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ABSTRACT 

Recent studies have indicated that inhioition of apoptosis may play an important role 

m both multistep carcinogenesis and multidrug resistance (.MDR). Apoptosis is 

controlled through many cellular genes. The pattern of these apoptosis-regulating proteins 

varied in different cell types. The molecular mechanism of apoptosis in the multistep 

carcinogenesis and multidrug resistance of cervical cells is still poorly understood. 

To examine the role of apoptosis in tumorigenesis and chemoresistance of human 

endocervical cells, a cisplatin-resistant endocervical cell line (HEN-16-2/CDDP) was 

established by treating an HPV16-immortalized human endocervical cell line previously 

established in this lab, HEN-16-2, with cisplatin. A phenotype ofMDR was identified for 

HEN-16-2/CDDP by clonogenic survival efficiency assay using two structurally and 

functionally distinct anticancer drugs: cisplatin and paclitaxel. 

The thresholds to undergo apoptosis of HEN-16-2/CDDP cells in response to various 

apoptotic stimuli was compared with that of its parental HEN-16-2 cells. HEN-16-

2/CDDP cells were found to be significantly more resistant to cell death induced by 

several chemotherapeutic drugs, UV irradiation, anti-Fas antibody and heat shock. 

Moreover, the dysregulation of apoptosis in HEN-16-2/CDDP cells was found to confer 

tumorigenicity. Further characterization of HEN-16-2/CDDP cells indicated the 

following: 1) they displayed distinct morphologies in monolayer; 2) they had an 

increased rate of proliferation in medium containing physiological calcium levels; 3) they 

demonstrated anchorage-independent growth in vitro; 4) they expressed similar levels of 

pro-apoptotic genes, including p53, Bak, Bax and the anti-apoptotic gene Bcl-2, 
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compared to the drug-sensitive cell line, HEN-16-2; and 5) they expressed significantly 

higher levels of the anti-apoptotic gene Bcl-XL as well as the p50 and p33 isoforms of 

BAG-1. Overexpression of BAG-1 in cervical carcinoma C33A cell line confers 

resistance to cisplatin, etoposide and doxorubicin, but not to actinomycin D and 

paclitaxeL BAG-1 also protects C33A cells from apoptosis induced by heat shock and UV 

irradiation. 

The yeast two-hybrid system was established to screen BAG-1 interacting proteins 

from a human keratinocyte eDNA library. Eighteen positives were obtained from 2.5 

x 106 clones. Further analysis of the interacting clones identified four genes: Hsp 70, 

Hsp70-2, Hsc70 pseudogene and a putative novel Hsp70Y. Carboxyl-terminal amino 

acids of BAG-1 were found to be important in the mediation of the interactions. 

Overexpression of Hsp70 or Hsp70-2 in C33A cells conferred the resistance to 

various apoptotic stimuli, including cisplatin, doxorubicin, etoposide, paclitaxel, 

actinomycin D, heat shock and UV irradiation. 

In summary, this study provided the first in vitro evidence that inhibition of apoptosis 

conferred MDR and tumorigenesis in endocervical cells. Increased levels of Bcl-XL and 

BAG-1 p50 and p33 isoforms were found to be associated with this phenotype. Hsp70s 

were identified as BAG-1-interacting proteins from a eDNA library using the yeast two­

hybrid system, and further studies indicated that they may also contribute to the 

regulation of apoptosis. 
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CHAPTER I 

INTRODUCTION 

1.1. Apoptosis, carcinogenesis and cancer therapy 

1.1.1. General information on apoptosis 

The term, apoptosis, is derived from the Greek word used to descn'be the shedding 

of leaves from a tree during autumn. Apoptosis, as seen for example in the developing 

embryo and during tissue turnover in the adult, is a highly regulated cell suicide process. 

Developmentally regulated cell death, which has been studied in both invertebrates 

and vertebrates, has been referred to as programmed cell death (PCD) since the middle of 

the 19th century (Vogt, 1842). With the finding that regulated forms of cell death also 

occur in adult multicellular organisms, the term PCD was adopted to describe all forms of 

cell death that are mediated by an intracellular program. However, not until 1972 did a 

report formalize the existence of a form of cell death called apoptosis by describing its 

distinct morphological characteristics (Kerr et al., 1972). 

1.1.2. Morphological characteristics of apoptosis 

The earliest recognized morphologic apoptotic changes are: compaction and 

segregation of the nuclear chromatin; formation of sharply delineated, uniform, fine 

granular masses that become marginated against the nuclear envelope; condensation of 

the nucleus and cytoplasm; and the loss of surface cellular protuberances called microvilli 

(see review Kerr et al., 1994; Liepins and Bustamante, 1994). Progression of the 
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condensation is accompanied by convolution of the nuclear and cell outlines. This is 

followed by the breaking up of the nucleus into discrete fragments that are surrounded by 

double-layered envelopes and by budding or blebbing of the cell as a whole to produce 

plasma membrane-bound vesicles called apoptotic bodies. The extent of the nuclear and 

cellular budding varies with cell type. The cytoplasmic organelles within newly formed 

apoptotic bodies remain well preserved. 

Apoptotic bodies arising in tissues are quickly phagocytosed by neighbouring cells 

or macrophages and degraded within their lysosomes. There is no inflammation 

associated with the invasion of specialized phagocytes into the tissue, such as occurs with 

necrosis, and various types of resident cells, including epithelial cells, participate in the 

removal of apoptotic bodies. 

Similar morphologic events occur in vitro. However, most apoptotic cultured cells 

are in the floating population and apoptotic bodies formed in cell culture mostly escape 

phagocytosis and eventually degenerate. 

In addition to apoptosis, cell death can also occur by necrosis and senescence. 

Necrosis is believed to occur in response to more intense cell injury, resulting in a loss of 

osmotic balance. The distinction between apoptosis and necrosis is obvious by electron 

microscopy. Condensation of nuclear chromatin occurs in the early stages of necrosis, 

but the chromatin is not radically redistributed, as it is in apoptosis, and edges of the 

chromatin clumps tend to be irregular and poorly defined. The cytoplasm of the necrotic 

cell becomes grossly swollen, and plasma and organelle membranes progressively 

disintegrate. Most important, necrosis, unlike apoptosis, is not under biological control. 
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Senescence also causes little tissue damage, but is less well regulated, possibly 

representing a housekeeping form of cell death, as occurs during normal epithelial 

differentiation. 

1.1.3. Biochemical mechanism of apoptosis 

Along with the obvious morphological changes, distinct biochemical alterations are 

also associated with apoptosis. The most prominent is the random cleavage of the 

genome at intranucleosomal sites, which is detected in agarose gel electrophoresis as a 

DNA "ladder" composed of fragments in multiples of 180-200 base pairs (bp) (Wyllie, 

1987). However, this type of DNA fragmentation does not occur in some experimental 

systems (Ucker et al., 1992; Oberhammer et al., 1993; Schulze-Osthoff et al., 1994; 

Sakahira et al., 1998; Janicke et al., 1998). 

Apoptosis triggered by various stimuli has in common the ability to induce 

activation of a family of cysteine proteases called caspases, such as caspase-3, which 

cleave a variety of specific protein substrates (for review, see Cryns and Yuan, 1997; 

Nunez et al., 1998). Caspases implement cell death and "act"as the execution arm for 

apoptosis (Alnemri et al., 1996; Nunez et al., 1998). Caspases are crucial components of 

cell death pathways. They are normally present in the cell as zymogens that require 

proteolysis for activation of enzymatic activity. The mammalian caspases have been 

divided into upstream initiator caspases and downstream effector caspases, based on their 

sites of action in the proteolytic caspase cascade. Binding of initiator caspase precursors 

to activator molecules appears to promote procaspase oligomerization and autoactivation 
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by enzymatic cleavage of the procaspase into fragments. Enzymatic activation of 

initiator caspases leads to proteolytic activation of downstream effector caspases and then 

cleavage of a number of vital proteins, including poly(ADP-ribose) polymerase (P ARP), 

gesolin, MEKK-1, and Iamin (for review see Cryns and Yuan, 1997). PARP cleavage is 

observed in most forms of apoptosis (Kaufinann 1989; Kaufinann et al., 1993), and is 

often used as a marker of apoptosis. 

Among the downstream caspases identified, caspase-3 stands out because it is often 

activated by various cell death signals and cleaves many important cellular proteins, 

including PARP. It has been recently demonstrated that caspase-3 activates the 

endonuclease called caspase-activated DNase (CAD), which is responsible for the 

fragmentation of DNA, by specifically cleaving and inactivating the inhibitor of CAD 

(ICAD/DFF45) (Liu eta/., 1997; Enari eta/., 1998; Sakahira eta/., 1998). 

1.1.4. Regulation of apoptosis 

The regulation of apoptosis is summarized in Figure 1.1. Apoptosis can be 

triggered by a wide variety of stimuli, including chemotherapeutic drugs, ultraviolet light 

irradiation (UV), heat shock, cytokines, oxidative stress, growth factor deprivation, viral 

infections, genetic abnormalities, as well as normal differentiation and development. 

Moreover, the initiation of apoptosis involves biochemical changes that might be unique 

to each apoptotic stimulus (Ucker, 1997). 

The p53 tumor suppressor gene, the "guardian of the genome", has been clearly 

linked to apoptosis induced by various stimuli (Levine, 1997). Two alternative cellular 
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Figure 1.1. Apoptosis pathways (adapted from Reed, 1998b). Apoptosis can be triggered 

by a wide variety of stimuli (examples on the left), all of which have in common the 

ability to eventually induce activation of downstream caspases that cleave a variety of 

specific protein substrates, leading to apoptosis. The p53 tumor suppressor gene plays an 

important role in apoptosis, although p53-independent pathways leading to apoptosis also 

exist. The complexity of the p53 response may depend on the cellular context. At least 

two pathways leading to activation of downstream effector caspases have been identified: 

a mitochondria-dependent pathway clearly governed by the Bcl-2 family of proteins and 

a parallel pathway involving activation of upstream caspases, such as those involved in 

Fas signaling. Extensive cross-talk probably exists between these two pathways 

(bidirectional arrow). Several members of a family of apoptosis-suppressing proteins 

called inhibitor of apoptosis proteins (lAPs) have been shown to bind directly to the 

active forms of the downstream effector caspases, but not the upstream initiator caspases. 

Some of the lAP family can bind to and inhibit effector caspases. FLIP/FLAME family 

of proteins bind to the inactive zymogens of certain upstream caspases and prevent their 

activation under some circumstances. 

5 



Stimulus 

--1 Inhibition 

... Activation 

Bcl-2 & Bcl-XL 

l 
~tochondria 

Upstream 
caspases 

T 
FLIPs 

6 

Cytochrome c 
& Apaf-1 

Down­
stream 

caspases 

T 
X-IAP 
c-IAP-1 
c-IAP-2 

Execution 

Apoptosis 



responses occur as a result of p53 induction: growth arrest in the G 1 phase of the cell 

cycle or apoptosis. p53 was recognized as a regulator of apoptosis following the 

observation that transfection or activation of wild-type p53 in tumor cells can result in 

rapid apoptotic cell death (Yonish-Rouach et al., 1991; Levy et al., 1993). Studies 

demonstrated that cell death induced by serum deprivation in Myc-overexpressing cells 

or in interleukin-3 (ll ... -3) -dependent thymocytes required functional p53 to induce 

apoptosis (Wagner eta!., 1994; Hermeking and Eiclc, 1994; Canman eta!., 1995). DNA 

strand breaks induce rapid p53 upregulation, but exactly how remains unknown. The 

upregulation of p53 is mostly post-transcriptional, involving both an increase in 

translation and a prolonged protein half-life (Dragovich eta!., 1998). 

p53 is a sequence-specific DNA-binding protein, and known targets of p53 include 

genes associated with growth control, cell cycle checkpoints and DNA repair (e.g., 

W AF1/CIP1, WIP1, MDM2, EGFR, PCNA, cyclin D1, cyclinG, TGF-a, 14-3-3 a-, and 

GADD45), and apoptosis (Bax, Bcl-XL, FasL, IGF-BP3, PAG608 and DRS) (reviewed 

by Amundson et al., 1998). Activation of p53 results in a cascade of downstream events, 

depending on the cellular environment. Although most studies have focused on the 

involvement of p53 in regulating apoptosis, p53-independent apoptosis pathways were 

found to exist (Strasser et al., 1994). 

At least two apoptotic pathways leading to the execution of apoptosis have been 

identified (Figure 1.1 ): a mitochondria-dependent pathway that is clearly governed by 

Bcl-2 family proteins and a parallel pathway involving activation of upstream caspase-8, 

such as those involved in Fas and TNF receptor signaling. 
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Some cytokines, such as FasL and TNF-a, can bind to their receptors on the plasma 

membrane, causing trimerization of their receptors and thereby activation of an initiator 

caspase such as caspase-8 through interaction of the receptor with death adaptor proteins 

such as F ADD or TRADD (Baker and Reddy, 1998; Nuiiez et al., 1998). In addition, 

other apoptotic stimuli, such as the anticancer therapeutic agent using cis­

diamrninedichloroplatinum (II) ( cisplatin, CDDP), can cause mitochondria dysfunction. 

Mitochodrial dysfunction includes a reduction in the mitochondrial membrane potential 

(~'tflll), production of reactive oxygen species (ROS), opening of the permeability 

transition pore (PTP), and the release of the intermembrane space protein, cytochrome c 

(see review Gross et al., 1999). In response to cytochrome c binding, the apoptotic 

proteinase activating factor-! (Apaf-1) can form a complex with and then activate 

initiator caspase-9 (Li et al., 1997; Zou et al., 1997). Cross-talk probably exists between 

these two pathways within the cell. For example, Bid, a pro-apoptotic Bcl-2 family 

protein, is cleaved into two fragments by caspase-8 in response to signaling by Fas or 

TNF receptor. The C-terminal fragment of Bid then binds to mitochondria, thus initiates 

the mitochondria-dependent pathway to apoptosis (Li et al., 1998; Luo et al., 1998). 

Several members of a family of apoptosis-suppressing proteins called inhibitor of 

apoptosis proteins (lAPs) have been shown to bind directly to the active forms of the 

downstream effector caspases, such as caspase-3, and to potently inhibit their enzymatic 

activities (Deveraux et al., 1997; Roy et al., 1997). FLIP family proteins bind to the 

pro forms of certain upstream caspases, such as procaspase-8 and procaspase-1 0, and 

prevent their activation under some circumstances (Imler et al., 1997; Srinivasula et al., 
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1997). 

Different pathways involved in regulating cell proliferation and apoptosis may have 

different significance in various cells or within the same cell at different stages of 

development or differentiation. Extensive cross-talk probably also exists between 

proliferation and apoptosis within the cell. For example, Akt, a growth factor-dependent 

serine/threonine kinase, will phosphorylate Bad when the growth factor binds to the 

receptor. Bad is a Bcl-2 family protein and executes its pro-apoptotic function by 

binding to anti-apoptotic Bcl-2 and Bcl-XL Phosphorylated Bad is sequestered by 

cytosolic 14-3-3 protein, thus releasing and increasing the levels of free Bcl-2 and Bcl­

XL. Therefore, this growth factor-initiated signal pathway interferes with the Bcl-2- and 

Bcl-XL -dependent regulation of the cellular apoptotic threshold through Bad 

phosphorylation (Zha eta/., 1996; Gajewski and Thompson, 1996). 

1.1.5. Apoptosis in carcinogenesis 

1.1.5.1. Cellular basis 

Normal tissue has carefully balanced proliferation and apoptosis. Rates of 

proliferation are paired with rates of apoptosis so that cell numbers remain constant and 

tissue homeostasis is maintained (Figure 1.2A). However, given the critical role of 

apoptosis, it is not surprising that dysregulation of apoptosis occurs frequently during 

pathological disturbances. Neoplasia is a good example in which apoptosis is 

dysregulated. Carcinogenesis is characterized by the abnormal accumulation of cells. 

This accumulation of cells is generally accepted to be the result of enhanced cellular 
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Figure 1.2. The effect of relative rates of proliferation and apoptosis on homeostasis and 

carcinogenesis (adapted from Thompson, 1995). The rates of cell proliferation and 

apoptosis are indicated by the yellow and blue bars, respectively. In mature organisms, 

cell number is controlled by the net effects of cell proliferation and apoptosis, which are 

normally balanced and lead to homeostasis (A). In the absence of compensatory changes 

in the rates, increased cell proliferation (B), or decreased apoptosis (C), can result in cell 

accumulation, as seen in hyperproliferation, premalignancy and cancer. 
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proliferation (Figure 1.2B). However, recent mounting evidence suggests that the 

downregulation of apoptosis is also of critical importance resulting in an abnormal 

accumulation of cells during the initiation, promotion and transformation of some 

neoplasms (Figure 1.2C) (Reed, 1994; Reed et al., 1995; Thompson, 1995). 

In addition, apoptosis is important for metastasis. Apoptosis induced in the absence 

of native or the presence of foreign environment-specific factors in foreign sites may 

serve to prevent the survival of cancer cells that migrate from their native tissues 

(Williams et al., 1990; Neiman eta/., 1991; Raff et al., 1993; Cyster et al., 1994; Frisch 

and Francis, 1994; Boudreau et al., 1995). However, metastatic tumor cells have 

circumvented this homeostatic mechanism and can survive at sites distinct from the tissue 

in which they arose. For instance, epithelial cells that detach from the extracellular matrix 

in the process of metastasis rely on inhibition of apoptosis for survival in the absence of 

integrin-mediated signaling (Rabinovitz and Mercurio, 1996). Inactivation of the 

apoptosis pathway is thus a central event in the development of cancers. 

1.1.5.2. Molecular basis 

Recent advances are beginning to shed some light on the molecular basis for the 

role of apoptosis in carcinogenesis. Mutations or dysregulated expression of apoptosis­

related genes, often in synergy with other genetic lesions that result in a high rate of 

proliferation, can be shown to result in tumor development. The relationship between the 

acquisition of these genetic lesions and the development of cancer is complex and highly 

tissue-specific. 
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Several types of genes that can be critical in the regulation of apoptosis have been 

defined. Bcl-2 production at abnormally high levels or in aberrant patterns is found in 

approximately half of all human cancers, suggesting that deregulated expression of this 

proto-oncogene represents one of the most common events associated with human 

malignancy (Reed, 1995a). Recently, it has been demonstrated that Bcl-2 is only one 

member of a gene family that can control the cellular apoptotic threshold (Boise et al., 

1993; Kozopas et al., 1993; Lin et al., 1993; Oltvai et al., 1993). 

The wild-type p53 gene product influences several essential processes that prevent 

potentially oncogenic mutant cell propagation. It appears to have a direct role in DNA 

repair and also plays a role in regulating DNA repair enzymes, arresting cellular growth 

and inducing apoptosis following exposure to genotoxic stress. Loss of p53 function is 

strongly associated with the development and progression of many tumor types (Hollstein 

et al., 1994). Moreover, studies in transgenic mice have confirmed the notion that the 

tumor suppressor role of p53 in vivo is closely linked to its ability to induce apoptosis 

(Symonds eta/., 1994; Donehower et al., 1995). 

A number of viral oncoproteins have been shown to play roles in regulating 

apoptosis. Examples are the E1B of adenovirus and E6 of human papillomavirus (HPV). 

ElB and E6 disable the p53 pathway in apoptosis, canceling the pRB-mediated cell death 

response to E1A or E7, respectively (Rao eta/., 1992; Debbas and White, 1993; White et 

al., 1994). 

lAPs can block downstream effector caspase and therefore inhibit apoptosis. An 

example is survivin, one member of the lAP family. Survivin is not detectable in adult 
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differentiated tissue; however, it is expressed in most cancers tested, including lung, 

colon, breast, prostate, pancreatic cancers, high grade lymphomas, neuroblastomas and 

gastric carcinoma (Ambrosini et al., 1997; Adida et al., 1998; Kawasaki et al., 1998; Lu 

et al., 1998). Overexpression of FLIPs (the inhibitors of upstream initiator caspases) is 

also detected in some human cancers (Irmler et al., 1997). 

