence processes, epentheses and so forth. Table 7.3 shows

Table 7.2: Two Rules for Optional Prefix Segment Removal

Rule UR: (y)o+nhohs+a’ | UR: de+(y)o+ nhohs+age:
Delete Opt o+ 'nhohs+a’ de+(y)o+"nhohs+age:
Delete Parentheses | o+ 'nhohs+a’ de+yo+"nhohs+age:
Output o+ mnhohs+a’ de+yo+"nhohs+age:

the application of a subset of rules to an abstract and a concrete underlying form.

This module contains 23 rules in the abstract version and 11 in the concrete approach.
The concrete approach only contains basic rules such as vowel hierarchy deletion rules;
vowel lengthening rules and so forth. It does not specify most forms of coalescence; voicing
or devoicing rules because, as can be seen in table 7.3, these rules are already encoded in
the UR.

The third module applies clean-up processes such as the deletion of multiple identical
vowels at morpheme boundaries, the removal of morpheme boundaries and the removal of
abstract consonants. Some roots contain abstract phones ([C]) which block the application

of some coalescence and vowel hierarchy rules. Example (18) shows the actual (18-a) UR

Table 7.3: Morpho-phonological Rule Application

Concrete Abstract
UR: (h)j+ahyagwiy+ageh’ | (h)sni+ahyagwiy+ageh”
sn—j/_i+a n/a (h)ji+-ahyagwiy
Vowel Hierarchy | n/a (h)j+ahyagwiy
Output: (h)j+ahyagwiy+ageh | (h)ji+ahyagwiy

and SR of a form with an abstract C versus the expected (18-a) UR and SR.

(18) a.

b.

UR: ga+ Cisra +a’

SR: ga- isr -a'
UR: ga+ Cisra +a’
SR: *ge-sr -a’

71

The abstract C in (18-a) blocks the application of the vowel coalescence rule that turns /
a+1/into [¢] In (18-b) since there is no abstract C to block the process, the vowels

incorrectly coalesce into [¢ |.

7.1.3 Semantics Modules

I created a simple semantics modules that glosses the stems, prefixes and suffixes with a
very basic English gloss. The semantics module was generated by slightly modifying the
lexicon module such that the transductions between a morpheme and its semantics were
directly encoded into a lexc file. Essentially the semantics module is an enhanced lexicon
that contains not only morphemes and how they can connect, but also the semantics for

each morpheme.

Table 7.4 compares a regular lexicon used for segmentation (left) with a modified lexicon

used for generation for semantics (right).

Table 7.4: lexc samples for semantics module and lexicon module

Regular Lexicon Semantics Lexicon
LEXICON inalienablePrefixes LEXICON inalienablePrefixes
(y)agwa+ inalienableStems ; lepA+ : (y)agwa+ inalienableStems ;
LEXICON inalienableStems LEXICON inalienableStems
ahohd NSF ; on your ears : ahohd NSF ;
LEXICON NSF LEXICON NSF
+a # +NSF : +a’ #;

As can be seen in the right-hand columnn of table 7.4, the basic semantic definition of
a form is given to its left separated by a colon (for example, +NSF : +a”). An alternative
method of implementing the semantics module would have been a list of transformation
rules that would contain the semantics for all stems, prefixes and suffixes. Either method
would produce the same results; however, a major drawback of the method I applied was
that when the basic lexicon was changed, the semantic lexicon had to be changed to match.
A rule-based approach (in which semantic glosses are added by rules) would not need such

changes.

72

It is also important to note that I could not just use the semantics lexicon in place of
the regular lexicon because then the intermediate output (the segmented morpheme) would

not be generated, just the semantics.

7.1.4 Interface

A user interface was not part of the original set of specifications, but I decided that it
was more satisfying to create a basic one. I designed a simple web based interface for the
program using Python” and PHP.2 This interface allows users to enter words into a simple
form field and then receive the segmented form of the word, the semantics and the set of
related prefixes. Currently this interface uses the concrete version of the FST to give users
concrete underlying forms. Additionally the interface gives a brief explanation of the prefix

semantics.

Figure 7.7 outlines the entire process in the form of a flow chart explicitly stating the
intermediate tasks assigned to the python script. At point (A), the user is presented with a
form field in which to input a word. This word is passed to the Python script which renders

the word to lower-case? and ensures that only a single word has been entered (B).

This single lowercase word is then passed by the script to point (C) the segmenting FST
(the composition of the lexicon and rules components as described above). The output of
the segmenting FST is returned to the script (D) which outputs the result to the user and

also passes the information to (E): the semantics FST.

The semantics FST in turn returns its result to the script (F). The script then outputs
this result, and then separates the prefix semantics to be passed back to the semantics FST
in reverse (G). The result of (G) is then passed to the script (H) which outputs that result

to the user.

Table 7.5 describes the information flow through the interface.

"Python is a standard procedural programming language. For more information please visit
http://www.python.org
8PHP is a standard procedural programming language. For more information please visit

http://www.php.net. The PHP scripting performs no task other than to pass the user-input to the python
seript for processing.
9The FST has been designed in lower-case, it can however, be modified to be case insensitive.

73

Figure 7.7: Complete Program Flow Chart

A: User Input / Web Form
B: Python Script: Word tokenization &
' capitalisation regularization
A
. ™~
Noun Prefix Morphq— Clean
C Lexicon Joiner || Phonological || -uP
Removal Rules Rules
- _J
Y
Python Script: Output result &
D: f ; .
orward it to:
E: Semantics FST
Python Script: Output result &
F: :
forward prefix to:
G: Semantics FST: Reverse
H: Python Script: Output result

Flow chart demonstrating how user input is passed through to each module of the machine
using the python script as an intermediary.

74

Table 7.5: Stages of Output from User Interface

Input to Reverse Semantics | 3znsP+
Reverse Semantics Output List of prefix allomorphs with conditioning
environments, see example (19)

a | User Input to Segmentation | ohgna'da’

b | Segmentation Output (y)o+hona'd+a’

¢ | Input to Semantics (y)o+hona’d+a’

d | Semantics Output 3znsP+potato+NSF
e

f

The interface actually runs three FSTs in order to produce the results. First the word
entered by the user is run through the combined lexicon module and the rules module (table
7.5 a). This FST outputs the segmented form (table 7.5 b) or an error if the word does not

exist in the machine.

The output from that FST is then run through the semantics module to generate the

semantics for the form (table 7.5 ¢ and d).

Finally, the prefix from the output of the semantics module is run through the semantics
module again, this time in reverse (table 7.5 e and f and example (19)), exploiting the

bidirectionality of FSTs. At both stages the output is saved and displayed to the user.
The output of the second pass through the semantics (Table 7.5 f) module is formatted
as such:
(19) Prefixes meaning 3zndpA:
egen—+inalienable noun root beginning with 4a
egad-+inalienable noun root beginning with +i

egadi+inalienable noun root beginning with +'C

This interface was quite straight-forward to design, demonstrating that XFST is worthwhile

for developing usable applications.

75

7.2 Addressing the requirements

There were several requirements that each machine should meet in order to determine which
approach was most useful. The machines should (a) provide an adequate arena for testing
the morpho-phonological rules of Cayuga; (b) properly generate and segment all and only
Cayuga nouns; (c) help investigate the usefulness of the FS framework for polysynthetic
languages; (d) provide ideal dictionary access; and (e) be efficient and elegant. Each of these

requirements is discussed below.

7.2.1 Testing of Rules

Determination of morpho-phonological rules and their orderings can often be difficult for a
variety of reasons. Applying rules to a large number of forms can be very time consuming
and difficult if done manually. Finite-state machines allow the user to run large corpora of
data against a given ruleset very quickly, and furthermore allow the changing and updating

of those rules with ease.

I compiled a set of test-case files included in Appendix C in order to ensure that the
rule-orderings were producing the appropriate results for all noun types. This required firstly
determining the set of conditioning environments (e.g., Table 7.7) and then selecting a set

of words exemplifying each underlying prefix form with each stem type.

Two lists were created, one containing the valid underlying forms and one containing
valid surface forms of those same words for comparison with the machine’s output. A second
set of underlying forms had to be generated for the concrete approach since the prefix

alternants are lexicalised.

After running the list of underlying forms through the machine I compared its output
automatically with my list of correct surface forms. The automatic comparison listed forms
that should not have been output as well as forms that should have been, for example, see
table 7.6 (b):

76

Table 7.6: Rule-testing Samples

Input Output Expected Output | Result
(a) | (va)godi+hgna'd+a’ | godihgna'da’ | godihgna'da’ OK
(b) | (w)ag+hsgwag'd+a’ | aksgwag'da’ | agehsgwag'da’ The SR “aksgwae'da™ was

produced which is not a
valid noun of type X.
The SR “agehsgwae’da™
was not produced.

Finally, I ran the same process in “reverse” to check that the bidirectionality of the

machine was intact: surface forms gave the proper underlying forms and vice versa. As

described in the following section, some errors in the posited rules were revealed.

7.2.1.1 Errors Discovered

One problem was discovered with the rule formulations: that the 1sP basic noun prefix

was not always generating the correct allomorph. The 1sP prefix was listed as having the

following C-stem allomorphs:

Table 7.7: Basic Nouns Patient Prefix Allomorphs - C-stems

Gloss | Prefix UR

TV

hCV | nV |r |y/w | Elsewhere

1sP (w)ag+

ag-

ak-*

age- | ak- | ag- | ag-

age-

In the course of testing it became clear that this description was not fully adequate. The

current description describes nouns beginning in ["CC | as a single environment. However,

as can be seen from example (20), not all ["CC | stems in fact pattern identically.

(20) a.

b.

age+ 'drehd

+a'

1sP car; truck; vehicle NSF

My car(s)
*age+ "nhohs +a’

77

c. ak-+ 'mhghs +a”
1sP egg NSF

my egg(s)

According to the current description of morph-phonological alternations, the stems -"drehd-
and -"nhghs- should both pattern identically and take the same 1sP allomorph age+. How-
ever, as can be seen in (20-b) and (20-c), this is not the proper allomorph for the stem
-'nhohs-. This demonstrates that the machine description, by systematically applying it-
self to all nouns, can detect inconsistencies in rule formulation/conditioning environment

description.1?

7.2.2 Generation & Segmentation

The above method for testing covered all regular alternation types. If there are any unrecog-
nized forms still in the machine they are then a fault of either an error in the initial data or
caused by human error in the creation of the lexicon file. The machines each generate and
segment over 4000 nouns with almost 100% coverage, with the only errors resulting from the

occasional mis-analysis of [e]-epenthesis described in the preceding section.

7.2.3 FS Applicability to Polysynthetic Languages

In general, it does not seem that any inordinate amount of complexity arises as a result of
the large number of phonological alternation rules or as a result of (a limited number of)
long-distance dependancies. In fact the two machines that I created were each quite small in
final size. However, because this machine only implements a single long-distance dependancy
it is not clear whether or not a fully implemented language FST would encounter difficulties

arising from that issue.

While there were no complexity issues in the development of either machine, there may

be some issues that arise in future work due almost solely to the morphological complexity

10There are two ways to approach the modelling of [e]-epenthesis: (a) a linear description (g—] e]/C.-CC),
or (b) a non-linear description (apply the rule in (a) only in the case where some of the Cs would remain
unsyllabified otherwise). I have assumed a linear approach as a non-linear approach would require either
a complex environment that accounts for the differing syllabifications of continuants and non-continuants,
or a syllabification module. It is beyond the scope of this paper to model the complex environments of
[e]-epenthesis.

78

found in First Nations languages. It seems likely that highly synthetic! languages, such as
those in the Athapaskan family, may require special care for the designing of morphological
segmenters. There will be not only many prefixes but also many more cases of long-distance

dependancies and morpho-phonological variation will be much higher.

7.2.4 Ideal Dictionary Access

The machine produces a basic semantic gloss for all valid noun forms and has a straightfor-
ward interface. The user need only type a word into a text box to retrieve its morphological

and semantic information. The output of the machine is very accessible.

A potential drawback of the current version of the machine is that it is somewhat
restricted by its use of an intermediate (non-standard) orthography lacking accent-related
diacritics (§4.1). In its current version therefore it does not meet all the criteria of an
accessible dictionary. This problem, however, can be easily resolved by the introduction of

additional transducers to take input in either of the Henry or linguistic orthographies.

7.2.5 Efficiency, Elegance and Usability - Abstract vs. Concrete Versions

Both the abstract and the concrete versions are almost identical in the terms of computational
efficiency initially laid out in §6.1.1.2. The two machines have statistically insignificant
differences in the number of states, transitions and in file size. As can be seen in table 7.8
the abstract machine is slightly larger (by 0.4Kb), has 6 additional states (out of 1054), and
20 additional transitions (out of 1943). The comparative evaluation of the two machines,

therefore, must rest on other criteria, as discussed below.

Table 7.8: Sizes of Final Segmenter FSTs

File Size (Kb) | States | Transitions | Paths | Rules | Roots | Prefixes

Abstract 40.5 1054 1943 4009 28 413 45

Concrete 40.1 1048 1923 4006 19 413 149

HGynthetic languages ”typically contain more than one morpheme”. In a highly synthetic language the
words would typically contain more than 3 or 4 morphemes, as in, for example, Totonac. (Crystal, 2003)

79

In terms of processing speeds, the abstract and concrete versions are, again, nearly
identical. I timed 5 sets of 100 iterations of segmentation and combination of morphemes
using the test cases described above (713 words per iteration for the abstract machine and
712 for the concrete machine). As can be seen from the data in tables 7.9 and 7.10, the speed
of running the combination of an underlying form to produce a surface form was very slightly
slower than segmenting a surface form into an underlying form. However, both machines
show little difference in speed and on average segment single words in about 0.0002145s and

combine single words in about 0.2315s.

Table 7.9: Time (in seconds) for 100 iterations of morpheme combination of the test corpora

Machine | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Average | Average/word
Abstract | 15.325 | 15.626 | 15.203 | 15.102 | 15.110 | 15.273 0.0214
Concrete | 15.870 | 15.329 | 15.749 | 14.979 | 14.784 | 15.342 0.0215

Table 7.10: Time (in seconds) for 100 iterations of segmentation of the test corpora

Machine | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Average | Average/word
Abstract | 16.570 | 16.317 | 16.504 | 16.528 | 17.319 16.648 0.0233
Concrete | 16.633 | 16.245 | 16.254 | 16.284 | 16.325 16.348 0.0230

The two machines contain both internal and external ambiguity (non-determinism). The
external ambiguity was necessary because some lexical items have more than one potential
meaning and some surface prefixes can be analysed as one of 2 or more underlying prefixes.
This non-determinism does not seem to impede the performance of the final machine, most
likely as it occurs early on in the words processing time is only marginally affected and as

there are only a small number of cases machine size is not greatly affected either.

Initially, the concrete approach shows some distinct advantages over the abstract ap-
proach. It is easier to have it generate useful output for the users. As well, there are some
possessive prefixes that need to be listed lexically regardless of the approach. This some-
what mitigates the argument of linguistic elegance as an advantage of the abstract approach.
Since some continuation classes are necessary regardless, and the concrete machine uses them
throughout, the concrete approach is more consistent. (See §4.2.3, §6.1.1.1 and §7.1.1 for a

further discussion of the opaque prefixes).

30

The abstract approach has more composition operations than the concrete approach
and to expand the machine to include verbs and other word-forms would certainly require
even more rules to be added (resulting in more composition operations). However, there
are unlikely to be many more rules that need to be added to account for other word-forms
and several of those rules would still need to be applied to the concrete machine, so it seems
unlikely that there will be a substantial growth in the size of the abstract machine relative to
the concrete machine with the addition of further roots and prefixes. So, in terms of future

machine growth, the two approaches seem equal.

The distinct advantage to the abstract approach that makes it the best choice for future
work, however, is that of elegance (not just linguistic elegance, but equally importantly, com-
putational elegance). The abstract approach is significantly simpler to design, implement,

maintain and update than the concrete approach, as described below.

When a bug was found in the abstract approach, either a single form in the lexicon
needed to be edited, or a small number of rules needed to be modified or rearranged. In
the case of the concrete approach, however, all major bugs were in the lexicon; if there was
an initial design error, then going back to fix it was significantly more difficult. In other
words, the concrete approach was significantly less computationally elegant than the abstract
approach. For example, suppose it had been incorrectly assumed that /(e)dwa+g.../ become
/(e)dw+g.../. To fix this problem in the concrete approach, all inalienable roots beginning
with [¢] would have to be relocated to new sub-lexicons. Since the roots beginning with [¢ |
are distributed across multiple sub-lexicons, and it is necessary to keep their other groupings
intact, this would be a lengthy endeavour. To fix this pfoblem in the abstract approach,

however, one would need only to modify a single rule to effect the change.

Finally, while the abstract machine in its current form is slightly less usable than the
concrete machine, it can be modified to provide more user-friendly output. Currently, the
abstract machine cannot provide a list of related prefix forms for an underlying prefix, while
the concrete machine can. Such a list is of great use to speakers who might have difficulty
identifying related prefix allomorphs. This problem can easily be solved at a later date
by modifying the semantics module and combining it with a modified version of the rules

module.

The abstract approach, then, is more computationally and linguistically elegant, mean-

ing it will be easier to upgrade and modify in the future. Any drawbacks that it may have

81

compared to the concrete approach can be satisfied by the creation of a number of further

modules, at an apparently low cost in terms of computational efficiency.

82

CHAPTER 8

Conclusion

8.1 Future Work

There is a wide array of uses to which my application can be put. The innate modularity of
the F'S framework means that my work can be-easily extended to include enhancements such
as orthographic conversion between the three orthographies or recognition of more complex

prefix combinations and more word types.

Dictionaries can be constructed that will be more accessible to their users. The user
will no longer need to have a complex grasp of the morphology and morpho-phonology of

their language, simply to find the definition of a word (§5.1).

This machine could be expanded to include all Cayuga word-forms. Almost all of
the rules that are necessary for analyzing verbal forms are independently needed to model
nominal forms, so very few new rules would need to be added. In principle this approach
should work for verbs, but it remains to be fully tested. It would also be useful to implement
a more rigorous semantics module that could more fully implement dictionary-like semantic

readings.

Furthermore the simple parser that I have described can be enhanced by the addition of
a variety of other modules such as spell-checkers, syllabifiers and the ability to use multiple
orthographies (something that is of particular use in the context of First Nations languages
which typically make use of multiple orthographies). A spell-checking dictionary that could
guess what a user meant if they mis-typed a word would be ideal for many First Nations
languages where the spelling system and the morphology are often complex and confusing

to speakers.

83

8.2 Summary Conclusions

In this document I have detailed my implementation of a morphological parser for Cayuga
using the finite-state framework. This parser demonstrates that the finite-state framework
can generally handle problems typical of polysynthetic languages such as obligatory prefixing
and long-distance dependancies and that the finite-state framework is a versatile tool for NLP

applications.

Much future work will need to be done to fully establish the finite-state framework’s use-
fulness for full-scale implementations of morphologically complex languages but my machine

as a proof-of-concept is the first step towards such a full-scale implementation.

84

BIBLIOGRAPHY

ALEGRIA, INAKI, MAXUX ARANZABE, NEREA EZEIzZA, AITZOL EZEIZA, and RUBEN URIZAR. 2002.
Using Finite State Technology in Natural Language Processing of Basque. In Implementation
and Application of Automata: 6th International Conference in the Lecture Notes in Computer
Science Series, ed. by B.W. Watson and D. Wood, volume 2494, 1-11. Berlin, Heidelberg:
Springer-Verlag GmbH.

BEESLEY, R. KENNETH, and LAURI KARTTUNEN. 2000. Finite-State non-concatenative morpho-
tactics. In Special Interest Group in Computational Phonetics, volume (2000), 1-12.

BEESLEY, R. KENNETH., and LAURI KARTTUNEN. 2003. Finite State Morphology. Stanford, CA.:
Center for the Study of Language and Information Publications.

CHAFE, WALLACE L. 1967. Seneca Morphology and Dictionary. Number 4 in Smithsonian Con-
tributions to Anthropology. Washington D.C.: Smithsonian Press.

CHOMSKY, NoAM. 1956. Three Models for the Description of Language. IRE Transactions on
Information Theory 2: 113-124.

CRrysTAL, DAvVID. 2003. A Dictionary of Linguistics and Phonetics. Malden, MA: Blackwell
Publishing, 5th edition.

Dyck, CARRIE. 2006. Speakers prefer concrete prefixes. Personal Communication.

FoSTER, MICHAEL. 1986. Updating the terminology of tense, mood, and aspect in Northern
Iroquoian descriptions. International Journal of American Linguistics 52: 65-72.

——, KARIN MICHELSON, and HANNI WOODBURY. 1991. Base and offix dictionary for Iroquoian
languages. N.Y.: Ms. Snyder.

FrANK, ROBERT, and GIORGIO SATTA. 1998. Optimality theory and the generative complexity
of constraint violability. Computational Linguistics 24.2: 307-315.

FROMAN, FRANCES, ALFRED KEYE, LOTTIE KEYE, and CARRIE DyCK. 2002. English-Cayuga /
Cayuga-English Dictionary. Toronto: University of Toronto Press.

Hopkins, ALICE W. 1989. Theoretical Perspectives on Native American Linguistics, chapter
Vowel Doubling in Mohawk, 445-459. Albany: State University of New York press.

KAPLAN, RoONALD M., and MARTIN KAy. 1994. Regular models of phonological rule systems.
Computational Linguistics 20.3: 331-378.

KARTTUNEN, LAURI. 2001. Applications of Finite-State Transducers in Natural Language Process-
ing. In Implementation and Application of Automata : 5th International Conference, ed. by
S. Yu and A. Paun, volume 2088, 33-46, Berlin, Heidelberg. CIAA, Springer-Verlag GmbH.

KirAZ, GEORGE ANTON, and BERND MOBIUS. 1998. Multilingual syllabification using weighted
Finite-State Transducers. In Proceedings of the Third ESCA Workshop on Speech Synthesis,
Australia. Jenolan Caves.

85

KOSKENNIEMI, KIMMO. 1997. Representations and Finite-State components in Natural Language.
In Finite-State Language Processing, ed. by Emmanuel Roche and Yves Schabes, 99-110.
Cambridge: MIT Press.

——, and KENNETH WARD CHURCH. 1988. Complexity, Two-Level Morphology and Finnish. In
COLING, 335-340.

MACKENZIE, MARGUERITE, and BILL JANCEWICZ (eds.) 1994. Naskapi Lezicon. Kawawachika-
mach: Naskapi Development Corporation.

MICHELSON, KARIN, and MERCY DOXTATOR. 2002. Oneida-English / English-Oneida Dictionary.
Toronto: University of Toronto Press.

MiITHUN, MARIANNE. 1979. The Consciousness of Levels of Phonological Structure. International
Journal of American Linguistics 45.4: 343-348.

MosRrIi, MEHRYAR. 1997. Finite-State Transducers in language and speech processing. In Associ-
ation for Computational Linguists, volume 23, 269-311.

NEDERHOF, MARK-JAN. 1996. Introduction to Finite-State techniques. Lecture notes.

OFLAZER, KEMAL. 1994. Two-level description of Turkish morphology. Literary and Linguistic
Computing 9.2.

REICHEL, UWE, and KARL WEILHAMMER. 2004. Automated Morphological Segmentation and
Ewvaluation. Lisbon, Portugal: n/a.

RoCHE, EMMANUEL, and YVES SCHABES. 1997. Finite-State Language Processing. Cambridge,
Mass.: MIT Press.

SPROAT, RICHARD W. 1992. Morphology and Computation. Cambridge, Mass.: MIT Press.

TINSLEY, JOHN. Accessed: 2007 02 13. Spanish Morphological Analyser/Generator.
hitp://www.redbrick.dcu.ie/ tinsley/ .

TZOUKERMAN, EVELYN, and MARK Y. LIBERMAN. 1990. A finite-state morphological proces-
sor for Spanish. In COLING-90: Papers Presented to the 13th International Conference of
Computational Linguistics, ed. by Hans Karlgren, 277-282, Helsinki. Helsingiensis Universitas.

VILARES, M., J. OTERO, F.M. BARCALA, and J. DOMINGUEZ. 2004. Automatic Spelling Cor-
rection in Galician. In Lecture Notes in Artificial Intelligence, number 3230 in Espaia for
Natural Language Processing 2004, 45-57. Berlin: Springer-Verlag.

WIKIPEDIA. Accessed: 2006 03 24. Finite State Machines. http://en.wikipedia.org/wiki/Finite
_state_machine .

YouNG, ROBERT W., and WILLIAM MORGAN. 1987. The Navajo Language, A Grammar and
Colloquial Dictionary. Albuquerque: University of New Mexico Press, revised edition.

86

APPENDIX A

Morpho-phonological and Clean-up rules

This section contains the morpho-phonological rules and the clean-up rules as described in §7.1.2.1.
The optional prefix segment rules were left out as they are relatively straightforward.

Rules prefixed by * appear only in the abstract version of the program. Other rules appear

in both versions'. Finally rules prefix by a f implement minor spelling variations characteristic of
the Henry Orthography.

9.
10.

h(C)V

Tt /el = K /- + OV

nVv
t/h/—08/s+.V

/b o8 /k_+C

C,

*¢—>{e]/{s } v
& cC

(C, consists of [k, g, t, d, h, s, j])

. Some prefixes have additional initial vowels that are only pronounced when preceded by

another phone, these are deleted as necessary here, and actually consists of 3 separate rules.

/a+ i/ — [e]

*/0/—>[aW]/--+{Q}
Vi+

/V/ =0/ V+V 3
VV+

(The final vowel in a tri-moraic vowel sequence at a morpheme boundary is deleted)

*mif =yl / - +a

*/adi/ — [en] / —+ V.
(V_; is the set of all vowels except [i])

'In some cases I have have combined rules together for clarity where they are actually stated as separate
in the rules module.

87

11 */di/ > [n] / -+ V,,

Rules (12 - 16) represent vowel hierarchy deletions. The hierarchy from strongest to weakest
iS[Q? O’ Q’ e? a'7i]
12. /V/] — o/ { —+eo }

o+ -

o+ __

13. /o, ¢, e,a,i/ — ¢/ { —-to }
14. /e, e, 8,1/ — 0/ { (;_:—E }

15. fe, a,i/ — @/ { eje }

16. /a, i/ — o/ { a:a }
—+o

A TR
o+

18. */k, t,d/ — [g] / —y +2
19. */sy/ =] / - +

20. /Vi+Vy/ — [V

21. vt/ -0/ V.V

Some roots require abstract consonants that block morpho-phonological processes such as
the coalescence rule in (6). These abstract consonants are deleted here.

23. /V1/ =0/ V() -+
Some rules leave behind groups of identical vowels at morpheme boundaries such as ...a:+a...
or ‘9+9...". All such sequences are cleaned up here.

3

24. /+/ -9
Bhis rule deletes the morpheme boundary marker.

2This rule implements a difference between the lower Cayuga dialect dealt with in this study, and the
upper Cayuga dialect.

88

APPENDIX B

Code

This appendix contains the XFST Lexc code used to generate the abstract and concrete lexicons.
This code specifies the valid morpheme combinations, but does not apply any rules. The design of
this code is outlined in §7.1.1. This code is written in Lexc as described in §6.3.1.

There are four sections to this appendix. The broad division is between the abstract and concrete
version and within those sections is the code for both the semantic lexicon and the regular lexicon.

