

1+1

NOTICE:

Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

• ••
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de !'edition

395, rue Wellington
Ottawa ON K1A ON4
Canada

AVIS:

Your file Votre r9ference
ISBN: 978-0-494-57477-5
Our file Notre r9ference
ISBN: 978-0-494-57477-5

L'auteur a accorde une licence non exclusive
permettant a Ia Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I' Internet, prater,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

L'auteur conserve Ia propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
Ia these ni des extraits substantials de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

Conformement a Ia loi canadienne sur Ia
protection de Ia vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
Ia pagination, il n'y aura aucun contenu
manquant.

ST. JOHN'S

Surface Deformations in Vaidya Spacetimes

by

© Huakun Ding
B.Sc.

A thesis submitted to the
School of Graduate Studies
in partial fulfillment of the

requirements for the degree of
Master of Science

Ill

Mathematics.

Department of Mathematics
Memorial University of Newfoundland

July, 2007

NEWFOUNDLAND

Contents

Abstract

Acknowledgements

1 Introduction and Overview

2 Two-surfaces in Three-dimensional Euclidean Space

3 Two-surfaces in Vaidya Spacetimes

4 Deformations of FOTS in Vaidya Spacetimes

5 Conclusions

A Numerical Differentiation

B Calculations with GRTensorll

ii

iii

iv

1

6

23

43

59

61

64

Abstract

The geometry and dynamics of black hole horizons can be easily studied by con­

sidering the allowed deformations of their foliating two-surfaces. This article presents

a new method of calculating the geometry and deformations of two-surfaces embed­

ded in spacetimes. The calculations are tested by comparing the results obtained

with this method with some known results about these objects. By this method, the

deformations of future outer trapping surfaces in Vaidya spacetimes are studied.

lll

Acknowledgements

I would like to thank Dr. Ivan Booth, my supervisor, for many useful discussions

and guidance along the way. Financial support was provided by the Natural Sciences

and Research Council of Canada and the Memorial University of Newfoundland.

Submitted in partial fulfillment of the requirements of the degree of Master of Science,

the Memorial University of Newfoundland, St. John's, Newfoundland.

lV

Chapter 1

Introduction and Overview

Black holes play an important role in general relativity and astrophysics. The

characteristic feature that defines a black hole is its horizon. Traditionally, the black

hole region of an asymptotically-flat spacetime is defined as the set of events from

which no null curves can reach future null infinity [1]. The boundary of the black

hole region is the event horizon.

With the help of conformal mappings [1], one can define precise notions of "infin­

ity" for Minkowski space (see Figure 1.1) and can depict a black hole in a spacetime

(the spacetime is asymptotically identical to Minkowski space). Let us use J+ to

represent future null infinity, then we can say a null curve has "escaped to infinity"

if its counterpart in the con formally mapped spacetime terminates on J+. It follows

that spacetimes are said to contain a black hole if they have regions from which no

null curve reach J+ - thus no causal curve can escape those regions. Equivalently, as

shown in Figure 1.1, a spacetime contains a black hole if the complement of the causal

past of J+ is nonempty. Then that complement is the black hole and the boundary

of that region is the event horizon.

From the definition above we can see that the event horizon has two important

1

CHAPTER 1. INTRODUCTION AND OVERVIEW 2

singularity i +

Figure 1.1: A Penrose-Carter diagram showing a spacetime in which a matter distri­

bution collapses to form a black hole [2]. i± is future and (or) past timelike infinity,

i 0 is the corresponding space like infinity, and J± is future and (or) past null infinity.

features [2]. First, it is based on the global causal structure of the spacetime. It is a

highly nonlocal object as its existence depends on the structure of infinity. Second, it

is teleological as we have to wait until the end of time to identify a black hole region.

It can't be identified by local measurement. While much analytic work on black holes

centers around event horizons, their dual nonlocalities make them not directly useful

in numerical evolutions of black hole spacetime.

For such reasons, in numerical evolutions, it is more common to use apparent

horizons, which is inspired from the important concept "trapped surface" proposed

by Penrose R. [3], to characterize a black hole. A closed two-surface S is said to

be trapped if B(t) < 0 and B(n) < 0, here Bul = qabV' ah and B(n) = qabV' anb are

respectively the expansions of the outward (l) and inward (n) forward-in-time pointing

CHAPTER 1. INTRODUCTION AND OVERVIEW 3

null normal vectors to the two-surface and qab = gab + lanb + lbna is the transverse

two-metric on that surface. Given a Cauchy surface I:t, a point p E I:t is said to

be trapped if it lies on some trapped two-surface in I:t. The apparent horizon in Et

is the two-dimensional boundary of the union of all of the trapped points and given

certain smoothness assumption, it can be shown that it is a surface on which Bell = 0

(marginally outer trapped) [1]. Correspondingly, if a region of spacetime is foliated by

Cauchy surfaces, then the apparent horizon on each slice can be found and so a time­

evolved three-dimensional version of the apparent horizon can be defined. Often this

is also referred to as the apparent horizon. Generally, the apparent horizon can be

discontinuous, its behavior under time evolution can be quite irregular. Furthermore,

apparent horizons in spacetime are not unique. A different foliation of the spacetime

into spacelike surfaces will usually result in a different location of the apparent horizon

through the spacetime [4].

Apparent horizons are more practical than event horizons, and they are well suited

to numerical simulations that evolve data from one spatial slice to another. However,

they are tied rigidly to the choice of a space-like three-surface so that they are still not

global notions. In addition, apparent horizons are not helpful for deriving the laws of

black hole mechanics. To solve these problems Hayward introduced the quasi-local

notion of trapping horizons [5]. A trapping horizon is a hypersurface in a four­

dimensional spacetime that is foliated by two-surfaces such that e(l) = 0, e(n) =f. 0 and

OnB(l) =f. 0, where On is the normal variation [6]. A trapping horizon can be thought of

as the boundary of a black hole if it satisfies OnB(l) < 0, and Ben) < 0, as in this case

the surfaces "just inside" the horizon are fully trapped [2]. We will call such horizons

future outer trapping horizons (FOTHs). FOTHs provide a promising framework to

discuss black holes in general spacetimes, not just those which are asymptotically flat.

A part from trapping horizons some closely related programmes have been developed

CHAPTER 1. INTRODUCTION AND OVERVIEW 4

recently such as isolated horizons which identify and study equilibrium states, and

dynamical horizons which correspond to non-trivially evolving horizons[14].

FOTHs come equipped with a preferred foliation into two-surfaces. This foliation

is directly relevant to the dynamics of FOTHs. In this paper we will focus on the

spacelike two-surfaces that foliate FOTHs. We will call such surfaces future outer

trapping surfaces (FOTS). The existence, evolutions and deformations of the full

three-dimensional horizons can be well understood by studying the geometry and

variations of these two-surfaces [6].

The boundary of the trapped region of a black hole spacetime has been studied

both analytically and numerically recently. Eardley [7] suggests that the boundary

should correspond to the event horizon, while arguments by Hayward suggest that the

boundary should be a trapping horizon [5]. By numerically studying non-symmetric

trapped surfaces in Vaidya spacetimes, Schnetter and Krishnan [8] support that the

event horizon is the most likely candidate for the boundary of the trapped region.

Lately Ben-Dov [9] has proved that in the Vaidya spacetime, there are outer trapped

surfaces extending arbitrarily close to the event horizon in any region of the spacetime,

thus the event horizon is the boundary of the region containing outer trapped sur­

faces (closed spacelike two-surfaces for which the outgoing null expansions e(l) < 0).

Furthermore, he shows that there exists a portion of the flat region of a Vaidya space-

time that trapped surfaces can not enter. As a result, the boundary of the region

containing trapped surfaces, is not, in general, the event horiozn.

The Vaidya spacetime is the simplest example of a dynamical black hole spacetime

[4]. It models the spherically symmetric collapse of null dust and is described by the

metric

CHAPTER 1. INTRODUCTION AND OVERVIEW 5

where v is an advanced time coordinate, and m(v) is the mass function. We will

see in section 4 that the surfaces r = 2m (v) in the Vaidya spacetime are all FOTS.

Thus the Vaidya spacetime provides a convenient framework to study the problem

about the boundary of the trapped region of a black hole spacetime. In this paper,

to gain some insight into this problem, we consider the geometry and deformations of

FOTS embedded in Vaidya spacetimes. In particular, we study the finite extensions

of FOTS where we try to "push" them towards the event horizon.

This paper is organized as follows. In section 2, to establish our notation, we

begin by reviewing the basic material from the theory of embedding of a two-surface

in a three-dimensional manifold. Then we introduce a new method for calculating the

intrinsic and extrinsic geometry of the embedded two-surfaces. In section 3 we further

develop the method to describe the geometry of spacelike two-surfaces embedded in

Vaidya spacetimes and study how that geometry changes if the surfaces are deformed.

As a test for our algorithm, we compare our results with exact results computed with

the GRTensorii computer algebra package. In section 4 we specialize to FOTS in

Vaidya spacetimes and study the finite extensions of FOTS to see how much we can

distort FOTS. Conclusions are presented in section 5.

Chapter 2

Two-surfaces in Three-dimensional

Euclidean Space

In this section, we study two-surfaces embedded in three-dimensional Euclidean

space JR3 . We first review the characterization of a single embedded two-surface in an

Euclidean space, in terms of its intrinsic and extrinsic geometry. Then we introduce

a new method for calculating the geometric quantities of the two-surface.

A. Two-surface Geometry

To begin, we recall basic definitions and review the basic material from the theory

of embedding of a two-surface in a three-dimensional Euclidean space.

Definition 1: A covariant derivative is a connection on the tangent bundle and

other tensor bundles. Thus it has a certain behavior on functions, on vector fields, on

the duals of vector fields (i.e., covector fields), and most generally of all, on arbitrary

tensor fields:

(1) Functions

Given a function f, the covariant derivative V v f coincides with the normal dif-

6

CHAPTER 2. Two-suRFACEs IN THREE-DIMENSIONAL EucLIDEAN SPACE 7

ferentiation of a real function in the direction of the vector v.

(2) Vector fields

A covariant derivative \7 of a vector field u in the direction of the vector v denoted

\7 vU is defined by the following properties for any vector v, vector fields u, w and

scalar functions f and g:

a. \7 vU is algebraically linear in V SO \7 fv+gwU = j\7 vU + g\7 wU

b. 'Vvu is additive in u so 'Vv(u + w) = 'Vvu + 'Vvw

c. 'Vvu obeys the product rule, i.e. 'Vvfu = f'Vvu+u'Vvf.

(3) Covector fields

Given a field of covectors (or one-form) o:, its covariant derivative 'Vvo: can be

defined using the following identity which is satisfied for all vector fields u

(4) Tensor fields

Once the covariant derivative is defined for fields of vectors and covectors it can

be defined for arbitrary tensor fields using the following identities where(/) and '1/; are

any two tensors:

and if (/) and '1/; are tensor fields of the same tensor bundle then

Given coordinate functions xi, i = 1, 2, 3, ... and its basis ei = 8~;, from the

definition of covariant derivative, we find that for general vector fields v = vie; and

'r'7 - (i irk i auk)
v vU - V U ij + V Bxi ek,

CHAPTER 2. TWO-SURFACES IN THREE-DIMENSIONAL EUCLIDEAN SPACE 8

where the coefficients r~j are called Christoffel symbols [4]. In particular,

f)ui k i
\le;U = \ljU = (f)xJ + U r jk)ei.

Definition 2: Lie derivative, named after Sophus Lie, is a derivation on the algebra

of tensor fields over a manifold M. Generally, for a differentiable tensor field T of rank

(p, q) and a differentiable vector field Y (i.e. a differentiable section of the tangent

bundle T M), then we can define the Lie derivative of T along Y. Let 'P : M x R -------;

M be the one-parameter semigroup of local diffeomorphisms of M induced by the

vector flow of Y and denote 'Pt(P) := 'P(P, t). For each sufficiently small t, 'Pt is a

diffeomorphism from an neighborhood in M to another neighborhood in M, and 'Po

is the identity diffeomorphism. The Lie derivative ofT is defined at a point p by

where ('Pt)• is the pushforward along the diffeomorphism. In other words, if we have

a tensor field T and an infinitesimal generator of a diffeomorphism given by a vector

field Y, then £yT is nothing other than the infinitesimal change in T under the

infinitesimal diffeomorphism.

Let S be a two-surface that is smoothly embedded in a three-dimensional Eu­

clidean space JR3 which is equipped with a metric 9ab = diag[1, 1, 1]. \!a denotes the

covariant derivative compatible with 9ab·

The embedding of S in JR3 can be defined in parametric form with,

(2.1)

(a, (3 = 1, 2), where xa are coordinates on JR3 , ~a are coordinates on S, and xa are the

embedding functions. The two vectors ea := X~oa form a basis of tangent vectors to

S at each point of S. The metric induced on S is then given by,

(2.2)

CHAPTER 2. TWO-SURFACES IN THREE-DIMENSIONAL EUCLIDEAN SPACE 9

It is also called the first fundamental form of S. Tangential indices are lowered and

raised with qo:!3 and its inverse qo:!3, respectively.

The induced metric qo:!3 defines the unique covariant derivative do: on S that is

torsionless and satisfies

(2.3)

The Riemann tensor associated with do: represents what can be called the intrinsic

curvature of S. We shall denote its components by the letter R, as Ro: !JJ-Lv' Ro: !JJ-Lv can

be expressed as [10]

(2.4)

where the Christoffel symbols are defined by

1
r o:!J,J-L = 2(-qo:!J,J-L + qO:J-L,!J + q!JJ-L,a), rpo:!J =I: r o:!J,J-Lq~-'P. (2.5)

1-'

The corresponding Ricci tensor is denoted: Ro:!3 = R~-' o:J-L!3 and the Ricci scalar (scalar

curvature) is denoted: R = qo:!3 Ro:!3· From these we can see that the induced metric

qo:!3 completely determines the intrinsic geometry of S.