1.1.6. Apoptosis in cancer chemo- and radiotherapies 

Cancer chemo- and radiotherapies kill targeted malignant cells by causing 

irreversible cellular damage. The mechanism of this action was previously thought to be 

due to cell necrosis. However, recent studies have indicated that induction of apoptosis is 

the primary cytotoxic mechanism of action of most radio- and chemotherapeutic agents 

(Kerr et al., 1994). Immunohistochemical assays specific for apoptotic cell death have 

revealed that cell death by apoptosis, not necrosis, often follows radiotherapy or 

chemotherapy (Eastman, 1990; Hickman, 1992). Consistent with this notion, clinical 

data has suggested that there are prognostic links between treatment outcome and distinct 

molecular genetic alterations that are known to regulate apoptosis (Fung and Fisher, 

1995). Overexpression of Bcl-2 or related genes can result in a multidrug resistance 

~R) phenotype in vitro (Reed, 1995b; Thompson, 1995). 

1.2. Drug resistance of cancer ceUs 

1.2.1. General information 

The response of tumors to chemotherapy varies. Failure to respond is frequent and 
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is due usually to the emergence of drug resistance. Drug resistance is one of tlue major 

obstacles hindering the success of conventional antineoplastic agents. In Canada, drug 

resistance is the principal explanation for the high mortality rate (approximately 65 %) 

from many cancers found in men and/or women (NCIC, Canadian Cancer Sttatistics, 

1999). The significance of this is exemplified by the fact that cancer causes a greater loss 

of potential years of life than any other disease, including heart disease. 

Patterns of drug resistance are divided into two groups: intrinsic and acquired. 

Intrinsic drug resistance is seen when previously untreated cancers are resistant to 

chemotherapeutic agents and is observed in patients with malignant melanomaas, non­

small cell lung cancers, pancreatic cancers, renal cancers, and colon cancers. -rumors 

with acquired drug-resistance, including breast carcinomas, small cell lung cancers, acute 

leukemias, ovarian carcinomas, and cervical carcinomas, are responsive to• initial 

treatments, but often become refractory to further therapy. Relapse of tumors, particularly 

during or shortly after the completion of therapy, generally heralds the emerg-ence of 

tumor cells that are resistant to the antineoplastic agents used initially and often 11o other 

drugs to which the patient was never previously exposed. 

The phenomenon of clinical drug resistance has prompted studies to idenrtify the 

mechanisms involved. Using in vitro (tissue culture) and in vivo (animal and xenograft) 

models, a number of physical and biochemical mechanisms of drug resistance hawe been 

identified (Table 1.1 ). Physiological resistance to chemotherapy implies the host-drug­

tumor interactions or anatomic drug barriers. Some physiological and biochemical 

mechanisms can overlap. Traditionally, the term "drug resistance" in basic scienc-e refers 
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to biochemical resistance that is seen in the targeted tumor cells, as opposed to changes 

such as the detoxification of drugs by the non-malignant liver. 

Table 1.1. General mechanisms contributing to drug resistance 

Physiological Mechanisms 

Anatomic drug barriers 

Host-drug-tumor interactions 

Biochemical Mechanisms 

Decreased intracellular drug accumulation 

Decreased influx 

Increased effi.ux 

Altered intracellular drug metabolism 

Increased inactivation 

Decreased pro-drug activation 

Increased drug detoxification 

Altered drug targets 

Changes in molecules involved in repair of cellular damage 

Cellular oncogene and tumor suppressor genes in drug resistance 

Apoptosis regulation in drug resistance 

1.2.2. Biochemical mechanisms 

To understand the complexity of the biochemical mechanisms of drug resistance, it 

is essential to realize that cell killing by each cytotoxic drug is a complex process (Figure 

1.3). While some drugs can enter the cell by passive diffusion through the plasma 

membrane lipid bilayer, other agents require the presence of special membrane carriers 

and/or pores for entry. Some drugs are inactive in the form in which they enter the cell 
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and need to be activated through chemical modification by appropriate cellular enzymes. 

An active drug inside the cell needs to reach and bind to its specific target, such as DNA 

or microtubules, and interfere with its normal function. These events could trigger cell 

growth arrest or apoptosis. 

The alteration of any step between drug uptake and cellular damage response genes 

could result in drug resistance. Generally, the mechanisms of drug resistance can be 

described as those which limit the extent of drug-induced damage or alter the cellular 

response, and can be categorized into the following six areas. 

1.2.2.1. Altered intracellular drug influx or emux 

Decreased intracellular accumulation of cytotoxic agents due to decreased influx or 

increased efflux is one of the most common mechanisms of drug resistance. This may 

result from decreased drug influx due to a defective carrier-mediated transport system. 

Decreased influx via a reduction in high affinity folate-binding protein transport as well 

as via a reduced folate carrier has been identified in methotrexate resistant cells (Hill et 

al., 1979; Sirotnak et al., 1981; Antony et al., 1985; Dixon et al., 1994). Similarly, a 

deficient membrane influx transport system has been identified in cells resistant to 

nitrogen mustard (Goldenberg et al., 1970). 

Enhanced drug efflux may also lower intracellular steady state levels of drugs. 

Classical MDR is frequently associated with overexpression of P-glycoprotein (Pgp ), a 

transmembrane transport protein capable of expelling and maintaining tolerable 

intracellular levels of certain cytotoxic drugs (Juliano and Ling, 1976; Endicott and Ling, 
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1989). Pgp belongs to the ATP binding cassette (ABC) family of transporter molecules, 

directly binds cytotoxic compounds and expels them from the cell through an energy­

dependent efflux mechanism (Hyde eta!., 1990; Beck and Qian, 1992; Germann et al., 

1993; Breuninger eta/., 1995; Bosch and Croop, 1996). Transducing the eDNA ofmdr-1 

(the gene encoding Pgp) into tissue culture cells resulted in an :rviDR phenotype, even 

before stable cell lines were selected (Gros et aL, 1986; Croop et al., 1987). In addition., 

the incorporation of purified Pgp into liposomal membranes has demonstrated th~t Pgp is 

able to hydrolyze ATP and transport drugs (Saeki et a!., 1992; Thierry et aL, 1992; 

Sharom et al., 1993; Naito and Tsuruo, 1995; Shapiro and Ling, 1995; Dong et al., 1996; 

Eytan et al., 1997). lVIDR-related protein (MRP) family members, MR.P1, MRP2, MRP3, 

MRP4, MRP5, and cMOAT, are other members ofthe ABC family oftransporters (Cole 

et al., 1992; Krishnamachary and Center, 1993; Zaman et al., 1994; Lautier et al., 1996; 

Kool et al., 1997). 

Lung-related protein (LRP) is also associated with an MDR phenotype (Scheper et 

al., 1993). It has been identified as the major component of certain nucleoprotein 

particles (vaults), which possibly translocate cytotoxic drugs from nuclei to cytoplasmic 

vesicles, which in tum release their contents at the cell surface (Scheper et al., 1993; 

Izquierdo eta/., 1996). 

1.2.2.2. Altered intracellular drug metabolism 

The cytotoxicity of many chemotherapeutic agents is determined by the enzymatic 

conversion of the drugs into their active metabolites. For example, 5-:tluorouracil (5-FU) 
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is a pro-drug, and must be activated to its cytotoxic form by the targeted tumor. 

Resistance to such nucleic acid base and nucleoside drugs has been associated with 

decreased conversion of these analogues to their cytotoxic nucleoside and nucleotide 

derivatives by phosphorylases, ki.nases and the phosphoribosyltransferase salvage 

pathway (Drahovsky and Kreis, 1970). 

Furthermore, cellular factors involved in detoxifying chemotherapeutic agents 

could impact on the cytotoxicity of drugs that have gained access to the intracellular 

compartment of tumor cells. A number of mechanisms may permit detoxification. For 

example, glutathione (GSH), is an important intracellular antioxidant. When a compound 

is conjugated with GSH, the compound becomes more hydrophilic, more readily 

excreted, and usually less toxic (O'Brien and Tew, 1996). A group of cytosolic enzymes 

termed GSH-S-transferases (GSTs) conjugate certain drugs with GSH. This 

detoxification mechanism may require vesicle-mediated transport of GSH-drug 

conjugates by a poorly understood ATP-dependent GS-X pump. Overexpression of 

GST -1t leads to resistance to alkylating drugs and to platinum compounds through their 

conjugation with GSH (Ozols et al., 1990). Further study indicates that many drug­

resistant cell lines have increased expression or activity of GSH and/or related enzymes 

(O'Brien and Tew, 1996). 

Metallothioneins (MTs) are low molecular weight intracellular proteins 

characterized by high cysteine content and affinity for binding heavy metals. These 

proteins are located mainly in parenchymal tissues such as the liver, gut and kidneys, 

where they play a role in the detoxification of cadmium, platinum and certain other heavy 
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metals and in the regulation of normal zinc and copper metabolism. Overexpression of 

MTs has been correlated with acquired resistance of cancers to cytotoxic alkylating 

agents and to cisplatin through an unknown mechanism (Mousseau eta!., 1993; Kelley et 

al., 1988; Lohrer and Robson, 1989; Kaina eta/., 1990). 

In addition, enhanced inactivation of pyrimidine and purine analogues by elevated 

deaminases and oxidases has been linked to resistance toward these agents (Steuart and 

Burke, 1971; Hunt and Hoffee, 1983). 

1.2.2.3. Altered drug targets 

The mechanisms of cytotoxicity of several antineoplastic drugs involve interactions 

between the drugs and essential intracellular enzymes that consequently alter or inhibit 

normal functions. Quantitative or qualitative changes in these enzyme targets of 

antineoplastic drugs can compromise drug efficacy. 

Topoisomerase (Topo) II is a nuclear enzyme that modifies the topologic state of 

DNA to facilitate strand relaxation, controlled cleavage, and religation of the DNA helix 

during replication and repair. It also serves a role during chromosome segregation in 

mitosis. Topo II is an important target of several antineoplastics, including etoposide and 

doxorubicin, which bind to and inhibit Topo II enzymatic religation, thereby stabilizing 

the enzyme-DNA cleavage complex. Qualitative changes affecting Topo II activity in 

selected cell lines result in an MDR phenotype similar to that described for Pgp, with the 

characteristic exception of preserved sensitivity to microtubule-targeting agents, such as 

Taxol (Potmesil et al., 1987). Alterations of several other enzymes, including the 
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methotrexate-targeted d.ihydrofolate reductase, are associated with drug-resistance (Haber 

et al., 1981). 

1.2.2.4. Changes in molecules involved in repair of cellular damage 

Cells contain multiple complex systems involved in damage repair, especially in 

their membranes and DNA. Because such damage may occur as a direct or secondary 

consequence of cytotoxic drug action, altered repair mechanisms can influence drug 

sensitivity of tumor cells. 

For instance, alkylating agents induce lethal DNA damage by forming covalent 

bonds with nucleophilic sites in DNA. The N7 and 06 atoms of guanine are probably the 

main targets for alkylation of DNA. Repair of DNA adducts represents one of the main 

mechanisms o.f cellular protectio~ and one important DNA repair enzyme is 06-

methylguanine-DNA methyltransferase (MGMT), which removes alkyl adducts from the 

06 atom of the guanine base (Gerson et al., 1995). A striking correlation between 

MGMT activity and resistance to nitrosourea and cisplatin has been demonstrated both in 

vitro and in xenograft models (Pegg eta!., 1984; Gerson et al., 1994). 

Correlation between mutations in DNA mismatch repair genes, such as hMLHI, 

and resistance to N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and cisplatin has been 

reported (Kat et al., 1993). Introduction of wild-type hMLffi gene-carrying chromosome 

3 into hMLH1 mismatch repair-deficient HCT-116 human colon cancer cells restored 

mismatch repair efficiency and conferred increased sensitivity to MNNG (Koi et al., 

1994). 
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1.2.2.5. Cellular oncogenes and tumor suppressor genes in drug resistance 

It has recently been appreciated that changes in the level or activity of cellular 

oncogene and tumor suppressor gene products may be responsible for resistance to a 

broad range of drugs. There are a number of such cellular genes whose upregulatio~ 

downregulation or mutation contributes to drug resistance. 

For example, c-fos and c-jun proto-oncogene levels can be elevated in 

chemoresistant cells (Bhushan eta/., 1992; Yamazaki eta/., 1994; Moffat eta/., 1996). 

Also, a relationship between cisplatin resistance and overexpression of the c-myc gene 

has been observed in an erythroleukemia cell line (Sklar and Prochownik, 1991). 

Transfection of c-myc enhanced cisplatin resistance of Nlli 3T3 cells, and antisense 

oligonucleotide to c-myc RNA enhanced cisplatin sensitivity of urinary bladder cancer 

cells (Niimi eta/., 1991; Mizutani eta/., 1994; Sanchez-Prieta et al., 1995;). Serially 

transplanted tumors that survived treatment with cisplatin displayed elevation in c-myc 

expression, and their growth could be inhibited by c-myc antisense RNA (Walker eta/., 

1996). In additio~ blocking Ras oncogene product function by famesyltransferase 

inhibitors caused increased radiosensitivity and chemosensitivity (Bernhard eta/., 1996; 

Danesi et a/., 1996). Furthermore, studies have correlated Her-2/neu oncogene 

expression with intrinsic MDR of human non-small cell lung cancer cells (Tsai eta/., 

1993), and transfection of Her-2/neu conferred chemoresistance on these cells (Tsai et 

a/., 1995). Blocking Her-2/neu receptor function by emodin and tyrphostin, inhibitors of 

tyrosine kinase activity, sensitized Her-2/neu-overexpressing lung cancer cells to in vitro 

killing by cisplatin, doxorubicin, or etoposide (Tsai eta!., 1996; Zhang and Hung, 1996). 
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One of the roles of p53 is to regulate the cell cycle. Functional p53 is required for 

G 1 cell cycle arrest in response to DNA damage. The loss or mutation of p53 can affect 

drug sensitivity or resistance (Ruley, 1996; Velculescu and El-Deiry, 1996; Gallagher et 

a/., 1997; Coukos and Rubin, 1998). pRB is another cell cycle regulator/tumor 

suppressor gene that is involved in drug resistance (Wang eta!., 1998; Yamamoto et al., 

1998; Yoo eta!., 1998). Studies have shown that cells null for the p21 WAFliCIPl cell cycle 

regulator display defective repair of in vitro damaged DNA and are more sensitive to the 

cytotoxic effects of a variety of cytotoxic drugs, as well as to UV (McDonald et al., 1996; 

Waldman eta!., 1996). Recently, p27KIP1 has been also demonstrated to play a role in 

drug resistance in some neoplasia (for review, see Lloyd eta/., 1999). 

1.2.2.6.. Apoptosis regulation in drug resistance 

In addition to the role of apoptotic inhibition in oncogenesis (section 1.1.5), it is 

becoming clear that the same process is involved in the drug resistance of many cancers. 

This is because essentially all chemotherapeutic drugs available to date, as well as 

radiation, ultimately act on tumor cells through apoptosis. The Bcl-2 family proteins 

have been implicated not only in the pathogenesis of cancer, but also in resistance to 

chemotherapy. Anti-apoptotic Bcl-2 expression correlates with poor response to 

chemotherapy and shorter survival for patients with some types of lymphomas, acute 

myelogenous leukemias, and prostate cancers (Lotem et al., 1993; Campos eta!., 1993; 

Reed, 1995a; 1995b; 1998). Conversely, reductions in Bcl-2 achieved by antisense 

methods sensitize cells to multiple chemotherapeutic drugs (Webb et al., 1997). 
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Therefore, the ability ofBcl-2 to block cell death induced by all types of anticancer drugs 

indicates that Bcl-2 represents a novel :MDR protein. Overexpression of Bcl-2 protein 

prevents drug-induced apoptosis. Antineoplastic agents interfere with DNA synthesis, or 

interfere with microtubule formation in tumor cells that contain high levels of Bcl-2, but 

the cells remain viable for protracted periods of time, resulting in enhanced clonogenic 

survival. Bcl-XL, another anti-apoptotic Bcl-2 family member, can also confer high-level 

resistance to chemotherapeutic agents (Minn et al., 1995; Taylor et al., 1999). 

Downregulation of pro-apoptotic Bcl-2 family proteins can result m drug 

resistance. Consistent with this notion, overexpression of Bax protein rendered tumor 

cells more sensitive to many anticancer drugs (Bargou et al., 1996). Ablating Bax 

expression reduced drug-induced apoptosis (Perez et al., 1997). 

The Bcl-2 family members are also linked to drug sensitivity and resistance through 

their regulation by p53. Numerous studies have linked p53 to apoptosis in cases when 

DNA is damaged by anticancer drugs (see section 1.1.4). Inactivation of p53 correlates 

with enhanced resistance to anticancer drugs and a poorer prognosis in most human 

malignancies (Harris and Hollstein, 1993; Lowe et al., 1994). In a controlled experiment 

using genetically defined tumors in immunocompromised mice, mutation of p53 was 

associated both with resistance to chemotherapy and with tumor relapse (Lowe et al., 

1994). 

1.3. Molecular mechanism of multistage cervical cell carcinogenesis 

1.3.1. The role ofHPVs in cervical oncogenesis 
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Cervical cancer was recognized as a sexually transmitted disease more than a 

century ago and since then numerous infectious agents have been SU!ggested to play a 

causative role (reviewed by zur Hausen and de Villiers, 1994; Alani and Mfinger, 1998). 

A subset of the more than 90 papillomaviruses (HPV s) was detected in more than 90% of 

cases of cervical carcinoma, providing compelling evidence for HPV infection as a 

causative factor (zur Hausen, 1991a; Bosch eta!., 1995; Alani and Miin:_ger, 1998). 

HPV s are small DNA viruses that are found in many vertebrate species and contain 

approximately 8 kb double-stranded circular genomes, which are generally divided into 

three distinct regions: early (E), late (L), and long control regions (LCR) (Figure 1.4). 

The early region open reading frames (ORFs) are designated El, E2, E-4, E5, E6 and E7, 

and encode proteins required for viral DNA replication, viral RNA t:Iranscription, viral 

and cellular gene regulation, and oncogenesis. The late ORFs, L1 an<i L2, encode viral 

capsid proteins. The LCR, also called the noncoding region or up:stream regulatory 

region, is found between the 3' end of the late region and 5' end of th-e early region. It 

contains DNA elements that regulate HPV RNA transcription and DNA replication by 

interacting with viral and cellular transcription and replication factors (Eoppe-Seyler and 

Butz, 1994). 

The anogenital HPV s are generally categorized into two groups based on their 

ability to induce viral-associated cancers: low-risk (not associated with cancer) and high­

risk (cancer-associated) (de Villiers, 1989). Generally, low-risk HPVs, smch as HPV6 and 

11, are associated with benign genital condylomas and oral and other papillomas; while 

high-risk HPV s, such as HPV16 and 18, are increasingly associ::-.ted with normal 
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Figure 1.4. Genomic organization of HPV16 (adapted from Alani and MOnger, 1998). 

All papillomaviruses contain a double-stranded circular DNA genome of approximately 8 

kb. Transcription occurs from only one strand of DNA. Nucleotide positions are 

indicated in the circle. 
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epithelia, low-grade squamous intraepthelial lessions (LSILs ), high-grade squamous 

intraepthelial lessions (HSILs), and invasive carcinomas (zur Hausen, 1991a). 

Although infection with high-risk HPV types is relatively common, few infected 

women eventually develop cervical carcinoma. In addition, the interval between primary 

HPV infection and cervical cancer is usually several decades, suggesting that HPV 

infection alone is insufficient to generate the fully malignant phenotype (zur Hausen, 

1994; Ponten et al., 1995). Therefore, other events are also required for the development 

of cervical cancer. 

In vitro studies demonstrated that transfection of high-risk HPVs, such as HPV16 

and 18, can initiate immortalization of ectocervical and endocervical cells (Pirisi et a/., 

1987; Woodworth et al., 1988; Tsutsumi et al., 1992; Pecoraro et al., 1989; Woodworth 

et al., 1989). Furthermore, cotransfection ofHPV16 or 18 with an oncogene, such as c­

myc, v-fos or H-ras, transformed rodent cells and primary human fibroblasts and 

keratinocytes in vitro (DiPaolo et al., 1989; Durst et al., 1990; Pei et al., 1993), 

suggesting that HPV s can cooperate with oncogenes in carcinogenesis. 