B.1 Abstract Version

B.1.1 Abstract Lexicon

Multichar_Symbols @U.INALIEN.POSS@ @U.INALIEN.UNPOSS@

LEXICON ROOT
allNouns ;

LEXICON allNouns
inalienableNouns ;
basicNouns ;
deverbalNouns ;
defectiveNouns ;

LEXICON defectiveNouns

sgwa: gwapdo' #

dago:s # ;

da:gu:s # ;

dakshae'dohs # ;

so:wa:s # ;

twe:rtwe:t % ;

ho:ga:k #

doge:t #

gwihsgwihs #

89

gwa'yQ’
sohg:t
gyo:gyo:’
jogrihs
gwido'gwido’
didi:”
jikjiye:”
ga'ga:’
hihi:
gwiye'gwiye'
dihsdihs
ji'nhowe:se:
duwisduwi:’
sa'sa’
gwe:dihs
gwe:se'
tsahgo:wah
jihsgogo”
gwaoh
johwe'sdaga’
gwg'gohnye’
hnyagwai’
go:deh
tgwiyo:ge'
jinhohgwaheh
ji'nghdo:ya’
ji'dana:we:
jinohsangh
jihsda:
ji'ao:ye:
jinohyahae:
degriya’go’
jihnyo'ge’
hehshai:
sgwa'ahda’
tehto’
jo'daga’
jino:we:
tea:Cot
sa:no:’
dre:na:
dre:na:
joni:tsgro:t
kdagg’
do:dihs

90

sgwa:yeh #
gwiyo:ge' #
jo:nyg:’ # ;
nphsodai:yo: #
gwa'da: #
jide:'eh # ;
jo'dae:ya:” #
jitdro:we: # ;
onohotsge'e’ #
teo: ji’ #
tsa'ge:da’ #
yahgehda’ #
tsinyohgwa:k #
gihe:k #
nawe'da’ #
jihsg:dahk #
otahygQ:ni: #
tahyo:ni: #
jihsge: #
ji'o: #
grahe:t #

LEXICON deverbalNouns

o+ deverbalORoots ;

a+t deverbalARoots ;

ga+ deverbalGaRoots ;
deverbalNullRoots ;

LEXICON deverbalNullRoots
edehsr NSF ;
e'nyotr NSF ;
e¢'nhotr NSF ;

LEXICON deverbalGaRoots
idehsra NSF ;
yenawahsr NSF ;
ya'dowehdahsr NSF ;
ya'dagenhahsr NSF
atgwenya'tr NSF ;
atgonya'tr NSF ;

tgi'tr NSF ;
nohgokdehsr NSF ;
nhehsr NSF ;

91

na'jowi'tr
risr
rihwiyohsd¢hsr
rihwane'aksra
riho'dehsr
hyadohsr
hshahsdehsr
Cahghsr

LEXICON
yehsr
atgahnonihsr
nrahdodahsr
nonhe'dr
niga:hg¢hsr
hshahsdehsr
adgtgadghsr
adgtgadehsr
‘drohsr
i’daihghdr

LEXICON
atsho’kdghsr
atna'tsotr
atna'gwihdr
atgahnyehtr
nahaotr
agya'dawi'tr
adrihwagyaghsr
adra'wihsd
adgnhehsr
adi’grohsra
adena'tr
adekwahahsra
adao'tra
ahdahdi'tr

LEXICON
QU.INALIEN.POSS@
QU.INALIEN.UNPOSS@Qo+
end with the NSF

NSF ;
NSF ;
NSF
NSF ;
NSF ;
NSF ;
NSF
NSF ;

deverbalORoots
NSF ;
NSF
NSF ;
NSF
NSF ;
NSF ;
NSF
NSF ;
NSF
NSF ;

deverbalARoots
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF
NSF ;
NSF ;

inalienableNouns

inalienabl

92

inalienablePrefixes ;

eStems ;

H

! Unpossessed inalienables

LEXICON
g+
(e)tni+

(e)kni+

(y)akni+
(e)dwa+
(y)agwa+
(

ha+

(y)

gat

(y)+

w+

hadi+
gag+
gae+
ga:g+
gadi+

LEXICON
h)s+

h)sni+
h)swa+
eh)s+

eh)sni+
eh) swa+

LEXICON
ot

@+

ag+

e+

LEXICON

LEXICON

inalienablePrefixes

inalienableStems ; ! 1S
inalienableStems ; ! 1ID (This and the following
are interchangeable)
inalienableStems ; ! 1ID (This and the preceding
are interchangeable)
inalienableStems ; ! 1ED
inalienableStems ; ! 1IPL
inalienableStems ; ! 1EPL
inalienablePrefixes?2 ;
inalienableStems ; ! 3MS
inalienable3FIPrefixes ;
inalienableICStems ; ! 3N (For I-stems and C-stems)
inalienableOgStems ; ! 3N (For o-stems)
inalienableNotIOQStems ; ! 3N (For other stems)
inalienableStems ; ! 3MPL
inalienableAStems ; ! 3FIPL (For a-stems)
inalienableICStems ; ! 3FIPL (For i-stems and C-Stems)
inalienableNotAIStems ; ! 3FIPL (For other stems)
inalienableStems ; ! 3NPL

inalienablePrefixes?2

inalienableVStems ; ! 2S
inalienableVStems ; ! 2D
inalienableVStems ; ! 2P
inalienableCStems ; ! 2S
inalienableCStems ; ! 2D
inalienableCStems ; ! 2P

inalienable3FIPrefixes

inalienableAStems ; ! 3FI (For a-stems)
inalienableIStems ; ! 3FI (For i-stems)
inalienableNotAIStems ; ! 3FI (For other V-stems)

inalienableCStems ; ! (For C-stems)

inalienablelICStems

inalienablelIStems ; ! 3FIPL (For i-stems)

inalienableCStems ; ! 3FIPL (For C-stems)

inalienableVStems

inalienableAStems ;

inalienableIStems ;

93

LEXICON

LEXICON
!
!
!

LEXICON

LEXICON
!

LEXICON
ahohd
ahsi'd
ahyagwiy

LEXICON
ihn

'LEXICON

!LEXICON

ILEXICON

inalienableEStems ;

inalienableg¢Stems ;

inalienableOStems ;
inalienablegStems ;

inalienableStems
inalienableAStems ;
inalienableIStems ;
inalienableNotAIStems ;
inalienableCStems ;

inalienableNotAIStems
inalienableEStems ;
inalienableeStems ;
inaljenableOStems ;
inalienable@Stems ;

inalienableNotIOgStems

inalienableAStems ;
inalienableEStems ;
inalienablegStems ;

inalienableOgQStems
inalienableOStems ;
inalienableg@Stems ;

inalienableAStems
inalienableSuffix ;
inalienableSuffix ;
inalienableSuffix ;

inalienableIStems
inalienableSuffix ;

inalienableEStems

inalienable¢Stems

inalienableOStems

94

LEXICON
ots

LEXICON
we'nahs
we'nohs
gah
gahehd
gahgwaohs
gohs
gohsto’
go'd
ge'sd
ha’d

han
hdega:
hetga’
hna'ts
hnes
hnya's
hnyedahs
hsgwa:
hsin
hsghga:
hsna'd
hsohd
hsohgw
hswa'n
hswe™n
hyohs
"nhohsga:
"nyghs
"yohgw
"ahs
kse'd
no'a:
no'gw
nonhe’dr
no'j

nr
netsh
nyed

inalienablegStems

inalienableSuffix ;

inalienableCStems

inalienableSuffix ;
inalienableSuffix ;

inalienableSuffix ;
inalienableSuffix ;

inalienableSuffix ;
inalienableSuffix ;

inalienableSuffix ;

inalienableSuffix ;

inalienableSuffix ;

inalienableSuffix ;

>

»

)

H)

inalienableSuffix ;

inalienableSuffix ;
inalienableSuffix ;
inalienableSuffix ;

inalienableSuffix ;

inalienableSuffix ;

inalienableSuffix ;

inalienableSuffix ;

inalienableSuffix ;

inalienableSuffix ;
inalienableSuffix ;

inalienableSuffix ;
inalienableSuffix ;

inalienableSuffix ;
inalienableSuffix ;
inalienableSuffix ;

inalienableSuffix ;

inalienableSuffix ;
inalienableSuffix ;

inalienableSuffix ;
inalienableSuffix
inalienableSuffix

inalienableSuffix ;

inalienableSuffix ;
inalienableSuffix ;

inalienableSuffix ;
inalienableSuffix ;

inalienableSuffix ;

95

>
.
’

»

3

’

rad
ragwahd
wg'yohga:
jaoho'gw
ji'ohd
ji'ehd
jisgo'gw
ya'd
ya'ga:
yo'd
yo'gw
yo'ts
yu'ts

LEXICON
QU.INALIEN.POSSQ
QU.INALIEN.UNPOSS@

LEXICON
+a’geh

LEXICON

LEXICON
gat

o+

at

LEXICON
(w)ag+
(y)okni+
(y)ogwa+
sat

sni+
swat

ho+
(ya)go+
(y)o+
hodi+

inalienableSuffix ;
inalienableSuffix ;
inalienableSuffix ;
inalienableSuffix ;
inalienableSuffix ;
inalienableSuffix ;
inalienableSuffix ;
inalienableSuffix ;
inalienableSuffix ;
inalienableSuffix ;
inalienableSuffix ;
inalienableSuffix ;
inalienableSuffix ;

inalienableSuffix
locativeSuffix ;
NSF ;

locativeSuffix
#

basicNouns
basicNounUnpossessedPrefixes ;
basicNounPossessedPrefixes ;

basicNounUnpossessedPrefixes
gaBNouns ;
oBNouns ;
aBNouns ;

nullBNouns ;

basicNounPossessedPrefixes
allBasicNounStems ; ! 1st person singular
allBasicNounStems ; ! 1st person dual
allBasicNounStems ; ! 1st person plural
allBasicNounStems ; ! 2nd person singular
allBasicNounStems ; ! 2nd person dual
allBasicNounStems ; ! 2nd person plural

allBasicNounStems ; ! 3rd person masculine singular
allBasicNounStems ; ! 3rd person feminine indefinite?
allBasicNounStems ; ! 3rd person neuter
allBasicNounStems ; ! 3rd person masculine plural

96

(ya)godi+ allBasicNounStems ; ! 3rd person feminine indefinite plural

(y)odi+ allBasicNounStems ; ! 3rd person neuter plural

LEXICON allBasicNounStems
gaBNouns ;
oBNouns ;
aBNouns ;
nullBNouns ;

LEXICON gaBNouns
normalGaBNouns ;
gaoBNouns ;

LEXICON oBNouns
normalOBNouns ;
gaoBNouns ;
aoBNouns;
nullBNouns;
oLoanWords;

LEXICON aBNouns
normalABNouns ;
aoBNouns ;

LEXICON oLoanWords

di: # ;

ji:s #

LEXICON nullBNouns

hona'd NSF

hsgwae'd NSF ;

LEXICON gaoBNouns

"yohgw NSF ;

"wahsd NSF ;

hehn NSF ;

hnyedahs NSF ;

ho'jihsd NSF ;

hsdagw NSF ;

ji'gw NSF ;

97

jihoha:

LEXICON
adohne'ts

LEXICON
adehe
adehsw
adena’tr
ado’jin
adoda:
adoge
adowadg:
adra’'sw
ahdahgw
ahgweny
ahsgw
atroni’d
atsoge
awehe
awenohgr

LEXICON
"dodr
"ga:
‘gehe
"gr
"nehs
nest
"nost
"nhahgy
nhahd
"nhehts
‘nhwehts
"nhohs
"nohs
‘nihsda:
‘nhohd
"nhohs
"ohgwa:
"ohs
a'en
adehshe

-

NSF ;

aoBNouns
NSF ;

normalABNouns
NSF ;
NSF ;
NSF ;
NSF
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSE ;
NSF

normal0OBNouns
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF
NSF ;
NSF ;
NSF
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF

98

adenihs
ahshed
ahy

ga:

ga'd
gahdr
gahehd
gahgwaohs
gaho™j
ganye'd
ge'a:
go'dr
gwiy
ha'd

hah
hakd
he'a:
hehd
hehda:
hehs
hets
hey
hikd
hji'gr
hn
hnya:
hnye:h
hnyo’gw
hnyohs
hod
hodr
hohsgr
hohwa:
hsa:
hsahe'd
hsda:
hsdai
hsdao’gw
hs¢he
hsge'dr
ahsge'dr
hsgeh
hsgoh
hsgwi'dr
hsgy¢'da:

99

hsgyo'w NSF ;

hshe’ NSF ;

hsiy NSF ;
hsna'd NSF ;
hstodr NSF ;
hswe'd NSF ;
hwahd NSF ;
hwe'ga: NSF ;
hwehda: NSF ;
hwehsd NSF ;

id NSF ;
i'da: NSF ;
i'dghgw NSF ;
ijo'd NSF ;
jags NSF ;
jita: NSF ;
ji'drowahd NSF ;

ji'now NSF ;
Jigwed NSF ;
jihgw NSF ;
jihsgw NSF
jihsoda: NSF
jihwed NSF ;
jike'd NSF ;
jinohgr NSF ;
jitgwa: NSF ;

kd NSF ;
kdeh NSF ;

kjin NSF ;
kw NSF ;
na'da: NSF ;
na'ga: NSF ;
na'gwiy NSF ;
na'sgw NSF ;
nawad NSF ;

ne'd NSF ;
ne'da: NSF ;
negred NSF ;
negw NSF

n¢he: NSF ;
nenoga: NSF ;
nenyo'gw NSF ;

no'gw NSF ;
noge'd NSF ;
nohgwe NSF ;

100

nony
nrahd
nrege'd
nr¢he
nya'gw
nyah
nyed
rihw
sehd
shaihsd
te'tr
tgo'd
tragwe'd
tre'd
tsad
tsehsd
tsge'e:
tsgo'd
tsgr
wa:

wa wihsd
wajihsd
way
hwe'hga:
wen
widr
widrehd
wiy

y

ya'd

yad
yahgw
yan

ye:
ye'gw
yed
ye¢hsa:
yo'd
yo'gw
yow

LEXICON
"ahdr
"drehd

NSF ;

NSF
NSF

NSF

NSF
NSF ;
NSF ;

NSF ;
NSF ;

NSF ;

NSF

NSF

NSF ;
NSF ;

NSF
NSF

NSF

NSF ;

NSF ;

NSF

NSF ;
NSF ;

NSF

NSF

NSF

NSF

NSF ;

NSF ;

NSF

NSF ;

NSF ;

NSF

NSF

NSF ;

NSF

NSF
NSF

NSF

NSF ;

NSF

’

normalGaBNouns

NSF ;
NSF ;

L

2

101

"droda NSF ;

"ka: NSF ;
"na’'gw NSF ;
‘nigoh NSF ;
"wahsha: NSF ;
Cagwa: NSF ;
Catsge'd NSF ;
Cidre¢hd NSF
Cihsd NSF ;

Cisr NSF ;
ga'd NSF ;
gahihsd NSF ;
gahwehs NSF ;
gawehs NSF ;
gehd NSF ;

go'dr NSF ;

gohs NSF ;
had NSF ;
hoga: NSF ;

how NSF ;
hsdow NSF

hsen NSF ;
hsgwa: NSF ;
hsowahd NSF ;
itsga: NSF ;

je NSF ;
jihay NSF ;
jihsd NSF ;
jihw NSF ;
kw NSF ;
na'j NSF ;
na'johsgw NSF ;

nad NSF ;
nahd NSF ;

nahgw NSF ;
nahsgw NSF ;
nai'd NSF ;

nakd NSF ;
nehsda: NSF ;
nehw NSF ;

nhe'd NSF ;

nhy NSF ;
nohs NSF ;
nony NSF ;

now NSF ;

102

nyod NSF ;

ren NSF ;
rihwihs NSF ;
rod NSF ;
tgehets NSF ;
tgwe'd NSF ;
tse'd NSF
itse'd NSF ;
tseng NSF ;

ya: NSF ;
ya'd NSF ;
LEXICON NSF

+a’ # ;

B.1.2 Abstract Semantic Lexicon

Multichar_Symbols @U.INALIEN.POSS@ QU.INALIEN.UNPOSS@

LEXICON ROOT
allNouns ;
allRoots ;
allSuffixes ;

LEXICON stemArchetypes

:ak a

i i

el e

D ehoe

Y A

Dok Q

: CV% "Cv #;

: hV, hv #;
: hCV% hCV #:

1 gh C/nC/’CC/hCC/V #;

: nV% nV #;
crhr #;
L yh y/w #;

-

o W oo

C OO O O OO0 OoOO O oo

LEXICON allRoots

103

deverbalRoots ;

»

inalienableStems ;
allBasicNounStems ;
LEXICON allSuffixes
NSF ;
locativeSuffix ;
LEXICON deverbalRoots
deverbalORoots ;
deverbalARoots ;
deverbalGaRoots ;
deverbalNullRoots ;
LEXICON allNouns
inalienableNouns ;
basicNouns ;
3zn : O deverbalNouns ;
defectiveNouns ;
LEXICON defectiveNouns
toad : sgwa:gwapdQ’ #
cat : dago:s
cat : da:gu:s
chicken : dakshae'dohs #
dog : so:wa:s
duck : twe:twe:t #
goose : ho:ga:k #
guineay, hen : doge:t #
pig : gwihsgwihs #
rabbit : gwa'yQ' #
turkey : sohg:t #
Baltimore’, oriocle : gyo:gyo:’ #
blackbird : jogrihs #
black), breasted woodpecker : gwido'gwido’
blue} jay : di'di:”
chickadee : jikjiye:" # ;
crow,% raven : ga'ga:’ #
great’, horned% owl : hihi: # ;
high¥, soaring? hawk : gwiye'gwiye'
house}, woodpecker : dihsdihs # ;
hummingbird : ji'nhQweg:se: #;

104

killdeer : duwisduwi:’ #

mockingbird,? chatterbox : sa’sa’ #

night% hawk : gwe:dihs #;

partridge : gwe:s¢’ #

pigeon : tsahgo:wah # ;

robin : jihsgogo’ #

screechy, owl : gwaoh ‘ #

seagull : johwe'sdaga’ #

whip-poor-will : gwe'gohnye' # ;

bear : hnyagwai’ #

eel : go:deh #

Channely, catfish : tgwiyo:ge' # ;

ants : jinhohgwahe¢h #

bed’, bug : ji'nghdo:ya’ #

butterfly’, (something}, is), wet%;% refers), to), the), transformation) : ji'dana:we: # ;
cricket : jinghsangh #

grasshopper : jihsda: #

spider : ji'ao:ye: #

gartery, snake : jinghyahae: #

buffalo : degriya'go’ #

chipmunk’, (refers’, to% the), stripe’, on) the}, chipmunk’s¥% back) : jihnyo'ge’ # ;

fox : hehshai: # ;

frog : sgwa'ahda’ # ;

ground% hog,% woodchuck,’ gopher : tehtg’ #

mink : jo'daga’ # ;
mouse : jino:we: #
muskrat : tea:qt # ;
raccoon : sa:no:’ #
skunk : dre:na: #
skunk : dre:na: #
squirrel : joni:tsgro:t #

grey’% squirrel,’ black’ squirrel : kdagg' #;
salamander : do:dihs # ;

otter : sgwa:ych #

barn’ swallow : gwiyo:ge' #

bluebird : jo:nyg:" # ;

mud}, puppies,?% dogfish : nohsodai:yg: #
flying’, squirrel : gwa'da: #

bird : jide:'e¢h #

raspberries : jg'dae:ya:’ #

seal, shell : ji'dro:we: # ;

beech : onchotsge'e’ # ;

iron’, wood} (tree)¥%;% red) oak : teo:ji’ # ;
corny, tassel : tsa'gg:da’ #

morel,% black¥% type’k of’ mushroom : yahgehda’ #

105

wild¥% walnut : tsinyohgwa:k #;

river,% stream,’ creek : gihe:k #

sugar : nawe'da’ #

strawberry : jihs¢:dahk # ;

wolf : otahyg:ni: #;

wolf : tahyg:ni: #

a/ ghost : jihsge: #

a% crab : ji'o: #

tree : grahe:t #

LEXICON deverbalNouns

P+ : o+ deverbalORoots ;

A+ ¢ a+ deverbalARoots ;

A+ : gat deverbalGaRoots ;
deverbalNullRoots ;

LEXICON deverbalGaRoots

deverbal’, nouny root : 0 #

sexuality : idehsra NSF ;

help : ye¢nawahsr NSF ;

the’, ability’ to% think%;% thinking% skills : ya'dowehdahsr NSF ;

helpfulness : ya'dagenhahsr NSF ;

corny, bread) paddles’;% corn), soup’ paddles : atgwenya'tr NSF ;

corn’, bread), paddles’;% corn), soup’, paddles : atggnya'tr NSF ;

junk : tgi'tr NSF ;

sickness : nohgkdehsr NSF ;

to), take), someone’s} partk;% advocacy : nhehsr NSF ;

watery, drum : na'jowi'tr NSF ;

leggings : risr NSF ;

religiony;% the¥ Christian) faith : rihwiyohsdehsr NSF ;

sin : rihwane'aksra NSF ;

work : riho’dehsr NSF ;

paper : hyadohsr SF ;

power,% strength : hshahsd¢hsr NSF ;

cradleboard : Cahghsr NSF ;

LEXICON deverbalORoots

deverbal’, noun) root : O # ;

blankets : y¢hsr NSF ;

flint% (stone) : tragwe'd NSF ;

wealth : atgahnonihsr NSF ;

poplar : nrahdodahsr NSF ;

soother,’ pacifier,% nipple : ngnhe'dr NSF ;

106

material,% cloth :
power,% strength :
fun : adotgadohsr
celebration : adgtgadehsr
fat,’ pigh rinds : 'drohsr
sweat : i'daihehdr

niga:hehs
hshahsd¢h

LEXICON

deverbal’, noun’, root :
hoe : atsho'kdohsr
pants : atna'tsotr
belt : atna'gwihdr
sports,% games :
hat : nahaotr
coat,’ dress : agya'dawi'tr
disaster : adrihwagyaghsr
bat/ (mammal) : adra'wihsd
birth : adgnhehsr

0

atgahnyehtr

NSF ;

r NSF

Shy
NSF ;

3

NSF

NSF

NSF
NSF

deverbalARoots

NSF
NSF
NSF

NSF ;

NSF
NSF ;

NSF

NSF

shyness : adi'grghsra

lunch,? groceries : adena'tr

table : adekwahahsra

friendship%;’% also) refers’, to} a¥% ceremonialy friend :

NSF ;

L

adao'tra NSF ;

NSF ;
NSF ;

socks : ahdahdi’tr

LEXICON

mittens : ¢nyotr
ball : ¢'nhotr
sexuality : edehsr

LEXICON
0:QU.INALIEN.POSS@
0:QU.INALIEN.UNPOSS@o+

LEXICON

1sA+ : g+

1idA+ : (e)tni+
1idA+ : (e)kni+
ledA+ : (y)akni+
1ipA+ : (e)dwa+
lepA+ : (y)agwa+
(

3msA+ : ha+

NSF ;

2

deverbalNullRoots
NSF ;
NSF ;
NSF ;

H

inalienableNouns
inalienablePrefixes ;
inalienableStems ;

inalienablePrefixes

inalienableStems ; ! 1S
inalienableStems ; ! 1ID
inalienableStems ; ! 1ID
inalienableStems ; ! 1ED
inalienableStems ; ! 1IPL
inalienableStems ; ! 1EPL ‘
inalienablePrefixes2 ;
inalienableStems ; ! 3MS

»

107

3fia+ : (y) inalienable3FIPrefixes ;

3znsA+ : ga+ inalienableICStems ; ! 3N
3znsA+ : (y)+ inalienableO¢Stems ; ! 3N
3znsA+ @ w+ inalienableNotIOgStems ; ! 3N
3mdpA+ : hadi+ inalienableStems ; ! 3MPL
3fidpA+ : gao+ inalienableAStems ; ! 3FIPL
3fidpA+ : gae+t inalienableICStems ; ! 3FIPL
3fidpA+ : ga:g+ inalienableNotAIStems ; ! 3FIPL
3zndpA+ : gadi+ inalienableStems ; ! 3NPL
LEXICO inalienablePrefixes2
2sA+ : h)s+ inalienableVStems ; ! 2S
2dA+ : h)sni+ inalienableVStems ; ! 2D
2pA+ : h)swa+ inalienableVStems ; ! 2P
2sA+ : eh)s+ inalienableCStems ; ! 2S
2dA+ : eh)sni+ inalienableCStems ; ! 2D
2pA+ : eh)swat inalienableCStems ; ! 2P
LEXICON inalienable3FIPrefixes
0 : ot inalienableAStems ; ! 3FI
0 : et inalienableIStems ; ! 3FI
0 : ag+ inalienableNotAIStems ; ! 3FI
0 : e+ inalienableCStems ; ! (For?, C-stems)
LEXICON inalienableICStems
inalienablelIStems ; ! 3FIPL
inalienableCStems ; ! 3FIPL
LEXICON inalienableVStems
inalienableAStems ;
inalienableIStems ;
! inalienableEStems ;
! inalienableeStems ;
! inalienableOStems ;
inalienablegStems ;
LEXICON inalienableStems
inalienableAStems ;
inalienableIStems ;
inalienableNotAIStems ;
inalienableCStems ;

108

LEXICON inalienableNotAIStems

! inalienableEStems ;
! inalienable¢Stems ;
! inalienableOStems ;
inalienablegStems ;
LEXICON inalienableNotIO@Stems
inalienableAStems ;
! inalienableEStems ;
! inalienableg¢gStems ;
LEXICON inalienable0¢Stems
! inalienableOStems ;
inalienablegStems ;
LEXICON inalienableAStems
stemArchetypes ;
inalienable nouny, root} beginning}, with’% %+a : 0 #
onY, your’ ears : ahghd inalienableSuffix ;
ony, your}, foot : ahsi'd inalienableSuffix ;
on my% toes : ahyagwiy inalienableSuffix ;
LEXICON inalienableIStems
stemArchetypes ;
inalienable’ noun}, root’% beginning} with% %+i : O ¥ ;
(on)% my% skin : ihn inalienableSuffix ;
ILEXICON inalienableEStems
ILEXICON inalienablegStems
'LEXICCON inalienableOStems
LEXICON inalienable@Stems
stemArchetypes ;
inalienable) noun}, root) beginning}, withj %+o : O #
on/, your’, knee : ots inalienableSuffix ;

