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Abstract 

Quantitative differences in the coagulation system in children and infants, compared 

to adults, are well known. The purpose of this study is to investigate the coagulat ion 

system in children and infants and to examine the effect of the differences in protein 

levels on the resulting thrombin generation using a mathematical model. A mathe

matical model consisting of 77 ordinary differential equations, each representing the 

concentration of a specific protein, is used for this work. Thrombin-related output 

variables, including: endogenous thrombin potential (ETP) , peak, time to peak, and 

initiation phase duration are presented and discussed. 

The results of the study confirm literature reports that thrombin generation in children 

is both delayed and reduced compared to adults. Finally, the unknown impact of 

quantitative differences on the potential anticoagulant drug anti-thrombin heparin 

(ATH) on thrombin generation is examined for all age groups. Different ATH points 

at which thrombin generated is satisfactorily low (less than 100 nM·sec) were found 

for each age group, with increasing ATH result ing in decreased thrombin generated 

(ETP), at a rate inversely proportional to age. The principal conclusion is that ATH 

has a higher ability to suppress thrombin formation in children than in adults, hence 

lower amounts of ATH might be needed for antit hrombin therapy in children and 

infants. 
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Chapter 1 

Introduction 

In this thesis we are concerned with modelling the generation of a biological enzyme, 

thrombin, in children and infants. Hemostasis, the arrest of bleeding, occurs by the 

process of blood coagulation, in which thrombin plays a vital role in converting the 

protein fibrinogen to fibrin . With the help of factor XIIIa, fibrin forms a cross-linked 

fibrin clot. This clot helps arrest bleeding and also serves as a plat form for vascular 

repair processes following injury. 

The process of coagulation (thus of thrombin generation) has been a well researched 

area for many decades through the extensive work of many researchers [Owen, 2001]. 

Most research in this area has been focused on the coagulation system in adults. 

The discovery of the individual components of hemostasis over the last century has 

been accompanied by the realization that blood coagulation in children is significantly 

different from adults. It is with this background knowledge t hat we attempt to in

vestigate these differences and their potential effects on the treatment of thrombot ic 

problems in children, using a mathematical model. 

1 
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1.1 The coagulation cascade 

The breakthrough in understanding the coagulation cascade came when Davie and 

Ratnoff [1964] and Macfarlane [1965] proposed a waterfall sequence, explaining the 

function of protein clotting factors during the formation of a blood clot. Although the 

proposals were made independently, they formed the basis for the contact activation 

pathway, formerly known as the intrinsic pathway. Fibrin, which is a final product in 

the cascade, is formed after a series of reactions in which an inactive enzyme precursor 

(zymogen) is activated by its glycoprotein co-factor to become a serine protease that 

then catalyzes the next reaction in the cascade. The activation is by proteolysis, the 

directed digestion of proteins by cellular enzymes (pro teases) . Coagulation factors are 

denoted by Roman numerals that indicate the order of discovery of the factor, with 

a lowercase 'a ' appended to denote the factor 's active form. 

The coagulation cascade has two pathways, as shown in Figures 1.1 , which lead to 

the formation of t hrombin. These are the contact activation pathway and the tissue 

factor pathway, previously known as the intrinsic pathway and extrinsic pathway 

respectively. Both the tissue factor and contact activation pathways converge to a 

final common pathway with the activation of factor X. Alt hough originally these 

pathways were thought to be mutually exclusive and of equal importance, evidence 

has shown that this is not the case [Norris, 2003] . Although the contact activation 

pathway has a physiological role in hemostasis, it has been concluded that it plays 

a minor role in the initiation of coagulation . Its function is thought to be that of 

amplifying the coagulation activation initiated by the t issue factor pathway, which 

is the primary pathway of blood coagulation [Johari and Loke, 2012]. Each of the 

pathways will be discussed in turn below. 



Contact Pathway 
Tissue Factor Pathway 

l T;""' F~'"' 

• 
Common Pathway 
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Figure 1.1: A simplified partial diagram of t he coagulation cascade. The thin lines 
indicate the forward pro-coagulant reactions. The factors shown in a lighter shade are 
the precursors to the enzymes (zymogens) and the darker are the activated factors. 

1.1.1 Tissue Factor activation pathway 

The tissue factor pathway is activated by tissue factor (TF), a membrane glycoprotein 

located in the subendothelium, that comes into contact with blood following vascular 

injury [Maynard et al. , 1975, 1977, Weiss et al. , 1989, Wilcox et al. , 1989]. Tissue 

factor, having a high affinity for factor VII that circulates in the blood, forms t he 

complex TF-VII in the presence of calcium [Nemerson and Repke, 1985, Rao and 

Rapaport , 1988, Sakai et al. , 1989] . When TF binds with factor VII, factor VII is 

activated to factor VIla, and together they form the complex TF-VIla. The TF

VIla complex then converts factor X to factor Xa [Discipio et al., 1977] . A smaller 

amount of factor VIla also circulates in blood plasma which also can bind with TF 

[Lapecorella and Mariani, 2008] . 
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1.1.2 Contact activation pathway 

The contact activation pathway begins with the formation of a complex on collagen by 

high-molecular-weight-kininogen (HMWK) , prekallikrein (PK) , and factor XII (Hage

man factor). PK is converted to kallikrein and factor XII is converted to factor Xlla. 

Factor Xlla then converts factor XI, a plasma glycoprotein that circulates in blood, 

into factor Xla. Factor Xla subsequently converts factor IX to factor IXa in t he pres

ence of calcium, by hydrolysis [DiScipio et al. , 1978] . Factor VIlla is the co-factor of 

factor IXa, and together they form the complex IXa-VIlla ( tenase), which activates 

factor X to factor Xa. The contact activation pathway does not seem to play a major 

role in initiating clot formation. This is illustrated by t he fact that patients with 

severe deficiencies of factor XII, HMWK , and PK do not have a bleeding disorder 

[Norri , 2003]. 

1.1.3 Final common pathway 

Factor Xa (a erine protease) and factor Va (a protein cofactor) form the prothrombi

nase complex (Xa-Va) which cleaves prothrombin. This occurs on negatively charged 

phospholipid membranes in the presence of calcium ions [Tracy et al. , 1981] . The 

complex catalyzes the conversion of prothrombin to thrombin. Thrombin has many 

functions in addition to its primary role in converting fibrinogen to fibrin, the building 

block of a blood clot. In the conversion of fibrinogen (I) to fibrin (Ia), thrombin also 

accelerates t he conversion of factor XIII to factor XIIIa in the presence of calcium 

[Lorand and Konishi , 1964, Naski et al. , 1991], activates factors VIII and V, as well as 

their inhibitor, Protein C (in the presence of thrombomodulin), and also activates fac

tors IX and XI [Davie et al. , 1991, Norris, 2003]. Following activation by the contact 

or t issue factor pathway the coagulation cascade is maintained in a prothrombotic 
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state with the continued activation of factors VIII, V, IX, and XI by thrombin in 

a positive feedback loop to form the tenase complex, unt il it is down-regulated by 

anticoagulants. This is illustrated in Figure 1.2 below. 

Contact Pathway ,. .. .,.. " - " - ·· .., Tissue Factor Pat~way 
,;·· .. ... 

·· .... .. 
~ ' .... ··- ··, 
~ 0 ·· ...... ,, ,/ \ 
~--~ · , 
ijJ ,.__....... ··, .. \ 

I)~· ', : , >- \ 
.... .. ··,, \ 

' ·· ·, ' e • -~~ 

l Ti• o• Fodo• 

6) 

Common Pathway 

Figure 1.2: A simplified diagram of the coagulation cascade with positive feedback. 
Thin lines indicate the forward pro-coagulant reactions, the thick dash-dot lines are 
positive feedback reactions. The factors shown in a lighter shade are t he precursors 
to t he enzymes (zymogens) and the darker are the activated factors. 



1.1.4 Anticoagulation 
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Figure 1.3: A simplified diagram of the coagulation cascade with inhibition reactions. 
Thin lines indicate the forward pro-coagulant reactions, the thick dash-dot lines are 
positive feedback reactions, and the thin dashed lines are inhibition reactions. The 
factors shown in a lighter shade are the precursors to the enzymes (zymogens) and 
the darker arc the activated factors. 

To limit clot extension to unaffected portions of the vascular syst em, the anticoagu-

lation process depicted in Figure 1.3, has to come into play. Tissue factor pathway 

inhibitor (TFPI), a serine protease inhibitor, inhibits the complex TF-VIIa and is 

thought to be capable of shifting the cascade from the t issue factor pathway to the 

contact activation pathway by inhibiting the 'short burst ' of thrombin in the initiation 

phase [Davie et al. , 1991]. Antithrombin (AT) III, a protease inhibitor, is capable of 

blocking the activity of thrombin [Rosenberg and Damus, 1973], factors IXa [Kurachi 

and Davie, 1977], Xa [van't Veer and Mann, 1997], Xla, and XIIa [Rosenburg and 

......__ __________ _ _____ _ 
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Bauer, 1994] via irreversible complex formation. Activated Protein C (APC), a plasma 

glycoprotein, inactivates both factor Va [Kisiel ct al. , 1977, Marlar et al. , 1982] and 

factor VIlla [Vchar and Davie, 1980] by proteolysis in t he presence of phospholipid 

and calcium. This reaction is enhanced by Protein S [Walker, 1980]. P rotein C is 

converted to APC by thrombin in the presence of co-factor thrombomodulin (Tm) 

[Esmon ct al. , 1982]. Other plasma serine protease inhibitors include heparin co

factor II [Tollefsen and McGuire, 1987], a 2-macroglobulin [Sottrup-Jenscn, 1987], and 

trypsin [Hccb and Griffin, 1988]. a 2-macroglobulin is a natural inhibitor of thrombin, 

as well as factor Xa [Barret and Starkey, 1973, Meijers et al. , 1987, Ignjatovic et al. , 

2011]. As a major plasma protease inhibitor , a 2-macroglobulin represents 2% to 4% 

of the total protein content in adult plasma, and also plays a role in immunity and 

inflammation [Sottrup-Jcnsen, 1989]. 

1.2 The hemostatic system in children and infants 

While t he hemostatic system in adults has been widely researched over the past few 

decades, the system in children and infants has been thought to be equivalent to that 

of adults [Monaglc ct al. , 2010, Andrew ct al. , 1992]. The system in children, which 

begins in utero, appears to be incompletely developed at birth, maturing throughout 

infancy [Monaglc ct al. , 2006]. Both full-term and pre-term infants arc born with 

low levels of most procoagulant proteins, including all contact activation factors: XII, 

XI, HMWK and PK; and vitamin K-dcpcndcnt factors: II , VII, IX, and X. Monagle 

and Massicotte [2011] report that differences compared to the adult system are most 

marked during the early stages of childhood. Similarly, levels of the major antico

agulant proteins including TFPI arc low at birth. It is quite clear that although all 

the key components of the hemostatic system arc present at birth, quantitative and 
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qualitative differences do exist between adults and children. 

Largely due to the work by Andrew et al. in the late 80's and early 90's we have 

come to be aware of these differences. Monagle et al. have also done a lot of work in 

this area, confirming the work of Andrew et al. and reporting new information on the 

dynamic, age-dependent process of hemostasis, normally referred to as developmental 

hemostasis. For procoagulation factors, all the differences are quantitative with t he 

exception of fibrinogen. The levels of factors II , VII , IX, X, XI, XII, HMWK and PK 

are low at birth and remain so until approximately 6 months of age [Andrew et al. , 

1992]. Levels of factor V and factor XIII are init ially low but increase rapidly to 

those of an adult by day five [Andrew and Paes, 1987, Sell and Corrigan J r., 1973]. 

In contrast , factor VIII exhibits markedly elevated levels at birth compared to adult 

values [Andrew and Paes, 1987, Sell and Corrigan Jr. , 1973] . Fibrinogen (I) values are 

comparable between infants and adults , however, newborn fibrinogen is qualitatively 

different and exists in a fetal form for a year after birth [Andrew et al. , 1990]. 

Levels of anticoagulant factors TFPI, AT and PC are low in full-term and pre-term 

newborns [Andrew and Paes, 1987, Andrew et al. , 1992]. At about 3 months of age 

average levels of AT increase to those of adult values while Protein C remains low 

throughout most of childhood [Kuhle et al. , 2003] . Nako et al. [1997] report t hat levels 

of t hrombomodulin are increased in early childhood, decreasing to adult values by 

late teenage years. TFPI levels in newborns are similar to those of older children and 

adults [Monagle and Massicotte, 2011], alt hough free TFPI is reportedly significantly 

lower in neonates [Tate et al. , 1981]. 