The extrinsic geometry describes how S is embedded in JR.3 . It corresponds to the

change of direction of the normal vector as one moves on S. To describe the extrinsic

geometry of S, we consider the unit normal vector n to the surface. The vector can

be defined by the requirement that

g(n, n) = 1, g(ea, n) = 0. (2.6)

The induced metric can be expressed in terms of n [10]: qab = 9ab- nanb (here qab is

actually an "extended" three-dimensional induced metric [8]).

The extrinsic curvature (the second fundamental form) of the surface is:

(2.7)

CHAPTER 2. TWO-SURFACES IN THREE-DIMENSIONAL EUCLIDEAN SPACE 10

We shall denote by K the trace of the extrinsic curvature Kaf3 with respect to the

metric Qa(J

(2.8)

From the knowledge of Weingarten map [10], K is equal to 2 times the mean curvature

of S. We also note the relation

(2.9)

which shows that K is equal to the expansion of a congruence of geodesics that

intersect S orthogonally [11], thus it can be proven that K is equal to the rate of

change of the area element (three-volume form on JH;3) of S. Here we outline the

proof. We shall denote the area element of S by ,;q, where q is the determinant of

Qab· From Jacobi's Formula for the derivative of a determinant,

From the definition of Lie derivatives, we rewrite this as

Since

then we have

,j{jqab £ q
2

n ab .J.; (qab\l bna + qab\l anb)

,;qqab\7 anb

,;QK,

CHAPTER 2. TWO-SURFACES IN THREE-DIMENSIONAL EUCLIDEAN SPACE 11

from which it follows that

We note that in this case, £nyq is equal to the normal variation l5n,fii [5], thus we

can rewrite K as

(2.10)

We have described the characterization of the surfaceS, in terms of its key intrinsic

and extrinsic geometry. Next, we introduce a new method to calculate these geometric

quantities. Let us consider an embedded surface S having parameterization: S =

[X(u,v), Y(u,v), Z(u,v)]. Our method is based on discretizing S first and then

computing its geometry at each point. After discretizing S, the tangent vectors and

unit normal vectors to S at each point can be calculated. Then the induced metric,

the area element and the Ricci scalar of S at each point can be calculated from these

vectors. To calculate some variations of these geometric quantities, we consider the

neighboring surface of S described by a deformation in the direction of the normal

vector n:

S' = [X(u, v) + cnx, Y(u, v) + cnY, Z(u, v) + cnz], (2.11)

where c; is a small parameter. We construct geometric quantities on S', calculate the

Lie derivatives of the quantities and then pull-back the results onto S.

B. Numerical Implementation

Let us now use one concrete example to demonstrate our method. We consider a

torus in the Euclidean space JR3
. The torus has parameterization

S = [(R + r cos(u)) cos(v), (R + r cos(u)) sin(v), r sin(u)], (2.12)

where 0 :S u, v < 2n, and R = 5, r = 2 are its two radii. The bulk of the following

CHAPTER 2. Two-suRFACES IN THREE-DIMENSIONAL EucLIDEAN SPACE 12

part is the output from a Maple worksheet.

> with(LinearAlgebra):

> with(plots):

The first step is discretizing the surface S. We discretize S into M x N points

and set M = 60, N = 80.

> u:=(i)-> i*2*Pi/M;

> v:=(j)-> j*2*Pi/N;

> M:= 60; N:= 80;

u := i ,__. 2/M i1r

v := j ,__. 2/N j1r

M := 60

N := 80

Then the embedding equations defined in parametric form at each point are

given:

> x:=(i,j)->(5+2*cos(u(i)))*cos(v(j));

x := (i,j) ,__. (5+2 cos(l/30i7r))cos(l/40j7r)

> y:=(i,j)->(5+2*cos(u(i)))*sin(v(j));

y := (i,j) ,__. (5+2 cos(l/30i7r))sin(l/40j7r)

> z := (i,j)->2*sin(u(i));

z := (i,j) ,__. 2 sin(l/30i7r)

CHAPTER 2. Two-suRFACEs IN THREE-DIMENSIONAL EucLIDEAN SPACE 13

Input the three-dimensional metric of the Euclidean space !R3 and the parame­

terization of S:

> G := Matrix(3, 3, [[1, 0, 0], [0,1,0], [0, 0, 1]]);

1 0 0

G .- 0 1 0

0 0 1

> X:= [seq([seq([evalf(x(i, j)), evalf(y(i,j)), evalf(z(i, j))], j

1 N+2)], i = 1 . . M+2)]:

Next, calculate the two tangent vectors, ! = [~~, ~, ~~] and tv = [~~, ~, ~~],

at each point of S. We use the forward difference formula, f' (x0) ~ f(xo+hh- f(xo),

to approximate the derivative of f(x 0). Forward difference formulas are discussed

detailed in Appendix A.

> V1 := [evalf(seq([seq(1/2*(X[i+1, j] -X [i, j]) *M/Pi, j 1 N+1)],

i = 1 M+1))]:

> V2 ·= [evalf(seq([seq(1/2*(X[i, j+1]-X[i,j])*N/Pi, j 1 .. N+1)],

i = 1 M+1))] :

Given the tangent vectors, the unit normal vector to S at each point of S is

[· '] - Vl[i,j]xV2[i,j] I th d t th d t t f th t X V1 V2 n ~, J - IIVI[i,j]xv2[i,jJII' n e co ewe se e a a ype o e vee ors , , , n, ...

as lists of elements instead of vectors, which greatly reduces the CPU execution time

and lets the worksheet run much faster although it needs us to do some calculation

by ourselves and makes the expressions look complicated.

CHAPTER 20 TWO-SURFACES IN THREE-DIMENSIONAL EUCLIDEAN SPACE 14

> n :=[seq([seq([V1[i,j,2]*V2[i,j,3]-V1[i,j,3]*V2[i, j, 2], -V1[i, j,

1] *V2 [i, j , 3] +V1[i, j , 3] *V2 [i, j , 1] , V1[i, j , 1] *V2 [i, j , 2] -V1[i, j,

2]*V2[i,j, 1]]/((V1[i, j,2]*V2[i,j, 3]-V1[i, j, 3]*V2[i, j,2])~2+(-V1

[i, j, 1] *V2 [i, j , 3] +V1[i, j, 3] *V2 [i, j , 1]) ~2+ (V1[i, j , 1] *V2 [i, j , 2]­

V1[i, j, 2]*V2[i, j,1])~2)~(1/2), j = 1.oN+1)], i = 1 00 M+1)]:

We now calculate the components of the two-dimensional induced metric of S

from the tangent vectors, qa(:J = x::,x,~9abo

> q11 := [evalf(seq([seq(V1[i, j,1]~2*G[1, 1]+V1[i, j, 2]~2*G[2, 2]+V1[i,

j,3]~2*G[3, 3], j = 1 o o N+1)], i = 1 o o M+1))]:

> q12 := [evalf(seq([seq(V1[i, j, 1]*V2[i,j, 1]*G[1, 1]+V1[i, j, 2]*V2[i,

j, 2]*G[2, 2]+V1[i, j, 3]*V2[i, j,3]*G[3, 3], j = 1 .. N+1)], i = 1

M+1))] :

> q22 := [evalf(seq([seq(V2[i, j,1]~2*G[1, 1]+V2[i, j, 2]~2*G[2, 2]+V2[i,

j,3r2*G[3, 3], j = 1 .. N+1)], i = 1 .. M+1))]:

Then the area element of Scan be calculated, Al = vq, where q is the determi­

nant of the induced metric qafJo

> A1 := [seq([seq((q11[i, j]*q22[i,j]-q12[i, jr2)~(1/2), j 1 .. N+1)],

i = 1 0 o M+1)]:

From the Formula (205) we can deduce the Ricci Scalar of S from its two-

dimensional metric qafJ,

CHAPTER 2. TWO-SURFACES IN THREE-DIMENSIONAL EUCLIDEAN SPACE 15

1
R = '2(qll(u, v) (%,. q22(u, v)) 2

- 2 (%,. qll(u, v)) q22(u, v)

- 2 qll(u, v) (tv. q12(u, v)) (tv q22(u, v))- 2qll(u, v) (t:2 qll(u, v)) q22(u, v)

+(tv qll(u, v)) 2 q22(u, v) + 4 qll(u, v) (a~~v. q12(u, v)) q22(u, v)

+ 2 q12(u, v) (tv q12(u, v)) + q12(u, v) (tu qll(u, v)) (tv q22(u, v))

+ (tu qll(u, v)) (gu q22(u, v)) q22(u, v)- 2qll(u, v) (t:2 q22(u, v)) q22(u, v)

+ qll(u, v) (tv qll(u, v)) (tv q22(u, v))- q12(u, v) (tv qll(u, v)) (tu q22(u, v))

- 2 q12(u, v) (gu q12(u, v))) j(qll(u, v) q22(u, v)- q12(u, v) 2) 2

We now use the formula above to calculate the Ricci Scalar at each point of S. Let

Ull, U12, U22, Vll, V12, V22, VVll, VU12, UU22 denote tuqll, tuq12, tuq22,

a a a a2 a2 a2 . . avqll, avq12, avq22, av2qll, avauq12, au2 q22 respectively. F1rst, calculate Ull, U12,

U22, Vll, V12, V22, VVll, VU12, UU22 using the forward difference formula.

> U11 := [evalf(seq([seq(1/2*(q11[i+1,j]-q11[i,

i = 1 . . M))]:

> U12 := [evalf(seq([seq(1/2*(q12[i+1,j]-q12[i,

i = 1 . . M))]:

> U22 := [evalf(seq([seq(1/2*(q22[i+1,j]-q22[i,

i = 1 . . M))]:

> V11 := [evalf(seq([seq(1/2*(q11[i,j+1]-q11[i,

i = 1 . . M))] :

> V12 := [evalf(seq([seq(1/2*(q12[i,j+1]-q12[i,

i = 1 . . M))] :

> V22 := [evalf(seq([seq(1/2*(q22[i,j+1]-q22[i,

i = 1 . . M))]:

> VV11 := [evalf(seq([seq(1/2*(V11[i,j+1]-V11[i,

i = 1 .. M-1))]:
> VU12 := [evalf(seq([seq(1/2*(U12[i,j+1]-U12[i,

i = 1 .. M-1))]:
> UU22 := [evalf(seq([seq(1/2*(U22[i+1,j]-U22[i,

i = 1 . . M-1))]:

j])*M/Pi,

j])*M/Pi,

j])*M/Pi,

j])*N/Pi,

j])*N/Pi,

j])*N/Pi,

j])*N/Pi,

j])*N/Pi,

j])*M/Pi,

j 1

j 1

j 1

j 1

j 1

j = 1

j 1

j 1

j 1

.. N)]'

.. N)],

.. N)]'

.. N)]'

.. N)]'

.. N)]'

.. N-1)],

.. N-1)],

.. N-1)],

CHAPTER 2. TWO-SURFACES IN THREE-DIMENSIONAL EUCLIDEAN SPACE 16

Then substitute Ull, U12, U22, Vll, V12, V22, VVll, VU12, UU22 into the

formula above to calculate the Ricci scalar at each point of S and draw its figure.

> R := [evalf(seq([seq(1/2*(q11[i, j]*U22[i,j]~2-2*V12[i, j]*U11[i,

j]*q22[i, j]-2*q11[i, j]*U12[i,j]*V22[i, j]+2*VV11[i, j]*q12[i, j]~2

-2*q11[i, j]*VV11[i,j]*q22[i, j]+V11[i, j]~2*q22[i, j]-4*VU12[i, j]*

q12[i,j]~2+4*q11[i, j]*VU12[i, j]*q22[i, j]+4*U12[i, j]*q12[i,j]*V12[i,

j]+q12[i, j]*U11[i, j]*V22[i, j]+U11[i, j]*U22[i,j]*q22[i, j]-2*V11[i,

j]*q12[i, j]*V12[i, j]+2*UU22[i, j]*q12[i,j]~2-2*q11[i, j]*UU22[i, j]*

q22[i, j]+q11[i, j]*V11[i,j]*V22[i, j]-V11[i, j]*q12[i, j]*U22[i, j]-2

*U22[i, j]*q12[i,j]*U12[i, j])/(q11[i, j]*q22[i, j]-q12[i,j]~2)~2, j=

1 N-1)],i=1 .. M-1))]:
> listplot3d([seq([seq(R[i, j], j = 1 . . N-1)], i = 1 .. M-1)] ,labels=[i,

j, 'R'] axes= boxed, orientation= [43, 70]);

Figure 2.1: The Ricci Scalar, R, calculated by the numerical method.

We now consider the extrinsic geometry of S. In particular, we are interested

CHAPTER 2. TWO-SURFACES IN THREE-DIMENSIONAL EUCLIDEAN SPACE 17

in K, the trace of the extrinsic curvature. To calculate K, we first construct a neigh-

boring surface of S described by a normal vector of V. Let E: be a small parameter, p

is a point of S. Displace the point p by the normal vector E: V to the point p'. Do the

same for each point of S, keeping the value of E: fixed. Then, all the points p' define

a new surface:

S' = S + r::V,

which is depicted schematically in Figure 2.2. Finally, from Formula (2.10) K can be

calculated as the fractional rate of change of the area element,

K 1
. 1 A'- A

-1m----
- E-->0 A E: '

where A and A' are the area elements of S and S' respectively.

Figure 2.2: A schematic of the surface S and its neighboring surfaceS'.

Using the method above, we first construct the surface S' and calculate the

tangent vectors to S':

> eps:= 0.01;

CHAPTER 2. TWO-SURFACES IN THREE-DIMENSIONAL EUCLIDEAN SPACE 18

eps := 0.01

> X2 := [seq([seq([X[i, j, 1]+eps*n[i, j,1], X[i, j, 2]+eps*n[i, j,

2], X[i, j, 3]+eps*n[i, j, 3]], j = 1 .. N+1)], i = 1 .. M+1)]:

> 01 := [evalf(seq([seq(1/2*(X2[i+1,j]-X2[i, j])*M/Pi, j = 1 .. N)],

i = 1 M))] :

> 02 := [evalf(seq([seq(1/2*(X2[i,j+1]-X2[i, j])*N/Pi, j 1 .. N)],

i = 1 M))] :

Next, calculate the two-dimensional induced metric and the area element of S'

using the same method as on the initial surface S:

> d11 := [evalf(seq([seq(01[i, j,1]-2*G[1, 1]+01[i, j, 2]-2*G[2, 2]+01[i,

j , 3] -2*G [3, 3] , j = 1 . . N)] , i = 1 . . M))] :

> d12 := [evalf(seq([seq(01[i, j, 1]*02[i,j, 1]*G[1, 1]+01[i, j, 2]*02[i,

j, 2]*G[2, 2]+01[i, j, 3]*02[i, j,3]*G[3, 3], j = 1 .. N)], i = 1 ..