109

LEXICON inalienableCStems

stemArchetypes ;
inalienable nouny root} beginning? withy% a’ consonant : 0 #
on}, your’}, tongue : we'nahs inalienableSuffix ;
ony, your}, tongue : wenohs inalienableSuffix ;
ony your’, thumb : we'yohga: inalienableSuffix ;
on}, youry, eyes : gah inalienableSuffix ;
ony, your?} eyelashes : gahehd inalienableSuffix ;
ony, your?}, eyebrow : gahgwaohs inalienableSuffix ;
onY, your’, hairline,% upper’, brow’;% forehead : ge'sd inalienableSuffix ;
onY% the’, bridge’, of% my’ nose : go'd inalienableSuffix ;
ony, youry}, face : gohs inalienableSuffix ;
on’% its% whiskers : gohsto’ inalienableSuffix ;
on% its’% throat : ha'd inalienableSuffix ;
on}, your% groin : han inalienableSuffix ;
on% your? ribs : hdega: inalienableSuffix ;
on} your), anus : hetga’ inalienableSuffix ;
ony youry, buttocks : hna'ts inalienableSuffix ;
ony% your? shoulders : hnes inalienableSuffix ;
on), youry, neck), (front’% of? the’ neck) : hnya's inalienableSuffix ;
onj, its}% beak : hnyedahs inalienableSuffix ;
his), testicles : hsgwa: inalienableSuffix ;
on}, youry, leg : hsin inalienableSuffix ;
ony, your} calf% (of% leg) : hsna'd inalienableSuffix ;
onj youry hand : hsohd inalienableSuffix ;
ony your’, upper lip : hsohga: inalienableSuffix ;
on}, your¥ lip : hsohgw inalienableSuffix ;
onY, your’, upper’% back : hswan inalienableSuffix ;
ony your’, upper’, back : hswen inalienableSuffix ;
on% your?, (p)% elbows : hyohs inalienableSuffix ;
on% my’% chest : "ahs inalienableSuffix ;
on% my% inner% thigh : "nhohsga: inalienableSuffix ;
on% your’, nose : mnyohs inalienableSuffix ;
on’ its% tail’ (pertaining} to% birds) : "yohgw inalienableSuffix ;
onY, your’, belly : kse'd inalienableSuffix ;
ony, your?, arm : netsh inalienableSuffix ;
ony% your’, head : ng'a: inalienableSuffix ;
on} youry, breast : nQ'gw inalienableSuffix ;
ony your? teeth : no'j inalienableSuffix ;
on% your’ nipples : ngnhe'dr inalienableSuffix ;
on%, his’, penis,’ phallus : nr inalienableSuffix ;
on’, your’, shin : nyed inalienableSuffix ;
on) your} heel : rad inalienableSuffix ;
on%, they, balll, of% my% foot : ragwahd inalienableSuffix ;
ony, your’, ankle : jaoho'gw inalienableSuffix ;

110

on’ my% nail : ji'ehd
on’, my% nail : ji'ohd
on’, your} hip : jisgo'gw
on% your’}, body : ya'd
onj, your?, waist : ya'ga:
on)% your’ gums : yo'd

inalienableSuffix ;
inalienableSuffix ;
inalienableSuffix ;
inalienableSuffix ;
inalienableSuffix ;
inalienableSuffix ;
inalienableSuffix ;

ony, your?, cheeks : yo'gw
on% your’, chin : yo'ts
on), your} chin : yu'ts

LEXICON
QU.INALIEN.POSS@
QU.INALIEN.UNPOSS@

LEXTCON

+Loc : +a'geh

LEXICON

LEXICON

3znA+ : ga+t
3znP+ : o+
3znA+ : at

LEXICO

1sP+ : (w)ag+
1dP+ : (y)okni+
1pP+ : (y)ogwa+
2P+ : sat

24P+
2pP+ : swat

3msP+ : ho+

3fisP+ : (ya)go+
3znsP+ : (y)o+
3mdpP+ : hodi+
3fidpP+ : (ya)godi+
3zndpP+ : (y)odi+

sni+

inalienableSuffix ;
inalienableSuffix ;

inalienableSuffix

locativeSuffix
#

basicNouns

locativeSuffix ;

NSF ;

basicNounUnpossessedPrefixes ;
basicNounPossessedPrefixes ;

basicNounUnpossessedPrefixes

gaBNouns ;

oBNouns ;

aBNouns ;
nullBNouns ;

basicNounPossessedPrefixes

allBasicNounStems ;
allBasicNounStems ;

allBasicNounStems ;

allBasicNounStems ;
allBasicNounStems ;

allBasicNounStems ;

allBasicNounStems ;
allBasicNounStems ;
allBasicNounStems ;
allBasicNounStems ;
allBasicNounStems ;
allBasicNounStems ;

111

3

LEXICON allBasicNounStems
gaBNouns ;
oBNouns ;
aBNouns ;
nullBNouns ;
LEXICON gaBNouns
normalGaBNouns ;
gaoBNouns ;
LEXICON oBNouns
normalOBNouns ;
gaoBNouns ;
aoBNouns ;
nullBNouns ;
oLoanWords ;
LEXICON aBNouns
normalABNouns ;
aoBNouns ;
LEXICON oLoanWords
stemArchetypes ;
basic) noun), root : 0
tea : di: #
cheese : ji:s # ;
LEXICON nullBNouns
stemArchetypes ;
basic) noun¥% root : O
potato : hona'd NSF ;
coltsy foot : hsgwae'd NSF ;
LEXICON gaoBNouns
stemArchetypes ;
basicy% noun) root : 0
clothespin : "wahsd NSF ;
cargo’;% bundle’;% load : hehn NSF ;
beak : hnyedahs NSF ;
a% motor%;% engine : ho'jihsd NSF ;
dirty}% clothes : hsdagw NSF ;

112

nakedness?;% nudity : ji'gw NSF ;

straight¥, pin%;% pin’%;% broochi;’ safety’ pin : jihoha: NSF ;
LEXICON acBNouns
stemArchetypes ;
basicy nouny, root : O # ;
ladder%;?% stairs : adohne'ts NSF ;
LEXICON normalABNouns
stemArchetypes ;
basic noun% root : O #
fence : adg¢he NSF ;
blouse%;% middy : adehsw NSF ;
lunchy;% groceries : adena’tr NSF ;
skate : ado'jin NSF
bow/ (as¥% in’ bowl/ and), arrow) : adoda: NSF ;
axe’;% tomahawk : adoge NSF ;
hunt : adowado: NSF ;
luck : adra'sw NSF ;
shoes : ahdahgw NSF ;
clothingl;% clothes : ahgweny NSF ;
roof : ahsgw NSF ;
closthes : atroni'd NSF ;
calendar : atsoge NSF ;
flower : awghe NSF ;
weeds : awenohgr NSF ;
LEXICON normalOBNouns
stemArchetypes ;
basic? noun% root : 0 #
it%h is¥% fat¥;% gristle¥;% rind : 'dodr NSF ;
a% parable’,;’% tale%;% story%;% legend : 'ga: NSF ;
ashes’;% bullet’;% dust : "gehe NSF ;
snow’; % snowflake : 'gr NSF ;
sand : ‘nehs NSF ;
nudity : "nest NSF ;
nudity : "nost NSF ;
lumber’, logs% (large)’;% timber : "nhahgy NSF ;
lumber% logs% (large)’;’% timber : nhahd NSF ;
tail% of% an¥% animal : "nhehts NSF ;
taill, of’ an¥% animal : "nhwehts NSF ;
eggs : mnhohs NSF ;
stem%;% hull} of% berries : "mihsda: NSF ;

113

bur : "nhohd NSF ;

onions : "nghs NSF ;

sod%;% moss : ‘ohgwa: NSF ;

vines : 'ghs NSF ;

skirt%;% tail’;% feather : “yohgw NSF ;

snowsnake’%;% pole : a'en NSF ;

cocoon’%; % nest¥;% hive’,;% bee-hive : adehshe NSF ;
wall : adenihs NSF ;

number : ahshed NSF ;

fruit : ahy NSF ;

a} price}, (onj, it) : ga: NSF ;

pants : ga'd NSF ;

a’, teary (inJ, one’s’ eye) : gahdr NSF ;

eyelash¥ ;% the) stem) of’ a% berry’;% thel, eye) of}% the’ corn¥% kernel : gahehd NSF ;
eyebrow : gahgwaohs NSF ;

grass : gaho'j NSF ;

cadaver’;’% dead’ body : ganye'd NSF ;

hair%;% a% ragh;% (ith is)% ragged%;% tattered : ge'a: NSF ;
cottony batting%;% q-tips : go'dr NSF ;

a%, limb%;% twiglh;% branch : gwiy NSF ;
quill%;% plume%;’% feather’;’% voicel;% throatl;% larynx’;% esophagus : ha'd
road : hah NSF

soot : hakd NSF

corn? husk : he'a: NSF ;

dirt%;% earth%;% ground%;% land : hehd NSF ;

fur : he¢hda: NSF

decayed’, tree%;% logh;% woodh;% board : hehs NSF ;
(raw)% sausage’;% bolognal;’ wieners : hets NSF ;
one’, corny stalk : hey NSF ;

thorn%;% thistle : hikd NSF ;

cloud : hji'gr NSF ;

grease;% oil : hn NSF ;

nutmeat : hnya: NSF ;

flint), corn’ soup : hnye:h NSF ;

nut : hnyo'gw NSF ;

squash¥;% melon : hnyohs NSF ;

a’% bush%;% aj% whip : hod NSF ;

basswood : hodr NSF ;

slippery’ elm : hohsgr NSF ;

pelt : hohwa: NSF ;

mouth : hsa: NSF ;

beans : hsahe'd NSF ;

rain : hsda: NSF ;

scale% (of% a) fish) : hsda: NSF ;

scale¥% (of% a% fish) : hsdai NSF ;

114

necklace : hsdao'gw » NSF ;
frost : hsehe NSF ;
rust : hsge'dr NSF ;
rust : ahsge'dr NSF ;
louse : hsgeh NSF ;

branch : hsgoh NSF ;

wrinkles : hsgwi'dr NSF ;

bone} ;% barel, bones : hsgye'da: NSF ;

bluey beechy (tree) : hsgyo'w NSF ;

dough : hshe’ NSF ;

thread%;% string%;% cord : hsiy NSF ;
hamstrings%;% calves’% (of?% the% legs)';’% outer?, thighs : hsnad NSF ;
straw : hstodr NSF ;

coal : hswed NSF ;

maple : hwahd NSF ;

a’, splint : hwe'ga: NSF ;

corn}, ears : hwehda: NSF ;

foam : hwehsd NSF ;

feces¥;% shit%;% excrement : id NSF ;
clay%;% mud¥%;% mortar : i'da: NSF ;

flame : i'dohgw NSF ;

fish : ijo'd NSF ;

leavesy, of}, corn : jags NSF ;

curtains¥;% lace : ji'a: NSF ;

the), brain : ji'drowahd NSF ;

bugh;% insect ;% worm : ji'now NSF ;

gonorrhea : jigwed NSF ;

porridge’;’% mush : jihgw NSF ;

mush : jihsgw NSF ;

cluster?, ofY, stars%;% star : jihsoda: NSF ;

bell : jihwed NSF ;

salt : jike'd NSF ;

nasal), mucous : jinghgr NSF ;

yellow : jitgwa: NSF ;

a% nutshell : kd NSF ;

root%;% ediblel, roots% (pepper’% rootsk%;% turnips%;’% carrots) : kdeh NSF ;
stump’;% knots¥% in% a¥% tree : kjin NSF ;
its% food : kw NSF ;

bread : na'da: NSF ;

horns%;% antlers : na'ga: NSF ;

cottony batting : na'gwiy NSF ;

a% mattress : na'sgw NSF ;

clay%;% plaster’;% white-wash : nawad NSF ;
evergreeny,;/ conifer : ne'd NSF ;

roe’, (fish¥ eggs) : ne'da: NSF ;

115

morel’, mushroom : negred NSF ;

peas : negw NSF ;

corn : n¢he: NSF ;

hickory), wood%;% stick : nenoga: NSF ;

pills : nenyo'gw NSF ;

milk : nQ'gw NSF ;

catfish : ngge'd NSF ;

corny, cob : nghgwe NSF ;

a% husk : ngny NSF ;

leaf : nrahd NSF ;

tripe} (cow% stomach}k lining)%;% animal), stomache : nrege'd NSF ;
tapeworm : nrehe NSF ;

vomit%;% vomitus : nya'gw NSF ;

nativey mush)% dishesy made’ with)% corn : nyah NSF ;
stem : nyed NSF ;

message’,; % ith mattersh;% it is¥% its¥% fault%;% word%;% affair’;% business : rihw NSF ;
willow); % nape% of% neck : sehd NSF ;
snake : shaihsd NSF ;

flour%;’ powder : te'tr NSF ;

sumac : tgo'd NSF ;

housefly%;% fly : tre'd NSF ;

mist#%;% steam¥%;% fog : tsad NSF ;
syrup’%; % honey%;% gum : tsehsd NSF ;

peachy, pit : tsge'e: NSF ;

balsam} fir : tsgo'd NSF ;

salival);% spiti;% sputum : tsgr NSF ;
air%;% windi%;% a¥% moth : wa: NSF ;

a’%, peeling : wa'wihsd NSF ;

peelings¥;% bark¥% of% a)% tree : wajihsd NSF ;
fin% of} a, fish%;% wings : way NSF ;
wood}, chips : hwe'hga: NSF ;

word%;% voice%;% speech : wen NSF ;

ice : widr NSF ;

sleep%;% a)% dream : widreghd NSF ;

young¥;% offspringy (i.e. of% an’ animal)¥;% baby : wiy NSF ;
other’,;% another : y NSF ;

body : ya'd NSF ;

basement¥%;% trackl;% ditch : yad NSF ;
pants : yahgw NSF ;

tire%;% its) track’;% anything’, that) leaves), tracks : yan NSF ;
beads : ye¢: NSF ;

tobaccol;’% cigarettes : ye'gw NSF ;

wood%;% firewood : yed NSF ;

bandage : y¢hsa: NSF ;

a’, dead’, body%;% cadaver : yo¢'d NSF ;

116

cheeks : yo'gw NSF ;
guts’;’% intestines : yow NSF ;

LEXICON normalGaBNouns
stemArchetypes ;
basic}, nouny, root : O #
basket : "ahdr NSF ;
car’;%h trucky;% vehicle : "drehd NSF ;
diaper : "droda NSF ;
skirtl;% slip : 'ka: NSF ;
marriage : "na'gw NSF ;
the?, mind : "nigoh NSF ;
earrings : 'wahsha: NSF ;
Avocet’ blue) stockingl, (bird) : “yohgw NSF;
a% celestiall, orb}% (ie.% the), sunj;’% the’, moon) : Cagwa: NSF ;
a% rope : Catsge'd NSF ;
tin%;% metal : Cihsd NSF ;
leggings : Cisr NSF ;
sleep’;% a), dream : Cidrehd NSF ;
white), oak : ga'd NSF ;
eye} glasses : gahihsd NSF ;
shovel : gahwehs NSF ;
paddle : gawehs NSF ;
tiel;% scarf : gehd NSF ;
pillow’;% cushion : go'dr NSF ;
the), mask : gohs NSF ;
forest’;% bush : had NSF ;
elm : hoga: NSF ;
boat : how NSF ;
headdress : hsdow NSF ;
a’%, name : hsen NSF ;
stone’;% rock’;% boulder’;’% bullet : hsgwa: NSF ;
nails%;% wire%;% needle : hsowahd NSF ;
mattress’%;% sleeping’ mat : itsga: NSF ;
dish%;% platel;% bowl : je¢ NSF ;
the), devil : jihay NSF ;
lamp : jihsd NSF
hammer : jihw NSF ;
food : kw NSF
pail : na’j NSF ;
cup : na'johsgw NSF ;
town?;’% community : nad NSF ;
comb : nahd NSF ;
bass? drum : nahgw NSF ;

117

tame}, animal%;% pet%;% domestic) animal : nahsgw

a’ peacockh;% bride%;% boastfulness : nai'd NSF ;

bed : nakd

a% board : nehsda:
leather%;% hide : nehw
porcupine : nhe’d
stick : nhy

a’% house : nohs

a% dance : ngny

guitary,; string) instrument%;’% (refers’, tol round) backy) of} a¥% turtle)

NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;

spoon’;% canoel;’% birchj, bark}% canoe : nyod

song : rem

an}, agreement : rihwihs
log : rod

a’% handle : tgchets

wallet%;% purse’;% pocketbook’;% suitcase : tgwe'd NSF ;

bottle%;% jar : tse'd
bottle%;% jar : itse'd

one’% animal’%;% pet : tseng

NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;

NSF ;

bagh;% mattressy;% tickl;% pouchi (ie.%
a’, mattressy, bag) into% which’ straw), is) stuffed) : ya:

doll : ya'd
LEXICON NSF
+NSF : +a’

B.2 Concrete Version

B.2.1 Concrete Lexicon

NSF ;

Multichar_Symbols @QU.INALIEN.P0SS@ QU.INALIEN.UNPOSS@

LEXICON

allNouns
inalienableNouns ;
allBasicNouns ;
deverbalNouns ;
defectiveNouns ;

118

: now NSF ;
NSF ;

NSF ;

)

LEXICON
sgwa:gwaQdg'
dago:s
da:gu:s
dakshae'dohs
so:wa:s
twe:twe:t
ho:ga:k
doge:t
gwihsgwihs
gwa'yo’
sohg:t
gyo:gyo:’
jogrihs
gwido'gwido”
di'di:”
jikjiye:’
ga'ga:’
hihji:
gwiye'gwiye'
dihsdihs
ji'nhowe:se:
duwisduwi:”
sa’'sa’
gwe:dihs
gwe:sg'
tsahgo:wah
jihsgogo"
gwaoh
johwe'sdaga’
gwe’'gohnye’
hnyagwai’
go:deh
tgwiyo:ge'
jinhghgwaheh
ji'nohdo:ya’
ji'dana:we:
jinohsanoh
jihsda:
ji'ao:ye:
jinghyahae:
degriya’go’
Jjihnyo'gg’
hehshai:
sgwa'ahda’

defectiveNouns

119

tehto’ #
jo'daga’ #
jino:we: #
tea: ot #
sa:no:’ #
dre¢:na: #
dre:na: #
joni:tsgro:t #
kdago’ # ;
do:dihs # ;
sgwa:ych #

gwiyo:ge’ #

jo:inyg:’ #
nohsodai:yo: #
gwa'da: # ;
jide:"eh #
jo'dae:ya:’ #
ji'dro:we: # ;
onohotsge'e” #

teo:ji’ #
tsa’ge:da’ #
yahgehda’ #
tsinyohgwa:k #
gihe:k #
nawe'da’ #

jihso:dahk #
otahyo:ni: #
tahyo:ni: #
jihsge: #
ji'o: #
grahe:t #

LEXICON deverbalNouns

o+ deverbalORoots ;

a+ deverbalARoots ;

ga+ deverbalGaRoots ;
deverbalNullRoots ;

LEXICON deverbalNullRoots
¢dehsr NSF ;
g’nyotr NSF ;
e'nhotr NSF ;

120

LEXICON
idehsra
yenawahsr
ya'dowehdahsr
ya'dagenhahsr
atgwenya'tr
atgonya 'tr
tgi'tr
nohokdehsr
nhehsr
na'jowi'tr
risr
rihwiyohsd¢hsr
rihwane’aksra
riho’dehsr
hyadohsr
hshahsdehsr
Cahohsr

LEXICON
yehsr
atgahnonihsr
nrahdgdahsr
nonhe'dr
niga:hehsr
hshahsd¢hsr
adotgadohsr
adotgadehsr
‘drohsr
i'daihehdr

LEXICON
atsho'kdohsr
atna'tsotr
atna'gwihdr
atgahnyehtr
nahaotr
agya'dawi'tr
adrihwagyaghsr
adra'wihsd
adgnhehsr
adi'grohsra
adena’tr

deverbalGaRoots
NSF ;
NSF ;
NSF
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;

deverbalORoots
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;

deverbalARoots
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF
NSF ;
NSF ;
NSF ;
NSF ;

121

adekwahahsra
adao'tra
ahdahdi'tr

LEXICON
@U.INALIEN.POSS@
QU.INALIEN.UNPOSSQo+

LEXICON

LEXICON
g+
(e)gy+
(y)agy+
(e)dw+
(y) agw+
(h)s+
(h)j+
(h)sw+
h+
(y)o+
w+

hen+
gag+
gent

LEXICON
g+
(e)kn+
(e)tn+

NSF ;
NSF ;
NSF ;

inalienableNouns
inalienablePrefixes ;

inalienableStems ; !This is for all

the unpossessed inalienables.
These should get the NSF

inalienablePrefixes
inalienableAPrefixes ;
inalienableIPrefixes ;
inalienableE¢Prefixes ;
inalienableOgPrefixes ;
inalienableH CPrefixes ;
inalienableH'CCPrefixes ;
inalineableNPrefixes ;
inalienableYWRPrefixes ;
inalienableOtherCPrefixes ;
inalienableUPrefixes ;

inalienableAPrefixes
inalienableAStems ;
inalienableAStems ;
inalienableAStems ;
inalienableAStems ;
inalienableAStems ;
inalienableAStems ;
inalienableAStems ;
inalienableAStems ;
inalienableAStems ;
inalienableAStems ;
inalienableAStems ;
inalienableAStems ;
inalienableAStems ;
inalienableAStems ;

inalienableIPrefixes

inalienableIStems ;
inalienablelIStems ;
inalienablelStems ;

122

(y)akn+
(e)dwe+
(y)agwe+
(h)s+
(h)sn+
(h) swe+
het
(e
get
had+
gae+
gad+

'LEXICON
lg+

' (e)kn
t(e)tn+
I (y)akn+
1(e)du+
1(y)agw+
I (h)s+

! (b)sn+
! () sw+
'h+
1(y)ag+
lw+
then+
lga:g+
!gen+

LEXICON
g+
(e)kn+
(e)tn+
(y)akn+
(e)gy+
(y)agy+
(h)s+
(h) sn+
(h) j+
h+
(y)ag+
(y+

inalienablelStems ;
inalienableIStems ;
inalienableIStems ;
inalienablelStems ;
inalienableIStems ;
inalienableIStems ;
inalienableIStems ;
inalienablelStems ;
inalienablelStems ;
inalienablelIStems ;
inalienablelIStems ;
inalienablelStems ;

inalienableE¢Prefixes

inalienableQg¢Prefixes
inalienableOgStems ;
inalienable0gStems ;
inalienable0gStems ;
inalienable0gStems ;
inalienable0gStems ;
inalienableOg@Stems ;
inalienableOgStems ;
inalienable0@Stems ;
inalienableO@Stems ;
inalienable0gQStems ;
inalienable0@Stems ;
inalienableOg@Stems ;

123

hen+ inalienableQg@Stems ;

ga:g+ inalienableOgStems ;

gen+ inalienableOgStems ;
!LEXICON inalienableUPrefixes
lg+

Ikn+, tn+

lakn+

tgy+

lagy+

Is+

lsn+

i+

Th+

lag+

Tyt

'hen+

lga:g+

'gen+

LEXICON inalienableH CPrefixes
k+ inalienableH'CVStems ;
(e)kni+ inalienableH'CVStems ;
(e)tni+ inalienableH'CVStems ;
(y)akni+ inalienableH'CVStems ;
(e)dwa+ inalienableH'CVStems ;
(y)agwa+t inalienableH CVStems ;

(eh)s+ inalienableH'CVStems ;
(eh)sni+ inalienableH CVStems ;
(eh) swa+ inalienableH'CVStems ;

ha+ inalienableH CVStems ;
(y)et inalienableH'CVStems ;
gat inalienableH'CVStems ;
hadi+ inalienableH'CVStems ;
gae+ inalienableH'CVStenms ;
gadi+ inalienableH'CVStems ;
LEXICON inalienableH'CCPrefixes
ge+ inalienableH'CCStems ;
(e)kni+ inalienableH'CCStems ;
(e)tni+ inalienableH'CCStems ;
(y)akni+ inalienableH'CCStems ;
(e)dwa+ inalienableH'CCStems ;

124

(y)agwat
(eh)se+
(eh)sni+
(eh)swa+
ha+
(yle+
gat
hadi+
gaet
gadi+

LEXICON
k+
(e)kni+
(e)tni+
(y)akni+
(e)dwa+
(y)agwa+
(eh) s+
(eh)sni+
(eh)swa+
ha+
(y)e+
gat
hadi+
gae+
gadi+

LEXICON
g+
(e)kni+
(e)tni+
(y)akni+
(e)dwa+
(y)agwa+
(eh)s+
(eh)sni+
(eh) swa+
ha+
(yle+
gat
hadi+
gae+

inalienableH'CCStems ;
inalienableH'CCStems ;
inalienableH'CCStems ;
inalienableH'CCStems ;
inalienableH'CCStems ;
inalienableH CCStems ;
inalienableH'CCStems ;
inalienableHCCStems ;
inalienableH'CCStems ;
inalienableH'CCStems ;

inalineableNPrefixes
inalineableNStems ;
inalineableNStems ;
inalineableNStems ;
inalineableNStems ;
inalineableNStems ;
inalineableNStems ;
inalineableNStems ;
inalineableNStenms ;
inalineableNStems ;
inalineableNStems ;
inalineableNStems ;
inalineableNStems ;
inalineableNStems ;
inalineableNStems ;
inalineableNStems ;

inalienableYWRPrefixes
inalienableYWRStems ;
inalienableYWRStems ;
inalienableYWRStems ;
inalienableYWRStems ;
inalienableYWRStems ;
inalienableYWRStems ;
inalienableYWRStems ;
inalienableYWRStems ;
inalienableYWRStems ;
inalienableYWRStems ;
inalienableYWRStems ;
inalienableYWRStems ;
inalienableYWRStems ;
inalienableYWRStems ;

125

gadi+

LEXICON
ge+
(e)kni+
(e)tni+
(y)akni+
(e)dwa+
(y)agwa+
(eh) se+
(eh) sni+
(eh) swa+
ha+
(ye+
ga+
hadi+
gae+
gadi+

LEXICON

LEXICON
ahohd
ahsi'd
ahyagwiy

LEXICON
ihn

'LEXICON

LEXICON

inalienableYWRStems ;

inalienableOtherCPrefixes

inalienableOtherCStems ;

inalienableOtherCStems ;
inalienableOtherCStems ;
inalienableOtherCStems ;
inalienableOtherCStems ;
inalienableOtherCStems ;
inalienableOtherCStems ;
inalienableOtherCStems ;
inalienable0OtherCStems ;

inalienableOtherCStems ;

inalienableOtherCStems ;

inalienable0OtherCStems ;

inalienableOtherCStems ;
inalienableOtherCStems ;
inalienableQtherCStems ;

inalienableStems
inalienableAStems ;
inalienablelStems ;
inalienable(Og@Stems ;
inalienableH'CVStems ;
inalienableH'CCStems ;
inalineableNStems ;
inalienableYWRStems ;
inalienableOtherCStems ;

inalienableAStems !3
inalienableSuffix ;
inalienableSuffix ;

inalienableSuffix ;

inalienableIStems 1
inalienableSuffix ;

inalienableEgStems

inalienableOgStems !1

126

ots inalienableSuffix ;

LEXICON inalienableH'CVStems !12
ha’d inalienableSuffix ;

han inalienableSuffix ;
hdega: inalienableSuffix ;
hetga’ inalienableSuffix ;
hna'ts inalienableSuffix ;
hnes inalienableSuffix ;

hsin inalienableSuffix ;
hsohga: inalienableSuffix ;
hsohd inalienableSuffix ;
hsohgw inalienableSuffix ;
hyohs inalienableSuffix ;
"yohgw inalienableSuffix ;
LEXICON inalienableH CCStems !8
hnya's inalienableSuffix ;
hnyedahs inalienableSuffix ;

hsgwa: inalienableSuffix ;
"nhohsga: inalienableSuffix ;

"nyohs inalienableSuffix ;
hsna'd inalienableSuffix ;
hswan inalienableSuffix ;
hswe'n inalienableSuffix ;
LEXICON inalineableNStems !7
nga: inalienableSuffix ;

no'gw inalienableSuffix ;
nonhe’dr inalienableSuffix ;

no'j inalienableSuffix ;
nr inalienableSuffix ;
netsh inalienableSuffix ;

nyed inalienableSuffix ;
LEXICON inalienableYWRStems !10
ya'd inalienableSuffix ;

ya'ga: inalienableSuffix ;

yo'd inalienableSuffix ;

yo'gw inalienableSuffix ;

yo'ts inalienableSuffix ;

yu'ts inalienableSuffix ;

127

we'nahs inalienableSuffix ;

we'nohs inalienableSuffix ;

we'yohga: inalienableSuffix ;

rad inalienableSuffix ;

ragwahd inalienableSuffix ;

LEXICON inalienableOtherCStems !14

gah inalienableSuffix ;

gahehd inalienableSuffix ;
gahgwaohs inalienableSuffix ;

gohs inalienableSuffix ;

gohsto' inalienableSuffix ;

go'd inalienableSuffix ;

ge'sd inalienableSuffix ;

"ahs inalienableSuffix ;

kse'd inalienableSuffix ;

jaoho'gw inalienableSuffix ;

ji'ohd inalienableSuffix ;

ji'ehd inalienableSuffix ;

jisgo'gw inalienableSuffix ;

LEXICON inalienableSuffix

@QU.INALIEN.P(OSS®@ locativeSuffix ;

QU.INALIEN.UNP0OSS@ NSF ;

LEXICON locativeSuffix

+a’geh #

LEXICON allBasicNouns
basicNounPossessedPrefixes ;
basicNounUnpossessedPrefixes ;

LEXICON basicNounPossessedPrefixes
wagPrefixes ;
yokniPrefixes ;
yogwaPrefixes ;
saPrefixes ;
sniPrefixes ;
swaPrefixes ;
hoPrefixes ;
yagoPrefixes ;

128

LEXICON
(w)ag+
(w)ag+
I

!