Of particular interest is a 2-macroglobulin, which is increased in infants and most of

ten reaches levels two to t hree-fold higher than those measured in adults [Andrew 

et al. , 1990], seemingly compensating for the decreased levels of other anticoagulants 
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[Andrew et al. , 1990, Ling et al. , 1995]. a 2-macroglobulin cont ributes more to the 

inhibition of thrombin in children than in adults [Schmidt et al. , 1989], leading to the 

assertion that aTmacroglobulin is at least as important an inhibitor as AT. Within 

the child population, a
2
-macroglobulin has been shown to be most influential in the 

regulation of t he hemostatic system in neonates where it is a major inhibitor of coag

ulation, binding up to 64% of thrombin generated [Ignjatovic et al. , 2011]. In adults , 

however, AT is t he dominant inhibitor, and a 2-macroglobulin only inhibits about 7% 

of t hrombin generated [Ignjatovic et al. , 2007]. The biological basis for the increased 

levels of aTmacroglobulin in infancy and childhood is not clearly understood. How

ever, it has been shown that a 2-macroglobulin is influent ial in the regulation of the 

coagulation system in children [Ignjatovic et al. , 2011]. 

Although qualitative differences have been clearly confirmed, what remains unclear is 

the extent of the qualitative changes and their implications to a growing infant . Data 

by Ignjatovic et al. [2011] suggests that the coagulation system in children interacts 

with anticoagulant drugs differently than in adults. The main question is, how do 

these differences affect t hrombin generation? Assays show that thrombin generation 

in newborns is both delayed and decreased by approximately 50% compared to adults 

[Andrew et al. , 1990 , Vieira et al. , 1991, Shah et al. , 1992]. Although the capacity to 

produce thrombin increases after birth, it still remains approximately 25% less than 

that of adults until the late t een years [Andrew et al. , 1994b, Monagle, 2004]. Also 

of note is that the amount of thrombin generated in plasma most closely reflects the 

plasma concentration of prothrombin (II) which remains 10- 20% lower than adults 

during childhood [Andrew et al. , 1992], according to the t esting system used by An

drew et al. [1990]. Despit e these differences in the two systems, and the percept ion 

that the hemostatic system in children is immature, it is funct ionally balanced with 

no tendency toward clotting or bleeding disorders. 
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1.3 Heparin 

Heparin, also known as unfractioned heparin (UFH) , is a widely used drug in the 

treatment of thrombotic disorders. Discovered in 1916 by J ay McLean, it is one of 

the oldest drugs currently in clinical use [Hirsh and Raschke, 2004]. It acts as an 

anticoagulant , preventing the formation of clots and their extension within the blood. 

Heparin is used for treating several conditions including deep-vein thrombosis (DVT) 

and pulmonary embolism (PE) [Andrew et al. , 1994a, Newall et al. , 2009] although it 

is associated with problems that include bleeding, a short half-life, unpredictable coag

ulant effects, impaired activity against clot-bound thrombin, heparin-induced throm

bocytopenia (a low platelet count) (HIT) and osteoporosis (a thinning of the bone 

tissue and loss of bone density over t ime) [Hirsh and Buchanan, 1991, Newall et al. , 

2009]. It acts by binding to the enzyme inhibitor antithrombin, enhancing the in

activation of thrombin and factors Xa, IXa, Xla, and XIIa in the blood coagulation 

cascade [Rosenburg and Bauer , 1994] . Thrombin and factor Xa are the most sensitive 

to inhibition by heparin, and thrombin is about 10-fold more sensitive to inhibition 

than factor Xa [Hirsh and Raschke, 2004] . The rate of inactivation of thrombin and 

other proteases can increase up to 1000-fold due to heparin binding to AT [Bjork and 

Lindahl, 1982] . 

1.3.1 H e parin use in children 

Heparin is frequently recommended in t he prevention and treatment of t hromboem

bolic disease in children [Newall et al. , 2009]. There is a handful of group studies that 

have been carried out on UFH use in infants and children. An interesting conclusion 

in a study done by Andrew et al. [1994b] is that there is a disparity between UFH 
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doses required to achieve a t arget activated partial thromboplastin time (aPPT) (an 

indicator used to measure the effects of the intrinsic and the common pathway) in 

infants (28 U/kg per hour) compared with older children (20 U/kg per hour) , which 

was the first indication that UFH use in children is age-dependent. While physiolog

ical differences in the coagulation system throughout childhood, compared to adults, 

arc well confirmed by research, the impact of anticoagulant drugs is still not a well 

researched area. According to Hirsh and Raschke [2004], heparin exerts an anticoag

ulant action by catalysis of antithrombin inhibition of thrombin and factor Xa . This 

is referred to as the anti-factor Ila and anti-factor Xa effects of heparin. In work done 

by Ignjatovic et al. [2006], their results show that there is a clear age-related difference 

in aPTT which suggests that when using heparin in children, the implications of the 

therapeutic ranges need to be considered [Ignjatovic et al., 2006]. The evidence sup

porting an age-dependent response to UFH in vitro and in vivo has increased across 

the last half-decade [Newall et al. , 2010]. Overall, the literature strongly suggests 

that, in vivo, for the same dose of UFH, the anti-factor Xa and anti-factor Ila ef

fect, as well as the inhibition of endogenous thrombin potential (ETP), a measure of 

thrombin generated, is age-dependent and that these differences are not purely AT 

dependent. Clinical outcome studies to determine the optimal dosing for each age 

group have been recommended in this research area [Monagle et al. , 2010]. 

1.4 Respiratory distress syndrome in neonates 

Respiratory distress syndrome (RDS) is a breathing disorder that commonly affects 

premature infants born 6 weeks or more before their due dates. It is one of the 

most common lung disorders in infants. When thrombin is generated, it converts 

fibrinogen to fibrin with the help of factor XIII. While most fibrin deposition occurs 
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within vessels (intravascular) , it also occurs outside the vessels (extravascular) in a 

number of organs, and contributes to morbidity of several diseases, including RDS 

[Conover et al. , 1990, Bergstein et al. , 1992]. 

The potential importance of fibrin in the severity of neonatal RDS is supported by 

the pathological presence of fibrin in the lungs of infants with RDS [Bachofen and 

Weibel, 1982, Gitlin and Craig, 1956]. A number of observations by these researchers 

suggest that fibrin may be cont ributing both to the severity of neonatal RDS and the 

subsequent development of Bronchopulmonary Dysplasia (BDP), a chronic condition 

involving the abnormal development of the lungs in neonates [Fukuda et al. , 1987, 

Saldeen , 1982, Seeger et al. , 1982]. 

The administration of an anticoagulant locally in the lungs that could prevent the 

formation of fibrin and not be absorbed into the system would be beneficial. The 

properties of an anticoagulant that could be successful include large molecular weight 

to prevent absorption, and the capacity to inhibit thrombin in the absence of other 

components of coagulation (since this will not be within the blood vessels where the 

components of coagulation are found). 

1.5 Antithrombin Heparin (ATH) 

In an attempt to synthesize an anticoagulant that had the desired properties of large 

weight, increased half-life and efficient anticoagulant activity, without the disadvan

tages of heparin, Chan et al. [1997] explored the possibility of joining heparin to the 

natural thrombin inhibitor , antithrombin, forming the ATH complex. Due to the 

problems with heparin, there have been numerous attempts to synthesize ATH by 

several researchers, of note: Ceustermans et al. [1982], Bjork and Lindahl [1982], Mi-
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tra and Jordan [1987] and Chan et al. [1997]. Although most ATH versions have 

the property of increased half-life, they have not all been helpful in terms of anti

coagulation activity against t hrombin and other coagulation enzymes. The most 

recent and successful synthesis of ATH has been reported by Chan et al. [1997]. 

ATH has an average molecular weight of 77000 gj mol which is considered to be large. 

After experimenting with ATH the researchers found that it was retained in the lungs 

of rabbits when administered locally and has potent anti-thrombin activity. Also, 

results from introducing ATH into the rabbit lungs showed that the above impor

tant properties prevented fibrin deposition in the lungs. After carrying out in vivo 

investigations with the ATH molecule involving thrombin and factor Xa inhibition, 

experiments showed that in comparison to AT, AT plus heparin, and AT plus high 

affinity heparin, ATH inhibited factor Xa and thrombin more effectively [Chan et al. , 

1997]. Through kinetic studies, Chan et al. reported rates at which ATH and heparin 

inhibit coagulation factors IIa, Xa, VIla, IXa, Xla, and XIIa. In summary, studies 

have clearly demonstrated that ATH has superior antithrombic and reduced hemor

rhagic properties compared to heparin, in both venous and arterial systems. Unlike 

heparin, ATH readily neutralizes thrombin-bound fibrin, making it suitable for t reat

ing RDS in neonates. These potential benefits of ATH call for an investigation of 

ATH's potential usc for the treatment of thrombotic complications in newborns, in

cluding the relief of RDS, after which clinical t rials may be designed. 

1.6 Objectives 

The objective of this work is to mathematically model the generation of t hrombin 

in children, from which drug interactions with t he blood coagulation system can be 
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simulated. Firstly, modifications to the current ly available model [Bungay et al. , 2003] 

are made by removing mila (a prothrombin to thrombin intermediate) , and adding a 

TFPI reaction, while maintaining a physiologically reasonable model. Secondly, the 

model is used to compare thrombin generation between adults and children. Thirdly, 

drug interactions are added to the model, specifically ATH, so as to characterize real

life therapeutic interventions. This will give insight into how drugs might be best used 

in treatment scenarios of thrombosis and other blood complications. After adding 

the ATH reactions to the model we then simulate the effect of ATH on thrombin 

generation. In an attempt to further investigate ATH inhibition of thrombin, we vary 

the different coagulation parameters to gain insight into the progression of thrombin 

generation with increasing ATH, possibly to a point at which insignificant amounts 

of thrombin arc produced (for example, a bleeding point) . In essence we seek to 

understand how increasing ATH concentration affects thrombin generation and other 

parameters thereby laying a foundation for dose-finding studies. 

1.7 Outline 

In the second chapter, a discussion of the history of mathematical models of blood 

coagulation is provided, and the mathematical model by Bungay et al. [2003] used for 

this work is explained . In the third chapter , results of modelling thrombin generation 

in children arc presented and discussed. First, t he appropriate physiological thrombin 

generation profile of t he adult model is presented and then modified to model thrombin 

generation in children. In t he fourth chapter , the drug ATH is introduced into the 

model and simulated results arc discussed. Finally, conclusions are presented in the 

fifth chapter . 



Chapter 2 

Mathematical models of thrombin 

generation 

2.1 Introduction 

Over the last three decades, due to the fact that the last principal reaction of the coag

ulation cascade was discovered in the early 1990's [Schenone et al. , 2004, Williams and 

Wilkins, 2001], mathematical modelling has become a popular tool for understand

ing coagulation [Fazoil and Mikhail, 2005]. Computer simulations from mathematical 

models have become useful in exploring and gaining insight into thrombin generation. 

The objective of this chapter is to review the literature of mathematical modelling of 

blood coagulation and int roduce the model used for the present work. 

15 
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2.1.1 A short history of thrombin models 

From the Davie and Ratnoff [1964] proposal (discussed in the previous chapter) sprang 

forth several mathematical models of blood coagulat ion. Seegers [1965] proposed a 

model for blood clotting in which he considered the process as a sequence of the 

formation of autoprothrombin C (FXa, thrombokinase), thrombin, and finally fibrin . 

Levine [1966] presented a model based on 'enzyme amplifier kinetics' in which he 

introduced the concept of steady-state gain of the enzyme amplifier , and further 

investigat ed the influence of small changes in the rate const ants on the steady-state 

gain. The model was described by the following equations, 

(2.1) 

(2.2) 

(2.3) 

where Ia(t) = 1 for t E [0, a] or 0 for t < 0 and t > a. T he constant a is the 

activation time. The enzyme amplifier syst em consisted of a cascade sequence of 

enzyme-proenzyme reactions. During the ith stage of this sequence, a proenzyme, Yi 

is converted to an active form, Yia, which, in turn, part icipat es in the (i + 1)th stage. 

The rate of t his conversion is determined by ki. Ki is the rate at which the activated 

form of procnzymcs are destroyed. T he reaction steps are assumed to terminate at 
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the Nth stage. With an increase in the knowledge of the coagulation cascade, the 

following models modified the model by Levine. 

Moro and Bharucha-Reid [1969] took the Levine model further by studying the sys

tem of differential equations he proposed. They specifically focused on the probability 

generalization of t he Levine model that is based on the assumption that the activation 

time characterizing the 'enzyme amplifier system' is a random variable. Martorana 

and Moro [1974] went further to consider two negative physiological feedback mech

anisms to the Levine model and also proposed that Levine's model and the model 

proposed by Seegers [1965] were identical. 

Focusing on a different aspect of the coagulation cascade, Liniger et al. [1980] pro

posed a mathematical model of prothrombin activation. This model included a feed

back mechanism of t hrombin activation of factor V. The model was in agreement with 

the experimental data for the dependence of the rat e of t hrombin formation on the 

concentrations of factors V and Xa . It correctly predicted t he existence of a max

imum rate of thrombin formation at the experimentally observed concentrations of 

factor V and factor Xa. Nesheim ct al. [1984], using their 'clot-speed' mathematical 

simulation, determined the distribution of the enzymatic components and substrate 

between the bulk fluid and phospholipid for a given set of init ial concentrations of reac

tion components. By experimentally demonstrating inhibit ion by excess enzyme and 

phospholipids , the model was useful in rationalizing the properties of the prothrom

binasc complex (Xa-Va) . The model also explored the properties of other factors of 

coagulation in addition to prothrombinase. 