M))] :

> d22 := [evalf(seq([seq(02[i, j,1]-2*G[1, 1]+02[i, j, 2]-2*G[2, 2]+02[i,

j , 3] -2*G [3, 3] , j = 1 . . N)] , i = 1 . . M))] :

> A2 := [seq([seq(sqrt(d11[i, j]*d22[i,j]-d12[i, j]-2), j 1 .. N)],

i = 1 M)] :

Finally, calculate K and depict it in Figure 2.3:

> K := [seq([seq((A2[i, j]-A1[i,j])/(eps*A1[i, j]), j 1 .. N)], i=

1 M)] :

> listplot3d([seq([seq(K[i, j], j 1 .. N)], i 1 .. M)], axes= boxed,

orientation= [43, 70]);

CHAPTER 2. Two-suRFACEs IN THREE-DIMENSIONAL EucLIDEAN SPACE 19

80 60

Figure 2.3: The trace of the extrinsic curvature, K, calculated by the numerical

method.

As a test for our algorithm we now calculate R and K by another method. From

the knowledge of differential geometry, we know that R = ~ [11], where k is the

determinant of the second fundamental form Ka/3 and q is the determinant of the two­

dimensional metric qo:/3· In this case for the surfaceS= [(R + rcos(u)) cos(v), (R +

r cos(u)) sin(v), r sin(u)],

So

qop ~ [: (5 + 2 :oo(u))2]

Kap ~ [~ (5+ 2 cos;u)) cos(u)]

k
- = 0.5 cos(u)(5 + 2 cos(u))/(5 + 2 cos(u))2

.
q

(2.13)

Then we can directly calculate that for the surface S the trace of the Weingarten

CHAPTER 2. TWO-SURFACES IN THREE-DIMENSIONAL EUCLIDEAN SPACE 20

M af3K . K . ap q af3, Le. , lS

-1/2- cos(u)/(5 + 2 cos(u)). (2.14)

The results of the expressions (2.13) and (2.14) are plotted in Figures 2.4 and 2.5

respectively. The two results of R and K are plotted in the same figure (Figure 2.6),

respectively, for comparison. Furthermore, the differences between the two results of

R and K are plotted respectively in Figure 2.7. Figures 2.6 and 2.7 show that the

two results of Rand K both match well. Thus our code recovers the correct value of

Rand K.

> plot3d(1/2*csgn(5+2*cos(u))~2*(5+2*cos(u))*cos(u)/(5+2*cos(u))~2,

> u = 0 2*Pi, v = 0 . . 2*Pi, axes = boxed, orientation = [43,

> 70]);

Figure 2.4: The Ricci scalar, R, calculated by algebra

> plot3d(-1/2*csgn(5+2*cos(u))-csgn(5+2*cos(u))*cos(u)/(5+2*cos(u)),

u = 0 .. 2*Pi, v = 0 .. 2*Pi, axes= boxed, orientation =[43,70]);

CHAPTER 2. TWO-SURFACES IN THREE-DIMENSIONAL EUCLIDEAN SPACE 21

Figure 2.5: The trace of the extrinsic geometry, K, calculated by algebra

K
R

0

(a) The two results of R (b) The two results of K

Figure 2.6: The two results of R and K are plotted together for comparison

CHAPTER 2. Two-SURFACES IN THREE-DIMENSIONAL EucLIDEAN SPACE 22

DiffR

6060

(a) The difference between the two results of R (b) The difference between the two results of K

Figure 2.7: The differences between the two results of Rand K.

Chapter 3

Two-surfaces in Vaidya Spacetimes

We have introduced a method for calculating the geometry of a two-surface em­

bedded in a three-dimensional manifold, which allows the analysis to be carried out in

a direct manner. In this section we further develop the method to study the geometry

and deformations of spacelike two-surfaces embedded in four-dimensional spacetimes.

In particular we apply the method to calculate the geometry of spacelike two-surfaces

embedded in Vaidya spacetime and their variations. We test our algorithm by com­

paring our results with exact results obtained with the GRTensorii computer algebra

package.

A. Two-surface Geometry

Let S be a closed (i.e. compact without boundary), orientable spacelike 2-surface

that is smoothly embedded a 4-dimensional spacetime (M, 9ab). Y'a denotes the

covariant derivative compatible with 9ab· The embedding of S in M can be defined

23

CHAPTER 3. TWO-SURFACES IN VAIDYA 8PACETIMES 24

in parametric form with,

(3.1)

(a:, {3 = 1, 2), where xa are coordinates on M, ~a are coordinates on S, and xa are the

embedding functions. The two vectors e0 := X~oa form a basis of tangent vectors to

S at each point of S. The metric induced by the spacetime metric 9ab onto S is then

given by,

(3.2)

This metric defines the compatible derivative operator da, the area element and the

Ricci scalar on the two-surface.

The set of vectors orthogonal to S at any point form a 2-dimensional Minkowskian

vector space. Then there are two linearly independent, future-pointing null vectors

normal to S, za and na. We usually construct a future directed unit timelike normal

ya and the unit outward pointing spacelike normal Ra to S first, then we can define

the outgoing and ingoing null vectors

za := ~(Ta + Ra),

1
na := ..j2(Ta- Ra).

(3.3)

(3.4)

If we further require that 9ablanb = -1 then the null vectors are specified only up to

one degree of rescaling freedom

(3.5)

where f is a, positive definite (to preserve the future orientation), smooth function

on S. The induced metric can be expressed in terms of the null vectors (here it is

actually an "extended" four-dimensional induced metric [12]):

(3.6)

CHAPTER 3. TWO-SURFACES IN VAIDYA SPACETIMES 25

The extrinsic curvatures of the surface are [11]:

(3.7)

which describe the way in which S is embedded in M. The null expansions are:

(3.8)

These expansions tell us how the area element of S changes as it is deformed along

za and na respectively. They are very important quantities, like the K in section 2;

we will encounter them often in the remaining sections of this paper. From (2.9) we

know that the expansions are the rates of change of the area element of S, thus we

can rewrite them as

() - £nyq
(n)- yq '

() - £zyq
(l)- yq, (3.9)

where q is the determinant of the metric %b· In our code, for convenience, we will

use the formula (3.9) to calculate the expansions.

We now consider the computation of the Lie derivatives £ 1yq and £nVQ· Our

numerical approach to this problem is based on deforming the surfaceS, which is also

critical for the computation of the deformations of the geometry of S that we will

consider later. We have used this method to calculate K in the three-dimensional case

in Section 2. Here we demonstrate the method in detail. Let us begin by recalling

the definition of deformations [6].

A deformation (variation) of a two-surface S0 is a smooth, one-to-one function

<P(s, >.) : S0 x [->.0 , >-o] ----r M (with Ao some real number) such that <I>(So, 0) = So.

Thus, <P generates a finite three-surface 'J<I> and that surface is foliated by images

S>. = <P(S0 , >.)of So as depicted in Figure 3.1. The deformation vector field xa = (t>.)a

is tangent to the curves of constant s E S. The flow generated by this vector field

maps leaves of constant A into each other. For sufficiently small £, we can intuitively

CHAPTER 3. TWO-SURFACES IN VAIDYA SPACETIMES 26

write the neighboring surface of S0 as

sf= So+ EX. (3.10)

curve of eunstant. s

Figure 3.1: A schematic of a section of 'J<I> around S0 [6].

We will focus on normal deformations where xa is everywhere perpendicular to

the S;.. and so can be written:

(3.11)

for some functions A and B.

Now we can calculate the Lie derivatives £1y'q and £ny'{j and then the expansions.

Let us take e(l) as an example (B(n) can be calculated in the same way). For any value

of A and B, the map <I> deforms S0 into successive surfaces S;... First, using <I> we

deform the surface S so that S--> S + El. Then we contruct the area element y'qf on

the new surface sf' and we have

£ In l" y'qf - ,;q
lyq = lm '

f--->0 f
(3.12)

CHAPTER 3. Two-suRFACES IN VAIDYA SPACETIMES

Finally, from (3.9) we have
.JQ, -.jq

e(l) =lim--'-.
<-+0 y'q

27

(3.13)

For accurateness, in our code we do the same thing for S -t S - El, and then we

average these two results to approximate the rate of change. This method is similar

to the "centered difference formula" which is used to calculate the derivative of a

function (see Appendix A). We will call such method as "three-point estimate", and

we will use it frequently in our code.

We now move on to calculate the deformations for some geometric quantities of

S. In particular we are interested in the deformations of the expansions which are

important for the dynamics of two-surfaces embedded in spacetimes. The method for

calculating the deformations of the expansions is similar to the one we used above

to calculate the expansions themselves. Taking the null expansion e(l) as an example

again, we write its deformation as t5xB(l) and note that calculating this quantity

amounts to:

1. using <I> to deform the initial surface S so that S -t S + EX.

2. constructing the Bell on the new surface S,.

3. calculating the Lie derivative £xB(l) and pulling-back the results onto S.

In this paper we are mainly interested in spacelike two-surfaces embedded in the

Vaidya spacetime. The Vaidya spacetime describes spherically symmetric collapse of

null dust [13]. In ingoing Eddington-Finkelstein coordinates (v, r, e, ¢),the metric is

dS2 = -(1-
2
m(v))dv2 + 2dvdr + r 2dB2 + r 2 sin2Bd¢2

,
r

(3.14)

where the mass function m(v) can be specified as a non-negative, non-decreasing,

smooth function of the null coordinate v. The stress energy is determined by the

derivative of m(v):

(3.15)

CHAPTER 3. TWO-SURFACES IN VAIDYA SPACETIMES 28

For constant m(v), the metric is just the standard Schwarzschild metric in ingoing

Eddington-Finkelstein coordinates.

We now calculate the intrinsic and extrinsic geometry and their deformations

for a spacelike two-surface in the Vaidya spacetime, using the method we discussed

previously. Consider a two-surface S in the Vaidya spacetime:

S = {v = V(>.), r = R(>.), e = 8(>.), ¢ = ¢; 0 :S >, :S 1, -1r :S ¢ :S 1r}. (3.16)

Generally, our approach to this problem is similar to the one used in the three­

dimensional case. First, we discretize S and calculate the tangent vectors and null

normal vectors at each point. We note that constructing the two future-pointing

null normals to S is much more difficult than calculating the unit normal vectors

in the three-dimensional case. Then we can calculate the induced metric, area el­

ement and Ricci scalar of S at each point in the same way as in Section 2. The

expansions of S and their variations are calculated by constructing the neighboring

surfaces described by the normal deformations, which have been discussed previously.

B. Numerical Implementation

As an example, let us now illustrate our method with the Maple worksheet below

which calculates the various geometric quantities for a given two-surface in the Vaidya

spacetime. This Maple worksheet mainly consists of some procedures which make the

code concise and efficient.

To begin, we define a procedure to calculate the tangent vectors to any surface

which is input as X. When we calculate the derivative of a function, to improve the

accuracy, we use the fourth-order accurate five-point difference formula (see Appendix

A for details), instead of the former first-order accurate formula. In addition, for the

CHAPTER 3. TWO-SURFACES IN VAIDYA SPACETIMES

points at center, we use the centered five-point formula:

f
'(x) ~ f(xo- 2h)- 8f(xo- h)+ 8f(xo +h)- f(xo + 2h).

0 12h '

for the points at the left edge, we use the forward five-point formula:

29

(3.17)

!
'() ~ -25f(xo) + 48f(xo +h)- 36f(xo + 2h) + 16f(xo + 3h)- 3f(xo + 4h).

xo 12h '

(3.18)

and for the points at the right edge, we use the backward five-point formula:

!
'() ~ -25f(xo) + 48f(xo- h)- 36f(xo- 2h) + 16f(xo- 3h)- 3f(xo- 4h)

xo -12h ·

> with(plots):
> FivePtDer:=proc(X,N)

> local h,DX1,DX2,DXMain;

> h:=1/N;

(3.19)

> DX1:=[evalf(seq((-25*X[i]+48*X[i+1]-36*X[i+2]+16*X[i+3]-3*X[i+4])/(12*h),

> i = 1 .. 2))];

> DXMain := [evalf(seq(((X[i-2]-8*X[i-1])+(8*X[i+1]-X[i+2]))/(12*h),

> i = 3 . . N-1))] ;

> DX2:=[evalf(seq((-25*X[i]+48*X[i-1]-36*X[i-2]+16*X[i-3]-3*X[i-4])/(-12*h)

> i = N . . N+1))] ;

> return([op(DX1),op(DXMain),op(DX2)]);

> end proc:

Next, calculate the diagonal components of the two-dimensional induced metric

from the tangent vectors and then the area element. A quick calculation shows that

the components q12 and q21 are zero, so they are neglected in the code.