!

!
(w)ak+
(w)ag+
(w)age+

LEXICON
(y)ogy+
(y) Qkn+
! (y) okn+
I (y)okn+
! (y) okn+
! (y) okn+
(y)okni+

LEXICON
(y) ogu+
(y) ogue+
H(y) ogu+
' (y)ogw+
H(ydogy+
'(y)ogy+
(y)ogwat

LEXICON
s+

se+

's+

Is+

Is+

Is+

sa+

yoPrefixes ;
hodiPrefixes ;
yagodiPrefixes ;
yodiPrefixes ;

wagPrefixes
basicNounsAStems ;
basicNounsIStems ;
basicNounsEStems ;
basicNounseStems ;
basicNounsOStems ;
basicNounsgStems ;
basicNounshor'CornStems ;
basicNounsyorwStems ;
basicNounsCOtherStems ;

yokniPrefixes
basicNounsAStems ;
basicNounsIStems ;
basicNounsEStems ;
basicNounseStems ;
basicNounsOStems ;
basicNouns@Stems ;
basicNounsOtherStems ;

yogwaPrefixes
basicNounsAStems ;
basicNounsIStems ;
basicNounsEStems ;
basicNounseStems ;
basicNounsOStems ;
basicNounsgStems ;
basicNounsOtherStems ;

saPrefixes
basicNounsAStems ;
basicNounsIStems ;
basicNounsEStems ;
basicNounseStems ;
basicNounsOStems ;
basicNounsgStems ;
basicNounsOtherStems ;

129

LEXICON sniPrefixes

j+ basicNounsAStems ;
sn+ basicNounsIStems ;
lsn+ basicNounsEStems ;
I'sn+ basicNouns¢Stems ;
lsn+ basicNouns0Stems ;
!sn+ basicNounsgStems ;
sni+ basicNounsOtherStems ;
LEXICON swaPrefixes

sw+ basicNounsAStems ;
swe+ basicNounsIStems ;

lsw+ basicNounsEStems ;
Isw+ basicNounseStems ;
1j+ basicNounsOStems ;
Ij+ basicNounsgStems ;
swa+t basicNounsOtherStems ;
LEXICON hoPrefixes

ho+ basicNounsAStems ;
ho+ basicNounsIStems ;
Thaw+ basicNounsEStems ;

Thaw+ basicNouns¢Stems

th+ basicNounsOStems ;
th+ " basicNounsg¢Stenms ;
ho+ basicNounsOtherStems ;
LEXICON yagoPrefixes

(ya)go+ basicNounsAStems ;
(ya)go+ basicNounsIStems ;

! (ya) gaw+ basicNounsEStems ;

| (ya)gaw+ basicNounseStems ;

I (ya) g+ basicNounsOStems ;

I (ya)g+ basicNounsgStems ;
(ya)go+ basicNounsOtherStems ;
LEXICON yoPrefixes

(y)o+ basicNounsAStenms ;

(y)o+ basicNounsIStems ;
1(y)au+ basicNounsEStems ;

130

I (y)o+ basicNounseStems ;

(y)+ basicNounsOStems ;
f(y)+ basicNounsgStems ;
(y)o+ basicNounsOtherStems ;
LEXICON hodiPrefixes
hon+ basicNounsAStenms ;
hod+ basicNounsIStems ;
thon+ basicNounsEStems ;
lhon+ basicNounsgStems ;
lhon+ basicNounsOStems ;
lThon+ basicNounsg@Stems ;
hodi+ basicNounsOtherStems ;
LEXICON yagodiPrefixes
(ya)gon+ basicNounsAStems ;
(ya)god+ basicNounsIStens ;
! (ya)gon+ basicNounsEStenms ;
! (ya)gon+ basicNounseStems ;
! (ya)gon+ basicNounsOStems ;
I (ya)gon+ basicNounsgStenms ;
(ya)godi+ basicNounsOtherStems ;
LEXICON yodiPrefixes
(y)on+ basicNounsAStems ;
(y)od+ basicNounsIStems ;
I (y)on+ basicNounsEStenms ;
! (y)on+ basicNounseStems ;
! (y)on+ basicNounsOStems ;
! (y)on+ basicNounsgStems ;
(y)odi+ basicNounsOtherStems ;
LEXICON basicNounUnpossessedPrefixes
ga+ gaBNouns ;
o+ oBNouns ;
a+t aBNouns ;

nullBNouns ;

! Grouping by initial stem vowel for possessed basic nouns
LEXICON basicNounshor CornStems
nullBNounshVStems ;

131

LEXICON

LEXICON

LEXICON

LEXICON

!LEXICON
!

'LEXICON
!

'LEXICON
!

LEXICON

gaoh'CNouns ;
normal0OBNounsh'CnStems ;
normalGaBNounsh'CnStems ;

basicNounsyorwStems
normalOBNounsYWStems ;
normalGaBNounsYWStems ;

basicNounsCOtherStems
gaoJNouns ;
normalOBNounsOtherCStems ;
normalGaBNounsOtherCStems ;
olLoanWords ;
nullBNounshCStems ;

basicNounsAStems
aoBNouns ;
normalABNouns ;
normal0BNounsAStems ;

basicNounsIStems
normal0OBNounsIStems ;
normalGaBNounsIStems ;

basicNounsEStems
#

basicNouns¢Stems
#

basicNounsgStems
#

basicNounsOtherStems
oLoanWords ;

nullBNouns ;

gaoBNouns ;
normal0BNounsOtherStems ;
normalGaBNounsOtherStems ;

! End grouping by stem vowel for possessed basic nouns

132

LEXICON gaBNouns

normalGaBNouns ;
gaoBNouns ;

LEXICON oBNouns
normalOBNouns ;
gaoBNouns ;
aoBNouns;
nullBNouns;
oLoanWords;

LEXICON aBNouns
normal ABNouns ;
aoBNouns ;

LEXICON oLoanWords

di: #

ji:s #

LEXICON nullBNouns
nullBNounshVStems ;
nullBNounshCStems ;

LEXICON nullBNounshVStems

hona'd NSF ;

LEXICON nullBNounshCStems

hsgwae'd NSF ;

LEXICON gaoBNouns
gaoh'CNouns ;
gaoJNouns ;

LEXICON gaoJNouns

ji'gw NSF ;

jihoha: NSF ;

hnyedahs NSF ;

133

hsdagw NSF ;

LEXICON gaoh'CNouns
"wahsd NSF ;
"yohgw NSF ;
hehn NSF ;
ho'jihsd NSF ;
LEXICON aoBNouns
adohne'ts NSF ;

LEXICON normalABNouns
ad¢he NSF ;
adehsw NSF ;
adena’tr NSF ;
ado'jin NSF ;
adoda: NSF ;
adoge NSF ;
adowadg: NSF ;

adra'sw NSF ;
ahdahgw NSF ;
ahgweny NSF ;
ahsgw NSF ;
atroni'd NSF ;
atsoge NSF ;
awehe NSF ;
awenohgr NSF ;

LEXICON normalOBNouns
normalOBNounsAStems ;
normalOBNounsIStems ;
normalOBNounsOtherStems ;

LEXICON normal(OBNounsOtherStems
normal0OBNounsh'CnStems ;
normalOBNounsYWStems ;
normalUBNounsOtherCStems ;

LEXICON normal0OBNounsOtherCStems
“ohgwa: NSF ;

134

‘ohs NSF ;

ga: NSF ;
ga'd NSF ;

gahdr NSF ;
gahehd NSF ;
gahgwaohs NSF ;

gaho'j NSF ;
ganye'd NSF ;
ge'a: NSF ;
go'dr NSF ;

gwiy NSF ;
jags NSF ;
jita: NSF ;
ji'drowahd NSF ;

ji'now NSF ;
jigwed NSF ;
jihgw NSF ;
jihsgw NSF ;
jihsoda: NSF ;
jihwed NSF ;
jike'd NSF ;
jinohgr NSF ;
jitgwa: NSF

kd NSF ;
kdeh NSF

kjin NSF ;
kw NSF ;
sehd NSF ;
shaihsd NSF ;
te'tr NSF ;
tgo'd NSF ;
tragwe'd NSF
tre'd NSF ;

tsad NSF ;
tsehsd NSF ;
tsge'e: NSF
tsgo'd NSF ;

tsgr NSF ;

normal0BNounsh'CCStems ;

LEXICON normal0OBNounsYWStems
wa: NSF ;

wa'wihsd NSF ;

wajihsd NSF ;

135

way
hwe'hga:
wen
widr
widrehd
wiy

y

ya'd

yad
yahgw
yan

ye:
ye'gw
yed
yehsa:
yo'd
yo'gw
yow
rihw

LEXICON
"nhahgy
"nhehts
"nhwehts
"nhohs
"nhohd
"nohs
hnya:
hnye:h
hnyo'gw
hnyohs
hsda:
hsdai
hsdao’gw
hsge'dr
hsgeh
hsgoh
hsgwi'dr

hsgye'da:

hsgyo'w
hshe”

hsna’d
hstodr
hswe'd

NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;

normalOBNounsh'CCStems
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF ;
NSF
NSF ;
NSF

136

nrahd NSF ;

nregeg'd NSF ;
nrehe NSF ;
nya'gw NSF ;
nyah NSF

nyed NSF ;

nhahd NSF ;

"gr NSF ;
LEXICON normalOBNounsh'CnStems
na'da: NSF
na'ga: NSF ;
na'gwiy NSF ;
na'sgw NSF ;
nawad NSF ;

ne'd NSF ;
ne'da: NSF ;
negred NSF ;
negw NSF ;

nehe: NSF ;
nenoga: NSF
nenyo'gw NSF ;

nQ'gw NSF ;
noge'd NSF ;
nohgwe NSF ;
nony NSF ;

"dodr NSF ;

‘nost NSF ;

‘ga: NSF ;
"gehe NSF ;

"nehs NSF ;

‘nest NSF ;
"nihsda: NSF ;
ha'd NSF ;
hah NSF ;
hakd NSF ;

he'a: NSF ;

hehd NSF ;
hehda: NSF ;
hehs NSF ;
hets NSF ;
hey NSF ;
hikd NSF ;
hji'gr NSF ;

137

hn NSF ;

hod NSF ;

hodr NSF
hohsgr NSF ;

hohwa: NSF ;

hsa: NSF ;
hsahe'd NSF ;

hse¢he NSF ;

hsiy NSF
hwahd NSF ;

hwe'ga: NSF ;

hwehda: NSF ;

hwehsd NSF ;

LEXICON normal0OBNounsAStems
ahsge'dr NSF ;

a'en NSF ;
adehshe NSF ;

adenihs NSF ;

ahshed NSF ;

ahy NSF ;
LEXICON normal(UBNounsIStems
i'd NSF ;

i'da: NSF ;
i'dohgw NSF ;

ijo'd NSF ;
LEXICON normalGaBNouns

normalGaBNounsIStems ;
normalGaBNounsOtherStems ;

LEXICON normalGaBNounsOtherStems
normalGaBNounsh'CnStems ;
normalGaBNounsYWStems ;
normalGaBNouns(OtherCStems ;

LEXICON normalGaBNounsOtherCStems
"ahdr NSF ;

ga'd NSF ;

gahihsd NSF ;

138

gahwehs NSF ;

gawehs NSF ;
gehd NSF ;

go'dr NSF ;

gohs NSF
je NSF ;
jihay NSF
jihsd NSF ;
jihw NSF ;
kw NSF ;
tgehets NSF ;
tgwe'd NSF ;
tse'd NSF

tseng NSF ;

normalGaBNounsh'CCStems ;

LEXICON normalGaBNounsYWStems
ya: NSF ;

ya'd NSF ;

Cagwa: NSF ;

Catsge'd NSF ;

Cidrehd NSF ;

Cihsd NSF ;

Cisr NSF ;

ren NSF ;

rihwihs NSF ;

rod NSF ;

LEXICON normalGaBNounsh'CCStems
hsdow NSF ;

"drehd NSF ;

"droda NSF ;

hsgwa: NSF ;

nhe'd NSF ;

nhy NSF ;

nyod NSF ;

LEXICON normalGaBNounsh'CnStems
had NSF ;

hoga: NSF ;

th NSF H

hsen NSF ;

hsowahd NSF ;

139

"ka: NSF ;

"na’gw NSF ;
"nigoh NSF ;
"wahsha: NSF ;
na'j NSF ;
na’'johsgw NSF ;

nad NSF ;
nahd NSF ;

nahgw NSF ;
nahsgw NSF ;
nai'd NSF ;

nakd NSF ;
nehsda: NSF ;
nehw NSF

nghs NSF ;
nony NSF ;

now NSF
LEXICON normalGaBNounsIStems
itse'd NSF ;
itsga: NSF ;
LEXICON NSF

+a’ # ;

B.2.2 Concrete Semantic Lexicon

Multichar_Symbols @QU.INALIEN.POSS@ QU.INALIEN.UNPOSS@

LEXICON root
allNouns ;
allRoots ;
allSuffixes ;
LEXICON allSuffixes
NSF ;
locativeSuffix ;

140

LEXICON allRoots

LEXICON allNouns

deverbalORoots ;
deverbalARoots ;
deverbalGaRoots ;
deverbalNullRoots ;
inalienableStems ;
basicNounsAStems ;
basicNounsIStems ;
basicNounsEStems ;
basicNounseStems ;
basicNounsOStems ;
basicNounsgStems ;
basicNounshor'CornStems ;
basicNounsyorwStems ;
basicNounsCOtherStems ;

inalienableNouns ;
allBasicNouns ;
deverbalNouns ;
defectiveNouns ;

LEXICON defectiveNouns

toad : sgwa:gwagdQ’

cat : dago:s # ;
cat : da:gu:s

chicken : dakshae'dohs

dog : so:wa:s

duck : tweg:twe:t

goose : hg:ga:k

guinea’, hen : doge:t

pig : gwihsgwihs

rabbit : gwa'yQ’ #
turkey : soho:t

Baltimore), oriole : gyo:gyo:’

blackbird : jogrihs

black}, breasted’, woodpecker :

blue’, jay : di'di:’
chickadee : jikjiye:’
crow,% raven : ga'ga:’
greaty, horned’, owl : hihi:

high’, soaring’% hawk : gwiye'gwiye'

house¥ woodpecker : dihsdihs

#
gwido'gwido’

#
#
#
#
#
#
#

141

hummingbird : ji'nhowe:se: # ;

killdeer : duwisduwi:’ #

mockingbird,’, chatterbox : sa'sa’ #

night’, hawk : gwe:dihs #

partridge : gwe:s¢’ #

pigeon : tsahgo:wah #

robin : jihsgogo” #

screech), owl : gwaoh # ;

seagull : johwe'sdaga’ # ;

whip-poor-will : gwe'gohnye' #

bear : hnyagwai’ # ;

eel : go:deh #

Channely, catfish : tgwiyo:ge’ #

ants : jinhohgwahe¢h #

bed% bug : jimnohdo:ya’ # ;

butterfly’, (somethingy, is’, wet%;% refers) tol, the) transformation) : ji'dana:we:
cricket : jinghsanoh # ;

grasshopper : jihsda: #

spider : ji'ao:ye: #

garter’% snake : jinghyahae: #

buffalo : degriya’go’ #

chipmunk’, (refersy, to), the’, stripe), on’ the), chipmunk’s’ back) : jihnyo'ge’ #
fox : hehshai: # ;

frog : sgwa'ahda’ #

groundy hog,% woodchuck,’ gopher : tehtg’ #
mink : jo'daga’ #

mouse : jino:we: # ;

muskrat : tea:Qt # ;

raccoon : sa:no:’ # ;
skunk : dre:na: # ;

skunk : dre:na: # ;

squirrel : joni:tsgro:t #

grey’ squirrel,’ black’ squirrel : kdago' #
salamander : do:dihs # ;

otter : sgwa:yc¢h #

barny, swallow : gwiyo:ge # ;

bluebird : jo:nyo:’ # ;

mud} puppies,% dogfish : nohsodai:yg: # ;
flying) squirrel : gwa'da: #

bird : jide:'¢h #

raspberries : jo'dae:ya:’ #

seal, shell : ji'drg:we: # ;

beech : onohotsge'e’ #

iron} wood), (tree)%;% red) oak : teo:ji’ #
corny, tassel : tsa'ge:da’ #

142

morel,% blackl, type’, of, mushroom : yahgehda’

wild% walnut : tsinyohgwa:k

river,% stream,’ creek :
sugar : nawe'da’
strawberry : jihsg@:dahk
wolf : otahyg:ni:

wolf : tahyo:ni:

a/, ghost : jihsge:

a’% crab : ji'o:

tree : grahe:t

LEXICON

3znP+ : o+
3znA+ : at+
3znA+ : gat

LEXICON

mittens : e¢nyotr
ball : emhotr
sexuality : edehsr

LEXICON

0 : deverbal), noun’, root
deverbal’ noun), root : 0
sexuality : idehsra

help : ye¢nawahsr

the¥% ability% to} think%;’ thinking}, skills :

helpfulness : ya'dagenhahsr

corn} bread), paddles¥;’ corn), soup% paddles :
corn¥ bread), paddles%;% corn} soup}, paddles :

junk : tgi'tr
sickness : nohgkdehsr

to), take) someone’sy, part’;’% advocacy :

water’, drum : na'jowi'tr
leggings : risr

religion%;% the% Christian) faith :

sin : rihwane’aksra
work : riho'dghsr
paper : hyadohsr

power,% strength : hshahsdehsr

cradleboard : Cahghsr

143

#
%
gihe:k #
#.
#
#;
#
#
#
#
deverbalNouns
deverbalORoots ;
deverbalARoots ;
deverbalGaRoots ;
deverbalNullRoots ;
deverbalNullRoots
NSF ;
NSF ;
NSF ;
deverbalGaRoots
#
#
NSF
NSF ;
ya'dowehdahsr NSF
NSF ;
atgwenya'tr NSF ;
atgonya'tr NSF ;
NSF ;
NSF ;
nhehsr
NSF ;
NSF
rihwiyohsdehsr NSF
NSF
NSF ;
NSF ;
NSF
NSF

LEXICON deverbalORoots

0 : deverbal% noun’, root # ;
deverbaly, noun¥% root : O #
blankets : yehsr NSF ;

flint} (stone) : tragwe'd NSF ;

wealth : atgahngnihsr NSF ;
poplar : nrahdgdahsr NSF ;
soother,’ pacifier,) nipple : ngnhe'dr NSF ;

material,’ cloth : niga:hehsr NSF ;
power,? strength : hshahsdehsr NSF ;

fun : adgtgadghsr NSF ;

celebration : adgtgadehsr NSF ;
fat,% pigh rinds : 'drohsr NSF ;
sweat : i'daihehdr NSF

LEXICON deverbalARoots

0 : deverball, noun’, root

deverbal’ noun), root : 0

hoe : atsho'kdghsr NSF ;

pants : atna'tsotr NSF ;
belt : atna'gwihdr NSF ;
sports,’% games : atgahnyehtr NSF
hat : nahaotr NSF ;

coat,} dress : agya'dawi'tr NSF ;

disaster : adrihwagyaoghsr NSF ;

bat) (mammal) : adra'wihsd NSF ;

birth : adonhehsr NSF ;

shyness : adi'grghsra NSF ;

lunch,’% groceries : adena'tr NSF ;

table : adekwahahsra NSF ;
friendship¥%;% also’ refersy tol a¥ ceremonial) friemnd : adao'tra NSF ;
socks : ahdahdi'tr NSF ;

LEXICON inalienableNouns
0 : QU.INALIEN.POSS@ inalienablePrefixes ;
0 : QU.INALIEN.UNPOSS@Qo+ inalienableStems ;

LEXICON inalienablePrefixes
inalienableAPrefixes ;
inalienablelPrefixes ;

! inalienableE¢Prefixes ;
inalienableOgPrefixes ;
inalienableH'CPrefixes ;

144

LEXICON

1sA+ : g+

1idA+ : (e)gy+

ledA+ : (y)agy+
1ipA+ : (e)dw+

lepA+ : (y)agw+

2sA+ : (h)s+
2da+ @ (h)j+
2pA+ : (h)sw+
3msA+ : h+

3fisA+ : (y)o+
3znsA+ : w+
3mdpA+ : hen+
3fidpA+ : gao+
3zndpA+ : gent

LEXICON

1sA+ : gt

1idA+ : (e)kn+
1idA+ : (e)tn+
leda+ : (y)akn+
1ipA+ : (e)dwe+
lepA+ : (y)agwe+
2sA+ : (h)s+
2dA+ : (h)sn+
2pA+ : (h)swet

3msA+ : he+
3fish+ : (yPe+
3znsA+ : get

3mdpA+ : had+
3fidpA+ : gae+
3zndpA+ : gad+

'LEXICON

'1sA+ : gt
11idA+ : (e)kn
11idA+ : (e)tn+

inalienableH'CCPrefixes ;
inalineableNPrefixes ;
inalienableYWRPrefixes ;
inalienable0therCPrefixes ;
inalienableUPrefixes ;

inalienableAPrefixes
inalienableAStems ;
inalienableAStems ;
inalienableAStems ;
inalienableAStems ;
inalienableAStems ;
inalienableAStems ;
inalienableAStems ;
inalienableAStems ;
inalienableAStenms ;
inalienableAStems ;
inalienableAStems ;
inalienableAStems ;
inalienableAStems ;
inalienableAStems ;

inalienablelPrefixes
inalienableIStems ;
inalienablelIStems ;
inalienablelIStems ;
inalienablelStems ;
inalienablelIStems ;
inalienableIStems ;
inalienableIStems ;
inalienablelIStems ;
inalienableIStems ;
inalienableIStems ;
inalienableIStems ;

inalienableIStems ;

inalienableIStems ;
inalienableIStems ;
inalienableIStems ;

inalienableE¢Prefixes

145

>

11edA+ : (y)akn+
11ipA+ : (e)dw+
'lepA+ : (y)aguw+
12sA+ : (h)s+
12dA+ : (h)sn+
12pA+ : (h)swt
13msA+ : h+
13fisA+ : (y)ag+
!3znsA+ @ w+t
!3mdpA+ : hen+
13fidpA+ : ga:g+
!3zndpA+ : gen+

LEXICON

1sA+ @ g+

1idA+ : (e)knt+
1idA+ : (e)tn+
ledA+ : (y)akn+
lipA+ : (e)gy+

lepA+ : (y)agy+
2sA+ : (h)s+
2dA+ : (h)sn+
2pA+ : (h)j+
3msA+ : h+

3fisA+ : (y)ag+
3znsh+ : (y)+
3mdpA+ : hen+t
3fidpA+ : ga:g+
3zndpA+ : gent

'LEXICON
I1sA+ : g+
11idA+ : kn+
11idA+ : tn+
'1edA+ : akn+
I1ipA+ : gy+
!lepA+ : agy+
12sA+ : s+
12dA+ : sn+
12pA+ : j+
13msA+ : h+
13fisA+ : ag+

13znsA+ : wt

inalienableOgPrefixes
inalienableOg@Stems ;
inalienableO@Stems ;
inalienableO¢Stems ;
inalienable0gStems ;
inalienableO¢Stems ;
inalienable0gStems ;
inalienableO¢Stems ;
inalienableOgStems ;
inalienableO¢pStems ;
inalienableQO@Stems ;
inalienableOgStems ;
inalienable0g@Stems ;
inalienablelgStems ;
inalienableQ¢Stems ;
inalienableO¢Stems ;

inalienableUPrefixes

146

13mdpA+ : hent
13fidpA+ : ga:g+
13zndpA+ : gen+

LEXICON inalienableH'CPrefixes

1sA+ : k+ inalienableH'CStems ;
1idA+ : (e)kni+ inalienableH'CStems ;

1idA+ : (e)tni+ inalienableH'CStems ;

ledA+ : (y)akni+ inalienableHCStems ;

lipA+ : (e)dwat inalienableH'CStems ;

inalienableH'CStems ;
inalienableH'CStems ;
inalienableH'CStems ;

lepA+ : (y)agwa+
2sA+ : (eh)s+
2dA+ : (eh)sni+

2pA+ : (eh)swa+ inalienableH CStems ;
3msA+ : ha+ inalienableH CStems ;
3fisA+ : (y)et inalienableH'CStems ;

inalienableH'CStems ;
inalienableH'CStems ;
inalienableH'CStems ;
inalienableH'CStems ;

3znsA+ : ga+

3mdpA+ : hadi+
3fidpA+ : gae+
3zndpA+ : gadi+

LEXICON inalienableH CCPrefixes

ge+ inalienableH'CCStenms ;
(e)kni+ inalienableH CCStems ;
(e)tni+ inalienableH'CCStems ;
(y)akni+ inalienableH'CCStems ;
(e)dwa+ inalienableH'CCStems ;
(y)agwa+ inalienableH'CCStems ;

(eh)se+ inalienableH'CCStems ;
(eh)sni+ inalienableH CCStems ;
(eh) swa+ inalienableH'CCStems ;

ha+ inalienableH'CCStems ;
(yle+ inalienableH'CCStems ;

ga+ inalienableH'CCStems ;
hadi+ inalienableH'CCStems ;

gae+t inalienableH'CCStems ;

gadi+ inalienableH'CCStems ;
LEXICON inalineableNPrefixes

1sA+ : k+ inalineableNStems ;
1idA+ : (e)kni+ inalineableNStems ;
1idA+ : (e)tni+ inalineableNStems ;
ledA+ : (y)akni+ inalineableNStems ;

147

lipA+ : (e)dwa+ inalineableNStems ;

lepA+ : (y)agwa+ inalineableNStems ;

2sA+ : (eh)s+ inalineableNStems ;
2dA+ : (eh)sni+ inalineableNStems ;

2pA+ : (eh)swa+ inalineableNStems ;

3msA+ : ha+ inalineableNStems ;
3fisA+ : (ye+ inalineableNStems ;
3znsA+ : ga+ inalineableNStems ;
3mdpA+ : hadi+ inalineableNStems ;