Nemcrson and Gentry [1986] modelled the tissue factor pathway of blood coagulation 

and demonstrated that tissue factor and factor VII are necessary for the activation of 

coagulation, and that in t heir absence, activation is not detectable. Jones and Mann 
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[1994] also developed a model of the tissue factor pathway. In order to approximate 

the decay activity of the factor VIIIa-IXa complex, as reported by Lawson et al. 

[1994], their model incorporated a physical constraint associated with the stability of 

the complex. Leipold ct al. [1995] also looked at modelling the generation of thrombin 

by the tissue factor pathway. This model, the first to consider the effects of exogenous 

inhibitors, through simulation proposed that the reason that inhibition of thrombin 

generation decreased dramatically as thrombin increased was due to the removal of the 

inhibitor through its binding to thrombin (generated in the early reaction) [Leipold 

et al. , 1995] . 

Zarnitsina et al. [1996] examined the spatia-temporal dynamics of the activation of 

factors XI, IX, X, II, I, VIII, V and protein C. The model described the thresh

old behavior of coagulation, with activation at sub-threshold giving a low output of 

thrombin, while activation above threshold leads to an explosive amount of thrombin 

followed by a sharp decrease. The spatial dynamics of coagulation were analyzed for 

the one-dimensional case, and the model was compared with experimental data. In 

an attempt to confirm which process is the most important in the blood coagulation 

cascade, Xu et al. [2002] constructed a dynamic model of the function of platelets 

and showed that the pro-coagulation stimulus must exceed a threshold value, which 

is related to the rat e of platelet activation. It was concluded that , when the level of 

factor IX is below 1% of normal levels, the rate of thrombin production is reduced 

dramatically, resulting in bleeding. They explained the bleeding tendency in most 

of the clinically recognized deficiencies, however , they did not discuss the reasons for 

thrombotic complications. Hockin et al. [2002] extended the Jones and Mann [1994] 

model of extrinsic blood coagulation. Their model (consisting of 34 equations) in

cluded the TFPI inhibitor, antithrombin, the activation of factor V and factor VIII 

by thrombin, factor VIlla dissociation into VIIIa1-L and VIIIa2 , the kinetic activation 
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steps for TF and factors VII and VIla and the activation of factor VII by thrombin, 

factor Xa and factor IXa. The model displayed a non-linear dependence of thrombin 

generated upon TF, AT, and TFPI. 

Butenas and Mann [2002] studied the dynamics of TF-initiated blood coagulation 

processes in vitro under conditions resembling those occurring in vivo. They used 

several experimental models, with their first being a 'synthetic plasma' model pre

pared with highly purified natural and recombinant proteins. Their second approach 

involved mathematical models based on reaction kinetics, allowing the prediction of 

the outcome of the reaction at selected parameters. The third model involved the in 

vitro study of coagulation of TF-initiated whole blood. In this model, the majority 

of the data agreed with the in vivo observation that the initiation stage is primarily 

influenced by the concent rations of TF and TFPI, while for the propagation phase 

the regulation is largely dependent on antithrombin and the protein C system. 

In an attempt to explain thrombotic complications, Qiao et al. [2004] proposed a non

linear model by introducing the APC in the amplification phase (contact activation 

pathway) of coagulation. The model only looked at the contact activation pathway 

of coagulation and concluded that kinetic results showed oscillatory behavior under 

particularly high levels of protein C feedback inhibition . 

Zhu [2007] modelled both the contact activation pathway and the tissue factor path

way. The rates of enzyme inhibition and complex formation were calculated using 

second-order reactions. The sensitivity of the kinetics due to a decrease in concen

tration of coagulation proteins was studied , and clotting times for both t he contact 

and t issue factor activation pathways were approximated. Luan et al. [2007] used 

mathematical modelling to simulate platelet activation and thrombin profiles in the 

presence and absence of natural anticoagulants. Their work, through Monte Carlo 
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sensitivity analysis, identified crit ical mechanisms controlling the formation of throm

bin, and therefore supports the hypothesis that mechanical models can be used to 

pinpoint key mechanisms in complex networks despite model uncertainty. 

Danforth et al. [2009] used an updated Hockin et al. [2002] model to study the sensi

tivity of the deterministic model of blood coagulation to variations in the values of rate 

constants. They found that the model's predictive capacity is particularly sensitive 

to uncertainty in five rate constants in the regulation of the formation and function 

of the TF-VIla complex. Their analysis identified specific rate constants to which the 

predictive capability of the model is most sensitive and thus where improvements in 

measurement accuracy will yield the greatest increase in predictive capacity. 

The Hockin et al. [2002] updated model was also used by Mitrophanov and Reifman 

[2011] to examine the effects of the recombinant activated factor VII (rFVIIa) on 

thrombin generation by generating factor VIla titration curves for several special 

cases. The effects of increasing factor VIla concentration were observed for clotting 

time, thrombin peak time, and the maximum slope of the thrombin curve. Thrombin 

peak height was much less affected by factor VIla titrations, and the area under the 

curve remained unchanged. These observations were found to match observations in 

vitro. 

2.2 The model 

The objective of this work is to mathematically model the generation of thrombin in 

children using the core chemical reactions as described in the model by Bungay et al. 

[2003] . The blood coagulation cascade which leads to the generation of thrombin, 

consists of a group of related enzymatic reactions coupled with binding of specific 
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proteins to lipid surfaces. These reactions are translated into a system of ordinary 

differential equations that model the dynamics of thrombin formation. 

2.2.1 Assumptions 

The model assumes a uniformly mixed, static fluid environment, which corresponds to 

most experimental environments. Most reactions in t he coagulation cascade require 

the presence of calcium; it is assumed that calcium is not a limiting factor in any of 

the reactions. Literature values gleaned from various sources were used for the kinetic 

parameters. A small amount of factor VIla was assumed to be present in the system, 

as reported in an experiment done by Morrissey et al. [1993]. 

2.2.2 Formulation of equations 

The mathematical model consists of 77 ordinary differential equations (ODEs) describ-

ing the time rate-of-change in the concentration of each factor or complex involved 

in thrombin generation and in the available lipid. The dynamic equations are formed 

using classical enzyme kinetics with on-rates (kon), off-rates (koff), and catalytic rates 

( kcat) · 

The enzymatic reactions involve an enzyme (E) cleaving a substrate (S) to produce 

a product (P). Before the product and the enzyme are released, an intermediary 

enzyme-substrate (E-S), also known as a complex, is formed. This can be represented 

by the equation below, 

E + S ~ E-S k cat) E + P. 
koff 

(2.4) 
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The following assumptions arc made: 

• the molecules in the reaction have the correct orientation for binding and they 

have sufficient energy upon collision to react ; 

• the binding of the enzyme and substrate is reversible; 

• each enzyme molecule has equal accessibility to each substrate molecule; 

• the reactants remain unchanged by binding, and the reversible reaction gives 

the original enzyme and substrate upon dissociation. 

Biochemical equations of the form of (2.4) are translated into ordinary different ial 

equations describing the change of concentration with time of the enzyme, substrate, 

complex, and product. According to mass-action kinetics, the rate of a reaction is 

proportional to the product of the reactants' concentrations, each raised to the power 

of the number of each species in the reaction (the stoichiometric coefficient) - in this 

case one. The proportionality constants , as shown in Equation (2.4) , are k00 , k0 tr 

and kcat· kon is the rate constant for the formation of the complex E-S, k0 tr is the 

dissociation rate of t he complex back into the enzyme and substrate, and kcat is the 

rate constant for t he formation of the product and enzyme. Using square brackets to 

denote concentration, t he resulting system of equations for Reaction (2.4) is, 

d~~] = -k011 [E][S] + koff[E-S] + kcadE-S] (2.5) 

d[S] dt = - kon[E][S] + koff[E-SJ (2.6) 

d[E-S] 
~ = kon[E] [S] - koff[E-S] - kcat[E-S] (2.7) 
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d[P] = k [E-S] dt cat · (2.8) 

Note that the concentration is a time-dependent variable, however , time is not shown 

for simplicity. For example, if we take the first two equations in the model, where 

tissue factor reacts with both factors VII and VIla to form complexes, we have the 

following: 

kl 
TF + VIla ~ TF-VIla 

k2 
(2.9) 

k3 
TF + VII ~ TF-VII . 

k4 
(2.10) 

Applying mass action kinetics, the above equations translate to the following system 

of ODEs: 

d[TF] 
~ = - ki[TF][VIIa] + k2 [TF-VIIa] - k3[TF][VII] + k4 [TF-VII] (2.11) 

d[~tii] = -k3[TF][VII] + k4 [TF-VII] (2.12) 

d[VIIa] = - ki[TF][VIIa] + k2[TF-VIIa] (2.13) 
dt 

d[TF-VII] = k3[TF][VII]- k4 [TF-VII] (2.14) 
dt 
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d[TF~~IIa] = k1 [TF] [VII a] - k2 [TF-VIla]. (2.15) 

In a similar way, all reactions are t ranslated into differential equations describing the 

rate of change of the concentration of all factors that participate in the reactions. 

Coagulation factors that need lipids for their reactions exist in two forms: lipid-bound 

(denoted wit h a subscript l) , and free (denoted with a subscript f). For example, the 

free prothrombin (II1) binds reversibly to lipid to form lipid-bound prothrombin, II1, 

in the following reaction: 

(2.16) 

where LBSn denotes a lipid binding site for prothrombin. It is assumed that the 

reactive lipid is provided by 10 nm radius phospholipid vesicles. The number of 

protein binding sites per vesicle is calculated by assuming that the concentration of 

phospholipid head groups is related to the vesicle concentration as follows: 

[h d l [ . 
1 

] surface area of a vesicle 
ea groups = ves1c es 

surface area of a head group 

where t he surface area of a head group is taken to be 0.74 nm2 (Haung and Mason, 

1978) . The number of head groups per binding site varies with t he lipid composition 

and mixing in the vesicles (Heimburg et al. 1999) and with the specific factor (van 

der Waart et al, 1983, Catsforth et al; 1989). An average of 100 head groups per 

binding site has been assumed for all factors. 
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2.2.3 Solution of model 

Systems of differential equations cannot always be solved by analytic methods, rather 

numerical methods arc employed to find an approximate (graphical) solution. Here, 

the model is solved using the double precision version of the Livermore Solver for Or

dinary Differential Equations (LSODE) [Radhakrishnan and Hindmarsh, 1993] which 

provides a selection of methods to solve initial value problems. Systems of differen

tial equations can have components that vary on very different t ime scales, resulting 

in one or more components varies much more rapidly than others. This t ime-scale 

variability is known as stiffness, and systems exhibiting this behaviour arc referred 

to as being stiff. In addition to ODEs, our model consists of kinetic rate constants 

and initial concentration values that are of varied magnitudes. As a result , the stiff 

solver of LSODE, based on Gear 's backward differential method, was used to solve 

our model. The stiff solver gives a numerical approximation for the Jacobian matrix, 

computed with difference quotients. All simulations were performed with an absolute 

and relative tolerance of 1.0 x 10- 7 . 

2.2.4 Conservation of mass 

The law of conservation of mass, also known as the principle of energy, states t hat 

t he mass of an isolat ed system will remain const ant over time. T he law implies t hat 

mass cannot be created or destroyed, although it may be rearranged and changed 

into different types of particles. The principle is equivalent to t he conservation of 

concentration in our model since we are dealing with a constant volume. In t hese 

biochemical processes, the sum of all products from a given factor with non-zero ini

t ial concentration must add up to the initial concentration. For example, for factor 

V, which becomes activated to factor Va, all amounts of V / Va are summed at every 
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time step and the concentration of both these species, including all complexes that 

contain them, must be equal to the initial concentration of factor V used (see Fig

ure 2.1 below) . This process is repeated for each factor that has a non-zero initial 

concentration. Conservation of mass was confirmed for the model. 
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Figure 2.1: An example of the conservation of mass for the V / Va concentration 
amounts. The initial concentration for factor V was 20 nM. 



Chapter 3 

Modelling thrombin generation in 

children 

3.1 Introduction 

To our knowledge, this is the first attempt to use mathematical modelling to simulate 

thrombin generation in children. The work that has been done in adults is a good 

foundation which will be utilized in this work. In this chapter we discuss the changes 

made to the model, and the comparison between the adult and child models. 

3.2 Profile of thrombin generation 

From the adult model, the profile of thrombin generation (thrombin concentration vs. 

time curve) must be reasonable and comparable to experiment. Thrombin generation 

occurs in three distinct phases, the initiation phase, the propagation phase, and the 

termination phase [Danforth et al. , 2009]. These phases are illustrated in Figure 3.1. 

27 
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Figure 3.1: A graphical illustration of the three phases of thrombin generation: initi
ation , propagation. and termination. 