CHAPTER 3. TWO-SURFACES IN VAIDYA SPACETIMES

> AreaEl:=proc(X,Xp,m,N)

> local q11, q22, dA;

30

> q11:=[seq(-(1-2*m[i]/X[i,2])*Xp[i,1]~2+2*Xp[i,1]*Xp[i,2]+X[i,2]~2*Xp[i

> ,3r2,i=1. .N+1)J;

> q22:=[seq(X[i,2]~2*sin(X[i,3])~2,i=1 .. N+1)];

> dA:=[seq(evalf(sqrt(q11[i]*q22[i])),i=1 .. N+1)];

> return(dA);

> end proc:

Then calculate the Ricci scalar. From (3.16) the metric of the Vaidya spacetime

can be rewritten as

Denote - (1- 2m~v)) V 12 + 2V' R' + R2fJ'2 and R2 sin2 8 by F and G, respectively. Then

from (2.5) the Ricci scalar can be expressed as

-1 d G'
R = v'F?J d>. (v'F?J). (3.21)

> Ricci:=proc(X,Xp,m,N)

> local F,G,Gp,PDerTerm,DerTerm,dA,R;

> F:=[seq(-(1-2*m[i]/X[i,2])*Xp[i,1]~2+2*Xp[i,1]*Xp[i,2]+X[i,2]~2*Xp[i,3

>]~2,i=1 .. N+1)];

> G: =[seq (X [i, 2] ~2*sin (X [i, 3]) ~2, i=1. . N+1)] ;

> Gp:=FivePtDer(G,N);

> dA:=[seq(evalf(sqrt(F[i]*G[i])),i=1 .. N+1)];

CHAPTER 3. Two-SURFACEs IN VAIDYA SPACETIMES

> PDerTerm:=[seq(Gp[i]/dA[i] ,i=1 .. N+1)];

> DerTerm:=FivePtDer(PDerTerm,N);

> R:=[seq(-DerTerm[i]/dA[i],i=1 .. N+1)];

> return(R);

> end proc:

31

The following part calculates the null normal vectors to S. This works by first cal-

culating a canonical pair of timelike and spacelike unit vectors and then constructing

null vectors from them.

First, from the two tangent vectors of the 2-surface S, g>. = V' tv + R' gr + 8' go

and g¢ = g¢, we can obtain the normal one-forms:

n 1 = 8'dr- R'de, n2 = -8'dv + V'de. (3.22)

Then, with the inverse metric of the Vaidya spacetime we convert the normal one-

forms to normal vectors:

(3.23)

It follows that any linear combination, fi1 - an2, where a is a parameter function, is

normal to the surface S.

Now we can calculate the spacelike unit normal. We know that the vectors fi1 -afi2

will be spacelike if (fi1 - an2) · (fi1 - an2) is positive. Since

(- _) (- _) 8 ,2 (2m) (R' + aV')
2

n 1 - an2 · n 1 - an2 = 2a + 1 - R + R2 , (3.24)

we note that if we choose a = 2
;, the directions of these vectors are not affected,

and the calculations will become simple. In this case,

(- _) (- _) 8 ,2(2m) (R'R+2V'm) 2

n 1 - an2 · n 1 - an2 = - 1 + R + R4 > 0, (3.25)

CHAPTER 3. Two-SURFACES IN VAIDYA SPACETIMES 32

so the vectors ii1 - aii2 will be spacelike. Then the outward pointing spacelike unit

normal can be defined as (we would usually expect 8' > 0 for the surface S)

R = iil - aii2 = 1 { 8' ~ + 8' ~ - RR' + 2m V' 8 }
- II ii1- aii2 II V(1 + 2;)8 '2 + (RR'+~;nV')2 &v &r R3 f)() ·

(3.26)

Next we need to construct a timelike normal that is perpendicular to R. Let us

consider An1 + Bn2 , where A and Bare two functions we need to solve. We need to

solve the equation

(3.27)

It is easy to check that

(3.28)

will do this. Thus we obtain the required normal vector:

(3.29)

Then with a = 2; we can define the unit timelike normal:

~ [
T- ---=== - r-n· (3.30)

Finally, we define the two null normal vectors:

(3.31)

1 ~ ~
ii=-(T-R).

V2
(3.32)

Code for these procedures follows:

CHAPTER 3. TWO-SURFACES IN VAIDYA SPACETIMES 33

> NullVec:=proc(X,Xp,m,N)

> local Rden, Tden, vR, n1, n2, n1vR, n2vR, vn1, vn2, prevT, prevT2,

> vT, vL, vN;

> Rden:=[seq(sqrt((1+2*m[i]/X[i,2])*Xp[i,3]~2+(X[i,2]*Xp[i,2]+2*m[i]*Xp[

> i,1])~2/X[i,2]~4),i=1 .. N+1)];

> vR:=[seq([Xp[i,3]/Rden[i],Xp[i,3]/Rden[i],-(X[i,2]*Xp[i,2]+2*m[i]*Xp[i

> ,1])/X[i,2]~3/Rden[i]] ,i=1. .N+1)];

> Tden:=[seq(Rden[i]*sqrt(Xp[i,3]~2+2*Xp[i,1]*Xp[i,2]/X[i,2]~2-(1-2*m[i]

> /X [i, 2]) *Xp [i, 1] ~2/X [i, 2] ~2), i=1. . N+1)] ;

> n1:=[seq([O,Xp[i,3] ,-Xp[i,2]] ,i=1. .N+1)];

> n2 :=[seq ([-Xp [i ,3] ,0 ,Xp [i, 1]], i=1.. N+1)];

> vn1:=[seq([Xp[i,3],(1-2*m[i]/X[i,2])*Xp[i,3],-Xp[i,2]/X[i,2]~2],i=1 .. N

> +1)] ;

> vn2:=[seq([O,-Xp[i,3],Xp[i,1]/X[i,2]~2],i=1 .. N+1)];

> n1vR:=[seq(n1[i,1]*vR[i,1]+n1[i,2]*vR[i,2]+n1[i,3]*vR[i,3] ,i=1 .. N+1)];

> n2vR:=[seq(n2[i,1]*vR[i,1]+n2[i,2]*vR[i,2]+n2[i,3]*vR[i,3] ,i=1 .. N+1)];

> prevT:=[seq(-n2vR[i]*vn1[i]+n1vR[i]*vn2[i],i=1 .. N+1)];

> prevT2:=[seq(-(1-2*m[i]/X[i,2])*prevT[i,1]*prevT[i,1]+prevT[i,1]*prevT

> [i,2]+prevT[i,1]*prevT[i,2]+X[i,2]~2*prevT[i,3]*prev

> T[i,3] ,i=1. .N+1)];

> vT:=[seq(prevT[i]/sqrt(-prevT2[i]),i=1 .. N+1)];

> vL:=[seq(1/sqrt(2.)*(vT[i]+vR[i]),i=1 .. N+1)];

> vN:=[seq(1/sqrt(2.)*(vT[i]-vR[i]),i=1 .. N+1)];

> return(vL,vN);

> end proc:

The following procedure calculates the expansion associated with the normal

vector field V. This is pretty straightforward, deform the surface so that X ____,

X + EV and calculate the area element on the new surface first, and then do

the same thing for X ____, X- EV. Finally we average these two results and do

CHAPTER 3. Two-suRFACES IN VAIDYA SPACETIMES 34

three-point estimate on the rate of change.

> Expansion:=proc(X,Xp,V,eps,m,N)

> local dA,XplusV,XplusVp,dAplusV,XminusV,XminusVp,dAminusV,ExpV;

> dA:=AreaEl(X,Xp,m,N);

> XplusV:=X+eps*V;

> XplusVp:=FivePtDer(XplusV,N);

> dAplusV:=AreaEl(XplusV,XplusVp,m,N):

> XminusV:=X-eps*V;

> XminusVp:=FivePtDer(XminusV,N);

> dAminusV:=AreaEl(XminusV,XminusVp,m,N):

> ExpV:=[seq((dAplusV[i]-dAminusV[i])/2/dA[i]/eps,i=i .. N+1)];

> return (ExpV) ;

> end proc:

Calculate just the outward expansion B(z) using the procedure above.

> Expansion_L:=proc(X,eps,m,N)

> local Xp,dA,vL,vN,tL_Num;

> Xp:=FivePtDer(X,N);

> dA:=AreaEl(X,Xp,m,N);

> vL,vN:=NullVec(X,Xp,m,N):

> tL_Num:=Expansion(X,Xp,vL,eps,m,N);

> return(tL_Num);

> end proc:

Finally, the procedure below is the core one. It makes use of all the procedures

defined previously to calculate both expansions, the Ricci scalar, and the varia­

tions On()(l) and OzB(l).

CHAPTER 3. TWO-SURFACES IN VAIDYA SPACETIMES 35

> AllQuants:=proc(X,eps,m,N)

> local Xp,dA,vL,vN,tL_Num,tN_Num,XplusN,XminusN,tL_plusN,tL_minusN,dNtL,

> R,XplusL,XminusL,tL_plusL,tL_minusL,dLtL;

> Xp:=FivePtDer(X,N);

> dA:=AreaEl(X,Xp,m,N);

> vL,vN:=NullVec(X,Xp,m,N):

> tL_Num:=Expansion(X,Xp,vL,eps,m,N);

> tN_Num:=Expansion(X,Xp,vN,eps,m,N);

> XplusN:=X+eps*vN; XminusN:=X-eps*vN;

> tL_plusN:=Expansion_L(XplusN,eps,m,N);

> tL_minusN:=Expansion_L(XminusN,eps,m,N);

> dNtL:=[seq((tL_plusN[i]-tL_minusN[i])/2/eps,i=1 .. N+1)];

> R:=Ricci(X,Xp,m,N);

> XplusL:=X+eps*vL; XminusL:=X-eps*vL;

> tL_plusL:=Expansion_L(XplusL,eps,m,N);

> tL_minusL:=Expansion_L(XminusL,eps,m,N);

> dLtL:=[seq((tL_plusL[i]-tL_minusL[i])/2/eps,i=l .. N+1)];

> return(tL_Num,tN_Num,dNtL,R,dLtL);

> end proc:

C. A Sample Calculation

> N:=200; h:=1/N; eps:=0.02; a:=2;

N := 200

h := _1_
200

eps := 0.02

a:= 2

As a simple example, we choose m = 1, and the parameterization of the initial

surface S is v = 2 cos(e), r = 2m = 2, and e E [0, 1r]. Note that in this case, the

CHAPTER 3. TWO-SURFACES IN VAIDYA SPACETIMES 36

four-metric is just the standard Schwarzschild metric, S is a two-sphere (Figure 3.2)

and it is a slice of the event/apparent horizon. Thus we expect that on this surface

B(t) = 0, e(n) < 0 and onB(t) < 0. These will be confirmed by the following results.

> m:=[seq(l.,i=l .. N+l)]:
> X:=[seq([evalf(a*cos(Pi*(i-1)*h)),evalf(2),evalf(Pi*(i-1)*h)] ,i=l .. N+

> 1)] :

> Xp:=FivePtDer(X,N):

Figure 3.2: The initial two-surface S

The results of both expansions, the Ricci scalar, and the variations OnB(t) and

o1B(l) are calculated by executing the core procedure - AllQuants.

> tL_Num,tN_Num,dNtL_Num,Ric_Num,dLtL_Num:=AllQuants(X,eps,m,N):

Finally, figures of the geometric quantities we have calculated are graphed. Note

that for the points at the ends, the area element A = J qllq22 - ql22 = 0, which

makes some relevant results inaccurate to some extent. Thus we neglect these points

when we output the results.

file:///Jql/q22

CHAPTER 3. TWO-SURFACES IN VAIDYA 8PACETIMES 37

> listplot(tL_Num[2 .. N]);

> listplot(tN_Num[2 .. N]);

50 100 150 200

-1

-1

_,

(a) The outward expansion B(l) (b) The inward expansion B(n)

Figure 3.3: The expansions

> listplot(dNtL_Num[2 .. N]);

50 100 150 200

Figure 3.4: The variation 6n(}(l)

> listplot(dLtL_Num[2 .. N]);

CHAPTER 3. TWO-SURFACES IN VAIDYA SPACETIMES 38

Figure 3.5: The variation Ozflcll

> listplot(Ric_Num[5 .. N-3]);

0 50 100 150

Figure 3.6: The Ricci Scalar

D. Test

To verify our algorithm we calculate the various geometric quantities of S by

another method: using the GRTensorii computer algebra package. The detailed

GRTensorii session is contained in the Appendix B. Here we directly use the results

CHAPTER 3. TWO-SURFACES IN VAIDYA SPACETIMES

and their figures to compare them with the ones calculated by our method.

The following is part of the Maple worksheet in the Appendix B. To compare

the two results of expansion Bn which are calculated by two methods, we graph

them in one figure. Also, the difference value of them is plotted:

39

> tN_Ex:=[seq(evalf(subs(theta=(Pi*(i-1)/N),1/8*(sqrt(2)*(-16-8*a*cos(t

> heta) +a ~2* (sin(theta)) ~2)) I (sqrt (8+a~2* (sin(theta)) ~2)))), i=1. . N+1)] :

> dNtL_Ex :=

> [seq(evalf(subs(theta=(Pi*(i-1)/N),-1/64*(1024+192*a~2*cos(theta)~2-51

> 2*a*cos(theta)+64*a~2-64*a~3*cos(theta)-16*a~4-a~6+3*a~6*cos(theta)~2-

> 3*cos(theta)~4*a~6+64*cos(theta)~3*a~3+16*a~4*cos(theta)~2+cos(theta)~

> 6*a~6)/(64+16*a~2+a~4-2*a~4*cos(theta)~2-16*a~2*cos(theta)~2+cos(theta

>)~4*a~4))),i=1..N+1)]:

> display(listplot(tN_Num[2 .. N]),listplot(tN_Ex[2 .. N]));

> tN_fracDiff:=[seq((tN_Num[i]-tN_Ex[i])/tN_Ex[i] ,i=2 .. N-1)]:

> listplot(tN_fracDiff);

50 100 150 200

Figure 3.7: The two inward expansions B(n)

CHAPTER 3. Two-suRFACEs IN VAIDYA SPACETIMES 40

Figure 3.8: The difference between the two results of (f(n)

The two results of the variation on(f(l) are graphed in one figure, and their

difference is also plotted:

> display(listplot(dNtL_Num[2 .. N]),listplot(dNtL_Ex[2 .. N]));

> dNtL_fracDiff:=[seq((dNtL_Num[i]-dNtL_Ex[i])/dNtL_Ex[i],i=2 .. N)]:

> listplot(dNtL_fracDiff);

50 100 150 200

Figure 3.9: The two variations On(f(l)

CHAPTER 3. TWO-SURFACES IN VAIDYA SPACETIMES

10""

Figure 3.10: The difference between the two results of one(l)

From the result of the Appendix B, the Ricci scalar R = 2,!,2 , which is invariant

on slices of the horizon. So when m = 1, R = 0.5. The difference between the two

results of the Ricci scalar are graphed below:

> Ric_fracDiff:=[seq((Ric_Num[i]-0.5)/0.5,i=4 .. N-2)]:

> listplot(Ric_fracDiff);

Figure 3.11: The difference between the two results of Ricci Scalar

41

CHAPTER 3. TWO-SURFACES IN VAIDYA SPACETIMES 42

From Figures (3.8), (3.10) and (3.11) we can see that our numerical calculations

match the results computed by the GRTensorll computer algebra package. On the

route to these calculations we also see that our program can solve the problem in a

very direct and efficient manner. In the next section, we will see this more clearly

when we calculate the deformations of two-surfaces in the Vaidya spacetime.

