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Abstract 

The geometry and dynamics of black hole horizons can be easily studied by con

sidering the allowed deformations of their foliating two-surfaces. This article presents 

a new method of calculating the geometry and deformations of two-surfaces embed

ded in spacetimes. The calculations are tested by comparing the results obtained 

with this method with some known results about these objects. By this method, the 

deformations of future outer trapping surfaces in Vaidya spacetimes are studied. 
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Chapter 1 

Introduction and Overview 

Black holes play an important role in general relativity and astrophysics. The 

characteristic feature that defines a black hole is its horizon. Traditionally, the black 

hole region of an asymptotically-flat spacetime is defined as the set of events from 

which no null curves can reach future null infinity [1]. The boundary of the black 

hole region is the event horizon. 

With the help of conformal mappings [1], one can define precise notions of "infin

ity" for Minkowski space (see Figure 1.1) and can depict a black hole in a spacetime 

(the spacetime is asymptotically identical to Minkowski space). Let us use J+ to 

represent future null infinity, then we can say a null curve has "escaped to infinity" 

if its counterpart in the con formally mapped spacetime terminates on J+. It follows 

that spacetimes are said to contain a black hole if they have regions from which no 

null curve reach J+ - thus no causal curve can escape those regions. Equivalently, as 

shown in Figure 1.1, a spacetime contains a black hole if the complement of the causal 

past of J+ is nonempty. Then that complement is the black hole and the boundary 

of that region is the event horizon. 

From the definition above we can see that the event horizon has two important 

1 



CHAPTER 1. INTRODUCTION AND OVERVIEW 2 

singularity i + 

Figure 1.1: A Penrose-Carter diagram showing a spacetime in which a matter distri

bution collapses to form a black hole [2]. i± is future and (or) past timelike infinity, 

i 0 is the corresponding space like infinity, and J± is future and (or) past null infinity. 

features [2]. First, it is based on the global causal structure of the spacetime. It is a 

highly nonlocal object as its existence depends on the structure of infinity. Second, it 

is teleological as we have to wait until the end of time to identify a black hole region. 

It can't be identified by local measurement. While much analytic work on black holes 

centers around event horizons, their dual nonlocalities make them not directly useful 

in numerical evolutions of black hole spacetime. 

For such reasons, in numerical evolutions, it is more common to use apparent 

horizons, which is inspired from the important concept "trapped surface" proposed 

by Penrose R. [3], to characterize a black hole. A closed two-surface S is said to 

be trapped if B(t) < 0 and B(n) < 0, here Bul = qabV' ah and B(n) = qabV' anb are 

respectively the expansions of the outward ( l) and inward (n) forward-in-time pointing 
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null normal vectors to the two-surface and qab = gab + lanb + lbna is the transverse 

two-metric on that surface. Given a Cauchy surface I:t, a point p E I:t is said to 

be trapped if it lies on some trapped two-surface in I:t. The apparent horizon in Et 

is the two-dimensional boundary of the union of all of the trapped points and given 

certain smoothness assumption, it can be shown that it is a surface on which Bell = 0 

(marginally outer trapped) [1]. Correspondingly, if a region of spacetime is foliated by 

Cauchy surfaces, then the apparent horizon on each slice can be found and so a time

evolved three-dimensional version of the apparent horizon can be defined. Often this 

is also referred to as the apparent horizon. Generally, the apparent horizon can be 

discontinuous, its behavior under time evolution can be quite irregular. Furthermore, 

apparent horizons in spacetime are not unique. A different foliation of the spacetime 

into spacelike surfaces will usually result in a different location of the apparent horizon 

through the spacetime [4]. 

Apparent horizons are more practical than event horizons, and they are well suited 

to numerical simulations that evolve data from one spatial slice to another. However, 

they are tied rigidly to the choice of a space-like three-surface so that they are still not 

global notions. In addition, apparent horizons are not helpful for deriving the laws of 

black hole mechanics. To solve these problems Hayward introduced the quasi-local 

notion of trapping horizons [5]. A trapping horizon is a hypersurface in a four

dimensional spacetime that is foliated by two-surfaces such that e(l) = 0, e(n) =f. 0 and 

OnB(l) =f. 0, where On is the normal variation [6]. A trapping horizon can be thought of 

as the boundary of a black hole if it satisfies OnB(l) < 0, and Ben) < 0, as in this case 

the surfaces "just inside" the horizon are fully trapped [2]. We will call such horizons 

future outer trapping horizons (FOTHs). FOTHs provide a promising framework to 

discuss black holes in general spacetimes, not just those which are asymptotically flat. 

A part from trapping horizons some closely related programmes have been developed 
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recently such as isolated horizons which identify and study equilibrium states, and 

dynamical horizons which correspond to non-trivially evolving horizons[14]. 

FOTHs come equipped with a preferred foliation into two-surfaces. This foliation 

is directly relevant to the dynamics of FOTHs. In this paper we will focus on the 

spacelike two-surfaces that foliate FOTHs. We will call such surfaces future outer 

trapping surfaces (FOTS). The existence, evolutions and deformations of the full 

three-dimensional horizons can be well understood by studying the geometry and 

variations of these two-surfaces [6]. 

The boundary of the trapped region of a black hole spacetime has been studied 

both analytically and numerically recently. Eardley [7] suggests that the boundary 

should correspond to the event horizon, while arguments by Hayward suggest that the 

boundary should be a trapping horizon [5]. By numerically studying non-symmetric 

trapped surfaces in Vaidya spacetimes, Schnetter and Krishnan [8] support that the 

event horizon is the most likely candidate for the boundary of the trapped region. 

Lately Ben-Dov [9] has proved that in the Vaidya spacetime, there are outer trapped 

surfaces extending arbitrarily close to the event horizon in any region of the spacetime, 

thus the event horizon is the boundary of the region containing outer trapped sur

faces (closed spacelike two-surfaces for which the outgoing null expansions e(l) < 0). 

Furthermore, he shows that there exists a portion of the flat region of a Vaidya space-

time that trapped surfaces can not enter. As a result, the boundary of the region 

containing trapped surfaces, is not, in general, the event horiozn. 

The Vaidya spacetime is the simplest example of a dynamical black hole spacetime 

[4]. It models the spherically symmetric collapse of null dust and is described by the 

metric 
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where v is an advanced time coordinate, and m(v) is the mass function. We will 

see in section 4 that the surfaces r = 2m ( v) in the Vaidya spacetime are all FOTS. 

Thus the Vaidya spacetime provides a convenient framework to study the problem 

about the boundary of the trapped region of a black hole spacetime. In this paper, 

to gain some insight into this problem, we consider the geometry and deformations of 

FOTS embedded in Vaidya spacetimes. In particular, we study the finite extensions 

of FOTS where we try to "push" them towards the event horizon. 

This paper is organized as follows. In section 2, to establish our notation, we 

begin by reviewing the basic material from the theory of embedding of a two-surface 

in a three-dimensional manifold. Then we introduce a new method for calculating the 

intrinsic and extrinsic geometry of the embedded two-surfaces. In section 3 we further 

develop the method to describe the geometry of spacelike two-surfaces embedded in 

Vaidya spacetimes and study how that geometry changes if the surfaces are deformed. 

As a test for our algorithm, we compare our results with exact results computed with 

the GRTensorii computer algebra package. In section 4 we specialize to FOTS in 

Vaidya spacetimes and study the finite extensions of FOTS to see how much we can 

distort FOTS. Conclusions are presented in section 5. 



Chapter 2 

Two-surfaces in Three-dimensional 

Euclidean Space 

In this section, we study two-surfaces embedded in three-dimensional Euclidean 

space JR3 . We first review the characterization of a single embedded two-surface in an 

Euclidean space, in terms of its intrinsic and extrinsic geometry. Then we introduce 

a new method for calculating the geometric quantities of the two-surface. 

A. Two-surface Geometry 

To begin, we recall basic definitions and review the basic material from the theory 

of embedding of a two-surface in a three-dimensional Euclidean space. 

Definition 1: A covariant derivative is a connection on the tangent bundle and 

other tensor bundles. Thus it has a certain behavior on functions, on vector fields, on 

the duals of vector fields (i.e., covector fields), and most generally of all, on arbitrary 

tensor fields: 

( 1) Functions 

Given a function f, the covariant derivative V v f coincides with the normal dif-

6 
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ferentiation of a real function in the direction of the vector v. 

(2) Vector fields 

A covariant derivative \7 of a vector field u in the direction of the vector v denoted 

\7 vU is defined by the following properties for any vector v, vector fields u, w and 

scalar functions f and g: 

a. \7 vU is algebraically linear in V SO \7 fv+gwU = j\7 vU + g\7 wU 

b. 'Vvu is additive in u so 'Vv(u + w) = 'Vvu + 'Vvw 

c. 'Vvu obeys the product rule, i.e. 'Vvfu = f'Vvu+u'Vvf. 

(3) Covector fields 

Given a field of covectors (or one-form) o:, its covariant derivative 'Vvo: can be 

defined using the following identity which is satisfied for all vector fields u 

( 4) Tensor fields 

Once the covariant derivative is defined for fields of vectors and covectors it can 

be defined for arbitrary tensor fields using the following identities where(/) and '1/; are 

any two tensors: 

and if (/) and '1/; are tensor fields of the same tensor bundle then 

Given coordinate functions xi, i = 1, 2, 3, ... and its basis ei = 8~;, from the 

definition of covariant derivative, we find that for general vector fields v = vie; and 

'r'7 - ( i irk i auk) 
v vU - V U ij + V Bxi ek, 
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where the coefficients r~j are called Christoffel symbols [4]. In particular, 

f)ui k i 
\le;U = \ljU = (f)xJ + U r jk)ei. 

Definition 2: Lie derivative, named after Sophus Lie, is a derivation on the algebra 

of tensor fields over a manifold M. Generally, for a differentiable tensor field T of rank 

(p, q) and a differentiable vector field Y (i.e. a differentiable section of the tangent 

bundle T M), then we can define the Lie derivative of T along Y. Let 'P : M x R -------; 

M be the one-parameter semigroup of local diffeomorphisms of M induced by the 

vector flow of Y and denote 'Pt(P) := 'P(P, t). For each sufficiently small t, 'Pt is a 

diffeomorphism from an neighborhood in M to another neighborhood in M, and 'Po 

is the identity diffeomorphism. The Lie derivative ofT is defined at a point p by 

where ('Pt)• is the pushforward along the diffeomorphism. In other words, if we have 

a tensor field T and an infinitesimal generator of a diffeomorphism given by a vector 

field Y, then £yT is nothing other than the infinitesimal change in T under the 

infinitesimal diffeomorphism. 

Let S be a two-surface that is smoothly embedded in a three-dimensional Eu

clidean space JR3 which is equipped with a metric 9ab = diag[1, 1, 1]. \!a denotes the 

covariant derivative compatible with 9ab· 

The embedding of S in JR3 can be defined in parametric form with, 

(2.1) 

(a, (3 = 1, 2), where xa are coordinates on JR3 , ~a are coordinates on S, and xa are the 

embedding functions. The two vectors ea := X~oa form a basis of tangent vectors to 

S at each point of S. The metric induced on S is then given by, 

(2.2) 
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It is also called the first fundamental form of S. Tangential indices are lowered and 

raised with qo:!3 and its inverse qo:!3, respectively. 

The induced metric qo:!3 defines the unique covariant derivative do: on S that is 

torsionless and satisfies 

(2.3) 

The Riemann tensor associated with do: represents what can be called the intrinsic 

curvature of S. We shall denote its components by the letter R, as Ro: !JJ-Lv' Ro: !JJ-Lv can 

be expressed as [10] 

(2.4) 

where the Christoffel symbols are defined by 

1 
r o:!J,J-L = 2( -qo:!J,J-L + qO:J-L,!J + q!JJ-L,a), rpo:!J =I: r o:!J,J-Lq~-'P. (2.5) 

1-' 

The corresponding Ricci tensor is denoted: Ro:!3 = R~-' o:J-L!3 and the Ricci scalar (scalar 

curvature) is denoted: R = qo:!3 Ro:!3· From these we can see that the induced metric 

qo:!3 completely determines the intrinsic geometry of S. 

The extrinsic geometry describes how S is embedded in JR.3 . It corresponds to the 

change of direction of the normal vector as one moves on S. To describe the extrinsic 

geometry of S, we consider the unit normal vector n to the surface. The vector can 

be defined by the requirement that 

g(n, n) = 1, g(ea, n) = 0. (2.6) 

The induced metric can be expressed in terms of n [10]: qab = 9ab- nanb (here qab is 

actually an "extended" three-dimensional induced metric [8]). 

The extrinsic curvature (the second fundamental form) of the surface is: 

(2.7) 
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We shall denote by K the trace of the extrinsic curvature Kaf3 with respect to the 

metric Qa(J 

(2.8) 

From the knowledge of Weingarten map [10], K is equal to 2 times the mean curvature 

of S. We also note the relation 

(2.9) 

which shows that K is equal to the expansion of a congruence of geodesics that 

intersect S orthogonally [11], thus it can be proven that K is equal to the rate of 

change of the area element (three-volume form on JH;3 ) of S. Here we outline the 

proof. We shall denote the area element of S by ,;q, where q is the determinant of 

Qab· From Jacobi's Formula for the derivative of a determinant, 

From the definition of Lie derivatives, we rewrite this as 

Since 

then we have 

,j{jqab £ q 
2 

n ab .J.; ( qab\l bna + qab\l anb) 

,;qqab\7 anb 

,;QK, 
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from which it follows that 

We note that in this case, £nyq is equal to the normal variation l5n,fii [5], thus we 

can rewrite K as 

(2.10) 

We have described the characterization of the surfaceS, in terms of its key intrinsic 

and extrinsic geometry. Next, we introduce a new method to calculate these geometric 

quantities. Let us consider an embedded surface S having parameterization: S = 

[X(u,v), Y(u,v), Z(u,v)]. Our method is based on discretizing S first and then 

computing its geometry at each point. After discretizing S, the tangent vectors and 

unit normal vectors to S at each point can be calculated. Then the induced metric, 

the area element and the Ricci scalar of S at each point can be calculated from these 

vectors. To calculate some variations of these geometric quantities, we consider the 

neighboring surface of S described by a deformation in the direction of the normal 

vector n: 

S' = [X(u, v) + cnx, Y(u, v) + cnY, Z(u, v) + cnz], (2.11) 

where c; is a small parameter. We construct geometric quantities on S', calculate the 

Lie derivatives of the quantities and then pull-back the results onto S. 