Associated with these three phases, various measures arc often used to quant itatively 

describe the thrombin generation profile. The following measures will be used in this 

work: 

• endogenous t hrombin potent ial 

• peak height 

• time to peak 

• duration of the initiation phase 

• slope of the propagation and t ermination phase 

The endogenous thrombin potential (ETP ) is defined as the amount of t hrombin that 

can be generated after the in vitro activation of coagulation , with tis uc factor a the 

t rigger, in the presence of phospholipids [Hemker ct al. , 1993]. Computationally, it 

is measured by the area under the t hrombin generation curve [Petros ct al. , 2006]. 

The peak height is the highest level of thrombin (or other proteins) reached in the 
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simulation, and the 'time to peak' is the time (in seconds) at which the peak occurs 

(shown as the ' time of peak' in Figure 3.1). The 'duration of the init iation phase' is 

the time it takes (in seconds) for the thrombin concentration to surpass 10 nM. Two 

slopes for each simulated graph were measured by linear regression on selected regions 

of the corresponding propagation and termination phases, as a measure of the rat e of 

each phase. 

3.3 Changes to the model 

The model of Bungay et al. [2003] , was modified to include an additional TFPI re-

action and to remove mila while st ill maintaining a reasonable profile of thrombin 

generation in adults. Each of these changes are discussed in turn in the following two 

sections. 

3.3.1 R emoval of m ila 

We removed mila from the Bungay et al. [2003] model since its presence was t hought 

to be unnecessarily complicating the model, making it difficult t o use rate constant 

values from the literature. The following reactions, 

kon 
Va-Xa1 + lit ~ Va-Xa-IIt 

k off 
(3.1 ) 

kon 
Va-Xa1 + milt~ Va-Xa-mllat 

k off 
(3.2) 



30 

Va-Xa-II1 kon ) Va-Xa-miia1 kcat) Va-Xa1 + IIa/ + LBSmlla (3.3) 

were replaced with the single reaction 

Va-Xa1 + Il1 ~ Va-Xa-II1 k cat ) Va-Xal + IIa / + LBS11a, 
k off 

(3.4) 

with reaction rates kon = 0 .1, koff = 100 and kcat = 15 [Krishnaswamy ct al. , 1987]. 

This led to the deletion of reactions 25 , 26, 29 and 33 from t he original model cqua-

tions, in which factor V and VIII , in the presence of lipid, arc activated by mila , to Va 

and VIlla respectively. Figure 3.2 shows the thrombin generation with t he removal 

of mila from t he orie:inal model. 
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F igure 3.2: Thrombin generation in adults after t he removal of mila from the original 
model. 

Here, thrombin generation increases from 21 ,947 nM·scc to 51,571 nM·scc when mila 

is removed from the original model. The thrombin peak also increases from 17 4 nM to 
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530 nM. The initiation phase increases from 124 seconds to 175 seconds. The removal 

of mila also increases both the propagation and termination phase slopes four-fold 

from 4.54,-1.12 to 17.3,-4.52, respectively (see Table 3.1). Hence the presence of mila 

significantly affects t he ra te of thrombin generation and its t ermination. 

3.3.2 Addition of a TFPI reaction 

There arc two pathways to t he factor Xa dependent inhibit ion of TF-VIla by TFPI. 

In the first pathway, factor Xa generated by TF-VIla binds with TFPI, which in turn 

binds to TF-VIla , forming the quaternary complex TF-VIIa-TFPI-Xa, as follows: 

kon 
TFPI + Xa ~ TFPI-Xa 

k o ff 
(3.5) 

kon 
TFPI-Xa + TF-VIla ~ TFPI-Xa-TF-VIla. 

k o ff 
(3.6) 

In the second pathway, TFPI directly binds to a complex containing TF-VIla, and 

factor Xa that has not yet dissociated from TF-VIla following its activation [Broze, 

2003]. Kinetic studies strongly suggest that the physiological effect of TFPI is pre

dominantly mediated through the second pathway [Baugh et al. , 1998], t herefore the 

following equation was added to the model, 

kon 
TF-VIIa-Xa + TFPI ~ TFPI-Xa-TF-VIla, 

koff 
(3.7) 

with reaction rates kon = 0.01 and k off = O.OOll [Jesty et al. , 1994, Baugh et al. , 1998]. 

Figure 3.3 shows the thrombin generation with the addit ion of Reaction (3.7) to 
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the original model. Thrombin generation increases slightly from 21,947 nl\ I·scc to 

21 ,994 nM·scc. The thrombin peak change slightly from 174.16 nM to 174.48 nM. 

The duration of the initiation phase increases from 124 seconds to 129 seconds. The 

addition of thi xtra TFPI reaction docs not ccm to affect either the propagation 

or termination phase slopes as t he values 4.56 and -1.15 arc not ignificant ly different 

from t ho of the Bungay ct al. [2003] model. 4.54 and -1.12 , rc pcctivcly. While the 

addition of the TFPI reaction docs result in a slight increase in ETP. the removal of 

mila (in the previous section) results in a much higher ETP value of 51,571 nM·scc 

and peak value of 530 nM. 

50 

Time (seconds) 

Figur 3.3: T hrombin generation in adult with the addition of th TFPI reaction 
(3 . 7) to the original model, in com pari on with the original model. 

3.4 Original versus modified model 

Henceforth , the 'original model' is u cd t o refer to the model of Bungay t al. [2003], 

while the original model with both the changes stated above will be referred to as 
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the 'modified model'. Figure 3.4 shows the thrombin generation profile of an adult 

with the Bungay et al. [2003] model and wit h the modified model. Also shown a rc 

the endogenous thrombin potential (ETP) values of both profiles. 
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Figure 3.4: Thrombin generation in adults for t he Bungay ct al. [2003] model and the 
modified model. 

Table 3. 1 shows the propagation and termination phase slopes for the Bungay ct al. 

[2003] and the modified models shown in Figure 3.4 above, as well as t he slopes of 

both phases after the removal of mila , and separately after the addit ion of the TFPI 

reaction. 

Table 3.1: Thrombin generation slopes for the adult model. 

Propagation phase (nMs 1
) Termination phase (nMs -1

) 

Bungay ct al. [2003] 4.54 -1.12 
TFPI 4.56 -1.15 
mila 17.21 -4.89 

Modified 17.31 -4.52 

The addition of a TFPI reaction, as shown in Figure 3.3, shows a minimal change in 
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the initiation phase, therefore the delay in the initiation phase of t he modified model 

compared with the Bungay ct al. [2003] model is likely due to the removal of t he 

activation of factors V and VIII by mila. In the initiation phase, factors V and VIII 

arc activated, leading to the formation of small amounts of factors Xa and IXa. The 

rate of thrombin generation in the propagation stage is more or less the same between 

the Bungay ct a!. [2003] model and the model with another TFPI reaction added and 

also between the Bungay et al. [2003] model with mila removed and the modified 

model. The Bungay et al. [2003] model and the modified model have different times 

to peak of 174 seconds and 219 seconds respectively. 

The Bungay ct a!. [2003] model has an endogenous thrombin potential (ETP) value of 

21 ,947 nM·scconds while the modified model has an ETP value of 51,569 nM·seconds, 

more than twice the thrombin generated by the Bungay et al. [2003] model. In t he 

Bungay ct al. [2003] model, Va-Xa participates in two separate reversible reactions 

with prothrombin and meizothrombin to produce Va-Xa-11 and Va-Xa-mll respec

t ively. Va-Xa is directed to these two reversible reactions in the Bungay et al. [2003] 

model while in the modified model the same Va-Xa is directed towards a single re

versible reaction, which is less effective in converting the Va-Xa-11 back to Va-Xa. 

This leads to more thrombin being generated in the modified model. 

All attempts to strictly validate the model (in the quantitative sense) with existing 

experimental data did not produce satisfactory results (not shown). It should be 

noted t hat it is difficult to obtain experimental data that is directly and easily com

parable to the model results. However, the modified model gives a more reasonable 

thrombin profile based on the results observed by Hockin ct al. [2002]. A comparison 

of mathematical models of thrombin generation [Hemker et al. , 2012] indicate t hat the 

original model produced a thrombin peak that was much lower than other published 
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models, while t he modified model increases the thrombin peak to a more comparable 

value. 

It appears that in t he original model, the equations chosen for the prothrombin to 

thrombin conversion sequestered the mila unnecessarily, resulting in thrombin pro

duction that was slow enough to allow inhibition to take over earlier. Given the time 

constraints of this research project, we proceed with the modified model and draw 

relative comparisons throughout the rest of this work. However, it is noted that firm 

validation of the model is required (see Chapter 5.2) . From this point onwards, the 

modified model is used and is referred to as the 'model '. 

3.5 Differences between adult and child plasma 

Both qualitative and quantitative differences exist between blood coagulation proteins 

in adults and children [Andrew and Paes, 1987, Andrew et al. , 1990, 1992]. Here, we 

focus on the effect of the quantitative differences using our mathematical model. These 

quantitative differences are summarized in Tables 3.2 and 3.3 which present the data 

from two labs [Andrew and Paes, 1987, Andrew ct al. , 1990, 1992, Monagle et al. , 

2006]. The data in the tables show concentration values derived from measurements 

of plasma samples that were obtained from healt hy children and adults with no med

ication or past history of bleeding or thromboembolic disease. The data values were 

grouped into seven categories, day 1 infant, day 3 infant, 1 month- 1 year , 1- 5 years, 

6- 10 years, 11- 16 years, and adults. For the purposes of this study, we consider only 

three of the categories, 1 day infant ('infant ') , 6- 10 years ('child '), and the adult. 

These values, referred to as reference ranges, are expressed in units per milliliter, a 

measure of enzyme activity. At least 20 blood samples were tested by Monagle et al. 
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[2006], Andrew and Paes [1987], and Andrew et al. [1988, 1992] for each analyte in 

each age group and an average value reported, including its lower and upper bound

ary values encompassing 95% of the population. Expressing the reference values as a 

proportion of t he adult reference value, we find the percentage reference value for a 

particular protein for each age-group relative to t he adult . We convert the infant and 

child references to concentration values by multiplying the percentages for each pro

tein in each age group by t he known init ial concentration level of the adult [Butenas 

eta!. , 1999] . In t his way we obtain concentration levels of all proteins (in nanomolar) 

for both infants and children, as expressed in Tables 3.2 and 3.3. Both data sources 

confirm age-related changes in coagulation protein levels throughout childhood, and 

show a trend that agrees with the developmental haemostasis concept. The reasons 

for the observed differences between children and adults are still uncertain and likely 

reflect differences in rates of protein synthesis. Despite its difference from the adult , 

the haemostatic system in children is considered physiologic. 
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Table 3.2: Coagulation factor levels (in nM) as reported in Andrew and Paes [1987], 
and Andrew et al. [1988, 1992] 

Species 1 day infant 6 to 10 years adults 

P rothrombin 622 1141 1400 

T issue Factor 0.005 0.005 0.005 

Factor V 14 17 20.0 

Factor VII 6 8 10.0 

Factor VIII 0.7 0.7 0.7 

Factor IX 44 62 90 

Factor X 64 120 170 

Factor XI 12 27 30 

Protein C 22 43 60 

TFPI 2.5 2.5 2.5 

Antithrombin 2,142 3774 3400 

ProteinS 133 289 300 

a 2-Macroglobulin 4202 5109 2600 
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Table 3.3: Coagulation factor levels (in nM) as reported in Monagle et al. [2006] 

Species 1 day infant 6 to 10 years adults 

Prothrombin 687 1133 1400 

Tissue Factor 0.005 0.005 0.005 

Factor V 14 17 20.0 

Factor VII 5 9 10.0 

Factor VIII 0.7 0.5 0.7 

Factor IX 33 66 90 

Factor X 75 133 170 

Factor XI 8 30 30 

Protein C 21 55 60 

TFPI 2.5 2.5 2.5 

Antithrombin 2692 4038 3400 

ProteinS 144 436 300 

a 2- Macroglobulin 4202 5109 2600 

For both data sources, most coagulant factors increase in concentration from the infant 

to the adult levels. For example, prothrombin is 622 nM, 1141 nM, and 1400 nM for 

the Andrew and Pacs [1987], Andrew et al. [1990, 1992] data and 687 nM, 1133 nM 

and 1400 nM for the Monagle et al. [2006]. Tissue factor , factor VIla (0.1 nM) and 

TFPI values arc the same for both the data sets as they are assumed to be the same 

as in the adult . Differences between the data sets are found in the factor VIII , AT and 

Protein S levels. For the Andrew and Paes [1987], Andrew et al. [1988, 1992] data, 

factor VIII concentration is 0.7 nM for all three age groups while in the Monagle et al. 

[2006] data the value decreases to 0.5 nM in the child age group. In the Andrew and 

Paes [1987], Andrew et al. [1988, 1992] data, Protein S concentration progressively 
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increases to 300 ni\f for the age group. , while in the lonaglc ct al. [2006] dat a the 

middle child group value of 436 nM i: significantly higher than the adult value of 300 

ni\1. AT concentrat ion follows a similar trend where the child level i. greater than the 

adult for both data sources although th absolute values arc higher in the I\fonaglc 

ct a l. [2006] data . The difference in the va lue between the two ct of data can be 

attributed to different measuring devices and reagents. How v r. both shovY a t rend 

consistent with the developmental hacmo tasis principle. 