1.3.2. Functional consequences of high-risk HPV E6 and E7 oncogenes 

Two genes of the high risk HPV s, namely E6 and £7, can immortalize and 

transform cells by cooperating with other oncogenes (Bedell et al., 1989; Phelps et al., 

1988; Storey et al., 1988; Storey and Banks, 1993). The E6 and E7 viral oncoproteins of 

high-risk HPV s have also been shown to be selectively maintained in most virally 

induced tumors (Schneider-Gadicke and Schwarz, 1986; Pater and Pater, 1988; Hawley-
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Nelson et al.~ 1989; Woodworth et a/.~ 1989; van den Brule et al.~ 1991; zur Haus~ 

1991b). 

One property of E6 and E7 that may contribute to oncogenic genetic changes is 

their fortuitous modulation of the cellular response genes to DNA damage (Figure 1.5). 

Normally~ DNA damage results in the accumulation of wild-type p53 protein (section 

1.1.4), which increases p21 wafl/cipl, which in tum inhibits the activation of cyclin-cdk 

complexes that phosphorylate retinoblastoma tumor suppressor protein (pRB). 

Consequently E2F transcription factors therefore remain associated with pRB and are 

unable to activate transcription of genes required for progression from G 1 into S phase. 

Consequently~ cells ~e arrested in G1, and this G1 arrest is thought to allow repair of 

damaged DNA. 

The immortalization and transformation activities of high-risk HPV E6 and E7 

correlate, at least in part, with their inactivation of p53 and pRB (Dyson et al.~ 1989; 

Heck et a/.~ 1992; Mansur et al.~ 1993; Mtinger et al.~ 1989; Nakagawa et al., 1995; 

Wemess et al., 1990). The E6 oncoprotein of the high-risk HPVs 16 and 18 binds p53 

and promotes its ubiquitin-mediated degradation (W emess et al., 1990; Scheffuer et al., 

1990; 1994). Similarly, the E7 protein has been shown to bind pRB and modify pRB 

function (Dyson et al., 1989; Dyson eta/., 1992; Davies et al., 1993). The cyclins, cdk 

and other cellular targets that regulate normal cellular function may also be dysregulated 

by viral E6 and E7 oncoproteins. Moreover, apoptotic cell death is another important 

response to DNA damage that may also be influenced by HPV oncoprotein expression. 

In cervical tumors that are not associated with HPV infectio~ p53 and pRB may be 

29 



DNA 
damage 

~ 
Apoptosis ~ e t--

JI e 
/1 
_.~ 
'\,t 

Gl arrest 1 

Figure 1.5. Effects of HPV oncoproteins on the cell cycle and apoptosis pathway 

(adapted from Alani and Miinger, 1998). 
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inactivated by mutations, such as deletions, splice site changes and codon substitutions, 

rather than by binding to a viral protein (Crook et al., 1992). 

1.3.3. In vitro cervical cell model of in vivo multistage carcinogenesis 

The initiation of cervical cancers is mostly caused by HPV infection (section 1.3.1 ). 

After initiation, the cells may be exposed to some tumor promoting reagents and 

experience further genetic alterations, such as mutation and activation or inactivation of 

oncogenes and tumor suppressor genes (section 1.3.2). A single cell acquires a growth 

advantage and/or inhibition of apoptosis to form a clonal malignant tumor (section 

1.1.5.1). Both physical and chemical factors could contribute to the further progression 

of cervical cancers after initiation. 

Carcinogenesis, or the process of cancer development, in most instances involves a 

long period of latency. During this time, endogenous and/or exogenous carcinogenic 

agents act on individual cells and cause genetic alterations, mostly involving oncogenes 

and tumor suppressor genes. Most cancers are clonal in origin. Cancer development 

involves several successive rounds of gene mutations, and tumor progression is usually a 

multistage progression. 

Similar to the preceeding description of cervical carcinogenesis in vivo, the 

multistage nature of cancer also can be observed in the carcinogenesis of human cervical 

cells in vitro. Figure 1.6 is a schematic representation of in vivo and in vitro cervical 

carcinogenesis. In this scheme, HPVs initiate carcinogenesis in vivo after infecting 

endocervix-derived metaplastic cells at the transformation zone, where almost all cervical 
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Figure 1.6. In vivo and in vitro cervical multstep carcinogenesis. 
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neoplasia is formed (Vousden, 1989; Sun et al., 1997). Alternatively, normal metaplastic 

endocervical cells in vitro are HPV -transfect~ im.mortaliz~ and become transformed 

(Tsutsumi eta/., 1992; Sun et al., 1992; 1997; Yang eta/., 1996a). 

High-risk and low-risk HPV s are found in low-grade squamous intraepithelial 

lesions (LSILs) in vivo and both types also extended the cell life span in in vitro cell 

culture. Further modifications of cellular genes resulted in mainly high-risk HPV­

containing high-grade squamous intraepitheliallesions (HSILs) in vivo or isolated clones 

of immortalized cells in vitro. However, these events are insufficient to transform 

cervical cells in vivo or in vitro and produce invasive cervical carcinoma. Other factors, 

such as smoking, or cigarette smoke condensate (CSC) are required to efficiently induce 

further changes in other cellular genes and transform some of the high-risk HPV­

containing HSILs, or -immortalized cells to form invasive tumors (Yang et al., 1996a; 

Nakao et al., 1996). 

1.4. BAG-1 and its associated proteins 

BAG-1 is a protein with multiple isoforms: p50, p46, p33 and p29. Each isoform is 

initiated from an alternate translational start site (Yang et al.. 1998a; Zapata eta/., 1998). 

The BAG-I p50 isoform is distributed predominantly in the nucleus, while other isoforms 

are located mainly in the cytoplasm or membranes (Yang et al., 1998a), suggesting that 

BAG-1 is a multifunctional protein. 

BAG-1 was initially identified as Bcl-2 binding proteins (Takayama et al., 1995). 

Bcl-2 is a key inhibitor of apoptosis (see section 1.1.4), and BAG-1 can enhance the 
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ability of Bcl-2 to inhibit apoptosis induced by staurosporine and anti-Fas antibody in 

Jurkat T cells (Takayama et al., 1995), or by NGF withdrawal in neuronal PC12 cells 

(Schulz et al.. 1997). BAG-1 can interact with Raf-1, which can bind to Bcl-2 and 

cooperate in the suppression of apoptosis, and activates its protein kinase in vitro and in 

vivo (Wang et al., 1996). In addition, BAG-1 was found to bind hepatocyte growth factor 

(HGF) and platelet-derived growth factor (PDGF) receptors, and enhance their ability to 

inhibit apoptosis (Bardell et al., 1996). Further, overexpression of BAG-I inhibits the 

apoptosis induced by staurosporine in 3T3 fibroblasts and C33A cervical carcinoma cells 

(Takayama et al., 1995; Yang et al., 1999a), heat shock in GM701 immortalized 

fibroblasts (Takayama et al., 1997), and IL-3 withdrawal in IL-3-dependent B cell line 

Ba/F3 (Clevenger et al., 1997). Thus, BAG-1 was identified as a Bcl-2-dependent and­

independent anti-apoptotic molecule. 

BAG-1 is capable of interacting with various other cellular proteins (Figure 1. 7). 

BAG-1 can to form. complexes with a number of steroid hormone receptors, such as 

estrogen receptor (ER), androgen receptor (AR), and glucocorticoid receptor (GR) and 

modulates their function (Zeiner and Gehring, 1995; Froesch et al., 1998; Kullm.ann et 

a/., 1998). Recently, BAG-1 was demonstrated to interact with Siah-1A, which can 

inhibit p53-dependent cell-cycle arrest, and to inhibit Siah-1A function (Matsuzawa et 

a/., 1998). In late 1997, BAG-1 was demonstrated to interact with heat shock protein 70 

chaperones (Hsp70s) and modulate their chaperone activity (Takayama et a!., 1997, 

Zeiner eta/., 1997, Hohfeld and Jentsch, 1997). I also independently identified Hsp70 

and Hsp70-2 as BAG-1-binding proteins using the yeast two-hybrid system during that 
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Figure 1. 7. BAG-1-interacting proteins. Proteins in blue color were demonstrated to 

interact with BAG-I before 1997. Proteins in yellow were demonstrated to interact with 

BAG-1 since 1997, when screening for BAG-1-interacting proteins using the yeast two­

hybrid system began. 
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time. The Hsp70 family comprises molecular chaperones that play a key role in the 

folding, translocation and degradation of proteins in eukaryotic cells through their 

capacity to bind and stabilize non-native protein conformations (Hartl, 1996; Rudiger et 

a/., 1997; Bakau and Horwich, 1998). Hsp70 is also known to regulate apoptosis (Gabai 

et al., 1995; Mosser et a/., 1997; Jaattela et al., 1998) and may thus play a role in 

tumorigenicity and drug resistance (Kaur and Ralban 1995, Ralban eta/., 1995; JaatteHi 

1995; Vargas-Roig et al., 1998). 

BAG-1 was demonstrated to increase pulmonary metastases in mice (Takaoka et 

a/., 1997). Furthermore, BAG-1 is present at much higher levels in cervical tumors and 

breast tumors than in surrounding normal tissue (Yang et a!.. 1999a, 1999b ). BAG-1 bas 

also been shown to be expressed at higher levels in lung, breast and cervical tumor cell 

lines than their non-tumor counterparts (Takayama et al.. 1998; Yang et a/., 1998b; 

1999a; 1999b; Zapata et a/., 1998). Moreover, the increased expression of BAG-1 

correlates with enhanced resistance of cervical carcinoma cells to apoptosis induced by 

cisplatin (Yang et al.. 1998b). All these observations suggest that BAG-1 may have an 

important role in carcinogenesis and drug resistance through inhibition of apoptosis. 

1.5. Objective of this study 

From the foregoing review of the literature, it can be concluded that apoptosis plays 

an important role both in multistep carcinogenesis and in cancer chemotherapy resistance. 

Apoptosis is controlled through cellular genes including pro-apoptotic genes (e.g., p53, 

Bax, Bak) and anti-apoptotic genes (e.g., Bcl-2. Bcl-XL andBAG-1). Also, alterations in 
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these apoptosis-regulating genes have been implicated to have an important role i:n 

carcinogenesis and cancer drug resistance. The expression patterns of these apoptosis­

regulating proteins vary in different cell types. Therefore, my hypothesis is that 

deregulation of apoptosis plays a role in the process of multistep carcinogenesis an-d 

MDR of human endocervical cancer. 

The molecular mechanism of apoptosis in the multistep carcinogenesis process an-d 

MDR is still poorly understood. An understanding of the role of apoptosis in multistq> 

carcinogenesis and :MDR of endocervical cancer is important in cancer research. Th-e 

objective of this study is to further characterize the role of apoptosis in carcinogenesi_s 

and ::MDR of human cervical cells. 

For these purposes, firstly, HPV 16-i.mmortalized endocervical cells were treatecl 

with cisplatin and a multidrug-resistant endocervical cell line was established. Then, th-e 

response to various apoptotic stimuli, cellular morphology, growth characteristics, 

tumorigenicity, and cellular apoptosis-regulating gene expression of the immortalized anlrl 

multidrug-resistant cells were analyzed. 

Secondly, since BAG-I was found to be overexpressed in our multidrug resistamt 

cells, BAG-I was then stably transfected into the low BAG-1-expressing cervicad 

carcinoma cell line, C33A, to determine whether overexpression of BAG-I cam. 

recapitulate the drug-resistance. 

Thirdly, the yeast two-hybrid system was established and employed to screen ca. 

complementary DNA (eDNA) library. Hsp70 and Hsp70-2 were isolated as BAG-1-

binding proteins. Furthermore, mutation analyses of the functional domain of BAG-• 
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which is required for interaction with Hsp70 and Hsp70-2 were conducted in vitro and in 

vivo. The effect ofBAG-1 on Hsp70 chaperones-mediated protein refolding activity in 

vivo was also assayed. Additionally, Hsp70 and Hsp70-2 were stably transfected into 

C33A cells and the role of their interaction with BAG-1 in drug resistance was further 

characterized. 

38 



2.1. Materials 

CHAPTER2 

MATERIALS AND :METHODS 

Keratinocyte growth medium (KGM) and Dulbecco' s modified Eagle medium 

(DMEM) were purchased from GffiCO-BRL and ICN, respectively. GIBCO-BRL was 

the supplier for the fetal calf serum (FCS) and trypsin-ethylenediamine tetraacetic acid 

(EDTA). Penicillin-streptomycin was obtained from ICN. HEN-16-2 and HEN-16-2T 

cells were established by Dr. K. Tsutsumi and Dr. X. Yang in the laboratory, respectively 

(Tsutsumi et al., 1992; Yang et al., 1996a). HeLa and C33A cell lines in the laboratory 

stock were previously purchased from ATCC. 

Taq DNA polymerase, restriction endonucleases and their respective 1 Ox reaction 

buffers were obtained from GffiCO-BRL. The coupled transcription/translation TNT 

system was supplied by Promega. 

GffiCO-BRL supplied the 1 kb and 100 bp DNA ladder markers. Low melting 

point agarose, agarose, acrylamide, N,N'-methylenebisacrylamide, urea and 10 mM 

dNTPs (dGTP, dATP, dTTP and dCTP) were all purchased from GffiCO-BRL. Baker 

Inc., Bio-Rad, and Carnation were the suppliers of 2-mercaptoethanol, N,N,N',N'-tetra­

methylethylenediamine (TEMED) and skim milk powder respectively. 

Cisplatin, actinomycin D, doxorubicin, etoposide, 5-FU, staurosporine, 

sanguinarine, paclitaxel (taxol), N-(4-hydroxyphenyl)retinamide (4-HPR or fenretinide) 

and all-trans retinoic acid (ATRA) were all purchased from Sigma Chemical Co .. 
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Mouse anti-BAG-1 monoclonal antibody (mAb) was generated and prepared in our 

lab (Yang et al., 1998a). Rabbit polyclonal antibodies for Bcl-XL, Bax and mouse mAbs 

for Bak, Bcl-2, Hsp70 and caspase-3 were obtained from Santa Cruz Biotechnology. 

Other mouse mAbs used were: anti-p53 (DA.KO), anti-actin (Sigma Chemical Co.) and 

anti-P ARP (PharMingen International). 

The yeast two-hybrid system kit was purchased from Clontech. Invitrogen and 

United States Biochemical Co. supplied theTA Cloning Kit version 3.0 and Sequence 

Version 2.0 Sequencing Kit, respectively. Kodak was the supplier of X-ray film. 

Eight-well tissue chamber slides; 35 mm, 60-mm and 1 00-mm tissue culture plates; 

and culture tubes were obtained from NUNC. Eppendorf micro test tubes for PCR v1ere 

obtained from Fisher. 

2.2. Cell culture 

HEN-16-2 and HEN-16-2/CDDP were cultured in serum-free KGM containing 1% 

penicillin/streptomycin. HeLa, HEN-16-2T, C33A, C33A-BAG-l, C33A-Hsp70 and 

C33A-Hsp70-2 were cultured in DMEM containing 10% FCS and 1% 

penicillin/streptomycin. 

All cells were maintained at 3 7 °C in a humidified incubator containing 5% C02. 

After three days or when the cells had reached approximately 80% confluence, the 

medium was aspirated from the plates and the cells were washed with phosphate-buffered 

saline (PBS). Then, 2 m1 oftrypsin-EDTA was added into each plate, which was placed 

in the incubator for 10 minutes. For cells cultured in KGM, 8 ml of PBS containing 10% 
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FCS was added to the trypsinized cells to quench the activity of trypsin. The cells were 

then suspended and centrifuged at 1,000 rpm for 10 minutes. The cell pellets were 

resuspended with KGM and passaged at a dilution of 1:10, 1 :4, or 1:2 into plates. For 

cells cultured in DMEM containing 10% FCS, 8 ml of this medium was added directly to 

the trypsinized cells, which were further passaged at 1:10, 1:4, or 1:3 into fresh plates. 

2.3. Establishment of endocervical MDR HEN-16-2/CDDP cell line 

As shown in Figure 2.1, the multidrug-resistant human endocervical cell line HEN-

16-2/CDDP was established from the HPV-imm.ortalized human endocervical cell line 

HEN-16-2. HEN-16-2 cells which were normally maintained in KGM were first adapted 

to grow in DMEM. At each passage, they were incubated for 24 hours in DMEM 

containing 5 J.LM CDDP. The COOP-containing medium was then replaced with fresh 

DMEM for additional incubation for 3 days. This treatment was repeated for 

approximately 50 passages, and then the cells were cultured in KGM (Figure 2.1). 

2.4. Clonogenic survival assays 

Clonogenic assays were performed, as previously described (Vasey et a/., 1996). 

Briefly, 103 cells were seeded into 60-mm diameter tissue culture plates and allowed to 

attach overnight. Cells were then incubated with each drug for 24 h, washed twice with 

sterile PBS at 37°C, and incubated in drug-free KGM for 10-14 days. The cells were 

were stained with 2% crystal violet in methanol and colonies of 50 or more cells were 

scored. The surviving fraction was calculated as the ratio of the colony-forming 
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Figure 2.1. Schematic representation of method used to establish HEN-16-2/CDDP cells. 

The dotted lines indicate the initiation and termination of serum adaption. 
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efficiency of drug-treated and untreated cells. The drug concentration resulting in 50% 

cell viablility inhibition (IC50) was determined from each clonogenic survival curve 

(Nagane et al., 1997). 

2.5. Measurement of growth rate and saturation density 

Exponentially growing cells were trypsinized, centrifuged, and resuspended in 2 ml 

medium. Cell numbers were counted with a hemocytometer, and approximately 2 x 104 

cells were dispensed into 60-mm plates for each cell line. Cell numbers were counted 

from each of three plates every two days for 8 days. 

The saturation density of each cell line was measured by the same procedure 5 days 

after the cells reached confluence. 

2.6. Light microscopy and scanning electron microscopy 

For light microscopic analysis of morphology, cells were cultured in 8-well tissue 

culture chamber slides. The chamber frame was released from the slides, before the cells 

were studied under light microscopy. Cell morphology was documented with Kodak 

Tmax 400 film. 

For SEM analysis, approximately 50,000 cells were seeded on 24-well tissue­

culture plates containing acid-cleaned coverslips (Thermanox, no. 5414; Lux Scientific 

Corp.). Cells were allowed to attach to the coverslips at 37 °C in a humidified incubator 

containing 5% C02 overnight. Cells were fixed with Kamovsky fixative 2.5% 

glutaraldehyde (J. B. EM Services) in 0.1 M sodium cacodylate buffer. Cells were 
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dehydrated in a 25%, 50%, 75% and 100% graded ethanol series followed by Freon-113 

substitution. All samples were dried simultaneously, sputter-coated with gold and 

examined in a Hitachi S-570 SEM, as previously described (Liepins and Younghusband, 

1985). 

2. 7. Soft agar or anchorage-independent growth assays 

The 0. 7% agarose underlying gel was prepared by mixing equal volumes of 

2x DivfEM containing 20% FCS and low melting point agarose melted in sterilized water, 

dispensing 2.5 m1 into 60-mm. plates, and leaving the plates at room temperature until the 

gel solidified. Subseqently, HEN-16-2 and HEN-16-2/CDDP and positive control HEN-

16-2T and HeLa cells were trypsinized, resuspended in 2x DMEM, and counted using a 

hemocytometer. The 0.35% agarose overlaying gel was prepared by mixing 

approximately 105 cervical cells in 2.5 m1 of 2x DMEM with 2.5 m1 of 0. 7% low melting 

point agarose in sterilized water, pouring the mixture into the 60-mm. plates containing 

the 0. 7% underlying gel. The plates were placed at 4 °C for 5 minutes, and then 

incubated at 37 °C. One week later, 1 m1 DMEM was carefully added onto the surface of 

the soft agar to replenish nutrients. Colony formation was monitored every two days for 

2-4 weeks. Triplicate assays were performed for each cell line. Representative 

photographs were taken for documentation. 

2.8. In vivo tumorigenicity assays 

HEN-16-2 and HEN-16-2/CDDP cells were trypsinized and resuspended in PBS. 
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PBS (0.1 ml) containing 107 cells was injected into each of six 2-3 month old female 

immunocompremised nude mice, and tumor incidence was monitored weekly for 4-8 

weeks. HeLa cells were similarly treated as a positive controL The average diameter of 

each tumor was measured when the mouse was sacrificed after 8 weeks. 