B. Numerical Implementation 

Let us now use one concrete example to demonstrate our method. We consider a 

torus in the Euclidean space JR3
. The torus has parameterization 

S = [(R + r cos( u)) cos(v ), (R + r cos(u)) sin( v ), r sin( u)], (2.12) 

where 0 :S u, v < 2n, and R = 5, r = 2 are its two radii. The bulk of the following 
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part is the output from a Maple worksheet. 

> with(LinearAlgebra): 

> with(plots): 

The first step is discretizing the surface S. We discretize S into M x N points 

and set M = 60, N = 80. 

> u:=(i)-> i*2*Pi/M; 

> v:=(j)-> j*2*Pi/N; 

> M:= 60; N:= 80; 

u := i ,__. 2/M i1r 

v := j ,__. 2/N j1r 

M := 60 

N := 80 

Then the embedding equations defined in parametric form at each point are 

given: 

> x:=(i,j)->(5+2*cos(u(i)))*cos(v(j)); 

x := (i,j) ,__. (5+2 cos(l/30i7r))cos(l/40j7r) 

> y:=(i,j)->(5+2*cos(u(i)))*sin(v(j)); 

y := (i,j) ,__. (5+2 cos(l/30i7r))sin(l/40j7r) 

> z := (i,j)->2*sin(u(i)); 

z := (i,j) ,__. 2 sin(l/30i7r) 
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Input the three-dimensional metric of the Euclidean space !R3 and the parame

terization of S: 

> G := Matrix(3, 3, [[1, 0, 0], [0,1,0], [0, 0, 1]]); 

1 0 0 

G .- 0 1 0 

0 0 1 

> X:= [seq([seq([evalf(x(i, j)), evalf(y(i,j)), evalf(z(i, j))], j 

1 N+2)], i = 1 . . M+2)]: 

Next, calculate the two tangent vectors, ! = [~~, ~, ~~] and tv = [~~, ~, ~~], 

at each point of S. We use the forward difference formula, f' ( x0 ) ~ f(xo+hh- f(xo), 

to approximate the derivative of f(x 0 ). Forward difference formulas are discussed 

detailed in Appendix A. 

> V1 := [evalf(seq([seq(1/2*(X[i+1, j] -X [i, j]) *M/Pi, j 1 N+1)], 

i = 1 M+1))]: 

> V2 ·= [evalf(seq([seq(1/2*(X[i, j+1]-X[i,j])*N/Pi, j 1 .. N+1)], 

i = 1 M+1) )] : 

Given the tangent vectors, the unit normal vector to S at each point of S is 

[ · '] - Vl[i,j]xV2[i,j] I th d t th d t t f th t X V1 V2 n ~, J - IIVI[i,j]xv2[i,jJII' n e co ewe se e a a ype o e vee ors , , , n, ... 

as lists of elements instead of vectors, which greatly reduces the CPU execution time 

and lets the worksheet run much faster although it needs us to do some calculation 

by ourselves and makes the expressions look complicated. 
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> n :=[seq([seq([V1[i,j,2]*V2[i,j,3]-V1[i,j,3]*V2[i, j, 2], -V1[i, j, 

1] *V2 [i, j , 3] +V1[i, j , 3] *V2 [i, j , 1] , V1[i, j , 1] *V2 [i, j , 2] -V1[i, j, 

2]*V2[i,j, 1]]/((V1[i, j,2]*V2[i,j, 3]-V1[i, j, 3]*V2[i, j,2])~2+(-V1 

[i, j, 1] *V2 [i, j , 3] +V1[i, j, 3] *V2 [i, j , 1]) ~2+ (V1[i, j , 1] *V2 [i, j , 2]

V1[i, j, 2]*V2[i, j,1])~2)~(1/2), j = 1.oN+1)], i = 1 00 M+1)]: 

We now calculate the components of the two-dimensional induced metric of S 

from the tangent vectors, qa(:J = x::,x,~9abo 

> q11 := [evalf(seq([seq(V1[i, j,1]~2*G[1, 1]+V1[i, j, 2]~2*G[2, 2]+V1[i, 

j,3]~2*G[3, 3], j = 1 o o N+1)], i = 1 o o M+1))]: 

> q12 := [evalf(seq([seq(V1[i, j, 1]*V2[i,j, 1]*G[1, 1]+V1[i, j, 2]*V2[i, 

j, 2]*G[2, 2]+V1[i, j, 3]*V2[i, j,3]*G[3, 3], j = 1 .. N+1)], i = 1 

M+1))] : 

> q22 := [evalf(seq([seq(V2[i, j,1]~2*G[1, 1]+V2[i, j, 2]~2*G[2, 2]+V2[i, 

j,3r2*G[3, 3], j = 1 .. N+1)], i = 1 .. M+1))]: 

Then the area element of Scan be calculated, Al = vq, where q is the determi

nant of the induced metric qafJo 

> A1 := [seq([seq((q11[i, j]*q22[i,j]-q12[i, jr2)~(1/2), j 1 .. N+1)], 

i = 1 0 o M+1)]: 

From the Formula (205) we can deduce the Ricci Scalar of S from its two-

dimensional metric qafJ, 
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1 
R = '2(qll(u, v) (%,. q22(u, v)) 2

- 2 (%,. qll(u, v)) q22(u, v) 

- 2 qll(u, v) (tv. q12(u, v)) (tv q22(u, v))- 2qll(u, v) (t:2 qll(u, v)) q22(u, v) 

+(tv qll(u, v)) 2 q22(u, v) + 4 qll(u, v) (a~~v. q12(u, v)) q22(u, v) 

+ 2 q12(u, v) (tv q12(u, v)) + q12(u, v) (tu qll(u, v)) (tv q22(u, v)) 

+ (tu qll(u, v)) (gu q22(u, v)) q22(u, v)- 2qll(u, v) (t:2 q22(u, v)) q22(u, v) 

+ qll(u, v) (tv qll(u, v)) (tv q22(u, v))- q12(u, v) (tv qll(u, v)) (tu q22(u, v)) 

- 2 q12(u, v) (gu q12(u, v))) j(qll(u, v) q22(u, v)- q12(u, v) 2 ) 2 

We now use the formula above to calculate the Ricci Scalar at each point of S. Let 

Ull, U12, U22, Vll, V12, V22, VVll, VU12, UU22 denote tuqll, tuq12, tuq22, 

a a a a2 a2 a2 . . avqll, avq12, avq22, av2qll, avauq12, au2 q22 respectively. F1rst, calculate Ull, U12, 

U22, Vll, V12, V22, VVll, VU12, UU22 using the forward difference formula. 

> U11 := [evalf(seq([seq(1/2*(q11[i+1,j]-q11[i, 

i = 1 . . M))]: 

> U12 := [evalf(seq([seq(1/2*(q12[i+1,j]-q12[i, 

i = 1 . . M))]: 

> U22 := [evalf(seq([seq(1/2*(q22[i+1,j]-q22[i, 

i = 1 . . M))]: 

> V11 := [evalf(seq([seq(1/2*(q11[i,j+1]-q11[i, 

i = 1 . . M))] : 

> V12 := [evalf(seq([seq(1/2*(q12[i,j+1]-q12[i, 

i = 1 . . M))] : 

> V22 := [evalf(seq([seq(1/2*(q22[i,j+1]-q22[i, 

i = 1 . . M))]: 

> VV11 := [evalf(seq([seq(1/2*(V11[i,j+1]-V11[i, 

i = 1 .. M-1))]: 
> VU12 := [evalf(seq([seq(1/2*(U12[i,j+1]-U12[i, 

i = 1 .. M-1))]: 
> UU22 := [evalf(seq([seq(1/2*(U22[i+1,j]-U22[i, 

i = 1 . . M-1))]: 

j])*M/Pi, 

j])*M/Pi, 

j])*M/Pi, 

j])*N/Pi, 

j])*N/Pi, 

j])*N/Pi, 

j])*N/Pi, 

j])*N/Pi, 

j])*M/Pi, 

j 1 

j 1 

j 1 

j 1 

j 1 

j = 1 

j 1 

j 1 

j 1 

.. N)]' 

.. N)], 

.. N)]' 

.. N)]' 

.. N)]' 

.. N)]' 

.. N-1)], 

.. N-1)], 

.. N-1)], 
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Then substitute Ull, U12, U22, Vll, V12, V22, VVll, VU12, UU22 into the 

formula above to calculate the Ricci scalar at each point of S and draw its figure. 

> R := [evalf(seq([seq(1/2*(q11[i, j]*U22[i,j]~2-2*V12[i, j]*U11[i, 

j]*q22[i, j]-2*q11[i, j]*U12[i,j]*V22[i, j]+2*VV11[i, j]*q12[i, j]~2 

-2*q11[i, j]*VV11[i,j]*q22[i, j]+V11[i, j]~2*q22[i, j]-4*VU12[i, j]* 

q12[i,j]~2+4*q11[i, j]*VU12[i, j]*q22[i, j]+4*U12[i, j]*q12[i,j]*V12[i, 

j]+q12[i, j]*U11[i, j]*V22[i, j]+U11[i, j]*U22[i,j]*q22[i, j]-2*V11[i, 

j]*q12[i, j]*V12[i, j]+2*UU22[i, j]*q12[i,j]~2-2*q11[i, j]*UU22[i, j]* 

q22[i, j]+q11[i, j]*V11[i,j]*V22[i, j]-V11[i, j]*q12[i, j]*U22[i, j]-2 

*U22[i, j]*q12[i,j]*U12[i, j])/(q11[i, j]*q22[i, j]-q12[i,j]~2)~2, j= 

1 N-1)],i=1 .. M-1))]: 
> listplot3d([seq([seq(R[i, j], j = 1 . . N-1)], i = 1 .. M-1)] ,labels=[i, 

j, 'R'] axes= boxed, orientation= [43, 70]); 

Figure 2.1: The Ricci Scalar, R, calculated by the numerical method. 

We now consider the extrinsic geometry of S. In particular, we are interested 
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in K, the trace of the extrinsic curvature. To calculate K, we first construct a neigh-

boring surface of S described by a normal vector of V. Let E: be a small parameter, p 

is a point of S. Displace the point p by the normal vector E: V to the point p'. Do the 

same for each point of S, keeping the value of E: fixed. Then, all the points p' define 

a new surface: 

S' = S + r::V, 

which is depicted schematically in Figure 2.2. Finally, from Formula (2.10) K can be 

calculated as the fractional rate of change of the area element, 

K 1
. 1 A'- A 

-1m----
- E-->0 A E: ' 

where A and A' are the area elements of S and S' respectively. 

Figure 2.2: A schematic of the surface S and its neighboring surfaceS'. 

Using the method above, we first construct the surface S' and calculate the 

tangent vectors to S': 

> eps:= 0.01; 
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eps := 0.01 

> X2 := [seq([seq([X[i, j, 1]+eps*n[i, j,1], X[i, j, 2]+eps*n[i, j, 

2], X[i, j, 3]+eps*n[i, j, 3]], j = 1 .. N+1)], i = 1 .. M+1)]: 

> 01 := [evalf(seq([seq(1/2*(X2[i+1,j]-X2[i, j])*M/Pi, j = 1 .. N)], 

i = 1 M))] : 

> 02 := [evalf(seq([seq(1/2*(X2[i,j+1]-X2[i, j])*N/Pi, j 1 .. N)], 

i = 1 M))] : 

Next, calculate the two-dimensional induced metric and the area element of S' 

using the same method as on the initial surface S: 

> d11 := [evalf(seq([seq(01[i, j,1]-2*G[1, 1]+01[i, j, 2]-2*G[2, 2]+01[i, 

j , 3] -2*G [3, 3] , j = 1 . . N)] , i = 1 . . M))] : 

> d12 := [evalf(seq([seq(01[i, j, 1]*02[i,j, 1]*G[1, 1]+01[i, j, 2]*02[i, 

j, 2]*G[2, 2]+01[i, j, 3]*02[i, j,3]*G[3, 3], j = 1 .. N)], i = 1 .. 

M))] : 

> d22 := [evalf(seq([seq(02[i, j,1]-2*G[1, 1]+02[i, j, 2]-2*G[2, 2]+02[i, 

j , 3] -2*G [3, 3] , j = 1 . . N)] , i = 1 . . M))] : 

> A2 := [seq([seq(sqrt(d11[i, j]*d22[i,j]-d12[i, j]-2), j 1 .. N)], 

i = 1 M)] : 

Finally, calculate K and depict it in Figure 2.3: 

> K := [seq([seq((A2[i, j]-A1[i,j])/(eps*A1[i, j]), j 1 .. N)], i= 

1 M)] : 

> listplot3d([seq([seq(K[i, j], j 1 .. N)], i 1 .. M)], axes= boxed, 

orientation= [43, 70]); 
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80 60 

Figure 2.3: The trace of the extrinsic curvature, K, calculated by the numerical 

method. 