3.6 Simulation using the Andrew et al. data 

Figure 3.5 show. the thrombin profile of all age groups (adults. children and infants) 

using da ta from Andrew and Pacs [1987]. and Andrew ct al. [19 , 1992]. 
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Figure 3.5: imulatcd thrombin generation in three age group with init ial data taken 
from Andrew and Pac [1987], and Andr w ct al. [1988, 1992] (sec Table 3.2) . 

Table 3.4 show the ETP, t ime to peak, peak thrombin. and the duration of the 
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initiation phase for all age groups for the results displayed in Figure 3.5. 

Table 3.4: Model results for Andrew and Paes [1987], and Andrew et al. [1988, 1992] 
data. 

ETP Peak T ime to Peak Initiation phase 
(nM·sec) (nM) (seconds) (seconds) 

Adult 51,569 530 219 175 
Child 28 ,900 354 223 184 
Infant 22 ,290 220 261 215 

Table 3.5 shows the propagation and termination phase slopes for the adult , child 

and infant age groups for the Andrew and Paes [1987], and Andrew et al. [1988, 1992] 

data. For both the propagation and termination phases, the magnitude of the slopes 

nearly triples from infants to adults. 

Table 3.5: T hrombin propagation and termination phase slopes for the Andrew and 
Paes [1987], and Andrew et al. [1988, 1992] data. 

Propagation phase (nMs -l) Termination phase (nMs ·l) 
Adult 18.81 -5.08 
Child 12.96 -4.10 
Infant 6.97 -2.00 

3.6.0 .1 Thrombin generated and peak 

From Figure 3.5, we sec that the child t hrombin peak is lower than the adult peak, 

while the infant t hrombin peak is lowest. This pattern matches the pattern of total 

amount of thrombin generated as evidenced by the ETP values in Table 3.4. Overall, 

the simulation results arc consistent with the developmental haemostasis principle by 

Andrew ct al. [1994b], and in the case of the infant, also the observation that the 

amount of thrombin generated is proportional to the initial amount of the prothrom-

bin. The prothrombin concentration in infants and children is 44% and 82% of that 

in adults , while the calculated ETP values for the infant and children are 43.2% and 
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56% of adults respectively. Both prothrombin and ETP have similar percentages at 

the infant category of about 44% while the child's percentages of 82% and 56% for 

prothrombin and ETP respectively, are clearly different . Hemostasis is a progressive 

system that develops with age, and important ly, the ability to produce thrombin in

creases with age, yet the increase does not necessarily correspond in percentages with 

prothrombin concentration as there are other factors influencing thrombin generation. 

3 .6 .0.2 Initiation phase 

The infant profile has the longest initiation phase, followed by the child, and then 

the adult profile. In the initiation phase activated factor V and factor TF-VIla play 

an important role, with TF-VIIa generating small amounts of factor Xa and factor 

IXa. This leads to the formation of picomolar amounts of thrombin (less than 10%) 

when prothrombin is activated [Mann et al. , 2003] . In these results, the different 

initiation phase lengths are due to the trend in concentration levels of factors V and 

VII. However, factor VII concent ration levels arc the lowest for t he infants, leading 

to a lower TF-VIla amount, hence the observation of the longest initiation duration 

for the infant. 

To further investigate which of the two, factors V or VII, has a bigger effect on t he 

initiation phase, we changed the factor V concentration to the adult value, for both 

infants and children, while t he factor VII concent ration was unchanged. In the second 

case we changed t he factor VII concentration to the adult value for both infants and 

children, while t he factor V concentration was unchanged. T he results for these 

simulations arc presented in Figures 3.6 and 3.7, and Tables 3.6 and 3.7 below. 
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Figure 3.6: Simulated thrombin generation, with initial data taken from Andrew 
and Pacs [1987], and Andrew ct al. [1988, 1992] (sec Table 3.2) but with fact or V 
concentration set to the adult value for all age groups. 

Table 3.6: Factor V t est results for Andrew and Pacs [1987], and Andrew ct al. [1988, 
1992] d~ta . 

ETP Peak T ime to Peak Initiation phase 
(nM·scc) (nM) (seconds) (seconds) 

Adult 51,569 530 219 175 
Child 29 ,784 382 220 182 
Infant 23 ,822 251 254 211 

When factor V is held 'constant ' (at adult concentration values for all age-groups), 

initiation duration for the child and infant relative to the Figure 3.5 simulation (sec 

Table 3.4) decreases by 2 seconds and 4 seconds respectively. However , ETP values 

for t he child and infant both increase by 3.1% (884 nM-scc) and 6.9% (1,532 nM·scc), 

respectively. Similarly, there is an increase in peak of 7.9% (28 nM) and 14.1 % (31 

nM) for the child and infant , respectively. 
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Figure 3. 7: imulatcd t hrombin gcncl·ation . with init ial data taken from Andrew 
and Pacs [19 7]. and Andrew ct a!. [19 , 1992] (sec Table 3.2) but wit h factor VII 
concentration ct to the adult value for all age groups. 

Table 3.7: Factor VII test results for Andrew and Pacs [1987]. and Andrew ct a!. 
[1988, 1992] data. 

ETP Peak Time to Peak Init iation phase 
(nM·scc) (nNI) (seconds) (seconds) 

Adult 51,569 530 219 175 
Child 28,894 353 22 1 
Infant 22 ,297 220 278 227 

For 'constant ' factor VII, t he initiation durat ion increases for the child and infant 

by 4 ccond and 12 seconds respectively. The ETP value of th child decreases (by 

0.021 %) from 28.900 n f·scc to 28,894 nM·scc while that of the infant increases (by 

0.031 %) from 22.290 n 1·scc to 22,297 n I- cc. The infant peak remain the same (220 

nl\1). whil the hild peak dccrca c by 0.2 % from 354 n 1 to 353 nl\I. From the c 

observation , it eem t hat factor VII ha a bigger effect on the initiation duration 

while factor V has a more significant effect on the thrombin generated , as measured 

by t he ETP value· . 
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The factor X concent ration is quite different in adults and children (sec Table 3.2). 

To investigate the effect of t his difference, we changed the factor X levels t o those of 

an adult in children and infants, wit h the results shown in Figure 3.8. 

~-----.---,----,----.---,----.----.---,---, 

- Adult --- ETP = 51 ,569 nM.sec 
- Child --- ETP = 3 1 .430 nM.sec 
- Infant --- ETP = 26,403 nM.sec 

F igure 3.8: Simulated t hrombin generation with init ial data taken from Andrew and 
Pacs [1987], and Andrew ct al. [1988, 1992] (sec Table 3.2) but with factor X concen
t ration changed to the adult value for all age groups. 

Table 3.8 shows t he ETP values, peak t ime, peak, and initiation phase lengt h for 

t hrombin generat ion wit h factor X changed to the adult value for all age groups. 

Table 3.8: Factor X test results for Andrew and Paes [1987], and Andrew ct al. [1988, 
1992] data. 

ETP Peak Time to Peak Init iation phase 
(nM·sec) (nM) (seconds) (seconds) 

Adult 51,569 530 219 175 
Child 31,430 401 207 168 
Infant 26,403 293 208 167 

Changing t he child and infant factor X levels to the adult level increases the ETP 

values to 31,430 nM·scc and 26,403 nM·scc respect ively (sec Tables 3.4 and 3.8) . T here 

is also a corresponding increase in the peak level of thrombin generat ed for bot h age 
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groups. The time to peak decreases for both age groups when factor X concentration is 

increased to the adult value, which points to a shorter initiation phase as higher factor 

X is likely to speed up the common pathway leading to the formation of t hrombin. 

As expected, the increase in factor X levels for the child and infant increases the 

t hrombin generated. However, of note is the shortening of the init iation phase for 

both the child and the infant, leading to a faster initiation (168 seconds and 167 

seconds respectively) than the adult. Comparing with Figure 3.5, it is clear that the 

infant initiation is the more affected of the two. The change in ETP is similar for 

both age groups. 

3 .6.0.3 Propagation phase 

In the propagation phase prothrombin is activated and converted to thrombin by Va

Xa [van 't Veer and Mann, 1997], and the majority of t hrombin produced is due to 

the positive feedback activation of factors V and VIII by thrombin. The amount of 

thrombin produced is therefore dependent on the prothrombin amounts of 622 nM, 

1141 nM and 1400 nM [Andrew ct al. , 1990], and also on Va-Xa. Since prothrombin is 

never completely exhausted, Va-Xa becomes the limiting factor in thrombin produc

t ion. The infant has t he least prothrombin concentration of all t he three age groups, 

while the adult has the greatest. This could contribute to explaining why we have the 

least thrombin generated in the infant, and the greatest in the adult (based on ETP 

values, sec Figure 3.5). 
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Figure 3.9 shows the simulated change in prothrombin concentration over time for 

t he three age groups. Prothrombin conversion to t hrombin begins at t he end of t he 

initiation phase, thereafter reducing prothrombin concent ration . However , t he pro-

t hrombin concentration is never reduced to zero which is consistent with experimental 

observations. 
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Figure 3.9: Simulated prothrombin concent ration in t hree age groups, with init ial data 
taken from Andrew and Paes [1987], and Andrew et al. [1988, 1992] (sec Table 3.2) 
showing that prothrombin is not a limit ing factor. 

F igure 3. 10 below shows the effects of changing child and infant prothrombin conccn-

t ration values to adult values. 
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Figure 3.10: Simulated thrombin generation, with init ial data taken from Andrew 
and Pacs [1987], and Andrew ct al. [1988, 1992] (sec Table 3.2) but with prothrombin 
concentration set to the adult value for all age groups. 

As expected , the increase of prothrombin levels to adult values incrca:scs the ETP 

values from 28,900 nM·scc to 35,691 nM·scc and 22,290 nM·scc to 50,285 nM·scc for 

the child and infant respectively. Thi increase in ETP is very large (twice the original 

ETP value) for the infant , reflecting the sensit ivity of infants to prothrombin levels, 

likely due to the lower anticoagulant amounts. While there is an increase in peak 

thrombin of 58 nM (354 nM to 412 nM) and 203 nM (220 nM to 423 nM) for both 

the child and infant respectively, the infant has a notably greater increase and higher 

peak. There is hardly any change in the time to peak value for the child (223 seconds 

to 224 seconds) while for the infant the t ime to peak value decreases (261 seconds to 

244 seconds). 

3.6.0.4 Termination phase 

The termination phase occurs when the thrombin generated begins to decrease after 

reaching the peak. This phase is controlled by the anticoagulants, and cont inues until 
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the thrombin concent ration reaches zero. The termination of the adult and child 

thrombin generation looks similar , but is sharper than that of the infant profile (sec 

Figure 3.5 and Table 3.5) . This could be a result of the higher levels of most inhibitors 

in children and adults compared to infants. 

- Child --- ETP = 35.622 nM.sec 
- Infant --- ETP = 27.023 nM.sec 

200 
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Figure 3.11: Simulated t hrombin generation, with initial data taken from Andrew and 
Pacs [1987], and Andrew ct al. [1988, 1992] (sec Table 3.2) but with a 2-macroglobulin 
concentration set to the adult value for all age groups. 

a 2-macroglobulin is an important inhibitor in children, therefore we investigat e its 

influence on thrombin generation in children and infants by setting its concent ration 

to adult levels (sec Figure 3.11). When a 2-macroglobulin is changed to adult values 

for the child and infant (a reduction of a 2-macroglobulin since it is higher in children 

and infants than adults) t here is an increase in ETP values from 18,087 nM-scc to 

35,622 nM-scc for t he child and from 22,290 nM-scc to 27,043 nM-scc for the infant, 

both reflecting an increase in thrombin generated (sec Table 3.9). There is hardly any 

change in the time to peak (224 nM and 261 nM for the child and infant respectively), 

suggesting that a 2-macroglobulin has no significant effect on t he time to peak and 
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most likely the initiation phase of thrombin generation. There is a corresponding 

increase in peak levels of 18 nM (220 nM to 238 nM) and 36 nM (354 nM to 390 

nM) for the infant and child, as seen with most ETP changes. Notably, due to 

the decrease in a 2-macroglobulin, the termination phase for both the child and infant 

becomes less sharp relative to the simulation with the original a2-macroglobulin levels 

(see Figure 3.5). 

Table 3.9: Model results for a 2-macroglobulin concentration set to the adult value for 
all age groups. 

ETP Peak Time to Peak Initiation phase 
(nM·sec) (nM) (seconds) (seconds) 

Adult 51 ,569 530 219 175 
Child 35,622 390 224 183 
Infant 27,023 238 261 213 

To measure the effect of the a 2-macroglobulin inhibition, the model was run for Ta-

ble 3.2 data, with a 2-macroglobulin set to zero. Table 3.10 shows the ETP compar-

isons, including t he change in ETP when a 2-macroglobulin is absent. 