The tumors were excised and fixed in 10% paraformaldehyde. The fixed tumors 

were embedded in paraffin, sectioned with a microtome, and then stained with 

hematoxylin and eosin (Sun et a/., 1992). Stained sections were examined and 

photographed with Kodak Tmax 400 film for documentation by light microscopy. 

2.9. Western blotting 

For protein extraction, cells were washed twice with ice-cold PBS, and proteins 

were extracted from 107 cells by lysis in 1 ml ice-cold extraction buffer [50 mM Tris-HCl 

pH 8.0, 150 mM NaCl, 0.02% sodium azide, 1% NP-40, 0.1% sodium dodecyl sulfate 

(SDS), 0.5% sodium deoxycholate, 200 J.Lg/ml phenylmethylsulfonyl fluoride (PMSF) 

and 20 J.lg/ml aprotinin] for 30 minutes and centrifuged at 4°C for 10 minutes, after which 

the supernatants were stored at -70°C. Protein concentration was determined using the 

DC Lowry Protein Assay Kit (Bio-Rad) as instructed by the manufacturer. 

Protein extracts were boiled in 2x SDS-polyacrylamide gel electrophoresis (PAGE) 

gel loading buffer [200 mM Tris-HCI (pH 6.8), 4% SDS, 0.2% bromophenol blue, 20% 

glycerol] for 3 minutes and resolved in an SDS-P AGE gel. The running gel was prepared 

with 8-12% acrylamide, 375 mM Tris-HCl (pH 8.8), 0.1% SDS, 0.1% ammonium 

persulphate, and 6 J.ll TEMED. The stacking gel was composed of 5% acrylamide, 125 
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mM Tris-HCI (pH 6.8}, 0.1% SDS, 0.1% ammonium persulphate and 5 J.Ll TEMED. 

Electrophoresis was at 20V in SDS-PAGE running buffer (25 mM Tris, 250 mM glycine) 

using a Protean II minigel apparatus (Bio-Rad). 

The proteins were subsequently transferred to Hybond enhanced­

chemiluminescence nitrocellulose membranes (Amersham Corp) under semidry 

conditions in Towbin transfer buffer (25 mM Tris, 192 mM glycine and 20% methanol) 

using a Trans-Blot SD transfer apparatus (Bio-Rad). Membranes were blocked by gentle 

shaking for 1 hour in TBST (20 mM Tris-HCI (pH 7.6), 137 mM NaCI, 0.1% Tween-20] 

and 5% skim milk powder. Membranes were incubated with the primary antibody diluted 

in TBST containing 5% skim milk powder overnight at 4 °C, and then washed in TBST. 

Membranes were incubated with horseradish peroxidase-conjugated secondary antibody 

diluted in TBST with 5% skim milk powder for 1 hour at room temperature, and then 

washed in TBST. Signals were detected using the enhanced chemilumiscence (ECL) 

system (Amersham) and subsequently exposing the membranes to ECL film, as 

instructed by the manufacturer. 

After primary signals were detected with the ECL system, they were removed from 

the membranes by incubation in stripping buffer (1 00 mM 2-mercaptoethanol, 2% SDS, 

62.5 mM Tris-HCl, pH 6. 7) at 50 °C for 30 minutes with occasional agitation. Then, 

membranes were rinsed with TBST and reprobed with anti-actin mAb and the signals 

were detected as for the primary signaL 

Signal intensities were quantified by densitometry of bands with Eagle Eye II Still 

Video system (Stratagene ). 
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2.10. Apoptosis assays 

Pilot experiments were conducted to determine the optimum dose of anticancer 

drugs, anti-Fas antibody and UV for apoptosis by morphological criteria, such as 

blebbing, using light microscopy and SEM, as described in section 2.6; and two 

biochemical characteristics, activation of caspase-3 and cleavage of P ARP, using 

Western blotting, as described in section 2.9. Unless otherwise stated, apoptosis was 

evaluated using the trypan blue exclusion assay to assess the percentage cell survival/cell 

death. This was done by trypsinizing cells, incubating them with 0.4% trypan blue 

solution (Sigma), and scoring more than 200 cells using a hemocytometer. 

Stock solutions were stored in aliquots at -20°C after preparation as follows: 1mM 

actinomycin D, 5 mM cisplatin, 10 mM doxorubicin, 10 mM 5-FU, 1 J.lg/ml sanguinarine 

were prepared in sterile distilled water; 100 mM etoposide and 1 mM 4-HPR in DMSO; 

30 ID.!."\1 ATRA acid, 4 mM paclitaxel (taxol), 2 mM staurosporine in ethanol; and 500 

flg/ml anti-human Fas antibody in PBS containing 50% glyceroL 

Approximately 24 hours prior to all treatments, about 5 x 104 cells were seeded per 

well in 12-well plates. Immediately prior to treating cells, all stock solutions were 

thawed and diluted in medium. UV treatment was as described (Aragane et al., 1998). 

Briefly, immediately before UV treatment, cells were washed twice with prewarmed PBS 

and exposed to UV-B (290-320 nm) with an emission peak of 312 nm through PBS. A 

UV dose of 50 mJ/cm2 was used. For heat shock, cells were incubated at 45°C for 45 

minutes, then returned to culture at 3 7°C for 2 days. 
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2.11. Stable transfeetion of C33A eeUs 

The coding regions of Hsp70 and Hsp70-2 eDNA were subcloned into the 

expression plasmid pCR3.1 (Figure 2.2A). 

C33A cells were then transfected using LipofectAMINE (Life Technologies, Inc., 

Gaithersburg, MD) with 5 Jlg eDNA-containing, or empty vector PCR3.1, according to 

the protocol recommended by the manufacturer. Briefly, approximately 5 x 105 cells 

were seeded per 1 0-mm culture dish. Cells were then exposed to transfection mixtures 

for 5 hours at 3 7 °C. The transfection mixtures were then replaced with fresh DMEM. 

Cells were passaged 48 hours after transfection into three 1 00-mm. plates and selected in 

the presence of 800 J!g/ml G418 for 5-7 days. Well separated colonies were trypsinized, 

transferred to 96-well plates, then subcultured into 24-well and finally into 6-well plates 

in the presence of G418 until enough cells were present for protein extraction. 

2.12. The yeast two-hybrid system eDNA library screening for identification of 

BAG-I interacting proteins 

2.12.1. Strategy of eDNA library screening 

The yeast two-hybrid system (Fields and Song, 1989; Chien et al., 1991; Fields and 

Stemglanz, 1994; Figure 2.3) was used as a genetic system to isolate BAG-1-interacting 

proteins in vivo. It uses the restoration of transcriptional activation to assay the interaction 

between BAG-1 and novel proteins. It relies on the modular nature of many site-specific 

transcriptional activators, such as yeast GAL4, consisting of a DNA-binding domain 

(BD) and a transcriptional activation domain (AD) (Figure 2.3A) (Keegan et al., 1986). 

48 



A 

c 

BAG-l, 
Hsp70, 
or Hsp70-2 

pCR3.1 
5.0 kb 

pCR3.1-BAG-l 
pCR3.1-Hsp70 
pCR3.1-Hsp70-2 

pAS2-l 
8.4 kb 

pAS2-1-BAG-l 

B 

D 

BAG-1, 
Hsp70, 
or Hsp70-2 

pGEX-4T 
4.9 kp 

IAJI 

pGEX-4T-BAG-l 
pGEX-4T-Hsp70 
pGEX-4T-Hsp70-2 

pACT2 
8.1 kb 

pACT2-MATCHMAKE 
keratinocyte eDNA library 

Figure 2.2. Construction of plasmids. A. pCR3.1. B. pGEX-4T. C. pAS2-L D. 
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A 

B 

c 

Figure 2.3. Mechanism of the method of the yeast two-hybrid system. A. Yeast GAL4 

protein, the transcriptional activator required for the expression of genes encoding 

enzymes of galactose utilization, consists of two physically discrete modular domains. B. 

If a protein X from the library cannot interact with human BAG-1, the AD will not be 

brought to the DNA binding site to activate the reporter gene. C. If the protein Y, 

another protein fr9m the library, can bind to human BAG-1, protein Y will bring the AD 

to the DNA binding site and thus activate reporter gene expression. 
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The BD serves to target the activator to the specific genes that will be expressed, and AD 

contacts other proteins of the transcriptional machinery to enable transcription to occur. 

The yeast two-hybrid system is based on the observation that the two domains of the 

activator need not be a single polypeptide and can be brought together by any two 

interacting fusion proteins, one of which contains the BD while the other has the AD. 

The application of this system requires that two hybrid fusion plasmids be 

constructed for expressing BD and AD fusion proteins: a BD fused to the bait protein (in 

this case GAL4 BD-BAG-1, Figure 2.3B and C), and an AD fused to some proteins 

which may interact with the bait protein [in this case the human Keratinocyte 

MATCHMAKE eDNA Library (Clontech) proteins, such as AD-X and AD-Y (Figure 

2.3B and C)]. The two hybrid plasmids are cotransformed into a yeastS. cervisiae host 

strain Y190 harboring the yeast HIS3 and the bacteriallacZ reporter genes, which contain 

an upstream GAL4 binding site. In Fig. 2.3, the interaction of BAG-1 with a novel 

library protein Y will activate the HIS3 and the lacZ reporter genes (Figure 2.3C), while 

library proteins not interacting with BAG-1, such as X, will not activate the reporter 

genes (Figure 2.3B). 

2.12.2. Construct pSA2-1-BAG-1 plasmid 

To construct a plasmid expressing GAL4 BD-BAG-1 p46 fusion protein, the BAG­

I isoform p46 eDNA fragment was amplified by PCR in a Hybraid Thermal Reactor 

(Bio/CAN). The forward primer was Ding1, and the reverse primer was B3-1 (Table 

2.1). PCR of the BAG-1 p46 isoform. was performed, as recommended by the 
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manufacturer (Stratagene), with minor modifications. 1 J.ll 50 ng/J.ll DNA and lJ.1l 10 

pmol!J.ll of both primers, were mixed with 2 J.Ll of lOx PCR buffer (Stratagene), 0.4 of J.l.l 

10 mM dNTP (GffiCO-BRL), 0.2 J.Ll of 5 U/Jll polymerase (Stratagene) and 14.4 J.Ll 

water. PCR was performed as follows: 94°C for 3 minutes; 35 cycles of 94°C for 1 

minute, 55°C for 1 minute, 72°C for 1 minute; 94°C for 1 minute, 55°C for 1 minute, and 

72°C for 8 minutes. 

The GAL4 BD plasmid (pAS2-1-BAG-1) was then constructed by subcloning the 

PCR product into the vector pAS2-1 in-frame with GAL4 BD (Figure 2.2C). 

2.12.3. Screening the human keratinocyte MATCHMAKE eDNA Library 

The human keratinocyte MATCHJviAKE eDNA Library of plasmids inserted into 

the yeast two-hybrid system AD vector pACT2 (Figure 2.2D) was purchased from 

Clontech. S. cerivisiae strain Y190 (MATa, ura3-52, his3-200, lys2-801, ade2-101, trpl-

901, leu2-3, 112, ga14L\, gal80A, cyhr2, LYS2::GALluAs-IllS3TATA-ffiS3, 

URA3::GALluAS-GALlTATA-lacZ), which was Trp-, Leu- and His-, was cotransformed 

with pAS2-1-BAG-1 and the MATCHMAKE eDNA Library, using the lithium acetate 

procedure as described by the manufacturer (Figure 2.4). The transformation mixture 

was then plated on 150-mm petri dishes containing synthetic dropout (SD) media lacking 

tryptophan, leucine, and histidine but including 25 mM 3-amino-1,2,4-triazole (3-AT), 

and incubated at 30 °C for 3-5 days. The transformants were screened for ~-galactosidase 

activity using a filter lift assay, according to the protocol recommended by the 

manufacturer (Clontech). Briefly, colonies were transferred to Whatman #5 filters and 
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Figure 2.4. eDNA library screening for BAG-1-interacting protein positive clones. 
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cells were perm.eabilized by freezing for 10 seconds in liquid nitrogen, and thawing at 

room temperature. Filters were then overlaid onto another Whatman #5 filter saturated 

with Z buffer/X-gal solution (16.1 mglml Na2HP04.7 H20, 5.5 mg/ml NaH2P04.H20, 

0.75 mglml KCI, 0.246 mglml MgCh.7 H20, 0.327 mg/ml X-gal, 0.3% (v/v) 2-

mercaptoethanol], and incubated at room temperature for 30 minutes to overnight for 

color development. Approximately 2.5 x 106 yeast trans formants were screened for 

BAG-1-interacting proteins. 

2.12.4. Verifying postitive clones in yeast 

As diagrammed in Figure 2.5, each of the initial His+ and Lac.z+ yeast colonies was 

streaked out one to five times to segregate multiple pACT2-library plasmids within each 

single colony and J3-gal filter lift assays were repeated on well-isolated colonies. The 

plasmids were then isolated from yeast, transfected into E. coli, and further amplified. 

These pACT2-library plasmids isolated from E. coli were then individually retransformed 

into yeast strain Y190 to test the specific interaction of the candidate library clones with 

pAS2-1-BAG-1, pAS2-1-LAM5, and pAS2-1 vector. Nonspecific interactions (those 

conferring His+, Lac.z+ when paired with pAS2-1 or pAS2-1-LAM5) were considered 

false positives and eliminated, while clones specific for pAS2-1-BAG-1 bait fusion were 

retained. 

2.12.5. DNA sequencing and analysis 

Clones retained above were analyzed by DNA sequencing of both strands using a 
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Figure 2.5. Method for verifying BAG-1-interacting protein positive clones. 
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Sequenase Version 2.0 kit (United States Biochemical Co.), according to the protocol 

recommended by the manufacturer. The sequences were then analyzed for sequence 

homology using the National Center for Biotechnology Information sequence databases 

through the Basic Alignment Search Tool (BLAST) program through the internet 

http ://www.ncbi.nlm.nih.gov/BLAST/. 

2.13. In vitro binding assay 

2.13.1. In vitro transcription/translation 

Hsp70, Hsp70 ATPase domain, Hsp70-2, and BAG-I eDNA were 

transcribed/translated in vitro in the presence of e5s]-methionine (Amersham) using the 

TNT system (Promega), as described by the manufacturer. 

2.13.2. GST -fusion protein production 

To obtain GST-Hsp70 and GST-Hsp70-2, the coding regions of Hsp70 and Hsp70-

2 eDNA in pACT2 plasmids were subcloned in-frame into pGEX-4T-2 GST vector 

(Pharmacia, Biotech) (Figure 2.2B). The resulting plasm.ids were then transfected into 

the BL21 strain of E. coli. GST fusion proteins were purified according to the 

instructions of the GST gene fusion system manufacturer. Briefly, E. coli BL21 

containing either parental pGEX-4T-2 plasmid or the plasmid with the inserted eDNA 

were grown at 30 °C with shaking until the ~0 reaches 1.0. At this time, isopropyl-(3-D­

thiogalactoside (IPTG) was added to a final concentration of 0.1 mM and the bacteria 

were cultured for an additional 5 hours, centrifuged, resuspended in PBS and sonicated in 
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eight 15 second bursts on ice. Triton X-100 was then added to a final concentration of 

1% and the tubes were mixed gently for 30 minutes. Lysates were centrifuged at 12,000 

xg and supernatants were collected, combined with 400 J.Ll of GSH sepharose beads and 

incubated at room temperature for 30 minutes with gentle agitation. After this, the 

unbound proteins were removed with three PBS washes. GST fusion proteins were eluted 

with 10 mM reduced GSH in 50 mM Tris-HCI, pH 8.0. GST fusion protein level and 

purity were determined by SDS-P AGE of 1 J.Ll of protein samples and bovine serum 

albumin standards, and staining in Coommassie Brilliant Blue. 

2 .. 13.3. In vitro binding assays ofBAG-1 and Hsp70s 

GST protein interaction assays were performed, as previously described (Hanada et 

al, 1995). Briefly, 10 J..Lg of GST fusion protein was incubated with 10 J.Ll of GST­

sepharose beads for one hour in 100 J..Ll binding buffer (1 0 mM HEPES pH 7 .2, 140 mM 

NaCl, 5 mM MgCh, 1 mM EDTA and 0.15% Nonidet P-40) to attach the proteins to the 

beads. Then, 5 J.ll of C5S]-methionine in vitro-translated products were incubated with the 

GST fusion proteins for 2 hours at 4°C. The mixture was washed six times with binding 

buffer. The beads (in 20 J.Ll binding buffer) were boiled in 20 J.Ll 2x SDS gel loading 

buffer and 20 !ll of centrifuge supernatants were subjected to SDS-P AGE. After 

electrophoresis, the gel was dried and X-ray film was exposed. GST and binding buffer 

were incubated with in vitro transcribed/translated proteins as negative controls. 

2.14. Deletion mutation analysis ofBAG-1 domains for binding Hsp70s in vivo 
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BAG-1 p50, p46, p33, and p29 isoforms, as well as a series of deletion mutations 

which were in-frame with the GAL4 BD of pAS2-1 were generated by PCR (Figure 2.6) 

using the the primers listed in Table 2. L 

The BAG-1 isoforms and mutations were then inserted into the pAS2-1 plasmid. 

These plasmids were then cotransformed with pACT2-Hsp70 or pACT2-Hsp70-2 into 

Y190, and the interactions were then determined by filter lift assays (see section 2.12.3). 

Table 2.1. Primers used to generate BAG-1 isoforms and deletion mutations 

Primer Strand Sequence Amino BD-BAG-1 
acids plasmid 

B5-0K Sense 5'-CACCATGGCTCAGCGCGGG-3' 1-345 p50 
B3-1 Antisense 5'-GCTCACTCCACATCGTCTIT-3' 
Dingl Sense 5'-GATGAAGAAGAAAACCCGG-3' 72-345 p46 
B3-1 Antisense 5'-GCTCACTCCACATCGTCTIT -3 I 
B5-2K Sense 5'-CACCATGGATCGGAGCCAGGAGGT-3' 116-345 p33 
B3-l Antisense 5'-GCTCACTCCACATCGTCTIT-3' 
B5-3K Sense 5'-TCATCTCCfCCAAGATCTICAT-3' 139-345 p29 
B3-l Antisense 5'-GCfCACTCCACATCGTCTIT -3' 
B5-4K Sense 5'-CACCATGGAAACACCGTIGTCAG-3' 200-345 Lll 
B3-l Antisense 5'-GCTCACTCCACATCGTCTIT-3' 
B5-5K Sense 5'-CACCATGGAGATCTTGGAGGAGA-3' 286-345 Ll2 
B3-1 Antisense 5'-GCTCACTCCACATCGTCTIT -3' 
B5-6K Sense 5'-CACCATGGTTCAGGCATICCTAG-3' 315-345 Ll3 
B3-1 Antisense 5'-GCTCACTCCACATCGTCTIT-3' 
BS-lK Sense 5'-CACCATGGAGAAGAAAACCCGG-3' 72-320 a4 
B3-5 Antisense 5'-TCACTCGGCTAGGAATGCCTGAAC-3' 
B5-1K Sense 5'-CACCATGGAGAAGAAAACCCGG-3' 72-291 Ll5 
B3-5K Antisense 5'-TCATCTCCTCCAAGATCTICAT-3' 
BS-lK Sense 5'-CACCATGGAGAAGAAAACCCGG-3' 72-215 Ll6 
B3-4 Antisense 5'-TCACCCAATTAACATGACCCG-3' 
BS-lK Sense 5'-CACCATGGAGAAGAAAACCCGG-3' 72-156 /17 
B3-3 Antisense 5'-TCAAAGGTCGTGCTTCTCATIGC-3' 
B5-1K Sense 5'-CACCATGGAGAAGAAAACCCGG-3' 72-121 /18 
B3-2 Antisense 5'-TCATACCTCCTGGCTCCGATICAT-3' 
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2.15. In vivo protein refolding assays 

2.15.1. Transient transfection 

Approximately 1 x 106 C33A-BAG-1 or C33A-NEO cells were seeded into 60-mm 

culture dishes, cultured 24 hours and transiently cotransfected with 1.0 J.lg of pSV­

luciferase vector and 2.0 flg of pSV -J3-galactosidase vector (Promega) using 

LipofectAMINE (Life Technologies, Inc.) for 5 hours at 37 °C. The transfection mixtures 

were then replaced with DMEM containing 10% FCS and 1% penicillin/streptomycin. 