As a test for our algorithm we now calculate R and K by another method. From 

the knowledge of differential geometry, we know that R = ~ [11], where k is the 

determinant of the second fundamental form Ka/3 and q is the determinant of the two

dimensional metric qo:/3· In this case for the surfaceS= [(R + rcos(u)) cos(v), (R + 

r cos( u)) sin(v ), r sin( u)], 

So 

qop ~ [ : (5 + 2 :oo(u))2 ] 

Kap ~ [ ~ (5+ 2 cos;u)) cos(u) ] 

k 
- = 0.5 cos( u)(5 + 2 cos( u) )/(5 + 2 cos( u) )2

. 
q 

(2.13) 

Then we can directly calculate that for the surface S the trace of the Weingarten 
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M af3K . K . ap q af3, Le. , lS 

-1/2- cos(u)/(5 + 2 cos(u)). (2.14) 

The results of the expressions (2.13) and (2.14) are plotted in Figures 2.4 and 2.5 

respectively. The two results of R and K are plotted in the same figure (Figure 2.6), 

respectively, for comparison. Furthermore, the differences between the two results of 

R and K are plotted respectively in Figure 2.7. Figures 2.6 and 2.7 show that the 

two results of Rand K both match well. Thus our code recovers the correct value of 

Rand K. 

> plot3d(1/2*csgn(5+2*cos(u))~2*(5+2*cos(u))*cos(u)/(5+2*cos(u))~2, 

> u = 0 2*Pi, v = 0 . . 2*Pi, axes = boxed, orientation = [43, 

> 70]); 

Figure 2.4: The Ricci scalar, R, calculated by algebra 

> plot3d(-1/2*csgn(5+2*cos(u))-csgn(5+2*cos(u))*cos(u)/(5+2*cos(u)), 

u = 0 .. 2*Pi, v = 0 .. 2*Pi, axes= boxed, orientation =[43,70]); 
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Figure 2.5: The trace of the extrinsic geometry, K, calculated by algebra 

K 
R 

0 

(a) The two results of R (b) The two results of K 

Figure 2.6: The two results of R and K are plotted together for comparison 
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DiffR 

6060 

(a) The difference between the two results of R (b) The difference between the two results of K 

Figure 2.7: The differences between the two results of Rand K. 



Chapter 3 

Two-surfaces in Vaidya Spacetimes 

We have introduced a method for calculating the geometry of a two-surface em

bedded in a three-dimensional manifold, which allows the analysis to be carried out in 

a direct manner. In this section we further develop the method to study the geometry 

and deformations of spacelike two-surfaces embedded in four-dimensional spacetimes. 

In particular we apply the method to calculate the geometry of spacelike two-surfaces 

embedded in Vaidya spacetime and their variations. We test our algorithm by com

paring our results with exact results obtained with the GRTensorii computer algebra 

package. 

A. Two-surface Geometry 

Let S be a closed (i.e. compact without boundary), orientable spacelike 2-surface 

that is smoothly embedded a 4-dimensional spacetime (M, 9ab). Y'a denotes the 

covariant derivative compatible with 9ab· The embedding of S in M can be defined 

23 
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in parametric form with, 

(3.1) 

(a:, {3 = 1, 2), where xa are coordinates on M, ~a are coordinates on S, and xa are the 

embedding functions. The two vectors e0 := X~oa form a basis of tangent vectors to 

S at each point of S. The metric induced by the spacetime metric 9ab onto S is then 

given by, 

(3.2) 

This metric defines the compatible derivative operator da, the area element and the 

Ricci scalar on the two-surface. 

The set of vectors orthogonal to S at any point form a 2-dimensional Minkowskian 

vector space. Then there are two linearly independent, future-pointing null vectors 

normal to S, za and na. We usually construct a future directed unit timelike normal 

ya and the unit outward pointing spacelike normal Ra to S first, then we can define 

the outgoing and ingoing null vectors 

za := ~(Ta + Ra), 

1 
na := ..j2(Ta- Ra). 

(3.3) 

(3.4) 

If we further require that 9ablanb = -1 then the null vectors are specified only up to 

one degree of rescaling freedom 

(3.5) 

where f is a, positive definite (to preserve the future orientation), smooth function 

on S. The induced metric can be expressed in terms of the null vectors (here it is 

actually an "extended" four-dimensional induced metric [12]): 

(3.6) 
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The extrinsic curvatures of the surface are [11]: 

(3.7) 

which describe the way in which S is embedded in M. The null expansions are: 

(3.8) 

These expansions tell us how the area element of S changes as it is deformed along 

za and na respectively. They are very important quantities, like the K in section 2; 

we will encounter them often in the remaining sections of this paper. From (2.9) we 

know that the expansions are the rates of change of the area element of S, thus we 

can rewrite them as 

() - £nyq 
(n)- yq ' 

() - £zyq 
(l)- yq, (3.9) 

where q is the determinant of the metric %b· In our code, for convenience, we will 

use the formula (3.9) to calculate the expansions. 

We now consider the computation of the Lie derivatives £ 1yq and £nVQ· Our 

numerical approach to this problem is based on deforming the surfaceS, which is also 

critical for the computation of the deformations of the geometry of S that we will 

consider later. We have used this method to calculate K in the three-dimensional case 

in Section 2. Here we demonstrate the method in detail. Let us begin by recalling 

the definition of deformations [6]. 

A deformation (variation) of a two-surface S0 is a smooth, one-to-one function 

<P(s, >.) : S0 x [->.0 , >-o] ----r M (with Ao some real number) such that <I>( So, 0) = So. 

Thus, <P generates a finite three-surface 'J<I> and that surface is foliated by images 

S>. = <P(S0 , >.)of So as depicted in Figure 3.1. The deformation vector field xa = (t>.)a 

is tangent to the curves of constant s E S. The flow generated by this vector field 

maps leaves of constant A into each other. For sufficiently small £, we can intuitively 
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write the neighboring surface of S0 as 

sf= So+ EX. (3.10) 

curve of eunstant. s 

Figure 3.1: A schematic of a section of 'J<I> around S0 [6]. 

We will focus on normal deformations where xa is everywhere perpendicular to 

the S;.. and so can be written: 

(3.11) 

for some functions A and B. 

Now we can calculate the Lie derivatives £1y'q and £ny'{j and then the expansions. 

Let us take e(l) as an example (B(n) can be calculated in the same way). For any value 

of A and B, the map <I> deforms S0 into successive surfaces S;... First, using <I> we 

deform the surface S so that S--> S + El. Then we contruct the area element y'qf on 

the new surface sf' and we have 

£ In l" y'qf - ,;q 
lyq = lm ' 

f--->0 f 
(3.12) 
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Finally, from (3.9) we have 
.JQ, -.jq 

e(l) =lim--'-. 
<-+0 y'q 
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(3.13) 

For accurateness, in our code we do the same thing for S -t S - El, and then we 

average these two results to approximate the rate of change. This method is similar 

to the "centered difference formula" which is used to calculate the derivative of a 

function (see Appendix A). We will call such method as "three-point estimate", and 

we will use it frequently in our code. 

We now move on to calculate the deformations for some geometric quantities of 

S. In particular we are interested in the deformations of the expansions which are 

important for the dynamics of two-surfaces embedded in spacetimes. The method for 

calculating the deformations of the expansions is similar to the one we used above 

to calculate the expansions themselves. Taking the null expansion e(l) as an example 

again, we write its deformation as t5xB(l) and note that calculating this quantity 

amounts to: 

1. using <I> to deform the initial surface S so that S -t S + EX. 

2. constructing the Bell on the new surface S,. 

3. calculating the Lie derivative £xB(l) and pulling-back the results onto S. 

In this paper we are mainly interested in spacelike two-surfaces embedded in the 

Vaidya spacetime. The Vaidya spacetime describes spherically symmetric collapse of 

null dust [13]. In ingoing Eddington-Finkelstein coordinates (v, r, e, ¢),the metric is 

dS2 = -(1-
2
m(v) )dv2 + 2dvdr + r 2dB2 + r 2 sin2Bd¢2

, 
r 

(3.14) 

where the mass function m( v) can be specified as a non-negative, non-decreasing, 

smooth function of the null coordinate v. The stress energy is determined by the 

derivative of m(v): 

(3.15) 
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For constant m(v), the metric is just the standard Schwarzschild metric in ingoing 

Eddington-Finkelstein coordinates. 

We now calculate the intrinsic and extrinsic geometry and their deformations 

for a spacelike two-surface in the Vaidya spacetime, using the method we discussed 

previously. Consider a two-surface S in the Vaidya spacetime: 

S = {v = V(>.), r = R(>.), e = 8(>.), ¢ = ¢; 0 :S >, :S 1, -1r :S ¢ :S 1r}. (3.16) 

Generally, our approach to this problem is similar to the one used in the three

dimensional case. First, we discretize S and calculate the tangent vectors and null 

normal vectors at each point. We note that constructing the two future-pointing 

null normals to S is much more difficult than calculating the unit normal vectors 

in the three-dimensional case. Then we can calculate the induced metric, area el

ement and Ricci scalar of S at each point in the same way as in Section 2. The 

expansions of S and their variations are calculated by constructing the neighboring 

surfaces described by the normal deformations, which have been discussed previously. 

B. Numerical Implementation 

As an example, let us now illustrate our method with the Maple worksheet below 

which calculates the various geometric quantities for a given two-surface in the Vaidya 

spacetime. This Maple worksheet mainly consists of some procedures which make the 

code concise and efficient. 

To begin, we define a procedure to calculate the tangent vectors to any surface 

which is input as X. When we calculate the derivative of a function, to improve the 

accuracy, we use the fourth-order accurate five-point difference formula (see Appendix 

A for details), instead of the former first-order accurate formula. In addition, for the 
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points at center, we use the centered five-point formula: 

f
'(x ) ~ f(xo- 2h)- 8f(xo- h)+ 8f(xo +h)- f(xo + 2h). 

0 12h ' 

for the points at the left edge, we use the forward five-point formula: 

29 

(3.17) 

!
'( ) ~ -25f(xo) + 48f(xo +h)- 36f(xo + 2h) + 16f(xo + 3h)- 3f(xo + 4h). 

xo 12h ' 

(3.18) 

and for the points at the right edge, we use the backward five-point formula: 

!
'( ) ~ -25f(xo) + 48f(xo- h)- 36f(xo- 2h) + 16f(xo- 3h)- 3f(xo- 4h) 

xo -12h · 

> with(plots): 
> FivePtDer:=proc(X,N) 

> local h,DX1,DX2,DXMain; 

> h:=1/N; 

(3.19) 

> DX1:=[evalf(seq((-25*X[i]+48*X[i+1]-36*X[i+2]+16*X[i+3]-3*X[i+4])/(12*h), 

> i = 1 .. 2))]; 

> DXMain := [evalf(seq(((X[i-2]-8*X[i-1])+(8*X[i+1]-X[i+2]))/(12*h), 

> i = 3 . . N-1))] ; 

> DX2:=[evalf(seq((-25*X[i]+48*X[i-1]-36*X[i-2]+16*X[i-3]-3*X[i-4])/(-12*h) 

> i = N . . N+1))] ; 

> return([op(DX1),op(DXMain),op(DX2)]); 

> end proc: 

Next, calculate the diagonal components of the two-dimensional induced metric 

from the tangent vectors and then the area element. A quick calculation shows that 

the components q12 and q21 are zero, so they are neglected in the code. 
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> AreaEl:=proc(X,Xp,m,N) 

> local q11, q22, dA; 

30 

> q11:=[seq(-(1-2*m[i]/X[i,2])*Xp[i,1]~2+2*Xp[i,1]*Xp[i,2]+X[i,2]~2*Xp[i 

> ,3r2,i=1. .N+1)J; 

> q22:=[seq(X[i,2]~2*sin(X[i,3])~2,i=1 .. N+1)]; 

> dA:=[seq(evalf(sqrt(q11[i]*q22[i])),i=1 .. N+1)]; 

> return(dA); 

> end proc: 

Then calculate the Ricci scalar. From (3.16) the metric of the Vaidya spacetime 

can be rewritten as 

Denote - ( 1- 2m~v)) V 12 + 2V' R' + R2fJ'2 and R2 sin2 8 by F and G, respectively. Then 

from (2.5) the Ricci scalar can be expressed as 

-1 d G' 
R = v'F?J d>. ( v'F?J). (3.21) 

> Ricci:=proc(X,Xp,m,N) 

> local F,G,Gp,PDerTerm,DerTerm,dA,R; 

> F:=[seq(-(1-2*m[i]/X[i,2])*Xp[i,1]~2+2*Xp[i,1]*Xp[i,2]+X[i,2]~2*Xp[i,3 

> ]~2,i=1 .. N+1)]; 

> G: =[seq (X [i, 2] ~2*sin (X [i, 3]) ~2, i=1. . N+1)] ; 

> Gp:=FivePtDer(G,N); 

> dA:=[seq(evalf(sqrt(F[i]*G[i])),i=1 .. N+1)]; 
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> PDerTerm:=[seq(Gp[i]/dA[i] ,i=1 .. N+1)]; 

> DerTerm:=FivePtDer(PDerTerm,N); 

> R:=[seq(-DerTerm[i]/dA[i],i=1 .. N+1)]; 

> return(R); 

> end proc: 
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The following part calculates the null normal vectors to S. This works by first cal-

culating a canonical pair of timelike and spacelike unit vectors and then constructing 

null vectors from them. 