3fidpA+ : gae+ inalineableNStems ;

3zndpA+ : gadi+ inalineableNStems ;
LEXICON inalienableYWRPrefixes

1sA+ : g+ inalienableYWRStems ;
1idA+ : (e)kni+ inalienableYWRStems ;
1idA+ : (e)tni+ inalienableYWRStems ;
ledA+ : (y)akni+ inalienableYWRStems ;

lipA+ : (e)dwa+ inalienableYWRStems ;
lepA+ : (y)agwa+ inalienableYWRStems ;

2sA+ : (eh)s+ inalienableYWRStems ;
2dA+ : (eh)sni+ inalienableYWRStems ;

2pA+ : (eh)swa+ inalienableYWRStems ;
3msA+ : ha+ inalienableYWRStems ;
3fish+ : (y)e+ inalienableYWRStems ;
3znsA+ @ ga+ inalienableYWRStems ;
3mdpA+ : hadi+ inalienableYWRStems ;
3fidpA+ : gae+ inalienableYWRStems ;
3zndpA+ : gadi+ inalienableYWRStems ;
LEXICON inalienableOtherCPrefixes

inalienableOtherCStems ;
inalienable0therCStems ;
inalienableOtherCStems ;
ledA+ : (y)akni+ inalienableOtherCStems ;
lipA+ : (e)dwa+ inalienableOtherCStems ;
lepA+ : (y)agwa+ inalienableOtherCStems ;
2sA+ : (eh)se+ inalienableOtherCStems ;
2dA+ : (eh)sni+ inalienableOtherCStems ;
2pA+ : (eh)swa+ inalienableOtherCStems ;
3msA+ : ha+ inalienable0OtherCStems ;
3fisA+ : (y)e+ inalienableOtherCStems ;
3znsA+ : gat inalienableOtherCStems ;
3mdpA+ : hadi+ inalienableOtherCStems ;

1sA+ : ge+
1idA+ : (e)kni+
1idA+ : (e)tni+

148

3fidpA+ : gae+ inalienableOtherCStems ;
3zndpA+ : gadi+ inalienableOtherCStems ;

LEXICON inalienableStems
inalienableAStems ;
inalienablelIStems ;
inalienableOg@Stems ;
inalienableH'CStens ;
inalienableH'CCStems ;
inalineableNStems ;
inalienableYWRStems ;
inalienable0therCStems ;

LEXICON inalienableAStems

0 : inalienable% nouny root’ beginning with% %+a #
inalienable’ nouny, root% beginningy, with% %+a : O #

onY, your’, ears : ahohd inalienableSuffix ;
on}, your’, foot : ahsi'd inalienableSuffix ;
on}, my% toes : ahyagwiy inalienableSuffix ;
LEXICON inalienableIlStems

0 : inalienabley nouny, root% beginning}, with’% %+i #
inalienable’ nouny, root), beginningy, with% %+i : O #

(on)% my% skin : ihn inalienableSuffix ;
!LEXICON inalienableEgStems

LEXICON inalienable0¢@Stems

0 : inalienable% nouny, root% beginning? with% %+o #

inalienabley noun’, root beginningy, with% %+o : 0 #

ony, your?, knee : ¢ts inalienableSuffix ;
LEXICON inalienableH'CStems !12

0 : inalienable’, nouny, root% beginningy with% %+h # ;

0 : inalienabley, nouny root} beginning¥ with% %+'C #
inalienable’ noun’, root% beginningy with), %+h : O #
inalienable’, nouny root?% beginning}, with) %+C : 0 #

on} its’ throat : ha'd inalienableSuffix ;
on}, your}, groin : han inalienableSuffix ;
onj your?, ribs : hdega: inalienableSuffix ;

149

on}, your} anus : hetga’

on} your), buttocks : hna'ts
on}, youry}, shoulders : hnes
ony your?, leg : hsin

on% your? hand : hsohd

on}, your? upper’ lip : hsohga:
on}, your? lip : hsohgw

on% your), (p)% elbows : hyohs

inalienableSuffix ;
inalienableSuffix ;
inalienableSuffix ;

inalienableSuffix ;

inalienableSuffix ;
inalienableSuffix ;

inalienableSuffix ;
inalienableSuffix ;

on}, its% tail’% (pertaining to’ birds) : "yohgw inalienableSuffix ;

LEXICON inalineableNStems !7

0 : inalienable} nouny root% beginning? with¥% %+n #
inalienabley, noun’, root’, beginning?, with¥% %+n : 0 #
on} your? arm : netsh inalienableSuffix ;
ony your’, head : ng'a: inalienableSuffix ;
on} youry breast : ngQ'gw inalienableSuffix ;

ony, your’, teeth : no'j inalienableSuffix ;
on} your’, nipples : ngnhe'dr inalienableSuffix ;

on% hisY penis,’ phallus : nr inalienableSuffix ;

onY, your? shin : nyed inalienableSuffix ;
LEXICON inalienableYWRStems !10

inalienable} noun}, root} beginning}, with% %+y : O #
inalienabley, nouny root’ beginning’ with) %+w : O #
inalienable) nouny, root% beginning} with% %+r : O #

0 : inalienable% nouny, root% beginning} withi %+y #

0 : inalienable% noun’, root% beginning¥ with’ %+w # ;

0 : inalienable’ noun’, root}% beginningy with% %+r #

on¥ youry, body : ya'd inalienableSuffix ;
on% your% waist : ya'ga: inalienableSuffix ;
on), your% gums : yo'd inalienableSuffix ;
on} your?, cheeks : yo'gw inalienableSuffix ;

on% your’, chin : yo'ts inalienableSuffix ;
ony% your? chin : yu'ts inalienableSuffix ;
on), your’}, tongue : we'nahs inalienableSuffix ;
onj}, your? tongue : we'nohs inalienableSuffix ;
on¥% your’} thumb : w¢'yohga: inalienableSuffix ;

on}, your’ heel : rad inalienableSuffix ;
on’ the¥ bally of% my% foot : ragwahd inalienableSuffix ;
LEXICON inalienableOtherCStems !14

inalienable), noun’, root% beginningy with% %+g : O #
inalienable’, nouny, root% beginning¥ with% %+V : 0 #

150

>

inalienabley nouny, root% beginning} with} %+k : O #

inalienable’% noun}, root% beginningy, with% %+w}, : O # ;
inalienable} nouny, root) beginningy with% %+j : O #
0 : inalienable} nouny, root’ beginning}, with) Y%+g #
0 : inalienabley noun} root% beginning}, with¥ %+'V #
0 : inalienabley noun’, root% beginning’ with% %+k # ;
0 : inalienable} nouny root’ beginning’ withl %+w ¥
0 : inalienabley nouny root’, beginning’% withl %+j #
on}, your’, eyes : gah inalienableSuffix ;
on} your’, eyelashes : gahehd inalienableSuffix ;
onj, your’, eyebrow : gahgwaohs inalienableSuffix ;
onY, your?, hairline,% upper’, brow%;% forehead : gg'sd inalienableSuffix ;
ony, the% bridge’% of% my% nose : go'd inalienableSuffix ;
on} your% face : gghs inalienableSuffix ;
ont, its% whiskers : gohsto’ inalienableSuffix ;
on} my% chest : "ahs inalienableSuffix ;
onY, your?, belly : kse'd inalienableSuffix ;
on} your’, ankle : jaoho'gw inalienableSuffix ;
onY, my% nail : ji'ehd inalienableSuffix ;
on% my% nail : ji'ohd inalienableSuffix ;
on), your?, hip : jisgo'gw inalienableSuffix ;
LEXICON inalienableH'CCStems !8
on}, my% inner) thigh : "nhohsga: inalienableSuffix ;
on} your’% nose : nyohs inalienableSuffix ;
on}, your? necky (front’, of’, the) neck) : hnya's inalienableSuffix ;
ony its’, beak : hnyedahs inalienableSuffix ;
his)% testicles : hsgwa: inalienableSuffix ;
on}, your? calfy, (of% leg) : hsna'd inalienableSuffix ;
onY, your?, upper$ back : hswa™n inalienableSuffix ;
onY, your? upper’ back : hswen inalienableSuffix ;
LEXICON inalienableSuffix
0 : QU.INALIEN.POSS@ locativeSuffix ;
0 : QU.INALIEN.UNPOSS@ NSF ; ‘
LEXICON locativeSuffix
+loc : +a'geh #

#
LEXICON allBasicNouns

basicNounPossessedPrefixes ;

151

LEXICO
1sP+ ¢
1dP+ :
1pP+ :
2sP+ :
2dP+
2pP+ :
3msP+ : O
3fisP+ : O
3znsP+ @ 0
3mdpP+ : O

O OO O O O

3fidpP+ : O
3zndpP+ : O

LEXICON
(w)ag+
(w)ag+

(w)ag+

0

0

|

!

!

!

0 : (w)ak+
O «

0 : (w)age+

LEXICON

0 : (y)ogy+

0 : (y)okn+

10 : (y)okn+
10 : (y)okn+
10 : (y)okn+
10 : (y)okn+
0 : (y)okni+
LEXICON

0 : (y)ogu+

0 : (y)ogwe+
10 : (y)ogw+
10 : (y)ogw+
10 @ (y)ogyt

basicNounUnpossessedPrefixes ;

basicNounPossessedPrefixes
wagPrefixes ;
yokniPrefixes ;
yogwaPrefixes ;
saPrefixes ;
sniPrefixes ;
swaPrefixes ;
hoPrefixes ;
yagoPrefixes ;
yoPrefixes ;
hodiPrefixes ;
yagodiPrefixes ;
yodiPrefixes ;

wagPrefixes
basicNounsAStems ;
basicNounsIStems ;
basicNounsEStems ;
basicNounseStems ;
basicNounsUOStems ;
basicNounsgStems ;
basicNounshor’CornStems ;
basicNounsyorwStems ;
basicNounsCOtherStems ;

yokniPrefixes
basicNounsAStems ;
basicNounsIStems ;
basicNounsEStems ;
basicNounsegStems ;
basicNounsOStems ;
basicNounsgStems ;
basicNounsOtherStems ;

yogwaPrefixes
basicNounsAStems ;
basicNounsIStems ;
basicNounsEStems ;
basicNounsgStems ;
basicNounsOStems ;

152

10 : (y)ogy+

0 : (y)ogwa+
LEXICON
0 : s+

0 : se+
10 : s+
10 : s+
10 : st
10 : s+
0 : sat
LEXICON
0 : j+

0 : sn+
10 : sn+
10 : sn+
10 : snt
10 : sn+
0 : sni+
LEXICON

0 : sw+

0 : swet
10 : swt
10 : sw+
10 @ j+
10 @ j+

0 : swat
LEXICON

0 : hot

0 : hot+
10 : hawt
10 : hawt+
10 : h+
10 : h+

0 : hot+
LEXICON

0 : (ya)go+

basicNouns@Stems ;
basicNounsOtherStems ;

saPrefixes
basicNounsAStems ;
basicNounsIStems ;
basicNounsEStems ;
basicNouns¢Stems ;
basicNounsQStems ;
basicNouns@Stems ;
basicNounsOtherStems ;

sniPrefixes

basicNounsAStems ;
basicNounsIStems ;
basicNounsEStems ;
basicNounseStems ;
basicNounsOStems ;
basicNounsopStems ;
basicNounsOtherStems ;

swaPrefixes
basicNounsAStems ;
basicNounsIStems ;
basicNounsEStems ;
basicNounsgStems ;
basicNounsOStems ;
basicNounsgStems ;
basicNounsOtherStems ;

hoPrefixes
basicNounsAStems ;
basicNounsIStems ;
basicNounsEStems ;
basicNouns¢Stems ;
basicNouns0OStems ;
basicNounsQStems ;
basicNounsOtherStems ;

yagoPrefixes
basicNounsAStems ;

153

0 : (ya)go+ basicNounsIStems ;

1(0 : ya)gaw+ basicNounsEStems ;

10 : (ya)gaw+ basicNounseStems ;

10 : (ya)g+ basicNounsOStems ;

10 ¢ (ya)g+ basicNounsgStems ;

0 : (ya)go+ basicNounsOtherStems ;
LEXICON yoPrefixes

0 : (y)o+ basicNounsAStems ;
0 : (yo+ basicNounsIStems ;
10 : (y)aw+ basicNounsEStems ;

10 : (y)o+ basicNounseStems ;

10 : (y+ basicNounsOStems ;
10 @ (y)+ basicNounsgStems ;
0 : (y)o+ basicNounsOtherStems ;
LEXICON hodiPrefixes

0 : hont basicNounsAStems ;
0 : hod+ basicNounsIStems ;
10 : hon+ basicNounsEStems ;

10 : hont basicNouns¢Stems ;

10 : hon+ basicNounsOStems ;

10 : hon+ basicNounsgStems ;

0 : hodi+ basicNounsOtherStems ;
LEXICON yagodiPrefixes

0 : (ya)gont basicNounsAStems ;

0 : (ya)god+ basicNounsIStems ;

10 : (ya)gon+ basicNounsEStems ;

10 : (ya)gon+ basicNounseStems ;

10 : (ya)gon+ basicNounsOStems ;

10 : (ya)gon+ basicNounsgStems ;

0 : (ya)godi+ basicNounsOtherStems ;
LEXICON yodiPrefixes

0 : (y)on+ basicNounsAStems ;

0 : (y)od+ basicNounsIStems ;

10 : (y)on+ basicNounsEStems ;

10 : (y)on+ basicNounsgStems ;

10 : (y)on+ basicNounsOStenms ;

10 : (y)on+ basicNounsgStems ;

0 : (y)odi+ basicNounsOtherStems ;

154

LEXICON basicNounUnpossessedPrefixes

3znA+ : ga+ gaBNouns ;

3znP+ : o+ oBNouns ;

3znA+ : a+ aBNouns ;
nullBNouns ;

! Grouping by initial stem vowel for possessed basic nouns

LEXICON basicNounshor'CornStems
nullBNounshVStems ;
gaoh'CNouns ;
normal0BNounsh'CnStems ;
normalGaBNounsh'CnStems ;

LEXICON basicNounsyorwStems
normal0OBNounsYWStems ;
normalGaBNounsYWStems ;

LEXICON " basicNounsCOtherStems
gaoJNouns ;
normal0BNounsOtherCStems ;
normalGaBNounsOtherCStems ;
oLoanWords ;
nullBNounshCStenms ;

LEXICON basicNounsAStems
aoBNouns ;
normalABNouns ;
normalOBNounsAStems ;

LEXICON basicNounsIStems
normalOBNounsIStems ;
normalGaBNounsIStems ;

ILEXICON basicNounsEStems
| #
'LEXICON basicNouns¢Stems
! # ;

155

'LEXICON basicNounsQStems
! # ;

LEXICON basicNounsOtherStems
oLoanWords ;
nullBNouns ;
gaoBNouns ;
normal0OBNounsOtherStems ;
normalGaBNounsOtherStems ;

! End grouping by stem vowel for possessed basic nouns

LEXICON gaBNouns
normalGaBNouns ;
gaoBNouns ;

LEXICON oBNouns
normalOBNouns ;
gaoBNouns ;
aoBNouns;
nullBNouns;
oLoanWords;

LEXICON aBNouns
normalABNouns ;
aoBNouns ;

LEXICON oLoanWords
0 : basic), noun’, root%h (loan¥ words)
basicy noun¥, root% (loan¥ words) : O
tea : di:

cheese : ji:s

LEXICON nullBNouns

0 : basic¥% noun}, root}% (unprefixed)

basic) noun’, rooty, (unprefixed) : O
nullBNounshVStems ;
nullBNounshCStems ;

156

LEXICON nullBNounshVStems

basic) noun} root% (beginning} in% %+hV) : O #
potato : hgna'd NSF ;
LEXICON nullBNounshCStems
basic) noun’, root% (beginning} in% %+hCC) : 0 #
colts) foot : hsgwae'd NSF ;
LEXICON gaoBNouns
gaoh'CNouns ;
gaoJNouns ;
LEXICON gaoJNouns

basic)% noun’% root% (beginningy, in% %+j% or’% hCC% that), takes’ ga%+% or% o%+) : 0 # ;
0 : basick noun’ root% (beginning% iny %+j% or% hCCY, that}, takes¥ ga%+% or% o%+) # ;

nakedness’;% nudity : ji'gw NSF ;
straight?, pin¥%;% pin¥%;% brooch%;% safety’ pin : jihoha: NSF ;
dirty% clothes : hsdagw NSF ;
beak : hnyedahs NSF ;
LEXICON gaoh CNouns

0 : basic}% noun% root¥, (beginningy in% %+hV% or’, 'CV% that} takesY, gal+) or o%+)
basic’ noun} root¥% (beginning} in}, %+hVY or’% °CVY% that’ takes¥% ga%+% or¥% o¥%+) : O

clothespin : "wahsd NSF ;
cargo’;% bundle%;% load : hehn NSF ;

a}% motor%;’% engine : ho'jihsd NSF ;

LEXICON aoBNouns

0 : basich noun), root) (beginning} in}% %+a’% that% takesy o%+% or¥, a%+)
basic) noun) root) (beginning} in} %+a) that) takes), o%+) or’% a%+) : O

ladder%;% stairs : adghne'ts NSF ;

LEXICON normalABNouns

0 : basic% noun% root} (beginning in% %+a), that¥% takes’, al+) # ;
basic), noun’, root% (beginningy in’, %+a’ that), takes% al+) : O # ;
fence : ad¢he NSF ;

blouse%;% middy : adehsw NSF ;

lunchy;% groceries : adena'tr NSF ;

skate : ado’jin NSF ;

bow’, (as% in% bow), and, arrow) : adoda: NSF ;

axe’;% tomahawk : adoge NSF ;

157

hunt : adowadg: NSF ;
luck : adra'sw NSF ;
shoes : ahdahgw NSF ;
clothing%;% clothes : ahgweny NSF ;

roof : ahsgw NSF ;
closthes : atroni'd NSF ;
calendar : atsoge NSF ;
flower : awehe NSF ;
weeds : awgnohgr NSF ;

LEXICON normalOBNouns
normalOBNounsAStems ;
normal0OBNounsIStems ;
normal0OBNounsOtherStems ;

LEXICON normalOBNounsOtherStems
normal0BNounsh'CnStems ;
normalOBNounsYWStems ;
normal0BNounsOtherCStems ;

LEXICON normalOBNounsOtherCStems

0 : basic}% noun’ root), (beginning} with), a¥ C) other’ than% %+y/w/r/} taking¥ o¥%+) # ;
basic’ nouny root¥ (beginning} withi), a¥% C% other’, than¥ %+C/y/w}% taking) o%+) : 0 # ;
sod’;% moss : "ghgwa: NSF ;

vines : 'ohs NSF ;

a), price) (onj, it) : ga: NSF ;

pants : ga'd NSF ;

a% tear’% (in% one’s), eye) : gahdr NSF ;

eyelashy;% the¥ stemy of’ a¥ berryh;% the’ eye% of} thel, corn) kernel : gahehd NSF ;
eyebrow : gahgwaohs NSF ;

grass : gaho'j NSF ;

cadaver;% dead) body : ganye'd NSF ;

hair¥%;% a¥% ragh;% (it%h is)¥% ragged¥;’ tattered : ge'a: NSF ;

cottony, battingi;% q-tips : go'dr NSF ;

a% 1limb%;% twigh;% branch : gwiy NSF ;

leavesy, of}, corn : jags NSF ;

curtains%;% lace : ji'a: NSF ;

the’ brain : ji'drowahd NSF ;

bugh;% insect%;% worm : ji'now NSF ;

gonorrhea : jigwed NSE ;

porridge%;% mush : jihgw NSF ;

mush : jihsgw NSF ;

cluster?, ofY, stars;% star : jihseda: NSF ;

158

bell : jihwed NSF ;

salt : jike'd NSF ;

nasaly mucous : jinghgr NSF ;

yellow : jitgwa: NSF ;

a’ nutshell : kd NSF ;

rooth;% ediblel roots% (pepper’ rootsk;% turnips%;’% carrots) : kdeh

stump%; % knots) in% a)% tree : kjin NSF ;

its% food : kw NSF ;

willow%;% nape’, of% neck : sehd NSF ;

snake : shaihsd NSF ;

flour%;% powder : te'tr NSF ;

sumac : tgo'd NSF ;

housefly%;% fly : tre'd NSF ;

mist%;% steam%;% fog : tsad NSF ;

syrupk;% honey%;% gum : tsehsd NSF ;

peach’, pit : tsge'e: NSF ;

balsam} fir : tsgo'd NSF ;

saliva),;% spit;’% sputum : tsgr NSF ;
normal0OBNounsh'CCStems ;

LEXICON normalOBNounsYWStems

0 : basic} noun), root% (beginningy with’ %+y/w/r’ that’ takesy o/+)
basic)% noun% root% (beginning? with}, %+y/w/r% that) takesy o%+) : O
air’;% wind%;% al moth : wa: NSF ;

aj) peeling : wa'wihsd NSF ;

peelings¥%;% barky, of% a¥% tree : wajihsd NSF ;
finy), of% a% fishl;% wings : way NSF ;
woody, chips : hwe'hga: NSF ;

word%;% voicel;% speech : wen NSF ;
ice : widr NSF ;

sleep’;% a)% dream : widrehd NSF ;

young%;% offspring¥% (i.e.’ of% an) animal)¥;% baby : wiy
other%;% another : y NSF ;

body : ya'd NSF ;

basement%;% track’;% ditch : yad NSF ;
pants : yahgw NSF ;

tirel;% its’ track’;% anything’, that’ leavesy, tracks : yan

beads : ye¢: NSF ;

tobacco%;% cigarettes : yg'gw NSF ;

woodl; % firewood : yed NSF ;

bandage : yehsa: NSF ;

a’% dead¥, body%;% cadaver : yo'd NSF ;
cheeks : yo'gw NSF ;

guts%;’% intestines : yow NSF ;

159

NSF

NSF ;

NSF ;

message’;h ith matters’,;% it) is¥ its¥% faulth;% word%;% affair’;’% business :

LEXICON normalOBNounsh'CCStems

leaf : nrahd NSF ;

tripe), (cow), stomach’ lining)%;% animal), stomache : nrege'd NSF ;
tapeworm : nre¢he NSF ;

vomit%;% vomitus : NSF ;

native’, mush), dishesy, made’ with’, corn : nyah NSF ;
stem : nyed NSF ;)

lumber’, logs¥% (large)’;% timber : nhahd NSF ;
snow%;% snowflake : NSF ;

lumbery, logs’% (large)%;% timber : "nhahgy NSF ;
tail% of% an¥ animal : NSF ;

tail), of% any, animal : NSF ;

egg : ‘nhohs NSF ;

bur : "nhohd NSF ;

onion : "nghs NSF ;

nutmeat : hnya: NSF ;

flint} corny soup : NSF ;

nut : hnyo'gw NSF ;

squash’;’% melon : hnyohs NSF ;

rain : hsda: NSF ;

scale¥, (of% a}% fish) NSF ;

scale¥, (of% a% fish) NSF ;

necklace : hsdao'gw NSF ;

rust : hsge'dr NSF ;

louse : hsgeh NSF ;

branch : hsgoh NSF ;

wrinkles : hsgwi'dr NSF ;

bone,;% bare’, bones : NSF ;

blue% beech), (tree) NSF ;

dough : hshe” NSF ;

hamstrings%;% calves’% (of?% the% legs)%;% outer’ thighs : hsna'd NSF ;
straw : hstodr NSF ;

coal : hswe'd NSF ;

LEXICON

normal0OBNounsh'CnStems

0 : basic}% noun% root% (beginning}, with% %+'CV/hCV/nY% that’ takes’, o¥%+)
basic% noun% root% (beginning?, withy %+CV/hCV/nj% that% takes% o%+) : O

bread : na'da:
horns%;% antlers :

cotton’ batting : na'gwiy
a% mattress : na'sgw

NSF ;
NSF ;
NSF ;
NSF ;

160

rihw

clay’;% plaster’;% white-wash : nawad NSF ;
evergreen’,;’% conifer : ne¢'d NSF ;
roe), (fish¥ eggs) : ne'da: NSF ;

morely, mushroom : negred NSF ;

peas : negw NSF ;

corn : ne¢he: NSF ;

hickory% wood%;% stick : nenoga: NSF ;
pills : nenyo'gw NSF ;

milk : nQ'gw NSF ;

catfish : ngge'd NSF ;

corn) cob : nohgwe NSF ;

a/, husk : nony NSF ;

% is% fath;% gristle%;% rind : "dodr NSF ;
a% parablel;% tale%;% story%;% legend : “ga: NSF ;
ashes’%;% bullet%;% dust : "gehe NSF ;

sand : 'nehs NSF ;

nudity : "nest NSF ;

nudity : "nost NSF ;

stem%;% hull’% of% berries : "nihsda: NSF ;
skirt%;% tail;% feather : “yohgw NSF ;
quill’%;¥% plume;?% feather’;% voiceh;% throat’;% larynx%;% esophagus : ha'd NSF ;
road : hah NSF

soot : hakd NSF ;

corn%, husk : he’a: NSF ;

dirt%;% earth’;% ground%;’% land : hehd NSF ;
fur : hehda: NSF ;

decayed’ treel;% logh;% wood%;% board : hehs NSF ;
(raw)?, sausage%;% bologna%;% wieners : hets NSF ;
one% corny% stalk : hey NSF ;
thorn%;% thistle : hikd NSF ;

cloud : hji'gr NSF ;

greasel;% oil : hn NSF ;

a’, bush¥%;’ a¥% whip : hod NSF ;
basswood : hodr NSF ;

slippery’, elm : hohsgr NSF ;

pelt : hohwa: NSF ;

mouth : hsa: NSF ;

beans : hsahe'd NSF ;

frost : hsehe NSF ;

thread’;% stringl;% cord : hsiy NSF ;
maple : hwahd NSF ;

a’, splint : hwe'ga: NSF ;

corny ears : hwehda: NSF ;

foam : hwehsd NSF ;

161

LEXICON

normal 0BNounsAStems

0 : basic¥ noun}, rooty, (beginning% with}, %+aj that% takes’, o%+) # ;
basicy noun’, root (beginning% with)% %+a% that)% takes} o¥%+) : O % ;
rust : ahsgeg'dr NSF ;

snowsnake’;% pole : a'en NSF ;

cocoon’;’% nest;% hive¥;% bee-hive : adehshe NSF ;

wall : adenihs
number : ahshed

NSF

fruit : ahy

LEXICON normalOBNounsIStems

0 : basic} noun} root}, (beginning}, withy, %+i% that% takes o%+) #

basic) nouny root% (beginning), with¥ %+i% that’, takes% o%+) : O #

feces;% shit%;% excrement : id NSF ;

clay’;% mudi;% mortar : i'da: NSF ;

flame : i'dohgw NSF ;

fish : ijo'd NSF ;

LEXICON normalGaBNouns
normalGaBNounsIStems ;
normalGaBNounsOtherStems ;

LEXICON normalGaBNounsOtherStems
normalGaBNounsh'CnStems ;
normalGaBNounsYWStems ;
normalGaBNounsOtherCStems ;

LEXICON normalGaBNounsOtherCStems

0 : basic} nouny, root) (beginning% with}), a% C}% other% than}% %+'C/y/w% taking? gal+)

basick noun) root (beginning/ with¥, a) C% othery thany %+'C/y/w/ taking} ga¥+)

basket : "ahdr

white), oak : ga'd

eye}, glasses : gahihsd
shovel : gahwehs

paddle : gawehs

tiek;% scarf : gehd
pillowh;% cushion : go'dr
the’, mask : gohs

dish%;% platel;% bowl : je
the’, devil : jihay

Jamp : jihsd

hammer : jihw

: 0
NSF ;
NSF ;
NSF ;
NSF ;
NSF
NSF ;
NSF ;
NSF
NSF ;
NSF ;
NSF ;
NSF ;

.

food : kw NSF ;

a’% handle : tgehets NSF
wallet%;% pursek%;% pocketbook¥%;% suitcase : tgwe'd NSF ;
bottle%;% jar : tse'd NSF ;

oneY, animal%;% pet : tseng’ NSF ;
LEXICON normalGaBNounsYWStems

0 : basick nouny% root} (beginningy, withy, %+y/w/r% that} takesl ga¥k+)

basicy noun) root} (beginning} withy, %+y/w/r% that’ takes) gal+) : 0

bagh;% mattress%;% tickl;’ pouchy (ie.% a% mattressy bagl into¥
whichy, straw’, is), stuffed) : ya: NSF ;

doll : ya'd NSF ;
a% celestial), orb) (ie.% the) sun%;’% the), moon) : Cagwa: NSF ;

aj, rope : Catsge'd NSF ;

tin%;% metal : Cihsd NSF ;

leggings : Cisr NSF ;

sleep’;% a% dream : Cidre¢hd NSF ;

song : ren NSF ;

any agreement : rihwihs NSF ;

log : rod NSF ;

LEXICON normalGaBNounsh'CnStems

0 : basic}% noun}, root% (beginning} with) %+'C/n/h}% taking} gal+) # ;
basic¥% noun’, root¥% (beginning¥% with’, %+'C/n/h% takingl gak+) : O # ;
forest?%;% bush : had NSF ;
elm : hoga: NSF ;

boat : how NSF ;

headdress : hsdow NSF

a% name : hsen NSF ;

stone’;% rockl;% boulder’;’% bullet : hsgwa: NSF ;
nails%;% wire%;% needle : hsowahd NSF ;

car’;% truck%;% vehicle : 'drehd NSF ;

diaper : 'droda NSF ;

skirt%;% slip : "ka: NSF ;

marriage : ‘na'gw NSF ;

the’, mind : "nigoh NSF ;

earrings : 'wahsha: NSF ;
Avocet’, blue’ stocking}, (bird) : “yohgw NSF ;

pail : na’j NSF ;

cup : na'johsgw NSF ;

town’%;% community : nad NSF ;

comb : nahd NSF ;

bass) drum : nahgw NSF ;

163

tame’, animal’;% pet’;% domestic} animal : nahsgw NSF ;

a% peacock¥;% bride’;% boastfulness : nai'd NSF ;
bed : nakd NSF ;
aj% board : nehsda: NSF ;
leather’;% hide : nehw NSF ;
porcupine : nhe'd NSF ;
stick : nhy NSF ;
a’% house : no¢hs NSF ;
a} dance : ngny NSF ;
guitar’;% any’, string), instrument’;’ (refers), tolrounded’ back} of’, aj turtle) : now NSF ;
spoon%;% canoe%;% birchy, bark’ canoe : nyod NSF ;
LEXICON normalGaBNounsIStems
0 : basic)% noun’, root} (beginning’ with?, %+i% that) takes’ gal+) #
basic), nouny, rooty, (beginning¥ with¥, %+i% that¥ takes’ ga%+) : O #
bottle%;% jar : itsed NSF ;
mattressy;% sleeping) mat : itsga: NSF ;
LEXICON NSF
+NSF : +a’ #
#

164

This appendix contains tables listing all the surface and underlying forms that were used to the
validity of my machine. There are two sets of data, one for use with testing the abstract approach
and one for testing the concrete approach. Each data set consists of six series of tables; one for
each type of noun (the tables are divided by prefix type where applicable: ie. a separate table for

ApPPENDIX C

Test Cases

possessed an unpossessed basic nouns).