Cotransfected cells were cultured for 24 hours, trypsinized and 1 x 105 cells were 

aliquoted into each cell culture tube (Nunc) and cultured for a further 24 more hours. 

2.15.2. Heat shock inactivation and refolding 

For heat shock inactivation, transiently transfected cells were preincubated in a 

water bath at 37 °C for about 15 minutes and transferred within 3 seconds to 42 °C for 45 

minutes. 

For refolding experiments, the medium was replaced 30 minutes prior to heat shock 

with medium containing 20 J.lg/ml cycloheximide to inhibit new protein synthesis. After 

heat shock treatment, cells were incubated at 37 °C for 30 or 60 minutes to allow protein 

to refold. Luciferase or (3-galactosidase activities before heat shock were taken as 100%. 

2.15.3. Luciferase assays 

Cells were chilled to 4 °C, washed with ice-cold PBS and lysed in 500 J.ll buffer A 

[25 mM H3POJTris-HCl, pH 7.8, 10 mM MgCh, 1% (v/v) Triton X-100, 15% (v/v) 
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glycerol, 1 mM EDTA] containing 0.5% (v/v) 2-mercaptoethanol. The lysates were 

stored at -70 °C. 

After mixing 20 J.ll cell extract and 100 J.llluciferase reagent (Biorad), luminescence 

was measured for 60 seconds in a Monolight 2010 luminometer (Analytical 

Luminescence Laboratory). 

2.15.4. (3-galactosidase assays 

f3-galatosidase expression assays were performed on the same lysates, using 10 J.Ll 

cell extract and 200 J.ll buffer Z (60 mM Na2P04, 40 mM NaH2P04, pH 7.0, 10 mM KCl, 

1 mM MgS04, 50 mM (3-mercaptoethanol) and 40 J.ll 4 mg/ml ortho-nitrophenyl-n-D­

galacto-pyranoside (ONPG). The reaction mixture was incubated at 37 °C for 50 

minutes. The assays were terminated with 100 f.ll 0.5 M Na2C03 and the absorbance was 

measured at 412 nm. 

2.16. Statistical analysis 

Statistical analysis was conducted using the Student's t-test. Differences with a 

value of p < 0.05 were considered to be significant. 
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CHAPTER3 

RESULTS 

3.1. Establishment ofMDR endocervical cell line HEN-16-2/CDDP 

HPV16-immortalized endocervical cells, HEN-16-2, were treated with or without 

cisplatin and then subjected to clonogenic survival assays. Two structurally and 

functionally unrelated antineoplastic agents, cisplatin and paclitaxel, were used in these 

assays. Cisplatin is a platinum compound. Several mechanisms of anticancer action are 

proposed for cisplatin: intrastrand crosslinking of DNA, inhibiting DNA precursors, and 

unmasking antigenic sites on the cell membrane. Paclitaxel is a taxane alkaloid, which 

binds to microtubules and promotes the rate and extent of tubulin assembly into stable 

microtubules, thus preventing tubulin depolymerization and cell division. 

Clonogenic survival cUIVes showed that cisplatin-treated HEN-16-2 cells, and 

HEN-16-2/CDDP, were more resistant to cisplatin than their parental HEN-16-2 cells 

(Figure 3.1A), as well as to paclitaxel (Figure 3.1B). The resistance to cisplatin or 

paclitaxel is calculated as the concentration of drug resulting in 50% cell viablility 

inhibition (ICso) and was 830 nM for cisplatin and 31 nM for paclitaxel, respectively. 

Compared to HEN-16-2, HEN-16-2/CDDP cells were found to be significantly more 

resistant to cisplatin (more than 8 fold) or paclitaxel (more than 5 fold), respectively. This 

indicates that HEN-16-2/CDDP cells have acquired resistance to structurally and 

functionally unrelated antineoplastic agents, cisplatin and paclitaxel, and thus have a 

phenotype of:MDR. 
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Figure 3.1. Dose-dependent clonogenic survival of HEN-16-2 and HEN-16-2/CDDP 

after cisplatin and paclitaxel treatment. About 1,000 cells were seeded into 60-mm 

diameter tissue culture plates and allowed to attach overnight in KGM. Cells were then 

incubated with various concentrations of cisplatin (A) and paclitaxel (B) in KGM for 24 

hours, washed twice with sterile PBS at 3 7°C and incubated in drug-free KGM for 10-14 

days. Colonies were stained with 2% crystal violet in methanol and counted. Survival 

cell fraction was expressed as the ratio of the colony-forming cells of drug-treated and 

untreated control cells. Results represent the mean + the standard deviation from three 

independent experiments. 
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3.2. Response of multidrug resistant cells and its parental cells to various 

apoptotic stimuli 

Abnormalities in apoptosis control can influence the sensitivity of cancer cells to 

chemotherapeutic drugs and other onslaughts (see section 1.2). Overexpression of anti­

apoptotic proteins, such as Bcl-2, in some types of cells cause drug resistance. Bcl-2 does 

not interfere with the accumulation of drugs in tumor cells, obviate the initial damage 

induced by drugs, or alter the rate of cellular damage repair. It simply increases the 

threshold to apoptosis and prevents drug-induced cellular damage leading to apoptosis. 

Increasing the apoptosis threshold confers an :MDR phenotype which can render cells 

more resistant to various apoptotic stimuli, including essentially all chemotherapeutic 

drugs (Reed, 1998b). 

To determine whether the increased apoptotic threshold is the major mechanism of 

HEN-16-2/CDDP :MDR., further studies were conducted on their apoptotic rate and that 

of the parental HEN-16-2 cells using various apoptotic stimuli that may induce apoptosis 

through different mechanisms, such as chemotherapeutic drugs, heat shock, UV light 

irradiation and anti-Fas antibody. 

Compared with HEN-16-2, HEN-16-2/CDDP, displayed a significant inhibition of 

apoptosis induced by cisplatin (Figure 3.2 and 3.3), Sanguinarine (Figure 3.4), 

actinomycin D (Figure 3.5), doxorubicin (Figure 3.6), etoposide (Figure 3.7), paclitaxel 

(Figure 3.8), 5-FU (Figure 3.9A), staurosporine (Figure 3.9B), ATRA (Figure 3.10A) and 

4-HPR(Figure 3.10B). 

Furthermore, HEN-16-2/CDDP exhibited a higher survival rate than HEN-16-2, 
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Figure 3.2. Dose- and time-dependent induction ofapoptosis in HEN-16-2 and HEN-16-

2/CDDP cells by cisplatim. The percentage of viable cells was determined by trypan blue 

dye exclusion assays. Results represent the mean + the standard deviation from three 

independent experiments_ *, p < 0.05, is the statistical significance of the difference in 

cell viability between HEN-16-2 cells and HEN-16-2/CDDP cells. A. Dose dependence. 

Cells were incubated with the indicated concentrations of cisplatin for 48 h. B. Time 

dependence. Cells were Encubated with 20 J..LM cisplatin for the indicated periods. 

66 



A 

-~ 0 -.!!l 
Q) 
(.) 

Q) 

:c 
as 
5 

B 

-?fl. -!E. 
Q) 
(.) 

Q) 

J5 
as 
5 

120 .---------------------------------------------------~ 
- HEN-16-2 
~ HEN-16-2/CDDP 

100 * * 

80 

60 

40 

20 

0 
0 5 10 20 

Cisplatin (J.LM) 

120 ~--------------------------------------------------~ 
~ HEN-16-2 
-o- HEN-16-2/CDDP 

100 

80 

60 

40 

20 

0 +-------~--------~------~--------~------~--------4 
0 12 24 36 

Time (hours) 

67 

48 60 72 



HEN-16-2 Hf.:N-16-2/CDDP 

2 3. 4· 5·. 6 

HEN-16-2 -HEN-16-2/CDDP 

. 1 2 3 4~, r~5 6 7 8 

Caspase-3 
+-Precursor 

+- Cleaved product 

.~.- Full length 

. -+- Cleaved product 

Figure 3.3. Representive result of caspase-3 activation and PARP cleavage in HEN-16-2 

and HEN-16-2/CDDP cells. Lysates from cells treated in 0 ~(lanes 1 and 5) or 5 p.M 

(lanes 2 and 6), or l 0 ~ (lanes 3 and 7), or 20 ~ (lanes 4 and 8) cisplatin were 

immunoblotted \vith anti-caspase-3 or anti-P ARP. 
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Figure 3.4. Representative result of morphological changes of cells undergoing apoptosis 

induced by sanguinarine. Apoptosis was induced by 1.5 J.lg/J.Ll sanguinarine for 4 hours 

and examined by light microscopy (A and B) or scanning electronic microscopy (C and 

D). Panels E and F represent untreated cells examined by scanning electronic 

microscopy. 
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Figure 3.5. Dose- and time-dependent induction of apoptosis by actinomycin D in HEN-

16-2 and HEN-16-2/CDDP cells. The percentage of viable cells was determined by 

trypan blue dye exclusion assays. Results represent the mean + the standard deviation 

from three independent experiments. *, p < 0.05, is the statistical significance of the 

difference in cell viability between HEN-16-2 cells and HEN-16-2/CDDP cells. A. dose­

dependence. Cells were incubated with the indicated concentrations of actinomycin D 

for 48 h. B. Time-dependence. Cells were incubated with 1 J,LM actinomycin D for the 

indicated periods. 
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Figure 3.6. Dose- and time-dependent induction of apoptosis by doxorubicin in HEN-16-

2 and HEN-16-2/CDDP cells. The percentage of viable cells was determined by trypan 

blue dye exclusion assays. Results represent the mean + the standard deviation from three 

independent experiments. *, p < 0.05, is the statistical significance of the difference in 

cell viability between HEN-16-2 cells and HEN-16-2/CDDP cells. A. Dose dependence. 

Cells were incubated with the indicated concentrations of doxorubicin for 48 h. B. Time 

dependence. Cells were incubated with 1 J,.LM doxorubicin for the indicated periods. 
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Figure 3.7. Dose- and time-dependent induction ofapoptosis by etoposide in HEN-16-2 

and HEN-16-2/CDDP cells. The percentage of viable cells was determined by trypan 

blue dye exclusion assays. Results represent the mean+ the standard deviation from three 

independent experiments. *, p < 0.05, is the statistical significance of the difference in 

cell viability between HEN-16-2 cells and HEN-16-2/CDDP cells. A. dose dependence. 

Cells were incubated with the indicated concentrations of etoposide for 48 h. B. time 

dependence. Cells were incubated with 40 J,J.M etoposide for the indicated periods. 
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Figure 3.8. Dose- and time-dependent induction ofapoptosis by paclitaxel in HEN-16-2 

and HEN-16-2/CDDP cells. The percentage of viable cells was determined by trypan 

blue dye exclusion assays. Results represent the mean + the standard deviation from three 

independent experiments. *, p < 0.05, is the statistical significance of the difference in 

cell viability between HEN-16-2 cells and HEN-16-2/CDDP cells. A. Dose dependence. 

Cells were incubated with the indicated concentrations of paclitaxel for 48 h. B. Time 

dependence. Cells were incubated with 5 J.1M paclitaxel for the indicated periods. 
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Figure 3.9. Dose-dependent induction of apoptosis by 5-FU and staurosporine in HEN-

16-2 and HEN-16-2/CDDP cells. Cells were incubated with the indicated concentrations 

of 5-FU or staurosporine for 48 h. A. 5-FU. B. Staurosporine. The percentage of viable 

cells was determined by trypan blue dye exclusion assays. Results represent the mean + 

the standard deviation from three independent experiments. *, p < 0.05, is the statistical 

significance of the difference in cell viability between HEN-16-2 cells and HEN-16-

2/CDDP cells. 
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Figure 3.10. Dose-dependent induction ofapoptosis by ATRA and 4-HPR in HEN-16-2 

and HEN-16-2/CDDP cells. Cells were incubated with the indicated concentrations of 

ATRA or 4-HPR for 48 h. The percentage of viable cells was determined by trypan blue 

dye exclusion assays. Results represent the mean + the standard deviation from three 

independent experiments. *, p < 0.05, is the statistical significance of the difference in 

cell viability between HEN-16-2 cells and HEN-16-2/CDDP cells. A. ATRA. B. 4-HPR. 

81 



A 

100 

90 -~ 0 -!!l. 
Q) 80 
0 
Q) 

..0 
aJ 

> 70 

60 

50_._____ 

B 

100 

- 80 
:::R 0 -.!!1 
Q) 

60 (.) 
Q) 

:c 
m 
> 40 

20 

0 _._____ 

* 

32 

ATRA(f.lM) 

2 
4-HPR (f.lM) 

82 

- HEN-16-2 
~ HEN-16-2/CDDP 

64 128 

- HEN-16-2 
~ HEN-16-2/CDDP 

* 

4 8 



when treated with 0.5 J..Lg/ml anti-Fas antibody~ 50 mJ/cm2 UV irradiation or heat shock 

at45 °C for45 minutes (Figure 3.11). 

3.3. Morphology ofHEN-16-2/CDDP 

The morphology of cultured cervical epithelial cells is an indication of the 

differentiation potential and oncogenicity of the normal or abnormal tissue from which 

the cells are derived (Turyk et al., 1989; Vooijs, 1991). In KGM, a serum-free medium 

that contains 0.15 mM calcium, both types of the cell grew actively and formed 

keratinocyte-like cells (Figure 3.12A and B). However, when the cells were cultured in 

10% serum plus high calcium-containing DMEM, HEN-16-2 immortalized cells were 

slow growing and flat, branched, heterogeneously sized and unevenly distributed (Figure 

3.12C). In contrast, HEN-16-2/CDDP cell line cultures had higher nucleus/cytoplasm 

ratio, and showed morphology and distribution that were comparable to those of the cells 

cultured in serum-free KGM (Figure 3.l2D). 

3.4. Growth characteristics ofHEN-16-2/CDDP 

Table 3.1 summarizes the growth rate, the saturation density and anchorage­

independent growth in soft agar of HEN-16-2/CDDP compared with its parental cell line 

HEN-16-2. 

In serum-free KGM, the average growth rate decreased slightly in multidrug 

resistant HEN-16-2/CDDP cells (Figure 3.13 and Table 3.1). The doubling times of 

HEN-16-2 and HEN-16-2/CDDP in KGM were 37 hours and 44 hours, respectively. In 
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Figure 3.11. Induction of apoptosis by anti-Fas antibody, UV irradiation and heat shock 

in HEN-16-2/CDDP and HEN-16-2 cells. Cells were exposed to 0.5 J.lg/ml anti-Fas 

antibody for 24 h, heat shock at 45 °C for 45 minutes or 50 mJ/cm2 UV irradiation. Cells 

subjected to heat shock and UV irradiation were then returned to normal culture for 48 

hours. The percentage of viable cells was determined by trypan blue dye exclusion 

assays. Results represent the mean ± the standard deviation from three independent 

experiments. *, p < 0.05, is the statistical significance of the difference in cell viability 

between HEN-16-2 cells and HEN-16-2/CDDP cells. 
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HEN-16-2 HEN-16-2/CDDP 

Figure 3.12. Morphology ofHEN-16-2 and HEN-16-2/CDDP in monolayer culture. A. 

HEN-16-2 in KGM. B. HEN-16-2/CDDP in KGM. C. HEN-16-2 in DMEM. D. HEN-

16-2/CDDP in DMEM plus 10% FCS. All panels show light microscopy photos at the 

same magnification. 
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Figure 3.13. Growth rates of HEN-16-2 and HEN-16-2/CDDP cells in monolayer 

culture. Cells were grown in 60-mm plates in the indicated media. Each value represents 

the mean + the standard deviation from three individual experiments. 
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contrast, a different pattern was observed in serum-supplemented high calcium level 

DMEM. HEN-16-2 immortalized cells proliferated more slowly than the multidrug-

resistant cells. The doubling times ofHEN-16-2 and HEN-16-2/CDDP in DMEM were 

significantly different (p < 0.05) ( 44 hours and 34 hours, respectively). Further, there 

was a significant difference (p < 0.05) in the saturation densities of MDR cells and their 

parental cells in KGM (306 x 103 and 144 x 103 cells/em?, respectively); and in Dl\ffiM 

plus 10% FCS (333 x 103 and 55 x 103 cells/cm2
, respectively) (Table 3.1). 

Table 3.1. Growth characteristics ofHEN-16-2/CDDP compared with HEN-16-2 cells 

Growth characteristic1 

Doubling time 

KGM 

DMEM+FCS 

Saturation density 

KGM 

Dl\ffiM+FCS 

Anchorage-independent growth 

HEN-16-2 

144± 10 

55±3 

44+10 

34+2* 

306 +65* 

333 + 32* 

+ 

1The values for the doubling time (hours), saturation density (x 103 cells/cm2
}, are the mean± the standard deviation for three 

independent experiments. Anchorage-independent growth assays were conducted for three independent experiments. •, p < 

0.05, is the significance of the difference between the values for HEN-16-2/CDDP and HEN-16-2 cells. 

To further characterize the oncogenic phenotype, anchorage-independent growth in 

soft agar assays were performed, in which HEN-16-2 and HEN-16-2/CDDP cells were 

assayed for growth in soft agar for 2-3 weeks. HeLa cells and HEN-16-2T (Yang et al., 

1996a) served as positive controls. Generally, the formation of colonies could be 

observed after one week of incubation, and the colonies were unequivocally identified 
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after two weeks. The immortalized cells, HEN-16-2, remained as single cells and did not 

form colonies in soft agar (Figure 3.14B), whereas :MDR cells, HEN-16-2/CDDP, formed 

colonies (Figure 3.14A) that were similar to those formed from HEN-16-2T (Figure 

3.14C), but were smaller than those formed fromHeLa (Figure 3.14D). 

3.5. Tumorigenicity of MDR endocervical cells 

HEN-16-2, HEN-16-2/CDDP and positive control HeLa cells were injected into 

nude mice. Table 3.2 summarizes the results for each cell line. 

Table 3.2. Tumorigenicity ofHEN-16/CDDP compared with HEN-16-2 in nude mice 

Tumor incidence Tumor size 
Cell line Passage 

(No. tumors/no. injections) (cm2
) 

HEN-16-2/CDDP 50-80 6/6 1.5-1.8 

HEN-16-2 50-80 0/6 N/A 

He La N/A 2/2 2.0-2.5 

All injections ofHEN-16-2/CDDP cells led to tumor formation in nude mice. The 

tumors were generally apparent after three weeks and continued to grow until the mice 

were sacrificed (Figure 3.15). HeLa cells also gave rise to tumors in all injected nude 

mice. None of the untreated immortalized cells induced tumors in nude mice after 2 

months, indicating that induction of tumors in nude mice was due to cisplatin treatment. 

Two tumors, formed from injection ofHEN-16-2/CDDP cells into nude mice, were 

examined histologically. Both tumors were invasive squamous cell carcinomas 

characterized by the loss of normal epithelial cell arrangement, growth into the mouse 
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HEN-16-2/CDDP HEN-16-2 

HEN-16-2T He La 

Figure 3.14. Anchorage-independent (soft agar) growth ofHEN-16-2/CDDP. A. HEN-

16-2/CDDP. B. HEN-16-2. C. HEN-16-2T. D. HeLa. 
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2cm. 

Figure 3.15. HEN~ 16-2/CDDP tumorigenesis on nude mouse. 
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substratuin, high nucleus/cytoplasm ratio and high densities of chromtain staining 

(Figure 3.16). 

3.6. Expression of apoptosis-related cellular genes 

The levels of the apoptosis-promoting proteins p53, Bale, and Bax were examined 

by Western blot analysis. There was no significant difference in the levels of expression 

ofp53, Bale, or Bax between HEN-16-2 and HEN-16-2/CDDP (Figure 3.17 and Table 

3.3). 