First, from the two tangent vectors of the 2-surface S, g>. = V' tv + R' gr + 8' go 

and g¢ = g¢, we can obtain the normal one-forms: 

n 1 = 8'dr- R'de, n2 = -8'dv + V'de. (3.22) 

Then, with the inverse metric of the Vaidya spacetime we convert the normal one-

forms to normal vectors: 

(3.23) 

It follows that any linear combination, fi1 - an2, where a is a parameter function, is 

normal to the surface S. 

Now we can calculate the spacelike unit normal. We know that the vectors fi1 -afi2 

will be spacelike if (fi1 - an2) · (fi1 - an2) is positive. Since 

( - _) (- _) 8 ,2 ( 2m) (R' + aV')
2 

n 1 - an2 · n 1 - an2 = 2a + 1 - R + R2 , (3.24) 

we note that if we choose a = 2
;, the directions of these vectors are not affected, 

and the calculations will become simple. In this case, 

( - _) (- _) 8 ,2( 2m) (R'R+2V'm) 2 

n 1 - an2 · n 1 - an2 = - 1 + R + R4 > 0, (3.25) 
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so the vectors ii1 - aii2 will be spacelike. Then the outward pointing spacelike unit 

normal can be defined as (we would usually expect 8' > 0 for the surface S) 

R = iil - aii2 = 1 { 8' ~ + 8' ~ - RR' + 2m V' 8 } 
- II ii1- aii2 II V(1 + 2;)8 '2 + (RR'+~;nV')2 &v &r R3 f)() · 

(3.26) 

Next we need to construct a timelike normal that is perpendicular to R. Let us 

consider An1 + Bn2 , where A and Bare two functions we need to solve. We need to 

solve the equation 

(3.27) 

It is easy to check that 

(3.28) 

will do this. Thus we obtain the required normal vector: 

(3.29) 

Then with a = 2; we can define the unit timelike normal: 

~ [ 
T- ---=== - r-n· (3.30) 

Finally, we define the two null normal vectors: 

(3.31) 

1 ~ ~ 
ii=-(T-R). 

V2 
(3.32) 

Code for these procedures follows: 
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> NullVec:=proc(X,Xp,m,N) 

> local Rden, Tden, vR, n1, n2, n1vR, n2vR, vn1, vn2, prevT, prevT2, 

> vT, vL, vN; 

> Rden:=[seq(sqrt((1+2*m[i]/X[i,2])*Xp[i,3]~2+(X[i,2]*Xp[i,2]+2*m[i]*Xp[ 

> i,1])~2/X[i,2]~4),i=1 .. N+1)]; 

> vR:=[seq([Xp[i,3]/Rden[i],Xp[i,3]/Rden[i],-(X[i,2]*Xp[i,2]+2*m[i]*Xp[i 

> ,1])/X[i,2]~3/Rden[i]] ,i=1. .N+1)]; 

> Tden:=[seq(Rden[i]*sqrt(Xp[i,3]~2+2*Xp[i,1]*Xp[i,2]/X[i,2]~2-(1-2*m[i] 

> /X [i, 2]) *Xp [i, 1] ~2/X [i, 2] ~2), i=1. . N+1)] ; 

> n1:=[seq([O,Xp[i,3] ,-Xp[i,2]] ,i=1. .N+1)]; 

> n2 :=[seq ( [ -Xp [i ,3] ,0 ,Xp [i, 1]], i=1.. N+1)]; 

> vn1:=[seq([Xp[i,3],(1-2*m[i]/X[i,2])*Xp[i,3],-Xp[i,2]/X[i,2]~2],i=1 .. N 

> +1)] ; 

> vn2:=[seq([O,-Xp[i,3],Xp[i,1]/X[i,2]~2],i=1 .. N+1)]; 

> n1vR:=[seq(n1[i,1]*vR[i,1]+n1[i,2]*vR[i,2]+n1[i,3]*vR[i,3] ,i=1 .. N+1)]; 

> n2vR:=[seq(n2[i,1]*vR[i,1]+n2[i,2]*vR[i,2]+n2[i,3]*vR[i,3] ,i=1 .. N+1)]; 

> prevT:=[seq(-n2vR[i]*vn1[i]+n1vR[i]*vn2[i],i=1 .. N+1)]; 

> prevT2:=[seq(-(1-2*m[i]/X[i,2])*prevT[i,1]*prevT[i,1]+prevT[i,1]*prevT 

> [i,2]+prevT[i,1]*prevT[i,2]+X[i,2]~2*prevT[i,3]*prev 

> T[i,3] ,i=1. .N+1)]; 

> vT:=[seq(prevT[i]/sqrt(-prevT2[i]),i=1 .. N+1)]; 

> vL:=[seq(1/sqrt(2.)*(vT[i]+vR[i]),i=1 .. N+1)]; 

> vN:=[seq(1/sqrt(2.)*(vT[i]-vR[i]),i=1 .. N+1)]; 

> return(vL,vN); 

> end proc: 

The following procedure calculates the expansion associated with the normal 

vector field V. This is pretty straightforward, deform the surface so that X ____, 

X + EV and calculate the area element on the new surface first, and then do 

the same thing for X ____, X- EV. Finally we average these two results and do 
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three-point estimate on the rate of change. 

> Expansion:=proc(X,Xp,V,eps,m,N) 

> local dA,XplusV,XplusVp,dAplusV,XminusV,XminusVp,dAminusV,ExpV; 

> dA:=AreaEl(X,Xp,m,N); 

> XplusV:=X+eps*V; 

> XplusVp:=FivePtDer(XplusV,N); 

> dAplusV:=AreaEl(XplusV,XplusVp,m,N): 

> XminusV:=X-eps*V; 

> XminusVp:=FivePtDer(XminusV,N); 

> dAminusV:=AreaEl(XminusV,XminusVp,m,N): 

> ExpV:=[seq((dAplusV[i]-dAminusV[i])/2/dA[i]/eps,i=i .. N+1)]; 

> return (ExpV) ; 

> end proc: 

Calculate just the outward expansion B(z) using the procedure above. 

> Expansion_L:=proc(X,eps,m,N) 

> local Xp,dA,vL,vN,tL_Num; 

> Xp:=FivePtDer(X,N); 

> dA:=AreaEl(X,Xp,m,N); 

> vL,vN:=NullVec(X,Xp,m,N): 

> tL_Num:=Expansion(X,Xp,vL,eps,m,N); 

> return(tL_Num); 

> end proc: 

Finally, the procedure below is the core one. It makes use of all the procedures 

defined previously to calculate both expansions, the Ricci scalar, and the varia

tions On()(l) and OzB(l). 
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> AllQuants:=proc(X,eps,m,N) 

> local Xp,dA,vL,vN,tL_Num,tN_Num,XplusN,XminusN,tL_plusN,tL_minusN,dNtL, 

> R,XplusL,XminusL,tL_plusL,tL_minusL,dLtL; 

> Xp:=FivePtDer(X,N); 

> dA:=AreaEl(X,Xp,m,N); 

> vL,vN:=NullVec(X,Xp,m,N): 

> tL_Num:=Expansion(X,Xp,vL,eps,m,N); 

> tN_Num:=Expansion(X,Xp,vN,eps,m,N); 

> XplusN:=X+eps*vN; XminusN:=X-eps*vN; 

> tL_plusN:=Expansion_L(XplusN,eps,m,N); 

> tL_minusN:=Expansion_L(XminusN,eps,m,N); 

> dNtL:=[seq((tL_plusN[i]-tL_minusN[i])/2/eps,i=1 .. N+1)]; 

> R:=Ricci(X,Xp,m,N); 

> XplusL:=X+eps*vL; XminusL:=X-eps*vL; 

> tL_plusL:=Expansion_L(XplusL,eps,m,N); 

> tL_minusL:=Expansion_L(XminusL,eps,m,N); 

> dLtL:=[seq((tL_plusL[i]-tL_minusL[i])/2/eps,i=l .. N+1)]; 

> return(tL_Num,tN_Num,dNtL,R,dLtL); 

> end proc: 

C. A Sample Calculation 

> N:=200; h:=1/N; eps:=0.02; a:=2; 

N := 200 

h := _1_ 
200 

eps := 0.02 

a:= 2 

As a simple example, we choose m = 1, and the parameterization of the initial 

surface S is v = 2 cos( e), r = 2m = 2, and e E [0, 1r]. Note that in this case, the 
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four-metric is just the standard Schwarzschild metric, S is a two-sphere (Figure 3.2) 

and it is a slice of the event/apparent horizon. Thus we expect that on this surface 

B(t) = 0, e(n) < 0 and onB(t) < 0. These will be confirmed by the following results. 

> m:=[seq(l.,i=l .. N+l)]: 
> X:=[seq([evalf(a*cos(Pi*(i-1)*h)),evalf(2),evalf(Pi*(i-1)*h)] ,i=l .. N+ 

> 1)] : 

> Xp:=FivePtDer(X,N): 

Figure 3.2: The initial two-surface S 

The results of both expansions, the Ricci scalar, and the variations OnB(t) and 

o1B(l) are calculated by executing the core procedure - AllQuants. 

> tL_Num,tN_Num,dNtL_Num,Ric_Num,dLtL_Num:=AllQuants(X,eps,m,N): 

Finally, figures of the geometric quantities we have calculated are graphed. Note 

that for the points at the ends, the area element A = J qllq22 - ql22 = 0, which 

makes some relevant results inaccurate to some extent. Thus we neglect these points 

when we output the results. 

file:///Jql/q22
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> listplot(tL_Num[2 .. N]); 

> listplot(tN_Num[2 .. N]); 

50 100 150 200 

-1 

-1 

_, 

(a) The outward expansion B(l) (b) The inward expansion B(n) 

Figure 3.3: The expansions 

> listplot(dNtL_Num[2 .. N]); 

50 100 150 200 

Figure 3.4: The variation 6n(}(l) 

> listplot(dLtL_Num[2 .. N]); 
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Figure 3.5: The variation Ozflcll 

> listplot(Ric_Num[5 .. N-3]); 

0 50 100 150 

Figure 3.6: The Ricci Scalar 

D. Test 

To verify our algorithm we calculate the various geometric quantities of S by 

another method: using the GRTensorii computer algebra package. The detailed 

GRTensorii session is contained in the Appendix B. Here we directly use the results 
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and their figures to compare them with the ones calculated by our method. 

The following is part of the Maple worksheet in the Appendix B. To compare 

the two results of expansion Bn which are calculated by two methods, we graph 

them in one figure. Also, the difference value of them is plotted: 

39 

> tN_Ex:=[seq(evalf(subs(theta=(Pi*(i-1)/N),1/8*(sqrt(2)*(-16-8*a*cos(t 

> heta) +a ~2* (sin(theta)) ~2)) I (sqrt (8+a~2* (sin(theta)) ~2)))), i=1. . N+1)] : 

> dNtL_Ex := 

> [seq(evalf(subs(theta=(Pi*(i-1)/N),-1/64*(1024+192*a~2*cos(theta)~2-51 

> 2*a*cos(theta)+64*a~2-64*a~3*cos(theta)-16*a~4-a~6+3*a~6*cos(theta)~2-

> 3*cos(theta)~4*a~6+64*cos(theta)~3*a~3+16*a~4*cos(theta)~2+cos(theta)~ 

> 6*a~6)/(64+16*a~2+a~4-2*a~4*cos(theta)~2-16*a~2*cos(theta)~2+cos(theta 

> )~4*a~4))),i=1..N+1)]: 

> display(listplot(tN_Num[2 .. N]),listplot(tN_Ex[2 .. N])); 

> tN_fracDiff:=[seq((tN_Num[i]-tN_Ex[i])/tN_Ex[i] ,i=2 .. N-1)]: 

> listplot(tN_fracDiff); 

50 100 150 200 

Figure 3.7: The two inward expansions B(n) 
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Figure 3.8: The difference between the two results of (f(n) 

The two results of the variation on(f(l) are graphed in one figure, and their 

difference is also plotted: 

> display(listplot(dNtL_Num[2 .. N]),listplot(dNtL_Ex[2 .. N])); 

> dNtL_fracDiff:=[seq((dNtL_Num[i]-dNtL_Ex[i])/dNtL_Ex[i],i=2 .. N)]: 

> listplot(dNtL_fracDiff); 

50 100 150 200 

Figure 3.9: The two variations On(f(l) 
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10"" 

Figure 3.10: The difference between the two results of one(l) 

From the result of the Appendix B, the Ricci scalar R = 2,!,2 , which is invariant 

on slices of the horizon. So when m = 1, R = 0.5. The difference between the two 

results of the Ricci scalar are graphed below: 

> Ric_fracDiff:=[seq((Ric_Num[i]-0.5)/0.5,i=4 .. N-2)]: 

> listplot(Ric_fracDiff); 

Figure 3.11: The difference between the two results of Ricci Scalar 

41 
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From Figures (3.8), (3.10) and (3.11) we can see that our numerical calculations 

match the results computed by the GRTensorll computer algebra package. On the 

route to these calculations we also see that our program can solve the problem in a 

very direct and efficient manner. In the next section, we will see this more clearly 

when we calculate the deformations of two-surfaces in the Vaidya spacetime. 



Chapter 4 

Deformations of FOTS in Vaidya 

Spacetimes 

A. The Vaidya Spacetime 

To begin, we review some features of the Vaidya spacetime (3.15). The Vaidya 

spacetime is a spherically symmetric spacetime which describes the collapse of null 

dust in forming a black hole. Here we are mainly interested in the cases shown in 

Figure 4.1: for v ::::; 0, m( v) = 0; for v > 0, m( v) increases monotonically and reaches 

an asymptotic value M 0 as v tends to infinity. 