As described in §7.2.1 the data from the surface column of each table was run through the
machine, and compared to the expected output from the underlying column. If there was a
mismatch or missing word, the program reported an error. This process was then repeated taking
the data from the underlying column, running it through the machine and comparing the output
with the expected result from the surface column.

C.1 Data for the Abstract Approach

Table C.1: Unpossessed Basic Nouns

Surface Underlying Surface Underlying
hona’da’ hona’d+a’ hsgwae'da’ | hsgwae'd+a’
odi: o-+di: 0ji:s o-+jiis
ga'wahsda’ | ga+ wahsd+a’ gahehna’ ga+hehn+a’
o'wahsda’ | o4 wahsd+a’ ohehna’ o+hehn+a’
gahsdagwa’ | ga+hsdagw+a’ gaji'gwa’ ga+ji'gw+a’
ohsdagwa' | o+hsdagw+a’ oji'gwa’ o+ji'gw+a’
adohne’tsa’ | a+-adghne’ts+a’ odghne’tsa’ | o+adgohne’ts+a’
awenohgra’ | at+awenohgr+a’ adra’swa’ at+adra’sw+a’
o'nhahgya’ | o+ 'nhahgy+a’ onhahda’ o+nhahd+a’
ohya’ o+ahy+a' oga:’ o+ga:+a’
ohwehsda’ | o+hwehsd+a’ o'da’ o+i'd+a’

165

OThis is an incorrect form that was used during the testing. This underscores the fact that despite using
a computer to check for errors, work is always subject to human error. Please see the discussion in §7.2.1
for more information.

Unpossessed Basic Nouns Continued

Surface Underlying Surface Underlying

okwa’ o+kw+a’ ona'da:’ o+na'da:+a’

oihwa’ o+rihw-+a’ osehda’ o+sehd+a’

otsgra' o+tsgr+a’ owa.:’ o+wa:+a’

owiya’ o+wiy+a’ oya’ o+y+a’

oya'da’ o+ya'd+a’ ga'wahsha:” | ga+ "wahsha:+a’

ga:gwa.:’ ga+Cagwa:+a’ gaga'da’ ga+ga'd-+a’

gahsowahda’' | ga+hsgowahd+a’ getsga:’ ga+itsga:+a’

gaje’ gatje+a’ gakwa’ gat+kw+a’

gana'ja’ ga+na'j+a’ gagpda’ ga+rod+a’

gatgehetsa' | ga+tgehets+a’ gaya:’ ga+ya:+a’

Table C.2: Possessed Basic Nouns

Surface Underlying Surface Underlying
akona'da’ (w)ag+hona'd+a’ oknihona’da’ (y)okni+hona'd+a’
ogwahona'da’ (y)ogwa-+hona’d+a’ sahona’'da’ sa+hona’d+a’
snihgna'da’ sni+hona’'d+a’ swahona'da’ swa-+hona'd+a’
hohgna'da’ ho+hgna'd+a’ gohona'da’ (va)go+hona'd+a’
ohgna'da’ (y)o+hona'd+a’ hodihona'da’ hodi+hgna'd+a’
godihgna’da’ (ya)godi+hona'd+a’ odihgna’'da’ (y)odi+hona'd+a’
agehsgwag'da’ (w)ag+hsgwag'd+a’ oknihsgwag'da’ | (y)okni+hsgwag'd+a’
ogwahsgwae'da’ | (y)ogwa+hsgwae'd+a’ sahsgwag'da’ sa+hsgwae'd+a’
snihsgwag'da’ sni+hsgwae'd+-a’ swahsgwag'da’ | swa-+hsgwaeg'd+a’
hohsgwag'da’ ho+hsgwag'd+a’ gohsgwag'da’ (ya)go+hsgwag'd+a’
ohsgwag'da’ (y)o+hsgwae'd+a’ hodihsgwag'da’ | hodi+hsgwag'd+a’
godihsgwag'da’ | (ya)godi+hsgwae d+a’ odihsgwag'da’ | (y)odi+hsgwae'd+a’
akwahsda’ (w)ag+ wahsd+a’ okni'wahsda’ (y)okni+ wahsd+a’
ogwa 'wahsda’ (v)ogwa+ wahsd+a’ sa'wahsda’ sa+ wahsd+a’
sni'wahsda’ sni-+ 'wahsd+a’ swa 'wahsda’ swa-+ wahsd+a’
ho’wahsda’ ho+"wahsd+-a” go 'wahsda’ (ya)go+ wahsd+a’
o'wahsda’ (y)o+'wahsd+a’ hodi'wahsda’ hodi+ wahsd+a’
godi'wahsda’ (ya)godi+"wahsd+a’ odi'wahsda’ (y)odi+"wahsd+a’
akehna’ (w)ag+hehn+a’ oknihehna’ (v)okni+hehn+a’
pgwahehna’ (v)ogwa+hehn+a’ sahehna’ sa+hehn+a’
snihehna’ sni+hehn+a’ swahehna’ swa-+hehn+a’

166

Possessed Basic Nouns Continued

Surface Underlying Surface Underlying
hohehna’ ho+hehn+a’ gohehna’ (ya)go+hehn+a’
ohehna' (y)o+hehn+a’ hodihehna’ hodi+hehn+a’
godihehna’ (va)godi+hehn+a’ odihehna’ (y)odi+hehn+a’
agejihoha.:” (w)ag—+jihoha:+a’ oknijihoha:” (v)okni+jihoha:+a’
ogwajihoha:” (v)ogwa-+jihoha:+a’ sajihoha:” sa+jihoha:+a’
snijihoha:” sni-+-jihoha:+a’ swajihoha:” swa+jihoha:+a’
hojihoha:” ho+jihoha:+4a’ gojihoha:” (ya)go+jihoha:+a’
ojihoha;” (y)o+jihoha:+a’ hodijihoha.” hodi+jihoha:+a’
godijihoha;’ (ya)godi+jihoha:+a’ odijihoha.” (y)odi+jihoha:+a’
agadohne'tsa” | (w)ag+adohne'ts+a’ ogyadohne'tsa” | (y)okni+adohne'ts+a’
ogwadohne'tsa’ | (y)ogwa+adohne'ts+a’ sadphne’tsa’ sa+adghne'ts+a’
jadphne'tsa’ sni+adghne'ts+a’ swadohne'tsa’ | swa+adghne'ts+a’
hodghne’tsa’ ho+adohnets+a’ godohnetsa’ (ya)go+adghne'ts+a’
odghne’tsa’ (y)o+adohne’ts+a’ honadghne'tsa’ | hodi+-adghne’ts+a’
gonadohne'tsa’ | (ya)godi+adohne'ts+a’ onadghnetsa’ | (y)odi+adghne'ts+a’
*age'nhohsa™ | (w)ag+"nhohs+a’ okni'nhghsa’ (y)okni+ nhohs+a’
ogwa nhohsa’ (y)ogwa+ nhohs+a’ sa'nhghsa’ sa+ nhohs+a’
sni'nhohsa’ sni+ nhohs+4-a’ swa nhohsa’ swa+'nhohs+a’
ho'nhghsa’ ho+"nhghs+a’ go'nhohsa’ (ya)go+ nhghs+a’
o'nhohsa’ (y)o-+"nhohs+a’ hodi'nhghsa’ hodi+ nhgohs+a’
godi'nhghsa’ (ya)godi+ nhghs+a’ odi'nhghsa’ (y)odi4+nhghs+a’
age'ohgwa: (w)ag+ ohgwa:+a’ okni'ohgwa.” (y)okni+ ohgwa:+a’
ogwa phgwa:” (v)ogwa+ ohgwa:+a’ sa'ohgwa.’ sa+ ghgwa:+a’
sni'ghgwa’ sni+ 'ghgwa:+a’ swa'ghgwa:’ swa+ ohgwa:+a’
ho'ghgwa:" ho+"¢ghgwa:+a’ go'ohgwa;’ (ya)go+'ghgwa:+a’
o'ohgwa:’ (y)o+ ohgwa:+a’ hodi'ghgwa.:” hodi+"ghgwa:+a’
godi'phgwa:’ (ya)godi+ ghgwa:+a’ odi’ohgwa.” (v)odi+"ghgwa:+a’
agenhahda’ (w)ag+nhahd+a’ okninhahda’ (y)okni-+nhahd+a’
ogwanhahda’ (y)ogwa+nhahd+a’ sanhahda’ sa+nhahd-+a’
sninhahda’ sni+nhahd+a’ swanhahda’ swa+nhahd+a’
honhahda’ ho+nhahd-+a’ gonhahda’ (ya)go+nhahd+a’
onhahda’ (y)o+nhahd+a’ hodinhahda’ hodi+nhahd+a’
godinhahda’ (ya)godi+nhahd+a’ odinhahda’ (y)odi+nhahd+a’
agega'da’ (w)ag+ga'd+a’ okniga'da’ (v)okni+ga'd+a’
ogwaga'da’ (v)ogwa+ga'd+a’ saga'da’ sa+ga'd+a’
sniga'da’ sni+-ga'd+a’ swaga'da’ swa+ga'd+a’
hoga'da’ ho+ga'd+a’ goga'da’ (ya)go+ga'd+a’
oga'da’ (y)ot+ga'd+a’ hodiga’da’ hodi+-ga'd+a’

Possessed Basic Nouns Continued

Surface Underlying Surface Underlying
godiga'da’ (ya)godi+ga'd+a’ odiga’da’ (y)odi+ga'd+a’
akakda’ (w)ag+hakd+a’ oknihakda’ (y)okni+hakd+a’
ogwahakda’ (v)ogwa-+hakd+a’ sahakda’ sa+hakd+a’
snihakda’ sni+hakd+a’ swahakda’ swa+hakd+a’
hohakda’ ho+hakd+a’ gohakda’ (ya)go+hakd+a’
ohakda’ (y)o+hakd+a’ hodihakda® | hodi+hakd+a’
godihakda’ (ya)godi+hakd-+a’ odihakda’ (y)odi+hakd+a’
agi'dohgwa’ (w)ag+idohgw+a’ okni'dphgwa” | (y)okni+i'dphgw—+a’
ogwe'dohgwa' | (v)ogwa+i'dohgw+a’ s¢’dphgwa’ sa+i'dohgw+a’
sni'dphgwa’ sni+i'dphgw-+a’ swe'dohgwa' | swa+i'dghgw+a’
ho'dohgwa ho+i'dohgw+a’ go'dohgwa’ (ya)go+i'dohgw+a’
o'dohgwa’ (y)o+i'dohgw+a’ hodi'dphgwa’ | hodi+i'dghgw+a’
godi'dohgwa™ | (ya)godi+i'dphgw+a’ odi'dghgwa’ | (y)odi+i'dphgw—+a’
agejihsoda:” (w)ag+jihspda:+a' oknijihsoda:” | (y)ekni+jihsoda:+a’
ogwajihsoda:” | (y)ogwa-+jihspda:+a’ sajihsoda:” sa+jihspda:+a’
snijihspda:” sni+jihspda:4-a’ swajihspda:” | swa+jihspda:+a’
hojihsoda:” ho-+jihspda:+a’ gojihspda:’ (ya)go+jihsoda:+a’
ojihspda;’ (v)o+jihsoda:+a’ hodijihspda:” | hodi+jihspda:+a’
godijihspda:” | (ya)godi+jihspda:+a’ odijihsoda:” | (y)odi+jihspda:+a’
agekdeha’ (w)ag+kdeh+a’ oknikdeha’ (y)okni+kdeh+a’
pgwakdeha’ (y)ogwa+kdeh+a’ sakdeha' sa+kdeh+a’
snikdeha’ sni+kdeh+a’ swakdeha’ swa+kdeh+a'
hokdeha’ ho+kdeh+a’ gokdeha’ (va)go+kdeh+a’
okdeha’ (y)o+kdeh+a’ hodikdeha’ hodi+kdeh+a’
godikdeha’ (ya)godi+kdeh+a’ odikdeha’ (y)odi+kdeh+a’
agrihwa’ (w)ag+rihw+a’ okni:hwa’ (y)okni+rihw+a’
ogwaihwa’ (y)ogwa+rihw+a’ saihwa,’ sa+rihw+a’
snichwa’ sni+rihw+a’ swaihwa' swa+rihw+a’
hoihwa’ ho+rihw+a’ goihwa’ (va)go+rihw+a’
oihwa’ (y)o-+rihw+a’ hodi:hwa’ hodi+rihw+a’
godi:hwa’ (ya)godi+rihw+a’ odi:hwa’ (y)odi+rihw+a’
ageschda’ (w)ag+sehd+a’ oknisehda’ (y)okni+sehd+a’
ogwasehda’ (y)ogwa+sehd-+a’ sasehda’ sa+sehd+a’
snisehda’ sni+sehd+-a’ swasehda’ swa+sehd+a’
hosehda’ ho-+sehd+a’ gosehda’ (va)go+sehd+a’
osehda’ (y)o+sehd+a' hodisehda’ hodi+sehd+a’
godisehda’ (ya)godi+sehd+a’ odisehda’ (y)odi+sehd+a’
agetsehsda’ (w)ag+tsehsd+a’ oknitsehsda’ | (y)okni+tsehsd+a’
ogwatsehsda’ | (y)ogwa-+tsehsd+a’ satsehsda’ sa+tsehsd+a’

168

Possessed Basic Nouns Continued

Surface Underlying Surface Underlying
snitsehsda’ sni+tsehsd+a’ swatsehsda’ swa+tsehsd+-a’
hotsehsda’ ho+tsehsd+a’ gotsehsda’ (ya)go+tsehsd+a’
otsehsda’ (y)o+tsehsd+a’ hoditsehsda’ hodi+tsehsd+a’
goditsehsda’ (va)godi+tsehsd+a’ oditsehsda’ (y)odi+tsehsd+a’
agwa wihsda’ (w)ag+wa'wihsd+a’ okniwa'wihsda’ | (y)okni+wa'wihsd+a’
ogwawa 'wihsda® | (y)ogwa+wa wihsd+a’ sawa wihsda’ sa+wa 'wihsd+a’
sniwa wihsda’ sni+wa 'wihsd+a’ swawa wihsda’ | swa+wa 'wihsd+a’
howa'wihsda’ ho+wa'wihsd+a’ gowa 'wihsda’ (ya)go+wa'wihsd+a’
owa'wihsda’ (y)o+wa'wihsd+a’ hodiwa'wihsda' | hodi+wa'wihsd+a’
godiwa'wihsda' | (ya)godi+wa'wihsd+a' | | odiwa'wihsda’ | (y)odi+wa'wihsd+a’
agyo'da’ (w)ag+yo'd+a’ okniyo'da’ (y)okni+yo'd+a’
ogwayo 'da’ (v)ogwa+yo'd+a’ sayo'da’ sa+yo'd+a’
sniyo'da’ sni+yo'd+4-a’ swayo'da’ swa+yo'd+a’
hoyo'da’ ho+yo'd+a’ goyop'da’ (ya)go+yo'd+a’
oyo'da’ (y)otyo'd+a’ hodiyo'da’ hodi+yo'd+a’
godiyo'da’ (ya)godi+yo'd+a’ odiyo'da’ (y)odi+yo'd+a’
agihsda’ (w)ag-+Cihsd+a’ okni:hsda’ (y)okni+Cihsd+a’
ogwaihsda’ (v)ogwa+Cihsd+a’ saihsda’ sa+Cihsd+a’
sni:hsda’ sni+Cihsd+a’ swaihsda' swa+Cihsd+a’
hoihsda’ ho+Cihsd+a’ goihsda’ (va)go+Cihsd+a’
oihsda’ (y)o+Cihsd+a’ hodi:hsda’ hodi+Cihsd+a’
godi:hsda’ (ya)godi+Cihsd+a’ odi:hsda’ (y)odi+Cihsd+a’
agatsge'da’ (w)ag+Catsge'd+a’ okniatsge'da’ (y)okni+Catsge'd+a’
ogwa:tsge'da’ (v)ogwa+Catsge'd+a’ sa:tsge'da’ sa+Catsge'd+a’
sniatsge'da’ sni+Catsge'd+a’ swa:tsge'da’ swa+Catsge'd+a’
hoatsge'da’ ho+Catsge'd+a’ goatsge'da’ (ya)go+Catsge'd+a’
oatsge'da’ (y)o+Catsge'd+a’ hodiatsge'da’ hodi+Catsge'd+a’
godiatsge'da’ (va)godi+Catsge'd+a’ odiatsge'da’ (y)odi+Catsge'd+a’
age'ahdra’ (w)ag+ ahdr+a’ okni'ahdra’ (y)okni+ ahdr+a’
ogwa ahdra’ (y)ogwa+ ahdr+a’ sa’ahdra’ sa+ ahdr+a’
sni‘ahdra’ sni+ ahdr+a’ swa ahdra’ swa-+ ahdr+a’
ho'ahdra’ ho+"ahdr+a’ go'ahdra’ (ya)go+ ahdr+a’
o'ahdra’ (y)o+ ahdr+a’ hodi"ahdra’ hodi+ ahdr+a’
godi’ahdra’ (ya)godi+ ahdr+a’ odi’ahdra’ (y)odi+ ahdr+a’
agitsga:’ (w)ag+itsga:+a’ oknitsga:” (v)okni+itsga:+a’
pgwetsga:” (v)ogwa+titsga:+a’ setsga:’ sa+itsga:+a’
snitsga:’ sni+itsga:+a’ swetsga:” swa+itsga:+a’
hotsga.” ho-+itsga:-+a’ gotsga:’ (ya)go+itsga:+a’
otsga:” (y)o+itsga:+a’ hoditsga:” hodi+itsga:+a’

169

Possessed Basic Nouns Continued

Surface Underlying Surface Underlying
goditsga.” (ya)godi+itsga:+a’ oditsga.” (y)odi+itsga:+a’
agrena’ (w)ag+ren+a’ okniena’ (y)okni+ren+a’
ogwagena, (v)ogwa+ren+a’ saegna’ sa+ren+a’

sniena’ sni+ren+a’ swaena’ swa+ren+a’
hogna’ ho+ren+a’ goena’ (ya)go+ren+a’
oena’ (y)o+ren+a’ hodigna’ hodi+ren+a’
godiena’ (va)godi+ren+a’ odigna’ (y)odi4ren+a’
agrihwihsa” | (w)ag+rihwihs+a’ okni:hwihsa' | (y)okni+rihwihs+a’
ogwaihwihsa’ | (y)ogwa-+rihwihs+a’ saihwihsa’ sa+rihwihs+a’
snichwihsa’ sni+rihwihs+a’ swaihwihsa® | swa+rihwihs+a’
hoihwihsa’ ho-+rihwihs+a’ goihwihsa’ (ya)go+rihwihs+a’
oihwihsa’ (y)o+rihwihs+a’ hodi:hwihsa’ | hodi+rihwihs+a’
godi:hwihsa’ | (ya)godi+rihwihs+a’ odi:hwihsa” | (y)odi+rihwihs+a’
agroda’ (w)ag+rod+a’ oknipda’ (y)okni+rod+a’
pgwagoda’ (y)ogwa+rod+a’ sapda’ sa+rod+a’

snigpda’ sni+rod—+a’ swagpda/’ swa+rod-+a’
hopda” ho+rod+a’ gooda’ (ya)go+rod+a’
opda’ (y)o+rod+a’ hodioda’ hodi+rod+a’
godioda’ (va)godi+rod+a’ odipda’ (y)odi+rod+a’

170

Table C.3: Deverbal Nouns

Surface Underlying Surface Underlying
edehsra’ edehsr+a’ e nyotra’ e'nyotr+a’

e¢'nhotra’ e'nhotr+a’ gedehsra’ ga+idehsra+-a’
gayenawahsra’ ga+yenawahsr+a’ gaya'dowehdahsra’ | ga+ya'dowehdahsr+a’
gaya'dagenhahsra’ | ga+ya'dagenhahsr+a’ gatgwenya'tra’ gatatgwenya'tr+a’
gatgonya'tra’ ga-+atgonya'tr+a’ gatgi'tra’ ga-+tgi'tr+a’
ganohokdehsra’ ga+nohgkdehsr+a’ ganhehsra’ ga+nhehsr+a’
gana'jowi'tra’ ga+na'jowi'tr+a’ gaisra’ ga-+risr+a’
gaihwiyohsdehsra® | ga+rihwiyohsdehsr+a’ gaihwane aksra’ ga+rihwane aksra+a’
gaiho'dghsra’ ga+riho'dehsr+a’ gahyadohsra’ ga+hyadghsr+a’
gahshahsdehsra’ ga+hshahsdehsr+a’ ga:hohsra’ ga-+Cahghsr+a’
oyehsra’ o+yehsr+a’ otgahnonihsra’ o-+atgahnonihsr+a’
onrahdgdahsra’ o+nrahdodahsr+a’ ongnhe'dra’ o+nonhe'dr+a’
oniga:hehsra’ o+niga:hehsr+a’ ohshahsdghsra’ o-+hshahsdehsr+a’
odotgadohsra’ o+adotgadghsr+a’ odotgadehsra’ o+adotgadehsr+a’
o'drohsra’ o+ 'drohsr+a’ o'daihehdra’ o-+i'daihgehdr+a’
atsho'kdohsra’ a+atsho'kdohsr+a’ atna’tsotra’ a-+atna'tsotr+a’
atna'gwihdra’ a+atna'gwihdr+a’ atgahnyehtra’ a+atgahnyehtr+a’
anahaotra’ a+nahaotr+a’ agya'dawi'tra’ a+tagya'dawi'tr+a’
adrihwagyaohsra’ | a+adrihwagyaghsr+a’ adra'wihsda’ a+adra 'wihsd+a'
adonhehsra’ a+adonhehsr+a’ adi'grohsra’ a+adi'grohsra+a’
adena’'tra’ a+adena'tr+a’ adekwahahsra’ a-+adekwahahsra+a’
adao 'tra’ at+adao tra+a’ ahdahdi'tra’ a+ahdahdi'tr4a’