Table 3.3. Expression of apoptosis-regulating proteins in HEN-16-2/CDDP 

compared withHEN-16-21 

Protein HEN-16-2 HEN-16-2/CDDP 

p53 1.0 + 0.3 0.8 + 0.5 

Bak 1.0 + 0.1 0.9 + 0.2 

Bax 1.0 + 0.3 1.0 +0.3 

Bcl-2 1.0 + 0.4 0.9 + 0.3 

Bcl-XL 1.0 + 0.1 1.7 + 0.2* 

BAG-1 p50 1.0 ± 0.2 22.9 ± 6.1* 

BAG-1 p46 1.0 ± 0.1 1.2 + 0.4 

BAG-1 p33 1.0 + 0.3 3.3 + 0.8* 

1The levels of cellular proteins were quantified relative to those of HEN-16-2 after normalization to actin control. 

Protein expression was quantified by measuring the optical density of bands at medium exposure on X-ray films. The 

data represent the mean ±: the standard deviation of three experiments. •, p < 0.05, is the significance of the difference 

between the values for HEN-16-2/CDDP and HEN-16-2 cells. 
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Figure 3.16. Histology of HEN-16-2/CDDP tumor. A. Squamous cell carcinomas 

formed in nude mice. B. Higher magnification showing dysplastic cells in a second 

tumor, demonstrating mitotic cells (arrowheads) proximal to the mouse substratum on the 

left. 
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Figure 3.17. Expression ofapoptosis-associated proteins in HEN-16-2/CDDP and HEN-

16-2 cells. Western blot analysis is shown for HEN-16-2 (left lanes) and HEN-16-

2/CDDP (right lanes). f3-actin was an internal control. 

94 



The expression of the anti-apoptotic protein Bcl-2 and BAG-I p46 isofonn was not 

significantly different between HEN-16-2 and HEN-16-2/CDDP cells (Figure 3.17 and 

Table 3.3). However, there was a significantly (p < 0.05) higher (1.7-fold) level of the 

expression ofBcl-XL in HEN-16-2/CDDP cells than in HEN-16-2 cells (Figure 3.17 and 

Table 3.3). The expressions of BAG-1 isoforms p50 and p33 were increased 

significantly (p < 0.05) from HEN-16-2 cells to HEN-16-2/CDDP cells, 22.9-fold and 

3.3-fold respectively (Figure 3.17 and Table 3.3). The shortest isoform ofBAG-1, p29, 

was not detectable in either of these two cell lines. 

3.7. Effect of overexpressing BAG-1 in C33A cervical cells on the sensitivity to 

apoptotic stimuli 

Having determined that a high-level of anti-apoptotic BAG-I expression was 

associated with insensitivity of HEN-16-2/CDDP cells to different cytotoxic drugs and 

other apoptotic stimuli, a potential role ofBAG-1 in the direct regulation of apoptosis in 

cervical cells was examined. The BAG-1 p50 stably transfected C33A cell line, C33A­

BAG-l, was kindly provided by Dr. Xiaolong Yang (Yang et al., 1999b). C33A-BAG-l 

cells overexpressing BAG-I (Figure 3.18) were found to be more resistant to cell death 

induced by cisplatin than C33A transfected with a control vector (C33A-NEO) (Figure 

3.19). Similarly, C33A-BAG-1 cells were more resistant to cell death induced by 

doxorubicin (Figure 3.20) and etoposide (Figure 3.21A) than the control cells. Moreover, 

C33A-BAG-1 cells were found to have a higher survival rate when exposed to heat shock 

or UV (Figure 3.21B) than the control cells. However, parallel studies indicated that 
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Figure 3.18. BAG-I expression levels in C33A-BAG-l versus C33A-NEO cells. ~-actin 

was an internal control. 
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Figure 3.19. Effect of BAG-1 on dose- and time-dependent induction of apoptosis by 

cisplatin in C33A-BAG-1 versus C33A-NEO cells. The percentage of viable cells was 

determined by trypan blue dye exclusion assays. Results represent the mean + the 

standard deviation from three independent experiments. *, p < 0.05, is the statistical 

significance of the difference in cell viability between stably transfected NEO control 

cells and full-length BAG-1 overexpressing cells. A. Dose-dependence. Cells were 

treated with the indicated concentrations of cisplatin for 48 h. B. Time-dependence. 

Cells were exposed to 5 J.LM cisplatin for the indicated periods. 
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Figure 3.20. Effect of BAG-1 on dose- and time-dependent induction of apoptosis by 

doxorubicin in C33A-BAG-1 versus C33A-NEO cells. The percentage of viable cells was 

determined by trypan blue dye exclusion assays. Results represent the mean + the 

standard deviation from three independent experiments. *, p < 0.05, is the statistical 

significance of the difference in cell viability between stably transfected NEO control 

cells and full-length BAG-1 overexpressing cells. A. Dose-dependence. Cells were 

treated with the indicated concentrations of doxorubicin for 48 h. B. Time-dependent. 

Cells were exposed to 1 J,.LM doxorubicin for the indicated periods. 
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Figure 3.21. Effect of BAG-1 on induction of apoptosis by etoposide, UV irradiation and 

heat shock in C33A-BAG-1 versus C33A-NEO cells. The percentage of viable cells was 

determined by trypan blue dye exclusion assays. Results represent the mean + the 

standard deviation from three independent experiments. *, p < 0.05, is the statistical 

significance of the difference in cell viability between stably transfected NEO control 

cells and full-length BAG-1 overexpressing cells. A. Dose-dependent induction of 

apoptosis by etoposide. Cells were treated with the indicated concentrations of etoposide 

for 48 h. B. Induction of cell death by UV irradiation and heat shock. Cells were 

subjected to heat shock at 45 °C for 45 minutes or 50 mJ/cm2 UV irradiation, and then 

were returned to normal culture for 48 hours. 
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overexpression of BAG-1 failed to protect the cervical C33A cells from apoptosis 

induced by actinomycin D or paclitaxel (Figure 3.22). 

3.8. Isolation and identification ofBAG-1-interacting proteins 

Previous studies have indicated that BAG-1 interacts with various proteins and 

modulates their functions (see section 1.4; Figure 1.7). It appears that BAG-1 plays an 

important role in signal transduction pathways in apoptosis. However, how BAG-1 

accomplishes these multiple functions is still unclear. To further characterize BAG-1 and 

understand its role in regulating apoptosis, screening a human keratinocyte eDNA library 

was conducted to clone novel BAG-1-interacting proteins using the yeast two-hybrid 

system. 

Because BAG-I full-length (p50) had not been cloned in the laboratory before the 

eDNA library screening, BAG-1 p46 isoform was used as bait for interacting proteins in 

the yeast two-hybrid system (Figure 3.23). 18 positive clones were isolated from 

approximately 2.5 x 106 yeast transformants. After verification of 17 positive clones 

(Figure 3.24), both strands of the eDNA obtained were sequenced and analyzed for 

sequence homology through the Basic Alignment Search Tool (BLAST} in the National 

Center for Biotechnology Information Sequence Databases. One 2406 bp and two 1822 

bp eDNA sequences obtained from positive clones were found to be Hsp 70 (Figure 

3.25A and Table 3.4). Two 2589 bp eDNA sequences obtained from positive clones was 

found to be Hsp70-2 (Figure 3.25B and Table 3.4). One 1832 bp and ten 1530 bp eDNA 

sequences obtained from positive clones were found to be Hsc70 pseudogene (Figure 
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Figure 3.22. Effect of BAG-1 on induction of apoptosis by actinomycin D and paclitaxel 

in C33A-BAG-1 versus C33A-NEO cells. Cells were seeded and incubated with the 

indicated concentrations of actinomycin D or paclitaxel for 48 hours. The percentage of 

viable cells was determined by trypan blue dye exclusion assays. Results represent the 

mean + the standard deviation from three independent experiments. *, p < 0.05, is the 

statistical significance of the difference in cell viability between stably transfected NEO 

control cells and full-length BAG-1 overexpressing cells. A. By actinomycin D. B. By 

paclitaxel. 
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Positive clone 

Yeast colonies on SD/-Trp/-Leu/-His agar plate 
(2.5 x 106 transformants/50 plates) 

(3-galactosidase filter lift assay 

Figure 3.23. Representative result of screening and identifying possible BAG-1-

interacting-protein positive clones from the yeast two hybrid system. A. Yeast colones 

on SD/-Trp/-Leu/-His agar plate. B. 13-galatosidase filter lift assay result (blue color) for 

the same colony indicated on A and B by arrows. 
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Figure 3.24. Representative results of verification of BAG-1-interacting-protein positive 

clones from the yeast two hybrid system. BAG-1 was the bait and lamin and pAS2-1 

vector plasmids was negative controls to verify the specificity of the interaction between 

BAG-1 and Hsp70Y. A. Yeast colones on SD/-Trp/-Leui-His agar plates. B. 13-

galatosidase filter lift assay result 

107 



A 

I 
0 

I 

500 
I 

1000 
I 

1500 

Human beat shock protein (Hsp 70) gene (HUMHSP70D) 

0 ~ 1' 
COS{489) Sulal(1796) 

3' 

I I I I 
2000 2500 

1' 1' 2691 
s~ U2336)CDS(2411) 

2406bp .................................................... . 

B 

c 

1' 1' 1' 1' 1' 1' 
EcoRI(2JS) CDS(489) Smal(1796) Slm 1(2336)CDS(24ll)Xho 1('-691) 

1822 bp 
1' ~ 1' 1' 1' 

EcoRI(869) Sm.a 1(1796) s~ 1'(2336)CDS(241l).Xbo 1(2691) 

Human MHC class m Hsp70-2 gene (HUMMHHSP2) 

BamH I (ol27P)S{436) Nco l(Sol7) 

2589 bp ' ~ ~ ·:· . . - - , .. _ ' " .. , .. 
287 1' 

CDS(486) 

Sm.al(l793) 

Human heat shock cognant protein (Hsc 70) pseudogene 

0 2186 
EcoR. [ (1624) 

1~2bp .................................... . 
1' 1' 1' 

EcoR l (1624) Xho I(ll86) 

1530bp .............................. .. 
1' 1' 1' 

Ecoa 1(65<>} EcoR I (1624) Xho 1(1186) 

2876 

CDS(24 U)EcoR I(2593) 

Figure 3.25. BAG-1-interacting-protein cDNAs clones indentically to previously known 

sequences. A. Hsp70 (top) and two eDNA clones (bottom). B. Hsp70-2 (top) and a 

eDNA clone . C. Hsc70 pseudogene (top) and two eDNA clones (bottom). 
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3.25C and Table 3.4). Furthermore, one 5340 bp eDNA sequence was found to be 

identical to Hsc70 at the both 5' and 3' ends. However, the total length of the eDNA is 

much longer than Hsc70 mRNA, indicating that this eDNA may be different from Hsc70 

and any other Hsp70 genes. Therefore, this 5340 bp eDNA was a candidate novel heat 

shock protein (Hsp) gene _eDNA and arbitrarily named Hsp70Y (Figure 3.26 and Table 

3.4). 

Table 3.4. Positive BAG-1-interacting eDNA clones identified from Keratinocyte 

MATCHMAKE eDNA library using yeast two-hybrid system 

Identity Clone numbers Size (bp) 

Hsp70 1 2406 

2 1822 

Hsp70-2 2 2589 

Hsc70 pseudogene 1 1832 

10 1530 

Hsp70Y 1 5340 

3.9. Mutation analysis of BAG-1 functional domain for interaction with Hsp70 and 

Hsp70-2 

3.9.1. In vitro interaction 

The BAG-1 domains involved in the interaction of BAG-I with Hsp70 and Hsp70-2 

were characterzed using in vitro protein binding assays. GST -Hsp70 and GST -Hsp70-2 
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Figure 3.26. A candidate novel heat shock protein family member identifed as BAG-1-

interacting-protein. 
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were prepared (Figure 3.27). GST-BAG-1 wild-type and mutated fusion proteins were 

kindly provided by Dr. Xiaolong Yang. 35S-labeled in vitro transcribed/translated (IVT) 

proteins were prepared (Figure 3.28A and B). GST -fusion proteins immobilized on 

glutathione sepharose were tested for binding to 35S-labeled NT proteins. IVT -Hsp70 or 

IVT-Hsp70-2 bound in vitro to GST-BAG-1 p46 (amino acids 72 to 345), GST-BAG-1 

p33 (amino acids 116 to 345), GST-BAG-1 p29 (amino acids 139 to 345), GST-BAG-

1aN4 (amino acids 200 to 345), but not to GST-BAG-l~C1 (amino acids 72 to 320), 

GST-BAG-1~C2 (amino acids 72 to 219), GST-BAG-1~C3 (amino acids 72 to 156), or 

GST negative controls (Figure 3.29 and 3.30). Similarly, GST -Hsp70, or GST -Hsp70-2 

bound to NT -BAG-1 p50 (amino acids 1 to 345) but not to GST negative control (Figure 

3.31). These results indicated that all of the four isoforms ofBAG-1 are able to interact 

with Hsp70 or Hsp70-2 and the carboxyl-terminal 145 amino acids (amino acids 200 to 

345) are important in the mediation of the interaction. 

Hsp70 family members contain two major domains: the amino-terminal 44 kDa 

ATPase domain and carboxyl-terminal domain (Sriram et al., 1997). To determine 

whether the Hsp70 ATPase domain was responsible for the interaction between BAG-1 

and Hsp70, sequences encoding this Hsp70 ATPase domain were generated by PCR and 

inserted into the expression vector pCR3.1. IVT-Hsp70 ATPase domain was found to 

interact with GST-BAG-1 p50 (Figure 3.31). 

3.9.2. In vivo interaction 

The yeast two-hybrid system is highly sensitive, and can be used to assay the 
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Brilliant Blue R250 stained SDS-polyacrylamide gel is shown. 
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Figure 3.28. In vitro transcription/translation of proteins used in BAG-l-Hsp70s in vitro 

interaction assays. A. In vitro transcripted/translated Hsp70 (IVT -Hsp70) and Hsp70-2 

(IVT -Hsp70-2). Lysate was loaded as a negative control, and IVT -luciferase was positive 

control. B. In vitro transcripted/translated ATPase domain of Hsp70 [IVT-Hsp70 

(ATPase}], BAG-I p50 [IVT-BAG-1 (p50)], and BAG-I p46 [IVT-BAG-1 (p46)]. 

Lysate was loaded as a negative control, and IVT-Hsp70 was positive controL 
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Figure 3.29. In vitro assay of interaction between Hsp70 and BAG-1. GST protein was 

used as a negative controL IVT-Hsp70 was directly loaded as positive control. 
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interaction of short peptides with proteins. Moreover, the assays are performed in 

eukaryotic yeast cells, which produce proteins with a conformation more closely 

resembling human proteins than those produced in the bacterial system. To further 

characterize the structural domain of BAG-1 responsible for the interaction between 

BAG-1 and Hsp70 or Hsp70-2, BAG-1 p50, p46, p33 and p29 isoforms, and a series of 

nested BAG-1 deletion mutations were generated by PCR (Figure 3.32) and inserted in­

frame with the GAL4 BD to the pAS2-1 plasmid. The interaction of the different 

isoforms and deletion mutations of BAG-1 with Hsp70 was detected by the yeast two­

hybrid system (Figure 3.33). Table 3.5 summarizes the interactions in the yeast two­

hybrid system. These results indicated that the carboxyl-terminal 30 amino acids from 

315 to 345 are responsible for the interaction between BAG-I and Hsp70 or Hsp70-2. 

3.10. Effect ofBAG-1 on Hsp70s-mediated protein refolding activity in vivo 

To examine whether the interaction of BAG-1 with Hsp70 chaperones affects 

Hsp70 chaperone-mediated protein refolding function, C33A-BAG-1 and C33A-NEO 

cells were transiently transfected with plasmids expressing luciferase and ~­

galactosidase. The luciferase and ~-galactosidase expressing cells were subjected to 

heat-shock to partially inactivate luciferase and ~-galactosidase enzymatic activity. After 

returning the cells to 37 °C for 30 minutes, luciferase activity in C33A-BAG-1 cells was 

1.68 fold compared to that before recovery. After 60 minutes, luciferase activity ·was 

1.83 fold that prior to recovery. In comparison, luciferase activity in C33A-NEO cells 

was 1.37 fold and 1.42 fold at 30 minutes and 60 minutes after recovery. Thus, 
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Figure 3.32. Analysis of PCR products of BAG-1 isoforms and deletion mutants. 

An ethidium bromide-stained agarose gel is shown. 
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pAS2-l-BAG-1~8 

pACT2-Hsp70 
pAS2-l-BAG-IA7 

pACT2-Hsp70 
pAS2-l-BAG-l p50 

pACT2-Hsp70 
pAS2-I-BAG-1Al 

pACT2-Hsp70 
pAS2-l 

pACT2-Hsp70 
pAS2-I-BAG-1A6 

pACT2-Hsp70 
pAS2-l-BAG-I p33 
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pACT2-Hsp70 
pAS2-l-BAG-IA5 

Figure 3.33. In vivo interaction between BAG-I deletion mutants and Hsp70. r3-

galactosidase filter lift assays. A. Interactions between Hsp70 and BAG-1 isoforms and 

BAG-1~1, t1.2 and ~3 mutants were detected. B. No interaction between Hsp70 and 

BAG-1 ~4 to t1.8 mutants was detected. 
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Table 3.5. Deletion mutation analysis of the functional domain of human BAG-I 

binding with Hsp70 or Hsp70-2 in the yeast two-hybrid system 

Plasmid (amino acids) - pACT2 pACT2- pACT2-

Hsp70 Hsp70-2 

- ND - - -

pAS2-1 (-) - - - -

pAS2-l-BAG-1 p50 (1-345) - - + + 

pAS2-1-BAG-1 p46 (72-345) - - + + 

pAS2-1-BAG-1 p33 (116-345) - - + + 

pAS2-1- BAG-1 p29 (139-345) - - + + 

pAS2-l-BAG-1~1 (200-345) - - + + 

pAS2-1-BAG-l~ (286-345) - - + + 

pAS2-l-BAG-l~ (315-345) - - + + 

pAS2-1-BAG-184 (72-320) - - - -

pAS2-l-BAG-1.6.5 (72-291) - - - -

pAS2-l-BAG-1~6 (72-215) - - - -

pAS2-l-BAG-187 (72-156) - - - -

pAS2-l-BAG-1.6.8 (72-121) - - - -
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overexpression of BAG-1 in C33A-BAG-1 cells (Figure 3.18) led to a small, but 

significant increase in luciferase refolding (Figure 3.34A). Similarly, the expression of 

BAG-1 led to a small but significant increase in the refolding of J3-galactosidase, 

compared with that of C33A-NEO control cells (Figure 3.34B). ~-Galactosidase activity 

in C33A-BAG-1 was found to recover 1.59 fold BAG-1 after refolding for 30 minutes 

and 1.90 fold after refolding for 60 minutes, whereas J3-galactosidase activity in C33A­

NEO recovered only 1.05 fold and 1.28 fold at 30 and 60 minutes, respectively (Figure 

3.34B). 

3.11. Effect of overexpression of Hsp70 or Hsp70-2 in cervical C33A ceUs on 

sensitivity to apoptotic stimuli 

Although induction of hsp70 protein synthesis led to an enhancement of apoptosis 

in human leukemia cells (Chant et al., 1996) and other cell types (Murdoch, 1995; Furlini 

et al., 1994, Galea-Lauri et al., 1996), Hsp70 chaperones are thought to play 

cytoprotective roles in most types of cells during times of stress by inhibiting apoptosis 

(Palla et al., 1996). 

To determine the role of Hsp70 in cervical cell apoptosis, C33A cells were 

transfected with a plasmid expressing Hsp70 (pCR3.1-Hsp70) or Hsp70-2 (pCR3.1-

Hsp70-2), or the control plasmid (pCR3.1), and stable clones overexpressing Hsp70s 

were obtained (Figure 3 .35). 