Let us focus our attention on the two-spheres given by v=constant, r=constant. 

Scaling the outgoing and ingoing null normals to these two-spheres as 

a 2m(v) 
l =[1,1---,0,0], na=[0,-1,0,0]. 

r 
( 4.1) 

The expansions of the outgoing null normal za is given by 

e(l) = ~(1- 2m(v) ). 
r r 

(4.2) 

Thus the only spherically symmetric marginally trapped surfaces are the two-spheres 

r = 2m( v) for a specified v. These will be the apparent horizons on spherically 

43 



CHAPTER 4. DEFORMATIONS OF FOTS IN VAIDYA SPACETIMES 
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Figure 4.1: Penrose diagrams of the Vaidya spacetime [14]. This diagram is valid for 

a strictly increasing mass function m(v) which vanishes for v:::; 0, and asymptotes to 

a finite value M0 for v--> oo. The event horizon is denoted by E. The shaded region 

of the spacetime is flat. 

symmetric Cauchy surfaces which intersect the r = 2m( v) surface [8]. Let us denote 

the r = 2m(v) surface by H. Unlike in the Schwarzschild spacetime where the r =2m 

surface is null and coincides with the event horizon, in this case H is spacelike if 

m'(v) > 0, and it lies strictly inside the event horizon. At late times, H asymptotes 

to the event horizon. 

We now consider a special kind of two-surfaces embedded in the Vaidya spacetime 

- future outer trapping surfaces (FOTS) that foliate future outer trapping horizons. 

FOTS are spacelike two-surfaces on which Einstein equations hold and for which 

e(l) = 0, B(n) < 0 and there is a scaling of the null vectors such that <5nB(l) < 0 [6]. 
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First, we note that on each of the two-sphere r = 2m(v) (v=constant) in the Vaidya 

spacetime, given the scaling (4.1), e(l) = ~(1 - 2";.(v)) = 0, e(n) = -~ < 0, and 

6nB(l) = -~ < 0. Thus these two-surfaces are FOTS, and the 3-surface H given by 

r = 2m(v) for all v is a FOTH. As shown in Figure (4.1), in the Vaidya spacetime 

the null event horizon E, the space-like FOTH H, and the time-like surfacer= 2M0 

all meet tangentially at the future timelike infinity i+. 

In this section we distort FOTS embedded in the Vaidya spacetime, preserving 

their defining characteristics e(l) = 0, e(n) < 0 and 6ne(l) < 0, and study the properties 

of these deformations. In particular, we are interested if all FOTHs asymptote to the 

event horizon. 

From [6] we know that for any spacelike 2-surface on which e(l) = 0, it can be 

shown that 

(4.3) 

where Wa = -q~nc \hlc is the connection on the normal bundle Tl_ S. Let us begin 

with this formula to study the deformations of a FOTS whilst preserving its defining 

characteristics. Note that under sufficiently small variations, we always have B(n) < 0 

and 6nB(l) < 0, thus to understand these deformations we need to find normal vector 

fields xa such that 6xB(l) = 0. By solving 6xB(l) = 0 we can get both the evolution 

and the possible deformation of FOTS. In general, there will be an infinite number of 

xa that will solve 6xB(l) = 0 and so an equally infinite number of FOTS-preserving 

deformations. Here we focus on the case t5tB(l) =!= 0 anywhere on S. In this situation, 

for any B E C 2 (S) we can always solve 6xB(l) = 0 to find a corresponding A. In our 

calculations, for convenience, we choose Bas a positive constant, then from (4.1) we 

have 

( 4.4) 
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Under the null energy condition Oze(l) < 0 [6], thus A > 0. In this case, we obtain a 

[-oriented and spacelike normal variation xa = Ala - Bna. Then we can deform the 

initial FOTS S into its neighboring FOTS, S, = S +EX. Using this method, we can 

deform the initial FOTS S into successive FOTS. 

B. Symmetric Evolutions 

Let us now illustrate the discussion above with the deformations of some given 

FOTS embedded in the Vaidya spacetime: 

s = {v = V(>.), T = R(>.), e = 8(>.), ¢ = ¢; 0 :s; >. :s; 1, -7f :s; ¢ :s; 1f}. (4.5) 

The mass function is defined as m( v) = ~ + ~erf( v) (see Figure 4.2), where erf(v) is the 

usual error function. For simplicity, we begin with the surface v = 0, r = 2m( v) = 3 

and e E [0, 1r]. We use our code to evolve the FOTS symmetrically towards the event 

horizon and then compare these numerical evolutions with exact results. 

-20 -10 10 20 

Figure 4.2: m(v) = ~ + ~erf(v) 

Before deforming the FOTS, we first locate the event horizon and give its evolution 

to gain a better understanding of this situation. In principle the event horizon can be 
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found by tracing the path of null rays through time. Furthermore, in a global sense 

in time, the future-pointing outgoing null geodesics that begin near the event horizon 

will converge on to the horizon if integrated backward in time. Building on this idea, 

the method of "integrating null surfaces backwards in time" [15] was developed to 

locate the event horizon. In this case, we note that for the null surfaces, t · t = 0, 

thus we have 

2m(v) 
-(1- --)dv2 + 2dvdr = 0, 

r 

which gives the evolution equation for the event horizon, 

dr = ~( 1 _ 2m(v) ). 
dv 2 r 

(4.6) 

(4.7) 

In a global sense, we can begin the "backward integrating" with the final stage, here 

we choose v = 20 and r( v) = 4 as the starting condition for the backward integration 

of Equation 4.7. By solving the equation, we obtain the evolution of the event horizon 

(Figure 4.3). Figure 4.3 shows that the event horizon coincides with the apparent 

horizon only at late times after the black hole settling down to a stationary state ( v 

is large enough). In the past, the apparent horizon lies within the event horizon. 

(a) Apparent Horizon 2m(v) (b) Evolution of event horizon (c) EH vs AH 

Figure 4.3: EH and AH 
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Next, we use our program to simulate the process of the deformations of the 

FOTS. The first part of the code is similar to the one in Section 3, some procedures 

are defined to calculate various geometry quantities for S. For conciseness, we omit 

the details of the procedures that are exactly the same as the ones in Section 3. 

> restart; with(plots): 

> FivePtDer:=proc(X,N) 

> AreaEl:=proc(X,Xp,m,N) 

> Ricci:=proc(X,Xp,m,N) 

> NullVec:=proc(X,Xp,m,N) 

The following procedure calculates the expansion associated with the normal vec

tor field V. It is a little different from the one in Section 3: First, m( v) is no longer 

a constant, in this case m(v) = ~ + !erf(v); Second, to improve the accuracy of the 

value of A = 
8

8
8~0(1) which will be calculated later, we make a little change here -
l (l) 

omitting the bottom part of the expansion, vfQ. (the area element of the surface S). 

From Section 3 the expansions of S are given by B(n) = 8j{ and B(t) = ~, which 

leads to the next relations 

on(btv/Q.) = on(v/Q.B(l)) = ylq(B(n)B(l)+onB(l)), bt(Otyfq) = Ot{ylqB(l)) = ylq(Bfl)+btB(l))· 

(4.8) 
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So when e(l) = 0, (4.4) reveals the relation 

6n(6t.,fii) 
61 ( 6t.,fii) 

49 

(4.9) 

When we approximate the value of A later, for accurateness, we use the formula (4.5) 
6(~) 

instead of ~n:(t) = n 6,'(\ • Thus the following procedure actually calculates Jn.fii and 
I (I) 6t(V't) 

6t.,fii instead of the expansions e(n) and e{lJ· 

> Expansion:=proc(X,Xp,V,eps,m,N) 

> local XplusV,XplusVp,dAplusV,XminusV,XminusVp,dAminusV,ExpV,m1,m2; 

> XplusV:=X+eps*V; 

> XplusVp:=FivePtDer(XplusV,N); 

> m1:=[seq(evalf(3/2+erf(XplusV[i,1])/2),i=1 .. N-1)]; 

> dAplusV:=AreaEl(XplusV,XplusVp,m1,N): 

> XminusV:=X-eps*V; 

> XminusVp:=FivePtDer(XminusV,N); 

> m2:=[seq(evalf(3/2+erf(XminusV[i,1])/2),i=1 .. N-1)]; 

> dAminusV:=AreaEl(XminusV,XminusVp,m2,N): 

> ExpV:=[seq((dAplusV[i]-dAminusV[i])/2/eps,i=1 .. N-1)]; 

> return(ExpV); 

> end proc: 

Then calculate just the outward expansion B(t)· 

> Expansion_L:=proc(X,eps,m,N) 

> local Xp,dA,vL,vN,tL_Num; 

> Xp:=FivePtDer(X,N); 

> dA:=AreaEl(X,Xp,m,N); 

> vL,vN:=NullVec(X,Xp,m,N): 

> tL_Num:=Expansion(X,Xp,vL,eps,m,N); 

> return(tL_Num); 

> end proc: 
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The procedure below invokes all the procedures defined above to calculate both 

expansions, the Ricci scalar, and the variations 6nB(t), 6tB(t), 6n(61y'q) and J1(J1y'q). 

> AllQuants:=proc(X,eps,m,N) 

> local Xp,dA,vL,vN,tL_Num,tN_Num,XplusN,XminusN,tL_plusN,tL_minusN, 

> dNtL,R,XplusL,XminusL,tL_plusL,tL_minusL,dLtL,m1,m2,m3,m4,tL,tN, 

> AdNtL,AdLtL; 

> Xp:=FivePtDer(X,N); 

> dA:=AreaEl(X,Xp,m,N); 

> vL,vN:=NullVec(X,Xp,m,N): 

> tL:=Expansion(X,Xp,vL,eps,m,N); 

> tN:=Expansion(X,Xp,vN,eps,m,N); 

> tL_Num:=[seq(evalf(tL[i]/dA[i]),i=1 .. N-1)]; 

> tN_Num:=[seq(evalf(tN[i]/dA[i]),i=1 .. N-1)]; 

> XplusN:=X+eps*vN; 

> m1:=[seq(evalf(3/2+erf(XplusN[i,1])/2),i=1 .. N-1)]; 

> XminusN:=X-eps*vN; 

> m2:=[seq(evalf(3/2+erf(XminusN[i,1])/2),i=1 .. N-1)]; 

> tL_plusN:=Expansion_L(XplusN,eps,m1,N); 

> tL_minusN:=Expansion_L(XminusN,eps,m2,N); 

> dNtL:=[seq((tL_plusN[i]-tL_minusN[i])/2/eps/dA[i] ,i=1 .. N-1)]; 

> AdNtL:=[seq((tL_plusN[i]-tL_minusN[i])/2/eps,i=1 .. N-1)]; 

> XplusL:=X+eps*vL; 

> m3:=[seq(evalf(3/2+erf(XplusL[i,1])/2),i=1 .. N-1)]; 

> XminusL:=X-eps*vL; 

> m4:=[seq(evalf(3/2+erf(XminusL[i,1])/2),i=1 .. N-1)]; 

> tL_plusL:=Expansion_L(XplusL,eps,m3,N); 

> tL_minusL:=Expansion_L(XminusL,eps,m4,N); 

> dLtL:=[seq((tL_plusL[i]-tL_minusL[i])/2/eps/dA[i],i=1 .. N-1)]; 

> AdLtL:=[seq((tL_plusL[i]-tL_minusL[i])/2/eps,i=1 .. N-1)]; 

> R:=Ricci(X,Xp,m,N); 
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> return(tL_Num,tN_Num,dNtL,R,dLtL,AdNtL,AdLtL); 

> end proc: 
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The following procedure is the core one in this section. It deforms a FOTS in-

putted as X into its neighboring FOTS. For simplicity, we set B = 1, then A can 

b ·1 l I t d A 8nC8tv'Q) Th l dX e eas1 y ca cu a e as = 81 c81 ..;q) . e norma variation can be written as 

dX =Ala-na, and then the new surface is given as Xl =X+ dX. In this proce-

dure we also give the parametric equations of Xl in the Cartesian coordinate system, 

which will make us plot the figure of the surface conveniently. 

> Loop:=proc(X,m,N) 

> local Xp,tL_Num,tN_Num,dNtL_Num,Ric_Num,dLtL_Num,tL,tN,B,A,dX,X1, 

> m1,C,D,E,F,G,AdLtL,AdNtL,S1; 

> Xp:=FivePtDer(X,N): 

> tL,tN := NullVec(X, Xp, m, N): 

> tL_Num,tN_Num,dNtL_Num,Ric_Num,dLtL_Num,AdNtL,AdLtL:=AllQuants(X, 

> eps,m,N): 

> B := 1: 

> A := [seq(B*AdNtL[i]/AdLtL[i], i = 1 .. N-1)]: 

> dX := [seq(eps*[A[i]*tL[i, 1]-B*tN[i, 1], A[i]*tL[i,2]-B*tN[i, 2], 

> A [i] *tL [i, 3] -B*tN [i, 3]] , i = 1. . N-1)] : 

> X1 : = X+dX: 

> S1:=[seq([evalf(X1[i,2]*cos(X1[i,3])),evalf(X1[i,2]*sin(X1[i,3])), 

> evalf(X1[i,1])] ,i=1. .N-1)]: 

> m1:=[seq(evalf(3/2+erf(X1[i,1])/2),i=1 .. N-1)]: 

> Xp:=FivePtDer(X1,N): 

> tL_Num,tN_Num,dNtL_Num,Ric_Num,dLtL_Num,AdNtL,AdLtL:=AllQuants(X1, 

> eps,m1,N): 

> return(tL_Num,tN_Num,dNtL_Num,dLtL_Num,Ric_Num,X1,m1,S1); 

> end proc: 
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The initial FOTS is inputted below: v = 0, r = 2m = 3 and B E [0, 1r]; in this 

case the mass function m( v) = ~ + ~erf( v) = ~. 