171

Table C.4: Defective Nouns

Surface Underlying Surface Underlying
sgwa:gwaodg’ | sgwa:gwaopdo dago:s dago:s
da:gu:s da:gu:s dakshae'dohs | dakshae'dohs
so:wa:s sowa:s twe:twe:t tweitwe:t
ho:ga:k ho:ga:k doge:t doge:t
gwihsgwihs gwihsgwihs gwa'yo gwa'yQ’
soho:t soho:t gyo:gyo:’ gyo:gyo:’
jogrihs jogrihs gwido'gwido” | gwido gwido”
di'di:” di'di:” jikjiye:” jikjiye:”
ga'ga:’ ga'ga:’ hihi: hihi:
gwiye'gwiye' | gwiye'gwiye’ dihsdihs dihsdihs
ji'mhowe:se: ji'nhowe:se: duwisduwi:” duwisduwi:’
sa'sa’ sa’'sa’ gwe:dihs gwe:dihs
gwe:se' gwe:se' tsahgo:wah tsahgo:wah
jihsgogo® jihsgogo® gwaoh gwaoh
johwe'sdaga’ | johwe'sdaga’ gwe gohnye' | gwe'gohnye’
hnyagwai hnyagwai’ go:deh go:deh
tgwiyo:ge’ tgwiyo:ge’ jinhohgwaheh | jinhohgwaheh
jimphdo:ya™ | ji'nghdo:ya’ ji'dana:we: ji'dana:we:
jinphsangh jinghsanoh jihsda: jihsda:
jl'ao:ye: jilao:ye: jinghyahae: jinphyahae:
degriya’'go’ degriya’'go’ jihnyo'ge’ jihnyo'ge”
hehshai: hehshai: sgwa'ahda’ sgwa'ahda’
tehto” tehto’ jo'daga’ jo'daga’
jino:we: Jjino:we: tea:ot tea:ot

sa:no:’ sa:no:’ dre:na: dre:ma:
dre:na: dre:na: joni:tsgro:t jonirtsgro:t
kdago” kdagg’ do:dihs do:dihs
sgwa:yeh sgwa:yeh gwiyo:ge’ gwiyo:ge'
jomyo:” jonyo:” nohsodai:yg: | nohsodai:yo:
gwa’'da: gwa'da: jide:'eh jide:"eh
jo'dae:ya:” jo'dae:ya:’ ji'dro:we: ji'dro:we:
onohotsge'e’ | onohotsge’'e’ teo:ji’ teo:ji’
tsa'ge:da’ tsa'ge:da’ yahgehda’ yahgehda’
tsinyohgwa:k | tsinyohgwa:k gihe:k gihe:k

nawe 'da’ nawe 'da’ jihso:dahk jihso:dahk
otahyo:ni: otahyo:ni: tahyo:ni: tahyo:ni:
jihsge: jihsge: ji'o: ji'o:

grahe:t grahe:t

Table C.5: Inalienable Nouns

Surface Underlying Surface Underlying
gahohda’geh g+ahohd+a’geh gyahohda’geh (e)tni+ahghd+a’geh
gyahghda’geh (e)kni+ahghd+a’geh agyahohda’geh (y)akni+ahohd+a'geh
dwahghda’geh (e)dwa+ahghd+a’geh agwahohda’geh (y)agwa-+ahohd+a’geh
sahohda’geh (h)s+ahohd+a’geh jahohda’geh (h)sni+ahghd+a’geh
swahohda’geh (h)swa+ahohd+a’geh hahghda’geh ha+ahphd+a’'geh
ohohda’geh (y)o+ahohd+a'geh wahohda'geh w-+ahohd+a’geh
henahohda’geh hadi+ahgohd+a'geh gaphohda’'geh gap+ahohd+a’geh
genahohda'geh gadi+ahphd+a’geh gahsi'da’geh g+ahsi'd+a’geh
gyahsi'da’geh (e)tni+ahsi'd+a’geh gyahsi'da’geh (e)kni+ahsi’d+a’geh
agyahsi'da’geh (y)akni+ahsi’d+a’geh dwahsi'da’geh (e)dwa+ahsi'd+a’geh
agwahsi'da’geh (y)agwa—+ahsi’d+a’geh sahsi'da’geh (h)s+ahsi’d+a’geh
jahsi'da'geh (h)sni+-ahsi’d+a’geh swahsi'da’geh (h)swa+ahsi"d+a’geh
hahsi'da’geh ha-+ahsi’d+a’geh ohsi'da’geh (y)o+ahsi’d+a’geh
wahsi'da’'geh w+ahsi'd+a’geh henahsi'da’geh hadi+ahsi'd+a’'geh
gaohsi'da’geh gag+ahsi'd+a’geh genahsi'da’geh gadi+ahsi’d+a’geh
gihna’geh g+ihn+a’geh tnihna'geh (e)tni+ihn+a'geh
knihna’geh (e)kni+ihn+a’geh aknihna’geh (y)akni+ihn+a’geh
dwehna’geh (e)dwa-+ihn—+a’geh agwehna’geh (y)agwa+ihn+a'geh
sihna’geh (h)s+ihn+a’geh snihna’geh (h)sni+ihn+a’geh
swehna’geh (h)swa-+ihn+a’geh hehna'geh ha+ihn+a’'geh
¢hna’geh (v)e+ihn+a’geh gehna’geh ga+ihn+a'geh
hadihna’geh hadi+ihn+a'geh gaehna’geh gae+ihn+a’'geh
gadihna’geh gadi+ihn+a’geh gotsa’geh g+ots+a'geh
tnotsa'geh (e)tni+ots+a’geh knotsa’'geh (e)kni+ots+a’geh
aknotsa'geh (y)akni+ots+a'geh gyotsa’geh (e)dwa+ots+a’geh
agyotsa'geh (y)agwa-+ots+a'geh sotsa'geh (h)s+ots+a'geh
snotsa'geh (h)sni+ots+a’geh jotsa'geh (h)swa+ots+a'geh
hotsa'geh ha+ots+a'geh agotsa’geh (y)ag+ots+a’'geh
otsa'geh (y)+ots+a'geh henotsa'geh hadi+gts+a’geh
ga:gotsa'geh ga:g+ots+a'geh genotsa’'geh gadi+ots+a'geh
gwe'nahsa’geh g+wenahs+a’geh tniwe ' nahsa’geh (e)tni+we nahs+a'geh
kniwe'nahsa'geh | (e)kni+wenahs+a’geh akniwenahsa’geh | (y)akni+wenahs+a’geh
dwawe'nahsa’geh | (e)dwa+we nahs+a’geh agwawe nahsa’geh | (y)agwa+wenahs+a’geh
swenahsa’geh (eh)s+wenahs+a’'geh sniwenahsa’geh (eh)sni+we nahs+a’'geh
swawe nahsa’'geh | (eh)swa-+we'nahs+a’geh hawenahsa’geh ha+we'nahs+a’geh
ewe nahsa’'geh (v)e+we'nahs+a'geh gawe 'nahsa'geh ga+we nahs+a’'geh
hadiwg 'nahsa’geh | hadi+wenahs+a’'geh gaewe'nahsa’geh | gae+wenahs+a’geh
gadiwe nahsa'geh | gadi+-we'nahs+a’geh gegaha'geh g+gah+a'geh
tnigaha’geh (e)tni+gah+a’geh knigaha'geh (e)kni+gah+a’geh

173

Inalienable Nouns Continued

Surface Underlying Surface Underlying
aknigaha’geh (v)aknitgah+a’geh dwagaha’geh (e)dwa+gah+a'geh
agwagaha'geh (y)agwa-+gah+a’'geh segaha’geh (eh)s+gah+a’'geh
snigaha’geh (eh)sni+gah+a'geh swagaha'geh (eh)swa+gah-+a’geh
hagaha’geh ha+gah+a’geh egaha 'geh (y)e+gah+a’geh
gagaha’geh ga+gah+a’geh hadigaha'geh hadi+gah+a’geh
gaegaha'geh gae+gah+a'geh gadigaha'geh gadi+-gah+a’'geh
ketga’a'geh g+hetga’+a’geh tnihetga’a’geh (e)tni+hetga'+a’geh
knihetga'a'geh (e)kni+hetga’+a’'geh aknihetga’a’geh (v)akni+hetga'+a'geh
dwahetga’a'geh (e)dwa-+hetga’+a’geh agwahetga’a'geh | (y)agwa+hetga'+a'geh
setga'a’geh (eh)s+hetga’+a'geh snihetga’a'geh (eh)sni+hetga'+a’geh
swahetga'a'geh (eh)swa+hetga™+a’geh hahetga’a'geh ha+hetga'+a’geh
chetgaa’geh (y)e+hetga'+a’geh gahetga'a'geh ga+hetga'+a’geh
hadihetga’a’geh hadi+hetga'+a’'geh gaehetga'a’'geh gae+hetga'+a’geh
gadihetga'a'geh gadi+hetga™+a’geh ge'nhohsga: geh g+ nhohsga:+a’'geh
tni'nhohsga: geh (e)tni+ nhohsga:+a’'geh kni'nhohsga:'geh | (e)kni+ nhohsga:+a’geh
akninhohsga:"geh | (y)akni+ nhghsga:+a’geh dwa’nhohsga:"geh | (e)dwa+"nhghsga:+a’geh
agwa 'nhohsga:"geh | (y)agwa+ nhohsga:+a’geh se nhohsga:"geh (eh)s+"nhohsga:+a’geh
sni' mhohsga:'geh (eh)sni+"nhohsga:+a’geh swa nhohsga:'geh | (eh)swa+ nhohsga:+a’geh
ha'nhgohsga:"geh ha+"nhghsga:+a’geh e nhohsga:'geh (y)e+ nhohsga:+a’geh
ga'nhohsga:’geh ga+ nhohsga:+a’geh hadi'nhghsga:"geh | hadi+ 'nhgohsga:+a’geh
gae'nhohsga:'geh | gae+'nhohsga:4a’geh gadi'nhohsga:'geh | gadi+'nhohsga:+a’geh
ge'ahsa'geh g+ ahs+a’geh tni'ahsa’geh (e)tni+ ahs+a’geh
kniahsa'geh (e)kni+'ahs+a’geh akni’ahsa’geh (y)akni+ ahs+a'geh
dwa’ahsa’geh (e)dwa+"ahs+a'geh agwa ahsa'geh (y)agwa+ ahs+a’geh
se’ahsa’geh (eh)s+ ahs+a’geh sni'ahsa'geh (eh)sni+ ahs+a’geh
swa ahsa'geh (eh)swa+"ahs+a'geh ha'ahsa’geh ha+'ahs+a’geh
e'ahsa'geh (y)e+ ahs+a’geh ga’'ahsa’geh ga+'ahs+a’'geh
hadi'ahsa’geh hadi+"ahs+a’geh gae'ahsa’'geh gae+ ahs+a’'geh
gadi'ahsa'geh gadi+ ahs+a’geh gekse'da’geh g+kse'd+a’geh
tnikse'da’geh (e)tni+kse'd+a’geh knikse'da’geh (e)kni+kse'd+a’geh
aknikse'da’geh (y)akni+kse'd+a’geh dwakse'da’geh (e)dwa-+kse'd+a’geh
agwakse 'da’'geh (y)agwa-+kse'd+a 'geh sekse'da’geh (eh)s+kse'd+a’geh
snikse'da’geh (eh)sni+kse'd+a'geh swakse'da'geh (eh)swa+kse'd+a’geh
hakse'da’geh ha-+kse’d+a’'geh ekse'da’geh (y)e+kse'd+a’geh
gakse'da’geh ga+kse'd+a’'geh hadikse'da’geh hadi+kse'd+a’geh
gaekse'da’geh gae-+kse'd+a’'geh gadikse'da'geh gadi+kse'd+a’geh

kng a:'geh g+ng'a:+a’'geh tning’a:"geh (e)tni+ng’a:+a’geh
kning'a:"geh (e)kni+nga:+a’geh akning'a:'geh (y)akni+no'a:+a’geh

174

Inalienable Nouns Continued

Surface Underlying Surface Underlying
dwang’a:"geh (e)dwa+ng'a:+a’geh agwang'a:"geh (v)agwa+ng'a:+a’geh

sng a:'geh (eh)s+ng'a:+a'geh sning’a:'geh (eh)sni+nga:+a’geh
swang'a:'geh (eh)swa-+ng’a:+a'geh hang'a:'geh ha+ng'a:+a’geh

eng a:'geh (y)e+ng a:+a’geh gang a: 'geh ga+no'a:+a'geh

hading a: geh hadi+ng'a:4-a’geh gaeng 'a:'geh gae+no'a:+a’'geh
gading'a:'geh gadi+ng'a:+a’'geh gragwahda’geh g+ragwahd-+a'geh
tniagwahda’'geh (e)tni+ragwahd+a’geh kniagwahda’geh (e)kni+ragwahd+a'geh
akniagwahda’geh (y)akni+ragwahd+a'geh dwa:gwahda’geh (e)dwa+ragwahd-+a’geh
agwa:gwahda’geh (y)agwa+ragwahd+a'geh sragwahda’'geh (eh)s+ragwahd+a’geh
sniagwahda’geh (eh)sni+ragwahd+a'geh swa:gwahda’geh (eh)swa+ragwahd+a’geh
ha:gwahda’geh ha+ragwahd+a'geh eagwahda’geh (y)e+ragwahd+a’geh
ga:gwahda’geh ga+ragwahd+a'geh hadiagwahda’'geh hadi+ragwahd+a’'geh
gaeagwahda'geh gae+ragwahd+a’geh gadiagwahda’geh gadi+ragwahd-+a’geh
gwe'yohga: geh g+we'yohga:+a'geh tniwe'yohga:'geh (e)tni+we'yohga:+a'geh
kniwe'yohga:'geh (e)kni+we'yohga:+a’geh akniwe'yohga:'geh | (y)akni+we'yohga:+a'geh
dwawe'yohga:"geh | (e)dwa+we’yohga:+a’geh agwawe’yohga:"geh | (yv)agwa+we’yohga:+a’geh
swe yohga:'geh (eh)s+we'yohga:+a’'geh sniweyohga:"geh (eh)sni+we'yohga:+a'geh
swawe'yohga:'geh | (eh)swa+we yohga:+a'geh hawe’yohga:"geh ha+we'yohga:+a'geh
ewe'yohga: 'geh (y)e+we'yohga:+a'geh gawg'yohga:'geh ga+we'yohga:+a'geh
hadiwe'yohga:'geh | hadi+we'yohga:+a’geh gaewe yohga:'geh | gaet+we'yohga:+a'geh
gadiwe'yohga:'geh | gadi+we'yohga:+a'geh gejaoho'gwa’'geh g+jaoho'gw+a’'geh
tnijacho’gwa’geh (e)tni+jaoho’gw+a’geh knijacho'gwa’geh | (e)kni+jaoho’'gw+a'geh
aknijaoho'gwa’geh | (y)akni-+jaoho'gw-+a’geh dwajaoho'gwa’'geh | (e)dwa+jaoho'gw+a'geh
agwajaoho'gwa'geh | (v)agwa+jaoho’gw+a’geh sejaoho 'gwa’'geh (eh)s+jacho’'gw-+a’geh
snijaoho 'gwa’geh (eh)sni+jaoho'gw-+a 'geh swajaoho'gwa'geh | (eh)swa+jaoho'gw-+a’'geh
hajaoho'gwa’geh ha+jaoho 'gw-a’'geh ejaoho’'gwa’'geh (y)e+jaoho gw+a’geh
gajaoho 'gwa 'geh ga+jaoho'gw-+a’'geh hadijacho'gwa’geh | hadi+jacho'gw+a’'geh
gaejaoho'gwa'geh gae+jaoho'gw+-a'geh gadijaoho'gwa’geh | gadi+jaoho'gw-+a’geh
gya'ga:'geh g+ya'ga:+a’'geh tniya'ga: 'geh (e)tni+ya'ga:+a'geh
kniya'ga:"geh (e)knitya’ga:+a’'geh akniya’'ga: geh (y)akni+ya'ga:+a’geh
dwaya’ga: geh (e)dwa+ya'ga:+a’geh agwaya ga: geh (y)agwa+ya'ga:+a'geh
sya'ga:'geh (eh)s+ya'ga:+a’geh sniya'ga:'geh (eh)sni+ya’ga:+a’'geh
swaya'ga:'geh (eh)swa+ya'ga:+a’geh haya'ga:'geh ha+ya'ga:+a’geh
eya'ga:'geh (v)e+ya'ga:+a’'geh gaya'ga: 'geh gatya'ga:+a'geh
hadiya'ga:"geh hadi+ya’'ga:+a’'geh gaeya'ga: geh gae+ya'ga:+a'geh
gadiya’'ga:'geh gadi-+ya’'ga:+a'geh

175

Table C.6: Unpossessed Inalienable Nouns

Surface Underlying Surface Underlying
ohohda’ o+ahohd+a’ ohsi'da’ o+ahsi'd+a’
ohna’ o+ihn+a’ otsa’ o+ots+a’
owenahsa' | o+wenahs+a’ ogaha’ o+gah+a’
ohetga'a’ o-+hetga’+a’ o'nheohsga:” | o+"nhghsga:+a’
0'ahsa’ o+ 'ahs+a’ okse'da’ o+kse'd+a’

ong 'a:’ o+noa+a’ oagwahda’ | o+ragwahd+a’
owe yohga:' | o+we'yohga:+a’ ojaoho'gwa’ | o+jaoho'gw+a’
oya'ga:’ o+ya'ga:+a’

176

C.2 Data for the Concrete Approach

Table C.7: Unpossessed Basic Nouns

Surface Underlying Surface Underlying
hona'da’ hona'd+a’ hsgwag'da’ | hsgwag'd+a’
odi: o+di: oji:s o+jizs
ga'wahsda’ | ga+ wahsd+a’ gahehna’ ga+hehn+a’
o'wahsda’ o+ 'wahsd+a’ ohehna’ o+hehn+a’
gahsdagwa' | ga+hsdagw+a’ gaji'gwa’ ga+ji'gw+a’
ohsdagwa’ o+hsdagw-+a’ oji'gwa’ o+ji'gw+a’
adohne'tsa’ | a+adohne'ts+a’ odohne'tsa’ | o+adghne'ts+a’
awenohgra’ | a+awenohgr+a’ adra’swa’ a+adra’'sw+a’
onhahgya’ o+ nhahgy+a’ onhahda’ o+nhahd+a’
ohya’ o+ahy+a’ oga:’ o+ga:+a’
ohwehsda’ o+hwehsd+a” o'da’ o+i'd+a’
okwa' o+kw+a’ ona'da:’ o+na'da:+a’
oihwa’ o+rihw+a’ osehda’ o+sehd+a’
otsgra’ o+tsgr+a’ owa:’ o+wa:+a’
owiya’ o+wiy+a’ oya' o+y+a’
oya'da’ o+ya'd+a’ ga'wahsha:” | ga+ wahsha:4a’
ga:gwa:’ ga+Cagwa:+a’ gaga'da’ ga+ga'd+a’
gahsowahda' | ga+hsowahd+a’ getsga:’ gatitsga:+a’
gaje’ ga+jeta’ gakwa’ gat+kw+a’
gana'ja’ ga+na'j+a’ gagpda’ ga+rod+a’
gatgehetsa’ | ga+tgehets+a’ gaya: ga+ya:+a’

177

Table C.8: Possessed Basic Nouns

Surface Underlying Surface Underlying
akona’da’ (w)ak+hona'd+a’ oknihgna'da’ (y)okni+hona'd+a’
ogwahona'da’ (y)ogwa-+hona'd+a’ sahgna'da’ sa+hona’d+a’
snihgna’'da’ sni+hona'd+a’ swahona'da’ swa-+hona'd+a’
hohgna’da’ ho+hgna'd+a’ gohona’'da’ (ya)go+hona'd+a’
ohgna’'da’ (v)o+hgna'd+a’ hodihona'da’ hodi+hgna'd+a’
godihgna'da’ (va)godi+hona'd+a’ odihgna’'da’ (y)odi+hgna'd+a’
agehsgwag 'da’ (w)age+hsgwag'd+a’ oknihsgwae'da’ | (y)okni+hsgwag d+a’
ogwahsgwag'da’ | (y)ogwa+hsgwag'd+a’ sahsgwag'da’ sa+hsgwag'd+a’
snihsgwag'da’ sni+hsgwag'd+a’ swahsgwae'da' | swa+hsgwae'd+a’
hohsgwae’da’ ho+hsgwag’d+a’ gohsgwag 'da’ (va)go+hsgwae'd+a’
ohsgwag'da’ (y)o+hsgwag'd+a’ hodihsgwag'da’ | hodi-+hsgwag'd-+a’
godihsgwag'da’ | (ya)godi+hsgwae'd+a’ odihsgwag'da’ | (y)odi+hsgwag'd+a’
akwahsda’ (w)ak-+wahsd+a’ okni'wahsda’ (y)okni+ wahsd+a’
ogwa wahsda’ (v)ogwa+ wahsd+a’ sa 'wahsda’ sa+ wahsd+a’
sni'wahsda’ sni+ wahsd+a’ swa 'wahsda’ swa-+ wahsd+a’
ho'wahsda’ ho+"wahsd+a’ go'wahsda’ (ya)go+ wahsd+a’
o'wahsda’ (y)o+ wahsd+a’ hodi'wahsda’ | hodi+ 'wahsd+a’
godi'wahsda’ (ya)godi+ wahsd+a’ odi'wahsda’ (y)odi+ wahsd+a’
akehna’ (w)ak+hehn+a’ oknihehna’ (y)okni+hehn+a’
ogwahehna’ (y)ogwa+hehn+a’ sahehna’ sa+hehn+a’
snihehna’ sni+hehn-+a’ swahehna’ swa+hehn+a’
hohehna’ ho+hehn+a’ gohehna’ (va)go+hehn+a’
ohehna’ (y)o-+hehn+a’ hodihehna’ hodi-+hehn+a’
godihehna’ (ya)godi+hehn+a’ odihehna’ (y)odi+hehn+a’
agejihoha:” (w)age-+jihoha:+a’ oknijihoha:” (y)okni+jihoha:+a’
pogwajihoha:” (v)ogwa+jihoha:+a’ sajihoha:” sa+jihoha:+a’
snijihoha:” sni+jihoha:+a’ swajihoha:" swa+jihoha:+a'
hojihoha:’ ho+jihoha:+a’ gojihoha:" (va)go+jihoha:+a’
ojihoha:” (v)o+jihoha:+a’ hodijihoha.” hodi+jihoha:+a’
godijihoha:’ (ya)godi+jihoha:+a’ odijihoha: (y)odi+jihoha:+a’
agadohne’tsa’ (w)ag+adohne'ts+a’ ogyadohne'tsa’ | (y)ogy+adohne'ts+a’
ogwadohnetsa” | (y)ogw-+adohne'ts+a’ sadphne’tsa’ st+adohne'ts+a’
jadgohne'tsa’ jtadohne'ts+a’ swadphne'tsa’ | sw+adohne'ts+a’
hodghne'tsa’ ho+adghnets+a’ godohne'tsa’ (ya)go+adohne'ts+a’
odohne’tsa’ (y)o-+adghne'ts+a’ honadohne'tsa’ | hon+adghne'ts+a’
gonadphne'tsa’ | (ya)gon+adohne'ts+a’ onadghne'tsa” | (y)on+adohne'ts+a’
age’nhohsa’ (w)age+ nhohs+a’ okni'nhghsa’ (y)okni+"nhohs+a’
ogwa nhohsa’ (y)ogwa+ nhohs+a’ sa'nhohsa’ sa+ nhohs+a’

sni nhohsa’ sni+'nhohs+a’ swa nhohsa’ swa+ nhohs+a’

178

Basic Nouns Continued

Surface Underlying Surface Underlying
ho'nhohsa’ ho+"nhohs+a’ go'nhohsa’ (va)go+"nhghs+a’
o'nhohsa’ (y)o+ nhohs+a’ hodi'nhghsa” | hodi+ nhghs+a’
godinhohsa™ | (ya)godi+"nhohs+a’ odi'nhghsa’ (y)odi4+nhghs+a’
age'ohgwa:’ (w)age+ ghgwa:+a’ okni'ghgwa:” | (y)okni+ ghgwa:+a’
ogwa 'ohgwa:" | (y)ogwa+ ghgwa:+a’ sa'ohgwa.” sa+ ghgwa:+a’
sni‘ohgwa:” sni+"ghgwa:+a’ swa'ghgwa:” | swa+'ohgwa:+a’
ho'ghgwa” ho+"ghgwa:+a’ go 'ohgwa: (va)go+ ohgwa:+a’
o'ghgwa:’ (v)o+ ohgwa:+a’ hodi'ghgwa:" | hodi+ ohgwa:+a’
godi'ghgwa:” | (ya)godi+ phgwa:+a’ odi'ghgwa.” (y)odi+ ohgwa:+a’
agenhahda’ (w)age-+nhahd+a’ okninhahda’ | (y)okni+nhahd+a’
ogwanhahda' | (y)ogwa+nhahd+a’ sanhahda’ sa+nhahd+a’
sninhahda’ sni+nhahd+a’ swanhahda' | swa+nhahd+a’
honhahda’ ho+nhahd+a’ gonhahda’ (ya)go+nhahd+a’
onhahda’ (y)o-+nhahd+a’ hodinhahda® | hodi+nhahd+a’
godinhahda' | (ya)godi+nhahd+a’ odinhahda’ (y)odi+nhahd+a’
agega 'da’ (w)age+ga'd+a’ okniga'da’ (y)okni+ga'd+a’
ogwaga'da’ (y)ogwa+ga'd+a’ saga'da’ sa+ga'd+a’
sniga’'da’ sni+ga'd+a’ swaga'da’ swa+ga'd+a’
hoga'da’ ho+ga’d+a’ goga'da’ (ya)go+ga'd+a’
oga’da’ (y)o+ga'd+a’ hodiga’'da’ hodi+ga'd+a’
godiga'da’ (ya)godit+ga'd+a’ odiga'da’ (y)odi+ga'd+a’
akakda’ (w)ak+hakd+a’ oknihakda’ (y)okni-+hakd-+a’
ogwahakda’ (v)ogwa+hakd+a’ sahakda’ sa+hakd-+a’
snihakda’ sni+hakd+a’ swahakda’ swa+hakd+a’
hohakda’ ho+hakd+a’ gohakda’ (va)go+hakd+a’
ohakda’ (y)o+hakd+a’ hodihakda' hodi+hakd+a’
godihakda’ (ya)godi+hakd+a’ odihakda’ (y)odi+hakd+a’
agi'dohgwa’ (w)ag+i'dohgw+a’ okni'dphgwa’ | (y)okn+i'dohgw+a’
ogwe'dohgwa' | (y)ogwe+i'dohgw+a' s¢ dohgwa’ sg+i'dohgw+a’
sni'dphgwa sn+i'dohgw+a’ swe'dohgwa' | swe+i'dohgw+a’
ho'dohgwa’ ho+i'dohgw+a’ go'dohgwa’ (ya)go+i'dohgw+a’
o'dphgwa’ (y)o+i'dohgw+a’ hodi'dghgwa’ | hod+i'dphgw-+a’
godi'dghgwa’ | (ya)god+i‘dghgw+a’ odi’dgphgwa’ | (y)od+i'dphgw+a’
agejihsoda:” (w)age+jihspda:+a’ oknijihsoda:” | (y)okni+jihspda:+a’
ogwajihspda:” | (y)ogwa-+jihspda:+a’ sajihspda:” sa-+jihspda:+a’
snijihsoda.:” sni+jihsoda:+a’ swajihspda:” | swa+jihspda:+a’
hojihsgpda:” ho+jihsoda:+a’ gojihspda:” (ya)go+jihspda:+a’
ojihsoda:” (y)o+jihspda:+a’ hodijihspda:” | hodi+jihspda:+a’