When challenged with 45 minutes of heat shock at 45°C, C33A cells 

overexpressing Hsp70s displayed enhanced survival compared with control transfectants 
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Figure 3.34. Effect of BAG-I on In vivo protein refolding in C33A cells following heat 

shock. BAG-I promotes Hsp70s mediated refolding of denatured luciferase and f3-

galactosidase in vivo. C33A-NEO and C33A-BAG-1 cells were transiently transfected 

with pSV-luciferase and pSV-(3-galactosidase. One day after transfection, cells were 

distributed into cell culture tubes and cultured for one more day, and then subjected to 

42°C heat shock for 45 minutes. After returning cells to 3 7°C culture for 30 minutes or 

60 minutes to allow protein refolding, the cells were lysed for detection of enzymatic 

activity. The luciferase or ~-galactosidase activities before heat shock were taken as 

100%. Results represent the mean + the standard deviation from three independent 

experiments. *, p < 0.05, is the statistical significance of the difference in relative 

enzymatic activity between stably transfected NEO control cells and full-length BAG-I 

overexpressing cells. A. luciferase. B. (3-galactosidase. 
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Hsp70s· 

f3-actin 

Figure 3.35. Hsp70s protein expression in C33A-hsp70 and C33A-hsp70-2. (3-actin was 

an internal control. 
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(Figure 3.36). It was also found that Hsp70s overexpression led to the inhi.oition of cell 

death induced by various chemotherapeutic drugs and UV irradiation (Figure 3.36). 
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Figure 3.36. Effect of overexpressing of Hsp70s on induction of apoptosis by 

different agents. Cells exposed to heat shock at 45 °C for 45 minutes or 50 mJ/cm2 UV 

irradiation and then returned to 3 7 °C culture for 48 hours. Cells were also treated with 5 

J.1.M cisplatin, 0.25 J.LM doxorubicin, 40 J.LM paclitaxel, 25 nM actinomycin D or 20 J.lM 

etoposide for 48 hours. The percentage of viable cells was determined by trypan blue dye 

exclusion assays. Results represent the mean + the standard deviation from three 

independent experiments. *, p < 0.05, is the statistical significance of the difference in 

cell viability between stably transfected NEO control cells and full-length BAG-1 

overexpressing cells. 

126 



CHAPTER4 

DISCUSSION AND FUTURE DIRECTIONS 

4.1. Cisplatin treatment of human endocervical cells immortalized by HPV16 and 

the multidrug-resistant phenotype 

Cisplatin was discovered in the 1800s. Its biologic activity was first noted by 

Rosenberg in 1961. After multiple preclinical trials, it was released for clinical use in 

1972 (Eustace, 1980). Since that time, it has become one of the most commonly used 

chemotherapy drugs and it is efficacious in a multitude of cancers. 

Cisplatin is one of the most effective chemotherapeutic agents in treating cervical 

cancer. However, the response to cisplatin is generally short in duration, and acquired 

drug resistance is the greatest obstacle to the success of chemotherapy. 

The cellular mechanisms of drug resistance depend upon altered levels or function 

of key gene products. These alterations may result from changes that occur at any point 

along the pathways of gene expression and regulation. Indeed, multiple molecular 

processes have been shown to be involved in examples of drug resistance, including 

altered drug influx and efflux, altered drug metabolism, altered drug targets, and altered 

cellular response to their damage (see section 1.2). The prevalence of these changes 

reflects the phenotypic and genetic instability of cancer cells under the mutagenic 

pressure of antineoplastic agents. This acquired drug resistance may result from the 

selection of clones originally insensitive to the drug or from the induction of resistance 

through the disruption or modulation of gene expression. 
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The endocervix is the origin of over 95% of cervical tumors. A human 

endocervical in vitro system has been used to study the role ofHPV in the oncogenesis of 

endocervical cancer. It has provided the direct evidence that linked HPV to 

immortalization and further transformation of the HPV -immortalized cervical cells by 

carcinogens including smoking (Yang 1996a). In vitro endocervical AIDR systems, 

however, have not yet been established to mimic and study acquired MDR in 

endocervical cancers. 

The sensitivity to chemotherapeutic drugs is determined by a variety of cellular 

factors, including drug uptake and retention, ability to repair damage and propensity to 

undergo irreversible growth arrest or apoptosis. Drug treatment can inhibit tumor growth 

in at least two distinct ways: irreversible growth arrest and apoptosis. Irreparable damage 

to chromosomes prevents cell division, and therefore cells will no longer be able to 

generate progeny. This process occurs in all cell types and is sometimes referred to as 

mitotic death. In some cell types, the cellular damage may trigger apoptosis. For both 

effects of drug treatment, the indicator for success or failure of anti-cancer therapy is 

whether cells can survive the onslaught of drug treatment and retain the capacity to 

divide. Therefore, drug resistance of tumors is often determined by clonogenic survival of 

drug-treated cells. 

As was expected, our clonogenic survival assays indicated that the cisplatin-treated 

endocervical cells acquired resistance to cisplatin (Figure 3.1A). Moreover, these 

cisplatin-resistant cells also acquired cross-resistance to paclitaxel (Figure 3.1B), an 

anticancer drug structurally and functionally different from cisplatin. Therefore, cisplatin 

128 



treatment of human endocervical cells immortalized by HPV16 conferred an 1\IDR 

phenotype. 

An in vitro endocervical cell system mimicking drug-resistance acquisition in vivo 

will be advantageous to study the molecular mechanism underlying the development of 

drug resistance. However, in vitro cell monolayers and in vivo epithelia are markedly 

different. The status and expression of HPV genes, three-dimensional cell-cell 

interactions and other cofactors, such as hormones, growth factors and the host immune 

surveillance, are some key differences (Herrington, 1995). Despite this limitation, the in 

vitro model system in this study remains a useful model to analyze the cellular 

mechanisms of acquired 1\IIDR in cervical cancer, particularly in understanding the role of 

apoptosis in endocervical cells carcinogenesis and acquired MDR. 

4.2. Response of endocervical MDR ceUs and parental ceUs to various apoptotic 

stimuli 

Clinical studies with patients suffering from acute myeloid leukemia have 

identified a correlation between high levels ofBcl-2 protein and a poor prognosis for the 

outcome of chemotherapy (Campos et al., 1993). Also, experiments have shown that 

over-expression of Bcl-2 or the absence of p53 can significantly increase clonogenic 

survival of at least some types of tumour cells after radiation or drug treatment (Lowe et 

al., 1993a; b; Strasser et al., 1994). These results provide evidence that abnormalities in 

apoptosis control can influence the sensitivity of cancer cells to chemotherapeutic drugs 

(section 1.2.2.6). Overexpression of anti-apoptotic proteins in some types of cells causes 
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resistance to nearly all apoptotic stimuli, conferring an MDR phenotype that differs from 

other types of drug-resistance mechanisms (Reed, 1998b). 

To determine whether the inhibition of apoptosis is the major mechanism of the 

MDR of endocervical cells, HEN-16-2/CDDP, further experiments were conducted to 

study the response of multidrug resistant endocervical cells and their parental cells to 

various apoptotic stimuli, including therapeutic drugs, heat shock, UV light irradiation 

and anti-Fas antibody. 

4.2.1. Induction of apoptosis by cancer chemotherapeutic agents 

In a study investigating the mechanism of action of etoposide (a topo II inhibitor), it 

was found that etoposide induced intemucleosomal DNA fragmentation (Kaufi:nann, 

1989). This observation raised the possibility that etoposide causes apoptosis. Since 

then, the spectrum of chemotherapy agents causing apoptosis has expanded, and the 

evidence supporting the role of apoptosis in chemotherapy continues to accumulate. The 

chemotherapeutic agents that have been identified as apoptosis-inducing include 

etoposide, dexamethasone, cisplatin, paclitaxel, 5-FU, doxorubicin ATRA and 4-HPR 

(Kaufinann, 1989; Walker et al., 1991; Shinomiya et al., 1994; Havrilesky et al., 1995; 

Huschtscha et al., 1996). The occurrence of apoptosis has been documented by 

demonstration of endonucleosomal DNA breakdown and other biochemical and 

morphologic criteria of apoptosis. 

In vivo studies have also provided evidence that chemotherapeutic agents induce 

apoptotic tumor cell death. For example, a retinoic acid-treated T -cell lymphoma was 

130 



shown to undergo apoptosis in vivo (Su et al., 1993). In a study of esophageal squamous 

cell carcinoma, it was shown that both radiation and chemotherapy (5-FU, cisplatin, and 

bleomycin) induced apoptotic cell death in vivo, as determined by examination of biopsy 

specimens (Moreira et al., 1995). In vitro and in vivo studies clearly show the induction 

of apoptosis by chemotherapeutic agents in various cell lines and tumors. In this study, 

compared with HEN-16-2, endocervical :MDR HEN-16-2/CDDP cells showed a 

significant inhibition of apoptosis induced by cisplatin (Figure 3.2 and 3.3), actinomycin 

D (Figure 3.5), doxorubicin (Figure 3.6), etoposide (Figure 3.7), paclitaxel (Figure 3.8), 

5-FU (Figure 3.9A), staurosporine (Figure 3.9B), ATRA (Figure 3.10A) and 4-HPR 

(Figure 3.10B). These result suggest that inhibition ofapoptosis might be responsible for 

the :MDR phenotype ofHEN-16-2/CDDP cells. 

4.2.2. Induction of apoptosis by UV irradiation 

A variety of extrinsic and intrinsic signals can trigger apoptosis, including 

environmental stress such as UV (Sachs and Lotem, 1993; Buttke and Sandstrom, 1994; 

Kyriakis et a/., 1994; Thompson, 1995). In this study, HEN-16-2/CDDP showed 

inhibition of apoptosis induced by 50 m.J/cm2 dose UV (Figure 3.11), further suggesting 

that the phenotype of this MDR of human endocervical cells may be due to the inhibition 

of apoptosis, rather than by overexpression ofPgp or other classic MDR proteins. 

4.2.3. Induction of apoptosis by heat shock 

The spectrum of tissue susceptibility to apoptosis induction by heat shock is 
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essentially similar to cancer therapeutic agents and radiation (Allan and Harmon, 1986; 

Barry et al., 1990; Sellins and Coh~ 1991; Takano et al., 1991;). In this study, HEN-

16-2/CDDP cells were more resistant than parental cells to apoptosis induced by heat 

shock at 45 °C for 45 minutes (Figure 3.11). This result supports the concept that 

inhibition of apoptosis may cause the MDR phenotype found in human endocervical 

cells. 

4.2.4. Induction of apoptosis by anti-Fas antibody 

Fas (also called CD95), a receptor for Fas ligand (FasL), belongs to the TNF 

receptor family, and transduces the FasL apoptotic signal into cells (Nagata and Golstein, 

1995). The molecular mechanism for Pas-induced apoptosis is currently being 

elucidated. Aggregation of the Fas receptor by binding to FasL, or by crosslinking with 

an anti-Fas antibody induces the formation of a death-inducing signaling complex (DISC) 

of proteins composed of Fas, an adaptor called F ADD, and the inactive pro form of 

caspase-8 (K.ischkel et al., 1995; Nuiiez et al., 1998). Oligomerization ofprocaspase-8 in 

DISC seems to induce self-processing into the mature, active, p20 and p 10 subunits of 

caspase-8 protease. The activated caspase-8 is then released from DISC, and activates 

other downstream caspases by proteolytic cleavage of their zymogen forms (Medema et 

al., 1997). 

In many cells, overexpression of anti-apoptotic proteins, such as Bcl-2 and Bcl-XL, 

inhibits apoptosis induced by a variety of stimuli, including anti-Fas antibody (Cory, 

1995; Korsmeyer, 1995; Reed, 1997). Consistently, the cell death rate induced by anti-
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Fas antibody is less in HEN-16-2/CDDP cells than HEN-16-2 cells (Figure 3.11), further 

suggesting that resistance of HEN-16-2/CDDP to multiple drugs is due to the 

dysregulation in apoptosis pathways, but less likely due to the enhanced drug effiux, 

enhanced drug detoxification, altered drug targets, or altered cellular damage repair. 

4.3. Evidence of tumorigenicity of cervical cells by anticancer drug cisplatin 

It has been well recognized that cervical carcinogenesis is a multistage process in 

which HPV and other co-factors are necessary for the full malignant transformation of 

primary cervical cells (zur Hausen, 1991; 1994; Herrington, 1995). Many carcinogens, 

such as those in cigarette smoke, have been demonstrated to be risk factors for cervical 

cancer (Phillips and Smith, 1994; Yang, et al., 1996a; Nakao et al., 1996). 

The HEN-16-2/CDDP cell line possesses the general growth characteristics of 

cervical tumors (Li eta/., 1992): faster growth in medium containing serum and a high 

calcium level, higher saturation density, and anchorage-independent growth (Figures 

3.13, 14 and Table 3.1). Moreover, HEN-16-2/CDDP cells formed tumors in nude mice, 

whereas a similar passage of untreated HEN-16-2 cells remained non-tumorigenic in 

nude mice (Figure 3.15 and Table 3.2). These results provided the first in vitro evidence 

that cisplatin treatment can further transform HPV -immortalized endocervical cells, 

supporting the hypothesis that cisplatin has carcinogenic potential (Greene, 1992). 

The carcinogenic potential of drugs used in cancer therapy has been recognized for 

decades {Haddow eta/., 1948). In laboratory animals, cisplatin has been found to produce 

malignancies, notably acute leukemia (Kaldor eta/., 1988, Barnhart and Bowden, 1985; 
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Kempf and Ivankovic, 1986). Cisplatin-associated second malignancies were found to 

develop in many cancer patients (see review Green, 1992). 

DNA damage upon cisplatin treatment may occur in both neoplastic and non­

neoplastic cells. Lethal injury to neoplastic cells is obviously the desired effect; however, 

non-neoplastic cells may also be killed or damaged. If the nonlethal DNA damage in 

normal cells can be faithfully repaired, the cells return to normaL However, if the 

cellular damage cannot be repaired, normal cells will undergo apoptosis. Alternatively, 

the damaged cells may have undergone initial stages of oncogenic progression. Such 

cells may enter the cell cycle again without DNA damage repair, thus mutation occurs in 

these cells. Then, if the accumulated mutations cause an upregulation of cell 

proliferation or downregulation of apoptosis, new primary neoplastic cells can arise. 

Carcinoma in situ can then progress to invasion and metastasis if the host defenses are 

compromised. 

When the HPV16 E6 protein is expressed in cervical cells, baseline p53 protein 

levels are reduced dramatically following ubiquitin-mediated proteolysis through 

interaction with E6 (section 1.3.2). This causes the loss of cell cycle arrest following 

DNA damage (Kessis et al., 1993; Demers et al., 1994; Foster et al., 1994; Hickman et 

al., 1994; Slebos et al., 1994). Inactivation ofp53 by the HPV16 E6 protein was found to 

increase the rate of mutagenesis (Havre et al., 1995). Thus, the inactivation of p53 

function by HPV16 E6 in HEN-16-2 cells allows the survival of cells mutated by 

cisplatin treatment that would otherwise be eliminated by apoptosis. 

Therefore, high-risk HPV s may indirectly contribute to cervical tumorigenesis by 
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11romoting genomic instability and the accumulation of mutations in HPV -infected cells 

after treatment with cisplatin. 

In view of the fact that many human premalignancies contain disabled or 

dysregulated genes such as p53 that effectively induce apoptosis or Bcl-2 that effectively 

block apoptosis, clonogenic cells surviving such genotoxic treatment in vivo are likely to 

induce mutations contributing to progression of a benign disease as a paradoxical 

consequence of attempts to eradicate a malignant one. Therefore, the use of carcinogenic 

drugs for cancer treatment needs clear justification according to the susceptibility of cells 

to the DNA-damage-induced apoptosis versus oncogenic mutation. The benefits from the 

cancer therapy should be carefully evaluated. Abrogation of apoptosis provides a double 

hazard of tumorigenicity and multidrug-resistance in the face of genotoxic therapy, such 

as cisplatin. 

4.4. Role of apoptosis-related cellular genes in multidrug resistance and 

tumorigenesis of human endocervical ceUs 

Recent clinical studies have shown a strong correlation between apoptosis and 

:progression of premalignant cervical lesions (lsacson et al., 1996; Shoji et al., 1996). 

Cellular, but not HPV, genes regulating apoptosis such as the bcl-2 family, are considered 

t~ be important for this correlation (Shoji et al., 1996; Pillai er al., 1996; Yang et al., 

1998b ). However, the precise role of apoptosis-associated genes in this oncogenic 

progression is still poorly understood. One purpose of this study was to determine 

whether the expression of apoptosis-associated proteins varied during the process of 
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acquired MDR and tumorigenesis induced by the anticancer drug cisplatin. The 

expression of these anti-apoptotic proteins, Bcl-XL and BAG-1 p50 and p33 isoforms, 

increased significantly in HEN-16-2/CDDP, indicating that these proteins may be 

involved in the aquired MDR and tumorigenesis of human endocervical cells. In 

contrast, the levels of the apoptosis-promoting proteins p53, Bak, and Bax varied little 

when the expression of each was compared inHEN-16-2 andHEN-16-2/CDDP. 

Deletions or mutations of the tumor suppressor gene, p53, have been detected in a 

majority of various common human cancers (Hollstein et al., 1991; Levine et al., 1991; 

Levine, 1997). p53 was found to play an important role in apoptosis; for example, the p53 

protein is required for DNA damage-induced apoptosis in lymphocytes and colonic 

epithelial cells (Clarke et al., 1993; Lowe et al., 1993a; Clarke et al., 1994; Strasser et al., 

1994). Loss of p53 function was reported to cause resistance to apoptosis induced by 

DNA-damaging reagents in various human cells (Zhan et al., 1994). Conversely, 

overexpression of p53 was shown to induce apoptosis in certain cell types (Oren, 1994; 

Yonish-Rouach et al., 1991; 1995). It has become clear that the p53 response varies not 

only according to the insulting stimulus but also according to the tissue and cell type 

involved (Midgley et al., 1995; MacCallum et al., 1996). Although much data regarding 

p53 is now available (over 10,000 p53-related papers published since 1992), the precise 

mechanism of p53 function is still uncertain. 

Since p53 expression varied little in HEN-16-2 and HEN-16-2/CDDP (Figure 3.17 

and Table 3.3), expression levels ofBax and Bak: were examined. They are Bcl-2 family 

members that antagonize the function ofBcl-2 and promote apoptosis under conditions of 
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stress (Oltvai et a/., 1993). Bax was shown to be downstream of p53 and transactivated 

by p53 (Miyashita et al., 1994; 1995). Like p53, Bax can function as a tumor-suppressor 

gene by inducing apoptosis in tumor cells (Yin et al., 1997). In support of this 

hypothesis, inactivation ofBax accelerated transformation of epithelial cells in transgenic 

mice expressing a truncated SV 40 large T antigen that inactivates the tumor suppressor 

pRB but not p53 (Yin et al., 1997). Bax and Bcl-2 appear to have intrinsic independent 

functions as effectors of apoptosis and survival, respectively. The evidence includes 

observations of mutants of Bax and Bcl-2 that are incapable of dim.erizing, but still 

display antagonistic activity towards each other and remain capable of inducing or 

repressing apoptosis, respectively (Cheng et al., 1996; Simonian et al., 1996a,b; 1997; 

Zha and Reed, 1997; Wang et al., 1998;). Experiments with knock-out mice 

demonstrated that Bax promoted cell death in the absence of Bcl-2 (Knudson and 

Korsmeyer, 1997). 

No changes were found in the expression of Bax or Bale proteins when comparing 

HEN-16-2 with HEN-16-2/CDDP cells (Figure 3.17 and Table 3.3), suggesting that 

dysregulation of apoptosis may not be caused by dysregulated expression of Bax or Bak. 

This was consistent with results using the HEN-16-2 cell line transformed by CSC (Yang 

et al., 1996a; 1998b ). 

Overexpression of Bcl-2 renders pre-B lymphocyte cells resistant to apoptosis 

(V aux et al., 1988). Recently, high levels of Bcl-2 mRNA or protein were found in 

neuroblastoma, lymphoma, breast, lung, prostate and cervical cancers (Haldar et al., 

1994; Ikegaki et al., 1994, Bargou et al., 1995, Liang et al., 1995; McDonnell et al., 
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1992; Reed et al., 1991; Yang et al., 1998b). However, no mutations in Bcl-2 were 

found. Overexpression of Bcl-2 was found to prevent cell death induced by a wide 

variety of apoptotic stimuli, including chemotherapeutic drugs (White, 1996; Reed, 

1994). The expression ofBcl-2 was found to be progressively enhanced after primary 

cells were immortalized by HPV16 and again after the immortalized cells were 

transformed by CSC (Yang et al., 1998b ), suggesting that abnormal activation of the Bcl-

2 gene was involved in cervical cell immortalization by HPV16 and late events of 

cervical tumorigenesis induced by CSC. In this study, however, the expression of Bcl-2 

was found to be not significantly different between HEN-16-2 and HEN-16-2/CDDP 

(Figure 3.17 and Table 3.3). Therefore, in HEN-16-2/CDDP cells, dysregulation of 

apoptosis may be caused by altered expression of other apoptosis-related genes. 