> N:=20: h:=1/N: eps:=0.02: 

> a:=2: 

> m:=[seq(evalf(3/2+erf(0)/2),i=1 .. N-1)]: 

> X:=[seq([evalf(O),evalf(2*(3/2+erf(0)/2)),evalf(Pi*i*h)] ,i=1 .. N-1)]: 

Finally, we repeatedly invoke the procedure "Loop" to deform the initial FOTS S 

into successive FOTS s1' s2, ... ' ST-1· We obtain the various geometric quantities 

of the final surface Sr_ 1 and the figures of the deformed surfaces at each step. Here 

we repeatedly deform the initial FOTS for 50 times (T =51) and see how much we 

can extend the FOTS. 

> T:=51: 
> for t from 1 by 1 while t < T do 

> tL,tN,dNtL,dLtL,Ric,X,m,S:=Loop(X,m,N): 

> Surf[t]:= spacecurve(S, axes=box, color red): 

> end do: 

The figures of the expansions, the variations On()(l), OzB(l) and the Ricci scalar of 

the final surface Sr_ 1 are plotted below. We can see that on this surface ()(l) = 0, 

B(n) < 0 and On(}(l) < 0, so Sr- 1 is still a FOTS. 

> listplot(tL, view=[1 .. N-1,-0.2 .. 0.2]); 

> listplot(tN, view=[1 .. N-1,-0.8 .. 0.8]); 

> listplot(dNtL, view=[1 .. N-1,-0.1 .. 0]); 

> listplot(dLtL, view=[1 .. N-1,-0.2 .. 0.2]); 

> listplot(Ric, view=[2 .. N-2,-0.3 .. 0.3]); 
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0.2 

0.1 

(a) The outward expansion 8(!) (b) The inward expansion B(n) 

Figure 4.4: The expansions 
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(a) The variation 8nB(l) (b) The variation 8tB(l) 

Figure 4.5: The variations of the expansions 

Figure 4.6: The Ricci Scalar 
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The three-dimensional figures of the 50 deformed surfaces in the Cartesian coor

dinate system are plotted below. From this figure we can easily see how the FOTS 

are deformed gradually. 

> SS:=[seq(Surf[t] ,t=1 .. T-1)]: 

> display(SS,orientation=[30,70]); 

-4 

Figure 4. 7: The deformed FOTS 

To find where we have extended the FOTS, we now plot the figures of rand 2m(v) 

for the final surface Sr-1· 

> r:=[seq(X[i,2] ,i=1. .N-1)]: 

> listplot(r,color =red, view=[1 .. 20,0 .. 4.01]); 

> listplot(2*m, view=[1 .. 20,0 .. 4.01]); 

> display(listplot(r,color =red), listplot(2*m,color 

> black), view=[1 .. 20,0 .. 4.01]); 
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2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20 

(a) r (b) 2m (c) r vs 2m 

Figure 4.8: r and 2m 

From Figure 4.3 we know that in the Vaidya spacetime where m(v) = ~ + ~erf(v), 

at late times r = 2m( v) asymptotes to the event horizon r = 4. Combining this 

with Figures ( 4.7) and ( 4.8) we can see that at late times, having been successively 

deformed for 50 times, the FOTS asymptote to the event horizon. 

C. Non-symmetric Evolutions 

What we have discussed so far are all about symmetric evolutions. Next we turn 

to study some non-symmetric cases. As noted in [6], the rescaling of the null normal 

vectors is often important when we study FOTS. When we deform the FOTS, different 

scaling of the null vectors may generate different deformations of the surfaces. We 

now make use of scalings as a tool to study some non-symmetric FOTS. 

We rescale the null vectors we used previously to become 

la- Jla 
I- ' (4.10) 

where f = 3 + 0.5 cos( e). Then we deform the initial FOTS ( 4.3) for 100 times with 

this scaling, using the same method as before. By doing this, the initial symmetric 

FOTS is deformed into successive non-symmetric FOTS 51 , 52 , ... , 5100 . At last, we 
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plot the figures of various geometric quantities for the final surface S100 below. 

10 15 

(a) The outward expansion ()(!) (b) The inward expansion ()(n) 

Figure 4.9: The expansions 

10 15 

(a) The variation 8n()(l) (b) The variation 81()(!) 

Figure 4.10: The variations of the expansions 
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2.5 3.0 3.5 

Figure 4.11: The deformed FOTS 

4 2 

(a) Viewed in profile (b) Viewed from behind 

Figure 4.12: The deformed FOTS and Apparent horizon 



CHAPTER 4. DEFORMATIONS OF FOTS IN VAIDYA SPACETIMES 58 

(a) r (b) 2m (c) T VS 2m (d) 2m-r 

Figures (4.9) and (4.10) show that the surface 8100 is still a FOTS. Figure (4.12) 

graphs the deformations of the non-symmetric deformed FOTS and the apparent 

horizon at late stage. Figure 4.12 (b) shows that having been deformed for 100 times, 

the FOTS still do not approach the apparent horizon. In addition, it seems likely 

that the FOTS diverge away from the apparent horizon as the deformations go on. 

This is further confirmed in Figure (4.13) which shows that on the FOTS Swo, the 

difference between 2m and r, 2m- r, increases gradually. As a result, it suggests 

that in this case, the non-symmetric FOTS may not extend to the event horizon. 

While our method can calculate the deformations of FOTS in the Vaidya spacetime 

conveniently, we meet some difficulties at the late stage of the deformations. As shown 

in our calculations (Figure 4.5 and Figure 4.10), after we repeat the deformations for 

sufficiently many times, the variation J1Bcl) becomes infinitesimal, then the value of 

A (from equation 4.4 A = B!n&&(l)) becomes inaccurate to some extent. This will 
U! (!) 

affect the deformations subsequent and makes the result not accurate enough. For 

this reason, with the present implementation of our method, we are limited to repeat 

the deformations for no more than 100 times, instead of continually repeating the 

deformations throughout the numerical evolution, as would be our final goal. In 

future implementations of the method, we anticipate developing a more sophisticated 

method to improve the robustness and accuracy of the code. 



Chapter 5 

Conclusions 

In this paper we have presented a numerical method for computing the geome

try and deformations of spacelike two-surfaces embedded in Vaidya spacetimes. We 

discretize a spacelike two-surface and define normal vectors xa = Ala - Bna to each 

point of the surface. Using these normal vectors we deform the surface into its neigh

boring surfaces and calculate the intrinsic and extrinsic geometry of the surface and 

their variations. We have implemented these ideas numerically and shown several 

examples. In these examples, our method has been tested and shown to correctly 

reproduce known results. 

We have also used our method to investigate the deformations of FOTS which 

foliate FOTH in the Vaidya spacetime. Solutions of t5xB(l) = 0 generate the possible 

deformations of the FOTH. We have studied the allowed deformations of some FOTS 

in the Vaidya spacetime and tried to distort them towards the event horizon. The 

result suggests that in the Vaidya spacetime, some FOTS may not extend to the event 

horizon after finite extensions. 

The geometry and dynamics of black hole horizons can be studied by considering 

the allowed deformations of their foliating two-surfaces. Our method provides a con-
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venient tool to calculate the deformations of two-surfaces in Vaidya spacetimes. The 

method is being further developed by Dr. Ivan Booth and his students. In the future, 

the robustness and accuracy of the method will be improved, and more interesting 

findings are expected. 



Appendix A 

Numerical Differentiation 

In this appendix we briefly review the problem of computing the derivative of 

a given function f(x). We focus on three forms which are commonly considered: 

forward, backward and centered differences. The methods discussed here are used 

repeatedly in our codes. 

The derivative of a function fat a point x0 , denoted f'(x 0 ), is defined by the limit 

f '( ) _ 1. f(xo +h)- f(xo) 
xo - 1m h . 

h ...... o 

So when h is a small positive constant, the forward difference divided by h approxi-

mates the derivative f'(x 0 ), 

f'(xo) ~ f(xo +h)- f(xo). 
h 

This approximation is called the two-point forward difference formula [16]. 

The error in this approximation can be derived from Taylor's theorem. Assuming 

that f"(x) exists on [x0 , x0 + h], then, by Taylor's Theorem, f(xo +h) = f(x 0 ) + 

f'(x 0 )h + f"(0h 2 /2, where~ E [x0 , x0 + h]. Solving for f'(x 0 ), we obtain 

f '( ) f(xo +h)- f(xo) f"(~)h 
xo = h +-2-, 

61 



APPENDIX A. NUMERICAL DIFFERENTIATION 62 

so the error in the forward difference formula is O(h). This formula is first-order 

accurate. 

The backward difference formula can be obtained by replacing h by -h in the 

forward difference formula, where h is still positive, 

f'( ) ~ f(xo)- f(xo- h) 
xo ~ h , 

The backward difference formula is also first-order accurate. 

However, the central difference yields a more accurate approximation. The three-

point centered difference formula can be obtained by averaging the forward and back-

ward difference approximation, 

f '( ) :::::,j f(xo +h)- f(xo- h) 
xo 2h . 

Its error is proportional to square of the spacing. Assuming that f"'(x) E C3 on 

[x0 - h, x0 + h], then, by Taylor's Theorem again, 

f(xo +h)= f(xo) + f'(xo)h + f"(~o)h + f"'(~+)h
3

, 

f(xo- h)= f(xo)- f'(xo)h + f"(~o)h- f"'(~_)h
3

, 

where~+ E [x0 , x 0 + h] and~- E [x0 - h, x0 ]. Solving for f'(x 0 ), we obtain 

f'( ) = f(xo +h)- f(xo- h) _ !'"(~+) + !"'(~-) h2 
xo 2h 12 · 

By the Intermediate Value Theorem [16], f'" must assume every value between!"'(~-) 

and!"'(~+) on the interval(~-,~+), including the average of these two values. There-

fore, we can rewrite this equation 

f
'( ) = f(xo +h)- f(xo- h) _ !"'(~) h2 

Xo 2h 6 ' 

where~ E [x0 - h, x0 + h]. Note that the term involving f"(x0 ) is cancelled during 

the calculation. The center difference formula is second-order accurate. 
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While we can use Taylor's Theorem to derive difference formulas with higher

order accuracy simply by evaluating f ( x) at more points, this process can be tedious. 

An alternative approach is to use the Richardson extrapolation method [16]: first 

construct the Lagrange interpolating polynomial through some neighboring points, 

then differentiate the Lagrange polynomial, and finally evaluate the derivative at the 

desired point. For example, suppose we want to compute the derivative at a point x 0 

using the points {x-m, ... , x_1, Xo, x1, ... , Xn}, where m and n are known nonnegative 

integers, and X-m < X-m+l < ... < Xn-l < Xn. Then a finite difference formula 

for f'(x 0 ) can be obtained by analytically computing the derivatives of the Lagrange 

polynomials £,1,i(x)~=-m for these points, where j = m + n + 1. 

Using this method we can derive the fourth-order accurate five-point centered 

formula which is one of the best known finite difference formulas, 

f
'( ) _ f(xo- 2h)- 8f(xo- h)+ 8f(xo +h)- f(xo + 2h) f 5(0h4 

xo - 12h + 30 ' 

where~ E [xo- 2h, x 0 + 2h]. 

If there is no information available about f ( x) for x < x0 , then we can use the 

following forward five-point formula, 

'( ) _ -25f(xo) + 48f(xo +h)- 36f(xo + 2h) + 16f(xo + 3h)- 3f(xo + 4h) J5(0h4 

f Xo - 12h + 5 ' 

where~ E [xo,xo + 4h]. As before, if we have not any information about f(x) for 

x > x 0 we can replace h by -h to obtain a backward formula that approximates 

f'(x 0 ) using the values of f(x) at points {xo, xo- h, xo- 2h, x0 - 3h, xo- 4h}. 



Appendix B 

Calculations with G RTensor II 

The bulk of this appendix is the output from a Maple worksheet which was con

structed by Ivan Booth. In the worksheet various geometric quantities, namely the 

induced metric q0 f3, the Ricci scalar R, the expansions Bcnl and Bell and the varia

tion 6ne(ll, for the two-sphere in the Vaidya spacetime, S = {a cos( e), 2, B}, where 

e E [0, 11'] and a= 2, are calculated with the GRTensorll computer algebra package. 

These results are used in Section 3 to test our algorithm. 

To begin the Maple session we load the GRTensorll libraries and the Vaidya 

metric. 

> restart: readlib(grii): with(plots): grtw(); 

GRTensorll Version 1. 79 (R4) 

6 February 2001 

Developed by Peter Musgrave, Denis Pollney and Kayll Lake 

Copyright 1994 - 2001 by the authors. 

Latest version available from: http: I I grtensor.phy.queensu.cal 
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> qload(Vaidya); 

Default spacetime = Vaidya 

For the Vaidya spacetime : 

Coordinates 

x(up) 

X a= [v, r, 8, ¢] 

Line element 

> grcalc(g(up,up)); grdisplay(g(up,up)); 

Calculated detg for Vaidya (0.000000 sec.) 

Calculated g(up,up) for Vaidya (0.016000 sec.) 