Table 3.10: Change in ETP with the removal of a 2-macroglobulin for Andrew and 
Paes [1987], and Andrew et al. [1988, 1992] data. 

ETP ETP wit hout o:2-macroglobulin ETP change 
(nM·sec) (nM·sec) (%) 

Adult 51,569 72,708 41 
Child 31,430 47,294 64 
Infant 26,403 41,818 88 

T he thrombin generated wit h the inhibition of o:2-macroglobulin is 41%, 64%, and 

88% (of the thrombin without) for adults, children and infants respect ively. o:2-

macroglobulin has the greatest effect on the infant ETP. 



50 

3. 7 Simulation using the Monagle et al. data 

Figure 3.12 shows t he thrombin profiles for all three age groups based on the !lonagle 

ct al. [2006] data (sec Table 3.3). 

Time (seconds) 

Figure 3.12: Simulation of thrombin generation in three age groups using the Monagle 
ct al. [2006] data in Table 3.3. 

Table 3.11 shows model results for ETP, t ime to peak, peak thrombin, and the du-

ration of the initiation phase for three age groups , based on the results shown in 

Figure 3.12. 

Table 3.11: Model results for Monaglc ct al. [2006] data. 

ETP Peak T ime t o Peak Initiat ion phase 
(nM·scc) (nM) (seconds) (seconds) 

Adult 51,569 530 219 175 
Child 18,087 235 251 211 
Infant 19,863 197 256 207 

Table 3.12 shows t he propagation and termination phase slopes for these simulations. 

T he magnit ude of both slopes increase from infants to adults. 
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Table 3.12: Thrombin propagation and termination phase slopes for the Monagle 
et al. [2006] data. 

Propagation phase ( nMs -l) Termination phase (nMs ·l) 
Adult 18.26 -4.91 
Child 9.09 -2.94 
Infant 7.38 -2.18 

3 .7.0.5 Thrombin generat e d and peak 

From Figure 3.12, we sec that the infant thrombin peak is lower than both the adult 

and child thrombin peak levels. This peak patt ern does not correspond to the amount 

of thrombin generated as measured by ETP values of 51 ,569 nM·sec, 18,087 nM·sec, 

and 19,683 nM·scc for adults, children, and infants respectively. The prothrombin 

concentration in infants and children is 49% and 81% of that of adults , while the 

calculated ETP values for the infant and children are 39% and 35% of adults respec-

tivcly. Although the prothrombin levels reflect a trend consistent with developmental 

haemostasis for the Monaglc ct al. [2006] data, the ETP values for the child and 

infant do not conform to the 50% to 75% of adult thrombin range reported in the 

literature [Andrew et al., 1990, Vieira et al. , 1991 , Shah et al. , 1992, Andrew et al. , 

1994b, Monaglc, 2004]. However , t hrombin generation is still delayed and reduced in 

children and infants compared to adults. 

3 .7.0.6 I n it iation p h ase 

For the Monagle ct al. [2006] data the initiation phase for the child and infant profile is 

delayed, similar to the infant profile for the Andrew and Paes [1987], and Andrew et al. 

[1988, 1992] data. The initiation phase for the child and infant profile is 211 seconds, 



52 

36 seconds longer than the adult initiation phase of 175 seconds. The similar initiation 

phase length for the child and infant profiles is reflective of the minimal difference in 

the amounts of the factors most influential in the init iation phase, factors V and VII 

in the Monaglc ct al. [2006] data. 

3 .7.0.7 Propagation phase 

Although the child profile has a higher thrombin peak of 235 nM compared to the 

infant peak of 197 nM, the infant ETP is greater than that of the child profile. 

The child ETP is 35% of the adult value of 51,569 nM.sec while the infant ETP 

is 38%. These observations seem to be inconsistent with developmental hemostasis. 

Immediately after initiation, the cont inuous downregulation of thrombin by AT and 

t he Protein C system begins [Mann et al. , 2009]. In the Monagle et al. [2006] data we 

have significantly higher amounts of both AT and Protein C, this could be the reason 

for the observations above. In addition, the low factor VIII concentration for t he child 

could also be playing a role in this observation. The time to peak for the child and 

infant arc close at 251 seconds and 256 seconds respectively, although both are longer 

than that of the adult at 219 seconds. The propagation phase is much steeper for t he 

adult at 18.26 nMs- 1
, approximately double the slope of 9.09 nMs- 1 and 7.38 nMs- 1 

for the child and infant, respectively. 

Prothrombin plays a critical role in thrombin generation where it is converted to 

thrombin in the common pathway. For the Monagle et al. [2006] data (see Table 3.3) 

t he infant prothrombin concentration is less than half the adult , and t he child con

centration is about 81% of the adult . To investigate t he sensitivity of prothrombin 

concentration levels to t hrombin generation in infants and children, we set the pro

thrombin concentration to adult levels. Figure 3.13 shows the effects of increasing the 
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Infant --- ETP = 34,453 nM.sec 
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Figure 3.13: Simulated thrombin generation , wit h initial data taken from Monaglc 
ct al. [2006] (sec Table 3.3) but with prothrombin concentration set to adult levels for 
all age groups. 

As expected, t he increase of prothrombin to adult values increases t he ETP values for 

both t he child (18,087 nM-scc to 20 ,842 nM-scc) and infant (19,863 nM-scc to 34,453 

nM-scc) profile, indicating an increase in thrombin generated. However, this increase 

in ETP is very large for t he infant , nearly twice the original value. The infant pro-

thrombin increase to the adult value, which is about twice the infant value, increases 

t he ETP to almost twice the amount . Similary, for the child , the prothrombin to ETP 

proportions arc comparable (1:1.24 compared to 1:1.15). There is an increase in the 

peak values for both the child (235 nM to 264 nM) and the infant (197 nM to 333 

nM) , with t he increase in the infant more than 1.5 in magnitude. There is hardly any 

change in t he t ime to peak for the child (251 nM to 252 nM) , wit h a. slight decrease 

in t he infant t ime to peak (256 nM to 252 nM). The infant seems to be particula.ry 

more sensit ive to the prothrombin level t han the child . 
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3 .7.0.8 Termination phase 

T he termination portion of the curv for the child profile is sharper than tha t of the 

infant (Figure 3.12). reflect ing the higher I vcls of ant icoagulants in t he child data 

(sec Tab! 3.3). As the infant profile terminates, it approaches zero n~I thrombin 

at a more gradual lope of 2.18 n~I - J . hence contributing to the higher ETP value 

compared to the child . The adult termination slope of 4.91 n Is- 1 is the steepest, 

reflecting the higher Protein C and Protein S levels. 

Protein C i an important inhibitor of thrombin through its interact ion with Protein 

S and Tm. forming the activated Protein C system. However. its inhibitory activity 

wit h varying age i. unknown [l\ Ionaglc and 1assicot tc. 2011]. To invc t igatc furt her 

we set Protein C concentration to adul t values for a ll age group . Figure 3.14 show 

the simulation of thrombin generation but with Prot ein C concnt rat ion ct. to adult 

values for the child and infant. 

lnfanl --- ETP = 4 .80 1 nM .scc 

0o~--~--L2~oo~--~--~400~~==---~~--~--~soo~~ 

Time (seconds) 

Figure 3.14: Simulat ed thrombin generat ion in three age groups, wit h initial data 
t aken from Monaglc ct al. [2006] ( cc Table 3.3) but with Prot ein C concent ration set 
to adult value for all age groups. 
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When the level of Protein C is increased to the adult level of 60 nM in both the child 

and infant, there is a decrease in ETP values from 18,087 nM·sec to 15,992 nM·sec 

for the child, and 19,863 nM·sec to 4,801 nM·sec for the infant. For t he child, a 9.1% 

increase in Protein C leads to a 11.6% decrease in ETP while for t he infant , a 185.7% 

increase in Protein C gives a 75.8% decrease in ETP. The change in t he infant ETP 

is equivalent to a four-fold decrease. There is no significant change in t ime to peak in 

the child profile, while there is an increase in the time to peak for the infant from 256 

seconds to 383 seconds. Similarly, the peak levels for both the child (235 nM to 215 

nM) and infant decrease, with a decrease of more than 3 times for the infant profile 

(197 nM to 60 nM). 

It is clear from Figures 3.12 and 3.14 that the increase in Protein C lowers the throm

bin generated for both children and infants. However , the infants seem to be more 

sensitive to this increase, as evidenced by a more than four-fold decrease in thrombin 

generated (19,683 nM·sec to 4801 nM·sec). In addition , Protein C seems to delay 

thrombin generated as the initiation phase increases for both children and infants. 

Although the activity of Protein C with varying age is unknown, the model indicates 

t hat an increase in Protein C will result in decreased and delayed thrombin generation. 
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Figure 3.15: Simulated thrombin generation in three age groups, with initial data 
t aken from Monaglc ct al. [2006] (sec Table 3.3) but with AT concentration set to 
adult values for all age groups. 

AT is a major inhibitor of thrombin and activated factor X in both adults and children 

and its effects in infants and children is thought to be compensated for by t he higher 

levels of a 2-macroglobulin [Ignjatovic ct al. , 2011]. When t he AT level is decreased by 

15.8% to adult levels for the child, there is a slight increase (of 14.2%) in ETP values, 

from 18,087 nM·scc to 20,648 nM·scc, while there is a 22.5% decrease (19,863 nM·scc 

to 15,387 nM-scc) in t he infant ETP from a 26.3% increase in AT. Changes in AT for 

both child (15.8%) and infant (26.3%) lead to corresponding similar changes of ETP 

of 14.2% and 22.5%, respect ively. Peak values change similarly, with an increase in 

the child (235 nM to 253 nM) and decrease in the infant (197 nM to 180 nM) . There 

is no significant change in the t ime t o peak for either age group (251 seconds to 253 

seconds for the child and 256 seconds to 257 seconds for the infant), suggesting t hat 

AT has an insignificant effect on t he initiation phase. 

The effect on thrombin generation of a change in AT concentrat ion is not significant 

when compared to t he effect of changing Protein C. This seems to agree wit h t he 
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hypothesis that AT activity in children and infants is largely compensated for by a 2-

macroglobulin [Monaglc and Massicotte, 2011]. Overall, both AT and Protein C seem 

to affect the ETP and initiation phase of thrombin. 

3.7.1 Discussion 

In the propagation phase of the Monaglc et al. [2006] simulation (sec Figure 3.12), 

less thrombin is produced for the child and infants when compared to the Figure 3.5 

simulation based on t he Andrew and Pacs [1987], and Andrew et al. [1988, 1992] dat a. 

The lower thrombin generated is observed regardless of the higher factor X levels (64 

nM and 120 nM versus 75 nM and 133 nM) and the same factor V level (14 nM and 

17 nM) in the Monagle et al. [2006] simulat ion (see Figure 3.12). This observat ion 

can be attributed to the higher anticoagulants AT and ProteinS in the Monagle et al. 

[2006] da ta (sec Table 3.3). Simulation of thrombin generation using the Monaglc 

et al. [2006] data for the age-dependent coagulation protein levels gives results that 

arc not totally consistent with conclusions by Andrew et al. [1992]. The ETP values 

do not increase with age, as shown in Table 3.11 , rather, the infant ETP is greater 

than t he child 's. In Figure 3.12 the amount of thrombin (ETP) generated by the 

infant is greater than that generated by the child even though the thrombin peak is 

greater for the child than the infant. However, the initiation phase is still delayed for 

both t he child and the infant relative to the adult profile, and their ETP values arc 

less than 50% of the adult value of 51,569 nM.scc. One notable difference between the 

Figure 3.12 imulation based on the Monagle ct al. [2006] data and the Andrew and 

Paes [1987], and Andrew ct a!. [1988, 1992] simulation in Figure 3.5 is the factor VIII 

concentration of the child. With a factor VIII amount of 0.5 nM for t he child and 0.7 

nM for the infant in t he Monaglc ct a!. [2006] data, greater thrombin is likely to be 
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generat ed for t he infant t han the child, as reflected by the model result in Figure 3.12. 

To investigate the effects of t he factor VIII difference, we changed t he level of factor 

VIII from 0.5 nM to 0.7 nM in the Monagle et al. [2006] child dat a, and the results 

arc presented in Figure 3.16 and Table 3.13. The ETP value increases to 23,684 

nM·sec for the child, which is greater than the infant. This is consistent with the 

developmental haemostasis pattern, although this ETP value is still lower t han the 

ETP value for the child in the Andrew and Paes [1987], Andrew et al. [1988, 1992] 

dat a (see Table 3.4). The child ETP is now 43% of the adult , while the ETP of 

the infant (18,292 nM.sec) is 35% of the adult . This percentage (43%) is an increase 

from the Figure 3.16 value of 39%, although it still falls short of t he reported 50% by 

Andrew ct al. [1992], it is closer to the 56% of the simulation based on Table 3.2 data 

(see Figure 3.5). The lower ETP percentage values can be explained by t he higher 

levels of AT and ProteinS in Table 3.3, 4038 nM and 436 nM, versus 3774 nM and 

289 nM in Table 3.2, respectively. A short ening of the initiation phase is also observed 

in this change. 
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F igure 3.16: Simulation of t hrombin generation in three age groups, using t he Monagle 
et al. [2006] dat a in Table 3.3, with the factor VIII amount changed from 0.5 nM to 
0. 7 nM in the child. 