Chapter 4

Deformations of FOTS in Vaidya

Spacetimes

A. The Vaidya Spacetime

To begin, we review some features of the Vaidya spacetime (3.15). The Vaidya

spacetime is a spherically symmetric spacetime which describes the collapse of null

dust in forming a black hole. Here we are mainly interested in the cases shown in

Figure 4.1: for v ::::; 0, m(v) = 0; for v > 0, m(v) increases monotonically and reaches

an asymptotic value M 0 as v tends to infinity.

Let us focus our attention on the two-spheres given by v=constant, r=constant.

Scaling the outgoing and ingoing null normals to these two-spheres as

a 2m(v)
l =[1,1---,0,0], na=[0,-1,0,0].

r
(4.1)

The expansions of the outgoing null normal za is given by

e(l) = ~(1- 2m(v)).
r r

(4.2)

Thus the only spherically symmetric marginally trapped surfaces are the two-spheres

r = 2m(v) for a specified v. These will be the apparent horizons on spherically

43

CHAPTER 4. DEFORMATIONS OF FOTS IN VAIDYA SPACETIMES

,.,...
';.;:,:-;;_;::..;:..::_:_.:....:...;..::...:...::..:...;:..:....:...::..:....~ 1

i

-0
l

44

Figure 4.1: Penrose diagrams of the Vaidya spacetime [14]. This diagram is valid for

a strictly increasing mass function m(v) which vanishes for v:::; 0, and asymptotes to

a finite value M0 for v--> oo. The event horizon is denoted by E. The shaded region

of the spacetime is flat.

symmetric Cauchy surfaces which intersect the r = 2m(v) surface [8]. Let us denote

the r = 2m(v) surface by H. Unlike in the Schwarzschild spacetime where the r =2m

surface is null and coincides with the event horizon, in this case H is spacelike if

m'(v) > 0, and it lies strictly inside the event horizon. At late times, H asymptotes

to the event horizon.

We now consider a special kind of two-surfaces embedded in the Vaidya spacetime

- future outer trapping surfaces (FOTS) that foliate future outer trapping horizons.

FOTS are spacelike two-surfaces on which Einstein equations hold and for which

e(l) = 0, B(n) < 0 and there is a scaling of the null vectors such that <5nB(l) < 0 [6].

CHAPTER 4. DEFORMATIONS OF FOTS IN VAIDYA SPACETIMES 45

First, we note that on each of the two-sphere r = 2m(v) (v=constant) in the Vaidya

spacetime, given the scaling (4.1), e(l) = ~(1 - 2";.(v)) = 0, e(n) = -~ < 0, and

6nB(l) = -~ < 0. Thus these two-surfaces are FOTS, and the 3-surface H given by

r = 2m(v) for all v is a FOTH. As shown in Figure (4.1), in the Vaidya spacetime

the null event horizon E, the space-like FOTH H, and the time-like surfacer= 2M0

all meet tangentially at the future timelike infinity i+.

In this section we distort FOTS embedded in the Vaidya spacetime, preserving

their defining characteristics e(l) = 0, e(n) < 0 and 6ne(l) < 0, and study the properties

of these deformations. In particular, we are interested if all FOTHs asymptote to the

event horizon.

From [6] we know that for any spacelike 2-surface on which e(l) = 0, it can be

shown that

(4.3)

where Wa = -q~nc \hlc is the connection on the normal bundle Tl_ S. Let us begin

with this formula to study the deformations of a FOTS whilst preserving its defining

characteristics. Note that under sufficiently small variations, we always have B(n) < 0

and 6nB(l) < 0, thus to understand these deformations we need to find normal vector

fields xa such that 6xB(l) = 0. By solving 6xB(l) = 0 we can get both the evolution

and the possible deformation of FOTS. In general, there will be an infinite number of

xa that will solve 6xB(l) = 0 and so an equally infinite number of FOTS-preserving

deformations. Here we focus on the case t5tB(l) =!= 0 anywhere on S. In this situation,

for any B E C 2 (S) we can always solve 6xB(l) = 0 to find a corresponding A. In our

calculations, for convenience, we choose Bas a positive constant, then from (4.1) we

have

(4.4)

CHAPTER 4. DEFORMATIONS OF FOTS IN VAIDYA SPACETIMES 46

Under the null energy condition Oze(l) < 0 [6], thus A > 0. In this case, we obtain a

[-oriented and spacelike normal variation xa = Ala - Bna. Then we can deform the

initial FOTS S into its neighboring FOTS, S, = S +EX. Using this method, we can

deform the initial FOTS S into successive FOTS.

B. Symmetric Evolutions

Let us now illustrate the discussion above with the deformations of some given

FOTS embedded in the Vaidya spacetime:

s = {v = V(>.), T = R(>.), e = 8(>.), ¢ = ¢; 0 :s; >. :s; 1, -7f :s; ¢ :s; 1f}. (4.5)

The mass function is defined as m(v) = ~ + ~erf(v) (see Figure 4.2), where erf(v) is the

usual error function. For simplicity, we begin with the surface v = 0, r = 2m(v) = 3

and e E [0, 1r]. We use our code to evolve the FOTS symmetrically towards the event

horizon and then compare these numerical evolutions with exact results.

-20 -10 10 20

Figure 4.2: m(v) = ~ + ~erf(v)

Before deforming the FOTS, we first locate the event horizon and give its evolution

to gain a better understanding of this situation. In principle the event horizon can be

CHAPTER 4. DEFORMATIONS OF FOTS IN VAIDYA SPACETIMES 47

found by tracing the path of null rays through time. Furthermore, in a global sense

in time, the future-pointing outgoing null geodesics that begin near the event horizon

will converge on to the horizon if integrated backward in time. Building on this idea,

the method of "integrating null surfaces backwards in time" [15] was developed to

locate the event horizon. In this case, we note that for the null surfaces, t · t = 0,

thus we have

2m(v)
-(1- --)dv2 + 2dvdr = 0,

r

which gives the evolution equation for the event horizon,

dr = ~(1 _ 2m(v)).
dv 2 r

(4.6)

(4.7)

In a global sense, we can begin the "backward integrating" with the final stage, here

we choose v = 20 and r(v) = 4 as the starting condition for the backward integration

of Equation 4.7. By solving the equation, we obtain the evolution of the event horizon

(Figure 4.3). Figure 4.3 shows that the event horizon coincides with the apparent

horizon only at late times after the black hole settling down to a stationary state (v

is large enough). In the past, the apparent horizon lies within the event horizon.

(a) Apparent Horizon 2m(v) (b) Evolution of event horizon (c) EH vs AH

Figure 4.3: EH and AH

CHAPTER 4. DEFORMATIONS OF FOTS IN VAIDYA SPACETIMES 48

Next, we use our program to simulate the process of the deformations of the

FOTS. The first part of the code is similar to the one in Section 3, some procedures

are defined to calculate various geometry quantities for S. For conciseness, we omit

the details of the procedures that are exactly the same as the ones in Section 3.

> restart; with(plots):

> FivePtDer:=proc(X,N)

> AreaEl:=proc(X,Xp,m,N)

> Ricci:=proc(X,Xp,m,N)

> NullVec:=proc(X,Xp,m,N)

The following procedure calculates the expansion associated with the normal vec­

tor field V. It is a little different from the one in Section 3: First, m(v) is no longer

a constant, in this case m(v) = ~ + !erf(v); Second, to improve the accuracy of the

value of A =
8

8
8~0(1) which will be calculated later, we make a little change here -
l (l)

omitting the bottom part of the expansion, vfQ. (the area element of the surface S).

From Section 3 the expansions of S are given by B(n) = 8j{ and B(t) = ~, which

leads to the next relations

on(btv/Q.) = on(v/Q.B(l)) = ylq(B(n)B(l)+onB(l)), bt(Otyfq) = Ot{ylqB(l)) = ylq(Bfl)+btB(l))·

(4.8)

CHAPTER 4. DEFORMATIONS OF FOTS IN VAIDYA SPACETIMES

So when e(l) = 0, (4.4) reveals the relation

6n(6t.,fii)
61 (6t.,fii)

49

(4.9)

When we approximate the value of A later, for accurateness, we use the formula (4.5)
6(~)

instead of ~n:(t) = n 6,'(\ • Thus the following procedure actually calculates Jn.fii and
I (I) 6t(V't)

6t.,fii instead of the expansions e(n) and e{lJ·

> Expansion:=proc(X,Xp,V,eps,m,N)

> local XplusV,XplusVp,dAplusV,XminusV,XminusVp,dAminusV,ExpV,m1,m2;

> XplusV:=X+eps*V;

> XplusVp:=FivePtDer(XplusV,N);

> m1:=[seq(evalf(3/2+erf(XplusV[i,1])/2),i=1 .. N-1)];

> dAplusV:=AreaEl(XplusV,XplusVp,m1,N):

> XminusV:=X-eps*V;

> XminusVp:=FivePtDer(XminusV,N);

> m2:=[seq(evalf(3/2+erf(XminusV[i,1])/2),i=1 .. N-1)];

> dAminusV:=AreaEl(XminusV,XminusVp,m2,N):

> ExpV:=[seq((dAplusV[i]-dAminusV[i])/2/eps,i=1 .. N-1)];

> return(ExpV);

> end proc:

Then calculate just the outward expansion B(t)·

> Expansion_L:=proc(X,eps,m,N)

> local Xp,dA,vL,vN,tL_Num;

> Xp:=FivePtDer(X,N);

> dA:=AreaEl(X,Xp,m,N);

> vL,vN:=NullVec(X,Xp,m,N):

> tL_Num:=Expansion(X,Xp,vL,eps,m,N);

> return(tL_Num);

> end proc:

CHAPTER 4. DEFORMATIONS OF FOTS IN VAIDYA SPACETIMES 50

The procedure below invokes all the procedures defined above to calculate both

expansions, the Ricci scalar, and the variations 6nB(t), 6tB(t), 6n(61y'q) and J1(J1y'q).

> AllQuants:=proc(X,eps,m,N)

> local Xp,dA,vL,vN,tL_Num,tN_Num,XplusN,XminusN,tL_plusN,tL_minusN,

> dNtL,R,XplusL,XminusL,tL_plusL,tL_minusL,dLtL,m1,m2,m3,m4,tL,tN,

> AdNtL,AdLtL;

> Xp:=FivePtDer(X,N);

> dA:=AreaEl(X,Xp,m,N);

> vL,vN:=NullVec(X,Xp,m,N):

> tL:=Expansion(X,Xp,vL,eps,m,N);

> tN:=Expansion(X,Xp,vN,eps,m,N);

> tL_Num:=[seq(evalf(tL[i]/dA[i]),i=1 .. N-1)];

> tN_Num:=[seq(evalf(tN[i]/dA[i]),i=1 .. N-1)];

> XplusN:=X+eps*vN;

> m1:=[seq(evalf(3/2+erf(XplusN[i,1])/2),i=1 .. N-1)];

> XminusN:=X-eps*vN;

> m2:=[seq(evalf(3/2+erf(XminusN[i,1])/2),i=1 .. N-1)];

> tL_plusN:=Expansion_L(XplusN,eps,m1,N);

> tL_minusN:=Expansion_L(XminusN,eps,m2,N);

> dNtL:=[seq((tL_plusN[i]-tL_minusN[i])/2/eps/dA[i] ,i=1 .. N-1)];

> AdNtL:=[seq((tL_plusN[i]-tL_minusN[i])/2/eps,i=1 .. N-1)];

> XplusL:=X+eps*vL;

> m3:=[seq(evalf(3/2+erf(XplusL[i,1])/2),i=1 .. N-1)];

> XminusL:=X-eps*vL;

> m4:=[seq(evalf(3/2+erf(XminusL[i,1])/2),i=1 .. N-1)];

> tL_plusL:=Expansion_L(XplusL,eps,m3,N);

> tL_minusL:=Expansion_L(XminusL,eps,m4,N);

> dLtL:=[seq((tL_plusL[i]-tL_minusL[i])/2/eps/dA[i],i=1 .. N-1)];

> AdLtL:=[seq((tL_plusL[i]-tL_minusL[i])/2/eps,i=1 .. N-1)];

> R:=Ricci(X,Xp,m,N);

CHAPTER 4. DEFORMATIONS OF FOTS IN VAIDYA 8PACETIMES

> return(tL_Num,tN_Num,dNtL,R,dLtL,AdNtL,AdLtL);

> end proc:

51

The following procedure is the core one in this section. It deforms a FOTS in-

putted as X into its neighboring FOTS. For simplicity, we set B = 1, then A can

b ·1 l I t d A 8nC8tv'Q) Th l dX e eas1 y ca cu a e as = 81 c81 ..;q) . e norma variation can be written as

dX =Ala-na, and then the new surface is given as Xl =X+ dX. In this proce-

dure we also give the parametric equations of Xl in the Cartesian coordinate system,

which will make us plot the figure of the surface conveniently.