CPU Time = 0.063 

For the Vaidya spacetime : 

Contravariant metric tensor 

g(up, up) 

0 1 0 0 

r-2m 
0 0 1 

r 
g a b_ 

1 
0 0 r2 0 

0 0 0 
1 

r 2 sin( 8)2 

Our analysis begins with the calculation of the two future-pointing null normals 

to the surface S. The method is similar to the one we discussed in Section 3. First 
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consider two-surfaces in the Vaidya spacetime, {v = V(>.), r = R(>.), () = >., ¢ = 

¢; 0 :S >. :S 1, -7f :S ¢ :S 7f }. We can find two normal one-forms to the surfaces: 

n 1 = dr- R'd(), n2 = -dv + V'd(). 

With the Vaidya metric we convert them to normal vectors: 

r- 2m -R' 
n1 = [1, , - 2-, o], 

r r 
V' 

n2 = [o, -1, 2 , o]. 
r 

Then we can define the outward pointing spacelike unit normal: 

where a is a parameter function. Here we choose a: = 2
;:', which can simplify the 

calculation. Next, we construct a timelike normal that is perpendicular to R: 

Then we can define the unit timelike normal: 

Finally, the two null normal vectors are defined as: 

~ 1 ~ ~ 
l=V'i(T+R), 

1 ~ ~ n = V'i(T- R). 

Using this method the null normals to the surface Scan be calculated. Note that for 

S, V' = -2 sin(B) and R' = 0. 

> grdef('n2{a}:=[-1,0,Vp(theta),O] '); 

> grcalc(n2(up)); 

> grdisplay(n2(up)); 

This object is already defined. The new definition has been ignored. 
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> Rp(theta):=O; 

CPU Time = 0. 

For the Vaidya spacetime : 

n2(up) 

n2(up) 

n2a = [o, -1, v~;e), o] 

Rp(e) := o 
> grdef('n1{a}:=[0,1,-Rp(theta),O] '); 

> grcalc(n1(up)); 

> grdisplay(n1(up)); 

Components assigned for metric: Vaidya 

Created definition for nl(dn) 

Created definition for nl(up) 

Calculated nl(up) for Vaidya (0.000000 sec.) 

CPU Time = 0. 

For the Vaidya spacetime : 

nl (up) 

n1( up) 

nla = [1, r -r2m, 0, ~ 
> grdef('pR{a}:=n1{a}-2*mlr*n2{a}'); 

> grcalc(pR(up)); 

> grdisplay(pR(up)); 

Created definition for pR(dn) 
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Created definition for pR(up) 

Calculated pR(dn) for Vaidya (0.000000 sec.) 

Calculated pR(up) for Vaidya (0.000000 sec.) 

CPU Time = 0. 

For the Vaidya spacetime : 

pR( up) 

pR(up) 

Ra = [1 1 - 2mVp(B) ol 
p , , r3 , J 

> grdef('pR2:=pR{a}*pR{~a}'); grcalc(pR2); grdisplay(pR2); 

Created definition for pR2 

Calculated pR2 for Vaidya (0.000000 sec.) 

CPU Time = 0. 

For the Vaidya spacetime : 

> subs(r=2*m,Vp(theta)=O,Rp=O,grcomponent(pR2)); 

2 
> grdef('R{a}:=pR{a}/sqrt(pR2)'); 

> grcalc(R(dn)); grdisplay(R(dn)); 

> grcalc(R(up)); grdisplay(R(up)); 

Created definition for R(dn) 

Calculated R(dn) for Vaidya (0.015000 sec.) 
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CPU Time = 0.015 

For the Vaidya spacetime : 

R(dn) 

R(dn) 

Created definition for R(up) 

Calculated R(up) for Vaidya (0.000000 sec.) 

CPU Time = 0.015 

For the Vaidya spacetime : 

R(up) 

R(up) 

Ra = [-1- _1 __ 2m Vp(B) ol 
v'%1' v'%1' r3 )%I ' J 
2mr3 + r4 + 4m2 Vp(B) 2 

%1 := 4 
r 

> radsimp(subs(r=2*m,grcomponent(R(up), [v]))); 

> radsimp(subs(r=2*m,grcomponent(R(up), [r]))); 
2m 

Js m 2 + Vp(B)2 

2m 

J8m2 + Vp(B) 2 

> grdef('R2:=R{a}*R{~a}'); 

> grcalcalter(R2,radsimp); grdisplay(R2); 

Created definition for R2 
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Simplification will be applied during calculation. 

Applying routine radsimp to object R2 

Calculated R2 for Vaidya (0.000000 sec.) 

CPU Time = 0. 

For the Vaidya spacetime : 

R2 

R2 = 1 
> grdef('n1R:=n1{a}*R{-a}'); grcalc(n1R); 

> gralter(n1R,radsimp); 

> grdisplay(n1R); 

Created definition for n1R 

Calculated n1R for Vaidya (0.000000 sec.) 

CPU Time = 0. 

Component simplification of a GRTensorii object: 

Applying routine radsimp to object n1R 

CPU Time = 0. 

For the Vaidya spacetime : 

n1R 
r2 

n1R=-r.==~==~==~~~~ 
yl2 mr3 + r 4 +4m2 Vp(B) 2 

> grdef('n2R:=n2{a}*R{-a}'); grcalc(n2R); 

> gralter(n2R,radsimp); 

> grdisplay(n2R); 
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Created definition for n2R 

Calculated n2R for Vaidya (0.000000 sec.) 

CPU Time = 0. 

Component simplification of a GRTensorii object: 

Applying routine radsimp to object n2R 

> 

> 

CPU Time = 0. 

For the Vaidya spacetime : 

n2R 

-r3
- 2 Vp(B) 2 m 

n2R = --;==:::;::===;=='===='=:::::;====;~ 
r J2 mr3 + r 4 +4m2 Vp(B) 2 

grdef('pT{a}:=-n2R*n1{a}+n1R*n2{a}'); 

grcalcalter(pT(up),radsimp); grdisplay(pT(up)); 

Created definition for pT(dn) 

Created definition for pT(up) 

Simplification will be applied during calculation. 

Applying routine radsimp to object pT(dn) 

Calculated pT(dn) for Vaidya (0.016000 sec.) 

Applying routine radsimp to object pT(up) 

Calculated pT(up) for Vaidya (0.015000 sec.) 
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CPU Time = 0.031 

For the Vaidya spacetime : 

pT(up) 

pT( up) 

a_ [r3 +2Vp(0) 2 m _2m(-rVp(0) 2 +r3 +2Vp(0) 2 m) Vp(O) ~ 
p T - lfi11 , lfi11 , lfi11 , 0 

rv%1 r 2 v%1 v%1 
%1 := 2mr3 + r 4 + 4m2 Vp(0) 2 

> grdef('pT2:=pT{a}*pT{~a}'); 

> grcalcalter(pT2,simplify); 

> grdisplay(pT2); 

Created definition for pT2 

Simplification will be applied during calculation. 

Applying routine simplify to object pT2 

Calculated pT2 for Vaidya (0.032000 sec.) 

CPU Time = 0.032 

For the Vaidya spacetime : 

pT2 

-rVp(0) 2 + r 3 + 2Vp(0)2 m 
p T2 = -----'--'-------:----'--'---

r3 

> grdef('T{a}:=pT{a}/sqrt(-pT2)'); 

> grcalc(T(up)); 

> gralter(T(up),radsimp): grdisplay(T(up)); 

Created definition for T(dn) 

Created definition for T(up) 
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Calculated T(dn) for Vaidya (0.016000 sec.) 

Calculated T(up) for Vaidya (0.000000 sec.) 

CPU Time = 0.016 

Component simplification of a GRTensorii object: 

Applying routine radsimp to object T(up) 

CPU Time = 0.031 

For the Vaidya spacetime : 

T(up) 

T(up) 

(r3 + 2 Vp(8)2 m) r 
TV=-r===7======~~~~~==~~~~==~==~=7= 

y'2mr3 + r4 +4m2 Vp(8)2 y'( -rVp(8)2 + r3 + 2Vp(8)2 m) r 

rr = _ 2m ( -r Vp(8)2 + r 3 + 2Vp(8)2 m) 
y'2 mr3 + r4 +4m2 Vp(8)2 y'( -rVp(8)2 + r3 + 2Vp(8)2 m) r 

Te = Vp(8) r2 

y'2 m r3 + r4 +4m2 Vp(8)2 y'( -r Vp(8)2 + r3 + 2 Vp(8)2 m) r 
> radsimp(subs(r=2*m,grcomponent(T(up), [v]))); 

> radsimp(subs(r=2*m,grcomponent(T(up), [r]))); 

> radsimp(subs(r=2*m,grcomponent(T(up), [theta]))); 

1 4m2 +Vp(8)2 

2m J8m 2 + Vp(8)2 

2m 

y'8m2 + Vp(8)2 

1 Vp(8) 

2m J8m2 + Vp(8)2 
> grdef('T2:=T{a}*T{~a}'); 

> grcalcalter(T2,simplify); 

> grdisplay(T2); 
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Created definition for T2 

Simplification will be applied during calculation. 

Applying routine simplify to object T2 

Calculated T2 for Vaidya (0.031000 sec.) 

> 

> 

> 

CPU Time = 0.031 

For the Vaidya spacetime : 

T2 

%1 
T2 = --~---= [%1o/c=o1=-

v 7ol ,,. y ~ r 
%1 := -rVp(B)2 + r 3 + 2Vp(B)2 m 

grdef('TR:=T{~a}*R{a}'); 

grcalcalter(TR,simplify); 

grdisplay(TR); 

Created definition for TR 

Simplification will be applied during calculation. 

Applying routine simplify to object TR 

Calculated TR for Vaidya (0.016000 sec.) 

CPU Time = 0.016 

For the Vaidya spacetime : 

TR 
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TR = All components are zero 

> grdef('L{~a}:=(1/sqrt(2)*(T{~a}+R{~a}))'); 

> grcalcalter(L(up),simplify); gralter(L(up),radsimp); 

> grdisplay(L(up)); grdef('L2:=L{a}*L{~a}'); 

> grcalcalter(L2,simplify): 

> grdisplay(L2); 

Created definition for L(up) 

Simplification will be applied during calculation. 

Applying routine simplify to object L(up) 

Calculated L(up) for Vaidya (0.172000 sec.) 

CPU Time = 0.172 

Component simplification of a GRTensorii object: 

Applying routine radsimp to object L(up) 

CPU Time = 0.015 

For the Vaidya spacetime : 

L(up) 

L(up) 
1 v'2 (r3 + 2 Vp(t7)2 m + J( -r Vp(0)2 + r3 + 2 Vp(0)2 m) r r) r 

£V = 2 -Jr::2=m'===;r3;=+=r4:;=+===:=4=m=;;2~V:;=p~( 0~)~2 -vr,(=-=r~V;=p=;=( o""')""2 +=r:;;=3 =+=:2~V:;=p=;:( 0:;;::;)~2 =m~) r 
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1 y'2 ( -2 r Vp(0) 2 m +2m r3 +4m2 Vp(0) 2 - J( -r Vp(0) 2 + r3 + 2 Vp(0)2 m) r r 2
) 

LT=----~--~~==~~====~~~~7=~~~==~~~~~~~~~ 
2 J2 m r3 + r4 +4m2 Vp(0) 2 J( -r Vp(0)2 + r3 + 2 Vp(0)2 m) r 

Le = ~ v'2Vp(O) (r 3
- 2m J( -r Vp(0)2 + r3 + 2 Vp(0)2 m) r) 

2 )2m r3 + r4 +4m2 Vp(0) 2 r J( -rVp(0)2 + r3 + 2 Vp(0) 2 m) r 
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Created definition for L(dn) 

Created definition for L2 

Simplification will be applied during calculation. 

Applying routine simplify to object L(dn) 

Calculated L(dn) for Vaidya (0.032000 sec.) 

Applying routine simplify to object L2 

Calculated L2 for Vaidya (0.000000 sec.) 

CPU Time = 0.032 

For the Vaidya spacetime : 

L2 

L2 = All components are zero 
> radsimp(subs(r=2*m,grcomponent(L(up), [v]))); 

> radsimp(subs(r=2*m,grcomponent(L(up), [r]))); 

> radsimp(subs(r=2*m,grcomponent(L(up), [theta]))); 

~ J2 Js m 2 + Vp(B)2 
4 m 

0 

0 

> radsimp(subs(r=2*m,Vp(theta)=O,grcomponent(L(up), [v]))); 

1 
> grdef('N{a}:=1/sqrt(2)*(T{a}-R{a})'); 

> grcalc(N(up)); grdisplay(N(up)); grdef('N2:=N{a}*N{~a}'); 

> grcalcalter(N2,radsimp); grdisplay(N2); 
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Created definition for N(dn) 

Created definition for N(up) 

Calculated N(dn) for Vaidya (0.000000 sec.) 

Calculated N(up) for Vaidya (0.015000 sec.) 

CPU Time = 0.047 

For the Vaidya spacetime : 

N(up) 

N(up) 

77 

1 V2 (r3 !%! + 2 !%! Vp(B)2 m- r J%1·/-r Vp(B)Z + r: + 2Vp(B)2 m) 
Nv = _ V7 V7 V r 

2 J%1 j -r Vp(B)
2 

+ ~: + 2 Vp(B)
2 

m r ffJ 
%1 :=2mr3+r4 +4m2Vp(B)2 

Nr = -~J2( _2 r (%1 Vp(B)2 m + r2 J%1·/-r Vp(B)
2 

+ r
3 

+ 2Vp(B)
2 

m 
2 V 7 V r3 

(%1 (%1 I rr;:t:; + 2mr3 y 7 +4 y 7 Vp(B)2m2) (r2 v%1 

;-rVp(B)2 +r3 +2Vp(B)2m (%1) 
r 3 V7 

%1 := 2mr3 +r4 +4m2Vp(B) 2 

No=~ )2Vp(B) (r3 ffJ +2m J%1 j -r Vp(B)2 + ~: + 2Vp(B)2 m) 

2 r3 J%1 ;-rVp(B)
2 

+ ~: + 2Vp(B)2 m ffJ 
%1 := 2mr3 +r4 +4m2Vp(B) 2 

Created definition for N2 
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Simplification will be applied during calculation. 