179

Basic Nouns Continued

Surface Underlying Surface Underlying
godijihsoda:” (ya)godi+jihspda:+a’ odijihspda:’ (y)odi+jihspda:+a’
agekdeha’ (w)age+kdeh+a’ oknikdeha’ (y)okni+kdeh+a’
ogwakdeha’ (v)ogwa+kdeh+a’ sakdeha' sa+kdeh+a’
snikdeha’ sni+kdeh+a’ swakdeha’ swa+kdeh+a’
hokdeha’ ho+kdeh+a’ gokdeha' (va)go+kdeh+a’
okdeha’ (y)o+kdeh+a’ hodikdeha’ hodi+kdeh+a’
godikdeha’ (ya)godi+kdeh+a’ odikdeha’ (y)odi+kdeh+a’
agrihwa’ (w)ag+rihw+a’ okni:hwa’ (y)okni+rihw-+a’
ogwaihwa’ (v)ogwa+rihw+a’ saihwa’ sa+rihw+a’
sni:hwa’ sni+rihw+a’ swaihwa’ swa-+rihw+a’
hoihwa’ ho+rihw+a’ goihwa’ (ya)go+rihw+a’
oithwa’ (y)o+rihw+a’ hodi:hwa' hodi+rihw+a’
godi:hwa’ (ya)godi+rihw+a’ odi:hwa’ (y)odi+rihw—+a’
agesehda’ (w)age+sehd+a’ oknisehda’ (y)okni+sehd+a’
ogwasehda’ (y)ogwa-+sehd+a’ sasehda’ sa+sehd+a’
snisehda’ sni+sehd+-a’ swasehda’ swa-+sehd+a’
hosehda’ ho-+sehd+a’ gosehda’ (ya)go+sehd+a’
osehda’ (y)o+sehd+a’ hodisehda’ hodi+sehd+a’
godisehda’ (ya)godi+sehd+a’ odisehda’ (y)odi+sehd+a’
agetsehsda’ (w)age+tsehsd+a’ oknitsehsda’ (y)okni+tsehsd+a’
ogwatsehsda’ (y)ogwa+tsehsd+a’ satsehsda’ sa+tsehsd+a’
snitsehsda’ sni+tsehsd+a’ swatsehsda’ swa-+tsehsd+a’
hotsehsda’ ho+tsehsd+a’ gotsehsda’ (ya)go+tsehsd+a’
otsehsda’ (y)o+tsehsd+a’ hoditsehsda” hodi+tsehsd+a’
goditsehsda’ (ya)godi+tsehsd+a’ oditsehsda’ (y)odi+tsehsd+a’
agwa 'wihsda’ (w)ag+wa'wihsd+a’ okniwa’wihsda’ | (y)okni+wa'wihsd+a’
ogwawa wihsda’ | (y)ogwa+wa'wihsd+a’ sawa'wihsda’ sa-+wa 'wihsd+a’
sniwa'wihsda’ sni+wa 'wihsd+a' swawa wihsda’ | swa+wa 'wihsd+a’
howa'wihsda’ ho+wa'wihsd+a’ gowa'wihsda’ (ya)go+wa'wihsd+a’
owa wihsda’ (y)o+wa'wihsd+a’ hodiwa'wihsda' | hodi+wa'wihsd+a’
godiwa'wihsda® | (ya)godi+wa'wihsd+a’ odiwa'wihsda' | (y)odi+wa'wihsd+a’
agyo'da’ (w)ag+yo'd+a’ okniyg'da’ (y)okni+yo'd+a’
pgwayo 'da’ (v)ogwa+yo'd+a’ sayo'da’ sa+yo'd+a’
sniyo'da’ sni+yo'd+a’ swayo'da’ swa+yo'd+a’

hoyo da’ ho+yo'd+a’ goyo'da’ (ya)go+yo'd+a’
oyp'da’ (y)o+yg'd+a’ hodiyg'da’ hodi+yo'd+a’
godiyo'da’ (va)godi+yo'd+a’ odiyg'da’ (y)odi+yo'd+a’
agihsda’ (w)ag+Cihsd+a’ okni:hsda’ (y)okni+Cihsd+a’

180

Basic Nouns Continued

Surface Underlying Surface Underlying
ogwaihsda’ (v)ogwa+Cihsd+a’ saihsda’ sa+Cihsd+a’
sni:hsda’ sni+Cihsd+a’ swaihsda’ swa+Cihsd+a’
hoihsda’ ho+Cihsd+a’ goihsda’ (ya)go+Cihsd+a’
oihsda’ (y)o+Cihsd+a’ hodi:hsda’ hodi+Cihsd+a’
godi:hsda’ (ya)godi+Cihsd+a’ odi:hsda’ (y)odi4+Cihsd-+a’
agatsge'da’ (w)ag+Catsge'd+a’ okniatsge'da’ | (y)okni+Catsge'd+a’
ogwa:tsge'da’ | (v)ogwa+Catsge'd+a’ sa:tsge'da’ sa+Catsge'd+a’
sniatsge'da’ | sni+Catsge'd+a’ swa:tsge'da’ | swa+Catsge'd+a’
hoatsge'da’ | ho+Catsge'd+a’ goatsge'da’ (ya)go+Catsge'd+a’
oatsge'da’ (y)o+Catsge'd+a’ hodiatsge'da’ | hodi+Catsge'd+a’
godiatsge'da’ | (ya)godi+Catsge'd+a’ odiatsge'da’ | (y)odi+Catsge'd+a’
age'ahdra’ (w)age+ ahdr+a’ okni’ahdra’ | (y)okni+ ahdr+a’
ogwa'ahdra’ | (y)ogwa+ ahdr+a’ sa’ahdra’ sa+ ahdr+a’
sni'ahdra’ sni+ ahdr+a’ swa'ahdra’ swa+ ahdr+a’
ho'ahdra’ ho+ ahdr+a’ go'ahdra’ (ya)go+'ahdr+a’
o'ahdra’ (y)o+ ahdr+a’ hodi’ahdra® | hodi+"ahdr+a’
godi‘ahdra’ (ya)godi+ ahdr+a’ odi’ahdra’ (y)odi+ ahdr+a’
agitsga:’ (w)ag+itsga:+a' oknitsga:” (y)okn+itsga:+a’
ogwetsga:” (v)ogwe+titsga:+a’ setsga:” se+itsga:+a’
snitsga:” sn+-itsga:-+a’ swetsga:” swe-t+itsga:+a’
hotsga:” ho+itsga:+a’ gotsga:’ (va)go+itsga:+a’
otsga:” (y)o+itsga:+a’ hoditsga:” hod+itsga:+a’
goditsga:” (va)god+itsga:+a’ oditsga:” (y)od+itsga:+a’
agrena’ (w)ag+ren+a’ okniena’ (v)okni+ren-+a’
ogwaena’ (y)ogwa+ren+a’ saena’ sa+ren+a’

sniena’ sni+ren+a’ swaena’ swa+ren+a’

hoena’ ho+ren+a’ goena’ (ya)go+ren+a’
oena’ (y)o+ren+a’ hodigna’ hodi+ren+a’
godigna’ (ya)godi+ren+a’ odigna’ (y)odi+ren+a’
agrihwihsa’ (w)ag-+rihwihs+a’ okni:hwihsa' | (y)okni+rihwihs+a’
ogwaihwihsa' | (y)ogwa+rihwihs+a’ saihwihsa’ sa+rihwihs+a’
sni:hwihsa’ sni+rihwihs+a’ swaihwihsa’ | swa+rihwihs+a’
hoihwihsa’ ho+rihwihs+a’ goithwihsa’ (ya)go-+rihwihs+a’
oithwihsa’ (y)o-+rihwihs+a’ hodi:hwihsa® | hodi+rihwihs+a’
godichwihsa' | (ya)godi+4rihwihs+a’ odi:hwihsa’ (y)odi+rihwihs+a’
agroda’ (w)ag+rod+a’ oknipda’ (y)okni+rod+a’
ogwaoda’ (y)ogwa+rod+a’ sapda’ sat+rod+a’

snipda,’ sni+rod+a’ swagda’ swa+rod—+a’

181

Basic Nouns Continued

Surface | Underlying Surface | Underlying

hooda’ | ho+rod+a’ gooda’ (ya)go+rod+a’

opda’ (y)otrod+a’ hodipda’ | hodi+rod+a’

godipda’ | (ya)godi+rod+a’ odigda’ | (y)odi+rod+a’

Table C.9: Deverbal Nouns

Surface Underlying Surface Underlying
edehsra’ g¢dehsr+a’ e'nyotra’ e'nyotr+a’
¢ nhotra’ e nhotr+a’ gedehsra’ ga+idehsra+-a’
gayenawahsra’ ga+yenawahsr+a’ gaya'dowehdahsra’ | ga+ya'dowehdahsr+a’
gaya 'dagenhahsra’ | ga+ya'dagenhahsr+a’ gatgwenya'tra’ ga+atgwenya'tr+a’
gatgonya'tra’ gatatgonya'tr+a’ gatgi'tra’ ga+tgi'tr+a’
ganohokdehsra’ ga-+nohokdehsr+a’ ganhehsra’ ga+nhehsr+a’
gana ' jowi'tra’ ga-+na'‘jowi tr+a’ gaisra’ ga+risr+a’
gaihwiyohsdehsra’ | ga+rihwiyohsdghsr+-a’ gaihwane'aksra’ ga+rihwane’aksra+a’
gaiho'dehsra’ ga+riho'dehsr+a’ gahyadphsra’ ga+hyadghsr+a’
gahshahsdehsra’ ga+hshahsdghsr+a’ ga:hohsra’ ga—+Cahghsr+a’
oyehsra’ o—+yehsr+a’ otgahngnihsra’ o+atgahnonihsr+a’
onrahdodahsra’ o+nrahdodahsr+a’ ongnhe'dra’ o+ngnhe’dr+a’
oniga:hehsra’ o-+niga:hehsr+a’ ohshahsdghsra’ o+hshahsdehsr+a’
odotgadohsra’ o+adotgadghsr+a’ odotgadehsra’ o+adotgadehsr+a’
o'drohsra’ o+ 'drohsr+a’ o 'daihghdra’ o-+i'daihghdr+a’
atsho'kdghsra’ a+atsho'kdohsr+a’ atna'tsotra’ a+atna’tsotr+a’
atna'gwihdra’ a+atna’gwihdr+a’ atgahnyehtra’ a+atgahnyehtr+a’
anahaotra’ a+nahaotr+a’ agya'dawi'tra’ a+agya'dawi‘tr+a’
adrihwagyaphsra” | a+adrihwagyaghsr+a’ adra’wihsda’ a-+adra'wihsd+a'
adonhehsra’ a~+adonhehsr+-a’ adi’grohsra’ a-+adi'grohsra+a’
adena’tra’ a+adena’tr+a’ adekwahahsra’ a+adekwahahsra+a’
adao'tra’ a+adao’tra+a’ ahdahdi'tra’ a+ahdahdi'tr+a’

182

Table C.10: Defective Nouns

Surface Underlying Surface Underlying
sgwa:gwaodo' | sgwa:gwapdg’ dago:s dago:s
da:gu:s da:gu:s dakshae'dohs | dakshae'dohs
so:wa:s so:wa:s twe:twe:t twe:twe:t
ho:ga:k ho:ga:k doge:t doge:t
gwihsgwihs gwihsgwihs gwa'yg' gwa'yo'
soho:t sohg:t gyo:gyo:’ gyo:gyo:’
jogrihs jogrihs gwido'gwido® | gwido'gwido’
didi:” di'di:” jikjiye:” jikjiye:”
ga'ga:’ ga'ga:’ hihi: hihi:

gwiye gwiye' | gwiye'gwiye dihsdihs dihsdihs
ji'mhowe:se: ji'nhowe:se: duwisduwi:” duwisduwi:”
sa'sa’ sa'sa’ gwe:dihs gwe:dihs
gwe:se’ gwe:se' tsahgo:wah tsahgo:wah
jihsgogo’ jihsgogo' gwaoh gwaoh
johwe'sdaga® | johwe'sdaga’ gwe'gohnye” | gwe'gohnye’
hnyagwai’ hnyagwai’ go:deh go:deh
tgwiyo:ge' tgwiyo:ge’ jinhohgwaheh | jinhohgwaheh
ji'mghdo:ya’ | ji'nghdo:ya’ ji'dana:we: ji'dana:we:
jinghsangh jinphsangh jihsda: jihsda:
ji'ao:ye: ji'ao:ye: jinghyahae: jinphyahae:
degriya’go” degriya'go’ jihnyo'ge” jihnyo'ge’
hehshai: hehshai: sgwa’ahda’ sgwa'ahda’
tehto” tehto’ jo'daga’ jo'daga’
jino:we: jino:we: tea:pt tea:gt

sa:mno:’ samo:’ dre:na: dre:na:
dre:na: dre:na: joni:tsgro:t jonitsgro:t
kdago® kdago’ do:dihs do:dihs
sgwa:yeh sgwa:yeh gwiyo:ge’ gwiyo:ge'
jonyo:” jomyo:’ nohsodai:yg: | nohsodai:yo:
gwa’'da: gwa'da: jide:"eh jide:'eh
jo'dae:ya:” jo'dae:ya:’ ji'dro:we: ji'dro:we:
onohotsge’e” | onohotsge'e’ teo:ji’ teo:ji’
tsa'ge:da’ tsa'ge:da’ vahgehda’ yahgehda’
tsinyohgwa:k | tsinyohgwa:k gihe:k gihe:k
nawe'da’ nawe'da’ jihso:dahk jihso:dahk
otahyo:ni: otahyo:ni: tahyo:ni: tahyo:ni:
jihsge: jihsge: ji'o: ji'o:

grahe:t grahe:t

Table C.11: Inalienable Nouns

Surface Underlying Surface Underlying
gahohda’geh g+ahohd+a'geh gyahphda'geh (e)gy+ahphd+a’geh
agyahohda’geh (y)agy+ahohd+a’geh dwahohda’geh (e)dw+ahohd+a’geh
agwahohda’geh (v)agw+ahohd+a'geh sahohda’geh (h)s+ahghd-+a’geh
jahohda’geh (h)j+ahghd+a’geh swahohda’geh (h)sw+ahohd+a’geh
hahohda’geh h+ahohd+a’geh ohohda’geh (y)o+ahohd+a’geh
wahohda’geh w+ahohd+a’geh henahohda’geh hen-+ahohd-+a’geh
gaohohda’geh gao+ahohd+a’geh genahohda’geh gen+ahohd+a’geh
gahsi'da’geh g+ahsi'd+a’'geh gyahsi'da'geh (e)gy+ahsi'd+a’'geh
gyahsi'da’geh (e)gy-+ahsi'd+a’geh agyahsi'da’geh (y)agy-+ahsi’d+a’'geh
dwahsi’da’geh (e)dw+ahsi’d+a’geh agwahsi'da’geh (y)agw+ahsi'd+a’geh
sahsi'da’geh (h)s+ahsi'd+a'geh jahsi'da’geh (h)j+ahsi'd+a’geh
swahsi'da’geh (h)sw+ahsi'd+a'geh hahsi’da’geh h+ahsi'd+a’geh
ohsi'da’geh (y)o+ahsi'd+a'geh wahsi'da’geh w-ahsi'd+a’geh
henahsi’da’geh hen+ahsi’d+a’geh gaohsi'da’geh gao+ahsi'd+a’geh
genahsi'da’geh gen+ahsi'd+a’geh gihna’geh g+ihn+-a'geh
tnihna’geh (e)tn+ihn+a'geh knihna'geh (e)kn+ihn+a’geh
aknihna’geh (y)akn+ihn+a’geh dwehna’geh (e)dwe+ihn+a’geh
agwehna’geh (y)agwe-+ihn+a’geh sihna’'geh (h)s+ihn+a’geh
snihna’geh (h)sn+ihn+a’geh swehna'geh (h)swe+ihn+a'geh
hehna’geh he+ihn+a’geh ghna’'geh (y)e+ihn+a’geh
gehna'geh ge-+ihn+a'geh hadihna’geh had+ihn+a’geh
gaehna’geh gae+ihn+a’'geh gadihna’geh gad+ihn+a'geh
gotsa'geh g+ots+a'geh tnotsa’'geh (e)tn+ots+a’geh
knotsa’geh (e)kn+ots+a’geh aknotsa’geh (y)akn+ots+a’geh
gyotsa’geh (e)gy+ots+a’geh agyotsa’'geh (v)agy+ots+a'geh
sptsa’geh (h)s+ots+a’geh snotsa 'geh (h)sn+gts+a’geh
jotsa’geh (h)j+ots+a’geh hotsa’geh h+opts+a’geh
agotsa’geh (y)ag+ots+a’geh otsa’geh (v)+ots+a'geh
henotsa'geh hen+ots+a’'geh ga:gotsa'geh ga:g+ots+a’'geh
genotsa'geh gen+ots-+a’'geh gwe nahsa’'geh g+we nahs+a’'geh
tniwe nahsa’geh (e)tni+wenahs+a’'geh kniwe'nahsa'geh | (e)kni+wenahs+a'geh
akniwe'nahsa’geh | (y)akni+we nahs+a'geh dwawe nahsa'geh | (e)dwa+wenahs+a’geh
agwawe nahsa'geh | (y)agwa+we nahs+a'geh swe nahsa’geh (eh)s+we¢'nahs+a’'geh
sniwe nahsa’geh (eh)sni+we nahs+a’geh swawe nahsa’'geh | (eh)swa+we'nahs+a’geh
hawe nahsa’geh ha+we nahs+a’'geh ewe nahsa'geh (y)e+we nahs+a’geh
gawe nahsa’geh ga+we nahs+a’geh hadiwe 'nahsa’geh | hadi+we'nahs+a’geh
gaewe nahsa’'geh | gaet+we nahs+a'geh gadiwe nahsa’'geh | gadi+we nahs+a’geh
gegaha'geh ge+gah-+a’'geh tnigaha'geh (e)tni+gah+a’'geh
knigaha’geh (e)kni+gah+a’'geh aknigaha’geh (y)akni+gah+a’geh

184

Inalienable Nouns Continued

Surface Underlying Surface Underlying
dwagaha’geh (e)dwa+gah+a’geh agwagaha’geh (y)agwa+gah+a’geh
segaha’geh (eh)se+gah+a’geh snigaha’geh (eh)sni-+gah+a’geh
swagaha’geh (eh)swa+gah+a’geh hagaha’'geh ha—+gah+a’geh
egaha’'geh (y)e+gah+a’geh gagaha'geh ga+gah+a'geh
hadigaha'geh hadi+gah+a’geh gaegaha'geh gae+gah+a'geh
gadigaha’geh gadi+gah+a’'gehk+het ketga’a'geh ga'+a'geh
tnihetga’a'geh (e)tni+hetga'+a’geh knihetga’a’geh (e)kni+hetga’+a’geh
aknihetga’a’geh (y)akni+hetga'+a’geh dwahetga’'a'geh (e)dwa-+hetga'+a'geh
agwahetga'a’geh | (y)agwa-+hetga'+a'geh setga'a’geh (eh)s+hetga™+a’geh
snihetga’a'geh (eh)sni+hetga™+a'geh swahetga'a'geh (eh)swa+hetga'+a’'geh
hahetga'a'geh ha+hetga'+a’geh ehetga’a'geh (y)e+hetga'+a'geh
gahetga'a’geh ga+hetga'+a’geh hadihetga’a'geh hadi+hetga'+a'geh
gaehetga’a'geh gae+hetga’+a'geh gadihetga'a’geh gadi+hetga'+a'geh

ge nhohsga:'geh ge+ nhohsga:+a’geh tni'nhohsga:"geh (e)tni+"nhohsga:+a’geh
kni’nhohsga:’geh | (e)kni+ nhghsga:+a'geh akni'nhohsga:'geh | (y)akni+ nhghsga:+a’geh
dwa'nhohsga:'geh | (e)dwa+ nhohsga:+a’geh agwa nhohsga:'geh | (y)agwa+"nhohsga:+a’geh
se'nhohsga:'geh (eh)se+"nhohsga:+a'geh sni nhohsga:"geh (eh)sni+ nhohsga:+a'geh
swa'nhohsga:"geh | (eh)swa+nhohsga:+a'geh hanhghsga:"geh ha-+"nhohsga:+a'geh

e nhohsga:'geh (y)e+'nhohsga:+a’geh ga nhohsga: geh ga-+ nhohsga:+a’geh
hadi'nhghsga:'geh | hadi+ nhohsga:+a'geh gae'nhohsga:'geh | gae+ nhohsga:+a’'geh
gadi'nhohsga:"geh | gadi+ nhohsga:+a’'geh ge'ahsa’'geh ge+ahs+a'geh
tni'ahsa’geh (e)tni+ ahs+a’geh kni’ahsa'geh (e)kni+ ahs+a'geh
akniahsa’'geh (y)akni+ahs+a’geh dwa’ahsa 'geh (e)dwa+"ahs+a’geh
agwa'ahsa’geh (y)agwa+ ahs+a'geh se'ahsa’'geh (eh)se+"ahs+a’geh
sni'ahsa’'geh (eh)sni+ ahs+a’geh swa'ahsa'geh (eh)swa+"ahs+a'geh
ha’ahsa’geh ha+ ahs-+a’geh e'ahsa’geh (y)e+ ahs-+a’geh
ga'ahsa 'geh ga+"ahs+a’geh hadi’ahsa’geh hadi+"ahs+a’geh

gae 'ahsa'geh gae+"ahs+a’geh gadi’ahsa’geh gadi-+"ahs+a’geh
gekse'da’'geh ge+kse'd+a’geh tnikse'da’geh (e)tni+kse'd+a’geh
knikse'da’geh (e)kni+kse'd+a’'geh aknikse'da’geh (y)akni+kse'd+a’'geh
dwakse'da’'geh (e)dwa+kse'd+a’geh agwakse'da'geh (y)agwa+kse'd+a’geh
sekse'da’geh (eh)se+kse’d+a'geh snikse'da’geh (eh)sni+kse'd+a’geh
swakse'da’geh (eh)swa-+kse'd+a’geh hakse'da’geh ha+kse'd+a'geh
ekse'da’geh (y)e+kse'd+a’geh gakse'da’geh ga+kse'd+a’geh
hadikse'da’geh hadi+kse'd+a’geh gaekse'da'geh gae+tkse'd+a’geh
gadikse'da’geh gadi+kse'd+a’'geh kng a:"geh k+ng'a:+a’'geh

tning'a: geh (e)tni+nga:+a'geh kning'a: 'geh (e)kni+ng a:+a’'geh
akning'a:"geh (y)akni+nog'a:+a’geh dwang'a:"geh (e)dwa+ng'a:+a'geh

185

Inalienable Nouns Continued

Surface Underlying Surface Underlying
agwang'a:'geh (y)agwa+ng'a:+a’geh sno'a:'geh (eh)s+ng'a:+a’geh
sning'a:'geh (eh)sni+ng’a:+a’geh swang'a:'geh (eh)swa+ng'a:+a'geh
hang’a:"geh ha+4ng a:+a’geh eng a:'geh (y)e+ng a:+a’geh
gang'a:'geh ga+ng a:+a’'geh hading'a:"geh hadi+ng'a:+a’geh

gaeng a:'geh gae+no a:+a’'geh gading a: 'geh gadi+ng a:+a’geh
gragwahda’geh g+ragwahd+a’geh tniagwahda’geh (e)tni+ragwahd—+a’geh
kniagwahda’geh (e)kni+ragwahd-+a’geh akniagwahda’geh (y)akni+ragwahd+a’geh
dwa:gwahda’geh (e)dwa+ragwahd+a’geh agwa:gwahda’geh (y)agwa+ragwahd—+a’geh
sragwahda’geh (eh)s+ragwahd-+a’geh sniagwahda’geh (eh)sni+ragwahd+a’geh
swa:gwahda’geh (eh)swa+ragwahd+a'geh ha:gwahda’geh ha+ragwahd+a’geh
eagwahda’geh (y)e+ragwahd+a'geh ga:gwahda’'geh ga+ragwahd+a’'geh
hadiagwahda'geh hadi+ragwahd+a’'geh gaeagwahda’geh gae+ragwahd-+a’geh
gadiagwahda'geh gadi+ragwahd+a’geh gwe yohga:'geh g+we'yohga:+a'geh
tniwe yohga: geh (e)tni+we yohga:+a'geh kniwe'yohga:"geh (e)kni+we’yohga:+a’geh
akniwe’yohga:'geh | (y)akni+we'yohga:+a'geh dwawe’yohga:’geh | (e)dwa+we'yphga:+a’geh
agwawe yohga:'geh | (y)agwa+we'yohga:+a'geh swe'yohga:'geh (eh)s+we'yohga:+a'geh
sniwe 'yohga:'geh (eh)sni+we'yohga:+a’geh swawe'yohga:'geh | (eh)swa+wg'yohga:+a’geh
hawe’yohga:'geh ha+we'yohga:+a'geh ewe'yohga:'geh (y)e+we'yohga:+a'geh
gawe'yohga: geh ga+we 'yohga:+a'geh hadiwe'yohga:'geh | hadi+we'yohga:+a’geh
gaewe'yvohga:'geh | gaed+we'yohga:+a'geh gadiwe'yohga:"geh | gadi+we'yohga:+a'geh
gejaoho'gwa'geh ge+jaoho'gw—+a’geh tnijacho'gwa’geh (e)tni+jaoho 'gw+a’geh
knijaoho'gwa’'geh | (e)kni+jaoho'gw+a’geh aknijaoho'gwa’geh | (y)akni+jaoho'gw+a geh
dwajaoho'gwa’geh | (e)dwa-+jaoho'gw-+a'geh agwajaoho'gwa’geh | (y)agwa-+jaoho'gw-+a'geh
sejaoho'gwa geh (eh)se+jaoho’gw+a’geh snijacho 'gwa’geh (eh)sni+jaoho’gw+a’geh
swajaoho'gwa'geh | (eh)swa+jaoho'gw+a’geh hajaoho'gwa’geh ha+jacho'gw+a’geh
ejacho’gwa 'geh (y)e+jaoho'gw+a'geh gajaoho'gwa’geh ga+jaoho’gw-+a’geh
hadijaoho'gwa'geh | hadi+jaoho'gw+a'geh gaejaoho'gwa’geh gae+jaoho'gw+a 'geh
gadijaoho'gwa’geh | gadi+jaoho'gw+a’'geh gya'ga:'geh g+ya'ga:+a'geh
tniya’'ga:'geh (e)tni+ya'ga:+a’geh kniya’ga:"geh (e)kni+ya’'ga:+a'geh
akniya'ga: geh (y)akni+ya'ga:+a’geh dwaya'ga: geh (e)dwa+ya'ga:+a’geh
agwaya ga: geh (y)agwa+ya'ga:+a'geh sya'ga: geh (eh)s+ya'ga:+a'geh
sniya'ga:'geh (eh)sni+ya’ga:+a’geh swaya'ga: 'geh (eh)swa+ya'ga:+a’'geh
haya’ga: geh ha-+ya'ga:4a’geh eya'ga: geh (v)e+ya'ga:+a'geh
gaya'ga: 'geh ga+ya 'ga:+a'geh hadiya’ga:'geh hadi+ya’ga:+a'geh
gaeya'ga: 'geh gae+ya'ga:+a'geh gadiya’'ga: geh gadi+ya'ga:+a’'geh

186

Table C.12: Unpossessed Inalienable Nouns

Surface Underlying Surface Underlying
ohohda’ o+ahohd+a’ ohsi’da’ o+ahsi'd+a’
ohna’ o+ihn+a’ otsa’ o+ots+a’
owe'nahsa' | o+wenahs+a’ ogaha' o-+gah+a’
ohetga’a’ o-+hetga'+a’ onhohsga:” | o+ nhohsga:+a’
o'ahsa’ o+"ahs+a’ okse'da’ o-+kse'd+a’

ong 'a:’ o+ng'a:+a’ oagwahda’ | o4ragwahd+a’
owe'yohga:” | o+we'yohga:+a’ ojacho'gwa’ | o+jaoho'gw+a’
oya'ga:” o+ya'ga:+a’

187

T i

g = Pyt il Bl Prnd U
B nmaS e s T
sl e T

S AL | T P
=7 Hda Lyl =T &1 .

d t T

It A

-

ke ™

i
= e

e i

et ol T e e =2,

B e R _‘.-:.__“. I

e .ﬂﬂﬁ?ﬁﬁﬁ, -
= e

e |

| | Hed e
=

g ¥

14 Lkt
S =%

F & . " = :- A o =il
- Iy —— -’ 4
e L N e
FE] '.-__ b d I o~ A e, = |
RN = o g R =2
- = - L