> Loop:=proc(X,m,N)

> local Xp,tL_Num,tN_Num,dNtL_Num,Ric_Num,dLtL_Num,tL,tN,B,A,dX,X1,

> m1,C,D,E,F,G,AdLtL,AdNtL,S1;

> Xp:=FivePtDer(X,N):

> tL,tN := NullVec(X, Xp, m, N):

> tL_Num,tN_Num,dNtL_Num,Ric_Num,dLtL_Num,AdNtL,AdLtL:=AllQuants(X,

> eps,m,N):

> B := 1:

> A := [seq(B*AdNtL[i]/AdLtL[i], i = 1 .. N-1)]:

> dX := [seq(eps*[A[i]*tL[i, 1]-B*tN[i, 1], A[i]*tL[i,2]-B*tN[i, 2],

> A [i] *tL [i, 3] -B*tN [i, 3]] , i = 1. . N-1)] :

> X1 : = X+dX:

> S1:=[seq([evalf(X1[i,2]*cos(X1[i,3])),evalf(X1[i,2]*sin(X1[i,3])),

> evalf(X1[i,1])] ,i=1. .N-1)]:

> m1:=[seq(evalf(3/2+erf(X1[i,1])/2),i=1 .. N-1)]:

> Xp:=FivePtDer(X1,N):

> tL_Num,tN_Num,dNtL_Num,Ric_Num,dLtL_Num,AdNtL,AdLtL:=AllQuants(X1,

> eps,m1,N):

> return(tL_Num,tN_Num,dNtL_Num,dLtL_Num,Ric_Num,X1,m1,S1);

> end proc:

CHAPTER 4. DEFORMATIONS OF FOTS IN VAIDYA SPACETIMES 52

The initial FOTS is inputted below: v = 0, r = 2m = 3 and B E [0, 1r]; in this

case the mass function m(v) = ~ + ~erf(v) = ~.

> N:=20: h:=1/N: eps:=0.02:

> a:=2:

> m:=[seq(evalf(3/2+erf(0)/2),i=1 .. N-1)]:

> X:=[seq([evalf(O),evalf(2*(3/2+erf(0)/2)),evalf(Pi*i*h)] ,i=1 .. N-1)]:

Finally, we repeatedly invoke the procedure "Loop" to deform the initial FOTS S

into successive FOTS s1' s2, ... ' ST-1· We obtain the various geometric quantities

of the final surface Sr_ 1 and the figures of the deformed surfaces at each step. Here

we repeatedly deform the initial FOTS for 50 times (T =51) and see how much we

can extend the FOTS.

> T:=51:
> for t from 1 by 1 while t < T do

> tL,tN,dNtL,dLtL,Ric,X,m,S:=Loop(X,m,N):

> Surf[t]:= spacecurve(S, axes=box, color red):

> end do:

The figures of the expansions, the variations On()(l), OzB(l) and the Ricci scalar of

the final surface Sr_ 1 are plotted below. We can see that on this surface ()(l) = 0,

B(n) < 0 and On(}(l) < 0, so Sr- 1 is still a FOTS.

> listplot(tL, view=[1 .. N-1,-0.2 .. 0.2]);

> listplot(tN, view=[1 .. N-1,-0.8 .. 0.8]);

> listplot(dNtL, view=[1 .. N-1,-0.1 .. 0]);

> listplot(dLtL, view=[1 .. N-1,-0.2 .. 0.2]);

> listplot(Ric, view=[2 .. N-2,-0.3 .. 0.3]);

CHAPTER 4. DEFORMATIONS OF FOTS IN VAIDYA SPACETIMES

0.2

0.1

(a) The outward expansion 8(!) (b) The inward expansion B(n)

Figure 4.4: The expansions

2.5 5.0 7.5 100 12.5 150 17.5

.5 5.0 7.5 100 12.5 15.0 175

-0

-0.

(a) The variation 8nB(l) (b) The variation 8tB(l)

Figure 4.5: The variations of the expansions

Figure 4.6: The Ricci Scalar

53

CHAPTER 4. DEFORMATIONS OF FOTS IN VAIDYA SPACETIMES 54

The three-dimensional figures of the 50 deformed surfaces in the Cartesian coor­

dinate system are plotted below. From this figure we can easily see how the FOTS

are deformed gradually.

> SS:=[seq(Surf[t] ,t=1 .. T-1)]:

> display(SS,orientation=[30,70]);

-4

Figure 4. 7: The deformed FOTS

To find where we have extended the FOTS, we now plot the figures of rand 2m(v)

for the final surface Sr-1·

> r:=[seq(X[i,2] ,i=1. .N-1)]:

> listplot(r,color =red, view=[1 .. 20,0 .. 4.01]);

> listplot(2*m, view=[1 .. 20,0 .. 4.01]);

> display(listplot(r,color =red), listplot(2*m,color

> black), view=[1 .. 20,0 .. 4.01]);

CHAPTER 4. DEFORMATIONS OF FOTS IN VAIDYA SPACETIMES 55

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

(a) r (b) 2m (c) r vs 2m

Figure 4.8: r and 2m

From Figure 4.3 we know that in the Vaidya spacetime where m(v) = ~ + ~erf(v),

at late times r = 2m(v) asymptotes to the event horizon r = 4. Combining this

with Figures (4.7) and (4.8) we can see that at late times, having been successively

deformed for 50 times, the FOTS asymptote to the event horizon.

C. Non-symmetric Evolutions

What we have discussed so far are all about symmetric evolutions. Next we turn

to study some non-symmetric cases. As noted in [6], the rescaling of the null normal

vectors is often important when we study FOTS. When we deform the FOTS, different

scaling of the null vectors may generate different deformations of the surfaces. We

now make use of scalings as a tool to study some non-symmetric FOTS.

We rescale the null vectors we used previously to become

la- Jla
I- ' (4.10)

where f = 3 + 0.5 cos(e). Then we deform the initial FOTS (4.3) for 100 times with

this scaling, using the same method as before. By doing this, the initial symmetric

FOTS is deformed into successive non-symmetric FOTS 51 , 52 , ... , 5100 . At last, we

CHAPTER 4. DEFORMATIONS OF FOTS IN VAIDYA SPACETIMES 56

plot the figures of various geometric quantities for the final surface S100 below.

10 15

(a) The outward expansion ()(!) (b) The inward expansion ()(n)

Figure 4.9: The expansions

10 15

(a) The variation 8n()(l) (b) The variation 81()(!)

Figure 4.10: The variations of the expansions

CHAPTER 4. DEFORMATIONS OF FOTS IN VAIDYA SPACETIMES 57

2.5 3.0 3.5

Figure 4.11: The deformed FOTS

4 2

(a) Viewed in profile (b) Viewed from behind

Figure 4.12: The deformed FOTS and Apparent horizon

CHAPTER 4. DEFORMATIONS OF FOTS IN VAIDYA SPACETIMES 58

(a) r (b) 2m (c) T VS 2m (d) 2m-r

Figures (4.9) and (4.10) show that the surface 8100 is still a FOTS. Figure (4.12)

graphs the deformations of the non-symmetric deformed FOTS and the apparent

horizon at late stage. Figure 4.12 (b) shows that having been deformed for 100 times,

the FOTS still do not approach the apparent horizon. In addition, it seems likely

that the FOTS diverge away from the apparent horizon as the deformations go on.

This is further confirmed in Figure (4.13) which shows that on the FOTS Swo, the

difference between 2m and r, 2m- r, increases gradually. As a result, it suggests

that in this case, the non-symmetric FOTS may not extend to the event horizon.

While our method can calculate the deformations of FOTS in the Vaidya spacetime

conveniently, we meet some difficulties at the late stage of the deformations. As shown

in our calculations (Figure 4.5 and Figure 4.10), after we repeat the deformations for

sufficiently many times, the variation J1Bcl) becomes infinitesimal, then the value of

A (from equation 4.4 A = B!n&&(l)) becomes inaccurate to some extent. This will
U! (!)

affect the deformations subsequent and makes the result not accurate enough. For

this reason, with the present implementation of our method, we are limited to repeat

the deformations for no more than 100 times, instead of continually repeating the

deformations throughout the numerical evolution, as would be our final goal. In

future implementations of the method, we anticipate developing a more sophisticated

method to improve the robustness and accuracy of the code.

Chapter 5

Conclusions

In this paper we have presented a numerical method for computing the geome­

try and deformations of spacelike two-surfaces embedded in Vaidya spacetimes. We

discretize a spacelike two-surface and define normal vectors xa = Ala - Bna to each

point of the surface. Using these normal vectors we deform the surface into its neigh­

boring surfaces and calculate the intrinsic and extrinsic geometry of the surface and

their variations. We have implemented these ideas numerically and shown several

examples. In these examples, our method has been tested and shown to correctly

reproduce known results.

We have also used our method to investigate the deformations of FOTS which

foliate FOTH in the Vaidya spacetime. Solutions of t5xB(l) = 0 generate the possible

deformations of the FOTH. We have studied the allowed deformations of some FOTS

in the Vaidya spacetime and tried to distort them towards the event horizon. The

result suggests that in the Vaidya spacetime, some FOTS may not extend to the event

horizon after finite extensions.

The geometry and dynamics of black hole horizons can be studied by considering

the allowed deformations of their foliating two-surfaces. Our method provides a con-

59

CHAPTER 5. CONCLUSIONS 60

venient tool to calculate the deformations of two-surfaces in Vaidya spacetimes. The

method is being further developed by Dr. Ivan Booth and his students. In the future,

the robustness and accuracy of the method will be improved, and more interesting

findings are expected.

Appendix A

Numerical Differentiation

In this appendix we briefly review the problem of computing the derivative of

a given function f(x). We focus on three forms which are commonly considered:

forward, backward and centered differences. The methods discussed here are used

repeatedly in our codes.

The derivative of a function fat a point x0 , denoted f'(x 0), is defined by the limit

f '() _ 1. f(xo +h)- f(xo)
xo - 1m h .

h o

So when h is a small positive constant, the forward difference divided by h approxi-

mates the derivative f'(x 0),

f'(xo) ~ f(xo +h)- f(xo).
h

This approximation is called the two-point forward difference formula [16].

The error in this approximation can be derived from Taylor's theorem. Assuming

that f"(x) exists on [x0 , x0 + h], then, by Taylor's Theorem, f(xo +h) = f(x 0) +

f'(x 0)h + f"(0h 2 /2, where~ E [x0 , x0 + h]. Solving for f'(x 0), we obtain

f '() f(xo +h)- f(xo) f"(~)h
xo = h +-2-,

61

APPENDIX A. NUMERICAL DIFFERENTIATION 62

so the error in the forward difference formula is O(h). This formula is first-order

accurate.

The backward difference formula can be obtained by replacing h by -h in the

forward difference formula, where h is still positive,

f'() ~ f(xo)- f(xo- h)
xo ~ h ,

The backward difference formula is also first-order accurate.

However, the central difference yields a more accurate approximation. The three-

point centered difference formula can be obtained by averaging the forward and back-

ward difference approximation,

f '() :::::,j f(xo +h)- f(xo- h)
xo 2h .

Its error is proportional to square of the spacing. Assuming that f"'(x) E C3 on

[x0 - h, x0 + h], then, by Taylor's Theorem again,

f(xo +h)= f(xo) + f'(xo)h + f"(~o)h + f"'(~+)h
3

,

f(xo- h)= f(xo)- f'(xo)h + f"(~o)h- f"'(~_)h
3

,

where~+ E [x0 , x 0 + h] and~- E [x0 - h, x0]. Solving for f'(x 0), we obtain

f'() = f(xo +h)- f(xo- h) _ !'"(~+) + !"'(~-) h2
xo 2h 12 ·

By the Intermediate Value Theorem [16], f'" must assume every value between!"'(~-)

and!"'(~+) on the interval(~-,~+), including the average of these two values. There-

fore, we can rewrite this equation

f
'() = f(xo +h)- f(xo- h) _ !"'(~) h2

Xo 2h 6 '

where~ E [x0 - h, x0 + h]. Note that the term involving f"(x0) is cancelled during

the calculation. The center difference formula is second-order accurate.

APPENDIX A. NUMERICAL DIFFERENTIATION 63

While we can use Taylor's Theorem to derive difference formulas with higher­

order accuracy simply by evaluating f (x) at more points, this process can be tedious.

An alternative approach is to use the Richardson extrapolation method [16]: first

construct the Lagrange interpolating polynomial through some neighboring points,

then differentiate the Lagrange polynomial, and finally evaluate the derivative at the

desired point. For example, suppose we want to compute the derivative at a point x 0

using the points {x-m, ... , x_1, Xo, x1, ... , Xn}, where m and n are known nonnegative

integers, and X-m < X-m+l < ... < Xn-l < Xn. Then a finite difference formula

for f'(x 0) can be obtained by analytically computing the derivatives of the Lagrange

polynomials £,1,i(x)~=-m for these points, where j = m + n + 1.

Using this method we can derive the fourth-order accurate five-point centered

formula which is one of the best known finite difference formulas,

f
'() _ f(xo- 2h)- 8f(xo- h)+ 8f(xo +h)- f(xo + 2h) f 5(0h4

xo - 12h + 30 '

where~ E [xo- 2h, x 0 + 2h].

If there is no information available about f (x) for x < x0 , then we can use the

following forward five-point formula,

'() _ -25f(xo) + 48f(xo +h)- 36f(xo + 2h) + 16f(xo + 3h)- 3f(xo + 4h) J5(0h4

f Xo - 12h + 5 '

where~ E [xo,xo + 4h]. As before, if we have not any information about f(x) for

x > x 0 we can replace h by -h to obtain a backward formula that approximates

f'(x 0) using the values of f(x) at points {xo, xo- h, xo- 2h, x0 - 3h, xo- 4h}.

Appendix B

Calculations with G RTensor II

The bulk of this appendix is the output from a Maple worksheet which was con­

structed by Ivan Booth. In the worksheet various geometric quantities, namely the

induced metric q0 f3, the Ricci scalar R, the expansions Bcnl and Bell and the varia­

tion 6ne(ll, for the two-sphere in the Vaidya spacetime, S = {a cos(e), 2, B}, where

e E [0, 11'] and a= 2, are calculated with the GRTensorll computer algebra package.