Two splice forms ofBcl-X , Bcl-XL and Bcl-Xs, have different functions: Bcl-XL is 

the longer form and has an anti-apoptotic effect, whereas Bcl-Xs is the shorter form and 

promotes apoptosis (Boise et al., 1993). Overexpression ofBcl-XL mRNA and protein 

was reported in human lung cancer cell lines, lymphomas, colorectal adenocarcinomas, 

gastric cancers and cervical cancers (Hirose et al., 1997; Krajewska et al., 1996; Kondo 

et al., 1996; Reeve et al., 1996; Xerri et al., 1996; Yang et al., 1998b). Bcl-XL was the 

predominant form of Bcl-X expressed in human cervical cells, and it was overexpressed. 

in both the HPV16-immortalized and the CSC-transformed cell lines; whereas the 

expression of Bcl-Xs protein was undetectable in all the cell lines (Yang et al., 1998b). 

Consistent with these observations, the expression of Bcl-XL was found to be higher in 

HEN-16-2/CDDP than HEN-16-2 cells (Figure 3.17 and Table 3.3). 
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BAG-1 is a gene which was isolated through the interaction of its protein with Bcl-

2 (section 1.4). Cotransfection of BAG-1 with Bcl-2 was shown to increase the 

protection from cell death induced by several stimuli, including staurosporine, anti-Fas 

antibody, cytolytic T cells, and cytokine withdrawal (Takayama et al., 1995; Clevenger et 

al., 1997). BAG-1 is not a member of the Bcl-2 family and may have unique function in 

protection from apoptosis. Overexpression of BAG-1 protected GM70 1 immortalized 

fibroblasts from heat shock-induced cell death, but did not similarly protect 293 human 

kidney epithelial cells {Takayama et al., 1997). 

Recently, BAG-1 was found to be overexpressed in human cervical carcinoma cell 

lines and tissues. Enhanced resistance to apoptosis induced by staurosporine was found to 

correlate well with expression of the BAG-1 p50 isoform in human cervical cells. 

Further study has indicated that the overexpression of BAG-1 p50 in cervical carcinoma 

C33A cells enhanced the resistance to apoptosis induced by staurosporine (Yang et al., 

1999b ). In agreement with these findings, the expression of BAG-I p50, and p33 

isoforms was higher in HEN-16-2/CDDP than in HEN-16-2. However, in HEN-16-2 

cells and HEN-16-2/CDDP cells, the expression level of the p46 isoform of BAG-1 is 

similar (Figure 3.17 and Table 3.3), and the shortest isoform of BAG-1, p29 was 

undetectable (Figure 3.17). 

Consistent with the effects of staurosporine, in this study, overexpression ofBAG-1 

p50 in cervical C33A cells conferred resistance to apoptosis induced by anticancer drugs 

including cisplatin, doxorubicin and etoposide (Figure 3.19, 20, 21). Also, this 

overexpression conferred resistance to apoptosis induced by UV and heat shock (Figure 
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3.21). However; it failed to protect C33A cells from apoptosis induced by two other 

anticancer drugs~ actinomycin D and Paclitaxel (Figure 3.22). To further determine 

whether BAG-1 or Bcl-XL play a direct role in the process of multidrug resistance and 

carcinogenesis of HPV16-immortalized endocervical cells, it would be interesting to 

overexpress Bcl-XL or BAG-1 different isoforms in HEN-16 cells and assay oncogenic 

properties and the pheotype of drug-resistance. 

The precise roles and mechanisms of BAG-1 in regulating apoptosis in cervical 

cells are complex and not well understood. Avenues to be considered are the functional 

interactions ofBAG-1 with other apoptosis-related proteins (Figure 1. 7). 

The recognition that the expression of apoptosis-related genes can be regulated by 

various biologic response modifiers, such as retinoids, cytokines, and growth factors, 

suggests opportunities for modulating apoptosis by combination chemotherapy. Because 

different chemotherapeutic agents have different mechanisms of action to induce 

apoptosis, it would be of interest to examine their efficacies in various combinations in 

the induction of apoptosis in HEN-16-2/CDDP cells. 

Alternatively, antisense approaches to downregulate protein expression could be 

envisioned. Indeed, sequence-specific down-regulation of Bcl-2 or Bcl-XL expression in 

vitro has been reported to markedly enhance sensitivity to chemotherapeutic drugs 

(Campos et al., 1994; Kitada et a/., 1994; Ziegler et al., 1997; Taylor et al., 1999). 

Therefore, it would be interesting to assay whether inhibition of BAG-1 or Bcl-XL 

expression by antisenses could sensitize the HEN-16-2/CDDP cells to apoptotic stimuli. 

Apoptosis is controlled through cellular genes including apoptosis-promoting genes 
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(p53, Bad, Bak Bax, Bcl-Xs. Bid, Bik Bim/Bod, Blk Bo~ Hrk/Dp5, Nip3 and Nik) and 

apoptosis-inhibiting genes (Bcl-2, Bcl-w. Bcl-XL Bjl-1, Mcl-1, and BAG-1) (for review, 

see Chao and Korsmeyer, 1998; Zamzami et al., 1998; Reed, 1998a). Alterations in these 

apoptosis-regulating gene products may have important roles in carcinogenesis and MDR 

in HEN-16-2/CDDP cells. Therefore, it could be interesting to further examine those 

apoptosis-related genes that have not yet been studied in HEN-16-2/CDDP. 

4.5. Identification ofHsp70 and Hsp70-2 chaperones as BAG-1 interacting proteins 

from a eDNA library using the yeast two-hybrid system 

The anti-apoptotic protein BAG-1 has been reported to form complexes with and 

modulate the functions of Bcl-2, the serine/threonine-specific protein kinase Raf-1, 

steroid hormone receptors, such as ER, AR., and GR, retinoic acid receptor (RAR), HGF 

and PDGF receptors, and Siah-IA (Takayama et al., 1995; Wang et al., 1996; Bardelli et 

al., 1996; Kullmann et al., 1998; Liu et al., 1998; Matsuzawa eta/., 1998; Froesch et al., 

1998; see section 1.4). These observations Suggest a general regulatory role for BAG-I 

in signal transduction pathways involved in cell survival and possibly other cellular 

processes as well. However, how BAG-1 accomplishes these multiple functions is still 

unclear. 

To further characterize and understand the role of BAG-I in regulating apoptosis, a 

eDNA library was screened for novel BAG-1 interacting proteins. Using BAG-1 p46 as 

bait in yeast two-hybrid screening, 17 human eDNA sequences of Hsp 70, Hsp 70-2, 

Hsc70 pseudogene and Hsp70Y were cloned (Table 3.4; Figure 3.25 and 3.26). Hsp70Y 
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was highly homologous to Hsc70 at its amino-terminal and carboxyl-terminal ends; 

however, the total length of Hsp70Y eDNA was much longer than Hsc70 mRNA, 

indicating that Hsp70Ywas a different gene from Hsc70 and any other Hsp70 genes, and 

therefore was a novel candidate Hsp (Figure 3.26). Since Hsp70Y was 5340 bp, the 

analysis of this gene is still ongoing. 

A variety of strategies, including Southwestern blots, phage display, and the yeast 

two-hybrid system, have been devised to screen large libraries for genes or fragments of 

genes whose products may interact with a protein of interest. The yeast two-hybrid 

system is an in vivo method that uses yeast GAL4 protein transcriptional activity as a 

screening method and an assay of exogenous protein-protein interactions (Fields and 

Song, 1989; Chien et al., 1991; Fields and Stemglanz, 1994; Figure 2.3; section 2.12.1). 

After the yeast two-hybrid system was developed and refined, various genes were 

identified through its use. In fac4 Hsc70/Hsp70 was identified to be BAG-1-interacting 

protein by Takayama et al.(1997) using mouse BAG-1 as bait in the yeast two-hybrid 

system, at the time that I independently identified Hsp70, Hsp70-2, and Hsp70Y to be 

BAG-1-interacting proteins using human BAG-1 p46 as bait in the yeast two-hybrid 

system (see sections 2.12 and 3.7). These independently reproducible results indicate the 

high efficiency and specificity of the yeast two-hybrid system to screen eDNA libraries. 

The yeast two-hybrid system has several advantages over other techniques for 

characterizing protein-protein interactions. First, it is highly sensitive, being able to 

detect weak and transient interactions that are not detected by other methods. Second, it 

enables not only identification of interacting proteins, but also the rapid cloning of genes 
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encoding these proteins. Moreover, because it is performed in vivo, the proteins 

produced in this euk:aryotic system are probably more similar to their counterparts 

produced in native cells than those produced in bacterial systems. 

The BAG-1 p50 isoform has 71 more amino-terminal amino acids compared to 

BAG-I p46. The BAG-1 p50 isoform. was reported to collaborate with AR, enhancing its 

transactivation function, whereas the BAG-1 p46 isoform did not (Froesch et al., 1998), 

indicating an important functional difference between the BAG-I p50 and p46 isoforms. 

Therefore, it would be valuable to screen a eDNA library using BAG-1 p50, or even 

using the amino-terminal fragment as bait in the yeast two-hybrid system. eDNA 

encoding proteins that would include, but would not be limited to, AR should be 

identified as BAG-1 p50 isoform amino-terminal domain binding proteins. 

Although BAG-1 was initially identified as a Bcl-2-binding protein, attempts to 

demonstrate interactions between BAG-1 and Bcl-2 using purified proteins have not been 

successful. It is possible that BAG-1 interacts with Bcl-2 using Hsp70 chaperones or 

other proteins as adaptors. 

A novel yeast system based on the yeast two-hybrid system, termed the yeast three­

hybrid system, has been recently used to identify interactions among three proteins 

(Licitra and Liu, 1996), and this system appears to be a potentially useful tool to further 

characterize BAG-1. Because it is possible that BAG-I indirectly interacts with other 

proteins using Hsp70 chaperones as adaptors, BAG-1 could be expressed as a fusion 

protein with the GAL4 BD, and Hsp70 could be conditionally expressed from the Pmet25 

promoter in pBridge plasmid (Figure 4.1). The GAL4 AD fusion protein from a eDNA 
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Hbrary (the same eDNA library that was used in the yeast two-hybrid system), would 

then be screened, as for the yeast two-hybrid system (Figure 4.1). 

It is also possible that interactions between Hsp70 chaperones and BAG-1 may 

confer a BAG-1 conformation that facilitates the direct interaction of BAG-1 with other 

proteins. In this case, the yeast three-hybrid method described above would be useful to 

identify and clone these proteins and characterize their interactions. However, Hsp70 

would need to be inserted in-frame with GAL4 BD, whereas BAG-1 would be 

conditionally expressed from the P met25 promoter pBridge plasmid. 

4.6. Region ofBAG-1 interacting with Hsp70 and Hsp70-2 

Human BAG-1 contains several structural domains that have the potential to be 

involved in protein-protein interactions (Dr. Xiaolong Yang, unpublished data). There is 

an a.-helical domain located between amino acids 225 and 261. The a-helical domain is a 

structure with potential for mediating protein-protein interactions (Muchmore et al., 

1996). In addition, there is a ubiquitin-like domain located between amino acids 163 and 

199. The ubiquitin-like domain is also a candidate for facilitating protein-protein 

interaction, since ubiquitin is involved in interactions with many proteins through this 

domain on target proteins (for review, see Hershko and Ciechanover, 1992). The yeast 

two-hybrid system results demonstrated that the BAG-1 carboxyl-terminal amino acids 

315 to 345 are responsible for the interaction with Hsp70 and Hsp70-2 (Figure 3.33 and 

Table 3.5). These findings confirmed the result of in vitro binding assays (Figure 3.29; 
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Figure 4.1 
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3.30; 3.31). My results are consistent with those of other independent studies (Takayama 

et al., 1997; Zeiner et al., 1997). Recently, the BAG-1 carboxyl-terminal domain 

responsible for interaction with Hsp70 chaperones was demonstrated to be located in a 

domain conserved among BAG-1 family members {Takayama et al., 1999). 

4.7. BAG-1 modulation ofHsp70s chaperone activity 

Exposure of cells to sublethal temperature or other stress induces the synthesis and 

accumulation in the cytoplasm of a set of proteins, collectively known as Hsps which 

subsequently makes the cells resistant to normally lethal temperatures or to other forms 

of cellular injury (Lindquist, 1986; Parsell and Lindquist, 1993). These phylogenetically 

similar and highly conserved proteins function as enhancers of cell survival and behave 

as molecular protein chaperones at the biochemical leveL Hsps bind to nascent or 

misfolded polypeptides under normal conditions or to denatured proteins created under 

the influence of physical agents, leading either to their correct folding or to rapid 

elimination (Beckmann et al., 1990; Parsell and Lindquist, 1993; Welch, 1993). 

The family of Hsp70 molecular chaperones are known to play key roles in 

protecting mammalian cells. The ATP-bound form of Hsp70 binds and releases 

polypeptides or proteins quickly, whereas the ADP-bound form maintains tight binding to 

substrates (Flynn et al., 1989; Palleros et al., 1991; Schmid et al., 1994). BAG-I has 

been suggested to have the activity of a nucleotide exchange factor for Hsp 70 chaperones 

in vitro, analogous to the role of GrpE in the bacterial DnaK/DnaJ cycle (Hohfeld and 

Jentsch, 1997). In contrast, other data indicated that BAG-1 was a negative regulator of 
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Hsp70 chaperone activity in vitro (Takayama et al., 1997; Zeiner et al., 1997; Bimston et 

al., 1998). However, the in vitro conditions, such as ATP concentration in the reaction 

buffer of these experiments were different. 

These contradictory results suggest that BAG-1 could either inhibit or promote the 

ATPase activity of Hsp70 chaperones probably dependent on the reagent composition 

and levels in the interaction buffer, and thus modulate the Hsp70s-mediated refolding of 

thermally denatured proteins. Thus far, the precise mechanisms by which BAG-1 

regulates Hsp70s-mediated refolding activity in vitro remain unclear. 

In my in vivo experiments, after heat shock, luciferase and J3-galactosidase in C33A 

human cervical carcinoma cells were denatured, and had reduced levels of enzymatic 

activity. After returning to normal culture conditions, it appears that the expression of 

BAG-1 protein led to a small but significant increase in the refolding of luciferase and P­

galactosidase, compared with C33A-NEO control cells (Figure 3.34A and B). 

The chaperone function of the mammalian Hsp70s is modulated by their physical 

interactions with other proteins. This modulation involves cooperation among multiple 

chaperone cofactors in complexes that include Hsp70s, Hsp40, Hip, Hop, CHIP and 

BAG-1 (Hohfeld, 1998; Kelley, 1998; Ballinger et al., 1999). 

A recent study found that the carboxyl terminal domain of BAG-1, which was 

responsible for the interaction with Hsp70s, was conserved among several novel BAG-1 

family members, including BAG-2 and BAG-3 (Takayama et al., 1999). This 

observation suggested that the modulation of Hsp70s-mediated protein refolding activity 

by BAG-I may be redundantly shared with other novel BAG-1 family members. 
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Moreover, different cell types have distinct intracellular contexts, which could also affect 

the Hsp70s-mediated protein refolding activity. To delineate a general mechanism 

whereby BAG-1 modulates Hsp70s-mediated protein refolding in vivo, other cell types 

will also need to be studied. 

Hsp70 chaperones are multiple function proteins, and play a role in signal 

transduction pathways, which lead to adaption to stressful conditions in cells and 

organisms. Evidence has accumulated for their participation in regulating the activity of 

signaling proteins (Kimura et al., 1995), such as the steroid receptors (Picard et al., 1990; 

Tsai et al., 1994; Nathan and Lindquist, 1995) and Ras and Rafkinases (Stancato et al., 

1993). Therefore, it would be interesting to investigate how BAG-1 regulates other 

functions of Hsp70s, such as protein complex assembly, translocation and Hsp70-

associated protein-ubiquitin-proteasome pathway protein-degradation. 

4.8. The role of Hsp70s in inhibition of apoptosis 

Hsp70s are highly expressed in many tumor cells and have reported to be an 

indicator of poor therapeutic outcome in breast cancer (Mivechi and Rossi, 1990; 

Ferrarini et al., 1992; Kaur and Ralhan, 1995; Ciocca et al., 1993). Furthermore, 

transgenic mice overexpressing the human Hsp70 develop T -cell lymphomas (Seo et al., 

1996). All these data suggested that Hsp70 may play a role in tumorigenesis and drug 

resistance. 

The role that Hsp70s play in the regulation of apoptosis is unclear. Conflicting 

reports on the subject possibly stem from the various mechanisms that different cells use 
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in response to different stimuli that induce apoptosis. After induction of Hsp70 

accumlation, protective effects against Pas-stimulated apoptosis and protection from 

apoptosis-inducing drugs have been reported (Polla et al., 1996; Mehlen eta/., 1996; 

Samali and Cotter, 1996), although the induction of Hsp70 may not protect from 

apoptosis (Cox et al., 1994). In this study, it was found that Hsp70 or Hsp70-2 

overexpression in cervical carcinoma C33A cells conferred protection from cell death 

induced by various stimuli, including several chemotherapeutic drugs, UV irradiation and 

heat shock (Figure 3.36). 

The precise molecular mechanism whereby Hsp70 expression leads to cell survival 

or inhibition of apoptosis is not understood. It has been suggested to be due to protection 

from protein denaturation, misfolding and degradation (Hartl et al., 1994; Craig et al., 

1994; Laroia eta/., 1999). Others have suggested that Hsp70s-mediated cell survival 

mechanism may arise from its assistance in the transfer of newly synthesized proteins 

into mitochondria helping to maintain overall mitochondrial integrity (Ungermann et al., 

1994; Pfanner eta/., 1994), which plays an important role in regulating the cell death 

pathway (for review, see Green and Reed, 1998; Gross et a/., 1999; see section 1.1.4). 

One study indicated that Hsp70-mediated cell survival involves the inhibition of caspase 

activity (Mosser et a/., 1997); whereas another recent study suggested that Hsp70 exerts 

its anti-apoptotic function downstream of caspase-3-like effector pro teases (JaatteUi et al., 

1998). 
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4.9. Future directions 

To more fully understand the molecular mechanism of apoptosis in carcinogenesis 

and MDR in human endocervical cells, several experiments could be done using this in 

vitro HEN-16-2 and HEN-16-2/CDDP model: 

L It would be interesting to overexpress Bcl-XL or BAG-I different isoforms in HEN-

16 cells and to determine whether BAG-I and Bcl-XL play a direct role in the process 

of multidrug resistance and carcinogenesis. 

2. Assay mRNA and protein expression levels of BAG-1, Bcl-XL and other related genes 

after treating both cell types with cisplatin or other agents. 

3. Examine other apoptosis-related genes, which may also contribute to the inhibition of 

apoptosis in HEN-16-2/CDDP cells, and their role in MDR and tumorigenesis. 

4. Use mRNA differential display method (Yang et al., 1996b) or eDNA microarrays 

(Duggan et a/., 1999) to identify genes that are differentially expressed in the process 

of inhibition of apoptosis. Such studies are critical to better understand the molecular 

mechanisms whereby apoptosis is dysregulated in human cervical cells, since, as 

discussed above, MDR and tumorigenesis are driven by a series of changes in gene 

expression. Thus, identifying genes that are differentially expressed, especially 

oncogenes, tumor suppressor genes, in the process of :MDR and tumorigenesis are 

critical to understanding the molecular mechanisms involved in apoptosis. 

5. Assay whether inhibition of BAG-1, Bcl-XL or other related gene expression by 

antisenses or other agents could sensitize the HEN-16-2/CDDP cells to apoptotic 
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stimuli. 

6. Compare the results obtained for HEN-16-2 and HEN-16-2/CDDP with similar 

experiments using primary human ectocervical cells. 
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