Table 3.13 shows the propagation and termination phase slopes for the infant, child 

and adult age groups based on the Monagle et al. [2006] dat a , with the concentration 

of factor VIII changed from 0.5 nM t o 0. 7 nM in the child. The magnitude of t he 

slopes increase from infants to adults. 

Table 3.13: Thrombin propagat ion and termination phase slopes for the Monagle 
et al. [2006] dat a with the factor VIII changed from 0.5 nM to 0.7 nM in the child. 

Propagation phase (nMs -1
) Terminat ion phase (nMs -1 ) 

Adult 18.66 -4 .87 
Child 11.23 -3 .42 
Infant 6.67 -1.90 

Here, we observe a significant increase in the magnitude of the propagation and t ermi-

nat ion slopes for the child values, from 9.09, and -2.94 to 11.23 , and -3.42 respectively. 

T his is in line with what we would expect. 
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3.8 Conclusion 

The model simulations are consistent with the observations from empirical experi

ments found in the literature in as far as reduction of t hrombin generation and de

layed initiation phase is concerned. Child and infant thrombin generation is shown to 

be decreased and delayed compared to adult thrombin generation. Given the incon

sistencies in the second set of data (from Monagle et al. [2006]) we choose the first 

set of data (from Andrew and Pacs [1987], Andrew et al. [1988, 1992]) to investigate 

drug interactions with thrombin in the next chapter. 



Chapter 4 

Drug interactions with thrombin 

generation 

4.1 Introduction 

One of the main reasons for any model is to investigate how external factors can af

fect the modelled system. It is without doubt that developmental hemostasis affects 

the interaction of anticoagulant drugs with the coagulation system [Ignjatovic et al., 

20 11]. For this reason, we are also interested in gaining insight into how drugs used 

to treat blood coagulation problems affect thrombin generation. ATH, a preparation 

of a covalent conjugate of human AT and standard heparin [Berry et al., 1998], is an 

anticoagulant with a strong potential as an inhibitor of thrombin and other coagu

lation proteins. In this chapter, we attempt to int roduce drug interactions into our 

model, specifically the interaction of ATH with thrombin, Xa, VIla, IXa and Xla. 
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4.2 ATH in the model 

ATH can inhibit several of the activated coagulation factors (enzymes) directly by 

forming an cnzymc-ATH complex or by catalyzing the reaction between the enzyme 

and antithrombin 

enzyme + ATH k o n) cnzymc-ATH (direct method) (4.1) 

enzyme + AT + ATH kon) enzyme-AT + ATH (indirect/ catalysis method). (4.2) 

The major coagulation enzymes that would be inhibited directly by ATH during the 

coagulation cascade arc Ila, Xa, IXa, VIla, Xla, and Xlla. All except Xlla are 

included in our model. For this study, we focus on the direct method shown in 

Equation (4.1). The rates of reaction (second-order) are shown in Table 4.1 : 

Table 4. 1: ATH rates of reaction as reported by Patel et al. [2007] 

Species 

Thrombin (IIa) 
X a 

VIla 
IX a 
XI a 

kon (nM sec- 1
) 

kll = 0.043 
kxa = 0.00358 

kvlla = 0.00017 
k1xa = 0.000355 
kxla = 0.000365 

Following the format in Equation (4.1) five ATH reactions with the respective coag

ulation factors and rate constants (shown in Table 4.1) are translated into ODEs and 

added to the model. 
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4 .3 Simulation results 

Figure 4.1 shows the adult thrombin profiles at different arbitrarily chosen levels of 

ATH concentration from 0 nM to 25 nM, and attempts t o illustrate the effect of ATH 

on t he adult blood coagulat ion system. 
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F igure 4.1: Simulated t hrombin generation in adults when ATH is added. 

Table 4.2 shows a summary of t he effects of ATH on the simulated adult system with 

measurement of ETP, peak thrombin, peak t ime, and ETP change. 

Table 4.2: fodcl results for adult s with varying levels of ATH added. 

ATH ETP Peak Peak Time ETP change Init iation phase 
(nM) ( nM ·seconds) (nM) (seconds) % (seconds) 

0 51,568.9 530 219 0.00 175 
5 51,125.3 524 273 0.86 229 
10 50,622.2 516 336 1.84 292 
15 50,022.0 506 415 2.94 371 
20 49,291.0 493 520 4.42 476 
25 48,344.4 478 677 6.25 633 

The initiation phase is lengthened from 175 seconds at 0 nM ATH t o 633 seconds at 
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25 nM ATH, as shown in Table 4.2. ETP values decrease from 51,568.9 nM·sec at 

0 nM ATH to 48,344.4 nM·sec at 25 nM ATH, with an ETP percentage change of 

6.25% occurring from 0 nM to 25 nM ATH. Furt her increase of ATH in the model 

system leads to an increase in ET P change with each consecut ive addition of ATH, 

eventually result ing in no t hrombin produced. For example, t he adult ETP change 

increases wit h each addit ion of 5 nM ATH as follows, 0.86%, 0.98%, 1.19%, 1.46%, and 

1.92%. This observation is the same for the children and infants. The total amount 

of ATH added up to the point where no thrombin is produced is called the cut-off 

point. Thrombin peak also decreases with increasing ATH levels, while the peak t ime 

increases with increasing ATH levels from 219 seconds (0 nM AT H) to 677 seconds 

(25 nM ATH), mirroring the lengthening of t he initiation phase. Overall the largest 

effect of t he addit ion of 0 - 25 nM AT H was the delayed init iation phase of thrombin 

generation. This is expect ed from ant icoagulant drugs as they delay (by inhibit ion) 

the 'short burst' of thrombin (during init iation) and thereby delay the commencement 

of t he propagation phase where most thrombin is generated . 

Figure 4.2 shows the t hrombin profile in children at different levels of ATH. 
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Figure 4.2: Simulated thrombin generation in children when ATH is added. 
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Table 4.3 summarizes the re ults of adding ATH at varying concent rations to the 

simulated child coagulation system. 

Table 4.3: Model results for children with varying levels of ATH added. 

ATH ETP Peak Peak Time ETP change Init iation phase 
(nM) (nM·seconds) (nM) (seconds) % (seconds) 

0 28,899.4 354 224 0.00 184 
5 28,627.5 349 288 0.94 248 
10 28,286.2 343 370 2. 12 330 
15 27,837.3 334 485 3.68 445 
20 27,196.8 322 679 5.89 639 
25 22,733.0 293 1407 21 .34 1366 

We observe a similar trend in the child syst em as in the adult, with a prolonged 

init iation t ime wit h the addit ion of ATH. However , by 25 nM ATH the lengthening 

of the initiation phase in children (1366 sees) is double t hat in adults (633 seconds), 

while the initiation phase with 0 nM ATH is relat ively close in adults and children 

(175 sees vs 184 sees). There seems to be a large jump in t he init iation t ime as ATH is 
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increased from 20 nM to 25 nM possibly due to the ATH levels approaching a cut-off 

point. The ETP values decrease from 28,899 to 22 ,733, with the greatest ETP change 

at 25 n:t\11 ATH of 21 .43% compared to an ETP change of 6.25% in adults. 

F igure 4.3 shows the thrombin profile in infants at different levels of ATH. 
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Figure 4.3: Simulated t hrombin generation in infants when ATH is added. 

Table 4.4 shows a summary of t he effects of ATH on the simulated infant system with 

measurement of ETP, peak t hrombin , peak t ime, and ETP change. 

Table 4.4: Model results for infants wit h varying levels of ATH added. 

ATH ETP Peak Peak Time ETP change Initiat ion phase 
(nM) ( nM ·seconds) (nM) (seconds) % (seconds) 

0 22,290.4 220 261 0.00 216 
5 22 ,332.1 220 372 -0.19 327 
10 22,199.3 217 550 0.41 505 
15 21,778.9 210 1000 2.36 955 
20 17,052.2 152 13,266 23.45 13,209 
25 12,313.9 106 31,356 44.76 31,297 
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The initial addition of ATH (5 nM) seems to increase the thrombin generated in 

the infant by 0.19%, as measured by the ETP. This is out of line with the general 

observation. After the addit ion of 10 nM ATH, the next increment to 15 nM increases 

the init iation phase greatly to 955 seconds from 505 seconds, with both a lower ETP 

(21,778.9 nM·sec) , and a thrombin peak of 210 nM. The next two graphs, with ATH 

concent ration equal to 20 and 25 nM arc not visible in the 0 - 2000 seconds time 

window as shown. This is due to the sudden increase in the initiation phase from 955 

seconds to 13,209 seconds at 20 nM and finally, to 31,297 seconds at 25 nM ATH. 

To further investigate the point (ATH concentration) where thombin generation is 

eventually reduced to zero, we perfomcd addit ional simulations incrementing ATH 

until we arrived at zero nM thrombin or an ETP (area under graph) of below 100 

nM·sec, which we consider sufficiently low. Table 4.5 below shows these points (cut

off points) and their peak t hrombin observed for t he adult, child, and infant model 

results. 

Table 4.5: Thrombin generation cut-off points for the three age groups. 

ATH (nM) Peak (nM) ETP (nM·seconds) Time (seconds) 
Adult 150 8.38 X 10 ·:l 83.21 567,276 
Child 100 1.15 X 10- 2 39.02 368,661 
Infant 75 2.09 X 10- 3 27.05 285 ,996 

Alternatively the cut-off points can also be observed by looking at t he t hrombin peaks 

as ATH is added to the system in Figure 4.4 below. 
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150 200 

Figure 4.4: A plot of t hrombin peaks versus ATH concentration for the three age 
groups. 

The graph (Figure 4.4) shows the thrombin peaks versus ATH concent ration in incre

ments of 25 nM leading up t o 225 nM. From this figure, we sec that t hrombin peaks 

decrease with increasing ATH. Different age groups reach the 'zero t hrombin peak' 

at different times, wit h the infant reaching at the earliest time and the adult taking 

much longer. Due to the long simulation times required to obtain t he cut-off points, 

t he time increment used for dat a output was increased from 0.5 seconds to 10 seconds. 

4.4 Discussion 

Generally, for all age groups t here is a significant increase in the initiation phase (de-

lay) with increasing ATH values as seen in Figures 4. 1, 4.2 and 4.3 and Tables 4.2, 4.3 

and 4.4. There is also a slight decrease in the thrombin peak as the ATH conccntra-

tions increase from 0 nM to 25 nM (except for 0 nM to 5 nM ATH in t he infant). 

T he amount of thrombin generated also decreases wit h an increase in the AT H con-
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ccntration, with the exception of a single case in the infant values, where t he ETP 

experiences a slight (0.19%) increase with the addit ion of 5 nM ATH. In this instance, 

the thrombin peak remains the same at 220 nM. 

4.4.1 Comparison of ATH in adults versus children. 

The addition of ATH leads to a greater change in the thrombin generat ed in t he child 

than for the adult in all cases of ATH concentration tested, as shown in Tables 4.2 

and 4.3. The cut-off point for ATH was determined to be 150 nM for the adult 

versus 100 nM for the child, which is about 67% of the adult cut-off point. The 

cut-off point would be the ATH concentration required to eventually result in no 

thrombin production. Our study shows t hat ATH concentration cut-off points for 

adults, children and infants arc distinctly different, as shown in Table 4.5. Given the 

differences observed, it is likely that the thrombin generation system's response to 

ATH is age-related . However, clinically relevant concentrations of ATH rather than 

arbitrary levels, need to be considered for a better foundation for dose-finding studies. 

4.4.2 Comparison of ATH in adults versus infants. 

Five nM of ATH in the infant system increases the ETP value of the child by 0.19%. 

This behavior is not consistent or in-line with other values and may be attributed to 

other unknown factors in t he model. However, after 5 nM, the trend is consistent 

with what we observed in adults and children. The ETP values for infants decrease 

with the addition of ATH, with an ATH cut-off point occurring at 75 nM, after which 

little or no thrombin generated. 

Further investigation into t he value of ATH concentration at which this cut-off point 
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occurs revealed a value of 75 nM. This value is 50% of the adult cut-off point of 150 

nM. 

4.4.3 Comparison of ATH in children versus infants. 

From Figures 4.2 and 4.3, we sec that ATH inhibition in children and infants is clearly 

different from that of adults (sec Figure 4.1), but similar to each other at these ATH 

levels. Both figures have a notable initiation delay compared to the adult results, at 15 

nM for the infants and 25 nM for the children. The child cut-off value is higher than 

the infant 's. Both have long init iation phases but the infant is longer , for example, 

at 15 nM ATH, t he initiation phase for the child is about 445 seconds while that of 

the infant is almost 955 seconds. After observing the initiation phase delays of 31 ,297 

seconds for the infant and 1366 seconds for the child, it is expected that the duration 

of the initiation phase will increase until a cut-off point is reached, at which point the 

initiation phase is non-existent. For the infant profile, the addit ion of 75 nM leads 

to little thrombin which is indicative that the cut-off point is within the proximity of 

that value. For the cut-off points, the x-axis requires an extension to 350,000 seconds 

as the initiation phase increases with decreasing thrombin curves (decreasing ETP 

and peak). 