These results are used in Section 3 to test our algorithm.

To begin the Maple session we load the GRTensorll libraries and the Vaidya

metric.

> restart: readlib(grii): with(plots): grtw();

GRTensorll Version 1. 79 (R4)

6 February 2001

Developed by Peter Musgrave, Denis Pollney and Kayll Lake

Copyright 1994 - 2001 by the authors.

Latest version available from: http: I I grtensor.phy.queensu.cal

64

http://grtensor.phy.queensu.ca/

APPENDIX B. CALCULATIONS WITH GRTENSORil 65

> qload(Vaidya);

Default spacetime = Vaidya

For the Vaidya spacetime :

Coordinates

x(up)

X a= [v, r, 8, ¢]

Line element

> grcalc(g(up,up)); grdisplay(g(up,up));

Calculated detg for Vaidya (0.000000 sec.)

Calculated g(up,up) for Vaidya (0.016000 sec.)

CPU Time = 0.063

For the Vaidya spacetime :

Contravariant metric tensor

g(up, up)

0 1 0 0

r-2m
0 0 1

r
g a b_

1
0 0 r2 0

0 0 0
1

r 2 sin(8)2

Our analysis begins with the calculation of the two future-pointing null normals

to the surface S. The method is similar to the one we discussed in Section 3. First

APPENDIX B. CALCULATIONS WITH GRTENSORII 66

consider two-surfaces in the Vaidya spacetime, {v = V(>.), r = R(>.), () = >., ¢ =

¢; 0 :S >. :S 1, -7f :S ¢ :S 7f }. We can find two normal one-forms to the surfaces:

n 1 = dr- R'd(), n2 = -dv + V'd().

With the Vaidya metric we convert them to normal vectors:

r- 2m -R'
n1 = [1, , - 2-, o],

r r
V'

n2 = [o, -1, 2 , o].
r

Then we can define the outward pointing spacelike unit normal:

where a is a parameter function. Here we choose a: = 2
;:', which can simplify the

calculation. Next, we construct a timelike normal that is perpendicular to R:

Then we can define the unit timelike normal:

Finally, the two null normal vectors are defined as:

~ 1 ~ ~
l=V'i(T+R),

1 ~ ~ n = V'i(T- R).

Using this method the null normals to the surface Scan be calculated. Note that for

S, V' = -2 sin(B) and R' = 0.

> grdef('n2{a}:=[-1,0,Vp(theta),O] ');

> grcalc(n2(up));

> grdisplay(n2(up));

This object is already defined. The new definition has been ignored.

APPENDIX B. CALCULATIONS WITH GRTENSORil

> Rp(theta):=O;

CPU Time = 0.

For the Vaidya spacetime :

n2(up)

n2(up)

n2a = [o, -1, v~;e), o]

Rp(e) := o
> grdef('n1{a}:=[0,1,-Rp(theta),O] ');

> grcalc(n1(up));

> grdisplay(n1(up));

Components assigned for metric: Vaidya

Created definition for nl(dn)

Created definition for nl(up)

Calculated nl(up) for Vaidya (0.000000 sec.)

CPU Time = 0.

For the Vaidya spacetime :

nl (up)

n1(up)

nla = [1, r -r2m, 0, ~
> grdef('pR{a}:=n1{a}-2*mlr*n2{a}');

> grcalc(pR(up));

> grdisplay(pR(up));

Created definition for pR(dn)

67

APPENDIX B. CALCULATIONS WITH GRTENSORII

Created definition for pR(up)

Calculated pR(dn) for Vaidya (0.000000 sec.)

Calculated pR(up) for Vaidya (0.000000 sec.)

CPU Time = 0.

For the Vaidya spacetime :

pR(up)

pR(up)

Ra = [1 1 - 2mVp(B) ol
p , , r3 , J

> grdef('pR2:=pR{a}*pR{~a}'); grcalc(pR2); grdisplay(pR2);

Created definition for pR2

Calculated pR2 for Vaidya (0.000000 sec.)

CPU Time = 0.

For the Vaidya spacetime :

> subs(r=2*m,Vp(theta)=O,Rp=O,grcomponent(pR2));

2
> grdef('R{a}:=pR{a}/sqrt(pR2)');

> grcalc(R(dn)); grdisplay(R(dn));

> grcalc(R(up)); grdisplay(R(up));

Created definition for R(dn)

Calculated R(dn) for Vaidya (0.015000 sec.)

68

APPENDIX B. CALCULATIONS WITH GRTENSORII

CPU Time = 0.015

For the Vaidya spacetime :

R(dn)

R(dn)

Created definition for R(up)

Calculated R(up) for Vaidya (0.000000 sec.)

CPU Time = 0.015

For the Vaidya spacetime :

R(up)

R(up)

Ra = [-1- _1 __ 2m Vp(B) ol
v'%1' v'%1' r3)%I ' J
2mr3 + r4 + 4m2 Vp(B) 2

%1 := 4
r

> radsimp(subs(r=2*m,grcomponent(R(up), [v])));

> radsimp(subs(r=2*m,grcomponent(R(up), [r])));
2m

Js m 2 + Vp(B)2

2m

J8m2 + Vp(B) 2

> grdef('R2:=R{a}*R{~a}');

> grcalcalter(R2,radsimp); grdisplay(R2);

Created definition for R2

69

APPENDIX B. CALCULATIONS WITH GRTENSORil

Simplification will be applied during calculation.

Applying routine radsimp to object R2

Calculated R2 for Vaidya (0.000000 sec.)

CPU Time = 0.

For the Vaidya spacetime :

R2

R2 = 1
> grdef('n1R:=n1{a}*R{-a}'); grcalc(n1R);

> gralter(n1R,radsimp);

> grdisplay(n1R);

Created definition for n1R

Calculated n1R for Vaidya (0.000000 sec.)

CPU Time = 0.

Component simplification of a GRTensorii object:

Applying routine radsimp to object n1R

CPU Time = 0.

For the Vaidya spacetime :

n1R
r2

n1R=-r.==~==~==~~~~
yl2 mr3 + r 4 +4m2 Vp(B) 2

> grdef('n2R:=n2{a}*R{-a}'); grcalc(n2R);

> gralter(n2R,radsimp);

> grdisplay(n2R);

70

APPENDIX B. CALCULATIONS WITH GRTENSORII

Created definition for n2R

Calculated n2R for Vaidya (0.000000 sec.)

CPU Time = 0.

Component simplification of a GRTensorii object:

Applying routine radsimp to object n2R

>

>

CPU Time = 0.

For the Vaidya spacetime :

n2R

-r3
- 2 Vp(B) 2 m

n2R = --;==:::;::===;=='===='=:::::;====;~
r J2 mr3 + r 4 +4m2 Vp(B) 2

grdef('pT{a}:=-n2R*n1{a}+n1R*n2{a}');

grcalcalter(pT(up),radsimp); grdisplay(pT(up));

Created definition for pT(dn)

Created definition for pT(up)

Simplification will be applied during calculation.

Applying routine radsimp to object pT(dn)

Calculated pT(dn) for Vaidya (0.016000 sec.)

Applying routine radsimp to object pT(up)

Calculated pT(up) for Vaidya (0.015000 sec.)

71

APPENDIX B. CALCULATIONS WITH GRTENSORII

CPU Time = 0.031

For the Vaidya spacetime :

pT(up)

pT(up)

a_ [r3 +2Vp(0) 2 m _2m(-rVp(0) 2 +r3 +2Vp(0) 2 m) Vp(O) ~
p T - lfi11 , lfi11 , lfi11 , 0

rv%1 r 2 v%1 v%1
%1 := 2mr3 + r 4 + 4m2 Vp(0) 2

> grdef('pT2:=pT{a}*pT{~a}');

> grcalcalter(pT2,simplify);

> grdisplay(pT2);

Created definition for pT2

Simplification will be applied during calculation.

Applying routine simplify to object pT2

Calculated pT2 for Vaidya (0.032000 sec.)

CPU Time = 0.032

For the Vaidya spacetime :

pT2

-rVp(0) 2 + r 3 + 2Vp(0)2 m
p T2 = -----'--'-------:----'--'---

r3

> grdef('T{a}:=pT{a}/sqrt(-pT2)');

> grcalc(T(up));

> gralter(T(up),radsimp): grdisplay(T(up));

Created definition for T(dn)

Created definition for T(up)

72

APPENDIX B. CALCULATIONS WITH GRTENSORII

Calculated T(dn) for Vaidya (0.016000 sec.)

Calculated T(up) for Vaidya (0.000000 sec.)

CPU Time = 0.016

Component simplification of a GRTensorii object:

Applying routine radsimp to object T(up)

CPU Time = 0.031

For the Vaidya spacetime :

T(up)

T(up)

(r3 + 2 Vp(8)2 m) r
TV=-r===7======~~~~~==~~~~==~==~=7=

y'2mr3 + r4 +4m2 Vp(8)2 y'(-rVp(8)2 + r3 + 2Vp(8)2 m) r

rr = _ 2m (-r Vp(8)2 + r 3 + 2Vp(8)2 m)
y'2 mr3 + r4 +4m2 Vp(8)2 y'(-rVp(8)2 + r3 + 2Vp(8)2 m) r

Te = Vp(8) r2

y'2 m r3 + r4 +4m2 Vp(8)2 y'(-r Vp(8)2 + r3 + 2 Vp(8)2 m) r
> radsimp(subs(r=2*m,grcomponent(T(up), [v])));

> radsimp(subs(r=2*m,grcomponent(T(up), [r])));

> radsimp(subs(r=2*m,grcomponent(T(up), [theta])));

1 4m2 +Vp(8)2

2m J8m 2 + Vp(8)2

2m

y'8m2 + Vp(8)2

1 Vp(8)

2m J8m2 + Vp(8)2
> grdef('T2:=T{a}*T{~a}');

> grcalcalter(T2,simplify);

> grdisplay(T2);

73

APPENDIX B. CALCULATIONS WITH GRTENSORil

Created definition for T2

Simplification will be applied during calculation.

Applying routine simplify to object T2

Calculated T2 for Vaidya (0.031000 sec.)

>

>

>

CPU Time = 0.031

For the Vaidya spacetime :

T2

%1
T2 = --~---= [%1o/c=o1=-

v 7ol ,,. y ~ r
%1 := -rVp(B)2 + r 3 + 2Vp(B)2 m

grdef('TR:=T{~a}*R{a}');

grcalcalter(TR,simplify);

grdisplay(TR);

Created definition for TR

Simplification will be applied during calculation.

Applying routine simplify to object TR

Calculated TR for Vaidya (0.016000 sec.)

CPU Time = 0.016

For the Vaidya spacetime :

TR

74

APPENDIX B. CALCULATIONS WITH GRTENSORil

TR = All components are zero

> grdef('L{~a}:=(1/sqrt(2)*(T{~a}+R{~a}))');

> grcalcalter(L(up),simplify); gralter(L(up),radsimp);

> grdisplay(L(up)); grdef('L2:=L{a}*L{~a}');

> grcalcalter(L2,simplify):

> grdisplay(L2);

Created definition for L(up)

Simplification will be applied during calculation.

Applying routine simplify to object L(up)

Calculated L(up) for Vaidya (0.172000 sec.)

CPU Time = 0.172

Component simplification of a GRTensorii object:

Applying routine radsimp to object L(up)

CPU Time = 0.015

For the Vaidya spacetime :

L(up)

L(up)
1 v'2 (r3 + 2 Vp(t7)2 m + J(-r Vp(0)2 + r3 + 2 Vp(0)2 m) r r) r

£V = 2 -Jr::2=m'===;r3;=+=r4:;=+===:=4=m=;;2~V:;=p~(0~)~2 -vr,(=-=r~V;=p=;=(o""')""2 +=r:;;=3 =+=:2~V:;=p=;:(0:;;::;)~2 =m~) r

75

1 y'2 (-2 r Vp(0) 2 m +2m r3 +4m2 Vp(0) 2 - J(-r Vp(0) 2 + r3 + 2 Vp(0)2 m) r r 2
)

LT=----~--~~==~~====~~~~7=~~~==~~~~~~~~~
2 J2 m r3 + r4 +4m2 Vp(0) 2 J(-r Vp(0)2 + r3 + 2 Vp(0)2 m) r

Le = ~ v'2Vp(O) (r 3
- 2m J(-r Vp(0)2 + r3 + 2 Vp(0)2 m) r)

2)2m r3 + r4 +4m2 Vp(0) 2 r J(-rVp(0)2 + r3 + 2 Vp(0) 2 m) r

APPENDIX B. CALCULATIONS WITH GRTENSORJI

Created definition for L(dn)

Created definition for L2

Simplification will be applied during calculation.

Applying routine simplify to object L(dn)

Calculated L(dn) for Vaidya (0.032000 sec.)

Applying routine simplify to object L2

Calculated L2 for Vaidya (0.000000 sec.)

CPU Time = 0.032

For the Vaidya spacetime :

L2

L2 = All components are zero
> radsimp(subs(r=2*m,grcomponent(L(up), [v])));

> radsimp(subs(r=2*m,grcomponent(L(up), [r])));

> radsimp(subs(r=2*m,grcomponent(L(up), [theta])));

~ J2 Js m 2 + Vp(B)2
4 m

0

0

> radsimp(subs(r=2*m,Vp(theta)=O,grcomponent(L(up), [v])));

1
> grdef('N{a}:=1/sqrt(2)*(T{a}-R{a})');

> grcalc(N(up)); grdisplay(N(up)); grdef('N2:=N{a}*N{~a}');

> grcalcalter(N2,radsimp); grdisplay(N2);

76

APPENDIX B. CALCULATIONS WITH GRTENSORII

Created definition for N(dn)

Created definition for N(up)

Calculated N(dn) for Vaidya (0.000000 sec.)

Calculated N(up) for Vaidya (0.015000 sec.)