Applying routine radsimp to object N2 

Calculated N2 for Vaidya (0.015000 sec.) 

CPU Time = 0.015 

For the Vaidya spacetime : 

N2 

N2 = All components are zero 
> radsimp(subs(r=2*m,grcomponent(N(up), [v]))); 

> radsimp(subs(r=2*m,grcomponent(N(up), [r]))); 

> radsimp(subs(r=2*m,grcomponent(N(up), [theta]))); 

1 Vp(B) 2 

2 )16m2 +2Vp(B)2 m 

4m 

)16m2 + 2Vp(B)2 

Vp(B) 

m )16m2 + 2Vp(B)2 
> grdef('LN:=L{a}*N{-a}'); grcalc(LN); radsimp(grcomponent(LN)); 

Created definition for LN 

Calculated LN for Vaidya (0.000000 sec.) 

CPU Time = 0. 

-1 

78 

With the null normals we can now calculate the induced metric qab = 9ab + lanb + 

lbna, and the two null expansions e(n) = qab'V anb and e(l) = qab'V alb. 
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> grdef('tq{a b}:=g{ab}+L{a}*N{b}+L{b}*N{a}'); 

> grcalc(tq(dn,dn)); 

Created definition for tq(dn,dn) 

Calculated tq(dn,dn) for Vaidya (0.015000 sec.) 

CPU Time = 0.015 
> grcalc(tq(dn,dn)): 

> radsimp(subs(r=2*m,grcomponent(tq(dn,dn), [theta,theta]))); 

> radsimp(subs(r=2*m,grcomponent(tq(dn,dn), [theta,phi]))); 

> radsimp(subs(r=2*m,grcomponent(tq(dn,dn), [phi,phi]))); 

CPU Time = 0. 

0 

4m2 sin(B)2 

> grdef('tL:=tq{-a -b}*L{a;b}'); grcalc(tL): grdisplay(tL); 

Created a definition for L(dn,cdn) 

Created definition for tq(up,up) 

Created definition for tL 

Calculated g(dn,dn,pdn) for Vaidya (0.015000 sec.) 

Calculated Chr(dn,dn,dn) for Vaidya (0.000000 sec.) 

Calculated Chr(dn,dn,up) for Vaidya (0.000000 sec.) 

Calculated L(dn,cdn) for Vaidya (0.032000 sec.) 

79 
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Calculated tq(up,up) for Vaidya (0.015000 sec.) 

Calculated tL for Vaidya (0.063000 sec.) 

CPU Time = 0.125 

For the Vaidya spacetime : 

tL 

tL = 89510 words. Exceeds grOptionDisplayLimit 

> radsimp(expand(subs(r=2*m,grcomponent(tL)))); 

0 

> grdef('tN:=tq{~a ~b}*N{a;b}'); grcalc(tN): grdisplay(tN); 

Created a definition for N(dn,cdn) 

Created definition for tN 

Calculated N(dn,cdn) for Vaidya (0.016000 sec.) 

Calculated tN for Vaidya (0.125000 sec.) 

CPU Time = 0.141 

For the Vaidya spacetime: 

tN 

tN = 74308 words. Exceeds grOptionDisplayLimit 

> tNH:=radsimp(expand(subs(r=2*m,grcomponent(tN)))); 

1 16 sin(B) m2 - 4 m ( fe Vp(B)) sin(B) - 4 m Vp(B) cos(B) - sin(B) Vp(B)2 
tNH:=----~~------~~~~~~~~~~~--~~~~ 

4 sin( B) )16m2 + 2 Vp( B)2 m2 
> tNH_cos:=radsimp(expand(subs(Vp(theta)=-a*m*sin(theta),tNH))); 

tNH _cos := ~ v'2 ( -16- 8 a cos( B) + a2 sin(B)2
) 

8 m Js + a2 sin(B)2 
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> plot(subs(m=1,a=2,tNH_cos),theta=O .. Pi); 

0.5 2 2.5 3 
0 

-o.5 

-1 

-1.5 

-2 

Figure B.1: The inward expansion e(n) 

Next, we calculate the variation one(l)· Here we just outline the calculations but 

more details are contained in [6]. From [6] we have 

oxe(ll = Xxe(ll -d2 B +2wadaB- B[llwll 2
- dawa- R/2+Gablanb- e(l)e(nJ]-A[IIa<l)ll 2 

+Gabzazb + (1/2W[nL 

where Xx = -Xanb\lalb, wa = -q~nc\lbzc is the normal bundle connection, llwll 2 = 

wawa, <7~~ = (qgqg- ~%bqcd)\lcld is the shear, lla(l)W = ai~a(l)ab, Gab is the usual 

Einstein tensor and R is the Ricci scalar. Set A = 0, B = -1 and e(!) = 0 in this 

equation, we have 

where Tab= ~, which tells us that in the absence of matter fields 
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The following code use this formula to calculate 6nf)(l). 

> grdef('tom{a}:=-tq{a ~b}*N{c}*L{~c;b}'); grcalc(tom(dn)); 

Created definition for tq(dn,up) 

Created a definition for L(up,cdn) 

Created definition for tom(dn) 

Calculated tq(dn,up) for Vaidya (0.031000 sec.) 

Calculated L(up,cdn) for Vaidya (0.016000 sec.) 

Calculated tom(dn) for Vaidya (0.328000 sec.) 

CPU Time = 0.375 

> radsimp(subs(r=2*m,grcomponent(tom(dn), [v]))); 

> radsimp(subs(r=2*m,grcomponent(tom(dn), [r]))); 

> radsimp(subs(r=2*m,grcomponent(tom(dn), [theta]))); 

> radsimp(subs(r=2*m,grcomponent(tom(dn), [phi]))); 

0 

I_ (8m2+ 4 (fg Vp(B)) m + Vp(B)2) Vp(B)2 

16 m3(8m2+Vp(B)2) 

1 Vp(B)(8m2 + 4 (fg Vp(B)) m + Vp(B) 2 ) 

4 m (8m2 + Vp(B)2) 

> alpha:=2*m/r; 

0 

2m 
a:=

r 

82 



APPENDIX B. CALCULATIONS WITH GRTENSORil 83 

> grdef('tomH{a}:=[0,1/16*(8*m~2+4*alpha*(diff(Vp(theta), 

> theta))*m+alpha*Vp(theta)~2)*Vp(theta)~2/(m~3*(8*m~2+alpha*Vp(theta)~2 

> )),1/4*Vp(theta)*(8*m~2+4*alpha*(diff(Vp(theta), 

> theta))*m+alpha*Vp(theta)~2)/(m*(8*m~2+alpha*Vp(theta)~2)),0] '); 

> grcalc(tomH(dn)); grdisplay(tomH(dn)); 

Components assigned for metric: Vaidya 

Created definition for tomH(dn) 

CPU Time = 0. 

For the Vaidya spacetime : 

tomH(dn) 

tomH(dn) 

[ 

1 
(8 m' +8m2 (~ Vp(O)) +2m ~p(O)') Vp(O)' 

tomHa= 0,16 m3(8m2+ 2mVp(B)2) ' 
r 

1 
Vp(O) (8 m' + 8m2 (~ Vp(O)) + 2m ~p(O)') ] 

4 ( 
2 

2mVp(B)2 ) ,O 
m 8 m + -----'-'-

r 
> grdef('tomH2:=tq{~a~b}*tomH{a}*tomH{b}'); 

> grcalc(tomH2); 

> om2:=radsimp(subs(r=2*m,grcomponent(tomH2))); 

Created definition for tomH2 

Calculated tomH2 for Vaidya (0.016000 sec.) 
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> grdef('dtomH:=tq{~a ~b}*tomH{a;b}'); 

> grcalc(dtomH); 

> dom:=factor(radsimp(subs(r=2*m,grcomponent(dtomH)))); 

This object is already defined. The new definition has been ignored. 

CPU Time = 0. 

dam:= 
1
1
6 

(64 m4 Vp(B) cos(B) + 64 m4 sin( B) %1 +32m3 sin( B) %1 2 

+32m3 Vp(B) %1 cos( B)+ 32m3 sin( B) Vp(B) (1;2 Vp(B)) 

84 

+ 16m2 Vp(B) 3 cos(B) +16m2 Vp(B)2 sin(B) %1 + 4 m sin(B) Vp( B) 3 (1;2 Vp(B)) 

+ 4 m Vp(B)3 %1 cos( B) - 4 m Vp(B) 2 sin( B) %1 2 + Vp(B)5 cos(B) 

+ Vp(B) 4 sin( B) %1) j(m3 (8m2 + Vp(B) 2
)

2 sin( B)) 

%1 := j0 Vp(B) 

> Ric: =1/2/m~2; 

1 
Ric:=--

2m2 

> dNtL:=simplify(-Ric/2+om2-dom); 

dNtL := -
6
1
4 

(1024 m 6 sin( B)+ 192 m 4 sin(B) Vp(B) 2
- 32 Vp(B) 2 sin( B) %1 2 m2 

- 4 Vp(B)4 sin( B) %1m- Vp(B)6 sin( B)+ 256 m5 Vp(B) cos( B) 

+ 256 m5 sin( B) %1 + 128 m 4 sin( B) Vp(B) (1;2 Vp(B)) + 128 m 4 Vp(B) %1 cos( B) 

+ 128 m 4 sin( B) %1 2 +64m3 Vp(B) 3 cos( B)+ 16m2 Vp(B) 3 %1 cos( B) 

+ 16m2 sin(B) Vp(B)3 (1;2 Vp(B)) + 4 m Vp(B) 5 cos( B)) j(m4 (8m2 + Vp( B) 2
)

2 

sin( B)) 

%1 := j0 Vp(B) 

> expand(subs(Vp(theta)=O,dNtL)); 
1 

4m2 

> dNtL_cos:=simplify(expand(subs(Vp(theta)=-a*m*sin(theta),dNtL))); 
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1 
dNtL_cos := -

64 
(1024 + 192 a2 cos(B)2 

- 512 a cos( B) + 64 a2 - 64 a 3 cos(B) - 16 a4 

- a6 + 3 a6 cos(B)2
- 3 cos(B)4 a6 + 64 cos(B) 3 a3 + 16 a4 cos(B)2 + cos(B)6 a6 ) I 

((64 + 16a2 +a4
- 2a4 cos(B) 2 -16a2 cos(B) 2 +cos(B) 4 a4)m2 ) 

> dNtL_Num:=simplify(subs(m=l,dNtL_cos)); 

1 
dNtL_Num := --(1024 + 192 a2 cos(B)2

- 512 a cos( B)+ 64 a2 - 64a3 cos( B)- 16 a4 

64 

- a6 + 3 a6 cos( B) 2 
- 3 cos( 8)4 a6 + 64 cos( B) 3 a3 + 16 a4 cos( B) 2 +cos( B) 6 a6

) I 
(64 + 16 a2 + a4

- 2 a4 cos(B) 2
- 16 a2 cos(B) 2 + cos(B) 4 a4

) 

> plot(subs(a=2,dNtL_Num),theta=O .. Pi); 

-Q.1 

-Q.2 

-Q.3 

-Q.4 

-Q.5 

-Q.6 

-Q.? 

0 0.5 1.5 2 2.5 3 

Figure B.2: The variation OnB(l) 



Bibliography 

[1] S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time. Cam

bridge University Press, Cambridge. (1973). 

[2] I. Booth, Black hole boundaries. Can. J. Phys. V83, 1073 (2005). 

[3] R. Penrose, Phys. Rev. Lett. 14 57 (1965). 

[4] R.M. Wald, General relativity. University of Chicago Press, Chicago. (1984). 

[5] S. A. Hayward, Phys. Rev. D 49 6467 (1994). 

[6] I. Booth and S. Fairhurst, Isolated, slowly evolving and dy namical trapping 

horizons:geometry and mechanics from surface deformations. Phys. Rev. D 75, 

084019 (2007). 

[7] D. M. Eardley, Phys. Rev. D 57, 2299 (1998). 

[8] E. Schnetter and B. Krishnan, Phys. Rev. D 73, 021502(R) (2006). 

[9] I. Ben-Dov, Outer trpped surfaces in Vaidya spacetimes. Phys. Rev. D 75, 

064007 (2007). 

[10] E. Gourgoulhon, 3+1 Formalism and Bases of Numerical Relativity. Lectures 

at Institut Henri Poincare (Paris, Sept.-Dec. 2006), gr-qc/0703035 (2007). 

86 



BIBLIOGRAPHY 87 

[11] E. Poisson, A relativist's toolkit: The mathematics of black-hole mechanics. 

Cambridge University Press, Cambridge. (2004). 

[12] E. Gourgoulhon, Phys. Rev. D 72, 104007 (2005). 

[13] P. C. Vaidya, Proc. Ind. Acad. Sci. A33, 264 (1951). 

[14] A. Ashtekar and B. Krishnan, Isolated and dynamical horizons and their appli

cations. Living Rev. Rel. 7 (2004). 

[15] P. Anninos et al, Dynamics of Apparent and Event Horizons. Phys. Rev. Lett. 

74, 630- 633 (1995). 

[16] R. L. Burden and J. D. Faires, Numerical Analysis. Brooks Cole. (2000). 