Table 4.6 summarizes the slopes for the propagation and termination phases for all 

three age groups with varying levels of ATH. T he magnitude of the slopes for both 

the propagation and termination phases for the adult, child and infant age groups 

decrease wit h increasing levels of ATH. 
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Table 4.6: A summary of the propagation and termination phase slopes with varying 
levels of ATH in adults , children and infants. 

ATH Adult Slopes (nMs- 1
) Child Slopes (nMs-1

) Infant Slopes (nMs-1
) 

(nM) Propagation Termination Propagation Termination P ropagation Termination 

0 18.81 -5.08 12.96 -4. 10 6.97 -2.00 

5 18.11 -4.27 12.24 -2.90 6.68 -1.46 

10 17.77 -3.94 12.18 -2.63 6.56 -1.34 

15 17.35 -3.90 11.70 -2.57 6.34 -1.33 

20 17.08 -3.80 11.26 -2.42 3.91 -1.22 

25 16.41 -3.52 10.03 -2.08 2.46 -0.81 

As ATH concentration increases, less t hrombin is generated leading to lower thrombin 

peaks and decreased propagation slopes. This is expected as ATH is an inhibitor and 

its increase arrests the thrombin generation curve much quicker than lower ATH 

levels. The propagation slope changes from 18.81 to 16.41 (13%), 12.96 to 10.03 

(23%) , and 6.97 t o 2.46 (65%) for the adult , child and infant, respectively, while for 

the termination slopes the changes arc -5.08 to -3.52 (31%), -4.10 to -2.08 (49%) and 

-2.00 to -0.81 (60%) . The changes in both t he propagation and termination slopes 

are more profound with decreasing age, that is, the younger the individual, the more 

sensitive the slopes arc to ATH changes. 

4.4.4 Comparison of ATH reactions. 

At an arbit rary AT H concent ration of 10 nM, we ran t he model with each one of 

the five ATH reactions individually, to investigate how each reaction of a coagulant 

protein with ATH affected the thrombin generation outcomes. Simulations for t he 

adults, children and infants were performed, with results presented in Tables 4.7, 4.8, 
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and 4.9 below. The tables show the ETP, peak, and time to peak (TTP) for the 

different coagulation factors for the three age groups at 10 nM ATH, as well as the 

percentage change of each from the original (no ATH) value. 

Table 4.7: Inhibition by 10 nM ATH for each of the factors in the adult. 

Factor ETP ETP change Peak Peak change TTP TTP change 
(nM·sec) % (nM) % (sec) % 

II a 51 ,013 1.08 523 1.32 284 29.68 
X a 47,709 7.49 490 7.55 240 9.59 

VIla 51,569 0.00 530 0.00 219 0.00 
IX a 51 ,565 7.76 X 10-3 530 0.00 219 0.00 
XI a 51 ,213 6.90 X 10- l 525 0.94 220 0.46 

Original 51,569 0.00 530 0.00 219 0.00 
All rxns 50,622 3.70 516 2.64 336 53.42 

Table 4.8: Inhibition by 10 nM ATH for each of the factors in the child. 

Factor ETP ETP change Peak Peak change TTP TTP change 
(nM·sec) % (nM) % (sec) % 

II a 28,608 1.01 349 1.41 296 31.14 
X a 25 ,687 11.12 323 8.76 252 12.50 

VIla 28,900 0.00 354 0.00 224 0.00 
IX a 28,897 0.01 354 0.00 224 0.00 
XI a 28,607 1.01 350 1.13 225 0.45 

Original 28,900 0.00 354 0.00 224 0.00 
All rxns 28,286 2.12 343 3.11 370 65.18 

Table 4.9: Inhibition by 10 nM ATH for each of the factors in the infant. 

Factor ETP ETP change Peak Peak change TTP TTP change 
(nM·sec) % (nM) % (sec) % 

II a 22,356 -0.30 220 0.00 370 41.76 
X a 18,526 16.89 197 10.45 312 19.54 

VIla 22,290 0.00 220 0.00 261 0.00 
IX a 22,289 4.49 X 10- 3 220 0.00 261 0.00 
XI a 21 ,881 1.83 216 0.45 262 0.38 

Original 22,290 0.00 220 0.00 261 0.00 
All rxns 22 ,199 0.41 217 25.00 550 110.71 

In all three age groups, the potential inhibitory effect of AT H seems to be the strongest 
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in its reaction with factor Xa. This is evidenced by the lowest ETP values of 47,709 

nM·sec, 25,687 nM·sec, and 18,526 nM·sec, and the highest ETP changes of 7.49%, 

11.12%, and 16.89% for each of the age groups, compared to the other four factors 

within the group. The thrombin peaks follow a similar trend as ETP, the higher the 

peak, the greater the ETP with the greatest effect seen with factor Xa. However , the 

t ime to peak presents a different trend, it does not correspond with either the thrombin 

peaks or the ETP values. The longest time to peak and greatest time to peak change 

(29.68%, 31.14%, and 41.76%) is from the reactions of ATH with thrombin for the 

adult , child and infant at 284 seconds, 296 seconds, and 369.5 seconds respectively. 

Based on the percentage change values in Tables 4.7, 4.8, and 4.9, the factor VIla, 

IXa and Xla reactions with ATH seem to generate approximately the same amount 

of thrombin at similar peak and time to peak values. The inhibitory effect of ATH 

on thrombin generation seems to be affected predominately by the ATH reactions 

with factor Xa and factor Ira (thrombin). The reaction with factor Ira seems to delay 

t hrombin generation while that with factor Xa reduces the peak of thrombin gener

ated. The 'all reactions' simulation seems to generate the same amount of thrombin 

as the individual factor reactions with ATH but it is delayed in generating that same 

amount . 

4.4.5 Comparison with original model (no ATH). 

For the adult , thrombin generated for each of the added ATH reactions (see Table 4.8) 

is lower than for t he original model (51,569 nM·sec) as measured by ETP values except 

for the reaction with VIla (which gives the same amount of ETP as the original 

model). This is expected as each ATH inhibition reduces the concentration of each 

factor , leading to less thrombin being generated. For the factor Xa reaction with 
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ATH, the ETP level of 47,709 nM·scc is t he lowest of all individual factor reactions 

with ATH. The observation is the same for the child where thrombin generated gives 

an equal ETP value (28,900 nM·scc) for the factor VIla reaction with ATH compared 

to the thrombin (28,900 nM·scc) generated by the model with no ATH inhibition. 

The factor Xa reaction with ATH has the lowest thrombin generated in children 

(25,687 nM·scc) compared to the original model (28,899 nM·scc). For the infant, the 

thrombin generated is similar to the original model (22,290 nM·sec) for factors VIla 

and IXa but lower for factors X and Xla. However , compared to the model without 

ATH inhibition (original model), the ATH reaction with factor Ila gives a higher ETP 

(22,356 nM·sec) for the infant. When we have a higher ETP for a factor 's reaction 

wit h ATH than the corresponding ETP for the original model, this means that the 

inhibition works to increase the thrombin generation for some reason, while if we have 

a lower ETP the inhibition works to decrease the thrombin generated as expected. 

The reason the reaction of factor Xa and ATH gives the lowest thrombin generated 

as measured by ETP values is mostly likely due to factor Xa's crit ical importance 

in t he coagulation system. Factor Xa plays an important role in the conversion of 

prothrombin to thrombin after forming a complex Xa-Va with factor Va. Hence its 

reduction would have a significant impact on thrombin generated in the propagat ion 

phase. 

4 .4 .6 Comparison of all ATH reactions added with each ATH

factor reaction addition 

For the adult , the thrombin generated when all five factor reactions with ATH are 

included is lower than for each individual case, except for the ATH reaction with 

factor Xa. T his means that the inhibition by ATH, with all factor reactions included, 
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is much more effective in lowering thrombin levels than each individual reaction with 

ATH, except for the factor Xa. We observe the same for t he child profile but the 

infant is different. For all three age groups we observe that three factor reactions 

(IIa , VIla and IXa) wit h ATH each have an ETP value higher than when all ATH 

reactions arc included , meaning their individual reactions with ATH arc less effective 

compared to the overall inhibition . The ATH reactions with Xla and Xa seem more 

effective at lowering thrombin generated as evidenced by the lower ETP values than 

all the other factor reactions with ATH. 

When we have higher ETP values for each ATH-factor reaction added compared to 

that of the fully inhibited model , this (according to the model) means the collective 

inhibit ions arc more powerful than individual factor reactions with AT H (IIa, VIla, 

IXa and Xla for the adult and child) as expected in most cases. On the other hand, if 

the ETP values arc lower t hat could mean t he collective inhibit ions arc less effective 

in the inhibition of thrombin generation (Xa for all age groups and IXa for only t he 

infant) . In all age groups, ATH inhibit ion of factor Xa alone seems to be the most 

effective in lowering t hrombin even when compared to simulations wit h all five factors 

reacting wit h AT H. This could be explained by factor Xa having no competition in 

binding to ATH in the simulation . 

4 .5 Conclusion 

The addition of ATH to t he blood coagulation system seems to lead to a change 

in all the measured outcomes included in this part icular study. These changes are 

different for each age group, suggesting an age-relat ed difference in the initiation, 

propagation and termination of thrombin generation. Alt hough in all cases the ET P 
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values decrease wit h increasing ATH concentrations, the rate of the decrease in ETP 

is different , as shown in Tables 4.2, 4.3 and 4.4 and reflected by the ETP percentage 

change. It is clear that the rate of decrease in ETP decreases with age, suggest ing 

lower doses of ATH in children and infants for t he same effect as in adults. With the 

frequency of neonates and children receiving anticoagulant therapy being higher than 

in t he past [Monagle and ewall , 2012], age-related responses to anticoagulants have 

become more important when considering dosing strategies in children and infants. 



Chapter 5 

Conclusion 

5.1 Summary 

Quantitative differences in the coagulation system throughout childhood are well doc

umented. However , the impact of these differences on anticoagulants drugs is not fully 

known. In this thesis we used a mathematical model in an attempt to answer the 

following questions: 

• How is thrombin generation different in different age groups? 

• How does t he inhibitor ATH affect the thrombin generation in both children 

and adults? 

Using t he model, thrombin generation in children was investigated , including the effect 

of t he potential anticoagulant complex, ATH. Ordinary differential equations (ODEs) , 

based on enzyme reaction kinetics theory, were employed to describe the cascade of 

reactions known to lead to t hrombin generation, including kinetic reactions describing 

the interaction with ATH. 
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The model results agree wit h t he view that thrombin generation is delayed and reduced 

in children, which is in line with the developmental haemostasis principle. ATH has 

different effects on thrombin generation depending on the age group, as shown by 

the age-related changes in ETP values, and also t he thresholds in response to ATH 

concentration levels. It is likely that administration of ATH would t herefore require 

different dosage levels for different age groups. 

5.2 Limitations and future work 

Few experiments have been conducted on the usc of new anticoagulant drugs to treat 

thrombotic complications in children. Data largely adopted from clinical trials per-

formed on adult populations are usually relied upon. More well designed prospective 

trials are required to establish the optimal therapy for children with thrombotic prob-

lems. Direct comparison of the model results wit h literature is difficult as there is 

hardly any experiments with comparable data t hat describe both pathways. 

Following the study described in this work, a number of research areas could be 

suitable for future work. 

• Further validation of the model could be done. 

• There arc two ways in which ATH can interact wit h blood coagulation , direct 

and indirect. Further investigation into the indirect method (see Equation ( 4.2)) 

is necessary to fully ascertain the possible impact of ATH. Furthermore, the 

reversible reaction 

ATH + Ila ~ ATH= Ila k on) ATH-Ila , 
kofl 

(5.1) 



could be tested in the model [Chan et al. , 1997], where 

ATH= Ila denotes a non-covalent bond. 

' , 
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in the complex 

• With over 150 reaction rate constants in the model, it would be beneficial to 

identify the constants to which the model's predictive capacity is most sensitive 

by employing sensitivity analysis [Saltelli et al., 2008, Danforth et al. , 2009]. 

This would enable, where possible, rate constant improvements in t hose specific 

reactions that yield the greatest increase in predictive capacity. 

5.3 Conclusions 

To our knowledge, t his is the first attempt to investigate thrombin generation in 

children using a mathematical model and also the first to attempt to describe the 

effect of the anticoagulant ATH on the adult and child coagulation system. This is a 

significant fundamental step in t rying to understand ATH interaction with thrombin 

generation so as to find new anticoagulants that are effective, and also to help in 

determining appropriate dosage levels for clinical trials in the future. We conclude 

that the simulation results suggest a higher ability of ATH to suppress thrombin 

formation in children than in adults , thus lower amounts of ATH might be required 

in children undergoing antithrombotic t herapy. 
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