CPU Time = 0.047

For the Vaidya spacetime :

N(up)

N(up)

77

1 V2 (r3 !%! + 2 !%! Vp(B)2 m- r J%1·/-r Vp(B)Z + r: + 2Vp(B)2 m)
Nv = _ V7 V7 V r

2 J%1 j -r Vp(B)
2

+ ~: + 2 Vp(B)
2

m r ffJ
%1 :=2mr3+r4 +4m2Vp(B)2

Nr = -~J2(_2 r (%1 Vp(B)2 m + r2 J%1·/-r Vp(B)
2

+ r
3

+ 2Vp(B)
2

m
2 V 7 V r3

(%1 (%1 I rr;:t:; + 2mr3 y 7 +4 y 7 Vp(B)2m2) (r2 v%1

;-rVp(B)2 +r3 +2Vp(B)2m (%1)
r 3 V7

%1 := 2mr3 +r4 +4m2Vp(B) 2

No=~)2Vp(B) (r3 ffJ +2m J%1 j -r Vp(B)2 + ~: + 2Vp(B)2 m)

2 r3 J%1 ;-rVp(B)
2

+ ~: + 2Vp(B)2 m ffJ
%1 := 2mr3 +r4 +4m2Vp(B) 2

Created definition for N2

APPENDIX B. CALCULATIONS WITH GRTENSORII

Simplification will be applied during calculation.

Applying routine radsimp to object N2

Calculated N2 for Vaidya (0.015000 sec.)

CPU Time = 0.015

For the Vaidya spacetime :

N2

N2 = All components are zero
> radsimp(subs(r=2*m,grcomponent(N(up), [v])));

> radsimp(subs(r=2*m,grcomponent(N(up), [r])));

> radsimp(subs(r=2*m,grcomponent(N(up), [theta])));

1 Vp(B) 2

2)16m2 +2Vp(B)2 m

4m

)16m2 + 2Vp(B)2

Vp(B)

m)16m2 + 2Vp(B)2
> grdef('LN:=L{a}*N{-a}'); grcalc(LN); radsimp(grcomponent(LN));

Created definition for LN

Calculated LN for Vaidya (0.000000 sec.)

CPU Time = 0.

-1

78

With the null normals we can now calculate the induced metric qab = 9ab + lanb +

lbna, and the two null expansions e(n) = qab'V anb and e(l) = qab'V alb.

APPENDIX B. CALCULATIONS WITH GRTENSORII

> grdef('tq{a b}:=g{ab}+L{a}*N{b}+L{b}*N{a}');

> grcalc(tq(dn,dn));

Created definition for tq(dn,dn)

Calculated tq(dn,dn) for Vaidya (0.015000 sec.)

CPU Time = 0.015
> grcalc(tq(dn,dn)):

> radsimp(subs(r=2*m,grcomponent(tq(dn,dn), [theta,theta])));

> radsimp(subs(r=2*m,grcomponent(tq(dn,dn), [theta,phi])));

> radsimp(subs(r=2*m,grcomponent(tq(dn,dn), [phi,phi])));

CPU Time = 0.

0

4m2 sin(B)2

> grdef('tL:=tq{-a -b}*L{a;b}'); grcalc(tL): grdisplay(tL);

Created a definition for L(dn,cdn)

Created definition for tq(up,up)

Created definition for tL

Calculated g(dn,dn,pdn) for Vaidya (0.015000 sec.)

Calculated Chr(dn,dn,dn) for Vaidya (0.000000 sec.)

Calculated Chr(dn,dn,up) for Vaidya (0.000000 sec.)

Calculated L(dn,cdn) for Vaidya (0.032000 sec.)

79

APPENDIX B. CALCULATIONS WITH GRTENSORII 80

Calculated tq(up,up) for Vaidya (0.015000 sec.)

Calculated tL for Vaidya (0.063000 sec.)

CPU Time = 0.125

For the Vaidya spacetime :

tL

tL = 89510 words. Exceeds grOptionDisplayLimit

> radsimp(expand(subs(r=2*m,grcomponent(tL))));

0

> grdef('tN:=tq{~a ~b}*N{a;b}'); grcalc(tN): grdisplay(tN);

Created a definition for N(dn,cdn)

Created definition for tN

Calculated N(dn,cdn) for Vaidya (0.016000 sec.)

Calculated tN for Vaidya (0.125000 sec.)

CPU Time = 0.141

For the Vaidya spacetime:

tN

tN = 74308 words. Exceeds grOptionDisplayLimit

> tNH:=radsimp(expand(subs(r=2*m,grcomponent(tN))));

1 16 sin(B) m2 - 4 m (fe Vp(B)) sin(B) - 4 m Vp(B) cos(B) - sin(B) Vp(B)2
tNH:=----~~------~~~~~~~~~~~--~~~~

4 sin(B))16m2 + 2 Vp(B)2 m2
> tNH_cos:=radsimp(expand(subs(Vp(theta)=-a*m*sin(theta),tNH)));

tNH _cos := ~ v'2 (-16- 8 a cos(B) + a2 sin(B)2
)

8 m Js + a2 sin(B)2

APPENDIX B. CALCULATIONS WITH GRTENSORII 81

> plot(subs(m=1,a=2,tNH_cos),theta=O .. Pi);

0.5 2 2.5 3
0

-o.5

-1

-1.5

-2

Figure B.1: The inward expansion e(n)

Next, we calculate the variation one(l)· Here we just outline the calculations but

more details are contained in [6]. From [6] we have

oxe(ll = Xxe(ll -d2 B +2wadaB- B[llwll 2
- dawa- R/2+Gablanb- e(l)e(nJ]-A[IIa<l)ll 2

+Gabzazb + (1/2W[nL

where Xx = -Xanb\lalb, wa = -q~nc\lbzc is the normal bundle connection, llwll 2 =

wawa, <7~~ = (qgqg- ~%bqcd)\lcld is the shear, lla(l)W = ai~a(l)ab, Gab is the usual

Einstein tensor and R is the Ricci scalar. Set A = 0, B = -1 and e(!) = 0 in this

equation, we have

where Tab= ~, which tells us that in the absence of matter fields

APPENDIX B. CALCULATIONS WITH GRTENSORII

The following code use this formula to calculate 6nf)(l).

> grdef('tom{a}:=-tq{a ~b}*N{c}*L{~c;b}'); grcalc(tom(dn));

Created definition for tq(dn,up)

Created a definition for L(up,cdn)

Created definition for tom(dn)

Calculated tq(dn,up) for Vaidya (0.031000 sec.)

Calculated L(up,cdn) for Vaidya (0.016000 sec.)

Calculated tom(dn) for Vaidya (0.328000 sec.)

CPU Time = 0.375

> radsimp(subs(r=2*m,grcomponent(tom(dn), [v])));

> radsimp(subs(r=2*m,grcomponent(tom(dn), [r])));

> radsimp(subs(r=2*m,grcomponent(tom(dn), [theta])));

> radsimp(subs(r=2*m,grcomponent(tom(dn), [phi])));

0

I_ (8m2+ 4 (fg Vp(B)) m + Vp(B)2) Vp(B)2

16 m3(8m2+Vp(B)2)

1 Vp(B)(8m2 + 4 (fg Vp(B)) m + Vp(B) 2)

4 m (8m2 + Vp(B)2)

> alpha:=2*m/r;

0

2m
a:=­

r

82

APPENDIX B. CALCULATIONS WITH GRTENSORil 83

> grdef('tomH{a}:=[0,1/16*(8*m~2+4*alpha*(diff(Vp(theta),

> theta))*m+alpha*Vp(theta)~2)*Vp(theta)~2/(m~3*(8*m~2+alpha*Vp(theta)~2

>)),1/4*Vp(theta)*(8*m~2+4*alpha*(diff(Vp(theta),

> theta))*m+alpha*Vp(theta)~2)/(m*(8*m~2+alpha*Vp(theta)~2)),0] ');

> grcalc(tomH(dn)); grdisplay(tomH(dn));

Components assigned for metric: Vaidya

Created definition for tomH(dn)

CPU Time = 0.

For the Vaidya spacetime :

tomH(dn)

tomH(dn)

[

1
(8 m' +8m2 (~ Vp(O)) +2m ~p(O)') Vp(O)'

tomHa= 0,16 m3(8m2+ 2mVp(B)2) '
r

1
Vp(O) (8 m' + 8m2 (~ Vp(O)) + 2m ~p(O)')]

4 (
2

2mVp(B)2) ,O
m 8 m + -----'-'-

r
> grdef('tomH2:=tq{~a~b}*tomH{a}*tomH{b}');

> grcalc(tomH2);

> om2:=radsimp(subs(r=2*m,grcomponent(tomH2)));

Created definition for tomH2

Calculated tomH2 for Vaidya (0.016000 sec.)

APPENDIX B. CALCULATIONS WITH GRTENSORII

> grdef('dtomH:=tq{~a ~b}*tomH{a;b}');

> grcalc(dtomH);

> dom:=factor(radsimp(subs(r=2*m,grcomponent(dtomH))));

This object is already defined. The new definition has been ignored.

CPU Time = 0.

dam:=
1
1
6

(64 m4 Vp(B) cos(B) + 64 m4 sin(B) %1 +32m3 sin(B) %1 2

+32m3 Vp(B) %1 cos(B)+ 32m3 sin(B) Vp(B) (1;2 Vp(B))

84

+ 16m2 Vp(B) 3 cos(B) +16m2 Vp(B)2 sin(B) %1 + 4 m sin(B) Vp(B) 3 (1;2 Vp(B))

+ 4 m Vp(B)3 %1 cos(B) - 4 m Vp(B) 2 sin(B) %1 2 + Vp(B)5 cos(B)

+ Vp(B) 4 sin(B) %1) j(m3 (8m2 + Vp(B) 2
)

2 sin(B))

%1 := j0 Vp(B)

> Ric: =1/2/m~2;

1
Ric:=--

2m2

> dNtL:=simplify(-Ric/2+om2-dom);

dNtL := -
6
1
4

(1024 m 6 sin(B)+ 192 m 4 sin(B) Vp(B) 2
- 32 Vp(B) 2 sin(B) %1 2 m2

- 4 Vp(B)4 sin(B) %1m- Vp(B)6 sin(B)+ 256 m5 Vp(B) cos(B)

+ 256 m5 sin(B) %1 + 128 m 4 sin(B) Vp(B) (1;2 Vp(B)) + 128 m 4 Vp(B) %1 cos(B)

+ 128 m 4 sin(B) %1 2 +64m3 Vp(B) 3 cos(B)+ 16m2 Vp(B) 3 %1 cos(B)

+ 16m2 sin(B) Vp(B)3 (1;2 Vp(B)) + 4 m Vp(B) 5 cos(B)) j(m4 (8m2 + Vp(B) 2
)

2

sin(B))

%1 := j0 Vp(B)

> expand(subs(Vp(theta)=O,dNtL));
1

4m2

> dNtL_cos:=simplify(expand(subs(Vp(theta)=-a*m*sin(theta),dNtL)));

APPENDIX B. CALCULATIONS WITH GRTENSORII 85

1
dNtL_cos := -

64
(1024 + 192 a2 cos(B)2

- 512 a cos(B) + 64 a2 - 64 a 3 cos(B) - 16 a4

- a6 + 3 a6 cos(B)2
- 3 cos(B)4 a6 + 64 cos(B) 3 a3 + 16 a4 cos(B)2 + cos(B)6 a6) I

((64 + 16a2 +a4
- 2a4 cos(B) 2 -16a2 cos(B) 2 +cos(B) 4 a4)m2)

> dNtL_Num:=simplify(subs(m=l,dNtL_cos));

1
dNtL_Num := --(1024 + 192 a2 cos(B)2

- 512 a cos(B)+ 64 a2 - 64a3 cos(B)- 16 a4

64

- a6 + 3 a6 cos(B) 2
- 3 cos(8)4 a6 + 64 cos(B) 3 a3 + 16 a4 cos(B) 2 +cos(B) 6 a6

) I
(64 + 16 a2 + a4

- 2 a4 cos(B) 2
- 16 a2 cos(B) 2 + cos(B) 4 a4

)

> plot(subs(a=2,dNtL_Num),theta=O .. Pi);

-Q.1

-Q.2

-Q.3

-Q.4

-Q.5

-Q.6

-Q.?

0 0.5 1.5 2 2.5 3

Figure B.2: The variation OnB(l)

Bibliography

[1] S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time. Cam­

bridge University Press, Cambridge. (1973).

[2] I. Booth, Black hole boundaries. Can. J. Phys. V83, 1073 (2005).

[3] R. Penrose, Phys. Rev. Lett. 14 57 (1965).

[4] R.M. Wald, General relativity. University of Chicago Press, Chicago. (1984).

[5] S. A. Hayward, Phys. Rev. D 49 6467 (1994).

[6] I. Booth and S. Fairhurst, Isolated, slowly evolving and dy namical trapping

horizons:geometry and mechanics from surface deformations. Phys. Rev. D 75,

084019 (2007).

[7] D. M. Eardley, Phys. Rev. D 57, 2299 (1998).

[8] E. Schnetter and B. Krishnan, Phys. Rev. D 73, 021502(R) (2006).

[9] I. Ben-Dov, Outer trpped surfaces in Vaidya spacetimes. Phys. Rev. D 75,

064007 (2007).

[10] E. Gourgoulhon, 3+1 Formalism and Bases of Numerical Relativity. Lectures

at Institut Henri Poincare (Paris, Sept.-Dec. 2006), gr-qc/0703035 (2007).

86

BIBLIOGRAPHY 87

[11] E. Poisson, A relativist's toolkit: The mathematics of black-hole mechanics.

Cambridge University Press, Cambridge. (2004).

[12] E. Gourgoulhon, Phys. Rev. D 72, 104007 (2005).

[13] P. C. Vaidya, Proc. Ind. Acad. Sci. A33, 264 (1951).

[14] A. Ashtekar and B. Krishnan, Isolated and dynamical horizons and their appli­

cations. Living Rev. Rel. 7 (2004).

[15] P. Anninos et al, Dynamics of Apparent and Event Horizons. Phys. Rev. Lett.

74, 630- 633 (1995).

[16] R. L. Burden and J. D. Faires, Numerical Analysis. Brooks Cole. (2000).

